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1. Introduction

General risk measures are becoming more and more important

measures of risk and risk management techniques.1 Hence, it is
not surprising that the recent literature presents many interesting
in insurance and finance. The study of risk measures beyond the
variance has a long history in Actuarial Sciences, and probably in
Statistics. Early accounts in Actuarial Science include Bühlmann
(1970), Gerber (1979) and Goovaerts et al. (1984). Early work in
Probability and Statistics includes Huber (1981) and Schmeidler
(1986).
The paper by Artzner et al. (1999) on coherent measures of risk

gave a new impulse to this topic and, since then, many authors
have further extended the discussion. The recent development of
newmarkets (insurance or weather linked derivatives, commodity
or energy/electricity derivatives etc.) and products (inflation-
linked bonds, equity indexes annuities, hedge funds etc.), the
necessity of managing new types of risk (credit risk, operational
risk etc.), the presence of asymmetries and fat tails, and the
(often legal) obligation of providing initial capital requirements,
have significantly increased the importance of finding proper

∗ Corresponding author.
E-mail addresses: alejandro.balbas@uc3m.es (A. Balbás),

beatriz.balbas@uc3m.es (B. Balbás), aheras@ccee.ucm.es (A. Heras).

0167-6687/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2008.11.008
contributions focusing on newmethods formeasuring risk. Among
others, Goovaerts et al. (2004a) have introduced the consistent
risk measures, also studied in Burgert and Rüschendorf (2006),
Goovaerts et al. (2004b) and Goovaerts and Laeven (2008)
have introduced mixtures of exponentials, Frittelli and Scandolo
(2005) have analyzed risk measures for stochastic processes, and
Rockafellar et al. (2006) have defined the deviations and the
expectation bounded risk measures.
Many classical actuarial and financial problems have been

revisited using risk measures beyond the variance. For example,
Laeven and Goovaerts (2004) and Dhaene et al. (2008) analyze the
capital allocation problem, Carr et al. (2001) and Nakano (2004)
draw on risk measures to price in incomplete markets, Basak and
Shapiro (2001), Mansini et al. (2007) and Schied (2007) deal with
risk management, portfolio choice and optimal investment, and
Alexander et al. (2006) compare the minimization of the value at

1 Furthermore, Ogryczak and Ruszczynski (1999, 2002) point out that the
variance is not compatible with the second order stochastic dominance if
asymmetries are involved.
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risk (VaR) and the conditional value at risk (CVaR) for a portfolio of
derivatives.
The optimal reinsurance problem is a classical issue in

Actuarial Science. Usually, authors consider the primary (or ceding)
company viewpoint. A common approach attempts to minimize
some measure of the first insurer risk after reinsurance, restricted
to somepremiumcondition. A first paperwas byBorch (1960),who
proved that the stop loss reinsuranceminimizes the variance of the
retained loss if premiums are calculated following the expected
value principle. A few years later, Arrow (1963) also assumed
the expected value principle and showed that the same stop loss
reinsurance maximizes the expected utility of the terminal wealth
of a risk-averse insurer.
The posterior research followed the ideas outlined in the

articles above, trying to take into account more general risk
measures and premium principles, which often give optimal
contracts other than stop loss. In recent years, some interesting
articles devoted to this subject have appeared. For example,
Kaluszka (2001) still takes the variance of the retained loss
as the risk function to be minimized, but he considers other
premium principles such as the standard deviation principle and
the variance principle. In addition, Gajec and Zagrodny (2004)
consider more general symmetric and even asymmetric risk
functions like the absolute deviation and the truncated variance of
the retained loss, under the standard deviation premium principle.
Young (1999) maximizes the expected utility of the final wealth
under the distortion premium principle.2 Kaluszka (2005) studies
reinsurance contracts with many convex premium principles
(exponential, semi-deviation and semi-variance, Dutch, distortion,
etc.). Other well known financial risk measures such as the VaR
or the tail value at risk (TVaR) are also being considered. For
example, Kaluszka (2005) uses the TVaR as a premium principle
and Cai and Tan (2007) calculate the optimal retention for a
stop loss reinsurance by considering the VaR and the conditional
tail expectation risk measures (CTE), under the expected value
premium principle.3
This paper considers that the reinsurer’s premium principle is

given by a convex function, and deals with the optimal reinsurance
problem if risk is measured by modern risk measures.4 These
risk measures include every deviation measure, every expectation
bounded risk measure, and most of the coherent, convex or
consistent risk measures as particular cases. Thus it may be worth
pointing out the level of generality of the analysis, since a unified
approach is developed that essentially does not depend on the
concrete risk measure to be used.

2 Further information about the ‘‘distortion premium principle’’ may be found
in Denneberg (1994) or Wang (2000). The micro-economics literature studied an
equivalent version in the 1980’s.
3 The CVaR is also called TVaR, average value at risk (AVaR), expected shortfall
(ES), CTE etc., although for some discrete random variables there might be some
differences among the definitions used by several authors. The intuitive idea is that
the CVaR represents the expectation of the random variable (agent final wealth) if
it finally achieves values that are not higher than its VaR with the same level of
confidence µ0 . However, depending on the concrete definition of CVaR that one
assumes, this interpretation may fail, mainly for discrete random variables.
In this paper we will consider the definition of CVaR given in Rockafellar et al.
(2006). Thus, we have the equalities

CVaRµ0 (y) =
1
µ0

∫ µ0

0
VaRt (y) dt

and

CVaRµ0 (y) = Max
{
−E (yz) ; z ∈ L∞, 0 ≤ z ≤ 1/µ0

}
for every y ∈ L1 , E () denoting the mathematical expectation. With this definition,
the CVaR is always coherent and expectation bounded (Rockafellar et al., 2006).
4 Insurance premiums are usually given by convex functions. See, for instance,
Deprez and Gerber (1985).
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The paper’s outline is as follows. Section 2 will present the
asic conditions and properties of the risk measure ρ to be used.
ection 3 provides our general optimal reinsurance problem. Since
he risk measure is not differentiable in general, the resulting
ptimization problem is not differentiable either, and a significant
art of this section will be devoted to overcoming this caveat.
n fact, the results of this section will play a critical role in
he rest of the article. We will use the representation theorem
f risk measures of Rockafellar et al. (2006) so as to transform
he initial optimal reinsurance problem into a minimax problem.
ater, following an idea developed in Balbás and Romera (2007)
nd Balbás et al. (2009), the minimax problem is shown to
e equivalent to a new differentiable and convex problem in
anach spaces. In particular, the dual variable belongs to the
et of probabilities on the Borel σ -algebra of the sub-gradient
f ρ. Since this fact would provoke a high degree of complexity
hen dealing with the optimality conditions of the new problem,
heorem 3 is one of themost important results in Section 3 and the
hole article because it guarantees that the optimal dual solution
ill be a Dirac delta, and thus we can leave the use of general
robability measures to characterizing the optimal reinsurance
ontract. The section ends by yielding necessary and sufficient
ptimality conditions. Theorem 4may merit special interest, since
t provides a variational principle that will often apply in the
emaining sections.
Section 4 is devoted to verifying whether the usual types of

