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L INTRODUCTION

1. OBIECT AND SURVEY OF DATA

Decisions in water management are often based on rainfall series. From
historical data it is possible to get some insight into problems about the amount
of water available. The historic scrics can also be routed through a rainfall-
runoff relation to obtain a streamflow series which can be used for planning
water system projects. Working in this way gives a solution which is based on
one realization of the rainfall process only. But what would be the solution if
another series with the same properties as the historic series was nsed? Or more
generally, how reliable is the solution? To answer these questions one must
know the stochastic process underlying the sequence of rainfall data. This
process, however, is very complicated ; for instance, it usually exhibits seasonal
variation and, when working within small time-increments, one encounters the
problem of serial correlation and complicated marginal distributions. It is,
therefore, often impossible to obtain direct analytical solutions for hydro-
logical problems. For a better insight into a particular problem, one is usually
forced to generate synthetic sequences based on a stochastic model for the rain-
fall process; and even that is often difficult.

The aim of this study is to construct a stochastic model for daily rainfall
sequences. The time-increment of a day is chosen because rainfall is mostly
recorded once a day and because a day seems a suitable choice for solving many
problems in hydrology. It is necessary that the model is such that statistical
simulation of synthetic sequences can easily be done.

Daily rainfall sequences are usually characterized by serial correlation and
many observations with zero rainfall amount. It is the combination of these
two facts which makes the generation of daily rainfall sequences complicated.
When dealing with serial correlation only, one can apply, for instance, auto-
regressive models. Bul these models become very cumbersome if one is dealing
with non-negative variables with a lot of zero values. It is also possible to fit
theoretical distributions to daily data. For the Netherlands the fit of many
distributions to daily rainfall data has been discussed by van MONTFORT (1968),
but it is very hard to make a model with serial correlation and one of the
marginal distributions, proposed by this author.

A widely used technique for handling daily rainfall series is to analyse first
the occurrence of rain and non-rain days separately. In a second stage the be-
haviour of the non-zero rainfall amounts is studied. This technique will also
be used here.

The process of rainfall occurrence can be taken in continuous time or in
discrete time. Processes in continuous time have been discussed by GREEN
(1964), Toporovic and YEVIEVICH (1969), QUELENNEC {1973) and Kavvasand
DeLLeur (1975). Working with processes in continuous time may have some
drawbacks, namely: .
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a. The main body of rainfall data is given in units of one day. When a wet day
is observed there can be more than one rainy period during such a day.
Therefore, observing rainfall amounts for discrete time units can lead to quite
another process. Moreover, when a model in continuous time is proposed it is
often difficult to derive the statistical properties of daily rainfall amounts.
This derivation is essential since estimates of the parameters should be based
on the observed daily data.
b. There might be a daily cycle in the rainfall process. For instance, in some
parts of the world rainfall only occurs during some fixed hours. To obtain
a sound model such a diurnal variation should be incorporated.
Because of these disadvantages a rainfall process in discrete time is preferred
here. :

A great deal of this study deals with rainfall data from the Netherlands and
the adjacent Belgian and German areas. The various rainfall stations which are
taken into consideration are mentioned in Table 1.1. The geographical position

T-ABLE 1.1. Survey of Belgian, German and Dutch stations used in this study. The abbre-
viations between brackets are used in Figure 1.1,

Belgian stations:

Ghent (Gt} Moerbeke-Waas (MW) Sint Andries-Brugge (SAB)
German stations: -

Ahaus (As} Laar (Lar) Ringenberg (Rg)
Bracht (Brt) _ Lathen (Lan) Schéppingen (Scn)
Dersum (Dm) Leer (Ler) Schiittorf (Sf) '
Diiren (Dn) Lingen (Len) © Venhaus (Ves)
Herzogenrath (Hh) Norden (Non) Weener (Wer)

Jiilich (Th) Norderney (Ny) Widdelswehr (Wir)
Kleve (K¢) Rheine (Re)

Dutch stations:

Aalten (Aan) Groede (Ge) Roggel (Rel)

Almelo {Ao) Groningen (Gn} Roodeschool (Rol)
Almen (Aln) - Haarlem (Hm) Schaesberg (Srg)
A?;cl (A Heino (Hno) _ Scheveningen (Sen)
Biervliet (Bit) Hellendoorn (Hn) Schiermonnikoog (Sog)
Borculo (Bo) Hengelo (Hlo) Sint-Kruis (SK)
Cadzs_md (Cd} . Hoofddorp (Hp) Stein (Stn)
Castr_lcurn (Cm) Leiduin (Lin) Ter Apel (TA)

De Bl_l_t (DB) Lettele (Le) Terneuzen (Tn)
Delfzijl (D) Leyden (Lyn) Twente (Te)
Denckamp (Dp) Lijnden (Ljn) Vaals (Vas)

Den Helder {DH) Lochem (Lm) Valkenburg (Vg) -
ngenter (Dr) Nieuw-Beerta (NB) Vroomshoop (Vp)
Dirksland (Dd) Nijmegen (Nin) Warffum (Wm)
Emmen (En) Oldenzaal (O Winschoten (Wn)
Iliipschede (Ee) Rekken (Rn) Winterswijk (Wk)
&gsg:;v;glge (Fe) Roermond (Rd} Zwanenb_urg (Zg)

2
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FiG. 1.1, Geographical position of Belgian, German and Dutch rainfall stations used in this
study. The full names of the stations are given in Table 1.1,

of these stations is denoted in Figure 1.1. Attention will also be paid to some

rainfall stations from other climatic regions, namely:

a. From India: Bangalore (12°58' N, 77°35" E), Calcutta (Alipore, 22°32’
N, 88°20" E) and New Delhi (28°35' N, 77°12"E).

b. From Indonesia: Jakarta-27 (6°11’S, 106°50"E), Pasar Minggu (15 km
south of Jakarta-27),

¢. From Surinam: Paramaribo (5°51’N, 55°10°W), Domburg (5°42'N, -
55°05" W).

d. From Sudan:  Khartoum (15°37' N, 32°33" E).

Meded. Landbowwhogeschoal Wageningen 77-3 (1977) 3



e. From Egypt:  Alexandria (K6m el Nadiira, 32°12' N, 29°53’ E).
Daily rainfall observations are usually given in tenths of millimeters. Two
exceptions are:
a. Indonesian data. These are given in millimeters.
b. Indian data before 1958. These are given in hundredths of inches, but are
converted to tenths of millimeters.
The sonrce of the data is given in the last chapter (Chapter VI). This chapter
also summarizes supplements of missing data.

When analysing rainfall series for a considerable number of years one must
be aware that the recorded rainfall amounts have not always been obtained in
the same way. There can be large differences in the mean rainfall amount due to
changes in the way of measuring. If one neglects such non-homogeneities one
gets a stochastic process which is not representative for the present situation
but for a mixture of the many different situations in the past. Moreover, non-
homogeneity can lead to a sertous bias in estimates of parameters. Therefore,
the problem of non-homogeneity is discussed in detail in Chapter IL. In
Chapter I1I the analysis of daily observations of Winterswijk, Hoofddorp and
Hengelo is described. A stochastic model is developed and features of this
model are compared with those of the historic series. Theoretical considerations
about this model, based on the theory of stochastic processes, are given in
Chapter IV. In this chapter formulas for the calculation of correlograms,
variance-time curves and the cumulative distribution of k-day totals are

derived. The application of the model to other climatic regions is presented
in Chapter V.

2. NOTATION AND ABBREVIATIONS

Each chapter usnally contains a number of sections. Formulas, tables and
figures are numbered within these sections, For instance, (5.1) means Equation
(1) of Section 5. Some chapters contain one or more appendices. These appen-
- dices are numbered within the chapter to which they belong; equations are

numbered within appendices. That is (A3.2) means Equation (2) of Appendix

A3. When reference is made to a formula, table or figure of another chapter,
the number of this chapter is included. For instance, IV, (4.10) means Equation

- (10) of Section 4 of Chapter IV and II, (A4.3) means Equation (3) of Appendix
A4 of Chapter II.

The rth moment about zero is denoted by g;; the rth central moment by Hr
and the rth factorial moment by py,y. For the mean (4} usually the symbol y is
used only and the variance (p,) is often denoted by 2.

An estimate of a particular parameter is denoted by placing a caret above the

" parameter. 8o d> means an estimate of a,. However, estimates of correlation
coefficients (p) are denoted by r and estimates of the variance (o%) are usually
denoted by 52,

4 Meded. Landbouwhogeschool Wageningen 77-3 {1977)



Random variables are underlined ; x ~ y means that x and y are identically
distributed. Logarithms are assumed to be to the base e (natural logarithms)
and are denoted by log.

The major abbreviations are:

ML
AML
LR
OLS
CL

sce
Rel.freq.
iid

NBD
SNBD
TNBD
GD
LSD
LDF
SGD

A B

wD, DW

Sd
Sw
Sdw
Swd

KNMI

Meded. Landbouwhogeschool Wageningen 77-3 (1977}

maximum likelihood.

approximate maximum likelihood.
likelihood ratio.

ordinary least squares.

critical level.

cumulative distribution function.
generating function.

probability generating function.

serial correlation coefficient.

relative frequency.

independently and identically distributed.
negative binomial distribution.

shifted negative binomial distribution.
truncated negative binomial distribution.
geometric distribution.

logarithmic series distribution.

‘loi des fuites’.

shifted gamma distribution.

method of analysis in which a wet or dry spell is assigned to the
period in which it begins (A) or ends (B). The capitals A and B are
usually followed by the height (in ienths of millimeters) of the
threshold defining a wet day (see III, 2).

method of analysis by wet-dry cycles (WD) or dry-wet cycles (DW).
The capitals WD and DW are usuaily followed by the height (in
tenths of millimeters) of the threshold defining a wet day (see 111, 2).

dry season.
wet season.
transition period from the dry to the wet season.
transition period from the wet to the dry season.

Royal Netherlands Meteorological Institute
(Koninklijk Nederlands Meteorologisch Instituut).



Il. HOMOGENEITY OF DUTCH RAINFALL SERIES.

1. INTRODUCTION

In this chapter the homogeneity of Dutch rainfall series is discussed. A rain-
fall series is called homogeneous if for each year rainfall on a particular calen-
dar day or month is a realization of the same random variable. A homo-
geneous rainfall series is not necessarily a realization of a stationary stochastic
process because it may exhibit seasonal variation. In fact the definition of a
homogencous series concerns the whole probability distribution of rainfall
amounts. In practice, however, homogeneity of the mean is considered only,
since departures from homogeneity in higher order moments can hardly be
detected because of large sample variations.

Non-homogeneily can be a consequence of a gradual change in the meteoro-
logical situation, but can also be purely man-made, e.g. due to changes of site,
or to changes in instructions to observers. Here it is assumed that departures
from homogeneity are man-made and therefore non-homogeneities in the
mean usually consist of jumps.

Tests for homogeneity were done with annual or monthly totals. Methods
for testing homogeneity often make assumptions about the distribution of the
rainfall data. Therefore the distribution of annual and monthly totals is
discussed in Sections 2 and 3.

The probability of success in detecting jumps in the mean of a given rainfall
series depends on the situation of neighbouring rainfall stations. For instance,
when some station changes its way of measuring, the best way to study the
effect of such a change is to compare the rainfall series with that of another
station in the direct neighbourhood with no changes. Even small departures
from homogeneity can be detected if the two stations are close together. An
cxample of how a jump is determined by comparing altered rainfall stations
with unaltered rainfall stations is given in Section 4. The problem discussed in
that section is a possible jump in the mean of Dutch rainfall series due to a
change in height of the rain gauge, during the period 1946-1954. The signifi-
cance of a jump is tested by comparing rainfall series in the Netherlands with
those of neighbouring countries.

It often happens, however, that the homogeneity of rainfall series of neigh-
bouring stations is also doubtful or that there is no neighbouring rainfall
- station at all. Then only use can be made of a single rainfall series and many

possible jumps will be passed unnoticed. An analysis of homogeneity making
use of only one rainfall series is described in Section 5, where homogeneity of
the Zwanenburg-Hoofddorp series is investigated.

When using a separate process for the occurrence of wet and dry days the
homogeneity of the sequence of wet and dry days is also important, Statistical
methods for detecting jumps in such a situation are given in Section 6.
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2. THE DISTRIBUTION OF ANNUAL TOTALS

When rainfall is recorded within small time increments (a day or shorter),
the marginal distribution of the rainfall amounts is markedly skew, because
zero values and some very large values occur with relatively large probability.
Rainfall amounts over longer periods are less skew because of the effect of the
central limit theorem and it is well known that the skewness of annual totals
is so small that they can be assumed to be approximately Gaussian (cf. pDE
BokRr (1956, 1958)). Here a statistical support for this assumption is given on
the basis of annual data of some Dutch and German rainfall series. Though
many tests for normality exist only a few of them are considered here, namely
a test on the coefficient of skewness, the Shapiro-Wilk test, the Kolmogorov-
Smirnov test and the Kuiper test.

The coefficient of skewness y is defined by:
2.1) Y= psfpd.

An estimate of y can be obtained by replacing the central moments in the right
side of {2.1) by unbiased sample estimates (cf. VEN TE CHOW (1964}, 8-1-11C3):

N
N Z, (-3 _JNOD JF

@2) P= N-2 3i2 N-2
£ o

i

with &V: the number of data,
x: the sample mean.

For a one-sided test the upper and lower 5 and 1 per cent critical values of §
can be obtained from the corrgsponding percentage peints of the \/51 statistic,
given by PEARSON and HARTLEY (1962, Table 34B). One can also use the normal
approximation of the /b, statistic given by D’Agostivo (1970).

The test based on § is only sensitive to skewed alternatives; the other tests
given here are sensitive to many different kind of alternatives (so called omnibus

tests).

The Shapiro-Wilk test is based on the ratio of the best linear unbiased esti-
mate of the standard deviation calculated from an ordered sample to the sample

standard deviation (SHAPIRO and WILK (1965))-
Let x denote the vector of ordered observations

X)) € X)) € ... Sxmandletm = (my, My, ..., my)

denote the vector of expected values of standard normal order statistics. For
the Shapiro-Wilk test one starts with the regression equation:
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{2.3) X = @+ amgp + 08 i=1,....N

where pt and ¢ are unknown parameters for location and scale respectively.
The error (erms ¢; are assumed to have mean zero and covariance matrix V.
The method of generalized least squares gives as an estimate of o

m'vV-1x
2.4) f= ——
@24 7 m'V-im

which is the best linear unbiased estimate of ¢ based on the ordered sample.
Equation (2.4) can be written as:

(2.5) 6 = ./b’ha'x
¥-im
mV-m

¥V-Im b
and a= = .
(m'V-1V-1p)t/2 /BB

with b=

The test statistic is:

(a'x)? _
(2.6) W= a’; .
1 x%k (igl xi) /N

For normal samples W is close to its maximum value 1: for non-normal
samples B tends to smaller values.

The elements of the vector a in (2.5} and (2.6} depend on first and second
moments of standard normal order statistics. The expectations can be ob-
tained from HARTER (1961), but variances and covariances (the elements of V)
are more difficult to obtain, especially for large N. Therefore, SuapRo and
Francia {1972} proposed to base the numerator of (2.6) on the ordinary least
squares (OLS) estimate of g, that is one has to substitute the identity matrix I
for the matrix V in (2.4). They gave percentage points of the null distribution
of the modified statistic W for N = 35, 50, 51(2)99. The lengths of most annual
rainfall series under investigation lie in this range. The table by SHAPIRO and

Francia (1972) has been extrapolated for series which are a bit longer than
99 years.

g

i

i

The Kolmogorov-Smirov test and the Kuiper test are based on differences

bc_:tw.een the empirical and the theoretical distribution function. The empirical
distribution function Fy(x) is defined as:

27 Fx) = number of Obif:r‘/ations = X
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where N is the sample size.
Denote the cumulative distribution function by F,(x) and define:

! “‘Fo(x(i))}

@8a) DT =_sp, (Bl - Folx)) = m{N

i-1
(2.8b) D= msy}g:w (Fo(x)-Fn(x)) = max {Fo(x(;) — T}

where x(;; denotes, as before, the ith order statistic of the sample.
The Kolmogorov-Smirnov statistic D is defined by:

2.9 D = max(D*,D")
and the Kuiper statistic X is defined by:
(2.10) K=Dt+D".

TaBrE 2.1. Mean, standard deviation and realizations of test statistics for tests for normality
of annual data of some Dutch and German rainfall series. Realizations of test statistics
which are significant at the 5 per cent level are denoted by an asterisk.

Standard
Mean deviation
Rainfall station Period (mm) (mm) 3 W DJN KJN
Norderney 1881-1973 701 113 —0.015  0.992 0.554 1.139
Leer 1891-1970 744 106 -{.840 0.948* 0.851 1.388
Weener 1897-1970 735 108 -0.326 0982 0.605 1.202
Laar 1903-1970 710 123 -0.050 0.992 0.401 0.915
Lingen 1855-1973 . 743 123 0.075 0990 0.622 1.258
Rheine 1891-197% 746 128 —0.149 0,994 0.379 0.843
Ahaus 1891-1970 789 128 -0.051 0.988 0.615 1.196
Ringenberg 1893-1970 743 132 —0.114  0.986 0.582 1.071
Kleve 1851-1972 779 131 —0.120 0,985 0.532 1.147
Jiilich 1894-1970 636 119 0.147  0.982 0.723 1.447
Herzogenrath 1894-1970 782 150 1.085* 0.934* 0.551* 1415
Delfzijl 1872-1970 721 107 -0.231  0.989 0.529 0.958
Warffum 1893-1970 723 117 -0.140  0.991 0.57% 1.129
Ter Apel 1892-1972 711 123 0337  0962* 0.504 1.093
Finsterwolde 1892-1972 687 117 0.150 0.984 0.695 1.317
Winschoten 1923-1972 751 110 -0.554 0973 0.588 1.108
Enschede 1881-1972 751 122 0.332 0.964* 0.883 1.632*
Hengelo 1887-1972 748 134 0390 0975 0.544 0.930
Winterswijk 18801972 761 127 0.098 0.969* 0.895* 1.806*
Valkenburg 19041972 773 130 0.383 0982 0.636 1.068
Roermond 1869-1972 657 117 0116 0992 0.588 1.216
Schaesberg 1909-1972 754 123 -0.084 0975 0.477 1.027
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FiG. 2.1. Normal probability plots of annual totals of Leer, Herzogenrath and Winterswijk.

The tabulated percentage points of the null distribution of these statistics are
only applicable if Fy(x) is completely specified, which is not so here because
mean and variance have to be estimated from the sample. Then percentage
points, obtained by Monte Carlo simulation, are given by LILLIEFORS (1967)
for the statistic D and by Louter and KQERTS (1970) for the statistic K. Per-
centage points for D and K are also given in Table 54 (Case 2) of PEARSON and
HARTLEY (1972). For large values of N the critical value at the 5 per cent level
is approximately 0.886/,/N for the Kolmogorov-Smirnov statistic and
1.450/ ./ N for the Kuiper statistic which is about 65 and 85 per cent, respective-
ly, of the commonly tabulated values in the situation of known parameters.

Tabie 2.1 shows realizations of the statistics §, W', D /N and K \/N for rain-
fall series which will be used again for the analysis of homogeneity in Section 4.
The denominator of the estimator of the standard deviation is N-1in Table 2.1,
because tables of percentage points of the statistics D and X are also based on
this estimator. Realizations of the test statistic which are significant at-the
5 per cent level are denoted by an asterisk. The test based on the coefficient of
skewness is one-sided (test on positive-skewness); annual totals of the station
of Leer have a negative coefficient of skewness with a critical level of more than
0.99 and hence a negative coefficient of skewness seems to be possible. In
general there is no evidence for departures from normality. Normal probability
plots of annual totals of Leer, Herzogenrath and Winterswijk (see Figure 2.1)
show that departures from normality are caused by extremely high values
(Herzogenrath, Winterswijk) or extremely low values (Leer).

1t is well-known that the Shapiro-Wilk test is more powerful than tests based
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on differences between the empirical and the theoretical distribution function.
This is illustrated in Table 2.1, the Shapiro-Wiik test giving the larger number
of significant values,

3, THE DISTRIBUTION OF MONTHLY TOTALS

Figure 3.1 shows estimates of the monthly mean and standard deviation for
a number of stations with observations over a long period. The monthly mean
reaches its minimum in February, March or April and its maximum in July or
August, though stations near the west coast (Hoofddorp) alsc have a high
October mean. Another feature of the monthly mean is the comparatively low
September value. Stations remote from the coast (Enschede, Winterswijk,
Roermond) are characterized by high standard deviations in February, July
and August. The high February standard deviation is mainly caused by the
high monthly total of February 1946. For coastal stations there is a nearly
sinusoidal change of the standard deviation. The coefficient of variation is
nearly constant (about 0.5) during the year.

In Section 3.1 a possible serial correlation of monthly totals is investigated.
The marginal distribution of monthly totals is discussed in Section 3.2.

3.1. Serial correlation of monthly totals
Because there is a seasonal change in mean and standard deviation, the
original totals x were standardized to u, with the formula:

Xi2p+m — X

(3.1) Uiz 14m =
Sm
withm : index of the month (1, ..., 12),
[ . index of the year (0, ..., n—1), # being the number of years,

Xm : mean rainfall amount of month m,
52 . traditional (unbiased) estimate of the variance of the rainfall
amount of month #.
A test for serial correlation can be based on the serial correlation coefficient

(scc). The lag & scc was estimated by
N—k
;1 (i — @) (ur 40— 2}

N
Y (- m)?
i=1

(3.2) " =

where N = 12 x n, the number of observations,
u:mean of the N u;s.

N
Using# = 0and ) (u;-)? = N- 12, Equation (3.2) becomes

=1
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N—k
U 4 )

_ =1
(3-3) "= TNC12

For sufficiently large N (N about 75) the distribution of r, ./ N is approximate-
Iy standard normal if the observations are independent and normally distributed
(cf. JENKINS and WATTS (1969), 5.3.5). Moreover, then the different rys are
approximately uncorrelated. Therefore, a rough test for serial correlation can
be based on the statistic:

(3.4) X2 = N Z r}
k=1

which is approximately a yZ-variable (chi-square with v degrees of freedom)
under the null hypothesis.

What should one do when dealing with non-normal data, as is the case here
(see 3.2). BARTLETT (1946) pointed out that the asymptotic variances and co-
variances of the s do not depend on the marginal distribution. Moreover, the
joint distribution of the r,s for normal data seems often to be a good approxima-
tion when dealing with non-normal variables {c¢f. YEvievicH (1972), Section
2.2). However, one should be very careful in applying the test'to non-normal
data because the convergence of the test statistic to its asymptotic distribution
can be very slow. It is, therefore, advisable to repeat the test with a normalizing
transformation on the data.

One can also base the test on r, alone or equivalently on the Von Neumann’s
ratio, which is defined as:

Z Wiy —wi)?
(3.5) d= - —v—

B |

M=

(e — )2

i

1

From (3.2} and (3.5} it is verified that:
(3.6) d ) 1 —?‘1

(cf. SNEYERS (1957)).

Realizations of the test statistics mentioned above and their corresponding
critical levels are given in Table 3.1 for the Hoofddorp and Winterswijk series.
The test based on the statistic X2 has been repeated with the square roots of the
monthly totals which are approximately normally distributed (see Section 3.2).
There is no evidence for serial correfation at the 5 per cent level either for
transformed or untransformed data (the critical levels are always larger than
0.05). Taking the values 3,6 or 12 for v in (3.4) leads to the same conclusions.
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TapLk 3.1, Realizations of test statistics and their corresponding critical level (C.L.} for tests
on serial correlation of monthly totals. The statistic X2 in (3.4) is based on v = 36.

Original data Transformed data
Rainfall series
d C.L. X2 C.L. x: CL.
Winterswijk 1880-1970 0.971 0.141 22,70 0.959 28.73 0.800
Hoofddorp 1861-1972 0.962 0.105 40.44 0.280 41.76 0.235

3.2. The marginal distribution of monithly totals

In contrast with annual totals monthly totals have a markedly skew dis-
tribution. The monthly mean of the coefficient of skewness is 0.774 for the
Winterswijk series and 0.562 for the Hoofddorp series and it can be shown from
Table 34B of PEARsON and HARTLEY (1962) that these values show evidence for
a positive skewness at the 5 per cent level.

There are many distributions which are positively skewed. Two of them will

be examined in more detail, namely the gamma distribution and a distribution
which will be denoted as ‘loi des fuites’ (LDF).

The gamma variable y(4,v) is defined by its probability density:
61 gy = 2" 0,4
. X) = _—-?(‘T x>U,A> 0, v>=0

where I' stands for the gamma function. The parameter 1 is a scale parameter
and the parameter v is a shape parameter.

If v > 1 it follows by differentiation of (3.7} that there is a mode at {(v—1)/A.
If v < 1 the density is J-shaped and is infinite at the origin. For v = 1 one gets
the exponential distribution, which has probability density:

(3.8) fx) = de™*.

