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   Abstract- Transformer failure in electricity supply grids has a 
high financial impact, due to failure to meet commercial 
contract and possibility of transformer replacement cost. 
Therefore, detecting fault inception is very important in order to 
keep the transformer operating with recommended efficiency, 
hence ensuring stability of the electric network. Dissolved gas 
analysis (DGA) of a transformer can provide clear indication of 
thermal and electrical stresses on power transformer insulation 
and is considered as one of the most effective tools for oil-filled 
power transformer diagnostics. DGA is used to detect incipient 
faults in order to manage the fault severity. Both on-line and off-
line condition monitoring methods can be applied to obtain gas 
content, thereafter there are many interpretation techniques for 
DGA results. The accuracy of these techniques is dependent on 
the operator’s experience and knowledge of the materials and 
equipment involved. In this work, a combined fuzzy logic 
analysis technique for monitoring of power transformers based 
on DGA analysis is proposed, the system uses the 7 key gases to 
diagnose the health of the transformer and, where applicable, 
fault type. Initially, gas levels are considered using the IEEE 
standard as a basis to indicate the health of the transformer. A 
combined fuzzified analytical tool, based on Duval Triangle, 
Doernenburg ratio and Key gas method, are analysed to identify 
the fault type, improving on the accuracy of the individual 
interpretation techniques. The analytical tool has been applied 
to 444 sample faults reported in the literature to assess the 
accuracy of the proposed system. Results presented show the 
system’s overall decision has improved capability of identifying 
the transformer condition over individual methods. The 
proposed system is proved to have 99 % accuracy in identifying 
the transformer normality. For cases where transformers were 
faulty, the approach has 98.76% accuracy in recognising the 
actual fault, superior to individual approaches.  
 
Index Terms—Power Transformer monitoring, DGA, Duval 
triangle, Doernenburg ratio, Key gas 

 
I. INTRODUCTION 

   In some cases transformer failures may lead to a complete 
outage of the network and, due to oil leakage, environmental 
hazard. A major concern of companies is, therefore, 
preventing transformer failures though improving the 
monitoring and diagnosis of faults, in order to reduce 
unexpected transformer failure [1]. Electrical, thermal, and 
mechanical stresses decrease the quality of transformer 
insulation and increase the possibility of faults occurring. On-
line condition monitoring of power transformers has been 
successfully applied to meet operation challenges and used to 
extend the transformer life cycle [2]. Mineral oil is used as 
the liquid insulation in the majority of power transformers, 
due to its excellent properties, availability and low cost. 

Mineral oil acts effectively as coolant and electric insulation 
between the transformer elements under different operating 
conditions [3]. However, the majority of the transformers in 
service have been installed and operating under different 
environmental and load condition for significant periods and 
the electrical and mechanical stresses lead to degradation and 
decomposition of the insulating material [4], [5], [6], [7]. 
Therefore, monitoring and diagnosis of faults through DGA is 
essential for power transformers [8], [9]. In a faulty 
transformer different gases are generated, i.e. Hydrogen (H2), 
Acetylene (C2H2), Methane (CH4), Ethane (C2H6), Ethylene 
(C2H4), Carbon monoxide (CO) and Carbon dioxide (CO2): 
the concentration of these gases depends on fault type and 
severity [10]. Analyzing the concentration of the 7 key gases 
based on different DGA interpretation techniques such as Key 
Gas, Roger gas ratio, Doernenburg ratio, IEC gas ratio and 
Duval Triangle can indicate the fault type [11]. The accuracy 
of the applied interpretation techniques varies and can be 
dependent on personal experience [12], [13].   
 

II. DGA INTERPRETATION TECHNIQUES 

     DGA is the most popular tool for detecting faults in oil 
filled transformers and can be effective, though different 
techniques are used to interpret DGA data [14]. As different 
faults generate specific hydrocarbon gases due to different 
energies, fault identification can be obtained from analysis of 
7 Key gases [15]. This work applies a combination of fuzzy 
logic algorithms to IEEE-C57.108 [16] and DGA 
interpretation methods to assess the health of a transformer 
and to improve the accuracy of the fault identification 
decision.  
 
A- Healthy state of the transformer  
     IEEE C57.104 classifies Key gas concentrations into four 
“Conditions” when assessing if a transformer is in a normal 
or abnormal state and when classifying risk status. Table I 
shows the upper limits of the concentration levels for the 7 
key gases, Total Dissolved Combustible Gases (TDCG) for 
Condition 1, i.e. the transformer is “Healthy”. However, any 
individual gas or TDCG exceeding the level indicates the 
transformer is “Un-healthy”, in such cases further 
investigation for the fault type is required. 

