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1 Introduction 

1.1 Purpose 

'In recent years there has been extensive study of the behaviour of 
complex interacting systems in such fields as engineering, physiology 
and economics. Drawing on and building upon this diverse body of 
experience, progress has been made over the past ten years in the 
development of methods for understanding the dynamics of eco
systems and the impact of stresses upon them, including stresses 
generated by man. These methods are subsumed under the heading 
of systems ecology. Systems ecology is based on the assumption that 
the state of an ecosystem at any particular time can be expressed 
quantitatively and that changes in the system can be described by 
mathematical terms,' to quote the expert panel on the role of system 
analyses of the Man and Biosphere Program (MAB, 1972). 
Whether this basic assumption of systems ecology can be made 
operative or not, the approach raises considerable interest among 
natural scientists. However, it appears that many outsiders venturing 
in systems ecology are confused because they are exposed to mathe
matical and computer techniques, and to the treatment of complex 
systems at a too rapid rate. This is a pity because the systems approach 
has its merits. However, these can only come to the fore if a dialogue 
can be maintained between system ecologists and their more experi
mentally inclined colleagues. 
The confusion may be reduced and the necessary dialogue stimulated 
by introducing the motivated ecologist stepwise to one of the main 
aspects of system ecology: the analyses and simulation of state 
determined systems. This is done in this book by treating in detail 
various ecological systems, ranging from simple exponential growth 
to a plant epidemic of considerable complexity. Ecological, mathe
matical and programming aspects are interwoven during the treatment, 
and exercises have been set that are an integral part of the text on 
a second reading. In this way, it appears that the only thing that may 
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be new in simulation is the emphasis that is placed on the quantifying 
of the underlying processes, the iterative use of information and the 
use of suitable 'simulation languages' as a means of communication, 
not only between man and machine, but also between man and man. 

1.2 Some terminology 

System ecologists use and misuse many words and terms and in order 
not to add to the confusion of the reader it is necessary to define 
the common concepts: model, system and simulation. 
There are many models. A simple mathematical model is the age-old 
relation of velocity (v) and the distance (s) covered by a falling apple, 
depending on the gravitational acceleration (g) and the time from 
the moment of release (/): v=gt and 5=0.5 vt2. An example of a 
non-mathematical model is a map. It is a simplification of the original 
that contains relevant information and allows measurements. Depen
dent upon the purpose of the map railways, lines of equal rainfall or 
soil types are presented. 
A scale model of a ship enables measurement of the resistance of 
the original in the water. To maintain the original relations between 
viscosity, density, velocity, length etc., the laws of scaling must be 
satisfied. Of course, the internal structure of the ship is not modelled. 
A system may be defined as a limited part of reality with related 
elements. The totality of relations within a system is called the structure 
of a system: both models and systems have a structure and it follows 
from the definitions that a model is system. The reverse does not 
seem true. However, it may be argued that a piece of art is a model 
of a conception in the artist's mind or that an engine is a model of 
the conception of its creator. A system M is a model of system O, 
provided that the structure is partly overlapping or isomorphic. 
Which parts of O are presented in M is determined by the requirements 
of relevance imposed on the model. Which part should not be con
sidered follows also from the requirement that a model must remain 
easy to handle and lucid. 
Examples of a system are a cell, a plant, an animal, a field with a 
crop, a forest and a farm. It is better to choose the boundary between 
system and environment such that the system is isolated. This is often 
not possible and then the boundary should be chosen so that the 
environment influences the system, but the system itself does not 



affect the environment. To achieve this goal it is often necessary to 
consider a larger system than seems necessary for the purpose. If for 
instance, the influence of temperature on the growth of plants is 
studied in a climate room, this climate room is part of the environment 
when its construction is so good that temperature, moisture content 
and light intensity do not depend on the size of the plants. In most 
climate rooms this requirement is not met so that it may be wise to 
treat the room itself as part of the system. If this leads to unwieldy 
models, it may be necessary to characterize the interaction between 
plant system and environment by continuous measurements at the 
interface, for example, of the light intensity at the leaf surfaces, and 
of the temperature and humidity between the plants. This approach 
erodes the generality of the model, but may enable better evaluation. 
A system has a pattern of behaviour which implies that the system 
changes with time, that it is dynamic. A simplified representation of 
a dynamic system is a dynamic model. An operational definition of 
simulation is the building of a dynamic model and the study of its 
behaviour. Simulation is useful if it increases one's insight of reality 
by extrapolation and analogy, if it leads to the design of new experi
ments and if the model accounts for most relevant phenomena and 
contains no assumptions that are proven to be false. The latter 
requirement seems obvious, but is nevertheless formulated because 
such assumptions are often made to enable analytical solutions of 
mathematical models. With more recent simulation techniques this 
limitation can often be overcome, so that attention may be shifted 
from solution techniques to the study of behaviour of model and 
system. 
There has been a tendency among statisticians to restrict the term 
simulation to the study and modelling of stochastic processes. How
ever, this denies the use of the term in the field of the engineering 
sciences and what is even more unacceptable, it restricts too much 
the common usage of the word. 

1*3 Electrical analogues 

Many systems may be modelled by means of electrical analogues. 
For instance, a model of a falling apple might consist of an apparatus 
with two capacitors. The first one is charged with a current that is 
considered analogous with the gravitational acceleration and thus its 



potential is analogous with velocity. The second capacitor is charged 
with a current that is proportional to the potential of the first and 
thus its potential is analogous to the covered distance. 

Exercise 1 
Write down the differential equations that relate the rate of change 
of the velocity (v) of a falling apple to the gravitational acceleration (g) 
and of its distance (s) from the point of release to the velocity. Also 
write down the differential equation that relates the potential of a 
capacitor (c) to its capacitance and the charging current (i). Find 
the expressions for the charging currents it and i2 of two capacitors 
so that the potential of the first capacitor corresponds to v and of 
the second capacitor to s. 

The integration in the capacitors takes place continuously and simul
taneously, as do velocity and distance in reality. At any moment the 
condition of the system is fully determined by the potentials of the 
capacitors. The analogous computers that have been developed from 
this principle are very useful for simulating such continuous systems. 
There are, however, several problems with their use. The user should 
adapt the scale of variables to be modelled to the range of potential 
of the circuit elements and has to accept their inaccuracies. The 
resulting difficulties rapidly increase with increasing size and com
plexity of the models and with preciser requirements of accuracy. 
These problems do not show up in simulation with digital computers 
and it is very illustrative that the first 'languages' to simulate continu
ous systems on digital computers were developed to control the result 
of analogous machines and to facilitate the assessment of the scaling 
factors. 
Digital machines with proper simulation languages are also pre
ferred to analogous machines when there are discontinuous 
elements, and when many empirical relationships are used. A large 
drawback, however, is that digital machines operate sequentially and 
discretely, whereas in many systems, continuous processes operate in 
parallel. 
It is likely that in due course the disadvantages of both machines will 
be eliminated and the advantages combined by hybrid computers in 
which digital and analogous computers are amalgamated. 



1.4 State determined systems 

As has been said, systems ecology is based on the assumption that 
the state of an ecosystem at any particular time can be expressed 
quantitatively and that changes in the system can be described by 
mathematical terms. This assumption leads to the formulation of 
state determined models in which state variables, driving or forcing 
variables, rate variables, auxiliary variables and output variables can 
be distinguished. 
State variables characterize and quantify all conserved properties of 
the system, such as amount of biomass, number of animals, content 
of mineral elements in various parts of the system, amount of food, 
amount of poison, number of niches, water content, temperature of 
the soil and so on. The values of all state variables have to be known 
at the onset of simulation. In mathematical terms they are quantified 
by the contents of integrals. 
Driving or forcing variables are those that are not affected by processes 
within the system but characterize the influence from outside. These 
may be macrometeorological variables, the amount of food added 
in course of time and so on. It should be realized that depending on 
the boundaries of the system to be simulated, the same variables may 
be classified either as state or driving variables. • 
Rate variables quantify the rate of change of the state variables. 
Their values are determined by the state variables and the driving 
variables according to rules formulated from the knowledge of the 
underlying ecological, physiological and physical processes. These 
processes may be so complicated that the calculation process becomes 
much more lucid when use is made of proper chosen intermediate or 
auxiliary variables. 
Output variables are the quantities which the model produces for 
the user. Sometimes they are state variables, sometimes rates and 
sometimes auxiliary variables that may be calculated especially for 
the purpose. 
In such state determined models rates are not mutually dependent: 
each rate of change depends at any particular time on the values of 
the state and driving variables and can therefore be calculated inde
pendently of all other rates; Thus structural equations, that means 
n equations with n unknown rates, do not occur. 
This is in accordance with experience. In a mixture of yeasts, the rates 



of growth do not depend on each other, but each one separately upon 
the state of the system, characterized by its own amount, the con
centration of food and waste products and forcing variables such as 
temperature. The interaction between the growth of the yeasts in 
the mixture evolves in time because of the consumption of the same 
food source or production of the same waste products. Another exam
ple. In a chemical reaction where compound C is formed from com
pounds A and B, the rate of formation of C does not depend on the 
rate of formation of A and B but only on the amounts or concentra
tions of compound A, B and C that are present and the reaction con
stants. If, however, the rate of formation of A is slow, this compound is 
depleted in due course to such a level that the rate of formation of C 
adjusts to that of A. In other words, the observation that the rate of 
formation of A and C is equal is a consequence of the operation of 
the system and does not reflect a direct relation between both rates, 
that is to be modelled. Another example is presented in the form of 
an exercise. 

Exercise 2 
Ask two children, who are not allowed to communicate with each 
other, to stand on one side of a room and tell them to walk to the 
other side of the room at the same speed, carrying out independently 
of each other the following instructions on command: 
1: close eyes, 2: decide on step size, 3: take a step, 4: open eyes, 
5: compare positions, 1: close eyes, 2: decide on step size, and so on. 
Mark the position of each child on the floor after each cycle of instruc
tions. Do the children stay practically side by side? What are the 
variables of state? What are their 'rates' of change? In how many 
independent decision processes are these decided upon? It may be 
observed that the subsequent step sizes of each child are more variable 
in the beginning than at the end. Why is this so? 

1.5 Simulation languages 

Although digital computers may memorize data easily, these sequen
tial and digital instruments seem most unsuitable for the simulation 
of continuous and parallel dynamic systems. The main feature of 
simulation languages, or simulation programming systems, is to 



overcome these disadvantages. 
The principle that rates of change are not mutually dependent but 
depend independently on variables of state and driving variables, 
allows all rates of change to be calculated in any order at any instant 
of time. After calculating all rates at one instant, the changes are done 
by integrating the state variables over a small time-interval. In this 
way, the model operates in semi-parallel fashion. The simplest way 
of integration is by the Eulerian or rectilinear method in which the 
new value of a state variable at time /+A/ equals the old value at 
time / plus the calculated rate of change at time / times the constant 
time-interval At. 
Another feature of simulation programming systems is that all 
processes and processing details may be presented in conceptional 
rather than computational order. The programming system itself 
contains a sorting routine which orders all calculations and integra
tions in a proper algorithm. The advantages of this procedure are 
that the simulation program may be presented much more clearly, 
that a considerable variety of programming and conceptional errors 
may be detected by the system and that sub-models are easily assem
bled in a larger model. Apart from this, all simulation languages 
contain subroutines that execute operations that are often dealt 
with in modelling and facilitate the organization of data input and 
output. 
In this way programming systems have been developed that enable 
sophisticated use of computers by research workers without much 
training in advanced programming techniques and with a minimum 
of formal mathematical knowledge. As has been said, these program
ming systems are not only intended to improve the communication 
between man and computer but also between research workers 
themselves. Since many simulation programs that appear at present 
can be used only by the designer himself or by very motivated 
Programmers, this latter aspect of simulation languages is very 
important and needs to be developed still more. 
Unfortunately, simulation programming systems have proliferated to 
such an extent during the last 12 years that this latter purpose is 
continuously threatened. However, recently all languages seem to be 
gravitating towards one concept: the Continuous System Simulation 
Language ( C S S L) , originally defined by a working party of the 
Simulation Council (Brennan and Silberberg, 1968). The most widely 



used C S S L version is at present the Continuous System Modeling 
Program (IBM). This language as defined in IBM Users Manual 
SH20-0367-4 is used in the subsequent text, together with a preproces
sor that facilitates the simulation of systems that vary in time and space 
and the handling of historical information. This preprocessor is avail
able on request from the computer centre of the Agricultural University 
in Wageningen. This centre also provides D S L H (Digitale Simulatie 
Landbouw Hogeschool), a continuous simulation language developed 
from DSL for use on CDC computers with a capacity of 32 K up
wards. The present text is self-explanatory and written to be read 
without the use of a manual, but for actual programming it is advisable 
to have a manual at hand. 

8 



2 Exponential growth 

2.1 Analytical and numerical integration 

The growth rate of many populations may be proportional to the size 
of the population, either expressed in number of individuals or total 
biomass. With simple organisms such as bacteria, growth is often 
also continuous. The growth rate at any moment can then be ex
pressed by the equation: 

GR = RGRxA (2.1) 

in which RGR is the relative growth rate and A the amount of 
organisms. 

Exercise 3 
If weight is expressed in grams and time in hours, what are then the 
dimensions of A, RGR and GR? Give at least three environmental 
conditions that must always be satisfied to achieve a situation where 
the relative growth rate is independent of the amount of organisms 
and time. 

In differential notation, Eqn (2.1) is written as 

dA/dT = RGR x A (2.2) 

The integrated form of this equation or the analytical solution when 
RGR is constant, is 

A = IAxeRGRxT (2.3) 

*n which IA is the amount of organisms that appear to be present at 
time zero and e the base of the natural logarithm. Under these cir
cumstances the amount of organisms increases exponentially with 
time. 



Exercise 4 
Calculate with a slide rule, with tabulated values of the function ex 

or with a table of logarithms, the value of A after 0, 2, 4 up to 10 hours 
for RGR equal to 0.1 hour"1 and IA equal to 1 gram. Represent the 
results by a graph with time along the horizontal axis and the amount 
A along the vertical axis and connect the points with a smooth line. 
Plot the results also on a graph with time along the horizontal axis 
and the logarithm of the amount A along the vertical axis and connect 
the points also by a line. 
What do you observe about the straightness of the second line? 
Show that this observation is mathematically correct. 

The amount of organisms as a function of time may be found also 
by a recursive process. If, at a certain time T the amount of organisms 
equals A, the rate of growth at that moment equals RGR x A. During 
a short time-interval delta time (DELT), this rate of growth hardly 
changes, so that at time T+DELT the amount of organisms equals 
approximately A + RGRx AxDELT. With this new value, the rate 
of growth at time T+DELT can be calculated and so the amount of 
organisms at time T+2x DELT, and so on. 

Exercise 5 
Calculate the values of A after 0, 2, 4 up to 10 hours for RGR = 
0.1 hour"1 and H = 1 gram at time zero. Use time intervals of 2 hours 
and apply the following scheme: 

TIME 
0 
2 

A 
1 
1.2 

RGRxA 
0.1 
etc. 

RGR x A x DELT 
0.2 

• 

Plot the results on the graphs of Exercise 4 and connect the points 
by straight line segments. 

A comparison of this step-wise solution and the analytical solution 
shows that the size of the population is underestimated by the use 
of the recursive solution. This is caused by the wrong assumption 
that the growth rate remains the same during each time-interval 
DELT, even though for continuous growth, the amount of organisms 
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increases. It is to be expected that the discrepancy between the recur
sive and analytical solution decreases with decreasing time-intervals. 

Exercise 6 
Plot the results of a recursive calculation for time steps of 1 and 
0.5 hours on the graphs of Exercise 4. Derive a formula that gives 
the value of H directly after n time-intervals of size DELT and convert 
this function of n to a function of time. 

2.2 Simulation 

Calculations with even shorter time-intervals are very tedious and are 
better done by formulating the problem in C S M P and using a com
puter. In its elementary form, this simulation is the same as numerical 
integration of a set of differential equations. 
The problem in C S M P reads as follows on punched cards: 

TITLE EXPONENTIAL GROWTH 
A = INTGRL (IA # GR) 
GR = RGR * A 
INCON IA = 1 . 
PARAMETER RGR = 0.1 
TIMER FINTIM = 10. , OUTDEL = 0.5f DELT = 0.1 
PRTPLT A 
METHOD RECT 
END 
STOP 

The first card mentions the TITLE, which is repeated on every page 
of output. The card with the INTGRL function states that A equals 
IA at time zero and that its current value at any time is found by 
integrating GR. The fourth and fifth card give the value of the 
° % I Nitial CONstant ( IA) and of the only PARAMETER 
(RGR). The TIMER card ensures that the simulation is finished 
after 10 time-units (FINTIM), that output is given at every 0.5 time 
j^it (0 U T D E L ) and that intervals of 0.1 unit (DELT) are used 
f°r the numerical integration. 
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Exercise 7 
Which variable governs the unit of time? 

It is stated on the PRinTPLoT card that the value of A has to be 
plotted against time and that its numerical value has to be given also 
in a table. The METHOD card indicates that the integration must be 
done according to the RECTilinear method of Euler. This is the 
method that was used in the previous exercises. The END card 
defines the end of the simulation model and the STOP card the end 
of the simulation program. If the computation is to be repeated 
with a relative growth rate of 0.2, it suffices to insert the cards PARA
METER RGR = 0 . 2 and END between the END and STOP 
cards in the above program. 

Exercise 8 
Punch the lines of the program on cards and urge your computer 
centre to install one of the CSS L-type languages and to inform you 
on the deviation in notation between this language and the CSMP 
version used in this example. Then carry out the program. 

Some readers may not have access to a suitable computer centre so 
that a facsimile of program and results are given in Fig. 1. The first 

Page 1 
• •••CONTINUOUS SYSTEM MODELING P R O G R A M " 

• ••PROBLEM INPUT S T A T E M E N T S ' ^ 
TITLE EXPONENTIAL GROWTH. 

A=INTGRL(IA,GR) 
GR=RGR»A 

INCON IA=1. 
PARAMETER RGR=0.1 
TIMER FINTIM=10.,OUTDEL=0.5,DELT*0.1 
PRTPLT A 
METHOD RECT 
END 
STOP 

OUTPUT VARIABLE SEQUENCE 
GR A 

OUPUTS INPUTS PARAMS INTEGS • MEM BLKS FORTRAN DATA CDS 
6(500) 24(1400) 5(400) 1* 0= 1 (3C0) 3(600) 7 

• ••CSMP/360 SIMULATION D A T A ' * " a g e 2 
TITLE EXPONENTIAL GROWTH 
INCON IA=1. 
PARAMETER RGR=0.1 
TIMER FINTIM=10.,OUTDEL=0.5,DELT=0.1 
PRTPLT A 
METHOD RECT 
END 
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Page 3 

FORTRAN 
0001 
0002 
0003 

0004 

0005 
0006 

0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 

0017 
0018 

0019 
0020 

0021 

0022 
0023 
0024 
0025 

IV G LEVEL 21 UPDATE DATE = 731SC 
SUBROUTINE UPDATE 
COMMON 2Z9901(5),129901,229902,1Z9902,229903, 129903,2Z9991 (54) 
COMMON TIME 

1,DELT ,DELMIN,FINTIM,PRDEL ,OUTDEL,A ,GR ,IA ,RGR 
COMMON 229992(7990),NALARM,IZ9993,2Z9994(417),KEEP,229995(489) 

/,I20000,229996(824),IZ9997,IZ9998,ZZ9999( 45) 
REAL IA 
GO TO(39995,39996,39997,39998),IZ0000 

C SYSTEM SEGMENT OF MOOEL 
39995 CONTINUE 

129993= 11 
129997= 1 
129998* 10 
REA0(5,39990)(229999(129999),129999=1, 45) 

39990 FORMAT(18A4) 
129901= 100010 
129902= 100011 
129903= 45 
GO TO 39999 

C INITIAL SEGMENT OF MODEL 
39996 CONTINUE 

GO TO 39999 
C DYNAMIC SEGMENT OF MODEL 
39997 CONTINUE 

GR=RGR#A 
C A ' =INTGRL (IA ,GR 

GO TO 39999 
C TERMINAL SEGMENT OF MODEL" 
39998 CONTINUE 
39999 CONTINUE 

RETURN 
END 
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MINIMUM A VERSUS TIME MAXIMUM 
1.0000E 00 2.7047E 00 

A I I 
c ftArt„ 1.0000E 00 • 
5.0000E-01 1.0510E 00 - • 
1.0000E 00 1.1046E 00 
I-5000E 00 1.1610E 00 ' • 
2-0000E 00 1.2202E 00 • 
3 n222E 0 0 L2824E 00 • 
3.0000E 00 1.3478E 00 • 
3.5000E 00 1.4166E 00 • 
4.0000E 00 1.4888E 00 • 
5 nS22E 0 0 L5648E 00 • 
5.0000E 00 1.6446E 00 • 
6 oSnSE 0 0 L7285E 00 • 
6.0000E 00 1.8167E 00 • 
6.5000E 00 1.9093E 00 • 
7.0000E 00 2.0067E 00 + 

TIME 
0.0 

7 CAAA- v t.uuort 

8 oXXS! °° 2.1091E 00 • 
8.0000E 00 2.2167E 
8-5000E 00 2.3297E 

9lSS2E °° 2-"86E 
LOOOOE 01 2.7047E 00 + 

S-S2S2S °° " ' " * 00 • 
8-5000E 00 2.3297E 

9lSS2E °° 2-"86E 
9.5000E 00 2.5735E 00 • 

ft « « « « v c.cioft 

9 oSSS! S° 2-3297E 00 • 
9.0000E 00 2.4486E 00 • 

Fl8- 1 | A simulation program for exponential growth written in CSMP. 
age 1 contains the punched program and the other pages are generated 
y the system. Page 2 contains parameters, constants and other numerical 

data. Page3 the FORTRAN subroutine 'UPDATE'and Page4 theanswers. 
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page contains the program, and some additional information, the 
third page the FORTRAN subroutine 'UPDATE' created by 
C S M P and the fourth page the answers. The third page is mainly of 
interest for those readers that know some FORTRAN and wish to 
follow the way C S M P organizes the work. They may have also some 
use for several pages with information on the organization of the 
program that are not reproduced here. 

Exercise 9 
Plot the results also on the graph of Exercise 4 and compare the 
numerical results with those of the analytical solution. Explain why 
the simulated results are still underestimates. 

For simple exponential growth where the relative growth rate is a 
constant, numerical integration or simulation is not necessary because 
the solution may be found analytically. However, the analytical 
approach is frustrated only by slight variations in the system. 
For instance, the relative growth rate of a bacterial population may 
depend on temperature, so that in a series of experiments with a 
bacteria species the following observations of the relative growth rate 
could have been made: 

TEMP (°C) 
RGRCIT1) 

Exercise 10 
These are (faked) observational data. Represent the results on a 
graph and draw a smooth line through the data points. 

In many situations, bacteria populations are not exposed to a constant 
temperature; the temperature varies more or less in daily cycles and 
the question may be posed what the growth rate is under such con
ditions. Obviously, the relative growth rate is then not a constant 
which may be defined on a parameter card but a variable which is 
some function of temperature. To simulate this situation the 
PARAMETER card which defines the relative growth rate is removed 
from the program of Fig. 1 and replaced by the following function 
statement: 

RGR = AFGEN(RGRTB,TEMP) 

14 
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This Arbitrary Function GENerator states that the value of RGR 
depends on the temperature (TEMP), according to a tabulated 
function with the table name R G R T B. This function is introduced into 
the simulation program in tabulated form on a FUNCTION card: 

FUNCTION R G R T B = ( 0 . , 0 ) , ( 1 0 . , 0 . 0 7 5 ) , . . . 
< 2 0 . , 0 . 1 6 ) , ( 3 0 . , 0 . 2 1 5 ) , ( 4 0 . , 0 . 2 4 ) , . - -
( 5 0 . , 0 . 2 5 ) 

The first number between each pair of brackets presents a value of 
the independent variable (TEMP) and the second one the correspond
ing value of the dependent variable (RGR); the three dots at the 
end of the first line indicate that the table is continued on the next 
line. The A F G E N function finds the value of the R G R at the current 
temperature by linear interpolation between the tabulated values: 
i.e. if TEMP equals 25°, then RGR equals .16 + (5/10)(.20-.16) = 0.18. 

Exercise 11 
Enter the tabulated data of FUNCTION RGRTBonthe graph of 
Exercise 10 and join these data points by straight lines. This broken 
line now represents the relation between RGR and TEMP as intro
duced in the simulation model. Try to match your smoothed curve 
more satisfactorily by tabulating values for RGR at 2.5°C intervals. 
This does not seem worth the trouble here. Why not? 

The next step is to define how the forcing variable TEMPerature 
varies with TIME. This may also be done with a function generator: 

TEMP = AFGEN (TMPTB # TIME) 
FUNCTION TMPTB = 

These tabulated functions of forcing variables tend to be very long 
because they have to cover the whole simulated time-span in sufficient 
detail. Often it suffices to present the experimental data by some 
Mathematical function. For instance, if there is a daily temperature 
^nation, a sinusoidal function may be used: 

TEMP = AVTMP + AMPTMP*S IN(6 .28*T IME/24 . ) 

ne function SIN calculates the sine value of the variable in the 
argument: 6.28 stands for 2 x n, TI ME is the simulated time in hours 
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since the start of the simulation and 24 stands for the hours in a day. 
The average temperature and the amplitude of the temperature are 
given by 

PARAMETER AVTMP = 20. fAMPTMP = 1 0 . 

Exercise 12 
Prepare a graph that shows the course of temperature during 24 hours. 
At what time is the temperature at its maximum? 

The variable TIME is always needed in dynamic models and the 
simulation language automatically keeps track of it. 

Exercise 13 
Reason that TIME could also be kept track of by the statement: 

T = I N T G R L ( 0 . # 1 . ) 

A facsimile of the program and the output is given in Fig. 2. Note 
that the variables RGR and GR are entered on the PRTPLT card 
between brackets. This means that only the printed output of these 
variables is requested, not a graphical display. Note also that the 
'UPDATE' contains all equations in computational order, whereas 
in the program itself they are presented in some conceptional order. 
It is obvious that the readability of such simple simulation programs 
does not depend very much on the sequence of the equations. 

Fig. 2 | A simulation program for exponential growth with a temperature 
dependent relative growth rate. 

••••CONTINUOUS SYSTEM MODELING PROGRAM**** P a g e 1 
•••PROBLEM INPUT STATEMENTS*** 

A=INTGRL(IA,GR) 
GR=RGR»A 

INCON IA = 1 . 
RGR=AFGEN(RGRTB,TEMP) 

FUNCTION RGRTB=(0.,0.),(10.,0.075),(20.,0.16), ... 
(30.,0.215),(40.,0.24),(50.,0.25) 

PARAMETER AVTMP=20.,AMPTMP=10. 
TEMP=AVTMP*AMPTMP*SIN(6.28*TIME/24.) 

TIMER FINTIM=48.,OUTDEL=1.,DELT=0.5 
PRTPLT A(RGR,GR) 
METHOD RECT 
END 
STOP 

OUTPUT VARIABLE SEQUENCE 
TEMP RGR GR A 

OUTPUTS INPUTS PARAMS INTEGS • MEM BLKS FORTRAN DATA CDS 
8(500) 29(1400) 7(400) 1* 0= 1(300) 5(600) * 8 
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Page 2 

FORTRAN 
0001 
0002 
0003 

0004 

0005 
0006 

0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 

0017 
0018 

0019 
0020 
0021 
0022 

0023 

0024 
0025 
0026 
0027 

IV. G LEVEL 21 
SUBROUTINE 

UPDATE DATE = 73171 1 9 / 1 1 / 1 8 
UPDATE 

COMMON Z Z 9 9 0 K 5 ) , I Z 9 9 0 1 , Z Z 9 9 0 2 , I Z 9 9 0 2 , Z Z 9 9 0 3 , I Z 9 9 0 3 , Z Z 9 9 9 1 ( 5 4 ) 
COMMON TIME 

1,DELT ,DELMIN,FINTIM,PRDEL ,OUTDEL,A fGR , I A ,RGRTB 
1.AVTMP ,AMPTMP,RGR .TEMP 

COMMON ZZ9992(7986) ,NALARM, IZ9993 ,ZZ9994(417) ,KEEP,ZZ9995(489) 
/ , I Z 0 0 0 0 , Z Z 9 9 9 6 ( 8 2 4 ) , I Z 9 5 ' 9 7 , I Z 9 9 9 8 . Z Z 9 9 9 9 ( 51) 

REAL IA 
GO TO(39995,39996,39997,39998),IZ0000 

C SYSTEM SEGMENT OF MODEL 

39995 CONTINUE 
1Z9993= 15 
IZ9997* 1 
IZ9998* 14 
READ(5,39990)(ZZ9999(IZ9999),IZ9999=1, 51) 

39990 F0RMATU8A4) 
IZ9901* 120010 
IZ9902* 140013 
IZ9903= 51 
GO TO 39999 

C INITIAL SEGMENT OF MODEL 
39996 CONTINUE 

GO TO 39999 
C DYNAMIC SEGMENT OF MODEL 
39997 CONTINUE 

TEMP=AVTMP+AMPTMP#SIN(6.28*TIME/24.) 
RGR=AFGEN(RGRTB,TEMP) 
GR=RGR»A 

C A *=INTGRL (IA ,GR 

GO TO 39999 
C TERMINAL SEGMENT OF MODEL 

39998 CONTINUE 
39999 CONTINUE 

RETURN 
END 

Page 3 
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• 
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Exercise 14 
Make reruns with a two times larger and a two times smaller value 
of D E LT than used in the program. Is D E LT =0.5 hour a reasonable 
choice? Which values have to be entered on the parameter card to 
obtain results that are the same as those of the program in Fig. 2? 

2.3 Time interval of integration 

One of the main problems of such numerical integrations, whether 
done by hand or through the intermediate of a simulation language 
is the choice of the correct time-interval of integration. 

Exercise 15 
Construct a graph with the amount of organisms after 10 hours of 
growth against the magnitude of the time interval (D E LT) ranging 
from 2 to 0.1 hours for RGR =0.1 hour""1. Enter the correct answer 
obtained by means of the analytical solution also in the same graph 
by a horizontal line. 

One may argue that an acceptable time-interval gives an answer 
within a specified range from the answer obtained with the analytical 
solution. However true, this is not a very meaningful approach because 
it is unnecessary to find some, always approximate, answer by simula
tion when the correct analytical result is available. 
Another approach is to assume that a correct time-interval is reached 
if halving its value does not change the relevant results of the simula
tion by more than a preset relative amount. A relative amount that 
must not be taken smaller than warranted by the accuracy of the 
parameters, initial constants and tabulated functions. Thus a reason
able compromise is obtained between the apparent accuracy of the 
answer and the computational effort which increases at least linearly 
with decreasing magnitude of the time interval. It must be realized, 
however, that the method is not foolproof, so that in other than 
trivial situations it is always necessary to evaluate the answers with 
common sense against a background of experience and experimental 
results. 
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Exercise 16 
What is the largest acceptable time-interval in Exercise 15 when a 
relative apparent accuracy of 5 percent is acceptable? How much 
smaller or larger is this time-interval when R G R equals 0.2 instead 
of 0.1 hour"*1? Does the largest acceptable time-interval depend here 
on the length of the simulated period (FINTIM) ? This is a difficult 
question ! 