einsurance satisfy the optimality conditions, with special focus
n quota share and stop loss contracts. Here, and in Section 5, we
ill assume that the reinsurer uses the expected value premium
rinciple. Of course it is not necessary, since practical optimality
onditions have been given in a much more general framework,
ut the specific solution of the optimization problem depends
n the premium principle we take, and considering more than
ne would significantly enlarge the paper. As already indicated,
revious literature measuring the insurer risk by a general risk
easure is still scant.5 So it seems to be natural, and of interest,
o analyze concrete problems by taking the most used premium
rinciple.
It will be shown that a quota share reinsurance will barely
e optimal, regardless of the risk function ρ, while a stop loss
einsurance much more easily satisfies the optimality conditions.
he main reason is that the optimality of stop loss contracts is
losely related to the existence of bang–bang-like solutions for the
ariational principle of Theorem 4.
Regardless of the level of generality of the analysis, it may be
orthwhile studying particular risk functions in detail, and this is
he focus of Section 5. So, the optimality conditions will be tested
f ρ equals the standard deviation, the absolute deviation and
he conditional value at risk. Obviously, the optimality conditions
ay be tested in detail for many more alternative risk measures,
ut we had to make a choice. The standard deviation was
elected because it has been very frequently used in Finance
nd Insurance, the absolute deviation has shown more adequate
roperties with respect to the stochastic dominance in presence of
eavy tails and/or asymmetries (Ogryczak and Ruszczynski, 2002)
nd the conditional value at risk is becoming more and more
mportant in Finance and Insurance because it also respects the
tochastic dominance (Ogryczak and Ruszczynski, 2002), provides
nformation about the degree of risk in monetary terms (capital
equirements, reserves etc.), shows suitable analytic properties

5 Cai and Tan (2007) seems to be the first paper computing the optimal retention
y considering the VaR and the CTE. However, these authors assume the expected
alue premium principle and only deal with stop loss reinsurance contracts, in the
ense that another type of reinsurance is unfeasible.
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and is well-known and understood by many practitioners. For the
three risk functions,wewill find that the optimal strategy is closely
related to a stop-loss-like reinsurance.
The last section of the paper points out the most important

conclusions.

2. Preliminaries and notations

Consider the probability space (Ω,F , µ) composed of the set
of ‘‘states of the world’’ Ω , the σ -algebra F and the probability
measure µ. Consider also a couple of conjugate numbers p ∈
[1,∞) and q ∈ (1,∞] (i.e., 1/p+1/q = 1). As usual Lp (Lq) denotes
the Banach space of R-valued random variables y on Ω such that
E
(
|y|p

)
< ∞, E () representing the mathematical expectation

(E
(
|y|q

)
< ∞, or y essentially bounded if q = ∞). According

to the Riesz Representation Theorem, we have that Lq is the dual
space of Lp.
Fix a future date T . Let

ρ : Lp −→ R

be the general risk function that the insurer uses in order to control
the risk of his final (at T ) wealth. Denote by

∆ρ =
{
z ∈ Lq;−E (yz) ≤ ρ (y) ,∀y ∈ Lp

}
. (1)

The set ∆ρ is obviously convex. We will assume that ∆ρ is also
σ (Lq, Lp)-compact and

ρ (y) = Max
{
−E (yz) : z ∈ ∆ρ

}
(2)

holds for every y ∈ Lp.
The set∆ρ is composed of those linear functions that are lower

than the risk measure ρ. Following an interpretation of Artzner
et al. (1999), amongst many others, every z ∈ ∆ρ could be
understood as a particular scenario, since the physical probability
measure µ is distorted by z in order to generate the σ -additive
measure ν given by dν = zdµ.6 Then−E (yz)would be a distorted
expectation of y under the scenario given by z. The minus symbol
must arise if y represents the wealth at T . It should be removed if
y represented capital losses. Equality (2) means that the risk is the
maximum value of those distorted expectations of y lower than ρ.
The assumptions above are quite natural. Indeed, they are

closely related to the representation theorems of risk measures
stated in Rockafellar et al. (2006), where the authors consider
p = 2. Following these authors’ ideas, and bearing in mind
the representation theorem 2.4.9 in Zalinescu (2002) for convex
functions, it is easy to prove that the σ (Lq, Lp)-compactness of∆ρ
and the fulfillment of (2) hold if:
(a) ρ is a continuous expectation bounded risk measure in the

sense of Rockafellar et al. (2006),7 in which case

∆ρ ⊂
{
z ∈ Lq;E (z) = 1

}
and ρ (y) ≥ −E (y) for every y ∈ Lp (with strict inequality if y is
not a constant or zero-variance random variable).
(b) ρ is a continuous deviation (or deviation measure) in the

sense of Rockafellar et al. (2006),8 in which case

∆ρ ⊂
{
z ∈ Lq;E (z) = 0

}
6 In fact, Artzner et al. (1999) used µ-continuous finitely additive measures,
rather than elements z ∈ Lq , i.e., they did not pay attention to the density function
z of ν with respect to µ.
7 Furthermore, if ρ is also coherent in the sense of Artzner et al. (1999) then

∆ρ ⊂ L
q
+ =

{
z ∈ Lq;µ (z ≥ 0) = 1

}
. (3)

8 Moreover, according to Theorem 2.2.20 in Zalinescu (2002), ρ is continuous
if and only if ρ is lower semi-continuous. The same equivalence holds if ρ is a
expectation bounded risk measure.
tics and Economics 44 (2009) 374–384

and ρ (y) ≥ 0 for every y ∈ Lp (with strict inequality if y is not a
constant or zero-variance random variable).
Particular interesting examples are the conditional value at risk

(CVaR) of Rockafellar et al. (2006), the dual power transform (DPT )
of Wang (2000), the Wang measure (Wang, 2000), the p-deviation
given by ρ (y) =

[
E
(
|E (y)− y|p

)]1/p, or the downside p-semi-
deviation given by ρ (y) =

[
E
(
|Max {E (y)− y, 0}|p

)]1/p, amongst
many others.

Assumption 1. Henceforth we will assume that ∆ρ is σ (Lq, Lp)-
compact, (2) holds and E () remains constant on ∆ρ . Denoting
E (z) = Ẽ ∈ R for every z ∈ ∆ρ we will also suppose that Ẽ ≥ 0
and

ρ (y) ≥ −E (y) Ẽ (4)

holds for every y ∈ Lp. �

Proposition 1. Under Assumption 1 the constant random variable
z = Ẽ a.s. belongs to∆ρ .

Proof. It immediately follows from (1) and (4). �

3. Optimal reinsurance: Primal and dual problems and opti-
mality conditions

Consider that the insurance company receives the fixed amount
S0 (premium) and will have to pay the random variable

y0 ∈ L
p
+ =

{
y ∈ Lp : µ (y ≥ 0) = 1

}
within a given period [0, T ] (claims). Suppose also that a
reinsurance contract is signed in such a way that the company
will only pay y ∈ Lp, whereas the reinsurer will pay y0 − y. If
the reinsurer premium principle is given by the continuous convex
function,

π : Lp −→ R

such that π (0) = 0, and S1 > 0 is the highest amount that
the insurer would like to pay for the contract, then the insurance
company will choose y (optimal retention) so as to solve{Min ρ (S0 − y− π (y0 − y))
π (y0 − y) ≤ S1
0 ≤ y ≤ y0.

