
Evolving classification of agents’ behaviors: a general approach

Jose Antonio Iglesias • Plamen Angelov •

Agapito Ledezma • Araceli Sanchis

Abstract By recognizing the behavior of others, many

different tasks can be performed, such as to predict their

future behavior, to coordinate with them or to assist them.

If this behavior recognition can be done automatically, it

can be very useful in many applications. However, an

agents’ behavior is not necessarily fixed but rather it

evolves/changes. Thus, it is essential to take into account

these changes in any behavior recognition system. In this

paper, we present a general approach to the classification of

streaming data which represent a specific agent behavior

based on evolving systems. The experiment results show

that an evolving system based on our approach can effi

ciently model and recognize different behaviors in very

different domains, in particular, UNIX command line data

streams, and intelligent home environments.

Keywords Evolving fuzzy systems � Agent modeling �
Behavior classification

1 Introduction

Recent theories claim that a high percentage of the human

brain capacity is used for predicting the future, including

the behavior of other humans (Mulcahy and Call 2006).

Recognizing the behavior of others in real time is a sig

nificant challenge in different tasks, such as to predict their

activity, state or future actions, to coordinate with them or

to assist them.

In a multi agent system, it is important for agents

(software agents, robots or humans) to recognize other

agents’ internal states (selected behaviors, plans, intentions

or goals). Specifically, behavior recognition is the task of

recognizing the unobservable behavior based state of an

agent, given a stream of observations of its interaction with

its environment. The focus here is on recognizing patterns

(possibly, multiple patterns) in the stream, that would allow

its classification. This is in contrast to other agent modeling

tasks, where the entire sequence of observed actions is to

be recognized and matched against the plan library [e.g., to

predict goals (Hong 2001), or identify the sequence of

actions that compose a plan (Tambe and Rosenbloom

1995; Carrbery 2001; Steffens 2002; Ledezma et al.

2004)]. Many existing techniques for behavior recognition

assume the availability of carefully hand crafted libraries,

which encode the a priori known behavioral repertoire of

the observed agents. During run time, different algo

rithms match the observed behavior of the agents against

the libraries, and successful matches are reported as

hypotheses.

An agent is capable of acting in the environment, and

the agent changes the environment with its actions. How

ever, the behavior of the agent in the environment usually

changes for different reasons: the agent can learn how to

act optimally through experience with the environment, the

J. A. Iglesias (&) � A. Ledezma � A. Sanchis

Carlos III University of Madrid, Avda. Universidad,

30, Leganés, 28914 Madrid, Spain

e-mail: jiglesia@inf.uc3m.es

A. Ledezma

e-mail: ledezma@inf.uc3m.es

A. Sanchis

e-mail: masm@inf.uc3m.es

1

Nota adhesiva
Published in: Evolving Systems, vol. 1, issue 3 (Oct. 2010), pp.161-171.

goals of the agent can be modified, the environment can

change and the behavior of the agent can change as

appropriate to it, and so on.

Techniques for automatically acquiring behavior models

from observations (e.g. by learning or data mining), are

only beginning to emerge, and there are many challenges to

be overcome. In this paper, we face one of the challenges

of the agent behavior modeling: the creation of user

behavior models which can be updated dynamically.

We present an approach to behavior classification based

on sequence classification. This approach represents the

behavior of an agent as a distribution over sequences of

observed atomic events, where such sequences have been

identified during training as statistically significant. How

ever, as the behavior of an agent is not necessarily fixed,

this approach is also based on Evolving Systems that allows

for the agent models to be dynamic, to evolve.

2 Background and related work

To model, recognize, or classify the behavior of an agent is

very useful in many different areas. We, thus, focus in this

section the most relevant work in behavior classification.

Han and Veloso (1999) recognize behaviors of robots

using Hidden Markov Models and their approach is eval

uated in a real world scenario. In this case, states in the

HMMs correspond to an abstracted decomposition of a

robot’s behavior. This approach makes a Markovian

assumption (the probability of moving from the current

state to another is independent of its previous states) in

modeling an agent, whereas our proposal takes into account

a short sequence of events to incorporate some of the

historical context of the agent.

Riley and Veloso (2000) propose a classification of the

adversary behavior into predefined adversary classes in

the domain of simulated robotic soccer. The behavior of

the opponent is modeled by useful features based on the

areas in which the soccer events occur. The system accu

mulates adversary position information in grids and then a

decision tree is used for classifying it. In contrast, the

approach we present in this paper examines the temporal

ordering of events, but for the most part ignores their

location. This consideration is a complementary approach.

Instead of describing the complete opponent behavior,

Steffens (2002) presents a feature based declarative oppo

nent modeling (FBDOM) technique which identifies tacti

cal moves of the opponent in multi agent systems. In this

case, the models built need distinct and stable features

which describe the behavior of opponents. However, it

does not discover sequences.