TABLE I 
7 KEY GAS AND TDCG CONCENTRATION LIMITS [16]  

The specified Dissolved key gas concentration limits [μl/l (ppm)a]  
 H2 CH4 C2H2 C2H4 C2H6 CO CO2 TDCG 
100 120 1 50 65 350 2500 720 
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B- Duval Triangle method  
     Duval’s method was developed using approximately 1000 DGA 
samples for transformers with known diagnosed faults [17], the 
method based on the percentage of the three gases (CH4, C2H4 and 
C2H2) ratios [18]. Faults detected are: Partial Discharge (PD), 
Thermal Fault with low temperature (T1<300°C), Thermal 
fault with medium temperature (300°C<T2<700°C), Thermal 
fault with high temperature (T3>700°C), Low energy 
discharge (D1), High energy discharge (D2) and Mix of both 
thermal and electrical faults (DT) [19]. 
 
C- Doernenburg ratio  
     Doernenburg ratio interpretation is based on the value of four 
ratios of gases, (R1 = CH4 / H2), (R2=C2H2 /C2H4), (R3=C2H2 
/ CH4) and (R4=C2H6 / C2H2) [20]. Three fault types are 
detected using this method [16], Thermal decomposition, Partial 
Discharge and Arcing fault. Table II shows Doernenburg ratio 
interpretation for dissolved gases in oil. 

TABLE II 
DOERNENBURG RATIO AND DIAGNOSIS [16] 

Fault R1 R2 R3 R4 
Thermal decomposition >1.0 <0.75 <0.3 >0.4 
Partial Discharge (PD) <0.1 Not significant <0.3 >0.4 

Arcing fault >0.1 to <1.0 >0.01 to <0.1 >0.3 <0.4 
 

D- Key gas method  
     As indicated in [16], key gas concentrations are used to detect 
fault type: the percentage of each key gas indicates the fault type, 
e.g. high percentage of Hydrogen in an oil sample indicates a PD.  
 

III. PROPOSED MODEL 
 
   Enhancement of condition monitoring of power transformers 
through the developed system is based on improving the accuracy of 
fault type identification through incorporation of different DGA 
interpretation techniques into one comprehensive model, as 
illustrated in the flow chart in Fig 1.  
 
 
 
 

 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1: Flow chart of the proposed system  

     As can be seen, the system contains 5 different modules, IEEE-
filter module is responsible for assessing the transformer health 
based on the concentration of the 7 key gases and TDCG. If the 
concentrations of the input parameters are below the concentration 
level specified in Table I, the transformer is considered as healthy 
and no additional test is required. If any individual gas or TDCG 
exceeds the specified satisfactory level, the transformer is 
considered as unhealthy and the three interpretation techniques are 
individually operated. A combination module is built based on using 
the outputs of the three interpretation techniques as variable inputs. 
Modules are discussed in detail in the fuzzification procedures. 
 

A- Overall decision of the model 
     As discussed, the concentration level of the 7 gases are 
tested using IEEE-filter module, based on the limitation 
stated in Table I. IEEE-Filter’s indication is used to determine 
whether to operate the three interpretation modules. For a 
healthy transformer, the interpretation techniques and the 
combination modules will remain off and the overall decision 
will be Normal Operation (NO). Otherwise, the three 
interpretation modules operate and three indications of fault 
type are obtained which is the input to the combination 
system module for a final decision on fault type. The overall 
decision of the system will be provided using variable codes 
that indicate normality or fault type for the transformer as 
demonstrated in Table III. 

TABLE III 
COMBINATION MODULE CODES AND DIAGNOSIS 

Output code Symbol Indication 
0 NO Normal operation  
1 PD Partial Discharge 
2 T1 Thermal Fault T < 300 °C 
3 T2 Thermal Fault  300 < T < 700 °C 
4 T3 Thermal Fault T > 700 °C 
5 DT Electrical and Thermal Fault 
6 D1 Discharge of low energy 
7 D2 Discharge of high energy 
8 TF Thermal fault 
9 AF Arcing fault 

 
IV. FUZZY LOGIC MODULES  

  The MATLAB fuzzy logic toolbox has been used to 
construct the system’s modules, shown in Figures 2, 3 and 4. 
Each module is fuzzified into various sets of membership 
functions. Each interpretation technique has different sets of 
rules and each module was implemented individually and 
tested for accuracy. The system developed from the combined 
modules is used to improve the overall system accuracy. To 
demonstrate the working procedure of the system, the DGA 
analysis of set of data taken from [21] is described. The key 
gases concentrations for the item used and the reported fault 
are shown in Table IV.    