(5)

Conditions π (0) = 0 and S1 > 0 imply that y = y0 satisfies the
constraint, so (5) is never unfeasible.
In general ρ will be non-differentiable and therefore so will be

Problem (5). To overcome this caveat we will follow the method
proposed in Balbás et al. (2009). So, bearing in mind (2), Problem
(5) is equivalent to Problem
Min θ
θ + E ((S0 − y− π (y0 − y)) z) ≥ 0, ∀z ∈ ∆ρ
π (y0 − y) ≤ S1
θ ∈ R, 0 ≤ y ≤ y0

(6)

in the sense that y solves (5) if and only if there exists θ ∈ R such
that (θ, y) solves (6), in which case

θ = ρ (S0 − y− π (y0 − y))

holds. Since Assumption 1 implies that

E ((S0 − y− π (y0 − y)) z) = (S0 − π (y0 − y)) Ẽ − E (yz)

(5) and (6) are equivalent to
Min θ
θ + (S0 − π (y0 − y)) Ẽ − E (yz) ≥ 0, ∀z ∈ ∆ρ
π (y0 − y) ≤ S1
θ ∈ R, 0 ≤ y ≤ y0

(7)



A. Balbás et al. / Insurance: Mathematics

The objective function of (7) is obviously differentiable (and linear)
so the major caveat of (5) has been overcome. Suppose that (7) is a
convex problem.9 Its first constraint is valued on the Banach space
C
(
∆ρ
)
of real-valued and continuous functions on the (weak∗)

compact space ∆ρ . Following Luenberger (1969), since the dual
of C

(
∆ρ
)
is M

(
∆ρ
)
,10 the space of inner regular real valued σ -

additivemeasures on the Borel σ -algebra of∆ρ (endowedwith the
weak∗ topology), the Lagrangian function

L : R× Lp × R×M
(
∆ρ
)
−→ R

becomes

L (θ, y, τ , ν) =

θ

(
1−

∫
∆ρ

dν (z)

)
− (S0 − π (y0 − y)) Ẽ

∫
∆ρ

dν (z)

+

∫
∆ρ

E (yz) dν (z)+ τ (π (y0 − y)− S1) .

The element (τ , ν) ∈ R ×M
(
∆ρ
)
is dual feasible if and only if it

belongs to the non-negative cone R+ ×M+
(
∆ρ
)
and

Inf {L (θ, y, ν, τ ) : θ ∈ R, 0 ≤ y ≤ y0} > −∞,

in which case the infimum above equals the dual objective on
(τ , ν). Hence, the dual problem of (7) becomes
Max

(
−S0Ẽ − τS1 + Inf

0≤y≤y0

{∫
∆ρ

E (yz) dν (z)

+

(
Ẽ + τ

)
π (y0 − y)

})
τ ∈ R+, ν ∈ P

(
∆ρ
) (8)

P
(
∆ρ
)
denoting the set composed of those elements inM

(
∆ρ
)

that are probabilities.
P
(
∆ρ
)
is convex, and the Alaoglu Theorem easily leads to

the compactness of P
(
∆ρ
)
when endowed with the σ(M(∆ρ),

C(∆ρ))-topology (Horvàth, 1966). In addition, given z ∈ ∆ρ we
will denote by δz ∈ P

(
∆ρ
)
the usual Dirac delta that concentrates

the mass on {z}, i.e., δz({z}) = 1 and δz(∆ρ \ {z}) = 0. It is known
that the set of extreme points of P

(
∆ρ
)
is given by

ext
(
P
(
∆ρ
))
=
{
δz; z ∈ ∆ρ

}
, (9)

though we will not have to draw on this result. The objective
function in (8) is linear which, along with (9), suggests that the
solution of (8) could be achieved in

{
δz; z ∈ ∆ρ

}
. Let us show that

this guesstimate is correct.

Lemma 2 (Mean Value Theorem). Let ν ∈ P
(
∆ρ
)
. Then there exists

zν ∈ ∆ρ such that∫
∆ρ

E (yz) dν (z) = E (yzν) (10)

holds for every y ∈ Lp.

9 Due to (3), Problem (7) is convex if ρ is coherent. There are many other cases
leading to a convex optimization problem. For instance, if the reinsurer uses the
expected value premium principle then (7) is convex regardless of the coherence of
ρ.
If (7) were not convex then an alternative analysis might be implemented by
assuming that π is differentiable and using those properties of differentiable
mathematical programming in Banach spaces (Luenberger, 1969), but this study
is beyond our scope.
10 See also Horvàth (1966).
and Economics 44 (2009) 374–384 377

Proof. Consider the linear function

Lp 3 y −→ ϕ (y) =
∫
∆ρ

E (yz) dν (z) ∈ R.

ϕ is clearly continuous because for every sequence (yn)∞n=1
converging to zero in Lp the sequence of functions

Lq 3 z −→ E (ynz) ∈ R

uniformly converges to zero on bounded sets of Lq, and,
consequently,(∫

∆ρ

E (ynz) dν (z)

)∞
n=1

converges to zero if ∆ρ is bounded. ∆ρ is bounded because it is
σ (Lq, Lp)-compact.
Since ϕ is linear and continuous, the Riesz Representation

Theorem guarantees the existence of zν ∈ Lq such that (10) holds.
Thus, it only remains to show that zν ∈ ∆ρ , i.e., according to (1),
we must prove the inequality

−E (yzν) ≤ ρ (y) , ∀y ∈ Lp.

(10) points out that it is sufficient to see

−

∫
∆ρ

E (yz) dν (z) ≤ ρ (y) , ∀y ∈ Lp.

For every z ∈ ∆ρ one has that −E (yz) ≤ ρ (y) for every y ∈ Lp,
and, therefore,

−

∫
∆ρ

E (yz) dν (z) ≤
∫
∆ρ

ρ (y) dν (z) = ρ (y) ,

for every y ∈ Lp. �

Theorem 3. If (τ , ν) ∈ R+ × P
(
∆ρ
)
solves (8) then there exists

z ∈ ∆ρ such that
(
τ , δzν

)
solves (8).

Proof. Consider (ν, τ ) solving (8) and take zν ∈ ∆ρ satisfying (10).
Then, for every y ∈ Lp+ we have that

= Inf
0≤y≤y0

{∫
∆ρ

E (yz) dν (z)+
(
Ẽ + τ

)
π (y0 − y)

}
= Inf
0≤y≤y0

{
E (yzν)+

(
Ẽ + τ

)
π (y0 − y)

}
.

Thus the result trivially follows because the objective values of (8)
in (τ , ν) and

(
τ , δzν

)
are identical. �

Remark 1. The latter theorem leads to significant consequences.
In particular, we can consider the alternative and far simpler dual
problem

Max
(
−S0Ẽ − τS1 + Inf

0≤y≤y0

{
E (yz)+

(
Ẽ + τ

)
π (y0 − y)

})
τ ∈ R+, z ∈ ∆ρ (11)

where z ∈ ∆ρ plays the role of ν ∈ P
(
∆ρ
)
. Indeed, notice

that Theorem 3 guarantees that we only have to focus on the (8)-
feasible solutions taking the form (τ , δz) for some z ∈ ∆ρ , and for
such a feasible solution (8) is equivalent to (11). �

Bearing in mind the latter remark, the Karush–Kuhn–Tucker
conditions of (7) may be given by using (11) rather than (8). Then
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they become (Luenberger, 1969)

θ∗ +
(
S0 − π

(
y0 − y∗

))
Ẽ − E

(
y∗z∗

)
= 0

θ∗ +
(
S0 − π

(
y0 − y∗

))
Ẽ − E

(
y∗z
)
≥ 0, ∀z ∈ ∆ρ

τ ∗
(
π
(
y0 − y∗

)
− S1

)
= 0

π
(
y0 − y∗

)
− S1 ≤ 0

E
(
y∗z∗

)
+

(
Ẽ + τ ∗

)
π
(
y0 − y∗

)
≤ E

(
yz∗
)

+

(
Ẽ + τ ∗

)
π (y0 − y) , ∀0 ≤ y ≤ y0

θ∗ ∈ R, 0 ≤ y∗ ≤ y0, τ ∗ ≥ 0, z∗ ∈ ∆ρ

(12)

and they are necessary and sufficient optimality conditions to
guarantee that (θ∗, y∗) solves (7) and (τ ∗, z∗) solves (11). We
are dealing with infinite dimensional Banach spaces and the so-
called ‘‘duality gap’’ between (7) and (11) might arise. We must
see that this pathological situation does not apply here, in order to
guarantee that (12) really characterizes primal and dual solutions
(see Luenberger, 1969).11 It is sufficient to show that the Slater
qualification holds, i.e., the existence of a primal feasible solution
(θ, y) satisfying the two primal constraints as strict inequalities.
Being∆ρ compact, one can take y = y0 and

θ > Max
{

E (y0z)− S0Ẽ, z ∈ ∆ρ
}
.