Kaminka et al. (2002) recognize basic actions based on

descriptive predicates, and learn relevant sequences of

actions using a statistical approach. Horman and Kaminka

(2007) expanded on this approach. A similar process is also

used in (Huang et al. 2003) to create frequent patterns in

dynamic scenes. However, these previous works focused

on unsupervised learning, with no ability to classify

behaviors into classes.

As the main goal of this research is to classify an

observed behavior, we consider that the actions performed

by an agent are usually influenced by past experiences.

Indeed, sequence learning is arguably the most common

form of human and animal learning. Sequences are abso

lutely relevant in human skill learning (Sun et al. 2001)

and in high level problem solving and reasoning (Anderson

1995). Taking this aspect into account in this paper, the

problem of behavior classification is examined as a prob

lem of learning to characterize the behavior of an agent in

terms of sequences of atomic behaviors. Therefore, the

behavior classification problem is transformed into a

sequence classification problem where a sequence repre

sents a specific behavior, as it is detailed in (Iglesias et al.

2010). This consideration makes possible to provide a

general approach which can represent and handle different

behaviors in a wide range of application domains.

It should be emphasized that the above approaches

ignore the fact that agents change and evolve. A very

important issue in agent modeling is to evolve the created

agent behavior models according to the new observations

collected in the corresponding environment. This challenge

is related to the need to cope with huge amounts of

data, and process streaming data on line and in real time

(Domingos and Hulten 2001). Taking this into account, in

this paper the agent behavior modeling is considered,

treated and modeled as a dynamic and evolving phenom

enon. This is the most important contribution of this paper.

3 Evolving classifier of agent behaviors

The proposed approach for classifying an agent behavior in

an evolving manner is presented in this section. This

classifier, called evolving classifier of agent behaviors

(EvCAB) , is based on Evolving Fuzzy Systems and it takes

into account the fact that the behavior of an agent is not

fixed, but is rather changing. This approach can be applied

to classify any agent whose behavior can be represented by

a sequence of events.

To classify an observed behavior, EvCAB, as many

other agent modeling methods (Riley and Veloso 2000),

creates a library which contains the behavior models

extracted by observation. This library, unlike other meth

ods, is not a pre fixed one, but is evolving, learning from

the observations of the agent behaviors and, moreover, it

starts to be filled in ’from scratch’ by assigning temporarily

2

to it the first observed sequence as a prototype. The library,

called Evolving Behavior Model Library (EvBMLib), is

continuously changing, evolving influenced by the chang

ing agent behaviors observed in the environment.

The proposed approach includes the following three

modules (which are described in Fig. 1):

1. Creating sequence of events module (CSEMod) The

aim of this module is to create a sequence of events

from the observations of the agent behavior. This

module is domain dependent and it needs a study of

the different events which can be obtained. Section 4

details the most relevant characteristics of this module.

2. Creating agent behavior model module (CBMMod)

This module analyzes the sequences of events and

creates the corresponding models (agent behavior

profiles). This process is detailed in Section 5.

3. Evolving classifier of behavior models module

(EvCBMMod) This module involves in itself two

sub actions:

(a) Evolving the classifier This sub action includes

on line learning and update of the classifier,

including the potential of each behavior to be a

prototype, stored in the EvBMLib.

(b) Agent behavior classification The agent behavior

model created is associated with one of the

prototypes from the EvBMLib and they are

classified into one of the classes formed by the

prototypes.

The whole process is explained in Section 6.

4 Creating sequence of events module

This module creates a stream of observed atomic discrete

events which describes the behavior of an agent in its

environment. Each event is an atomic observation that

occurs in a certain place during a particular interval of time

and defines a specific act of an agent.

The kind of events and its features have to be deter

mined by the designer taking into account the environment,

and is beyond the scope of this paper. We note in passing

that, in general, this capability exists even for domains in

which observations are of continuous states, rather than

discrete actions. For example, in some dynamic environ

ments (e.g. RoboCup Soccer Simulation), each observation

is a snapshot of the agent that do not offer any information

about its actions. In this case, the actions taken by the agent

should be estimated by contrasting consecutive snapshots

(Kaminka et al. 2002). In other domains, the observations

are inherently sequential events which do not need to be

processed (e.g. UNIX commands in a command line

interface).

Once a sequence of events representing the behavior

of the agent has been obtained, the CBMMod (explained

in the next section), constructs the corresponding agent

model.

5 Creating agent behavior model module

In most of the application domains, the actions performed

by an agent are inherently sequential, and, thus, their

ordering within the sequence should be considered in the

modeling process. For example, in a human computer

interaction by commands, the specific ordering of com

mands within a sequence is essential for the result of the

interaction1. For this reason, in this research, as it is also

detailed in (Iglesias et al. 2010), the proposed process

creates behavior models that specifically encode the

observed sequences of actions executed by the observed

agents.