Another special case of the gamma variable is the X3%-variable, namely:
G B~y
Moments of the gamma variable are:
(3.102) Hi = vfa
(3.10b)  p, = v/i2
(3.10¢) Ha = 2v/3
(3.10d)  p, = (6 - H2)/A*

(3.10e) C= Juzfu{ =1 /vy (Cis the coefficient of variation)
310D y=2/ v

From (3.10¢ and f} it follows that the quotient y/C is always 2, irrespective
of the parameters of the distribution,

14 Meded. Landbouwhogeschool Wageningen 77-3 (1977)



A normalizing transform of the gamma variable is the Wilson-Hilferty
transform (cf. KENDALL and STUART (1969), 16.7):

Ay |1 1]
Gal 3y {(——) -1 +g}

v

which is asymptotically standard normal. The third central moment of the
transformed variable is of order v—3; so the Wilson-Hilferty transform may give
a good normal approximation when the shape parameter is large.

Estirriates of v and A can be obtained, for example, by the method of moments
or the method of maximum likelihood (ML). The moment estimates are:

(3.12a) i = x/s2
(3.12b) b= x2/52

where X and 52 are the sample mean and variance (unbiased version), respec-
tively.
The ML estimate ¥ of the parameter v follows from (cf. THoM (1958)):

N
(.132) (9 —log? = l%, L, log xi-log X

where N is the number of observations and  stands for the digamma function,
which is the first derivative of the logarithm of the gamma lunction, The iterative
solution of (3.13a) was described by CHot and WETTE (1969). An initial estimate
of v can be based on the moment estimate or an approximative solution of
(3.13a), e.g. the one given by THOM (1958} or the one given by GREENWOOD
and DuranD (1960). The initial estimate given by CHot and WETTE (1969) is
only a simplified form of Thom’s estimate.

After a solution of (3.13a) has been found, the ML estimate of the scale para-
meter can be obtained from:

(3.13b) 4 =¥x.

As a measure for the efficiency of a moment estimator with respect to a ML
estimator one can take the ratio of the large-sample variances of the ML and
the moment estimator. Because for large samples there is no other estimator
with smaller variance than the ML estimator, this ratio is called the asymptotic
efficiency of the moment estimator. Expressions for the large-sample variances
of moment and ML estimators of the parameters of the gamma distribution
are given in Appendix Al. The asymptotic efficiencies of the moment estimators
of A and v are given in Table 3.2, Notice from that table that the asymptotic
efficiency only depends on v. For small values of v (skew distributions) the
method of moments gives very inefficient estimates.

A general measure for the asymptotic efficiency of the method of moments
is the ratio of the determinants of the large-sample covariance matrices of the
ML and moment estimators. For the gamma distribution this ratio equals the
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Tasce 3.2. Asymptotic efficiency of the moment estimators of the gamma distribution as a
function of the shape parameter.

Estimator of Estimator of
v A v v A ¥y
0.1 0.347 0.050 2.0 0.636 0.575
0.2 0.363 0.098 3.0 0.712 0.676
9.3 (.382 0.144 4.0 0.763 0.739
0.4 0.401 0.187 5.0 0.798 0.782
0.5 (.420 0.227 6.0 0.825 0.812
0.6 0.440 0.264 7.0 0.845 0.835
0.7 0.438 0.299 8.0 0.861 0.853
0.8 0.476 0.331 9.0 0.874 0.868
0.9 0.494 0.360 10.0 (.885 0.880
1.0 0.510 0.388 100.0 0.587 0.987

asymptotic efficiency of v, which follows from the formulas for the large-
sample variances and covariances in Appendix Al.

The second probability distribution which is considered here can be described
as follows. Suppose that rainfall occurs in instantaneous showers according to
a Poisson process with mean intensity or rate 1/u, that is the number of showers

in a time interval with length ¢ is Poisson distributed with mean ¢/¢. Rainfall
amounts of single showers are assumed to be:

a. Independent of the process of occurrence.
b. Mutually independent.
¢. Exponentially distributed with mean 1/p.

The process described here was suggested as a model for rainfall over arid
regions by FisHer and CornisH (1960). BERNIER and FANDEUX (1970) applied
this process successfully to fit the distribution of monthly totals of French
rainfall series and because it was used earlier to describe the distribution of
escape flows of gas conduits they called the distribution of a Poisson distributed
sum of iid exponential variables the ‘loi des {uites’ (iid stands for independently
and identically distributed). This name will also be used here and will be ab-
breviated as LDF.

De Boer (1956, 1957, 1958) applied a slight modification of the LDF to
desc_:ribe the distribution of rainfall totals over a period of at least 30 days by
taking a constant rainfall amount for each shower instead of exponentially
distributed rainfall amounts.

_Le} X be the total rainfall amount in a period of length r. The probability
distribution of x, is derived in Appendix A2. For the derivation of the moments
of x, use can be made of the moment generating function (cf. Cox (1962),
Equation (8.3.4)):
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(3.14) fis) = Ele™) = ¢7® eﬁp(pe )
pts

with # = t/u. From (3.14) it follows:

. _ 1 — 3 o m S ym
(3.15) log f{s) = @ ( 1+ l+s/p) = Bm.z;‘l( Ly (z)".

On the other hand;

. . o
(3.16) log f(s) = Y, (-1)"stm —
m=1 *
where » is, by definition, the mth cumulant of x,. So s, satisfies the relation:
|
(3.17) Hom = ’”_f
o
(cf. FisHER and CornisH (1960)).
From (3.17) expressions for moments and central moments can be obtained:

(3.18a)  pf =, = 8fp

(3.18b)  p, = x, = 28/p?

(3.180)  py = x3 = 68/p*

(3.18d)  py = 2y + 32 = (240 + 1262)/p*
(3.18¢) C= /20

(3.18) y = 3//20.

From (3.18¢ and f) it follows that the quotient y/C is always 1.5, irrespective of
the parameters of the distribution.
A normalizing transform of the LDF is:

319 2 {Jx- O}

which is asymptotically standard normal. It can be shown that the third central
moment of the transformed variable is of order 1/63, so the transformation may
give a good normal approximation when 8 is large. For monthly totals of
French rainfall series the approximation (3.19) works quite well (cf. BERNIER
and FANDEUX (1970)). :

The moment estimates of the parameters p and 8 follow from the equations:
(3.200)  p = 2%/s* (= 24)
(3.20b) B = 2x%/s? (= 2%).

So the moment estimates of the parameters of the LDF differ only a factor
from those of the gamma distribution.
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Estimation of the parameters of the LDF by the ML method is complicated.
The likelihood equations and their solution are given in Appendix A3.

Table 3.3 gives estimates of the parameters of the gamma distribution and of
the LDF. The estimate 1/ of the LDF was obtained from 6 by assuming ¢ to
be equal to the number of days of the month (for February z was set equal to
28.2). The magnitude of the estimated parameters changes considerably from
month to month, which is partly due to their large standard deviations. For
instance, for the Winterswijk series the monthly mean of the standard deviation
of moment estimates of pand 1/uis 0.020 mm~?! and 0. 040 days !, respectively,
which can be obtained from (Al.6a and b). ML estimates of p and 1/y have a
somewhat smaller standard deviation, namely 0.018 mm~*! and 0.037 days—!,

TasLe 3.3. Estimates of the parameters of the gamma distribution and the LDF.,

Winterswijk (1880-1970)

Gamma distribution LDF
¥ A (mm-1) 1/d (days—1') # (mm-1)
Month Moments MI. Moments ML Moments ML Moments. ML
January 3.84 3.12 0.064 0.052 0.248 0.233 0.128 0.121
February 2.26 2.28 0.044 0,045 0.160 0,190 0.08¢ 0.105
March 4.20 3.96 0.084 0.079 0.271 0,278 0,168 0.173
April 3.37 2.90 0.069  0.059 0.225  0.228 0.138 0.140
May 3.61 3.53 0.066 0.065 0.233  0.248 0.132  0.141
June 5.57 5.29 0.08 0.081 0.372  0.375 0.171  0.173
July 4,65 4.20 0.054 0049 0300 0.301 0.108 0.109
August 418 339 0.053 0.043 0.270 0.257 0.105 0.100
September 335 3.02 0.052 0047 0223 0230 0.103 0.106
QOctober 3T 3.00 0.053  0.043 0.240 0227 0,106 0.101
November 3.97 3.95 0.062 0.062 0.265 0.282 0.124 0.132
December 3.85 3.25 0,056 0.047 0.248 0.248 0112 0.112
Hoofddorp (1861-1972)

January 407 3.93 0072 0069 0.263 0273 0.144 0.150
February 2.90 2.37 0.068 0.055 0.206 0.203 0.135 0.133
Mar_ch 442 4,22 0.0%9%6 0.092 0.285 0,293 0.193  0.198
April 3.94 328 0.093  0.077 0.262  0.256 0.186 0.181
May 4.02 398 0.088 0.087 0.260 0.275 0.176  0.187
June 3.94 347 0.071  0.062 0.262 0.260 0.142  0.140
July 3.60 3.00 0.04% 0.041 0232 0222 0.099 0095
Auvgust 4.73 3.88 0.052 0.043 0305 0.286 0.104  0.098
Scptgmbcr 392 3.06 0.048 0.038 0.262 0.241 0.096 0'089
October 3.32 2,44 0.037 0.027 0214 0.194 0.074 0:067
November 4.04 4.11 0.054 0.055 0270  0.292 0.108 0.118
December 535 388 0078 0057 0345 0299 0156 0136
18
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respectively, The method for obtaining standard deviations of moment and ML
estimates is given in Appendix Al.

The monthly mean of the ratio of the determinants of the estimated covariance matrices
of the ML and moment estimators is 0.80 for both the Winterswijk and Hoofddorp series.
For the gamma distribution this ratio is 0.71.

For the gamma distribution a honest comparison of the estimates of different
months is not possible because these estimates are not corrected for the fact
that different months can have different lengths. Another disadvantage of the
gamma distribution is that its tail is too long for monthly data. This fact can
be shown by computing moment estimates of the ratio y/C, which has to be 1.5
for the LDF and 2 for the gamma distribution. The monthly mean of the
estimate of this ratio is .46 for Winterswijk and [.1! for Hoofddorp; only for
the month of February of Winterswijk is this ratio larger than 2, namely 2.80.
Perhaps this result explains why for the gamma distribution the ML estimate
of the variance {obtained by substituting ML estimates in the right side of
(3.10b)) tends to be larger than the moment estimate. Thisis seen from Table 3.4
where moment and ML estimates of the standard deviation are compared. The
estimates of the standard deviation of the annual totals were obtained from the
summation of monthly variance estimates. There is a good correspondence
between moment estimates and ML estimates, when a LDF is assumed, but the
ML estimate under assumption of a gamma distribution is larger in nearly
all cases.

Cumulative frequencies of monthly totals and theoretical values, based on
fitted distributions (gamma distribution, LDF), are compared in Figure 3.2.

TasLE 3.4. Comparison of different estimates of the standard deviation {in mm) of monthly
totals.

Winterswijk 1880-1970 Hoofddorp 1861-1972

Moments ML gamma ML Moments ML gamma ML
Month distribution LDF distribution LDF
January 30.5 339 314 28.0 28.5 27.5
February 338 337 311 25.2 219 254
March 24.3 25.0 24.0 218 223 21.5
April 26.7 289 26.5 21.4 234 21.6
May 28.7 29.0 27.8 22.7 228 22.1
June 27.6 28.3 27.5 28.0 299 28.2
July 39.8 41.8 39.7 384 42.0 39.2
August 389 43.2 39.9 41.8 46.2 43.2
September 354 373 349 41.0 46.5 42.8
October 36.2 40.3 37.2 49.1 572 51.6
November 321 322 31.1 37.0 36.8 35.6
December 34.9 38.0 349 29.6 34.8 31.8
Year 113.4 120.4 112.8 1154 126.3 117.4
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F16. 3.2, Cumulative frequencies of monthly totals of Winterswijk (1880-1970) and Hoofd-
dorp {1861-1972) and theoretical cumulative distribution functions.
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Tanik 3.5. Critical levels of the X2-test of goodness of
fit for the LDF fitted to monthly totals,

Winterswijk Hoofddorp
Month 1880-1970 1861-1972
January 0.216 0.158
February 0.346 0.137
March 0.765 0.374
April 0.416 0.316
May 0.117 0.481
June 0.573 0.983
July 0.601 0.551
August 0.249 0.076
September 0.148 0.299
October 0.519 0.095
November 0.24% 0.016
December 0.501 0.394

The theoretical curves are based on ML estimates. The difference between the
cumulative distribution functions of the gamma distribution and of the LDF
is usually small, except for Hoofddorp, October. For this month the LDF gives
a slightly better fit.

So the LDF could be preferred to the gamma distribution for fitting the
distribution of monthly totals.

The critical levels (C.L.) of the X2-test of goodness of fit for the LDF are
given in Table 3.5.

For application of the test, the carrier of the distribution of the monthly totals was divided
into classes in such a way that the expected cell frequency was the same for all classes and was
as small as possible but at least 7. The expected cell frequencies were calculated with ML
estimates based on the actual data instead of ML estimates based on observed cell frequencies;

therefore the approximation of X2 at i, by X? with parameter equal to the number of classes
minus 3 gives a somewhat progressive test (cf. WATSON (1958) and HErMANS (1969)).

From the tabulated critical levels it is seen that the LDF fits the data well.

An attractive property of the LDF is that it can easily (it data with a high
fraction of zeroes and therefore application of the LDF to monthly totals of
stations with an arid or monscon climate gives no special problems. An
example is given in Figure 3.3 where the LDF is fitted to monthly totals of
Bangalore (1879-1970).

The critical levels of the X*-test of goodness of fit are 0.238, 0.002 and §.414 for February,
April and July, respectively; the ratio- $/Cis 1.31, 1.23 and 1.89 for these months. The poor
fit for the month of April is caused by the strange shape of the empirical distribution function.
It may be assumed that most commonly used probability distributions do not fit these data
well.

The LDF can be generalized in several ways. For instance, one can take gam-

Meded. Landbouwhogeschool Wageningen 77-3 (1977) 21



Rel freq. T?V'"q
10 :

0.5+ 0.5
1. tore, April
Bangalore, February IR Bangalore, Apri
o 10 R
¥ o mm
gt F1G. 3.3, Cumulative frequencies

of monthly totals of Bangalore
(1879-1970)and theoretical values
based on the ‘loi des fuites’ (LDF).

0.5+

Historic data
——  Theoretical

Bangalore, Juty

——— T r T T T
10t 200 300
mm

ma distributed showers instead of exponential ones. Then the moment generai-
ing function of x. is

(321)  f(s) = E(e ) = ¢ exp{e P "}
pts

where v and p are the shape and scale parameter, respectively, of the gamma

distribution for the showers. Taking logarithms in (3.21) and expanding log

S5} in powers of sfp gives for the mth cumulant of x,:

- | m
(322)  wm= " ( ") O O i iy,
mjp™ "= .

From (3.22) it can be deduced that:

1
3.23 NWC =14 —r
623 —

Since v > 0 the ratio y/C can take values in the range [1,2).
When A,v—o0 so that y/i—p one gets the distribution which was proposed by DE BOER

(1936, 1957, 1958) for rainfall totals over a period of at least 30 days. For this distribution the
ratio y/C equals 1.
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4. NON-HOMOGENEITIES DUE TO A CHANGE IN HEIGHT OF, THE RAIN GAUGE

In the beginning of this century the rim of rain gauges of the Royal Nether-
lands Meteorological Institute (KNMI) was at 1.50 m above the ground;
during the period 1946-1954 rain gauges were lowered to 0.40 m above the
ground. This was done afier research of BrRaak (1945) who compared rain
gauges with different heights at various sites in the Netherlands. Some results
of his research for rain gauges with their rim at 1.50 or 0.40 m are summarized
in Table 4.1. This table shows marked differences between rainfall amounts
from rain gauges at different heights. These differences are caused by the rain
gauge influencing the air movement so that a part of the rainfall, which shouid
be recorded, is blown over the gauge. The largest differences occur at Dirksland,
which is an unsheltered coastal station. Differences are smaller at coastal
stations, which are more or less sheltered (Leiduin and Castricum) and at
stations remote from the coast (De Bilt).

A drawback of Braak’s research is that the rain gauges were only compared
for a few years. Therefore, in this section the influence of the lowering of rain
gauges is studied over a longer period of observation. Because the height of all
rain gauges has been lowered in the Netherlands, a comparison between chang-
ed and unchanged rain gauges can only be based on rainfall data of neigh-
bouring countries with no changes of height in the same period. For rainfall
records of neighbouring countries one has the following possibilities:

a. -Rainfall observations of the German Meteorological Institute. The ob-
servations are very suitable for this research, because near the Dutch border
no change in height or type of rain gauge has occurred since 1883.

TaBLE 4.1. Comparison of rain gauges at two different heights for various sites, after BRAAK
(1945). The height of the rim of rain gauge R} is 1.50 m; for rain gauge R2 this height is
0.40 m for the sites Castricum, Leiduin and De Bilt, and 0.35 m for the site Dirksland, (The
rainfall amount of rain gauge R2 of Dirksland is assumed to be 37.2 mm in May 1940.)

Dirksland Castricum Leiduin De Bilt
Number of months ' 41 42 34 23
Monthly mean (mm) R1 52.5 64.9 60.6 57.8
R2 57.8 65.8 63.2 58.8
Monthly standard
deviation (mm) R1 36.1 45.5 428 435
R2 39.0 46.3 44,6 439
Correlation coefficient
(see (A4.1}) of Rl and R2 data 0.9984 (.5998 0,9992 (.9999
Number of times that the
monthly total of R1 > R2 0 6 2 i
Ri=R2 0 1 0
Rl < R2 41 35 32 21
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b. Rainfall observations of the Belgian Royal Meteorological Institute. A
drawback of these observations is that the type of rain gauge was changed
about 1950, Besides, it is only since 1951 that measurement of rainfall in Bel-
gium, has been well organized.
c. Rainfall observations at the Observatory of Ghent University. In the period
1921-1972 no change in height took place.
The detection of jumps in the mean, using annual totals, is discussed in
Section 4.1, In Section 4.2 a seasonal change of jumps is investigated with
monthly totals,

4.1 Detection of jumps using annual totals

The probability of success in detecting jumps strongly depends on the
quality of the rainfall data at different sites. Tt is possible to get an idea about
the quality of the data by comparing cross correlation coefficients of annual
totals (see Section 4.1.1). The estimating and testing of jumps with a multi-
variate regression model for point rainfall data is discussed in Section 4.1.2.
An analysis with partial sums of differences of averages of point rainfall data
is described in Section 4.1.3. Section 4.1.4 deals with regression models using
averages of point rainfall data and finally, in Section 4.1.5, the results of this
research are compared with Braak’s results.

4.1.1. Cross correlation coefficients of annual totals

Let py, be the correlation coefficient of two stations X and Y and rx, the
sample correlation coefficient (to be defined in Appendix A4). If there are N
simultaneous observations at the two stations, it can be shown that for the
sample correlation coefficient:

(4.1a) E(tey) ~ Py
and

(1-p%,°
— -

The expressions only hold for homogeneous series. For the validity of
(4.1b) also normality and absence of serial correlation have to be assumed (cf.
KENDALL and STUART (1969), 10.9). These assumptions secem reasonable for
annual totals on the basis of the results in previous sections.

In the case of non-homogeneous rainfall series the sample correlation
coeflicient can be strongly biased. The bias of the sample correlation coeffi-
cient is investigated in Appendix A4 for one jump in the mean in one of the two
series. The numerical examples given in this appendix show that only very large
jumps can lead to a serious underestimation of the theoretical correlation
coeflicient.

For 23 stations, correlation coefficients of annual totals were estimated for
the period 1894-1970. Figure 4.1 shows the relation between the estimated
correlation coefficients and the distances between the stations. Distances were

24

(4.1b) var (1) ~
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F1c. 4.1. Estimated correlation coefficients {(r.,} of annual totals for the period 1891-1970.

The stations considered are:

- Biervliet, Groede, St, Kruis {(Dutch-Flanders (DF)),

— Norderney, Norden, Leer, Warffum, Delfzijl, Finsterwolde (Northern Coastal
area (NC)),

~ Lingen, Rheine, Ahaus, Kleve, Ringenberg, Enschede, Hengelo, Winterswijk
{Overijssel, Gelderland and adjacent German area (OG)),

- Jiilich, Herzogenrath, Diiren, Roermond (Limburg and adjacent German area
(L,

— Lathen, Ter Apel.

Correlation coefficients are only given for distances less than 150 km.

obtained from a list of coordinates. It is somewhat surprising that for small
distances there is a considerable variation in the values of #y,, which is much
larger than could be expected from (4.1b). This large variation can be due to
non-homogeneity or anisotropy of the considered area. Large differences can
also be caused by changes in the rain gauge installation which usually give rise
to a (negative) bias in correlation estimates (see Appendix A4). Not only the
reduction in height of rain gauges in the Netherlands is important, but also the
frequent changes of site. Changes of site can cause serious departures from
homogeneity in the coastal area (local differences of the wind effect) and the
southern part of the Netherlands (orographic effect). It is seen from Figure 4.1
that low values for r,, are mainly found for stations in the northern coastal
area and for Limburg and adjacent German area.
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Figure 4.2 compares annual totals of Finsterwolde and Leer for the periods
1894-1925, 1926-1946 and 1953-1970. The estimated correlation coefficients
for these periods are 0.704, 0.794 and 0.913, respectively. A test on equality of
correlation coefficients can be based on Fisher’s z-transform:

L47sy
42)  zxy = ilog

~Txy

which is the inverse of the hyperbolic tangent of the sample correlation coeffi-
cient.

Under the assumption of normality the mean and variance of zy, are ap-
proximately (cf. KENDALL and STUART (1969), 16.33):

1+ pxy Pxy
4.3 E a~ 1l
(4.3a) (2xy) z108 (1 ‘ny) AN-1)

1 4-p%y

(4.3b) var{z.,) =~ 1 + AR

The z-transform has an advantage because its distribution tends much faster
to normality than the distribution of the sample correlation coefficient. Under
the assumption of equal correlation for two different periods, the difference of
the z-transforms is approximately normally distributed with mean zero (cf.
KENDALL and STUART (1973), 26.19). The standard deviation of this difference
follows from (4.3b) and is about 0.35 when both series have a length of 20 yeats.

The z-transforms for the three periods in Figure 4.2 are 0.704, 0.794 and

1.545, respectively; thus, there is some evidence for a better correlation in the
most recent period.

The poor correspondence between simultaneous annual totals during the period 1894-1925

is partly because from 1911 up to 1924 the rain gauge of Finsterwolde was surrounded by
huge elm-trees.
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Figure 4.3 shows correlation coefficients of annual totals of rainfall stations
in Belgium and Dutch-Flanders for the period 1931-1972. This figure reveals
the following facts:

a. There is a strong correlation between annual totals from different stations
in Dutch-Flanders. The estimated correlation coefficients are in general

larger than correlation coefficients between rainfall stations in the northern

coastal area, which is also scen from Figure 4.1,

b. There is a reasonable correlation between annual totals of Ghent University
and those of stations in Dutch-Flanders.

¢. There is a poor correspondence between rainfall totals of stations of the
Belgian and Dutch national networks.

For annual totals of rainfall stations in this area Table 4.2 gives estimated
correlation coefficients and their z-transforms for two different periods. The

TabLE 4.2. Correlation coefficients (rx,) and their z-transforms (z,,) of annuatl totals of some
Belgian and Dutch stations for two different periods.

. . ey Zxy
Station X Station ¥ 1031-1946 1952-1972 19311946 1952 1672
St. Andries—Brugge St. Kruis 0.636 0,905 0.752 1.501
Moerbeke-Waas St. Kruis 0.378 0.851 © 0.406 1,259
Cadzand St. Kruis 0.836 0,940 1.208 1.740
Ghent St. Kruis 0.739 0.867 0.948 1.321
Ghent Axel 0.814 0.891 1.139 1.427
§t. Kruis Axel 0.723 0939 0914 1.730
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poor correspondence between rainfall data of the Belgian and Dutch national
networks is due to a poor correspondence in the period before 1950. For all
pairs of stations given in Table 4.2 correlation coefficients of the first period
are smaller than those of the second period.

Because of the poor correspondence with rain gauges of the Dutch national
network the rain gauges of the Belgian Meteorological Institute will not be
considered.

4.1.2. A multivariate regression model

The effect of a reduction in height of rain gauges depends on the wind ex-
posure and because the degree of sheltering against the wind differs from
station to station possible jumps in the mean need not be the same for all
stations. Therefore, in the first instance use is made of a multivariate regression

model for estimating and testing jumps at various Dutch stations. A model
could be:

P .
Yrj = _Z_ﬁfjxkiJrﬁoj—Feu k=1...mj=1...¢
(4.4) ol '

Ykj =

1

,B;jxk; +BOJ+ 5j—i—gkj k=n+1,,N,]=l,,q

il

i=1

with p : number of foreign (Belgian, German) stations,

g : number of Dutch stations,

xx:: rainfall amount in the kth vear of the ith foreign station,

-yx; - rainfall amount in the kth year of the jth Dutch station.

uring the first # years (period 1) the height of Dutch rain gauges is 1.50 m;
during the last N-n years (period 2) this height is 0.40 m. The error terms
€4j,.-..en; are assumed to be iid for every j. The marginal distribution is
assumed to be Gaussian with mean zero.