On the other hand, the fulfillment of the Slater qualification also
ensures that (11) is solvable, i.e., it attains its optimal value.
Finally, bearing in mind the equivalence between (5) and (7), it

may be interesting to recall that the solution z∗ provides us with
the sensitivity of the optimal risk level

ρ
(
S0 − y∗ − π

(
y0 − y∗

))
with respect to the initial data S0 and y0, while τ ∗ measures
sensitivity with respect to S1.
Let us end this section with alternative optimality conditions

implied by (12) that will often apply throughout the rest of the
paper.

Theorem 4 (Variational Principle). Suppose that 0 ≤ y∗ ≤ y0 in Lp.
y∗ solves (5) if and only if there exist τ ∗ ∈ R+ and z∗ ∈ ∆ρ such that

E(y∗z∗) ≥ E
(
y∗z
)
, ∀z ∈ ∆ρ

E
(
y∗z∗

)
+

(
Ẽ + τ ∗

)
π
(
y0 − y∗

)
≤ E

(
yz∗
)
+

(
Ẽ + τ ∗

)
π (y0 − y) , ∀0 ≤ y ≤ y0

π
(
y0 − y∗

)
− S1 ≤ 0

τ ∗
(
π
(
y0 − y∗

)
− S1

)
= 0.

(13)

In such a case θ∗ = E(y∗z∗) − (S0 − π (y0 − y∗)) Ẽ, y∗, τ ∗ and z∗
solve both (7) and (11) respectively.

Proof. Suppose that y∗ solves (5), and take a primal solution
(θ∗, y∗) and a dual one (τ ∗, z∗). The first and second conditions
in (12) trivially lead to the first one in (13), and the remaining
equations in (13) trivially follow from (12).
Conversely, if y∗ satisfies (13) then it may be immediately ver-

ified that the proposed solution (θ∗, y∗, τ ∗, z∗) satisfies (12). �

Remark 2. Conditions (12) are necessary and sufficient and
therefore they are a quite useful tool. Nevertheless, in practical
examples and applications it might be difficult to find an explicit
solution of the system generated by (12). Things become much

11 The existence of duality gaps and the lack of Lagrange or Karush–Kuhn–Tucker
multipliers is not so unusual in actuarial or financial problems. See, for instance, Jin
et al. (2008) for noteworthy counter-examples in portfolio selection.
ics and Economics 44 (2009) 374–384

easier if we are able to compute the solution of (7) or (11) by an
alternative algorithm, since then (12) easily applies to solve the
remaining problem. This is, for instance, theway followed in Balbás
and Romera (2007) or Balbás et al. (2009), where the authors deal
with infinite-dimensional linear programming in order to solve
risk minimization problems associated with usual financial topics.
Following the ideas of these authors, we could try to develop an
algorithm so as to solve (11) under appropriate assumptions, and
then we could use (12) so as to solve (7). However, in this paper
we will prefer to draw on the variational principle provided by the
condition E (y∗z∗) ≥ E (y∗z) of Theorem 4. Indeed, the next two
sections will show that it may be very useful in both theoretical
approaches and practical situations. In particular, when dealing
with practical applications, it may yield an interesting relationship
between the solution y∗ of (7) and the solution z∗ of (11), that may
be found by solving the simple and frequently linear problem{
MaxE

(
y∗z
)

z ∈ ∆ρ .
(14)

Some illustrative examples will be studied in Section 5. �

4. Particular reinsurance contracts

This section will be devoted to verifying whether the most
important (or usual) reinsurance contracts solve Systems (12) or
(13). In particular, we will focus on quota share and stop loss
reinsurance contracts. Despite the level generality of the previous
analyses, the solutions of (12) or (13) will depend on the specific
assumptions one imposes. Henceforth we will assume that the
reinsurer uses the expected value premium principle. As indicated
in the introduction, previous literature considering a general risk
measure is scant, so it seems to be natural and of interest to analyze
concrete problems by taking the most used premium principle.
Nevertheless, it is worth pointing out that the developments of the
previous section are much more general, and therefore they also
apply to alternative premium principles.
The assumptionµ (y0 > 0) = 1 seems to be totally compatible

with the empirical evidence and non restrictive in practice, since
it only indicates that the existence of claims is guaranteed. From
now on we will impose this assumption. Summarizing the new
hypotheses of this section, we have:

Assumption 2. Henceforth, we will assume that the reinsurer
applies the expected value premium principle, and the equality
µ (y0 > 0) = 1 holds. �

Accordingly, there exists k ≥ 1 such that

π (y) = kE (y)

for every y ∈ Lp. Consequently, the necessary and sufficient
optimality conditions (13) become

E(y∗z∗) ≥ E
(
y∗z
)
, ∀z ∈ ∆ρ

E
(
y∗z∗

)
−

(
Ẽ + τ ∗

)
kE
(
y∗
)

≤ E
(
yz∗
)
−

(
Ẽ + τ ∗

)
kE (y) , ∀0 ≤ y ≤ y0

kE
(
y0 − y∗

)
− S1 ≤ 0

τ ∗
(
kE
(
y0 − y∗

)
− S1

)
= 0

(15)

in which case the optimal value of θ is

θ∗ = E(y∗z∗)−
(
S0 − kE

(
y0 − y∗

))
Ẽ. (16)

Next let us present a simple lemma simplifying the second
condition of (15).
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Lemma 5. Let z∗ ∈ Lq, y∗ ∈ Lp with 0 ≤ y∗ ≤ y0, and τ ∗ ∈ R. Then,

E
(
y∗z∗

)
−

(
Ẽ + τ ∗

)
kE
(
y∗
)
≤ E

(
yz∗
)
−

(
Ẽ + τ ∗

)
kE (y)

holds for every y ∈ Lp with 0 ≤ y ≤ y0 if and only if there exists a
measurable partition

Ω = Ω1 ∪Ω2 ∪Ω3

such that
z∗ (ω) >

(
Ẽ + τ ∗

)
k, y∗ (ω) = 0, if ω ∈ Ω1

z∗ (ω) =
(
Ẽ + τ ∗

)
k, if ω ∈ Ω2

z∗ (ω) <
(
Ẽ + τ ∗

)
k, y∗ (ω) = y0 (ω) , if ω ∈ Ω2.

(17)

Proof. It is obvious if we realize that the solution of{
MinE

(
y
(
z∗ −

(
Ẽ + τ ∗

)
k
))

0 ≤ y ≤ y0

must be as large as possible (i.e., must equal y0) whenever z∗ −(
Ẽ + τ ∗

)
k < 0 and as small as possible (i.e., zero) if z∗ −(

Ẽ + τ ∗
)
k > 0, whereas the value of this solution is not relevant

at all if z∗ −
(
Ẽ + τ ∗

)
k = 0. �

Next let us focus on quota-share-like reinsurance contracts.
Obviously, y ∈ Lp is said to be a quota share reinsurance if there
exists α ∈ [0, 1] such that y = αy0.

