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Abstract

This paper proposes estimators of location and size of structural breaks in a, possibly
dynamic, nonparametric regression model. The structural breaks can be located at given
periods of time and/or they can be explained by the values taken by some regressor, as in
threshold models. No previous knowledge of the underlying regression function is
required. The paper also studies the case in which several regressors explain the breaks.
We derive the rate of convergence and provide Central Limit Theorems for the es-
timators of the location(s) and size(s). A Monte Carlo experiment illustrates the perfor-
mance of our estimators in small samples. ( 2000 Published by Elsevier Science S.A.
All rights reserved.

JEL classixcation: C14; C32
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1. Introduction

This paper proposes estimators of the location(s) and size(s) of jump(s) in a,
possibly dynamic, nonparametric multiple regression model where the jumps
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are located at given periods of time and/or are explained by the values of some
regressors, as in threshold models. Regressors can be stochastic and/or "xed.
One of the main features of our estimators is that their asymptotic distribution is
normal, in contrast to rival parametric ones, which are, in general, not distribu-
tion free.

There is a vast literature on testing for the presence of a structural break when
the possible timing of the break is unknown. See for instance, Quandt (1960),
Hinkley (1969, 1970), Brown et al. (1975), Hawkins (1977), Worsley (1979), Kim
and Siegmund (1989), Andrews (1993) and Andrews and Ploberger (1994). When
a break exists, there is also some work on the estimation of the location of the
break point, e.g. Feder (1975), Yao (1987), Eubank and Speckman (1994) and Bai
(1994). The latter are typically based on a quadratic loss function, although
robust estimators have been considered by Bai (1995), Antoch and Huskova
(1997) and Fiteni (1998), among others. The previous work was done in a para-
metric framework.

The parametric approach has two potential drawbacks. First, the asymptotic
distribution of the estimators (location) typically depend on certain unknown
features of the data generating process. Although this problem has been circum-
vented by assuming that the size of the break shrinks to zero as the sample size
increases, it appears that when the regressors are nonstationary (e.g. Bai and
Perron, 1998; Hansen, 1998), the estimators are still not distribution free.
Second, the asymptotic properties of the estimators depend on a correct speci-
"cation of the model, for example on the underlying regression function in that
a bad speci"cation will induce inconsistent estimates. In addition as Hidalgo
(1995) noticed, a poor speci"cation may lead to the conclusion that there is
a break when there is no one. Thus the objective of this paper is to propose and
examine estimators of the location of the break, which are free from misspeci"-
cation of the underlying regression model and distribution free without resort-
ing to the arti"cial device of assuming that the size of the break shrinks to zero
as the sample size increases.

Several articles have looked at inferences on changing points in nonparamet-
ric trend models. Yin (1988) has proposed strong consistent estimates of the
number, location and sizes of jumps in the mean of a random variable, estima-
ting the right and left limits of the regression function by means of uniform
kernels non centered at zero (that is, moving averages). MuK ller (1992) has
provided rates of convergence in L

p
and a Central Limit Theorem (CLT) for the

estimators of the location and size of the structural break, whereas Chu and Wu
(1993) have proposed a test for the number of jumps in a regression model with
"xed design, providing CLTs of the estimators of their locations and sizes.

In this paper, in contrast to the previous works, by allowing the regression
function to depend on more than one regressor, either stochastic (weakly
dependent) or "xed, several additional features are introduced. First, we address
the issue of one or more regressors de"ning the structural break point, see
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MuK ller and Song (1994) for some related work. Second, the asymptotic variance
depends on the point at which the function is estimated and, thus, its e$ciency
hinges on that estimation point. Then, we obtain the asymptotic e$ciency
bound, and we are able to propose a feasible estimator which achieves such
a bound. Finally, the inclusion of lagged dependent variables, when a structural
break occurs at a given moment of time, introduces a nontrivial problem on how
to obtain e$cient estimators of the break(s) and jump(s).

The remainder of the paper is organized as follows. In the next section, we
present the estimation method. Section 3 discusses the asymptotic properties of
estimators of the location and size of structural breaks when the regressors are
strictly stationary. In Section 4, we study the situation where lagged dependent
variables are present in the regression model and the break is explained by the
regressor `timea. This corresponds to the situation of nonstationary, although
stable, regressors. Finally, in Section 5, we show some Monte Carlo simulations.
Proofs are con"ned to the appendices.

2. Estimating the locations and sizes of structural breaks

Let M(>
1
, X

1
), (>

2
, X

2
),2, (>

T
, X

T
)N be observations of a (p#1)-dimensional

stochastic process where >
t
is scalar and X

t
"(X

t1
, X

t2
,2, X

tp
)@ has its support

in X-Rp, that is, Pr (X
t
3X)"1. De"ne the regression function as

E(>
t
D X

t
)"m(Z

t
), where Z

t
"(Z

t1
, Z

t2
, 2, Z

tp
, Z

t(p`1)
)@, Z

tr
"X

tr
, for

r)p, Z
t(p`1)

is the regressor `timea, and the regression function m( ) ) is left
unspeci"ed.

Initially, assume that m( ) ) has N structural breaks explained by the rth
regressor. That is,

m(z)"g(z)#
N
+
j/1

a(j)
0

1(z
r
*f(j)

0
), (1)

where 1(A) is the indicator function of the event A, z"(z
1
, z

2
,2, z

(p`1)
)@ and

g( ) ) is a generic continuous function. As with other problems involving trends,
we de"ne the regressor time as Z

t(p`1)
"t/¹. This arti"cial device is commonly

introduced to provide justi"cation of asymptotic statistical inference proced-
ures. Like in parametric problems, the statistical properties of the structural
break point estimator can only be derived when there is an in"nite amount of
information before and after the structural break points, f(j)

0
, j"1,2, N. Thus,

when the regressor explaining the break is `timea, f(j)
0

becomes the proportion of
the sample where the jth break have occurred. If there were other "xed re-
gressors, we would assume that they become dense in their domain of de"nition
as the sample size increases, as is the case with t/¹. However, in what follows, we
will assume, without loss of generality, that time is the only "xed regressor.
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Obviously, f(j)
0

, j"1,2, N, are only identi"ed when they are interior points
in the domain of the rth regressor. In particular, when `timea is the regressor
explaining the break, f(j)

0
"0 or f(j)

0
"1 are not identi"able. Suppose that we "x

all the coordinates except the rth one, and de"ne z
0
(f)"(z

01
, z

02
,2, z

0(r~1)
,

f, z
0(r`1)

,2, z
0(p`1)

)@, then consider the objective function

W
0
(f)2"(m`

0
(z

0
(f))!m~

0
(z

0
(f)))2,

where mB
0
(z

0
(f))"limd?0B

m(z
0
(f#d)). Thus, W

0
(f)"0 for all fOf(j)

0
and

W
0
(f)"a(j)

0
if f"f(j)

0
. That clearly motivates our choice of W

0
(f)2. Assuming that

z(j)
0
,z

0
(f(j)

0
), j"1,2, N, are interior points of X][0, 1] and, without loss of

generality, that Da(j)
0

D'Da(j`1)
0

D, j"1,2, N!1, we have that

f(j)
0
"arg max

f|Q(j)

W
0
(f)2,

where Q(j)"Q!6 j~1
k/1

[f(k)
0
!e, f(k)

0
#e], with Q a compact subset in the do-

main of the rth regressor, and e'0 arbitrarily small. That is, the break points
f(j)
0

are sequentially obtained. It is noteworthy observing that arg maxf|Q(j) W0
(f)2"

arg maxf|Q(j)DW0
(f)Db for any b*1.

Due to the nature of our problem, one sided kernel estimators prove to be
very useful for the estimation of mB

0
( ) ). Those kernels were designed to estimate

curves at boundary points (see Rice, 1984; Gasser et al., 1985), and are such that
all their mass are at the right or left of zero. That is, mB

0
(z) are estimated by

m( B(z)"PK B(z)/ f K B(z),

where PK B(z)"(¹ap`1)~1+T
t/1
>

t
KB[(Z

t
!z)/a], f B(z)"(¹ap`1)~1+T

t/1
KB [(Z

t
!z)/a] and KB(u)"kB(u

r
)<p`1

jEr
k(u

j
), with k( ) ) a symmetric kernel

function and kB( ) ) are one sided kernels. Finally, a"a(¹) is a sequence of
bandwidths converging to zero as the sample size increases to in"nity. More
speci"c conditions on the kernel functions and rates of convergence of a to zero
will be given in the next section. Thus, the break points f(j)

0
, j"1,2, N, are

sequentially estimated by

fK (j)"arg max
f|Q(j)

WK
0
(f)2, j"1,2, N,

where Q(j)"Q!6 j~1
k/1

[fK (k)!2a, fK (k)#2a], with WK
0
(f)"m( `(z

0
(f))!m( ~(z

0
(f))

and a(j)
0

is estimated by

a( (j)"WK
0
(fK (j)).