The use of this model underlies the assumption that only a change in height
can cause a jump in the mean. The facts that there are changes of site and that
in 1962 a new type of rain gauge was introduced in the Netherlands are not
considered. Therefore care is needed in the interpretation of the results of the
regression analysis.

Estimates of the regression coefficients can be obtained by applying the
method of least squares for each Dutch station separately (cf. Rao (1973),
8c.1 and 8¢.2). -

Figure 4.4 shows estimates of the jump ;, which were oblained by applying
the regression model for four different regions. The periods for which the
regression model was applied are given in Table 4.3, The largest values for the
0 s belong to coastal stations. Jumps of more than 10 per cent are found in the
nort_hern coastal area (Warffum, Schiermonnikoog, Roodeschool), but they
are in general much smailer for stations in the south-western coastal area.
Possible explanations for this phenomenon are given in Section 4.1.3. The
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Fi. 4.4, Estimates of jumps &, (sec Equation (4.4)) for different regions (in mm). Stations
for which the jump differs significantly from zero are denoted by an asterisk.

TasLE 4.3. Realizations of the U-statistic (Equation (4.5)) for testing significance of jumps
d; in the regression model (4.4). The different regions are given in Figure 4.4,

Region Period 1 Period 2 U Critical level
1 1926-1946 1953-1970 0.27 0.002
2 1926-1945 1953-197¢ 0.79 0.405
3 1926-1945 1955-1970 0.69 0.054
4 1931-1846 1952-1972 0.63 0.029
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height of estimated jumps rapidly decreases, as the distance to the coast in-
creases. There are, however, some stations for which the height of the estimated
jump strongly deviates from jumps of adjacent stations (Nieuw Beerta, Ter
Apel, Valkenburg, Groede). This deviation can be due to changes in the
instrument or changes of site.

Whether or not the jump of a particular Dutch rainfali station differs from
zero can be tested with a Student test. The test is one-sided, because it may be
assumed that reduction of height of rain gauges leads to an increase in the
recorded rainfall amounts. Stations for which a significant value is found at
the 5 per cent level are denoted by an asterisk in Figure 4.4.

For a particular region one can also look at all stations simultaneously and
test the hypotheses:

- Hy: all §;s are equal to zero, and
- Hy: not all d;s are equal to zero.
The test statistic, which has to be used in this case is {cf. Rao (1973), 8c.4)

|C4|
|Col
with |Cp|: determinant of the sample covariance matrix under f,,
|Cy|: determinant of the sample covariance matrix under H,.
Under H, the test statistic is close to its maximum value 1; values much

smaller than 1 lead to rejection of H,,. For the null distribution of the statistic
U holds (cf. Rao (1973), Table 8c.5p):

1-U - q
U~ Npgl
where F stands for Snedecor’s F-variable.

Realizations of the U-statistic and their critical levels are given in Table 4.3,
At_ t}fe 5 per cent level H, is rejected for the coastal regions 1 and 4. For region 4
this is somewhat s‘urprising, because most jumps are small in this region and
due to some negative values the average jump does not differ very much from

the average jump of region 2. However, not only the height of jumps is im-

portant for the power of the U-statistic, but also the structure of the covariance
matrix.

4.5) U=

(4.6) F(g,N-p—g-1)

4.1.3. Analysis with partial sums

For the detection 'and quantification of jumps cumulative sum techniques
can also be used. This section deals with partial sums of differences of annual
averages of Dutch and foreign stations.

The ith partial sum S; of a sequence of numbers {a}, N . is defined as:

S, =0
(4.7) lSi= Y i=1,...,N.
k=1
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When dealing with differences of annual averages from two different coun-
tries, a 1s assumed to be:

(4.8) Oy = Y — Xy
with x;: average of annual totals of some foreign rainfall stations for the kth

year, _
¥i: average of annual totals of some Dutch rainfall stations for the kth

year.

The index i is chosen such that i = 1 corresponds to the first year of period 1
and i = N corresponds to the last year of period 2.

Figure 4.5 shows the relation between i and S; for four different regions,
which are denoted in Figure 4.4. The direction of the curves is not the same.
The curve goes upwards when the mean of Dutch stations is larger than the
mean of foreign stations; a downward curve occurs when the opposite is true.
During the period in which Dutch rain gauges were lowered there is a visible
change in slope of the curves. This change is most evident for the stations in
region 1* and is less obvious for stations in regions 2 and 3, because of the
small wind effect in these regions. A remarkable fact is the large difference
between stations in region 14 and those in region 4. Possible explanations for
this phenomenon are:

a. The average wind velocity is somewhat smaller for region 4.
b. Stations in region 4 may be more sheltered against the wind. The importance
of the degree of protection was shown in Table 4.1 and was also demon-

strated by BRAZIER (1927). :
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¢. Other departures from homogeneity can be important. For regions 1% and 4

the quality of the foreign stations is very important, because their number
is small. The curves of region 4 show a change in slope during the early thirties,
which is an indication of other non-homogeneities. Doubtful is also the fact
that after 1960 the curve of region 1* is nearly flat.

The estimated correlation coefficient between averages of annual totals of
Dutch and foreign stations is 0.870 for region 14, 0.977 for region 2, 0.939 for
region 3, 0.867 for region 4, using the stations Ghent, Axel and Biervliet only,
and 0.889 for region 4, when the stations Ghent, Axel, Biervliet, St. Kruis and
Terneuzen are used. If one compares these correlation coefficients with correla-
tion coefficients of annual totals of point rainfall data, which are given in Fig-
ures 4.1 and 4.3, it turns out that they are larger for regions 14, 2 and 3.
Some caution is needed for this conclusion, because the correlation coefficients
do not refer to the same period.

Two explanations can be given for this phenomenon:
a. A jump in the mean due to a change of site causes a negative bias in the correlation esti-
mator, but this jump is much smaller when averaging over other stations and consequently,
it follows from the considerations in Appendix A4 that the negative bias in the correlation
estimator is small.
b. Assume that in a particular region there are three rainfall stations in each country,
denoted as X,, X;, X, and Y,, Y,, Y3, respectively, Further it will be assumed that the
stations in each country lie in an equilateral triangle. When the triangles of the two different
countries are congruent and the distance between stations of the same country is small in

comparison with the distance between stations of different countries, a reasonable variance-
covariance structure is;

(4.92) Varx; = var y; = ¢ foralli
(4.9b) cov (5, ¥j) = pyor? for all i and j
(4.9¢) 0oV (xi, X5} = cov(¥;, i) = peo? for all iand jwith i # j

where x; and y; are the annual totals at the sites X; and Y,-, respectively.
Usually p, will be smaller than p.,, because the correlation coefficient is in general decreasing

with the distance. From (4.9) it can be concluded that the variances and covariances of the
averages are:

(4.10)  var¥X = vary = %(1+2pw)a'2
(4.10b)  cov(x, )= puo?

and so for the correlation coefficient of the averages

— .30
411 F=
{ ) D=y % 200

which is larger than p, for p,, < 1.

4.1.4. Regression models based on averages of point rainfall observations
.In Section 4.1.2 jumps in the mean were estimated for rainfall stations in
dlffefent regions of the Netherlands and use was made of the U-statistic to test
the significance of jumps. For regions 14, 2 and 3 it was shown that correlation
coeflicients of averages were larger than correlation coefficients of individual
stations and therefore, a more powerful test for significance of jumps for a
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TaBLE 4.4. Features of annual totals (in mm) for stations in regions 1%, 2 and 3. The means of
periods 1 and 2 are denoted by m, and m,, For region 1* period 1 corresponds to 1926-1948
and period 2 to 1953-1970. For the other regions periods 1 and 2 are given in Table 4.3.
The difference between m, and m, is denoted by v and its estimated standard deviation by s,.
The last column gives the realization of Student’s s-statistic (= v/s,) for festing equality of
means.

"y m; v Sy t

Stations in region 1*

Germany Norderney 716 743 27 38 0.70
Norden 789 212 24 36 0.66

Netherlands Warffum 695 806 11 34 3.24
Schiermonnikoog 710 822 112 36 112
Roadeschool 630 738 88 31 2.83

Stations in region 2

Germany  Venhaus 57 777 20 44 0.47
Rheine 749 773 24 47 0.51
Schiittorf 782 823 41 49 0.84
Schéppingen 807 206 0 53 -0.01
Ahaus 810 835 25 46 0.54
Ringenberg 733 772 39 48 0.81
Kleve 802 792 -10 50 -0.19

Netherlands Denekamp 770 799 . 28 46 0.61
‘Enschede 785 814 29 46 0.63
Hengelo 778 799 21 46 0.45
Winterswijk 770 817 46 49 0.95
Aalten 749 805 56 47 1.20
Nijmegen 781 795 14 40 0.35

Stations in region 3 .

Germany  Bracht 744 827 83 46 1.80
Filich 631 713 82 40 2.05
Herzogenrath 741 856 i15 53 2.16
Diiren . 613 632 19 37 0.52

Netherlands Schaesberg 734 804 69 a8 1.82
Roermond 638 745 106 41 2.60
Roggel 679 757 78 45 1.74
Stein 699 806 107 44 2.44
Vaals 832 958 126 43 2.62
Valkenburg 722 363 140 43 328

particular region could be obtained by taking the annual averages of the rain-
fall stations of each country.

Table 4.4. gives the annual averages of periods 1 and 2 for stations in re-
gions 14, 2 and 3. This table also gives the differences between the means, their
estimated standard deviations and realizations of Student’s t-statistic for
testing equality of means. At the 5 per cent level differences between the means
of period 1 and 2 are significant for all Dutch stations in regions 1* and 3
(the one-sided critical value of ¢ is about 1.69). In region 3, however, there are
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also significant differences between the means of periods 1 and 2 for some
German stations. Besides, this region is characterized by large differences
between nearby stations (Diiren, Herzogenrath).

The first regression model to be considered is:

P =0+ Bxx +ex k=1..,n

(412 {£k=a+ﬁxk+5+§k k=ntl,.....N

with xi: mean rainfail amount for German (or Dutch) stations of a particular
region in the kth year,

yx: mean rainfall amount for Dutch (or German) stations of a particular
region in the kth year.

The error terms g;, are assumed to be independent normal variates with mean
zero and the same variance.

Regression coefficients were estimated by ordinary least squares (OLS).
Table 4.5 gives estimates of the jumps (), their estimated standard deviations
{s3) and ¢-values (&/s3) with one-sided critical levels (C.L.). The square of the
multiple correlation coefficient (R?) is also given in this table. The results in
Table 4.5 show that it does not matter very much whether one predicts German
data from Dutch data or Dutch data from German data. For regions 1* and 3
application of a Student test leads to rejection of the null hypothesis (§ =0) at
the 5 per cent level. However, the results for region 3 strongly depend on the
stations, used in the regression analysis. Here a large number of stations is
included to get a large multiple correlation coefficient, Though the alternatives
for the U-test and #-test are not the same, it is remarkable that there are large
differences in critical levels for regions 2 and 3 (see Tables 4.3 and 4.5).

Up to now it has been assumed that the reduction of height of Dutch rain
gauges leads to a jump in the mean that can be corrected by adding a constant
rainfail amount to annual totals of period 1. One can also think of models with

the property that annual totals of period 1 have to be multiplied by some factor.
The first multiplicative model (model 1) is:

(4.13) {f”‘:ﬁx"ﬂk F=lo.n
¥e=fBxg e k=n+1,...,N

Tanre 4.5, Results for the regression model (4.12),

Y': German stations

a X: German stations
X: Dutch stations

Y : Dutch stations

Region 1* 2 3 14 2 3
$(mm)  —80.9 132 29.9 83.0

. . 29 . 13.6 :
sg(mm) 159 87 143 12,8 83 159
! - 5.09 - 1.52 - 2.09 6.48 1.63 2.85
C.ZL. 0.000 0.069 - 0.022 0.000 0.055 0.004
R 0.848 0.965 0.915 0.879 0.966 0922
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with x;: mean rainfall amount for German stations of a particular region in
the Ath year,
¥&: mean rainfall amount for Dutch stations of a particular region in the
kth year.
The error terms ¢, are assumed to be independent normal variates with mean
zero and variance ¢2. ~—
The regression coefficients can be obtained by the method of maximum
likelihood {ML), see Appendix AS.
Equation (4.13) can also be written as:

V= ka+—9k k=1 ...,n
= Pxy + e k=n+1,...,N

and since f ~ 1 this model is nearly equivalent to {model 2):

(4.14)

Yo = oy Xg + & k=13...,n
4.1
(413) {.Yk=0€zxk+ek k=n+1,...,N.

Estimates &, and 4, of o, and a,, respectively, can be obtained by OLS, and
a Student test can be done to test the equality of the regression coefficients a;
and o, that is f = 1. An estimate f of the factor f follows from:

(4.16) f=4,/4,.

Linearization of (4.16) gives for the variance of f:
afvard, var &,

”

4.17) varf ~

at o}

(cf. KENDALL and STUART (1969), 10.6). This variance can be estimated by:

(4.18) _ SJ% = &} Sefq J&4 +s§2 /43
where s:i and s- are estimates of the variances of &, and &,, respectively.

In models 1 and 2 the standard deviations of the error terms do not depend
on the variate x. A model, which has the property that larger annual totals of
German stations lead to error terms with larger standard deviations, is (model

3:
| Sue = Pl +e) k=1,...,n
(419) { ¥e = Bxi(l +¢x) k=n+1,...,N.

Here the symbols xx and yx have the same meaning as in Equation (4.13).
The error terms g, are assumed to be iid with mean zero. Taking logarithms at

both sides of (4.19) gives:
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TABLE 4.6. Some results for multiplicative\_modcls.

Region
14 2 3
Model 1 f 1.115 1.017 1.027
5 0.019 0.011 0.018
Model 2 1.115 1.017 1.028
‘ 5 0.020 0.011 : 0.019
' 6.08 1.61 1.50
C.L. 0.000 0.058 0.071
Model 3 f 1.115 1.016 1.037
57 0.020 0.011 0.020
! 6.00 1.36 1.92
CL. 0.000 0.091 0.032

log(yy/xe) =logf—logf+e k=1,...,n

{4.20) {
log(yu/xy) = log § “te k=n+l,...,N

because:
(4.21) log(1 +ex) = k.

Estimates of the regression coefficients can be obtained by OLS and a Student
test can be done to test the hypothesis log f = 0, that is f = 1. For the estimation
of the standard deviation of f use can be made of:

(4.22) var f & f*var(log f).

Results for multiplicative models are given in Table 4.6. In this table 1 stands
for the realization of Student’s test statistic for a teston f= 1. The critical
levels (C.L.) are based on a one-sided test. The values in Table 4.6 show that
the various multiplicative models lead to the same result. For region 1* there
is an obvious indication for a larger mean in period 2, but for the other regions
this is less obvious. There is also a good correspondence between the results of
the additive model, given in Table 4.5 and those of multiplicative models,
given in Table 4.6, From a mathematical point of view it is difficult to decide
which kind of model has to be preferred because there are no zero or nearly
zero annual totals, but from a hydrological point of view a multiplicative model
is more plausible. Besides, the factor in multiplicative models can also be
applied to periods shorter than a year. If an additive model is used, a method
has to be found for splitting up the jump in the mean for shorter periods.

4.1.5. Comparison with earlier research
In the previous sections it was investigated whether a change of height of
Dutch rain gauges causes a jump in the mean of annual totals. Dutch rainfall
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observations were compared with observations of neighbouring countries for
a period of about 40 years. Because of this rather long period this research
might be more useful than BRAAK’s (1945) research. However, Braak compared
rain gauges at the same site, whereas here rainfall stations of different sites are
used and consequently Braak’s rainfall observations show a better correlation.
This is seen from the estimated correlation coefficients in Table 4.1 and Fig-
ures 4.1 and 4.3.

It is, however, not only the distance between the rainfall stations which leads
to smaller correlation coefficients, Non-homogencities also give rise to a
negative bias in the estimated correlation coefficients. When there are non-
homogeneities, for instance due to changes of site, the results of the analysis
may be biased. This bias can be reduced by taking into consideration many
stations simultaneously, since such non-homogeneities occur locally.

Though different methods were followed here to determine the height of
the jump, the result is nearly always the same. The height of the jump usually
ranges from 2 per cent (stations remote from the coast) to a bit more than 10
per cent (coastal stations). These results correspond quite well to those of
Braak, but it should be noted that Braak discarded months with snowfall.

4.2. Seasonal changes of jumps in the mean
In this section seasonal changes in a non-homogeneity due to a reduction
in height of rain gauges are investigated. Seasonal changes can result from (cf.
BrAZIER (1927)):
a. Seasonal changes in wind velocity. In the Netherlands large wind velocities
occur more frequently during winter.
b. Seasonal changes in the degree of sheltering. During summer, rain gauges
are in general better protected against the wind.
¢. Seasonal changes in drop size. Rain drops are in general larger during the
summer season, so that the wind has less influence on the movement of the
rain drops.
Monthly totals were used to investigale seasonal changes of a jump in the
mean,

The first model to be considered is model 2 of the previous section (see
Equation (4.15)):
Yim = Oym Xiem + €hm k=1,...,n
Yim = Ogm Xkm + €km k=n+1,...,N
with xum: mean of the square root of the rainfall amounts for German stations

of a particular region in the mth month (1 = 1 corresponds to Janua-

ry) of the kth year,
Vim: mean of the square root of the rainfall amounts for Dutch stations
of a particular region in the mth month of the kth year.
The square root of monthly totals is taken here as a normalizing transfor-

(4.23)
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S1mSzm, m FiG. 4.6. Estimated regression coefficients
144 and estimated multiplication factors with
their estimated standard deviations for
model 2 (see Equations (4.23)and (4.24))
and region 1*. Factors which differ signi-
ficantly from 1 are denoted by an asterisk.

02

5

mation (see 3.2). A multiplication factor for monthly totals in the mth month
of period 1 can be obtained from:

(424) f = 83./80.

Since the coefficient of variation of monthly totals is larger than for annual
totals (they differ by a factor of about 12} and since the cross correlation
coefficients of monthly and annual totals are of the same order, the estimate
of the factor £, is less accurate than the estimate of S for annual totals (its
standard deviation is about a factor / 121arger). Because of this large standard
deviation only stations in region 1* are considered. For stations in this region
the estimates &,,, @ym, 7o and sy (estimate of the standard deviation of S}
are given in Figure 4.6. Again use was made of a linearization for the deter-
mination of sp_. Figure 4.6 also shows for which months a one-sided Student

test leads to rejection of the hypothesis o, = ®zm (o = 0.05). The height of the
factor (f,} changes irregularly from month to month, partly because of its
rather large standard deviation. It is remarkable, however, that the annual
variation of the factor 4,,, is much larger than the annual variation of dym.
A_ll factors turn out to be larger than 1, but the largest values occur during the
Winter season. Possible explanations for this phenomenon are given in the
beginning of this section. Further it should be noticed that during the winter
season a substantial part of the monthly totals can consist of snow. The amount
of snow measured strongly depends on the type of rain gauge and this makes
thfﬁ Tegression analysis less accurate during winter, because Dutch and German
fain gauges are not of the same type. Another problem is that the correlation
between monthly averages of Dutch and German stations can differ consider-
ably from month to month, This is seen from Figure 4.7 which shows averages
of square roots of monthly totals of Dutch and German stations for March
apd Apri_l. 'I:he points are more scattered for period 1 of the month of March.
Sﬁnce t.here is an irregular.change in the correlation between monthly totals
;‘ i; gls.:rfét;t‘ad standard deviation (s, ) of the factor also changes irregularly (see
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F1G. 4.7. Averages of square roots of monthly totals (in mm) of Dutch and German stations
in region 14.

vz o3 &g 5 7T 8 9§ B U % Fic. 4.8. Monthly estimates of the multi-
plication factor and their estimated stan-
W\"/_\’ dard deviations for model 3 and region 1*.
0.2 Factors which differ significantly from 1
are denoted by an asterisk.
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For the estimation of the factor £, use can also be made of model 3 of the
previous section (see Equation (4.19)). Estimates of the factors and their
estimated standard deviations (s} are given in Figure 4.8. For the calculation
of s Equation (4.22) was applied.

Figure 4.8 also shows for which months a one-sided Student test leads to
rejection of the hypothesis log fn = 0 (& = 0.05). Figures 4.6 and 4.8 only
show small differences between the estimated factors of models 2 and 3. Only
model 2 leads to a slightly larger value of f, for the month of March and a
slightly smaller value for the month of September. The estimated standard
deviation, sp,,, is always somewhat smaller when model 2 is used. For this
reason and also because there is no indication for an increase in the standard
deviation with the height of the rainfall amount (see Figure 4.7), model 2 is
preferable to model 3.

Meded. Landbouwhogeschool Wageningen 77-3 (1977 19



5. HOMOGENEITY OF THE ZWANENBURG-HOOFDDORP SERIES

The Zwanenburg—Hoofddorp series is one of the longest rainfall series in
the world. In 1735 rainfall observations started in Zwanenburg and since
February 1861 have been continued in Hoofddorp. Because of its length this
rainfall series can be very important for water resources problems, but before
using this series one must be sure of its homogeneity.

Several possible non-homogeneities of this series are discussed in Section 5.2
and 5.3. The analysis of homogeneity is preceded by a short review about the
history of this rainfall series.

5.1. Historical review of the rainfall observations at Zwanenburg and Hoofddorp
5.1.1. Rainfall observations at Zwanenburg

Rainfall was observed three times a day. The original data from 1766 can
be found in the archives of the ‘Hoogheemraadschap Rijnland’ at Leyden.
. The original data before 1766 were lost, but nearly all monthly totals of the
period 1735-1860 are known. Supplements of gaps in the series were given by
LABRUN (1945).

Up till September 1787 the rain gauge had an orifice of 493 cm? and iis rim
was about 3 meter above the ground. From May 1783 the orifice of the rain
gauge was 246 cm? and its height about 2.50 m. From that date there was also
a frame of brass-wire in the funnel to prevent stoppages. Rainfall was recorded
in units of 1 lijn’ (1 ‘lijn’ is about 2.21 millimeters). Large errors can have
occurred during frost and snowfall, because solid precipitation in the rain
gauge was not melted. Also small rainfall amounts were not recorded.

To get a homogencous Zwanenburg-Hoofddorp series, LaBrun (1945)
muitiplied all monthly totals of Zwanenburg by a factor 1.11. The factor was
based on a comparison of annual means of Zwanenburg and Den Helder for
the period 18441858 with values of Hoofddorp, Lijnden and Den Helder for
the period 1891-1930. The following remarks can be made on Labrijn’s pro-
cedure:

a. ";"shi di)stance between Den Helder and Hoofddorp is quite large (nearly
m).

b. The type and the height of the rain gauge have not always been the same in

- Den Helder and in Hoofddorp.

The correction is the same for all months. Use of different factors for winter

- and summer is preferable, because during winter there is a large wind effect

and there are problems with solid precipitation,

For rainfall observations before 1787 Labrijn justified the use of the factor
1.11 by comparing annual means of Zwanenburg-Hoofddorp with those of
Haarlem for the periods 1735-1742 and 1891-1930. Indeed from the annual
averages of Zwanenburg-Hoofddorp and Haartem, given in Table 5.1, a factor
1.11 looks reasonable, but when comparing annual averages of Zwanenburg-
: Hoofddgrp with those of Leyden (see Table 5.2) a larger factor would be more

appropriate. Notice from Table 5.2, that the 17361758 mean of Leyden (ob-
40

c.
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TasbLe 5.1. Annual averages (in mm} of Zwanenburg-Hoofddorp and Haarlem for different
periods (after Labrijn (1945)). :

Average for the period
Rainfall series

1735-1742 1891-193¢
Zwanenburg-Hoofddorp 620 750
Haarlem 718 770

TasLE 5.2. Annual averages {in mm) of Zwanenburg-Hoofddorp and Leyden for different
periods.

Average for the period

Rainfall series

1736-1758 1925-1946 1951-1970
Zwanenburg-Hoofddorp 658 746 825
Leyden 786 719 g16

servations of Musschenbroek) does not differ very much from more recent
means. :

For tests on homogeneity of the Zwanenburg-Hoofddorp series, the Zwa-
nenburg series given by Labrijn (1945) was used. Unless stated otherwise, rain-
fall observations before 1861 are divided by 1.11 to regain the original values.

