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Abstract 

Keijbets, M.J.H. (1974) Pectic substances in the cell wall and the inter­
cellular cohesion of potato tuber tissue during cooking. Doctoral thesis, 
Wageningen. ISBN 90 220 0537 2, (xvi) + 161 p., 37 tbs, 50 figs, 359 refs, 
Eng. and Dutch summaries. 
Also: Agric. Res. Rep. (Versl. landbouwk. Onderz.) 827 and Publikatie 275, 
Institute for Storage and Processing of Agricultural Produce, Wageningen. 

The influence of ions, starch, buffer strength and pH on solubilization 
of pectic galacturonan from potato cell wall material during boiling was 
studied. The ions enhanced g-eliminative degradation of galacturonan, but 
calcium, copper (II) and iron (II) cations slowed down the solubilization at 
pH 6.1. Magnesium was ineffective. Citrate, malate and phytate anions favoured 
it. Maceration of potato tissue disks by pectic lyases and model cooking 
experiments demonstrated the ability of calcium ions to retain intercellular 
cohesion of potato tissue even when pectic galacturonan had been severely 
degraded. In a pH range of 6.1-6.5, B-eliminative pectin degradation was 
shown by specific periodate thiobarbituric acid staining to occur in cell 
wall and potato tissue boiling. 

Specific gravity graded potato tubers were analysed chemically. In 
addition to starch, citrate, phosphorus, potassium, magnesium, pectic galac­
turonan and pH increased but malate, calcium and intercellular cohesion 
decreased with increasing sp. gr. There was a complex causal relationship 
between chemical composition and intercellular cohesion. Both were influenced 
by physiological age. Potato pectinesterase was partially characterized. 
Because of activation of this enzyme or leaching of ions, intercellular 
cohesion could be greatly enlarged in preheating experiments. Literature on 
structure and insolubility of pectic substances in plant cell walls and on 
intercellular cohesion of the cooked potato was reviewed. 

ISBN 90 220 0537 2 

This thesis will also be published as Agricultural Research Reports 827 
and as Publikatie 275 of the Institute for Storage and Processing of ' 
Agricultural Produce, Wageningen, the Netherlands. 
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Stellingen 

1. Tijdens groei en rijping van aardappelen lopen veranderingen in de chemische 

samenstelling parallel aan de toename van het zetmeelgehalte. Doordat bovendien 

laatstgenoemd verschijnsel eenvoudig is vast te stellen, is ten onrechte een 

causaal verband gelegd tussen zetmeel en intercellulaire cohesie na koken. 

J.S. Woodman & D.S. Warren, J. Sci Fd Agric. 23: 1067-1077. 
Dit proefschrift, hfdst. 7. 

2. De cohesieve eigenschappen van de intercellulaire pectinegel in aardappel-

weefsel blijven in aanwezigheid van calcium ionen tijdens koken behouden, zelfs 

indien het pectine-galacturonaan in sterke mate is afgebroken. 

Dit proefschrift, hfdst. 6. 

3. Het verdient aanbeveling magnesium ionen niet langer onder dezelfde noemer 

te plaatsen als calcium ionen ten aanzien van de binding aan pectine carboxyl-

groepen en de onoplosbaarheid van pectine structuren in plantecelwanden. 

M.A. Joslyn, 1962. Adv. Fd Res. 11: 1-107. 
L.F. Molloy & E.L. Richards, 1971. J. Sci. Fd Agric. 22: 397-402. 
Dit proefschrift, hfdst. 5. 

4. Het verbieden van nitriet als voedingsmiddel-additief is prematuur zolang de 

kennis over in vivo synthese van N-nitrosaminen beperkt is, en hypocriet zolang 

roken van sigaretten mogelijk blijft. 

K. Mbhler et al., 1972. Z. Lebensm.-Unters. u. -Forsch 150: 1-11. 
B.C. Challis, 1973. Nature 244: 466. 
L.K. Keefer & P.P. Roller, 1974. Science 181: 1245-1247. 
E. Boyland & S.A. Walker, 1974. Nature 248: 601-602. 

5. Aan de aandrang vanuit de chemische en voedingsmiddelenindustrie tot forti-

ficatie van voedingsmiddelen zoals 'snacks' dient de overheid niet toe te geven. 

FAO/WHO, 1971. Joint FAO/WHO Expert Committee on Nutrition. 
Eighth report. Food fortification. Protein-calorie malnutrition. Wld Hlth 
Org. techn. Rep. Ser. No. 477. 
Voedingsraad, 1974. Voeding 35: 9-59. 



6. Indien voldoende calcium ionen of andere kationen met een sterke affiniteit 

voor de carboxylgroepen aanwezig zijn, wordt /J-eliminatie van pectine mogelijk 

zonder dat de carboxylgroepen veresterd zijn zoals o.a. door Albersheim et al. 

noodzakelijk wordt geacht. 

P. Albersheim et al., 1960. Archs Biochem. Biophys. 90: 45-51. 
G. Dongowski & W. Bock, 1973. Faserforsch. u. Textiltech. 24: 34-38. 
M.J.H. Keijbets & W. Pilnik, 1974. Carbohyd. Res. 33: 359-362. 

7. Bij de bepaling van het kiemgetal van de coli-aerogenes groep, verdient het 

de voorkeur glucose niet als koolhydraatbron te gebruiken. 

D.A.A. Mossel et al., 1962. J. Bacteriol. 84: 381. 
J.L. Comelisse, 1974. Het isoleren van Salmonellae uit plantaardige voeder-

middelen en mengvoeders. Dissertatie, Utrecht. 

8. De saccharose synthase (UDPG-D-fructose-2CK-glucosyltransferase, E.C. 

2.4.1.13) activiteit, gemeten als saccharose splitsing, vormt een interessant en 

bruikbaar rijpheidscriterium voor de aardappel. 

R. Pressey, 1969. PI. Physiol. 44: 759-764. 
J.R. Sowokinos, 1971 resp. 1973. Am. Potato J. 48: 37-64 resp. 50: 234-247. 

9. Gezien de specificiteit van de interacties tussen pathogeen en waardplant is 

het weinig zinvol om macererende activiteit van niet-aardappel pathogene micro-

organismen te bepalen op aardappelweefsel. 

D.F. Bateman & S.V. Beer, 1965. Phytopath. 55: 204-211. 
R.J.W. Byrde & A.H. Fielding, 1968. J. gen. Microbiol. 52: 287-297. 
A.L.J. Cole & R.K.S. Wood, 1970. Ann. Bot. 34: 211-216. 

10. In de menselijke evolutie is de teelt van voedselgewassen niet voorafgegaan 

aan, maar een gevolg geweest van de ontwikkeling van het koken. 

A.C. Leopold & R. Ardrey, 1972. Science 176: 512-514. 

11. Te vrezen valt dat bij benoeming van bisschoppen in de Nederlandse r.-k. 

kerkprovincie het woord 'episkopos1 nogal eenzijdig geinterpreteerd wordt als 

'opzichter van Rome'. 

Proefschrift van M.J.H. Keijbets 
Wageningen, 6 november 1974 
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Samenvatting 

De intercellulaire cohesie is een van de belangrijkste textuureigenschap-

pen van aardappelweefsel• Al naar gelang de eigenschappen van de grondstof en 

de behandelingen tijdens verwerking, verandert de intercellulaire cohesie 

tijdens verhitten. De betekenis van de pectinestoffen, die tot de matrix 

behoren van de primaire celwand en middenlamel van de aardappel, voor de 

uiteindelijke intercellulaire cohesie van de gekookte aardappel werd aan een 

nader onderzoek onderworpen. Hiertoe werden maceratie-experimenten met 

pectine-galacturonaan depolymerases opgezet; voorts werd het oplosbaar worden 

van pectine-galacturonaan in modelsystemen (aardappelcelwanden, weefsel-

schijfjes) bestudeerd. Monsters van uiteenlopend soortelijk gewicht werden 

uitgebreid chemisch geanalyseerd, terwijl experimenten om door vofirverhitting 

celwand-gebonden pectine-esterase te activeren, werden uitgevoerd. 

In hoofdstuk 2 en 3 wordt een literatuuroverzicht gegeven van sommige 

aspecten van de intercellulaire cohesie. In hoofdstuk 2 wordt de structuur 

van de pectinestoffen in de matrix van de celwand en middenlamel besproken, 

naast die van de primaire plantecelwand zelf. Met name wordt aandacht besteed 

aan de onoplosbaarheid van de pectinestoffen, die verantwoordelijk wordt 

geacht voor de cohesie tussen de cellen. Aangenomen wordt dat de onoplosbaar­

heid wordt veroorzaakt door covalente verankering aan hemicellulose en glyco-

proteinen in de celwand en middenlamel. Tegelijkertijd wordt benadrukt dat 

calcium bijdraagt aan de stapeling van galacturonaan ketenstukken in op 

microkristallieten gelijkende structuren. 

In hoofdstuk 3 is de literatuur bijeengebracht met betrekking tot de 

intercellulaire cohesie van de gekookte aardappel en de samenhang hiervan 

met de chemische samenstelling. Intercellulaire cohesie blijkt objectief, 

indirect, te kunnen worden gemeten met deformatietesten, zoals meting van de 

samendrukbaarheid en van de penetratie, maar directe bepaling van de cel-

separatie aan de hand van het gewicht dat na koken achterblijft op een zeef 

verdient de voorkeur. Gewezen wordt op het belang van objectieve textuur-

meting om invloed van verwante parameters uit te sluiten; dit geldt in het 

bijzonder bij het onderzoek naar de invloed van de chemische samenstelling 



op de intercellulaire cohesie. Een kritisch overzicht van oudere literatuur-

gegevens over intercellulaire cohesie illustreert dit uitgangspunt nader. 

Zo kan men betwijfelen of er wel een oorzakelijk verband bestaat tussen 

zetmeel en intercellulaire cohesie, zoals door velen is verondersteld, omdat 

bij die onderzoekingen de intercellulaire cohesie meestal subjectief gemeten 

werd. Wel geven vroegere experimenten sterke aanwijzingen dat complexe 

veranderingen in de pectinestoffen de intercellulaire cohesie van de gekookte 

aardappel beinvloeden. 

De sleutelpositie van pectine-galacturonaan in de intercellulaire 

cohesie wordt aangetoond in hoofdstuk 4. Enzymen die pectine-galacturonaan 

depolymerizeren (laag-methoxylpectine lyase en pectine lyase) reduceerden de 

celcohesie sterk. Tijdens deze maceratie verliep het oplosbaar worden van 

pectine-galacturonaan uit weefselschijfjes van laag (1.060-1.070) en hoog 

(1.100-1.110) soortelijk gewicht, afkomstig uit een populatie van knollen, 

gelijkvormig. Derhalve werden met behulp van de gebruikte technieken geen 

verschillen in primaire structuur van pectinestoffen gevonden. De celsepa-

ratie was echter sneller in weefsel van hoog s.g. Een verklaring hiervoor 

ligt in de grotere celafmetingen in hoog s.g. weefsel, welke het verlies van 

intercellulaire cohesie bevorderen in vergelijking met weefsel van laag s.g. 

Het patroon van de enzymatische maceratie, vervolgd via de spectrofotometrische 

turbiditeit, bracht de belangrijke rol van calcium ionen in de celcohesie 

aan het licht. Calcium ionen vertraagden de celseparatie, zelfs als pectine-

-galacturonaan zelf sterk afgebroken was, zoals bleek uit een grote mate van 

oplosbaar worden bij mechanische verbreking van de weefselsamenhang. 

Het oplosbaar worden van pectine-galacturonaan uit aardappelcelwanden 

bij koken werd bestudeerd in hoofdstuk 5. Met name werd de invloed nagegaan 

van de ionen in het weefsel zelf, zetmeel, pH en buffersterkte. Aangetoond 

werd dat pectine-galacturonaan, voor 581 veresterd, bij pH 6.1 werd afge­

broken door B-eliminatie. Calcium, bivalente koper en ijzer ionen, vertraagden 

het oplosbaar worden van pectine-galacturonaan in vergelijking met kalium, 

maar magnesium deed dit niet. Toenemende concentraties van calcium en kalium 

ionen verhoogden de snelheid van de g-eliminatie, calcium zelfs in grotere 

mate dan kalium. De belangrijke rol van calcium in microkristallijne 

bundelingszones in de aardappelcelwandstructuur wordt geillustreerd door de 

optimale onoplosbaarheid van pectine-galacturonaan bij een verhouding 

Ca2+/C00- van 1 a 2. Organische anionen zoals citraat, malaat en fytaat 

maakten pectine-galacturonaan oplosbaar bij koken, dankzij het binden van 

calcium en de versnelling van de 8-eliminatieve afbraak. 



Deesterificatie met sinaasappel PE verhoogde de affiniteit van de carboxyl-

groepen van pectine-galacturonaan voor calcium. De rol van calcium bij het 

onoplosbaar houden van pectine-galacturonaan werd nog bevestigd in enkele 

kookproeven met complexe mengsels van aardappelbestanddelen, waarvan de 

chemische samenstelling die van laag en hoog s.g. weefsel benaderde. 

In hoofdstuk 6 worden modelstudies beschreven over de intercellulaire 

cohesie van gekookt aardappelweefsel. Hierbij werden dezelfde dode en gedeel-

telijk uitgeloogde weefselschijfjes gebruikt als voor de enzymatische mace-

ratie. Deze werden gekookt in een buffer van pH 6.5 en het verlies van inter­

cellulaire cohesie werd weer turbidimetrisch gemeten. Voor het eerst wordt 

mededeling gedaan van het aantonen van B-eliminatieve afbraak van pectine-

-galacturonaan bij het koken van een plantaardig weefsel door een specifieke 

kleurreaktie met perjodaat-thiobarbituurzuur. Hoewel het oplosbaar worden 

van pectine-galacturonaan bij beide s.g. fracties weer gelijkvormig verliep, 

verloor het weefsel van hoog s.g. de intercellulaire cohesie het snelst. 

Experimenten waarin calcium en kalium ionen toegevoegd en/of verwijderd 

werden toonden duidelijk aan dat calcium ionen, in het weefsel aanwezig of 

van buitenaf toegevoegd, de pectinegel in de celwand en middenlamel stabi-

lizeren en beschermen tegen verlies van zijn samenbindende functie, zelfs 

indien pectine sterk afgebroken is tijdens koken. Het versterkende effect 

van calcium op de intercellulaire cohesie verdween bij de verestering van 

de carboxylgroepen van pectine-galacturonaan en nam aanzienlijk toe bij 

volledige enzymatische verzeping. 

Een wijd scala van chemische analyses, maar ook een bepaling van enzym-

activiteit, werd in hoofdstuk 7 toegepast op soortelijk gewichtsfracties uit 

begrensde populaties waarin het bekende verband tussen soortelijk gewicht, 

ofwel zetmeelgehalte, en intercellulaire cohesie bestond. De gezamenlijke 

gegevens werden onderworpen aan een parametervrije trend test. Het bleek dat 

met stijgend s.g. niet alleen zetmeel significant toenam maar ook citraat, 

fosfor, kalium, magnesium en de pH. Pectine-galacturonaan, voor 50-601 

veresterd, nam minder duidelijk toe. Malaat, calcium, PE activiteit en de 

intercellulaire cohesie namen af. De neutralizatie van niet-veresterde 

carboxylgroepen van pectine-galacturonaan in geisoleerde celwanden nam ook 

af en bleef onder de 501 (verhouding Ca2+/C00" < 0,5). Uit deze resultaten 

en die van een rooitijden experiment kwam de conclusie naar voren dat het 

groeistadium en de mate van rijpheid bepalend zijn voor het niveau van zowel 

zetmeel- als niet zetmeelbestanddelen. Binnen begrensde populaties betekent 

dit dat de eerder genoemde relatie zetmeel-intercellulaire cohesie vervangen 



wordt door een meer causaal verband tussen intercellulaire cohesie en chemische 

bestanddelen die met het pectine-galacturonaan reageren (hoofdstuk 5 en 6 ) . 

De enorme invloed van de pH, in het bijzonder in het natuurlijke pH-gebied 

van de aardappel, 5,5-6,5, werd duidelijk aangetoond. 

Enkele effecten van bewaring en bemesting op de chemische samenstelling 

en de intercellulaire cohesie van aardappelknollen werden onderzocht. Bij 

bewaring bij 6°C nam de intercellulaire cohesie samen met de PE activiteit 

af. Veranderingen in organische zuren liepen parallel met een stijging van de 

pH. Stikstofbemesting stimuleerde de synthese van organische zuren en de PE 

activiteit, terwijl de intercellulaire cohesie toenam. Fosfaatbemesting 

onderdrukte de citraatsynthese en dientengevolge de celseparatie bij koken. 

Om de veranderingen in intercellulaire cohesie tijdens verhitten van aard­

appelknollen te verklaren, wordt bijzondere aandacht besteed aan de 'zetmeel 

zwellingsdruk1 hypothese van in oorsprong Atwater en'de 'thermische expansie-

druk' hypothese van Hoff. 

Uit Bintje aardappelen, steeds gebruikt in dit werk, werd pectine-

-esterase geextraheerd. Het enzym werd gezuiverd door ammoniumsulfaatpreci-

pitatie en gedeeltelijk gekarakteriseerd (hoofdstuk 8). Door een pH-optimum 

bij pH 8-8,5 en een temperatuuroptimum bij 55°C lijkt het aardappel PE op PE 

uit andere hogere planten. De activeringsenergie bleek 5700 cal/mol te bedra-

gen. Met als parameters de temperatuur, de verhittingstijd en de oppervlakte 

van het aardappelweefsel werden voorverhittingsexperimenten uitgevoerd. PE 

activering werd gemeten door veranderingen in de veresteringsgraad en trad 

alleen op bij 55 en 60°C, maar binnen gen uur niet bij 50°C of bij 75°C waar 

PE reeds geinactiveerd wordt. Bij v66rverhitting van hele, ongeschilde knollen 

op 55 C en langer dan gen uur nam de intercellulaire cohesie sterk toe. 

Buiten het temperatuurgebied waar PE geactiveerd wordt, nam de intercellulaire 

cohesie ook toe wanneer geschilde weefselstukjes van verschillende afmetingen 

v66rverhit werden. De mate van toename hing af van de reeds genoemde para­

meters en werd veroorzaakt door het uitlogen van ionen. Het uitlogen werd 

kwantitatief vervolgd door het meten van de specif ieke geleidbaarheid en door 

chemische analyse van het weefsel (kalium, calcium en citraat). 
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Symbols and abbreviations 

A 

AIS 

ATP 

C00" 

DE 

DEAE 

DMSO 

DP 
EA ' 
EDTA 

HMP 

HS 

Km 
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LMPL 

LS 

Milavi test 

NADP(H) 

PAL 

PE 

PG 

pipes 

PL 

R 

Relative A 5 5 2 

RW 

RWCS test 

s 

sp- gr. 

T 

= absorbance, cm"1 

= alcohol-insoluble solids 

= adenosine triphosphate 

= non-esterified carboxylate anions of pectic galacturonan 

= degree of esterification 

= diethylaminoethyl 

= dimethylsulphoxide 

= degree of polymerization 

= activation energy per mole; cal or J 

= ethylenediaminetetraacetate 

= hexametaphosphate 

= high specific gravity 

= Michaelis constant, mol dm-3 

= unit of enzymic activity 

= low-methoxyl pectin lyase 

= low specific gravity 

= Milner-Avigad reducing hexuronic acid test 

= nicotinamide-adenine-dinucleotide phosphate (reduced) 

= pectate lyase 

= pectinesterase 

= polygalacturonase 

= piperazine-NN'-bis-2-ethanesulfonic acid 

= pectin lyase 

= gas constant per mole and per degree; 1.98 cal or 8.29 J 

= periodate-TBA A552 x 103 per unit of percentage solubilized 

pectic galacturonan 

= retained weight, g (after boiling in RWCS test) 

= retained weight cell separation test 

= standard deviation 

= specific gravity = relative density d^, 

= absolute temperature, K 
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T10o = measure of intercellular cohesion at cooking, min (RWCS test) 

TBA = thiobarbituric acid 

TCS test = turbidity cell separation test 

Tris = 2-amino-2-hydroxymethylpropane-1,3-diol 

V = maximum reaction rate at infinite substrate concentration 

v = initial reaction rate 

e = molar extinction coefficient, mol~1dm3cm~1 

< = specific conductance, mS cm-1 

< c o r r = specific conductance corrected for alkali addition in 

preheating medium, mS cm' • l 



1 Introduction 

The potato tuber (Solatium tuberosum L.) growing as an underground stem 

and functioning as a storage organ rich in parenchyma tissue filled with 

starch, is an important food material in many European and Merican countries 

(Burton, 1966). Originally potato tubers were consumed as a staple food, but 

in the industrialized and prosperous western hemisphere the decreasing trend 

in direct potato consumption is nearly reversed by the increased consumption 

of industrially prepared potato products. 

Both in home-cooking and industrial processing, heat treatments are 

applied to convert an otherwise indigestable raw product into an acceptable 

and even palatable endproduct. Heat treatments like ordinary boiling, baking, 

steaming or canning finally result in a cooked potato to which quality 

characteristics can be attributed. Experts of the European Association of 

Potato Research (EAPR) have already proposed a system for classifying cooked 

potato quality (Lugt & Goodijk, 1958) based on colour, flavour and texture 

properties. 

When only texture is considered, a definition of terms seems necessary. 

Textural description of foods and determination of textural characteristics 

has not been easy for food scientists, because they lacked rational systems 

for nomenclature in sensorial judgments (Szczesniak, 1963) and had difficul­

ties with instrumental measurement and characterization of texture (Kramer, 

1964; Finney, 1972). Voisey (1971) defined texture of food as 'related to 

the physical properties sensed by the eyes before eating (except colour), 

the sense of touch in handling the food and the tactile receptors in the 

mouth during consumption'. Szczesniak (1963) attempted to classify textural 

characteristics of foods into more specific properties of hardness, 

cohesiveness, viscosity, elasticity, adhesiveness and others; Van Buren 

(1970) mentioned another main approach to texture by studying the relationship 

between chemical constituents or treatments of a food material and one or 

more selected texture parameters. 

One of the main textural properties of potato tuber tissue is the 

cohesion between the cells. Intercellular cohesion is preferred to 



intercellular adhesion, which was used by for instance Linehan & Hughes 

(1969a) and Van Buren (1970). This preference is based on definitions of 

Szczesniak (1963). She defined cohesiveness as the strength of the internal 

bonds making up the body of the product and adhesiveness as the work necessary 

to overcome the attractive forces between the surface of the food and the 

surface of other materials with which the food comes in contact. Accordingly, 

adhesiveness is related to surface properties whereas cohesiveness is related 

to forces of attraction between particles and opposing disintegration. The 

structure and function of the intercellular layer of the cell wall in plant 

tissues strengthen the preference to use cohesion. The intercellular cohesion 

is adversely affected by heat treatments such as boiling. These result in a 

less coherent structure expressed in words or terms as disintegration, 

sloughing, breakdown, falling apart and mealiness. This loss in tissue 

coherence may or may not be desired, depending on the consumer's preference 

and the required properties of the endproduct. Linehan & Hughes (1969a) 

thought that intercellular cohesion was the most important textural charac­

teristic of the cooked potato. As I agree with these authors,I shall not use 

terms such as falling apart (Schippers, 1962), disintegration, breakdown and 

sloughing when failure in intercellular cohesion is meant. These terms all 

indicate a partial or complete loss of intercellular cohesion, while sloughing 

more precisely is defined as a disintegration of tissue structure in the 

outer layers, mostly starting near the vascular region (Schippers, 1962). 

Mealiness probably the oldest term in potato research for describing 

texture, is defined as the ease of mashing a cooked potato in the mouth 

('mouthfeel') or with a fork or other instrument (Zaehringer & Le Tourneau, 

1962). Both mealiness and (reduction in) intercellular cohesion have fre­

quently been found to be correlated with specific gravity (dry matter, starch), 

so that sometimes it is thought that these texture characteristics are iden­

tical or at least interdependent. 

The intercellular layer of potato and other plant tissues originates 

from the cell plate at cell division, develops into middle lamella and is 

built up essentially of pectic substances (McClendon, 1964; Shafizadeh & 

McGinnis, 1971; Northcote, 1972). Thus it is logical to assume that pectic 

substances play a substantial role in maintenance of intercellular cohesion. 

Cell separation or failure in intercellular cohesion might follow a degra­

dation of pectic substances in a pH region where the galacturonan backbone 

of pectic substances is known to be labile during heating or another 



mechanism of solubilization of middle lamella constituents (Doesburg, 1965). 

Until now, however, such a causal relationship between pectic substances and 

cooked potato intercellular cohesion has not been clearly established 

(Linehan & Hughes, 1969a). This must be partly because of the subjective 

sensorial methods of texture appraisal which do not satisfactorily separate 

attributes of several texture parameters. On the chemical side the large 

excess of starch in potato tissue obscures pectin analysis. Furthermore in 

the past knowledge about pectin structure and function in the native cell 

wall and middle lamella was rather limited. 

In this study the importance of pectic substances for intercellular 

cohesion at cooking was determined. In Chapter 2 a literature survey was 

given of structure of pectic substances and cell wall. Intercellular cohesion 

of the cooked potato, its measurement and how it is influenced by chemical 

composition, were discussed in Chapter 3. The relationship between specific 

gravity or starch content and intercellular cohesion was used as a starting 

point for the experimental part. Pectin depolymerizing enzymes were applied 

in maceration experiments with high and low sp. gr. potato tissues, which 

differ widely in intercellular cohesion after cooking (Chapter 4 ) . 

Differences in pectin structure of these tissues could influence maceration 

pattern or macerating ability of the enzymes. In Chapter 5 the mechanism of 

pectin solubilization during cooking was investigated in model studies with 

isolated potato cell walls. The high and low sp. gr. tissues used for 

maceration were also studied in model cooking experiments (Chapter 6 ) . As 

parameters in Chapters 5 and 6 were used: ions, degree of esterification of 

pectic galacturonan, starch, pH, buffer concentration and boiling time. The 

levels of potato constituents which were found to influence pectin solubili­

zation and intercellular cohesion were analysed in Chapter 7 in potato 

samples after specific gravity grading; furthermore some potato samples of 

experiments on lifting date and manuring were analysed. Finally the role of 

potato pectinesterase in intercellular cohesion was studied in preheating 

experiments (Chapter 8). For all experiments tubers of variety Bintje were 

used. 



2 Pectic substances, an important structural component 

of cell wall and middle lamella: a survey 

When dealing with intercellular cohesion, the structure of cell wall 

and middle lamella is important. In addition to earlier surveys in this field, 

it is therefore necessary to discuss the structure, occurrence and function 

of pectic substances within the cell wall and middle lamella complex. 

Kertesz (1951) compiled previous research on pectin and Joslyn (1962) 

reviewed the work on insolubility of native cell wall and middle lamella 

pectin ('protopectin')- Doesburg (1965) collected pectin research with 

reference to jellying phenomena and texture of fruits and vegetables. Recent 

surveys on pectic substances and pectin degrading enzymes have been made by 

Pilnik & Zwiker (1970), Pilnik & Voragen (1970), Voragen & Pilnik (1970), 

Rombouts & Pilnik (1972) and Fogarty & Ward (1972). Cell wall formation, 

composition, structure, growth and (bio)chemistry have been discussed by 

several authors too (Northcote, 1958, 1972; Albersheim, 1965a, b; Mollenhauer 

& Morr6, 1966; Muhlethaler, 1967; Rogers & Perkins, 1968; Lamport, 1970; 

Shafizadeh & McGinnis, 1971). Attention has given to biosynthesis of cell 

wall components in recent reviews (Loewus, 1971; Nikaido & Hassid, 1971). 

2.1 STRUCTURE OF THE PECTIC SUBSTANCES 

2.1.1 Earlier research 

As a result of many years of pectin research, pectic substances emerge 

as complex heteropolysaccharides rather than a well-defined group of homo-

polysaccharides with galacturonic acid or ester as a unit building block. 

Gradually it has become well established that pectic substances possess a 

rhamnogalacturonan main chain with covalently attached side chains of neutral 

sugars. The existence of a rhamnogalacturonan backbone structure in pectic 

substances from very different origins is proven by the isolation of the 

aldobiuronic acid 2-0-(a-D-galacturonopyranosyl)-L-rhamnose (GalpA-(1+2)-Rha) 

from alfalfa, lemon peel, soybean hulls and cotyledons, Amabilis fir bark, 

apple fruit, carnation root, sycamore callus and suspension-cultured cell 



wall and mustard embryo (e.g. Rees, 1969; Aspinall, 1970a, b; Pilnik & 

Voragen, 1970; Rombouts, 1972). The rhamnosyl residues are not randomly 

distributed in the main chain, but they seem to be interspersed in a 

galacturonan chain as rhamnose-rich blocks (Aspinall et al., 1968a, b ) . 

The galacturonopyranosyl residues are definitely a-1,4-glycosidically linked 

(Jones & Reid, 1954, 1955). More information is required about linkage and 

composition of side chains because of their important role in the primary 

structure of pectic substances. However, this is difficult to obtain mainly 

because of the instability of the pseudo-aldobiuronic acid linkages during 

acid hydrolysis. The presence of neutral sugars containing side chains has 

become increasingly evident because it is impossible to physically separate 

some neutral sugars from isolated pectic substances (Aspinall, 1970a). Only 

by enzymatic hydrolysis, followed by methylation studies, has information 

been obtained about the point of attachment of side chains. Two branching 

points of the rhamnogalacturonan backbone have been ascertained; D-xylose 

and L-arabinose are linked glycosidically to C3 of a galacturonopyranosyl 

residue (Bouveng, 1965; Aspinall et al., 1967b, 1968a, b) whereas both 

Aspinall et al. (1967a) and Talmadge et al. (1973) found evidence for 

attachment of side chains to C4 of rhamnose. Besides D-galactose, L-fucose, 

D-glucuronic acid and 2-methylethers of xylose and fucose have been found 

in side chain fragments (Rees, 1969; Aspinall, 1970a, b; Rombouts, 1972). 

These facts and findings should not be interpreted as a simultaneous 

occurrence of all the mentioned sugars and linkages, because they are 

derived from work on pectins of different species. 

2.1.2 Primary, secondary and tertiary structure 

Talmadge et al. (1973) recently gave a more detailed primary structure 

of pectin. Their report is the first one at this level of detail and quan­

titation. The results can be applied to structures of other primary cell 

walls although their material consisted of cell walls from suspension-

cultured sycamore cells (Acer pseudoplatanus L.) (Keegstra et al., 1973; 

Wilder & Albersheim, 1973). Talmadge et al. (1973) used a purified endo 

polygalacturonase to extract oligosaccharide fragments from cell walls. 

They purified and characterized these wall fractions by ion-exchange and gel 

permeation chromatography, and analysed the fragments using recent 

improvements in methylation technique. 

Besides the already mentioned general features of the rhamnogalacturonan 



backbone, these authors demonstrated the presence of covalently linked 

arabinan and galactan. The arabinan is highly branched, but the linear 

4-linked galactan is attached with its reducing end to presumably Ck of 

rhamnose residues, the major branch point of the main chain. 

The rhamnogalacturonan molecule is built up of linear a-(1-*4)-linked 

galacturonan parts interrupted by 2-linked rhamnosyl residues (Fig. 1 ) . This 

rhamnogalacturonan also contains a tetrasaccharide structure GalpA-(1->-2)-

-Rhap-(1->-4)-GalpA-(1-i-2)Rha, earlier reported by Aspinall from soybean 

cotyledon meal, lemon peel and lucerne leaves and stem pectin (Aspinall et 

al., 1967b; 1968a, b ) . The linear galacturonan parts of sycamore cell wall 

pectin are determined to be 6-12 units long, whereas one of every two 

rhamnosyl residues is possibly branched by attachment of 4-linked galactan 

(Fig. 1). The Talmadge model suggests the existence of a repeating unit 

within the rhamnogalacturonan, an interesting detail from the point of view 

of biosynthesis by polymerization (Talmadge et al., 1973). The detailed 

sugar composition of sycamore cell wall pectic substances will be compared 

with that of potato pectin in Section 3,2. It is convenient, however, to 

remark here that the pectic substances of sycamore cell wall are rich in 

neutral sugars (38«» galacturonic acid versus 621 neutral sugars), the most 

frequently occurring being arabinose, followed by galactose and rhamnose. 

The Talmadge model for rhamnogalacturonan from sycamore cell walls has 

a zigzag shape (Fig. 1). It is likely that interspersement of 2-linked 

R- RHAMNOSE 
U - GALACTURONIC ACID 

Fig. 1. Proposed structure 
for the rhamnogalacturonan 
part of pectic substances 
of cell wall of suspension-
cultured sycamore cells 
(Talmadge et al., 1973). 
R = rhamnose; U = galac­
turonic acid; N = unde­
termined number, probably 
between 4 and 10. 



rhamnosyl residues in an otherwise linear galacturonan chain, although a fea­

ture of primary structure, influences secondary and possibly tertiary struc­

ture (Rees, 1972a). The C1 conformation, generally ascribed to a-D-galacturono-

pyranosyl moieties, results in an axial-axial linked polygalacturonide with a 

screw axis that tends to coil (Pilnik & Voragen, 1970). On the basis of X-ray 

measurements of Palmer & Hartzog (194S) and Palmer et al. (1947), Rees (1969) 

proposed a computed conformation of a three-fold helix with a right-handed 

screw sense. Rees (1969) described this helix as 'a twisted, corrugated strip 

instead of a stretched-out, wire spring of the carrageenan type'. Sterling 

(1957), on the other hand, indicated a two-fold screw symmetry in oriented 

gels of calcium pectate. Tertiary pectin structures may result from interac­

tions between molecules as existing in polymeric network of gels (Rees, 1969, 

1972a, b ) . From electron microscopy Leeper (1973), in fact, found evidence 

for a tertiary structure of pectate molecules in elementary fibrils, which 

apparently contain thirteen pectate molecules in their cross-sectional area. 

He argued that such tertiary structures might occur in gels. As yet it has 

not been possible to demonstrate elementary fibrils in sol or gel state. 

2,1.3 Degree of esterification and molecular weight 

Two important characteristics of the pectin molecule remain to be men­

tioned. The galacturonopyranosyl residues of the rhamnogalacturonan main 

chain are esterified with methanol to various degrees, and sometimes secondary 

hydroxyls (C2 - C3) are acetylated to an appreciable extent (e.g. beet pectin; 

McCready, 1966). The degree of esterification, theoretically ranging from 

0 to 1001, also expressed as jnethoxyl.content (0-16.321), varies with origin, 

maturity and way of extraction and purification (McCready & McComb, 1954; 

Gee et al., 1958; Gee et al., 1959; Raunhardt & Neukom, 1965; Potter, 1966). 

As a primary structure characteristic, the degree of esterification may 

influence secondary and tertiary structure (Leeper & Dull, 1972), but it is 

of considerable importance too, because degradation of pectic substances by 

pectin depolymerases strongly depends on this degree of esterification 

(Voragen et al., 1971a; Rombouts, 1972; Voragen, 1972). Polygalacturonases 

and low-methoxyl pectin lyases (Pilnik et al., 1973) preferentially attack 

low-esterified pectic substances, although not necessarily pectic acid, 

whereas pectin lyases show preference for less than 1001 esterified substrates 

depending on pH, buffer and calcium (Voragen et al., 1971a; Voragen, 1972). 

Chemical 6-eliminative (or transeliminative) breakdown of pectin is partly 



governed by the degree of esterification too (Vollmert, 1950b; Albersheim, 

1959; Albersheim et al., 1960b; Neukom, 1963). 

Molecular weight is meaningful with relation to pectic substances in 

extracted state only. Number - or weight - average molecular weights have 

been determined for characterization of pectin preparations and are reported 

to range between 10 000 and 400 000 (Doesburg, 1965) according to source and 

extraction method. These numbers apply to the (rhamno)galacturonan part of 

the molecule, the side chains being removed mostly by the common acid 

extraction procedures. Therefore nothing is known with any precision about 

chain length of either rhamnogalacturonan or of side chains of pectic 

substances in the plant cell wall. The enzymic attack upon extracted pectin 

may be influenced by chain length as shown for tomato polygalacturonase 

(Pressey & Avants, 1971). 

2.2 STRUCTURE OF CELL WALL AND MIDDLE LAMELLA WITH REFERENCE TO ANCHORAGE 
AND INSOLUBILITY OF PECTIC SUBSTANCES 

The potato tuber tissue consists of storage parenchyma cells and hence 
the cell walls do not suffer from secondary thickening, not even in the • 
vascular region (Sterling, 1966). Lignification also seems absent outside 
the vascular tissue. For that reason only middle lamella and primary wall 
will be discussed. 

2.2.1 Wall formation 

When a plant cell divides, vesicles derived from the so-called Golgi 

bodies appear during the later phases of mitosis and fuse in the equatorial 

plane of the cell to fonn the cell plate (e.g. Albersheim, 1965a; Rogers & 

Perkins, 1968; Shafizadeh & McGinnis, 1971). The cell plate grows from the 

equatorial plane perpendicular to the division axis until it reaches the side 

wa s of the cell, m the more mature cell wall this cell plate, then called 

ceil Tl l' C ° n S t i t U t e S ^ C O i m ° n Cel1 W a U ^ 0f the * ° daughter 

hat^\ Sld6S ° f ̂  C e U ̂ ^ C e l l U l ° S e is d e P ° s i t e d soon, indicating 

d v 1 on " i T °f ̂  P ™ y W a U ^ Start6d- At the *™ side of the 
7 e m T

 P ' ̂  membraneS ° £ G ° l g i V6SicleS « « « » t l y constitute 

f rm d th 7 °r PlaSmale"a- T H S ̂ ^ ^ ° n C e the P I — 1 — is 
2T eve i r T G°lgi V6SiCleS mUSt PaSS the » " — ™ to reach 

developxng wall, a process which occurs by reverse pinocytosis, i.e. 
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vesicles fuse with plasmalemma and the contents are discharged without 

breakage of the membrane (e.g. Mollenhauer & Morre, 1966; Muhlethaler, 1967; 

Shafizadeh & McGinnis, 1971). It is assumed that the matrix substances, 

possibly including proteins (Mollenhauer & Morre, 1966) are synthesized 

inside the Golgi bodies in the cytoplasma. The non-matrix substances, or 

cellulose microfibrils seem to be synthesized outside the cytoplasm by 

particles at the plasmalemma surface (Muhlethaler, 1967). These particles 

regulate the orientation and packing of cellulose microfibrils by way of 

number and mode of aggregation. In the initial stages of cell wall formation 

(primary wall), the packing of cellulose microfibrils is fairly moderate 

leading to a loose and unorganized cellulose framework. 

2.2.2 Matrix substances of the cell wall 

The non-matrix cellulose, a polymer of 6-1,4-glycosidically linked 

glucose is especially important for cell wall and tissue rigidity mainly 

obtained through formation of the secondary wall. We shall not go into the 

structure of this cell wall component, however, because it does not directly 

contribute to intercellular cohesion. 

The presence of methylated polyuronides containing pectin in an un-

completely formed cell plate of onion root tip has been established by 

staining with a specific pectin stain and viewing under the electron micro­

scope (Albersheim & Killias, 1963). Staining is done with alkaline 

hydroxylamine-ferrichloride (McCready & Reeve, 1955; Gee et al., 1959). 

With the same technique pectin is localized in the middle lamella and 

throughout the primary wall (Albersheim et al., 1960a; Albersheim & Killias, 

1963). Dense staining was always found in the intercellular layer. In cauli­

flower (Saxton & Jewell, 1969) and potato tissue (Fox, 1971) similar results 

were obtained. 

Although hemicellulose and protein form a substantial part of cell wall 

matrix substances, their presence cannot be revealed by histochemical methods. 