The largest acceptable time-interval is practically the same throughout 
a simulation as long as the relative change of the state variables, in 
this case of the amount of organisms, remains the same. This situation 
exists in the first example, but in the second example the relative 
change of the amount of organisms is large during periods of high 
temperatures and small during periods of low temperatures. Hence 
it could be an advantage to adapt the size of the time interval during 
the simulation. 
This is possible by using more sophisticated methods of integration. 
Several such methods are available in C S M P, but only that of Runge-
Kutta/Simpson is a safe choice for simulating continuous ecosystems. 
This method is invoked by the card METHOD RKS. Then, instead 
of the rate at time T, a weighted rate at times T, T+DELT/2 and 
T+DELT is used in such a way that a correct integration is achieved 
within the time range, when the resulting integral function can be 
presented by a fourth-order polynomial. Whenever output of rates 
is requested, it is always the actual rate or slope of the integral at the 
printing time that is printed, not the average rate as used during this 
time interval. The size of a correct time-interval is obtained by com
paring the result of this numerical integration with the result of a 
second order integration method of Simpson. If the error is too large, 
the time interval DELT is halved and if it is small enough, DELT 
is doubled for the next step. Hence the size of the time interval changes 
automatically to its largest acceptable value with varying relative 
rates of change. When the error criterion is not met by decreasing 
the time interval, the simulation is terminated. This often indicates 
a programming or conceptual error. 
The procedure of calculating rates of change is therefore done several 
times before an integration is really executed. The advantages are 
a much larger time-interval of integration and a much larger accuracy, 
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although the latter is not always of great importance in ecological 
systems where negative feedback plays a role and the basic data are 
often not very accurate. 
If the time interval does not change very much during simulation the 
method RKS uses a considerable fraction of the computer time 
trying again and again to increase the time interval of integration 
without success. Then it may be worthwhile to use METHOD 
R KS F X, a fourth order Runge-Kutta method with fixed time-interval. 
However, the time-interval has to be specified then by the user. An 
acceptable time-interval is found by executing the program once 
with the method RKS and counting the number of integrations. 
Since 

COUNTT+DELT = COUNT + (1/DELT) xDELT = COUNTT+1 

the statement 

COUNT = INTGRKO,1/DELT) 

seems to count this number. However, this simple method cannot be 
applied when variable time-interval methods of integration are used 
because the rate of change (1/DELT) increases then in proportion 
with a decrease in DELT, so that shortening the time-interval does 
not decrease the relative error of this integration. It is therefore 
necessary to compute the number of integrations in such a way that 
this computation does not interfere with the integration process. This 
can be done by adding just above the END statement of the program 
a so called NO SORT section to execute some FORTRAN com
pilations. The statements in such a section are presented in computa
tional order and bypassed by the sorting routine. 
A suitable section would be: 

NOSORT 
IFCTIHE.EQ.O. ) COUNT=0. 
COUNT=COUNT + KEEP 

The first statement sets a counter at zero when TIME equals zero 
and the second statement adds the value of KEEP to COUNT every 
time the rate calculations are performed. However, the value KEEP 
is an internal C S M P variable which is set to 1 when the actual up
dating is done after executing all iterations demanded by the integra
tion method, and set to zero otherwise. 
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Exercise 17 
Add the NOSORT section to the program of Fig. 2 and do not 
forget to enter COUNT on the PRTPLT card. Carry out the program 
with METHOD RKS. It is then found that C0UNT = F INTIM/ 
OUTD E L. Explain why. What D E LT should be specified when using 
the method RKSFX? 
Execute the program also for ten times larger values of RGR and 
tabulate the average RGR and the number of counts, both between 
successive intervals of output. Introduce for this purpose the statement 

RGRS = INTGRLCO.,RGR) 

Estimate a maximum DELT for use with the method RKSFX. 

One may ask why rectilinear integration is still used when other 
integration methods are so much satisfactory. However, sophisticated 
integration methods can be used in general only when all changes 
are continuous. In ecological models this is often not so; sudden 
changes in environmental conditions, sudden immigration and 
emigration and sudden death and other accidents may take place. 
It will be shown in Section 5.2 that such discontinuities can be 
Programmed, but that then the most unsophisticated, rectilinear 
Method of integration must be used. 
W course much more can be said about the use and misuse that can 
be made of numerical methods of integration, but this goes beyond 
he scope of this monograph and the more so because the technique 

l s described in many good handbooks (e.g. Milne, 1960). 
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3 The growth of yeast 

3.1 Description of the system 

Growth is only exponential as long as the relative growth rate remains 
constant. This is usually so with yeast when it is grown under aerobic 
conditions with a sufficient supply of sugar and some other growth 
essentials. The sugar is then continuously consumed to provide the 
'C skeletons' and the energy both for the growth of new yeast cells 
and for maintenance of the yeast. The end-products, C02 and H20, 
of the sugar broken down in the respiratory process do not pollute 
the environment of the yeast. 
However, if yeast grows under anaerobic conditions, one end-product 
of the respiratory processes is alcohol which may accumulate in the 
environment. This slows down and ultimately stops the development 
of yeast buds even when there is still enough sugar available for 
growth. 
Growth curves for yeast that result under such conditions are given 
in Fig. 3. It should be noted that yeast once formed remains because 
only the bud formation is affected by the alcohol; the yeast itself is 
not killed. Two of the four growth curves are from an experiment of 
Gause (1934) with monocultures of the yeast species Saccharomyces 
cerevisiae and Schizosaccharomyces kKephir\ It is obvious that the 
initial relative growth rate and the maximum volume of yeast that is 
ultimately formed is highest for the first species. 
Gause cultivated both yeast species not only in monoculture, but also 
in mixture. The results of this experiment, are also presented in Fig. 3 
by the other two curves. A comparison of the growth of both species 
in mixture with their growth in monoculture shows that both affected 
each other in the first situation. It was proposed by Gause that this 
was due to the formation of the same waste product, alcohol, that 
affected the bud formation of both species. In this chapter we shall 
analyse whether this explanation is acceptable by constructing a model 
that simulates the growth of two species independently and in mixture 
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Schizosaccharomyces 

Volume 
°f yeast 

Saccharomyces 

Volume 
of yeast 

40 80 120 
hours 

— o = measured mono 
A = measured mixed 

= simulated mono 
=simulated mixed 

60 
hours 

*g. 3 I The growth of Saccharomyces cerevisiae and Schizosaccharomyces 
Kephir' in monoculture and in mixture. The observational data were 
obtained by Gause (1934) and the curves are simulated, as explained in 
the text. 

under the assumption that the production of the same harmful waste 
Product is the only cause of interaction. 

•* Relational diagrams 

It * l s s°nietimes advantageous to summarize the main interrelations of 
system in a relational diagram, and to formulate the quantitative 
Pects at a second stage of actual model building. Such relational 

. a^ranis may be presented in various ways, but the conventions 
roduced by Forrester (1961) prove to be the most convenient in 

• J ®[* though they were first developed for the presentation of 
ustrial systems. Forrester assigned special symbols to the various 

Pes °f variables that may be distinguished in state determined 
y ems. The state variables or the contents of integrals are presented 

um rectangles, the rates of changes within valve symbols, auxiliary 
cables within circles and parameters are underlined. The flow of 
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material is presented by solid arrows and the flow of information by 
dotted arrows. 
The simple system of exponential growth is drawn according to 
Forrester's conventions in Fig. 4. The amount of organisms is a state 

amount 

RGR 

Fig. 4 | A relational diagram of exponential growth, drawn according to 
the conventions of Forrester. 

variable; its value increases by a material flow, whose rate is the 
growth rate. The dotted line between the state variable and the rate 
shows that the rate depends (in some way or another) on the state 
variable and the other dotted line that the rate depends also on a 
parameter which is here considered a constant. 
This figure contains all the interrelations that play a role, but does not 
consider the details of these. For instance, in the relational diagram, 
it is still not stated whether the growth rate is proportional to the 
amount of organisms or to some power of this amount: this is decided 
upon at a later stage. 
The relational diagram for the yeast system is presented in Fig. 5. 
It is seen that there are three state variables; the amount of the first 
and second yeast species and the amount of alcohol. 
The lines of information flow show directly that the growth of yeast is 
supposed to depend on the amount of yeast, a relative growth rate 
and an auxiliary variable: a reduction factor. This reduction factor, 
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ale. prod. 
factor 1 
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ale. prod, 
factor 2 
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I 

gr. rate 2 j 

table 2 
— t — 

Fig. 5 I A relational diagram for the growth and interference of two inter
fering yeast species. 

in its turn, is given as a function of the amount of alcohol that is 
present. The relations are, of course, the same for both yeast species 
although numerical values of parameters and functions may be 
different. The amount of alcohol increases by the rate of alcohol 
production of both species. The alcohol production of each species 
is supposed to depend on the growth rate of the species and on an 
alcohol production factor. 

Exercise 18 
In Section 1.4 it is said that rates do not depend on each other in state 
determined systems. Why is the line of information flow between 
the rate of growth and the rate of alcohol production not in contra
diction with this principle? 

Relational models should contain as few details as possible, otherwise 
they are very difficult to grasp and this defeats their purpose. In 
studying them, much emphasis should be given to aspects that are 
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not incorporated. For instance, in the present scheme there are no 
loops that relate the alcohol production directly to the amount of 
yeast, indicating that the cost of maintenance of yeast cells is not 
accounted for. The amount of sugar is also not considered because 
it is assumed to be always available in sufficient amounts. 

Exercise 19 
Incorporate the aspect of limited food supply in the relational diagram. 

3.3 Simulation 

The growth of the first yeast species (Saccharomyces) is now simulated 
by stating that the amount of yeast equals 

Y1 = INTGRLUY1 ,RY1) (3.1) 

in which 

INCON IY1 = 0 .45 

is the initial amount of yeast in the arbitrary units, used by Gause, and 
the rate of yeast growth is given by 

RY1 = RGR1*Y1*(1. -RED1) (3.2) 

The relative growth rate is defined with 

PARAMETER RGR1 = 

It was observed by Gause that in both species the formation of buds 
was completely stopped at some maximum alcohol concentration 
which is given as a percentage by 

PARAMETER MALC = 1 . 5 

The dependence of the reduction factor on the alcohol concentration 
may now be obtained with an arbitrary function generator 

RED1 = AFGEN(RED1T,ALC/MALC) 

The most elementary assumption is that bud formation increases 
linearly with increasing alcohol concentration, which is introduced 
with 

FUNCTION RED1T = ( 0 . , 0 . ) , (1 . , 1 . ) 
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Exercise 20 
Express RED directly in ALC and MALC without using the function 
generator. 

The alcohol concentration itself is the integral of the alcohol produc
tion rate which is zero at the initialization of growth: 

A L C = I N T G R L ( I A L C , A L C P 1 ) (3.3) 
INCON IALC = 0. 

and the alcohol production rate is proportional to the growth rate of 
yeast: 

ALCP1 = ALPF1*RY1 (3.4) 

Two values need to be determined now: the relative growth rate and 
the alcohol production factor. During the early stages of growth, 
R E D is practically zero, so that the growth rate is equal to RGR1 x Yl. 
This allows a first estimate of RGR1 from the data in Fig. 3 for the 
monoculture. A L P F1 follows from the observation that growth was 
terminated when the alcohol concentration equalled 1.5 percent and 
the amount of yeast about 13 units. 

Exercise 21 
What is a first estimate of RGR1 in the correct units? What is the 
value of ALPF1 in the correct units? Is this value only physiologi
cally determined or does it also depend on the volume of water in 
the vessels with yeast? What is the value of IALC when not only 
the initial amount of yeast is introduced at initialization, but also the 
corresponding amount of alcohol? Estimate the same values for 
Schizosaccharomyces, it being known that the alcohol concentration 
at which the formation of buds is completely inhibited is also 1.5 
percent. Which species has the larger alcohol production factor? 

The structural equations that describe the growth of the second species 
(Schizosaccharomyces) are, of course, the same as those for the first, 
so that in a model for concurrent growth it suffices to write them 
twice: once with a 1 at the end of the relevant symbols and once 
with a 2; that is except for the equation that describes the alcohol 
concentration which becomes 
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ALC = INTGRL(IALC,ALCP1 + ALCP2) (3.5) 

This equation holds on the condition that both species interfere only 
with each other through the production of the same alcohol. 
Fig. 6 shows the resulting simulation program with MALC identical 
for both species and the proper data. In the main program IY1 

TITLE MIXEO CULTURE OF YEAST 
Y1*INTGRL(IY1,RY1) 
Y2«INTGRL(IY2,RY2> 

IHCOH IY1»0.45,IY2*0.45 
RY1*RGR7»Y1«(1.-RED1> 
RY2*RGR2#Y2»(1.-RED2) 

PARAMETER RGR1=0.21,RGR2=0.06 
. RED1*AFGEN(RED1T,ALC/MALC> 

RED2*AFGEN(RED2T,ALC/MALC) 
FUNCTION RED1T*(0.,0.)(C1.,1.) 
FUNCTION RED2T>(0.,0.)(U.t1.) 
PARAMETER MALC*1.5 

ALC»INTGRL<IALC,ALCPUALCP2> 
ALCP1*ALPFWRY1 
ALCP2*ALPF2*RY2 

PARAMETER ALPF1*0.12,ALPF2*0.26 
INCON IALC-0. 
FINISH ALC-LALC 

LALC=0.99«MALC 
TIMER FINTIMs150.,0UTDEL*2. 
PRTPLT Y1,Y2,ALC 
END 
STOP 

Fig. 6 | A simulation program for the growth of two yeast species that 
interfere through the production of the same waste product (alcohol). 

and IY 2 are both set to 0.45 units, so that the growth in the mixture 
is simulated. The two monocultures are simulated in reruns. 
F I NT IM is set at 150 hours, but the two lines 

FINISH ALC = LALC 
LALC = 0.99 * MALC 

are inserted to avoid unnecessary 'number-grinding', when the alcohol 
concentration is close to its maximum. This condition FINISH 
indicates that the simulation is terminated as soon as the alcohol 
concentration reaches 99 percent of its maximum value. 
The relative growth rates and the alcohol production factors are 
chosen such that the results of the two experimental monocultures are 
matched as well as possible. A comparison of the mixtures (Fig. 3) 
shows that the actual growth of Schizosaccharomyces is slightly less 
than the simulated growth. Barring statistical insignificance, we must 
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conclude that both species do not interfere with each other's growth 
through the production of alcohol only, as assumed in the model. 
It may be that Saccharomyces produces some other waste product 
that is harmful for the other or that Schizosaccharomyces produces 
a waste product that stimulates the other. These possibilities cannot 
be distinguished from each other without additional information. 
And as long as this is not available it is a futile exercise to simulate 
such suppositions. 

Exercise 22 
Try to reason whether a similar effect could result from the supposition 
that R E D T for the species is not given by 

FUNCTION RED1T= ( 0 . f 0 . ) f (1 . , 1 .) 
FUNCTION RED2T= (0.f0.) , (1 . f1 .) 

but by, for instance: 

• • FUNCTION RED1T= (0.,0.),(0.5,0.25), 
(1 . # 1 .) (Sacch.) 

FUNCTION RED2T= (0.,0.),(0.5,0.75)f .. . 
(1 . f 1 . ) (ScWzos.) 

If this is too difficult, you may find the answer by simulation. 

These simulation programs are conveniently amended. For instance, 
the yeast cultures may be washed continuously with water that 
contains sufficient sugar. The integral of the alcohol concentration is 
then 

ALC s INTGRL(IALCfALPF1*RY1 +... 
ALPF2*RY2 - ALC/WSC) 

in which the washing constant (WSC) is expressed in hours and 
presents the average residence time of the water in the vials with 
yeast, as will be shown in Section 6.4.2. 

Exercise 23 
What is in due course the alcohol concentration and the absolute 
growth rate of both yeast species for WS C equal to 10 hours? 
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3.4 Logistic growth 

The simulation program in Section 2.2 was developed from the differ
ential equation form. The differential equation form for the present 
problem will now be derived from the structural equations of the 
simulation program. This will be done only for situations where the 
reduction factor is inversely proportional to the alcohol concentration 
so that (1-RED) may be replaced by (l.-ALC/MALC). Since the 
alcohol concentration is equal to the amount of yeast times the alcohol 
production factor according to the Eqns (3.3) and (3.4), it is then 
possible to rewrite Eqn (3.2) in differential equation form as 

dY/dT = RGR x Y x (1 - Y/YM) (3.6) 

in which Y is the amount of yeast, T is the time and YM stands for 
the maximum amount of yeast. This equation may be integrated and 
this results in 

Y Y M ' (37) 
l + Ke~RGRxT 

Exercise 24 
Express YM in MALC and ALCPF. What are the values of YM for 
both species of yeast? Show by differentiation that Eqn (3.7) is an 
integrated form of Eqn (3.6). Express the initial amount of yeast in 
the constant K and YM of Eqn (3.7). Calculate the time course of 
the growth of Saccharomyces and compare the result with the simu
lated course. Why does the differential equation only hold for situa
tions where the initial amount of yeast is very small, whereas this is 
not so for the simulation program? (see also Exercise 21). 

The growth curve that is described by the differential equation and 
also presented by the simulated growth curves for the monoculture 
yeast in Fig. 3 is called the logistic growth curve. This S-shaped curve 
is symmetrical, but this symmetry hinges on the assumption of inverse 
proportionality between the reduction factor of growth and the 
amount of growth that has been made. Especially Lotka (1925) and 
Volterra (1931) generalized the logistic differential equation for 
interfering species with the following set of differential equations: 
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dYl/dT = R l x Y l x ( l - A l x Y l - B l x Y 2 ) 
dY2/dT = R2 x Y2 x (1 - A2 x Yl -B2 x Y2) 

In general this set of differential equations cannot be integrated into 
analytical expressions for Yl and Y2 as functions of time and there
fore it is wiser to leave such simplifying approaches alone and to 
formulate the problem directly in terms of a simulation model. 

Exercise 25 
Show to what extent the simulation model for mixed growth of yeast 
is covered by this set of differential equations. Express the constants 
Rl, R2, Al, A2, Bl and B2 in the constants RGR1, RGR2, ALPF1, 
ALPF2 and MALC. Which constants of the differential equations are 
the same? Is this also the case in situations where a species produces 
a waste product which is only harmful for the other? 

3.5 Time constant 

The time-interval of integration is adjusted continuously if the inte
gration method of Runge Kutta/Simpson is used. For rectilinear 
integration, an acceptable time-interyal (DELT) may be found by 
reducing its size to a value where further reduction does not apprecia
bly change the outcome of the simulation. 
It is also possible to find a proper time-interval of integration by 
analysing the simulation program. For this purpose every integral 
statement and its associated rate is represented by 

H = INTGRL(...,±H/TAU) 

or in differential form by 

dH/dT = ±H/TAU 

in which the terms of the rate that are independent of H are not 
considered. TAU, with the dimension time, is the time constant of 
this particular integration. The time constant of the system at a certain 
moment is now governed by the integral with the smallest TAU. 
It has now been found, that it only makes sense to simulate the 
dynamic behaviour of a system when a time-interval (DELT) is used, 
which is about one-tenth of the time constant of the system and that 
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the value of DELT adjusts to about one-half of the time constant, 
when the method RKS is used. 
If the derivative (H/TAU) has the same sign as the variable (H) 
itself, there exists a positive feedback. This means that any error is 
propagated together with an increase of the variable. The feedback 
is negative in the opposite case and the error will be damped out 
together with a decrease of the variable itself. The behaviour of the 
relative error is, however, the same in both situations. 
The simplest case of a positive feedback is the exponential growth 

dH/dT « RGR x H 

in which the time constant is equal to the inverse of the relative 
growth rate. More complicated systems can often be reduced or 
approximated by a differential equation of the above form. For 
yeast, the differential equation is 

dH/dT = RGR x (1 -RED)xH 

In the beginning, RED is small compared to 1, so that the time 
constant is again 1/RGR. But during growth RED increases, so that 
the time constant becomes larger. When the method RECT is used, 
DELT has to be derived from the small value of the time constant 
in the beginning, but with method RKS its value adjusts during the 
simulation. 
However, it would be wrong to conclude that the time constant of 
the system approaches infinity when H approaches its maximum 
value HM. From what has been said about logistic growth, it appears 
that the equation may also be written as 

dH/dT =RGRxHx( l -H/HM) 

when H approaches HM, this is approximately equal to 

dH/dT =RGRxHMx( l -H /HM) = RGRx(HM-H) 

Written for the variable H—HM this is equal to 

d(H — HM) 
dT 

-RGRx(H-HM) 
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This is a differential equation with a negative feedback and again a 
time constant 1/RGR. This negative feedback governs the time 
constant of the system if the integral (HM —H) is also considered. 
The above example is already sufficient to show that it is often difficult, 
to find the time constant of a system by analysis, unless the system 
is small. And since its value may be only used for estimating the time-
interval of integration, the most practical method is to determine 
this interval by trial and error. 

33 



4 Interference of plants 

4*1 Replacement species 

The interference of plant species in the field is most conveniently 
studied by experiments based on the replacement principle. 
Experimental plots are divided in small squares. A seed of the first 
species is placed in each square of one plot and a seed of the second 
species in each square of another. In this way monocultures of the two 
species are obtained. On another plot, the seeds of both species are 
placed alternately in the squares to create a mixture in which half 
of the space is allotted to one species and the other half to the other. 
Other mixtures may be obtained by allotting the individual squares to 
the species in other proportions. The relative seed density of the 
species, zt and z2 in the mixtures are now defined as the seed density 
of the species in the mixture divided by its seed density in the mono
culture. Obviously, the sum of the relative seed densities z1+z2then 
equals always 1. The yields of the species in monocultures are repre
sented by the symbols Mx (zx = l, z2 = 0) and M2 (z, =0, z2 = l) and 
the yield of each species in the mixture by Ot and 02 . 

Exercise 26 
Show that the replacement principle is not violated when in each 
square either n seeds of the first species or m seeds of the second are 
placed. 

An experiment is now considered where the individual squares are 
so large that the two species do not interfere with each other. The 
seed densities are then low and the yields of both species consequently 
small. But Mx and M2 are of course not necessarily the same. Here 
the yield of each species in the mixture may be represented by 

Ox = Z i Mx and 0 2 =
 Zl M2 (4.n 

zx+z2 zx+z2 ' 
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The linearity is due to the seeds being so far apart that the plants do 
not interfere with each other. 
The yields may be expressed in dry weight per unit surface or number 
of seeds per unit surface for seed-forming species. In the latter case 
the relative reproductive rate of the species may be defined as 

«ii = ^ - MJM2 (4.2) 
02/z2 

and appears to be equal to the ratio of the yield of the species in 
monoculture. If a12 is 1, the species match each other. If a12 is greater 
than 1, species 1 gains on species 2: the latter eventually disappears 
from the mixture, if the harvested mixture is resown repeatedly at 
the original density. 
What occurs now if the individual squares on the experimental plots 
are made smaller and smaller? Then the seed rates of both species 
increase accordingly and so do the yields. But that is not the only 
effect. At a certain stage the space allotted to each seed is so small, 
that the plants interfere with each other. If the species have equal 
competitive ability one species will not infringe upon the space allotted 
to the other and Eqn (4.1), resulting in a linear relation between seed 
rate and yield of the species in the mixture will still be valid. However, 
in general one species will have more competitive ability and will 
infringe upon the space allotted to the other. As a consequence, 
the yield of this species in the mixture will be higher than expected 
and of the other lower. 
Many experiments of this type have been done and the result of one 
of them with barley and oats is given in Fig. 7. Here the squares were 
of two sizes: in one experiment 310 cm2 was allotted to each seed 
and in the other 31 cm2. With the wide planting, barley infringed 
somewhat on the space of oats, but the yield curves were still practi
cally straight. With the narrow planting, however, the yield of barley 
in the mixtures was relatively high and of oats relatively low, indicating 
that barley was by far the strongest competitor. The results of this 
and many other experiments with barley and oats (de Wit, 1960) 
show that the relative yield total of the mixtures, defined by 

RYT = 01/M1 + 02/M2 (4.3) 

is unity. 
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Fig. 7 | Seed yields in number of kernels per m2 in a replacement ex
periment of barley and oats at two densities of sowing (de Wit, 1960). 

This means that the species appear to be mutually exclusive. This 
equality may be considered the operational definition of 'competing 
for the same niche', to use a term out of the field of animal ecology. 
The relative reproductive rate for seed producing species is now not 
equal to the ratio of the yields in the monoculture but may be ex
pressed by 

ex 12 
- ° l /Z l „ fc 

02 /z2 
12 (Mi/MJ (4.4) 

in which k12 is the relative crowding coefficient and characterizes to 
what extent one species infringes upon the space allotted to the other. 
Eqn (4.3) (with RYT= 1) and Eqn (4.4) may be combined and replaced 
by 

z2 O = ^12Zl 
kj2Zj + z 2 

M and O-. = 
*^12^1 "t*^2 

M- (4.5) 
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These equations are similar to the Eqn (4.1), except for the relative 
crowding coefficient which weights the relative frequency of sowing. 
Similar relations hold when biomass yields are considered, except 
that the relative reproductive rate loses its meaning. 

Exercise 27 
Show that the equations (4.5) are correct by dividing them (OJ02) 
and by summing the two expressions for O/M. Calculate the relative 
yield total of barley and oats at relative seed frequencies of 0.2, 
0.4, 0.6 and 0.8 from the high density data in Fig. 7. Calculate also 
the relative reproductive rate and the relative crowding coefficient of 
barley with respect to oats at the same relative seed frequencies. 
Which species has the highest yield in monoculture and which species 
gains in competition? 

The yield curves in Fig. 7 have been calculated by assuming that the 
relative crowding coefficient is independent of the relative seed 
frequencies and that RYT= 1; the agreement between the curves and 
the experimental data over the whole range of frequencies show that 
this is a fair assumption. The constancy of the relative crowding 
coefficient has been confirmed by the analyses of many other experi
ments (de Wit, 1960; van den Bergh, 1968), so that it is reasonable 
to state the following. If the relative yield total in replacement experi
ments equals about 1 over the whole range of seed frequencies, then 
the relative crowding coefficient may be considered independent of 
these seed frequencies. 
Of course there are also situations where the species do not exclude 
each other, so that the relative yield total does not equal 1. The 
equations (4.5) cannot be applied in such situations. For instance, 
legumeneous species and grass are not mutually exclusive when the 
first obtains its nitrogen from the air through nitrogen-fixing Rhizo-
bium bacteria and the second from the soil and from the first specise 
(Tow et al., 1966). 
The relative yield total (RYT) may be also greater than one when one 
species has a longer growing period than the other. On the other hand, 
it has been shown that RYT is smaller than one when one species 
contains a virus which is harmful to the other (van den Bergh, 1968; 
Sandfaer, 1970). 
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4.2 Density of sowing 

Replacement experiments between two species and density of sowing 
experiments of single species have very much in common. This is 
most conveniently illustrated by considering the results in Fig. 8 of 
replacement experiments between barley and oats at different pH 
values of the soil. As far as the relative crowding coefficient is con
cerned, the two species matched each other at a pH of 4. However, 
at a pH of 3.7, the relative crowding coefficient of oats with respect 
to barley was about 2, although the yields of the two species in mono
culture were still the same as at the higher pH. Obviously a lower pH 
affects the competitive ability of barley. This had a detrimental effect 
on its yield when oats were around to claim the space, but not in 
monoculture. At a pH of 3.2 the situation was still worse: the relative 
crowding coefficient of oats with respect to barley increased to 3, 
whereas the yield of barley decreased to a low level. The physiological 
cause of the phenomenon is that the root development of barley is 
much more sensitive to low pH than of oats. The most extreme 
situation was reached at a still lower pH. Here the relative crowding 
coefficient of oats with respect to barley increased up to 20, whereas 
the barley did not grow at all, as reflected by its zero yield in mono
culture. 
Such a replacement experiment of barley and oats in situations where 
barley does not grow at all is, in fact, an experiment on the density of 

a 
100 kernels 

120-f 

60 A 

»= barley 
•=oats 

1 z0 0 5 1z0 0.5 
0.5 zb 1 

1 z0
 a 5 

Q.5 zb 1 0 
1 z0 0.5 

0.5 2h ] 
0 

Fig. 8 | Replacement experiments of barley and oats at different pH-KCl 
values of the soil: 4, 3.7, 3.2, 3.1 for a, b, c, d, respectively (de Wit, 1960). 
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sowing of oats. In other words density of sowing experiments are 
a limiting case of replacement experiments. It must be concluded 
therefore that the equations (4.5) not only describe the results of 
competition experiments, but those of density of sowing experiments 
as well. It is only necessary to transform them into a form more 
suitable for the purpose. 
As one species of the replacement series does not grow at all, the 
second equation may be omitted. The remaining equation is still in 
an unsuitable form because it is formulated in terms of relative seed 
frequencies and refers also to the species that is not sown or did not 
grow at all. A more suitable form is obtained when Zj/Zm is substituted 
for z2 and (Zm—Zj)/Zm for z2 in which Zm is the maximum seed rate 
used in the experiments and expressed in absolute units, i.e. gm"2 . 
When the subscripts 1 are omitted, the first equation of (4.5) trans
forms into: 

O = B x Z Om (4.6) 
BxZ+1 

Exercise 28 
Derive this formula and express the constants B and Om in the relative 
crowding coefficient k and seed rate Zm and the yield M. 

In this equation (4.6) Om and B are independent of the density of 
sowing Z. The dimension of Z is number of plants m""2 or a 
similar unit. Om is the theoretical maximum yield in, for instance 
g m - 2 , that is obtained when the seed density is very high and B x Om 

is the yield of a single plant growing alone. B itself has the dimension 
of m2 plant"1 and may be considered the amount of space that is 
occupied by a single plant growing alone. The value of 0/Om has 
a lower limit of 0 and an upper limit of 1. 

Exercise 29 
Construct a graph from Eqn (4.6) for Om=100, B = 0.05 and Z 
ranging from 0 to 100. Draw the asymptote Om and the initial slope 
B x Om of the curve. Mark along the horizontal axis the position 
where the yield is half of the maximum yield Om. Mark also the 
distance 1/B along the horizontal axis. Give now expressions for: 
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Lim(0) = ... 
Z-*oo 
Lim(0/Z) = ... 
Z->0 
Lim(0/OJ = ... 
Z->0 
Lim(0/OJ = ... 
Z->oo 

The result of a spacing experiment with subterranean clover harvested 
at various times after planting is given in Fig. 9. 
It appears that Om increases monotonously with time. This is to be 
expected because the rate of increase of this parameter presents in 
principle the growth rate of a closed crop surface from the beginning 
of growth onwards. Under favourable conditions it may be expected 
that Ora increases with at least 20 g m""2 day"1, this being the potential 
growth rate of most agricultural crops in the Netherlands (de Wit, 
1968). The value of B also increases monotonously with time; it 
represents the (calculated) ability of a single plant to occupy space 
during its growth and this ability is strongly affected by the stage of 

g dry matter days 

4 0 n S q J k ' 

2 0 -

200 
p lants/sq. l ink 

Fig. 9 | A spacing experiment with subterranean clover of Donald (1963), 
harvested at various times after planting. 
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development and the distribution of photosynthesis products over 
the various plant organs. 
Baeumer & de Wit (1968) did a spacing experiment with barley and 
oats on a soil well supplied with nutrients and water. Rows of plants, 
rather than single plants, were grown at distances of 25 and 100 cm 
and the dry matter yield was determined at four stages. The results of 
this experiment are summarized in Table 1. 

Table I The dry biomass yield in g m"2 of barley and oats, sown at 25 
and 100 cm on 2 May 1966. Emergence and seedling establishment was 
completed on 15 May. Field experiment IBS 975, 1966. 

Date of 
harvest 

.7 June 
21 June 
5 July 

19 July 

Barley 
25 

117 
426 
588 
858 

100 

36 
223 
341 
496 

Oats 
25 

81 
319 
503 
789 

100 

22 
142 
263 
516 

Exercise 30 
Calculate the values of B for barley and oats on the four harvesting 
dates without any assumption regarding Om. 
What is the dimension of B ? Draw graphs of Om and B against time. 
Which graph has an unexpected form? What are the reasons? 
Linearize the curves for Om, omitting the data points for the first 
harvesting date and recalculate B for the value of Om estimated in 
this way. 