5.1.2. Rainfail observations at Hoofddorp

Meteorological observations at Hoofddorp started in February 1861. The
rain gauge had a square funnel with an area of 400 cm? (cf. LABRUN (1945)) and
its rim was at 1.55 m above the ground. From October 1907 onwards another
type of rain gauge was used. This rain gauge, which was the standard gauge of
the KNMI, had a round funnel with an area of 400 cm?. The height of the rim
was 1.50 m, but the most important difference with respect to the previous
gauge was its shaltow funnel. The rain gauge was lowered to a height of 0.40 m
in March 1947, In 1964 the new standard gauge, with an orifice of 200 cm? and
a beiter shape of funnel, was introduced. The site of the rainfall station was
changed in October 1913, January 1961 and January 1973.

The original data of the Hoofddorp series can be found in the archives of
the KNMI, except the data for the period 1867-1887. Daily, monthly and
annual totals can also be found in publications of the KNML

5.2. The usefulness of the Zwanenburg data :
In this and the next section, the following subseries are distinguished:
— Zwanenburg (1735-1860),
- Zwanenburg 1 (1735-1787),
- Zwanenburg 2 (1788-1860),
— Hoofddorp (1861-1972).
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o Hoofddorp / Zwanenburg 1 : monthly means of
1404 + + Heofdderp / Zwanenburg 2 F[G' 51 RathS Df the y

— Hoefddorp / Zwanenburg Hoofddorp and Zwanenburg.

TarLE 5.3. Critical levels of the Wilcoxon test for equality of means of Zwanenburg and
Hoofddorp.

Month Zwanenburg Zwanenburg 1 Zwanenburg 2
o Hoofddorp Hoofddorp Hoofddorp
January 0.000 0.000 0.000
February 0.158 0.480 0.125
March (.000 0.021 0.001
April : 0.040 0.054 0.130
May 0.019 0.295 0.008
June 0.079 0.414 0.050
July 0.386 0.473 0.476
August 0.012 0.190 0.007
September 0.091 0.807 0.02¢
QOctober 0.057 0.182 0.078
November 0.343 0.551 0.352
December 0.000 0.000 0.000

A subdivision of the Hoofddorp series is given in Section 5.3.

The Zwanenburg and Hoofddorp series are compared on the basis of month-
ly totals, There are no problems of a time-shift due to the transition from the
Julian to the Gregorian calendar, because in this part of the Netherlands the
Gregorian calendar was introduced in 1583. The ratios of the moenthly means
of the Hoofddorp and Zwanenburg series are given in Figure 5.1. A Wilcoxon
test was done for testing differences in monthly means of the Hoofddorp and
Zwanenburg series. The critical levels of this test are given in Table 5.3. The
test is one-sided, because it may be assumed that the Zwanenburg mean could
be smaller (larger height of the rain gauge, omission of small rainfall amounts
and the measurement of snow). From Figure 5.1 and Table 5.3 it can be
concluded: :

a. Differences between monthly means of the Zwanenburg and Hoofddorp

series can be quite large and are on the average a bit more than 10 per cent
(this is about Labrijn’s correction, but it should be noted that the Hoofddorp
series is 25 years longer here). For months of the winter season the differences

can be much larger, which is due to the wind effect and the measurement of
SNOW,
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b. For many months the Wilcoxon test leads to significant values at the 5 per
cent level.

¢c. There are differences between Zwanenburg 1 and 2 during the summer
season. For the period of April-September the monthly mean is 61.4 mm

for Zwanenburg 1 and 55.6 mm for Zwanenburg 2. The differences may have

been caused by interception Josses dug to the frame of brass-wire.

d. The magnitude of the differences changes irregularly from month to month.
Especially the small differences for the month of February are remarkable.

Before 1905 the February monthly totals in the archives of the KNMI refer

to the period January 31st-March lst, but Labrijn’s series has been corrected

for this.

To get an idea about the reliability of old rainfall series, correlation coeffi-
cients of annual totals of Zwanenburg-Hoofddorp and Leyden were calculated
for the periods 1736-1758, 1925-1946 and 1951-1970. The estimated correla-
tion coefficients for these periods are respectively 0.792, 0.911 and 0.918;
annual totals for the first and third period are ptotted in Figure 3.2. From this
figure it is seen that the points of the first period are more scattered. Something
similar holds for the series of Zwanenburg-Hoofddorp and Den Helder (sec
Figure 5.3) and therefore the Zwanenburg data are useless for the solution of
present-day hydrological problems. May be the best place for such data is
a museum.

Fig. 5.2. Annual totals of
Leyden and Zwanenburg-
Hoofddorp for two different
periods. The Zwanenburg-
Hoofddorp data are those
given by LasruN (1945),

Layden Leydﬁn
rm *

1000 1736 - 1758 1000+ 1951-1370
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500 500

T T —T
M 750 1000 mm 500 250 000mm

Zwanenburg Hoofddorp

Den Helder Den remr Fig. 5.3. Annual totals of
fm mm | - Den Helder and Zwanen-
it e oo o-1ees burg-Hoofddorp for two dif-
ferent periods. The Zwanen-
burg-Hoofddorp data are
those given by LABRUN
(1945).
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5.3. Homogeneity of the Hoofddorp series

In Section 5.1.2 various changes in rainfall measurements at Hoofddorp
were mentioned. A first idea about departures from homogeneity due to these
changes can be obtained by plotting the partial sums of the departures from the
mean (@ = xx— X¥in(4.7), where X is the mean of the xxs) on the basis of annual
totals (see Figure 5.4). There are some changes in stope of the curve of Si
versus #, namely:

2. About 1880, No indications for this change can be found in the archives of
the KNMI.

b. Somewhere between 1905 and 1910. This change may be attributed to the
change in the type of instrument in 1907. The change in slope could also be

ascribed to the change of site in 1913, but the positions of the rain gauges before

and after 1913 (see archives of the KNMI) do not give any reason for a smaller

mean precipitation after 1913.

c. About 1950. This change is ascribed to the reduction in height of the rain
gauge. _

As a consequence of these results the Hoofddorp series is split up into 3 sub-
series, namely Hoofddorp 1, 2 and 3, which refer to the periods 1861-1907,
1908-1946 and 19471972, respectively. Estimates of the annual means, j;, Kz
and u, of Hoofddorp 1, 2 and 3 are 776, 738 and 790 mm, respectively.

Homogeneity of the Hoofddorp series is tested under the assumption of
equal variances and normality of the annual totals. The following tests were
done:

a. Hotphy = iz = U3
H,:py, po and gy are not mutually equal. The realization of Snedecor’s

F-statistic is 1.81 which is not significant at the 5 per cent level (critical level
is 0.168).

Partial 3um {tom}

200 . Fi6. 5.4. Partial sums of
departures from the
5o e mean of annual totals of

Hoofddorp (1861-1972).

400

2004

600+ Lo

-2004

=1000

. — - ;
1875 1930 1925 1950 1975
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b. Hy iy = pp
Hytpy > p,
which gives a realization of 1.06 for Student’s #-statistic (critical level is 0.147).
C Hotpy = iy
Hipy > u,
which gives a realization of 1.67 for Student’s s-statistic (critical level is 0.050).

So, when no series of neighbouring stations are used, differences in the mean
of about 6 per cent do not give evidence for non-homogeneity at the 5 per cent
level (one-sided).

An interesting point of investigation is the change of site in 1961. During the
period November 1958 — December 1961 observations were made at the old and
new site, which are denoted as X and Y, respectively. For the 38 monthly totals
there are 22 positive differences between Y and X, 15 negative differences and
1 tie. A sign test does not give evidence for differences in the mean at the 5 per
cent level. The mean difference between monthly totals of Y and X is only
0.23 mm.

" 6. HOMOGENEITY WITH RESPECT TO THE NUMBER OF WET DAYS

The daily rainfall model which is described in Chapters IIT and IV contains
a separate process for the occurrence of wet and dry days (shortly denoted as
wet-dry process). A dry day is defined as a day on which rainfall does not
exceed some threshold &. In the model rainfall amounts on dry days are set to
zero, An imporiant problem is the choice of &, since a large value of 4 can result
in a stochastic model which is a bad approximation of the real rainfall process.
On the other hand, if a low value for & is taken the wet-dry series can be non-
homogeneous, due to the quality of different observers.

To demonstrate this, correlation coefficients of the annual number of wet
days were estimated for 15 stations in a small area in the east of the Nether-
lands with thresholds of 0.3 and 0.8 mm. The value 0.3 mm is a kind of minimum
value, because rainfall amounts smaller than this value can also be due to fog
or dew. The relation between the estimated correlation coefficients and the
distances between the stations is given in Figure 6.1. There is only a weak de-
pendence between the height of the correlation coefficient and the distance, but
the most important fact is the large scatter of the points for the lower threshold.
Even though the number of years (19) is small, the points should be close
together because the correlation coefficients are heavily correlated, as a conse-
quence of the large correlation between the data. A threshold of 0.8 mm looks
more acceptable, though there is a small reduction in the mean (about 3 per
cent) when values smaller than 0.8 mm are set to zero.

In Section 3.1 the Von Neumann's ratio was introduced for testing serial
correlation in homogeneous series. The numerator in (3.5) is hardly influenced
by a jump in the mean, but the denominator usually tends to be much larger,
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Fig. 6. 1. Correlation coefficients of the annual number of days with a rainfall amount of at
least § mm for the stations of Heino, Vroomshoop, Almelo, Enschede, Hengelo,
Twente, Hellendoorn, Oldenzaal, Lettele, Lochem, Winterswijk, Borculo, Rekken,
Deventer and Almen.

which is seen from (A4.5b) and (A4.8b). Therefore the Von Neumann’s ratio
tends to be smaller than 1 for a non-correlated rainfall series with a jump in the
mean. Also, for more than one jump in the mean the denominator tends to be
larger (cf. YEVIEVICH and JENG (1969), Equations (31) and (52)) and conse-
quently the Von Neumann’s ratio tends to be smaller than 1. The annual
number of wet days of successive years can be considered as independent
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(otherwise there would also be an indication for serial correlation in monthly
and annual rainfall amounts) and therefore the Von Neumann’s ratio can be
used as a test for homogeneity. This test is less powerful than the F-test and
t-tests considered in Section 5.3, because it does not assume any knowledge
about the position of possible jumps. Yet, it is possible to get a clear idea about
the homogeneity of the wet-dry process as will be seen below.

For annual data the number of observations is quite small and therefore the null distri-
bution of the Vor Neumann’s ratio could be sensitive to departures from normality. There-
fore a Monte Carlo experiment was done to investigate this influence, Samples of size 70 were
generated from a normal distribution and two special cases of the A-distribution. The variable
x has a A-distribution if:

X = @ -(1-wh/a A#£0
6.1 x = log (u/(1-) a=0

where y is standard uniform (uniform on (0,1)). For A = 0 one has the logistic distribution.

The cases of the A-distribution, which are considered here are those for which 4 = 0 and
A = —1. For these values of A the distributions have longer tails than the normal distribution;
in the case 1 = —| the distribution is even so long-tailed that no moments exist (as in the
Cauchy distribution). Normal probability plots of the empirical distributions of the Von
Neumann’s tatio, based on 1,000 series for each type of distribution, are given in Figure 6.2,

Pseudo-random standard uniform variates were obtained from the function RAN of the
DEC 10 computer, which is based on an article by PAYNE et al. (1969). The series for different
types of distributions are based on the same standard uniform variates.

The empirical distributions of the Von Neumann’s tatio coincide for normal and logistic
variates, so it can be concluded that small departures from.normality are not important,
When A = -1 a test based on the Von Neumann’s ratio is conservative at the 5 per cent level.

For the annual number of wet days of the rainfall series of Winterswijk,
Hengelo and Hoofddorp realizations of the Von Neumann’s ratio are given in
Table 6.1, together with estimates of the mean, the standard deviation and the

Fic. 6.2. Normal probability plots
of the Von Neumann’'s ratio 4 for
independent processes with a Gaus-
sian or A-distribution (see Equation
(6.1)). The plots are based on 1,000
samples of size 70.
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TABLE 6.1. Mean (), standard deviation (s), coefficient of skewness (§) and Vor_l Neumann's
ratio (d) of the annual number of wet days.

m s b d
$=03mm Winterswijk 13881-1973 169.5 202 ~0.662 0.639
Winterswijk . 1908-1973 175.2 17.2 -0.853 0.954
Hengelo 1908-1973 166.4 19.3 -0.310 0.821
Hoofddorp  1867-1971 168.2 15.3 -0.212 0.800
5=08mm Winterswijk 1881-1973 140.0 15.6 -0.363 0.930
Winterswijk  1908-1973 142.3 15.6 -0.422 1.018
Hengelo 1908-1973 139.9 17.3 —0.487 0.504
Hoofddorp 18671971 138.9 16.9 -0.116 0.977

coefficient of skewness. These values are given for two different thresholds,
namely 6 = 0.3 and 0.8 mm. For the lower threshold the Von Neumann’s
ratio shows evidence for non-homogeneity (¢ = 0.05, two-sided).

For Winterswijk and Hoofddorp partial sums of departures from the mean
are given in Figure 6.3, to get an idea about the positions of jumps in the mean.
Years with changes of observer are also denoted in this figure, except for the
Hoofddorp series before 1910. When = 0.3 mm, there is a change in slope
of the curve about 1910 for Winterswijk and about 1925 for Hoofddorp. These
changes in slope can be ascribed to the change of observer in 1907 and 1922.
For Winterswijk, SToL (1970) showed that the number of small rainfall amounts
is only comparatively low during the winter season of the period before 1908.

It is possible to test homogeneity with these partial sums. If S; denotes the
ith partial sum of the departures from the mean and if N is the length of the
series, the adjusted range is defined as:
©3a) Ry = jpax S mim, S
and the rescaled range as:

(635) Ry = RYs

where s denotes the sample standard deviation.

When there is a jump in the mean the adjusted range tends to be larger,
usually in such a way that also the rescaled range tends to be larger. For homo-
geneous normal independent processes cumulative distribution functions of Ry,

based on Monte Carlo simulations, are given by WALLIS and O’CoNNEL (1973)
for N = 20 (10} 50 (25) 100.

To investigate the sensitivity to departures from normality the rescaled ranges were
computed for the synthetic series on which Figure 6.2 was based. Normal probability plots
of the empirical distributions of Ry are given in Figure 6.4. For the normal and logistic

distribution the distribu'_(ions coincide, while for 1 = —1 tests based on Ry are conservative
when the percentage points by Wallis and O’Connel are used.
48
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FI1G. 6.3. Partial sums of departures from the mean of the annual number of wet days of Win-
terswijk (1881-1973) and Hoofddorp (1867-1971). Years with a change of observ-

er are denoted by an arrow, except for Hoofddorp (1867-1908). .
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For Winterswijk (1881-1973) and Hoofddorp (1867-1971) the hypothesis
of homogeneity is rejected at the 5 per cent level for 6 = 0.3 mm.

So far tests for homogeneity were based on one rainfall series only. More
powerful tests can be obtained when the annual nomber of wet days at different
stations are compared. For instance, realizations of the Von Neumann’s ratio
for the differences of the annual number of wet days of Winterswijk and Henge-
lo (1908-1973) are 0,334 and 0.541 for § = 0.3 and 0.8 mm, respectively. Even
for the larger threshold there is evidence for non-homogeneity at the 5 per cent
level, that is at least one series is non-homogeneous, A comparison of the annual
number of wet days of Hoofddorp with averages of De Bilt, Gouda and
Scheveningen for the period 1953-1971 leads to a significant jump in the mean
of the Hoofddorp series, when the threshold is 0.3 mm. The stations De Bilt,
Gouda and Scheveningen are chosen here because they have no missing data
and no change of observer. So non-homogeneity of the wet-dry series of

Hoofddorp for 6§ = 0.3 mm is mainly due to the observations in the period
1922-1960).

7. SUMMARY

In this chapter the homogeneity of some Dutch rainfall series was investi-
gated. A rainfall series was called homogeneous if the distribution of rainfall
amounts is the same for every year. Homogeneity was investigated for the mean
rainfall amount and for the mean of the wet-dry series.

Tests for homogeneity of the mean rainfall amount were based on monthly
and annual totals. It was shown that annual totals are approximately Gaussian;
for monthly totals the ‘loi des fuites’ (LDF) gives a good fit. Besides, absence
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of serial correlation in monthly or annual totals can be assumed. Two subjects
about homogeneity of monthly and annual totals were considered, namely
the influence of the reduction in height of Dutch rain gauges in the period
1946-1954 and the homogeneity of the Zwanenburg-Hoofddorp series.

Jumaps in the mean during the period 1946-1954 were estimated and tested,
with regression models for annual totals of Dutch and Belgian or German
stations. For stations remote from the coast an increase in the mean of about
2 per cent was found; for stations in the coastal area the increase in the mean
was sometimes more than 10 per cent. However, there was a large variation in
the height of estimated jumps, due to differences in the degree of protection
against the wind. A slight indication for larger jumps during the winter season
was found from a comparison of monthly data of Dutch and German stations
in the northern coastal area.

Significant differences between the means of the Zwanenburg series {1735
1860) and Hoofddorp series (1861-1972) were found. Besides, a poor correla-
tion was found between simultaneous rainfall observations of Zwanenburg and
those of other stations. The Hoofddorp series showed no significant departures
from homogeneity.

Homogeneity of wet-dry series was tested with the annual number of wet
days. Departures from homogeneity are possible because small rainfall amounts
are often registered as zero. There are only a few long-term rainfall series in the
Netherlands for which the wet-dry series is homogeneous, if a wet day is defined
as a day with at least 0.3 mm rainfail. A lower bound of 0.8 mm for rainfall
amounts on wet days seems to be more appropriate for the Netherlands.
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APPENDICES

Al. VARIANCES AND COVARIANCES OF ESTIMATORS OF THE PARAMETERS
OF THE GAMMA DISTRIBUTION AND OF THE ‘LO1 DES FUITES

Al.l. Variances and covariances of moment estimators

An approximation of the covariance matrix of the moment estimators of the
parameters of the gamma distribution can be obtained from a linearization of
the relations (3.12) (¢f. KENDALL and STUART (1969), 10.6):

(Al.]) COV(L,H~T- -COV(Es) T
with COV (4, $): covariance matrix of moment estimators,
COV (3, s?): covariance matrix of the sample mean and
variance,
T: transformation matrix, which has the form;

i IS
ox o5t Ha T
(Al.2) T = =
5 o wi opp?

—_ = __ T, e
ox b2 ) P T LS T iy 13

When N, the number of observations, is large, the matrix COV (%,52) is
approximately:

1 [H2 M3
(A1.3) COV(Z,sY) =~ N
Ha My~ 3z

(cf. TroM (1958)).

Substitution of (A1.2) and (A1.3) in (A1.1) gives for the second moments of
the moment estimators:

(Al4a) var{d) = i { _1_ B (]“4 13) _ 241 iy
Nlw 3

(Al.4b) | var(d) ~ _1_ {ﬁ (,u,, u3) 4.“1’3}“3}
N u

(Alde)  cov(di) ~ — {EH_ L) i
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For the approximations given above it does not matter whether one takes
N of N-1 in the denominator of the variance estimate.
Substitution of (3.10a, b, ¢ and d) in the right sides of (A1.4) gives:

(Al.52) var{l) = E@ + 2)
4 TNy
(AlSh)  var(®) = 2—;(1: + 1)

(AlSc)  cov(d,) ~ %(u + 1.

Equations (A1.5a and b) are also given by THOM (1958).

Because of the relations between moment estimators of the gamma distri-
bution and those of the LDF, see (3.20), approximations of the variances of
the moment estimators of the LDF follow from (A1.4) by replacing 1 byip and
¥ by 1 . Afier substitution of (3.18a, b, ¢ and d) one obtains:

(Al.6a) var(p) = %(é 1)

202 1
(Al.eb)  var(@) = T(g + 1)
(AL6c)  cov(p,B) = % 26 + 1).

Al.2, Variances and covariances of maximum likelihood estimators

The asymptotic covariance matrix of the maximum likelihood estimators
can be obtained from the expectations of the second derivatives of the logarithm
of the likelihood function (cf. KENDALL and STUART (1973), 18.15, 18.16 and
18.26). This gives the following results for the ML estimators of the gamma
distribution (cf. THOM (1958) and JorNsON and Kotz (1970), Chapter 17 (43)):

A A2y
(Al.7a) var@)zﬁ(‘,w—w(f;)_jl)

(AL7b)  var() = “NTW{T)TU"

A
Ny () -1)
where i’ stands for the trigamma function (second derivative of the logarithm

of the gamma function).
Explicit formulas for variances and covariances of ML estimators of the
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(Al.7e)  cov(i,D) =
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LDF cannot be obtained easily. Estimates of variances and covariances were
obtained from a numerical evaluation of the second derivatives of the loga-
tithm of the likelihood function. Formulas for the second derivatives are given
in Appendix A3.

A?2. THE PROBABILITY DISTRIBUTION OF THE ‘LOI DES FUITES

In this appendix the probability density and the cumulative distribution
function {cdf) of the LDF are derived.

Let . be the number of showers in an interval of length ¢ and let x, be the
rainfall amount in that interval, then:

(A2.1) Pxisx)=FP, =0+ :ZO] P(x, < xim = k) P(n; = k).
=1

If n; = k, then X, is a sum of & iid exponential variables with scale parameter
p. It is well known that this sum is gamma distributed with shape parameter £
and scale parameter p. Further, g, is Poisson distributed with mean 6 = t/u.
So (A2.1) becomes:

o0 Bke—ﬂ ; ko ok—1
(A2.2) Px:sx)=¢e0 + b =Py
(e ;‘:1 k) e 4.

0

For the integral on the right side of (A2.2) one can write:

X

pher k=1 ()
(A2.3) T e Pdy=1- WA o-ex
A ek

Q¢

which can be obtained by integration by parts or using the fact that (A2.3)
represents the cdf of the waiting time to the kth event in a Poisson process
with rate p.

From (A2.2) it follows (by differentiation):

P(E:=O) = ¢~0
(A2.4) (0O)F -1
P(x< x, < x4dx) = ¢=0 3 WO x~ e ™
t y=c¢e L2k 1) dx x > 0.

This expression can also be obtained by expanding the Laplace-Stieltjes

transform (3.14} in powers of 1/(p + s5) and inverting the seri
t t
(cf. Cox (1962), Exercise 27). g series term by term

Us:)ing Equation 9.6.10 of ABrRAMOWITZ and STEGUN (1970), one gets for
x> 0: '

g /PO
(A2.5) P(x <Xt < x+dx)=e 8- V= [ 2/ pbx) dx

5
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where /; stands for a modified Bessel function of order 1 (cf. Fisuer and
CornisH (1960), Cox (1962), Equation (8.3.6) and BERNIER and FANDEUX
{1970)).

A3. ESTIMATION OF THE PARAMETERS OF THE ‘LOI DES FUITES’ BY THE METHOD OF
MAXIMUM LIKELIHOOD

Suppose there are N independent observations of which » are zero and
m = N — nare positive. The non-zero observations are denoted by x,, ..., Xm.
The likelihood L* (p, ) follows from (A2.4):

o m ey & (p@)kx,f‘"l
A3D) Lrp,6) = 7™ T] e {k ;T(:cT)r}

Instead of maximizing L*(p, 6) with respect to p and 0 one can also maximize
L(p,0) = log L* (p, 0). Taking logarithms in (A3.1) gives:

; (pe)"x'z**}

A32) L@ =-No-p¥ xi+ Y lo
W2 Lo p L Xt ) loe {m K e=1)1

Let A = p@, then:
(A33)  K(LO) = LG/6,0) = -NO- } Y xi+ 3 log k()
i=1 i=1

where A;(A) is given by:

ko k=1
i

(A34) m() = kilm'

Maximization of K(4,8) proceeds in two stages. First, the log likelihood is
maximized for fixed A with respect to 8, and second, the result in the first step

is maximized with respect to 4.
For fixed 4, one gets:

A m m
(A3.5) G(A) = mgx K(1,0) = mgx (_NQ—E Z x;-) + E log A (4)

=1 =1

and it follows, by differentiation, that the maximum is attained for

0= v2 i xi/N. Substituting this value in (A3.5) gives:
=1
(A3.6) G =-2VIN ¥ xi+ ¥ loghi(d).
i=1 i=1

The maximum of G(4) can be found by the iteration formula of Newton-
Raphson:

(A3T) A= oy~ G (o )G (hi-y) I'=12..
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with:

m m h"
(A382) G =-A"12 JNY xi+ ) —

i=1 i=1

(A38b) G(H =11 (N i X

and:

o0 A"‘lx'f-'l
(A3%2) k=2 oD

@ ;Lk—zxig—l

St k-1)! = (k- 1)ik!

W
-
+
[ingt:
Jr—— o5
FIx
|
———————
==
~———

(A39b) M=

A remark from a computational point of view is that a too large starting value
gives an overcorrection in the first iteration; so protection against negative
values of A, seems advisable.

For the evaluation of the variances and covariances of the ML estimators
one needs expressions for the second derivatives of the log likelihood (see
Al1.2). From (A3.3) and {A3.6) it follows:

(A310) L{p,0) = Nb—p 3 x:+ G(pf) + 2c./p0
i=1

withe = v ii} xi.