Next, consider the case where jumps occur simultaneously in several re-
gressors. That is, the regression model (1) becomes

m(z)"g(z)#
M
+
l/1

a
0l

1(zl*f
0l

), (2)
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assuming, for notational convenience, that the "rst M regressors explain the
break. Since in (2), left and right limits of m(z) are di!erent, in the direction of
di!erent coordinates, we can employ the jump functions
Wl(fl)"ml̀ (z

0l
(fl))!m~l (z

0l
(fl)), where for l"1,2, M, mBl (z

0l
(fl))"

limd?0B
m(z

0l
(fl#d)) and z

0l
(fl)"(z

01
, z

02
,2, z

0(l~1)
, fl, z0(l`1)

,2, z
0(p`1)

).
Thus, we estimate mBl (z

0l
(fl))"PBl (z

0l
(fl))/ f (z

0l
(fl)) by m( Bl (z

0l
(fl)),

PK Bl (z
0l

(fl))/fK Bl (z
0l

(fl)), where PK Bl ( ) ) and fK Bl ( ) ) employ the one-sided kernels
kB(t) for the lth coordinate, the symmetric kernel kI (t)"[k`(t)#k~(t)]/2 for the
other M!1 coordinates and the kernel k(t) for the remaining p#1!M
coordinates. This is done to prevent the possible e!ects that discontinuities in
other directions may have on the estimation of Wl(fl). Thus, assuming that
z
0l
,z

0l
(f

0l
), l"1,2, M, are interior points of X][0, 1], f

0
"(f

01
,2, f

0M
)@

is estimated by

(fK
1
,2, fK

M
)@"fK"arg max

f/(f1,2, fM){|Q(M)

M
+
l/1

WK l(fl)2,

where WK l(fl)"m( l̀ (z
0l

(fl))!m( ~l (z
0l

(fl)) and Q
(M)

"XMl/1
Ql(M)

is a compact
subset in the domain of the "rst M regressors. Once the estimator of f

0
has been

obtained, the lth coordinate of a
0
"(a

01
,2, a

0M
)@ is estimated by a( l"WK l (fK l).

3. Asymptotic properties of estimators of the break(s) and jump(s) with stationary
regressors

In this section we will focus on the case where the regressors in model (1) are
strictly stationary, leaving the nonstationary case for the next section. We can
envisage several situations where this is the case, as thresholds models or when
the regressors X

t
are exogenous. The following de"nitions are useful.

Dexnition 1. Let Mb
a

be the p-algebra generated by MX
t
, a)t)bN.

MX
t
, t"0,$1,$2,2N is a strictly stationary a-mixing stochastic process

with mixing coe$cients 1(m) if lim
m?=

1(m)"0, where 1 (m)"supA|Mt
~=,B|M=

t`m
D

Pr(AWB)!Pr (A) Pr (B)D.

The next three de"nitions are borrowed from Robinson (1988).

Dexnition 2. I
r
(r*1) is the class of real functions satisfying

P
=

~=

uik(u) du"d
i0

(i"0, 1,2, r!1)

k(u)"O((1#DuDr`1`m)~1) for some m'0,

where d
i0

is the Kronecker's delta.
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Let u be a generic random variable.

Dexnition 3. Na"M/: RPR; E D/(u)Da(RN.

Dexnition 4. Xak, a'0, k'0, is the class of /( ) ) functions belonging to Na such
that there exist h3Na and some c'0 such that

sup
Suc

D/(u)!/(v)!Q(u, v)D
Eu!vEk

(h(u) a.e. (u),

where S
uc"Mv : v3R and Eu!vE(cN for all u3R, Q(u, v) is the Taylor expan-

sion of /( ) ) up to m!1(k)m, and where the coe$cients in the Taylor
expansion belongs to Na.

Consider the following assumptions on the data generating process:

A1. (a) MX
t
, t"0,$1,$2,2N is a strictly stationary a-mixing process where

the mixing coe$cients 1(m) satisfy +=
m/q

1(m)d@(2`d)"O(q~1) and
(b) EEm(Z

t
)Ed`2(R for some d'0.

A2. Let e
t
">

t
!m(Z

t
). Then, (a) E(e

t
DX

s
, s)t)"0, (b) E(e

t
De
s
, s(t)"0 and

(c) E(e2`l
t

)(R for some l'0.
A3. The pdf of X

t
, f (x), belongs to X=k , and f (x) g(z) belongs to Xak for some k*2

and a'2.
A4. E(e2

t
DZ

t
)"p2(Z

t
) with p2(z)"s(z)#o(j)

0
1(z

r
*f(j)

0
), where s(z) f (z) 3 Xak for

some k*2 and a'2, and o(j)
0

s are "xed numbers.

Assumption A1 is common in nonparametric estimation with a-mixing data
and provides minimal conditions on the rate of convergence of 1 (m) to zero (see
Robinson, 1983). Although it allows for dynamic models as threshold models, it
does not allow situations where the break is given at a date and we have lagged
dependent variables as regressors, since X

t
would not be stationary. This case

will be deferred to the next section. Assumption A2 can be relaxed, allowing
correlation, but then, like in parametric models, no lagged dependent variables
can be present in the regression function. However, this assumption does not
rule out conditional heteroskedasticity. The smoothness condition, in Assump-
tion A3, is usually required in kernel regression estimation. Assumption A4
explicitly allows for conditional heteroskedasticity, which can be discontinuous
at the structural break point. This is a realistic assumption, because it is natural
to think that if the "rst conditional moment has a jump at a given point, the
same can happen to the second conditional one.

De"ne kB
(m)

(u)"RmkB(u)/Rum, KB
(m)

(u)"kB
(m)

(u
r
)<p`1

jEr
k(u

j
), KB

(0)
(u)"KB(u) and

m
(m)

":Rp`1KB
(m)

(u)2 du, m"0, 1, 22. Let us introduce the following assump-
tions on the kernel functions:

B1. The kernel function k( ) )3I
2
.
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B2. kB : RBPR, where k`(u)"k~(!u), k`
(1)

(u)"!k~
(1)

(!u) and k`(u)3I
2
.

B3. kB(0)"kB($R)"0, with k`
(1)

(0)'0.
B4. :RDu2kB

(m)
(u)D du(R, :RDkB

(m)
(u)D du(R, m"1, 2.

B5. lim
T?=

(¹ap`1)~1"0 and lim
T?=

¹ap`1`4(R.

Note that p#1 is the dimension of Z
t
. Henceforth, in all the Assumptions,

Theorems and Corollaries, when the regressor time is not a component of Z
t
,

p#1 should be replaced by p. B1 is a common assumption on kernels. Kernels
k`( ) ), and therefore k~( ) ), satisfying Assumptions B2}B4, can be obtained from
any function h(u) with domain in R`, as k`(u)"u(c

1
#c

2
u)h(u), where the

constants c
1

and c
2

are the solution to :R`u(c
1
#c

2
u)h(u) du"1 and

:R`u2(c1
#c

2
u)h(u) du"0. As an example, let h(u)"exp(!u)1(u'0), then,

k`(u)"u(3!u) exp(!u)1(u'0). Assumption B5 is satis"ed by the bandwidth
choice a"C¹~1@b, p#1(b)p#5, where C is a "nite constant independent
of ¹.

The following theorem establishes the rate of convergence of fK (j) to f (j)
0

.

Theorem 1. Consider model (1). Under Assumptions A1}A4 and B1}B5,

fK (j)!f(j)
0
"O

1
((¹ap~1)~1@2), j"1,2, N.

The rate of convergence depends on the bandwidth parameter and it is slower
than in the parametric case, where ¹-consistency is achieved, see Chan (1993) or
Bai (1994). However, this is not surprising, due to the local behavior of the
statistics.

Next, we establish the asymptotic normality of the estimators, which uses the
same strategy of proof as Eddy (1980) and MuK ller (1992). To that end, introduce
x
0
(f)"(x

01
, x

02
,2, x

0(r~1)
, f, x

0(r`1)
,2, x

0p
)@.

Theorem 2. Consider model (1) where f(j)
0

, j"1,2, N, are interior points of Q(j).
Under Assumptions A1}A4 and B1}B5,

(a) (¹ap~1)1@2[(fK (1)!f(1)
0

), (fK (2)!f(2)
0

),2, (fK (N)!f(N)
0

)]@ $
P N (0, R

0
), and

(b) (¹ap`1)1@2[(a( (1)!a(1)
0

), (a( (2)!a(2)
0

),2, (a( (N)!a(N)
0

)]@ $
P N (0, X

0
),

where R
0
"diag (<

10
, <

20
,2, <

N0
) and X

0
"diag (=

10
,=

20
,2,=

N0
), and

<
k0
"

[2s(z(k
0
)#o(k)

0
]m

(1)
f (x(k)

0
)a(k)2

0
k~
(1)

(0)2
and =

k0
"

[2s(z(k)
0

)#o(k)
0

] m
(0)

f (x(k)
0

)
, k"1,2, N,

where x(k)
0
"x(f(k)

0
).
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As was expected, the asymptotic variances of fK (j), j"1,2, N, decrease as the
size of the jump increases in absolute value. Observe that, as the pdf of
X

t
evaluated at x(j)

0
increases, the variance decreases and, hence, the asymptotic

e$ciency of the estimators depends on the choice of x(j)
0

. We will return to this
point in Corollary 2 below. Finally, from Theorem 2(b), we note that the
asymptotic distribution of (¹ap`1)1@2(a( (j)!a(j)

0
) is the same whether f(j)

0
or fK (j) are

used to estimate a(j)
0

.
To construct asymptotically valid con"dence intervals, f (x) and

p2
B
(z(f))"limd?0B

p2(z(f#d)) are estimated by fK (z)"1/2( fK `(z)#fK ~(z)) and
p( 2
B
(z(f))"jK B(z(f))!m( B(z(f))2 respectively, where jK B(z)"(¹ap`1)~1

+T
i/1
>2

i
KB[(Z

i
!z)/a]/ fK B(z). Thus, we estimate f (x(j)

0
) and 2s(z(j)

0
)#o(j)

0
"

p2
`
(z(j)

0
)#p2

~
(z(j)

0
) by fK (x

0
(fK (j))) and p( 2

`
(z

0
(fK (j)))#p( 2

~
(z

0
(fK (j))) respectively.

Some remarks are in order.