The class of hemicelluloses comprises a group of polysaccharides, which 

are extracted from plant tissues with alkali after removal of starch and 

Pectic substances (Whistler & Richards, 1970). This rather negative defini­

tion may be replaced by a more positive one, based on a functional basis 

formulated by Bauer et al. (1973). This definition is the result of an 

overall cell wall concept, emerging from the work of Albersheim and co-

-workers, who also established the Talmadge model for pectic substances 

11 



(Talmadge et al., 1973) (see Section 2.1.2). Bauer et al. (1973) isolated a 

xyloglucan polysaccharide from suspension-cultured sycamore cell walls, 

showing a structure of a cellulose-like g-(1->-4)-glucan backbone with frequent 

xylosyl side chains glycosidically linked to C6 of the glucosyl residues. 

It was shown that this xyloglucan is able to form strong interchain hydrogen 

bonds with cellulose. A similar structure was isolated from sycamore extra-

-cellular polysaccharides by Aspinall et al. (1969) and from cell walls of 

red kidney beans by Wilder & Albersheim (1973), whereas Blake & Richards 

(1971) noticed a strong cellulose bonding of some hemicelluloses. On this 

basis Bauer et al. (1973) suggested that hemicelluloses be redefined 'to 

include only those plant cell wall polysaccharides, which are found to bind 

non-covalently to cellulose'. According to them other classical hemicelluloses 

(xylans, gluco- and galactoglucomannans, mannans, arabinoxylans and 

-galactans) have structures equally suitable for hydrogen bonding to 

cellulose molecules. 

The existence of cell wall glycoproteins has been revealed only recently. 

They are unusually rich in hydroxyproline and contain arabinose and galactose 

in their sugar part (Lamport, 1965, 1970). Lamport suggested a backbone of 

hydroxyproline interspersed by other amino acids and tetraarabinosides 

attached to the hydroxyl group of hydroxyproline. The terminal arabinose 

residues should be linked glycosidically to galactan side chains with an 

alkali-labile bond (Lamport, 1969), but according to Keegstra et al. (1973) 

this is ruled out since these bonds are stable to a mild alkaline treatment. 

2.2.3 Structure of the primary cell wall 

As we decided that the cell wall concept of the group of Albersheim, 
although worked out for sycamore primary cell wall, may be valuable for the 
underlying research it will be discussed here. 

What is known, supplementary to the partially elucidated primary, 

secondary and tertiary structures of cell wall components, about the inter-

r u m 7 ^ Cel1 Wal1 bUllding b l ° C k S ? S°m e t i m e s> " ̂ s been 
2 en T Tera11 Stren8th ° f ̂  Cel1 Wal1 is m a i ^ i n e d by non-

covalent forces (Rees * Wight, 1969), because the cell wall might be 
disperse completely by several extractions which do not break c o g e n t 

m e t c t r h ^ ̂  S U P P ° r t e d ̂  *" C1970a> ™V> **<> "old not 
w h d aJ " fKm ̂ ^ fnilt Cel1 Wal1 in *PP~^ ™ t s 

degradauve treatments. Knee (1973) observed that increasingly 
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insoluble pectic cell wall fractions contained increasing proportions of 

neutral sugars and even proteins, although with little hydroxyproline. 

Contrary to Knee, the group of Albersheim made use of purified cell 

wall degrading enzymes, a polygalacturonase, an endoglucanase and a protease, 

as analytical tools, and succeeded in collecting much knowledge about inter­

connections of cell wall substances (Talmadge et al., 1973; Bauer et al., 

1973; Keegstra et al., 1973). Finally, Keegstra et al. (1973) tried to build 

a molecular structure of sycamore cell wall. This primary cell wall model 

(Fig. 2) is based on experimental evidence and theoretical considerations. 

There was considerable evidence for the wall xyloglucan, which is non-

-covalently bonded to cellulose microfibrils and apparently covers these 

microfibrils with a monolayer (Bauer et al., 1973), being linked covalently 

to the pectic polysaccharides (Talmadge et al., 1973; Bauer et al., 1973; 

Keegstra et al., 1973). Most probably the reducing ends of the xyloglucan 

are attached to galactan side chains of the rhamnogalacturonan. Lamport 

(1965) put forward the hypothesis that glycoproteins ('extensin') function 

as cross-linking molecules by covalent bonding to pectic substances. The 

experimental results of Knee (1973) may confirm this, and additional evidence 

is presented by Keegstra et al. (1973), who found indications for a covalent 

linkage between galactose residues and the hydroxyl group of serine residues 

of the cell wall protein. From the experimental results, Keegstra et al. 

(1973) suggested that a highly branched arabinogalactan (3,6-linked 

galactosyl branching points with a single arabinosyl as predominant side 

chain) acts as a bridging molecule between the rhamnogalacturonan (possibly 

bound to the reducing ends) and the hydroxyproline-rich protein (attached to 

serine). The glycosidic bond between galactose and serine may be alkali-

-labile, thus meeting the requirements of the glycoprotein hypothesis of 

Lamport (1969). This alkali-lability is caused by the liability of the 

galactosyl-serine bond to 6-elimination when the serine residue takes part 

in a peptide structure (Spiro, 1970). 

The cell wall structure according to Keegstra et al. (1973) (Fig. 2) is 

characterized by the covalent interconnections between the matrix substances. 

The only non-covalent bonds are those between the matrix xyloglucan (= hemi-

cellulose) and cellulose, which, however, are probably as strong as covalent 

ones (Bauer et al., 1973). The ultimate cell wall concept is that of one 

lavgea interconnected macromolecule, resembling with its proteoglycan 

network (Lamport, 1970), the peptido-glycan network of bacterial cell walls 

(Ghuysen, 1968). Keegstra et al. (1973) admitted that their model with an 
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attached to the hydroxyproline 
residues 

to ta l pectic polysaccharide 

_ rhamnogalacturonan main chain 
of the pectic polysaccharide 

arabinan and 4-linked galactan 
— side chains of the pect ic 

polymer 

3,6-linked arabinogalactan 
— attached to serine of the 

wall protein 

— unsubstituted seryl residues 
of the wall protein 

Fig. 2. Tentative structure of cell walls of suspension-cultured sycamore 
cells (Keegstra et a l . , 1973). 

indirect cross-linking of cellulose microfibrils by interspersion of 

hydroxyproline-rich protein between the 'pectin-hemicellulose complex' by 

means of arabinogalactan, i s not the only one possible. In another model a 

single pectic polysaccharide i s connected to at least two cel lulose f i b r i l s 

through xyloglucan molecules or a single cellulose f i b r i l i s bonded to more 

than one pectin molecule. One can imagine that the native primary c e l l wall 

contains features of a l l these models. 

Roelofsen (1965) stated that primary cell walls are typical ly one th i rd 

pectic substances, one third hemicellulose and one third ce l lu lose . The 

findings of Keegstra et a l . (1973) essential ly are in agreement with t h i s 

statement. They found for sycamore suspension-cultured ce l l s 36* pec t ic 

substances (rhamnogalacturonan, galactan, arabinan), 401 hemicellulose plus 

g ycoprotem (xyloglucan, protein, tetraarabinosides, arabinogalactan) and 

m de H T K e e g S t T a ^ a l - ° 9 7 3 ) C ° n C l U d e d t h a t « * * - 1 1 wall 

a / a h *""** * ^ **"" W l 1 ^ ° f h i ^ P ^ s , both 
c L i L ° C C U r r e n C e ° f l n d i V i d U a l C O T * « « * * e quant i ta t ive composition is concerned. 
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2.2.4 Structure of the middle lamella 

It is rather uncertain whether the middle lamella must be considered as 

an inherent part of the primary wall or as a separate entity. The layered 

construction of the primary wall (Keegstra et al., 1973) with alternating 

cellulose and matrix layers and the rapid deposition of cellulose against 

the cell plate before it reaches the lateral walls (Shafizadeh & McGinnis, 

1971), stress, in my opinion, the unity of primary cell wall and middle 

lamella. Furthermore the middle lamella substances must be anchored by 

covalent linkages like the other matrix substances, because it is usually 

impossible, as indicated by Knee (1970a, 1973), to extract appreciable amounts 

of pectic substances without degradative agents. Exceptions may exist as 

appeared from a report by Kooiman (1969). However, Albersheim et al. (1960a) 

established a relative concentration of pectic substances (galacturonan) in 

the middle lamella compared with the primary cell wall. So the interstitial 

layer of the cell wall, cementing two daughter cells, although an inherent 

part of two neighbouring primary walls, keeps its own function. As a common 

cell wall layer of two cells, it is responsible for coherence and organiza­

tion of tissue structure. 

Of the matrix substances pectic substances appear to be predominant in 

the middle lamella. The postulated role of protein as cementing agent 

(Ginzburg, 19S8, 1961) is rejected by Roelofsen (196S). It does not con­

tribute to the intercellular cohesion of mature potato tissue (Linehan & 

Hughes, 1969c) but may have some significance in very young meristematic 

tissues. 

2.2.5 Insolubility of the cell wall and middle lamella peatin 

One of the most important cell wall structural components has not been 

mentioned yet: water (Northcote, 1972). In the living plant tissue, large 

amounts of water are present for all processes of living matter. The cell 

wall is highly hydrated too, being composed of hydrophilic material (except 

the secondary wall component lignin). Water influences the permeability of 

the wall and allows the diffusion of ions, but is of paramount importance 

for the existence of pectin gels (Northcote, 1972). The occurrence of native 

pectic substances in a gel structure is generally accepted. Albersheim (1965a) 

stated that 10-20% of cell wall pectin form a very firm and dense gel. Rees 

(1969) considered the cell wall and middle lamella as a biological gel. 

15 



Gel formation proceeds by association of polymer molecules resulting in 

a three-dimensional network that holds the solvent, water, ions in the 

interstices (sugar in pectin-sugar gels) (Rees, 1969). The nature of regions 

of association or junction zones differs for several types of gels, but Rees 

(1969, 1972a, b) presented strong arguments, theoretical and experimental 

ones, for the existence of so-called microcrystallites in calcium pectate, 

pectin-sugar and cell wall gels. He rejected hydrogen bonding, simple ionic^ 

bridging by divalent ions as calcium or chelation of single ions as prevalent 

causes of junction zone formation, although they may contribute (Rees, 1969). 

Especially in biological cell wall gels, calcium ions are very important. 

The calcium-bridge hypothesis has been thought to explain the role of calcium 

in pectin insolubility inside the cell wall and middle lamella (Joslyn, 1962; 

Doesburg, 1965). Deuel et al. (1950) argued that it is unlikely that in a 

polyelectrolyte solution or gel, calcium or other cations are fixed by the 

anionic charges of the macromolecule. Only a few cross-linking points should 

be necessary to form a gel network, but it was found that equivalent quanti­

ties of negatively and positively charged ions were needed. The calcium-

-bridge hypothesis also does not explain why pectins with a degree of 

esterification of over 501 are not made insoluble by calcium (Deuel et al., 

1950; Anyas-Weisz & Deuel, 1950). Chelation of calcium ions by pectic 

substances is proposed by Schweiger (1964, 1966), but Kohn concluded that 

calcium ions are bound to pectic carboxyls mainly by electrostatic attraction 

forces (Kohn & Furda, 1968; Kohn, 1968, 1971). In solutions of calcium 

oligogalacturonates, the activity of calcium ions decreases continuously 

with increasing charge of the anion (or increasing chain length) (Kohn, 1971). 

This is caused by accumulation of charged groups and is a normal feature of 

polyelectrolyte solutions where 20-801 of the counterfoils may be 'fixed' by 

localization inside the electrostatic attraction-repulsion field (Rice & 

Nagasawa, 1961). Such polyelectrolyte effects-can contribute to formation of 

junction zones in pectin gel formation, when polyelectrolyte molecules are 

sharing a common 'atmosphere' of counterions (Rees, 1969), especially in the 

presence of multivalent ions as calcium. The exact nature of the strong 

ca cium-pectin bond remains somewhat obscure. Stereochemical structure of 

polarized galacturonate (Rees, 1972a) may be involved in addition to the 

effect of chain lengthening on calcium binding (Kohn et al., 1968a; Kohn, 

So J ^ ^ T!" StrUCtUrG ° f ̂  m i c ™ ^ a l l i t e s - Pectin gels? 
Solms (1960) ascribed the association of large segments of homogeneous 
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molecules to secondary valence bonding, but Rees (1972b) developed a different 

theory. He suggested that junction zones in pectin gels are formed by chain 

stacking. Blocks of contiguous a-D-galacturonopyranosyl residues of several 

chains seem to be associated in a three-dimensional framework. This stacking 

can occur with e s t e r i f i ed and acid uronate residues together in one l a t t i c e , 

at low PH to reduce ionization of free acid groups (pectin-sugar gels at low 

pH) or with uronic anions where calcium ions wi l l be packed between the 

chains. The l a t t e r poss ib i l i ty wi l l be the one of choice in cel l wall and 

middle lamella ge l s . Calcium then a ss i s t s the packing of galacturonan chain 

segments in a microcrystall ine s t ructure (Van Buren, 1970). To get enough 

cohesion between the molecules for s tabi l iz ing the microcrystal l i te , the 

associated blocks in the gel must have a minimum length thus accumulating 

the weak forces of a t t r ac t ion . Nothing i s known about the length of these 

blocks, but i t i s assumed that.rhamnose insertions and side chains diminish 

chain cohesion (Gould e t a l . , 1965; Rees & Wight, 1969). 

Rhamnose or rhamnose-rich blocks as emerging from the pectin model of 

Talmadge e t a l . (1973) wi l l have a kinking effect on the l inear rhamno-

galacturonan chain (Rees & Wight, 1971; Rees, 1972a, b ) . On the other hand 

the rhamnose kinks may in terrupt the junction zones and link different 

junction zones in which one molecule i s involved. This resul ts in an in ter ­

connected network that can hold water molecules within i t s framework (Rees, 

1972a, b ) . 

Obviously, the primary s tructure of pectic substances determines pectin 

behaviour in forming t e r t i a r y network structures such as in .a ge l . Thus the 

features of primary pect in s t ructure (rhamnose insert ion, side chains and 

length of uninterrupted galacturonan) are important in in tercel lular cohesion, 

if the re la t ive pectin concentration in the in te rce l lu lar cel l wall layer i s 

kept in mind. The reasons obviously are that primary structure influences 

pectin gel s t ruc tu re , and also the covalent anchorage via side chains into 

the whole ce l l wall macromolecule (Keegstra e t a l . , 1973). This covalent 

bonding to hemicelluloses and proteins fully explains the reason of insolu­

b i l i ty of native pec t ic substances. Until recently (Joslyn, 1962; Doesburg, 
1965) a mixture of covalent bonding, mechanical enmeshing, hydrogen-bonds 

^ d calcium-bridges was thought to insolubil ize the pectin inside the middle 

lamella and ce l l wall complex. These 'protopectin'-hypotheses now seem finally 

outdated. Abandonment of a i l l -def ined term l ike 'protopectin' might avoid 

much confusion. The description of middle lamella as essential ly composed of 

low-esterified calcium pec(in)ate (Kertesz, 1951; Joslyn, 1962; Doesburg, 
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1965; Fogarty & Ward, 1972) and the reservation of 'protopectin' for insoluble 

cell wall pectin contributed to this confusion. 

2.3 SUMMARY 

In this chapter a short review was given of the s t ructure of pect ic 

substances which are of major importance in i n te rce l lu la r cohesion of plant 

t issues, because of their presence in the middle lamella. The pec t ic 

substances are heteropolysaccharides, bu i l t up from a galacturonan main 

chain a-1,4-glycosidically linked, interrupted by 2-linked rhamnosyl residues. 

Galactan-arabinan side chains are probably bound to C4 of rhamnose. Besides 

the primary structure, the secondary and t e r t i a ry s t ructures of pectin were 

considered. Furthermore i t was pointed out that e s te r i f i ca t ion of the 

carboxyls of galacturonan with methanol and molecular weight are important 

characteristics. 

Further the primary cel l wall and middle lamella s t ructure was discussed, 

mainly with respect to insolubil i ty and covalent binding p o s s i b i l i t i e s for 

pectic substances. The recent s t ructural model of Keegstra e t a l . for p lant 

cell walls and the gel theories of Rees were chosen as foci for t h i s pa r t of 

the l i terature survey. I t i s thought that calcium ions a s s i s t the packing of 

galacturonan chain segments in microcrystalline s t ruc tures , which explain 

the insolubility of pectic substances in plant ce l l wal l s , together with 

covalent anchorage via side chains to hemicelluloses and glycoproteins. The 

importance of pectic substances in in terce l lu lar cohesion thus becomes 
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3 Potato composition and intercellular cohesion of 

the cooked potato: a survey 

3.1 ANATOMY AND COMPOSITION 

The potato tuber is a modified and enlarged underground stem, growing 

at the distal end of a rhizome or underground stem (Reeve et al., 1969a). 

A wide range of constituents make up the chemical composition of the potato 

tuber, but starch is the main storage material and dominates the overall 

chemical picture. Only an approximate composition can be given, because it 

varies with variety, growing conditions, maturity etc.: water 70-851, 

starch 10-20°s, sugars 0.5-21, protein 1-21, ash 1-21, cell wall substances 

1-1.51 (Burton, 1966; Adler, 1971; Hoff & Castro, 1969). Anatomically, a 

potato tuber shows up different tissue zones which also vary in chemical 

composition, cell size and physiological function. The original stem 

character, furthermore, is reflected in a stem and bud end of the ovally 

shaped tuber, the youngest tissue being located at the bud end and the 

oldest at the stem end. 

Reeve et al. (1969a) distinguished three basic meristems,which are 

connected with growth and differentiation of the potato tuber. The protoderm 

furnishes the periderm, the ground meristem cortex and pith whereas the 

procambium gives rise to vascular ring and perimedullary zone (Fig. 3). The 

tuber growth is mainly due to enlargment of the perimedullary tissue (Reeve 

et al., 1969a). 

Cortex 
Periderm 

Eyebud Pith Xylem Ring 
Perimedullary 

tissue 

Fig. 3. Longitudinal section 
of mature potato tuber 
(Reeve et al., 1969a; 1971). 
Diagram showing different 
zones. 

19 



Table 1. Distribution of constituents over the mature potato tuber (I, 2 ) 1 . 
The arrows indicate the direction of increase of concentration. 

Outer 

Dry matter, 
starch 
N 
K 
Ca 
Mg 
Mn, Zn, Cu 
Fe 
P 
CI 
Citrate 
Malate 
Phytin 
PH 

1, 

< 
> 

< 
< 

> 
< -

3> 
< — 

> 

Inner Reference1 Stem Bud Reference1 

5, 10, 12 
5, 10, 12 

Reeve et al., 1970. 
Reeve et al., 1969b. 
Bayal & Van Vliet, 1966. 
Macklon & DeKock, 1967. 
Johnston et al., 1968. 
Hughes & Swain, 1962. 
Wager, 1963. 

8. Gehse, 1970. 
9. Bretzloff & McMenamin, 1971 
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< 
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— 3> 
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1, 3 
1, 3 
4, 5, 11 

4, 6 
4, 5, 6, 7 

4, 6, 13, 14 
14 
7 
6, 15, 17 

10. 
II. 
12. 
13. 
14. 
15. 
16. 
17. 

Bretzloff, 1971. 
Vecer & Bardysev, 1971. 
Warren & Woodman, 1973. 
Wager, 1946. 
Heisler et al., 1964. 
Robertson & Smith, 1931. 
Thornton et al., 1933. 
Iritani & Weller, 1974. 

The anatomical variation within a potato tuber and the differences in 

Physxological age contribute to the existence of gradients in chemical compo­

sition The most important results from the literature are solarized in 

exc nt\ T °l n 0 t M n g " k n ° W n a b ° U t ^ ^ u t i o n of pectic substances, 
Pt he biochemically demonstrated concentration of polyuronide in the 

i u ntS tUbSr ( W e n & W ° 0 d m m ' 19?3)- " is «**»* that most 

S d ^ t T h T ^ C ° n C e n t r a t e d ^ ^ °U t e r ̂  °* ̂ e tuber !e:rrui s d i y m a t t e r i s ^ * * » * « * * * * » 
eh a r e f o i m d p r e d o m i n a n t l y ^ ^ ^ ^ 

-taiL t a z : ; : ; z zr::icai co^osition- p-imeduiia-— 
have larger cell L J ' T * P i t h ^ C ° r t e * ' - d the mid regions 

ger cells than bud and stem end (Reeve, et al., 1 9 7 3 a ) . 
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3.2 COMPOSITION OF CELL WALL AND MIDDLE LAMELLA AND OF PECTIC SUBSTANCES 

There are only a few results available of analysis of the potato cell 

wall. Contrary to the very sophisticated and up-to-date attack on cell wall 

analysis of Albersheim's group, (Talmadge et al., 1973; Bauer et al., 1973; 

Keegstra et al., 1973) analysis of potato cell walls has previously been 

carried out according to the classical scheme of extractions. Le Tourneau 

(1956) fractionated alcohol-insoluble solids, but did not pretend to report 

on a quantitative basis. However, I re-interpreted these results on the basis 

of the present knowledge about primary cell wall structure, and calculated 

them on a non-starch basis (Table 2). Emiliani & Retamar (1968) and Hoff & 

Castro (1969) isolated potato cell walls by sieving methods, without starch 

gelatinization and amylase treatment (Le Tourneau, 1956). In this way any 

chemical degradation of pectic substances in particular is avoided. Several 

cell wall fractions were characterized on basis of extracting agent and 

subsequent analysis (Table 2). 

Some differences between the three examples of potato cell wall analysis 

obviously exist. Le Tourneau (1956) extracted a large portion of 501-ethanol-

-soluble arabinan-galactan, which is classified in the group of pectic 

substances (201 of dry cell wall). An araban-rich, alcohol-soluble fraction 

was lost by Hoff & Castro (1969) (51 of dry cell wall). The protein found by 

Emiliani & Retamar (1968) and Hoff & Castro (1969) is reported on a Kjeldahl 

basis, excluding protein-bound carbohydrate material. Nevertheless an unex-

plainable difference in protein content was found. The carbohydrate part of 

the glycoprotein will have been extracted into the pectic substances by 

Table 2. A comparison of potato cell wall composition with that of cell wall 
of suspension-cultured sycamore cells (fractions as % of dry matter). 

Potato Sycamore 

Le Tourneau, Emiliani-Retamar, Hoff-Castro, (Talmadge et al.,) 
1956 1968 1969 1973 

Pectic substances1 60 64^66 55 36 
Hemicellulose2 10 8-10 7 21 
Cellulose 15 24-26 28 23 
Glycoprotein3 15 1 10 19 

• Rhamnogalacturonan, araban, galactan. 
• Includes sugars like glucose, xylose and mannose. 

J- Protein with tetraarabinosides and some galactan or arabinogalactan. 
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Emiliani & Retamar (0.05 N HC1) on account of the a c id - l ab i l i t y of arabinosyl 

bonds (BeMiller, 1967). The cellulose content, determined as residue a f ter 

subsequent extractions, was low in the work of Le Tourneau (1956). Emiliani 

& Retamar (1968) pointed out that the potato ce l l wall contained a low-

-crystalline cellulose fraction. Apart from the mutual differences between 

the three cell wall analyses, more s t r iking differences emerge when these 

are compared with the composition of primary sycamore wall (Table 2 ) . Potato 

cell walls possess more pectic substances and less hemicellulose, even when 

i t is taken into consideration that tetraarabinosides and arabinogalactans 

may have been counted with potato pectic substances. Cellulose content i s 

about the same in both types of t i ssue . Sycamore glycoprotein i s 101 protein 

(cf. Hoff & Castro, 1969) and 91 tetraarabinosides. 

I t i s interesting, furthermore, to compare the sugar composition of the 

two types of cell walls (Table 3) . Both potato ce l l walls are very s imi lar , 

except the already mentioned loss of arabinan by Hoff & Castro (1969). 

Compared with sycamore potato ce l l wall i s r ich in galacturonic acid and 

galactose, but arabinose i s scanty. Sycamore,at the same time, i s r i cher in 

rhamnose and xylose. An arabinogalactan as found in sycamore c e l l wall by 

Keegstra e t a l . (1973) is absent in potato ce l l wal l , so tha t another 

rhamnogalacturonan-glycoprotein bridging molecule may be present . 

Hoff & Castro (1969) provided a detailed analysis of pec t ic substances 

and hemi cellulose fraction. Pectic substances are almost equally r ich in 

galacturonan (51%) and galactan (421) with minor quant i t ies of rhamnose 

Table 3 . A comparison of sugar composition of c e l l wal l of p o t a t o and 
suspension-cultured sycamore (as % of dry m a t t e r ) . 

Potato 
Sycamore 

Emiliani-Retamar, Hof f-Caqf-rn CT„T J 
1968 Tall C a s t r o > (Talmadge e t a l . , 

1969 1973) 

Galacturonic acid 25 2 
Galactose 2 5 2 1 3 * 4 

Arabinose 6 ' 5
 2 3 - 9 12.8 

Rhamnose j ' 5 '•<> 21.0 
Glucose1 2 9 3 (L ^ J - 6 3.1 
Xylose ^ l ( 4 - 3 ) 31.3 (3 .8) 26.7 (3 .7) 
Mannose 0 ' 8 2.1 7 > 6 

Fucose " 0.4 0 - 3 
0.2 

l i ^ ^ 8 6 8 non-cellulosic g l u c o s e . 
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(2.91) and arabinose (2.71). I t must be concluded that the rhamnogalacturonan 

of potato ce l l wall contains a much less interrupted galacturonan main chain. 

Assuming tha t rhamnose i s present in GalA-Rha-GalA-Rha blocks (Talmadge et a l . , 

1973), the s t r a igh t galacturonan par ts may consist of 30-35 galacturono-

pyranosyl residues. I t i s worth mentioning that the potato hemicellulose, 

although a minor cons t i tuent , consists of predominantly glucose (571) and 

xylose (231), but galactose (121) and mannose (6°s) are present too (Hoff & 

Castro, 1969). A xyloglucan s t ructure analogous to that of sycamore (Bauer 

et a l . , 1973) and possibly a galactoglucomannan are presumed to take part in 

potato ce l l wall s t ruc tu re . 

Potato pec t ic substances are r ich in galactan. A water-soluble galactan 

from potato t i s sue has been i solated by Wood & Siddiqui (1972). I t i s a l inear 

B-(1+4)-linked homopolymer.'The same nature i s conceivable for the pectic 

galactans of potato ce l l wall and in general for other ce l l wall galactans 

(Talmadge e t a l . , 1973; McNeil & Albersheim, 1973). Wood & Siddiqui (1972) 

also isolated a c e l l wall f raction with protein, arabinose, galactose and 

uronic acid. Some of the features of potato ce l l wall composition also 

appear from the incomplete ce l l wall analyses of Knee & Friend (1968), Friend 

& Knee (1969) and Knee (1970b). 

3.3 OBJECTIVE MEASUREMENT OF THE INTERCELLULAR COHESION OF THE COOKED POTATO 

Subjective assessment of a texture character is t ic has several disadvan­

tages (Schippers, 1962). For instance, any texture a t t r ibute scored subjec­

tively might be influenced by other, mostly re la ted, a t t r ibutes . Consequently 

i t i s extremely d i f f i cu l t to study influences of chemical composition and 

i t s changes on t ex ture . 

3.3.1 Mealiness and intercellular cohesion 

Mealiness of the cooked potato tuber has often been determined in the 

past by subjective methods, such as scoring on a hedonic scale or mashing 

procedures (Sweetman, 1936; Bettelheim & Ster l ing, 1955a; Unrau & Nylund, 

1957a; Barrios e t a l . , 1961; Zaehringer & Le Tourneau, 1962). In agreement 

with Linehan & Hughes (1969a), i t may be taken for granted that mealiness 

Partly depends on reduction in in te rce l lu la r cohesion, especially when 

assessed subjectively. In the old l i t e ra tu re th i s led to the confusing 

situation that mealiness and ce l l separation or loss of in tercel lular cohesion 
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were thought to be identical , although sat isfactory correlat ions with s ta te 

or degradation of the intercel lular cement could not r ea l ly be obtained 

(Sweetman, 1936; Barmore, 1937; Freeman & Ritchie, 1940; Bettelheim & 

Sterling, 1955b; Potter & McComb, 1957). 

New light was thrown on the separation of a t t r ibu tes of mealiness and 

intercellular cohesion by Woodman & Warren (1972). They found, in a number 

of experiments, a strong correlation between subjectively measured ce l l 

separation (= breakdown) and mealiness or mouthfeel, but a far less evident 

one when these texture a t tr ibutes were measured objectively. Mealiness was 

measured objectively by extrusion of cooked potato with a gr id-extrusion cell 

of the Kramer Shear Press, and breakdown by collecting sediment. Extrusion 

force depends strongly on flow properties of the material under investigation 

(Bourne & Moyer, 1968), and this indicates that mealiness i s not controlled 

by cell separation but by flow properties upon extrusion of the cooked potato. 

Woodman & Warren (1972) were able to confirm th is conclusion by showing that 

total solids present correlated well with subjectively measured mealiness 

and extrusive force but had l i t t l e effect on both subjectively and objectively 

estimated cell separation. Mealiness apparently depends mainly on the flow 

properties of cooked potato, which in turn ref lect the influence of massive 

starch deposition in potato t issue c e l l s . Mealiness and i n t e r ce l l u l a r cohesion 

are definitely different texture character is t ics , although some mutual 

influences cannot be excluded ent i rely. 

3.3.2 Objective indirect assessment of intercellular cohesion 

The work of Woodman & Warren (1972) again emphasizes the need of 

objective measurement of in tercel lular cohesion. Two main approaches are 

possible, an indirect and a direct measurement of ce l l cohesion. Cell cohesion 

is measured indirectly by a rheological procedure with the aid of deformation 

t e s t s . Several kinds of d e l a t i o n measurement have been p rac t i sed . The 

penetrometer or puncture t es t has been used for assessment of f i r ^e s s , 

T ^ ° ] Z Z 5 ° f ^ C ° 0 k e d P ° t a t 0 ( S W 6 e t m a n ' " » ' » ™ » . 1937; 
I d a ; ' S h a ™ a " * • ' 1 9 S 9 ) - " * * » & H^he , (1969b) also 

t LIT! P m C t U r e t 6 S t i n g S y S t 6 m " n d 6 S t a b l i s h e d * highly s i g n i f i e d 

ITrCtUTe ** COmPreSSlVe m e — t s OiLhL hughes, 
C'b ' J: So " t 0 ^ ° n - — - - i n t e rce l lu ia r 

scope ( G L 2 g a * 6 H
 C ° m : i n g ° f C e l 1 S e p - t i 0 n " * * * * < -

* % 1 ) - I n S i n ^ l e P i c t u r e t e s t ing , however, compressive 
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and shear forces are involved (Boume, 1966), whereas DeMan (1969) added flow 

as a possible contr ibuter , although of minor importance in foods with a 

cellular s t ruc ture . The additional finding of Woodman & Warren (1972) that 

flow interfered largely in texture measurements of cooked potato t issue with 

the Kramer shear-compression c e l l , may reduce the usefulness of puncture 

testing for measurement of i n t e rce l lu la r cohesion. 

Compressive s trength measurement of cooked potato t issue (Linehan & 

Hughes, 1969c; Linehan e t a l . , 1968) i s strongly related to intercel lular 

cohesion (Linehan & Hughes, 1969d). Whittenberger (1951a) and Finney (1972) 

deemed compressive s trength a good measure of in tercel lular forces. 

The reverse of compression, extension i s rarely used in evaluating food 

texture (Kramer, 1964). Personius & Sharp (1938a) determined reduction in 

in tercel lular cohesion with an apparatus measuring tensile-strength, although 

Sterling & Bettelheim (1955) did not find this technique satisfactory. 

Some other methods and apparatus for deformation tes ts were used. 

Doesburg (1961) measured firmess of potato and other t issues after boiling 

with a hardness meter, whose action combines shearing and extrusion (Bourne 

& Moyer, 1968) and for tha t reason less suited to estimate cel l cohesion. 

Powers & Board (1973) constructed an apparatus which determines time taken 

to collapse during heating. Compressive forces are involved, because the 

sample i s charged with a constant load which f a l l s through when intercel lular 

cohesion disappears. 

3.3.3 Objective direct assessment of intercellular cohesion 

I t i s conceivable tha t indirect deformation tes ts for assessing in ter­

cellular cohesion wi l l be influenced by other texture a t t r ibutes such as 

flow. Direct estimation of ce l l separation, for that reason, probably 

provides an even be t t e r measure of i n te rce l lu la r cohesion. Sterling & 

Bettelheim (1955), Ginzburg (1958, 1961) and Letham (1960) simply counted 

Partial or ful l c e l l separation under a microscope. Letham (1960) also 

determined retained weight on a sieve and observed that cel l aggregates 

Passed through the sieve apertures (1,2x1,2 mm) in addition to single ce l l s . 

A similar method, based on retained weight after boil ing, was devised by 

Barmore (1938) and Pyke & Johnson (1940) and adapted by several investigators 

(Whittenberger & Nutting, 1950; Sterl ing & Bettelheim, 1955). A very useful 

modification of the ear ly method of Barmore (1938) and Pyke & Johnson (1940) 

has been developed by Le Tourneau e t a l . (1962). Compared with the early 
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methods, small dices instead of larger cubes were used, while drying of the 

retained tissue was omitted. Most important, however, is that boiling is 

done under simultaneous mechanical agitation. This aids in separating cells 

when intercellular cohesion has been lowered to allow this. Mechanical 

agitation contributes to an increasing accuracy of the cell separation test, 

because some residual coherence between cells will always remain, even when 

the intercellular cement is degraded (Roberts & Procter, 1955; Burton, 1966). 

On the other hand the deformation tests may measure a reduction in inter­

cellular cohesion even before the final stage of cell separation has occurred, 

while mechanical agitation in a direct cell separation procedure does a 

similar thing in accelerating the final cell separation. The test of Le 

Tourneau et al. (1962) to determine cell separation by retained weight (short 

RWCS test) has been further standardized (Zaehringer et al., 1963b) and 

modified (Zaehringer et al., 1969; Ludwig, 1972). This direct method is 

generally applicable and measures the change in intercellular cohesion of 

the cooked potato. A minor disadvantage, according to Woodman & Warren (1972) 

is the error due to loss of soluble material and uptake of water giving 

change in weight without disintegration of the tissue. 

3.4 CHEMICAL COMPOSITION AND INTERCELLULAR COHESION OF THE COOKED POTATO 

In Section 3.3, the importance of using a reliable, objective .method 
of intercellular cohesion measurement, to avoid interferences by other 
texture parameters was pointed out. With this in mind, a critical inter­
pretation of results from earlier investigations on cell cohesion of the 
cooked potato will be given. 

3.4.1 Specific gravity, dry matter, starch 
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findings report a f a i lure in correla t ion, in par t icular when storage effects 

are studied or d i f ferent v a r i e t i e s are compared (Whittenberger, 1951b; 

Sterling & Bettelheim, 1955; Zaehringer e t a l . , 1969; Ludwig, 1972; Woodman 

& Warren, 1972; Gray, 1972). In terce l lu lar cohesion was determined by a RWCS 

tes t , except in the work of Gray (1972). 

Subjectively assessed mealiness i s positively correlated with specific 

gravity (and also with dry matter and starch content) in almost a l l investi­

gations (Barmore, 1937; Whittenberger & Nutting, 1950; Bettelheim & Sterling 

1955; Unrau & Nylund, 1957b; Barrios e t a l . , 1961; Zaehringer & Le Tourneau, 

1962; Le Tourneau & Zaehringer, 1965). This i s consistent with the findings 

of Woodman & Warren (1972) that mealiness depends on flow properties due to 

total solids and s tarch content of the potato tuber. 

The influence of s tarch on ce l l separation during cooking has been 

explained by the a b i l i t y of the starch to swell, leading to cell swelling, 

distension of ce l l walls and pushing apart of ce l ls (Atwater, 1895; 

Whittenberger & Nutting, 1950; Whittenberger, 1951b; Sterling & Bettelheim, 

1955; Reeve, 1954, 1967, 1970, 1972). Several objections can be made against 

this hypothesis. Cell swelling was not discovered by Bretzloff (1970) and 

the correlation between s tarch (specific gravity, dry matter) and cell 

cohesion was often absent. Personius & Sharp (1939b) did not observe a 

reduction in i n t e r ce l l u l a r cohesion measured by tensi le strength, when starch 

was gelatinized by chemicals. Hoff (1972) f inal ly , rejected th is hypothesis 

of starch swelling on theore t ica l grounds. 

A positive corre la t ion has been found between intercel lular cohesion, 

measured by puncture t e s t i ng , and specific gravity (Sharma et a l . , 1959) and 

starch content (Barmore, 1937; Linehan & Hughes, 1969b) too. So here inter­

cellular cohesion i s pos i t ive ly correlated with specific gravity or s tarch, 

while there i s a negative correlat ion When the cohesion i s measured by 

retained weight (RWCS t e s t ) . I t cannot be excluded that the interference of 

flow properties (Section 3.3.1) in puncture test ing measurement is responsible 
f°r this phenomenon. Linehan & Hughes (1969b), however, also established a 

better, s ignif icant corre la t ion between cel l cohesion and level of amylose, 

^ concluded tha t the cohesion-starch relationship must be a reflection of 

a cohesion-amylose r e la t ionship . Bretzloff (1968) reported a similar relation­

ship between re tained weight and amylose, the amylose, however, being deter­

mined as percentage of extracted s tarch. 

The amylose effect on ce l l cohesion contradicts the starch swelling 
t h eory. Linehan & Hughes (1969b) proposed the al ternative hypothesis that 
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amylose leaks through the cell walls to aid in hydrogen bonding of c e l l s 

during the cooking process. In view of the pectin gel s t ruc ture of the cel l 

wall and middle lamella (Rees, 1969, 1972a, b) hydrogen bonding seems to be 

of secondary importance. Linehan & Hughes (1969c) themselves a lso measured 

an only small effect of amylose in re-cementation of potato c e l l s . Further­

more, i t seems unlikely that the amylose molecules are able to penetrate 

cell walls before most of the in tercel lulosic macromolecular network 

(Keegstra et a l . , 1973) has been destroyed (Bauer e t a l . , 1973; Keegstra et 

a l . , 1973). Interference of amylose with ce l l cohesion, then, would occur 

when the intercellular cohesion had been los t because of extensive degrada­

tion of matrix substances. 

The picture emerging is that starch or starch components are merely 

fortuitously related to intercel lular cohesion of the cooked po ta to . Or more 

positively expressed, the correlation between specific gravity (or s tarch 

content) and intercel lular cohesion, as found mostly in r e s t r i c t ed popu­

lations of samples, might be a reflection of a dependence of both variables 

on an independent third one, for instance maturity (Woodman & Warren, 1972). 

3.4.2 Veotio substances 

Pectic substances constitute a minor component of potato t i s sue 
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content, but they did not es tabl ish a correlation with mealiness, e i ther . 

From raw and cooked potato t i ssue Bettelheim & Sterling (1955b) extracted 

three pectin f ract ions: a cold water-soluble, a cold sodium hexametaphosphate 

(HMP)-soluble and an 85°C 0.05 M HCl-soluble. No direct relationship between 

any charac ter i s t ic of these pectin fractions and intercellular cohesion, 

determined as sloughing by a RWCS t e s t , was obtained. According to these 

authors, cer tain charac ter i s t ics of the pectic substances (DE, calcium content 

and i n t r in s i c v iscosi ty) play a role in the development of the cooked potato 

texture (Sterling & Bettelheim, 1955). Exact relat ion coefficients, however, 

were only calculated with subjectively scored mealiness. Zaehringer et a l . 

(1969) applied t he i r modified RWCS t e s t to look for the influence of pectic 

substances and other potato constituents on cel l separation. The method of 

pectin analysis used does not seem to be very re l iable and there was no 

clear-cut re lat ionship between pectin and in tercel lular cohesion. 