Theorem 6. (a) Suppose that Ẽ > 0. y∗ = αy0 with α ∈ [0, 1) is
optimal if and only if α ≥ 1− S1

E(y0)
, k = 1 and αE (y0z) ≤ αẼE (y0)

for every z ∈ ∆ρ . In such a case θ∗ = ((1− α)E (y0)− S0) Ẽ,
y∗ = αy0, τ ∗ = 0 and z∗ = Ẽ solve the primal and the dual problem
respectively.12

(b) Suppose that Ẽ = 0. y∗ = αy0 with α ∈ [0, 1) is optimal if
and only if α ≥ 1 − S1

kE(y0)
and αE (y0z) ≤ 0 for every z ∈ ∆ρ . In

such a case θ∗ = 0, y∗ = αy0, τ ∗ = 0 and z∗ = 0 solve the primal
and the dual problem respectively.
(c) If ρ is a deviation measure then y∗ = αy0 with α ∈ (0, 1)

is optimal if and only if α ≥ 1 − S1
kE(y0)

and y0 is constant (zero-
variance).

Proof. Suppose that y∗ = αy0 with α ∈ [0, 1) is the optimal
retention. Then (15) and (17) lead to the existence of a partition
ofΩ , and τ ∗ ≥ 0 and z∗ ∈ ∆ρ such that

αE
(
y0z∗

)
≥ αE (y0z) , ∀z ∈ ∆ρ

z∗ >
(
Ẽ + τ ∗

)
k, αy0 = 0, in Ω1

z∗ =
(
Ẽ + τ ∗

)
k, in Ω2

z∗ <
(
Ẽ + τ ∗

)
k, αy0 = y0, in Ω3

k (1− α)E (y0) ≤ S1
τ ∗ (k (1− α)E (y0)− S1) = 0

(18)

The fourth condition would imply α = 1, soΩ3 must be a null set
that can be considered void. Therefore z∗ ≥

(
Ẽ + τ ∗

)
k and taking

12 Recall that z∗ = Ẽ ∈ ∆ρ owing to Proposition 1. Recall also the Ẽ = 1 for
expectation bounded risk measures and Ẽ = 0 for deviation measures.
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expectations Ẽ ≥
(
Ẽ + τ ∗

)
k, which leads to τ ∗ ≤ Ẽ(1−k)

k ≤ 0.
Since the opposite inequality must hold we have τ ∗ = 0,

Ẽ ≥ Ẽk (19)

and

z∗ ≥ Ẽk. (20)

(a) Suppose that Ẽ > 0. Then k ≤ 1 follows from (19) and
the opposite inequality is given by the assumptions on k. α ≥
1 − S1

E(y0)
follows from the fifth expression in (18). (20) implies

that z∗ ≥ Ẽ, and thus z∗ = Ẽ owing to E (z∗) = Ẽ. Then
αE (y0z) ≤ αẼE (y0) is implied by the first condition in (18), and
θ∗ = ((1− α)E (y0)− S0) Ẽ follows from (16).
Conversely, if the given conditions hold, then it is easy to verify

that the proposed solution satisfies (15) and (17).
(b) Suppose that Ẽ = 0. Then the given conditions may be

proved by following similar arguments as in the proof above.
Furthermore, the converse implicationmay be provedwith similar
arguments as well.
(c) Suppose that ρ is a deviation measure and y∗ = αy0 with

α ∈ (0, 1) is optimal. Then (b) shows that θ∗ = 0 is the optimal
value of (7), and therefore the optimal value of (5). Thus

0 = ρ (S0 − αy0 − k (1− α)E (y0)) = αρ (−y0)

which implies that−y0 is constant and, thus, so is y0.
The converse is obvious because every deviation measure

vanishes on zero-variance random variables and is positive for
non-constant ones. �

Remark 3. Theorem 6 has clarified that quota share contracts will
never be optimal in practice. Indeed, for expectation bounded risk
measureswewould need k = 1,whichwill not hold. For deviations
y0 should be zero-variance, which will be even more improbable.
�

Next let us verify stop–loss-like reinsurance contracts. Obvi-
ously, y ∈ Lp and lying between 0 and y0 is said to be a stop loss
reinsurance if there exists α > 0 such that

y =
{
y0, y0 ≤ α
α otherwise. (21)

Hereafter the random variable of (21) will be denoted by yα0 .
Without loss of generality we will assume in the remainder of this
section that µ (y0 > α) > 0, i.e., yα0 6= y0.

Theorem 7. Suppose that µ (y0 > α) > 0 and kE
(
y0 − yα0

)
< S1

hold. DenoteΩα = {ω ∈ Ω; y0 (ω) > α}. Then:
(a) yα0 solves (5) if and only if there exists z

∗
∈ ∆ρ such that

z∗ ≤ kẼ, (22)

z∗ (ω) = kẼ, ω ∈ Ωα (23)

and

E
(
yα0 z
∗
)
≥ E

(
yα0 z
)

(24)

for every z ∈ ∆ρ . In such a case θ∗ = E(yα0 z
∗) −(

S0 − kE
(
y0 − yα0

))
Ẽ, yα0 , τ

∗
= 0 and z∗ solve both the primal and

the dual problem respectively.
(b) Suppose that Ẽ = 0. yα0 solves (5) if and only if

E
(
yα0 z
)
≤ 0 (25)

for every z ∈ ∆ρ . In such a case θ∗ = 0, yα0 , z
∗
= 0 and τ ∗ = 0 solve

both the primal and the dual problem.
(c) Suppose that ρ is a deviationmeasure. Then yα0 solves (5) if and

only if yα0 is constant (zero-variance).
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Proof. Suppose that yα0 solves (5). Then (15) and (17) give τ
∗
= 0

and
E
(
yα0 z
∗
)
≥ E

(
yα0 z
)
, ∀z ∈ ∆ρ

z∗ > Ẽk, yα0 = 0, in Ω1
z∗ = Ẽk, in Ω2
z∗ < Ẽk, yα0 = y0, in Ω3.

(26)

The setΩ1may be considered empty (or null), since yα0 = 0 cannot
hold due to µ (y0 > 0) = 1. Thus (22) is fulfilled. In addition, Ω3
must be included in the complementary of Ωα , since yα0 = y0
implies y0 ≤ α. HenceΩα is included inΩ2 and (23) holds. Finally,
(24) trivially follows from the first condition in (26) and

θ∗ = E(yα0 z
∗)−

(
S0 − kE

(
y0 − yα0

))
Ẽ

is a consequence of (16).
(a) It only remains to prove the converse implication, which

is trivial since one only has to verify that the proposed solution
satisfies (15) and (17).
(b) According to (22) z∗ ≤ 0, which implies z∗ = 0 because

E (z∗) = 0 (z∗ ∈ ∆ρ). Hence, (25) follows from (24), and the
converse is immediate since one only needs to check the proposed
solution in (15).
(c) If ρ is a deviation measure then (b) shows that θ∗ = 0 is the

optimal value of (7), and therefore the optimal value of (5). Thus

0 = ρ
(
S0 − yα0 − kE

(
y0 − yα0

))
= ρ

(
−yα0

)
which implies that−yα0 is constant, and thus so is y

α
0 . The converse

is obvious because every deviation measure vanishes on zero-
variance random variables and is positive for non-constant ones.
�

If we remove the assumption kE
(
y0 − yα0

)
< S1 then things

become a little bit more complex.