Remark 1. Model (1) can be generalized to situations where the breaks occur
simultaneously in both the level and in some derivative. That is, consider

m(z)"g(z)#
N
+
j/1

g8 (j)(z)1(z
r
*f(j)

0
), (3)

where the functions g(z) and g8 (j)(z), j"1,2, N, have two continuous derivatives
in X][0, 1] and a(j)

0
"g8 (j)(z(j)

0
). One of the di!erences, compared with the

situation studied in model (1), is due to the bias term g8 (j)
(1)

(z(j)
0

) f (x(j)
0

)vah~1, where
g8 (j)
(1)

(z)"Rg8 (j)(z)/Rz
r
, which would appear as a third term of E[P`(v)] in Proposi-

tion 1. Notice that in (1), g8 (j)
(1)

(z)"0. Thus, to obtain consistency and asymptotic
normality of the estimators, we need to strengthen the range of admissible values
of a. In particular B5 should be replaced by lim

T?=
(¹ap`1)~1#¹ap`1`2"0.

However, it is noteworthy that we can choose a"C¹~1@(p`2), say, which is
valid for models (1) and (3). The other di!erence is that the choice of z

0
would be

given by arg max
z
g8 (j)(z(j)

0
)2f (x(j)

0
) instead of arg max

x|X
f (x(j)

0
), since here

a(j)2
0

f (x(j)
0

)becomes g8 (j)(z(j)
0

)2 f (x(j)
0

) in the de"nition of <
j0

of Theorem 2.

Remark 2. In model (3) we can have that a(j)
0
"g8 (j)(z(j)

0
)"0 although

g8 (j)
(1)

(z(j)
0

)O0, that is, the change point is in the "rst derivative of the regression
function. Under this framework

m
(1)

(z)"g
(1)

(z)#
N
+
j/1

g8 (j)
(1)

(z)1(z
r
*f(j)

0
),

where the functions g
(1)

(z) and g8 (j)
(1)

(z), j"1,2, N, have two continuous deriva-
tives in X][0, 1]. With a(j)

0
"g8 (j)

(1)
(z(j)

0
), f(j)

0
is estimated by

fK (j)"arg max
f|Q(j)

WK
(1)0

(f)2, j"1,2, N,
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where WK
(1)0

(f)"RWK
0
(f)/Rz

r
. In this case, see Delgado and Hidalgo (1995),

(fK (j)!f(j)
0

)"O
1
((¹ap~3)~1@6) instead of O

1
((¹ap~1)~1@2). That is, the location of

a change in the derivative will, not surprisingly, be estimated with lower
precision than that for the level. However, it is noteworthy that the same
phenomenon is true in parametric models where only root-T consistency is
achieved, see e.g. Feder (1975).

Remark 3. It seems reasonable to use di!erent bandwidths for each explanatory
variable or, at least, a di!erent one for the variable responsible of the break,
depending on the smoothness of the regression function with respect to each
regressor. In this case condition B5 should read,

A¹
p`1
<
i/1

a
iB

~1
P0, A¹

p`1
<
i/1

a
iB max

i/1,2, p`1

a4
i
(R and max

i

a
i
P0.

The results follow straightforwardly, and if anything, it complicates unnecessar-
ily the already complex notation. Obviously, in this case, the rate of convergence
of the break point estimator becomes (¹a~2

r
<p`1

i/1
a
i
)1@2.

Introduce the following assumption.

A5. E(e2
t
DZ

t
)"p2(Z

t
), with p2(z)"s(z)#+M

j/1
o
0j

1 (z
j
*f

0j
), where s(z) f (z)3Xak

for some k*2 and a'2, and o
0j

are "xed numbers.

Corollary 1. Consider model (2), where f
0l

, l"1,2, M, are interior points of
Ql(M)

. Under Assumptions A1}A3, A5 and B1}B5,

(a) (¹ap~1)1@2[(fK
1
!f

01
), (fK

2
!f

02
),2, (fK

M
!f

0M
)]@ $

P N(0, RQ
0
), and

(b) (¹ap`1)1@2[(a(
1
!a

01
), (a(

2
!a

02
),2, (a(

M
!a

0M
)]@ $

P N(0, XQ
0
),

where RQ
0
"diag[<Q

01
, <Q

02
,2, <Q

0M
] and XQ "diag[=Q

01
,=Q

02
,2,=Q

0M
], and

<Q
0i
"

[2s(z
0i
)#o

0i
]m

(1)
f (x

0i
)a2

0i
k~
(1)

(0)2
,=Q

0i
"

[2s(z
0i
)#o

0i
]m

(0)
f (x

0i
)

, i"1,2, M,

where m
(1)
":k`

(1)
(u)2 du(:kI (u)2 du)M~1(:k(u)2 du)p`1~M and z

0i
"(x@

0i
, z

0(p`1)i
)@.

As was mentioned after Theorem 2, the choice of z
0j

, for jOr, j"1,2, p#1,
a!ects the e$ciency of both fK (j) and a( (j). By inspection of that theorem, it is
observed that the optimal choice is obtained when f (x(j)

0
)/[2s(z(j)

0
)#o(j)

0
] is

maximized. For simplicity, consider model (1) with N"1 and homoskedastic-
ity, so that Assumption A4 becomes

A4@. E(e2
t
DZ

t
)"E(e2

t
)"p2e(R.

g g / f ( )
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Under A4@, the asymptotic variances given in Theorem 2 become

<
10
"

2p2e m(1)
f (x(1)

0
)a(1)2

0
k~
(1)

(0)2
and=

10
"

2p2e m(0)
f (x(1)

0
)
,

and thus, to minimize the above variances is equivalent to maximize f (x(1)
0

).
Since in most of the empirical examples, the regressor time is assumed to be
responsible for the structural break, and also for notational simplicity, let
us assume that `timea explains the break, that is, r"p#1. De"ne xH"
arg max

x|X
f (x) (the mode of f (x)), which is estimated by x( H"arg max

x|X
fK (x),

where fK (x) is the kernel density estimator of f (x). Thus, an e$cient (feasible)
estimator of f(1)

0
is given by

fK H"arg max
f|Q

WK
H
(f)2,

where WK
H
(f)"m( `((x( H@, f)@)!m( ~((x( H@, f)@) and Q"[c, d]L(0, 1). The following

Corollary justi"es this (two-step) e$cient estimation procedure.

Corollary 2. Consider model (1) with r"p#1 and N"1. Under Assumptions
A1}A3, A4@ and B1}B5, with z(1)

0
"(xH@, f(1)

0
)@,

(¹ap~1)1@2(fK H!f(1)
0

) $
P N(0, <

10
) and (¹ap`1)1@2(a( H!a(1)

0
) $
P N(0,=

10
).

When rOp#1, we "x the values x( H
1
, x( H

2
,2, x( H

r~1
, x( H

r`1
,2, x( H

p
, which maximize

fK (x(fK )) and z
p`1

is "xed at an arbitrary value, say 1/2.

4. Regression models with lagged dependent variables with a break at a period of
`timea

In this section, we discuss the situation, quite common in econometrics, where
X

t
contains lagged dependent variables and the break point is given at a point in

time. Under this framework, one of the main di!erences, compared to the
situation discussed in the previous section, is that the regressors are not station-
ary, that is A1 does not hold. In particular, the pdf of the regressors is di!erent
before and after the break point. As we will discuss below, this assumption is not
vacuous, and to obtain more e$cient estimates of the break and jump is more
involved, and requires slight changes to the `objective functiona in the `two-
stepa procedure. Given X

t
"(>

t~1
, >

t~2
,2, >

t~q
, XI

t
, XI

t~1
,2, XI

t~l)@, where
p"(l#1) q

1
#q and q

1
is the dimension of XI

t
, consider the model

m(x)"g(x)#a
0
1(q*q

0
), (4)

with q"t/¹. Thus, [¹q
0
] indicates the time of the break. Observe that we have

only assumed one structural break and XI
t
to be stochastic. This is merely to

g g / f ( )
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keep the notation and arguments simpler. Theorems 3 and 4 below are easily
generalized to several structural breaks and/or XI

t
to contain "xed regressors,

following the same strategy of Theorem 1 and 2 of Section 3. We need to
introduce the following:

Dexnition 5. Let Mb
a

be the p-algebra generated by MX
t
, a)t)bN.

MX
t
, t"0,$1,$2,2N is an a-mixing stochastic process with mixing coe$-

cients 1(m) if lim
m?=

1 (m)"0, where 1(m)"sup
t
supA|Mt

~=, B|M=
t`m

DPr(AWB)!
Pr(A) Pr(B)D.

Consider the following assumptions on the data generating process:

C1. (a) MX
t
, t"0,$1,$2,2N is an a-mixing process where 1 (m) satisfy

+=
m/q

1 (m)d@(2`d)"O(q~1) and (b ) sup
t
EEm(X

t
)Ed`2(R for some d'0.

C2. De"ne e
t
">

t
!m(X

t
). Then, (a) E(e

t
D X

s
, s)t)"0, (b) E(e

t
De
s
, s(t)"0

and (c) E(e2`l
t

)(R for some l'0.
C3. The pdf's of X

t
before and after the break point q

0
, that is f

1
(x) and f

2
(x)

respectively, belong to X=k , and f
i
(z)g(z)3Xak, i"1, 2, for some k*2 and

a'2.
C4. E(e2

t
DZ

t
"(X@

t
, q

t
)@)"p2(Z

t
), with p2(z)"s(z)#o

0
1(q*q

0
), where

s(z) f
i
(z)3Xak, for i"1, 2, for some k*2 and a'2, and o

0
is a "xed number.

C5. q
0

is an interior point of Q, a compact set in (0, 1).
B6. (¹ap`1)~1#¹ap`3P0 as ¹PR.