The method of pectin extraction u t i l i zed by Bettelheim & Sterling (1955b) 

is essent ial ly the same as that performed by Sharma et a l . (1959). The l a t t e r 

estimated i n t e rce l lu l a r cohesion as hardness-softness with a penetrometer, 

(puncture). Using t h i s objective method, Sharma et a l . (1959) established 

that within a var ie ty the greatest hardness was correlated with the highest 

content of insoluble pectin (plus hemicellulosel), i . e . only soluble in a 

sequestering agent and HC1. Upon storage at about 17°C decrease in hardness 

l°r i n te rce l lu la r cohesion) was accompanied by an increase in water-soluble 

pectin and a decrease in insoluble pectin. In the experiments of Linehan & 

ughes (1969b) a s ignif icant s t a t i s t i c a l correlation between intercel lular 

cohesion, assessed by puncture t e s t ing , and polyuronide, was obvious in only 

one of the three experiments. The overall correlation was not significant 

and in the one experiment where i t was, amylose was at a constant low level. 

ectic substances were experimentally defined as the fraction soluble in 

cold HMP at pH 4 .6 , in accordance with the opinion of Bettelheim & Sterling 

(1955b) and others (Joslyn, 1962; Doesburg, 1965) that this fraction soluble 
l n a metal sequestering agent represents the structure of the in tercel lular 

cement. I t has been argued that there i s no foundation for th is view 

(Section 2.2.5) on account of the present knowledge about pectin and cel l 
w aH s t ructure . 

The re lat ionship between hardness-softness and insoluble and water-

-soluble pectin (Sharma e t a l . , 1959), ca l l s at tention to some findings 

about pectin changes on cooking by other investigators. I t i s observed that 

cooking of potatoes caused a sh i f t from insoluble pectin towards increasing 
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quantities of water-soluble pectin (Freeman & Ritchie, 1940; Bettelheim & 

Sterling, 1955b; Doesburg, 1961), clearly demonstrating a degradation in 

pectic substances. Changes in pectic substances also appear from change in 

staining with ruthenium red, although not highly specific for pectin 

(Sterling, 1970), during heating of potato tissue in water and already 

visible at 70°C (Roberts & Proctor, 1955) or during steaming (van Geldermalsen-

-de Jongh, 1963). 

3.4.3 Minerals and organic acids 

Quantitative aspects Interaction of calcium ions with pectic substances and 
pectin structures in gels, and cell wall and middle lamella was discussed in 
Section 2.2.5. Calcium and other metal chelating agents have been used to 
extract a characteristic pectin fraction in relation to cell coherence. 
Relationships between cations, especially calcium and magnesium, and inter­
cellular cohesion of the cooked potato have been investigated. Naturally 
occurring calcium binding agents bear a close relationship to this part of 
cell cohesion work. 

Le Toumeau & Zaehringer (1965) investigated four sets of potato samples 

of different origin. Apart from relationships already mentioned, they found 

that intercellular cohesion (RWCS test) was consistently and significantly 

negatively correlated with alcohol-inextractable potassium, magnesium and 

phosphorus, and in three of four sets with total potassium. Correlation with 

total calcium was positive although neither consistent nor significant. 

Zaehnnger et al. (1969) estimated potassium, calcium and magnesium content 

of several potato cultivars. Potassium content was significantly correlated 

wi h the sum of calciun and magnesium, but these cations were not correlated 

w n h intercellular cohesion. Puncture testing, however, demonstrated a 

gnif cant correlation between intercellular cohesion and calcium, magnesium 
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of the variability in cell separation. 

Addition and removal trials By far the most valuble and promising information 

about the role of pectic substances, interfering cations and anions, in inter­

cellular cohesion is available from model experiments. Mostly estimation of 

pectin concentration in potato tissue is even omitted, but by addition of 

chemicals or removal of substances changes in intercellular cohesion are 

introduced and interpreted with respect to the possible cementing function 

of pectic substances. 

Potato tissue slices were kept in solutions of chemicals at a temperature 

of 65°C and a somewhat variable pH of 5-6. Chloride salts of divalent cations 

like barium, calcium, magnesium and strontium did not decrease intercellular 

cohesion as measured with tensile strength, while potassium and sodium did 

to a small extent. Calcium chloride counteracted the decrease in cell cohesion 

after heat or chemical treatment and underlined the role of calcium ions in 

improving or retaining cell cohesion (Personius & Sharp, 1939a). The firming 

action of calcium, measured mainly by RWCS tests, has been proven furthermore 

by addition to boiling liquid, immersion of the potatoes in calcium containing 

solutions before canning or addition to canning brine (Pyke & Johnson, 1940; 

Rhodes & Davies, 1945; Whittenberger & Nutting, 1950; Weckel et al., 1959; 

Mitchell, 1972; Ludwig, 1972). Woodman & Warren (1972) succeeded in changing 

cell separation by addition of calcium without a change in extrusion-measured 

mealiness. 

In the same experiments as described for cations, Personius & Sharp 

(1939a) found an extensive decrease in intercellular cohesion in ammonium 

oxalate, sodium citrate and sodium fluoride solutions at pH 5-6, compared 

with water and potato juice. This effect was ascribed to removal of calcium 

from the intercellular cement. Having established that, cell membranes become 

permeable at heating, Personius & Sharp (1938b, 1939a) thought that ions of 

the cell cytoplasm are able to diffuse into the intercellular region and to 

interact with the pectic structures. With the same idea in mind, Linehan & 

Hughes (1969c) studied changes in intercellular cohesion with compressive 

strength measurement using treatments of raw potato tissue. At a pH of 6.5 

and 35°C, EDTA and BMP decreased intercellular cohesion to the level of the 

cooked potato. Heavy metal chelating agents did not do this, however, indi­

cating that calcium, and magnesium, are important for cell cohesion. After 

EDTA treatment, magnesium, calcium, barium, trivalent iron and aluminium 

restored intercellular strength in increasing order. Sodium and potassium 
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were less active. During EDTA treatment of potato t i s sue a t pH 6.5 and 35°C 

polyuronides were lost too. This means that reduction in i n t e r ce l l u l a r 

cohesion must be ascribed to both calcium (and magnesium) and pec t i c sub­

stances. Remarkably, cations and polyuronide were los t from the t i s sue before 

reduction in in tercel lular cohesion real ly occurred. So the l o s t f ractions 

may not be fully responsible for in te rce l lu lar cohesion. Linehan & Hughes 

(1969c) ascribed the loss of polyuronide to 6-eliminative degradation 

(Albersheim et a l . , 1960b). 

Removal of water-soluble substances by soaking of small th in potato 

dices in d i s t i l l ed water causes a decrease in ce l l separation on subsequent 

cooking in a RWCS t e s t (Le Toumeau et a l . , 1962; Zaehringer e t a l . , 1963a). 

Evidently, reduction in in tercel lu lar cohesion i s reversed to a cer ta in 

extent by diffusion into the water of potato const i tuents . Potassium ions 

can be removed by leaching within a short period for 70-80°s, but other ions 

will diffuse at the same time (McDonald e t a l . , 1960; Lorenzini, 1970; Louis 

& Dolan, 1970). I t could be shown that i n te rce l lu la r cohesion a f ter cooking 

was highly positively correlated with e lec t r ica l conductivity of the soak 

water, the loss of potassium, phosphorus, magnesium, calcium, phytic acid 

and c i t r i c acid and loss of to ta l solids (Davis, 1964; Davis e t a l . , 1973). 

Whereas during a fixed period 2Q% of t o ta l solids were l o s t , more than 501 

of present minerals were leached out. Potassium indeed diffuses to the 

greatest extent (70%) and calcium i s most retained (351). 

A causal relationship to in tercel lu lar cohesion of the leached-out ions 

was confirmed in a number of experiments. D e n i z a t i o n of soak waters des­

troyed the soaking effect in RWCS tes t of soaked potatoes (Cunningham e t a l . , 

1967). Replacement with the aid of ion-exchangers of anions and cations of 

soak waters revealed and re-affimed the important role o f - c i t r a t e and 

potassium in intercel lular cohesion (Zaehringer & Cunningham, 1971). 

Addition of potassium chloride also reversed the effect of previous soaking, 

but the potassium sa l t s of c i t ra te and to a lesser extent malate, oxalate and 

phytate were more effective (Davis & Le Tourneau, 1967). Calcium chloride 

raised cel l cohesion, magnesium chloride had no effect in the experiments of 

Davis & Le Toumeau (1967), but in the ion-replacement t r i a l magnesium 

decreased cell separation although less than calcium (Zaehringer & Cunningham, 

971). Potato extractives when used in c i t rus pectin gel making, weakened 

the gel , while the viscosity of potato starch paste was diminished (Zaehringer 
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swelling theory. In a similar leaching experiment, Aleshina (1966) observed 

the effect of soaking on intercellular cohesion and the reversion by sodium 

oxalate, but not by sodium chloride. Ludwig (1972) measured decreased inter­

cellular cohesion on addition of sodium chloride to non-soaked potato dices. 

From the experiments described one may conclude that addition and 

removal trials with potato tissue reveal the important role of pectic 

substances in intercellular cohesion of the cooked potato. Cations like 

calcium increase firmness and cellular coherence, anions like citrate, malate, 

oxalate and phytate exert an opposite influence. However, the disadvantageous 

effect of potassium on intercellular cohesion is less conceivable and probably 

also less specific than the forementioned ions. 

3.S INTERCELLULAR COHESION OF THE COOKED POTATO AND CELL SIZE 

Because of the complex nature of interferences and interactions of 

chemical constituents, which probably determine intercellular cohesion of 

the cooked potato, a quantitative approach to this phenomenon leaves some 

questions unanswered. Van Buren (1970) stated that some general concepts of 

cohesion and interaction of molecules and surfaces may be profitably applied, 

whereas Linehan et al. (1968) expressed as their view that difference in cell 

size may account for a part of unexplained variations in intercellular 

cohesion (Linehan & Hughes, 1969b). 

Van Buren (1970) draw attention to the treatment of cell cohesion by 

application of colloid theory on cell-sized particles carried out by Weiss 

(1968). This theory essentially considers contact processes to be regulated 

by a balance between potential energies of electrostatic repulsion and 

potential energies of attraction due to London-Van der Waals interaction. 

During his study Weiss (1968), calculated that the repulsive force between 

a glass plate and a cell decreases as the cell radius decreases. The adhesion 

thus increased when cell size decreased. In plant cells, however, the covalent 

bondings in the cell wall macromolecules and the gel character of the pectic 

substances (Sections 2.2.3 to 2.2.5) make the colloid theoretical consider­

ations less useful to describe cohesion phenomena. 

Linehan et al. (1968) simply thought that smaller cells would have a 

greater area of intercellular contact producing higher values of intercellular 

cohesion. They could show that intercellular cohesion, measured as compressive 

strength, was indeed significantly positively correlated with cell size, 

expressed as surface area per unit volume of tissue. 
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Relatively few other investigators looked for relat ionships between cel l 

size and intercel lular cohesion after cooking. And some of these estimated 

mealiness instead of in tercel lular cohesion or determined tuber breakdown 

subjectively. Thiessen (1935, 1947) compared dry-land tubers with those grown 

on irrigated land. The dry-land tubers had larger c e l l s and a concurrent 

greater penetration on puncture testing af ter cooking. In dry-land tubers the 

greatest intercellular cohesion (or resistance to penetration) was found in 

the cortex where the smallest cel ls occurred. Gray (1972) counted the number 

of tubers without sign of breakdown on autoclave cooking. A s ignif icant 

positive correlation was established between ce l l surface area and freedom of 

breakdown, or subjectively assessed in te rce l lu la r cohesion. 

According to Barmore (1937) no consistent relat ionship between mealiness 

and cell size existed, although in three out of four pa i rs of samples, the 

most mealy had the largest c e l l s . Mealiness, subjectively assessed as in the 

work of Barmore (1937) was s ignificantly correlated with ce l l s ize in an 

investigation with four var ie t ies (Barrios e t a l . , 1963). 

3.6 SUMMARY 

Some attention was given to potato tuber anatomy, chemical composition 

and distribution of chemical constituents over several tuber regions. Li tera­

ture data on potato ce l l wall and middle lamella composition were compared 

with those on cel l walls of suspension-cultured sycamore c e l l s , whose s t ruc­

ture is reported in detai l in l i t e r a tu re . 

In th is Chapter the methods of measurement of i n t e rce l lu la r cohesion of 

the cooked potato were surveyed. The importance of objective, instrumental 

methods was outlined for the investigation of the influence of chemical 

composition on texture. Compressive strength measurement and puncture t es t ing 
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indications are given that changes in pectic substances during cooking, for 

instance solubilization and reduced binding of calcium ions, are important 

for intercellular cohesion. But it is concluded that no correlations with 

absolute pectin contents have been found. 

Finally the importance of cell size or cell surface area in inter­

cellular cohesion was briefly emphasized. 
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4 Enzymatic reduction of intercellular cohesion of 

potato tissue (maceration) 

4.1 INTRODUCTION 

Intercellular cohesion of potato t issue i s reduced when the t i ssue i s 

heated or cooked, but this phenomenon can be achieved without applying energy 

of heat with aid of pectin degrading enzymes, or specif ical ly (rhamno)galac-

turonan attacking and depolymerizing enzymes. This kind of loss of t i ssue 

coherence, associated mainly with plant t i ssue modification by p lan t -

-pathogenic microorganisms (Bateman & Millar, 1966; Albersheim e t a l . , 1969; 

Codner, 1971) is known as maceration. Maceration experiments with potato 

tissue have not always been carried out by incubation with def in i te ly 

purified enzyme preparations, which contain only one, homogeneous, galac-

turonan depolymerizing enzyme protein. However there i s evidence for the 

pectic nature of potato t issue middle lamella and the role of pec t ic 

substances in maintainance of in tercel lu lar cohesion. 

Until now only endo-splitting galacturonan depolymerases, both hydrolases 

and lyases, have been proved to macerate potato t i s sue . There are reports 

about maceration of potato t issue by endo low-methoxyl pectin lyases (WL) 

(Dean & Wood, 1968; Hancock & Stanghellini, 1968; Hall & Wood, 1970; Mount 

et a l . , i97o ; Zucker & Hankin, 1970; Mullen & Bateman, 1971; Hagar & Mclntyre, 

1972; Alberghina et a l . , 1973). Pilnik e t a l . (1973) preferred the tern LMPL 

orpec ta te lyase (PAL) (E.G. 4 .2.2.2, Poly(1,4-a-D-galacturonide)lyase) 

Neukom 1963; Koller, 1966). Endo pectin lyases (PL) (E.G. 4 .2 .2 .10, 

Poly(methoxylgalacturonide)lyase) have been found effective in potato t issue 

z r a t ; r ° ; riendon> 1%4: s h e ™ ° d ' 1 % 6 ; ^ & * ^ > 1 9 6 8 ; 
ml at 't I"11-' Y ° k 0 t S U k a ' 19?1)- *™« «*> D - e s teste always 

Z Td th° V 1 S S U 6 ' ^ ^ d ° e S n 0 t h ° l d f ° r h ^ 0 1 ^ • * » authors reported that endo polygalacturonase (PG) (E C ^ 7 1 K V W I A T, 

zz •.:::• 27^:11:2::^s ;—,972)-
Neukom, 1968; Cole, 1970). Fielding, 1968; Gremli & 
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It has been pointed out that purified and characterized pectic enzymes 

might be valuable tools in the study of primary structure of pectic substances 

(Aspinall, 1970a; Rombouts, 1972). A purified endo PG (English et al., 1972) 

has aided the partial elucidation of sycamore cell wall structure in partic­

ular (Talmadge et al., 1973; Keegstra et al., 1973). I used endo low-methoxyl 

pectin lyase and pectin lyase in comparative maceration experiments of potato 

tissues. These tissues were derived from a restricted population, but differed 

widely in specific gravity (dry matter, starch content) and concurrently in 

intercellular cohesion of the cooked tissue. Maceration with the lyases 

mentioned might reveal differences in primary structure of pectic substances 

of the middle lamella or unequal distribution of pectic substances and its 

characteristics over primary cell wall and middle lamella. 

4.2 MATERIALS AND METHODS 

4.2.1 The potato material 

Potato tubers, variety Bintje were grown under normal agricultural 

conditions in 1971 and 1972 on clay soils in the Noord-Oost Polder. Lots of 

2-3 tons, a restricted population of identical growth history, were stored 

after harvest at 6°C with sprout inhibitors (isopropyl-N-phenylcarmabate and 

its chloro-derivative). After two (1971) or one (1972) month of storage the 

lots were divided in specific gravity1 fractions by brine flotation (Burton, 

1966; Smith, 1967). The storage was continued when these potato tubers had 

been carefully washed to remove adherent salt and were air-dry. Three (1971) 

or four (1972) months after the start of the storage period, tubers of low 
SP- gr. (1.060-1.070) and high sp. gr. (1.100-1.110) were prepared for 

maceration. 

4.2.2 Tissue for maceration experiments 

With a cork borer, cylinders of 1.6 cm diameter were taken in a trans­

verse direction out of the mid region of the tuber. Cortex and vascular 

tissue were peeled off, leaving cylinders of perimedullary and pith tissue 

(Reeve et al., 1973a). Disks of 0.40-0.45 mm thickness were cut with a simple 

1. Relative density dt, is to be preferred to specific gravity, which is used 

here because of the normal practice in potato-processing industry. 
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microtome and killed by an ethanol treatment: the tissue disks were submerged 

in 701 ethanol immediately, and then into 961 ethanol via three changes of 

volume. To denature endogeneous enzymes, especially pectinesterase (PE) 

(E.C. 3.1.1.11, Pectin pectyl-hydrolase) the disks were boiled in 961 ethanol 

for 10 min (Brown, 1969). The tissue sections were returned to 701 ethanol 

and stored at 4°C until use. Activity of PE was destroyed, but starch granules 

remained intact. One may assume that this treatment does not change pectin 

structures dramatically. Of the 1971 tubers 3 000 disks of each sp. gr. were 

prepared, of the 1972 ones 1 300. 

The results of pectin analyses are collected in Table 4. Due to diffi­
culties in pectin analysis, some of the values for 1971, sp. gr. 1.100-1.110 
and 1972, sp. gr. 1.060-1.070 were calculated on basis of methanol analysis 
of the disks and DE values of the whole tissue (Tables 22, 23). DE values of 
pectic galacturonan of disks and whole tissue of 1971, sp. gr. 1.060-1.070 
were 54 and 52l% respectively, those of 1972, sp. gr. 1.100-1.110 55 and 56°* 
respectively, thus quite similar. 

For standard deviations see Section 7.2.2. 

4.2.3 Modification of tissue disks 

Tissue disks were modified in order to change the degree of esterification 
of pectic galacturonan, or to remove calcium ions from cell wall and middle 
lamella. 

H disks (calcium replaced by H) were prepared by washing 400 disks four 
times with 250 ml 701 ethanolic 0.6 M hydrochloric acid in a beaker. Then the 
disks were washed with 701 ethanol until CI" free. 

For esterification 400 H disks were washed with five volumes absolute 
ethanol (175 ml) and five volumes methanol (300 ml) to remove water. 
Esterification was adapted from the procedure for isolated pectin of Vollmert 

Table 4. Pectin analyses of tissue disks. 

SP. gr. Year Fresh_wei8ht Pectic galacturonan DE Ncn-esterified carboxyls 

^n^TT~~ (%) ( y m o l / 2 ° d i s k s ) 

1.060-1.070 1971 94 S fin 
1-100-1.110 1971 97 , ,2 °-31 54 14.5 
1.060-1.070 1972 98 i„l °-38 A9 20.8 
1.100-1.110 1972 100 I'll °-34 52 16.8 
• • • 6l68 0.33 55 16.4 
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(1950a). H disks in 300 ml of methanol were cooled to -10°C in ice/acetone 

and 50 ml 0.4 N diazomethane in etherial solution were added (Vogel, 1967). 

After 30 min the residual diazomethane was removed by passing nitrogen through 

the solution. The esterified disks were washed thoroughly with 701 ethanol. 

After esterification, the pectin content appeared to be lowered. For sp. gr. 

1.060-1.070 (1971) 5.18 mg pectic galacturonan was found, calculated on basis 

of 1001 esterification, and for sp. gr. 1.100-1.110 (1971) 5.34 mg. In fact a 

DE of about 971 was found for solubilized pectic galacturonan during 

maceration. 

Saponification was carried out in the maceration vessels, just before 

the start of maceration. To saponify 20 disks of tissue in 20 ml buffer 

solution, they were incubated overnight with orange PE (35 nkat). That 

saponification was almost complete, was seen from a DE of 41 of solubilized 

galacturonan. 

4.2.4 Enzymes 

All enzyme preparations used throughout this work were produced, isolated, 

purified and partly tested at the Laboratory of Food Chemistry and Microbiology 

of the Agricultural University of Wageningen. 

Low-methoxyl pectin lyase (LMPL) was produced from the culture liquid of 

Bacillus polymyxa, which secreted this enzyme extracellularly on a medium 

containing pectate, as described by Uyttenboogaart (1970) and Rombouts (1972). 

After removal of bacterial cells, the culture liquid was concentrated by 

freeze-drying, purified by ammonium sulphate precipitation and dialysed 

against deionized water at 4°C overnight. This Bacillus polymyxa has been 

shown to secrete into the culture liquid one single pectolytic enzyme 

activity, pectate lyase (Nagel & Vaughn, 1961b) or low-methoxyl pectin lyase 

according to the new classification scheme proposed by Pilnik et al. (1973). 

Upon CM-Sephadex liquid chromatography, three fractions of LMPL activity have 

been obtained by Rombouts (1972) or four fractions when separated on CM-

-cellulose columns by Nagel & Wilson (1970). These LMPL-enzymes differ in pH 

optimum and endo mode of attack on pectic acid (Nagel & Wilson, 1970; 

Rombouts, 1972) and do not cleave pectic substrates in a purely random way. 

For one of the LMPL fractions of Bacillus polymyxa Rombouts (1972) established 

a maximum reaction rate {V) on 261 esterified pectin and maximum affinity 

( V y for a substrate with a DE of 21-31!. Lyases of Bacillus polymyxa 
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apparently do not prefer a substrate without e s te r i f ied carboxyl groups 

(DE 0%), but exert optimum act ivi ty at 20-30°s e s te r i f ica t ion and thus are 

properly called low-methoxyl pectin lyases. 

Peatin lyase (PL) was isolated from a commercial enzyme preparation Pektolase 

FL 32 (Grindstedvaerket, Aarhus, Denmark) as described by Voragen (1972). At 

the end of the purification procedure which included calcium phosphate gel 

adsorption, ion-exchange and gel permeation chromatography, PE, PG and LMPL 

(PAL) must be absent. This PL has a rather high substrate a f f in i ty (1/X ) 

compared with some other PLs (Voragen, 1972). The enzymic a c t iv i ty i s 

influenced by the buffer medium used, citrate-phosphate and phosphate-citrate 

buffers giving the highest a c t iv i t i e s . In Tris-succinate buffer for a s imilar 

PL from another commercial preparation, a shift in pH optimum was found when 

DE decreased (Voragen e t a l . , 1971a; Voragen, 1972). At 95t e s t e r i f i ca t ion of 

pectin substrate the optimum value of pH was 6 . 1 , but a t 741 (randomly 

esterified) pH optimum was 4.8. Enzymic ac t iv i t i es on enzymically saponified 

substrates were much higher than on a lkali saponified pectins of the same DE. 

The same authors reported that calcium ions (0.075-0.15 M) act ivated PL 

degradation of incompletely esterif ied substrates, except a t pH 7 .5 . Calcium 

ions caused a shift in pH optimum of PL act ivi ty to lower or higher values 

dependent on degree of es ter i f icat ion. Therefore optimum substrate for pectin 

lyase is not a completely es ter if ied pectin in a l l circumstances. A sh i f t to 

lower es ter if ied substrates may occur according to variat ion buffer in sub­

stances, pH and additional ions. 

Pectinesterase (PE) was prepared from orange pulp (MacDonnel e t a l . , 1945). 

Oranges were rasped to remove flavedo and pressed out. The pulp (1 kg) was 

homogenized in 2.5 1 of buffer (42.5 g borax Na2B,O7.10H2O, 27.5 g bor ic 

acid and 40.0 g sodium acetate per l i t r e ) pH 8.2. After 2 h the mixture was 

f i l tered on a Buchner funnel ( f i l t e r paper, Schleicher & Schull 520b). In 

the f rUrate 1 250 g of ammonium sulphate were dissolved, and the p rec ip i ta te 

TLTTTc b L C e n t r i f U g i n g f ° ' 2° ^ « 16 000 , . All treatments were 

d r a l v l V ^ P r e C l p i t a t e w a s ^ ssolved in 50 ml deionized water, 
dialysed against the same overnight and freeze-dried. 
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4.2.5 Substrates for measurements of enzymio activities 

Sodium pectate and ± 254 esterified pectin (Obipektin AG, Bischofszell, 

Switzerland) were used without further purification. Highly esterified pectin 

was prepared at the Laboratory of Food Chemistry and Microbiology (Voragen, 

1972). Titrimetrically the DE was established to be 97-981 and the methyl-

galacturonan content 1011 (Doesburg, 1965). Solutions of these pectin sub­

strates were centrifuged at 48 000 g and filtered subsequently over glass 

filters (G3) to get optically clear solutions according to the recommendations 

of Voragen (1972) for determination of lyase activities by u.v. assay. 

Potato pectin was prepared from potato cell walls (Section 5.2.1), 

analogous to the method of Knee & Friend (1968): 2.5 g of cell wall were 

refluxed in 120 ml 0.1 M Tris-succinate pH 6.1 for 4 h. Four volumes of 

ethanol were added, the precipitate was collected by centrifugation, washed 

once with 701 and 1001 ethanol, twice with ether and dried in vacuo. Yield 

was 1.15 g (air-dry). Pectin analysis with the procedures outlined in Section 

4.2.9 showed a content of 911 carbohydrate material i.e. 241 galacturonan and 

67! neutral sugars calculated for galactose.' The DE of the pectic galacturonan 

was 274. Potato pectin was used mostly after alkaline saponification in the 

cold. 

4.2.6 Measurements of enzymio activities 

According to the recommendations of the Commission on Biochemical Nomen­

clature (1972) enzymic activity is expressed as the amount of activity that 

converts one mole of substrate per second. The unit is the katal (kat). 

Low-methoxyl pectin lyase activity was measured by the u.v. assay 

(Albersheim et al., 1960c) in a reaction mixture of 1 ml 14 (w/v) 254 

esterified pectin, 1 ml 0.2 M Tris-succinate pH 8.5 containing 0.625 mM 

calcium chloride, 0.4 ml water and 0.1 ml enzyme solution, incubated at 30 C 

in a 1 cm quartz cuvette. The absorbance at 232 nm A2 32 was measured against 

a blank of the same components and inactivated enzyme with a Beckman DU 

spectrophotometer. The enzymic activity was expressed in katals by use of a 

molar extinction coefficient of 4 800 m o l - ^ c n r 1 (Rombouts, 1972). 

Pectin lyase activity was determined also by measuring increase in A 2 3 2 . 

The reaction mixture now consisted of 2 ml 0.54 (w/v) highly esterified 

Pectin in 0.047 M Na2HPCVcitric acid (Mcllvaine)buffer pH 6.5, 0.4 ml water 

and 0.1 mi enzyme solution, incubated at 30°C again. Enzymic activity was 
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calculated in katals with a molar extinction coefficient of 5 500 mol-^dn^cm-1 

(Rombouts, 1972). 

Polygalacturonase activity was assessed by measurement of increase of 

reducing hexuronic acid groups (Milner & Avigad, 1967). The reaction mixture 

contained 2 ml 0.51 (w/v) sodium pectate dissolved in a 0.077 M Mcllvaine 

buffer, pH 4.0, 0.4 ml water, 0.1 ml enzyme solution and was incubated at 

30°C. At chosen intervals 0.1 ml of the reaction mixture was diluted to 0.5 

ml and assayed immediately. 

Pectinesterase assay is described in Section 7.2.2. 

The activity of enzymes degrading neutral sugar parts of potato pectin 

and setting free reducing neutral sugars (galactose, arabinose etc.) here 

called arbitrarily 'galactanases' (Knee & Friend, 1968, 1970; Hoff & Castro, 

1969; Cole, 1970) was determined with potato pectin as substrate. A reaction 

mixture of 1.15 ml 0.44% (w/v) saponified potato pectin in 0.067 M Mcllvaine, 

pH 4.0 and 0.1 ml enzyme solution was incubated at 30°C. Total reducing sugar 

endgroups released were estimated with the method of Nelson-Somogyi (Somogyi, 

1937; Nelson, 1944), and this result was corrected for galacturonic acid 

reducing endgroups determined according to Milner & Avigad (1967). The 

difference between the results of these two methods constitutes the quantity 

of neutral sugars with reducing power. 

4,2.7 Maceration procedure 

Potato tissue disks, after preparation stored in 701 ethanol at 4°C, 

were washed thoroughly with deionized water, to displace ethanol and remove 

loose cells or adherent starch grains and shaken in a waterbath-shaker for 

5 min (Kotterman, Hanigsen, FRG). After decanting off the washwater this was 

repeated three times. 

Twenty tissue disks were placed in the maceration vessel, a conical 

flask of 100 ml, and 20 ml buffer solution, 0-0.4 ml enzyme and 0.2 ml 0.021 

(w/v) thiomersal (to prevent microbial growth) were added. The maceration 

started and proceeded for a chosen length of time at 30°C on the waterbath-

shaker, at a standardized speed of 300 rev/min. Every treatment was dupli­

cated. Enzyme solution solution was replaced by water in the blanks, when 

they were included. The compositions of the various maceration samples are 

summarized in Table 5. During the maceration experiment or when it was 

finished, the degree of cell separation was measured by a turbidity test. 

The tissue samples of 1971 were incubated with pectolytic enzyme for a fixed 
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Table 5. Buffers, enzymic activities and calciumchloride addition in 
maceration experiments. 

Tissue 

1971 

1972 

Enzyme 

LMPL 
nkat/O. 

5.17 

5.17 
5.17 

25 ml 
PL 
nkat/x ml 

4.12 (x=0.4) 
0.45 (x=0.074) 

Buffer 

nature 

0.02 M Tris-pipes 
0.05 M Tris-succinate 
0.1 M Phosphate-citrate 

0.02 M Tris-pipes 
0.02 M Tris-pipes 

pH 

7.0 
5.51 

5.1 

7.0 
7.02 

1. 0.1 
2. LS: 

HS: 

M CaCl2. 
0.017; 0.08; 
0.022; 0.11; 

0.17 mM. 
0.22 mM. 

period of time. Then enzyme action was stopped by addition of acid to lower 

pH (LMPL: 0.4 ml 2 M acetic acid, pH 4) (PL/Tris-succinate: 2 ml 0.5 M HC1, 

pH 3 and PL/Mcllvaine: 0.8 ml 2 M HC1, pH 3). The macerated tissues were then 

prepared for further analyses. The tissue samples of 1972, however, were not 

used for analytical purposes apart from cell separation measurements at 3, 5, 

10 and 24 h of maceration. 

As just mentioned, the macerated tissue samples of 1971 were used for 

analyses of pectic substances. The contents of the maceration vessel were 

homogenized thoroughly (Biihler-homogenizer, Tubingen, FRG). The solids were 

removed by centrifugation or filtration over glass filter (G3) or folded 

paper. The supernatant or filtrate was made up to 50 ml and analysed for 

solubilized pectic substances. 

4.2.8 Measurement of cell separation by turbidity (TCS test) 

Reduction or loss of intercellular cohesion of potato tissue results m 

separation of cells, which can be measured by an objective direct method such 

as the RWCS test described in Section 3.3.3. The small tissue samples used in 

maceration are less suitable for such a RWCS test in my opinion, although RWCS 

tests have been applied for assessment of tissue maceration (Mussell & Morre, 
1969; Zucker & Hankin, 1970). For this purpose another objective and direct 

method was chosen. Cell separation was determined quantitatively by adaptation 

°f a turbidity procedure (Bateman & Beer, 1965; Bateman, 1968; Melouk, 1969). 

!n some experiments (1972 samples) a subjective counting method of the number 
of broken tissue disks was used too. 
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The procedure adapted for measurement of turbidity cell separation was 

as follows: a representative portion of the maceration liquid (± 3 m l ) , con­

taining free cells and aggregates of some cells but avoiding larger tissue 

pieces, was decanted into a 1 cm glass cuvet. The cuvet, covered with parafilm, 

was inverted ten times, placed in the cuvet housing of a Beckman DU spectro­

photometer and Aij75 w a s r e a d exactly 15 seconds after inversion against a 

water blank. This procedure was repeated to obtain two values of A ^ 7 5 for 

each sample which were averaged. The Ai^s readings were converted into 

percentages of cell separation, ranging from 0 to 100%, with the aid of a 

standard curve. To establish this standard curve, twenty tissue disks were 

macerated overnight and complete cell separation (1001) was achieved with a 

magnetic bar and agitation at high speed. Ai,75 at 1001 cell separation was 

measured and of serial dilutions as well. In this way the whole range of 

zero to hundred percent was covered. 

The turbidity cell separation test (TCS test) is a versatile method of 

measuring and following the course of reduction of intercellular cohesion. 

In fact the TCS test measures loose cells and thus is comparable with the 

RWCS tests used for the cooked potato tissue. However, the latter measures 

the retained weight or intact tissue which remains when the loose cells have 

been removed (Le Tourneau et al., 1962; Zaehringer et al., 1969; Ludwig, 

1972). I used the TCS test for small quantities of cooked tissue (Chapter 6) 

as well as for macerated tissue. For larger samples of cooked tissue, the 

various RWCS tests are most suitable. As an objective test, the TCS test has 

obvious advantages over subjective appraisal of tissue maceration, like 

pulling apart with the fingers or pressing with needles (Brown, 1915), which 

was used by most workers in the past. The TCS test has the additional advan­

tage of following maceration patterns more than giving endpoint determinations. 

The procedure is non-destructive, because after measurement of absorbance at 

475 nm the sample can be returned to the maceration vessel. This is not 

possible when the RWCS tests of Mussell & Morre (1969) or Zucker & Hankin 

(1970) and penetration measurements according to McClendon & Somers (1960) 

or Sherwood (1966) are applied. The absorbance measured in a TCS test can 

depend on particle size (Lankveld, 1970), but according to Van Buren (1972) 

this is especially true at a particle radius close to the wavelength of the 

xght used. The radius of potato tissue cells as used here (72-81 um) 

(Section 4.3.3) is much greater than the wavelength of the light (475 nm) 

and thus variability in cell size will not influence the turtidity measurement. 

The mean of cell separation values during maceration was 341 with s = 2.21. 
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4.2.9 Quantitative determination of soluble peotia substances 

During maceration some starch could be solubilized. As th is carbohydrate 

material wi l l in ter fere in pectin analysis, i t was f i r s t removed by enzymatic 

hydrolysis and subsequent oxidation of glucose to gluconic acid. Gluconic 

acid did not react in the colorimetric t e s t s used here to measure pectin 

content. 

To 5 ml of the maceration extract 0.025 ml amylo-o-1,4-a-1,6-glucosidase 

(± 48.3 nkat) (Boehringer, Mannheim, FRG) was added. This mixture remained 

for 2 h at 30°C once pH was brought to 4 with diluted a lka l i . Then pH was 

further raised to 7.5 and 0.25 ml glucose-oxidase (± 291.7 nkat) (Boehringer) 

were admixed.. The reaction sequence was assumed complete after another 4 h 

and then the volume was made up to 25 ml. 

Pectic substances were determined with combined carbazole-sulphuric and 

phenol-sulphuric acid t e s t s (Keijbets & Pi lnik, 1974a). The carbazole-

-sulphuric acid reaction estimates galacturonic acid and was carried out 

according to the modification of Rouse & Atkins (1955) of the original Dische 

test (1947); neutral sugars were assayed with the phenol-sulphuric acid t e s t 

of Dubois e t a l . (1956). Both colorimetric reactions are not ent irely specific 

for galacturonic acid or neutral sugars, and for that reason a formula was 

used to calculate galacturonan and neutral sugar content from the absorbances 

measured (Keijbets & P i ln ik , 1974a). The formula to be used, depends on 

standard curves established and may be somewhat variable. The galacturonan i s 

calculated as anhydrogalacturonic acid, the neutral sugar part of the pectin 

complex as galactose, the predominant potato pectin sugar (Hoff & Castro, 

1969). 

Mean % so lubil ized pect ic galacturonan in maceration experiments was 581 

with s = 3.0%. 

*>2.10 Analysis of £-elimination with the periodate-thiobarbiturio acid test 

Periodate-TBA, f i r s t described by Waravdekar & Saslaw (1957, 1959) for 

the determination of 2-deoxysugars, i s a useful specific reagent for detection 

of unsaturated uronic acid residues which ar ise from pectic galacturonan 

during enzymatic or chemical B-eliminative chain sp l i t t ing . At periodate^ 

oxidation e-formylpyruvic acid i s formed, which i s able to react with thio-

barbituric acid to a v io le t - red chromogen with an absorption peak at about 

550 nm (Weissbach & Hurwitz, 1959; Preiss & Ashwell, 1963). Rombouts (1972) 
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extensively described this test and thought that it might be applied for 

quantitative purposes although the reaction is not stoichiometric. Voragen 

(1972), on the other hand, denied the usefulness of the periodate-TBA test 

as a quantitative assay on the basis that the molar extinction coefficient e 

depended on chain length for some unsaturated pectin oligomers. I investigated 

the dependence of e on progressive depolymerization of purified potato pectin 

(extracted from cell walls with diluted hydrochloric acid) by chemical and 

enzymatic g-elimination. Galacturonan depolymerization was measured as an 

increase in reducing galacturonic acid endgroups (Milner & Avigad, 1967) 

(Section 4.2.12) and as an increase in unsaturated galacturonic acid endgroups 

(u.v. assay A232-240 an^ u s e of e = 5 500 mol_ 1dm3cm_ 1). Molar extinction 

coefficients e of periodate-TBA chromophore, calculated by comparison from 

both mentioned endgroup measurements, indeed changed with chain length of 

the degraded endproduct. In agreement with the results of Voragen (1972), we 

found that e (periodate-TBA) increased with chain length, covering a range 

of 15 000 until 35 000 mol^dn^cnr1 for degrees of polymerization from 30 

until 100 (calculated from reducing uronic acid). Hence the periodate-TBA 

test is useless for quantitative purposes. The u.v. measurement at 232-240 nm 

is not useful either because of manifold interferences in this low u.v. range 

by biological compounds. 

However, the periodate-TBA reaction was carried out for qualitative 

purposes exactly as described by Rombouts (1972) who adapted the method of 

Weissbach & Hurwitz (1959) by application of a prolonged periodate oxidation 

step of 40 min (Waravdekar & Saslaw, 1959). To use the periodate-TBA data 

for comparison, a relative periodate-TBA A 5 5 2 number was calculated which 

represents the absorbance at 552 nm per unit solubilized pectic galacturonan: 

A552 * 103 

% solubilized pectic galacturonan 

Mean relative A 5 5 2 number found during maceration was 0.68 with s = 0.028. 

4.2.11 Total reducing sugar endgroups (Nelson-Somogyi test) 

The total amount of both hexuronic and hexose endgroups were assayed 

with Nelson's spectrophotometry adaptation (1944) of the alkaline copper 

reduction method of Somogyi (1937). However, we did not make up the final 

volume to 25 ml, but added 4 ml of water instead. When working with potato 
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pectin, centrifugation appeared to be necessary in order to remove a fine 

flocculate which emerged af ter addition of arsenomolybdate reagent. The 

chromophore was measured at 750 nm at the absorbance maximum. 