Differentiation of (A3.10) gives:
(A3.lla) L, = 02G”(pd) — Le./0/p®
(A3.11b)  Lgg = p>G"(pb) ~ 4 /p]0°

(A3.lle) Ly = pbG”(p0) + G’ (pf) + 1c/ /p8.
At the optimum G'(p) = 0; G“(pf) can be obtained from (A3.8b).

A4, BIAS IN THE SAMPLE CORRELATION COEFFICIENT DUE TO A JUMP IN THE MEAN

Suppose there are N simultaneous observations at the sites X and Y, then
the sample correlation coefficient is:

_ %
(Ad.1) xy = ————W
with:  Zy= 3 1y, 3
: By = gy — L . .
A i N EZI i :Z'l i
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B
Il
iP=
HNHM
[
Z -

N 1 N 2
B= 20ty (&

The quantities &y, 52 and 52 differ a factor N from the sample covariance
of x and y, the sample variance of x and the sample variance of y, respectively.
For the expectation of r., one has approximately:

@)
VEREE)

When dealing with two homogeneous series this relation leads to (4.1a).
In this appendix approximations of E(rx,) are given for one jump in the mean
at the site X.

Two models are considered, namely a model in which a jump in the mean is
created by adding a constant to a part of the series (model a) and a model in
which the realizations of a part of the series are multiplied by some factor

(model b).

(Ad.2) E(rey) =

Model a reads:

X; = &i ) 1.31,...,.”
(A43) Xi = & + 0 i= n+l, » N

yi= 1 i l, ...,N
with: E(ed) = pe;coviess) = aidy

Taking expectations of sample variances and covariances gives:

N
(Adda)  E(G,) = %—1 igl E(xips) - ]%, 21 ,—Zx E(x) E(v)

JEI

Adab)  EG) — Y1 S panys 23S Ey By
N = ! N = =1
N i=1

(Adde) E@®) = EVF ):: E(yD) - ¥ A 2y Ed B
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Substitution of (A4.3) in (A4.4) gives, after some algebra:
(Ad.5a) E(&,) = (N-1oy
(Ad5h)  E@®) = (N-1)oi + Ng(l-q) &

~ (N-1 % [1 + g (1-9) §%a%]
{cf. YevievicH and JENG (1969), Equation (18))

(Ad.5c) E@FE)=(N-1)¢&
where g = (N-n)/N. ,

Substitution of (A4.5) in (A4.2) finally yields:

ggr.v pfﬂ

0oy JL+a(l 3R 1+ a(-9)5%0s

(A46)  E(ry) ~

So the (negative) bias in r., depends on the ratio §/o_ and g (influence is
maximal if ¢ = 1). For ¢ = 4 (this is about the value for g in Figure 4.1, when
a jump in the mean of Dutch rainfall series is assumed in the period 1946-1954)
one finds for E{r,,):

Pn §jot = 0.60  8%/ed = 0.15
0.90 0.85 0.88
0.70 0.66 0.69
0.50 0.47 0.49

For Dutch rainfall series the value 0.60 for 82 /63 corresponds to a jump in the
mean which is a bit more than 10 per cent. Even then, the difference between
E(r.y) and p., is hardly noticeable, because the standard deviation of ry, is
quite large as a consequence of the small number of observations. Only when
Pen is very large the standard deviation of 7., is sufficiently small (see Equation
(4.1b)).

If one takes non-overlapping sums of p x;s, the ratio §%/g2 changes pro-
portional with p. For monthly totals this ratio differs about a factor 12 from

that of annual totals and consequently, the bias in 3% and ry, is negligible for
monthly totals.

Model b reads:
Xi = & i=1, I
(A4 xi= (14 Dg; i=n+l1,...,N
Yi = Y i= l’ , N
58
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where &; and 5; have the same properties as in model a.
Substitution of (A4d.7) in (A4.4) gives, after some algebra:

(Ad.8a) E(Z,) = (N-1D o, [1+ gl
(A4.8b) EFE) = (N-1D [l +2q4+q*)% + Nq(1-q)* |2

R (N-1) 0% 1+ 2g] + qF + q( —@) I piz/o?]

- {cf. YEVIEVICH and JENG (1969), Equation (40)).
(A48c) E@®@)=N-1Do

with ¢ = (N-n)/N.
Substitution of (A4.8) in (A4.2) gives:

(14 gD
1+ 291+ gP + (1-q) gl 160t

A49)  E() ~

For this model the bias in ., depends on .. If ¢ = 4 and pijot = 45 (cf.
Table 2.1) one finds for E{z,):

Pen I =010 I=0.05

0.90 0.84 0.88
0.70 0.65 0.69
0.50 0.47 0.49

So the results of this model are nearly the same as those of model a.

A35. ESTIMATION OF THE PARAMETERS OF MODEL 1 BY THE METHOD OF MAXIMUM
LIKELIHOOD

In this appendix the ML estimates of the parameters in the regres.sion model
(4.13) are derived. The ys are independently and normally distributed; for
k =1,... nthemean is fx,/f and the variance is o2 /f*; for k = n+1, ..., Nthe
mean is fx; and the variance is o2, Hence, the likelihood is:

(AS.1)  L*(Be.f) = (}2 \/ﬂ)_" exp {Af kgl (yk—ﬁxk/f)z/az} X

N
x (0/2m) ®-mexp {—Jz‘ kaﬂ:ﬂ (ykﬁxk}”/az}.

Taking logarithms in (AS5.1) gives:
(A5.2) L(B,0./) = log L* (B.0.f) = ~Nlog./2n-Nlogo + nlogf+

- o | £ o+ RO

=n+1l
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In the first instance L(8, 7, /) is maximized for fixed f with respect to § and g,
and afterwards the log likelihood is maximized with respect to f.
Let:

{AS5.3) G(f) = néfiﬂx L{fB,0.f).

For fixed f, (4.13)is a linear regression model and consequently the likelihood
attains its maximum value for:

A58  f= (f PECE § xkyk)/ $ i

k= m+1 =1
and

(A5.5) Ng?=f kil A+ 3

Substitution of (A5.4) and (A5.5) in (A5.3) gives:

(A56)  G(f) = -Nlog/Zn—-Nlogé + nlogf- NP2

using (A3.2).
The value f for which G(f) attains itsmaximum can be found by the iteration
formula of Newton-Raphson:

(ASTY o= fio - ()G (R )G () I=12,..

_ n N 2 .
k +1yi (szl St k z xkyk) / *

For the relaxation factor w the value 0.9 was chosen and the starting value
Jo was taken to be 1. The first and second derivatives of G(f) are:

N n

(AS8)  G'(N)=- F0 7

where

1 ] n
(A3.9) N6f=glfz Yi= ), xS 2 X+ i Xk /ﬁ x% 4
=7 5

=1 K=1 =1 k=S 1
and

{ 242
(AS10)  G"()=-— 4 + j:; _r

; 7
with

#s1) 4= i (ilxkyk)/ilxi.

60 Meded. Landbouwhogeschool Wageningen 77-3 (1977)


file:///ogJlk

It can be shown that the variance of ffollows from (cf. RICHARDS (1961)):

(A5.12)  var /=~ /E(G"()
which is estimated as:
(A5.13) s3 = -1/G"(f)
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III. ANALYSIS OF DAILY RAINFALL DATA
FROM DUTCH STATIONS

1. INTRODUCTION

In this chapter the analysis of the daily rainfall series of Winterswijk {1908
1973) and Hoofddorp (1867-1971) is discussed. The Winterswijk series from
1881 up to 1908 was not analysed because of its poor quality (see 1L, 6). Besides,
some results are given for the series of Hengelo (1908-1973) which was analysed
in a later stage.

The data are analysed in two steps. First, the occurrence of wet and dry days
is described and second, the modelling of rainfall amounts on wet days is
studied. A wet day is defined as a day with a rainfall amount of at least 6 milli-
meters. To study the influence of the height of the threshold the rainfall scries
of Winterswijk was analysed with thresholds of § = 0.3 mm and é = 0.8 mm.
The series of Hoofddorp and Hengelo were only analysed with § = 0.8 mm for
quality reasons (see II, 6).

In the subsequent sections different aspects of the daily rainfall model are
discussed. Section 2 describes how the influence of seasonal changes was
reduced. In Section 3, 4 and 5 the parameters are estimated and some assump-
tions underlying the model are tested. Characteristics of the historic sequence
and the model are compared in Section 6 and 7. Some features of the model
(correlograms, variance-time curves and for simple cases the cumulative
distribution functions of k-day totals (k =1, 2, ...) can be obtained by
nurmerical computations. The formulas underlying these computations will be
derived in Chapter 1V. Characteristics which could not be easily derived by
numerical computations were obtained by Monte Carlo simulation.

2. THE REDUCTION OF SEASONAL VARIATION

In IL3.1 the estimation of serial correlation coefficients was based on
standardized values to reduce the effect of seasonal changes in mean and
standard deviation. However, the use of such transformations is not attractive,
when dealing with a stochastic model with a separate process for the occurrence
of wet and dry days (shortly denoted as wet-dry process). Therefore, the esti-
mation of the parameters and the testing of some assumptions underlying the
model were done for each month separately. Sometimes periods of three
months were combined to seasons. The seasons, which are distinguished here,
are: winter (December-February), spring (March-May), summer (June-
August) and autumn (September November).

Sp_ecial rules have to be devised for wet or dry spells which extend across
the limits of a period (month or season). A wet interval or spell is defined here
as a sequence of wet days, on each side bounded by a dry day. A dry spell can
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be defined analogously. The analysis by month (or season) should be done in

such a way that wet or dry spells are not split up. To satisfy this requirement

different methods can be followed, Those used here are:

A Wet or dry intervals are assigned to the period in which they begin.

B Wet or dry intervals are assigned to the period in which they end.

WD A wet-dry cycle is assigned to the period in which the dry spell begins.
A wet-dry cycle consists of a wet spell and its following dry spell,

DW A dry-wet cycle is assigned to the period in which the wet spell begins.
A dry-wet cycle can be defined in the same manner as a wet-dry cycle.

Rainfall amounts (on wet days) are assigned to the period to which the

corresponding wet interval belongs, except for the estimation of the correlation

coefficient between the length of a dry spell and the rainfall amount on the day

following that spell (see 4.1). Days before the first complete spell or cycle in a

historic record are discarded in the analysis, The same is done with days after

the last complete spell or cycle.

For Winterswijk and Hengelo the analysis by dry-wet or wet-dry cycles relates to the period
December 1907-November 1973; for Hoofddorp it relates to the period March 1867—
February 1972,

In the following text, tables and figures the capitals A, B, WD or DW are
usually followed by the height of the threshold in tenths of millimeters.

The methods A and B are used for parameter cstimation. These methods are
preferred for this purpose because the stochastic model will be used to generate
synthetic sequences. This is explained further in Section 7. For estimating
serial correlation coefficients, use is made of the methods WD and DW because
it is desirable that if a particular period ends with a wet spell in some year it

begins with a dry spell in the next year.

3. ANALYSIS OF THE OCCURRENCE OF WET AND DRY DAYS

It is well known that the probability of a day being wet or dry generally
depends on past conditions. In statistical models usually one of the following
stochastic processes is used to describe the persistence in the occurrence of wet
and dry days:

a. Two-state (namely wet or dry) Markov chains of a certain order (cf. Lowry
and GUTHRIE (1968) and DUMONT and Boyce (1974)). Here the assumption
is made that the probability of some state on any day only depends on the
states of a certain number (the order of the chain) of previous days.
b. Alternating renewal processes (cf. COLE and SHERRIFF (1972) and QUELEN-
NEC (1973)). Here it is assumed that the lengths of successive spells are
independent. A more complete définition of an alternating renewal process will
be given in Chapter IV.

There is an overlap between these methods because first and second order

two-state Markov chains are also alternating renewal processes. In this study
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the alternating renewal process is preferred, because:
a. It was expected to give a better fit for the occurrence of very long spells.
b. The number of parameters in a model with such a process can be reduced
more easily.
In Section 3.1 the adequacy of the alternating renewal process is tested.
The distribution of the lengths of wet and dry spells is discussed in Section 3.2.

3.1. A test for an alternating renewal process

Tests for renewal processes of which the alternating renewal process is a
generalization (see Chapter 1V) are usually based on second-moment properties
(serial correlation, spectrum) of the intervals (cf. Cox and LEwrs (1966), 6.4).
The assumption that the wet-dry process is an alternating renewal process is
tesied here with correlation coefficients between lengths of successive wet and
dry spells (these correlation coefficients should be zero for an alternating
renewal process).

For the estimation of the correlation coefficient between the length of a wet
spell and the length of its following dry spell, the rainfall series was analysed
by wet-dry cycles (WD). When the historic series is analysed in this manner, all
wet and dry spells belonging to a particular period can be used for the estima-
tion of the correlation coefficient of that period. An analysis by dry-wet cycles
(DW) should lead to the problem that for every year the last wet spell of some
period has no successive dry spell, belonging to the same year and period.
For this reason a DW analysis was used to estimate the correlation coefficient
between the length of a dry spell and its following wet spell,

A survey of estimated correlation coefficients is given in Table 3.1. The
number of cycles in a scason is about 1000 for the Winterswijk and Hengelo
series and about 1600 for the Hoofddorp series. If the intervals are independent-
ly and normally distributed, it follows from 11, (4.1b) that the standard deviation
of the estimated correlation coefficient should be about 0.033 for the Winters-
wik and Hengelo series and about 0.025 for the Hoofddorp series. These
approximated values of the standard deviation can also be used when the
distribution of the intervals is non-normal, but the usefulness of the asymptotic
normality of the correlation estimator can be doubtful in this case. The ta-
bulated correlation coefficients and their standard deviations do not support a

TaBLE 3.1. Estimated correlation coefficients between lengths of wet and dry spells.

Winterswijk Winterswijk Hengelo Hoofddorp

(6 = 0.3mm) (0 = 0.8 mm) {6 = 0.8 mm) (6 =0.8mm)
Season .

WD DW WD DW WD DW WD DW
Winter -0.047  0.001  -0.008 0016 0,056 —0.044

n . . 0. ) -0.033  —-0.080

Spring ~0.007  0.001 0.054 09013 0.051 —0.028  -0.018 -0.042
Summer 0.005 -0.035 0.042 —0.068 0012 -0.054  —0.046 -0.012
Autumn -0.060 -0.045 0054 -0.075 -0.027 -0.062 -0.042 0034
64
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real correlation, so the assumption of an alternating renewal process seems
reasonable. The same conclusion was reached by CoLE and SHERRIFF (1972) for
rainfall series in the River Dee catchment (Wales) and by QUELENNEC (1973)
for French rainfall series.

Therefore it will be assumed that the wet-dry process is an alternating re-
newal process.

3.2, The distribution of the lengths of wet and dry spells

The probability distributions, which are fitted here to the lengths of wet
and dry spells are all modifications of the negative binomial distribution (NBD).
These modifications are defined at the beginning of this section. Then the para-
meters are estimated and the goodness of (it is tested. Finally the seasonal
variation of the parameters is investigated for a particular case.

The NBD with parameters p and r can be defined by its probability function :

(31 Px=k) = (’”}C’") ppt = (”;)p'(-q)" k=0,1,...

withO <p<[,rz0and g = 1-p.

This distribution cannot be applied directly to describe the distribution of
the lengths of weather spells, because these spells have always a length of at
least one day. Therefore, one of the following modifications of (3.1) can be
used:

a. A shift of the origin by one day which gives the probability function:

k-1
where y is the random length (in days) of a spell. This distribution will be
called the shifted negative binomial distribution (SNBD).
b. Truncation at zero which leads to the following probability function:

k+r-13 p
(3.3) P(g:k):P(J_C=k|3_¢21)=( k’ )% k=12,...

Equation (3.3) still defines a probability function, for -1 < r < 0. The
distribution defined by this equation will be called the truncated negative
binomial distribution (TNBD). '

The probability functions of the SNBD and the TNBD are monotonically
decreasing in & if rg < 1. This is usually so for the dist{'ibl}tlor} of lengths of
weather spells, as shown by Table 3.2 where frequency distributions of lengths
of weather spells from Winterswijk A8 are given. When rg > I there is a mode

fork # 1. _ ‘
There are some special cases of the SNBD and the TNBD which could be of

interest for the distribution of lengths of erather .spel‘ls: o
a. Ifr = 1in (3.2) or (3.3) one gets the geometric distribution (GD):

(3.4 P(y=k)=pg*" k=12...

(3.2) Ply=k)=P(x=k-1)= (k+’*2)p'qk-1 k=12,...
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TABLE 3.2. Number of weather spells with length k (days) for Winterswijk A8.

1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15 =15

Dry spells )

January 134 59 37 21 27 17 8 73 2 3 7 4 0 3 7
July .126 71 52 21 20 13 9 104 4 5 6 1 1 1 7
Wet spells

January 149 69 44 26 24 7 9 31 3 0 0 0 0O 1 2
July 152 83 54 21 15 8§ 8 43 2 0 0 0 1 1 0

Wet and dry intervals have geometric distributions if the wet-dry process is
a first order Markov chain (see Chapter 1V).
b. Ifr = 0in(3.3) one gets (cf. KENDALL and STUART (1969), 5.16) the logarith-

mic series distribution (LSD):

k

(3.5) P(y=k)=oc% k=12,...
with « = -1/log p. The LSD has been widely used to fit the distribution of
lengths of weather spells (cf. WiLLIAMS (1952), CoOKE (1953), LAWRENCE (1954}
and RAMARHADRAN (1954)).

The mean, the variance and the third central moment of the distributions,
cited above, are given in Table 3.3.

Parameters of the different modifications of the NBD can be estimated by
the method of maximum likelihood (ML). For the SNBD the likelihood equa-
tions have the same form as those of the NBD, because this distribution only

TaBLE 3.3. Moments of the negative binornial distribution and some of its modifications.

Name 1y P2 #3
NBED rg rq g(l+qr
r P
SNBD M4 q 9 +qr
P p? p?
TNBD rq rg E—p’(l +rq):| rg+3r2g® 4 rg? +r3g® 3 g’}
p(1-p") PH1p"? (1-p") P(l-p")?
N3
+2 4
P’
GD 1 4 g(1+q)
. Pl | ps
LSD xq 2q(1-og) ag(l +¢-3uq+202q?)
P ] p?
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involves a shift of one umit. Likelihood equations of the NBD have been given
by HaLDANE (1941), WisE (1946), F1sHER (1953), VAN MONTFORT {1966} and
JounsoN and Kotz (1969). The iterative solution of the likelihood equations
was discussed in detail by WIsE (1946) and vaN MONTFORT (1966).

From (3.3) one gets for the log likelihood L of the TNBD:

(3.6) L=Nlog (Tr_) + Nrlogp + log(i-p) kzl kny— kzl nlogh! +
_p' = =
+ i Hy, i log(r+j-1) r>-landr # 0
k=12 j=2

with m, = number of observations equal to &,
[sa]
N= ) n, = total number of observations.
k=1

For r — 0 one must use the log likelihood of the LSD. Differentiation of (3.6)
yields the likelihood equations as given by SAMPFORD (1955). Initial estimates
for the iterative solution can be based on the relations:

(372  p=u{ (=P =Dl
b P=1)

(3.7t)

1-p
which follow from (3.3) and the expressions for pu{ and p, in Table 3.3 (cf.
Brass (1958)).

The ML estimate of the parameter p of the GD is the reciprocal of the sample
mean. The solution of the likelihood equations of the LSD was discussed by
BarTON et al. (1963) and JOHNSON and Kotz (1969). An initial estimate can be
based on P(y = 1) or a quadratic approximation of the equation given by
BARTON et al. (1963).

A relaxation factor of 0.9 was used when the likelihood equations were

solved iteratively by the Newton-Raphson procedure.

Some critical levels of the X2-test of goodness of fit are given in Table 3.4 for
the modifications of the NBD.

For the application of the X?-test, the range of interval [ength§ (1,2,...,00) was divide_d
into classes. The partitioning started from y = 1 and ran upwards in such a way that the esti-
maled expected number of intervals ina certain class was at least 5 and as small as possible;
if the remaining expected number of intervals was less than 5 the last class was extended to.
infinity. For the GD and the LSD the class intervals were the same as fgr the TNBD, which
possibly gives a better comparison of the lack of fit of these three distributions.

Table 3.4 leads to the following three conclusions: .
a. The SNBD and the TNBD fit well in nearly all months. For Dutch rainfall
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TaBLE 3.4. Critical levels of the X2-test of goodness of fit for different distributions for the
lengths of dry and wet spells. Small values indicate poor fit.

Dry spells

Winterswijk A3 Winterswijk A8

Month SNBD TNBD GD ' LSD SNBD TNBD GD LSD

* January 0.455 0.742 0.004 0.604 0.324 0.104 0.000 4.094
February 0.209 0.558 0.000 0.499 0.037 0.099 0.000 0.127
March 0.169 0.080 0.000 (.101 (.063 3.017 0.000 0.016
April 0.884 0.841 0.311 0.050 0.579 0.616 0.069 0.039
May 0.479 0.671 0.018 0.195 0.825 0.789 0.001 0.418
June 0.454 0.395 0.015 0.064 0.826 0.774 0.153 0.057
July 0.876 0.865 0.002 0.774 0.180 0.641 0.004 0.247
August 0.012 0.061 0.000 0.076 0.068 0.339 0.000 0.208
September  0.605 0.522 0.006 0.203 0.107 0.088 0.000 0.049
October 0.64% 0.512 0.000 0.587 0.438 0.269 0.000 0.108
November 0.459 0.438 0.010 0237 0.916 0.809 0.058 0.171
December  0.286 0.323 0.000 0.341 0.375 0.283 0.009 0.041

Wet spells
January 0.950 0.940 0.503 0.054 0.285 0.275 0.135 0.024
February 0.960 0,984 0.561 0.205 0.860 0.502 0.455 0.403
March 0.981 0.985 0.634 0.155 0.677 0.680 0.372 0.161
April 0.617 0.561 0.358 0.026 0.200 0.219 0.100 0.054
May 0.928 0.930 0.842 0.000 0.851 0.902 0.648 0.000
June (.240 0.270 0.299 0.002 0.226 0.208 0.291 0.000
Tuly 0.979 0.966 0.329 0.264 0.473 0.561 0.506 0.015
Angust 0.290 0.286.  0.150 6.004 0.376 0.522 0.325 0.038
September  .347 0.356 0.235 0.011 0.025 0.110 0.254 0.000
October 0.783 0.771 0.308 0.076 0.386 0.345 0.434 0.005
November 0.718 0.707 0.443 0.011 0.024 0.021 0.009 0.001
December  0.558 0.626 0.364 6.004 0.597 0.476 0.524 0.003

series both medifications of the NBD are nearly equivalent. The SNBD has

a s_1mpler form than the TNBD. The TNBD, however, has the advantage that

it includes both the GD and the LSD as special cases, Besides, there are some

tropical rainfall series for which the TNBD fits the length of dry spells better

{see V,2.2). In the remainder of this chapter only the TNBD is considered.

b. The GD gives a good fit for wet spells in nearly all months. For dry spells
the fit is nearly always poor. In general, the GD gives too few long spells and

too few spells with a length of one day. '

c. ’rl"nhetll_‘SD fits Ilengths olf dry spells well. For wet spells, however, the fit is

0§ oor, In genera i
spells Wighpa lengthgo Tl égs,LSD gives too many long spells and too many

The Wintersy.fijk series, analysed by method B, and the series of Hoofddorp
and Hengelo give similar results. :
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A possible seasonal dependence of the distribution of lengths of wet or dry
spells can be tested by the likelihood ratio (LR) test. In general the LR test is
based on: ' '

(3.8) ¥ = sup L*(8)/ sup L*(6)
H, UH

o Hy\ iy

where L* (0) denotes the likelihood at some point 8 of the parameter space.
In the denominator the likelihood is maximized with no restriction on the
parameter space, while in the numerator the likelihood is maximized with,
say n, independent constraints on the parameter space. In consequence /* is
always less than or equal to 1. There is no evidence for H, when [* is close to 1.
As test statistic, however, one usually takes:

(3.9 ! = 2log I*

which is under H, asymptotically a realization of a y2-variable, provided that
some regularity conditions are fulfilled (cf. KENDALL and STUART (1973), 24.7).

The seasonal dependence of the parameters of the TNBD is discussed
extensively in the remainder of this section. The test statistic in (3.9) involves
the difference of the log likelihood maximized under the unrestricted model
and the log likelihood maximized under the restricted model. Under the
assumption of independence the log likelihood used for testing seasonal va-
riation is the sum of the twelve monthly values, given by (3.6). In the un-
restricted model there are 24 parameters, namely two for each month: p and r.
If one wants to test the hypothesis that there is no seasonal variation in both
p and r, there are only two parameters in the restricted model. The asymptotic
y2-distribution of / has therefore 22 degrees of freedom.