Remark 3 (Cont.) As was said in Remark 3, if we allowed the bandwidth
parameter to have di!erent rates of convergence to zero for di!erent coordi-
nates, the theorems below would follow in the same manner. The only di!erence
is that in this case Assumption B6 should read

A¹
p`1
<
i/1

a
iB

~1
#A¹

p`1
<
i/1

a
iB a2

r
#max

i

a
i
P0 as ¹PR.

Theorem 3. Consider model (4). Under C1}C5, B1}B4 and B6,

q(!q
0
"O

1
((¹ap~1)~1@2).

Theorem 4. Consider model (4). Under C1}C5, B1}B4 and B6,

(a) (¹ap~1)1@2(q(!q
0
) $
P (;/(!a

0
k~
(1)

(0))) MdI (;*0)#d~1I(;(0)N,

where ;&N(0,R
0
),R

0
"m

(1)
(s(z

0
))/ f

1
(x

0
)#(o

0
#s(z

0
))/ f

2
(x

0
)) and d"f

1
(x

0
)/ f

2
(x

0
).

(b) (¹ap`1)1@2(a(!a
0
) $
P N (0, m

(0)
(s(z

0
)/ f

1
(x

0
)#(o

0
#s(z

0
))/ f

2
(x

0
))).

g g / f ( )
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The asymptotic distribution function of q( is continuous with continuous
derivative except at zero, where it has a jump re#ecting that the pdfs of X

t
are di!erent before and after q

0
, although it is easily tabulated. For instance,

denote (a( k~
(1)

(0))~1RK ".K . Then, an asymptotic 95 con"dence interval for q
0

is
given by

(q(!(¹ap~1)~1@2dK ~1.K 1@2N
0.025

, q(#(¹ap~1)~1@2 dK .K 1@2N
0.975

)

where N
0.025

and N
0.975

are respectively the 0.025 and 0.975 quantiles of the
standard normal and dK , a( and RK are consistent estimators of d, a

0
and R

0
,

respectively. Moreover, its "rst two moments are, respectively,

(R
0
)1@2

!a
0
k~
(1)

(0)J2n
(d!d~1) and

R
0

2(a
0
k~
(1)

(0))2 AA1!
1

pB (d2#d~2)#
2

pB.
As discussed after Theorem 2 and before Corollary 2 of the previous section,

the e$ciencies of q( and a( depend very much on where the kernel regression
function is evaluated. As was done there, one possible way can be to evaluate the
kernel function at the mode of the pdf of X

t
, but in view of the nonstationarity of

the data, this method has not much sense, so that the choice of that point is not
so clear. Another possibility could be based on the maximization of, say, f

1
(x), but

clearly this is not a good strategy either, since it might be that f
2
(x) is very small

at the point xH"arg max
x
f
1
(x). For instance, suppose that f

1
( ) ) is N (0, 1) while

f
2
( ) ) is N (20, 1). Then, xH"0, while f

2
(0) is extremely small and, thus the

variances of our estimators will be very large, implying that the bigger the jump,
the worse the estimator is. Hence, this method does not appear to be very
desirable either. Another possibility can be to evaluate the kernel at a point
x where f

1
(x)"f

2
(x), or perhaps where f

1
( ) )#f

2
( ) ) is maximized, but as can be

observed from the previous example, this method would su!er from the same
problem and, thus, it would not render the desired results.

Therefore, we propose a two-step procedure with a slight modi"cation of the
objective function which will not su!er from the above drawbacks. The follow-
ing assumptions are useful in order to derive the asymptotic properties of this
estimator.

C4@. E(e2
t
DX

t
)"E(e2

t
)"p2e(R.

C6. The pdfs of X
t
, that is f

1
( ) ) and f

2
( ) ), are unimodal and symmetric around

their means k
1

and k
2
, respectively.

Consider q( and a( of Theorem 4, and the objective function

UI
0
(q)"a( (m( `(z8

1
(q))!m( ~(z8

2
(q))), (5)

where z8
i
(q)"(k8 @

i
, q)@ for i"1, 2 and where k8

1
and k8

2
are the sample means before

and after [¹q( ], using [¹a] observations, that is, they are local sample means.
Notice that, because q( is consistent, both k8

1
and k8

2
are consistent estimators of

g g / f ( )
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k
1

and k
2
, respectively. Moreover, C6 implies that for i"1, 2, k

i
is the mode of

f
i
( ) ). Consider

q8 "arg max
q|(q(~2Ta, q(`2Ta)

UI
0
(q).

Before stating the asymptotic results of q8 , some comments about our choice of
UI

0
(q), k8

1
and k8

2
are in place. By Theorems 3 and 4,

m( `(z8
1
(q))!m( ~(z8

2
(q)) P

P a1(q"q
0
)#(g(k

1
)!g(k

2
)),

and thus, UI
0
(q) P

P a21(q"q
0
)#a(g(k

1
)!g(k

2
)) which implies that

lim
n?=

Pr(UI
0
(q

0
)'UI

0
(q))"1

for all q. As for the choice of k
1

and k
2

is concerned, under Assumption C4@, and
if m( `( ) ) and m( ~( ) ) are evaluated at two points, say x

1
and x

2
respectively, it is

easily observed that the limit distribution in Theorem 4 (see Corollary 3 below)
becomes, except constants,

Md
1
I(;*0)#d

2
I(;(0)N; where;&N(0, R

0
),

with R
0
"p2e m(1)A

1

f
1
(x

2
)
#

1

f
2
(x

1
)B and d

1
"

f
1
(x

2
)

f
2
(x

2
)
and d

2
"

f
2
(x

1
)

f
1
(x

1
)
.

Thus, the choice of z8
i
(q)"(k8 @

i
, q)@ seems natural because the asymptotic variance

of the break point estimate becomes

2p2e m(1)
d2

f
2
(k

1
)
"2p2e m(1)

d2

f
1
(k

2
)
,

where d"d
1
"d

2
"f

1
(k

2
)/f

2
(k

2
), which has the desirable e!ect because f

1
(k

1
)"

f
2
(k

2
) corresponds to a maximum. Then, we have the following corollary:

Corollary 3. Consider model (4). Under C1}C3, C4@, C5, C6, B1}B4 and B6,

(¹ap~1)1@2(q8!q
0
) $
P

d

!a
0
k~
(1)

(0)
;, with;&N (0, R

0
) and R

0
"2p2e m(1)

1

f
1
(k

2
)
.

Observe that in the second step, the search for the maximum is restricted to
the subset ( q(!2¹a, q(#2¹a ), since by Theorem 3, q(!q

0
"o

1
(a). Finally, we

observe that the asymptotic distribution in the second step, that is, when the
kernels k` and k~ are evaluated at the points k

1
and k

2
, respectively, is the same

regardless of whether the regressors are stationary or not. In the former situ-
ation, we have, obviously, that k

1
"k

2
. Finally, it is noteworthy to observe that

13



when the regressors are stationary we could have employed the objective
function

arg max
f|Q

a(WK
0
(f),

in the second step of the `two-stepa algorithm, which is that employed in (5).

5. Monte Carlo experiments

In the "rst set of Monte Carlo experiments, we have considered the following
models with only one regressor:

>
t
"q

t
#(b

1
q
t
!b

0
)1(q

t
*f

0
)#e

t
, (6)

>
t
"X

t
#(b

1
X

t
!b

0
)1(X

t
*f

0
)#e

t
(7)

with e
t
&iidN(0, 0.1), q

t
"t/¹ and X

t
&;(0, 1), and where (b

0
, b

1
)@ takes the

values (0.5, 0), (1, 0), (0, 1) and (1, 1). The motivation is to shed some light about
the performance of our estimators in two particular situations. First, to examine
their performance when the slope of the model is constant and the size of the
jump increases, and second when the size of the jump is kept "xed, but the "rst
derivative is not continuous. The former corresponds to (b

0
, b

1
)"(0.5, 0) and

(b
0
, b

1
)"(1, 0) whereas the latter to (b

0
, b

1
)"(0.5, 0), (b

0
, b

1
)"(0, 1) and

(b
0
, b

1
)"(1, 1). In all the experiments we have employed the kernel

k`(u)"u(3!u) exp (!u)1(u'0) and f
0
"1/2.

First, we consider the trend model given in (6). The bandwidth parameter was
a"C¹~1@2 where C takes the values 0.3 (0.1), which corresponds to the
standard deviation of the Uniform random variable in (0, 1). Notice that the
range of bandwidths chosen is quite large, being the ratio between the "rst and
last one equal to 2. We compare our estimator with the least squares estimator
(LSE), fI"kI /¹, where kI "arg min

k
M+k

t/1
(>

t
!>M

k
)2#+T

t/k`1
(>

t
!>M H

k
)2N,

where >M
k

and >M H
k

are the sample means using the "rst k and last ¹!k
observations respectively. When the LSE is consistent, it converges to f

0
faster

than fK . In fact, fI!f
0
"O

1
(¹~1), which is a typical rate of convergence of

change point estimators in parametric models, see Chan (1993) and Bai (1994).
However, the LSE can be inconsistent when bH"E[>

t
1(q

t
*f

0
)]!