The calculated curves of B and Ora against time for barley and oats 
are given in Fig. 10. 
Barley grows somewhat better at low temperatures and its value of B 
increases during the early part of the growing season more rapidly 
than for oats. Hence, when both species are grown together, barley 
occupies relatively more space and by the time oats gets around to 
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0.25-

Fig. 10 | Time functions of B and OM for barley and oats, calculated from 
the data in Table 1, 

claim its share, all the space is already occupied. This explains 
qualitatively why the competitive ability of barley in a mixture with 
oats is usually higher. Therefore, it may be possible to calculate the 
mutual interference of both species in a mixture from the course of B 
and Om, as determined from density experiments with one species. 

4.3 Simulation of plant interference 

To arrive at a simulation program for the interference of plants, it 
is necessary to distinguish the correct state variables and to find 
expressions for their rate of change. A convenient state variable is 
the relative space that is occupied by the species, defined as the yield 
(O) of the species, divided by the maximum yield (Om) obtained at 
very high seed density. This relative space is according to Eqn (4.6): 

B x Z (4.7) RS = 
BxZ+1 

The term relative space is preferred because the term relative yield 
for this quotient would lead to confusion with the term relative yield 
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used in the analyses of replacement series. The value of RS ranges 
from 0 to 1. 
The rate of change of the state variable may be found by differentiating 
RS with time and rearranging the expression. The result is 

dJRS^ = d _ W d T x R S x ( 1 _ R S ) 

dT B 

This equation is very similar to the equation for logistic growth, 
derived in Section 3.4; the two main differences being the maximum 
value of 1 for the state variable and the non-constancy of the 'relative 
growth rate'. 

Exercise 31 
Derive the expression for d(RS)/dT. For this purpose, Eqn (4.7) is 
differentiated, taking into account that B is a variable function and Z 
a constant function of time. Eqn (4.7) is then used again to eliminate Z. 
What is the dimension of (dB/dT)/B? Does this relative rate of change 
increase or decrease with time. What is the expression for B against 
time when the relative rate of change is constant? 

Eqn (4.8) holds for one species. The factor (1 — RS), which may range 
from practically 1 in the beginning to practically 0 at the end of the 
growth period, characterizes the reduction of growth under influence 
of the space that is occupied. When two species are growing together, 
a situation may be vizualized where plants do not distinguish between 
occupation of space by one species or the other. Then the relative 
spaces may be added as to their influence on the growth of each species 
so that the following set of equations characterize the situation: 

^si)-«i/arx 1 - s 
dT Bl 

2£S9_«2£IxRS2x(l-SRS) 
dT B2 

SRS = RS1 + RS2 

Exercise 32 
Construct a relational diagram of this type of plant interference. 
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The two differential equations are the basis for a simulation program 
of two species grown in a mixture, which is presented in Fig. 11. 

TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON DB11*0.0047,DB12*0.0033,RS11*0.002,RSI 2*0.002 

RS1*INTCRL(RSI1,(DB1/B1)»RS1»(1.-SRS>) 
RS2*INTGRL(RSI2,(DB2/B2)*RS2*(1.-SRS)> 
B1*AFGENCBTB1,TIME) 
B2*AFGEN(BTB2,TIME) 
DB1*DERIV(0BI1,B1> 
DB2*DERIV<DBI2,B2> 
01*RS1«AFGEN(OMT81,TIME> 
02*RS2»AFGEN(0MTB2,TIME> 
SRS*RS1*RS2 

PRINT RS1,RS2,SRS,01,02 
TIMER FINTIM=65.,PRDEL*1. 
FUNCTION OMTB1*0.,0.,23.,377.,37.,612.,51.,780.,65.,1132. 
FUNCTION 0MTB2*0.,0.,23.,333.,37.,552.,51.,724.,65.,956. 
FUNCTION BTB1*0.,0.001,23.,0.11,37.,0.574,51.,0.778,65.,0.778 
FUNCTION BTB2*0.,0.001,23.,0.076,37.,0.346,51.,0.571,65., 1.17 
END 
STOP 

Fig. 11 | A simulation program for interference of two plant species that 
do not distinguish between the occupation of space by one species or the 
other. 

The function tables for B and Om are those for the barley(l) and 
oats(2) experiment of Table 1. D E RIV is the only new function that 
is introduced. This function calculates the derivative of the second 
argument, here the value of dB/dT from the function of B against 
time. Like an integral, the derivative has to be initialized and this 
initial value is given as the first argument of the function. 

Exercise 33 
Why is it necessary to set the value of B slightly above 0 at emergence? 
Initialize RSI1, RSI2, DBI1 and DBI2. Is it necessary to initialize 
the derivative functions accurately? 
Compare the results of the simulation graphically with those of the 
actual competition experiment in Table 2. 
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Table 2 The dry biomass yield in 
gm"2 of barley and oats, sown 
alternately in rows 25 cm apart. Field 
experiment IBS 975, 1966. 

Date of 
harvest 

7 June 
21 June 
5 July 

19 July 

Mixture 
Barley 

62 
235 
375 
512 

Oats 

30 
142 
165 
308 

Inspection of the experimental data in Table 2 shows that barley 
occupied much more space than oats in the mixture although both 
species were planted alternately in rows. The simulated results given in 
the answer to exercise 33 prove that this better performance may be 
explained by the more favourable course of the B curve for barley 
during early growth. The higher values of B for oats later appear to 
be ineffective in the mixture because too much space is already occu
pied by the barley at the early stages of growth and at this sowing 
density. 
Although this simple model of interference holds for mixtures of 
some species, it does not always hold in situations where species 
exclude each other. For instance, in mixtures of short and long peas, 
it makes a lot of difference to the short peas, whether the space is 
occupied by other short peas or long peas. In the latter case, practically 
all light is intercepted by the long neighbours so that the growth of 
the short peas is almost suppressed. Experimental and simulated 
results of a competition experiment with these species are given in 
Fig. 12. To obtain the simulated curves A, it was assumed that the 
simple model as used in this section for barley and oats was valid. 
The difference between actual and simulated results is so large that 
this supposition must be rejected. The curves B were obtained by 
assuming that the relative space of each species may be weighted 
according to their respective heights (HI and H2) which differed at 
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g dry matter 
nrv 

500-

250-

o-J 

o = long peas = observed 
• = short peas = simulated 

500 -

6/7 6/21 7/5 7/19 

250-

0 J 

6/7 6/21 7/5 7/19 

Fig. 12 | Observed and simulated growth of long and short peas in a mixture. 
A: without weighting according to height. 
B: with weighting according to height. 

the end about threefold. This weighting was done according to the 
equation 

SRS = l -RSl- (H2/Hl)xRS2 

for the sum of the relative space. In this way the different light inter
ception is accounted for in a first approximation. The much better 
agreement shows that this may be a reasonable explanation for the 
bad performance of the short peas in the mixture. 
In situations where species interfere in other ways than by mutual 
exclusion, it is of course futile to construct a model of competitive 
interference on basis of data obtained in monoculture only. 

4.4 Further modelling aspects 

4.4.1 The IN D EX and MACRO feature 

The simulation programs for yeast growth in the previous chapter 
and for plant competition in this chapter are given for two species 
but may be extended to more species. For a mixture of n species, the 
relevant structural equations must be written n times. Much repeated 
writing, however, does make the program less clear and often intro
duces errors, especially if it is necessary to change the structure. 
Hence any repeated writing that has to be done is best executed by 
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the computer. 
This is done most directly by using the INDEX feature. If for instance, 
two plant species are competing, the equations for the relative space 
(RS) are written as 

R S ' 1 , 2 ' = I N T G R L ( R S I ' 1 , 2 ' , . . . 
D B ' 1 , 2 ' / B ' 1 , 2 ' * R S ' 1 f 2 ' * ( 1 . - S R S ) ) 

This is an order for the so-called preprocessor (Section 1.5) to write 
the equation two times: once with number 1 attached to the symbols, 
once with number 2. All variables that are different for each species 
obtain an appropiate number by order of the index 41,2' and all vari
ables, that are the same for the two species, like S R S, remain the same. 
These have to be defined on their own, in this case by 

SRS = RS1 + RS2 

The other equations that describe the growth are given in Fig. 13, 
which contains a full program for competition between two species. 
The initial values for the relative space and the slopes of B are defined 
on parameter cards by 

INCON RSI'1 , 2 ' = , 
INCON DBI'1 ,2' = , 

The four functions must be given separately in FUNCTION tables. 
The corresponding C S M P program that is written by the preprocessor 
on the basis of this text, is also given in Fig. 13. Here it can be clearly 
seen that the INDEX feature is an order for repeated writing or 
defining of similar texts, parameters or output. In case of more than 
two species, i.e. four, the statement 

R S ' 1 , 4 ' = 

generates equations for RS1 # RS2 f RS3 and RS4. 

Exercise 34 
Write a program for the growth of 4 yeast species in a mixture, using 
the INDEX feature. 

A similar result may be obtained by using the MACRO-feature. 
InaMACRO,a part of a process is described in general terms. Every 
time a MACRO is called upon CSMP writes its full text with the 
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«•« LISTING OF PROGRAM*** 
TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON 0BI'1,2'*0.0047,0.0033 
INCON RSri,2**0.002,0.002 

RS,1,2,*INTGRL<RSI,1,2,,(DB,1,2'/B,1f2')#RS'1,2'*<1.-SRS)) 
B'1,2'=AFGEN(BTB'1,2',TIME) 
DB'1f2'BDERIV(0BI'1,2'(B'1.2') 
0'1,2'*AFGEN(OMTB'1,2'.TIME) 
SRS=RS1*RS2 

TIMER FINTIM=65.,0UTDEL=1. 
FUNCTION BTB1=0.,0.001,23.,0.11,37.,0.574,51.,0.778,65.,0.778 
FUNCTION BTB2 = 0.,0.001,23.,0.076,37.,0.346,51.,0.571,65., 1.17 
FUNCTION OMTB1*0.,0.,23.,377.,37.,612.,51.,780.,65.,1132. 
FUNCTION OMTB2=0.,0.,23.,333.,37.,552.,51.,724.,65.,956. 
PRTPL.T RS'1,2',SRS,0'1,2* 
END 
STOP 
ENDJOB 

••••CONTINUOUS SYSTEM M00ELIN6 PROGRAM****. 
•••PROBLEM INPUT STATEMENTS*** 

TITLE COMPETITION BETWEEN BARLEY ANO OATS 
INCON 0BI1=0.0047,DBI2=0.0033 
INCON RSI1=0.002,RSI2=0.002 
RS1«INTGRL(RSI1,(DB1/B1)*RS1*(1.-SRS)) 
RS2*INTGRL(RSI2,(DB2/B2)«RS2*(1.-SRS)) 
B1*AFGEN(BTB1,TIME) 
B2*AFGEN(BTB2,TIME) 
DB1«DERIV(DBI1,B1) 
DB2=DERIV(DBI2,B2) 
01*AFGEN(0MTB1,TIME) 
02»AFGEN(0MTB2,TIME) 

SRS*RS1*RS2 
TIMER FINTIM*65.,0UTDEL*1. 
FUNCTION BTB1*0.,0.001,23.,0.11,37.,0.574,51.,0.778,65.,0.778 
FUNCTION BTB2«0.,0.001,23.,0.076,37.,0.346,51.,0.571,65.,1.17 
FUNCTION OMTB1*0.,0.,23.,377.,37.,612.,51.,780.,65.,1132. 
FUNCTION OMTB2*0.,0.,23.,333.,37.,552.,51.,724.,65.,956. 
PRTPLT RS1,RS2,SRS,01,02 
END 
STOP 

OUTPUT VARIABLE SEQUENCE 
SRS 81 DB1 ZZ0002 RSI B2 DB2 ZZ0004 RS2 01 
02 
OUTPUTS INPUTS PARAMS INTEGS • MEM BLKS FORTRAN DATA CDS 
15(500) 46(1400) 10(400) 2* 0* 2(300) 12(600) 10 

ENDJOB 

Fig. 13 | A simulation program for interference of two plant species, 
written by using the INDEX feature and the CSMP program compiled from 
this by the preprocessor. 

appropriate symbols. A MACRO is therefore not an order to execute 
a particular computation, but an order to write a part of a simulation 
program. Just as in a normal simulation program, it is not necessary 
to present the structural statements in computational order and it 
may well be that various parts of the MACRO are scattered through
out the computational program after the sorting process. The 
M A C RO for the growth of a plant species may read as follows: 



MACRO 0,RS = GROWTH(BTB,OMTB,DBI,RSI) 
RS = I N T G R K R S I , (DB/B)*RS*(1 .-SRS)) 
B = AFGEN(BTB,DAY) 
DB = DERIV(DBI,B) 
0 = RS*AFGEN(OMTB,DAY) 

ENDMAC 

The first line indicates that there is a MACRO 'GROWTH', in which 
it is stated how the relative space and the yield (RS and 0) depend 
on functions, variables and initial constants, given or calculated 
elsewhere in the C S M P program. The ENDMAC line indicates the end 
of the MACRO. Within the MACRO, the equations of the last section 
are given but with the numbers 1 and 2 omitted. 
The MACRO is invoked by the sentence 

01 ,RS1 = GR0WTH(BTB1,0MTB1,DBI1 ,RSI1) 

for species 1 and 

02,RS2 = GR0WTH(BTB2,0MTB2,DBI2,RSI2) 

'or species 2. 
A program for competition between 2 species and the intermediate 
CSMP program that is generated are presented in Fig. 14. Detailed 
comparison of the text shows that three classes of names for variables, 
parameters and tables can be distinguished. First, those that are 
mentioned in the statement: these replace the dummy names at 
corresponding places in the MACRO definition. Secondly those that 
are used within and outside the MACRO: these remain unchanged 
and are not necessarily mentioned in the invoking line. Thirdly there 
are dummy names that are used only within the M A C RO: these are re
placed by unique names of the type Z Z . . . in order to avoid double 
definitions. 

Exercise 35 
Make a detailed comparison of the 'intermediate' CSMP program 
written with the MACRO feature, the CSMP program written with 
the INDEX feature and the original CSMP program for competition 
between 2 species. It is only in this way that all logical aspects of the 
MACRO operations can be understood. 
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••••CONTINUOUS SYSTEM MODELING PROGRAM**** 
###PROBLEM INPUT STATEMENTS*** 

TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON D811=0.0047,DB12 = 0.0033,RS11=0.002,RSI2 = 0.002 
MACRO 0,RS=GROUTH(BTB,OMTB,DBI,RSI) 

RSMNTGRL(RSI,(0B/B)«RS*(1.-SRS)) 
B=AFGEN(BTB,TIME) 
0B-0ERIV(0BI,B) 
0=RS»AFGEN(OMTB,TIHE) 

ENOMAC 
01,RS1=GR0WTH(BTB1,0MTB1,DBI1,RSI1) 
02,RS2 = GR0WTH(BTB2,0MTB2/DB12,RSI 2) 
SRS=RS1*RS2 

TIMER FINTIM=65.,0UTDEL=1. 
FUNCTION BTB1*0.,0.001,23.,0.11,37.,0.574,51.,0.778,65.,0.778 
FUNCTION BTB2 = 0.,0.001,23.,0.076,37.,0.346,51.,0.571,65., 1.17 
FUNCTION OMTB1=0.,0.,23.,377.,37.,612.,51.,780.,65.,1132. 
FUNCTION 0MTB2=0.,0.,23.,333.,37.,552.,51.,724.,65.,956. 
PRTPLT RS1.RS2,SRS,01,02 
END 
STOP 

OUTPUT VARIABLE SEQUENCE 
SRS ZZ0001 ZZ0002 ZZ0004 RSI ZZ0005 2Z0006 ZZ0008 RS2 01 
02 

OUTPUTS INPUTS PARAMS INTEGS • MEM BLKS FORTRAN DATA CDS 
17(500) 54(1400) 10(400) 2* 0* 2(300) 12(600) 9 

ENDJOB 

TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON DB 11=0.0047,DB12 = 0.0033,RS11=0.002,RSI 2 = 0.002 

RS1=INTGRL(RSI1,ZZ0004) 
ZZ0004=(ZZ0002/ZZ0001)»RS1*(1.-SRS) 
ZZ0001-AFGEN(BTB1,TIME) 
ZZ0002=DERIV(DBI1,ZZ0001) 
01=RS1*AFGEN(OMTB1,TIME) 
RS2=INTGRL(RSI2,ZZ0008) 
ZZ0008=(ZZ0006/ZZ00O5)*RS1«(1.-SRS) 
ZZ0005=AFGEN(BTB2,TIME) 
ZZ0006=DERIV(DBI2,ZZ0005) 
02=RS2»AFGEN(OMTB2,TIME) 
SRS=RS1+RS2 

TIMER FINTIM=65.,OUTDEL=1. 
FUNCTION BTB1*0.,0.001,23.,0.11,37.,0.574,51.,0.778,65.,0.778 
FUNCTION BTB2=0.,0.001,23.,0.076,37.,0.346,51.,0.571,65.,1.17 
FUNCTION OMTB1=0.,0.,23.,377.,37.,612.,51.,780.,65.,1132. 
FUNCTION OMTB2=0.,0.,23.,333.,37.,552.,51.,724.,65.,956. 
PRTPLT RS1,RS2,SRS,01,02 
END 
STOP 

Fig. 14 | A simulation program for the interference of two plant species 
written by using the MACRO feature. The intermediate CSMP program, 
produced by the CSMP compiler is also given. The text of this intermediate 
program is not printed by the computer. 
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Exercise 36 
Only for readers that are familiar with FORTRAN. 
What are the principle differences between a MACRO and a SUB
ROUTINE? 

One may wonder why two methods are being developed to make 
simulation programs more lucid and to avoid repeated writing of 
structural statements, and the more so because these methods seem 
very much alike. However, this similarity is only so in the context 
of the present small programs which are written for illustrative 
purposes. Later it will become evident that each method has its own 
field of use. 

4.4.2 The INITIA L and D YN AM I C section 

The initial values for the relative space ( R S ) and the derivative of 
the space occupied by a single growing plant ( D B) must be calculated 
before the simulation models discussed in the previous sections can 
be applied. In order to avoid errors and again to promote the clarity 
of the simulation, it is advantageous to incorporate this computation 
in the simulation program. This can be done again most conveniently 
by a MACRO, in which it is defined how RSI and DB I depend on 
the distance of sowing (DIS T) and the function for B (B T B): 

MACRO RSI f DBI = BEG IN(BTB,DIST) 
RSI = BI/DIST 
BI = AFGEN(BTB,0.) 
DBI = (AFGEN(BTB,1.)-BI)/1. 

ENDMAC 

Exercise 37 
Show that RSI can be set equal to B I /DIST and that the expression 
for DBI is correct. 

The computational procedure, contained in this MACRO, has to be 
done only once for each species before the actual simulation is 
started. This is done by distinguishing an initial section of the 
simulation model which starts with an INITIAL card and ends 
with a DYNAMIC card. 
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The above MACRO is invoked two times within this INITIAL 
section. 
After this initial section, the normal dynamic structural statements 
of the simulation program are entered. 

Exercise 38 
Write a simulation program for the growth of three barley cultivars, 
assuming that B for the second variety and Om for the third variety 
increase half as fast with time as for the first variety. Assume that 
the species are sown in rows 40 centimetres apart in a 1:1:1 ratio. 
Be careful about the value of DI ST. Make use of the MACROs and 
the INITIAL section. Write the same program with the INDEX 
feature. 
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5 Growth and competition of Paramecium 

5.1 Description of the system 

Paramecia are protozoa: unicellular organisms that live in water and 
feed on bacteria. Gause (1934) did a series of experiments with the 
species P. aurelia and P. caudatum in monoculture and in mixture to 
study the principles of their mutual interference. 
The species were grown in test tubes with 5 cm3 of Oosterhout's 
balanced physiological solution, buffered at pH 8.0. The medium was 
changed daily by centrifuging to separate the protozoa from the liquid 
with the waste products and the remaining food. A standardized 
amount of bacteria was added in the new solution as daily food. 
Just before centrifuging the solution was carefully stirred and one 
tenth of the volume of liquid was taken out in which the number of 
protozoa were counted. Hence at the beginning of each day the num
ber of protozoa was about nine-tenth of the number at the end of 
the day before. 

Exercise 39 
Why not exactly nine-tenth? 

Two series of experiments were done, in the one loop experiment one 
standardized loop of bacteria was given each day and in the half-loop 
experiment a half of the standardized loop of bacteria was given. 
In both series, the species were grown in monoculture and in mixture. 
The monocultures were started with 20 protozoa of the species 
concerned and the mixed culture with 20 protozoa of each species. 
The number of protozoa counted in the sample throughout a period 
of 16 days are given in Table 3. 

Exercise 40 
Plot the results on graphs and save these for a first estimation of 
parameters, later on. 
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Tabla 3 Numbers as sampled by Gause 

Day of the 
experiment 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Monoculture 

P.aurelia 
0.5 cm3 

one half 
loop loop 

2 
6 

24 
75 

182 
264 
318 
373 
396 

454 
420 
438 
492 
468 
400 
472 

2 
3 

29 
92 

173 
210 
210 
240 
___ 

_ _ . 

240 
219 
255 
252 
270 
240 
249 

P.caudatum 
0.5 cm3 

one half 
loop loop 

2 
6 

31 
46 
76 

115 
118 
140 
125 
137 
162 
124 
135 
133 
110 
113 
127 

2 
5 

22 
16 
39 
52 
54 
47 
50 
76 
69 
51 
57 
70 
53 
59 
57 

Mixed culture 

P.aurelia 
0.5 cm3 

one half 
loop loop 

2 
10 
29 
68 

144 
164 
168 
248 
240 
— 

281 
— 

300 
— 

— 

260 
294 

2 
4 

29 
66 

141 
162 
219 
153 
162 
150 
175 
260 
276 
285 
225 
222 
220 

P.caudatum 
0.5 ( 

one 

:nr 

half 
loop loop 

2 
5 

15 
32 
52 
40 
32 
36 
40 
32 
20 
30 
12 
16 
20 
12 
9 

2 
8 

20 
25 
24 
— 

— 

— 

21 
15 
12 
9 

12 
6 
9 
3 
0 

The number of protozoa in the monoculture reached a maximum and 
stayed there, just as for yeast. The growth of yeast ceased because of 
the accumulation of waste products. But this cannot be the cause of 
stabilization in this case, since the waste products were removed 
every day by centrifuging. It stands to reason that here the ultimate 
size of the population was limited by the daily food supply. In the 
equilibrium situation this supply was then just sufficient to maintain 
the population and to replace the ten percent that was removed by 
sampling. In the mixed culture one of the species vamshed, whereas 
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the other survived at the same level as in monoculture. This com
petitive phenomenon has to be understood by a further analysis of 
the system. 
To arrive at a quantitative description of the relevant growth and 
death processes, some assumptions have to be made. First it is assumed 
that a fixed ratio exists between the number of newly grown protozoa 
and the amount of food that is consumed. This ratio is called the 
conversion factor of food (CONVF) and has the dimension of number 
of protozoa per loop of bacteria. Second, it is assumed that there is 
a natural death rate which is proportional to the number of protozoa, 
so that it can be characterized by a constant relative death rate (RDR), 
which is independent of the density. The rate of food consumption 
(CNRT) is assumed to be proportional to the number of protozoa 
(H), the density of food (FOOD) in the medium and the rate at which 
the protozoa search the water for food (RSW). The density of food 
is the amount of food (AFCOD) divided by the volume. Hc\*e\er, 
this rate per protozoa cannot exceed the maximum digestion rate of 
food (MRDIG), because the protozoa may meet food in excess of 
their rate of intake and digestion. 

Exercise 41 
Determine the dimensions of the mentioned state, rate, and auxiliary 
variables and parameters and classify these according to type. Use 
as basic units: day, loop, protozoon, volume of test tube. 
Construct a relational diagram for the growth of one protozoa species, 
taking into account that each day the population is sampled and the 
food is renewed. Show that the assumption of a constant relative 
death rate is mathematically equivalent to the assumption that food 
is needed to maintain the protozoa. 

5.2 A simulation program 

As done previously for the competition between plants, the dynamics 
of one species will be described in a MACRO, which is then invoked 
for each species with the appropriate names. The output variables of 
the M A C R 0 are the number of protozoa (H) , the rate of food con
sumption (CNRT) and the size of the sample ( S P L E) . The input 
variables are the rate of searching the water (RSW), the conversion 
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factor of food ( C 0 N V F) , the maximum digestion rate (M R D I G), 
the relative death rate (RDR) and the initial size of the population 
(H I ) . The moment of feeding and sampling (FDTIME) and the 
density of food ( FOOD) are the same for both species, so that these 
are defined in structural statements outside the MACRO and do not 
appear in the MACRO definition. 
The MACRO is as follows: 

MACRO H ,CNRT,SPLE=GROWTH(RSW,C0NVF, . . . 
M R D I G , R D R , H I ) 

The amount of protozoa is now defined by 

H = I N T G R L ( H I # A G R ) 

The actual growth rate (AGR) is the difference between the net 
growth rate ( N G R) and the rate of sampling (R S A M): 

AGR=NGR-RSAM 

and the net growth rate ( N G R ) is the difference between the gross 
growth rate minus the natural death rate (D R): 

NGR=CNRT*CONVF-DR 
DR=RDR*H 

In calculating, the consumption rate of food ( C N RT ) , the maximum 
digestion rate must be accounted for. This is done by an AMIN1 
function, which takes the minimum of its arguments: 

CNRT=H*AMIN1(MRDIG,RSW*FOOD) 

Exercise 42 
Draw a graph of the consumption rate of food (CNRT) against 
the density of food (FOOD) for arbitrary values of MRDIG, 
RSW and H. How does this graph change with changing MRDIG, 
H or RSW. For which value of FOOD does CNRT equal zero and 
which value of F 0 0 D does N G R equal zero ? Reason why this expres
sion does not contain the amount of protozoa (H) . 

The calculation of the rate of sampling ( R S A M) raises some problems 
because it is a discontinuous process. The sampling occurs only once 
a day and is zero for the rest of the time. The sample size is defined 
with 



SPLE=FDTIME*0.1*H 

in which FDTIME, as defined outside the MACRO, is one during 
one time-step at the end of the day and otherwise zero. To let the 
sampled quantity vanish during one time-step, the rate of sampling 
must be defined as the size of the sample divided by the time-step 
DELT: 

RSAM= SPLE/DELT 

as is seen from calculating 

X l+A<= X,-(0.1X,/Af)Af 

The MACRO is now terminated with 

ENDMAC 

In the main program, the MACRO is called for twice: once for the 
species P. aurelia 

HA,CNRTA,SPLEA=GROWTH(RSWA,CONVFA,.. . 
MRDIGA,RDRA,HIA) 

and once for the species P. caudatum 

HC,CNRTC,SPLEC=GROWTH(RSWC,CONVFC,... 
MRDIGC,RDRC f HIC) 

In the main program FDTIME is defined by 

FDTIME=IMPULS(1.,1.) 

This function has the value 1 at the moment indicated by the first 
argument and subsequently at intervals defined by the second argu
ment. The rest of the time, the function equals zero. The variable 
F D TIM E is used within the macros to define the moments of sampling 
and outside the MACRO also to replenish the food at daily intervals, 
according to 

PARAMETER V0LUME=1 
FEED=FDTIME*(L-AFOOD)/DELT 
AFOOD=INTGRL(L,FEED-CNRTA-CNRTC) 
FOOD = AFOOD/VOLUME 

L is the amount of food given daily after removal of the food that is 
left over from the previous day and either equal to 1 or 0.5 loop of 
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bacteria. The amount of food during the day is continuously dimin
ished by consumption by the P. aurelia and P. caudatum species, but 
only once a day replenished to the original level. 

Exercise 43 
Why is VOLUME equal to 1 rather than 5 cm3 7 Why is it advisable 
to distinguish between A FOOD and FOOD? 

Due to the discontinuity in the food supply and in the sampling it is 
necessary to integrate according to the 

METHOD RECT 

and to specify D E LT also on the TIMER card: 

TIMER FINTIM=16, DELT=0.01, 0UTDEL=1 

Exercise 44 
Why is it impossible to use integration methods that adapt the size 
of the time-interval DELT to the rate of changes of the integrals? 
(See also Section 2.3). 

For comparison with Gause's data it suffices to print the size of the 
samples SPLEA and SPLEC each day, but a more frequent printing 
of population numbers is necessary to study the behaviour of the 
simulated populations during the day. To complete the program all 
initial values and parameters must be defined on parameter cards. 
There are eight parameters: CONVF, RSW, RDR and MRDIG 
that have to be derived from the experimental data and must be 
substituted in the simulation program. In principle, these can be found 
by trial and error, using some goodness of fit criterion to the observa
tional data. But such a procedure can be started only in practice 
when the order of magnitude of all the variables concerned are known 
from a preliminary analysis of the data. 

Exercise 45 
Why? 

58 



5.3 First estimation of parameters 

Gause observed that at first the medium remained opaque during 
the whole day, but that later the medium became transparent within 
a few hours after the addition of new food. From this he concluded 
that all food was consumed rapidly, once the size of the population 
was not far from its maximum. Obviously there is sufficient time for 
digestion and searching and the maximum size of the population does 
not depend on the rate of digestion of the food or on the rate of 
searching water. Instead it depends only on the amount of food given, 
the conversion factor for food, the relative death rate and the rate of 
sampling. About Hx(RDR-fO.l) number of protozoa die or are 
sampled and CONVF x L number grow in the monoculture in a day 
when the daily food is consumed completely. 
In the equilibrium situation, these quantities are equal so that 
CONVF xL=Heqx(RDR+0.1) 
This equation contains two unknowns; CONVF and RDR, so that 
another equation is necessary to estimate their values. This second 
equation can be obtained by considering the growth rate (GR) at 
the moment that three-quarters of the maximum population size is 
reached. This growth rate may be estimated from the experimental 
data and is equal to: 

GR=CONVF x L - 0.75 xH cqx (RDR+0.1) 

This because it was observed by Gause, that the food was exhausted 
well within a day at this density. 
Combining both equations allows a first estimate of CONVF and 
RDR. 
The rate of searching the water (RSW) and the maximum rate of 
digestion (MRDIG) are estimated from the dynamics of the populations 
at the beginning of the experiment. During the early stages, the number 
of protozoa is so small that the concentration of bacteria stays 
practically the same during the whole day. It may be seen now from 
the data that the initial growth rates of the 0.5 and 1 loop series with 
P. aurelia are about the same and this means that the maximum diges
tion rate is at least reached at the 0.5 loop concentration. In other 
words, at this level 

MRDIGA=0.5xRSWA 
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bacteria. The amount of food during the day is continuously dimin
ished by consumption by the P. aurelia and P. caudatum species, but 
only once a day replenished to the original level. 

Exercise 43 
Why is VOLUME equal to 1 rather than 5 cm3? Why is it advisable 
to distinguish between A FOOD and FOOD ? 

Due to the discontinuity in the food supply and in the sampling it is 
necessary to integrate according to the 

METHOD RECT 

and to specify D E L T also on the TIM E R card: 

TIMER FINTIM=16, D E L T = 0 . 0 1 f 0UTDEL=1 

Exercise 44 
Why is it impossible to use integration methods that adapt the size 
of the time-interval DELT to the rate of changes of the integrals? 
(See also Section 2.3). 

For comparison with Gause's data it suffices to print the size of the 
samples SPLEA and SPLEC each day, but a more frequent printing 
of population numbers is necessary to study the behaviour of the 
simulated populations during the day. To complete the program all 
initial values and parameters must be defined on parameter cards. 
There are eight parameters: CONVF, RSW, RDR and MRDIG 
that have to be derived from the experimental data and must be 
substituted in the simulation program. In principle, these can be found 
by trial and error, using some goodness of fit criterion to the observa
tional data. But such a procedure can be started only in practice 
when the order of magnitude of all the variables concerned are known 
from a preliminary analysis of the data. 