The first step in the CBMMod is to extract the significant

pieces of the sequence that can represent a repeating pat

tern of behavior. In many domains of interest, the temporal

(non Markovian) dependencies are very significant and we

consider that a current event might depend on the events

that have happened before it, and is, possibly, related to the

Fig. 1 Structure of EvCAB

1 For instance, consider the difference between the UNIX command

sequence ‘‘rm a.txt ; mv b.txt a.txt’’, and the sequence ‘‘mv
b.txt a.txt; rm a.txt’’.

3

events that will happen after it is observed. Thus, the event

sequence needs to be segmented into several subsequences

which will be inserted in the same model separately. This

segmentation can be done by using some environment

characteristic that can separate efficiently the sequence in

several subsequences of uninterrupted events. Otherwise,

the sequence can be segmented by defining an appropriate

maximum length and obtaining every possible ordered

subsequence of that specific length. Thus, the sequence

A A1 A2…An (where n is the number of commands of the

sequence) will be segmented in the subsequences described

by Ai…Ai ? length V i,i [1, n length ? 1], where

length is the size of the subsequences created and this value

determines how many commands are considered as

dependent. In the remainder of the paper, we will use the

term subsequence length to denote the value of this length.

The length of these subsequences is an important aspect

(which is analyzed in different environments in Sect. 7)

because it modifies both the size of the model and the final

results quite significantly.

For the sake of simplicity, let us consider we are

observing an agent and its behavior is represented by the

following sequence: {A ? B ? A ? B ? C} where each

different capital letter represents a different atomic event.

If we divide this example sequence into subsequences of

equal size; let 3 be the subsequence length, then we obtain:

(A ? B ? A) and (B ? A ? B) and (A ? B ? C).

Once the sequence has been segmented and based on the

work done in (Iglesias et al. 2009), we propose the use of a

trie data structure (Fredkin 1960) for storing the subse

quences. This structure was also used in (Iglesias et al.

2007) to classify different sequences and in (Kaminka et al.

2002; Iglesias et al. 2006) to classify the behavior patterns

of a RoboCup soccer simulation team. Thus, when a new

model needs to be constructed, we create an empty trie, and

insert each subsequence of events into it, such that all

possible subsequences are accessible and explicitly repre

sented. Every trie node represents an event appearing at the

end of a subsequence, and the node’s children represent the

events that have appeared following this event. Also, each

node keeps track of the number of times an event has been

inserted in to it. When a new subsequence is inserted into

the trie, existing nodes of the trie are modified and/or new

nodes are created. As the dependencies of the events are

relevant in an agent behavior, the subsequence suffixes

(subsequences that extend to the end of the given sequence)

are also inserted.

Considering the previous example, the first subsequence

({A ? B ? A}) is added as the first branch of the empty

trie (Fig. 2a). Each event is labeled with the number 1 that

indicates that the event has been inserted in the node once

(in Fig. 2, this number is enclosed in square brackets).

Then, the suffixes of the subsequence ({B ? A} and {A})

are also inserted (Fig. 2b). In this case, as the subsequence

{A} has already been inserted in the trie, we increase its

corresponding number (in brackets) from 1 to 2. Finally,

after inserting the three subsequences and its remaining

suffixes, the completed trie is obtained (Fig. 2c). As we can

see, the number of times that a node is inserted depends on

its position in the sequence.

Once the trie is created, the subsequences that charac

terize the behavior have to be obtained (where a subse

quence is a path from the root node to any other node of the

trie). Thus, the trie is traversed to calculate the relevance of

each subsequence. For this purpose, frequency based

methods (Agrawal and Srikant 1995) are used. In particu

lar, in this approach, to evaluate the relevance of a subse

quence, its relative frequency or support (Agrawal and

Srikant 1995) is calculated. This value is the number of

occurrences of a particular subsequence (of length n)

divided by the total number of subsequences of equal

length (n). As the subsequences in a trie are the different

paths from the root to a node, the support value of a sub

sequence is stored in its last node. Therefore, in this step

the trie is transformed into a set of subsequences labeled

with a value (support). Note that this step does not neces

sarily have to be carried out separately, after the creation of

trie. Rather, support counts can be updated during the

insertion of every subsequence.

In the previous example, the trie consists of nine nodes;

therefore, the model consists of nine different subse

quences which are labeled with its support. Considering the

first subsequence (A), its support is 4/(4?4?1) 0.44.

The distribution of the value of the nine subsequences is

represented in Fig. 3.

The model of an agent, encoded by the behavior library,

is then the distribution of subsequences within the library

Fig. 2 Steps of creating an example trie

Fig. 3 Distribution of subsequences

4

(stored in a trie). Although, it is not considered in this

research, the model could be created with the subsequences

with the greatest support value (the more relevant subse

quences) in order to reduce its corresponding set of

subsequences.

Once a behavior model (distribution of relevant subse

quences) has been created, it is classified and the EvBMLib

is updated with its relevant information. This evolving

process is developed in the EvCBMMod, which is

explained in the next section.