4.2.12 Reducing hexuronic endgroups (Milavi test) 

Milner & Avigad (1967) developed a modified copper acetate solution 

which enabled them to estimate hexuronic acids sensitively and reproducibly 

whereas hexoses reacted poorly (aldohexoses more poorly than ketohexoses). 

In our experience th i s Milavi t e s t must be carefully standardized to obtain 

satisfactory r e su l t s . I added the arsenomolybdate reagent (Nelson, 1944) two 

min after s t a r t of cooling in i c e , when sample and copper acetate solution 

had been boiled for ten minutes. Absorbance was measured at 750 nm, after 

centrifugation when needed, exactly as described for the Nelson-Somogyi 

reaction. 

The DPs calculated from the absorbances had a mean value of 28 with 

s = 2 .3. 

4.2.13 Degree of esterification of soluble galacturonan 

Methanol being released by alkaline saponification was determined 

according to the method of Wood & Siddiqui (1971), with one modification. 

Wood & Siddiqui reduced excess permanganate u t i l ized for methanol oxidation 

Prior to colour formation with 0.2 ml 0.5 M sodium arsenite in 0.12 N 

sulphuric acid plus 0.6 ml water. I , on the contrary, had to add 0.8 ml 

°-S M sodium metaarsenite in 0.12 N hydrochloric acid to get a sufficient 

reduction s tep . From determined methanol and galacturonan values, DE of 

galacturonan par t of pec t ic substances could be calculated. 

4-3 RESULTS AND DISCUSSION 

4'3.1 Activities of the enzyme preparations 

L^L The low-methoxyl pectin lyase preparation from Bacillus polymyxa used 

in this work was ident ical with that used by Rombouts (1972) and thus free 

of other pectolyt ic a c t i v i t i e s . Pectinesterase was also absent because the 

Bacillus was cultured on a pectate medium. Potato pectin contains considerable 

counts of neutra l -sugars , e .g . 67% for the sample we extracted from potato 
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cell wall or 481 for potato pectic substances according to Hoff & Castro 

(1969) which were largely galactose (881), so that 'galactanase' might play 

a role in potato tissue maceration (Knee & Friend, 1970). I looked for 

'galactanase' activity in the LMPL-preparation, and indeed at pH 4.0 some 

'galactanase' activity was evident on saponified potato pectin (0.021 nkat/ml). 

'Galactanase' activity, however, occurred at pH 7.5 on unsaponified potato 

pectin (271 esterified) in 0.2 M Tris-succinate without calcium ions at a ten 

times higher level (0.21 nkat/ml). This result means that 'galactanase' • 

produced by Baaillus polymyxa differs from that of Phytophtora infestans by 

a pH optimum of 4 (Knee & Friend, 1970). Knee & Friend (1970) showed that 

their galactanase is an endo-acting enzyme, but this is unknown for the 

Baaillus -polymyxa enzyme. 

PL Pectin lyase, isolated and purified from the commercial preparation 

Pektolase FL 32, contained 'galactanase' as well (1.54 nkat/ml). The 'galac­

tanase ' from Pektolase FL 32 apparently possessed a lower pH optimum than 

that of Baaillus polymyxa, because its activity at pH 6.1 in Tris-succinate 

on 271 esterified potato pectin (0.12 nkat/ml) was much lower than that at 

pH 4 in Mcllvaine buffer. No pectolytic activity was observed at pH 6.1 in 

Tris-succinate on 271 esterified potato pectin; of course these conditions 

are rather unfavourable for PL. But at pH 4 on saponified potato pectin 

reducing hexuronic acid groups were released. It was established that poly­

galacturonase (PG) was responsible (not PAL or LMPL activity, because no 

u.v. A 2 3 2 was found). Voragen (1972) found no PG, PAL or LMPL and PE activity 

at the end of the purification operations for Pektolase FL -32 PL. The fact 

that some PG activity remained in the PL preparation prepared during this 

work, must be ascribed to experimental difficulties. I did not succeed in 

selective inactivation of PG by a temperature-buffer treatment and finally 

decided to use the PL preparation even though PG was present. The preparation 

used in maceration experiments with 0.05 M Tris-succinate buffer pH 5.5 + 

0.1 M CaCl2 (Table 5) had a PL activity of 10.30 nkat/ml, but after inacti­

vation experiments and subsequent dilutions 6.15 nkat/ml PL activity remained 

for maceration in 0.1 „ Mcllvaine buffer, pH 5.1 (Table 5 ) . Results of PG 

activity determinations on several substrates show that PG was not able to 

interfere in potato tissue maceration experiments (Table 6 ) . Potato tissue 

used (1971) contained pectic galacturonan about 501 esterified, and no PG 

activity could be detected at 271 esterification when P H was raised to 5.1. 

On saponified potato tissue PG could be active and contribute to maceration. 
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Table 6. Polygalacturonase ac t iv i ty in Pektolase FL 32 pectin lyase 
preparation (6.15 nkat/ml). 

Substrate Mcllvaine buffer (M) pH Activity 
(nkat/ml) 

Sodium pectate 0.077 4 1.43 
Saponified potato pectin 0.067 4 1.28 
27% Esterified potato pectin 0.077 4 0.10 
27% Esterified potato pectin 0.077 5.1 0.00 

PE Pektinesterase from orange pulp i s supposed to be free of galacturonan 

depolymerases (Mannheim & Siv, 1969). No t es t s for such enzymic ac t iv i t ies 

thus were done. 

4.3.2 General pattern of potato tissue maceration 

The pat tern of potato t i ssue maceration by LMPL was studied by measuring 

turbidity every hour (1971 samples). A typical example i s given in Fig. 4. 

Three phases during enzymatic invasion of t issue can be discerned: a lag 

phase, a l inear and a s tat ionary phase. Bateman (1968) saw the same course of 

maceration with the TCS t e s t apart from the l as t phase, which only appears 

when maceration i s continued. He analysed the maceration phenomenon and 

established that length of lag phase and slope of l inear phase are related to 

% cell separation 
60 

Fig. 4. General pattern of potato 
8 9 10 tissue maceration by low-methoxyl 
time(h) pectin lyase (1971). 
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log of enzyme concentration. The lower the enzyme concentration (= activity), 

the longer the lag phase and the smaller the slope of the linear phase. 

McClendon & Somers (1960) observed a lag phase only when calcium ions were 

added to the maceration medium possibly because of the high enzyme activity 

used in their experiments. The lag-linear-stationary pattern of tissue 

maceration is not typical for potato tissue. Zaitlin & Coltrin (1964) found 

this pattern with tobacco leave tissue, but only when a purified pectolytic 

enzyme was applied. With addition of EDTA the lag phase disappeared, probably 

because of calcium-binding. Potato tissue contains rather small intercellular 

spaces, hence diffusion of enzymes into the region of the middle lamella will 

be slow. Bateman (1968) thought that presence and length of lag phase depend 

on time of enzyme diffusion into the tissue sample and the time required to 

hydrolyse sufficient a-1,4-glycosidic bonds in the pectic substances of the 

middle lamella to permit cell separation. The results of McClendon & Somers 
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(1960) and Zaitlin & Coltrin (1964) suggest that calcium ions extend or even 

cause the existence of a lag phase in combination with enzyme activity applied. 

The linear phase then is the phase of rapid cell separation once enough bonds 

essential to intercellular cohesion are broken. A decrease in rapidity of cell 

release is reached in the stationary phase because of a shortage of unmacer-

ated tissue. 

For each specific gravity fraction used, a turbidity standard curve for 

maceration or cell separation was established. Those of the 1971 samples are 

reproduced in Fig. 5. At the same degree of cell separation different tur­

bidities were measured for tissue of low and high sp. gr. The reasons for 

this can be found in different cell size and in the specific gravity itself. 

The heavier cells (sp. gr. 1.100-1.110) possibly settled down more rapidly 

than the lighter ones since the turbidity measurement was standardized in time. 

4.3.3 Potato tissue maceration by LMPL and PL 

Cell separation and galaoturonan solubilization by LMPL in Tris-pipes and by 

PL in Tris-suaainate + Ca The degree of esterification of pectic galac-

turonan of potato tissue disks amounted to 49-551. Although the DE of these 

substrates did not seem very suitable for LMPL and PL, LMPL caused a rapid 

cell separation of high and low sp. gr. disks (Figs 6, 10, 11) at pH 7.0 in 

0.02 M Tris-pipes buffer. The macerating capacity of PL was investigated 

initially in 0.05 M Tris-succinate pH 5.5, but then my attempts to initiate 

cell separation were unsuccessful. Addition of 0.1 M calcium chloride initi­

ated maceration (Fig. 7 ) , but cell separation remained at a low level com­

pared with the activity of LMPL (Fig. 6 ) . 

In addition to % cell separation, the solubilization of tissue pectic 

substances was estimated. Only the results for galacturonan are given, but 

it was found that the value of the ratio neutral sugars (calculated for 

galactose) to galacturonan fluctuated around 2. Fig. 8 shows that during 

maceration by LMPL the solubilization of galacturonan increased almost along 

the same line as cell separation (Fig. 6). During maceration by PL in Tris-

-succinate + 0.1 M Ca, cell separation was rather limited and did not increase 

markedly after 6 hours of incubation. Solubilization of galacturonan followed 

the same pattern (Fig. 9 ) . At 70-801 solubilization of galacturonan, LMPL 

caused a degree of cell separation of over 50°s whereas this amounted to only 

10-20% for PL (Figs 6, 7, 8, 9 ) . Solubilized pectic substances were deter­

mined after homogenization of tissue. So probably all the pectic substances 
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Fig. 6. Cell separation 
during maceration of 
potato tissue (1971) by 
LMPL in 0.02 M Tris-pipes 
pH 7.0. Curves marked as 
in Fig. 5. 
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Fig. 7. Cell separation during 
maceration of potato tissue (1971) 
by PL in 0.05 M Tris-succinate 
pH 5.5 + 0.1 M CaCl2 ( ) and 
0.1 M Mcllvaine pH 5.1 ( ). 
Curves marked as in Fig. 5. 
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Fig. 8. Solubilization of 
pectic galacturonan during 
maceration of potato tissue 
(1971) by LMPL in 0.02 M 
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degraded or detached from covalent bonding to such an extent that they were 

soluble in aqueous medium, became soluble only when the tissue was destroyed 

artificially by mechanical forces of homogenization. Before tissue destruction, 

these potentially soluble pectic substances kept their ability to cement cells 

by means of calcium association as shown in the maceration experiments with PL. 

Cell separation and galaoturonan solubilization by PL in phosphate-citrate 

buffer The experiments with PL were repeated in 0.1 M phosphate-citrate pH 

5.1 (Mcllvaine) without calcium ions, because these ions were suspected to 

retard and reduce cell separation during maceration in Tris-succinate + 0.1 M 

Ca. On the other hand these ions had been found to initiate cell separation, 

probably by activating pectin lyase working on a rather low esterified 

substrate (Voragen, 1972). A concentration of 0.02 M Mcllvaine was not suffi­

cient to obtain cell separation. In blank samples, 0.1 M Mcllvaine did not 

cause cell separation which proved that the buffer itself was not responsible 

for maceration (for instance by binding calcium ions). In 0.1 M Mcllvaine 

buffer pH 5.1 about 101 of the PL units, (Table 5) used in the previous 

experiments with 0.05 M Tris-succinate pH 5.5 + Ca, caused a separation of 

cells which greatly exceeded that in the calcium-containing buffer (Fig. 7); 

even the same amount of galacturonan was solubilized (Fig. 9 ) . The importance 

of calcium ions in intercellular cohesion of potato tissue is indicated 

strongly by these results of enzymic tissue degradation. 

Galaoturonan depolymerization The depolymerization of solubilized galac­

turonan was estimated tentatively by measuring reducing hexuronic acid groups 

(Milavi) and unsaturated uronic acid groups (periodate-TBA). As pointed out 

by Voragen et al. (1971b) chemical endgroup determinations are useful and 

reliable on a comparative basis merely to measure enzyme activity. But these 

methods are less suited to determine molecular weights because breakage of 

glycosidic linkages may occur during performance of the methods. The Milavi 

test, although carried out in an acid environment, also has these disadvan­

tages. The results of Milavi test, expressed as degree of polymerization (DP), 

and of periodate-TBA test, expressed as relative A552, thus are for compara­

tive purposes only. In Table 7 the results on the depolymerization of pectic 

galacturonan by LMPL and PL are collected. During prolonged incubation with 

enzymes the DPs of solubilized pectic galacturonan decreased, although to a 

limited extent. The strongest decrease was found for LMPL, which also caused 

the greatest increase of solubilization (cf. Figs 7, 9). The changes in 
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Table 7. Depolymerization of pectic galacturonan during maceration of potato 
tissue (1971). 

Enzyme Buffer Time of Sp. gr. 1.060-1.070 Sp. gr. 1.100-1.110 
incubation 
(h) DP Relative DP Relative 

(Milavi) A 5 5 2 (Milavi) A 5 5 2 

LMPL Tris-pipes 

PL Tris-succinate + Ca 

PL Phosphate-citrate 

5 
16 
6 

10 
24 

3 
5 

16 

40 
27 
15 
16 
11 
39 
38 
35 

0.48 
0.89 
0.91 
0.78 
0.38 
0.41 
0.38 

30 
18 
20 
17 
14 
44 
44 
32 

0.35 
1.01 
0.97 
1.01 
0.48 
0.51 
0.59 

relative A 5 5 2 were irregular because of the dependence of e on DP (Section 

4.2.10). The lowest DPs were connected with PL in Tris-succinate + Ca and the 

high activity applied (Table 5). A high activity of LMPL was used too, but the 

pH of maceration (7.0) was rather unfavourable for this enzyme which has an 

optimum pH of 8.5-9.3 (Uyttenboogaart, 1970). The optimum pH for PL of 4.8-6.1 

agreed better with the maceration pH used (5.1-5.5) (Voragen, 1972). 

Removal and addition of Ca, and cell separation by LMPL The role of calcium 

ions in the tissue coherence was further investigated in experiments with LMPL. 

Tissue disks of both sp. gr. classes were treated with ethanolic hydrochloric 

acid to remove calcium ions from cell wall and middle lamella. This treatment 

indeed resulted in considerable loss of ions. Potassium ions were removed for 

79-921 and calcium ions for 52-581 (see Section 6.3.1, Table 14 for more 

specified figures). The residual calcium and potassium ions were possibly 

starch-bound and thus more difficult to wash out. The H tissue disks were 

macerated faster than the untreated ones (Figs 10, 11). The differences for 

sp. gr. 1.060-1.070 (Fig. 10) were smaller than for sp. gr. 1.100-1.110 when 

cell separation was assessed objectively by the TCS test. 

Subjective judgment of tissue maceration afforded additional evidence 

for a difference in maceration rate (Table 8). After 3 and 5 hours of incu­

bation, large differences existed in the number of broken disks which were 

not reflected in the turbidity measurement. This is probably because breakage 

of a tissue disk does not automatically mean release of free cells which 

cause turbidity. However, after 10 hours of incubation the number of broken 

disks was similar (Table 8) whereas percentages of cell separation of 36 to 

54. were measured (Figs 10, 11). Removal of calcium ions apparently diminished 
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Fig. 10. Cell separation during 
maceration of potato tissue 
(1972) by LMPL in 0.02 M Tris-
-pipes pH 7.0: sp. gr. 1.060-
1.070, unmodified disks (o) and 
H-disks (•). 
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Fig. 11. Cell separation during 
maceration of potato tissue 
(1972) by LMPL in 0.02 M Tris-
-pipes pH 7.0: sp. gr. I.100-
1.110. Curves marked as in 
Fig. 10. 
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F l g. 12. Cell separation during 
maceration of potato tissue 
('972) by LMPL: sp. gr. 1.060-
'•070, 4.5% (o) - 22.8% (•) -
44-8% (x) o f non-esterified 
pectic galacturonan carboxylic 
acid groups neutralized by Ca 2 + 

atJded i n 0.02 M Tris-pipes pH 7.0 
buffer (H disks). 
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Fig. 13. Cell separation during 
maceration of potato tissue 
(1972) by LMPL: sp. gr. 1.100-
1.110, 4.1% (o) - 20.7% (•) -
40.9% (x) of non-esterified 
pectic galacturonan carboxylic 
acid groups neutralized by C a 2 + 

added in 0.02 M Tris-pipes pH 7.0 
buffer (H disks). 
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Table 8. Subjective judgment of t i s s u e macerat ion during i ncuba t ion wi th 
LMPL by counting of number of broken d i sks (1972 t i s s u e ) . H: t i s s u e d i sks 
washed out with e thanol ic HC1. 

Sp. g r . Time of i ncuba t ion (h) 

1.060-1.070 
1.060-1.070 - H 
1.100-1.110 
1.100-1.110 - H 

3 

0 
0 
0 
6 

5 

1 
9 
6 

15 

10 

18 
18 
19 
20 

24 

20 
20 
20 
20 

the tissue coherence. Tris-pipes, the buffer used in these experiments, does 

not bind calcium ions (see Section 5.2.5) so that interference of the buffer 

ions is excluded. 

This calcium trial was continued by re-addition of calcium ions in the 

maceration buffer to account for 4.5, 22.8 and 44.81 respectively of non-

-esterified pectic galacturonan carboxylate equivalents of sp. gr. 1.060-1.070 

or 4.1, 20.7 and 40.91 of sp. gr. 1.100-1.110. Progressive neutralization of 

non-esterified.galacturonan carboxylic acid groups, however, did not result 

in increased intercellular cohesion as expected but the opposite effect was 

encountered (Figs 12, 13 cf. Figs 10, 11). The explanation of this unantici­

pated calcium effect probably lies in the calcium dependent activity of 

Bacillus polymyxa LMPL (Nagel & Vaughn, 1961a; Rombouts, 1972), which is 

optimally active in 0.25 mM calcium ion solution. The highest amount of 

calcium ions supplemented was equivalent to a 0.17-0.22 mM concentration. 

Hancock & Stanghellini (1968) found a similar calcium effect with potao tissue 

and a pectate lyase of Hypomyces (Fusarium) solani f. sp. cucurbitae at 0.1 mM 

calcium addition, but at 1 mM level calcium already retarded maceration. The 

interaction of calcium dependent enzyme activity for LMPL and PL and calcium 

dependent galacturonan solubility or cell cohesion obviously causes diffi­

culties in the interpretation of maceration phenomena. 

Corson of HigH md low speomo grav.ty pQtato t.ssues Qf iow ̂  
pecific gravity differ widely in intercellular cohesion after cooking. Do 

the maceration experiments with the pectin depolarizing lyases reveal 

e r e r ; " ̂  ""**"" " ^ ^ S U b — ? ^ °f ^ 
mir TIT551 lHtieS " 3 different P a"e m °f Verification between 
nuddle lanella and primary wall pectic galacturonan for the high and low 
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Table 9. Average maceration rate of low and high sp. gr. potato tissue (1971). 

Enzyme Time of incubation (h) % Cell separation per hour 

sp. gr. 1.060-1.070 sp. gr. 1.100-1.110 

L M P L 3 2.0 6.3 

ifi 2 ' 4 5 - 8 

16 3.2 4.0 
PL (+Ca) 6 1 2 2 7 

1° o!7 ,:6 
2 4 0.5 0.8 

P L ( " C a ) 3 4.3 10.7 
5 2.8 5.4 

16 1.3 2.9 

sp. gr. fraction. I found, however, DEs ranging from 49-621 for solubilized 

pectic galacturonan for both sp. gr. fractions during the maceration. This 

is equal to or somewhat higher than the values in the untreated tissue. No 

differences between sp. gr. fractions were found. The patterns of solubili­

zation of galacturonan (Figs 8, 9, 15, 17) ressembled each other strongly, 

while the results of reducing endgroup and unsaturated bond determinations 

(Table 7) did the same. Thus the enzymatic degradation patterns of pectic 

galacturonan of both sp. gr. classes were rather similar, so that differences 

in primary structure of these two extremes were not found. It is evident, 

however, from all results that the intercellular cohesion of the high sp. gr. 

class tissue (1.100-1.110) was reduced at a faster rate than that of the low 
SP- gr. tissue (1.060-1.070) (Figs 6, 7, 10, 11, 12, 13) (Table 9 ) . 

Differences in cell size may account for this according to Linehan et al. 

(1968) and Van Buren (1970). With a linear measuring method as described by 

Reeve et al. (1971) I established that the 1971 tissue contained larger cells 

in the high sp. gr. disks (d = 162 pm; s = 20) than in those of low sp. gr. 

(d = 144 y m ; s _ 1 3 ^ Another contributing factor might be a difference in 

cell wall and middle lamella calcium level. 

4- 3. 4 The effect of DE of tissue galacturonan on maceration by LMPL and PL 

Saponification of potato tissue by orange PE is specific. This is not 

true for the chemical esterification by diazomethane, which may depolymerize 

Pectin (Neukom & Deuel, 1958; Heim & Neukom, 1962; Smit & Bryant, 1969). In 

fact some pectic galacturonan was lost during this treatment as seen from 
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the analyses (Section 4.2.3). Furthermore diazomethane-treated tissue disks 

were rather fragile and lost coherence in maceration blanks at long incubation 

times due to the continuous shaking force. These blank values of cell sepa­

ration were subtracted only when tissue disks were broken, which was necessary 

in the LMPL trials where long incubation periods were taken (16 h ) . 

LMPL LMPL preferred to attack the unmodified tissue, because I cell sepa­

ration of saponified tissue (Fig. 14) as well as the amount of solubilized 

galacturonan (Fig. 15) were lower. The depolymerization, on the other hand, 

seemed markedly increased after saponification because a DP of 5 (Milavi) and 

a relative A 5 5 2 of 1.95 were measured for sp. gr. 1.060-1.070 (cf. Table 7). 

Enhanced binding of calcium to non-esterified pectin carboxylic acid groups 

at a low DE may be responsible for this effect of retarded cell separation 

and pectin solubilization. When galacturonan is low-esterified, calcium ions 

are able to form insoluble calcium pectate. LMPL, after correction for blank, 

did not macerate esterified tissue. 

PL PL progressively macerated potato tissue as the DE increased, although 

there was one exception (Fig. 16). The patterns of cell separation and galac­

turonan solubilization differed strikingly (Figs 16, 17). This is evident 

from the experiments in 0.05 M Tris-succinate pH 5.5 + 0.1 M CaCl2, particu­

larly. Whereas cell separation increased strongly from unmodified to 

esterified tissue, this could not be ascribed to enhanced solubilization of 

pectin. It must be assumed that this was a calcium effect again. Esterified 

pectic galacturonan contains very few ionizable carboxylic acid groups and 

this prohibits considerable calcium bonding (Deuel et al., 1950; Anyasz-Weisz 

& Deuel, 1950). Also the effect of buffer disappeared at a high DE at the 

same time (Fig. 16). Saponified potato tissue retained its structural 

integrity when incubated with PL, although the PG activity might have caused 

cell separation. But after homogenization only up to 171 of pectic galac­

turonan was soluble (Fig. 17). 

Galaatanase During maceration by PL of saponified tissues the ratio neutral 

sugars (calculated for galactose) to galacturonan was raised from about 2 

up to 8-11, possibly by 'galactanase' activity in the PL preparation. Knee & 

Friend (1970) described some maceration experiments with an endo galactanase 

and concluded that this enzyme had some influence on tissue coherence (sub­

jective assessment according to Brown (1915)). I isolated 'galactanase' from 
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Fig. 14. Cell separation during 
maceration by LMPL of modified 
potato tissue in comparison 
with unmodified tissue (1971). 
S = saponified tissue 
E = esterified tissue 
U = unmodified tissue 
Curves marked as in Fig. 5. 
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Fig. 15. Solubilization of 
pectic galacturonan during 
maceration by LMPL of modified 
tissue in comparison with un­
modified tissue (1971). Curves 
marked as in Fig. 5; U, S, E 
as in Fig. 14. 
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Fig. 17. Solubilization of 
pectic galacturonan during 
maceration by PL of modified 
tissue in comparison with un­
modified tissue (1971). Curves 
marked as in Fig. 5, 7; U, S, 
E as in Fig. 14. 
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Phytophtora infestans -too, but found no effect of this enzyme on intercellular 

cohesion measured by turbidity. Breakage of tissue disks was not noticed 

either. Solubilization of neutral sugars did not occur. The 'galactanase' 

activity present in the PL preparation, although the endo or exo character is 

obscure, solubilized neutral sugars from saponified tissue probably because 

of polygalacturonase activity on this substrate, but this did not contribute 

to cell separation (Fig. 16). 

4.4 CONCLUSIONS AND SUMMARY 

Reduction of intercellular cohesion or maceration of potato tissue by 

two pectic galacturonan depolymerases was investigated. The tissues of 

extreme specific gravity fractions from a restricted population of potatoes 

were compared. Procedures and methods of analysis have been described. The 

degree of loss of intercellular cohesion or cell separation could be con­

veniently measured by determination of turbidity. The pattern of tissue 

maceration was studied. Maceration experiments were carried out (1) with 

unmodified potato tissue disks, (2) after removal of calcium from cell wall 

and middle lamella and (3) after DE of pectic galacturonan had been changed. 

Attack of unmodified tissue by low-methoxyl pectin lyase and pectin 

lyase revealed identical patterns of solubilization of pectic galacturonan 

(and neutral sugars) and of depolymerization (reducing hexuronic acid and 

unsaturated acid endgroups) for both low (1.060-1.070) and high (1.100-1.110) 

sp. gr. tissue. Differences in primary structure of pectic substances could 

not be observed with the techniques used. Cell separation, however, in the 

high sp. gr. tissue exceeded that in the low sp. gr. samples. It is suggested 

that the greater cell size or smaller surface area of cells of high sp. gr. 

tissue caused this difference. The maceration of potato tissue, established 

already by many investigators, emphasizes again the inevitability of pectic 

galacturonan in cell cohesion. 

The important influence of calcium ions in intercellular cohesion 

emerged from several experimental results. Calcium ions retarded strongly 

cell separation when 100 m of these ions were present during maceration by 

pectin lyase in Tris-succinate buffer. Calcium removal from the tissue and 

partial neutralization of non-esterified pectic galacturonan carboxylic acid 

groups confirmed the retarding effect of calcium on cell separation during 

maceration by low-methoxyl pectin lyase. At the same time it became clear 

that the use of lyases in tissue maceration is somewhat confusing when the 
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role of calcium has to be investigated. This must be ascribed to the enzyme-

-activating influence of calcium ions. Although calcium ions retarded cel l 

separation, even when pec t ic galacturonan was degraded severely, solubilization 

of galacturonan was not l imited upon t issue destruction by chemical means. 

I t was established that pectin lyase preferentially macerates highly 

ester if ied potato t i ssue (971 es ter i f ied) and does not attack saponified 

t issue (41 e s t e r i f i ed ) . These findings are in agreement with the properties 

of pectin lyase described in l i t e r a tu r e . Low-methoxyl pectin lyase, on the 

other hand, did not macerate highly es ter i f ied t issue but surprisingly i t s 

macerating action on saponified t issue was inferior to that on unmodified 

t issue (49-551 e s t e r i f i ed ) . 
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5 Behaviour of pectic substances in the potato cell wall 

and middle lamella during boiling 

5.1 INTRODUCTION 

When potatoes are cooked, a shift from insoluble pectic substances into 

water-soluble pectin has been observed (Freeman & Ritchie, 1940; Bettelheim & 

Sterling, 1955b; Doesburg, 1961). Other authors measured during cooking a 

loss of intercellular cohesion objectively (Section 3.3.2 and 3.3.3). Although 

calcium ions retard cell separation during enzymatic maceration, increase in 

cell separation and in solubilization of pectic galacturonan parallel each 

other mostly (Section 4.3.3). A cause and effect relationship between reduc­

tion of intercellular cohesion and solubilization of pectic substances is 

suggested by these data. 

The natural hydrogen ion concentration or pH of potato tissue ranges 

between 5.5 and 6.5 (Burton, 1966). It is well-known now that chemical degra­

dation of pectic galacturonan in this pH region during heating or boiling is 

due to the B-eliminative (or transeliminative) mechanism (Fig. 18) (Albersheim 

et al., 1960b; Neukom, 1963; Doesburg, 1965). The reaction rate of B-elimi­

native degradation at boiling temperature depends on pH (hydroxyl ion concen­

tration, Fig. 18) (Albersheim, 1959; Doesburg & Grevers, 1960; Schmidt, 1965; 

BeMiller & Kumari, 1972) and the presence of a methylester at C 6 , next to 

which chain cleavage occurs (Albersheim et al., 1960b). Keijbets & Pilnik 

(1974b) found that nature and quantity of ions in the pectin surrounding 

medium influence B-elimination. Both negatively and positively charged ions 

enhance pectin breakdown. 

It is assumed, that during heating of potato tissue above 60°C the 

plasmalemma becomes permeable (Bartolome & Hoff, 1972; Hoff, 1972, 1973) as 

indicated by a sharp increase in electrical conductivity (Personius & Sharp, 

1938b), probably caused by diffusion of intercellular solutes into the cell 

wall. In potato tissue the predominant ions are potassium and citrate (Davis, 

1964; Burton, 1966; Adler, 1971; Davis et al., 1973). These ions, and others, 

might penetrate into the cell wall and middle lamella and effect solubili­

zation of pectic substances. 
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H O H 

Fig. 18. Depolymerization of a partially esterified pectic galacturonan 
chain by chemical (^-elimination according to the ElcB mechanism. 

To study the solubilization of pectic substances and pectic galacturonan 

especially, and the interaction with several potato constituents like ions 

and starch, potato cell walls were isolated. The cell wall/middle lamella 

complex is an ideal model for solubilization studies, because the normal 

potato constituents are removed and can be added when wanted in a controlled 

way. 

5.2 MATERIALS AND METHODS 

5-2.1 Isolation of potato cell walls 

Two kg of potatoes (Bintje, 1971, sp. gr. 1.080-1.090, stored 4.5 months, 

see Section 4.2.1) were peeled, chopped and disintegrated with 2 1 of ethanol 

in an Ultra-turrax homogenizer (Janke & Kunkel, Staufen in Br., FRG). Free 

starch grains were washed out with excessive deionized water over cheese cloth 

(Knee & Friend, 1968). To destroy further unbroken cells the solids were 

homogenized with water at high speed in a Buhler homogenizer with water-

-cooling (50 000 rev/min). The washing and blending procedures were repeated 

"ntil all cells were broken and all starch grains had disappeared (microscope). 
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A few small thick-walled cells with small starch grains remained intact. The 

cell wall preparation was freeze-dried, ground and stored in an exsiccator 

(yield 24.8 g) at room temperature. 

5.2. 2 H cell wall 

Calcium and other cell wall ions were removed by treating 10 g of dry 

potato eel wall with four volumes of 250 ml 0.6 N ethanolic hydrochloric acid; 

the cell wall was washed free from chloride with 701 ethanol, 961 ethanol and 

ether. Finally this preparation, containing free pectic galacturonan carboxylic 

acid groups (H cell wall), was dried in vacuo at room temperature overnight. 

Pectin analysis was carried out with the Cu 2 + ion-exchange method of 

Keijbets & Pilnik (1974a). The H cell wall contained 16.0% of esterified 

galacturonan. The galacturonan was esterified for S&%, which means that 

36.5 pmol of free carboxylic acid groups were present in 100 mg air-dry H 

cell wall. 

5.2.S Saponified H oell Wall 

Partial saponification with orange PE (Section 4.2.4) occurred by incu­

bation of 50 mg of H cell wall with 70 nkat of enzyme activity for 2 and 5 

hours in 0.02 M Tris-pipes, pH 6.1. These samples were boiled then according 

to the standard procedure outlined below. The DE was lowered to 421 (2 h) and 

331 (5 h) respectively. 

A larger bath of PE-saponified cell wall was prepared by incubation of 

1 g H cell wall with 70 nkat orange PE, 25 ml water, 2.5 ml 41 (w/v) NaCl and 

1.5 ml 0.021 (w/v) thiomersal overnight while the pH was maintained at 7.5 

with a pH-stat (Radiometer Automatic Titration Assembly TTT 11b, Radiometer 

A/S, Copenhagen, Denmark). The cell walls were prepared for use by repetition 

of the ethanolic hydrochloric acid washing procedure etc. Pectin analysis 

resulted in a content of 14.71 esterified galacturonan, DE of 1% and 81.8 ymol 

of free carboxylic acid groups per 100 mg. 

Another 1 g H cell wall was saponified in the cold (4°C) for 1 h with 

50 ml 0.1 N NaOH. The saponified cell wall was converted to H cell wall. 

Pectin analysis resulted in a content again of 14.71 esterified galacturonan, 

DE of 1.31 and 82.6 umol per 100 mg. 
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6.2.4 Starah 

Potato s tarch was purchased from British Drug Houses (BDH Chemicals Ltd, 

Poole, England). H s ta rch , containing free phosphoric acid groups, was pre­

pared by a washing procedure with diluted aqueous hydrochloric acid (Winkler, 

1960). I t was dried overnight a t 30°C in a ventilated incubator. Dry matter 

was determined by drying a t 130°C for 2 h (Richter et a l . , 1968). Calcium 

starch was prepared by t i t r a t i ng H starch in aqueous suspension with saturated 

calcium hydroxide to pH 7. Not-ionically bound calcium was washed out with 

deionized water. The primary Ca starch (phosphate groups only half neutralized 

(Winkler, 1960)) was dried again a t 30°C overnight in the ventilated incubator. 

The phosphate content of starch samples was determined by Cu2+ ion-

-exchange as used for pec t ic galacturonan (Keijbets & Pilnik, 1974a). This 

method gave ident ica l r e su l t s as potentiometric t i t r a t ion (H starch) (Winkler, 

1960). I t has the additional advantage of being applicable without previous 

conversion to H s tarch because calcium and other ions bound to starch-

phosphate are replaced by copper ions. This i s possibly due to the high 

select ivi ty of phosphate groups for copper ions (Haug & Smidsrjrid, 1970). 

Calcium content of starches was determined after exchange with hydrogen 

ions (0.5 N HC1) and analysis of the exchanged liquid with a colorimetric 

calcium determination according to Milligan & Lindstrom (1972). One modifi­

cation was applied, because the use of sodium sulphide solution to establish 

an alkaline pH was unsuccessful. A 0.2 M sodium hydroxide, solution was found 

suitable. The sodium hydroxide used here contains only very small amounts of 

calcium (5 pg per g) (Merck AG, Darmstadt, FRG), and such a low-calcium 

alkali was not available to Milligan & Lindstrom (1972). 

The r esu l t s of phosphate and calcium analysis were: BDH starch (unmodi­

fied), 5.04 peq P and 1.2 peq Ca per 100 mg or 241 of phosphate neutralized 

ty calcium. H s tarch contained 5.14 peq P per 100 mg. Ca starch 5.14 peq P 

and 2.68 peq Ca per 100 mg or 521 of phosphate neutralized by calcium. 

s-2-5 Chemicals 

Pipes or piperazine-N,N'-bis-2-ethanesulphonic acid (BDH) is a buffer 

with PKa a t 20°C = 6 .8 . This acid does not bind calcium, magnesium or copper 
i ons (BDH, 1973). Tris-pipes buffer i s a useful buffer in the pH region of 
6~7, which does not in terfere in the study of interaction of metal ions with 

Pectin so lubi l iza t ion . 
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All salts, alkalis and acids used are commercially available, except 

phytic acid which was prepared from sodium phytate ( Sigma Chemical Company, 

St. Louis, USA) by ion-exchange on Amberlite IR-120 (H+) according to 

Kaufman & Kleinberg (1970). 

Stock solutions of 0.3 M Tris-pipes pH 6.1, 1.0105 N citric acid, 

0.9426 N phytic acid, 0.9955 N malic acid were prepared. The acid solutions 

were checked by titration as also the alkali solutions of 0.0994 N potassium 

hydroxide and 0.0402 N calcium hydroxide. Furthermore 1 N KC1, CaCl2 and MgCl2 

solutions and 0.01 N CuS04 and FeSOî  solutions were used. 

5.2.6 Boiling mixtures and boiling procedure 

The boiling mixtures consisted of 50 mg H cell wall or saponified H cell 

wall, which were weighed into a 50 ml conical flask. The ions under investi­

gation were added with 10 ml 0.02 M Tris-pipes buffer pH 6.1, except in a few 

experiments where they were supplemented in up to 0.4 ml volume. During 

preparation of the diluted buffer solution (0.02 M) the required amounts of 

standard salt, acid or alkali were added to the buffer. In the experiments 

with organic anions (citrate, malate, phytate), the non-esterified pectic 

galacturonan carboxylic acid groups were neutralized with the appropriate 

amount of calcium or potassium hydroxide. As excess cations and anions were 

added as alkali and acid, the pH became slightly more than 6.1, so that some 

additional hydrochloric acid was necessary. Thus the diluted buffer concen­

tration alone was unable to maintain the pH exactly, but no higher buffer 

molarity was used to minimize the influence of buffer ions themselves on 

pectin solubilization. The influence of buffer concentration and pH of buffer 

was studied too. Hydrogen ion concentration of Tris-pipes buffer was adjusted 

with 0.02 M Tris. Potato starch was added to the boiling mixtures by weighing 

(air-dry substances). 

The boiling proceeded under refluxing on a hot plate shaker for 30 min. 

In one series of experiments the boiling time was used as parameter. At the 

end of the boiling period, the mixture was cooled down immediately and 

filtered over folded paper (Schleicher & Schull, 595). The filtrate was used 

for analyses. 

The experiments generally were not duplicated, but their reproducibility 

had been found to be satisfactory. For seven repeated experiments, the mean 

% solubilized pectic galacturonan was 461 with s = 1.61 and the mean relative 

A 5 5 2 number was 0.47 with s = 0.026. 

66 



5.2.7 Boiling mixtures which simulate the composition of low and high sp. gr. 
potato tissue 

The composition of these boiling mixtures was derived from analyses of 

potato tissue of Bintje potatoes of 1972 (Section 7.3.3). In the diluted 

Tris-pipes buffer ions were added in the proportions as they occurred in the 

potato tissues relative to cell wall content. The final composition in the 

boiling mixture simulating tissue of low sp. gr. (1.060-1.070) (LS), expressed 

as ratio ion/COO" (= non-esterified carboxylate of galacturonan) was: Ca 2.2; 

Mg 3.0; K 10.1; citrate 10.3; malate 3.0; phytate 0.7; in 0.02 M Tris-pipes 

pH 5.89 (pH was lowered as a result of additions.'). The composition for tissue 

of high sp. gr. (1.100-1.110) (HS) amounted to: Ca 1.8; Mg 4.4; K 11.5; 

citrate 14.0; malate 2.1; phytate 1.0; whereas pH was adjusted with potassium 

hydroxide (K 2.7) to 6.19. Only magnesium was added as salt (chloride), while 

phytate accounted for one fourth of P analysed (Nowotny & Samotus, 1965). 

More phosphate was omitted. The HS experiment was repeated with a buffer 

solution at pH 5.89 (additional K 1.7). 

In a similar experiment H cell wall was replaced by cell walls isolated 

from low and high sp. gr. fractions described in Section 7.2.1. The LS cell 

wall contained 18.9 yeq of non-esterified galacturonan carboxylic acid groups 

and 8.0 yeq of Ca per 50 mg, the HS cell wall 16.7 yeq of non-esterified car­

boxylic acid groups and 5.5 yeq of Ca. The same buffer mixtures just mentioned 

were used, apart from correction for calcium already present in the cell wall. 

Furthermore an experiment was done without any additional calcium ion 

and the HS sample was boiled at pH 5.89 again. 