Exercise 45 
Why? 
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5 3 First estimation of parameters 

Gause observed that at first the medium remained opaque during 
the whole day, but that later the medium became transparent within 
a few hours after the addition of new food. From this he concluded 
that all food was consumed rapidly, once the size of the population 
was not far from its maximum. Obviously there is sufficient time for 
digestion and searching and the maximum size of the population does 
not depend on the rate of digestion of the food or on the rate of 
searching water. Instead it depends only on the amount of food given, 
the conversion factor for food, the relative death rate and the rate of 
sampling. About Hx (RDR+ 0.1) number of protozoa die or are 
sampled and CONVF x L number grow in the monoculture in a day 
when the daily food is consumed completely. 
In the equilibrium situation, these quantities are equal so that 
CONVFxL=Hcqx(RDR-f0.1) 
This equation contains two unknowns; CONVF and RDR, so that 
another equation is necessary to estimate their values. This second 
equation can be obtained by considering the growth rate (GR) at 
the moment that three-quarters of the maximum population size is 
reached. This growth rate may be estimated from the experimental 
data and is equal to: 

GR=CONVF x L - 0.75 xH eqx (RDR+0.1) 

This because it was observed by Gause, that the food was exhausted 
well within a day at this density. 
Combining both equations allows a first estimate of CONVF and 
RDR. 
The rate of searching the water (RSW) and the maximum rate of 
digestion (MRDIG) are estimated from the dynamics of the populations 
at the beginning of the experiment. During the early stages, the number 
of protozoa is so small that the concentration of bacteria stays 
practically the same during the whole day. It may be seen now from 
the data that the initial growth rates of the 0.5 and 1 loop series with 
P. aurelia are about the same and this means that the maximum diges
tion rate is at least reached at the 0.5 loop concentration. In other 
words, at this level 

MRDIGA=0.5 x RSWA 
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but instead of 0.5, a lower value could be more appropriate. 
This is again an equation with two unknowns, so that another equation 
is necessary to make a first estimate of both parameters. This second 
equation can be obtained by considering the initial relative growth 
rate of the one loop series. This relative growth rate can either be 
read from the data or it can be set equal to 

RGR=MRDIGxCONVF-RDR-0.1 

at least as long as the bacterial concentration is so high that the 
maximum digestion rate is maintained during the day. 
For P.caudatum the relative growth rate of the 1 loop series is higher 
than of the 0.5 loop series, so that there is no certainty that the maxi
mum rate of digestion is reached at a bacterial concentration of 1 loop 
per volume. A first estimate of the parameters may be obtained here 
by assuming that 

MRDIGC=lxRSWC 

but instead of 1, a higher value could be more appropriate. 

Apart from the uncertainty about the exact value of the constant in 
the equation for the maximum digestion rate, the estimation procedure 
is also unfavourably affected by the large scattering of the data. 
This makes it difficult to arrive at a value for the initial relative growth 
rate. It is therefore still worthwhile to inspect the system for other 
interrelations between the constants. 
These are obtained from the observation that the maximum number 
of P. aurelia in both the one loop and 0.5 loop series is about 4 times 
higher than the number of P. caudatum so that (probably) the P. aurelia 
individuals are about 4 times smaller. Thus, it is logical to assume 
at first that the conversion factor of food, as recalled with the unit 
protozoon loop"x, is4 times larger for P. aurelia and that the maximum 
rate of digestion, in the unit loop protozoon"1 day"1 is 4 times smaller. 

Exercise 46 
Take the graphs that were drawn for the monocultures in Exercise 40 
and estimate for both species and both series, the maximum population 
size (Hcq), the growth rate (GR) at the moment that the population 
equals 0.75 of the maximum and the initial relative growth rate 
(RGR). Calculate the parameters CONVF, RDR, MRDIG and RSW 
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for both species and both series independently with the 2 x 2 equations 
given. Make first estimates of these parameters for both species, 
taking the size of the individual protozoon into account. Try to find 
as many reasons why these first estimates may be considerably in error. 

5.4 Final adaptation of parameters 

There are many reasons why the first estimates, especially of the rate 
of searching and the maximum rate of digestion are very rough indeed. 
It is therefore necessary to improve on these by comparing the results 
of simulation runs with the actual results. In principle the results of 
the monocultures should only be used for this purpose, but it appears 
that the scattering of the observational data is so large that it is very 
difficult to arrive at sufficiently accurate estimates for the parameters. 
Fortunately, the results of the competition experiments are also 
available to improve the estimates. When these results are used, 
it should be realized that it is then implicitly stated that the inter
ference between both species as proposed in the model is correct, 
so that a comparison between simulated and actual results of the 
competition series cannot be used to validate this assumption. How
ever, the large scattering of the observational data necessitates this 
way of working. 
Further simulations show that the course of P. caudatum in the mixture 
as characterized by the time at which the maximum population size 
is reached and the rate of its decline in later stages, is especially 
governed by the ratio between the searching rates of the water by 
both species and by the ratio of the relative death rate and the con
version factors. In other words, the differences between both species 
in this respect are especially manifest in the competitive situation. 

Exercise 47 
Explain why this is so. 
Finalize also the simulation program and try to find better estimates 
of the parameters by trial and error. 

After a considerable amount of experimentation with the simulation 
program it appears that the best agreement between simulated and 
actual results, as judged visually on graphs, is obtained with the 
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parameter values listed in Table 4. 

Table 4 Parameter values for P. aurelia (A) and P. caudatum (Q 

Relative death rate (RDR) 0.45 0.45 day"1 

Conversion factor (CONVF) 3000 750 prot. loop"1 

Saturation level (MRDIG) .5610"3 2.25 10~3 loop.prot."1 day"1 

Rate of searching water (RSW) .006 .006 volume.prot."1 day"1 

number 
sampled 

240 

R aurelia 
number 
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160 

80 

R caudatum 
Q 

ff— o» measured mono culture 20 
A» measured mixed culture 

mulated mono culture 
imulated mixed culture 
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o*~& I L o 
12 15 0 

days 

Fig. 15 | Simulated and observational results for the one loop experiment 
with P. aurelia and P.caudatum. 

The simulated and observational data for the one loop series are 
summarized in Fig. 15, to show that within the limits of accuracy 
governed by the scattering of the data there is a good agreement and 
that the results can at least be understood by assuming that the species 
only affect each other by competing for the same food. The largest 
species, P. caudatum, loses in competition probably because the rate 
of searching the water does not increase proportionally with the size 
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of the protozoa, so that per unit biomass of protozoa less bacteria 
are available for the larger animal. This is likely, because the surface 
weight ratio, and with this the mobility and the chance of meeting 
bacteria, is considerably reduced. This competitive advantage is 
obvious in situations where the concentration of bacteria is small. 
At higher concentrations, the consumption is governed by the maxi
mum rate of digestion which is four times larger for the four times 
larger species, so that the species match each other in this respect. 
In the analysis of the original experiments of Gause, it was taken into 
account that during the early stages the concentration of protozoa 
was so small that the food level hardly decreased during the day and 
that during later stages the food was rapidly depleted. Although not 
observed by Gause, we are now in a position to consider in more 
detail the daily course of food concentration and number of protozoa 
because these have been simulated. Some of these simulated results 
are presented in Fig. 16 for further inspection. 

^population 
(arbitrary scale), 

=food 

t 

1day in the beginning 1 day in the end 

Fig. 16 | Simulated course of growth and food supply of a Paramecium 
species in monoculture during a day at the beginning and the end of the 
experiment. 

Exercise 48 
Why is the growth of protozoa during the beginning of the experiments 
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nearly exponential? Why, at the end of the experiment, is the maxi
mum size of the population at some time during the day, larger than 
the population size, observed at the end of the day? Which is higher, 
death through natural causes or through sampling? 

5.5 Stochastic aspects 

The simulation program presented in the previous sections is fully 
deterministic and does not explain at all the large scatter of the 
observational data. There are, however, two stochastic phenomena 
that are accessible for further analysis. These are the sampling process 
and the death process. 
As far as the sampling process is concerned, it was assumed that 
exactly 1/10 of the population is taken away when 1/10 of the solution 
is removed. However, this is not true. The protozoa are, after stirring, 
randomly distributed throughout the solution so that either more or 
fewer protozoa than the average may actually be found. To simulate 
the actual number that are in the sample, this number must be drawn 
out of a probability function around the average. Since the number of 
protozoa may be small, the probability function of Poisson may be 
used. 
This function can be introduced into the simulation program by 
replacing the statement for the sample size in the MACRO GROWTH: 

SPLE=FDTIME*0.1*H 

by the statements 

AVSMP=0.1#H 
SPLE=P0ISS(P,AVSMP,1 .) 

The first statement calculates the size of the average sample at every 
time-interval and the second statement is a function that assigns an 
appropriate random number to the sample size. The value of the first 
variable in this argument is an odd number, to be specified on a 
parameter card (outside the MACRO) and is necessary to start the 
process of generating random numbers. The second variable in the 
argument is the average number of protozoa in the sample and the 
number 1 indicates that the sample is taken with an interval of one day. 
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As far as the death process is concerned, the amount of protozoa that 
die during one time step (AD) is on the average: 

AD=H*RDR*DELT 

and the random number that dies is accordingly 

RD=POISS(P,AD,DELT) 

The third variable in the argument is DELT because death occurs 
every time-step. The rate of dying is now calculated from the amount 
that dies by dividing again by DE LT with 

DR=RD/DELT 

These three statements replace the statement 

DR=RDR*H 

in the original MACRO GROWTH. 
Results of some simulations are presented in Fig. 17, which shows 

number 
sampled 
70 n 

6 0 -

5 0 -

4 0 -

3 0 -

2 0 -

10-

0 

• 

j-
j 

" * * " _ - • - • 

• M O O 

« / d " o 
O ° K « 

O x 

O 

os measured sample 
—* deterministic simulation 
• = deterministic sample.but 

stochastic death process 
«* both stochastic sampling, 

and death process 

/ 

• « 1 1 1 — 
3 6 9 12 15 

days 

^'g. 17 | Observational and simulated results of P. caudatum in the one loop 
experiment under various assumptions regarding the operation of random 
Processes^ 
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the growth of P. caudatum in the one loop series. The solid line is 
the growth curve obtained by deterministic simulation. The Roman 
crosses are the simulated results with a deterministic sampling process 
and a random death process and the Greek crosses present the 
simulated results that are obtained with a stochastic sampling and 
stochastic death process. The open dots are the observed data. It 
must be concluded from these results that the main contribution to 
the variability is due to the method of sampling and that the quality 
of the experiment would have been very much improved if some 
method of measuring the whole population had been introduced. 
The scattering due to the stochastic sampling is much larger than 
due to the stochastic death process, although about 45 percent 
of the population dies during one day and only 10 percent is sam
pled. A simple calculation can explain this. Let the equilibrium 
population be 1000 individuals. The average sample size is then 
100 and the standard deviation is according to the binomial prob
ability function ^0.9 x 0.1 x 1000 = 9.5. Each day an average of 450 
individuals dies out of 1000 and the standard deviation of this number 
is y/QA5x0.55x 1000 = 16. Because one tenth is sampled this reduces 
to a standard deviation of 1.6 in the sample and this is only one 
sixth of the standard deviation caused by sampling process itself. 
Moreover, the death process is distributed over the day so that some 
deviation may be even levelled by negative feedback throughout 
the day. 

Exercise 49 
Explain now why the scattering of the observational data for P. aurelia 
is much smaller than for P. caudatum. 

5.6 The programming of probability functions 

To simulate stochastic processes, C S M P contains a so-called random 
generator that generates numbers between 0 and 1 out of a standard 
uniform probability function and a Gaussian generator that generates 
numbers out of a normal probability function with a specified average 
and standard deviation. The language does, however, not contain 
a Poisson generator, so that such a generator has to be introduced by 
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the user. This is most conveniently done in the form of a M A C RO and 
in this section the content of this MACRO is described. Unfortunately 
this has to be done in a way that is only understandable for the reader 
who has some knowledge of FORTRAN and probability calculus. 
The heading is: 

MACRO N=POISS(P,MEAN,PERIOD) 

DO loops and I F statements as such cannot be sorted by CSMP, 
so that the statements are given in computational order. This is 
indicated by the card: 

PROCEDURAL 

If the time is not equal to n times P ER10D, the sampling need not 
be executed and N equals zero: 

N = 0 
I F ( I M P U L S ( 0 . , P E R I O D ) . L T . 0 . 5 ) GO TO 1 

whereby 1 is a CONTINUE statement at the end of the MACRO. 
In case the expectation value is larger than 25, the Poisson distribution 
is sufficiently approximated by a Gauss distribution with a standard 
deviation equal to the square root of the average. 

IF(MEAN.LT.25.) 60 TO 2 
N=GAUSS(P#MEAN,SQRT(MEAN)) 
GO TO 1 
2 CONTINUE 

The Gauss function is a CSMP function that executes the random 
choice out of a normal distribution. P can be any odd integer. The 
second and the third argument represent the average and the standard 
deviation, respectively. 
Below a number of 25 the deviation between the Poisson distribution 
and the Gauss distribution becomes too large. To execute the selection 
from the Poisson distribution a number is first drawn between 0 
and 1 according to standard uniform probability function. This is 
done by a C S M P function: 

LOT=RNDGEN(P) 

P is again the odd integer. 
Then this number is used to read the output from a cumulative 
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Poisson distribution function. The cumulative Poisson distribution is 
obtained by a series development. The probability of a number to 
be smaller than or equal to 0, 1, 2, 3... is given by e"z(l + z/l! + 
z2/2!4-z3/3!...) where z is its average. 
This is programmed as follows: 

SUM=1-
PR0D=1. 
EMINZ=EXP(-MEAN> 
DO 4 J = 1 , 1 0 0 
I F (LOT.GT .SUM*EMINZ) GO TO 3 
N = J - 1 
GO TO 1 
3 CONTINUE 
PR0D=PR0D*MEAN/J 
SUM=SUM+PROD 
4 CONTINUE 

Then the M A C R 0 is concluded by 

1 CONTINUE 
ENDMAC 

The PROCEDURAL card also ensures that all statements of the 
MACRO are sorted as one block at a place where P, MEAN and 
PERIOD are available and N is needed, as indicated by the M A C R 0 
definition card. 
By using a Poisson probability distribution function which is for 
higher numbers replaced by the Gaussian function, numbers higher 
than the total number of individuals in the population may be drawn. 
Chances that this occurs are very small when the death process is 
considered, but may not be negligible in the sampling process. This 
problem does not exist when the sampling process is formulated on 
basic principles. 
For this purpose, the protozoa in the solution are considered analo
gous to the black balls and the volumes of water equal to the volume 
of protozoa analogous to the white balls in the traditional jar with 
coloured balls. The following symbols can now be defined: 
N: the total number of volume elements and n: the number drawn, 
B: the total number of protozoa and b: the number drawn (black 

balls), 
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W: the total number of volume elements water and w: the number 
drawn (white balls). 

Hence, N = B +W and n = b+w. 
According to basis theory, the number of combinations of drawing 
a number of n balls out of a total of N is: 

N! 
(5.1) (N-n)!n! 

Similar expressions hold for the white and black balls, so that the 
number of combinations of drawing b black balls and w white balls 
equals the product 

B ! - x W ! (5.2) 
(B-b)!b! (W-w)!w! 

To obtain the probability of obtaining b black and w white balls in 
the sample, this expression must be divided by the total number of 
combinations. This gives 

- J » _ v, Wl „ (N-n) ln l . 
(B-b)!b! (W-w)!w! N! V'J 

In the present situation, the volume of water is infinite with respect 
to the volume of paramecia, so that W and w are infinite with respect 
to B and b. 
Hence when a fraction f of the volume is sampled the total number 
of volume elements (water and protozoa) is fixed according to 

n = f.N 

Since also W = N - B and w = n -b , expression (5.3) for the 
probability can be transformed into 

_ B!(N-B)!(f-N)!((l-Q-N)! 
(B-b) !b! ( ( l -0 -N-B + b)!(f-N-b)!N! ^ ' ; 

which approaches to 

B!fb(i —f)B"b 

^B^b)TbF 
with increasing N. 

(5.5) 
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This is a binomial probability distribution function. 
The chance to find 0,1,2,... paramecia in the sampled volume is now 

Number Chance 
0 ( l -f)B 

1 Bf( l - f )B _ 1 

2 B(B- l ) f 2 ( l - f )B _ 2 /2 
The sampling may now be programmed as follows: 

MACRO N=BIN0M(B,F,P,PERI0D) 

N is the number which is actually drawn, B is the total number of 
paramecia in the vessel, F is the fraction of the liquid which is taken 
out, P is some odd integer and P E R10 D is the interval of sampling. 

PROCEDURAL 
N = 0. 
IF(IMPULS(0.,PERIOD).LT.0.5) GO TO 100 
LOT=RNDGEN(P) 
PR0D=(1.-F)**B 
SUM=0. 
DO 400 J=1, 100 
SUM=SUM+PROD 
PR0D=PR0D*(B-J+1)*F/(J*(1.-F)) 
IF(LOT.GT.SUM) GO TO 400 
N = J-1 
GO TO 100 
400 CONTINUE 
100 CONTINUE 
ENDMAC 

Still one remark should be made. If the expectation value of the 
sample is small and f is small, the expression for the probability 
distribution may be simplified even more. The expectation value is 
then f x B. If this product stays at a constant low value, then f decreases 
with increasing B. The ratio B!/(B—b)! approaches then Bb and the 
power (1—f)B-b approaches (1— f)B which can be replaced by e~fxB. 
Substitution in the expression for the binomial distribution Eqn (5.5) 
gives 

b! 

70 



Replacing the expectation value f x B by z gives 

zbe"z 

b! 

which is the Poisson probability distribution function. 

(5.7) 
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6 Modelling of development, dispersion and diffusion 

6.1 Introduction 

In Chapter 1 it was stated that systems ecology is based on the assump
tion that the state of an ecosystem at any particular time can be 
expressed quantitatively and that changes in the system can be de
scribed in mathematical terms. Various models of ecosystems were 
given and in all examples it was possible to use a very limited number 
of state variables and associated rate equations. This is not surprising. 
Yeast and Paramecium are simple organisms and the responses as 
a population are hardly dependent on such attributes as size and stage 
of development. The small grain example concerns more complicated 
organisms that are synchronized in time and whose responses strongly 
depend on size, stage of development and physiological conditions 
and on the continuously changing physical environment. However, 
in this case the problem was simplified by a model with a limited 
number of state variables by only treating the interference of similar 
plant species. No attempt was made to construct a predictive model 
of the growth and development of form and function of the single 
species. 
Although we may accept that the ultimate purpose of biology in 
general and ecosystems analysis in particular, is the construction of 
models that predict growth and development of single and interfering 
species in natural conditions, we must admit that at present this goal 
is unrealistic. The knowledge of the relevant processes is quantitatively, 
but also qualitatively far too fragmentary and even if this were not so, 
there would be serious modelling problems, because the number of 
state variables involved would be very large. 

Obviously, it is necessary to limit the goals of systems analyses drasti
cally to proceed at all. Rather than analysing all aspects, a distinction 
is often made between growth and morphogenesis: growth being the 
main subject of study and morphogenesis being taken more or less 
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for granted. For instance, it is assumed that maize plants develop out 
of maize seeds, wheat plants out of wheat seeds and spiders out of 
spider's eggs. In models, such broad assumptions are made operative 
by introducing preconceived information on the development of the 
species. For instance, in a model of a wheat plant, a germination, 
a vegetative and generative stage are distinguished a priori, and it is 
assumed that in general 9 to 11 leaves develop in the vegetative stage, 
and that the main growing point develops into the reproductive organ. 
Likewise, an a priori distinction is made between the successive 
development stages of insects, as there are eggs, instars, pupae and 
imagos. What is left to be simulated is the growth within various 
stages and the rate of their development to subsequent stages. Biol
ogists that are interested in understanding the development of form and 
function may have another view on the matter and may argue that 
this approach is too simplified, but appreciation of simplification is 
more a matter of goal than of principle. 

What are the consequences of such an approach for the technique of 
modelling? Rather than modelling a system fully in terms of mea
surable state-variables, it is also characterized by historical informa
tion which in its most elementary form becomes a record of age only. 
This is an external record, because age can be known only when 
the moment of birth is recorded and cannot be determined as such 
by means of analyses. On the other hand, when age is recorded, 
relevant properties may be derived from it by correlation. 
For instance, in demographic studies the chances of marriage, child
birth, and death may be arrived at in this way. Individuals are lumped 
at their birth in age-cohorts. Then the ages of the cohorts is kept 
track of and from them the number of offspring and deaths in 
a year is calculated. Such a crude technique may do for warm-blooded 
animals, but not for plants, insects and many other organisms, since 
their development rate depends largely on environmental conditions. 
It is then often attempted to conserve past experience in another 
variable of state: some physiological age. This may be a simple external 
integral of the temperature: the temperature sum, but also a numerical 
characterization of the development stage. 
As long as such cohorts are characterized by age only, no dispersion 
occurs. Human individuals that are classified at their birth in the 
cohort 1970 remain there for their whole lifespan and if nobody is 



classified in the cohort 1971, this cohort will remain empty. But, as 
soon as a physiological age criterion is introduced, some individuals 
that are born early may age slowly and may be overtaken by indivi
duals that are born later. In other words, individuals that belong to 
the same age-cohort may become dispersed over a range of physiolo
gical ages and it is necessary to develop programming techniques 
that account for such dispersion phenomena. 
This all may seem sophisticated, but such modelling is still very 
primitive, because it relies in essence on correlations between relevant 
variables and an external record of past experience and avoids the 
problem of modelling the main aspects of development of form and 
function on basic principles. 

6.2 Physiological age and development stage 

The development stage of warm-blooded animals may be often charac
terized by a record of the chronological age only. This situation is 
completely different for many other organisms, such as insects and 
plants. 
Temperature is then often the main determinant, so that the develop
ment stage is often accounted for by means of the temperature sum: 

TS=INTGRL(0. # AMAX1(0. f T-TT)) 

in which T is the current temperature and TT a threshold temperature 
below which the development processes proceed at a negligible rate. 
Based on experimental results, it is then assumed that certain develop
ment stages are reached at certain values of the temperature sum. 
For instance, it may be found that the threshold value for maize is 
12 degrees centigrade and that tasselling occurs at a temperature sum 
of 400 degree-days and the plant ripens at a temperature sum of 
700 degree-days. 
If this approach is taken, it is implicitly assumed that the development 
rate of the species is proportional to the temperature above the thres
hold value. However, in general, there is also a non-linear response 
of development rate to temperature in the higher ranges, as is illus
trated in Fig. 18 for two plant species. Here, a constant temperature 
during growth is given along the horizontal axis and the development 
rate along the vertical axis, the latter being defined as the inverse 
of the number of days from emergence to flowering or tasselling. 
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Fig. 18 | The development rate of the plant species maize and oats in 
relation to temperature at a day length of 14 hours. 

A more sensible approach seems therefore to consider the develop
ment stage of the plant as defined by 

DVS=INTGRL(0.#DVR) 
m which the development rate in day"1 is a function of the current 
temperature according to 

DVR=AFGEN(DVRTB,TEHP) 
FUNCTION D V R T B = ( 0 . , 0 . ) , ( 1 2 . , 0 . ) , . . . 

< 2 6 . , 0 . 0 3 5 ) , ( 2 8 . , 0 . 0 3 8 ) , . . . 
< 3 0 . , 0 . 0 3 9 ) , ( 4 0 . , 0 . 0 4 1 ) 

flowering or tasselling being reached when DVS passes the value of 
one development unit. 

l s assumed that the influence of temperature on the development 
rate is the same during the whole period of growth, and this assump-
jon is confirmed by the well-known fact that at constant temperature 

e t l m e between appearance of successive leaves is constant (de Wit 
e • al., 1970) and that accordingly, a certain calculated development 

age fully characterizes the number of leaves and other morphological 
properties of the plant. The temperature sum or the development 
% §e approach being used, the question remains whether the response 
m r a t e °f development is immediate or not; that is whether the tem-
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perature with its fluctuations throughout the day and from day to day 
should be used or some average temperature over one day or more. 
This may make a considerable difference. 

Exercise 50 
Calculate manually the development stage of maize after 20 days when 
a the temperature is 14°C all the time, 
b the temperature is 7°C for 12 hours of the day and 21 °C for the 
other 12 hours, 
c the temperature is 30 °C all the time, 
d the temperature is 40 °C for 6 hours of the day and 26.7 °C for 
the other 18 hours. 
Explain the difference. 

At least for plants (de Wit et al., 1970) there are many indications 
that the response to temperature is instantaneous, so that use of 
average daily temperatures may lead to considerable errors. 
Of course, there are other problems. The development rate may be 
influenced by daylength or even rate of biomass growth. Like tem
perature, these factors may also be accounted for on an experimental 
basis. However, interactions are often so complicated that the develop
ment of the plant cannot be accounted for by a simple physiological 
age. Then more than one characteristic for the development stage 
may be considered. But problems can then multiply at such a disastrous 
rate that it is better to take the hard road: modelling of the morpho
genesis processes. 
What has been said in this section holds in principle for other plant 
growth stages and other organisms as will be shown later by means 
of various examples. 

6.3 Demographic models 

6.3.1 Age-classes 

Decay of radioactive material occurs with a constant relative rate, 
apart from random effects that become manifest at low rates. Similar 
decay processes were assumed to exist for protozoa. However, this 
is more the exception than the rule with living organisms. In general 
these organisms develop and age accordingly, and their chances of 



dying appear to increase with increasing age. 
To simulate such situations it is necessary to have the age distribution 
of the population at hand. Now it is practically impossible and for 
most applications unnecessary to memorize the age of each individual. 
Instead it suffices to memorize the number of individuals in age 
classes. For instance, in demographic studies it is customary to classify 
human beings according to their age in years. This is of course an 
arbitrary choice, depending on purpose. For some applications it 
would be better to classify according to age in months and for others 
it would suffice to classify in units of five or ten years. 
Such age distributions are memorized conveniently by using the 
INDEX feature to create a series of age-classes. For instance, human 
populations may range in age from 0 to about 100 years and if an age 
distribution has to be stored in age classes of 5 years, it suffices to 
write: 

H1=INTGRL(HI1#-PUSH*H1/DELT) 
H '2 ,20 '= INTGRL(HI '2 ,20 ' ,PUSH * . . . 

< H ' 1 , 1 9 ' - H ' 2 , 2 0 ' ) / D E L T ) 
PUSH=IMPULS(5.#5.) 
PARAMETER H I ' 1 , 2 0 ' = (20 data) 

Printed output of the variables H 1 , H 2 . . . , H 2 0 may be requested 
by 

PRINT H ' 1 # 2 0 ' 

Here PUSH has the value zero, except once every 5 years, when its 
yalue is set to 1. Only at that moment are the contents of all age 
classes shifted to the next one. As in other examples (Section 5) this 
Sf *? achieved by introducing a rate of change which is equal to 
the shifted amount divided by the time-interval of integration. The 
whole age distribution of the population is stored in this way with 
J resolution of 5 years, 

ased on this principle, a simulation program will be written that 
naputes the growth and age distribution of a population with death 

and birth rates depending on age. 
number of individuals in the first age-class is given by 

H1=INTGRL(HI1,TBR-PUSH*H1/DELT-RDR1*H1) 
e t 0 ^ birth rate is the sum of the birth rates from each age-class. 



These are given by 

B R ' 1 , 2 0 ' = H ' 1 , 2 0 ' * R B R ' 1 , 2 0 ' 

The relative birth rates are given on a parameter card: 

PARAMETER RBR ' 1 # 2 0 ' = (20 data) 

The twenty values are summed with 

TBR= BR1 + BR2 + BR19 + BR20 

The number of individuals in the other age-classes are given by 

H ' 2 , 2 0 ' = I N T G R L ( H I ' 2 , 2 0 ' , P U S H * . . . 
( H ' 1 , 1 9 ' - H ' 2 f 2 0 ' ) / D E L T - R D R ' 2 # 2 0 ' * . . . 
H 2 ,20 } 

as in the integral for the first age-class. 
The total population and the cumulative age-distribution of the 
population is now found by adding the number of individuals in each 
age-class with the following recursive operation: 

T H ' 2 , 2 0 ' = T H ' 1 , 1 9 ' + H ' 2 , 2 0 ' 

In demographic studies it is often customary to report relative birth 
and death rates as a yearly total rather than as an instantaneous rate 
and then it is best to integrate with time-intervals of one year. 

Exercise 51 
What is the difference between relative death and birth rates reported 
as a yearly total rather than as an instantaneous relative rate? Why 
is it necessary to integrate according to the METHOD RECT? 

6.3.2 Errors of approximation 

The lumping of populations into age classes introduces errors of 
approximation. These are small and negligible when many classes are 
used, but may be worth considering if a limited number of classes 
are distinguished. For instance, in a demographic model of a'human 
population, age-classes of 0-5, 5-10,10-15 years may be distinguished. 
Every five years the contents of the classes are shifted one place, so 



that generally the residence time in each class is five years. This is, 
however, not so for the first class, because it has a continuous inflow 
from the birth rate. Only the individuals born just after a shift will 
stay here five years. As time proceeds the residence time of individuals 
born later will become progressively shorter. On the average the 
residence time in the first class will be the half of the 'interval of 
pushing'. In other words, just after each shift the first age-class 
contains only individuals close to zero years, and just before the next 
shift the individuals are 0-5 years. The next age class contains just 
after the shift, individuals of 0-5 years and just before the next shift 
individuals of 5-10 years. With a constant birth rate, the average age 
of the individuals in the age-classes is therefore not 2.5, 7.5, 12.5 years 
and so on, but 1.25, 5, 10 years and so on. This leads to the conclusion 
that the age-classes lie between 2.5-7.5, 7.5-12.5 years and so on. 
The first class covers then the period between —2.5 and 4-2.5 years. 
Since birth occurs at zero years, the average age in this class is 1.25 
years. 
There is still a pitfall in initialization. At time zero, each age-class 
will be initialized with the number of individuals that are between 
the above given boundaries. Then it takes only 2.5 years before the 
centre passes to the next class. Therefore the first push should not 
occur after 5 years, but after 2.5 years, which can be achieved with 

PUSH=IMPULS(2.5, 5 . ) 

Another error is best illustrated by considering the integral for the 
first age-class, under the assumption that the total birth rate (TBR) 
is zero for some time. At the time when PUSH = 1, this integral is 
diminished by its own content and by the number of deaths during 
that time-interval so that at the next moment the content of the integral 
is - H x RDR x DELT rather than zero. The reason is that too many 
individuals were shifted. The number that die during this time-interval, 
should not be removed another time by shifting. Therefore it is 
necessary to shift not the whole content of the integral but its content 
nunus the number that is lost by death during that time-interval. 
This is done by writing: 

H1 = INTGRL(HI1 f TBR-H1*RDM-PUSH* . . . 
( H 1 / D E L T - H U R D R D ) 

o r the first age-class and similar expressions for the others. 



Exercise 52 
The following tables contain demographic data of the population of 
the Netherlands on 31 December 1968. The data are grouped in 
classes with their centres at 1.25, 5, 10,... years (Set 1) and 2.5, 7.5, 
12.5,... years (Set 2) 

Population size 

Class centre 
in years 

Se t l 

1.25 

5 

10 

15 

20 

Set 2 

2.5 

7.5 

12.5 

17.5 

22.5 

Number of men 

Set 1 

305 OCX) 

612 OCX) 

597 OCX) 

575 000 

576 000 

Set 2 

611 (XX) 

613 000 

580 OCX) 

569 000 

583 (XX) 

Number of w o m e n 

Set 1 Set 2 

291 (XX) 

584 (XX) 

570 (XX) 

548 (XX) 

548 (XX) 

582 (XX) 

587 000 

553 (XX) 

543 (XX) 

554 (XX) 
25 517 (XX) 487 OCX) 

27.5 452 (XX) 420 (XX) 

30 429 OCX) 400 (XX) 

32.5 405 (XX) 380 (XX) 

35 399 (XX) 380 (XX) 

37.5 393 (XX) 381 (XX) 

40 382 (XX) 379 (XX) 

42.5 371000 378 (XX) 

45 367 (XX) 377 (XX) 

47.5 362 (XX) 376 (XX) 

50 338 000 353 (XX) 

52.5 314 (XX) 330 (XX) 
55 306 (XX) 327 (XX) 

57.5 297 (XX) 323 (XX) 

60 280 (XX) 310 000 
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65 

70 

75 

80 

85 

90 
and 
more 

Total 

62.5 

67.5 

72.5 

77.5 

82.5 

87.5 

92.5 
and 
more 

223 OCX) 

184 000 

150 (XX) 

90 000 

40 (XX) 

13 (XX) 

262 000 

184 000 

184 (XX) 

120 (XX) 

60 000 

20 (XX) 

3000 

6 383 (XX) 

262 (XX) 

226 (XX) 

180 000 

110000 

60 000 

23 (XX) 

298 000 

226 000 

226 (XX) 

150 000 

70 (XX) 

25 (XX) 

13 (XX) 

6 415 000 

Death rates per thousand men and woman per year. 