6 Evolving classifier of behavior models module

This module proposes a classifier, called EvCBM

(evolving classifier of behavior models), which is

addressing an important challenge in the agent modeling

classification: to dynamically adapt the classifier accord

ing to the new observations collected in the corresponding

environment.

A classifier is a mapping from the feature space to the

class label space. In the proposed evolving classifier, the

feature space is defined by distributions of subsequences

of commands and the class label space is represented by

the most representative distributions. Thus, a distribution

in the class label space represents a specific behavior

model which is one of the prototypes of the evolving

Library. These prototypes are not fixed and evolve taking

into account the new observations collected on line from

the data stream this is what makes the classifier

Evolving. The number of these prototypes is not pre fixed

but it depends on the homogeneity of the observed

sequences. In other words, if the behavior of the agents

observed is very similar, the number of prototypes is

reduced.

Once the corresponding data vector, which represents

the distribution of a specific agent behavior, has been

created in the previous modules, it is processed by

EvCBM. In this case, the distributions need to be repre

sented in a data space; and each distribution is considered

as a data vector that defines a point in the data space (which

is stored in EvBMLib).

The data space in which these points (behavior models)

can be represented should consist of n dimensions, where

n is the number of the different subsequences obtained. It

means that we should know all the different subsequences

of the environment a priori. However, this value is

unknown and the creation of this data space from the

beginning is not efficient. For this reason, the dimension of

the data space is incrementally growing according to the

different subsequences that are represented in it.

One of the most important characteristics of this general

classifier is that it does not need to be configured according

to the environment where it is used because it can start

‘from scratch’. Also, the relevant information of the

obtained samples is necessary to update the library; but, as

we will explain in the next subsections, there is no need to

store all the samples in it. This aspect is important because

the amount of different sequences collected in an envi

ronment could be quite large, and the proposed approach

needs to cope with huge amounts of data and process

streaming data in real time and on line. In most of the

environments in which this approach can be applied,

storing the complete data set and analyzing the data

streams in off line mode could be impractical.

6.1 Procedure of the classifier EvCBM

The procedure of this classifier includes the following

stages/steps:

1. Classify a new sample (agent behavior) in a group

represented by a prototype.

2. Calculate the potential of the new data sample to be a

prototype.

3. Update all the prototypes considering the new data

sample.

4. Insert the new data sample as a new prototype if

needed.

5. Remove existing prototypes if needed.

The following five subsections explain each step of this

evolving classification method.

6.1.1 Classify the new sample

In order to classify a new data sample, we compare it with

all the prototypes stored in EvBMLib. This comparison is

done using cosine distance and the smallest distance

determines the closest similarity. Since a prototype is

related to each class, the classification is done in the cor

responding class of the selected prototype. This aspect is

considered in Eq. 1.

ClassðxzÞ ¼ ClassðProt�Þ;
Prot� ¼ MINNumProt

i 1 ðcosDistðPrototypei; xzÞÞ ð1Þ

where xz represents the zth sample to classify, NumProt

determines the number of existing prototypes in the

EvBMLib, Prototypei represents the ith prototype, and

cosDist represents the cosine distance between two samples

in the data space.

The time consumed for classifying a new sample

depends on the number of prototypes and its number of

attributes. However, we can consider, in general terms, that

both the time consumed and the computational complexity

are reduced and acceptable for real time applications

5

(in order of milliseconds per data sample) because the

cosine distance is calculated recursively, as it is explained

in the next subsection.

6.1.2 Calculate the potential of the new data sample

As in Angelov and Zhou (2008), a prototype is a data

sample (the model of an agent behavior represented by a

distribution of subsequences of events) that groups several

samples which represent a certain behavior. The classifier

is initialized with the first data sample, which is stored in

the EvBMLib. Then, each data sample is classified into one

of the prototypes defined in the classifier. Finally, based on

the potential of the new data sample to become a prototype

(Angelov and Filev 2004), it could form a new prototype or

replace an existing one.

The potential (P) of the kth data sample (xk) is calculated

by Eq. 2 which represents a function of the accumulated

distance between a sample and all the other k 1 samples

in the data space (Angelov and Zhou 2008). The result of

this function represents the density of the data that sur

rounds a certain data sample.

PðxkÞ ¼
1

1þ
Pk 1

i¼1
distanceðxk ;xiÞ

k�1

ð2Þ

where distance represents the distance between two sam

ples in the data space.

In Angelov et al. (2007) the potential is calculated using

the Euclidean distance and in (Angelov and Zhou 2008) it

is calculated using the cosine distance. Cosine distance has

the advantage that it tolerates different samples to have

different number of attributes (in this case, an attribute is

the support value of a subsequence of sensor readings).