Theorem 8. Suppose that µ (y0 > α) > 0 and kE
(
y0 − yα0

)
= S1

hold. Denote Ωα = {ω ∈ Ω; y0 (ω) > α}. Then, yα0 solves (5) if and
only if there exist z∗ ∈ ∆ρ and τ ∗ ∈ R+ such that

z∗ ≤ kẼ + τ ∗,
z∗ (ω) = kẼ + τ ∗, ω ∈ Ωα

and

E
(
yα0 z
∗
)
≥ E

(
yα0 z
)

for every z ∈ ∆ρ . In such a case θ∗ = E(yα0 z
∗) −(

S0 − kE
(
y0 − yα0

))
Ẽ, yα0 , τ

∗ and z∗ solve both the primal and the
dual problem respectively. �

Wewill not give any proof of this result because it is absolutely
analogous to the proof of the previous theorem.

Remark 4. Despite the fact that Theorem 7 seems to be more
exhaustive than Theorem 8, condition kE

(
y0 − yα0

)
< S1 is ‘‘more

ambiguous’’ than kE
(
y0 − yα0

)
= S1. Indeed, there cannot be two

different values of α satisfying the equality because if α1 < α2,
µ (y0 > α2) > 0 and E

(
yα10
)
= E

(
yα20
)
then E

(
yα20 − y

α1
0

)
= 0

and yα20 − y
α1
0 ≥ 0 imply y

α2
0 − y

α1
0 = 0. Whence,

yα10 (ω) = α1 < α2 = y
α2
0 (ω)

for ω ∈ Ωα2 implies µ (y0 > α2) = 0, against the assumptions.
Consequently, it is also very easy to verify the conditions of

Theorem 8 in practice. One just needs to compute the unique α
such that kE

(
y0 − yα0

)
= S1 and then check the existence of τ ∗ ≥ 0

and z∗ in∆ρ . �
ics and Economics 44 (2009) 374–384

Remark 5. We pointed out in Remark 3 that quota-share-like
contracts will not be optimal in practice. However, things are
quite different if we deal with stop loss contracts. The conditions
of Theorems 7 and 8 may hold in practice, as will be shown in
the next section. Unfortunately, it seems that there is no simple
economic interpretation of these conditions. From amathematical
point of view, their fulfillment may be related to the existence of
bang–bang solutions z∗ for (14), if stop loss reinsurance contracts
are involved. In the next section, examples of bang–bang solutions
will be found if ρ is the absolute deviation or the conditional value
at risk. �

5. Particular risk functions

Until now, all the previous results of the paper hold regardless of
the risk function we are using. In this section wewill analyze some
important examples of risk function. In particular, we will focus
on the standard deviation since, as indicated in the introduction,
it is frequently used in the literature, the absolute deviation, since
it has better properties with respect to the second order stochastic
dominance if asymmetry and/or heavy tails are involved (Ogryczak
and Ruszczynski, 1999), and the conditional value at risk, since
it is becoming a very well-known coherent and expectation
bounded risk measure that also respects the stochastic dominance
(Ogryczak and Ruszczynski, 2002).
In general, the p-deviation

σp : Lp −→ R

is defined by

σp (y) =
(
E
(
|y− E (y)|p

)) 1
p = ‖y− E (y)‖p .

Since Lq is the dual space of Lp it is known that

σp (y) = Max
{
E ((y− E (y)) z) ; z ∈ Lq, ‖z‖q ≤ 1

}
= Max

{
E(yz)− E (y)E (z) ; z ∈ Lq, ‖z‖q ≤ 1

}
= Max

{
E (y (z − E (z))) ; z ∈ Lq, ‖z‖q ≤ 1

}
.

Hence

∆ρ =
{
z − E (z) ; z ∈ Lq, ‖z‖q ≤ 1

}
. (27)

Moreover, in the particular case p = q = 2, by using the properties
of the orthogonal projection ofHilbert spaces it is easy to prove that

∆2 =
{
z; z ∈ L2, ‖z‖2 ≤ 1,E (z) = 0

}
. (28)

(Rockafellar et al., 2006).13

Theorem 9. Suppose that p = 2 and ρ = σ2.
(a) If there is a zero-variance (constant) (5)-feasible random

variable y∗ then y∗ solves (5). If so, the optimal value of (5) vanishes.
(b) If there are no zero-variance (5)-feasible random variables

and α > 0 is such that the stop loss reinsurance yα0 satisfies
kE
(
y0 − yα0

)
= S1 then yα0 solves (5).

14

13 Obviously

∆2 A
{
z; z ∈ L2, ‖z‖2 ≤ 1,E (z) = 0

}
because z = z−E (z)wheneverE (z) = 0, and the opposite inclusion holds because
for every z in the unit ball of L2 we have that E (z) and z−E (z) are orthogonal, and
therefore the Pithagorean Theorem leads to

1 ≥ ‖z‖22 = ‖E (z)‖
2
2 + ‖z − E (z)‖22 ≥ ‖z − E (z)‖22 .

14 This result is closely related to that of Borch (1960).
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Proof. (a) is obvious so let us prove (b). We will prove that the
requirements of (15) are fulfilled. Take

τ ∗ =
α − E

(
yα0
)

kσ2
(
yα0
)

and

z∗ =
yα0 − E

(
yα0
)

σ2
(
yα0
) .

First of all notice that σ2
(
yα0
)
> 0 because yα0 is (5)-feasible and

there are no zero-variance (5)-feasible randomvariables. Therefore
the definitions above are correct.
Secondly, τ ∗ ≥ 0, since α < E

(
yα0
)
cannot hold. Thirdly,

z∗ ∈ ∆2. Indeed, according to (28) we must show that E (z∗) = 0
and ‖z∗‖22 ≤ 1. The first equality is obvious, whereas the inequality
is also satisfied because∥∥z∗∥∥22 =

∥∥∥∥∥yα0 − E
(
yα0
)

σ2
(
yα0
) ∥∥∥∥∥

2

2

=

∥∥yα0 − E
(
yα0
)∥∥2
2

σ2
(
yα0
)2 =

σ2
(
yα0
)2

σ2
(
yα0
)2 = 1. (29)

Next let us prove that E
(
yα0 z
∗
)
≥ E

(
yα0 z
)
for every z ∈ ∆2. We

will show that z∗ solves the variational problem

Max
∫
Ω

yα0 zdµ∫
Ω

zdµ = 0∫
Ω

z2dµ ≤ 1.

Since this problem is obviously convex, it is sufficient to show
that z∗ satisfies the Karush–Kuhn–Tucker conditions (Luenberger,
1969), i.e., we must state the existence of L1, L2 ∈ R, L2 ≥ 0, such
that L2

(
1− ‖z∗‖22

)
= 0 and

yα0 = L1 + 2L2z
∗
= L1 + 2L2

yα0 − E
(
yα0
)

σ2
(
yα0
) .

The first condition is obvious because (29) shows that ‖z∗‖22 =
1, and the second one clearly holds for L1 = E

(
yα0
)
and L2 =

1
2σ2

(
yα0
)
.