^iass 
years 
Set 1 

1.25 

5 

10 

15 

20 

25 

30 

centre 

Set: 

2.5 

7.5 

12.5 

17.5 

22.5 

27.5 

Men Women 

Set 1 Set 2 Set 1 Set 2 

15.6 11.4 
3.9 2.8 

1.8 1.2 
0.7 0.8 

0.5 0.3 
0.5 0.3 

0.5 0.3 
0.6 0.3 

0.7 0.4 
0.9 0.4 

1.0 0.4 
1.0 0.5 

1.2 0.6 
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32.5 1.4 0.8 
35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

37.5 

42.5 

47.5 

52.5 

57.5 

62.4 

67.5 

72.5 

77.5 

82.5 

87.5 

1.5 

2.2 

4.0 

6.5 

9.0 

11.5 

16.0 

35.0 

70.0 

150.0 

300. 

1.8 

3.1 

5.2 

7.8 

10.7 

13.7 

25.5 

52.0 

110.0 

200. 

400. 

1.0 

1.5 

2.5 

4.0 

5.5 

8.0 

13.0 

20.0 

50.0 

120.0 

250. 

1.2 

2.0 

3.2 

4.7 

6.7 

10.5 

16.5 

35.0 

85.0 

180. 

380. 
90 600. 500. 

92.5 900. 760. 

The relative number of births per year per age group of the mother. 

Class centre 
years 
Set 1 Set 2 

15 

Set 1 

0 

82 

Set 2 

17.5 0.022 
20 0.091 

22.5 0.137 



25 0.159 
27.5 0.188 

3<> 0.152 
32.5 0.113 

3 5 0.084 
37.5 0.055 

4 0 0.036 
42.5 0.016 

4 5 0.010 
47.5 0.002 

50 0 

The ratio between the number of boys and number of girls that are born, 
is 1.048. 

Write a simulation program for the growth of the population in 
the Netherlands, using age-cohorts of 5 years. Which set of data must 
be used, Set 1 or Set 2? 
Why is the time-interval of integration a half year? 
Simulate over a period of 50 years and ask for the total men and 
woman and the relative composition of the population as to sex and 
age every five years. 
Determine also the number of graves after 50 years, if these are 
maintained for a period of 50, 25 and 10 years. 
Death rates during the first year are much higher than during the 
next years. Is there a simple way of taking this into account? 

6.3.3 The matrix method 

An case DELT in a program with age-classes equals the length of 
. c'ass, the contents are shifted every time-step one place and are 

diminished at the same time by the amount died. If the relative death 
and birth rate do not change with time a matrix method, introduced 
y Leslie (1945) may be applied to predict the relative composition 

and the relative growth rate of the population in the stationary state, 
nis is not a simulation method, but will be discussed here because 

1. snows the advantages and disadvantages of matrix algebra versus 
simulation in demographic studies. 
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Let the contents of the age-classes be the elements of a vector. If there 
are ten age-classes, the vector is ten dimensional. The number of 
individuals in each age-class one time-interval later is now found by 
multiplying this vector by a matrix as in Fig. 19. 

H1 
I 
I 
I 
I 
1 
1 
1 
1 
1 
1 

H10 

— 

T+DELT 

F1 F2 

S1 

0 

0 

S2 

0 

0 

\ 0 

^ \ ^ 
O N 0 

\ \ \ 

0 N. 0 
\ N \ 

—r 0 S9 

r10 

0 
I 
I 
I 
I 
I 
I 
I 
0 

X 

H1 
* • 

H10 

Fig. 19 | The matrix method. H1-H10 are the number of individuals in 
the age-classes, F1-F10 the relative number of births in and S1-S9 the 
fraction of each class that survive the time-span DELT. 

At the right side, the vector at time T and at the left side the vector 
at time T 4-DELT is given. The latter is found by multiplication of 
the vector at time T by the matrix. In the matrix, FI is the relative 
number of births per time step in class I and SI is the fraction of 
class I that passes to 1+1; in other words 1 minus the fraction that 
dies during a time-interval. 

It has been proven that repeated multiplication of a vector by a 
matrix results, in due course, in a vector that has a constant relative 
composition and whose length increases by a constant factor each 
time. These are called the dominant eigenvector and the corresponding 
eigenvalue. 
It follows from this that the population will approach a stable age-
distribution with a constant relative growth rate, provided that birth 
and death rates are constant. The standard method to find the domi
nant eigenvector and its corresponding eigenvalue is the power method 
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(Faddeev and Faddeeva, 1964) in which the multiplication is repeated 
until a stable relative composition is reached. This method is therefore 
very similar to the simulation method and has no computational 
advantage. 
However, there are shorter methods to achieve the eigenvector for 
matrixes that contain zeros except in the top row and one diagonal. 
One of these methods is presented in Fig. 20, which is de Jonge's 
modification of the method of Gauss-Seidel (pers. commun.). This 
iterative method is very cheap in terms of computing time. It is not 
explained here because it requires some knowledge of matrix algebra. 

TITLE MATRIX METHOD APPLIED TO GROWTH OF THE NETHERLANDS POPULATION 
PARAMETER C1*1.,R*7..P»1 . 
INITIAL 
PARAM F'1,17**3#0.,.055,.343,.47..282,.137,.04..005,7*0. 
PARAM S-1,16**.965,.996,.998..998..997,.996,.995..993..988,.98,.97, ... 

.96,.94,.92,.8,.5 
N*0. 

* ITERATION' 
NOSORT 

4 CONTINUE 
N=N*1. 
IFCN.GT.20.) GO TO 6 
C*2,17-*C'1,16*«S*1,16'/P 
Q W U C 1 
Q^.U'sQ'I.U' + F ^ . W ^ C ^ . W 
QSQ17/C1 
WRITE(6.800)Q,C1,C2,C3.C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14, ... 
C15.C16.C17 

800 F0RMATC1H .F8.5/,9F8.5/.8F8.5///) 
I F ( A 8 S ( P - Q ) . L T . 1 . E - 6 > GO TO 6 
P * ( R « P * Q ) / ( R * 1 . ) 
GO TO 4 

ftw 6 CONTINUE 
.DYNAMIC 

E N S E R F I * T I M » I . , O E L T * I . 
STOP 
EN0J0B 

*^g. 20 | An iterative determination of the eigenvector and its corresponding 
eigenvalue of a matrix as in Fig. 19, written as an INITIAL section in 
CSMP. 

Ahe method gives directly the eventual stable age-distribution and 
the corresponding relative growth rate, which is the eigenvalue minus 
one. The method does not give the total population after n years. 

0 thieve this important value, the power method or straight-for-
w&rd simulation must be applied. 
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6.4 Germination models 

6.4.1 Boxcar train without dispersion 

Like the development of plants, the germination of seeds or the 
hatching of eggs may take some time, which depends on environmental 
conditions, especially temperature. If a certain amount of seeds is 
placed suddenly in a position where the germination process may 
start, its germination stage at any moment may be defined by 

GS=INTGRL(0.,VDV) 

in which the velocity of development in day"1 is defined as a function 
of temperature by 

VDV=AFGEN(VDVTB,TEMP) 
FUNCTION VDVTB=(10.#0.065),... 

(15,0.143),(20.,0.143) 

The data hold for seeds of the winter annual Veronica arvensisy that 
have been stored for 15 weeks (Janssen, 1973). 

Exercise 53 
Write a simulation program for the germination stage, in which the 
temperature varies sinusoidally with the time of day with an amplitude 
of 5 degrees, and an average of 15 degrees (see also Fig. 2). The 
computation may be terminated as soon as the germination stage 
passes the value 1. What does this mean? How is this achieved? 

The above procedure may be used to follow the development of one 
batch of seeds. However, it is easy to vizualize a situation with seeds 
in different stages of germination and then their age-distribution has 
to be taken into account. For this purpose, classes have to be distin
guished and because development is very much a function of tem
perature, these must be development classes rather than age classes. 
Hence, the contents must not be shifted at preset time-intervals, but 
at the moments that the development stage is increased by the inverse 
of the number of classes (N). 

Exercise 54 
Why 1/N? 
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This is achieved by defining a TUSH' according to 

PUSH=INSW(GS-1/N,0.,1.) 
GS=INTGRL(0.,VDV-PUSH*1/N/DELT) 

Here PUSH is set to one by the INS Witch, at the moment GS is 
larger than 1 / N. This moves the contents of the classes and decreases 
at the same time the integral GS by the amount 1 /N, resetting this 
integral at the correct value close to 0. G S is increased again at the 
proper rate by the velocity of development. 

Exercise 55 
Write now a simulation program for the germination of Veronica 
arvense seeds at 20 °C with 10 development classes. Execute the 
program introducing an initial amount of 1000 seeds at time zero. 
At which moment do these seeds germinate ? 

6.4.2 Boxcar train with constant relative dispersion 

Usually germination does not take the same number of days for 
different seeds, because neither the seeds nor their micro-environments 
a r e exactly the same. The overall effect is illustrated in Table 5, where 
the percentage germination of a batch of Veronica arvense seeds is 
given. 

J able 5 Germination percentages of Veronica arvense seeds at 10°C, stored 
for 15 weeks. 

Day 

Percent germ. 1 12 28 46 56 87 91 100 
10 13 14 15 16 20 22 27 

Exercise 56 
. a^ e graphs of the percentage germination and the rate of germina

tion against time. Calculate the average time of germination and its 
standard deviation from the data of Table 5. 
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The time curve for the rate of germination has the bell-shaped form 
of the Gaussian distribution function. 
It will be shown that such distribution functions are obtained also 
by simulation, if the contents of the classes are not pushed at certain 
moments but moved continuously from one development class to 
the next with a rate that is proportional to the rate of development. 
In the most simple situation, only one development class is con
sidered—ungerminated seeds—and germination is described as an 
exponential decay process of ungerminated seeds according to 

H=INTGRL(HI,-RTG) 

in which the rate of germination is given by 

RTG=H*RDV 

and RDV is the relative rate of development, or germination. 
The total amount of seed that are germinated equals then 

TG=INTGRL(0 . f RTG) 

H, RTG and TG are presented in Fig. 21. For obvious reasons (see 
also Chapter 2) H and RTG decrease exponentially with time and 
TG approaches HI accordingly. The average germination period is 
the integral of the rate of germination at any moment multiplied by 

number 
1 

number 
number 

Fig. 21 | Amount of ungerminated seeds (H), germination rate (RTG) and 
amount of germinated seeds (TG), when germination is described as an 
exponential decay of ungerminated seeds with a relative germination rate 
of 1 day""1. 



the time that has elapsed since the start of the process, standardized 
at a unit amount of seed (HI =1). This is the standardized surface 
under the curve of H versus time in Fig. 21 and in CSMP notation 
defined by 

AGP=INTGRL(0. fTIME*RTG/HI) 

Only the last value, when H is decreased to practically zero, is right. 

Exercise 57 
Calculate manually the average germination period when out of a 
batch of 100 seeds: 
100 germinate on day 5, 
100 germinate on day 10, 
50 germinate on day 5, and 50 on day 10 
75 germinate on day 5, and 25 on day 10 

Finish the simulation program to calculate the average germination 
period. Use the method RKS for integration and terminate simulation 
as soon as the content of H is 1/100 of its original content. Execute 
the program for a relative rate of development of 0.01, 0.05, 0.1 and 
0.5 day"1 and take FINTIM equal to 500 days. Multiply the average 
germination period by the relative germination rate. What is the 
dimension of this product AGP x RDV and what is its numerical 
value? 
Prove now the equality of the inverse of the relative germination rate 
and the average germination period by making use of the analytical 
expression: 

H = HIxe-R D V x T 

and of the equality: 

7 T x d H = - — I T x 
o H l L dT HI 
HI i r°° HH 

T x d H = - _ T x — x d T 
HIJo 

« the above exercise is done properly it will be clear that the product 
of the average germination period and the relative rate of development 
(APQxRDV) is always 1. Hence the relative rate of development 
as defined in the above program may be replaced by the inverse of 
the average germination period. 
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The results that are obtained by considering only one development 
class of ungerminated seeds describe much more a decay process of 
seeds than a germination process. This is different when more develop
ment classes are considered, as is again most conveniently done by 
means of the INDEX feature. For instance, a germination process 
that is described by means of 10 development classes may be program
med as follows: 

H1=INTGRL (HI, H1/REST) 
H'2,10'=INTGRL(0.,(H'1,9'-H'2,10')/REST) 
TG=INTGRL(0.,H10/REST) 

Obviously, when the average germination period is AGP and the 
number of classes 10, then the residence time (REST) in each class is 

REST=AGP/10 

Exercise 58 
What is the time constant (TAU, as defined in Section 3.5) of this 
system? 

The average germination period may be again a function of the 
environmental conditions and the time-interval of integration should 
be a tiny fraction of R E S T. 
The rate of germination and the cumulative amount of germinated 
seeds—the breakthrough curve—are given in Fig. 22 by the curves 
marked 10, it being assumed that the average germination period is 
20 days. The curves marked 5 and 20 holds when 5 and 20 development 
classes are distinguished. The form of the curve suggests that the 
simulation procedure leads to a Gaussian distribution function of 
germination, at least when a sufficient number of classes are used. 
With low class numbers, the results suggest a Poisson distribution. 
A detailed mathematical analysis (Goudriaan, 1973) shows that this 
is indeed so and that the relation between residence time (REST) 
or the average germination period (AGP = REST x N), the number 
of classes (N) and the standard deviation of germination (S) is given by 

N = S2/REST2 = AGP2/S2. (6.1) 

provided that the time-interval of integration (DELT) is small enough. 
This relation gives the number of development classes, that are 
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20 10 5 

40 50 
days 

*%. 22 | The rate of germination and the breakthrough curve, when 5, 10 
and 20 development classes are considered and the average germination 
Period is 20 days. 

necessary to achieve a certain relative dispersion (S/AGP), independent 
of the average germination period. 
The method is rather flexible. It is not necessary to start with a given 
patch of seeds and death rates depending on conditions may be 
introduced at any development stage. Moreover the transfer of 
contents is continuous, so that the method RKS with self-adapting 
time-interval of integration may be used. 

M.3 Boxcar train with controlled dispersion 

iwo methods to simulate germination have been discussed. The first 
method does not introduce any dispersion and the second method 
§ives a constant relative dispersion, once the number of development 
classes is fixed. There are, however, a few remaining problems. In 
the first place, the number of classes is already 100 when a relative 
dispersion of 10 percent is to be simulated and in the second place, 
it is impossible to change the relative dispersion according to con
ations, because the numbers of classes cannot be varied during 

simulation. 
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Both problems may be overcome by following an intermediate course, 
in which the fraction F of the contents of each class is shifted at the 
fraction F of the residence time in a boxcar. 
This is programmed as follows for 10 development classes. 

H1=INTGRL(H1,-H1*PUSH*F/DELT) 
H'2 J 0 ' = I N T G R L ( 0 . , ( H ' 1 , 9 ' - H ' 2 , 1 0 ' ) * . . . 

PUSH*F/DELT) 
PUSH = INSW(GS-1.,0- ,1 .) 
GS=INTGRL(0.,1./(F*REST)-PUSH/DELT) 

Inspection of the statements shows that no dispersion is obtained 
when F equals 1 and a constant relative dispersion, as defined by 
Eqn (6.1) when F is set equal DELT/REST. 
It can be shown that for intermediate values of F the relation 

N = ^ f - x ( l - F ) (6.2) 

holds. 
With F equal to DELT/REST and DELT sufficiently small, this 
equation transforms, of course, into Eqn (6.1). 
Figure 23 gives an example of the result. The continuous curve is 

seeds 
1 0 0 1 pf 

100 classes, F = 0 ^ 
o 25 classes, F = 0.75 / 

80H / 

6 0 -

40 

2 0 -

0 

oo 
/ 

o 
/ 

/ 

I 

T * " 1 1 
0 10 20 30 

days 
Fig. 23 | Breakthrough curves for 100 development classes with F equal to 
zero and for 25 development classes with F equal to 0.75. The average ger
mination period is 20 days. 
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obtained by means of 100 development classes and F equal to DELT/ 
REST. The dots are the result of using 25 classes and F equal to 
0.75. In both cases the relative dispersion is 0.1, but in the second 
case there is not a smooth curve. The given dots have OUTDEL as 
time-interval. The discontinuity and the use of M E T H 0 D R E C T is the 
penalty that has to be paid for reducing the number of classes and 
retaining a small dispersion. As has been said, the advantage of the 
procedure is that also F, and with this the dispersion, can now be 
varied independent of the average germination period and the number 
of classes that has been chosen. 

Exercise 59 
What is the value of F when the relative dispersion is 0.25 and N 
equals 25? What should be done in this situation? 

This method with controlled dispersion has been used by Janssen 
(1973) to simulate the germination of Veronica arvensis and Myosotis 
ramossima seeds. However useful, it should be realized that by 
aPplying this type of simulation, results of experiments are 'mimicked' 
rather than simulated. The term mimicked is used here to emphasize 
that the main aim is the summarizing of the experimental results in 
a program that simulates germination, but that no serious attempts 
are made at this stage to base the equations and parameters that are 
used on more detailed physiological knowledge of the processes 
involved. 

Exercise 60 
Complete the following table for F = 0.5: 
llUE Hx H2 H3 H4 
J 1 0 0 0 
°-5 x REST 
^OxREST 
^ x R E S T 
• 

HI which REST is the residence time in each class. What is the name of 
^resulting probability distribution function? 
A his function was discussed in Section 5.6. Readers with some 
Knowledge of probability calculations should read this section again 
and answer the following questions. 
Express B and f of Section 5.6 in TIME, F and REST. 
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What kind of probability distribution is obtained when F equals 
DELT/REST and DELT approaches zero? 

6.4.4 Errors of approximation 

A discussion on the demographic models showed that the age-class 
that was intended to cover for instance the years 10-15, appeared to 
cover the years 7.5-12.5; the average age of the class was half its 
range lower. For continuous flow, this error of lumping does not 
occur, but the simulation process results in a constant, relative dis
persion. 
The simulation method with controlled dispersion ranges between 
two situations: when F = 1, the error of lumping is fully present and 
when F = DELT/REST (and DELT small) the error is absent. It can 
be derived that for any value of F the shift in development of each 
class equals F x REST/2. Therefore, in front of the first class a 4pre-
class' is constructed with an average residence time of F x REST/2, 
so that the centres of the following classes are independent of the 
value of F. 
This is achieved by 

H0=IMTGRL(0.,RTIN-RTOUT) 
RTOUT=H0*2./(F*REST) 
H1=INTGRL(HI1,RTOUT-PUSH*F*H1/DELT) 
H L = 

PUSH = INSW(GS-1.#0. ,1 .) 
GS = INTGRL(0.5,1 ./(F*REST)-PUSH/DELT) 

The continuous inflow (RTIN) enters HO rather than H1. This 
correction must not be applied to the initial amounts, so that the 
initial value of HO is always zero and only H 1 f H 2 , . . . are initial
ized. The initial value of GS is set at 0.5, so that the first PUSH 
occurs after 0 . 5 # REST, in this way the initial average age or 
development within each class is correctly accounted for. -

Exercise 61 
Apply this method to simulate the growth of the Netherlands popula
tion. Which set of data out of Exercise 52 should be used now? 
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6.5 The flow of heat in soils 

There are considerable similarities between the simulation of ageing 
and dispersion in populations and of physical diffusion and dispersion 
processes in time and space. The similarities will be illustrated here 
by developing a simulation program for the flow of heat and tem
perature variations in the soil with the temperature at the surface 
as a forcing function. 
For this purpose a uniform soil column from an infinite slab is con
sidered which is placed on an insulating layer. To calculate the tem
perature as a function of time and depth, this column is divided into 
25 equal compartments. Heat flow into and out of each compartment 
is calculated at any instant of time from the temperature difference 
between compartments and the conductivity between compartments. 
These heat flows are integrated to follow the heat content of each 
compartment and thus the temperature. 
Simulation is done most conveniently by creating integrals of the heat 
content via: 

H C ' 1 , 2 5 ' = I N T G R L ( H C I , N F L ' 1 , 2 5 ' ) 

If the soil is uniform, the compartments are of the same size (TCOM) 
and the initial temperature (TI) does not vary with depth, then the 
initial heat content is given by 

HCI=TCOM*VHCAP*TI 

*n which VHCAP is the volumetric heat capacity of the soil. The net 
°w l n t o each layer is the difference between the flows over the boun

daries: 

FL ' 1 f 2 5 ' = F L W ' 1 , 2 5 ' - F L W ' 2 , 2 6 ' 

Exercise 62 
fa*ch direction of flow is assumed to be positive? 

€ flow is proportional to the temperature differences between the 
^ycrs and the conductivity of the soil (COND) and inversely pro-

jonal tot he distance between the centres of the layers (here also 
TCOM): 

FLW # 2 # 25 # =(TMP # 1 # 24 ' -THP # 2 # 25 # ) *C0ND/TC0M 
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The flow out of the 25th layer is zero, because the column is placed 
on an insulating layer. It would also be zero if the column was taken 
so long that temperature changes in the last compartment were 
negligible. Hence: 

FLW26=0. 
The flow into the first layer is 

FLW1=(TMPS-TMP1)*COND/(0.5*TCOM) 

in which the temperature at the surface has to be defined as a forcing 
function, for instance: 

TMPS=TAV + TAMPL*SIN(6.28*TIME) 
if a cyclic daily fluctuation is assumed. 

Exercise 63 
Why is the thickness of the compartment multiplied by 0.5? 
What is the unit of time? 
What are TAV and TAMPL? 

The temperature of the compartments is obtained by: 

TMP'1 ,25 '=HC'1 ,25 ' / (TC0M*VHCAP) 
The integration is best done with 

METHOD RKS 

and a stationary state of the cyclic variations is obtained in about 
4 days, so that 

TIMER F INTIM=4, PRDEL=0.1 

suffices. 
The output of all 25 temperatures and of other relevant parameters 
are requested with 

PRINT TMPS# FLW1# T M P ' 1 , 2 5 ' 

As an example, the parameters are defined with: 

PARAMETER TC0M=2.,COND=360.,. . . 
VHCAP=1.05, TI=20. 

with time in days, distance in cm, heat in joule and temperature in °C. 
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Exercise 64 
What are the units of all variables and parameters used in the simula
tion program? 

With a uniform soil and with a sinusoidal forcing function, the vari
ation of temperature may be calculated also by means of an analytical 
solution. This has been done for comparison, the result being presented 
*n Fig. 24. It appears that the analytical and simulated solution agree 

temperature 
3CH 

Ocm (surface) 
-— 3cm 
— 9cm 

*s analytical 
Osimulat ion 

tl&- 24 | Analytical and simulated solution for the temperature course in 
a uniform soil, with a sinusoidal temperature variation at the surface. 

^ithin 0.01 percent and this shows that it is not necessary to use very 
thin compartments for accurate results. 
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Exercise 65 
Rewrite the program, so that conductivities and heat capacities that 
vary with depth can be introduced. Is it necessary to use compartments 
of the same size? 

In another monograph of this series (de Wit and van Keulen, 1972), 
simulation programs of this type have been developed to study also 
the transport and diffusion of water, salts and ions in soils, the only 
difference being that instead of the INDEX feature, the more cum
bersome DO-loop feature from FORTRAN is used. In other studies 
(Goudriaan & Waggoner, 1972), similar techniques are also used to 
simulate micro-meteorological phenomena, but it goes beyond the 
scope of this monograph to discuss the principles of these. 
At last it is remarked that simulation programs with compartmen-
talization of space may be used to study dispersion of animals, seeds 
and spores. However, it should be remarked that these may become 
large, when dispersion in two and certainly in three dimensions is 
considered, so that other techniques must be developed for these 
purposes. 



Growth and development of Helminthosporium maydis 

7.1 Introduction 

Helminthosporium maydis is a fungus of corn (Zea maize). Especially 
the leaves may be covered with lesions, which develop microscopic 
spirophores. These produce spores, that are dispersed by wind and 
rain and so reach new healthy leaf tissue. There they germinate and 
penetrate the plant tissue; new lesions appear after incubation. Under 
suitable conditions, the life cycle is completed within a week. 
The fungus is responsible for Southern corn leaf blight, a disease 
that, especially in 1970, ravaged the corn fields of the USA. The yield 
was 15 percent less than that estimated before the disease struck, and 
losses of half or more were common in the Gulf region. The disease 
suddenly appeared because the T (Texas) type of cytoplasmatic male 
sterility was applied on a large scale in the hybrid system. This type 
appeared vulnerable for H. maydis, which had existed for a long time 
*n a non-virulent form. 
To anticipate the growth of the disease in the field, Waggoner et al. 
(1972) analysed this new disease and made a simulation program for 
its growth and development. A comparison of important aspects of 
simulated results with field observations (Shaner, Newman, Stirm & 
Lower, 1972) showed the merit of this approach. 
The simulation program for the growth and development of epidemics 
of H.maydis(EPIMAY) is written in FORTRAN and keeps track of 
the development of the lesions formed on each day after infection, 
f his makes the program difficult to read and grasp. A further analysis 
°f Waggoner & de Wit showed that a simulation program that is 
^uch more lucid and easier to handle could be developed by using 
the state variable approach as developed in this monograph. 
Fhe meteorological factors that effect the fungus are temperature, 
Jgfat, wetness, wind and rain. The influence of these factors on 
growth and development of the disease in various life cycles was 
analysed for the Illinois isolate of race T. of H. maydis growing on 
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the corn cultivar PA 602 A, Fl hybrid in the laboratory and the 
greenhouse. Undoubtedly the condition of the host affects the growth 
responses, but the study was restricted to well fertilized and good 
growing specimens of the host. These observations and general 
knowledge about growth and morphogenesis of the fungus form the 
basis for the construction of the simulation program. This program 
will be presented in the form of relational diagrams, together with 
sufficient quantitative information to leave the writing of the actual 
program to the reader of this monograph. 

7.2 The weather 

Even, if a corn crop is uniform, the micro-meteorological conditions 
for developing fungus are not the same, but vary with height. The 
radiation during the day is higher, the wind more turbulent and the 
leaves are dry longer near the top of the crop than near the soil surface. 
Programs to simulate the micro-meteorological conditions in the crop 
are still being developed (Goudriaan & Waggoner, 1972) but these 
are likely to be of use only after the simulation program for the patho
gen is refined. At present the microclimate in the crop is not simulated, 
but instead the macro-weather factors are employed as forcing func
tions as some 'average' for the whole crop. 

Exercise 66 
Why is this a dangerous approach? 

The parameters are temperature, wind speed, light, rain and the 
presence of water on the leaves. These can be introduced in the form 
of function data throughout a season, but for the present it suffices 
to define a particular daily course of the weather which is repeated 
every day. The following weather data are assumed for some simula
tions in this chapter. 

FUNCTION TEMPT = CO. , 14.), (12.,35),.. . 
(24.,14.) 

FUNCTION WINDT = (0.,1.) , (6 . , 1 .) , . . . 
(14.,4.),(19.,2.),(24.,1.) 

FUNCTION WETT = (0.,1),(7.99,1),... 
(8.,0.),(19.99,0.),(20.,1.),(24.,1.) 
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FUNCTION LITET = (0.,-1.>,(5.99f-1>,... 
(6.,1),(20.,1.), (20.01,-1.),(24.,-1 .) 

FUNCTION RAINT = (0,0,(24,0) 

The units for temperature, wind and rain are °C, m s"1 and mm h"1, 
respectively. Especially the temperature course is simplified, to facili
tate later analyses of the results. For light and wetness only two 
conditions are distinguished: 
Light (LITE = 1) and dark (LITE = -1 ) and wet (WET = 
1) and dry leaves (WET = 0). 
To read the graphs, time in hours during the day has to be known. 
As TIM E is expressed in days, the hour of the day may be calculated 
with 

HOUR = 24* (T IME-AINT(TIME)) 

in which the function AINT(TIME) conserves the integer part of 
time, and assumes, for instance, the value 6 when time is between 
6 and 7 days. 
Although it does not belong to the weather section, the growth of 
the crop must be considered. Simulation of a disease is especially 
important when crop growth is not seriously affected, because that 
is the time to control the disease. Thus we can assume that crop 
growth is independent of the growth of the disease, so that it can be 
introduced in the program as another forcing function. It suffices 
to use for this purpose the course of the leaf area index, that is the 
ratio between the surface of the leaves and the surface of the soil, 
which varies from 0 at emergence to about 5 at flowering. In the 
present simulation it is simply assumed that 

FUNCTION LAIT = (0.,3), (140 . ,3) 
LAI = AFGEN(LAIT,TIME) 

Exercise 67 
Write the section WEATHER of the simulation program, complete 
with AFGEN functions and FUNCTION tables and the temperature 
(T E M P ) , the wind speed (WIN D), the wetness of the leaves (WET), 
the dryness of the leaves (D R Y ) , the light condition (LITE) and 
LA I as outputs. 

Mistakes in input data may result in a situation where it rains and 
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WET is nevertheless zero. Inconsistencies may be avoided by reading 
from the tables an auxiliary variable WETX and then computing 

WET = FCNSWCWETX + RAINf 0. # 0.,1) 

which means that WET = 1 for WETX + RAIN greater than 0, 
and otherwise 0. 

7.3 Appearance and growth of lesions 

If spores of H. maydis are present on healthy leaves and conditions 
for germination are suitable, some spores will form germ tubes which 
penetrate through the stomata and so infect the leaves. This pen
etration rate will be calculated at the end of the program and used 
here as an input. 
Fig. 25a shows the resulting growth of the lesion area at 30°C a* 
a function of the number of days after incubation. Lesions appeal 
after about 2 days showing that the first stages of development occui 
inside the leaves. Thereafter the lesions grow to their final size wit* 

days 

-. lesion area 
u 1-100 mm2 

b stalk density 
1.300 mm-2 

spores on green stalks 
C 1.1 spore/stalk 

spores on dried stalks 
spore/stalk 

A spo 
Q 1.1 

2 davs A germination aays £ 1.100% 

1.0-, 

0.5-

23 D 

2 
days 

L.» fight, D«dark#number«*C 

Fig. 25 | Some experimental data and the curves mimicked by the relevan 
parts of the simulation programs. 
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t 
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rate 
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lesions •---(PA a, , 

table 5! 
I I 

»g. 26 J Relational diagram for the growth of lesions. 

a speed that is dependent on temperature only. 
. e relational diagram of development and growth of the lesions is 

given in Fig. 26. The development period inside the leaves is accounted 
or by 7 development classes with dispersion, and a residence time of 
-J day in the first 6 classes. This residence time is assumed to be 
dependent of temperature. The content of the last integral gives 
e census of the visible lesions. As long as it is assumed that defolia-
n and decay of leaves are negligible, this number does not decrease. 
,Ce> a soil surface of one hectare is used as reference, the census of 

of!°KS *S e x p r e s s e d *n ha""1- AN lesions grow to a final size (MAL) 
about 100 mm2 or 10"8 ha and the growth rate of the individual 
ons can be conveniently described by assuming that this rate is 

its rtlona't0 the difference of the maximum area of a lesion minus 
l 0

 a c t U a ' ar^a ALS. The proportionality factor (PAL) is, according 
defi X ^ n m e n t s » a function of temperature only, and is sufficiently 
***ineci bv 

UNCTION PALT = <o,o.) , a o , . u > , . . . 
))8,.33),(23,.80),(30,.80),(35,.14), . . . 
^ 0 , . 0 ) day-1 

°nnula for the growth rate of the area of a single lesion is then: 

»A^S = PAU(MALS-ALS) 
u;> = INTGRL(0.,RALS) 

103 



The initial value of this integral is zero, because the lesions entering 
class CN L7 have an area that is practically zero. 
To obtain the growth rate of the total area, RALS must be summed 
over all the visible lesions present, a number equal to CN L7: 

CNL7 

RAL= £ PALx(MALS-ALS) 

or 
CNL7 

RAL = PAL x (CNL7 x MALS - £ ALS) 
n = l 

or 

RAL=PALx(CNL7xMALS-AL) 

if AL is the total area of the lesions, given by 
AL=INTGRL(0. ,RAL) 

Exercise 68 
Why is the expression for RAL so similar to the one for RALS? 
Write the section GROWTH OF LESIONS, with the number of 
visible lesions C N L7, the rate of growth of the total area, and the total 
area as outputs. What is the total residence time of the lesions in the 
invisible stages. Explain why some lesions are already visible at 
1.5 day. Calculate the standard deviation of lesion appearance. 
Why has the simulated curve for A L in Fig. 25a a sigmoid form? 