E[>
t
1(q

t
(f

0
)]"0. In model (6), the performance of the nonparametric es-

timator depends on a
0
"0.5 b

1
!b

0
, while the performance of the LSE depends

on bH. Table 1 shows that the nonparametric estimator is quite insensitive to the
bandwidth choice. It also shows that when (b

0
, b

1
)"(0.5, 0) or (1, 1), the LSE is

inconsistent, that is, the mean squared error (MSE) does not converge to zero
with the sample size and is much bigger than the MSE of the nonparametric
estimator. In particular, we observe that when (b

0
, b

1
)"(1, 1), the bias of the

14



Table 1
Biases and MSEs of nonparametric and OLS estimators of structural break points in model

>
t
"q

t
#(b

1
q
t
!b

0
) 1 (q

t
*f

0
)#e

t
, t"1,2, ¹

with ¹"50, 100 and bandwidth parameter a"C¹~1@2 based on 5000 replications

b
0
"0.5, b

1
"0 b

0
"1, b

1
"0

¹"50 ¹"100 ¹"50 ¹"100

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

C"0.3 !0.435 3.100 !0.414 2.405 0.134 0.385 0.062 0.116
C"0.4 !0.610 3.100 !0.250 1.820 0.021 0.253 0.000 0.036
C"0.5 !0.824 3.610 !0.300 1.620 !0.010 0.201 !0.021 0.018
C"0.6 !1.179 4.603 !0.434 1.684 !0.010 0.173 !0.018 0.013
O¸S !0.889 9.182 !0.772 9.835 !1.002 0.017 !0.488 0.002

b
0
"0, b

1
"1 b

0
"1, b

1
"1

¹"50 ¹"100 ¹"50 ¹"100

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

C"0.3 !0.031 2.731 !0.132 2.396 1.157 3.305 0.000 2.470
C"0.4 0.606 1.948 0.000 1.689 3.745 3.782 0.978 2.058
C"0.5 1.608 1.133 0.314 1.068 7.342 4.806 1.925 2.052
C"0.6 2.095 0.600 0.920 0.639 12.880 6.598 3.610 2.465
O¸S 0.837 0.160 0.810 0.074 20.670 7.009 23.83 6.824

Note: All the values in this table must be divided by 100.

LSE converges to 0.25. This appears sensible since bH increases as q
t
increases to

0.75 and latter decreases. For the other two cases, as the sample size increases,
the LSE always performs better as expected, since the MSE of the nonparamet-
ric estimator decreases slowly than that of the LSE with the sample size.

The same Monte Carlo experiment was repeated for model (7), with the same
kernel and bandwidth choice a"C¹~1@2, C"0.3(0.1). The results are provided
in Table 2. Qualitatively, the performance of the estimator is similar to the
situation of "xed regressor, and the same comments given for model (6) apply
here for model (7).

In the second set of Monte Carlo experiments, we have employed the follow-
ing autoregressive model with a jump in the mean:

>
t
"0.5>

t~1
#b

0
1(q

t
*f

0
)#e

t
, (8)

for two values of b
0
, namely 0.25 and 0.50, which correspond to a jump of 0.5

and 1 respectively, and where e
t
is as in models (6) or (7).

g g / f ( )
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Table 2
Biases and MSEs of nonparametric estimators of structural break points with a"C¹~1@2 and OLS
estimator based on 5000 replications of the threshold model

>
t
"X

t
#(b

1
X

t
!b

0
) 1 (X

t
*f

0
)#e

t
, t"1,2, ¹

and ¹"50, 100

b
0
"0.5, b

1
"0 b

0
"1, b

1
"0

¹"50 ¹"100 ¹"50 ¹"100

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

C"0.3 !1.336 4.225 !0.672 3.983 !1.398 3.233 !0.633 2.825
C"0.4 !1.403 3.985 !0.281 3.013 !1.266 2.535 !0.376 1.434
C"0.5 !1.455 4.147 !0.500 2.240 !1.000 2.070 !0.500 0.679
C"0.6 !1.934 4.857 !0.500 1.989 !1.152 1.722 !0.450 0.434
O¸S !1.988 8.968 !1.481 9.639 !1.179 0.125 !0.140 0.020

b
0
"0, b

1
"1 b

0
"1, b

1
"1

¹"50 ¹"100 ¹"50 ¹"100

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

C"0.3 !0.200 4.679 0.371 4.666 !0.527 4.334 0.395 4.087
C"0.4 !0.100 5.296 0.000 4.788 0.145 4.051 0.271 3.075
C"0.5 2.454 6.032 1.715 5.202 2.780 4.418 1.210 2.366
C"0.6 6.980 5.957 4.906 5.728 7.857 5.627 2.614 2.421
O¸S 7.540 1.768 0.475 1.536 19.050 6.364 22.989 6.462

Note: All the values in this table must be divided by 100.

We have employed the kernels k`(u) and Gaussian for the `regressora time
and >

t~1
respectively, while the bandwidth choices where a

1
"C¹~1@2 and

a
2
"C¹~1@5 with C"0.3 (0.1). The reason to use two di!erent rates of conver-

gence for the bandwidth comes from the well known nonparametric result that
the smoother the function, the optimal bandwidth becomes bigger. The results
are given in Table 3.

The results are very encouraging, and the estimator, even in this rather
complicated model, appears to work very well. Moreover, we clearly observe the
gain obtained using the two step algorithm indicated in Section 4. In the
experiment, we have used, as in the initial step, the sample mean of the series >

t
,

while in the second step, we employed, as estimators of k
1

and k
2
, the sample

means, using only 0.5¹1@2 observations, that is local sample means, to provide
an even more local character to our estimator. Notice that 0.5¹1@2 corresponds
roughly to the value ¹a

1
.

g g / f ( )
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Table 3
Biases and MSEs of nonparametric estimators of structural break points based on 5000 replications
of model

>
t
"0.5>

t~1
#b

0
1 (q

t
*f

0
)#e

t
, t"1,2, ¹

with a
1
"C¹~1@2 and a

2
"C¹~1@5, ¹"50, 100

Preliminary estimator

b
0
"0.25 b

0
"0.5

¹"50 ¹"100 ¹"50 ¹"100

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

C"0.3 !3.353 4.763 !2.046 4.842 !2.711 4.609 !0.809 4.708
C"0.4 !3.463 5.139 !2.224 4.784 !5.920 5.196 !3.356 4.660
C"0.5 !0.010 5.431 !1.411 4.708 !5.128 5.900 !3.704 5.051
C"0.6 4.283 5.482 4.285 4.445 0.388 5.624 !0.316 4.919

One-step estimator

b
0
"0.25 b

0
"0.5

¹"50 ¹"100 ¹"50 ¹"100

BIAS MSE BIAS MSE BIAS MSE BIAS MSE

C"0.3 0.888 2.355 0.135 2.377 3.364 1.932 2.356 1.853
C"0.4 2.194 2.469 0.998 2.340 2.658 1.713 2.052 1.601
C"0.5 5.523 2.897 4.085 2.441 3.164 1.798 1.350 1.636
C"0.6 7.816 3.181 7.016 2.641 4.008 1.917 2.054 1.671

Note: All the values in this table must be divided by 100.
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Appendix A

Let us introduce some notation. From now on, for any function q:Rp`1PR,
q
(m)

(z)"Rmq(z)/Rzm
r

and :b
a
q(z) dz":b

a
[:Rpq(z)<p`1

jEr
dz

j
] dz

r
where z"(z

1
,

z
2
,2, z

p`1
)@. Also, h"(¹ap`1)1@2, dK

j
(t),WK

0
(f(j)

0
#tah~1) and f (z) as the pdf of

Z
t
"(X@

t
, Z

t(p`1)
)@.

g g / f ( )
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For the sake of presentation we shall prove "rst Theorem 2, assuming that
Theorem 1 holds.

Proof of Theorem 2. By Theorem 1, fK (j) is a point in Q of the form f(j)
0
#tah~1,

t3R. By construction, tK
j
"arg maxt|R

c(
j
(t)"(¹ap~1)1@2(fK (j)!f(j)

0
) where

c(
j
(t)"dK

j
(t)2!dK

j
(0)2. De"ne g(

j
(t)"dK

j
(t)!dK

j
(0). Then c(

j
(t)"g(

j
(t)2#

2g(
j
(t)(dK

j
(0)!a(j)

0
)#2a(j)

0
g(
j
(t). Assume, to be shown later, that

h2[g(
1
(t

1
), g(

2
(t

2
),2, g(

N
(t

N
)]@8%!,-:

N =(t
1
, t

2
,2, t

N
) on C(!R, R)N (A.1)

where=(t
1
, t

2
,2, t

N
)"[g

1
(t

1
), g

2
(t

2
),2, g

N
(t

N
)]@ with g

j
(t)"(a(j)

0
t2k~

(1)
(0))/2

#;
j
t,;

j
&N(0, [2s(z(j)

0
)#o(j)

0
] m

(1)
/ f (z(j)

0
)) and z(j)

0
de"ned after Eq. (2). Then,

h2c(
j
(t)

8%!,-:
N 2a(j)

0
g
j
(t) on C(!R, R). Denote tH

j
as the solution to

Rg
j
(t)/Rt"0 which is tH

j
"!;

j
/a(j)

0
k~
(1)

(0) and corresponds to a maximum
since a(j)

0
R2g

j
(t)/Rt2(0. Therefore, by the continuous mapping theorem,

tK
j

$
P tH

j
if (A.1) holds, which will be shown next. Put g(

j
(t)"R~

1j
(t)!

R`
1j

(t)#R
2j

(t)#R
3j

(t)#R~
4j

(t)!R`
4j

(t)#r
j
(t), where

RY
1j

(t)"PY(z(j)
0

)FY
j
(t)C

1

fK Y(z(j)
0

) fK Y(u
j
(t))

!

1

f (z(j)
0

) f (u
j
(t))D,

R
2j

(t)"P~
j

(t)C
1

fK `(z(j)
0

)
!

1

fK ~(z(j)
0

)D,

R
3j

(t)"[P`
j

(t)!P~
j

(t)] C
1

fK `(z(j)
0

)
!