5.2,8 Pectin analyses after boiling 

In the filtrate, soluble pectic substances were determined as described 

in Section 4.2.9. Unsaturated uronic acid groups were also determined 

(Section 4.2.10), but with a 1 ml sample, appropriate quantities of reagents 

and final measurement of A 5 5 2 in a 5 cm cuvet. For calculation of the relative 
A552 number, the absorbance measured was divided by 5. Determination of 

reducing hexuronic acid groups was omitted, because pipes interfered in this 

analysis. When starch was present in the boiling mixture, it had to be 

removed partly by freezing overnight and thawing, followed by centrifugation 

(Sorvall RC-B, swing-out rotor, 16 000 g). The soluble part was further 

removed enzymically as described in Section 4.2.9 but somewhat greater enzyme 
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ac t iv i t ies were used. Periodate-TBA analysis then was omitted, because the 

glucose-oxidase enzyme contained pect ic lyase a c t iv i ty . 

5.3 RESULTS AND DISCUSSION 

5.3.1 Cations 

K, Ca, Cuy Fe When a l l non-esterified carboxylic acid groups of pect ic 

galacturonan were neutralized by potassium or calcium ions , and the boiling 

time was varied, calcium ions were seen to re tard the so lubi l iza t ion of pectic 

galacturonan (Fig. 19). The difference amounted to 20-251, of t o t a l pect ic 

galacturonan. As boiling proceeded, the rate of galacturonan solubi l izat ion 

slowed down. The pattern of solubi l izat ion was ra ther s imilar for both cations, 

apart from the difference in l evel . 

That ce l l wall pectic galacturonan was indeed depolymerized by 

B-elimination, could be seen from the concurrent increase in periodate-TBA 

absorbances (Fig. 20), although differences in pa t tern were evident (Figs 19, 

20). A periodate-TBA absorbance spectrum recorded for the potassium-neutral­

ized cel l wall sample boiled for 60 min, when 69°s of pect ic galacturonan 

had been solubilized (Fig. 19), showed the presence of unsaturated uronosyl 

residues with an absorbance maximum at 550-552 run (Fig. 21). 

% solubilized 
pectic galacturonan 
80 r 

0 15 30 45 60 120 
boiling t ime (min.) 

Fig. 19. Solubilization of pectic 
galacturonan from potato cell 
walls during boiling with calcium 
and potassium ions (equiv. K+ = 
equiv. Ca2+ = equiv. C00~). 

0 15 30 45 60 120 
boiling t ime (m in ) 

Fig. 20. Periodate-TBA absorbances 
during boiling of potato cell 
walls as in Fig. 19. 
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Fig. 21. Periodate-TBA absorbance 
spectrum of solubilized pectic 
galacturonan (K cell wall, 60 min; 
cf. Fig. 19). 

Preliminary experiments showed that the second, lower absorbance maximum 

at about 517 nm, must be ascribed to the relatively high neutral sugar content 

in the sample (ratio neutral sugars (calculated for galactose)/galacturonan 

= 1.9). In the periodate-TBA spectra reproduced by Rombouts (1972), which 

represent reaction mixtures of purified pectic acid (771 galacturonan) and 

enzyme preparations, a shoulder at about 515 nm was merely found, but the 

neutral sugar content of the pectate preparation was rather low. When the 

neutral sugar content of my samples was higher than about ratio 2 and few 

unsaturated bonds were present, the peak at 517 nm exceeded that at 552 nm. 

The violet-red colour then turned to red-brown. 

In the absence of potassium (and chloride) ions during boiling, the 

same pattern for the solubilization of pectic galacturonan was obtained as 

with potassium ions (Fig. 19). Apparently the addition of this amount of 

potassium ions is without influence. This is congruent with the finding that 

addition of ten to twenty times as much potassium ions (expressed as ratio 

K+/C00-) did not essentially change the solubilization of pectic galacturonan 

(pig- 22). Only at ratio K+/C00_ 50-100, did more galacturonan come into 

solution at a fixed boiling period of 30 min. 

Changing amounts of other cations were studied as well. At a ratio 

cation/C00" < 1 divalent calcium, copper and iron ions inhibited the 

solubilization of pectic galacturonan progressively (Fig. 22). Iron and 

calcium were equally effective, but copper ions exerted a stronger insolu-

bilizing action, which is in agreement with the high affinity (Haug & 

Smidsrtfd, 1970) and precipitation strength (Wunsch, 1952; Tibensky et al., 
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1963) of copper for pectin solutions. 

The results were very interesting when there were more calcium ions than 

non-esterified pectic carboxylate ions (ratio Ca2+/COO" > 1). The higher the 

calcium level became, the more pectic galacturonan was solubilized. From the 

results of Fig. 22 it can be derived that the increase of calcium solubili­

zation exceeded that of potassium. An explanation of this unexpected calcium 

effect will be found in periodate-TBA values and some theoretical consider­

ations . 

The increase of periodate-TBA absorbance (A552) in the presence of 

calcium ions clearly surpassed the increase when potassium ions were added 

(Fig. 23). At a ratio cation/COO" = 10 the A 5 5 2 value for Ca even surpassed 

that for K absolutely. This strong increase was found again in the relative 

periodate-TBA numbers or the absorbance at 552 nm per unit solubilized pectic 

galacturonan (Section 4.2.10). When the ratio cation/COO" rose from 1 to 100, 

this number rose for Ca from 0.47 to 1.21 and for K from 0.41 to 0.76 only. 

An increase in A 5 5 2 might be due to an increase in molar extinction coeffi­

cient e, i.e. an increase in DP (Section 4.2.10), but if A 5 5 2 per unit 

solubilized pectic galacturonan increased concurrently with percentage 

solubilized galacturonan itself, this would mean that more galacturonan had 

been solubilized as larger molecules. This assumption is rather untenable. 

So it can be concluded that increasing amounts of calcium ions (above ratio 

cation/COO" = 2) favoured g-eliminative degradation of pectic galacturonan. 

The enhanced depolymerization of galacturonan ultimately caused the increased 

solubilization of galacturonan, which was unexpected because of the demon­

strated effect of calcium to retard solubilization figs 19 and 22 when ratio 

cation/COO" < 1). 

The ability of calcium ions to keep pectic galacturonan insoluble even 

when progressively depolymerized during boiling, is demonstrated convincingly 

as follows: at a level of 501 solubilized pectic galacturonan (Fig. 22), this 

galacturonan was depolymerized extensively when calcium ions were present 

(Fig. 23) and only for a minor part with potassium ions (TBA-A552 for Ca 

three times that for K ) . Keijbets & Pilnik (1974b) have already presented 

evidence that with calcium ions S-elimination cleavage of pectin molecules 

during boiling occurs easier than with potassium ions. They also established 

that increasing amounts of calcium (and potassium) ions increase g-elimination 

of pectin solutions. 

The resultant of the galacturonan insolubilizing effect of calcium and 

the counteracting stimulation of g-elimination led to a minimum net yield of 
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% solubilized 
pectic galacturonan 
80 r 

K*(citrate3") 

K'(cr) 

10 20 50 100 
ratio cation/COO 

Fig. 22. Effect of cation neutral izat ion of non-esterified 
carboxylic acid groups of pectic galacturonan on i t s 
solubilization during boiling of potato cell walls. 

A 552 
0.3 h 

0.2 \-
K ' l C D 

01lFe"(SOr) 

K* (citrate3" 

0.1 0.2 0.5 1 10 20 50 100 
rat io cation/COO" 

F l g . 23. Periodate-TBA absorbances during boiling of 
potato cell walls as in Fig. 22. 

ratio neutral sugars/galacturonan 

-oCa2*(CI_) 
- K * C C D 

10 20 50 100 
ratio cat ion/COO" 

J-g. 2^> Ratio neutral sugars (calculated for galactose) 
0 galacturonan solubilized during boiling of potato 

c e l l walls as in Fig. 22. 
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soluble galacturonan during boiling of potato cell wall (Fig. 22) at a ratio 

Ca2+/C00" = 1-2. At least all pectic galacturonan carboxylic acid groups must 

be neutralized by calcium ions to obtain insolubility during boiling. This 

finding is another argument against the 'calcium-bridge' theory (Joslyn, 1962) 

and in favour of the 'microcrystallite' hypothesis for gel behaviour (Rees, 

1969, 1972a, b ) , because optimum stability of the pectin structure inside the 

cell wall and middle lamella complex of potato requires more than a few 

calcium galacturonan carboxylate bonds or cross-links. 

Mg Magnesium ions are often thought to aid in the insolubilization of native 

pectic substances ('protopectin') by polyvalent ion bonding (Joslyn, 1962; 

Doesburg, 1965). Their function might be similar to that of calcium and other 

polyvalent cations (iron, copper). However, magnesium ions exerted no in-

solubilizing influence during boiling on the pectic galacturonan of potato 

cell wall compared with potassium ions (Table 10), although they seemed to 

favour 6-elimination. The latter result is derived from relative periodate-TBA 

numbers, which increased for magnesium from 0.33 to 0.56 and only from 0.41 

to 0.46 for potassium when ratio cation/COO" increased from 1 to 10. Stimu­

lation of B-elimination of pectic galacturonan confirmed previous results of 

froieno?^^nfl^nCe
1?f

J
lna?nesiuln 0 n the solubilization of pectic galacturonan 

from potato cell wall during boiling with some anions. 

Ratio 

Mg2+/C00" K+/Mg2+2 

1 
10 

1 
10 

1 
10 

1 
10 

1 
10 

Anion1 

CI 
Cl~ 
Cl" 
Cl" 
citrate 
citrate 
malate 
malate 
phytate 
phytate 

3-
3-
2-
2-
12-
12-

Additional 
C1~/C00~ 

Solubilized Relative A552 
galacturonan (%) 

1.0 
2.4 
1.0 
1.5 
1.4 
4 .8 

54 
52 
55 
58 
59 
71 
57 
66 
58 
65 

1. Equiv. anion as Cl~ = pninNr M„2+ ~ + 
Equiv. anion . 1 c T = Ju v" 1 * / f e ™ K 1% ? r e s e n t ' 
Eauiv. „„,•„„ o„ „ . • ! . _ ; : . 8 __Yhen K l s P r e s en t . Equiv. anion as o r g a n i s a t i o n 

2 . Equiv. Mg2+ = e q u i v . C00~. 
equiv . K+ 

0.33 
0.56 
0.34 
0.36 
0.36 
0.41 
0.39 
0.45 
0.36 
0.42 
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Keijbets & Pi lnik (1974b). The lack of a magnesium insolubilizing effect 

during boil ing i s in agreement with findings of Molloy & Richards (1971b) 

that magnesium was not bound s ignificantly to a grass pectin, consisting of 

871 galacturonan which was 121 es ter i f ied (calculated from methoxyl content). 

Haug & SmidsrjzSd (1970) established a higher se lect ivi ty towards calcium than 

magnesium for pec ta te . This s e lec t iv i ty has been directed towards preferential 

bonding of the larger ions and confirms the view of Joslyn (1962) that the 

smaller ion radius of magnesium compared to calcium i s responsible for 

decreased a f f in i ty . 

Solubilization of neutral sugars Neutral sugars estimated as galactose, one 

of the predominant potato pect ic sugars (Hoff & Castro, 1969) came into solu­

tion upon boil ing of potato ce l l wall simultaneously with galacturonan. Unless 

solubilization of pect ic galacturonan was retarded by Ca2+, Fe2+ or Cu2+ ions, 

the ra t io (solubilized) neutral sugars/galacturonan ranged from 2-3 (Figs 22, 

24). When galacturonan was solubilized more slowly, solubilization of neutral 

sugars was not retarded to the same extent i f at a l l (fig. 24). This result 

suggests that a par t of the neutral sugar complex i s no inherent part of 

pectic substances. However, the potato pectin prepared by boiling at pH 6.1 

for 4 hours from the c e l l wall preparation used here (Section 4.2.5) and 

making up 461 of that ce l l wal l , could not be separated into subfractions on 

DEAE-cellulose columns according to Knee (1970a). Therefore, I think that a l l 

neutral sugars released on boiling are substantial parts of potato ce l l wall 

pectic substances or are linked to these by interconnections as emerge from 

the cel l wall s t ruc tura l investigations of Keegstra et a l . (1973). Barrett & 

Northcote (1965) were able to separate a g-eliminatively degraded apple 

pectinic acid in to two f ract ions: one rich in and the other poor in neutral 

sugars. The former, according to Aspinall (1970a), i s possibly derived from 

rhamnose-rich regions in the rhamnogalacturonan main chain. This is in 

agreement with the recent suggestion of Talmadge e t a l . (1973) that neutral 

sugar side chains wi l l be attached to rhamnose of the main chain. During the 

boiling of potato c e l l wa l l , the divalent cations probably insolubilize 

galacturonan-rich par ts of the pect ic main chain, while rhamnose-rich regions 

bearing neutral sugar side chains because of e-eliminative chain cleavage, 

are less retarded and go into solution. 
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5.3.2 Anions 

The experiments to investigate some anion effects on solubilization of 

cell wall galacturonan, were designed in such a way that as many calcium ions 

were present to account theoretically for the non-esterified pectic galac­

turonan carboxylate ions. Potassium salts of chloride, citrate, phytate and 

malate were added in one to 10-fold excess (ratio anion/COO- = 1-10). The 

results are summarized in Figs 25 and 26. Chloride ions, like potassium ions 

(Fig. 22), were unable to solubilize pectic galacturonan markedly (Fig. 25). 

According to Kohn & Furda (1967), a growing excess of potassium ions over 

calcium decreased the stability of calcium pectinate, possibly by ion 

exchange. I found that removal of 501 of calcium ions (decrease of ratio 

Ca2+/COO_ from 1 to 0.5) resulted in only a small increase in solubilization 

of pectic galacturonan from 30 to 351 (Fig. 22), but the level of 351 was not 

reached at 10-fold chloride (and potassium) excess (Fig. 25). 

Organic anions, on the other hand, effectively enhanced solubilization 

of pectic galacturonan (Fig. 25), probably because of the calcium-binding 

ability of these anions. Organic acids, especially a-hydroxy carboxylic acids, 

chelate metal cations (Martell & Calvin, 1962) and phytic acid precipitates 

calcium ions at a pH above 5.4 (M^llgaard, 1946; Kaufman & Kleinberg, 1971). 

However, at a 10-fold excess of citrate ions (+ K+) over calcium, the 

level of galacturonan solubilization surpassed the limit of 50-551 that was 

expected at removal of all calcium ions from their binding sites to pectic 

substances. The solubilization of galacturonan increased linearly for citrate 

and malate, suggesting a further increase at increasing ratio anion/COO". 

So it could be supposed that the organic anions, besides chelating calcium, 

facilitated B-eliminative degradation of pectic galacturonan as found for 

pectin solutions by Keijbets & Pilnik (1974b) where citrate was most effective. 

I confirmed the role of citrate ions as 6-elimination stimulator in an experi­

ment without calcium ions. The chelating action could not interfere here. 

Citrate ions enhanced solubilization of pectic galacturonan from 50 to 71* at 

an increase of ratio anion/COO" from 0 to 10 (Fig. 22). Concurrently a fairly 

large increase in periodate-TBA absorbance was observed (Fig. 23) whereas the 

relative periodate-TBA number increased from 0.37 to 0.49 (cf. to 0.41-0.46 

for chloride). The patterns of periodate-TBA absorbances for the organic 

anions ressembled those of pectic galacturonan solubilization strongly (Fig. 26 

ct. fig. 25). These results gave no additional indication of the influence of 

anions on B-elimination! 
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Fig . 26. Periodate-TBA 
absorbances during bo i l ing 
of pota to c e l l walls as in 
F ig . 25. 

The pattern of galacturonan solubilization by phytate seems somewhat 
anomalous (Fig. 25). At ratio anion/COO" = S i t s solubilizing ability was 
higher than for ci trate but at ratio = 10 the positions were reversed, 
eyond ratio = 5 the solubilizing ability of phytate did not increase as for 

citrate and malate. This behaviour might be caused by the changing ratio of 
calcium to phytate and the increasing amount of chloride ions necessary to 
maintain pH (Section 5.2.6). These ions are possibly disadvantageous to 
calcium precipitation or binding (Mattson, 1946; M^llgaard, 1946; Crean & 
aisman, 1963; Kaufman & Kleinberg, 1971). According to Crean & Haisman (1963), 

1 e comP°sition of insoluble salts of phytic acid changes between the penta-
calcium and the pentamagnesium phytate. Tricalcium phytate is already soluble 
(Mattson, 1946). At a ratio phytate/COO" = 5 while equiv. Ca2+ = equiv. COO-

no insoluble calcium phytate will be precipitated. However, the solubility of 

cium (and magnesium) phytates decreases with increase in temperature 
(Mattson, 1946; Crean & Haisman, 1963). 

The calcium-binding capacities of organic acids versus pectic galac­
turonan have been studied in the past. Deuel et al . (1957) established that 

e calcium selectivity of a cross-linked pectic acid ion-exchanger is 
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decreased strongly by citrate. Citrate ions were shown to be able to dissolve 

calcium pectinate precipitates. Oxalate anions dissolved Ca pectinate gels 

(Speiser et al., 1947) and caused swelling of dried pectin films containing 

calcium (Doesburg, 1957, 1961). Molloy & Richards (1971a, b) studied the 

binding of calcium and magnesium ions by cell wall fractions and organic 

acids of a grass species by an ion-exchange equilibrium procedure. Citric 

and malic acid were very active in complexing both alkaline earth metals. 

A shift of pH to the alkaline region (5 to 7) increased the complex formation 

for citrate in particular, but not for oxalic acid. The cell wall pectic 

fraction (871 galacturonan, which was 121 esterified) was less active in 

calcium binding than citric and malic acid, but equally effective compared 

with malonic and oxalic acid. When pectic galacturonan is esterified to a 

greater extent than in the potato cell wall used (DE = 581), the selectivity 

for calcium ions in the calcium-potassium ion-exchange will decrease (Kohn & 

Furda, 1967). Compared with the organic anions, the binding activity of 

pectic galacturonan for calcium will be lowered then. The results of the cell 

wall boiling experiments, which are a resultant of complexing calcium and 

influencing 6-elimination reaction rate, nevertheless show that organic 

anions exert calcium binding activity when applied at rather large excess. 

The effect of a decrease in esterification of pectic galacturonan will be 

discussed in Section 5.3.3. 

In some experiments the influence of organic anions and chloride anion 

was investigated, while calcium was replaced by magnesium. The failure to be 

complexed by pectic galacturonan is clearly illustrated in Table 10. As found 

for potassium citrate in Fig. 22, citrate was most effective in solubilization 

of galacturonan, followed by malate and phytate. This difference must be 

partly ascribed to B-elimination (Table 10). 

S.3.3 Decrease of degree of esterification 

Kohn et al. (1968b) suggested that the bond strength of calcium ions 

with the carboxyl groups of pectic substances also depended on the distribution 

of non-esterified groups. The stability of calcium pectinate thus was greater 

for pectin which was partially deesterified by PE than for pectin of the same 

DE deesterified by alkali. Nothing was known, however, of the distribution of 

charged groups in the 581 esterified H cell wall. Upon deesterification of H 

cell wall the selectivity and the binding ability of pectic galacturonan for 

calcium xons, as found by Kohn & Furda (1967), indeed was seen to increase 
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cell walls on solubilization 
of pectic galacturonan during 
boiling (equiv. COO": non-
esterified carboxylic acid 
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(Figs 27, 28). 

Partial saponification by orange PE decreased the quantity of pectic 
galacturonan dissolved by boiling in the presence of calcium, although the 
ratio Ca2+/C00" progressively decreased too (Fig. 27). Surprisingly, at 
complete deesterification by PE the level of solubilization was raised. This 
must b e because of the successive treatments like second ethanolic HC1 washing 
e t c ' which possibly result in pectin solubilization without boiling (before 
PE Un i f i c a t i on already 251 was soluble in cold water). Partial and full 
neutralization of non-esterified carboxylate ions with calcium were again seen 
t 0 i n s° lubi l i z e the pectic galacturonan (Fig. 28). It was known already that 
iow-esterified pectin forms water-insoluble calcium precipitates (Deuel et a l . , 
1950; ^as-Weisz & Deuel, 1950). Pectic galacturonan will be depolymerized, 
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but as long as no very small oligomers arise, calcium containing precipitates 

remain insoluble. The limit DP for insolubility, however, is not known. 

The same results were found when alkali saponified potato cell wall was 

used. The original level of solubilization then was almost 1001, due again to 

treatments and alkali itself in particular. The cell wall pectic acid (1 -31 

esterified) complexed magnesium ions to a smali but definite extent, another 

proof of increased selectivity for alkaline earth metals at a low degree of 

esterification (Fig. 28). 

It was expected that decrease of DE itself would decrease the rate of 

S-elimination (Vollmert, 1950b; Albersheim et al., 1960b). This was not 

confirmed, however, by my results because no decrease of solubilization of 

pectic galacturonan was observed (Fig. 27). Only upon addition of calcium 

ions was a decrease of solubilization noticed. The fact that only moderate 

increases in percentage of solubilized galacturonan at boiling were encoun­

tered upon addition of organic anions, if at all, again points to the 

increased selectivity towards calcium of deesterified cell wall pectic 

galacturonan (Table 11). Citrate ions, for instance, did not increase the 

solubility of pectic galacturonan at partial carboxylate neutralization (441) 

and did increase for only 1 H at complete neutralization (1001) by calcium 

(Table 11). However, 581 esterified potato cell wall lost 301 of galacturonan 

at 1001 calcium-neutralization and another 301 over the same range of 

Table 11. Influence of organic anions on solubilization of pectic galacturonan 
from PE saponified potato cell wall during boiling. 

Ratio Ca2+/C00- Ratio K+/Ca2+ Anion* Additional Solubilized 
CI /COO~ galacturonan (%) 

°-44 0 Cl~ 
0.44 s . 3- ,5 

n 77 5 citrate, 0.8 12 
0,44 10 citrate3" 1 T / 

S-JJ 5 pS""!r !-4 

o l '; Phytate2; 2.3 23 
0.'44 ,n m a l a t e 2- °-7 8 

•^ 10 malate Z 0.9 5 
; c r 3 - 4 

-> citrate 1.9 4 
10 citrate^" 2.4 15 
5 phytate ̂ ~ 2.9 4 

10 phytate1/: 4.7 12 2+ 1. Equiv. anion as CI = equiv. Ca 
Equiv. anion as organic anion = equiv. K . 
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citrate addition ( ra t io K+/Ca2+ 0-10), 

5.3.4 Starch 

Potato s tarch i s characterized by covalently bonded phosphate groups. 

Orthophosphoric acid i s e s t e r i f i ed to carbon 6 in some glucose residues of 

the amylopectin fraction mainly (Nowotny & Samotus, 1965; Richter et a l . , 1968). 

Two acid groups are ionizable and can bind cations. The f i r s t acid group i s 

neutralized a t pH 5-6, the second at 8.5-9 (Winkler, 1960). This means that 

potato starch i s half-neutral ized in normal conditions. According to Richter 

et a l . ( 1968), calcium and magnesium ions form the bulk of potato starch 

phosphate bound ca t ions , although potassium is certainly present. I t i s 

assumed that 251 calcium bonding occurs at most in native potato starch. 

The quant i t ies of s tarch added to potato cel l wall were calculated on 

basis of rough proportions of pect ic galacturonan and starch in low and high 

sp. gr. potatoes (1.060-1.070 and 1.100-1.110). H starch, containing no cations, 

did not change the known level of about 501 pectic galacturonan solubilization 

(Fig. 22) without calcium ions (Fig. 29). Addition of enough calcium to this 

system to neutra l ize a l l non-esterif ied carboxylic acid groups limited the 

solubilization to the previously described 301 level. The level of solubi l i ­

zation which was reached when adding Ca and BDH starch (52 and 241 of 

Phosphate neutral ized, respectively) was lower than 504. Obviously calcium 

ions were t ransported from s tarch phosphate to carboxylic acid groups of 

galacturonan, by which they were stronger complexed. This i s possibly 
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Fig. 29. Influence of starch 
on the solubilization of pectic 
galacturonan during boiling of 
potato cell walls (H starch + 

'-- "-2+ _ on,,,"v. COO Ca2 +: equiv. Ca 2 + = equiv. C00"), 

79 



understandable because only 25.2 ueq P were present compared with 18.2 peq of 

carboxylic acid groups (ratio P/COO" = 1.4) in the system used. In spite of 

the higher calcium level in Ca starch than in BDH starch, more pectic galac-

turonan was solubilized in the presence of the former. This could be due to 

a difference in gelling behaviour. BDH starch formed a rather stiff gel on 

boiling but Ca (and H) starch remained more fluid. 

5.3.5 Buffer concentration and pH 

At increasing Tris-pipes pH 6.1 buffer concentration, the solubilization 

of pectic galacturonan was enhanced (Fig. 30). From 0.02 until 0.1 mol/1 a 

sharp increase was noticed, but from there on a sudden fall in increase became 

evident. The use of a diluted buffer throughout the cell wall boiling experi­

ments indeed minimized the influence of buffer concentration. The increased 

solubilization must be ascribed to increase of 6-eliminative depolymerization, 

which shows the unspecific effect of ionic strength on this mechanism (Fig. 30). 
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Fig. 30. Effect of buffer concentration 
on solubilization of pectic galac­
turonan (o) and periodate-TBA 
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Fig. 31. Effect of buffer pH on 
solubilization of pectic galac­
turonan (o) and periodate-TBA 
absorbances (x) during boiling 
of potato cell walls. 
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I t was known that 6-elimination was increased with higher hydroxy! ion 

concentration, because these ions i n i t i a t e the reaction (Fig. 18). 

Concurrently the so lubi l iza t ion of pect ic galacturonan increased (Fig. 31). 

5.3.6 Boiling of potato cell wall in mixtures simulating the composition of 

low (LS) and high (HS) sp. gr. potato tissue 

Analyses, as presented in Section 7.3.3, revealed that a difference in pH 

existed between potatoes of low and high sp. gr. of a res t r ic ted population. 

This difference in pH deeply influenced the level of solubilized pectic 

galacturonan from potato ce l l wall as seen from Fig. 31. Without further 

additions in the boi l ing medium, 0.3 pH unit caused a difference of about 

10-121 solubi l izat ion of galacturonan (Fig. 31). Addition of potato ions led 

to a much greater difference of 241 (= 68-44) (Table 12) to 281 (= 71-43) -

311 (= 58-27) (Table 13). When H ce l l wall was boiled a t pH 5.89 for both 

the LS and HS samples, the difference of 244 was reduced to 71 (Table 12). 

It is conceivable that here the pH had a rather strong influence. 

The LS and HS ce l l wall i solates contained calcium ions which accounted 

for 42 and 33°s of non-ester i f ied carboxylic acid groups of pectic galacturonan. 

Boiling in 0.02 M Tris-pipes pH 6.1 without extra ions resulted in 

able 12. S o l u b i l i z a t i o n of p e c t i c ga lacturonan in a low (LS) and high (HS) 
^P- gr. po ta to model dur ing b o i l i n g : H c e l l wa l l . 

Sp- 6r. pH So lub i l i zed galacturonan (%) Relat ive A 5 5 2 

J? 5.89 44 0.55 
5! 6.19 68 0.76 
HS 5 .89 51 ° - 6 0 

*able 13. Solubilization of pectic galacturonan in a low (LS) and high (HS) 
_P*^gr. potato model during boiling: LS and HS cell walls. ^ _ _ 

Sp" *r- PH Additional Ca Solubilized galacturonan (%) Relative A 5 5 2 

5s 5-89 + 27 » '° ' 
L S c oo , n 0 . 96 

5.89 
6.19 
5.89 
6.19 
5.89 

+ 
+ 
-
-
-

HS I ' l l ~ 4 3 0 74 

HS t-\i - • • n S:?o 

81 



solubilization of 22 and 271 galacturonan for LS and HS, respectively 

(Section 7.3.5). Boiling with or without additional calcium ions in the 

boiling medium raised the level of solubilization and increased the difference 

partly due to the pH difference (Table 13). Even without this pH difference, 

a rather important difference in solubilization remained. Remarkably, in 

Table 13 the relative periodate-TBA numbers were lower the more pectic 

galacturonan was solubilized. This effect probably was a result of the 

dependence of periodate-TBA e on the degree of polymerization, indicating a 

lower starting DP for the HS sample than for the LS one (see also Section 7.3.5). 

5.4 CONCLUSIONS AND SUMMARY 

Isolated potato cell walls, washed free of ions, were boiled at pH 6.1 

in Tris-pipes buffer with anions, cations and starch. Boiling time, degree 

of esterification of pectic galacturonan, pH and buffer concentration were 

varied. It was shown by specific periodate-thiobarbituric acid staining that 

pectic galacturonan was degraded 8-eliminatively. 

Calcium ions and divalent iron and copper as well, slowed down the 

solubilization of pectic galacturonan at boiling. Copper ions exerted a 

strong affinity for pectic galacturonan in particular. Evidence was obtained 

that calcium ions, when present in excess proportional to non-esterified 

pectic galacturonan carboxylate ions (ratio Ca2+/COO' > 2) no longer retarded 

solubilization, but on the contrary enhanced it. It could be demonstrated 

that increased 0-eliminative breakdown of galacturonan is responsible. 

Potassium ions at the same time did not retard galacturonan solubilization, 

but facilitated it by the same mechanism. Increasing amounts of buffer ions 

also enhanced the solubilization of galacturonan, convincingly indicating the 

unspecific nature of this effect. It must be emphasized, however, that the 

calcium ions had a pronounced galacturonan insolubilizing influence, even 

when galacturonan was progressively degraded. 

Optimum insolubility during boiling was encountered at Ca2+/C00" ratio 

1-2. This requirement of complete neutralization of non-esterified carboxylic 

acid groups of galacturonan is an argument in favour of the existence of 

microcrystalline junction zones in cell wall and middle lamella gels, whose 

strength partly depends on the degree of completeness of neutralization of 

mutual repulsive forces in the pectic structure. 

Citrate, phytate and malate anions when present in increasing amounts, 

progressively solubilized pectic galacturonan, completely neutralized by 
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calcium, from potato c e l l wal l . Ci t rate was most effective. I t appeared that 

both withdrawal of calcium ions and acceleration of B-elimination contributed. 

Decrease of e s t e r i f i ca t ion of pect ic galacturonan shifted the calcium 

binding ab i l i ty in t he 'd i rec t ion of pect ic galacturonan compared with the 

organic anions. Magnesium ions made completely deesterified galacturonan 

slightly insoluble, but were far less effective than calcium ions. Magnesium 

was not able to s t imulate galacturonan insolubil i ty when esterified for 581, 

as calcium did. I t s role in i nso lubi l i ty of native plant t issue pectin 

Cprotopectin') i s r a ther doubtful. 

Potato s ta rch , containing bound phosphate groups, seems to be of minor 

importance in calcium binding compared with ce l l wall galacturonan when 

present in r e la t ive proportions as in potato t i ssue. Calcium ions were shown 

to be easily withdrawn from potato s tarch phosphate and to aid in insolu-

bilization of pec t ic galacturonan. 

The experiments carr ied out in t h i s chapter indicate the importance of 

potato const i tuents , which are present inside the cel l wall boundary and in 

the cytoplasm, during so lubi l iza t ion of pectic galacturonan from the cell 

wall and middle lamella. Some experiments, therefore, were conducted to 

simulate the composition of low and high sp. gr. t issue during boiling and 

to confirm some of the f indings. The importance of pH and differences in 

concentrations of anions and ca t ions , which may affect solubilization of 

pectic galacturonan and hence i n te rce l lu la r cohesion, were affirmed. Cell 

wall calcium ions seemed to be rather important again in fixing the pectin 

structure. 

83 



6 Influence of chemical constituents on intercellular 

cohesion of potato tissue in a model cooking study 

6.1 INTRODUCTION 

Numerous attempts have been made to establish relationships between 

intercellular cohesion of the cooked potato and chemical composition of the 

raw material (see Section 3.4). Use of inadequate methods of measurement of 

intercellular cohesion, problems in analysis of pectic substances and 

complexity of the processes during cooking, which determine the texture 

appearance after cooking, have probably prevented the establishment of simple 

relationships between chemical factors and texture parameters. For this 

reason I carried out model experiments to obtain information about the 

influence of chemical factors on intercellular cohesion. Addition and removal 

trials were the subject of investigations by Personius & Sharp (1939a), 

Linehan & Hughes (1969c) and the group of Zaehringer and Le Tourneau (Davis & 

Le Tourneau, 1967; Zaehringer & Cunningham, 1971; Davis et al., 1973 etc.). 

During these investigations, however, solubilization of pectic substances 

was not accounted for. 

The model cooking study, described below, was carried out with dead, 

leached potato tissue of the two extreme sp. gr. fractions also used for 

maceration studies. Upon addition of ions and change of degree of esterifi-

cation of pectic galacturonan, cell separation as an objective measure of 

change in intercellular cohesion was studied together with solubilization and 

degradation of pectic substances. 

6.2 MATERIALS AND METHODS 

6.2.1 General 

For source and preparation of potato tissue, modification of tissue 

disks, the turbidity cell separation test and chemical analyses see Section 

4.2. Potassium and calcium analyses of tissue disks are described in Section 

7.2.2. Periodate-TBA reaction proceeded starting with 1 ml of sample 



(Section 5.2.8). The r e su l t s of the turbidity ce l l separation (TCS) t es t 

expressed in absorbances at 475 nm were converted into percentages of cell 

separation with a standard curve. These standard curves were established 

anew for cooked t i s sue c e l l s . The number of broken tissue disks were counted 

as well. 

6.2.2 Boiling procedure 

Potato t i ssue disks were taken from storage in 701 ethanol at 4°C and 

prepared for maceration (see Section 4 .2 .7) . Twenty disks were boiled in 20 ml 

0.02 M Tris-pipes pH 6.5 buffer in a conical flask of 100 ml. Calcium and 

potassium ions (chloride as anion) were added in a small volume of less than 

1 ml, but always to e thanolic hydrochloric acid washed t issue disks, apart 

from one experiment with calcium ions and 1972 t issue. Citrate ions were 

included in an experiment with 1972 t issue (potassium as cation) with 

untreated t issue disks too. In t h i s c i t r a t e s e r ies , c i t ra te ions were replaced 

by chloride a t the highest level applied. Boiling proceeded in duplicate with 

refluxing for the time chosen on a hot p la te . After boiling, the conical 

flasks were t ransferred to the Kottermann waterbath-shaker for 15 min at 

300 rev/min. In t h i s way loosened ce l l s were separated from the tissue disks 

as in the maceration experiments. Turbidity was then assessed. 

The boiled t i s sues were prepared for chemical analyses by homogenization 

m the Biihler-apparatus. The sol ids were centrifuged off at 16 000 g (Sorvall 
Rc-B, swing-out r o t o r ) . The supernatant was decanted and made up to 50 ml. 

Solubilized s tarch was removed in a two-step procedure. At f i r s t the super­

natant was l iberated from starch par t ly by freezing-thawing (Section 5.2.8) 

and the other par t was removed enzymically (described in Section 4.2.9). 
The starch-free boi l ing ex t rac t was analysed for pectic galacturonan and 

neutral sugars (Section 4 .2 .9 ) . Determinations of unsaturated uronosyl 

residues and of methanol for DE of galacturonan were carried out after only 

Partial starch removal by freezing-thawing (Sections 4.2.10 and 4.2.13). The 

Periodate-TBA analysis proceeded with 1 ml sample (Section 5.2.8). For percen­

tage C en separation a mean of 22% was found with s = 2.6%, while a mean of 
13 b r o k e n disks was counted with s = 2 .0. The mean percentage solubilized 
p e c t i c galacturonan was 541 with s = 2.0%. The mean relative periodate-TBA 
nu^ber Was 0.19, s = 0.020. 
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6.3 RESULTS AND DISCUSSION 

6.3.1 Some aharaaterist-ias of the tissue (Ca, K, TCS test) 

The tissue used in the model cooking study differs considerably from 

living, untreated potato tuber material. The native pectinesterase and other 

endogeneous enzymes are killed (Section 4.2.2) leaving a leached, dead tissue. 

The plasmalemma will be freely permeable for many potato constituents, but 

starch granules are not gelatinized and the cell wall and middle lamella 

structure is presumed to be essentially unchanged. The ethanol inactivation 

treatment promoted the leaching of ions in particular as demonstrated for the 

1972 tissue in Table 14. Additional potassium and calcium ions were lost upon 

ethanolic HC1 washings (tissue from 1972 and 1971). This treatment is supposed 

to remove calcium and other ions from the cell wall and middle lamella. The 

removal of calcium ions by the washings is facilitated more than that of 

potassium ions. Davis (1964) and Davis et al. (1973) established that compared 

with potassium and total solids, calcium ions were retarded on leaching in 

aqueous medium. 

The ethanol-soluble ions in the tissue might contribute to reduction of 

intercellular cohesion during cooking. Cunningham et al. (1967) found that 

an ethanolic extract of potato tissue indeed reduced intercellular cohesion. 

The effect of ethanolic washing is conveniently shown as follows. Two hours 

w a s h i n g ' J ^ ° V ^ ° f P Q t f s i u m and calcium from potato tissue disks by 

relative to ethanoi-iasLd disks 0 9 7 2 ) " " " " p a r e n t h e s e s loss calculated 

SP. gr. 

1.060-1 

1.100-1 

1.060-1 

1.100-1 

. 

.070 

.110 

.070 

.110 

Year 

1971 

1971 

1972 

1972 

Treatment 

ethanol 
eth.-HCl 
ethanol 
eth.-HCl 
fresh 
ethanol 
eth.-HCl 
fresh 
ethanol 
eth.-HCl 

mg/100 

K 

12.26 
0.18 

17.13 
0.93 

33.95 
9.92 
2.09 

37.10 
15.69 
1.21 

disks 

Ca 

0.48 
0.14 
0.31 
0.16 
0.94 
0.42 
0.20 
0.55 
0.42 
0.17 

% Loss 

K 

99 

95 

71 
94(79) 

58 
97(92) 

Ca 

72 

45 

55 
78(52) 

24 
68(58) 
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Fig. 32. Standard curves for the 
turbidity cell separation test of 
cooked potato tissue (1971) of sp. 
gr. 1.060-1.070 (•) and sp. gr. 
1.100-1.110 (o). 

of boiling of 1971 disks, were not sufficient to reach 501 cell separation 

for either of the sp. gr. fractions, whereas 501 of the living potato tissue 

of the same origin was separated into cells after 6-19 min (RWCS test). 

Standard curves for turbidity measurement of cooked potato tissue are 

given for the 1971 tissue (Fig. 32). Compared to the standard curves for 

enzymic maceration (Fig. 5) the position of curves for the sp. gr. fractions 

is reversed. This may be because the higher the specific gravity or starch 

content the greater the uptake of water at starch swelling and gelatinization 

during cooking of these thin tissue disks. 

The TCS test possessed one disadvantage for measurement of cell separa­

tion of cooked potato tissue. Because some gelatinized starch molecules were 

dissolved, boiling liquids became turbid before breakage and disintegration 

of tissue disks and release of cells. This turbidity was not really related 

to cell separation or reduction of intercellular cohesion. A correction in 

these cases was applied by subtraction of the lowest measured turbidity (Aw75) 

of a sample showing no sign of disintegration (number of broken cells = 0-1) 
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within the experimental series from other absorbances of similar samples. 

6.3.2 Mechanism of pectin degradation during boiling 

The periodate-TBA test of the boiling liquid at first resulted in a 

brownish-red instead of the well-known violet-red colour. The absorbance 

spectrum clearly showed a large neutral sugar peak at 515-520 nm (Fig. 33) 

(see also Section 5.3.1, Fig. 21). After starch removal by free zing-thawing 

and DEAE-cellulose gradient elution according to Knee (1970a), the periodate-

-TBA spectrum was recorded again showing convincingly the reduction of the 

neutral sugar peak to a shoulder (Fig. 33). Attempts to demonstrate the 

unsaturated uronosyl bond in the ultraviolet (232-240 nm) were less successful, 

but here problems arose of interferences and of choice of a suitable blank 

to measure against. 