The points in Fig. 25 are observations and the curve is the mimicked 
result. A similar analogy between observation and simulation is 
obtained at other temperatures. 

7.4 Spirophore or stalk formation 

The technical term for the microscopic stalk that holds the spore in 
the air above the leaf is sporophore, but here the more popular term 
'stalk' will be used. The growth of the stalk occurs only when the 
leaves are wet and otherwise depends on temperature and light. 
The maximum number of stalks on a hectare of lesions is 300 x 1010, 
but the experimental data in Fig. 25b for a few temperature and 
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light conditions during formation show that this maximum is not 
reached under all conditions. Moreover there appears to be some 
delay in the formation of stalks. 
To mimick these results it is assumed that there is a potential number 
of stalks per surface unit of lesions—a number of opportunities for 
stalk formation—which materialize through some classes and that 
during the actual stalk formation a part of this potential number 
develop into stalks and the rest become extinct, depending on con
ditions. These assumptions are presented in the relational diagram 
°f Fig. 27. The growth of the number of opportunities is the product 
of the maximum number per area (MOA =300xl0 1 0 per ha) and 
the growth of the area of the lesions. This potential number enters 

max.opport. 
per area 
M O A . 

I 
rate 
oppor
tunities 

ROP 

( W E T V - I 0.Q625 day 
\ / , —f 

rate area\ 
lesions L 
RAL J 

(DRY)-.--

g* 27 J Relational diagram for the formation of green stalks. 
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into a series of 4 classes with a residence time of 0.0625 day in three 
classes. The realization of the opportunities is arrested by drought. 
There are three possibilities: opportunities are destroyed, set back to 
their initial stage or their advance is arrested. Not much is known 
about this, so that at present the middle course is taken: it is assumed 
that the opportunities are returned to the first class in case of drought. 
This can be done by introducing the following rate out of the integral 
equation of the Xth class 

EHPT=DRY*OPX/DELT 
To avoid manipulation of very small numbers in some computers 
('underflows') it may be advisable to program this rate as 

EMPT=INSW(0PT-1.E-50, 0.# DRY*0PX/DELT) 

Hence the classes are not emptied when their contents are below 
the very small value of 10"50. 
The opportunities end in the last or fourth class and are from there 
removed either by stalk formation or extinction. The relative rate of 
extinction (POX) and stalk formation (POG) depend on temperature 
and light, whereas the process only occurs when the leaves are wet. 
An analysis of the experimental data showed that the process is 
sufficiently mimicked when the following functions of temperature 
are used: 
During light: 

FUNCTION POGL = (0,0),(14,.04) , . . . 
( 1 8 , . 1 2 ) , (23 #1 . 4 ) , (30 , 1 . 2 ) , ( 3 5 , 0 ) day"1 

FUNCTION POXL = ( 0 , 0 ) , ( 1 4 , . 0 4 ) , . . . 
( 1 8 , . 1 2 ) , ( 2 3 , 1 . 4 ) , ( 3 0 , 0 ) day"1 

and during darkness: 

FUNCTION P O G D = ( 0 , 0 ) , ( 1 4 , . 1 0 ) , ( 1 8 , . 2 7 ) , . . . 
( 2 3 , . 2 7 ) , ( 30 ,1 . 3 3 ) , ( 3 5 , . 6 7 ) , ( 4 0 , 0 ) day"1 

FUNCTION P O X D = ( 0 , 0 ) , ( 1 4 , . 0 2 ) , ( 1 8 , . 0 3 ) , . . . 
( 2 3 , . 1 8 ) , ( 3 0 , . 8 8 ) , ( 35 ,1 . 5 4 ) , ( 4 0 , 0 ) day"1 

The proper functions can be selected again by an inswitch which is 
operated by the variable LITE. For instance: 

POG = INSW(LITE,AFGEN(POGD,TEMP),... 
AFGEN(POGL, TEMP)) 
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The points in Fig. 25b are again observational data for a few condi
tions and the corresponding curves are obtained by mimicking the 
process of stalk-formation and opportunity extinction. It should be 
realized that the process of opportunity formation is described by 
the equations and the functions, but not explained. It is therefore not 
feasible to explain the form of the functions on a physiological basis. 
The stalks that are formed are virgin or green stalks. Because these 
maintain another rate of spore formation than stalks that sporulated 
once or were subjected to drought, they have to be accounted for 
separately in an integral that maintains the census of green stalks. 

Exercise 69 
Write now the section FORMATION OF GREEN STALKS, with 
the rate of green stalks formation (ROG) as output. What is the 
dimension of ROG? This rate as a fraction of the potential rate 
(sum of actual formation and extinction) depends on light and tem
perature. What are these fractions when the stalks are formed in the 
ljght at 21 and 32 °C and in the dark at 18 and 27 °C both on wet 
leaves? 

'•5 Sporulation of green stalks 

The name 'green* stalks has been used explicity because there are 
also 'dried' stalks. Dried stalks are stalks that have sporulated at 
least once or have been subjected at least once to drought. The 
distinction is made because the influence of temperature and light 
°n sporulation is different for both categories: green stalks sporulate 
?ore rapidly than dried stalks. 
***g. 25c shows how this growth of spores on green stalks may depend 
0n temperature and light. Here the scale of 0 to 1 represents the 
number of green stalks with a spore. A stalk cannot carry more than 
0 n e spore at the same time. Only 50 percent of the stalks produced 
fPores after two days in the light and at 23 °C, but there is sufficient 
^ l o n t o a s s u m e that in due course all stalks will sporulate under 
l^se conditions. 

pe relational diagram for sporulation of green stalks is given in 
*§• 28. Three classes with a residence time of 0.0625 day in the first 
0 are again introduced to mimick the observed delay between the 

°miation of green stalks and the first appearance of spores. The first 
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rate 
green stalks 
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Fig. 28 I Relational diagram for the formation of spores on green stalks. 

class is loaded according to the rate of green stalk formation; thui 
this class contains stalks ready for sporulation. 
There are two circumstances that arrest spore formation. One whei 
the leaves become dry; then the growing spores are aborted and thi 
green stalks are reclassified as dried stalks. The other when the greei 
stalks are completely destroyed, usually by rain beating against th< 
fragile stalks. The relative destruction rate is assumed to be a functioi 
of the rainfall rate, in mm hour"1 according to 

RBETR=AFGEN(BEATT,RAIN) 
FUNCTION BEATT= ( 0 , 0 ) f ( 0 . 2 5 , . 0 8 ) f . . . 

( 0 . 7 5 , . 3 2 ) , ( 6 . 2 5 , 2 ) , ( 1 8 . 8 , 5 . 6 ) , . . . 
( 2 5 . , 6 . 7 ) day"1 

This function summarizes some factual information, but is largel] 



based on a qualified opinion of the process. 

Exercise 70 
What rate of rainfall is needed to destroy 63 percent of the stalks in 
5 hours? 

When the stalks have been passing through the classes and have not 
been dried up or beaten by rain, they form spores at a rate which is 
dependent on light and temperature, provided, of course, that the 
leaves stay wet. It appeared that the experimental data are sufficiently 
accurately mimicked by introducing the temperature dependency. 

FUNCTION PGSL = ( 0 , 0 ) , ( 1 4 , . 1 5 ) , . . . 
( 1 8 , 1 . 4 4 ) , ( 2 3 , . 3 2 ) , ( 3 0 , 0 ) , ( 4 0 , 0 ) day"1 

w the light and 

FUNCTION P G S D = ( 0 , 0 ) , ( 1 4 , . 0 6 ) , ( 1 8 , 1 4 ) , . . . 
( 2 3 , 1 4 ) , ( 3 0 , . 4 4 ) , ( 3 5 , 0 ) , ( 4 0 , 0 ) day"1 

*n the dark for the proportionality factor of spore formation. The 
points in Fig. 25c are again observations and the curves mimick 
results of sporulation of green stalks. 

Exercise 71 
Write now the section FORMATION OF SPORES ON GREEN 
STALKS with the rate of spore formation on green stalks ( R G S ) 
88 output. What is the dimension of R G S ? 

further spore formation is arrested, as long as the spore remains on 
*te stalk. Once removed, the stalk is no longer green, but classified 

** a dry stalk, which may also form spores but at a different rate. 

'•« SponifaitioD of irfei strifes 

s has beeii said, dry stalks are distinct from green stalks because 
. e i r rate of spore formation is slower. Dried stalks are generated 

various ways. When spores are removed from either a green or 
, ried s^lk, the stalk is ready to produce a new spore at a rate 
aracteristic for dried stalks. This is also the case when during spore 
ri&ation the growing spore is aborted by drought. Fig. 25d shows 
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Fig. 29 | Relational diagram for the formation of spores on dried stalks. 

some experimental results which are mimicked according to the rela
tional diagram in Fig. 29. The mean residence time in each class is 
again 0.0625 day, the slowness of the process as compared to green 
stalks being accounted for by an extra class and another proportion
ality factor for spore formation according to the temperature depen
dency 

FUNCTION PDSL = ( 0 # 0 ) , ( 1 4 , . 1 7 ) , . . . 
( 1 8 , 1 . 7 5 ) , ( 2 3 , . 2 5 ) , ( 3 0 , 0 ) , ( 4 0 , 0 ) day"1 

in the light and 
FUNCTION PDSD = ( 0 , 0 ) , ( 1 4 , . 0 7 ) , . . . 

( 1 8 , 2 . 9 5 ) , ( 2 3 , 2 . 2 ) , ( 3 0 , . 5 3 ) , ( 3 5 , 0 ) , . . . 
( 4 0 , 0 ) day"1 

in the dark. 
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When dried, the growing spores are aborted and the dried stalks are 
again reset into the first class. When the green stalks become dry 
they also enter this class. At last, the stalks that are denuded of spores, 
either by wind or rain and not destroyed in the process are again ready 
to form new spores. Dried stalks are also beaten and destroyed by 
rain at the same rate as for green stalks. 

Exercise 72 
Write now the section FORMATION OF SPORES ON DRIED 
STALKS with the rate of spore formation on dried stalks (RDS) 
&s output. Inputs are the rate of transfer of green stalks and dried 
stalks to the first class during drought and the rate of spore removal 
from stalks (R S R) . 

'•7 Dispersal of spores 

When it is dry, the spores are removed by the turbulent action of 
the air. Some of the spores are carried away to other fields, and others 
settle on the soil, on lesions or on healthy foliage segments. The stalks 
a**e also denuded by rain. Especially at the onset of heavy showers, 
part of the spores are dispersed through the air, but with gentler rain 
the spores are washed from the stalks and end up again on the soil, 
°n lesions or on healthy foliage. The processes that are involved are 
very little understood particularly because the quantitative aspects 
a**e complicated: fields may be of limited size and infections are not 
Uniformly distributed. 
*} such stages, the model builder has to make a difficult decision: 
uher to abandon the whole problem or to advance for better or for 
prse. The latter course is usually chosen for various good reasons. 
irst, sensitivity analyses may show that the dynamics of the system 

are hardly determined by the processes that are difficult to handle 
~°th conceptionally and practically. Thus, it would be a waste of 

mt to pay much attention to these processes. Unfortunately, this 
Ppears not to be the case here: spore dispersal is one of the important 

0cesses that governs fungal epidemics. Secondly, life goes on and 
Perational decisions have to be made whether the system is com-

p<etely understood or not: even models with unsatisfactory parts may 
better than no model. Of course, this has to be proven. Thirdly, it is 
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possible to view a model not so much as a representation of the real 
system but as a representation of our knowledge of the system and 
our opinion about it. Then the weak sections should not be ignored 
but exposed and this will be done here. 
The most simple supposition is that spores are removed from stalks 
at a rate proportional to the number of spores present. The relative 
rate of removal is assumed to be zero when the leaves are wet and it 
does not rain. However, when it rains the spore removal rate is 

SPRR = RWASH # STSP 

and when it is dry 

SPRD = RBLOW * STSP 

in which STSP is the integral 'stalks with spore*. 
The relative rates of spore removal (RWASH and R B LOW) are assumed 
to be independent of the number of stalks with spores, although it 
is not unlikely that these relative rates decrease because at first the 
most exposed spores are removed. The main problem is to obtain a 
reasonable estimate of these relative rates. 
Waggoner et al. estimated that with a sprinkling rate of about 6 mm/ 
hour for 3 hours, 86 percent of the spores were removed from exposed 
leaves. This means that the value of RWASH = —8. ln(0.14)= 15.7 
day"1. 

Exercise 73 
Prove that this is the case. 

It does not seem unreasonable to assume that RWAS H is proportional 
to the rainfall intensity and that below an LAI of 2 the leaves do not 
protect each other, so that RWASH is independent of LAI. Above 
this value mutual protection may exist, but since water may drop 
from one leaf on to the other, no large mistakes may be made when 
this protective effect is neglected. 
The relative rate of spore removal under dry conditions depends 
primarily on the wind velocity. It was assumed by Waggoner et al., 
that at a wind speed of 2 metres per second, and a leaf area index 
of 3, about 5 percent of the spores are removed in 3 hours, so 
that SPRD can be estimated under this circumstance. Since the 
force of the wind is proportional to the square of its velocity, it 
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could be assumed that the relative rate of spore removal is propor
tional to the second power of the wind-speed. Then spore removal is 
zero at zero wind-speed. However, turbulence is also generated by 
the temperature difference within and outside the crop. This effect 
may be approximated by assuming that the wind-speed is never less 
than 1 m/s. The relative rate of spore removal is also influenced by 
the leaf area index, because the wind-speed decreases more or less 
exponentially with increasing depth of the crop. This effect is so 
uncertain, that it is not considered further. 

Exercise 74 
Calculate RBLOW for WIND equal to 2ms" 1 . 

This completes the estimates of the rate of spore removal. The next 
step is the estimation of the fraction of removed spores that may 
become effective by settling on healthy foliage. 
With strong winds and a small field most spores may be blown away 
and become ineffective. However, they may be compensated for by 
spores blown in from neighbouring fields. Another question is how 
many spores in the air are caught by leaves and how many end up 
on the soil surface where they can do no harm. Again Waggoner et al. 
assumed that with a leaf area index of 3 and a wind-speed of 2 m sec"1, 
3 percent of the spores are caught by the leaves. This percentage is 
hkely to depend more or less linearly on the leaf area and is program
med as such. The percentage is also likely to decrease with increasing 
^ind-speed, especially on small fields. This effect is too complicated 
t o consider here. 
*"e greater the intensity of the rain, the more spores are washed to 
the ground. According to Waggoner et al. only 0.3 percent of the 
spores are caught by the leaves at a rainfall intensity of 2.5 mm/hour. 
*he maximum fraction is caught at a negligible rainfall rate, but does 
°t exceed 20 percent. These are very rough estimates indeed. 

Exercise 75 
^rite the section SPORE DISPERSAL with as output: SPRR, 

p R D and their sum R S R and the rate of spore arrival at the foliage 
KAS P ) . How would it be possible to take into account the influence 
host exhaustion when the area of the lesions is not negligible? 
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7.8 Germination of spores and penetration of germ tubes 

The spores on healthy tissue are now considered. These germinate 
eventually on wet foliage. The fraction of spores that complete 
germination and the rate of germination depend on temperature 
according to the observations in Fig. 29e. The process of germination 
is complicated because germinating spores may be washed down 
from the leaves or killed upon desiccation. 
The relational diagram that describes germination and penetration 
of germ tubes into the leaves is presented in Fig. 30. Two integrals 
are distinguished: the census of spores on the (healthy) foliage (C S F) 
and the census of germ tubes on (healthy) foliage (C G T) . The census 
of spores increases because of arrival of new spores (RASP) and 
decreases because spores are washed, killed or germinate. The relative 
rate of spore removal by rain from the leaves is set equal to the 
relative rate of spore removal by rain from the stalks (RWASH). 
The killing of spores upon desiccation is more difficult to handle. 
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Fig. 30 | The relational diagram for germination and penetration of spores. 
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Spores can only desiccate when they have been wet Since all spores 
are killed, the killing rate is 

RKSP = KILUCSF/DELT 
Obviously, the killing is governed by the variable KILL which may 
be 0 or 1. If the leaves during the previous time-interval were wet and 
are dry during the current time-interval, KI LL is set at 1. Such a 
condition may be programmed by using a 'PROCEDURE' that 
contains a series of statements that have to be executed in the order 
in which they are presented. The whole sequence of statements is 
then sorted at a place where the inputs are available and the outputs 
not yet used. 
The procedure that is used here is called ' DESS ' from dessication 
and has as input the variable WET and as output the variable KILL: 

PROCEDURE KILL = DESS(WET) 
The statements within the procedure are: 

KILL=0. 
IFUWETP-WET) . G T . 0 . ) K I L L = 1 . 
WETP=WET 

The first statement sets KILL equal to 0 and the second statement 
reads: if the difference between WETP and WET is greater than 0, 
then reset KILL to the value 1. The next statement sets the previous 
value of wet (WETP) equal to the current value and this reset value 
*s used in the * I F * statement during the next updating. The end of 
the series of statements that have to be sorted as one block is now 
defined with the line 

ENDPROCEDURE 

Hie spores germinate or become extinct at relative rates that depend 
on temperature, according to the function tables 

FUNCTION P F T T = ( 0 , 0 ) , ( 1 0 , . 4 ) , ( 1 5 , 1 . 8 ) , . . . 
< 2 0 , 4 . 6 ) , ( 2 3 , 7 . 0 ) , ( 3 5 , 3 . 7 ) , ( 4 0 f 0 ) day"1 

f°r completion and 
FUNCTION P F X T = ( 0 , 0 ) , ( 1 0 , 0 ) , ( 1 5 , 1 . 8 ) , . . . 

< 2 0 , 4 . 2 ) , ( 2 3 , 2 . 6 ) , ( 3 5 , 3 . 7 ) , ( 4 0 , 0 ) day"1 

for extinction. 
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The simulated germination is again presented by the curves in Fig. 25e. 
Note that at 15°C some observations deviate considerably from the 
simulated line. This is because the function tables PFTT and PFXT 
are assumed to be smooth and were adapted also to observational data 
at other temperatures. 
The spores with germ tubes are also killed upon desiccation according 
to the rate 

RKGT = KILUCGT/DELT 

and also washed away by rain at the same relative rate RWASH as 
spores are washed from the stalk. Depending on temperature, only 
a fraction of the germ tubes ever penetrate the leaves; this observation 
is again mimicked by introducing relative rates of penetration and 
extinction according to 

FUNCTION PTNT = C O , 0 ) , ( 1 8 , . 4 8 ) f . . . 
( 2 3 , . 6 5 ) , ( 3 0 , . 2 5 ) , ( 3 5 , 0 ) , ( 4 0 , 0 ) day"1 

for completion and 

FUNCTION PTXT = ( 0 , 0 ) , ( 1 8 , 1 . 3 ) , . . . 
( 2 3 , 2 . 6 ) , ( 3 0 , 2 . 2 ) , ( 3 5 , 0 ) , ( 40 # 0) day"1 

for extinction. 
These functions are found by comparing the number of lesions with 
the number of germ tubes formed upon incubation of spores. 

Exercise 76 
Write the section GERMINATION AND PENETRATION with 
the rate of penetration ( R T N) as output 

The cycle is completed by calculating the rate of penetration of the 
germ tubes, R T N being the rate needed to start the growth of the 
number of lesions. 

13 Timing, initialization and output organization 

Since there are discontinuous processes involved it is necessary to 
execute the simulation according to the METHOD RECT. The time-
interval of integration has to be chosen small compared with the 
relative rate of changes. An analysis of the data and parameters shows 
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that these are the fastest in the classes for the growth of the stalks, 
which are governed by a residence time of 0.0625 day. When DELT 
equals this value, the contents of the classes are pushed without any 
dispersion. Here this is completely acceptable. 
For practical reasons of organizing input and output it is, however, 
convenient to set DELT at 0.04 day. Then the program is updated 
25 times during one day and computing costs are acceptable. 
The initialization of every integral in the program could be achieved 
by observing at one moment the number and area of lesions, the 
number of green and dry stalks, the number of spores and so on in 
a particular field. This is of course not worth the trouble at this stage 
of knowledge. Usually initialization is achieved by assuming a certain 
number of spores or a certain number of lesions, the contents of the 
other integrals being set at zero. Because it is often the purpose to 
study the dynamics of the disease without complications due to 
exhaustion of the host, it is good practice to start with a small number 
of lesions, which may be taken as 100 per hectare. 
However, in other situations it may be necessary to program a certain 
invasion rate of spores from the outside during some period. 

Exercise 77 
Program an invasion rate of 106 spores per hectare per hour during 
the first week, but only when it is light and the leaves are dry. 

The output of every variable may be requested of course, but it is 
Eood practice to limit the number to the most essential ones. These 
ar^ in general the contents of the main integrals: the number and area 
of the lesions, the number of green and dry stalks and of stalks with 
spores and the number of spores and germ tubes on healthy leaves. 
*o study the behaviour at certain moments it may be convenient to 
nave all outputs available. This may be achieved by introducing the 
statement 

0UT1 = DEBUG ( N # T ) 
n which T is the moment at which this output procedure starts to 
operate and N the number (without decimal point) of successive updates 
. 0 r which output is requested. As many debugs as needed may be 
Produced. 
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Exercise 78 
Ask for a debug of 10 rounds at time zero and of debugs of 2 rounds 
at time 5, 5.5, 10 and 10.5. 

7.10 Results and sensitivity analyses 

A simulated epidemic, as characterized by visible lesion number 
(CNL7), is presented in Fig. 31 on a logarithmic scale, starting with 
100 lesions per hectare (CNL1), the growth being simulated for the 
defined stationary weather pattern. During the first periods of growth, 
the effect of initialization can still be distinguished. At a later stage 
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Fig. 31 I The number of visible lesions in dependence of time, when initial* 
ized with 100 spores that completed penetration (CNL1 = 100). 
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it is possible to characterize growth by a relative growth rate of 
number of fungi lesions, which is in the present example 0.34 day"1. 
Other important characteristics are the rate of spore production 
(RSP) and dispersion by wind (SPRD). The simulated results of these 
for days 8 and 9 are given in Fig. 32, together with relevant weather 
data. The rate of spore removal by wind may be verified in a relative 
sense by comparing with the density of spores above the crop. 
Verification of simulated data on epidemics is difficult for two reasons. 
In the first place, a good meteorological network that provides not 
°nly the course of the standard meteorological parameters throughout 
the day, but also detailed information of the wetness of the leaves 
must be available. In the second place, field observations must be 
organized. Sometimes a rating of severity in a wide range of localities 
may do, but preferably the relative growth rate of the disease over 
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The simulated rate of spore production (RSP) and rate of spore 
by wind (SPRD) during two days. 
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a certain time span should be observed. Some comparisons of simu
lated results, obtained with the original 'EPIMAY' of Waggoner 
et al. and actual results throughout the United States are given in 
Fig. 33. The left graph is a comparison of the simulated multiplication 
rate of lesions with a net increase of blight ratings in various places 
in the Mid-Eastern United States in 1971 and the right graph com
pares simulated and actual multiplication rates in Western Indiana 
in 1971. Only the latter gives a comparison in absolute terms, but it 
should be taken into account that some 'fudging' of parameters has 
been done to achieve correspondence of level. Whether such fudging 
is acceptable or not is not much a matter of principle, but of purpose. 
If it is the purpose to develop a forecasting technique as soon as 
possible one may incorporate experience of previous years into the 
program. It should be realized, however, that in that case it is very 
difficult to judge which of the numerous parameters should be left 
alone and which should be adapted. If much adaption is necessary, 
it is doubtful whether much is gained at all by simulation compared 
with the application of one of the standard multiple correlation 
techniques. 
If it is the purpose to understand the dynamics and the quantitative 
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aspects of the disease, fudging of parameters to achieve better agree
ment should be avoided. Instead, a sensitivity analysis under the 
prevailing conditions should be executed, to evaluate which parameters 
are mainly controlling the disease. The result of this analysis, should 
then be a guide to further experiments and study. 
Such a sensitivity analysis consists of varying inputs and parameters 
over a certain range and a comparison of their relative influence on 
the end result. If the influence of a certain parameter or input is 
relatively small, further analyses may be left for some time, but if 
the influence is large, more work should be invested in a further 
analysis of the section of the program where this parameter plays 
a role. 
The weather parameters that are most likely to affect the severity of 
the epidemic are the duration of the wetness of the leaves, the presence 
of showers and the temperature. The simulated influence of duration 
of wetness on the relative growth rate of the lesions for the standard 
weather conditions, but in the absence of rain, is given in Fig. 34. 
The propagation of the disease is practically zero when the duration 
of wetness is less than 4 hours, because the fungus needs wetness 
Periods of finite length to complete its development in various stages. 
The relative multiplication rate increases to a maximum at 18 hours 

relative growth rate 
day~^ 
0.5 

8 10 12- 14 16 18 20 22 24 
hour 

fdaily wetness period 

^ 3^ I The relative growth rate of the number of lesions in relation to 
duration o f wetness, without rain. 
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of wetness, but then it decreases again to zero at 24 hours of wetness, 
because spores are assumed not to disperse by wind when the leaves 
are wet, and because rain is supposed to be absent. 
The picture changes completely when at 24 hours of wetness rain is 
assumed to occur at a rate of 6 mm per hour for 3 hours per day; 
then the relative growth rate equals 0.19 day"1. In this case the rain 
causes the dispersal of the spores. The influence of decreasing the 
intensity of the shower and increasing its duration is considerable. 
A rainfall of 1 mm per hour for 18 hours per day causes a relative 
growth rate of 0.84 day"1. At a lower rate the relative beating 
rate RBETR decreases so that fewer stalks are destroyed, but the 
spore dispersal by rain increases, so that many more spores are 
caught by leaves. As long as the total amount of rain is the same, 
the change of RWASH has little influence because it is proportional 
to RAIN. All this means that knowledge of the daily total rainfall 
is not sufficient; the rainfall distribution must be known as well. 
The influence of temperature is analysed under the assumption that 
the other weather conditions are standard. Two situations are dis
tinguished: in one series, the temperature amplitude is fixed at 5°C 
and the average temperature is varied from 15°C to 35 °C and in the 
other the average temperature is fixed at 25 °C and the amplitude is 
varied from 0° to 15°C. 

Exercise 79 
Program this situation by assuming a sinusoidal temperature course 
throughout the day with a maximum at 14.00. 

The results are given in Table 6 and show that one temperature value, 
such as an average temperature, does not give detailed enough 
information. 
The influence of daylength under otherwise standard conditions is 
found to be small. 
A sensitivity analysis of the parameters and function tables that are 
included in the program may be made also. For instance the influence 
of the residence time in the various classes may be evaluated and this 
the more so because these are assumed to be independent of tem
perature. Another aspect that may be of importance is the assumption 
regarding the development of green stalks. Does it make much 
difference whether developing stalks are destroyed by drought during 
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Table 6 The influence of temperature average and amplitude (°Q on the 
relative growth rate (day"1) 

AVTMP 15 20 25 30 35 
AMPL 

0 — — 0.452 — — 
5 0.079 0.321 0.459 0.407 0.192 

10 _ _ 0.389 — — 
15 _ _ 0.254 — — 

development, whether their growth is only arrested or whether they 
are reset in their first class upon drought? It may also be questioned 
whether it is worthwhile at all to make a distinction between green 
and dry stalks. Another important and largely unknown set of 
parameters concerns dispersal and recapture. 

Exercise 80 
Make a sensitivity analysis of the influence of the parameters that 
are mentioned and some others that may be considered important. 
Design experiments to elucidate a better formulation. 

123 



8 Solutions of the exercises 

8.1 Introduction 

1 The differential equations for the falling apple are: 

dv ds — = v 
dt 

The rate of change of the amount of electric charge on a capacitor 
is equal to its charging current and the potential across the capacitor 
is equal to its amount of charge divided by its capacitance, so that 

de 
dT 

= //c 

By substituting ix =g.c{ and i2 = e{.c2 

for the charging currents of a first and second capacitor, the differen
tial equations for the falling apple are obtained. 

2 Our results are as follows: 
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Fig. 35 

In a first model of this system it may be sufficient to assume that there 
are two variables of state, which increase by the rate of walking of 
each child. There are two independent rate determining processes: 
one in the mind of each child which wants to stay side by side with 
the other. However, this model would not explain why the step sizes 
in the beginning of the process are more variable than at the end. 
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To understand this it has to be realized that each child has a memory 
which is able to conserve the sizes of the step of the other. Each child 
thus determines the step size to be taken not only on the difference 
in position but also on a 'normal step size for the other child', figured 
from data conserved in memory. These memorized data characterize 
also a state of the system. Hence a more sophisticated model requires 
more than two state variables. Digital computers are much more 
suitable to memorize such historical data than analogue computers 
and this is one of the other main reasons why they are preferred to 
simulate complicated state determined systems. 

8.2 Exponential growth 

3 The dimension of A is grams and of GR is grams hour""1. Eqn (2.1) 
is then dimensionally consistent when RGR is expressed in grams per 
hour per gram or in hour"*1. There should be a constant amount of 
food and of harmful waste products. This is usually achieved by an 
abundant food supply beyond saturation, and an entire removal of 
waste products. The temperature should also be constant. 

4 The result is 
TIME 0 2 4 6 8 10 
A 1.000 1.221 1.492 1.822 2.226 2.718 
The relation between the logarithm of the amount and time is linear, 
since taking the logarithm is per definition the inverse of taking the 
exponent: 
if 

A ss e
R G R x T 

then 

1n(A) = RGRxT 

in which In stands for the logarithm with base e. 
It is recalled that 

log(e) = 0.43429 

or that 

1og(l0) = ln(10) = 2.3026, 
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so that 

ln(X) = 2.3026 x 10log(X) 

5 The results with DELT = 2 hours are: 

TIME 
0 
2 
4 
6 
8 
10 

A 

1.000 
1.200 
1.440 
1.7280 
2.0736 
2.4883 

RGRxA 
0.1 
0.12 
0.144 
0.1728 
0.20736 

RGR x A x DELT 
0.2 
0.24 
0.288 
0.3456 
0.41472 

6 Some results with DELT equal to 1 and 0.5 hours are 
TIME 0 2 4 6 8 10 
A(DELT=1) 1.000 1.210 1.464 1.772 2.144 2.594 
A(DELT = 0.5) 1.000 1.216 1.477 1.796 2.183 2.653 

A© (=IA) being the initial amount, A equals A Q + A Q X D E L T X 
RGR after one time-interval and after two time-intervals A2 = Aj + 
A t x DELT x RGR 
In general the relation 

AQ = AQ.1(l+DELTxRGR) 

holds. 
Since An_, can be written as the product of An_2 and (1+DELTx 
RGR) and RGR is constant, the expression can be transformed into 

A. - A0(l+DELTxRGR)a 

This is the value of Afl at time n x DELT, so that 

Afl - A0(l+DELTxRGR)™E/DELT 

or 

Aa = A0((1 + 1/X)X)RGRXTIME 

with X = 1/(DELT x RGR) 
When TIME stays constant and DELT approaches zero, X approaches 
ininity and the expression for A approaches to 
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A = A0 x e
RGRxTIME 

in which the number e is standing for 

e = lim (l-fl/X)x = 2.7182... 
X-*oo 

This is the so-called analytical solution for the differential equation 
of exponential growth, which is just a standardized way to write 
the procedure for a numerical solution. 