Also, cosine distance tolerates the case when the value of

several subsequences in a sample is null (null is different

than zero). Therefore, EvCBM uses the cosine distance

(cosDist) to measure the similarity between two samples;

as it is described in Eq. 3.

cosDistðxk; xpÞ ¼ 1

Pn
j 1 xkjxpj

Pn
j 1 x2

kj

Pn
j 1 x2

pj

q ð3Þ

where xk and xp represent the two samples to measure its

distance and n represents the number of different attributes

in both samples.

Note that the expression in Eq. 2 requires all the accu

mulated data samples available to be calculated, which

contradicts to the requirement for real time and on line

application needed in the proposed problem. For this rea

son, in Angelov and Zhou (2008) it is developed a recur

sive expression for the cosine distance. This formula is as

follows:

PkðzkÞ ¼
1

2 1
k�1

1
Pn

j¼1
ðz j

k
Þ2

q Bk

; k ¼ 2; 3; . . .; P1ðz1Þ ¼ 1

where Bk ¼
Xn

j 1

z j
kb j

k; bj
k ¼ bj

ðk�1Þ þ
ðz j

kÞ
2

Pn
l 1ðzl

kÞ
2

s

and b j
1 ¼

ðz j
1Þ

2

Pn
l 1ðzl

1Þ
2

s

; j ¼ ½1; nþ 1� ð4Þ

Using this expression, it is only necessary to calculate (n ? 1)

values where n is the number of different subsequences

obtained; this value is represented by b, where bk
j , j [1, n]

represents the accumulated value for the kth data sample.

6.1.3 Update all the prototypes

Once the potential of the new data sample has been cal

culated, all the existing prototypes in the EvBMLib are

updated taking into account this new data sample. It is done

because the density of the data space surrounding certain

data sample changes with the insertion of each new data

sample. This operation is done really fast and it requires

very little memory space because of the use of recursive

equations.

6.1.4 Insert the new data sample as a new prototype

The proposed evolving classifier, EvCBM, can start ‘from

scratch’ (without prototypes in the library) in a similar

manner as eClass evolving fuzzy rule based classifier

proposed in (Angelov et al. 2007), used in (Zhou and

Angelov 2007) for robotics and further developed in

(Angelov and Zhou 2008). The potential of each new data

sample is calculated recursively and the potential of the

other prototypes is updated. Then, the potential of the new

sample (zk) is compared with the potential of the existing

prototypes. A new prototype is created if its value is higher

than any other existing prototype, as shown in Eq. 5.

9i; i ¼ ½1;NumPrototypes� : PðzkÞ[PðProtiÞ ð5Þ

Thus, if the new data sample is not relevant, the overall

structure of the classifier is not changed. Otherwise, if the

new data sample has high descriptive power and general

ization potential, the classifier evolves by adding a new

prototype in the EvBMLib which represents a part of the

obtained data samples.

6.1.5 Removing existing prototypes

After adding a new prototype, we check whether any of the

already existing prototypes in the EvBMLib are described

well by the newly added prototype (Angelov and Zhou

6

2008). By well we mean that the value of the membership

function that describes the closeness to the prototype:

9i; i ¼ ½1;NumPrototypes� : liðzkÞ[e�1 ð6Þ

The membership function between a data sample and a

prototype can be defined e.g. by a Gaussian bell function

(chosen due to its generalization capabilities) as:

liðzkÞ ¼ e
�1

2
½cosDistðzk ;ProtiÞ

ri
�
; i ¼ ½1;NumPrototypes� ð7Þ

where cosDist(zk, Proti) represents the cosine distance

between a data sample (zk) and the ith prototype (Proti); ri

represents the spread of the membership function, which

also symbolizes the radius of the zone of influence of the

prototype. This spread is determined based on the scatter

(Angelov and Filev 2005) of the data. The equation to get

the spread of the kth data sample is defined as:

riðkÞ ¼
1

k

Xk

j 1

cosDistðProti; zkÞ

v
u
u
t ; rið0Þ ¼ 1 ð8Þ

where k is the number of data samples considered so far;

cosDist(Proti, zk) is the cosine distance between the new

data sample (zk) and the ith prototype.

However, to calculate the scatter without storing all the

received samples, this value can be updated [as shown in

Angelov et al. (2007)] recursively by:

riðkÞ ¼ ½riðk 1Þ�2 þ ½cosDist2ðProti; zkÞ ½riðk 1Þ�2�
k

s

ð9Þ

7 Experiments

In order to evaluate EvCAB, we conducted extensive

experiments in two different environments: UNIX User

Data (Sect. 7.1) and Intelligent Home Environments

(Sect. 7.2).

7.1 UNIX user data

In this domain, the observed behavior of a user consists of

the UNIX commands s/he typed during a period of time.

The goal is to classify a given sequence of UNIX com

mands (user behavior) in one of the behavior models pre

viously created and stored or create a new one. However,

the UNIX user behavior models created represent the

behavior of several agents and they are updated based on

the new commands typed by the users. This task is very

useful in different application areas such as computer

intrusion detection or intelligent tutoring systems.