TABLE IV 
DGA OF TESTED EXAMPLE  

H2 CH4 C2H2 C2H4 C2H6 CO CO2 
Reported 

Fault 
60 10 4 4 4 780 7600  (D1) 
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A- IEEE-Filter fuzzy logic module 
     According to [16] and based on the concentration limit in 
Table I, IEEE-Filter module has been fuzzfied, the module 
has a set of input membership function rules and output 
membership that provides the indication for the transformer 
under test. First the TDCG is calculated from 6 dissolved 
gases, thereafter all 7-key gases and TDCG are used as 
variable inputs: the concentration of each gas is checked 
against the related limit. The output codes for Normal and 
Abnormal condition are given in Table V.  
   For the tested transformer, the output code of the IEEE-
Filter module is “1”, see Fig. 2: the transformer is unhealthy 
and further investigation is required to determine the fault 
type. The reason for this indication is that, as outlined in Fig. 
2, the concentration of C2H2, CO, CO2 and TDCG exceed 
the normal levels. This output will cause the interpretation 
modules to operate so that the fault type will be identified. 

TABLE V 
OUTPUT OF IEEE-FILTER MODULE 

Code Description 
0 Normal 
1 Abnormal 

 

 
Fig. 2: IEEE-Filter fuzzy rules and limits  
 

B- Doernenburg Fuzzy logic module 
   As discussed earlier, for unhealthy transformers the 
Doernenburg module will assess the four ratios indicated in 
Table II. The ratios are calculated and used as inputs for this 
module, a set of membership rules relating to the four input 
gas ratios and variable output are developed, as outlined in 
Table II and shown in Fig. 3, the module output codes are 
shown in Table VI. The four gas ratios are input to the 
membership function to assess against the 22 rules developed. 
For the tested transformer, Arc fault was determined and code 
“3”, Table VI is indicated, as can be seen in Fig 3. 

TABLE VI 
DOERNENBURG MODULE OUTPUT CODES AND FAULT TYPE 

Code Fault 
0 Off (Module not operated) 
1 Thermal fault 
2 PD (Corona) 
3 Arcing fault 
4 Thermal or arcing 
5 Out of ratio 

 

 
Fig. 3: Duval Triangle fuzzy rules and membership boundaries 

C- Duval Triangle fuzzy logic module 
     Duval triangle is divided into 7 zones for indicating 7 
types of fault and, as shown in Table VII, these provide codes 
for given faults. Three gas contents are calculated (CH4%, 
C2H2% and C2H4%) and used as input to a set of fuzzy input 
and output memberships and rules related to the 7 divided 
zones: 45 rules are created for the module, as shown in Fig. 4. 
As discussed earlier, if the IEEE-filter module indicates 
normal operation then this module is not active. For the tested 
example, as seen in Fig. 4, the Duval module output code is 
“7” indicating that a Low energy discharge fault (D1) is 
present. 

TABLE VII 
DUVAL MODULE OUTPUT CODE AND FAULT 

Code 0 1 2 3 4 5 6 7 

Fault Off (Module not 
Operated) PD T1 T2 T3 DT D2 D1 

 

 
Fig.4: Duval Triangle fuzzy logic rules and membership   
 

D- Key gas fuzzy logic model 
The Key gas method uses the relative amount of the dissolved 
gases to indicate the fault type. A set of input and output 
membership and 96 rules were developed, in cases where the 
module is not operated the output will be “0” “undefined”. 
Table VIII shows the fault types and output codes. Examples 
of the module fuzzy logic memberships are given in Fig. 5. 
The module output code for the tested example is “2” and the 
Key gas interpretation is a Thermal-cellulose fault.   

TABLE VIII 
KEY GAS MODULE OUTPUT CODES AND FAULT 

Code 0 1 2 3 4 

Fault Undefined 
Thermal 
Fault in 

oil 

Thermal-
cellulose 

fault 

Partial 
discharge 

fault 
Arcing Fault 

 

 
Fig. 5: Key gas module fuzzy logic rules and membership   
 

E- Combination fuzzy logic module 
     In the first step of the model, the transformer health was 
tested using IEEE-Filter module and the transformer was 
classified as faulty and assessment is required in order to 
determine the fault type. Duval, Doernenburg and Key gas 
modules operate individually using different input gases: 
Doernenburg and Duval modules indicate Arcing and D1 
faults respectively, however, Key gas module indicates a 



   

thermal-cellulose fault. The combination module proposed 
uses the output of the previous modules as inputs to the 
combination module. The individual fuzzy logic modules for 
the various DGA interpretation techniques are integrated into 
a single aggregated model, as shown in Fig. 6. The input and 
output membership functions have been fuzzified based on 
the variable output codes of the IEE-Filter, Duval, 
Doernenburg and Key gas modules.  
 