7 RGR is the only variable containing the dimension of time. If 
RGR is expressed in hour"1, TIME assumes the dimension hour. 
If programs contain more variables with the dimension time, care 
must be taken to use the same unit of time. 
Of course it is always necessary to express variables in the same dimen
sional units: a practical problem that should not be underestimated. 

8 See Fig. 1. 

9 The rectilinear method of integration is used and in the solution 
for Exercise 6 it is shown that the analytical solution is the limit of 
the numerical solution with DELT approaching to zero. It is always 
necessary to use a not too small interval DELT in simulation because 
otherwise round-off errors would accumulate and the computation 
would never be terminated. 

10 Please do not take the trouble to find a mathematical expression 
for such kind of relationships. 

*1 Compared with the scatter of the observational data, the devia
tions between the smoothed curve and the straight segments is small, 
so that it is unnecessary to use smaller temperature-intervals in the 
tabulated function. 

12 sine(0°) = 0. 
sine (15°) = 0.259 
sine (30°) = 0.5 
sine (60°) = 0.865 
sine (90°) = l. 
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The maximum temperature is reached just 6 hours from the beginning 
of the day. 

13 The rate of change of T is 1, so that TT+DELT = TT+DELT and 
because the initial value of T is zero, T = TIME. 

14 The answers do not differ very much for different choices of 
DELT, so that 0.5 hour seems to be a reasonable choice. The relative 
growth rate is 0.1 at a temperature of 12.94°C and the temperature 
is maintained on this level by introducing 

PARAMETER AVTMP=12.94, AMPTMP=0. 

15 

A 1 0 
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O 

Fig 36 
0 1 DELT 2 

16 It is read from the graph that the maximum size of the time-inter
val is about 1.2 hours if a relative deviation of 5 percent from the 
analytical solution is acceptable. This is about 1/10 of the inverse of 
the relative growth rate. The relative deviation increases with the 
length of the simulation period. Starting with the correct value at 
10 hours, the relative deviation is again 5 percent at 20 hours. These 
deviations are additive, so that the total relative deviation after 
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20 hours is 10 percent. With a two times larger RGR, the time scale 
is compressed by a factor 2, so that the time-interval must be com
pressed also by a factor 2, to obtain a relative deviation of 5 percent 
at 5 hours. To obtain this deviation at 10 hours, it is necessary to 
reduce DELT with another factor of 2. Hence the time interval has 
to be taken four times smaller when R G R is two times larger. 

17 The allowable time-interval is obviously larger than OUT DEL, 
but OUTDEL is taken because output is requested at these intervals. 
When using METHOD RKSFX,DELT can be set equal to OUTDEL. 
The tabulated results for RGR 10 x larger are: 
HOUR 
6- 7 
7 - 8 
8- 9 
9-10 

10-11 
11-12 
12-13 
13-14 
14-15 
15-16 
16-17 
17-18 

RGR 
2.14 
2.11 
2.04 
1.94 
1.81 
1.67 
1.49 
1.28 
1.09 
0.93 
0.82 
0.76 

ACOUNT 
4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
2 
2 

°** Tee growth of yeast 

*8 It was said that two rates do not depend on each other, but not 
that one rate cannot depend on the other. Here, the rate of growth 
and the rate of alcohol production are consequences of the same 
Process: the biosynthesis of yeast material out of sugar. Therefore, 
there is a fixed ratio between rate of growth and rate of alcohol 
production. The rate of sugar consumption is stochiometrically 
related to the above two rates: laws of conservation of matter, energy 
etc. can be formulated in such a way that some rate of appearance 
always equals some rate of disappearance. 

*9 The rate of sugar consumption is equal to a sugar consumption 
actor times the rate of yeast growth for each species. The amount of 
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sugar is an integral which is emptied by both rates. The amount or 
concentration of the sugar in the medium should feed back on the 
growth rate of the yeasts. The quantitative aspects of this feed back 
are not presented in the diagram. 

20 RED = ALC/MALC, since in this case 0<ALC<MALC. 
Otherwise, RED should be given by 

R E D = L I M I T ( 0 . , 1 . , A L C / M A L C ) 

21 The best estimate of RGR1 is obtained by presenting the amount 
of yeast during early growth on a logarithmic scale against time and 
drawing a straight line through the data. The value appears to be about 
0.2 hour""1. The value of ALPF1 is the alcohol concentration at 
the end, divided by the amount of yeast or 1.5/13 = 0.115 percentage 
of alcohol per unit of yeast. The alcohol production factor depends 
on the size of the vessel. In a larger vessel, the same amount of alcohol 
would cause a smaller percentage. It would be more elegant not to 
mix up the influence of physiological aspects (alcohol production 
rates) with experimental aspects (vessel size), but Gause did not 
give the latter. The alcohol percentage corresponding with the initial 
amount of yeast is ALPF1 x 1Y1, but Gause did not add this alcohol 
with the yeast at time zero. Relevant figures for Schizosaccharomyces 
are: 

RGR2 = 0.05 hour""1, ALPF2 = 0.26 (% ale.) (unit yeast)"1 

Schizosaccharomyces has the largest alcohol production factor. 

22 In this case, Schizosaccharomyces would grow relatively slower 
and Saccharomyces faster than suggested by a linear dependency 
of the reduction factor on the alcohol concentration. In the mono
cultures, this would not affect the ultimate amount of yeast that is 
formed, but in the mixture it would lead to less Schizosaccharomyces 
and more Saccharomyces. However, the growth curves for the two 
species in the monoculture would also be of different form. This is 
not suggested by the data, but the scatter is of course large. The 
alcohol concentration in the mixture may be calculated by multiplying 
the final yields with the respective alcohol production factors. This 
yields a concentration of 1.43%, rather than 1.5%. Hence, there is 
less yeast in the mixed culture than would be expected. This may be 
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an experimental error. 

23 The yeast will grow and increase its amount, and thereby its 
growth rate and alcohol production rate, until the alcohol concen
tration approaches 1.5%. 
In this situation an infinite amount of yeast will maintain a growth 
rate which is just sufficient to produce the alcohol that is continuously 
removed by washing. The removal rate of alcohol is 1.5/10, and the 
absolute growth rates are obtained by division with the alcohol produc
tion factor. This rather ridiculous result is a consequence of the 
assumption that the maintenance of yeast cells does not need energy 
and thus does not result in some alcohol production. Obviously, 
a simulation program which is satisfactory in some situation is not 
satisfactory in others because simplifications that apply in one situ
ation do not necessarily apply in another. 

24 YM equals MALC/ALPF. Since ALPF was calculated from YM, 
it is not surprising that the YM equals 13 and 5.8 for the species. 
The first derivative of c/v equals (—c/v2) x (dv/dT), when c is a 
constant, so that the first derivative of Eqn (3.7) is: 

df = ( i + K x e - R G R ^ 2 X ( - K x R G R x e ~ R G R X T ) 

The two minus signs cancel, and part of the expression can be replaced 
by Y itself: 

dY KxRGRxe~RGRxT 

dT X ( l+Kxe - R G R x T) 

Kxe - R G R x T 

The fraction ar.a^^ can also be written as 
( l+Kxe - R G R x T) 

l - _ 1 
a t T.T — D f . R x Tv 

+Kxe RWXT) 
Substituting Y for a second time gives 

dY 
J J = RGRxYx(l-YJYM) 
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In this way the differential equation (3.6) is again arrived at. The initial 
amount of yeast can be found by substituting for time the value zero 
into the integrated equation (3.7). This gives: 

YM 
IY = 

1 + K 

The differential equation for the rate of alcohol production can only 
be replaced by the integral equation for the amount of alcohol if 
the initial amounts of yeast that are added are small. If this is not 
the case, the appropriate amount of alcohol, ALPF x IY, has to be 
added together with the initial amount of yeast if the analytical solution 
is to be used. Such restrictions do not hold in the simulation program 
because no equations are eliminated there. 

25 If we again neglect the initial amounts of yeast, the amount of 
alcohol in the mixed culture is given by 

ALC = ALPF1 x Yl + ALPF2 x Y2 

Assume that RED = ALC/MALC for both species, then the growth 
rates may be formulated as 

dYl 
dT 

dY2 
dT 

vi T^ I>I {^ ALPFlxYl ALPF2xY2\ = Yl x RGR1 x 1 — 
\ MALC MALC / 

v , B r _ lA ALPFlxYl ALPF2xY2\ = Y2 x RGR2 x 1 — 
\ MALC MALC / 

Rl and R2 correspond to RGR1 and RGR2, Al and A2 are equal 
to ALPF1/MALC and Bl and B2 to ALPF2/MALC. Al and A2are 
equal because it is assumed that Yl and Y2 are equally sensitive to 
the alcohol produced by Yl. If Yl produces some product that is 
more harmful for Y2 than for Yl, A2 is larger than Al. 

8.4 Interference of plants 

26 The monocultures stay monocultures. When in the mixed culture 
half of the area is allotted to the first and half to the second species, 
the relative seed densities are nx0.5/n = 0.5 and mx0.5/m = 0.5. 
One may also consider n seeds of one species as one seed unit and m 
seeds of the other as another seed unit 
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27 The nominator k12Z!-f z2 cancels by division, so that Eqn (4.4) 
is obtained. Addition of Oj/Mi and 02/M2 gives (k12z1-fz2)/(k12z1 + 
z2) = 1 so that Eqn (4.3) is obtained. 
The results of the calculations are: 
z2(oats) 0.2 0.4 0.6 0.8 
a12 1.51 2.09 2.06 2.00 
k12 2.05 2.83 2.79 2.71 
RYT 1.04 1.02 1.01 0.97 

Obviously some smoothing is necessary to obtain a RYT equal to 1, 
and a constant relative crowding coefficient. 
Oats has the highest yield in monoculture, but barley gains in com
petition. 

28 Replacing zi and z2 by Zi/Zra and Z2/Zm, taking into account 
that Zx4-Z2 = Zm and omitting the subscript 1 transforms Eqn (4.5) 
into: 

0 = k x z / zm M = k xZ M 

k x Z/Zm+(Zm-Z)/Zm (k-1) x Z+Zm 

This equation must be equal to 

O - B x Z Om 
BxZ+1 m 

Both equations describe a hyperbola. If the horizontal asymptote 
and the slope at the origin are equal, the hyperbolae are identical. 
This means that 

k 
k - 1 U m 

and 

k 
^ - M = BxOffl 

m 

The first equation gives directly the expression for Om, and substitution 
1Jito the second equation gives 

B = (k-1)/Zm 
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1/B 

OM 

Fig. 37 

Lim (O) = O 
Z-*oo 

m 

Lim (O/Z) = Lim 
z-»o z-»o BxZ+1 

= BxO 
m 

Lim (O/OJ = Lim J ^ | -
z-»o z-o b x Z + 1 

Lim (O/OJ = Lim B * Z 

z-*oo z-*co B x Z + 1 

= BxZ 

= 1 

30 

7 June 
21 June 
5 July 

19 July 

Barley 

o m 
470. 
612. 
780. 

1132. 

.D 

0.083 
0.574 
0.778 
0.778 

Oats 

o m 
761. 
552. 
724. 
956. 

B 
0.0297 
0.346 
0.571 
1.17 

H4 



B has the dimension m row"1, because the seed density has the 
dimension row m"1. The graph for Om has an unexpected form. 
The calculated values of Om (g m"2) are very inaccurate for the first 
harvest because the yields are very far from their maximum at both 
densities. 
When linearized the growth rate of Om for barley and oats are 16.4 
and 14.5 g m"2 day"1, so that the estimated values for Om at the first 
harvest are 377 and 333 gm"2 . The values of B calculated on this 
basis are 0.11 and 0.076 m row"1. 

31 

d(RS) _ d(B x Z)/dt x (B x Z+ l ) - d(B x Z+ l)/dt xBxZ__ 
dt (BxZ+1)2 

dB dB dB 
Z x -TT x BxZ+Z x - 7 7 - Z x - r r x B x Z 

_ dt dt dt __ 
(BxZ+1)2 

BxZ 1 1 dB 
x x —x — = 

(BxZ+1) (BxZ+1) B dt 

= RSx(l.-RS) x—x^5 
J B dt 

The dimension of (dB/dT)/B is time""1, the same as a relative growth 
rate. Usually its value decreases with time. There is an exponential 
growth when this ratio is constant. 
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33 The initial relative growth rate becomes infinite, if B is zero at 
emergence. The derivative of a variable with respect to time is cal
culated as the difference between the present value and the value either 
a sufficiently small time-interval earlier or one ahead, divided by this 
time-interval, taking care for the sign. In simulation only the first 
method can be used, as future values are not known. At time zero, 
however, there is not a past either so that the initial value must be 
given by the programmer on an IN C 0 N card. 
The use of the derivative function D E RIV is only allowed, if the de
rivative is taken of an externally given variable, such as an A F G E N 
function of TIME. In this situation the simulation program is used 
to convert some given variable of time to its derivative with respect 
to time. As soon as some rate of an integral depends on a derivative 
of a variable which depends also on some integral, the D E R IV 
function must not be used. It produces nonsense results, because an 
internal, algebraic loop is introduced. When the self-adapting inte
gration method of Runge-Kutta is used, the time-interval will be 
chosen so small that the choice of the initial value has hardly any 
influence. With METHOD RECT,it is better to initialize properly. We 
calculated the following initial values of the derivative of B: 
Barley: 0.0047 m row"1 day"1 

Oats : 0.0033 m row"1 day"1 

136 



The initial values of RS are calculated with 

RS = B X Z 

BxZ+1 

with Z = 2 rows m"2 and B = 0.001 m2 row"1, 
The simulated results in gra"2 are: 

Date of Barley Oats 
harvest 

7 June 
21 June 
5 July 

19 July 

60.5 
242 
338 
490 

37.1 
140 
214 
338 

These are in good agreement with the experimental results of Table 2. 

34 

TITLE FOUR COMPETING YEAST SPECIES 
INITIAL 
INCON YI* 1,4'=0.1,0.1,0.1,0.1 
DYNAMIC 
Y*1,4'=INTGRL(YI'1,4',RY'1,4') 
RY'1,4'=RGR'1,4**Y'1,4'*(1.-RED'1,4') 
PARAMETER RGR'1,4'=0.2,0.3,0.4,0.5 
RED'1,4'=AFGEN(RDTB'1,4',ALC) 
FUNCTION RDTB1=0.,0., 1.5,1. 
FUNCTION RDTB2=0.,0., 1.,0.8,2.,1. 
FUNCTION RDTB3=0.,0., 0.9,1. 
FUNCTION RDTB4=0.,0.,1.,0.5,1.5,1. 
ALC=INTGRL(0.,ALCP1+ALCP2+ALCP3+ALCP4) 
ALCP'1,4'=ALPF'1,4'*RY'1,4' 
PARAMETER ALPF'1,4'=0.5,0.4,0.3,0.2 
TIMER FINTIM=50.,PRDEL=1.,0UTDEL=1. 
PRINT Y'1,4',ALC 
END 
STOP 
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35 The main differences between the MACRO and the INDEX 
features are simply of a practical nature. The index feature distin
guishes the variables by a number at the end. Since a variable name 
may consist at the most of 6 alpha-numerical symbols, ABCDE'1,10' 
creates also the variable ABCDE10 and this is an unacceptably long 
name. The INDEX feature can be used to any single expression that 
is normally used in the program. The MACRO feature is unsuitable for 
this purpose, because every time a MACRO is used, the invoking 
sentence has to be written. Hence, the only expression in a 'one line 
macro' may be as well written directly with the proper symbols. 
The MACRO feature is therefore in general used only when the M A C R 0 
definition contains more than one structural statement. 

36 A SUBROUTINE contains an algorithm to compute output 
variables for a main program from input variables out of the main 
program, any time it is called upon. A MACRO, however, does not 
contain an algorithm, but is an order to write a part of a C S M P 
program with the proper symbols every time it is called upon. The 
different statements written by the MACRO are then sorted in their 
appropriate places in the FORTRAN-subroutine 'UPDATE'. The 
individual expression within the original MACRO may be found 
scattered throughout this subroutine. 

37 The correct expression is 

BI 
RSI = 

BI+DIST 

in which distance is the inverse of the density of the rows and expressed 
in m row"1. The initial value BI is close to zero and negligible com
pared with DIST, so that the expression is sufficiently approximated 
by RSI = BI/DIST. It can also be said that at initialization the plants 
in the row are still so small that they do not interfere with plants in 
other rows. 
DBI is the initial value of the derivative and equals approximately 
(Bl+At —Bt)/At in which At may be chosen as one day because the 
function for B is linear over this small time-increment. 
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TITLE COMPETITION BETWEEN THREE BARLEY VARIETIES USING THE MACRO FEATURE 
MACRO RSI,DBI=BEGIN(BTB,DIST) 

RSI=BI/DIST 
BI=AFGEN(BTB.O.) 
DBI=AFGEN(BTB,1.')-BI 

ENDMAC 
MACRO O.RS=GROWTH(RSI,DBI,BTB,OMTB) 

RS=INTGRL(RSI.(DB/B)*RS*(1.-SRS)) 
B=AFGEN(BTB,TIME) 
DB=DERIV(DBI,B) 
0=RS»AFGEN(OMTB,TIME) 

ENDMAC 
INITIAL 

RSI1,DBI1*BEGIN(BTB1,DIST1) 
RSI2,DBI2=BEGIN(BTB2,DIST2) 
RSI3,DBI3=BEGIN(BTB3,DIST3) 

DYNAMIC 
01,RS1sGROWTH(RSI1,DBI1,BTBl,OMTBl) 
02,RS2=GR0WTH(RSI2,DBI2,BTB2,0MTB2) 
03,RS3=GR0WTH(RSI3.DBI3,BTB3,0MTB3) 

PARAM DIST1=1.2,DIST2=1.2,DIST3=1.2 
SRS=RS1*RS2*RS3 

FUNCTION BTB1=(0.,0.001),(30.,.03),(35.,.05),(40.,.09),(45.,.16),(50...26), 
(55.,.38).(60.,.58),(65.,.88),(70.,1.02) 

FUNCTION BTB2=(0.,0.0005),(30.,.015),(35.,.025).(40.,.045),(45.,.08),... 
(50.,.13),(55.,.19),(60.,.29),(65...44),(70...51) 

FUNCTION BTB3=(0..0.001),(30.,.03),(35.,.05),(40.,.09),(45.,.16),(50...26), 
(55.,.38),(60.,.58),(65...88),(70.,1.02) 

FUNCTION OMTB1=(0.,0.),(70.,5600.) 
FUNCTION OMTB2=(0.,0.).(70.,5600.) 
FUNCTION OMTB3=(0.,0.).(70.,2800.) 
TIMER FINTIM=70.,PR0EL=5.,OUT0EL=5. 
PRINT 01,02,03,RS1,RS2,RS3 
PRTPLT RSI 
PRTPLT RS2 
PRTPLT RS3 
END 
STOP 

TITLE COMPETITION BETWEEN THREE BARLEY VARIETIES USING THE INDEX FEATURE 
INITIAL 

RSn,3#=BI'1,3*/DIST*1.3' 
BI,1,3*=AFGEN(BTB,1,3',0.) 
DBri,3*=AFGEN(BTB,1,3'.1.)-Bri,3' 

DYNAMIC 
RS,1,3'=INTGRL(RSri,3'.(DB*1.3*/B,1,3')*RS,1,3'*(1./SRS)) 
B*1,3,=AFGEN(BTB,1,3#,TIME) 
DB,1.3,=DERIV(DBI,1,3'.B"I,3,> 
0 * 1,3'=RS* 1,3'•AFGEN(0MTB*1.3',TIME 

PARAM D i s n . 3 ' = 1.2.1.2,1.2 
SRS=RS1*RS2*RS3 

FUNCTION BTB1=(0..0.001),(30...03),(35.,.05).(40.,.09),(45.,.16).(50...26),.. 
(55...38). (60.,.58), (65.,.88), (70.,1.02) 

FUNCTION BTB2=(0.,0.0005).(30...015),(35...025),(40.,.045).(45...08),... 
(50.,.13),(55.,.19),(60.,.29),(65...44),(70...51) 

FUNCTION BTB3=(0.,0.001),(0.,.03),(35.,.05),(40.,.09),(45.,.16),(50.,.26),... 
(55...38),(60...58).(65.,.88),(70.,1.02) 

FUNCTION OMTB1=(0.,0.),(70.,5600.) 
FUNCTION CMTB2=(0.,0.),(70.,5600.) 
FUNCTION OMTB3*(0.,0.),(70.,2800.) 
TIMER FINTIM=70.,PRDEL=5..OUTDEL=5. 
PRINT 0-1.3-.RS-1.3" 
P*TPLT RS'1,3* 
END 
STOP 



8.5 Growth and competition of Paramecium 

39 Thorough stirring does not result in a uniform distribution of 
the Paramecium throughout the liquid medium, but in a random 
distribution. One-tenth of the solution does therefore contain some
times more or some times less than exactly one-tenth of the number of 
protozoa. 

40 

41 

Variable 

H 
AFOOD 
TIME 
CONVF 
RDR 
FOOD 
RSW 
MRDIG 
CNRT 

Dimension 

protozoon (prot.) 
loop 
day 
prot. loop"1 

day"1 

loop, volume"1 

volume.prot." x.day " x 

loop.prot^.day"1 

loop.day 

Type of 'variable' 

state 
state 
state 
param. 
param. 
auxil. 
param. 
param. 
rate 

The example of the relational diagram in Fig. 39 is as schematic 
as possible. 
A simplified integral statement for the net growth rate is: 

H = INTGRL(IH,CONVF x CNRT- RDR x H) 

if a relative death rate is accounted for and 

H = INTGRL(IH,CONVF x (CNRT- MNF x H)) 

if maintenance is accounted for by a maintenance factor (MNF in 
loop.day^.protozoa"1). 
The two formulations are the same with 

RDR = CONVF x MNF 
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42 The graph consists out of two line segments: a straight line 
through the origin and a horizontal 'saturation' level. 
MRDIG determines the height of the saturation level. The slope of 
the line through the origin is determined by RSW, and H is a multi
plication factor for the height of the graph as a whole. CNRT equals 
zero when FOOD is zero. NGR equals zero when 

CNRTxCONVF = DR 

or 

H x AMIN1(MRDIG,RSW x FOOD) x CONVF = H x RDR 

or 

AMINl(MRDIG,RSWx FOOD) = RDR/CONVF 

The maximum value of the left side of the expression is MRDIG. 
If the value of the right side is even larger than MRDIG, no value of 
FOOD exists for which NGR equals zero. In other words, the rate 
of death could be larger than the rate of growth, even if the animals 
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were eating at the top of their consumptive ability. This leads to 
rapid extinction, so that there is no need to consider this situation. 
If, on the other hand, the expression on the right is less than MRDIG, 
the equation may be simplified to 

RS W x FOOD = RDR/CONVF 

or 

FOOD = — R 

RSWxCONVF 

This equilibrium level of FOOD is independent of the number of 
protozoa H. This is logical because each animal catches its food on 
its own. 

43 In Exercise 41 it is said that the basic unit to measure volumes 
will be the volume of the test tube, and not cm3. This convention 
must be maintained throughout the simulation program. Numerically 
there is no objection to eliminate AFOOD and to say directly: 

FOOD = INTGRL(L,FEED-CNRTA-CNRTQ 

However, the dimensions of the variables are then not consistent: 
FOOD sometimes means amount of food, as here in the integral, 
and sometimes it means density of food, as in the expression for 
CNRT. 

44 In such an integration method the criterion for the size of DELT 
is an error which decreases with the size of DELT. In the considered 
situation the rate itself is inversely proportional to the size of DELT, 
so that the calculated error, which is proportional to the product of 
DELT and the rate, will not decrease when DELT is diminished. 
Once the occurring error exceeds the error bound, the integration 
routine starts to halve the value of DELT. As this does not improve 
the situation, this halving goes on until a minimum allowed value of 
DELT, called DELMIN, is reached and the simulation is terminated. 

45 Four parameters must be estimated for each species. If the order 
of magnitude of none of the parameters is known one may start by 
estimating four values for each parameter of which the largest is 
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10 (XX) times the smallest. This leads in a first evaluation already to 
44 = 256 simulation runs. 

46 Since the data scatter considerably your estimates may differ 
from ours. 

H 
GR.75 
RGR 
CONVF 
RDR 
MRDIG 
RSW 

P. aurelia 
0.5 loop 
2500 
350 
1.23 
2800 
0.46 
0.00064 
0.00128 

1 loop 
4500 
550 
1.23 
2200 
0.39 
0.00078 
0.00156 

P. caudatum 
0.5 loop 

600 
100 
0.74 
800 
0.57 
0.00176 
0.00176 

1 loop 
1290 
230 
1.05 
920 
0.61 
0.00191 
0.00191 

Averaging of the values for 0.5 and 1 loop, and taking into account 
that P. caudatum is about 4 times larger than P. aurelia, leads to the 
following estimates of the parameters: 

CONVF 
RDR 
MRDIG 
RSW 

P. aurelia 
3000 
0.43 
0.0007 
0.0014 

P. caudatum 
750 
0.59 
0.0028 
0.0018 

Some of the reasons why these estimates may be considerably in error 
are: 
a the scatter of the data; 
b the population size in the end is not always at Heq, but varies 
throughout the day. This affects the validity of the two equations 
with Heq in it; 
c it is not certain whether in the beginning the saturation density 
of food is reached or not. The assumption that it is not so leads to 
a set of equations in which MRDIG is larger than RSW and which 
provides different values for RSW; 
d in the beginning the density of food varies also throughout the day, 
so that growth is not exactly exponential; 
e the whole concept, vizualized in the simulation program may be 
wrong. 
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47 Other parameters being equal, a difference in the relative death 
rate of 10% causes a difference of only about 8% in the maximum 
size of the populations for the monoculture. In the mixed culture, 
however, it is just this 10% difference that makes for survival of one 
species and extinction of the other; after several days the difference 
in the population size is much larger than 8%. The same argument 
holds for the other parameters. Our best estimates are given in Table 4. 
The program is practically completely presented in the text, so that 
finalizing it, should not give any difficulties. 

48 The food consumption (CNRT) is proportional to the number of 
protozoa (H) and to the minimum of the maximum rate of digestion 
(MRDIG) or the food concentration times the rate of searching 
(FOOD x RSW). The food consumption is proportional to H, when 
FOOD exceeds MRDIG/RSW or when FOOD is constant. FOOD is 
constant in the beginning, because the consumption is small compared 
with supply. Since the death rate is also proportional to H, exponen
tial growth results at the beginning of the experiment. 
At the end of the experiment the population grows very fast just 
after feeding. As soon as the food level is below RDR/(RSWx 
CONVF), the death rate is larger than the growth rate (Exercise 42). 
When the food is depleted below this critical level, the population 
size goes through a maximum, and will be smaller at the end of the 
day than some time earlier. 
The relative death rate is about 0.45 day"1 and the relative sampling 
rate approximately 0.1 day"1, so that death through natural causes 
is far larger than through sampling. It is interesting to remark that 
Gause did not only discard the sampled amount for practical reasons, 
but also because he was (unnecessarily) afraid that the natural death 
rate would be so small that one species would not replace the other 
in competition. 

49 According to the Poisson distribution function, the standard 
deviation is the square root of the sampled number so that the relative 
standard deviation is inversely proportional to this square root. 
The population of P. aurelia is about 4 times larger than of P. caudatum, 
so that its relative standard deviation is about half, as reflected 
in the scatter of the observations. 
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JS.& Modelling of development, dispersion and diffusion 

50 a At 14 °C the function DVRTB is interpolated between the 
points (12.,0.) and (26.,0.035); this gives 0.005 day"1 for DVR. 
Accordingly, the development stage at 20 days is 0.1. 
b DVR equals 0 at 7°C and 0.0225 day""1 at 21 °C. The development 
stage at 20 days is 20 x 0.5 x 0.+20 x 0.5 x 0.0225 or 0.225. 
In both situation a and b, the average temperature is 14°C, but de
velopment is much faster in b because of the variation in the tempera
ture, combined with a more than linear temperature response. 
c At 30°C the rate of development is 0.039 day"1, so that at 20 days 
a development stage of 0.78 is reached. 
d The temperature is 40°C for 6 hours, so that DVR equals 0.041. 
The temperature is 26.7 °C with a DVR of 0.0357 for the other 18 
hours. At 20 days, DVS equals 20x0.25x0.041+20x0.75x0.0357 
or 0.7405. This is slightly less compared to situation c, although the 
average temperature was the same during this period. Here the 
variability has caused a decrease in development, because of the less 
than linear temperature response in this region. 

p With a constant relative death rate RDR, and no birth, the popu
lation as a function of time is 

H = HI xe"RDRxTIME 

as derived in Section 2.1. When RDR has the dimension year"1, 
e t o t a l death during the first year amounts to 
Hlx(l.-e-w>R) 

that the relative death rate on a yearly basis equals 
1 . —g-RDR 

For 
0 0? T* V a l u e s o f R D R t W s approaches RDR. When RDR is 
^ ^ » o n l y l » . 
of tu R *s z e ro and the relative birth rate equals RBR, the size 

m e Population is 

^ =* HI x eRBt 

^ one year. 
e birth rate on a yearly basis is then 
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The integration routine METHOD RECT must be used because 
a division by DELT occurs in the expression for the rates. This was 
also the case in the example of the paramecia. 

52 The data of set 1 must be used. The time-interval of integration 
is a half year because the IMPULS function works at 2.5, 7.5 etc. 
years. The birth and death rate data can also be used when time-
intervals smaller than one year are applied but for large time-intervals 
they have to be recalculated on that basis. It is a good custom in 
the Netherlands to maintain graves for a limited period of time. 
Therefore, the question as to the number of graves may be relevant. 
To calculate the number of graves another series of at least 10 classes 
of 5 years must be introduced. The birth rate of the graves equals 
the death rate of the population and the 'relative death rate' of graves 
is zero. 
Demographically, there is hardly any difference between death occur
ring during the first years of life and a decrease in birth rate corre
sponding with the death rate in excess of the 'normal* death rate 
during the first year. However, if this correction is made, it must be 
taken into account that the chances of dying during the first year are 
not the same for boys and girls, so that the sex ratio has to be corrected 
accordingly. The total male and female population after 50 years 
equals 10.49 x 106 and 10.39 x 106, respectively and the total number 
of graves are 1.853 x 106,4.340 x 106 and 7.528 x 106 when maintained 
for 10, 25 and 50 years. The simulation program for the growth of 
the population is given in Fig. 40. 
The simulation of the number of graves is programmed in exercise 61. 

The birth rates and death rates per thousand are recalculated on a 
relative basis in a N0S0RT section because statements of the form: 

MRDR1 = MRDR1 # 

cannot be sorted (Section 2.3). 
It would have been also possible to rename the variables. 

53 GS = 1 means that all seeds are germinated. Simulation beyond 
this point does not make sense, as far as germination is concerned. 



PARAM WRDR'1,19'=11.4,1.2,.3,.3,.4,.4,.6,1.,1.5,2.5,4.,5.5,8.,13., 
20.,50.,120.,250.,500. 

PARAM MRDR'1,19'*15.6,1.8,.5,.5,.7,1.,1.2,1.5,2.2,4.,6.5,9.,11.5,16.,... 
35.,70.,150.,300.,600. 