The periodate-TBA absorbance spectrum of boiled potato tissue liquid 

(Fig. 33) strongly indicates that during cooking native pectic galacturonan 

was degraded along the line of the B-elimination. Van Buren (1970) pointed 

out that the extent to which B-elimination takes place in foods during 

processing is completely unexplored. This report is the first about 

B-elimination in heated plant tissue, shown by the periodate-TBA spectrum 

(Fig. 33). Some authors felt that B-elimination must play a role in degra­

dation of pectin when plant tissues are heated in a pH range above 4-4.5. 

Both Doesburg (1961) and Goto et al. (1969) compared the behaviour of dried-

pectin films or pectin solutions on boiling with that of plant tissues 

(firmness) and concluded without direct evidence that degradation of pectic 

substances in the plant tissues should be ascribed to B-elimination. 

0.05 
__ F i g . 33 . Periodate-TBA absorbance 
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Although in my experiments B-elimination was found during cooking in a buffer, 

one can readily assume tha t the same mechanism will function when l iving, 

unchanged potato t i s sue i s cooked with i t s pH of 5.5-6.5 (Burton, 1966) 

(Section 7 .3 .3) . The conclusion seems warranted that pectin degradation in 

the pH region above 4-4.5 during heating of solutions, t issues or even by 

vibration milling in the a i r -dry s t a te (Dongowski & Bock, 1973) occurs by 

8-elimination. 

6.3.3 Boiling of potato tissue disks without additions 

Continued boil ing of potato t issue of two sp. gr. fractions resulted in 

patterns which are s imilar for ce l l separation (Fig. 34) and almost identical 

for solubilization of pec t ic galacturonan (Fig. 35). After 60 min of boiling, 

maximum levels for both parameters were reached. A causal relationship between 

cell separation and so lubi l iza t ion of pectic galacturonan is suggested as for 

enzymic maceration (Section 4 .3 .3 ) . I t i s evident as well that low sp. gr. 

(1.060-1.070) re tained a l a rger in terce l lu lar cohesion of the cooked t issue 

than high sp. gr . (1.100-1.110) (Fig. 34). The contribution of cell size to 

differences in ce l l separation has been outlined before (Section 4.3.3). 

Above pH 5.5 chemical g-elimination i s generally accompanied by 

deesterification (Albersheim e t a l . , 1960b; Doesburg & Grevers, 1960; 

''• cell separation 
40 

60 120 
boiling t ime (min) 

cook'34" C e l 1 s e P a r a t i o n during 
King of potato t i ssue (1971). 

Lurves marked as in Fig. 32. 

•/« solubilized 
pectic galacturonan 

15 30 60 120 
boiling time (min) 

Fig. 35. Solubilization of pectic 
galacturonan during cooking of 
potato tissue (1971). Curves 
marked as in Fig. 32. 
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ratio neutral sugars/galacturonan 

2r 

2 15 30 60 120 
boiling time(min) 

Fig. 36. Ratio neutral sugars (calculated 
for galactose) to galacturonan during 
cooking of potato tissue. Curve marked 
as in Fig. 32. 

Slavickova, 1961; BeMiller & Kumari, 1972). I also found some deesterification 

at pH 6.5, but this was of minor importance after two hours of boiling. The 

lowest DE measured was 424. During even shorter boiling periods deesterifi­

cation should be neglected. 

The ratio neutral sugars/galacturonan, both solubilized during boiling, 

increased with boiling time (Fig. 36). At first less neutral sugars (calcu­

lated for galactose) than pectic galacturonan were lost on homogenization of 

the cooked disks, but finally a surplus of neutral sugars was observed. 

Knee (1973) established that increasingly insoluble pectic fractions of apple 

tissues contained increasing proportions of neutral sugars. My finding is 

consistent with that of Knee. 

6.3.4 Addition of cations 

When potato tissue disks were washed with ethanolic HC1, nearly all 

residual potassium and calcium were removed (Table 14). The intercellular 

cohesion of cooked, ethanolic HC1 treated disks was significantly decreased, 

although solubilization of pectic galacturonan was not essentially changed 

Table 15. Effect of ethanolic HC1 washing on cooking of potato tissue. 
Boiling time 30 min (1971 tissue). 

Sp. gr. Eth.-HCl Cell Separation (%) Solubilized galacturonan (%) 

1.060-1.070 
+ 

1.100-1.110 

18 
33 
28 
42 

55 
61 
59 
59 
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(Table 15). This effect must be due to removal of calcium from cell wall and 

middle lamella, because simple leaching out should increase intercellular 

cohesion. 

To the ethanolic HC1 pretreated t issue disks, cations (anion chloride) 

in increasing proportions (cation/COO") were added. Potassium ions did not 

significantly affect ce l l separation or solubilization of pectic galacturonan 

(Table 16), apart from a slow increase in both parameters with increasing 

ratio {% c e l l separation a t K+/COO" 3.1 and 6.2, sp. gr. 1.100-1.110, were 

unexplainably low!). Breakdown of pect ic galacturonan seemed fair ly equal too 

and increased slowly as well (Table 16). The differences between the extreme 

sp. gr. fractions had been disappeared to a great extent. The relative 

periodate-TBA values remained a t a low level , compared to enzymatic degra- . 

dation in maceration of potato t i ssue (cf Table 7). The absence of an obvious 

potassium effect seems congruent with i t s role as established during boiling 

of the potato c e l l walls (Section 5 .3 .1) . 

Calcium ions largely inhibi ted ce l l separation in the low sp. gr. t i ssue, 

even in the presence of excess potassium ions, and decreased cell separation 

appreciably in the high sp. g r . t i ssue (Table 16). This intercellular cohesion 

promoting effect of calcium i s very well-known (Section 3.4.3). The most 

remarkable finding, however, was that calcium ions reduced cell separation 

although solubi l izat ion of pec t ic galacturonan and degradation were scarcely 

affected. This contradictory r e su l t can be explained if i t i s kept in mind 

that solubilization was determined after t issue destruction by mechanical 

homogenization. The same problem was encountered in t issue maceration by 

Pectin lyase in the calcium containing Tris-succinate buffer (Section 4 .3.3). 
B°th with or without calcium ions , less pectic galacturonan was measured as 
being soluble before than a f te r homogenization of t issue disks (Table 17). 

^en (almost) a l l t i s sue disks were broken during cooking (Table 17; sp. gr. 

^OO-I.IIO) and when no calcium was added, the differences in solubilization 
Were t a l l e s t . I t i s very remarkable that t issue coherence of sp. gr. 
1-060-1.070 was maintained in the presence of calcium although almost 501 of 

Pec tic galacturonan was soluble without t issue destruction (Table 17). The 

tissue disks, however, were very fragile after cooking. 

^ was shown in the previous Chapter (Section 5.3.1) that calcium ions 
ret*rded the so lubi l iza t ion of pec t ic galacturonan from potato cell walls, 
b u t also stimulated 6-eliminative depolymerization in accordance with Keijbets 

* P i lnik (1974b). During boi l ing of potato t issue with calcium ions, pectic 

8alacturonan was strongly degraded so that i t could be solubilized on 
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Table 16. Effect of cations on cooking of potato tissue (1971, ethanolic HC1 
washed tissue). Boiling time 30 min. 

Sp. gr. Ratio 

Ca2+/C00' 

1.060-1.070 0 
0.6 
1.2 
3.1 
6.2 

1.100-1.110 0 
0.6 
1.2 
3.1 
6.2 

1. Equiv. Ca 2 + = 0 . 6 

" K+/C00" 

0.6 
1.2 
3.1 
6.2 

0.6 
1.2 
3.1 
6.2 

K+/Ca2 + 1 

1 
2 
5 

10 

1 
2 
5 

10 

equiv. C00~ 

Cell 

sepa­
ration 
(%) 

33 
2 
4 
4 
5 

36 
38 
37 
41 

1 
0 
4 

13 

42 
22 
21 
24 
21 
40 
42 
32 
30 
19 
21 
24 
20 

Number 
of 
broken 
disks 

19 
1 
1 
2 
2 

20 
20 
19 
19 

1 
0 
2 
5 

20 
17 
15 
16 
16 
20 
20 
20 
20 
12 
14 
17 
18 

Solu-
bilized 
galac-
turonan 
(%) 

61 
68 
64 
71 
73 
59 
59 
61 
64 
59 
61 
61 
64 

59 
55 
59 
66 
68 
56 
57 
58 
62 
51 
51 
54 
54 

Re la-
t ivc 
A552 

0.12 
0.12 
0.10 
0.12 
0.15 
0.14 
0.13 
0.14 
0.16 
0.12 

0.17 
0.17 

0.17 
0.13 
0.13 
0.15 
0.17 
0.15 
0.17 
0.16 
0.20 
0.14 
0.15 
0.17 
0.17 

Ratio 
neutral 
sugars/ 
galac-
turonan 

1.3 
1.4 
1.5 
1.7 
1.8 
1.8 
1.9 
1.7 
1.8 
1.8 
1.9 
2.0 
2.0 

2.3 
1.8 
1.8 
2.1 
2.2 
2.4 
2.5 
2.6 
2.7 
2.0 
2.2 
2.2 
2.3 

Table 17. Influence of mechanical homogenization (HO) of tissue on solubiliz*" 
tion of pectic galacturonan from cooked potato tissue (1972). Boiling time 
45 min. Ratio Ca2+/C00~ = 0.5. 

Sp 

1. 

1. 

• gr. 

060-1, 

100-1 

.070 

.110 

Ca 2 + 

-
+ • 

-
+ 

Cell 
separation 
(%) 

19 
0 

34 
26 

Number of 
broken 
disks 

13 
0 

20 
19 

Solubilized 
galacturonan 
(%) 

-HO 

56 
49 
73 
67 

+H0 

66 
65 
77 
75 

Ratio 
neutral sugars/ 

galacturonan 

-HO 

0.7 
0.7 
1.0 
1.0 

+H0 

1.6 
1.7 
1.3 
1.2 
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homogenization (Table 16). However, calcium ions aided in stabilizing the 

pectin gel s t ructure inside the c e l l wall and middle lamella. So the pectin 

gel apparently retained i t s a b i l i t y to function as cohesive material in the 

intercellular layer even when the pect ic substances were depolymerized and 

solubilized p a r t i a l l y . 

In the ce l l wall boi l ing experiments of Chapter 5, addition of calcium 

and divalent iron and copper ions caused an increase of the rat io neutral 

sugars/galacturonan of the solubil ized pect ic substances, at least when the 

solubilization of pec t ic galacturonan was slowed down (Fig. 24). During 

boiling of potato t i s sue d i sks , on the contrary, a s l ight decrease of this 

ratio was observed when calcium was added (Table 16) compared with potassium, 

or this effect was even absent (Table 17). Determination of the rat io neutral 

sugars/galacturonan a f t e r t i s sue destruction also explains this result . 

Without t issue destruction by mechanical homogenization the rat io was seen to 

be lower than with homogenization (Table 17). The solubilization of neutral 

sugars then was retarded in accordance with the findings of Knee (1973). 

S.3.5 Addition of anions 

x Only a few r e su l t s are avai lable . Citrate and chloride anions (potassium 

as cation) were added to tissue disks, which were not pretreated with 

Table 18. Influence of anions on cooking of potato tissue (1972). Boiling 
tlffle 45 min. 

SP- gr. R a t i o Cell Number Solu- Relative 
. Sepa- of bilized A 5 5 2 

3-, - -, - ration broken galac-
citrate /COO CI /COO ,»•. disks turonan 

K (%) 

'•060-1.070 0 17 13 65 0.14 
0.3 16 8 
1.7 20 13 
3.4 11 11 5? 

68 0.16 
67 0.14 

0.15 
74 0.20 
66 0-'6 6.7 16 15 

6.7 14 . 9 
'•'OO-l.no o 27 • 20 68 0.18 

20 72 0.20 
°-5 " to 77 0.24 

5 2 1 M 0 
'0-1 26 20 85 

10.1 25 20 78 
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ethanolic HC1. Citrate ions did not change cell separation, but the results 

were rather variable (Table 18). It can be concluded that citrate addition in 

increasing amounts favoured solubilization of pectic galacturonan, and con­

currently the rate of B-elimination. At ratio anion/COO" 6.7 or 10.1, for low 

and high sp. gr. respectively, chloride ions were less active in solubilization 

and degradation of pectic galacturonan (Table 18). This result is in full 

agreement with the effect of citrate ions on depolymerization of pectic galac­

turonan as observed by Keijbets & Pilnik (1974b) for pectin solutions and in 

Section 5.3.2 for boiling of potato cell wall. One may speculate why no 

citrate effect on intercellular cohesion was present, especially for sp. gr. 

1.060-1.070. Davis & Le Tourneau (1967) and Zaehringer & Cunningham (1971), 

on the other hand, established a pronounced citrate effect in reduction of 

intercellular cohesion of previously soaked potato tissue. 

6.3.6 Esterified tissue 

Esterification of potato tissue resulted in rather fragile tissue disks 

(Section 4.3.4). Nevertheless the level of cell separation was lower than 

with unmodified and ethanolic HC1 pretreated tissue (Figs 37, 38). Whether 

the esterification conditions themselves affect the ease of cell separation 

is not clear. The solubilization of pectic galacturonan seemed facilitated as 

would be expected because of the highly esterified nature of galacturonan 

Table 19. Cooking of highly esterified potato tissue with or without 
additional cations. Boiling time 30 min (1971). 

Sp. gr. Addition 

1.060-1.070 unboiled blank1 

no 

Ca2+2 

1.100-1.110 unboiled blank1 

no 
K+ 
no 

.2+2 Ca 

Cell 
separation 
(%) 

2 
13 
16 
15 

3 
23 
28 
23 

Number 
broken 

0 
11 
15 
14 

0 
20 
20 
20 

of 
disks 

Solubilized 
galacturonan 
(%) 

15 
86 
85 
82 

16 
87 
92 
83 

Relative 
A552 

0.16 
0.26 
0.30 
0.29 

0.32 
0.28 
0.33 

1. Averaged blank of no addition, Ca and K+. 
2. Equiv. Ca = equiv. K+ = 0.6 equiv. COO" before esterification. 
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Fig. 37. Effect of degree of 
esterification of potato 
tissue galacturonan, removal 
of endogeneous ions and addi­
tion of cations on cell sepa­
ration and solubilization of 
pectic galacturonan of cooked 
potato tissue (1971, sp. gr. 
1.060-1.070). U = unmodified; 
E = esterified; S = saponified; 
H = ethanolic HC1 washed; Ca, 
K = cations added to H disks; 
US = unsaponified, ethanolic 
HC1 washed. Boiling time U 
and E = 30 min, S = 120 min. 

(Section 4.2.3, over 901 DE) (Table 19) (Figs 37, 38) and the concurrent 

danced liability to B-elimination (Albersheim et al., 1960b). This is 

reflected in fairly high periodate-TBA numbers (Table 19) (compare with 
T*le 16), although B-elimination due to diazomethane esterification treat-

ment 
"j, aiuiuugn ts-eiimination oue to uiaiuiucujouv ~„ 

can not be excluded completely (see unbloiled blank sp. gr. 1.060-1.070, 

°/.ce 
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80 

60 
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20 
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'/ vt^r-

%~~~~ 1 — 
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i 
E 

esterificat 

P 

_ 
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20 

on 

Fig. 38. Influence of degree 
of esterification of potato 
tissue galacturonan on cell 
separation ( ) and solu­
bilization of pectic galac­
turonan ( ) of potato 
tissue (1971) cooked for 
30 min. E, U, S see Fig. 37; 
curves marked as in Fig. 32. 
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Table 19). 
Although a few carboxyl groups of pec t ic galacturonan wi l l have remained 

non-esterified and calcium ions were removed p r ior to e s t e r i f i ca t ion , the 

cel l separation level was d i s t inc t ly higher for the high sp. gr . t i s sue . The 

influence of ce l l s ize emerges here again. Calcium ions l os t t he i r capacity 

to increase in te rce l lu la r cohesion of the cooked potato t i s sue . The lack of 

enough non-esterified galacturonan carboxylate ions prohibited interaction 

with calcium ions, but , possibly due to covalent bonding of the pectin complex, 

the pectin ce l l wall gel in the e s te r i f ied s t a t e (Rees, 1972b) retained i t s 

cementing ab i l i ty . 

6.3.7 Saponified tissue 

Comparison of the resul ts of continued boiling of saponified t issue 

(Table 20, Fig. 39) with the same of unsaponified t i s sue (Figs 34, 35) (blank 

Table 20) revealed that ce l l separation and so lubi l iza t ion of pec t ic galac­

turonan were reduced af ter saponification by orange PE. This effect of 

retarded solubil ization could not be detected during the ce l l wall boiling 

experiments (Fig. 27; Section 5.3.3) unless calcium ions were added. However, 

when potato t issue i s cooked, the calcium ions of the c e l l wall and middle 

lamella as well as the retarded reaction ra te of B-elimination (Albersheim et 

a l . , 1960b) play a role in th i s reduction phenomenon. This i s conveniently 

demonstrated by data in Tables 20 and 21 of t i ssue samples boiled for 120 min. 

Removal of calcium from ce l l wall and middle lamella by ethanolic HC1 washing 

resulted in increased ce l l separation and galacturonan so lubi l iza t ion of 

saponified, cooked t i s sue . Once saponification of e thanolic HC1 pretreated 

•/.cell separation 

100 

%solubilized 
pectic galacturonan 

50 

60 120" 
boiling time (min) 

Fig. 39. Cell separation 
( ) and solubilization 
of pectic galacturonan (~~~' 
during cooking of saponified 
potato tissue (1971). Curves 
marked as in Fig. 32. 
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Table 20. Cooking of PE saponified potato tissue (1971) for different lengths 
of time. 

Sp. gr. Boiling Cell Number Solubilized Relative Ratio 
time separation of galacturonan A552 neutral sugars/ 
(min) (%) broken (%) galacturonan 

disks 

3.0 
2.0 

0.18 1.6 
1.5 

3.3 
1.8 

0.23 2.0 
2.2 

1.060-1 

1.100-1 

.070 

.110 

30 
60 
60CBL)1 

120 

30 
60 
eoCBL)1 

120 

3 
2 

26 
3 

2 
18 
40 
31 

0 
0 

13 
1 

0 
4 

20 
18 

8 
14 
73 
36 

8 
16 
64 
41 

1. Unsaponified blank, incubated overnight at 30°C as saponified samples. 

Table 21. Influence of cations on cooking of PE saponified potato tissue 
('971; ethanolic HC1 washed). Boiling time 120 min. _ ^ _ _ _ 

SP. gr. Addition 

•060-1.070 BL1 

no 

Ca 
•'00-1.110 BL1 

no 
K+2 
Ca 2+2 

Ce l l 
separation 
(%) 

46 
35 
39 

1 

67 
45 
51 

1 

See 
Equiv. 2 DJ,n° t e L o f t a b l e 20 

Number 
of 
broken 
disks 

20 
20 
20 

0 

20 
20 
20 

0 

Solubilized Relative Ratio 
galacturonan A552 neutral sugars/ 
%.s galacturonan 

79 
67 
62 
22 

74 
66 
54 
12 

0.21 
0.08 
0.12 
0.21 

0.31 
0.15 
0.20 
0.71 

1.8 
1.5 
1.6 
3.0 

2.5 
1.8 
2.3 
6.0 

Ca2+ = equiv. K ; = 0.6 equiv. COO" before saponification. 

t i s *« was omitted, an addit ional increase in both parameters was found. 
More°ver, the r e la t ive periodate-TBA number was considerably increased 
(Table ?n T . • , c +u0 rate of e-elimination was 

mi* 21). i t l s e v i d e n t t h a t s i 0 W ing down of the rate or P 
sponsible for the l a t t e r e f fec t . . cUrDressed 

^-addit ion of calcium ions to ethanolic HC1 pretreated t i s s u e ^ ^ 

a!1 S 6 p a r a t i ° n completely (Table 21) in t issues of both sp. gr. con 
the N a t i o n without saponification (Table 16). In agreement with 
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of cell wall boiling trials after saponification (Figs 27, 28) pectic galac-

turonan was insolubilized by calcium ions as is seen from Tables 20 and 21 

and Fig. 37, although only about 301 of non-esterified carboxylic acid groups 

were neutralized by calcium after saponification. This can be explained by 

the findings of Anyas-Weisz & Deuel (1950) and Deuel et al. (1950) that 

galacturonan gives insoluble precipitates with calcium when the DE is under 

501. A high value of the ratios neutral sugars/galacturonan (6.0), especially 

in tissue of high sp. gr., interfered in periodate-TBA measurement, resulting 

in considerable increase in the relative A552 number (Table 21). 

The influence of degree of esterification of pectic galacturonan on cell 

separation and solubilization of pectic galacturonan during cooking of potato 

tissue is summarized in Fig. 38. To a certain extent these results are compa­

rable with those of attack of pectin lyase on the same potato tissue disks in 

Mcllvaine buffer (Figs 16, 17), because both enzymic and chemical 

B-elimination occur next to an esterified galacturonan carboxyl group. 

It is evident that enzymic saponification of potato tissue pectic 

galacturonan may prevent undesirable loss of intercellular cohesion during 

potato processing and cooking (Tables 20, 21; Figs 37, 38, 39). This will be 

discussed further in Chapter 8. 

6.4 CONCLUSIONS AND SUMMARY 

In this chapter a model cooking study of potato tissue of two extreme 

sp. gr. fractions is described. Dead, partially leached tissue was cooked in 

Tris-pipes buffer at pH 6.5. Boiling time, ions and degree of esterification 

of pectic galacturonan were the variables included. Apart from intercellular 

cohesion, solubilization and degradation of pectic galacturonan were estimated 

to study the cooking phenomenon. 

By specific staining of unsaturated uronosyl bonds with periodate-

-thiobarbituric acid, particularly when dissolved neutral sugars (starch) 

were removed, it was established that degradation of pectic galacturonan 

during cooking in buffer at pH 6.5 proceeded according to the e-elimination 

mechanism. Thus for the first time, even if in a model study, direct proof 

was found for occurrence of B-elimination when plant tissue material is 

heated at a pH beyond 4-4.5. 

As in enzymic maceration (Chapter 4) differences in cell size were 

thought to explain partly the higher degree of intercellular cohesion of the 

tissue of low specific gravity. 
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Removal of ions (calcium) from cell wall and middle lamella enhanced 

cell separation significantly. Potassium ions were rather ineffective but 

re-added calcium ions strikingly lowered the level of cell separation. It 

appeared that calcium ions keep potato tissue firm on cooking, although the 

cell wall and middle lamella galacturonan was degraded to such an extent 

that on mechanical homogenization progressive dissolution was accomplished. 

Without mechanical destruction of residual tissue coherence solubilization 

of pectic galacturonan was retarded. Calcium ions, externally applied or 

internally present, thus stabilized the pectic cell wall gel so that it kept 

its cohesive function in the interstitial layer of cell walls even when 

severely degraded. 

During cooking of potato tissue disks, citrate ions did not affect cell 

separation when present in increasing amounts but solubilization and 

B-elimination of pectic galacturonan were raised to a higher level, especially 

when compared with chloride. 

Esterification of potato tissue dissipated the pronounced calcium effect 

on promotion of intercellular cohesion, demonstrating convincingly the 

requirement of non-esterified carboxylate galacturonan anions to interact 

with calcium. Upon saponification two effects converged with respect to 

intercellular cohesion and solubilization of pectic galacturonan of the 

cooked tissue. The rate of g-eliminative breakdown of galacturonan was 

diminished because of removal of esterified carboxyl groups and the binding 

affinity of calcium for pectic galacturonan was increased. These combined 

effects led to both a large reduction of cell separation and solubilization 

of pectic galacturonan of PE saponified cooked potato tissue. Re-addition 

of calcium ions to previously ethanolic HC1 washed, saponified potato tissue 

prevented tissue degradation even after prolonged boiling. 
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7 Relationship between intercellular cohesion of the 

cooked potato and chemical composition 

7.1 INTRODUCTION 

In Chapters 5 and 6 it has been established which chemical factors 

influence the solubilization of pectic galacturonan during model experiments 

on boiling of cell wall and tissue. A distinct relationship between solubili­

zation of pectic galacturonan and loss of intercellular cohesion was found. 

Within restricted populations of potato tubers, but also outside these, 

several correlations have been found between chemical constituents and 

intercellular cohesion (Section 3.4). The most obvious relationship, which 

outside restricted populations is often absent, is that between specific 

gravity (total solids, starch) and intercellular cohesion. This experimental 

result has been theoretically based on the starch swelling pressure theory, 

originally mentioned by Atwater (1895) and used by, for instance, Reeve (1954, 

1967, 1970, 1972). When potato tissue is heated and cooked, starch granules 

gelatinize between 58 and 70°C (Reeve, 1954, 1967). Then the starch might 

swell and exert pressure on the cell walls rounding off the cells. Simultane­

ously pectic substances of the middle lamella are degraded leading to cell 

separation, so that intercellular cohesion is distinctly reduced. Indeed, a 

negative correlation between specific gravity and intercellular cohesion, 

measured by RWCS test, was found (Section 3.4.1). 

During cooking and the previous warming-up phase in particular, the 

permeable properties of the plasmalemma change at approximately 60°C 

(Personius & Sharp, 1938b), allowing-diffusion of cell solutes into the cell 

wall (Bartolome & Hoff, 1972). Anions and cations then can interfere in the 

solubilization of pectic galacturonan. The relationship of specific gravity 

or starch, which can be calculated from specific gravity (Von Scheele et al., 

1937; Burton, 1966; Nissen, 1967), with intercellular cohesion, has a weak 

theoretical basis. It could be replaced by a more causal relationship with 

the complicated chemical composition of the potato tuber. 

For that reason chemical composition of restricted (specific gravity 

fractions from one lot of tubers) "ancTless restricted potato populations was 
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studied. 

7.2 MATERIALS AND METHODS 

7.2.1 The potato material 

In addition to the specific gravity fractions graded from populations of 

1971 and 1972 (Section 4.2.1), those of 1970 were used for two experiments 

after two months of storage at 6°C. Pectinesterase activity, intercellular 

cohesion and dry matter content were determined with fresh material, directly 

after brine flotation. Other analyses were carried out on freeze-dried potato 

powder from unpeeled tubers, for which purpose a representative portion was 

dried. After freeze-drying the potato material was ground in a hammer mill. 

Freeze-drying proceeded after storing at 6°C the 1971 sp. gr. fractions for 

2.5 months, and after several storage periods at 6°C starting at brine 

flotation with the 1972 ones. 

Of the 1970 potatoes, sp. gr. 1.060-1.070 and 1.100-1.110 tubers were 

cut in 1.2 mm thick slices (as for RWCS test). These slices were dissected 

along the vascular ring to obtain cortex and non-cortex, perimedulla plus 

pith, tissue. The intercellular cohesion of these tissues was determined in 

the RWCS test. Tubers of sp. gr. 1.080-1.090 and 1.100-1.110 of the 1970 

stock were boiled in the RWCS test in citrate solutions, with hydrochloric 

acid and sodium hydroxide adjusted to pH 2.7 to 12. 

Further potato material was obtained from a trial on lifting date. 

Tubers (variety Bintje) were lifted from June until September 1971. The 

potato tubers were prepared for analyses as described, but they were freeze-

-dried immediately after harvest. 

In a field manuring trial (1972) there were eight treatments with ferti­

lizers. Nitrogen, phosphorus and potassium fertilizers were applied as single 

and combined treatments on clay soil. Nitrogen (360 kg/ha) was given as 

sodium nitrate, phosphorus (400 kg/ha) as monocalcium phosphate and potassium 

(600 kg/ha) as potassium sulphate. After lifting the potatoes were graded for 

size. The 35-50 mm sized tubers were freeze-dried immediately after harvest 

and used for analyses. The levels of fertilizer application are very high and 

do not represent normal agricultural practice. 
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7.2.2 Characterization of the material 

The intercellular cohesion of the cooked potato tissue was assayed with the 

RWCS test, an objective direct procedure, which measures cell separation 

after cooking (Section 3.3.3). The original method of Le Tourneau et al. 

(1962), standardized by Zaehringer et al. (1963b), was modified by replacement 

of the standard boiling time by a series of boiling times (Zaehringer et al., 

1969; Ludwig, 1972). The retained weights, obtained in duplicate after boiling 

of 100 g of diced potato tissue (10x10x1.2 mm) under agitation, were plotted 

against the boiling time, resulting in a cooking curve. A wide range of 

intercellular cohesion can thus be covered. Intercellular cohesion is 

expressed as the time required to reach a pre-established level of cell 

separation and not as percentage of cell separation proper (as in the TCS test, 

Section 4.2.8). This pre-established level was 100 g of retained weight, which 

was shown to be highly significantly correlated with the 50 g level (= 501 

cell separation) (Zaehringer et al., 1969). The 100 g level was chosen to 

save time. 

The RWCS test was carried out essentially according to Zaehringer et al. 

(1969) and intercellular cohesion is presented as Ti 0 0 in min. 

From 36 duplicated determinations of retained weight a mean value of 99 g 

with s = 2.4 g was obtained. 

Dry matter About 1.5 kg of potato tubers were chopped in a cutter. A portion 

of 500 g of tissue was spread on a metal plate and pre-dried at 70°C overnight. 

The material was finely ground then in a hammer mill and samples for finish-

-drying at 105°C were taken with a sample divider (Retsch, Ham, FRG). The dry 

matter content of freeze-dried potato powder was determined by drying at 105 C 

until constant weight. For the sp. gr. fractions 1971 dry matter was not 

determined but calculated from the sp. gr. converted into weight in water and 

tables presented by Nissen (1967). 

Pectinesterase A representative sample of 100 g of diced potato, taken during 

preparation for RWCS test (from about 2.5-3 kg) was homogenized with 200 ml of 

1 M NaCl (Ultra-turrax). The pH of the homogenate was adjusted to 8 and main­

tained for six hours at room temperature by continuous or periodical addition 

of dilute sodium hydroxide. The solubilized PE was obtained by suction on a 

Buchner funnel (Schleicher & Schiill, 589/1 or 604) and the filtrate made up 

to 500 ml after washing (Unilever, 1966). 
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Most plant PEs have an optimum pH of 7.5 in common. The activity of PE 

is often measured at 30°C (Kertesz, 1951; MacDonnel et al., 1945; Somogyi & 

Romani, 1964; Vas et al., 1967; Leuprecht & Schaller, 1968). Other optimum 

conditions for PE activity measurements were thoroughly investigated by Vas 

et al. (1967) and Leuprecht & Schaller (1968). My procedure was adapted from 

Vas et al. (1967). The carboxylic acid groups of the pectin substrate liberated 

by potato PE were continuously titrated at pH 7.5 with a Radiometer Titrator 

TTT 11b connected with a PHM 28 pH meter and an autoburette ABU 11; the alkali 

consumption was recorded with a Titrigraph SBR 2. In a cylindrical titration 

glass 50 g 1% (w/v) apple pectin, approximately 651 esterified (Obipektin), 

was kept at 30°C with the aid of a circulating waterbath, 5 ml 41 (w/v) NaCl 

were added and some anti-foam. To reduce uptake of C02, nitrogen was bubbled 

through. When the pH of the mixture was adjusted to about 6 with 0.5 N NaOH, 

10 ml of the PE extract already equilibrated at 30°C were added. The titrator 

was started to raise the pH to the pre-set level of 7.5 and the consumption 

of 0.1 or 0.05 N NaOH was recorded for 30 min. The PE activity was calculated 

from the slope of the alkali consumption and expressed as nmol of carboxyl 

groups liberated per second per g fresh weight of potato tissue (nkat/g). 

The activity was recorded in triplicate. 

The activity of orange PE (Section 4.2.4) was determined using 14 ml 41 

NaCl and 1 ml enzyme extract. 

The mean PE activity measured was 32.4 nkat/g with s = 0.45. 

For all other analyses representative samples were taken with the sample 

divider from the freeze-dried potato powder. All analyses were done in dupli­

cate apart from cell wall isolation, pH measurement and solubilization of 

pectic galacturonan from cell wall by boiling. 

Cell wall and middle lamella complex Cell wall and middle lamella material 

was isolated quantitatively from 20 g of freeze-dried powder as in Section 

5.2.1 starting with the washing procedure. During some isolations the starch, 

washed out, was collected and dried until air-dry at room temperature. 

pH of potato tissue was measured by suspending 10 g potato powder in 100 ml 

of deionized water and stirring for 5 min. The pH was recorded. 

Peotia galacturonan and DE 
a. Potato tissue: the procedures of Keijbets & Pilnik (1974a) were essentially 
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followed. Pectic galacturonan was extracted by enzymic degradation with 

Ultrazym-100 (Dr. Schubert AG, Basel, Switzerland). The degraded solubilized 

pectic galacturonan was analysed as described in Section 4.2.9. Methanol, 

released by alkaline saponification of tissue, was estimated colorimetrically 

(Section 4.2.13) after distillation (Keijbets & Pilnik, 1974a). The mean 

content of pectic galacturonan was 0.35 g/100 g, s = 0.0064 g/100 g. Mean DE 

was 531 with s = 1.91, while the non-esterified carboxyl groups (COO") had a 

mean value of 0.91 meq/100 g with s = 0.038 meq/100 g (Chapters 7 and 8). 

b. Cell wall material: the Cu2 + ion-exchange procedure of Keijbets & Pilnik 

(1974a) was applied to 50 mg. The cell walls had a mean content of pectic 

galacturonan of 0.163 g/g dry weight, s = 0.0017 g/g. The mean DE was 551 

with s = 0.31 

c. Soluble pectic galacturonan: 2 g potato powder were extracted four times 

with 50 ml of deionized water or 50 ml of 0.05 M EDTA - 0.1 M Na2HPOi, (pH 6.9) 

on a glass filter (G3). The combined filtrates were made up to 500 ml. Pectic 

galacturonan was determined (Section 4.2.9) after proper dilution. 

Starch was solubilized with DMS0-HC1 from 100 mg of potato powder and 

estimated enzymically. The solubilized starch was hydrolysed by an amylo-

glucosidase, and glucose was determined after phosphorylation with hexokinase 

in the presence of ATP. The NADP-dependent oxidation with glucose-6-phosphate 

dehydrogenase was measured at 366 nm (Bergmeijer et al., 1970; Boehringer, 

1972). 

A mean value of 14.3 g/100 g was measured, s = 0.20 g/100 g. 

Citrate and malate were extracted from 1 g potato powder for 3 hours with 

0.075 M trichloroacetic acid under moderate shaking (waterbath-shaker) at 

room temperature. The extraction was continued overnight at 4°C. The slurry 

was filtered over folded paper (Schleicher & Schiill, 595 or 604) and the 

volume of the filtrate adjusted to 100 ml (adopted from Hughes et al., 1962). 

For assay of the acids enzymic methods were used. Citrate was converted into 

oxalacetate and acetate by citrate lyase. The consumption of NADPH during 

reduction of oxalacetate and its decarboxylation product pyruvate in the 

presence of malate dehydrogenase and lactate dehydrogenase was measured at 

366 nm (Mollering & Gruber, 1966; Boehringer, 1972). 

Malate was oxidized in the presence of excess NADP to oxalacetate by 

malate dehydrogenase in alkaline medium containing hydrazine. The change in 

absorbance at 366 nm was measured (Hohorst, 1970; Boehringer, 1972). 
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The mean citrate content found was 4.99 meq/100 g, s = 0.072 meq/100 g. 

Malate had a mean value of 1.05 meq/100 g, s = -0.046 meq/100 g (Chapters 7 

and 8 ) . 

N, P, K, Ca and Mg analyses in potato tissue were carried out at the 

Bedrijfslaboratorium voor Grond- en Gewasonderzoek (Laboratory for Soil and 

Crop Testing) (Oosterbeek, the Netherlands) with potato powder. Nitrogen was 

determined according to Kjeldahl with a selenium catalyst during destruction. 

For phosphorus the material was wet-ashed in a mixture of concentrated 

sulphuric acid and nitric acid and assayed according to Murphy & Riley (1962). 

The cations were determined after dry ashing at 440°C and extracting 

the ash with 2 M hydrochloric acid. Potassium and calcium were determined by 

flame photometry, magnesium by atomic absorption spectrophotometry. The 

temperature of dry ashing was fairly low, compared with the 550°C used by 

other authors (Krauss & Marschner, 1971; Bretzloff & McMenamin, 1971). This 

lower temperature, however, seems to facilitate the extraction of calcium. 

For N a mean value of 0.306 g/100 g was found with s = 0.0031 g/100 g. 

P had a mean value of 1.47 meq/100 g, s = 0.042 meq/100 g. The mean K content 

of potato tissue was 4.15 meq/100 g with s = 0.052 meq/100 g. For Ca the 

standard deviation was very small and for Mg a mean of 1.27 meq/100 g, 

s = 0.030 meq/100 g was calculated (Chapters 7 and 8). 

Calaium bound to cell wall peotic galaaturonan The calcium ions of 50 mg 

material were exchanged for hydrogen ions with three changes of 5 ml of 0.5 M 

HC1 on a glass filter (G3). The extract was neutralized with 15 ml of 0.5 M 

sodium hydroxide and analysed with the method of Milligan & Lindstrom (1972) 

as mentioned in Section 5.2.4 (calcium in starch). 

The mean value of ratio Ca2+/C00_ calculated was 0.32 with s = 0.021. 

Solubilization of peatio galaaturonan during boiling was tested as follows: 

50 mg of cell wall material was handled as described in Section 5.2.6. The 

boiling medium was 0.02 M Tris-pipes pH 6.1. The analyses applied are 

described in Section 5.2.8. 
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7.3 RESULTS AND DISCUSSION 

7.3.1 Analysis of -pectin in •potato tissue 

Some of the problems encountered in pectin analysis of potato tissue 

have been outlined by Keijbets & Pilnik (1974a). An extraction method of 

pectic substances with pectolytic enzymes as described originally by McCready 

& McComb (1952) was preferred; non-extraction methods give erroneous results 

when applied to potato tissue because of absorption of alkali with a titry-

metric method (Gee et al., 1958; Jaswal, 1969; Warren & Woodman, 1973) and 

possible phosphate interference with an ion-exchange method (Raunhardt & 

Neukom, 1964; Keijbets & Pilnik, 1974a). Pectin contents of potato tubers 

reported in literature range from 0.2-11 on fresh weight (e.g. Kroner & 

Volksen, 1950) but even higher values have been found (Sweetman, 1936; Sharma 

et al., 1959). it is not clear whether these pectin contents were defined as 

pectic galacturonan or as pectic substances, including side chain material. 

This rather confusing situation may be partly caused by the use of the 

calcium pectate precipitation method of Carrg & Haynes (1922) which deter­

mined not only covalently bound side chain material but also physically 

adsorbed non-pectic material (Doesburg, 1965). 

The advantage of the non-extraction methods is the simultaneous assay 

of DE of pectic galacturonan, which is an important pectin characteristic 

(B-elimination; calcium binding). As it is impossible to use these methods 

methanol was determined after saponification and distillation. 