Realizations of the LR statistic (/,) and their critical levels (C.L.) are given
in the first and third pair of columns of Table 3.5 for dry and wet spells
respectively. In most cases H, is rejected at the 5 per cent level. Especially for
the Hoofddorp series the values of the test statistic are very large, partly be-
cause the Hoofddorp series is longer than the Winterswijk series,

The estimated parameters are given in Figure 3.1 for some cases. An asterisk
in this figure denotes the estimated parameters of the TNBD: fitted to all wet or
dry spells. There exists a strong correlation between p and 7. The smallest and
the largest estimated correlation coefficient between the ML estimators ofpand
r are respectively 0.852 and 0.899 for dry intervals of Winterswijk A8; 0.918 and
0.977 for wet intervals of Winterswijk A8; 0.842 and 0.896 for dry spells of
Hoofddorp A8, and 0.889 and 0.967 for wet spells of Hoofddorp A8. The
estimates of this correlation coefficient were obtained from the second
derivatives of the logarithm of the likelihood function (cf. KENDAI..L and
Stuart (1973), 18.15, 18.16 and 18.26). Figure 3.1 shows that the estimated
parameters change irregularly from month to month, mainly because the
estimates of the parameters are strongly correlated. For wet sPells of
Winterswijk A8, confidence regions for the parameters p and r are given for
some months in Figure 3.2. These confidence regions give the points for which
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TaBLE 3.5. Results of LR tests for reduction of the number of parameters of monthly fitted
TNBDs for lengths of weather spells. The realizations /, and /; (and their corresponding
critical levels) are based on approximate ML estimates. For some cases the values based on
the exact ML estimates are given between brackets, under the values based on the approxi-
mate ML estimates.

Dry spells Wet spells
pandr pandr rconstant and
constant .. r constant constant rconstant  p sinusoidal
A CL. I, CL. i CL. {, CL 4 CL
Winterswijk A3 433 0004 84 0.680 49,8 0001 99 0537 27.1 0.133
Winterswijk A8 279 0.180 9.3 0.593 356 0033 169 0.110 255 O0.185
9.2} (0.603) (15.4) (0.167) (23.6) (0.260)
Hengelo A8 28.0 0.174 8.0 0714 344 0045 68 0545 222 0.332
Hoofddorp AS. 104.6 0000 365 0.000 1700 0000 225 0020 327 0036
) . e (36.5) (0.000) (21.5) (0.028) (31.5) (0.050)
Winterswijk B3 506 0.000 10.7 0471 452 0003 7.1 0793 230 0.290
Winterswijk B§ 376 0021 88 0.639 31.3 0.090 154 0.163 219 0344
Hengelo BR - 328 0.064 4.2 0963 322 0074 8.6 0.660 218 0.352
Hootddorp B8 91.8 0.000 239 0013 1557 0.000 166 0.121 219 0.347
U ‘ N 5
21 Winterswijk AB dry 221 Hoofdderp A8 dry
& . |
a1g s 0194
{ f
o ; . 0174 . 1 :
015+ 0.5
. "g m % H
013 . o] T .
H 1. 1 8
oy H i tm-m . H
we 0.20 (1) 0io (173 050 t:io 070 030 00 050 080
5 ) .
0504 Winterswijk A8 wet . IJ.B: Hoofddarp A8 wet
S
0504 . £
[
" ¢ 1 s . b o o ;1 i
g o e 0 HESE TN
1 . 12
. W
020] o] 3 "
Dse 075 160 125 150 1-.‘;5 65 050 0fs 100 125 1.'.?0

FiGc. 3.1, ML estima.tes of t}‘{e parameters p and r of the TNBD fitted to lengths of‘ . weather
spells of Winterswijk A8 and Hoofddorp A8. The number attached to each point

is the serial number of the month {1 corres; i
ponds to January). The ann
of the parameters p and r are denoted by an asterisk, & ol estimates
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P January (ré‘r. = 0.918)

040 D May (r,é,F =0.977)
08¢
030
060
3_20.
- 0407
02 05 0@ 1 10 20 20 40 50 €0
7
p June (ry .= 0.965) FIG. 3.2. 95% confidence regions of the para-
0701 meters of the TNBD for wet spells of some
months of Winterswijk A8. The estimated
_ correlation coefficient between the ML esti-
060+ tators of p and r is denoted by .3
050-
0404
05 10 15 20 25 b 35

el

the log likelihood differs less than 3.0 from its maximum. The value 3.0 (= 1 x3
(0.95)) is based on the asymptotic distribution of the LR statistic. This asymp-
totic approximation can be doubtful, especially in the months of May and June.
From Figure 3.2 it is seen that for a particular month the range of acceptable
p and r values is quite large.

To reduce the number of parameters, the parameter r is assumed to be
constant throughout the year. For r the average 7 of the twelve monthly ML
estimates can be taken. The parameter p can then be estimated by the ML
method for each month separately. The likelihood equation for this case
reduces to the expression for the mean in Table 3.3 with u; replaced by the
average interval length. This equation can be solved iteratively with the Newton-
Raphson method. An initial estimate of p can be based on the identity:

(3.10) Py =Py = 1Ym

which follows from (3.3) and Table 3.3. Estimates of P(y=1) and p{ can be
based on the previously obtained ML estimates of p and . Tl_le cstima.ites will
be denoted as approximate maximum likelihood (AML) estimates since the
likelihood is not fully maximized over the parameter spacc.

Better estimates for the parameters can be obtained by maximizing the likeli-
hood with respect to all parameters (ML estimates). If p is the parameter p
in the mth month (m=1 corresponds to January) and L(r,p1, ..., P12) Is the

Meded. Landbouwhogeschool Wageningen 77-3 { 1977) 7



fog likelihood in some point (r,py, ..., P12} then:

(3.1D) Lmee =  max  L(rpy,....p2) =
WD oy P
1 12
= max{ max L(r,p1,....P12)) = max L(r)
r F revosl r
1 12

with L(r) = max L{rp,,....p12)-

For fixed r, the log likelihood with respect to py, . - ., Py, can be maximized
for each month separately as described above for the AML estimates. Values
for Lna—L(r) are given in Figure 3.3 for Winterswijk A8 and Hoofddorp A8.
The maximization of L(r) with respect to  can be done graphically (using
Figure 3.3) or with a numerical maximization procedure.

A confidence interval for r can be based on the asymptotic behaviour of the
logarithm of the LR. Note from Figure 3.3 that ¥ always lies within the 957
confidence region. On the other hand the values r = 0 (LSD) and r = 1 (GD)
always lie outside this confidence region, which supports the use of the TNBD.

Lingy -L1r) Lonay = Liri

157 159

Winterswijk AB dry Winterswijk AB wet
10 1
5 .

\ 1 X0 U EE.H]
T T i
0.0

ot oz | o ) 0i0 0By oBC b0 120
I3 LT r

4

N

-~

Lmax =Lfr) L max -L(r)

Hociddorp A8 dry 5

10 \ 101

1 X 0gs . x
\ ~ i \/ 4 Xiios)
o m‘u:fT 8¢ 040 —a'?u LS oso o080 1d0 120
r r
FIG. 3.3. Luax — L(r) {for definition see Equation (3.11)) versus r fot weather spells of Hoofd-

ﬂor_p AB and Winterswijk A8. The monthly mean of the ML estimates of r is denoted
y F. -

Hocfddorp AB wet

o
w
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This fact also follows from Figure 3.1 where neatly all values of 7 lic between
0and 1.

The assumption of a constant r can be tested with the LR test, Then the
asymptotic distribution of /is x#,. The LR test is progressive if AML estimates
are used because the numerator of (3.8) is too small in such cases. Realizations
of the LR statistic (/,) and their corresponding critical levels (C.L.) are given
in Table 3.5. The hypothesis, r is constant during the year, is not rejected at
the 5 per cent level for the Winterswijk series; for the Hoofddorp series,
however, this hypothesis is nearly always rejected.

The AML estimates for the Winterswijk and Hoofddorp serics (method A)
are given in Figure 3.4, This figure shows that wet spells always have high
values for p during the summer months (a high value for §j means a small
average interval length). For dry spells there are peaks during summer and

5., Winterswijk Al dry .. Winterswik A8 dry By, Hoofddorp AB dry
025 0.251 025
02 020 0204
B 2
D154 015 o151
010y a10] onof
24 6 & 10 m "I ¢ B 8 m 2 "2 4 6 8 10 12
m m m
Bm  Winterswijk A3 wet & Winterswijk AB wet 8n Hoofddorp AB wet
0.454 0.454 0.457
040{ 0404 - 040
s ' *
035 . 038" 0354,
£.30 0304 0.30-
0.254 0254 0.251
[ :.-—'—|—r—|—'—r*‘l_|_|—?_"‘ ----------
2 4 6 8 10 12
2 4 6 8 10 12 2 4 6 8 10 :: 2

m

Fi1G, 3.4. Rough and smoothed AML estimates of the parameter p of the TNBD of Winters—
wijk (A3 and A8) and Hoofddorp AS8. The rough estimates are denoted by fm and

the smoothed estimates by fu-
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winter for the Winterswijk series; for the Hoofddorp series there is only a clear
peak during winter.

One can try to approximate the annual course of the parameter p with a
Fourier series:

312)  pa=dAo+ Y [dxcostkm®) + Bisinkm®)] g <5
=1

with 1, is the number of harmonics,
m* = 30(m-1) degrees = n(m--%)/6 radians.
So January corresponds to 15 degrees, February to 45 degrees, and so on.
On the basis of estimates of p, one can get OLS estimates for fixed n, of the
Fourier coefficients (¢f. vaN MONTFORT (1966) and JENKINS and WATTS
(1969)): '

AU I
@13 A,=— ¥ 5,

12 »=1
~ 1 12
{3.13b) Ay = P D cOS(km*) k=1,....n
m=1
- 12
(.13) By = % . sin (k) k=1,....n

Equation (3.12) can also be written as

o
(3.14) Pm = Ry + kz,l Ry cos(km* + op)

where the amplitudes and phase angles are:

(3.152) Ry = A,

(3.15b)  Ri= JAZ+ B k=1,...,m
(3.15¢) ¢ = arg{A,—iB;) radians k=1,...,n,.

Estimates*f of R, and ¢, can be obtained by substituting the OLS estimates
of the Fourier coefficients in the right side of the above equations.
A problem still is a suitable choice of r,. In the first instance n, is chosen so

large that no harmonics are expected after the ngth. Then the significance of
the ngth harmonic is tested using the statistic:

(3.16) Tr:o = 3R?‘u/&2 {75}

whgre ¢(ny) is the estimate of the variance of the Ems. Under the assumption
of 1ndepe{1dent_and normally distributed error terms, the null distribution of
the statistic Tnjis F(2,11-2n,). If the #,th harmonic is not significant, then the
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TaBLE 3.6. Harmonic analysis of the AML estimate of the parameter p of the TNBD for
wet intervals of the Winterswijk and Hoofddorp series (method A).

k R, ¢ (degrees) T C.L.
Winterswijk A3 1 0.032 200 6.45 0.018
2 0.017 98 2.41 0.160
3 0.017 268 4.63 0.073
Winterswijk A8 1 0.027 220 6.66 0.017
2 0.012 116 1.53 0.281
3 0.015 278 4.63 0.073
Hoofddorp A8 1 0.074 232 61.88 0.000
2 0.013 27 2.30 0.171
3 0.010 298 1.64 0.284

value of n, is lowered by one and the test is repeated. This procedure goes on
until a significant harmonic is found. The successive tests are independent at
the null hypothesis (cf. HoGG (1961})).

Table 3.6 gives the estimated amplitudes, phase angles and results of the
test for wet spells of the series of Winterswijk and Hoofddorp, analysed by
method A. Starting with », is 3 and testing at the 5 per cent level, one finds the
smallest acceptable value for n, to be 1. The fitted harmonic series are given
in Figure 3.4. For dry spells a harmonic analysis of the f,s is less successful as
could be expected from Figure 3.4. At the 5 per cent level one finds 2 significant
harmonics for Winterswijk A8 and 3 significant harmonics for Winterswijk A3
and Hoofddorp A8. Therefore the j,,s were smoothed according to the moving
average:

(317)  fu=3Pmoy + $ Pt EDmet m=1,....,12
with 5y = p;, and jy5 = §,.

The smoothed series are also given in Figure 3.4.

For wet spells a LR test was done to test the hypothesis that the parameter r
is the same for all months and the p,s can be approximated by a Fourier series
with 1 harmonic component. Here the LR test is pro_gressive because the
likelihood is not fully maximized under the null hypothesis. The realizations of
the test ststistic (/;) and their critical levels (C.L.) are given in ’Ijable 3.5,
Though /, is larger than /,, as a result of the null hypothesis being more
restrictive, the critical level corresponding to I; can be larger, because there are
more degrees of freedom. The difference between I, and [, nearly always turns
out to be less than 16.9 (= y3 (0.95)) which confirms more 0T less tht_e res.ults o_f
the F-test of the harmonic analysis (for AML estimates this coqclumon is a bit
dangerous because both the numerator and the denominator in (3.8) are too
small). Table 3.5 also shows that the differences between r'eallzauons o.f LR
statistics of AML and ML estimates are small compared with the magnm.lde
of I, (influence of assuming r constant) or the difference between co_rrespondmg
I, and I, values (influence of smoothing). Therefore only the simple AML

estimates will be considered further.
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So with respect to seasonal variation of the parameters of the TNBD it
seems reasonable to take a constant value for the parameter r throughout the
year. An estimate of this parameter can be the mean of the twelve monthly ML
estimates. At a fixed value of r, monthly estimates of the parameter p can be
obtained by the ML method. These estimates can be smoothed by a Fourier
series with 1 harmonic component for the length of wet spells and by a moving
average scheme for the length of dry spells,

4. THE DEPENDENCE OF THE DISTRIBUTION OF RAINFALL AMOUNTS
ON THE PROCESS FOR WET AND DRY DAYS

In this section questions like ‘Does the rainfall amount of a certain wet spell
depend on the length of the preceding dry spell? or “Does the intensity depend
on the length of wet spells?” are investigated.

Though the models by QUELENNEC (1973) and DUMONT and Boyce (1974)
do not assume any relation between rainfall depth and day of occurrence, the
generation scheme by COLE and SHERRIFF (1972) distinguishes three different
types of rainfall amounts, namely rainfall amounts on solitary wet days, rain-
falt amounts on the first day of other wet spells, and rainfall amounts on days
preceded by a wet day. SMiTH and ScHREBER (1974) compared empirical
distribution functions of wet days preceded by wet days and preceded by dry
days and found a small, but significant difference. They also found by the
Wilcoxon test a significant difference between the rainfall intensities of 1-day
and 2-day spells.

In Section 4.1 the correlation between the length of a dry period and the
rainfall amount on the day following that period is discussed. Section 4.2 treats
the problem of homogeneity of rainfall intensities of various wet spells.

4.1. The correlation between the rainfall amount on the first day of a wet spell
and the length of its preceding dry spell
This section deals with whether the rainfall amount on the first day of a
particular wet spell depends on the fength of the previous dry spell. Correlation
coefficients were estimated for each season separately; for that purpose the
rainfall amount on the first day of a wet spell and the dry interval preceding

TABLE 4.1. Estimated correlation coefficients between the rainfall amount on the first day
of a wet spell and the length of its preceding dry spell.

_ Winterswijk Hoofddorp
Period . A3 A8 : A8 B8
Winter ~0.038 ~-0,035 —0.085

1 . : . -0.080
Spring . —0.016 -0.031 ~0.028 —0.076
Summer 0.004 ~-0.019 0.000 -0.015
Autumn -0.057 —0.006 -0.024 0.018
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that wet spell were assigned to the period to which the dry interval belongs.
Estimated correlation coefficients for Winterswijk (A3 and A8) and Hoofddorp
are given in Table 4.1. From this table it is seen that the correlation coefficients
are small and predominantly negative. A rough test based on the approxima-
tion of the standard deviations of the correlation coefficients (for these standard
deviations the same holds as for the standard deviations of the correlation
coefficients of successive wet and dry spells in Section 3.1) shows no evidence
for.a real correlation.

The same conclusion was reached by SMITH and SCHREIBER (1974) who found
a correlation coefficient of -0.0132 based on 1172 pairs of observations.

4.2. The relation between rainfall intensity and length of wet speils
A possible dependence between intensities and lengths of wet spells is in-
vestigated with the regression model:

(4.1) Yi=pi+ i ey

with y;;: intensity of the jth spell with length i. The length will be expressed in
days and the intensity in mm/day,
gi: mean intensity of spells with length ¢,

It will be assumed that the error termsey; are independent variates with mean
zero and standard deviation . Therefore in model (4.1) the variance of the
intensity of a particular spell is assumed to be inversely proportional to its
length. This assumption is true when the rainfall amounts within a wet spell
are uncorrelated ; when there is a positive correlation, the variance of the in-
tensity is larger than a2/i if > 1. In Section 5.1 it will be seen that successive
rainfall amounts are nearly uncorrelated and thus the choice of the factor /i
in (4.1) looks reasonable.

For identically distributed rainfall amounts the ;s should be mutually equal.
This hypothesis can be tested with an F-test provided the error terms are in-
dependently and normally distributed. Especially the normality condition is
not fulfilled here as daily rainfall amounts have very skew distributions. The
monthly mean of the coefficient of skewness of rainfall amounts on wet days
is 2,69 for Winterswijk A3 and 2.41 for Winterswijk A8. To examine the
influence of non-normality on the F-test, the test was repeated in some cases
with a normalizing transformation on the data. As a normalizing transforma-
tion the cube root was taken, which reduces the monthly mean of the coefficient
of skewness to 0.65 for Winterswijk A3 and to 0.81 for Winterswijk A8.

The critical levels of the F-test are given in Table 4.2 for Winterswijk (A3 and
A8) and Hoofddorp. At the 5 per cent level the hypothesis of constant intensity
is rejected for all seasons. During the summer months, however, there is less
evidence for different intensities at different lengths of spells. Both transformed
and untransformed data lead to the same conclusions.

In Figure 4.1 the mean intensities at different lengths of wet spells are given
for Winterswijk A8. From this figure it is seen that the intensity of rainfall
amounts is smaller during short spells, especially in autumn and winter,
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TaBLE4.2. Critical levels of the F-test for equality of mean intensitics at different lengths of
wet spells.

Winterswijk
Winterswijk {cube root) Hoofddorp
Period A3l A8 A3 A8 A8 B8
January 0.000 0.000 0.000 0.000 0.212 0.025
February 0.000 0.000 0.000 0.000 0.006 0.001
March 0.000 0.003 0.000 (.001 0.002 0.006
April 0.000 0.108 0.000 0.015 0.086 0.202
May 0.442 0.504 0.467 0.712 0.048 0.057
June 0.085 0.140 0.041 0.100 0.677 0.807
July 0.878 0.849 0.793 0.871 0.888 0,925
August 0.043 0.24% 0.027 0.085 0.000 0.000
September 0.002 0.088 0.000 0.066 0.000 0.000
October 0.001 0.006 0.000 0.004 0.000 0.000
November 0.000 0.000 0.000 0.000 0.000 0.000
December 0.000 0.000 0.000 0.000 0.000 0.000
Winter 0.000 0.000 0.000 0.000 0.000 (.000
Spring 0.000 0.007 0.000 0.000 0.004 0.031
Summer 0.023 0.154 0.001 0.054 -~ 0.001 0.001
Autumn | 6.000 0.000 0.000 0.000 0.000 0.000
Mean intensity Mean intensity
{mmiday] [mm/day)
1004 Winter 1004 Spring
75+ -mﬂ
50+ A S : . 5o et e
25 251
R R A z;b g i 'y
ean intensi { i ays
?‘mmfd:y:u ity o yldays. (::?d::l'"s't’ y days)
,5.‘ . N . ymmer 75 R Autumn
sof : « o . : )
25 25
A M TR IR

¥ ldays) yldays)
FiG. 4.1. Mean intensity versus length of wet spells () for Winterswijk AS.
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A model which may explain this phenomenon is one which distinguishes
three different types of wet days, namely solitary wet days, wet days at one side
bounded by a wet day and at the other side bounded by a dry day, and wet
days at each side bounded by a wet day. The rainfall amounts on these different

" wet days are denoted by type 0, 1 and 2 amounts, respectively; so a type i
amount denotes a rainfall amount on a wet day with ¢ adjacent wet days.
These three types of rainfall amounts are discriminated in this way as the first
and last day of a wet interval contain a part of the preceding or following dry
period because of the day unit of measure. The method given here differs from
the method by CoLE and SHERRIFF (1972), who allocated rainfall amounts at
the end of a spell longer than one day to amounts called type 2 here.

To show that there are differences between type 0, 1 and 2 amounts, tests for
equality of means were done, namely an F-test (for all three types of rainfall
amounts simultaneously) and a two-sample Student test (for all pairs of
different types of rainfall amounts). As for the test for homogeneity of intensi-
ties the normality condition is not fulfilled here. Therefore the test was also
sometimes done for the cube root of rainfall amounts. Critical levels of the
test statistics are given in Table 4.3 for Winterswijk (A3 and A8) and Hoofd-
dorp. The critical levels of the Student tests are based. on one-sided tests
because it is assumed on intuitive grounds that the expected rainfall amount
on a particular wet day increases with the number of adjacent wet days. From
Table 4.3 it is seen that the hypothesis of equal means is rejected at the 5 per cent
level in nearly all cases, so there is evidence for different distributions of the
three types of rainfall amounts. Tests based on transformed rainfall amounts

TABLE 4.4. Realizations of Student’s t-statistic for testing a difference in mean between

rainfall amounts on the first and last day of a wet spell, only for spells with a length of at least
three days.

Period Winterswijk A3 Winterswijk A8 Hoofddorp A8 Hoofddorp B8
January -0.62 -0.34 0.20 0.66
February 0.71 ~-1.72 —0.09 0.00
March 1.42 0.20 0.21 -0.09
April 1.58 1.56 0.49 © 020
May 0.77 0.91 0.30 . 0.56
June 1.12 0.26 1.13 . 0.65
July 021 0.21 0.63 0.45
August 2.19 1.95 1.00 1.09
September 131 1.81 0.54 113
October 165 -0.23 0.42 0.17
November 1.69 1.68 1'47 1.49
December 1.98 1.80 -0.42 0.56
Winter 1.37 0.31

Spring 2.14 1.59 _ggg g'gg
Summer 1.83 1.44 154 1.29
Avtumn 0.66 1.75 134 1.54
80
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F1G. 4.2, Mean inlensity versus length of spells of consecutive type 2 amounts (p-2) for Win-
terswijk AS.

give similar results to those based on the original data though the critical levels
are in most cases somewhat smaller.

To investigate any difference between the beginning and the end of a wet
spell, a two-sample Student test was done for a difference in mean between
rainfall amounts on the first day of a wet spell and rainfall amounts on the last
day of a wet spell, only for spells with a length of more than two days. Realiza-
tions of the test statistic are given in Table 4.4 for Winterswijk (A3 and A8} and
Hoofddorp. The number of paired observations in a particular month is about
110 for Winterswijk A8, 130 for Winterswijk A3 and 160 for Hoofddorp, so it
can be concluded from the tabulated realizations of the test statistic that there
is no evidence for differences (the critical values at the 5 per cent level are
-2.0 and 2.0). The fact that most realizations are positive is a slight indication
for a larger mean at the beginning of a wet interval.

In Figure 4.2 mean intensities of spells containing only type 2 amounts are
given for Winterswijk A8. At first glance there is no relation between the mean
intensity and the length of spells. : -

To test this assumption the regression model of Equation (4.1) was repeated
for wet intervals without the first and last wet day. Critical levels of the F-test
for equality of mean intensities are given in Table 4.5. The F-test is less power-
ful here because the number of data are decreased considerably. (T he fraction
of type 2 amounts is about 0.45 if § = 0.3 mm and about 0.35if 4 = 0.8 mm.)
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TasLe 4.5. Critical levels of the F-test for equality of mean intensities of type 2 amounts at
different lengths of wet spells, omitting the first and last day.

Winterswijk
Winterswijk {cube root) Hoofddorp
Period
A3 A8 A3 AR A8 B8

January 0.111 0.013 0.367 0717 0.541 0214
February 0172 0451 0.251 0.776 0.839 0.71¢
March 0264 0994 0.339 0.976 0.328 0.664
April 0.161 0.948 0.028 0.853 0.082 0.347
May 0.198 0462 0296  0.883 0.181 0.075
June 0394  0.423 0.500 0.630 0.451 0.672
July 0.965 0.908 0.992 0.965 0.831 0.851
August 0440  0.790 0.711 0.681 0.207 0.026
September 0.167  0.865 0.108 0.816 0.737 0.756
October 0784  0.501 0.673 0.371 0.875 0.333
November 0.268  0.352 0.196  0.399 0.082 0.032
December 0252 0784 0.055 0.528 0.280 0.071
Winter 0.034  0.054 0.010 0.724 0.726 0.283
Spring 0.280  0.987 0.173 0974 0.486 0.881
Summer 0390  0.621 0.553 0.758 0.123 0.044
Autumn 0.621 0.261 0.228 0.161 0.417 0.497

Mostly the hypothesis of no differences is not rejected at the 5 per cent level.
The small critical level for the winter data of the Winterswijk series is caused by
a single rainy period of long duration with very high intensity (see Figures 4.1
and 4.2). The large standard deviation of the February monthly total (see I1, 3)
is afso due to this rainy period.