INITIAL 
NOSORT 
* CONVERSION OF DEATHS PER THOUSAND PER YEAR TO RELATIVE DEATH RATES 

MRDR'1,19'=0.001*MRDR'1,19' 
WRDR#1,19'=0.001*WRDR#1,19' 

SORT 
PARAM R B R ' 1 , U ' = 0 . , 0 . , 0 . , 0 . , . 0 9 1 , . 1 5 9 , . 1 5 2 , . 0 8 4 , . 0 3 6 , . 0 1 , 0 . , 0 . , 0 . , 0 . , . . . 

0 . , 0 . 
INCOH W I * 1 , 1 9 * = 2 9 1 0 0 0 . , 5 8 4 0 0 0 . , 5 7 0 0 0 0 . , 5 4 8 0 0 0 . , 5 4 8 0 0 0 . , 4 8 7 0 0 0 . , 

4 0 0 0 0 0 . , 3 8 0 0 0 0 . , 3 7 9 0 0 0 . , 3 7 7 0 0 0 . , 3 5 3 0 0 0 . . 3 2 7 0 0 0 . , 3 1 0 0 0 0 . , 
Tur 2 6 2 0 0 0 . , 2 2 6 0 0 0 . , 1 8 0 0 0 0 . , 1 1 0 0 0 0 . , 5 0 0 0 0 . , 3 3 0 0 0 . 
INCON M I ' 1 , 1 9 ' = 3 0 5 0 0 0 . , 6 1 2 0 0 0 . . 5 9 7 0 0 0 . , 5 7 5 0 0 0 . , 5 7 6 0 0 0 . , 5 1 7 0 0 0 . , 

4 2 9 0 0 0 . , 3 9 9 0 0 0 . , 3 8 2 0 0 0 . , 3 6 7 0 0 0 . , 3 3 8 0 0 0 . , 3 0 6 0 0 0 . , 2 8 0 0 0 0 . , 
^ 2 2 3 0 0 0 . , 1 8 4 0 0 0 . , 1 5 0 0 0 0 . , 9 0 0 0 0 . , 4 0 0 0 0 . , 1 3 0 0 0 . 

DYNAMIC 
W ^ . ^ ' M N T G R L C U I ^ ^ ' . W F L ' n i S ' - W F L ^ . ^ ' - U ^ . ^ ' . W R D R ^ , ^ ' ) 
M ' 2 . 1 9 ' = I N T G R L < M I ' 2 , 1 9 ' , M F L ' 1 , 1 8 ' - M F L ' 2 , 1 9 ' - M ' 2 , 1 9 ' « M R D R ' 2 . 1 9 ' > 
M1 = INTGRL<MI1,M8R-MWMRDR1-MFL1> 
W1 = INTGRL(WI1,WBR-WUURDR1-WFL1) 
B R ' 1 , 1 6 ' = W ' 1 , 1 6 * * R B R ' 1 , 1 6 ' 
TBR=BRWBR2*BR3*BR4*BR5*BR6*BR7*BR8*BR9*BR10*BR11+BR12 
WBR=TBR/2.048 
MBR=TBR*1.048/2.048 
WFL; 1,19' =PUSH*W 1,19' /DELT-URDR' 1,19'#U' 1,19' 
MFL 1,19'=PUSH.M'1,19'/DELT-MRDR'1,19'»M'1,19' 
PUSH=IMPULS(2.5,5.) 
Ty=Ul*u2+w3*W^*W5*W6*W7*W8*W9*U10*W11*W12*W13*W14*W15*W16*W17 ... 
•W18+W19 
TM=M1*M2*M3*M4*M5*M6*M7*M8*M9*M10*M11*M12*M13*M14*M15*M16 
•M17+M18+M19 
TP=TM*TW 

METHOD RECT 

llTui ^ N ^ M ! 5 0 " D E « - T = . 5 , O U T D E L = 5..PRDEL = 5.* 
K K I N T TP,TM,TW,TBR.M'1 19* U'1 19 ' 
PRTPLT TP.TBR , , D K ' " ^'1V ' W ^ 1 9 

END 
STOP 
ENDJOB 

Fig. 40 
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The termination of the program is achieved by inserting a finish card: 
FINISH GS=1. 

54 It is a rather arbitrary choice to give the value 1 to the stage of 
germination; it could just as well be 1000. Whatever the value, it is 
passed going through N classes. Accordingly each class covers the 
chosen germination value divided by N. 

55 The simulation program may read as follows. 

PARAMETER N=10 
H1=INTGRL(1000.,-H1*PUSH/DELT) 
H'2,10'=INTGRL(0.,(H'1,9'-H'2,10')*... 

PUSH/DELT) 
PUSH = INSW(GS-1/N,0.,1 .) 
GS=INTGRL(0#VDV-PUSH/(N*DELT)) 
PARAMETER VDV=0.143 
METHOD RECT 

etc. 
The METHOD RECT must be used for integration because of the 
discontinuous changes. 
The seeds germinate at 1./0.143 = 7.0 days. 

56 The average germination period is not necessarily the moment 
when 50% is germinated. When G is the rate of germination, the 
mathematical definition of the average germination period is: 

AGP = J 
00 

GxTxdT 
o 

I 00 

GxdT 
o 

To execute this calculation, the curve is divided in sections of 1 day 
and the formula 

AGP= I G . X T . / Z G , 

is used, in which n is the number of the day. 
Because the cumulative curve adds up to 100%, the denominator to 
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Similarly, the formula for the variance (the square of the standard 
deviation) is: 

VAR = f Gnx<Tn-AGP)2 / f G, 

This value is 11.91, so that the standard deviation is 3.45 day. 

57 It is assumed that germination on the nth day means germination 
at the beginning of the nth day. The average germination periods in 
days are then: 100x5/100 = 5, lOOx 10/100= 10, (50x5+50x10)/ 
100 = 7.5, (75 x 5 + 25 x 10)/100 = 6.25. If it is assumed that germina
tion occurs during the nth day, 0.5 day must be added to these values. 

e dimension of the relative germination rate is day""1 and of the 
average germination period is days. The product is therefore dimen-
^onless. Its value appears to be approximately one. 
The average germination period is 

*HI 

TxdH 
o 

A G P « - I r - T x d H x d T = i . 
HI Jo dT HI . 

e integral is the surface below the H versus T curve, so that the 
expression can be replaced by 

A G P s j | | j j H x d T = ± f a D HIxe- R D V x T xdT = 

RDV L Jo=RDV 
Hence RDV x AGP = 1 . 

58 T I I A •* 

sion forth!* ? ° n s t a n t o f ^ e system is found by reducing the expres-*v/i in© rate to 

(dH/dT)/H 

TWs results here in 1/REST, so that TAU = REST. 

**-* According tn P ta ^\ 
negative OhvL i ? ( ' ' ( 1 _ F ) e q u a l s 25/16« s o ^at F should be 

o u s l y " * number of classes that is chosen is too large 
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TIME 
0 
0.5 x REST 
1.0 x REST 
1.5 x REST 

HI 
1 
0.5 
0.25 
0.125 

H3 
0 
0 
0.25 
0.375 

H4 
0 
0 
0 
0.125 

to obtain a relative dispersion of 0.25. With N = 16 and F = 0, the 
proper dispersion is obtained. 

60 

H2 
0 
0.5 
0.5 
0.375 

This is the binomial probability distribution function. 
B equals TIME/(FxREST) and f equals F, so that fxB = TIME/ 
REST. With f x B small and constant and B increasing, the binomial 
approaches the Poisson distribution function. 
This situation is achieved here when the lowest value of F i.e. DELT/ 
REST is substituted in the expression for B, and DELT approaches 
zero. Then B equals TIME/DELT and approaches infinity. 
The expectation value and the variance of the Poisson distribution 
are fxB and (1—f)xfxB or in the other terms TIME/REST and 
(1 —F)x TIME/REST. To convert the variance in terms of time, 
rather than class, the expression must be multiplied by REST2. 
This gives the expression S2 = (1 — F) x TIME x REST for the variance 
which reduces into Eqn 6.2 when TIME is replaced by AGP. It is 
also recalled that for high expectation values the Poisson function 
approaches the Gaussian function with a variance equal to the ex
pectation value of the mean. 

61 The age-classes are now indeed 0-5, 5-10, 10-15 etc. so that the 
set with the class centres at 2.5, 7.5, ... years must be used. The resi
dence time is 5, and the value of F is of course 1 because age-classes 
advance per definition without dispersion. 
The simulation program, inclusive the number of p-aves is given to 
Fig. 41. 
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^ ™ « n H K U K l.iy **.U, .5, .J, , j ( .4, .5, .5,1 .1,1.,J.I, 4.f ,6.^,10.!>, 
16.5,35.,85.,180.,380.,760. 

PARAM MRDR'1.19'=6.0,.7,.5..6,.9.1.,1.4.«1.8,3.1,5.2,7.8,10.7,13.7, 
25.5,52.,110.,200.,400.,900. 

INITIAL 
INVD=1./DELT 

NOSORT 

• • • 

SORT 
PARAM 

MRDR'1,19 ' *0 .00WMRDR # 1 f 19 # 

«R0R # 1,19 '=0 .001•MROR*1,19 ' 

• • 

• • • 

RBR'1,16'=0.,0.,0.,.022,.137,.188,.113,.055..016,.002,0.,0.,0...... 
D.ft o.,o.,o. 
PARAM WI#1,19'=582000.,587000..553000.,543000.,554000.,420000., 

380000.,381000.,378000.,367000.,330000.,323000.,298000., 
P 1 D . U 226000.,226000.,150000.,70000..25000.,13000. 

* R A M MI'1.19'=611000..613000.,580000.,569000.,583000.,452000., 
405000.,393000.,371000.,362000.,314000.,297000..262000., 

DYNAMIC 184000-'120000.,60000.,20000.,3000. 

M0=INTGRL(0.,M8R-DRM0-M0/2.5) 
W0=INTGRL(0.,WBR-DRW0-W0/2.5) 
M1=INTGRL(MI1,M0/2.5-DRM1-MFL1) 
W1=INTGRL(WI1,W0/2.5-DRWl-UFL1> 
BR l.ie'xVl.ie'.RBR'l.lt' 
TBR=BRUBR2*BR3*BR4*BR5>BR6*BR7*BR8*BR9*BR10*BR11*BR12 
W8R=TBR/2.048 
MBR=TBR«1.048/2.048 
y-!']rslNTGRL(WI'2,19,,WFL'1,18#-WFL,2,19'-DRW2,19') 
W 2,19 = INTGRLCMr2,19\MFl,1,18,-MFL,2,19'-DRM,2,19,> 
! .]'19' = PUSH«W1,19'«INVD-DRW1,19' 
n o i ; J ' ! ! ' = P U S H * M ' 1 ' 1 9 ' * I N V D - 0 R M , i , i 9 -HL\'l9 SW'1.19'*WR0R-1,19-
DRW0=y0«WRDR1 
DRM0=M0*MR0R1 
p!!?'1;19'=M'1.19'*MRDR-1,19-

S ;IHPULS(2,5,5.) 
•Mi7l2??*M3*M4*M5*M6*M74M84M94M10*M11*M12*M13*M14*M15*M16*M0 

•W17lwi8lwUW 4 + W 5 * W 6 * W 7 * W 8 * W 9 * W 1 ° * W n + U 1 2 4 W 1 3 * W U 4 W 1 5 * W 1 6 4 W 0 

TP=TM*TW 

DRW1wSD2tS R W 1 * D R W 2 * D R W 3 + D R W 4 * D R U 5 * D R W 6 * D R W 7 + O R w 8 + D R W 9 + D R W 10* 
TDRM-noMn12*DRW13+DRW14*DRW15*DRU16*DRU17*DRU18*DRW19*WFL19 
DRM11*nD*tSR!Jl4DRM2*DRM3*0RM4*DRM5*DRM6*DRM7*DRM8*DRM9*DRM10* 

T D R = T D R M " T D R W R M 1 3 + D R M U * D R M 1 5 * D R M 1 6 * D R M 1 7 * D R M 1 8 * 0 R M 1 9 * M F L 1 9 

G'2 iJ? R ^°-»G0/2 .5-FLG1) 

T G I o I f c j ^ ' 1 0 •PUSH.INVO 

I!25STG10*G3^G4*G5 
TIMER FlNT7l5fA* 6 6*G 7* 6 8 +S9*G10 

METHOD REr? ' T G 2 5 ' T 6 5 0 .TM,Ty 
PRTPLT TP Ti» ItfD ,P»TBR 
STOP 
ENDJOB 

Hg. 41 

• • • 
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ox wnen me lopmost layer nas me numoer one, r- L w I gives a posi
tive contribution and FLW2 a negative one. This means that the 
downward direction is taken as positive, because in that case F LW 1 
goes into the first layer. This definition of the sign must be taken into 
account when the expression for FLW is written. 

63 The flow into the first layer is governed by the temperature 
difference between the surface of the soil and the centre of the first 
layer. The distance between these levels is only half of the thickness 
of the compartment. 
The unit of time is day, as follows from the definition of TMPS and 
the remark that a cyclic daily fluctuation is assumed. Every time when 
the argument of a sine has the value 2n(= 6.28), a full cycle is com
pleted. 
TAV represents the average temperature of the soil surface, and 
TAMPL is the amplitude of the sine wave. 
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Variable 
TMP,TI,TMPS,TAV,TAMPL 
TCOM 
VHCAP 
HC.HCI 
COND 
FLW.NFL 

Dimension 
°C 
cm 
J cm -3 C 
Jem - 2 

Jem - 1 C"1 day-1 

J cm -2 day-1 

It is extremely important to be aware of the units, as the numerical 
value of the properties depends on the units. It is recommended to 
use a consistent set of units: this is done here because the unit of 
heat (J) is considered as a basic unit. As soon as transformations to 
other forms of energy occur it is recommended to use the interna
tional system with kg, m, s as a basis. 

65 The easiest method is to specify the conductivity and the heat 
capacity as a function of depth in an AFGEN function. A new variable 
for depth, DPT, must then be introduced, whereby DPT1 equals 
0.5 x TCOM, etc. Also TCOM can be varied with the number of 
the layer. TCOM1, TCOM2, etc. must then be specified. 

152 



66 This is very dangerous because the responses to temperature, 
humidity, wind and probably radiation are likely to be non-linear 
(Compare with Exercise 50). 

67 

* WEATHER 
TEMP=AFGENCTEMPT,HOUR> 
WIND=AFGEN(WINDT,HOUR> 
WET=AFGEN(WETT,HOUR) 
UTE=AFGENCLITET,HOUR> 
DRY=1.-WET 

rim** RAIN=AFGEN(RAINT,HOUR> 

luurl 2" T E M " = 0..K.,12..35.,24..U. 
fUHCT ! ̂ T T = 0-.1-7.99,1..8..0..19.99,0.,20.,1.,24.,1. 
fUHCT OM y K0T = 0.,1..6.,1..U..4..19..2..24..1. 

LAI=AFGEN(LAIT,TIME) 
H0UR=24.*(TIME-AINT(TIME)) 

w The expressions are similar because the growth rate of the lesions 
linearly dependent on the difference between their maximum area 

actual area and because the maximum area of the lesions is the 
same. 

* GROWTH OF LESIONS 

RCNL1=RTH 

CNL7=INT6RL(0 . ,RCNL7) 
R C N L - 2 , 7 ' = C N L ' 1 , 6 - . 2 . 
AL=INTGRL<0.,RAL> 
RAL = PAL(MAIS.CNL7-AL) 

FUNCTlo2 D ^ S E « ( P A L T ' T E M P ) 

PARAMETER HALS = i ' 0 l ' 1 0 " , U ' 1 8 " , 3 3 # 2 3 " " 8 ' 3 ° * " 8 * 3 5 ' * * U ' 4 0 ' ' 0 -

6 x 0 5 - rcsi<tence time of the lesions in the non-visible stage is 
by 2 HT - id a y s* N o t e t h a t ^ contents of each class is multiplied 
Plicati y . r a t h e r t h a n divided by 0.5 day. This is because multi-
thk «•«!! w considerably less computing time than division and 
s £ X ? t 0 COUnt With ,ar«cr Programs. 
dun,,,. m n s a r c alrcady visible after 1.5 day because of the dispersion 
&ELT i aSSagf t h r o u8 h ^e six compartments. If we assume that 
fesion J n ! compared with 0.5 day, the standard deviation of 

appearance is calculated with Eqn (6.1). The curve for total 
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tive contribution and FLW2 a negative one. This means that the 
downward direction is taken as positive, because in that case F LW 1 
goes into the first layer. This definition of the sign must be taken into 
account when the expression for FLW is written. 

63 The flow into the first layer is governed by the temperature 
difference between the surface of the soil and the centre of the first 
layer. The distance between these levels is only half of the thickness 
of the compartment. 
The unit of time is day, as follows from the definition of TMPS and 
the remark that a cyclic daily fluctuation is assumed. Every time when 
the argument of a sine has the value 2rc(= 6.28), a full cycle is com
pleted. 
TAV represents the average temperature of the soil surface, and 
TAMPL is the amplitude of the sine wave. 

64 

Variable Dimension 
TMP,TI,TMPS,TAV,TAMPL °C 
TCOM cm 
VHCAP Jcm~ 3C 
HC,HCI Jem"*2 

COND J cm""1 C*"1 day"1 

FLW,NFL J cm"2 day"1 

It is extremely important to be aware of the units, as the numerical 
value of the properties depends on the units. It is recommended to 
use a consistent set of units: this is done here because the unit of 
heat (J) is considered as a basic unit. As soon as transformations to 
other forms of energy occur it is recommended to use the interna
tional system with kg, m, s as a basis. 

65 The easiest method is to specify the conductivity and the heat 
capacity as a function of depth in an AFGEN function. A new variable 
for depth, DPT, must then be introduced, whereby DPT1 equals 
0.5 x TCOM, etc. Also TCOM can be varied with the number of 
the layer. TCOM1, TCOM2, etc. must then be specified. 
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66 This is very dangerous because the responses to temperature, 
humidity, wind and probably radiation are likely to be non-linear 
(Compare with Exercise 50). 

67 

* WEATHER 
TEMP=AFGEN(TEMPT,HOUR) 
WIND=AFGEN(WINOT,HOUR) 
WET=AFGEN(WETT,HOUR) 
LITE=AFGEN(LITET,HOUR) 
DRY=1.-WET 
RAIN=AFGEN(RAINT,HOUR) 

FUNCTION RAINT=0.,0.,24.,0. 
FUNCTION TEMPT=0.,14.,12.,35.,24.,14. 
FUNCTION WETT=0..1.,7.99,1.,8..0..19.99,0.,20.,1.,24.,1. 
lulrll." WINDT = 0.,1.,6.,1.,U.,4.,19..2.,24.,1. 
luurr n« |-ITET=°.,-1.,5.99,-1.,6.,1.,20.,1.,20.01,-1.,24.,-1. 
FUNCTION LAIT=C0.,3.),(140.,3.) 

LAI=AFGEN(LAIT,TIME) 
H0UR=24.*(TIME-AINT(TIME)) 

®$ The expressions are similar because the growth rate of the lesions 
is linearly dependent on the difference between their maximum area 
and actual area and because the maximum area of the lesions is the 
same. 

* GROWTH OF LESIONS 
CNL'1 .6 ' = I N T G R L C C N L n , 6 \ R C N L ' 1 , 6 ' - R C N L ' 2 , 7 ' > 
RCNL1=RTN 
CNL7=INTGRL(0.,RCNL7) 
RCNL-2 ,7 '=CNL '1 ,6 '#2 . 
AL=INTGRL(0.,RAl) 
RAL=PAL#(MALS*CNL7-AL) 

F U W r T T « A L = A F G E N C p A L T , T E M P ) 

P A S E R P S 

e total residence time of the lesions in the non-visible stage is 
U.D as 3 ^ y s jyjoie ^a t ^he contents of each class is multiplied 

y i day rather than divided by 0.5 day. This is because multi-
P cation takes considerably less computing time than division and 
™s starts to count with larger programs. 

me lesions are already visible after 1.5 day because of the dispersion 
D E ^ T P ^ 8 ^ 6 t rough the six compartments. If we assume that 
lesi 1S Sma11 c o m P a r e d w i t h °-5 day» Arc standard deviation of 

on aPPearance is calculated with Eqn (6.1). The curve for total 
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JCMUII u icu ^ A L ; J2> M^IHUIU IUI iwu ita^uiia. n i t u i ^ t i a t u i^oiuu 
appearance and the proportionality of growth with the difference of 
maximum and current area. 

* FORMATION OF GREEN STALKS 
R0P=M0A»RAL 
R0P1=R0P*EMPT1*EMPT2*EMPT3*EMPT4 
OP'1,3'«INTGRL<0.,R0P,1f3'-ROP'2,4#-EMPT'1,3#> 
R0P'2,4'=0P*1,3'»16.«WET 
OP4=INTGRL(0.,ROP4-ROX-R0G-EMPT4> 
EMPT'1,4'=DRY«0P'1,4'*INVD 

PARAMETER MOA=300.E10 
POG=INSW<LITE,AFGEN(POGD,TEMP),AFGEN(POGL,TEMP)>*WET 
POX*INSW(LITE,AFGENCPOXD,TEMP),AFGEN(POXL,TEMP))*WET 

FUNCTION POGL=0.,0.,14.,.04,18.,.12,23.,1.4,30.,1.2,35.f0. 
FUNCTION POXL=0.,0.,14.,.04,18.,.12,23.,1.4,30.,0. 
FUNCTION P0GD=0.,0.,14.,.1,18.,.27,23.,.27,30.,1.33,35.,.67,40.,0. 
FUNCTION P0XD = 0.,0., 14.,.02,18.,.03,23.,.18,30.,.88,35.,1.54,40.,0. 

R0G=P0G»0P4 
R0X=P0X»0P4 

Note that the division with DELT is replaced by multiplication with 
IN V D, a parameter which is in the initial section defined as 1 / D E LT. 
The dimension of ROG equals number of green stalks per ha soil 
surface per day. POG and POX in the light at 21 °C are 

21-18 
0.15 + (1.4-0.12) = 0.828 

23-18 
in both cases. 

The fraction of stalks that are formed is therefore 0.828/(0.828 + 
0.828) = 0.5. The fraction of stalks that are formed under other 
conditions is calculated in a similar way. 

70 The number of spores after time T equals 

ijj — J0xe 

so that 

RBETR = -(^(Sr/S^/T = -(ln(l-0.63))/5 
= 1/5 h"1 = 4.8 day"1 

which may according to the function BEATT, be caused by a rainfall 
of 16 mm h""1. 
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* FORMATION OF SPORES ON GREEN STALKS 
GSri,3' = INTGRL<0.,RGSTM,3'-RCSr2,4'-DGSri,3--BGSri,3'> 
RGST1=ROG 

DGSri,3'=DRY«GST'1,3'«INVD 
BGST'I.S^RBETR.GSTM.S* 
RBETR=AFGEN(BEATT,RAIN) 

FUNCTION BEATT=0.,0...25,.08,.75,.32,6.25,2.,18.8,5.6,25.,6.7 
RGS=GST3«INSU(LITE,AFGENCPGSD,TEMP),AFGENCPGSL,TEMP))»UET 

FUNCTION PGSL=0.,0.,14.,.15.18.,1.44.23...32.30.,0.,40.,0. 
FUNCTION PGSD=0.,0.,14.,.06.18..14.,23.f14.,30.,.44f40.,0. 

RGST4=RGS 
NGST = GSTUGST2*GST3 

The dimension of RGS is spores on green stalks per hectare soil 
surface per day. 

72 

FORMATION OF SPORES ON DRIED STALKS 
DGST = DGSmDGST2*DGST3 
DDST=DDST1*DDST2*DDST3*DDST4 
RDST1=(DDST*DGST)*RSR*R0G 
fcDST5=RDS" 
D S T M . 4 - = n N T G R L C 0 . , R D S T - 1 , 4 - - R D S T , 2 , 5 , - D D S T ' l # 4 ' - B D S T ' 1 , 4 ' ) 
R0ST-2,A-=DST-1,3 '»16.*WET 
J D S T ' I . A ' S D R Y O S T ' H ' ^ X N V D 

BDST' l^ 'sRBETR^DST' l .A* 
FUNCTtnES = D S T 4* I N S W ( L I T E .A FGEN(PDSD.TEMP),AFGENCPDSL,TEMP))*WET 
FUNCT n ! ? J ! L = 0 - . 0 . , 1 4 . . . 1 7 , 1 8 . , 1 . 7 5 , 2 3 . . . 2 5 , 3 0 . , 0 . . 4 0 . , 0 , 

2L?DSD = 0 "° - ' U - ' - 0 7 ' < , 8 -2 -95 ,23 . # 2.2 ,30 . # .53 ,35 . ,0 . ,40 . ,0 . 
woST=DST1*DST2*DST3*DST4 

*T*L» 

e r a t e o f sPore removal (RS R) must still be calculated. 

73 Again 

ST = S0xc_RWASHxT 

*** T in days. Hence 

A S H - -dn(l-.86))/(3/24) = 15.7 day"1 

i-vjw = -ln(l.-.05)/(3/24) = 0.408 day-1 
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75 

* SPORE DISPERSAL 
RSP=RDS+RGS 
STSP=INTGRL<0.,RSP-R$R) 
RSR=SPRR*SPRD 
SPRR=RUASH«STSP 
SPRD=RBLOW#STSP»DRY 
RWASH=RAIN»2.62 
RBLOW=.102#AMAX1<1.,WIND*WIND) 
RASP=SPRR#REFF+SPRD»WEFF 
REFF=AFGEN(REFFT,RAIN) 

FUNCTION REFFT=0.,0.2,2.5,0.003,10.,0.003 
• WEFF=LAI*0.01 

Host exhaustion could be taken into account by reducing the leaf 
area (LAI) by the area of the lesions (A L). If the disease is so severe 
that A L is not small compared with LAI, the disease should also 
feedback on the growth of the crop. 

16 

« GERMINATION AND PENETRATION 
CSF=INTGRL(0,,RASP-RKSP-RG-REXS-WCSF) 
WCSF=RWASF«CSF 
RG=CSF#AFGEN(PFTT,TEMP)»<1.-KILL)*WET 
REXS=CSF*AFGENCPFXT,TEMP)*<1.-KILL)*WET 

FUNCTION PFTT=0.,0.,10.,.4,15.,1.8,20.,4.6,23.,7.,35.,3.7,40.,0. 
FUNCTION PFXT=0.,0.,10.,0.,15.,1.8,20.,4.£,23.,2.6,35.,3.7,40.,0. 

RKSP=KILL*CSF*INVD 
PROCEDURE KILL=DESS<WET) 
KILL=0. 
IF(WETP-WET).GT.0.01) KILL=1. 
WETP=WET 

ENDPRO 
CGT=INTGRL(0.,R6-RKGT-RTN-REXT-WCGT) 
WCGT=RWASH*CGT 
RKGT=KILL*CGT*INVD 
REXT=CGT*AFGEN(PTXT,TEMP)#(1.-KILL)*WET 
RTN=CGT*AFGENCPTNT,TEMP)*<1.-KILL)*WET 

FUNCTION PTNT=0.,0.,18.,.48,23.,.65,30.,.25,35.,0.,40.,0. 
FUNCTION PTXT=0.,0.,18.,1.3,23.,2.6,30.,2.2,35.,0.,40.,0. 

Note that R G and some other rates are also multiplied b y d - K I L L ) 
to avoid that the same spores or germs are killed upon desiccation 
and transferred at the same time. 

77 Another rate ( IN V R) has to be added to the integral of the lesions 
on the foliage (CSF). This rate equals 

INVR = 1 000 # 1 000 # 24* DRY* I NSW (LITE # 0,1) . . • 
*INSW(TIME-7.f1#0) 
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78 

OUT1=DEBUG(10,0.) 
OUT2=DEBUG(2,5.) 
OUT3=DEBUG(2#5.5) 

79 TEMP=AVTMP+AMPL*SINE(6.28*(TIME+8/24)) 

80 You are now on your own. 

157 



References 

Baeumer, K. 8c C. T. de Wit, 1968. Competitive interference of plant species 
^ in monocultures and in mixed stands. Neth. J. agric. Sci. 16: 103-122. 

Berger, R. D., 1970. Forecasting Helminthosporium turcicum attacks on 
Florida sweet corn. Phytopathology 60: 1284. 

Bergh, J. P. van den, 1968. An analysis of yields of grasses in mixed and 
/ pure stands. Versl. Landbouwk. Onderz. (Agr. Res. Rep.) 714, Wage-

ningen. 
. Brennan, R. D. 8c M. Y. Silberberg, 1968. The system/360 continuous 
'" modeling program. Simulation 11: 301-311. 
^ Donald, C. M., 1963. Competition among crop and pasture plants. Adv. 

Agronomy 15: 1-118. 
* Faddeev, D. K. 8c V. N. Faddeeva, 1964. Computational methods of linear 
A algebra. W. H. Freeman Co., San Francisco. 
* Forrester, J. W., 1961. Industrial Dynamics. MIT-press, Boston. 
. Gause, G. F., 1934. The struggle for existence. Williams and Wilkins, 

Baltimore. 
| Goudriaan, J., 1973. Dispersion in simulation models of population growth 

and salt movement in the soil. Neth. J. agric. Sci. 21: 269-281. 
Goudriaan, J. 8c P. E. Waggoner, 1972. Simulating both aerial microclimate 

y* and soil temperature from observations above the foliar canopy. Neth. 
J. agric. Sci. 20: 104-124. 

Goudriaan, J. & C. T. de Wit, 1973. A re-interpretation of Gause's popula-
tion experiments by means of simulation. Anim. Ecol. 42:.521-530. 

IBM, 1972. System/360 Continuous System Modeling Prop*am (360A-
CX-16X). User's Manual GH20-0367-4 Techn. Publ. Dept., White 
Plains, U.S.A. 

Janssen, J. G. M., 1973. Simulation of germination of winter annuals to 
relation to microclimate and micro-distribution. Gecologia (in press). 

Janssen, J. G. M., 1973. Effect of light, temperature and seed age on the 
germination of the winter annuals Veronica arvensis L. and Myosotis 
ramosissima Rochel ex. Schult. Occologia 12: 141-146. 

158 



v Lotka, A. J., 1925. Elements of physical biology. Williams and Wilkins, 
Baltimore. 

i Milne, W., I960. Numerical solution of differential equations. McGraw-Hill, 
New York. 

Royle, D. J., 1973. Quantitative relationships between infection by the hop 
>' downy mildew pathogen, Pseudoperonospora humuli and weather and 

inoculum factors. Ann. appl. Biol. 73: 19-30. 
Shaner, G. E. et al., 1972. EPIMAY, an evaluation of a plant disease display 

v model. Bull. Agr. Exp. Sta. Purdue Univ., West Lafayetta, Indiana, 
U.S.A. 

Unesco, 1972. Expert Panel on the role of systems analyses and modeling 
\ approaches in the programme on man and biosphere. MAB report series 

No. 2, Paris. 
olterra, V., 1931. Variations and fluctuations of the number of individuals 

v in animal species living together. In R. N. Chapman, 'Animal Ecology*, 
McGraw-Hill, New York. 

Waggoner, P. £., J. G. Horsfall <& R. J. Lukens, 1972. EPIMAY, a simulator 
of southern corn leaf blight. Bull. Conn. Agr. Exp. Sta. New Haven, 
Conn., U.S.A. 

v p C 'nT ' d€* 1960# ° n c o m ^ t i t i o n - Vend- Landbouwk. Onderz. (Agric. 
W J * R c p> «•«. Wageningen. 

ti* ^ de> R* B r o u w e r & F- w - T- Penning de Vries, 1970. The simula-
PlTt p h o t o s y n t h e t i c systems. In: Prediction and Measurement of 
T*°U°7nthetic Productivity. Proc. of the IBP/PP Technical Meeting, 
ireboft, Sept. 1969, 47-70. 

v and *G# T o w & G - c - Ennik, 1966. Competition between legumes 
grasses. Versl. Landbouwk. Onderz. (Agric. Res. Rep.) 687, Wage-

mngen. 

159 