With the combined pectolytic extraction/methanol analysis I found contents 

of pectic galacturonan on fresh weight of potato material ranging from 

0.27-0.451 (Tables 22, 23, 26, 32; Fig. 44d) and DEs from 48-601. Potter & 

McComb (1957) and Krause & Bock (1973) have found similar, low values for 

pectin content (calculated for anhydrogalacturonic acid) with an enzymic 

extraction method. From cell wall isolation and analysis by Emiliani & Retamar 

(1968), Hoff & Castro (1969) and Eipeson & Paulus (1973) similar results can 

also be obtained for pectin content of potato tissue. Only a few, correctly 

determined values for DE are known in literature. Hoff & Castro (1969) found 

a DE of 401 for cell wall pectin while Krause & Bock (1973) established a DE 

of 601 using methanol analysis. 
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7.3.2 Effect of pH on intercellular cohesion 

Boiling of two sp. gr. fractions (1970) at a pH range of 2.7-12 resulted 

in distinct maxima of intercellular cohesion (as Ti0 0) in the RWCS test at 

pH 4.7 (Fig. 40). Doesburg (1961) found a similar curve for several edible 

plant tissues, potato tissue included, though he measured intercellular 

cohesion with a hardness meter (see Section 3.3.2). Doesburg, moreover, found 

soluble pectin to be lowest when hardness was highest. Beyond pH 4.7 (Fig. 40) 

intercellular cohesion decreased sharply, emphasizing the role of B-eliminative 

degradation of pectic galacturonan (Albersheim, 1959; Doesburg & Grevers, 1960; 

Doesburg, 1965) (see also Section 6.3.2). At the acidic side of the Ti 0 0 peak, 

detachment of the pectic complex from the intercellulosic cell wall network 

by degradation of side chains and calcium exchange for hydrogen ions possibly 

explains loss of intercellular cohesion (Doesburg, 1961; Goto et al., 1969). 

Even in the pH range of potato tissue (5.5-6.5), the influence of 

hydrogen ion concentration on intercellular cohesion was very obvious (Fig. 40). 

7.3.3 Chemical and other characteristics of several specific gravity fractions 

The distribution of potato tubers of restricted populations (1971 and 

1972) over specific gravity classes is presented in Fig. 41. Most tubers were 

found in the classes 1.080-1.090 and 1.090-1.100, although less preponderant 

for the 1972 distribution. 

Tioo(min) 
10, 

9 

8 
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5 

Fig. 40. Influence of pH of 
boiling medium on intercellular 
cohesion (Tioo)'of sp. gr. 
fractions 1.080-1.090 (o) and 
1.100-1.110 (•) in the RWCS test 

pH (1970 tissue). 3 4 5 6 7 8 9 10 11 12 
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Fig. 42. Relation between specific 
gravity and intercellular cohesion 
(Tioo) in the RWCS test in the 
1971 (o) and 1972 (•) restricted 
populations. 
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The influence of specific gravity on intercellular cohesion of the 

cooked tissue (RWCS test) is shown in Fig. 42. The curves for two years 

differ, but the negative effect of increasing sp. gr. on texture confirms 

results obtained by Whittenberger & Nutting (1950), Le Toumeau et al. (1962), 

Zaehringer et al. (1963b) and Ludwig (1972). 

Only those constituents were analysed that proved to influence solubi­

lization of pectic galacturonan from cell wall material (Chapter 5) and cell 

separation of cooked tissue disks (Chapter 6 ) . The results of this survey 

are collected in Tables 22 and 23, for the populations of 1971 and 1972 

respectively. Not all analyses of the potatoes of 1971 were carried out after 

the same storage period, but it was shown in Section 7.3.4 that no essential 

changes in trends occurred even after prolonged storage at 6 C. For statistical 

analysis these results were pooled, and Kendall's correlation coefficient tests 

(Kendall, 1962) (parameter free) were carried out (Table 24). The sign of the 

trend coefficient Q indicates an ascending relationship between increasing sp. 

gr. and characteristic (+) or a descending one (-). The higher this coefficient 

(maximum possible here is 3.97), the better the trend is. The trend coefficients 

are graphically presented in Fig. 43. 

In addition to starch, citrate, phosphorus, potassium and magnesium 

increased significantly with specific gravity; so did the pH value. Pectic 

galacturonan and nitrogen also increased with sp. gr., but the trend is not 

as obvious. The increase of degree of esterification is fairly weak, and as 

a result a trend of the non-esterified carboxyl groups of pectic galacturonan 

is absent (Table 24). Besides intercellular cohesion ( T 1 0 0 ) , the chemical 

constituents malate and calcium were the only ones to decrease to a certain 

extent, while the activity of the enzyme PE decreased with increasing specific 

gravity as well (Tables 22, 23, 24; Fig. 43). 

Several authors described how dry matter and starch content increase 

during growth of the potato tuber (Nowotny & Samotus', 1965; Burton, 1966; 

Hughes & Evans, 1969; Munster, 1971; Grisson & Besson, 1973 and others) (see 

also Fig. 44a). When growth becomes stationary and the increase of starch 

content slows down, the tuber becomes mature. Analyses of chemical composition 

of specific gravity fractions showed that starch is not the only component 

that increases quantitatively during growth and maturation, if the sp. gr. 

tubers with more dry matter are considered to be more mature. The starch/dry 

matter ratio of Table 23, however, also showed that increase of starch with 

sp. gr. exceeded the increase of non-starch constituents. 

109 



Table 22. Physical, chemical and enzymic characteristics of specific gravity 
fractions from one restricted population (1971). All analyses calculated on 
fresh weight. 

Characteristic Unit Specific gravity fraction 

TlOO1 

pH 
PE1 

Starch 
Galacturonan 
DE 
N 
coo" 
Citrate 
Malate 
P2 
K 
Ca 
Mg 

m m 

nkat/g 
g/100 g 
g/100 g 
% 
g/100 g 
meq/100 g 
meq/100 g 
meq/100 g 
meq/100 g 
meq/100 g 
meq/100 g 
meq/100 g 

1.060-
1.070 

10.8 
5.82 

35.7 
10.2 
0.37 

52 
0.259 
0.97 
5.18 
1.13 
1.43 
4.77 
0.97 
0.76 

1.070-
1.080 

7.7 
5.93 

34.3 
11.8 
0.37 

54 
0.310 
0.93 
5.34 
1.01 
1.65 
4.87 
0.72 
0.86 

1.080-
1.090 

5.2 
5.99 

29.3 
13.4 
0.38 

50 
0.327 
1.04 
5.60 
1.19 
1.91 
5.05 
0.80 
0.95 

1.090-
1.100 

4.2 
6.03 

23.8 
15.0 
0.41 

48 
0.271 
1.17 
5.67 
0.82 
1.70 
5.28 
0.77 
0.93 

1.100-
1.110 

3.3 
6.18 

19.7 
16.4 
0.40 

49 
0.263 
1.12 
6.09 
0.66 
1.89 
5.52 
0.79 
1.02 

1. Determined directly after brine flotation; other analyses after 2.5 months 
of storage (Section 7.2.1). 
2. P: equivalent weight = 15.5 because most P groups have 2 free acid groups. 

An increase of starch content during tuber growth and maturation has 

been seen to be associated with changes in starch characteristics. Geddes et 

al. (1965) showed that granule size and amylose content increased, whilst the 

temperature of gelatinization of starch decreased. Due to the difference in 

retrogradation properties of the amylose and amylopectin fractions, a change 

in amylose/amylopectin ratio influenced the texture properties of precooked 

potato products such as granules and flakes (Potter, 1954; Reeve, 1954, 1967, 

1972). The finding that potato tubers of high sp. gr. contained larger starch 

granules than tubers of low sp. gr. affirmed the maturity specific gravity 

relationship (Sharma & Thompson, 1955; Unrau & Nylund, 1957a; Barrios et al., 

1963). The phosphorus content of starch from maturing tubers remained fairly 

constant (Geddes et al., 1965), but Samotus & Schwimmer (1962) established 

that increase of tuber phosphorus during growth was due to incorporation into 

starch in the early stage and into phytic acid later. The phosphorus content 

of potato starch seems to be a varietal characteristic (Samotus, 1965). 

The increase of pectic galacturonan with sp. gr. as found here was 

rather unexpected, although Dastur & Agnihotri (1934) already found that the 

110 



Table 23. Physical, chemical and enzymic characteristics of specific gravity 
fractions from one restricted population (1972). All analyses calculated on 
fresh weight. 

Characteristic Unit Specific gravity fraction 

T100 
pH 
PE 
Dry matter 
Starch 
Starch/ 
dry matter 
Galacturonan 
DE 
N 
coo" 
Citrate 
Malate 
Pi 
K 
Ca 
Mg 

< 1.060 

min 20.5 
5.78 

nkat/g 44.8 
g/100 g 14.5 
g/100 g 8.1 

% 56.1 
g/100 g 0.38 
% 50 
g/100 g 0.255 
meq/100 g 1.04 
meq/100 g 4.53 
meq/100 g 1.49 
meq/100 g 1.22 
meq/100 g 4.60 
meq/100 g 1.21 
meq/100 g 1.23 

1.060-
1.070 

17.4 
5.85 

42.7 
16.7 
10.3 

61.7 
0.36 

49 
0.297 
1.00 
5.37 
1.40 
1.36 
4.76 
1.04 
1.43 

1.070- 1.080-
1.080 1.090 

10.8 
5.85 

33.8 
18.8 
12.8 

67.7 
0.35 

51 
0.301 
0.94 
5.68 
0.94 
1.38 
4.91 
0.94 
1.51 

8.0 
5.92 

33.3 
20.6 
14.1 

68.2 
0.36 

54 
0.324 
0.90 
6.03 
0.81 
1.39 
4.94 
0.78 
1.66 

1.090-
1.100 

4.2 
6.04 

30.0 
23.4 
15.9 

68.0 
0.38 

56 
0.325 
0.91 
6.40 
0.82 
1.61 
5.40 
0.77 
1.88 

1.100-
1.110 

67.5 
0.38 

55 
0.306 
0.93 
7.21 
0.98 
1.87 
5.40 
0.85 
2.05 

=•1.110 

2.8 2.2 
6.10 6.21 

23.8 23.2 
25.5 27.5 
17.2 19.1 

69.2 
0.42 

54 
,322 
05 
,56 
,92 

1.98 
5.71 
0.84 
2.21 

1. See note 2 of Table 22. 

Table 24. Kendall's correlation coefficient ! « - « of P ^ j i c . 1 . c h « i c . l j j d 
enzymic character is t ics of specific gravity f ractions. Pooled 
22 and 23. _ _ ^ 

Characteristic 

T100 
PH 
PE 
Starch 
Galacturonan 
DE 
N 
coo" 
Citrate 
Malate 
P 
K 
Ca 
Mg 

Trend coefficient Q 

- 3.97 
+ 3.87 
- 3.97 
+ 3.97 
+ 2.15 
+ 0.77 
+ 1.66 
+ 0.38 
+ 3.97 
- 1.92 
+ 3.71 
+ 3.97 
- 1.92 

3.20 

Probability P 

<0.01 
<0.01 
<0.01 
<0.01 
0.03 
0.44 
0.10 
0.70 

<0.01 
0.05 

<0.01 
<0.01 
0.05 

<0.01 
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total pectin content of potato tubers increased during growth. Bretzloff (1970) 

suggested that cell wall synthesis was retarded when starch synthesis was 

accelerated because of a common metabolic pool for carbohydrate synthesis. 

I did not find this for pectic galacturonan (Tables 22, 23, 24; Fig. 43). 

The clear-cut trend of PE, which might change DE, and the absence of a DE 

trend, rules out a causal relationship between these characteristics of 

potato tissue. 

Increase of citrate, phosphorus, potassium and magnesium with increasing 

sp. gr. have been found also by Davis (1964) and Davis et al. (1973). Besides, 

these authors reported in a high sp. gr. fraction compared with a low sp. gr. 

fraction more ash, calcium and phytic acid phosphorus, but less nitrogen. 

The calcium and nitrogen trend coefficients, presented in Table 24 and Fig. 43, 

deviate from their results, but the calcium and nitrogen trends were fairly 

weak. Le Toumeau & Zaehringer (1965) also found an increase of potassium 

with sp. gr.. Ng et al. (1957) showed that high total solids of several 

varieties were related with high calcium. An increase of ash content with 

sp. gr. and total solids was seen by Le Tourneau (1963) as well. That nitrogen 

trends are probably rather inconsistent can be derived from the work of 

Fitzpatrick et al. (1964), who found that nitrogen was almost constant in 

specific gravity graded tubers. Further evidence for increasing citrate levels, 

Q 
3.97 

starch 

1 

1 
pectic 
galacturonan 

1 
I a 

citrate 

I 

COO tyyjt 1 I l 
i 
i 

PH 

1 
3.97 

malate 
I 
Ca I 

PE T100 

Fig. 43. Trend coefficients Q of physical, chemical and enzymic 
characteristics of specific gravity fractions. Data derived 
trom Table 24. 
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when sp. gr. increased, was presented by Schwartz et al. (1961, 1966), but 

the trends in malate investigated by these workers were somewhat variable 

because decreases and increases were observed. I found opposite trends for 

citrate and malate (Tables 22, 23, 24; Fig. 43) and Schwartz et al. (1961) 

mentioned the possible interconvertability of these acids, which are closely 

related metabolically (citric acid cycle). The most predominant organic acid 

in potato tubers is citrate (Burton, 1966; Adler, 1971), followed by malate 

and oxalate. For that reason, citrate and malate were analysed, whereas 

determinations of other organic acids were omitted. 

Some other potato characteristics also vary with maturity or with 

specific gravity. Schulze (1931) said that cell size and starch granule size 

increased when tubers matured. A significant positive correlation between 

sp. gr. and cell size was observed by Barrios et al. (1963), while Gray (1972) 

also measured increasing cell size at increasing sp. gr. within restricted 

populations. During growth of the potato tuber, increasing cell size and 

increasing cell wall thickness were noticed by Reeve et al. (1973a, 1973b, 

respectively). An increase of cell size during maturation of the potato tuber 

was found furthermore by Hughes & Faulks (1972). I measured only a few cell 

sizes of pith tissue (tissue disks, Section 4.3.3) and the results indeed 

suggested an increase of cell size with sp. gr. 

That pH increased when sp. gr. increased is an important finding (Tables 

22, 23, 24; Fig. 43), when the effect of pH on intercellular cohesion of the 

cooked tissue is considered (Fig. 40). This increase in pH occurred together 

with an increase of citrate and potassium, the ions which mostly make up the 

potato's buffer system. 

The results mentioned hitherto strongly suggest that sp. gr. of potato 

tubers, derived from one restricted population, is a function of physiological 

age and ultimately maturity. The intercellular cohesion of the cooked potato 

tissue then also varies as a function of physiological age, but is not causally 

related to specific gravity (or starch!)• When the potato tuber grows and 

becomes more mature, constituents like pectic galacturonan, citrate, phosphorus 

(phytin-P?), potassium and magnesium increase, while calcium and malate more 

or less decrease. Furthermore pH becomes higher and cell size certainly will 

increase. These changes altogether must result in enhanced solubilization of 

Pectic galacturonan from the cell wall and middle lamella complex, if it is 

supposed that, due to changing permeability of plasmalemma during heating 

all ions are able to react with pectic galacturonan. The neutralization of 

non-esterified pectic carboxylic acid groups by calcium seems affected 

113 



unfavourably as resultant of all trends of chemical constituents with sp. gr. 

6-Eliminative degradation of pectic galacturonan wil be enhanced by the same 

trends in the same direction. Thus a complex causal relationship between 

chemical composition and intercellular cohesion will replace the non-causal 

starch intercellular cohesion one. This relationship could only emerge 

because of the dependence of both chemical composition and starch on physio­

logical age as an independent third variable (Woodman & Warren, 1972). 

Within one tuber compositional gradients exist as mentioned in Table 1 

from the outside to the centre and from stem to bud end. Starch and most 

non-starch substances are concentrated in the cortex tissue. Tissue outside 

the vascular region (= cortex) had less intercellular cohesion in the RWCS 

test than tissue inside the vascular region (Table 25) though the differences 

for sp. gr. 1.100-1.110 were not meaningful. This result agreed with those 

of Reeve (1954) and Burton (1966). Cunningham et al. (1967) showed that 

extracts of bud ends caused more cell separation than those of stem ends. 

Indeed in bud ends compared with stem ends, potato constituents apart from 

dry matter are relatively concentrated. It is known that stem ends of tubers 

are more readily prone to after-cooking blackening partly because of lower 

citrate content. These differences in intercellular cohesion in different 

tuber regions confirm that chemical constituents other than starch influence 

intercellular cohesion. 

7.3.4 Influence of storage at 6°C 

During storage several potato constituents and characteristics were 

analysed for the sp. gr. fractions of 1972. Only the results after six months 

are compiled in Table 26 and they should be compared with those of Table 23. 

The dry matter contents were assumed to be unchanged, an assumption which is 

C T b i e c o r ; e x n H r e U U p ^ C ° h e S i 0 n ° f d i f f e ^ t tissue zones (1970). 
CT cortex txssue; PKT - pith and perimedulla tissue; WT = whole tissue. 
Sp. gr. 

1.060-1.070 
1.100-1.110 
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Tissue 

CT 

8.2 
3.5 

zone T 

PMT 

12.2 
3.8 

100 (min) 

WT 

11.0 
3.4 



Table 26. Physical, chemical and enzymic characteristics of specific gravity 
fractions from one restricted population (1972) after 6 months of storage at 
6 C. All calculations based on fresh weight. 

Characteristic 

T100 
pH 
PE 
Starch 
Galacturonan 
DE 
COO 
Citrate 
Malate 

Unit 

min 

nkat/g 
g/100 g 
g/100 g 
% 
meq/100 
meq/100 
meq/100 

g 
8 
g 

Specific gravi 

<1.060 

6.07 
45.0 
7.A 
0.39 

51 
1.04 
3.84 
2.15 

1.060-
1.070 

12.2 
6.10 

32.2 
9.9 
0.36 

54 
0.90 
4.84 
1.69 

ty fraction 

1.070- 1.080-
1.080 1.090 

9.2 6.6 
6.05 6.21 

27.3 22.3 
12.2 13.5 
0.37 0.38 

58 55 
0.84 0.93 
5.46 5.75 
1.40 1.01 

1.090-
1.100 

4.1 
6.33 

20.5 
15.7 
0.41 

54 
1.03 
6.23 
1.21 

1.100-
1.110 

3.3 
6.50 

17.7 
17.7 
0.45 

51 
1.20 
6.31 
1.04 

=•1.110 

2.4 
6.52 

15.2 
19.4 
0.45 

51 
1.20 
6.70 
0.88 

not entirely true, because some water is usually lost upon storage. Changes 

in starch were of minor importance. The intercellular cohesion was reduced 

apart from the low, fairly constant values of the high sp. gr. fractions 

(sp. gr. ̂  1.090). The trend in pectic galacturonan remained fairly equal 

upon storage. The contents of pectic galacturonan increased. We also deter­

mined water-soluble and EDTA-soluble pectic galacturonan for sp. gr. fractions 

1.060-1.070 and 1.100-1.110. Only relatively small differences existed between 

water-soluble and EDTA-soluble pectic galacturonan contents of both sp. gr. 

fractions and during storage (Table 27). Slightly more pectic galacturonan 

was shown to be soluble in EDTA-phosphate than in water. It was remarkable 

that such a large part of pectic galacturonan became soluble even in water. 

Citrate was lowered during storage and malate increased, but the trends 

were conserved (Table 26). From literature data it appeared that changes in 

Table 27. Water and EDTA soluble pectic galacturonan of two sp. gr. fractions 
(1972) as percentage of pectic galacturonan content. 

Sp. gr. Storage period (months) Soluble pectic galacturonan (%) 

in water in EDTA 

1.060-1.070 0 22 27 
6 23 28 

1.100-1.110 0 29 32 
6 28 36 
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these acids partly depend on temperature. Schwartz et al. (1961, 1966), using 

5 C, found initial changes in organic acids, which were reversed during 

continued storage. At 10°C, Rumpf (1972) established a regular decrease in 

citrate and an increase in malate, confirming my results at 6°C and the 

probable interconvertability of both acids. These changes in organic acids 

were observed by Swiniarski (1973) as well. Potatoes, lifted in August, 

increased in citrate and decreased in malate, but the storage conditions 

are not known. Oxalate also decreased. During storage the changes in organic 

anions, some of which were measured here, resulted in averaged increases of 

pH of 0.3 unit (Table 26). It is assumed that the change of pH influenced 

the change of intercellular cohesion upon storage in particular. The activity 

of PE declined during storage. 

7.3.S Analysis of cell walls of sp. gr. fractions 

The results of cell wall isolations and analyses are collected in Tables 

28 and 29. Kendall's correlation coefficient tests again were done with pooled 

data (Table 30). 

The most remarkable data of Tables 28, 29 and 30 certainly are the high 

losses of pectic galacturonan during cell wall isolation. Even a trend in 

loss of pectic galacturonan with sp. gr. is significant (Table 30). Because 

of this trend in loss of pectic galacturonan, it is likely that the signifi­

cant trend in cell wall content with sp. gr. can be an artefact especially 

as the variations in cell wall content were small (Tables 28, 29). Williams 

(1963) also found an inverse relationship between total solids and cell wall 

material, but Eipeson & Paulus (1973) saw a small increase of cell wall 

content with increasing dry matter content for two varieties. 

Although the loss of pectic galacturonan was partly caused by the disap­

pearance of water-soluble substances as pointed out in Table 27, it was shown 

after completing this work, that very small fragments of cell wall slip 

through the cheese-cloth apertures during washing. These small fragments are 

released during the dry milling action upon the freeze-dried potato tissue. 

It could be shown too that only negligible quantities of cell wall material 

were lost when fresh tissue was used as starting material. 

Contrary to the trend coefficient of pectic galacturonan in potato 

tissue, that for pectic galacturonan in cell wall material decreased with 

increasing sp. gr. with small variations between samples again. The neutrali­

zation by calcium of non-esterified carboxylic acid groups of pectic 
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Table 28. Content and some characteristics of cell wall isolated from specific 
gravity fractions from one restricted population (1971). fr. w. = fresh 
weight; dr. w. = dry weight. 

Characteristic Unit Specific gravity fraction 

1.060- 1.070- 1.080- 1.090- 1.100-
1.070 1.080 1.090 1.100 1.110 

Cell wall g dr. w./ 
100 g fr. w. 1.19 1.10 1-05 1.02 1.00 

Galacturonan ,„ . ,... . .,, 
(cell wall) g/gdr. w. 0.161 0.166 0.163 0.157 0.161 
Galacturonan g/ . ... „ „•, 
(tissue)1 100 g fr. w. 0.215 0.183 0.171 0.159 0.161 

L o s s cc ci An 

galacturonan % 42 51 55 61 60 
m? 7 53 57 56 59 58 
S2 +/COO- 0.33 0.29 0.30 0.32 0.27 
Solubilized 
S i l i n g r % 21.7 26.6 25.7 31.8 29.6 
S iUng ) A 5 5 2 1-09 0.88 0-90 C69 ° . " 
1. Calculated from cell wall and galacturonan (cell wall) contents. 

Table 29. Content and some characteristics of cell wall isolated from specific 
gravity fractions from one restricted population (1972). fr. w. - rresn 
weight; dr. w. = dry weight. ^ 

Characteristic Unit Specific gravity fraction 

<1.060 1.060- 1.070- 1.080- 1.090- 1.100- >1.110 
1.070 1.080 1.090 1.100 1.110 

Cell wa l l S 0 d r g w . / ^ ^ ^ ^ ^ , _ . , , . „ , . , , 

( S n ' a l i r g /gd r .w . 0.177 0.174 0.173 0.162 0.16. 0.159 0.162 

X w M a f o o g f r . v . 0.232 0.226 0.232 0.2,5 0.206 0.202 0.207 

galac turonan % 39 37 34 40 46 47 51 

!V % " o . « 50.42 *0.37 5S.33 »0.3I *0.33 'o.V 

Solubilized 

( b o i l e r 1 1 % 20.2 21.6 22.0 23.4 24.4 26.7 26.3 

g 3 ; ^ ) " 5 5 2 Q.92 1.04 0.89 0.78 0.65 0.60 0-67 

1. See note 1 of Table 28. 
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Table 30. Kendall's correlation coefficient tests of some characteristics 
of isolated cell walls from specific gravity fractions. Pooled data of 
Tables 28 and 29. 

Characteristic Trend coefficient Q Probability P 

Cell wall - 2.58 <0.01 
Galacturonan (cell wall) - 2.73 <0.01 
Loss galacturonan + 2.94 <0.01 
DE + 2.35 0.02 
Ca /C00~ - 2.94 <0.01 
Solubilized galacturonan (boiling) + 3.20 <0.01 
Relative A552 (boiling) - 2.94 <0.01 

galacturonan decreased when sp. gr. increased, favouring simultaneously the 

solubilization of pectic galacturonan during boiling of cell wall (Section 

5.3.1) (Tables 28, 29, 30) and providing an argument once more for a faste 

loss of intercellular cohesion. The trend coefficient Q for the relative 

periodate-TBA number was almost as large as that for solubilized pectic 

galacturonan, but with opposite sign (Table 30). Because of the dependence 

of periodate-TBA e on molecular weight (Section 4.2.10), it is suggested 

that the higher the sp. gr. the lower the DP of pectic galacturonan of the 

cell wall samples. This, in turn, could contribute, together with variations 

in calcium neutralization of non-esterified carboxyls, to the increasing 

water and EDTA solubility of pectic galacturonan in sp. gr. 1.100-1.110 

compared with sp. gr. 1.060-1.070 (Table 27). 

Similar results for cell wall content of potato tissue were reported by 

Emiliani & Retamar (1968), Hoff & Castro (1969) and Eipeson & Paulus (1973). 

These authors found higher contents of pectic galacturonan (25-281) than 

those presented here (Tables 28 and 29). They probably omitted to correct 

for neutral sugar interference in carbazole-sulphuric acid reaction (Keijbets 

& Pilnik, 1974a) and this might have raised the pectic galacturonan level. 

The calcium contents of cell wall material of Eipeson & Paulus (1973) were 

higher than in my analyses as well. 

A preliminary attempt was made to look for distribution of phosphorus 

and calcium over cell wall, starch and rest of tuber tissue. It was seen that 

phosphorus became progressively incorporated into starch in a high sp. gr. 

fraction (Table 31), due - of course - to synthesis of starch itself. The 

distribution of calcium was calculated, with the assumption that the ratio 

Ca2+/C00" (of pectic galacturonan) as found in Tables 28 and 29, could be 
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Table 31. Distribution of calcium and phosphorus over starch, cell wall and 
residual parts of potato tissue of two specific gravity fractions (1972). 
Calculations of P and Ca in meq per 100 g fr. w. and % (in parentheses). 

Sp.gr. P Ca 

starch rest cell wall starch rest 

1.060-1.070 0.87 (63) 0.49 (37) 0.42 (40) 0.10 (10) 0.52 (50) 
1.100-1.110 1.59 (85) 0.28 (15) 0.31 (36) 0.11 (13) 0.43 (51) 

applied for all COO" groups of pectic galacturonan as calculated in Tables 22 

and 23. The neutralization by calcium of starch-phosphate groups was even 

much lower than that of cell wall carboxyls (up to 404), namely 114 for sp. 

gr. 1.060-1.070 and 74 for sp. gr. 1.100-1.110. About SOI of tissue calcium 

were not bound to cell wall or starch. Bartolome & Hoff (1972), on the other 

hand, reported about 804 of tissue calcium to be localized in cell wall and 

starch, but the potato tubers I used contained 2-4 times as much calcium as 

those of Bartolome & Hoff. 

7.3.6 Influence of lifting date 

By lifting potato tubers from early June until the end of September, 

increasing levels of maturity were available. The results of analyses are 

shown in Figs 44a-j. The patterns of dry matter and starch (a), pH (c), 

nitrogen (g), citrate and potassium (h), phosphorus (i), calcium and magnesium 

(j) showed a striking qualitative similarity. No simple, ascending curves 

were observed. After an inital strong increase of starch and several non-

-starch constituents, a sudden drop occurred in the curves for the lifting 

period 16/7-30/7, probably due to a wet climatic period after a dry one. At 

the end of the growing season another drop appeared (27/8-10/9). Phosphorus 

(i), magnesium (j) and pH (c) remained constant in the period 16/7-30/7. 

The intercellular cohesion after cooking (b), PE (d), pectic galacturonan (e), 

its non-esterified carboxylic acid groups (£) and malate (i) followed quite 

a different pattern, which was approximately opposite to those first mentioned. 

The four latter characteristics, indeed, increased in the period 16/7-30/7, 

but the intercellular cohesion continued to decrease, although the non-starch 

constituents which affect solubilization of pectic galacturonan decreased as 

well. The explanation might be found in the strong decrease in calcium 

(decrease by over 504) and absence of decrease of pH, combined with a large 
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22 r 

P o"^ 

2/716/7 30/7 13/8 27/8 10/9 
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lifting date 

PH 
6.0 

5.9 

5 8 

5.7<-' 
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2 / 7 16/7 30 /7 13/8 27/8 10/9 

lifting date 

non-esterified carboxylate of 
pectic galacturonan (meq/100g) 
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'"2/7 16/7 30/7 13/8 27/8 10/9 
lifting date 
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2 /7 16/7 3 0 / 7 13/8 27/8 10/9 
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Fig. 44. Some characteristics of potato tubers, as 
determined at subsequent lifting dates. 
a. Dry matter (o) and starch (•) 
b. Intercellular cohesion as TJOO 
c. pH 
d. PE activity 
e. Pectic galacturonan 
f. Non-esterified carboxylic acid groups of pectic 

galacturonan 
g. Nitrogen 
h. Citrate (o) and potassium (•) 
i. Malate (o) and phosphorus (•) 
j. Calcium (o) and magnesium (•) 
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increase of the non-esterified carboxyls of pectic galacturonan (f). The 

influence of cell size was not known, although generally cell size will 

increase during maturation of the potato tuber (Schulze, 1931; Hughes & 

Faulks, 1972; Reeve et al., 1973a). 

The patterns of pectic galacturonan and its non-esterified carboxylic 

acid groups (Figs 44e, f) were rather surprising. At lifting date 30/7 the 

pectic galacturonan content of the potato tubers was very high, but it 

diminished at increasing maturity. The overall decrease of pectic galacturonan 

with increasing maturity seems to contradict the increasing trend found for 

sp. gr. fractions (Table 24), but this trend was rather weak. It is supposed 

that in the period 16/7-30/7 cell wall synthesis was accelerated in a rapid 

growth phase which then resulted in a temporary dilution of potato constituents. 

The activity of the cell wall bound PE (Jansen et al., 1960; Nakagawa et al., 

1971) also was higher at 30/7. The large changes in non-esterified carboxyls 

are essentially due to changes in pectic galacturonan because the DE was 

fairly constant. Their relation to those of the calcium level might strongly 

affect the pectin gel in the cell wall and middle lamella. 

The results obtained in this trial are thought to support the hypothesis 

of concurrent increase of several non-starch constituents of the potato tuber 

with starch as a function of physiological age or growth phase. Both calcium 

and nitrogen now followed the general pattern, although calcium content was 

lower at 10/9 than at 2/7 and nitrogen sharply decreased at the end of the 

growing period. 

7.Z.7 Influenae of manuring on some chemical and other characteriBtica 

The material used in these experiments was not especially grown for this 

study, but it was still interesting to look for influences of fertilizers on 

intercellular cohesion. The levels of manuring were extremely high. Although 

phosphate fertilization resulted in higher levels of phosphorus in the tuber, 

the effect of nitrogen fertilization was even more obvious. The nitrogen 

manured tubers contained more total nitrogen, while dry matter and starch were 

lower than in the samples without nitrogen fertilization (applied as sodium 

nitrate) (Table 32). These findings were in full agreement with earlier ones 

(Burton, 1966; MacLean et al., 1966; Smith, 1967). 

Maturity effect According to Timm et al. (1963) the growing period of the 
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Table 32. Physical, chemical and enzymic characteristics of potato tubers 
derived from a NPK manuring trial. All calculations based on fresh weight. 

Characteristic 

Ti oo 
pH 
PE 
Dry matter 
Starch 
Starch/ 
dry matter 
Galacturonan 
DE 
N 
COO 
Citrate 
Mai ate 
pl 
K 
Ca 

1. See note 2 

Unit 

min 

nkat/g 
g/100 g 
g/100 g 

% 
g/100 g 
% 
g/100 g 
meq/100 
meq/100 
meq/100 
meq/100 
meq/100 
meq/100 

of Table 

g 
g 
g 
g 
g 
g 

Blank 

5.9 
5.93 

37.5 
21.7 
14.6 

67.4 
0.33 

54 
0.271 
0.83 
5.25 
0.85 
1.13 
3.28 
0.85 

22. 

P 

7.9 
6.02 

36.8 
22.8 
16.4 

71.9 
0.30 

60 
0.274 
0.65 
4.31 
0.75 
1.38 
3.71 
0.87 

K 

6.4 
5.95 

29.0 
22.9 
16.3 

71.1 
0.31 

59 
0.268 
0.69 
4.67 
0.69 
1.09 
3.65 
0.80 

PK 

7.7 
6.00 

35.3 
23.1 
16.3 

70.7 
0.30 

57 
0.277 
0.70 
4.76 
0.69 
1.37 
3.64 
0.88 

N 

9.8 
5.92 

41.7 
19.1 
13.5 

70.6 
0.29 

58 
0.315 
0.66 
5.51 
1.06 
0.99 
3.17 
0.79 

NP 

11.1 
5.93 

49.0 
21.8 
14.4 

65.9 
0.30 

57 
0.401 
0.70 
3.76 
0.79 
1.54 
3.10 
0.82 

NK 

10.0 
5.96 

43.7 
19.5 
12.9 

66.0 
0.28 

54 
0.384 
0.70 
5.70 
0.88 
0.95 
3.32 
0.66 

NPK 

10.7 
5.91 

53.2 
20.0 
13.0 

65.0 
0.27 

59 
0.362 
0.60 
5.77 
1.03 
1.54 
4.02 
0.79 

nitrogen fertilized tubers will be extended and tuber maturation delayed. 

Cells are smaller (Reeve et al., 1971) as a result of nitrogen application, 

confirming the existence of delayed maturity (Reeve et al., 1973a) (nitrogen 

was applied as ammonium sulphate). The activity of PE was favourably affected 

by nitrogen application. Pectic galacturonan was lower in the nitrogen treat­

ments, as were dry matter and starch. 

The maturity retarding influence of nitrogen manuring was reflected in 

enhanced intercellular cohesion of the N samples (Table 32). Similar results 

were found by Ludwig (1972). Schippers (1961), who measured cell cohesion 

subjectively, suggested the same effect of nitrogen fertilization as well as 

Zuk & Gupalo (1970) and Zuk (1970), whose method of assessment of intercellular 

cohesion was not given. 

Citrate Zuk (1970) and Zuk & Gupalo (1970) found a decrease of citrate when 

the level of nitrogen fertilization (ammonium nitrate) was raised, which 

would causally affect intercellular cohesion. In my experiments, on the 

contrary, the tubers fertilized with nitrogen contained more citrate and 

malate than those without nitrogen except the NP sample (Table 32), in par­

ticular when potassium was applied as well. There was no decrease of inter­

cellular cohesion as expected when citrate (and malate) levels increased. 
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However, the manuring samples do not represent one restricted population. The 

effect of nitrogen fertilization on maturity, and presumably cell size which 

was not measured, might dominate the effect of citrate on intercellular 

cohesion. Nitrogen application delayed tuber maturity, but probably favoured 

the tuber metabolism enhancing synthesis of enzyme proteins (PE, Table 32) 

and of organic acids. The fertilizer treatments resulted in several restricted 

populations, which is conveniently illustrated by the absence of opposite 

patterns of citrate and malate. 

Fertilization with phosphate, in the absence and presence of nitrogen, 

suppressed citrate metabolism, which was related to a high level of inter­

cellular cohesion for the P and NP samples in their N- and N + classes (Table 

32). The same results were found in a duplicate manuring trial on a more 

sandy soil type (results not presented) for all influences mentioned up to 

now. Zuk & Gupalo (1970) already established such a phosphate suppression of 

citrate and cell separation. These authors, working with variable NPK-ratios, 

found a good negative relationship between citrate content of potato tubers 

and intercellular cohesion, although they did not mention this. 

Several authors reported effects of fertilizers on citrate content of 

potato tubers. Chloride replacement of sulphate (potassium as cation) led to 

a decrease of citrate (Swain et al., 1963; Vertregt, 1968; Zuk & Gupalo, 1970), 

which might aid in retaining intercellular cohesion at cooking. The reason 

evidently is that chloride takes the place of citrate anions in the ionic 

balance. The availability of potassium by soil and fertilizer also affects 

the amount of citrate synthesized, because the citrate ions apparently 

counteract potassium in the ionic balance. Several authors ^J^*"**™ 
correlations between citrate and potassium (Hughes & Evans, 1967, 1969, & 

Gupalo, 1970; Swiniarski, 1973). Ammonium ions and urea (sources of nitrogen) 

reduced the uptake of potassium and depressed the amount of citrate synthe­

sized (Swain et al., 1963; Hughes * Evans, 1963), ^ ^ « * 

decreasing effect of ammonium nitrate on citrate level as found by Zuk 970) 

and Zuk & Gupalo (1970). Cultivation methods and a proper choice of ferti­

lizers, could influence intercellular cohesion, but an adverse efft*t of 

after-cooking blackening should be avoided when citrate content becomes low 

(Hughes & Evans, 1967, 1969). m „ a h e > . a 
The level of citrate appears to be a varietal charactenst.c (Hughe * 

Evans, ,967; »»pf, 1972; as well as other reports, viz « ™ * " ^ 
,969; z * . ,970). Schwartz et al. (1968), though recogn.zrn ^ « « . 
of v a r i e d stressed the influence of location, but Hughes » Evans (,967) 
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showed that varietal differences (soil and climate) were preserved on differ­

ent locations. 

Cell wall composition From three fertilizer treatments, P, N and NP, cell 

wall material was isolated and analysed (Table 33). Compared to the data of 

Tables 28 and 29, the cell wall contents here were fairly low and the losses 

of pectic galacturonan even higher. The DE of cell wall galacturonan also 

was somewhat lower than that of whole tissue (Table 32), but Cu 2 + ion exchange 

and combined pectolytic extraction/methanol determination gave essentially 

the same results. The cell wall analyses did not demonstrate significant 

differences in any characteristic apart from the relative periodate-TBA 

numbers, which suggest that P > NP > N possessed higher polymerized pectic 

galacturonan molecules. 

Table 33. Content and some characteristics of cell wall isolated from three 
samples of a NPK manuring trial, fr. w. = fresh weight; dr. w. «• dry weight. 

Characteristic Unit P N NP 

Cell wall 
Galacturonan (cell wall) 
Galacturonan (tissue)1 

Loss galacturonan 
D E2+ -Ca /COO 
Solubilized galacturonan 
(boiling) 
Relative A552 (boiling) 

1. See note 1 of Table 28. 

g dr. w./lOO g fr. w. 
g/g dr. w. 
g/100 g fr. w. 
% 
% 

% 

0.62 
0.147 
0.091 

70 
50 

0.29 

22.1 
1.24 

0.72 
0.169 
0.122 

58 
51 

0.27 

22.4 
0.88 

0.76 
0.160 
0.122 

59 
48 

0.27 

20.7 
1.02 

Table 34. Distribution of calcium and phosphorus over starch, cell wall and 
residual parts of potato tissue of some samples of a NPK manuring trial. 
Calculations of P and Ca in meq per 100 g fr. w. and % (in parentheses). 

Manuring P C a 

starch rest cell wall starch rest 

I U29 < 93) 0.09 ( 7) 0.19 (22) 0.08 (9) 0.60 (69) 
1.04 (100) -0.05 ( 0) 0.18 (23) 0.06 (7) 0.55 (70) 
1.28 ( 83) 0.26 (16) 0.18 (22) 0.07 (9) 0.57 (69) 

N 
NP 
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Localization of P and Ca Phosphorus was found to be concentrated in the 

starch fraction, in particular for the N tubers (Table 34). Calcium distri­

bution was calculated again ignoring the pectic galacturonan losses during 

cell wall isolation. Then even about 701 of total tissue calcium was not 

bound to starch and cell wall material. 