5. THE DISTRIBUTION OF RAINFALL AMOUNTS ON WET DAYS

There are several methods in literature for modelling the behaviour of rain-
fall amounts on wet days. Many authors (cf. WooLHISER et al. (1972}, QUELEN-
NEC (1973), DuMONT and BOYCE (1974) and SMITH and SCHREIBER (1974)) fit
some theoretical distribution to these amounts and assume independence. On
the ot.her hand, CoLE and SHERRIFF (1 972) sampled from empirical distribution
functions and used a first order Markov chain to describe the dependence
between successive rainfall amounts, Quite another method, which is often
used for generating rainfall amounts within time-increments shorter than one
dajf, consists of generating a total rainfall amount for a wet spell and then
splitting up this rainfall amount (cf. GRACE and EAGLESON (1966), HIEMSTRA
and CREESE (1970) and LECLERC and SCHAAKE (1973)). The method of sub-
.division differs considerably from author to author,

“In Section 5.1 the correlation between successive rainfall amounts is in-

}festiga‘ted. The marginal distribution of non-zero rainfall amounts is discussed
n Section 5.2. I
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TaBLE 5.1. Estimated first sces of rainfall amounts within a wet spell.

Winterswijk
Month Winterswijk Winterswijk A8 Hoofddorp Hoofddorp
A3 A8 (weighted A8 B8
average)
Jannary 0.161 0.124 0.092 0.131 0,091
February 0.156 0.112 0.098 0.144 0.146
March 0.121 0.097 0.100 0.078 0.099
April ~0.010 0.000 —0.001 0.066 0.019
May 0.076 0.102 0.121 0.029 0.034
June -0.007 ~0.008 -0.005 0.059 0.065
July 0.025 0.014 0012 0.077 0.098
August 0.055 0.058 0.053 0.064 0.082
September 0.089 0.082 0.049 0.179 0.137
October 0.141 0.119 0.112 0.137 0.155
November 0.166 0.164 0.166 0.096 0.090
December 0.176 0.148 0.130 0.027 0.049

5.1. Correlation of rainfall amounts within a wet spell

In this chapter no correlation between rainfall amounts of different wet spells
is assumed. Therefore only pairs of observations in the same wet period are
used here for the estimation of correlation coefficients.

The most simple way to estimate the first serial correlation coefficient (scc)
for rainfall amounts within a wet spell is to take all pairs of successive obser-
vations, ignoring the fact that rainfall amounts at the beginning and the end of
a wet spell have different distributions. Another method which takes into
consideration the fact that not all rainfall amounts have the same distribution
is to take a weighted average of four estimated correlation coefficients, namely
between successive type 1 amounts (this case occurs only in 2-day intervals),
between successive type 2 amounts, between a type 1 amount and its successive
type 2 amount, and a type 2 amount and its successive type 1 amount. The
weights can be chosen inversely proportional to the number of observations
on which the estimated correlation coefficients are based. _

Estimated lag one sccs are given in Table 5.1 for Wintersw:ijk (A3 and AB)
and Hoofddorp when there is no discrimination between different types of
rainfall amounts. The estimated first scc obtained asa weighted averageis given
in this table for Winterswijk A8 only. o

Under the assumption of independence the standard deviation of the
correlation estimator is about 1 /\/N, where N is the number of paired obser-
vations. ) : . )

With this approximation, the standard deviation of the correlation estimate
is about 0.040 for Winterswijk A3 and Hoofddorp and about 0.045 for. WEI‘H,CI‘S-
wijk A8. So from Table 5.1 it can be concluded that a small !Jllt s1gmﬁ<;ant
correlation exists in the winter months. Seasonal dependence is less o.bvmm.
for the Hoofddorp series than for the Winterswijk series. The estimated
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correlation coefficients are mostly larger at a smaller threshold. Finally Table
5.1 shows that there is only a slight difference between the results of the two
estimation techniques.

In general sccs with a lag greater than 1 do not differ significantly from zero.
For instance the estimates of the lag 2 scc of Winterswijk A3 are -0.018,
-0.056, 0.001 and 0.048 for winter, spring, summer and autumn, respectively.
These correlation estimates are based on type 2 amounts only, which gives
about 600 pairs of observations for each season.

5.2 The marginal distribution of rainfall amounts

The frequency distribution of rainfall amounts on wet days is usually
J-shaped. Many common distribution functions with this form are usually
defined on the interval [0, co), but when dealing with rainfall amounts on wet
days, where a wet day is defined as a day with a rainfall amount above some
threshold, the lower limit of the carrier is not zero. If the threshold is  mm then
the lower limit of the carrier is § = & — 0.05 when rainfall is recorded in tenths
of millimeters. For rainfall amounts on wet days one has to work with truncated
or shifted distributions. Though for physical reasons a truncated distribution
might be better, shifted distributions are often preferable because of their
mathematical convenience. Rainfall amounts will be called shifted rainfall
amounts when they are reduced by the value §. For these shifted rainfall
amounts the monthly mean of the ratio 7/C (y is the coefficient of skewness,
defined by 1II, (2.1) and C is the coefficient of variation, defined by IT, (3.10¢))
is 2.19 for Winterswijk A3, 2.23 for Winterswijk A8 and 2.13 for Hoofddorp AS8.
These values are close to the theoretical value 2 of the gamma distribution,
which was defined in II, 3.2, The shifted gamma distribution (SGD) might
therefore be a suitable choice for fitting the frequency distributions of rainfall
amounts on wet days.

A convenient property of the SGD is that the sum of, say #, iid variables is again a shifted
gamma variable with an unchanged scale parameter and with both the shape parameter and
the shift multiplied by . Notice that the truncated gamma distribution does not have this
property. The fact that the distribution of sums of independent variables is not complicated

gicilitgtgs the numerical computation of cumulative distribution functions of k-day totals
=23,..)

Since in most cases the frequency distribution of (shifted) rainfall amounts
is J-shaped, it could be expected that the shape parameter of the fitted SGD is
1§ss than 1. Therefore ML estimates were used, because the method of moments
gives very inefficient estimates, when the shape parameter is small (see II,
Table 3.2). The likelihood equations, given in Chapter Il (Equation (3.13)),
have to be applied to shifted rainfall amounts. A direct application of these
equations, however, is not advisable, because the solution is very sensitive to
the accuracy of small observations. Therefore a modification of the ML method
was used, which ignores the actual values of shifted rainfall amounts smaller
than some value £ and merely uses the number of these observations.

84 Meded. Landbouwhogeschool Wageningen 77-3 (1977)



From the density of the gamma distribution II, (3.7) and on the basis of
independent data one gets the likelihood, L* (4,v):

" AW £ _ L e
. Av) = — v-1
(5.1} L' (4,v) o) { .5{ exp (—Ax)x dx} o X

x exp{-2 Zl x) efil xp-1

with x,, ..., x,: shifted rainfall amounts larger than ¢,
n: number of shifted rainfall amounts on (0, &)
(cf. Das {1955)). So rainfall amounts on [d, 6+ &) are only counted.
Now for small ¢ the following approximately holds:

E £ v Vv

(5.2) z[ exp(Axix' " tdx a i[ (1-Ax)x* " ldx = % (l_vATEl)'

Das (1955) only used the first term (¢*/v), but the approximation with two
terms has the advantage that larger values for & are admissible. For Dutch
rainfall series ¢ was taken equal to 0.5 mm. With this value for ¢, the relative
error in the integral is about 0.1 per cent if the approximation (5.2} is used and
about 3 per cent for the approximation with only one term.

The solution of the likelihood equations is given in Appendix Al. )

Monthly ML estimates of the shape parameter and the mean (v/1) are given
in Figures 5.1 and 5.2 for type 0, 1 and 2 amounts of Winterswijk (A3 and A8)
and Hoofddorp A8. The ML estimate of the mean is given instead of the ML
estimate of the scale parameter, because the ML estimates of the mean and of
the shape parameter are nearly uncorrelated. For the usual ML estimation,
discussed in I1, 3.2, the ML estimates are even independent (cf. 6.2 of Cox and
Lewis (1966) and SHENTON and BowMaN (1970)).

Figures 5.1 and 5.2 also give monthly means of the standard deviations of

i
v . .
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FIG. 5.1. ML estimates of the parameter v of the SGD fitted to rainfall amounts of different
types. Monthly means of the standard deviation of the ML estimators are denoted

by vertical limes.
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FIG. 5.2. ML estimates of v/A (shifted mean) of the SGD fitted to rainfall amounts of different
types and their Fourier series approximations. Monthly means of the standard
deviations of the ML estimators are denoted by vertical lines.

Fourier series with ng= 1
Fourier series with ng=2

the ML estimators. The standard deviation of # was obtained from the matrix
of second derivatives of the log likelihood (cf. KENDALL and STUART (1973),
18.26). Though the standard deviation of the ML estimator of the mean can
also be obtained from second derivatives of the log likelihood, it is easier to
use the fact that the non-modified ML estimate of the mean is the sample
mean because of II, {13b). Thus the standard deviation of #/4 can be based on
the ML estimate of the variance (v/4?). The given standard deviations can be a
bit too small due to a slightly positive serial correlation in the data (see 5.1).
Figure 5.1 shows that the shape parameter of the fitted SGD is in general larger
and as a result the distribution is less skew, if the number of adjacent wet days
is larger. A lower value of the threshold & gives lower values for the shape
parameter. Figure 5.2 shows that differences in the mean of type 0,1 and 2

amounts are more prominent during winter. Further a seasonal change in the
mean is obvious.

The goodness of fit of the SGD was tested with the X2-test.

For the application of this test frequency distributions were constructed for the rainfall
amounts with class boundaries at 0.75 (0.50) 5.25 {1.00) 10.25 (2.50) 25.25 mm in the case
that § = .3 mm; if the threshold was at 0.8 mm the boundary 0.75 mm was omitted. Notice
that the data belonging to the first class are just the data whose numerical value was ignored
in the application of the modified ML procedure.

Expected cell frequencies were based on ML estimates which were obtained from the
maximization of (5.1) with respect to v and A. Because actual values were used instead of cell
frequencies the X*-test is a hit progressive here (sce 11,3.2).

For the computation of the expected cell frequencies use was made of a series expansion
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{ABRAMOWITZ and STEGUN (1970), Equation 6.5.29, non-alternating version) of the in-
complete gamma function. If the expected number of rainfall amounts in some class was less
than 5, classes were joined together in the same way as was done for frequency distributions
of lengths of weather spells (sce 3.2).

For Winterswijk A3 and A8 critical levels of the X2-test are given in Table 5.2
when there is no distinction between different types of rainfall amounts and
for type 0, 1 and 2 amounts separately. From the tabulated critical levels it
can be concluded that the SGD fits the data well. Other rainfall series give
similar results.

Special cases of the SGD show lack of fit. For instance, application of the
shifted exponential disiribution (a SGD with v = 1, see 11, 3.2) to all rainfall
amounts irrespective of their type gives for Winterswijk A3 X2-values which
are all significant at the 5 per cent level. For Winterswijk A8 the fit is somewhat
better, but still 8 out of 12 monthly critical levels are less than 0.05.

One can try to smooth the monthly estimates of the SGD parameters with a
Fourier series. The results of the harmonic analysis are only given for the
Winterswijk and Hoofddorp series, analysed by method A.

Using the procedure of Section 3.2 and making no discrimination between
different types of rainfall amounts, one does not find any significant harmonic
in the monthly ML estimator of v (except for Winterswijk A3 where 2 signif-
icant harmonics are found). Two significant harmonics are found in the ML
estimate of the mean, when testing at the 5 per cent level with starting value 3
for n,. :

If different types of rainfall amounts are distinguished there are usually n
significant harmonics in ¥ as was to be expected from Figure 5.1. Exceptions

"TABLE 5.2. Critical levels of the X2-test of goodness of fit for the SGD for rainfall amounts.

Winterswijk A3 Winterswijk A8

ail all
Month rainfall type0 typel  type2 raimfall type0 typel  type2
amounts amounts amounts amounts amounts amounts amounis amounis

January 0.845 0.6604 0.532 0977 0.418 0.213 0.868 0.702

Feb . 0950  0.052 0931 0.631 0.317 0.072 0.576
farch 080 0.874  0.901 0.499 0.698 0.947

March 0.853 0682  0.648
April 0474 0498 0025 0926 0221 0122 0012 0983
May 0088 0304 0351 078 0071 0341 0444 0.595
June 0960 0553 0313 0680 0915 0446 0453 0329
July 0.104 0314 0073 0945 g.ggg g.;;zg g,géi g._sigg
0.309 . . . .
August 0211 0262 0816 03% 0604 0.730

September 0.439  0.85% 0766 0770 0.559
October 0088 0614 0491 0589  0.194 0449 0413 0.820

November - 0.630 0.220 0.622 0.746  0.390 0.202 0.170 0.778
December  0.703 0.162  0.085  0.827 0344 0.504  0.457 0.380
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are 2 significant harmonies for type 2 amounts of Hoofddorp A8 and 1 signif-
icant harmonic for type 1 and 2 amounts of Winterswijk A3.

The harmonic analysis of the mean of different types of rainfall amounts
gives 1 significant harmonic for type 0 and 2 amounts and 2 significant har-
monics for type 1 amounts. Fitted Fourier series arc given in Figure 5.2. The
use of the fitted Fourier series is a bit doubtful, because 1 harmonic component
for all types of rainfall amounts can lead to an underestimation of the mean
during most summer months (especially for Winterswijk A8). On the other
hand the use of two harmonic components for type 1 amounts can give the

unrealistic situation that the mean of type 1 amounts is larger than the mean of
type 2 amounts. '

6. PERSISTENCE

In the previous sections a stochastic model for daily rainfall sequences was
developed. The model was characterized by a wet-dry process and a probability
distribution for the rainfall amounts on wet days. In this section it is discussed
whether such a model can describe the persistence of the daily rainfall process.

The persistence of daily rainfall scquences is extensively studied with cor-
relograms and variance-time curves. Section 6.1 deals with the correlogram,
which shows sces as a function of the lag. The variance-time curve, which is
introduced in Section 6.2, gives variances of rainfall amounts in a period with
length ¢ as a function of 1. Because rainfal] is recorded in I-day intervals,

correlograms and variance-time curves can only be evaluated at discrete time
points.

6.1. Analysis with correlograms

Estimated sces of both the wet-dry process and the entire rainfall process
were obtained from 11, (3.2) for each season separately. The rainfall series were
analysed by wet-dry cycles (W D) or dry-wet cycles (DW) for reasons explained
in Section 2. When the historic series is analysed in this manner the series cannot
be stationary, since it always begins with a wet day after a dry spell (WD) or a
dry day after a wet spell (DW).-However because of the large number of ob-
servations in a season (about 6000 in the case of the Winterswijk series), the
influence of this initial transient is negligible,

Estimated correlograms are given in Figures 6.1 and 6.2 for Winterswijk
WD3, There are apparently no seasonal differences between the correlograms
of the wet-dry process, but for the entire rainfall process there are obvious
differences between the correlograms of the different seasons. The largest
val-ues of the estimated sccs are found during winter. Another feature of the
estimated correlograms is their slow decay, which might be an indication for
a non-stationary series (cf. Box and JENKINS (1970), 6.2.1). There can be
departures from homogeneity or a period of a quarter may be too long to give
a satisfactory reduction of seasonality. In II, A4 it was shown that jumps in
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FIG, 6.2. Estimated (WD) and theoretical correlogr
theoretical sccs are based on model TV wa
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TABLE 6.1, Means of estimates of sccs of Winterswijk (§ = 0.8 mm). The guarterly mean is
the mean of WID and DW estimates for winter, spring, summer and autumn. Likewise the
menthly mean is the mean of 12 monthly WD estimates and 12 monthly DW estimates.

Wet-dry process Rainfall process
lag (days)  Quarterly mean  Monthly mean Quarterly mean  Monthly mean
1 0.315 0.314 0.210 0.212
2 0.175 0.174 ¢.104 0.102
3 0.109 0.105 0.074 - 0.070
4 0.084 0.080 0.047 0.043
5 0.061 0.053 0.047 0.041

the mean hardly influence estimates of the variance and cross correlation

coefficients for rainfall amounts within small time-increments. This can also

be shown for the serial correlation coefficient with Equation (26) or (47) of

YevJevicil and JENG (1969). The influence of the seasonal variation can be

verified by comparing means of quarterly estimates of sccs with means of

monthly estimates, which is done in Table 6.1 for the Winterswijk scries

(0 =0.8mm). From the tabulated sccs it can be concluded that seasonal

variation cannot explain the slow decay of the estimated correlograms in
Figures 6.1 and 6.2, which can also be verified roughly by analytical methods.
Estimated sccs can be compared with sces of the model, The method of cal-
culation of the theoretical sces will be given in TV, 4. Theoretical sccs can be
calculated for models with different distributions for weather spells and rain-
fall amounts. With respect to the behaviour of rainfall amounts on wet days,
four models can be distinguished.
Model I assumes no discrimination between different types of rainfall
amounts and no serial correlation between rainfall amounts within
a wet spell.

Model IT assumes no discrimination between different types of rainfall
amounts. Rainfall amounts within a wet spell are assumed to follow
a first order moving average process which has the property that
sccs of lags greater than 1 are zero. The use of a first order moving
average process is based on the results of Section 5.1.

Model III distinguishes type 0, 1 and 2 amounts, but assumes no serial cot-

_ relation between consecutive rainfall amounts within a wet spell.
Model IV distinguishes type 0, 1 and 2 amounts, and rainfall amounts within
a wet spell are assumed to follow a first order moving average
process,

. Model TV is the most comprehensive model and contains all features of the
simultaneous distribution of the rainfall amounts on wet days, described in
the Sections 4 and 5. The marginal distribution of the rainfall amount is
assumed to be a SGD in Section 6, :

For the Winterswijk and Hoofddorp series Table 6.2 compares estimated
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TapLE 6.2. Estimated and theoretical first sccs. The theoretical sces are based on models
with TNBDs for wet and dry intervals and 3GDs for rainfall amounts on wet days.

Wet-dry process Rainfall process
Esti- Model Esti- Model Model Model Model
Station and season . mated mated I II II v
Winterswijk Winter 0.345 0.341 0.270 0.090 0.177 0.178 0274
(6=03mm} Spring 0.359 0,357 0.194 0.11% 0.146 0.179 0.209
Summer - 0334 0.334 0.140 0.099 0.110 0.135 0.146
Autumn 0.360 0.358 0.236 0.100 0.159 0.175 0.238
Winterswijk Winter 0.315 0.310 0270 0,125 0,174 0217 0.274
(6=08mm) Spring 0.309 0.308 0.193 0.135 0.155 0.180 0.201
Summer 0.299 0.299 0.141 0.118 0.126 0.140 0.148
Autumn 0.336 0336 0.235 0.134 0.173 0.197 0.239
Hoofddorp Winter 0.318 0.311 0.23¢ 0.129 0.163 0.194 0.232
(6=0.8mm)} Spring 0292 0.288 0.187 0.130 0.146 0.172 0.188
Summer 0.290 (.286 0.190 0.114 0.139 0.159 0.185
Autumn 0.35% 0.357 0.303 0.138 0.190 0.232 0.2%0

first sccs with calculated values for the wet-dry process and models I, II, IIT and
IV with TNBDs for lengths of weather spells.

The estimated sces are averages of the WD and DW analysis. The calculated sces underly
the assumption that for a particular season the rainfall process is stationary. Quarterly values
for the parameters are obtained here by averaging monthly A and B estimates of the rainfall
serigs. The parameter values of the TNBD are based on AML estimates.

For the wet-dry process the calculated sccs resemble the estimated ones, .but
for the entire rainfall process only the most sophisticated model (IV) gives
reasonable sccs, From the tabulated values of Winterswijk with different ds it
follows that the height of the threshold has no remarkable influence on the
results. Another fact is that many different distributions for lengths of wet and
dry spells can give approximately the same first scc bOt}'I for thg_wet-dry process
and the rainfall process. So for the winter season of Wmterswuk 6= _0-8 mm)
the first scc of a GD-LSD process (wet-dry process with a GD for wet intervals
and a LSD for dry intervals)is 0.312, and the firstsccof a .GD-GD process {two-
state first order Markov chain)is 0.311. It will be shown in the next section that
these processes give rise to different sccs at higher lags. '

Calculated sccs at higher lags, based on a TN}BD-TNBD process, are given
in Figure 6.1 for the wet-dry process and in Figure 6.2 for model IV of t}_le
entire rainfall process: For lags greater than 1 day calculated sces are in

general too small, especially during winter and autumn.

6.2. Analysis with variance-time curves ) fall off
In Section 6.1 it was noticed that in general theoretical correlograms fall o
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much faster than estimated correlograms. However, the significance of these
differences might be questionable, because it is well known that correlograms
of different realizations of a certain stochastic process can vary widely (see,
e.g. Figure 5.13 of JENKINS and WATTs (1969) and WALLIS and MATALAS
(1971)). Comparisons between tails of estimated and theoretical correlograms
are complicated, because estimates of the scc at neighbouring lags can be strong-
ly correlated. In fact only for an uncorrelated stochastic process is the simul-
taneous distribution of estimated sccs at different lags comparatively simple,
because these estimates are approximately uncorrelated (see II, 3.1).

If the corrclogram dies out too rapidly, the model underestimates the
variances of k-day totals for large k. However for large £ the sample variation
of estimates of variances can be quite large. For N independent observations
the variance of the variance estimator 52 is approximately (cf. KENDALL and
STUART (1969), 10.9):

_at 4
{6.1) varg? =~ e = ¢ (%4 4 2)

N N \e*
where 5, denotes the fourth cumulant. For the normal distribution one gets:

{(6.2a) varg® = 204N

because x%, = 0; and for the ‘loi des fuites’ (LDF), which was introduced in
I1, 3.2 and provided a good fit to monthly totals, one gets:

et
6. 2 07 (0
(6.2b) | vars N(G + 2)

making use of II, (3.17).

For 30-day totals it follows from the estimated values of 8 in II, Table 3.3,
that the standard deviation of 2 is at most ¢2 ,/3/N, when a LDF is assumed,
which is approximately 0.13¢2 for N = 180 and exactly 0.10¢2 for N = 300.
When values of 30-day totals are estimated for each season, these values for ¥
correspond to series with a length of 60 and 100 years, respectively., The
variances can be estimated better by taking into account all possible k-day
consecutive rainfall amounts. For instance, in a season with a length of 90 days
(winter) there are 61 different consecutive periods of 30 days, but because of
the large correlation between rainfall amounts of adjacent periods estimates
based on these overlapping data are only slightly better.

For k = 5(5)50 estimates of variances of k-day sums are given in Figure 6.3
for the wet-dry process and the entire rainfall process of Winterswijk (6 = 0.3
mm). The_ estimates are slightly biased, because the number of k-day periods
was used in the denominator. The points lie approximately on a straight line,
which intersects the vertical axis at the negative side. The negative intercept
can be caused by the large skewness of the distribution of lengths of weather
spells. This will be explained further in 1V, 5.2. Notice also in Figure 6.3 that

'tvarlance-tlme curves of the rainfall process can differ considerably from season
O season,
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FiG. 6.3. Estimated variances of the number of wet days and of the rainfall amount for a
k-day period (k = 5(5)50) for Winterswijk (6 = 0.3 mm). Estimates are based on
data with a k-1 day overlap.

Estimated and calculated variances for a 30-day period of different models
with TNBDs for wet and dry intervals are given in Table 6.3, The method of
calculation of theoretical variance-time curves is given in IV, 5.

Seasonal values of the parameters of the theoretical process are the same as those used
for the calculation of the correlograms (see 6.1). Because of the estimation procedure by
overlapping periods there is reason to give a larger weight to the parameters of the second
month of a season, but this gives only small differences in most cascs. A bet.ter but.more
laborious method for obtaining the variances of the model consists of calculating vartances
for each month separately and averaging the three monthly variances, However it will be

seen in V, 2.4 that this method gives only small differences.

For the wet-dry process there is a reasonable correspondence l?etween the
estimated and calculated values, though the calculated values are in general a
bit smaller during winter and autumn, which was to be expected from Figure
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TaBLE 6.3. Estimated and theoretical variances of the number of wet days in a 30-day period
and of the 30-day rainfall total for models with TNBDs for wet and dry intervals and SGDs
for rainfall amounts on wet days. Variances of the rainfall process are in mm2.