 
Fig.6: Overall fuzzy logic model  

For the example transformer the four input codes are shown 
in Table IX, a set of 177 rules has been constructed to provide 
one output indicating the health of the transformer and fault 
type, using variable codes. Fig. 7 shows examples of the 
developed rules and memberships for the combination 
module. Table X shows the module’s output codes. For the 
tested transformer, as seen from Fig. 7, the output code of the 
combination module is “6”, indicating a “D1” low energy 
discharge fault, which is in line with the reported fault. 

TABLE IX 
KEY GAS MODULE OUTPUT CODES AND FAULT 

Model Indication Codes  
IEEE-Filter Abnormal 1 

Doernenburg ratio Arcing Fault 3 
Duval triangle D1 7 

Key gas Thermal and cellulose fault 2 

   TABLE X 
COMBINATION MODULE OUTPUT CODE AND FAULT TYPE 

Code Symbol Fault 
0 NO Normal operation  
1 PD Partial Discharge 
2 T1 Thermal Fault T < 300 °C 
3 T2 Thermal Fault  300 < T < 700 °C 
4 T3 Thermal Fault T > 700 °C 
5 DT Electrical and Thermal Fault 
6 D1 Discharge of low energy 
7 D2 Discharge of high energy 
8 TF Thermal fault 
9 AF Arcing fault 

 

 
Fig.7: Combination module fuzzy logic rules and membership   
 

V. VALIDATION OF THE ENHANCED MODEL  

   As indicated earlier, data from 444 DGA samples for which 
faults are known were collected from published research, the 
papers used were [13], [14], [21]–[45]. 
 

A- Transformer health classification  
     The assessment of transformer health has been checked 
using the concentration limits of the 7-key gases and TDCG. 
For the 444 DGA samples investigated, the module has 99.10 
% accuracy, i.e. only 4 samples out of 444 tested samples do 
not match the reported indication in the source document. 
Table XI shows the number of DGA samples that are 
classified as being from healthy and unhealthy transformers 
and the match to the reported faults.  

TABLE XI 
THE FILTERING MODULE’S ACCURACY AND HEALTH CLASSIFICATION 
 Accuracy Health classification 

Total Disagreed Agreed Healthy Un-healthy 
444 4 440 37 403 100 % 0.90% 99.10% 

 

A- Application of the three interpretation techniques to 
indicate the fault type 

  As indicated earlier, abnormal cases are investigated, using 
the techniques discussed, to identify the nature of the fault: 
finally an overall decision is given on the fault type. The 
interpretation modules are applied to only 403 samples, then 
the outputs of the three techniques are combined to provide 
an overall decision. Table XII demonstrates the accuracy of 
each technique and the overall decision of the model. It is 
clear that Duval is more accurate than Doernenburg and Key 
gases. In addition, it can be seen that the overall accuracy has 
been improved by applying the combination rules in the 
developed model, reaching 99 % as compared to 97% with 
the highest of the individual techniques.  

   TABLE XII 
ACCURACY OF INDIVIDUAL TECHNIQUES AND OVERALL DECISION  

Known 
Fault 

Doernenburg 
ratio 

Duval 
Triangle Key gases Overall 

decision  

403 

X √ % X √ % X √ % X √ % 

17 

386 

95.78 %
 

14 

389 

96.52%
 

75 

328 

81,39%
 

5 

398 

98.76%
 

    
     The outputs of the three techniques which are the inputs to 
the combination model have been studied and used to 
generate a set of fuzzy rules for improving the accuracy of the 
overall decision of the system. Table XIII shows all possible 



   

cases of agreement and disagreement within the individual 
techniques after they have been compared to the recorded 
fault. A √ agreement with the reported fault, a X indicates 
disagreement with the reported fault. As shown in Table XIII, 
when the three techniques all identify the same fault there is 
very low chance that the three techniques incorrectly predict 
the fault. Also, it is clear that when two approaches are in 
agreement (21.85 %), their prediction of the fault is the right 
answer. For the sake of clarity when the actual fault is 
thermal fault or arcing fault, Duval’s indication is DT. 
Therefore, in cases where the three techniques agree, the 
output of the combination system will consider that is the 
correct indication. In cases where only two techniques agree, 
the combination system will consider the agreed two as the 
correct indication, when all three disagree the overall decision 
will consider Duval’s indication. 