7.4 A HYPOTHESIS FOR CHANGES IN INTERCELLULAR COHESION DURING COOKING 

An important role has been ascribed to starch in causing cell separation 

when potato tissue is heated in the 'starch swelling pressure' theory 

(Section 3.4.1; introduction to this chapter). Hoff (1972, 1973) considered 

the existence of a 'starch swelling pressure' to have no theoretical founda­

tion. Upon heating there would be no net mass transport to the interior 

potato cells as they form a closed system (it is questionable whether this 

reasoning will be valid for small, thin disks as used in the RWCS test, 

which indeed can absorb up to 201 water during cooking). In a closed system 

upon heating from room to boiling temperature shear stresses will be generated 

due to a volumetric expansion of 41 (Hoff, 1972, 1973). The stresses depend 

on module of elasticity and tensile strength of the wall and the initial 

turgor pressure. As long as the limit of elasticity of middle lamella or 

primary wall is not exceeded, no cell separation or cell wall rupture will 

be observed. In potato cooking cell separation is the common experience 

(Sterling, 1955), but rupture of cells and extrusion of starch has been 

observed (Reeve, 1954). 

According to the view of Hoff (1972, 1973) the primary factor for 

maintance of intercellular cohesion is the strength of the middle lamella 

and cell wall structure, with which I agree. Furthermore, in my opinion, the 

strength of middle lamella and cell wall, apart from primary up to tertiary 

or quaternary structure, depends mainly on the stability of the pectin gel 

during heating. This is especially true for the intercellular layer which is 

concerned in intercellular cohesion. Solubilization of the pectin gel due to 

depolymerization of the (rhamno)galacturonan main chains, breaking of 

covalent bonds with the cellulose-hemicellulose framework (Keegstra et al., 

1973) and removal of calcium from its key-position in the microcrystalline 

junction zones (Rees, 1969, 1972a, b ) , will ultimately destroy the resistance 

to internal shear stresses or externally exerted pressure (puncture test, 

compression tests, RWCS tests, shaking of tissue). Once the problem of inter­

cellular cohesion of the cooked potato tissue is translated from strength of 
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middle lamella into stability of the intercellular pectin gel, the chemical 

constituents of the tuber (anions, cations, ionic strength, pH) which inter­

act with the pectin gel during heating (above approximately 60 C) and the 

permeability of the plasmalemma belong to the definition of primary factors 

responsible for intercellular cohesion (Fig. 45) (Chapters 5 and 6 ) . 

Bartolome & Hoff (1972) postulated that the ionic strength of the vacuolar 

solution affects the texture of the cooked potato by desorbing PE, which then 

would change the DE of pectic galacturonan. This mechanism, however, will be 

important in preheating treatments only because PE is inactivated above 

65-70°C (Bartolome & Hoff, 1972). Ionic strength, however, is important in 

B-elimination (Keijbets & Pilnik, 1974b) (Chapter 5) of pectic galacturonan 

and influences solubilization in that way. The permeability of the plasmalemma 

determines the level of interactions between cell wall pectic galacturonan 

and vacuolar components. 

Other factors influencing intercellular cohesion and mentioned by Hoff 

(1972, 1973) must be considered as secondary factors. These are cell size, 

cell wall thickness, mechanical properties of the cell wall and turgor. 

Physiological age and storage time are strongly related to chemical compo­

sition (this Chapter) and determine the level of the primary factors and of 

starch and its properties (granule size,,amylose/amylopectin ratio, retro-

gradation, amylose diffusion). Cell size, cell surface area or intercellular 

contact area (Section 3.5), although a secondary factor will still be of 

major importance for cell cohesion. Hoff (1972, 1973) pointed out that the 

internal pressure would be proportional in any direction to the original 

diameter of the cell. Maximum shear stresses would be associated with the 

contact area of small and large cells in the vascular region, where the most 

severe separation of cells takes place (Reeve, 1954; Burton, 1966; Hoff, 1972, 

1973). Hughes & Faulks (1972) established that 921 of the variation in inter- • 

cellular cohesion (texture) in an experiment on time of harvest could be 

explained by the amount of pectic substances released during cooking and 

cell size. A highly significant negative correlation between texture and 

released pectic substances expressed per cm2 of cell wall during cooking was 

observed. Little is known about module of elasticity and tensile strength of 

the potato cell wall. Anisimova (1968) established a direct correlation 

between elasticity of the raw potato and reduction of intercellular cohesion 

after cooking. Huff (1967) found the tensile strength of the tissue to be 

largest in the centre of the tuber with a decrease in the direction of the 

periderm; this was found by Personius & Sharp (1938a) to a certain extent, 
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but they could not deduce a relationship between cell cohesion and tensile 

strength of individual potato tubers. Intercellular cohesion, on the other 

hand, is mostly reduced in the outer tuber region (Table 25; Reeve,- 1954; 

Burton, 1966). 

7.5 CONCLUSIONS AND SUMMARY 

The influence of the chemical composition of the potato tuber on inter­

cellular cohesion after cooking was investigated using an objective texture 

measurement procedure, the RWCS test. The starch intercellular cohesion 

relationship, which appeared frequently within restricted populations of 

tubers and which was explained by the 'starch swelling pressure1 hypothesis, 

was studied in more detail. 

Both starch and non-starch constituents, as citrate, phosphorus, 

potassium, magnesium and pH increased with increasing specific gravity. The 

increase of pectic galacturonan was less significant while the degree of 

esterification of pectic galacturonan was not affected. Malate and calcium 

decreased, although less significant, together with PE activity and inter­

cellular cohesion. The neutralization by calcium of non-esterified galac­

turonan carboxylic acid groups, as shown by cell wall isolation and analysis, 

also decreased and did not exceed 50% (ratio Ca2+/COO" < 0.5). Because of the 

already established interactions of potato constituents with pectic galac­

turonan during heating, resulting in solubilization and possibly cell sepa­

ration, the idea emerged to replace the hypothetical starch intercellular 

cohesion relationship by a concept of a causal relationship between chemical 

composition and intercellular cohesion. Within restricted populations both 

starch and non-starch levels depend on the stage of growth and maturity. In 

the pH region of 5.5-6.5 in the potato tissue, intercellular cohesion was 

strongly affected by small changes in pH. Only about 501 of tuber calcium 

was found to be incorporated in cell wall material and starch, which was 

unexpectedly low. That growth and maturity determine chemical composition of 

the potato tuber was further illustrated by the results of a lifting date 

trial. 

During storage of specific gravity fractions at 6°C it was seen that 

intercellular cohesion was reduced or remained constant. Citrate decreased 

and malate increased. As a possible net effect pH increased considerably. 

PE activity diminished. 

Some interesting effects of high doses of fertilizers in a field trial 
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were noticed. Nitrogen (as nitrate) increased the levels of organic acids 

and PE activity, but due to delayed maturity and a supposed effect of smaller 

cell size, intercellular cohesion was better in the nitrogen-treated tubers. 

Phosphate suppressed both citrate synthesis and cell separation. No essential 

differences in isolated cell wall material could be detected. 

Some comment is given to an alternative hypothesis of Hoff, who replaced 

'starch swelling pressure' by a less speculative 'thermal expansion pressure'. 

The stability of the intercellular cell wall layer was thought to be the 

primary factor responsible for tissue coherence of the cooked potato. The 

chemical constituents, which affect (in)solubility and gel structure of the 

middle lamella pectic substances when the permeable properties of the 

plasmalemma change at heating, were included in this primary factor. All 

other factors, such as cell size, cell wall thickness, turgor and mechanical 

features of the cell wall were considered as secondary factors, some of 

which, cell size in particular, will be of major importance. 
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8 Preheating, activation of pectinesterase and 

intercellular cohesion 

8.1 INTRODUCTION 

Some results of the model cooking experiments with tissue disks (Section 

6.3.7) indicated that deesterification by pectinesterase (PE) of cell wall 

and middle lamella pectic galacturonan - which was esterified up to about 

559o - resulted in retardation of cell separation on subsequent cooking. 

Endogeneous calcium ions or externally applied calcium strengthened the 

effect of pectin saponification markedly. 

It has been demonstrated by several authors that, due to activation of 

PE, the firmness of plant tissues could be improved by a preheating or 

blanching procedure before processing (Doesburg, 1965; Van Buren, 1973). 

Such firming treatments were reported for cauliflower (Hoogzand & Doesburg, 

1961), snap beans (Van Buren et al., 1960a, b, 1962; Sistrunk & Cain, 1960; 

Kaczmarzyk et al., 1963; Van Buren, 1968), tomatoes (Hsu et al., 1965), 

apple slices (Wiley & Lee, 1970) and sour cherries (Van Buren, 1973). 

A preheating procedure to activate potato PE, to be applied before freezing 

immature tubers (Unilever, 1966), was described without proof of enhanced 

firmness. Bartolome & Hoff (1972) showed that potato PE was activated during 

heating at 60-70°C, resulting in a smaller loss of intercellular cohesion on 

cooking. At the same time, I also was carrying out preheating experiments to 

establish suitable conditions for PE activation and firming of potato tissue, 

after having established the presence of pectinesterase in the tissue 

(Section 7.3.3). 

8.2 MATERIALS AND METHODS 

8.2.1 The potato material 

Potato PE, utilized for partial characterization, was extracted from 

tubers of sp. gr. fractions of the 1969 harvest (variety Bintje). For the 

preheating experiments sp. gr. fraction 1.090-1.100 of harvests 1970, 1971 

130 



and 1972 was taken (see Sections 4.2.1 and 7 .2.1) , stored a t 6°C. 

8.2.2 Partial characterization of potato PE 

PE was extracted from 1-2 kg of tubers as before (Section 7.2.2). The 

enzyme was salted out at 80% ammonium sulphate saturation, after previous 401 

and 701 saturation steps, and collected by centrifugation (6 000 g). The 

precipitate was dissolved in 40 ml 0.01 M Tris-HCl pH 7.8 containing 0.1 M 

NaCl. The dependence of PE activity on pH and temperature was determined. 

To account for chemical deesterification, blanks were included with heat-

-denatured enzyme solution. In the reaction mixture 0.5-1 ml of enzyme was 

added. For the activity measurement see Section 7.2.2. 

8.2.3 Procedures of preheating 

Experiment I (1970 tubers, stored for 8 months) Tubers were sliced and diced 

to different sizes. Slices of variable thickness were used, in the other 

experiments as well, but the 10x10x1.2 mm dices as standardized in the RWCS 

test were also used (Section 7.2.2). 2 000 g Tissue were treated in 6 1 of 

deionized water for 1 h at 30 and 46°C and usually at pH 7.5. The pH was 

adjusted with 1 N sodium hydroxide with the aid of the automatic Radiometer 

titration assembly. After one hour the pH was re-adjusted to 6 with concen­

trated hydrochloric acid. During preheating the specific conductance was 

measured periodically with a Philips conductance measuring bridge m 4249. 

The intercellular cohesion of the preheated tissue was assessed as usual 

(RWCS test). In one treatment 0.05 M calcium chloride was added to the medium, 

while in two others the tissue was infiltrated with water by vacuum appli-

cation. All treatments were done once. 

Experiment II (1971 tubers, stored for 4 months) In the same procedure as 

used above without pH change, 2 200 g tissue were treated in duplicate at 

three temperatures: 30°, 50° and 75°C. In addition some analyses were 

performed: pectic galacturonan, DE of pectic. galacturonan, citrate, K Ca 

and P H (Section 7.2.2). These analyses were carried out after freeze-drymg 

of the preheated tissue. 

Experiment III (1972 tubers, stored for 2 months) 100 g Diced tissue 

(10x10x1.2 mm) (three replicates) were treated in 300 ml of deionized water 
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at 30o-45°-60o-80°C for 0.5-1-2 hours. Immediately afterwards 900 ml of 

boiling water were added and the RWCS test was carried out with one standard 

boiling time. As standard time the pre-established T 5 0 of the untreated 

tissue was used, e.g. 8 min. The retained weight was determined in duplicate. 

The third replicate was used for methanol analysis after storage in ethanol 

and conversion to AIS. The methanol, still bound to pectic galacturonan, was 

liberated by saponification, collected by distillation (Keijbets & Pilnik, 

1974a) and assayed as described before (Section 4.2.13). 

The twelve treatments had a mean RW of 87 g with s = 5.2 g. The deter­

mination of intercellular cohesion thus was subjected to fairly large varia­

tion when one standard boiling time was used (compare with T 1 0 0 determinations 

in Section 7.2.2). 

Experiment IV (1972 tubers, stored for 4 months) 3 kg Unpeeled tubers were 

heated at 55°C for 1-2-3-6-18 hours in a waterbath. The RWCS test and the 

pectin analyses were carried out as described in Experiment III. 

The mean methanol value of the Experiments III and IV was 1.28 yg/g 

fresh weight with s = 0.040 pg/g. 

8.3 RESULTS AND DISCUSSION 

8.3.1 Partial eharaoterization of potato PE 

When measuring PE activity, there should be no chemical deesterification 

of the pectin substrate, because the validity of the results is questionable 

under such conditions (Kertesz, 1951). For that reason Vas et al. (1967) 

thought it advisable to determine PE activity at pH 7.5 when assaying PE of 

higher plants. The 'at random' chemical deesterification can influence PE 

activity since the number and position of carboxyl groups are changed, 

possibly creating new places for attack by PE, which occurs linearly along 

the chain of the molecule (Solms & Deuel, 1955; Kohn et al., 1968a; Lee et 

al., 1970). I found that chemical deesterification of 65°s esterified apple 

pectin at 30°C started at a pH above 7.5-8 (Fig. 46) and at pH 7.5 at 40°C 

(Fig. 47). Potato PE activity therefore was measured at pH 7.5 and at 30°C. 

pH A broad pH optimum for potato PE was found at pH 8-8.5 (Fig. 46). This 

PE resembles other higher plant PEs, which are most active in the pH region 

around 7.5. The relationship between pH and activity is also known to be 
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influenced by the salt concentration in the assay mixture as shown for PE of 

alfalfa (Lineweaver & Ballou, 1945), orange (MacDonnel et al., 1945), snap 

bean (Van Buren et al., 1962) and tomato (Nakagawa et al., 1970). Furthermore 

pH optima at approximately 7.5 have been found for PE of southern peas 

{Vigna sinensis) (Collins, 1970), strawberries (Leuprecht & Schaller, 1968) 

and apples (Lee & Wiley, 1970). Hultin & Levine (1963) determined optima at 

pH 9-9.5 for two banana PE fractions, pointing out at the same time the 

existence of several fractions of PE with different properties. 

Temperature Optimum activity of potato PE was established at 55 C, but a 

small chemical saponification was already observed at 40°C (Fig. 47). The 

recording of activity curves for 30 min also suggested that thermal inacti-

vation begins at 55°C because of deviations of linearity (see also Fig. 48). 

Bartolome & Hoff (1972) found initial inactivation at 50°C. A temperature 

optimum of 55°C was also established for strawberry PE (Leuprecht & Schaller, 

1968) and apple PE (Vas et al., 1967; Lee & Wiley, 1970). Collins (1970) 

measured a broad peak at 50-60°C for southern peas and Vas et al. (1967) 

found PE from orange albedo to be most active at 65°C. Potato PE activity 

was greatly diminished at 70°C (Fig. 47). From the Arrhenius plot in Fig. 48 

(straight line through points of 30-40-50°C only) the activation energy was 

calculated: 

Alog v 
,EA = - 2.303 R JpT . 

2.760 - 2.635 
EA - - 2.303 x 1.98 x - ^ F T T ^ T ^ = 5 700 cal/mol 
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For a proper estimation of the activation energy, according to Voragen (1972) 

the substrate concentration must be high enough throughout the temperature 

range used to saturate the enzyme. The use of maximum rate V therefore is 

recommended. However, I did not determine V for potato PE at the temperatures 

used, but applied the initial velocity in the Arrhenius plot at a substrate 

concentration of 0.771 of 651 esterified apple pectin. Vas et al. (1967) 

established for orange albedo PE that the activity only slightly depended on 

pectin (751 esterified) concentration in the range of 0.25-21. Nakagawa et 

al. (1970) found a Km value for tomato PE at 30°C of 0.241 for citrus pectin. 

Therefore it is rather uncertain whether I determined the activation energy 

EA at substrate saturation, which was possibly in the range of 2-51 pectin 
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concentration. However, from a practical point of view a substrate concen­

tration of over 21 is impossible (viscosity of pectin solutions!). The acti­

vation energy was somewhat higher than 5 400 for strawberry PE (Leuprecht & 

Schaller, 1968), almost equal to 5 800 for apple PE (Lee & Wiley, 1970) but 

much lower than the 8 000 - 9 000 for tomato PE in the 27-31 °C region 

(Nakagawa et al., 1970). At higher temperatures this tomato PE was already 

activated at ± 3 000 cal/mol. 

8.3.2 Four preheating experiments 

Preheating experiment I (Table 35) No pectin analyses were available. The 

work of Bartolome & Hoff (1972), however, makes it rather unlikely that 

potato PE could have been active in situ at pH 6.6 and 30°C. Nevertheless the 

intercellular cohesion was appreciably raised from 4.3 to 11.2 min (T10o)-

Removal of water-soluble substances from the tissue (Le Tourneau et al., 1962; 

Zaehringer et al., 1963b), resulting in increased specific conductance K of 

the preheating medium (Davis, 1964; Davis et al., 1973), are now known to be 

related to reversion of cell separation of the cooked potato tissue 

(Cunningham et al., 1967; Davis & Le Tourneau, 1967; Zaehringer & Cunningham, 

1970, 1971). When, however, the pH was raised to 7.5, activation of PE was 

possible. < corrected for alkali addition was seen to increase to a lesser 

extent (less diffusion of ions?), but intercellular cohesion was even higher 

(10x10x1.2 ran pieces) (Table 35). Results of Cu2 + ion-exchange (Keijbets & 

Pilnik, 1974a) indicated that saponification of pectic galacturonan indeed 

occurred. At pH 7.5, potato PE could have been solubilized from its binding 

to the cell wall as found before for orange PE (MacDonnel et al., 1945) and 

tomato PE (Nakagawa et al., 1971), while simultaneously the activity 

increased (Fig. 46). Calcium ions leaching out and passing the cell wall and 

middle lamella region have the opportunity to react with non-esterified pectic 

galacturonan carboxylic acid groups (for leaching of Ca see Experiment II 

(Table 36) and Davis (1964) and Davis et al. (1973)). ^ 

External application of calcium ions resulted in a vast increase of 

intercellular cohesion (42.3 min). At calcium addition < corrected for 

alkali consumption, decreased instead of increasing. The drained 

preheating increased unlike to the previous samples which lost ^ 

35). It i assumed that calcium ions are taken up by the tissue in p e erence 

to sodium. Then the addition of sodium ions probably does not ̂ a ^ 

calcium uptake. The calcium ions will diffuse into the free space (intercellular 
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Table 35. Influence of pH, temperature and contact area during preheating on 
intercellular cohesion (experiment I; 1970). T10o is corrected for weight 
change during preheating. 

Potato tissue 
size (mm) 

Blank 
10x10x1.2 
10x10x1.2 
10x10x1.21 

1.2 
10 
102 

10 
103 

pH 

6.6 
7.5 
7.5 
7.5 
7.5 
7.5 
7.5 
7.5 

Temp. 

(°C) 

30 
30 
30 
30 
30 
30 
46 
46 

K 

(mS/cm) 

2.51 
3.01 
9.36 
2.04 
0.43 
0.44 
1.86 
1.53 

NaOH 
added 
(meq) 

0 
30.3 
33.0 
18.1 
10.8 
7.5 

19.5 
12.5 

K 
corr 

(mS/cm) 

2.51 
1.79 
8.03 
1.30 
0 
0.18 
0.91 
0.90 

Weight 
change 

(%) 

- 8.6 
- 9.5 
+ 10.5 
+24.0 
+ 12.5 
+ 18.1 
+ 2.7 
+ 8.9 

TlOO 
(min) 

4.3 
11.2 
20.2 
42.3 
17.4 
6.6 
7.9 
6.5 

10.5 

1. Preheating in 0.05 M CaCl2 (< = 9.36 mS/cm). 
2. Vacuum infiltration in 2 1 water for 30 min. For pretreatment 4 1 water 
were added. 
3. Vacuum infiltration in 2 1 water for 30 min and pretreatment in fresh 
water (6 1 ) . 

space, cell wall) and be taken up into the cytoplasm causing an osmotic flow 

of water into the tissue. 

The effect of slicing of tissue (or magnitude of surface area) is 

evident when results of < and intercellular cohesion are inspected (Table 35). 

Preheating of 10 mm thick slices at 30°C reduced increase of K to (almost) 

zero after correction for alkali, but intercellular cohesion after cooking 

was also low. Previous vacuum infiltration of potato tissue with preheating 

medium appeared to be effective, especially at subsequent preheating at 46 C 

where the infiltration water was removed before preheating. Vacuum infiltration 

will fill the intercellular spaces with water and probably favour the diffusion 

of potato ions. It was furthermore expected that upon vacuum infiltration, it 

might be easier to establish a correct pH value of 7.5 in the cell wall 

boundary to activate PE. 

Preheating experiment II (Table 36) The pH was not raised during preheating. 

At 30 C an increase of intercellular cohesion of 10xT0xTr2 mm pieces was 

not associated with a decrease of DE of pectic galacturonan. Once more the 

change in texture appeared to be related to loss of ions, reflected in K and 

analyses of citrate (591 loss), K (491 loss) and Ca (461 loss). The pH 

decreased markedly for the 10x10x1.2 mm pieces, but only to a small extent 
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Table 36. Influence of temperature and contact area during preheating on 
intercellular cohesion (experiment II; 1971). All analyses calculated on 
fresh weight without correction for weight change. 

Potato tissue 
size (mm) 

Blank 
10x10x1.2 
10 
50 
10x10x1.2 
10 
50 
10x10x1.21 

1. Preheating 

Temp. K 
(°C) (mS/cm) 

30 2.A3 
30 0.37 
30 0.15 
50 4.94 
50 2.20 
50 1.31 
75 5.46 

time only 15 min 

T100 
(min) 

3.6 
7.5 
3.8 
4.0 

28.4 
6.8 
4.8 

11.4 

; Tioo 

Galac-
turonan 
(g/100 g) 

0.36 
0.30 
0.34 
0.36 
0.35 
0.35 
0.36 
0.23 

corrected i 

DE 

a) 

49 
54 
50 
48 
50 
46 
48 
52 

Eor we 

meq/100 

citrate 

5.23 
2.14 
4.12 
4.55 
0.71 
2.94 
4.14 
1.45 

g 

K 

4.66 
2.39 
4.42 
4.57 
1.40 
3.57 
4.38 
1.61 

light increase. 

Ca 

0.39 
0.21 
0.33 
0.38 
0.20 
0.28 
0.35 
0.15 

pH 

6.21 
6.03 
6.18 
6.18 
6.16 
6.19 
6.21 
6.20 

for bigger pieces. When 10 and 50 mm thick slices were preheated at 30°C 

intercellular cohesion remained unchanged and indeed loss of ions and increase 

of K were sharply reduced. Again the loss of citrate was most evident (21 and 

13% respectively). Variability in pectic galacturonan (Table 36) was caused 

by weight changes, which were not corrected for. 

Preheating at 50°C resulted in much higher values of < due to the effect 

of temperature itself and the acceleration of diffusion. The 10x10x1.2 mm 

tissue pieces lost 861 of citrate, 70% of K but only 491 of Ca, while DE of 

pectic galacturonan was not lowered. Leaching out of ionic constituents 

therefore effectively increased intercellular cohesion. A large contact area 

between tissue and surrounding water, of course, favours leaching. PE 

activity was not found and indeed according to Bartolome & Hoff (1972) the 

preheating temperature of 50°C was too low to desorb and activate PE. 

Moreover, the preheating period of one hour is short because of the rate of 

heat penetration particularly in thicker potato slices. Bartolome & Hoff 

showed that preheating must preferentially occur at 60-70°C. They found that 

most methanol was formed by potato PE at 60°C although thermal inactivation 

started at 50°C. These investigators isolated cell wall material from pre-

treated tissue and found that simultaneously with methanol formation the 

methoxyl content of cell walls decreased and migration of calcium and mag­

nesium (the latter will not contribute to insolubility of pectic galacturonan 

markedly; Section 5.3.1) into the cell wall increased. Bartolome & Hoff (1972), 

on the other hand, did not account for the influence of leaching of cell 
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Fig. 49. Relationship between citrate 
( ) and potassium ( ) contents of 
preheated tissue and intercellular 
cohesion (TJOO)(preheating experiment 
II). 

solutes in their preheating experiments, although this effect would have 

affected their results. 

At 75°C, PE in potato tissue will rapidly be inactivated (Fig. 45; 

Bartolome & Hoff, 1972). My experiments showed that after only 15 min of 

preheating K was rather high and concurrently 721 of citrate, 651 of K and 

621 of Ca were lost. The similarity of leaching patterns of citrate and K at 

all temperatures (Fig. 49) confirms the strong relation between these ions 

(Section 7.3.7). When starch has been gelatinized the loss of calcium was 

facilitated. Preheating at 75 C resulted in increased intercellular cohesion, 

due also to loss of ionic constituents. Precook heatings at 70-75°C are known 

to be applied in potato processing, in particular for dehydrated mashed 

products (Potter et al., 1957; Eskew, 1967; Adler, 1971) to obtain a product 

without undesirable cell rupture and stickiness caused by exuded gelatinized 

starch. A chilling treatment, however, after the heating period is essential 

to enhance retrogradation of starch molecules. In these preheating processes 

change of pectic substances by PE will be absent. If an increase of inter­

cellular cohesion is desired a LTLT-preheating treatment (low temperature 

long time) at about 60°C will be most successful (Hoogzand & Doesburg, 1961). 

Preheating experiment III (Table 37) The effect of leaching on intercellular 

cohesion during preheating could be reversed by carrying out the pretreatment 

in a part of the boiling water of the RWCS test as suggested by results of 

Zaehringer et al. (1963b). Nevertheless, an increasing RW (or increasing 

intercellular cohesion) was observed at 30°C and even more obviously at 4S°C. 

The amount of methanol, esterified to pectic galacturonan, however, was not 
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50 
77 
77 

103 
100 
120 
118 
116 
116 
113 
89 
38 
26 

1.51 
1.42 
1.50 
1.47 
1.42 
1.32 
1.51 
1.14 
1.10 
1.00 
1.21 
1.28 
1.23 

Table 37. Influence of temperature and length of preheating period on inter­
cellular cohesion (experiment III; 1972). fr. w. = fresh weight. 

Temperature (°C) Time (h) RW (g) Ester-bound methanol (yg/g fr. w.) 

Blank 
30 0.5 

1 
2 

45 0.5 
1 
2 

60 0.5 
1 
2 

80 0.5 
1 
2 

markedly reduced in these attempts (Table 37). At 60°C preheating temperature, 

ester-bound methanol started to decrease. Intercellular cohesion remained 

fairly constant at 110-120 g RW, which represents a maximum level encountered 

in many RWCS cooking curves (not given here) (see for instance Zaehringer et 

al., 1969). Preheating at 80°C for more than 30 min resulted in faster sepa­

ration of cells at cooking. The low contents of ester-bound methanol at 80 C 

must be due at least partially to loss of degraded pectic galacturonan as 

demonstrated during preheating at 75°C in Experiment II (Table 36). The low 

pectic galacturonan content there resulted from both degradation and water 

uptake which was not corrected for. 

Preheating experiment IV (Kg. SO In a recent patent (Schoch « Sloan, 1972) 

the idea was put forward to change texture by preheating whole, even unpeeled 

tubers. A temperature between 50° and 60°C just below the vl*t*iz*tu* 

temperature of starch, applied with hot air or water for 3-24 hours, « » « 

produce 'a firm potato tissue which resists physical > ^ * ™ " ? * £ 

processing'. This result would be obtained by associate of « - * - ^ 

in the granules without gelatinization. This idea was use^ tn „ « * • * £ » 

u n p e e J tubers could be prevented fro. losing soluble substances as expert 

" " t:~:ur;:Lion * **.. ,*— «*» - «•*. 
great ZLZ I n S l lag period of one h » r . After « " r e a s e » 
cel l cohesion at cooking gradually slowed down. The ester-bound methanol 
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Fig. 50. Changes in ester-
bound methanol (•) and 
intercellular cohesion 
(Tioo) (°) during pre­
heating at 55 C of whole, 
unpeeled tubers (pre­
heating experiment IV). 

content also decreased sharply after a lag period of 1-2 hours and was halved 

after 18 hours. These results proved that at S5°C and prolonged incubation 

PE was activated to change DE. Diffusion of calcium ions through the destroyed 

plasmalemma subsequently led to neutralization of non-esterified carboxylic 

acid groups of pectic galacturonan and stabilization of the intercellular 

pectin gel structure against breakdown and loss of tissue coherence during 

cooking. The explanation for these firming phenomena as given by Schoch & 

Sloan (1972) seems to be deduced from the starch retrogradation theory of 

Potter (1954) and Reeve (1954, 1972) and must be rejected in favour of the 

PE activation hypothesis of Bartolome & Hoff (1972). It is uncertain whether 

only diffusion of vacuolar calcium ions into the cell wall boundary, without 

PE activity on pectic galacturonan, could produce more intercellular 

cohesion. 

Off-odours may become a major disadvantage for potato quality during 

prolonged preheating (Bartolome, 1971). Discoloration, on the other hand, 

can be prevented by addition of sodium bisulphite (Schoch & Sloan, 1972). 

8.4 CONCLUSIONS AND SUMMARY 

Potato PE was partially characterized after extraction and a ammonium 

sulphate precipitation. The relationships between activity and pH or tempera­

ture were found to be comparable to those of PE enzymes from other higher 

plants and particularly vegetables. An exact pH optimum at 30°C was not 

established, but the potato enzyme appeared to be most active at pH 8-8.5, 
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and not at the usual pH of activity assessment, which is 7.5. The temperature 

optimum for activity was 55°C. At 40°C and pH 7.5 and at pH 8.5 and 30°C 

chemical deesterification was initiated on 65% esterified apple pectin. The 

activation energy for potato PE was calculated to be 5 700 cal/mol. 

Preheating experiments with potato tissue were carried out at variable 

conditions of time, temperature and tissue surface area. Without PE activation, 

as indicated by determination of DE of pectic galacturonan or ester-bound 

methanol, considerable firming effects or reduction of loss of intercellular 

cohesion during cooking could be obtained at 30°, 45° and 50°C, even at 75°C. 

Diffusion out of the tissue of ionic constituents as citrate, potassium and 

calcium, reflected in specific conductance measurements, was thought to 

stabilize the potato tissue against thermal breakdown. This leaching 

phenomenon or the rate of diffusion of soluble constituents was favoured by 

increase of surface (or contact)area, rising temperature and duration of 

pretreatment. 

More obvious activation of PE, resulting in a decrease of ester-bound 

methanol, was only achieved by preheating at 60 C, using potato dice of 

10x10x1.2 mm. However, due to use of measurement of retained weight instead 

of T 1 0 0 in the RWCS test, the effect of PE activation was not quantitatively 

distinguishable from the effect of preheating at 45°C (no PE activation.') on 

intercellular cohesion of the tissue. Moreover, interference of ion-diffusion 

phenomena could not be excluded but after preheating of whole, unpeeled 

tubers at 55°C. Loss of ions in the surrounding water then was impossible 

and PE activation and increase of intercellular cohesion at cooking occurred 

together. A preheating period of more than one hour until six hours caused 

large increases of cell cohesion. 

In accordance with the findings of Bartolome & Hoff it was assumed that 

at 55-70°C the permeable properties of the plasmalemma change to release 

ions into the cell wall region, which desorb and activate PE. The DE of 

pectic galacturonan is decreased and migration of calcium ions (magnesium 

ions are less important) leads to firming of the cell wall and middle lamella 

pectin gel. The reaction of calcium ions with non-esterified pectic car-

boxylic acid groups especially will be of most importance. 
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Summary 

Intercellular cohesion is one of the most outstanding textural charac­

teristics of potato tuber tissue. During heating the intercellular cohesion 

changes, depending on the properties of the raw material and the processing 

conditions. The role of the pectic substances, which form part of the matrix 

substances in the primary potato cell wall and middle lamella, in the ulti­

mate intercellular cohesion of the cooked potato was studied further. For 

that purpose maceration experiments with pectic galacturonan depolymerizing 

enzymes were designed, and solubilization of pectic galacturonan was studied 

in model systems (potato cell walls, tissue disks). Specific gravity fractions 

were chemically analysed and preheating experiments were done to activate 

pectinesterase bound to cell walls. 

In Chapters 2 and 3 a literature review of some aspects of intercellular 

cohesion was given. In Chapter 2, therefore, the structure of pectic 

substances of the cell wall and middle lamella matrix and the structure of 

the primary plant cell wall was discussed. Special attention was paid to the 

insolubility of the pectic substances, which is thought to be responsible 

for cohesion between cells. The insolubility was thought to be caused by 

covalent anchorage to hemicellulose and glycoprotein substances in the cell 

wall and middle lamella, while the role of calcium in assisting the packing 

of galacturonan chain segments in microcrystalline structures was also 

emphasized. 

In Chapter 3 intercellular cohesion of the cooked potato as influenced 

by chemical composition was surveyed. Reference was made to the overall 

composition of the potato tuber, the individual constituents and the detailed 

cell wall composition. It was shown that intercellular cohesion can be 

measured objectively by deformation tests such as compressive strength and 

puncture testing, but probably better by direct determination of cell sepa­

ration based on retained weight on a sieve after cooking. The importance of 

objective texture measurement to exclude influences of related texture para­

meters was pointed out, particularly when the influence of chemical composi­

tion on intercellular cohesion of the cooked potato was investigated. 
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This was illustrated in a critical review of older literature data on inter­

cellular cohesion. The well-known starch intercellular cohesion relationship 

thus becomes doubtful. The causal explanation mostly was based on subjective 

measurements of intercellular cohesion. On the other hand, many experimentally 

obtained results indicate that complex changes in pectic substances influence 

intercellular cohesion of the cooked potato. 

The key role of pectic galacturonan in intercellular cohesion of potato 

tissue was shown in Chapter 4. Pectic galacturonan depolymerizing enzymes, 

low-methoxyl pectin lyase and pectin lyase, strongly reduced the cell cohesion. 

During this maceration, the patterns of solubilization of pectic galacturonan 

from tissue disks of low (1.060-1.070) and high (1.100-1.110) specific gravity 

from one population of tubers were similar and therefore, with the techniques 

used, no differences in primary structure of pectic substances were found. 

However, cell separation in the high sp. gr. tissue was faster. This can be 

explained by the greater cell size in high sp. gr. tissue which enhanced loss 

of intercellular cohesion compared with the low sp. gr. tissue. Enzymic 

maceration measured by a spectrophotrometric turbidity procedure, revealed 

the important role of calcium ions in cell cohesion. Calcium ions retarded 

cell separation even when pectic galacturonan was strongly degraded as was 

shown by strong solubilization at mechanical distortion of the tissue. 

The solubilization of pectic galacturonan from potato cell walls at 

boiling as influenced by potato cations, anions, starch, pH and buffer 

strength, is studied in Chapter 5. Pectic galacturonan, which was esterified 

for 58°4, was seen to be degraded by 6-elimination at pH 6.1. Calcium, divalent 

copper and iron but not magnesium ions slowed down the solubilization of 

pectic galacturonan compared with potassium. Increasing concentrations of 

calcium and potassium ions increased the rate of 6-elimination reaction, 

calcium even more than potassium. The important role of calcium in micro-

crystallite junction zones in the potato cell wall structure is illustrated 

by the optimum insolubility of pectic galacturonan at ratio Ca2+/C00" = 1-2. 

Organic anions, citrate, phytate and malate, solubilized pectic galacturonan 

at boiling, due to calcium binding and acceleration of rate of e-elimination. 

The affinity of pectic galacturonan carboxylic acid groups for calcium could 

be increased by deesterification with orange PE. Some boiling experiments 

were carried out with complex mixtures of potato constituents to simulate the 

chemical composition of low and high sp. gr. tissue. The pectic galacturonan 

insolubilizing role of calcium was confirmed here. 

In Chapter 6 model studies on intercellular cohesion of the cooked 
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potato tissue are described using the same dead, partially leached tissue 

disks as for enzymic maceration. Intercellular cohesion or cell separation 

was measured again turbidimetrically, after cooking in a buffer at pH 6.5. 

g-Eliminative degradation of pectic galacturonan during cooking of a plant 

tissue was demonstrated by specific periodate thiobarbituric acid staining 

and reported for the first time. Although patterns of solubilization of 

pectic galacturonan were similar again, the high sp. gr. tissue lost inter­

cellular cohesion at a faster rate. Addition and removal trials with calcium 

and potassium ions clearly showed that calcium ions, internally present or 

externally applied, stabilize the pectin gel in cell wall and middle lamella 

against loss of its cohesive function even when severely degraded during 

cooking.. The intercellular cohesion strengthening effect of calcium disap­

peared when the carboxyls of pectic galacturonan were esterified and 

increased considerably at complete enzymic deesterification. 

Specific gravity fractions from restricted populations, with the well-

-known relationship between sp. gr. (starch) and intercellular cohesion, 

were analysed for a range of chemical constituents and one enzymic activity 

in Chapter 7. A parameter free trend test of pooled data showed that with 

increasing sp. gr., starch as well as citrate, phosphorus, potassium, mag­

nesium and pH significantly increased. Pectic galacturonan, esterified to 

50-60%, increased to a lesser extent. Malate, calcium, PE activity and inter­

cellular cohesion decreased. The neutralization of non-esterified carboxylic 

acid groups of pectic galacturonan in isolated cell walls also decreased and 

did not exceed 501 (ratio Ca2+/C00" < 0.5). From these results and those of 

a lifting date trial it is concluded that the stage of growth and maturity 

determines the level of both starch and non-starch constituents. Within 

restricted populations the already mentioned starch intercellular cohesion 

relationship is replaced by a more causally explainable one between inter­

cellular cohesion and chemical constituents which react with pectic galac­

turonan (Chapters 5 and 6). The enormeous influence of pH on intercellular 

cohesion, particularly in the natural potato pH range of 5.5-6.5, was clearly 

demonstrated. Effects of storage and fertilizers on chemical composition and 

intercellular cohesion of potato tubers were investigated to some extent. 

During storage at 6°C intercellular cohesion decreased together with PE 

activity. Changes in organic acids and a rise of pH also concurred. Nitrogen 

fertilizer stimulated synthesis of organic acids, raised PE activity and 

affected intercellular cohesion favourably. Phosphate fertilizer surpressed 

citrate synthesis and consequently cell separation at cooking. Some hypotheses 
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for explanation of changes in intercellular cohesion during heating of potato 

tubers are discussed with special reference to the 'starch swelling pressure1 

hypothesis of originally Atwater and the 'thermal expansion pressure' 

hypothesis of Hoff. 

Pectinesterase, extracted from Bintje potato tubers, the variety used 

throughout this work, was purified by ammonium sulphate precipitation. Its 

partial characterization was described in Chapter 8. The optimum pH was 

established to be pH 8-8.S and the temperature optimum for activity was found 

at 55 C. Potato PE thus ressembles other higher plant PEs. The activation 

energy was calculated to be 5 700 cal/mole. Preheating of potato tissue was 

carried out with temperature, heating time and surface area as parameters. 

Activation of PE, detected by measuring changes in degree of esterification 

of pectic galacturonan, only occurred at 55°and 60°C but not at 50 C for one 

hour or at 75°C where inactivation occurs. Preheating of whole, unpeeled 

tubers at 55 C for more than one hour caused large increases of intercellular 

cohesion. During preheating of peeled tissue pieces of different sizes at 

temperatures outside the PE activation range, intercellular cohesion also 

increased, depending on the parameters mentioned already caused by leaching 

of ionic constituents. This leaching phenomenon was quantitatively studied 

by specific conductance measurements and chemical analyses (potassium, calcium, 

citrate) of the tissue. 
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