1

f (z(j)
0

)D,

RY
4j

(t)"
[PY(u

j
(t))!PY(z(j)

0
)] FY

j
(t)

fK Y(z(j)
0

) fK Y(u
j
(t))

,

r
j
(t)"

[P`
j
(t)!P~

j
(t)]

f (z(j)
0

)
!m`(z(j)

0
)

F`
j
(t)

f (u
j
(t))

#m~(z(j)
0

)
F~
j
(t)

f (u
j
(t))

,

u
j
(t)"z

0
(f(j)

0
#tah~1),

PB
j
(t)"PK B(u

j
(t))!PK B(z(j)

0
),

FB
j
(t)"fK B(u

j
(t))!fK B(z(j)

0
).

By Propositions B.4 and B.5 of Appendix B Theorem 5.1 of Robinson (1983),
RY

1j
(t), R

2j
(t), R

3j
(t) and RY

4j
(t) are o

1
(h~2) for j"1,2, N. Thus, (A.1) follows if

h2[r
1
(t

1
), r

2
(t

2
),2, r

N
(t

N
)]@8%!,-:

N =(t
1
, t

2
,2, t

N
) on the space C(!R, R)N.
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By Propositions B.1 to B.3, E[h2r
j
(t)]"a(j)

0
k~
(1)

(0)t2/2#o(t2), while by
Propositions B.4}B.7 and the asymptotic uncorrelation at two di!erent points,
Cov[h2r

j
(t

j1
), h2r

i
(t

i2
)]"[2s(z(j)

0
)#o(j)

0
] m

(1)
t
j1

t
i2
1( j"i)/ f (z(j)

0
)#o(t

j1
t
i2
).

De"ne rK
j
(t)"r

j
(t)!E[r

j
(t)]. Then, the weak convergence of

h2[r
1
(t

1
), r

2
(t

2
),2, r

N
(t

N
)]@ follows by that of h2+N

j/1
j
j
rK
j
(t

j
), for any

j"(j
1
, j

2
,2, j

N
)@ where j@j"1. By Theorem 8.1 of Billingsley (1968), we need

to prove the convergence of the "nite dimensional distributions and tightness.
For "xed t

1
, t

2
,2, tl3[!M, M]N, by Lemma 7.1. of Robinson (1983), the

asymptotic independence of the kernel regression estimator at two di!erent
points and Cràmer}Wold device,

h2G
N
+
j/1

j
j
rK
j
(t

j1
),

N
+
j/1

j
j
rK
j
(t

j2
),2,

N
+
j/1

j
j
rK
j
(t

jl
)H@

$
P Nl (0, C)

where C"[p
ab
]
a,b/1,2, l

, with p
ab
"+N

j/1
j2
j
(2s(z(j)

0
)#o(j)

0
) t

ja
t
jb
m
(1)

/ f (z(j)
0

).
Next, tightness. By Bickel and Wichura (1971), it su$ces to prove that
∀u

1
, u

2
'0, there exists b'0 such that

PrG sup
Mt

j1, t
j2|Q(j)

>@tj1~t
j2@:b, j/1,2, NN K h2

N
+
j/1

j
j
[rK

j
(t

j1
)!rK

j
(t

j2
)]K'u

1H(u
2
,

which, by the triangle inequality, will be su$cient if ∀j"1,2, N

PrG sup
Mt

j1, t
j2|Q(j)

>@tj1~t
j2@:b, j/1,2, NN

h2K rK j(tj1)!rK
j
(t

j2
)D'

u
1

Dj
j
DNH(

u
2

N
,

which holds by Theorem 12.3 of Billingsley (1968), after observing that by
Proposition B.8, lim

T?=
h4E(rK

j
(t

j1
)!rK

j
(t

j2
))2)CDt

j1
!t

j2
D2, j"1,2, N.

Thus, h2(g(
1
(t

1
), g(

2
(t

2
),2, g(

N
(t

N
))@8%!,-:

N =(t
1
, t

2
,2, t

N
) on the space

C(!M, M)N. Then, using Whitt's (1970) metric, we can extend this convergence
to the space C(!R, R)N, and thus, we conclude the proof of part (a).

To show (b), note that (a~1h2)1@2(WK
0
(fK (j))!WK

0
(f(j)

0
))"O

1
(1), by Theorem 2(a)

and the continuous mapping theorem. But, by Robinson (1983),

h (WK
0
(f(j)

0
)!a(j)

0
) $
P N(0,=

j0
). Thus, by usual arguments, we conclude. h

Proof of Theorem 1. First, we show that DfK (j)!f(j)
0

D"O
1
(a) for all j"1,2, N

using the same arguments of Chu and Wu (1993). De"ne QI
j
"[f(j)

0
!a, f(j)

0
#a]

for j"1,2, N and U(f)"E(PK ~(z
0
(f))!PK `(z

0
(f)))/ f (z

0
(f)). By Theorem 3.3.5

of GyoK r" et al. (1989), WK
0
(f)"U(f)#O

1
(h~1loga~1), while by continuity of m(z)

in QH"Q!6N
j/1

QI
j
, supf|QHDU(f)D"O(a2). So, the supremum belongs to the set
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6N
j/1

QI
j

since U(f(j)
0

)Pa(j)
0

for all j. Next, by Propositions B.1 and B.2, with
U(f)"U

j
(f), for a point f"f(j)

0
#at,

U
j
(f)"a(j)

0
!

a(j)
0

k~
(1)

(0)t2
2

#O(a)

and thus WK
0
(f)"a(j)

0
!a(j)

0
k~
(1)

(0)t2/2#N
j
(f) where sup

j
supfDNj

(f)D"
O

1
(a#h~1loga~1)"O

1
(a) and the subscript j indicates that f belongs to QI

j
.

First, we prove that DfK (1)!f(1)
0

D"O
1
(a). Pr MDfK (1)!f(1)

0
D'aN is

PrG sup
foQI 1 Ka

(1)
0
!

a(1)
0

k~
(1)

(0)t2
2

#N
1
(f)K

) sup
j/2,2, N

sup
foQI j Ka

(j)
0
!

a(j)
0

k~
(1)

(0)t2
2

#N
j
(f)K H

)PrG Ka(1)0
!

a(1)
0

k~
(1)

(0)t2
2 K!Ka(2)0

!

a(2)
0

k~
(1)

(0)t2
2 K

)sup
foQI 1

DN
1
(f)D# sup

j/2,2, N

sup
foQI j

DN
j
(f)DH

which converges to zero since sup
j
supfDNj

(f)D"O
1
(a) and Da(1)

0
D'Da(2)

0
D. Thus,

fK (1) is a point in Q of the form fK (1)"f(1)
0
#atK

1
where tK

1
"arg max

@t@x1
c(
1
(t) with

c(
1
(t)"dK

1
(t)2!dK

1
(0)2 and dK

1
(t)"WK

0
(f(1)

0
#at) and where, without loss of

generality, DtD)1. We now give the proof for fK (2). The proof for the remaining
fK (j) follows similarly. Repeating the same arguments, we have that

PrGDa(2)
0
#N

1
(f(2)

0
)D) sup

j/3,2, N

sup
f|QI j Ka

(j)
0
!

a(j)
0

k~
(1)

(0)t2
2

#N
j
(f)K HP0.

Next, because for any arbitrary small e'0, Df(j)
0
!f(l)

0
D'e for jOl then

Df(1)
0
!f(2)

0
D'3a, and fK (1)3QI

1
and fK (2)36N

j/2
QI

j
,

DfK (2)!f(1)
0

D*DfK (1)!fK (2)D!DfK (1)!f(1)
0

D*2a!DfK (1)!f(1)
0

D

which implies that

Pr MDfK (2)!f(1)
0

D(aNP0.

Combining these results

Pr DfK (2)!f(2)
0

D'aP0.

Thus, it only remains to show that tK
j
"O

1
(h~1) which will imply that

(fK (j)!f(j)
0

)"atK
j
"O

1
(ah~1). We only give the proof for tK

1
"O

1
(h~1). The

proof for the remaining tK
j
, j"2,2, N, follows similarly.
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Dropping the subscript 1, by standard kernel manipulations and Propositions
B.1}B.8, we have that, in DtD)1, g( (t)"r(t)#O

1
(h~1), and thus

c( (t)"r2(t)#2r(t)(a(1)
0
#h~1)#2a(1)

0
O

1
(h~1)#O

1
(h~2#ah~1).

Denoting c\ (t)"r2(t)#2r(t)(a(1)
0
#h~1), we have that

Darg max
@t@x1

c( (t)!arg max
@t@x1

c\ (t)D"O
1
(h~1),

and hence, it su$ces to prove that arg max
@t@x1

c\ (t)"O
1
(h~1) to conclude.