To evaluate EvCAB in this environment, we have used a

source of UNIX commands typed by 168 real users and

labeled in four different groups. These data were collected

by Greenberg (1988) using UNIX csh command interpreter.

Salient features of each group are described below, and the

sample sizes (the number of people observed) are indicated

in Table 1.

• Novice Programmers The users of this group had little

or no previous exposure to programming, operating

systems, or UNIX like command based interfaces.

These users spent most of their time learning how to

program and use the basic system facilities.

• Experienced Programmers This group members were

senior Computer Science undergraduates, expected to

have a fair knowledge of the UNIX environment. These

users used the system for coding, word processing,

employing more advanced UNIX facilities to fulfill course

requirements, and social and exploratory purposes.

• Computer Scientist This group, graduates and research

ers from the Department of Computer Science, had

varying experience with UNIX, although all were

experts with computers. Tasks performed were less

predictable and more varied than other groups, research

investigations, social communication, word processing,

maintaining databases, and so on.

• Non programmers Word processing and document

preparation was the dominant activity of the members

of this group, made up of office staff and members of

the Faculty of Environmental Design. Knowledge of

UNIX was the minimum necessary to get the job done.

7.1.1 Experimental design

Although the proposed classifier has been designed to be used

in real time, the use of the above data set allows us to have

comparable results with the established off line and incre

mental techniques. It should be emphasized that EvCAB does

not need to work in this mode. This is done solely to have

comparable results with very different techniques. For this

reason, the tenfold cross validation technique is used.

The number of UNIX commands typed by a user, and

used for creating his/her behavior model, is very relevant

Table 1 Sample group sizes and command lines recorded

Group of users name Sample size Total number of

command lines

Novice Programmers 55 77.423

Experienced Programmers 36 74.906

Computer Scientists 52 125.691

Non-Programmers 25 25.608

Total 168 303.628

7

in the classification process. When EvCAB is carried out

in the field, the behavior of a user is classified (and the

evolving behavior library updated) after s/he types a

limited number of commands. In order to show the rele

vance of this aspect using the data set already described,

we consider sequences of different number of UNIX

commands for creating the user profile: 100, 500 and

1,000 commands per user. Also, if the number of users

increases, the number of different subsequences increases,

too.

In the phase of user behavior model creation, the length

of the subsequences in which the original sequence is

segmented (used for creating the trie) is an important

parameter: using long subsequences, the time consumed for

creating the trie and the number of relevant subsequences

of the corresponding distribution increase drastically. In the

experiments presented in this paper, the subsequence

length varies from two to sic.

In order to evaluate the performance of EvCAB, we

compare it with different (incremental and non incremen

tal) classifiers. For this comparison, the different classifiers

were trained using a feature vector for each user (168

samples). This vector consists of the support value of all

the different subsequences obtained for all the users; thus,

there are a lot of subsequences which do not have a value

because the corresponding user has not typed those com

mands. In this case, in order to be able to use this data for

training the classifiers, we consider the value 0 (although

its real value is null).

The classifiers we used are detailed as follows:

• Naive Bayes (NB) classifier (Rish 2001) and its

incremental version (Incremental NB), in which it is

used a default precision of 0.1 for numeric attributes

when it is created with zero training instances. The

reason for selecting Naive Bayes is because it performs

comparably to C4.5 (Langley and Sage 1994), it

requires little training data and it is computationally

fast when making decisions.

• Incremental k NN classifies objects based on closest

training examples in the feature space. Unlike EvCAB

and other incremental algorithms, k NN stores entire

dataset internally.

• Learning Vector Quantization classifier (LVQ) is a

supervised version of vector quantization. In this case,

it is used the enhanced version of LVQ1, the OLVQ1

implementation (Kohonen et al. 2001).

• Support Vector Machine Classifier (SVM) relies on the

statistical learning theory (Platt 1998).

7.1.2 Results

Figure 4 shows the percentage of users correctly classified

into its corresponding group using different number of

Fig. 4 EvCAB: results of the

UNIX user classification

8

commands for training (100, 500 and 1,000 commands per

user) and subsequences lengths for segmenting the initial

sequence (from 2 to 6).

According to this data, we can see that for small sub

sequences length (2 or 3) the difference between EvCAB

and the other classifiers (except k NN) is considerable; but

this difference decreases if this length is longer (5 or 6). In

general, these results show that the proposed classifier

works well in this kind of environment when the subse

quence length is around five.

Taking into account only the obtained results, we could

conclude that the proposed classifier is not the most suit

able choice. However, due to the characteristics of the

environment, we need a classifier able to process streaming

data as it arrives, continuously. EvCAB does not need to

store the entire data stream in the memory and disregards

any sample after being used. In addition, EvCAB is

one pass (each sample is preceded once at the time of its

arrival), while non incremental classifiers are offline

algorithms which require a batch set of training data in

the memory and make many iterations. For this reason,

EvCAB is computationally simple and efficient as it is

recursive. In fact, because the number of attributes is very

large in the proposed environment, EvCAB is the best

working alternative.