   TABLE XIII 
AGREEMENT PERCENTAGES OF THE APPLIED FOR REPORTED FAULTS 

Duval Doernenburg Key Gases Number of 
Sample Percentage 

√ √ √ 307 76.18% 
√ √ X 70 17.37% 
X √ √ 9 2.24% 
√ X √ 9 2.24% 
X √ X 0 0% 
√ X X 3 0.74% 
X X √ 3 0.74% 
X X X 2 0.49% 

 403 100% 

 
B- Discussion for the model’s results 

   Table XIV shows 10 cases out of 444 DGA tested samples 
to show the model’s operation. Table XV shows the IEEE-
Filter classification for the 10 cases, the assessment of the 
interpretation techniques and the overall decision of the 
model. For example 1 from Table XIV, the concentration of 
the 7-key gases and TDCG are below the specified levels in 
[16] (see Table I), therefore the IEEE-Filter indicates that this 
sample is “0” for Normal Operation and no further 
investigation is required. Therefore, the Doernenburg, Duval 
and key gas models will not operate, and their output codes 
are “zeros”, as shown in Tables VI, VII and VIII, 
respectively. In such case, the overall decision of the model 
will consider the outcome of the IEEE-Filter only indicating 
Normal Operation (NO), using the code (0) as demonstrated 
in Table X. For example 2, C2H2 is “2” ppm and this 
concentration is exceeding its normality, in this instance the 
indication of IEEE-Filter is Abnormal (1)  even though, in the 
reported diagnosis this sample is from a healthy transformer. 
It should be noted that CO and CO2 are Not Given N-G in the 
source and value of 0.001 is applied to the model. The three 
techniques are operated and fault type is diagnosed, however, 
this case is noted as being in-correct indication and that has 
affected the IEEE-Filter accuracy. In case 3, the three 
techniques agree and are in line with the reported fault. In 
case 4, Doernenburg and Key gas indicate Thermal and 
Arcing fault, respectively, Duval indicates that both types of 
fault are occurring (DT), therefore, the combination system 

judgment will consider Duval’s indication. Examples 5-9 
show the cases when two techniques agree and shows the 
overall decision considered the agreed two. In case 10, all 
techniques diagnose a Thermal fault and the overall decision 
considered this result, however, the reported fault is Arcing.         

TABLE XIV 
SECTION OF CASES OF THE VALIDATION PROCESS      

N
o 

H
2  

C
H

4  

C
2 H

2  

C
2 H

4  

C
2 H

6  

C
O

 

C
O

2  

R
ef 

1 10 1 0 0 1 176 0 [24] 
2 39 41 2 29 16 N-G N-G [22] 
3 10 24 0.01 24 372 343 N-G [27] 
4 200 50 6 50 40 0.01 0.01 [33] 
5 1790 580 619 336 321 956 4250 [21] 
6 3091 46 239 101 17 236 3305 [46] 
7 530 345 250 266 85 3900 20000 [31] 
8 48 610 0 10 29 1900 970 [21] 
9 36036 4704 10 5 554 6 347 [21] 

10 9817 36926 213 62815 11608 837 6649 [39] 

TABLE XV 
THE MODEL OUTPUT FOR THE TESTED DGA SAMPLES 

No 
IEEE

-
Filter 

Doernen-
burg Duval Key gas Overall 

decision Reported 

1 0 Off Off Undefined Normal Normal 

2 1 Thermal T2 Thermal 
in oil T2 Normal 

3 1 Thermal T2 Thermal 
in oil T2 MTF 

4 1 Thermal DT Arcing 
Fault DT 

Low 
energy 

discharge 

5 1 Thermal D1 Undefined D1 
Discharge 

of low 
energy 

6 1 Arcing D2 PD D2 
Discharge 

of high 
energy 

7 1 Arcing D2 Undefined D2 
Arcing 
Discharge 

8 1 Thermal PD Thermal 
in oil Thermal 

Thermal 
<700(T1 
or T2) 

9 1 Out of 
ratio PD PD PD 

Partial 
discharge 

(PD) 

10 1 Thermal T3 Thermal 
in oil T3 

Arcing 
Fault 

 
VI. CONCLUISION  

   Fuzzy systems work with rules that express the imprecision 
and approaches of the real world. In this work, fuzzy sets are 
formulated for several DGA interpretation techniques and 
then combined to provide an improvement in accuracy of 
classifying transformer faults. The model accurately assigns 
fault type and provides an overall decision based on the 
Duval Triangle, Doernenburg ratio and key gas techniques. 
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