By Propositions B.1}B.3, and because a2&h~1 by B5,

g6 (t)"E(r(t))"(C
1
#h~1)t2

where C
1
"a(1)

0
k~
(1)

(0)/2. De"ne c6 (t)"g6 (t)2#2(a(1)
0
#h~1)g6 (t). The xrst order

conditions, c6
(1)

(t)"2[g6 (t)#a(1)
0
#h~1]g6

(1)
(t)"0, have two possible solutions

t
1

and t
2

in [!1, 1]. The "rst one, that is t
1
, satis"es that g6 (t

1
)#

(a(1)
0
#h~1)"0 and corresponds to a minimum since c6

(2)
(t

1
)"2g6

(1)
(t

1
)2'0,

while the second, that is t
2
"0, satis"es that g6

(1)
(t

2
)"0 and corresponds to

a maximum since c6
(2)

(t
2
)"2g6

(1)
(t

2
)2#2C

1
(g6 (t

2
)#a(1)

0
#h~1)"

2C
1
(a(1)

0
#h~1)(0. Because of the continuity of c\ (t), c\

(1)
(tQ )"0, then

c6
(1)

(0)!c\
(1)

(0)"c\
(1)

(tQ )!c\
(1)

(0)"tQ c\
(2)

(t
1
tQ ), t

1
3(0, 1) by the mean value the-

orem (MVT). The theorem is proved since c\
(2)

(t
1
tQ )"O

1
(1), and

(c\
(1)

(0)!c6
(1)

(0))"O
1
(h~1) by standard kernel manipulations. Then

tQ "O
1
(h~1), and thus tK

1
"O

1
(h~1). h

Proof of Corollary 1. (a) Because the additive form of the objective function, that
is +Ml/1

WK l(f)2 and we have only changed the kernel function k(u) by kI (u) for
those coordinates responsible of the jump, then by similar arguments to those
employed in Theorem 1, fK

k
is a point in Q

k(M)
of the form f

0k
#t

k
a/h, where

t
k
3R and k"1,2, M. De"ne dK

k
(t

k
)"m( `(u

k
(t

k
))!m( ~(u

k
(t

k
)), k"1,2, M

where u
k
(t

k
)"z

0
(f

0k
#t

k
a/h). By construction, (tK

1
,2, tK

M
)@"tK"arg maxt|RM

+M
k/1

c(
k
(t

k
) where c(

k
(t

k
)"dK

k
(t

k
)2!dK

k
(0)2. De"ne g(

k
(t

k
)"dK

k
(t

k
)!dK

k
(0). Then

c(
k
(t

k
)"g(

k
(t

k
)2#2g(

k
(t

k
)(dK

k
(0)!a

0k
)#2a

0k
g(
k
(t

k
). Thus, as in Theorem 2, we

need to show that

h2
M
+
k/1

j
k
g(
k
(t

k
)8%!,-:
N

M
+
k/1

j
k
g
k
(t

k
) on CM(!R, R), where

M
+
k/1

j2
k
"1,

g
k
(t

k
)"

a
0k

t2
k
k~
(1)

(0)

2
#G

[2s(z
0k

)#o
0k

]m
(1)

f (z
0k

) H
1@2

t
k
;

k
,

z
0k
"(x@

0k
, z

0(p`1)
)@ and ;

k
KNID (0, 1), k"1,2, M. By similar, if not easier,

arguments to those employed in Theorem 2, +M
k/1

j
k
g(
k
(t

k
)"+M

k/1
j
k
r
k
(t

k
)#
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o
1
(h~2), where

r
k
(t

k
)"

1

f (z
0k

)
M[P`

k
(t

k
)!P~

k
(t

k
)]!m`(z

0k
)F`

k
(t

k
)#m~(z

0k
)F~

k
(t

k
)N,

and PB
k

(t
k
)"PK B

k
(u

k
(t

k
))!PK B

k
(z

0k
), FB

k
(t

k
)"fK B

k
(u

k
(t

k
))!fK B

k
(z

0k
).

The remainder of the proof is identical to that of Theorem 2, and thus is
omitted.

(b) The proof is identical to that of Theorem 2(b), and thus is omitted. h

Proof of Corallary 2. By Prakasa Rao's (1981) Theorem 4.5.6.,
x( H!xH"O

1
(g~1), where g"(¹ap`2)1@2. Because R f (xH)/Rx"0,

f (xH)!f (x( H)"O
1
(g~2) by de"nition of xH and f ( ) ) possesses "nite second

derivatives. Applying the Lemma below, the di!erence of the objective functions
when evaluated at zH(f)"(xH@, f)@ or z( H"(x( H@, f)@ is O

1
(h~1). From here, the

Corollary follows proceeding as in the proof of Theorem 2.

Lemma. For any function q(z) twice continuously diwerentiable in its xrst p coordi-
nates, if the kernel k( ) ) is symmetric, then

sup
foQ K

1

¹ap`1

T
+
t/1

q(Z
t
)GKBA

Z
t
!z( H(f)

a B!KBA
Z

t
!zH(f)

a B H K
"sup

foQ Kg
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R
Rx

j

[E[q(Z
t
DZ

t
"zH(f))] f (xH)]B K#

O
1A

log a~1

g(¹ap`3)1@2
#a2B.

The proof is standard after using the MVT of KB( ) ).

Proof of Theorem 4. By Theorem 3, q( is a point in Q of the form q
0
#tah~1,

t3R. By construction, tK "arg maxt|R
c( (t)"(¹ap~1)1@2(q(!q

0
) where c( (t)"

dK (t)2!dK (0)2. De"ne g( (t)"dK (t)!dK (0). Then c( (t)"g( (t)2#2g( (t)(dK (0)!a
0
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2a
0
g( (t). Assume, to be shown later, that
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N g(t) on C(!R, R) (A.2)
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0
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0
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0
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(0)
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corresponds to a maximum where tH is the solution to a
0
Rg(t)/Rt"0. Then,

tK $
P tH if (A.2) holds. Observe that this agrees with the results of Theorem 2,

where f
1
(x)"f

2
(x), that is d"1. Thus, it only remains to examine (A.2). Put
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R
i
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R
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R
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0
(q

0
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0
), FB(t)"fK B(u(t))!

fK B(z
0
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0
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By Propositions B.4 and B.5 and a routine extension of Theorem 5.1 of
Robinson (1983), R

j
(t)"o

1
(h~2), j"1,2, 6. Thus, (A.2) follows if

h2r(t)8%!,-:
N g(t) on C(!R,R). But, this is the case by similar, if not easier,

arguments to those employed in Theorem 2, after observing that by Proposi-
tions B.9}B.12.

E[h2r(t)]"
a
0
k~
(1)

(0) t2Md~11 (t*0)#d1 (t(0)N
2

#O(at2),

Cov [h2r(t
1
), h2r(t

2
)]"t

1
t
2
m
(1) A

s(z
0
)

f
1
(z

0
)
#

o
0
#s(z

0
)

f
2
(z

0
) B#o (t

1
t
2
),

by Propositions B.4}B.7. Then, we conclude the proof of part (a).
(b) The proof is identical to that of Theorem 2(b), and thus is omitted. h

Proof of Theorem 3. As in Theorem 1, it is obvious that the maximum q( is of the
form q("q

0
#atK . Because by the uniform convergence in DtD)1, g( (t)"

r(t)#O
1
(h~1),

c( (t)"r2 (t)#2r (t) (a
0
#h~1)#2a

0
O

1
(h~1)#O

1
(h~2#ah~1)
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and thus, with c\ (t)"r2 (t)#2r (t) (a
0
#h~1), we have that

K arg max
@t@x1

c( (t)!arg max
@t@x1

c\ (t) K"O
1
(h~1).

So, it su$ces to prove that arg max
@t@x1

c\ (t)"O
1
(h~1) to conclude.

By Propositions B.9}B.12, g6 (t)"E(r(t))"d~1C
1
t21(t'0)#dC

1
t21(t)0)

where C
1
"a

0
k~
(1)

(0)/2. De"ne c6 (t)"g6 (t)2#2(a
0
#h~1)g6 (t). Then, by mimick-

ing the arguments of the proof of Theorem 1, we obtain that tK "O
1
(h~1). h

Proof of Corallary 3. The proof follows by identical arguments of those em-
ployed in Theorem 4, after one observes that, by Propositions B.9}B.12,

E (h2r(t))"
a
0

f
2
(k

2
)

2 f
1
(k

2
)

k~
(1)

(0) t2#o (1)

whereas, by Propositions B.4}B.7,

Cov(h2r(t
1
), h2r(t

2
))"t

1
t
2
m
(1)

p2e C
1

f
1
(k

2
)
#

1

f
2
(k

1
)D"2t

1
t
2
m
(1)

p2e C
1

f
1
(k

2
)D.

h

Appendix B

In the following propositions we assume that, without loss of generality,
t'0, (the case t(0 is similar). Also, we denote by f

0
and a

0
the break point

and its size respectively. De"ne g6 (z)"f (x) g(z), SB (z,
i
t)"KB (a~1(z!

i
u(t)))!

KB(a~1(z!
i
u(0))) where

i
u(t)"

i
z
0
(f

0
#tah~1) with

i
z
0

(f)"(
i
z
01

,2,
i
z
0(r~1)

,
f,

i
z
0(r`1)

,2,
i
z
0(p`1)

)@ and e
0

is a p]1 vector of zeroes with a 1 in the
rth position. Propositions B.1}B.8 are proved under the assumptions of
Theorem 2, while Propositions B.9}B.12 under those of Theorem 4. Dropping
the subscripts i,

Proposition B.1. E[P`(t)]"[g6
(1)

(z
0
)#a

0
f
(1)

(x
0
)] tah~1#O(a2t2h~2).

Proof. According to (1),

E[P`(t)]"
1

ap`1P
=

~=

[g6 (z)#a
0

f (x)] S`(z, t)dz.

Then, apply Lemma C.2. h
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Proposition B.2. E[P~(t)]"!a
0
f (x

0
) k~

(1)
(0) t2/2h2#g6

(1)
(z
0
) tah~1#O (a2t2h~2).

Proof. By Lemma C.2,

E[P~(t)]"
a
0

ap`1 P
f0`tah

~1

f0
f (x)K~A

z!u(t)

a B dz#g6
(1)

(z
0
)
ta

h
#O A

t2a2
h2 B.

By a change of variable and Bochner's (1955) Theorem, the integral is

a
0P

0

~t@h

f Aa Au0#
te

0
h B#x

0BK~(u) du"a
0

f (x
0
)P

0

~t@h

k~(t) dt

#O Aa P
0

~t@h

k~(t) dtB,
where u"(u@

0
, u

p`1
)@. Then, the result follows because by B3,

P
0

~t@h

k~(t) dt"!

t2
2h2

k~
(1)

(0)#o A
t2

h2B. h

Proposition B.3. E[FB(t)]"f
(1)

(x
0
) tah~1#O (a2t2h~2).