7.2 Intelligent home environments

The goal of this experiment is to model and classify

sequences of sensor readings which represent a certain

human activity in an intelligent home environment.

Therefore, in this case, instead of creating an agent

behavior model, the model of a specific human activity is

created using the sequence of sensor readings collecting

while a human executes that activity. Although, the sensor

readings are usually tagged with the time and date of the

event, in this case this information is not used, and the

information obtained from the intelligent home is a

sequence of sensor readings.

In order to evaluate EvCAB in this environment, we use

a dataset with the sensor readings activated by a person

while s/he is doing a specific activity. Thus, the sequence

of sensor readings is labeled. The dataset used in this

research was created by the CASAS Smart Home project,

which is a multi disciplinary research project at Washing

ton State University (WSU) focused on the creation of an

intelligent home environment (Rashidi and Cook 2009).

This dataset represents sensor readings collected in a WSU

smart apartment testbed. The apartment is equipped with

38 sensors distributed throughout the space (26 of them are

motion sensors). The data set represents 24 participants

performing the following five activities:

1. Make a phone call The participant moves to the phone in

the dining room, looks a specific number in the phone

book, dials the number, and listens to the message.

2. Wash hands The participant moves into the kitchen

sink and washes his/her hands in the sink.

3. Cook The participant cooks a pot of oatmeal. S/he

measures water, pours the water into a pot and boils it,

adds oats, then puts the oatmeal into a bowl with

raisins and brown sugar.

4. Eat The participant takes the oatmeal and a medicine

container to the dining room and eats the food.

5. Clean The participant takes all of the dishes to the sink

and cleans them with water and dish soap in the

kitchen.

Thus, the dataset consists of 120 different samples labeled

with the corresponding activity.

7.2.1 Experiment design

In these experiments, the length of the subsequences in

which the original sequence is segmented also varies from

2 to 6. In addition, in order to have comparable results with

other different classifiers using the above dataset, threefold

cross validation is used.

As in the UNIX user data environment, EvCAB is

compared with: Naive Bayes (incremental and non incre

mental), Incremental k NN, LVQ and SVM classifiers,

which are trained using a feature vector for each activity

done by a resident. The corresponding vector consists of

the support value of all the different subsequences of

sensor readings obtained for all the activities.

7.2.2 Results

Figure 5 shows the percentage of sequences correctly

classified into its corresponding activity using different

Fig. 5 EvCAB: results of the human activity classification in an

intelligent home environment

9

subsequences lengths for segmenting the initial sequence.

According to these data, the percentages of sequences

correctly classified by our approach are very similar to the

obtained by the other (incremental and non incremental)

classifiers (except k NN). However, our approach can

evolve the created classifier according to the new sequen

ces collected in the intelligent environment. Besides, the

data streams (sensor readings) collected in an intelligent

home environment can be very large and EvCAB is suit

able in this case because it does not need to store the entire

data stream in the memory.

8 Conclusions

This paper presents an approach to model and classify

automatically user behaviors from the sequence of events

executed during a period of time. However, as a user

profile is usually not fixed but rather it changes and

evolves, we have proposed a classifier able to keep up to

date the created models based on Evolving Systems. This

evolving classifier is one pass, non iterative, recursive and

it has the potential to be used in an interactive mode;

therefore, it is computationally very efficient and fast.

Also, an important aim in this work is to provide a general

approach which can represent, handle and evolve different

behaviors in a wide range of domains. Therefore, the proposed

approach is generalizable to modeling, classifying and

updating agent behaviors represented by a sequence of events.

To demonstrate this generalization, the proposed approach

has been experimentally evaluated in two very different

domains: UNIX User Classification and Human Activity

Classification in Intelligent Home Environment. A large set of

experiments have been conducted in both domains.

The experimental results show that, using an appropriate

subsequence length, EvCAB is very effective in both

domains and it can perform almost as well as other well

established off line classifiers in terms of correct classifi

cation on validation data. However, the proposed classifier

is suitable in environments which it is necessary to cope

with huge amounts of data and process streaming data

quickly, because it does not need to store the entire data

stream in the memory, and it is computationally simple and

efficient as it is recursive and one pass.

Acknowledgments This work has been partially supported by the

Spanish Government under project TRA2007-67374-C02-02.

References

Agrawal R, Srikant R (1995) Mining sequential patterns. In: Interna-

tional conference on data engineering, Taipei, Taiwan, pp 3 14

Anderson J (1995) Learning and memory: an integrated approach.