It only remains to verify the second condition of (15) or,
equivalently, (17). Take the partition Ω1 = ∅, Ω2 =

{ω ∈ Ω; y0 (ω) ≥ α} and Ω3 = {ω ∈ Ω; y0 (ω) < α}, and the
fulfillment of (17) is trivial. �

Remark 6. According to the theorem above, the optimal retention
will always be a stop loss contract saturating the reinsurance price
constraint, unless there exist zero-variance feasible retentions.15
Despite the fact that this mathematical finding must be pointed
out, it is obvious that the existence of zero-variance feasible
retentions will never hold in practice. �

Remark 7. In the proof of the theorem above, we have provided
the values of τ ∗ and z∗ without any previous computation, and
then we have checked that z∗ solves the variational problem (14).
However, in practice, the process will be different, that is, we will

15 Remark 9 will introduce a minor nuance for some particular cases.
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have to solve (14) in order to establish the relationship between
the primal solution y∗ and the dual one z∗. For this reason, we
will follow this second method in order to study the absolute
deviation and the conditional value at risk, despite the fact that the
exposition will be a little bit more tedious. �

Remark 8. Let us now consider Problem (5) with ρ = σ1. Then
(27) obviously implies that

∆1 =
{
z − E (z) ; z ∈ L∞,−1 ≤ z ≤ 1

}
.

Then the variational principle of Theorem 4 and Remark 2 lead to
the linear optimization problem
MaxE (y (z − E(z))) =

∫
Ω

yzdµ− E(y)
∫
Ω

zdµ

z ≤ 1
z ≥ −1
z ∈ L∞.

It is easy to verify that the problem above satisfies the Slater
qualification (Luenberger, 1969), so the Karush–Kuhn–Tucker
conditions become necessary and sufficient. Furthermore, the dual
space of L∞ contains L1 and is composed of those finitely-additive
measures on the σ -algebraF ofΩ beingµ-continuous and having
finite variation (Horvàth, 1966). Thus, the Karush–Kuhn–Tucker
conditions lead to the existence of two such measuresm1 ≥ 0 and
m2 ≥ 0 such that
y = E (y)+m1 −m2∫
Ω

(1− z) dm1 = 0∫
Ω

(1+ z) dm2 = 0.

(30)

The second and third conditions lead to z = 1 whenever m1 6= 0
and z = −1 whenever m2 6= 0. Thus, there is a measurable
partitionΩ = A ∪ B ∪ C such that{z = −1, m1 = 0, ω ∈ A
−1 ≤ z ≤ 1, m1 = m2 = 0, ω ∈ B
z = 1, m2 = 0, ω ∈ C .

Consequently, the first equality in (30) gives{
m2 = E (y)− y, ω ∈ A
m1 = y− E (y) ω ∈ C

and therefore mi ∈ L1, i = 1, 2, because they vanish out of the
indicated sets. Summarizing{z = −1, m1 = 0, y = E (y)−m2 ≤ E (y) , ω ∈ A
−1 < z < 1, m1 = m2 = 0, y = E (y) , ω ∈ B
z = 1, m2 = 0, y = E (y)+m1 ≥ E (y) , ω ∈ C .

(31)

If we assume that µ (y > 0) = 1 the remaining conditions in
Theorem 4 impose the existence of τ ≥ 0 such that (see also
Lemma 5 and recall that Ẽ = 0 for deviations){
z ≤ E (z)+ kτ
z = E (z)+ kτ , if y < y0.

(32)

Therefore, an upper bound of z will beE (z)+kτ . Since z ≤ 1 there
are three cases to consider:
Case 1. E (z) + kτ > 1. Then (31) and (32) imply that y = y0.
Thus, the fourth condition of (13) is not saturated, which implies
that τ = 0. Then z ≤ E (z) implies z = E (z), i.e., z is constant.
Hence one and only one set in the partitionΩ = A ∪ B ∪ C is non
void. IfΩ = A then y ≤ E (y) leads to y = E (y), i.e., y0 = E (y0).
Similarly, the conclusion y0 = E (y0) is also achieved if Ω = B or
Ω = C , so y = y0 and y0 is constant.
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Case 2. E (z) + kτ < 1. In such a case C is void (or a null set) and
(31) implies that y ≤ E (y). Thus y = E (y) has to be constant.
Case 3. E (z) + kτ = 1. Bearing in mind (31) there must be a
measurable set C such that{y = y0, ω 6∈ C

E (y) ≤ y < y0, ω ∈ C
kE (y0 − y) = S1

(33)

and these are the necessary and sufficient conditions so as to
guarantee that y is optimal, since the requirements of (15) and (17)
are fulfilled by taking z∗ = z − E (z) with z = χC − χΩ\C and
τ ∗ = 1−E(z)

k , which is non negative because −1 ≤ z ≤ 1 and
satisfies

z∗ = z − E (z) ≤ 1− E (z) = kτ ∗

with equality on C because z = 1.16

In order to summarize, we will provide a formal statement
reflecting the findings above. �

Theorem 10. Suppose that p = 1 and ρ = σ1.
(a) If there exists a zero-variance (constant) (5)-feasible random

variable y∗ then y∗ solves (5). If so, the optimal value of (5) vanishes.
(b) If there are no zero-variance (5)-feasible random variables and

y∗ is (5)-feasible and such that µ (y∗ > 0) = 1 then y∗ solves (5) if
and only if there exists a measurable set C such that (33) holds.
(c) If there are no zero-variance (5)-feasible random variables and

α > 0 is such that yα0 satisfies

kE
(
y0 − yα0

)
= S1 (34)

then yα0 solves (5).

Proof. (a) is obvious and (b) may be proved by checking that the
elements z∗ and τ ∗ in the remark abovemake Conditions (15) hold.
To prove (c) onemust show that the conditions of (b) are respected
by yα0 . Take

C = {ω ∈ Ω; y0 (ω) > α} ,

and (b) becomes obvious. �

Remark 9. Comments of Remark 6 also apply here, i.e., the (5)-
feasible stop loss reinsurance saturating the reinsurance price
constraint will be the optimal retention in practical situations.
According to Theorem 10(b), ‘‘more sophisticated’’ contractsmight
be optimal too. They are ‘‘almost’’ stop loss reinsurance, or ‘‘close’’
to a stop loss reinsurance, but they do not have to be an exact stop
loss reinsurance. Nevertheless, if there were no uniqueness in the
solution of (5) it seems to be clear that agents would choose the
stop loss solution. �

Remark 10. Suppose now thatρ = CVaRµ0 withµ0 ∈ (0, 1) being
the level of confidence.17 In such a case Rockafellar et al. (2006) has
stated that

∆ρ =

{
z ∈ L∞; 0 ≤ z ≤

1
µ0
,E (z) = 1

}
. (35)

16 As usual, χC and χΩ\C are the characteristic functions of C and its
complementaryΩ \ C .
17 In order to simplify the exposition we will assume that k < 1/µ0 and that the
distribution of y0 is continuous. The rest of the cases may also be analyzed but the
exposition is much more tedious. Furthermore, both restrictions are quite natural.
In particular, regarding the first one, k will never in practice be higher than 2 or 3,
and µ0 will never be more than 5%, i.e., 1/µ0 will be 20 at least.
ics and Economics 44 (2009) 374–384

Consequently, if µ (y > 0) = 1 and we would like to check
whether y solves (5) then the variational principle (14) suggests
solving the linear optimization problem

MaxE (yz) =
∫
Ω

yzdµ

z ≤ 1/µ0
z ≥ 0∫
Ω

zdµ = 1

z ∈ L∞.