Proof. As in Propositions B.1 and B.2 by continuity of f ( ) ), after replacing g6 (z)
and a

0
by f (x) and 0 respectively. h

De"ne p2
`
(z

0
)"s(z

0
)#o

0
and p2

~
(z

0
)"s(z

0
).

Proposition B.4.

Cov MPB(t
1
), PB(t

2
) N"h~4 f (x

0
) t

1
t
2

[mB(z
0
)2

#p2
B
(z

0
)] m

(1)
#o (t2

1
t2
2
h~4).

Proof. The left side of the above equation is

2

h4

T
+
i/1

+
j;i

Cov Mm(Z
i
) SB(Z

i
, t

1
), m(Z

j
) SB(Z

j
, t

2
)N

#

¹

h4
Cov Mm(Z

i
) SB(Z

i
, t

1
), m(Z

i
) SB(Z

i
, t

2
)N

#

¹

h4
EMp2(Z

i
) SB(Z

i
, t

1
) SB(Z

i
, t

2
)N.

Then apply Lemmas C.4, C.6 and C.8. h
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Proposition B.5. Cov MFB(t
1
), FB(t

2
) N"h~4f (x

0
) t

1
t
2
m
(1)
#o (t2

1
t2
2
h~4).

Proof. By Lemmas C.6 and C.8 as in Proposition B.4, since f ( ) ) is twice
continuously di!erentiable, mB(z)"1 and p2

B
(z)"0 in this case. h

Proposition B.6. CovPB(t
1
), FB(t

2
)"h~4 f (x

0
) t

1
t
2
mB(z

0
) m

(1)
#o(t2

1
t2
2
h~4).

Proof. The left side of the above equation is

2

h4
T
+
i/1

+
j;i

Cov Mm(Z
i
)SB(Z

i
, t

1
), SB(Z

j
, t

2
)N

#

¹

h4
Cov Mm(Z

i
)SB(Z

i
, t

1
), SB(Z

i
, t

2
)N.

Then, by Lemmas C.6 and C.8 as in Proposition B.4 or B.5. h

Proposition B.7. For i, j"1, 2, CovMPB(
i
t
1
), PY(

j
t
2
)N"o(

i
t2
1j

t2
2
h~4),

CovFB(
i
t
1
), FY(

j
t
2
)"o(

i
t2
1 j

t2
2
h~4), Cov PB(

i
t
1
), FY(

j
t
2
)"o(

i
t2
1 j

t2
2
h~4).

Proof. By Lemmas C.7 and C.9. h

Dropping the superscripts i,

Proposition B8. lim
T?=

h4 Var[PB(t
1
)!PB(t

2
)])C Dt

1
!t

2
D2 and

lim
T?=

h4 Var[FB(t
1
)!FB(t

2
)])C Dt

1
!t

2
D2.

Proof. By Propositions B.4 and B.5. h

For the next four Propositions, let us introduce the following notation. For
i"1, 2, denote g(z) f

i
(x

0
) as g6

i
(z).

Proposition B9. E[P`(t)]"!1
2
[g6

2
(z

0
)#a

0
f
2
(x

0
)] k~

(1)
(0) t2h~2#O(a2t2h~2).

Proof. According to (8), by Lemma C.3

E [P`(t)]"
1

ap`1P
=

~=

[g6
2
(z)#a

0
f
2
(x)]S`(z,t) dz,

then apply Lemma C.2 as in Proposition B.1. h

Proposition B.10.

E[P~(t)]"!

(a
0

f
2
(x

0
)#f

0
(x

0
) g(z

0
)) k~

(1)
(0) t2

2h2
!

g6
1
(z

0
) k~

(1)
(0)t2

2h2

#O A
t2a2

h2 B.
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Proof. Using the same arguments of Proposition B.2, by Lemma C.3, and
recalling that f

0
(x)"f

2
(x)!f

1
(x),

E[P~(t)]"
1

ap`1P
q0`tah

~1

q0
(a

0
f
2
(x)#g(z) f

0
(x)) K~A

z!u(t)

a B dz

!

g6
1
(x

0
) k~

(1)
(0)t2

2h2
#O A

t2a2
h2 B. h

Proposition B.11. E[F`(t)]"!f
2
(x

0
) k~

(1)
(0) t2h~2/2#O (a2t2h~2).

Proof. By Lemma C.3, as in Propositions B.9 and B.10, by continuity of f
2
( ) )

after observing that g6
2
(z) is f

2
(x) and a

0
"0. h

Proposition B.12. E [F~(t)]"!f
0
(x

0
) k~

(1)
(0) t2/2h2!f

1
(x

0
) k~

(1)
(0) t2/2h2#

O (a2t2h~2).

Proof. By Lemma C.3, as in Propositions B.9 and B.10, by continuity of both
f
1
(x) and f

0
(x) after replacing g6

1
(z) and a

0
by f

1
(x) and 0 respectively there. h

Appendix C

The following lemmas are based on the same assumptions as those of
Theorem 2. It is also worthy to mention that the reason in Lemmas C.5, C.7 and
C.9 to have, say

i
t
1

and
j
t
2
, is because in Corollary 3, we evaluate the kernels

K`( ) ) and K~( ) ) at two di!erent points.

Lemma C.1. Let q : Rp`1PR be a continuous function. Then,

1

ap`1P
=

~=

q(z) SB(z, t) dz"o(1).

Proof. Using a change of variable, the left side of the above equation is equal to

P
=

~=
GqAAau#

ate
0

h B#z
0B!q(au#z

0
)HKB(u) du"o(1),

by Bochner's (1955) Theorem. h

Lemma C.2. Let q : Rp`1PR be twice continuously diwerentiable function. If the
kernel functions KB( ) ) are symmetric, then

1

ap`1P
=

~=

q(z) SB(z, t) dz"q
(1)

(z
0
)
at
h
#O A

a2t2
h2 B.
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Proof. By Taylor's expansion of q(z)

1

ap`1P
~=

=

q(z) SB(z, t) dz"
at
h Pq(1)(au#z

0
) KB(z, t) dz

#

a2t2
h2 Pq(2)(auc#z

0
) KB(z, t) dz

"

at
h

q
(1)

(z
0
)#

a3t
h

#O A
a2t2
h2 B

"

at
h

q
(1)

(z
0
)#O A

a2t2
h2 B.

by Lemma C.1 and where the second equality comes because the function q
(1)

( ) )
is twice continuously di!erentiable for all coordinates di!erent than the rth one,
and the third equality by assumption B5. h

The next lemma will be useful in the case where the time is responsible of the
break but it is not a regressor of the model, that is the model considered in
Section 4.

Lemma C.3. Let q : Rp`1PR be twice continuously diwerentiable function. If the
kernel functions KB( ) ) are symmetric, then

1

ap`1P
=

~=

q(z) SB(z, t) dz"!q(x
0
)
k~
(1)

(0)t2
2h2

(1#O(a2)).

Proof. The left side of the above equation is

1

ap`1P
=

~=

q(x)
p
<
j/1

kA
x
j
!x

0j
a B AP

=

~=
AkB A

q!(q
0
#ath~1)

a B
!kB A

q!q
0

a BB dqB dx.

Consider the case with k~( ) ), being the case with k`( ) ) identical. By a change of
variables, it is

P
=

~=

q (au#x
0
)

p
<
j/1

k(u
j
) AP

0

~th
~1

k~(t) dtB du"!q(x
0
)
k~
(1)

(0)t2
2h2

(1#O(a2))

because the properties of k~(t) and k(u
j
). h
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Lemma C.4. Let q : Rp`1PR be a twice continuously diwerentiable function.
Then,

¹

h4P
=

~=

q(z) SB(z, t
1
) SB(z, t

2
) dz"

1

h4
q(z

0
) t

1
t
2
m
(1)
#oA
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h4B.
Proof. Without loss of generality, assume that 0(t

1
(t

2
. After a change of

variable

¹

h4P
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1
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2
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where
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by MVT and Bochner's (1955) theorem. The lemma follows because m
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h
0
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P
t
1@h

0

k`(t)2 dt"
1
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u
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h B dt"P
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because kB(0)"0. Also by similar, if not easier, arguments

¹

h4P
=

~=

q(z)S~(z, t
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Lemma C.5. Let q( ) ) be as in Lemma C.4. Then, for i, j"1, 2,

¹
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j
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2
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variable
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where 1
3
is a vector of ones, proceeding as in the proof of D

1
and D

2
of Lemma

C.4 and that if
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Lemma C.6. Let q
1
( ) ) and q

2
( ) ) be as in Lemma C.4. Then,
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Proof. By Lemmas 8.2 and 8.3 of Robinson (1983). h
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Lemma C.7. Let q
1
( ) ) and q

2
( ) ) be as in Lemma C.4. Then,
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Proof. By a routine extension of Lemmas 8.2 and 8.3. of Robinson (1983). h

Lemma C.8. Let q
1
( ) ) and q
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( ) ) be as in Lemma C.4. Then,

¹

h4
Cov [q

1
(Z

i
) SB(Z

i
, t

1
), q

2
(Z

i
) SB(Z

i
, t

2
)]"

1

h4
f (x

0
) q

1
(z

0
) q

2
(z

0
) t

1
t
2
m
(1)

#o A
1

h4B.
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Lemma C.9. Let q
1
( ) ) and q

2
( ) ) be as in Lemma C.4. Then,
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Proof. By Lemmas C.2 and C.5. h
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