Wiley, New York

Angelov P, Filev D (2004) An approach to online identification of

Takagi Sugeno fuzzy models. IEEE Trans Syst Man Cybern

Part B 34(1):484 498

Angelov P, Filev D (2005) Simpl eTS: a simplified method for

learning evolving Takagi Sugeno fuzzy models. In: The IEEE

international conference on fuzzy systems (FUZZ-IEEE 2005),

pp 1068 1073

Angelov P, Zhou X (2008) Evolving fuzzy rule-based classifiers from

data streams. IEEE Trans Fuzzy Syst 16(6):1462 1475

Angelov P, Zhou X, Klawonn F (2007) Evolving fuzzy rule-based

classifiers. In: IEEE symposium on computational intelligence in

image and signal processing (CIISP 2007), pp 220 225

Carrbery S (2001) Techniques for plan recognition. User Model User

Adap Interact 11(1 2):31 48

Domingos P, Hulten G (2001) Catching up with the data: research

issues in mining data streams. In: In workshop on research issues

in data mining and knowledge discovery, 2001

Fredkin E (1960) Trie memory. Comm ACM 3(9):490 499

Greenberg S (1988) Using UNIX: collected traces of 168 users.

Master’s thesis, Department of Computer Science, University of

Calgary, Alberta, Canada

Han K, Veloso M (1999) Automated robot behavior recognition

applied to robotic soccer. In: Proceedings of IJCAI-99 workshop

on team behaviors and plan recognition, 1999

Hong J (2001) Goal recognition through goal graph analysis. J Artif

Intell Res 15:1 30

Horman Y, Kaminka GA (2007) Removing biases in unsupervised

learning of sequential patterns. Intell Data Analysis 11(5):

457 480

Huang Z, Yang Y, Chen X (2003) An approach to plan recognition

and retrieval for multi-agent systems. In: Proceedings of AORC,

2003

Iglesias J, Ledezma A, Sanchis A (2006) A comparing method of two

team behaviours in the simulation coach competition. In:

Proceedings of the international conference on tools with

artificial intelligence (MDAI 2006), ser. LNCS, vol 3885.

Springer, pp 117 128

Iglesias JA, Ledezma A, Sanchis A (2007) Sequence classification

using statistical pattern recognition. In: Proceedings of the

international conference on intelligent data analysis (IDA 2007),

ser, 2007. LNCS, vol 4723. Springer, pp 207 218

Iglesias JA, Ledezma A, Sanchis A (2009) Creating user profiles from

a command-line interface: a statistical approach. In: Proceedings

of the international conference on user modeling, adaptation, and

personalization (UMAP 2009), ser, June 2009. LNCS, vol 5535.

Springer, pp 90 101

Iglesias JA, Ledezma A, Sanchis A, Kaminka G (2010) A plan

classifier based on chi-square distribution tests. Intell Data

Analysis 15(2) (in press)

Kaminka GA, Fidanboylu M, Chang A, Veloso MM (2002) Learning

the sequential coordinated behavior of teams from observations.

In: RoboCup, ser. Lecture notes in computer science, vol 2752.

Springer, pp 111 125

Kohonen T, Schroeder MR, Huang TS (eds) (2001) Self-organizing

maps. Springer-Verlag New York Inc, Secaucus

Langley P, Sage S (1994) Induction of selective bayesian classifiers.

In: Proceedings of the conference on uncertainty in artificial

intelligence. Morgan Kaufmann, pp 399 406

Ledezma A, Aler R, Sanchis A, Borrajo D (2004) Predicting opponent

actions by observation. In: RobuCup, ser. Lecture notes in

computer science, vol 3276. Springer, pp 286 296

Mulcahy NJ, Call J (2006) Apes save tools for future use. Science

312(5776):1038 1040. http://dx.doi.org/10.1126/science.1125456

10

Platt J (1998) Machines using sequential minimal optimization. In:

Schoelkopf B, Burges C, Smola A (eds) Advances in Kernel

methods-support vector learning,MIT Press, Cambridge

Rashidi P, Cook DJ (2009) Keeping the resident in the loop: adapting

the smart home to the user. IEEE Trans Syst Man Cybern Part A

39(5):949 959

Riley P, Veloso MM (2000) On behavior classification in adversarial

environments. In: DARS, 2000, pp 371 380

Rish I (2001) An empirical study of the naive Bayes classifier. In:

Proceedings of IJCAI-01 workshop on empirical methods in

artificial intelligence, 2001

Steffens T (2002) Feature-based declarative opponent-modelling in

multi-agent systems. Master’s thesis, Institute of Cognitive

Science Osnabrnck, 2002

Sun R, Merrill E, Peterson T (2001) From implicit skills to explicit

knowledge: a bottom-up model of skill learning. Cogn Sci

25(2):203 244

Tambe M, Rosenbloom PS (1995) Resc: an approach for dynamic,

real-time agent tracking. In: International joint conference on

artificial intelligence (IJCAI-95), Montreal, Canada, 1995.

http://citeseer.ist.psu.edu/tambe95resc.html

Zhou X, Angelov P (2007) Autonomous visual self-localization in

completely unknown environment using evolving fuzzy rule-

based classifier. In: IEEE symposium on computational intelli-

gence in security and defense applications (CISDA 2007),

pp 131 138

11