Once again it is easy to verify the fulfillment of the Slater
qualification, and the Karush–Kuhn–Tucker conditions become

y = L+m1 −m2∫
Ω

(1/µ0 − z) dm1 = 0∫
Ω

zdm2 = 0

L ∈ R,m1 ≥ 0,m1 ≥ 0.

As in the previous case, we can find a partitionΩ = A∪B∪C such
that{z = 0, m1 = 0, y = L−m2 ≤ L, ω ∈ A
0 < z < 1/µ0, m1 = m2 = 0, y = L, ω ∈ B
z = 1/µ0, m2 = 0, y = L+m1 ≥ L, ω ∈ C

(36)

and m1 and m2 become random variables of L1. In addition, since
Ẽ = 1 in this case, (17) implies the existence of τ ≥ 0 such
that z ≤ k(1 + τ), z = k(1 + τ) whenever y < y0, and
τ (kE (y0 − y)− S1) = 0. Let us consider three possible scenarios:

Case 1, k(1 + τ) = 1/µ0. Then τ = 1
kµ0
− 1 > 0 and therefore

kE (y0 − y) − S1 = 0. Moreover µ (B) = 0 since otherwise z <
k(1 + τ) on B leads to y0 = y = L on B and y0 cannot be constant
with positive probability because its distribution is continuous.
Thus, let us remove B from (36). E (z) = 1 implies that µ (C) =
µ0, so the necessary and sufficient conditions guaranteeing that
y solves (5) will be: kE (y0 − y) − S1 = 0 and there exists a
measurable set C such that µ (C) = µ0, y = y0 out of C , and
y0 (ωC ) ≥ y0 (ω) whenever ωC ∈ C and ω 6∈ C . In particular, if α
is such that kE

(
y0 − yα0

)
− S1 = 0 then yα0 satisfies the conditions

of this case if and only if µ (y0 > α) ≤ µ0, since in such a case we
can extend {y0 > α} to a set C =

{
y0 > α′

}
(α′ ≤ α) such that

µ (y0 > α) = µ0 (recall that y0 has continuous distribution).

Case 2, k(1 + τ) < 1/µ0. In this second scenario C has null
probability, so let us remove it in (36). Then (36) clearly points out
that y = yL0, since z = 0 < k(1 + τ) on A leads to y = y0 on
A. Notice that three more requirements must be satisfied. Firstly,
kE
(
y0 − yL0

)
−S1 ≤ 0, secondly,E (z) = 1 impliesµ (B) k(1+τ) ≥

1, and thus

1/µ (B) ≤ k(1+ τ) < 1/µ0

which also leads to µ0 < µ (B). Furthermore, z must be constant
(and equal k(1 + τ)) on B, because otherwise y0 = yL0 = L on
a subset of B with positive probability, and the distribution of y0
being continuouswehaveµ (y0 = L) = 0. Then,µ (B) k(1+τ) = 1
implies 0 ≤ τ = 1

kµ(B) − 1, and 1/µ (B) ≥ k must hold. Thirdly,
τ
(
kE
(
y0 − yL0

)
− S1

)
= 0 provokes that kE

(
y0 − yL0

)
= S1 or

1/µ (B) = k.

Case 3, k(1+ τ) > 1/µ0. Then (36) shows that z = k(1+ τ) never
holds, and then y = y0. On the other hand τ > 1

kµ0
−1 > 0 implies

0 = kE (y0 − y) = S1, contradicting the assumptions. �
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Theorem 11. Suppose that the distribution of y0 is continuous, p =
1, ρ = CVaRµ0 with 0 < µ0 < 1, 1/µ0 > k and y∗ is a feasible
solution such that µ (y∗ > 0) = 1. Then, y∗ solves (5) if and only if
at least one of the following assertions hold:
(a) kE (y0 − y∗) = S1 and there exists a measurable set C such

that µ (C) = µ0, y∗ = y0 out of C, and

y0 (ωC ) ≥ y∗ (ωC ) ≥ y∗ (ω) = y0 (ω)

whenever ωC ∈ C and ω 6∈ C. In such a case the optimal value of (5)
is

E(y∗z∗)−
(
S0 − kE

(
y0 − y∗

))
, (37)

where z∗ = 1
µ0
χC .

(b) y∗ = yα0 and α > 0 is such that kE
(
y0 − yα0

)
= S1 and

µ (y0 > α) ≤ µ0. In such a case the optimal value of (5) is (37),
where z∗ = 1

µ0
χC , C being a set of the form C =

{
ω; y0 > α′

}
for

some α′ ≤ α and such that µ (C) = µ0.
(c) y∗ = yα0 , α > 0, kE

(
y0 − yα0

)
= S1, 1

µ(y0>α)
≥ k and

µ0 < µ (y0 > α). If so the optimal value of (5) is (37), with z∗ =
1

µ(y0>α)
χµ(y0>α).

(d) y∗ = yα0 , α > 0, kE
(
y0 − yα0

)
≤ S1, 1

µ(y0>α)
= k and

µ0 < µ (y0 > α). If so, the optimal value of (5) is (37), where
z∗ = 1

µ(y0>α)
χµ(y0>α).

Proof. It easily follows from the previous remark and the
equalities (16) and Ẽ = 1. �

Remark 11. The theorem above again points out that the stop loss
reinsurance with kE

(
y0 − yα0

)
= S1 will frequently be optimal.

According to Statements (b) and (c) this occurs ifµ (y0 > α) ≤ µ0
or

µ0 < µ (y0 > α) ≤
1
k
,

which probably hold. If they did not hold, i.e., if

µ (y0 > α) >
1
k
, (38)

one can look for a different stop loss optimal solution. Indeed, (38)
is impossible in the limit case k = 1, though it becomes more
probable as k increases. If k is high enough and (38) holds then yα0
becomes ‘‘too expensive’’, and the risk (see (5))

CVaRµ0
(
S0 − yα0 − kE

(
y0 − yα0

))
becomes ‘‘too high’’, since it obviously increases when k increases.
Then take α∗ > α so as to reach

µ
(
y0 > α∗

)
=
1
k
.

The reinsurance price constraint of (5) will not be saturated by the
cheaper contract yα

∗

0 . Furthermore, y
α∗

0 satisfies the conditions of
Theorem 11(d), so it is the optimal retention.
Finally, notice that, according to (a) and (b), if yα0 saturates the

reinsurance price constraint and

µ (y0 > α) ≤ µ0

then (for reasonable values of µ0 it is not very probable)
the uniqueness of the solution yα0 is not guaranteed. A more
sophisticated contract could be optimal too. However, as in
Remark 9, it seems natural that agents would choose yα0 . �

6. Conclusions

The optimal reinsurance problem is a classic topic in Actuarial
Theory and has been studied under different assumptions and by
and Economics 44 (2009) 374–384 383

using different criteria to compute the insurer risk. Furthermore,
general risk measures are becoming very important in Finance
and Insurance, and many classic problems have been revisited,
taking this approach into account. This article has shown that
the optimal reinsurance problem may be analyzed by drawing
on general risk measures such as deviation measures, expectation
bounded measures of risk or coherent measures of risk, among
others. A unified approach has been presented, in the sense that the
findings are general enough and do not depend on the concrete risk
measure to be used. Necessary and sufficient optimality conditions
have beenprovided. These conditions have beenused so as to study
the most important types of reinsurance in practice, pointing out
that quota-share-like reinsurance contracts can barely be optimal.
Furthermore, three important concrete risk measures have been
analyzed in detail, with special focus on the conditional value at
risk, since this coherent and expectation bounded risk measure
is being used more and more in Finance and Insurance due to its
interesting properties. �
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