Wet-dry process Rainfall process

Esti- Model Esti- Model Model Model Model
Stationand  scason mated mated I Ii III v

Winterswijk Winter 220 18.9 1167 583 653 709 786
(6 =0.3mm) Spring 20.0 20.0 654 508 525 564 382
Summer 18.9 18.9 1286 1038 1053 ° 1110 1126°
Autumn 24.6 20.0 1123 808 871 938 1005
Winterswijk  Winter 20.7 17.2 1167 639 678 759 804
{0 = 0.8 mm) Spring 16.4 16.6 634 526 539 562 5757
Summer 15.2 16.6 1286 1073 1084 1114 1125
Autumn 20.9 18.0 1123 878 919 976 1019
Hengelo Winter 219 21.6 1113 746 781 931 971
(0 = 0.8 mm) Spring 16.4 17.3 668 578 581 625 628
Summer 17.2 17.3 1451 1116 1143 1208 1236
Autumn 21.6 18.3 1195 818 846 940 971
Hoofddorp Winter 21.4 17.9 742 351 573 618 643
(6 =0.8mm) Spring 15.6 159 515 469 477 507 516
Summer 18.0 16.4 1364 1124 1157 1196 1231
Antumn 241 20.1 1817 1224 1297 1457 1538

6.1. A more complicated model for the behaviour of rainfall amounts gives
larger variances of 30-day totals, but even for the most sophisticated model
nearly all calculated values are smaller than the estimated values. From 11, A4
it follows that these systematic differences cannot be explained by non-homo-
geneities due to changes of rain gauges or changes of site, For Winterswijk the
seasonal means of variance estimates of monthly totals are 1 196, 681, 1281 and
1249 mm? for winter, spring, summer and autumn, respectively which values
hardly differ from those given in Table 6.3. Hence seasonal variation is suf-
ficiently reduced. Also the height of the threshold & has no remarkable influence
on the results. Though the calculated values are systematically smaller than the
estimated values, the differences are seldom larger than twice their standard
deviation when model 1V is assumed. The largest differences between estimated
and theoretical values occur during winter and autumn, which was to be
expected from Figure 6.2. In these scasons there are sometimes long rainy
periods with high intensity, and the large value of the estimated variance for
the winter of Winterswijk and Hengelo is mainly due to one such rainy period
(see 4.2). Though differences between the estimates of corresponding seasons
of the Winterswijk and Hengelo series are small, they can differ considerably
from the estimates of the Hoofddorp series. The fact that differences between
Dutch rainfall series can be quite large is also seen from the estimates of the
standard deviation of monthly totals in II, Figure 3.1. These differences are
partly due to rare rainfall events which occur very locally.

. The distribution of lengths of weather spells affects the variance of 30-day
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TasLE 6.4. Estimated and calculated standard deviations of the annual number of wet days.

Calculated from estimated or
theoretical 30-day variances

Station & (mm) Estimated Ectimated  TNBD-TNBD
process
Winterswijk 03 17.2 16.0 15.3
Winterswijk 0.8 15.6 14.8 14.3
Hengelo 08 169 154 14.5

Hoofddorp 0.8 17.3 152 14.9

TaBLE 6.5. Estimated and calculated standard deviations of annual rainfall totals (in mm).
Calculated values are based on TNBDs for lengths of weather spells and SGDs for rainfall

amounts on wet days.

Calculated from estimated or theoretical
30-day variances

Station d(mm) Estimated Estimated I Im . I v

Winterswiik 0.3 1333 112.6 938 96.5 99.8 . 1025
Winterswijk 0.8 1333 112.6 96.9 98.1 101.2 102.8
Hengelo 0.8 131.3 115.2 98.9 100.3 105.4 106.9
Hoofddorp 0.8 117.6 115.4 100.5 102.5 106.5 108.6

sums, especially when dealing with wet-dry processes. For the winter of Win-
terswijk (6 = 0.8 mm) the 30-day variance is 19.5 days? for the GD-LSD
process and 13.6 days? for the GD-GD process, and if model I is taken, the
30-day variances of the entire rainfall process are 694 and 556 mm?, respectively.

From the seasonal variances of 30-day totals, given in Table 6.3, rough
estimates of the variances or standard deviations of the annual totals can be
calculated by multiplying these values by a factor 3 and adding the results.
The annual standard deviations so obtained are given in the last two columns
of Table 6.4 for the wet-dry process and in the last five columns of Table 6.5
for the entire rainfall process, together with the estimates based on non-over-
lapping annual periods in the second column of these tables. The [ast estimates
can be somewhat higher, because: ‘

a. they are more sensitive to departures from homogeneity (see 11, A4},

b. they are based on a 365 (or 366)-day period, while the other values are based
on a 360-day period, -

¢. they have no negative bias due to overlapping, _

d. there exists a small (but not significant, see II, 3.1) serial correlation between
monthly totals, which is not taken into account. ’
Notwithstanding these facts the large difference between the estlmatehbased

on non-overlapping annual totals and the one based on 30-day totals is sur-

Meded. Landbouwhogeschool Wageningen 77-3 (1977) 95



prising for the rainfall process of Winterswijk and Hengelo.

For the wet-dry process differences between estimated values and values
according to the model are small, but for the entire rainfall process the dif-
ferences can be quite large, depending on the type of model. It should be noticed
again that the standard deviations of the estimates in Table 6.5 are quite large.
For the entire rainfall process of Hoofddorp the standard deviation of the
estimate based on non-overlapping annual totals was found to be about 8 mm
using (6.2a) and the approximation

(6.3) var s = var s2/(4¢?).

The standard deviations of the other estimates are of the same order.

7. CUMULATIVE DISTRIBUTION FUNCTIONS OF SUMS OF DAILY RAINFALL AMOUNTS

In the previous section a study was made on the sensitivity of correlograms
and variance-time curves for different features of the model. Working with
correlograms or variance-time curves has the advantage that for many different
types of models theoretical values can be obtained by numerical methods, but
it is not easy to interpret a possible lack of fit. For instance, it is difficult to
know the practical consequences of a model which underestimates 30-day
variances. Another fact is that correlograms and variance-time curves only
deal with second-order properties and they do not provide any information
about higher order moments. Therefore the fit of different types of models is
also assessed with cumulative distribution functions (cdfs) of k-day totals.
Though for most types of models the cdf cannot be easily obtained by numerical
methods, they may be preferred to correlograms and variance-time curves,
because they give more information about the simultaneous distribution of
daily rainfall amounts and besides, they are more readily interpretable in
practice,

The sensitivity of the cdfs of k-day totals to the type of distribution of the
lengths of weather spells is discussed in Section 7.1. Section 7.2 deals with cdfs
of k-day totals for different models for the behaviour of the rainfall amounts
on wet days. Also, in this section historic and synthetic sequences are compared
on the basis of annual totals.

The results of Sections 7.1 and 7.2 are based on Winterswijk data with a
threshold of (.8 mm, unless another station or threshold is mentioned.

The k-day periods used for the estimation of the ¢dfs are the same as those on which the

varignce-lime curves are based. As in Section 6 quarterly values for the parameters are
obtained by averaging menthly estimates.

7.1. T?he influence of the distribution of lengths of weather spells on the cumula-
tive distribution function of k-day totals

Different types of wet-dry processes can be compared by considering .cdfs
of the number of wet (or dry) days in a k-day period. In 6.1 nearly the same first
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F1G. 7.1. Cumulative frequencies of the number of wet days in a 30-day peried for the
historic series of Winterswijk (§ = 0.8 mm) and some theoretical yvetédry pro-
cesses. Smooth curves are drawn through the theoretical values at the integers.
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scc was found for different theoretical wet-dry processes and due to the
estimation procedure there is also a correspondence in the mean. Therefore,
it can be expected that for small k the cdfs of these wet-dry processes will
coincide. However, in 6.2 it was shown that the 30-day variance of the wet-dry
process was sensitive to the type of distribution of the lengths of weather spells.
Therefore cdfs of the number of wet days in a 30-day period are compared.

Figure 7.1 compares-estimated cdfs with theoretical cdfs of the wet-dry
processes, considered in Section 6, for winter and summer. Formulas for the
calculation of the theoretical cdfs are derived in IV,3. There are only small
differences between different types of wet-dry processes and besides the theo-
retical cdfs fit the cdf of the historic data well. For the winter Figure 7.2 shows
cdfs of TNBD-TNBD processes with and without seasonal variation. This
figure also gives the cdf when the probability of a day being wet is independent
of the situation on previous days (Bernoulli process). There are large differen-
ces between theoretical and estimated cdfs for the Bernoulli process and the
TNBD-TNBD process without seasonal variation. For the Hoofddorp series,
where seasonality of the wet-dry process is more obvious (see Figure 3.4 and
Table 3.6) there are differences of more than 0,20 between the cdf of the historic
data and the cdf of the non-seasonal TNBD-TNBD process.

The cdfs of rainfall totals are less sensitive to the type of wet-dry process
than the cdfs of the number of wet days. This is seen from Figure 7.3 where

Rel, freq.
1.0

Winter

Historic data

Seasonal TNBD -TNBD process
————— Non-seasonal TNBD-TNBD pracess
—-——— Bernoulli process

T T T T | T T T T '
10 20
days
F1G. 7.2. Cumulative (requencies of the number of wet days in a 30-day period for the historic
series of Winterswijk (6 = 0.8 mm) and some theoretical wet-dry processes. Smooth
curves are drawn through the theoretical values at the integers.

98 Meded. Landbouwhogeschool Wageningen 77-3 (1977)



Rel. freq.
1.0

4 Winter e .

Historic data

Seasonal TNBD-TNBO process
Hon-seasongl TNBD-TNBD process
Bernoulli process

I T T T 1 T
$00 150
mm
FiG. 7.3. Cumulative frequencies of 30-day totals of the historic series of Winterswijk and
calculated values based on model I with a SGD for the rainfall amounts on wet days.

The threshold 4 is 0.8 mm.

T

cdfs of 30-day rainfall amounts are given for the processes considered in
Figure 7.2. Calculated cdfs are based on model I with a SGD for rainfall
amounts on wet days. Details about the computation of the cdfs are given in
IV,3. Notice also in Figure 7.3 that the cdfs of all threc models correspond

poorly with the cdf of the historic data.

7.2. The influence of the distribution of rainfall amounts on wet days on the

cumudative distribution function of k-day totals o
This section deals with the sensitivity of cdfs of k-day totals to the distribution

of rainfall amounts on wet days. In contrast with the comparisons of different
wet-dry processes given in 7.1, it is not always paossible ‘here to get the edf of
some model by numerical methods. In fact only when ramfgii amounts on wet
days are independent and identically distributed {model I)is a numc?rlcal cal-
culation of the cdf of k-day totals not complicated (see IV, 3). O‘therwxse the cdf
of a particular model can be obtained by Monte Carlo simul_atlon.

. The generation of synthetic sequences is discussed in Sectlgn 7.2.1 apd cd_fs
of different models are compared with empirical distribution functions in

Section 7.2.2.

7.2.1. The generation of synthetic sequences
- The generation of synthetic sequences consists of two parts, namely the
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generation of a wet-dry process and the generation of rainfall amounts on wet
days.

yWet-dry sequences were generated by sampling alternately from TNBDs for
wet and dry intervals. For the generation of variables with a TNBD, use was
made of a table of cumulative frequencies and a geometric approximation in
the tail in the following way. Let y denote the random length of a weather
spell and let:

(7.1a) oo=Ply=k)
(7.1b) Iy=Py<k
- (7.1 Sy =1-F,=P(y > k)

where S; corresponds to the survivor function in Chapter IV.

For each month and type of weather spell a table of the Fis was made for
k =.1(1)n. The probabilities needed for this table were obtained from (3.3)
with the recurrence relation:

k+r-1

72 pe="—gpens k= 1(n
starting with p, = p"/(1-p").

From the recurrence relation it is seen that the TNBD tails off geometrically
and therefore from »n onwards use was made of the approximation:

(1.3) Dot = Pu g =12 ...

where the parameter § was chosen so that the pis add to unity.
To fulfil this requirement one must have:

(14 Se= 2 pani = pdi(1-D)
or
(75) q:Snf(Sn+Pn)=Sn/Sn—1-

The parameter § is in general somewhat smaller than the parameter g which
is seen from Table 7.1 where for n = 16, values of these parameters are com-
pared for lengths of wet and dry spells of Winterswijk A8. The parameters of
the TNBDs on which this table is based are the smoothed AML estimates
given in Figure 3.4. From (7.3) and (7.4) it follows:

(7.6) S = S F" x=n+l,n+2,...

‘Now, starting from a pseudo-random variate », an approximate TNBD
variate was obtained from the algorithm:

— if u £ F, take the value k for which holds: Fi_y < u < Fy,
~ ifu > F, take the smallest integer larger than: n + log [(1-4)/S.]/log §, '
which follows from (7.6). Pseudo-random standard uniform variates were
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TasLE 7.1. Comparison of g and §, when # = 16 for lengths of weather spells of Winterswijk
AS.

Dry spells Wet spells

Month q g q q

January 0.837 0.306 0,637 0.628
February 0.853 0.822 0.624 0.616
March 0.864 0.833 0.610 0.602
April 0.862 0.832 0.600 0.592
May 0.854 0.824 . 0.595 0.587
June 0.844 0.813 0.598 0.590
July 0.840 0.809 0.607 0.598
Auygust 0.851 0.820 0.620 0.611
September 0.263 0.832 0.633 0.625
October 0.859 0.828 0.644 0.635
November 0.841 0.810 0.648 0.640
December 0.830 0.799 0.646 0.637

obtained from the function RAN of the DEC 10 computer, which is based on
an article by PAYNE et al. (1969).

Procedures for generating independen! gamma variates were given by
JonNk (1964) and GREENWOOD (1974). The first procedure is suitable for small
v and the last procedure, which is based on the Wilson-Hilferty transform
(see IT, 3.2) is suitable for large v. For rainfall amounts on wet days, where most
values of v lie in the range 0.5 1.0 (see Figure 5.1) it does not matter very much
which procedure is taken. Here Johnk’s procedure was chosen.

Generating dependent gamma variates is much harder and more time con-
suming. However, from Table 6.3 it is seen that serial correlation of rainfall
amounts on wet days only causes small differences in the variance of 30-day
totals, especially when the threshold is at 0.8 mm. Therefore dependent gamma
variates were not generated. . ' :

Models with an alternating renewal process for the occurrence of wet and
dry days and mutually independent rainfall amounts on wet days are time
reversible and so it does not matter whether one generates forwards or back-
wards in time. Here, synthetic sequences were generated forwards in time and
therefore the parameter estimates of method A were used. The beginning date
of a weather spell determines the month to which it belongs and for a wet spell
it also determines the parameters of the SGD of it rainfall amount(s).

7.2.2. Comparison of cumulative frequencies of k-day totals of the historic
sequence with cumulative distribution functions of different types of

models for the behaviour of the rainfall amounts on wet days

The following topics are considered in this section:
a. The cdfs of k-day totals (k = 1, 3, 10, 30) of synthetic sequences, based on

model 111, are compared with those of the historic series. In some cases the
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cdfs of the synthetic sequences are also compared with calculated cdfs based

on model 1.

b. The effect of replacing a shifted exponential distribution by a SGD on the
cdf of 30-day totals is discussed.

¢. Normal probability plots of the annual number of wet days and of the annual
totals of the synthetic sequences mentioned above are compared with those

of the historic series.

For Winterswijk (§ = 0.8 mm) five independent synthetic sequences were
generated. The synthetic sequences were based on model 11T with TNBDs for
lengths of weather spells and SGDs for rainfall amounts on wet days.

The parameters of the TNBDs were based on AML estimates. For the length of wet spells
a Fourier series with | harmonic component was used to describe the seasonal variation of the
parameter p (see 3.12); for the length of dry spells estimates of the parameter p were smoothed
according to the moving average scheme (3.17).

For rainfall amounts of a particular type the shape parameter v of the SGD was assumed
to be constant throughout the year, whereas the mean was seasonally changing. Monthly
valugs of the mean were obtained by smoothing monthly ML estimates according to the
maoving average scheme (3.17) and these values were assigned to the 15th (February) or the

lﬁ;h fiay of the month. For other days the mean of the SGD was obtained by linear inter-
polation.

lEach synthetic sequence has a length of 67 years, but because it always starts
with a complete weather spell, the first year is excluded to reduce the influence
of this initial transient. In contrast with the historic sequence each February
month has a length of 28 days.

For winter and summer, cdfs of 1, 3, 10 and 30-day totals of the historic
sequence and of the synthetic sequences are given in Figure 7.4. At k = 30
also the cdfs of the other seasons are given. Just like the cdfs of the historic
sequence, tl'1e cdfs of the synthetic sequences are based on overlapping periods.
There are differences in the mean between the historic sequence and generated
sequences because in the model all rainfall amounts less than & millimeters
are assqmed to be zero and consequently there may be some problems in
comparing the edfs, especially for large k. Therefore some points of the cdf of
the historic series are also given when all rainfall amounts less than & milli-
meters arc set to zero {modified historic data). The influence of this modifica-
tion, however, is negligible, For small values of & there is a good correspondence
between cdfs of the historic sequence and those of synthetic sequences, but for
larger values of k the model may provide a poor fit, especially in the upper tail.
For the winter season differences between the cdfs of the historic series and
those of the synthetic sequences could be expected for large values of k since
there exists a considerable difference for the 30-day variances (see Table 6.3),
but for the summer season the poor fit is much harder to explain.

Smoothi ; '
o giv;?%i:: :omhlylesumates can affect the results. From Figure 7.4 it is seen that the
a smaller mean in summer, To investigate the influence of smoothing in
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F16. 7.4. Cumulative frequencies of k-day totals of the historic series of Winterswijk and 5
synthetic series, based on moedel II1. In the modified historic series all recorded
positive rainfall amounts less than 0.8 mm are assumed to be zero. For the synthetic
sequences the smallest and the largest value are only given when there are visible
differences between cumulative relative frequencies at a certain rainfall depth.
Points of the synthetic sequences are omitted when they coincide with values of the

historic series.
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Fi1G. 7.4. (continued)
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FiG. 7.4, (continuead)
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F1G. 7.4. (continued)
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F1G. 7.5. Cumulative frequencies of 30-day totals of the historic series of Winterswijk and
calculated cdfs. Theoretical curves are calculated for the whole summer season and
for each month separately. The theoretical values are based on a TNBD-TNED
process and a SGD for rainfall amounts on wet days with a threshold of (.8 mm.

more detail Figure 7.5 shows the theoretical cdf of 30-day totals for the whole summer

season but also for each month separately.
The theoretical cidfs are based on model I with TNBDs for lengths of weather spells and a
SGD for the rainfall amounts on wet days. Monthly and quarterly values of the parameters

of the model are obtained here by averaging A and B estimates. .
The curve based on scasonal means is very close to the curves of the synthelic series in

Figure 7.4; this was to be expected since differences between type 0,1 and 2 amounts are

small in surmmer., )
The cdf of June differs strongly from the cdfs of July and August, which was to be expected

on the basis of Figure 3.1 of Chapter IL. The arithmetic means of the three monthly frequencies
correspond quite well to the seasonal frequencies. For a comparison with the cdf of the
historic sequence the cdf of the month of July is the most important one, because for the
summer season 60 out of the 63 30-day periods have one or more days in this month. If a
weighted averdge of the monthly cdfs is taken, the seasonal cdf corresponds better to the

cdf of the historic data.

Though in winter there are considerable differences between different types

of rainfall amounts the cdf of 30-day totals based on model I is nearly the
same as the one bdsed on model T (sce Figure 7.3, secasonal TNBD-TNBD

process and Figure 7.4). .
Simulation of Hoofddorp data gives similar results, though the fit is usually

slightly better.

In Section 5.2 it was noticed that the shifted exponential distribution did not
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Fi1G. 7.6. Cumulativé frequencies of 30-day totals for the historic series of Winterswijk and
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calculated values, based on model I, with a shifted exponential distribution for the
rainfall amounts on wet days and TNBDs for lengths of weather spells,
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provide a good fit to rainfall amounts on wet days, especially when the thresh-
old was at 0.3 mm, because the distribution of rainfall amounts is more skew
at 2 lower threshold. For model I with a TNBD-TNBD wet-dry process
differences between 30-day cdfs based on rainfall amounts with a shifted
exponential distribution and those based on a SGD are in general small when
a threshold of 0.8 mm is used. These differences can be seen by comparing the
30-day cdfs based on rainfall amounts with a shifted exponential distribution,
which are given in Figure 7.6, with the corresponding 30-day cdfs based on
rainfall amounts with a SGD, given in Figure 7.3 and in Figure 7.5. When the
threshold is at 0.3 mm the fit becomes poorer during winter.

Figure 7.7 shows the cdfs of the annual number of wet days of the historic
series and of the generated sequences on normal probability paper. The cdfs
of annual totals of these series are given in Figure 7.8, This figure also gives
the cdf of a modified historic series, which is better comparable with the
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Fic. 7.7. Cumulative frequencies of the annual number of wet days for the historic series of
Winterswijk (§ = 0.8 mm) and 5 synthetic series based on model IIL For the syn-
thetic sequences only the smallest and the largest value of the cdf at fixed plotting

positions are given.

Fig, 7.8. Cumulative frequencies of annual totals for the historic series of Winterswijk and
: 5 synthetic series, based on model [IL In the modified historic series all recorded
positive rainfall amounts less than 0,8 mm are assumed to be zero and the 29th of
February is discarded. For the synthetic sequences only the smallest and the largest

value of the cdf at fixed plotting positions are given.
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synthetic series. The modification consists of replacing all positive values less
than & millimeters by zero and of omitting the 29th of February rainfall. There
is a reasonable correspondence between the historic series and the synthetic
sequences with respect to the annual number of wet days, but for the annual
totals there are considerable differences. The synthetic series do not have
extreme low and high values and if a straight line is fitted through the points,
the slope is smaller for the synthetic series, which indicates that the variance is
too small. The standard deviations of the synthetic series are 116.2, 97.3, 89.0,
114.5 and 90.6 mm, respectively; these correspond reasonably well with the
theoretical value given in Table 6.5, but are much smaller than the estimated
standard deviation of the historic series.

Generating synthetic data for Hoofddorp provides a better fit for annual
totals as was to be expected from the variances given in Table 6.5.

8. SUMMARY AND CONCLUDING REMARKS

In this chapter daily rainfall sequences were analysed, first by investigating
the sequence of wet and dry days and second by investigating the behaviour of
rainfall amounts on wet days.

The wet-dry process can be described by an alternating renewal process,
that is by a succession of wet and dry intervals, which are mutually independent.
Modifications of the negative binomial distribution were fitted to the lengths
of wet and dry spells. There is a seasonal change in the parameters of the
distribution of the lengths of wet and dry spells.

The distribution of the rainfall amount on a particular wet day depends on
the number of adjacent wet days. During winter and autumn there is a small,
but significant correlation between rainfall amounts on successive wet days.
The marginal distribution of rainfall amounts on wet days can be described by
a shifted gamma distribution, with a seasonal changing scale parameter.
Seasonal variation of the shape parameter is less obvious.

The goodness of fit of the model was tested by correlograms, variance-time
curves and cumulative distribution functions of k-day (k =1, 2, ...) totals.
For large values of & the model underestimates the variance, because of lack
of long-term persistence in the model. Very large differences between estimated
and theoretical k-day variances, which sometimes occur during winter and
autumn, are partly due to long wet periods of very high intensity in the historic
record. :

The model fits the cumulative distribution function of k-day totals poorly
for large values of k (e.g. k = 30). The distribution of the lengths of wet and
dry spells and the model for the behaviour of rainfall amounts on wet days
(marginal distribution, discrimination of different types of rainfall amounts)
have only a small infiuence on the cumulative distribution function of 30-day
totals. '

Though only a few results of the analysis of the Hengelo scries have been
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given in this chapter, they do not differ very much from those of the nearby
station of Winterswifk despite the large number of supplements and corrections
in the series of Hengelo (see Chapter VI).
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APPENDIX

Al. ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBUTION
BY A MODIFIED MAXIMUM LIKELIHOOD METHOD

In this appendix the solution of the likelihood equations is given for the ML
procedure suggested in Section 5.2.
From (5.1) the log likelihood L(4,v) reads:

(ALD)  L(Av) = Nvlogi— Nlog I'(¥) + nh(Av) -4 ¥ xi +
i=1

+ (»-1) i log x;
i=1

where:

(AL2)  h(Lv) = log {I exp (CAx)x ‘ldx}

and ¥N = n+m, is the total number of observations. The maximization of
L(A,v) with respect to A and v can be done iteratively by the Newton-Raphson
method. The iteration formula is:

A A Lu Las) -1 [L
(AL3) (v), = (V)Lf(l{or) (Lf Lju);_ll (Lj)i_l 1=12,...

For the relaxation factor @ the value 0.9 was chosen. Moment estimates were
used as starting values A, and v,,.

The first and second derivatives of L(4,v} are obtained by differentiation of
(ALl):

(Alda) L, = %Hhr Y x

(Al4b) L, =Nlogd- NyO) + uhy + 3 log x;
i=1]

(A14C) Liyy = ->— + nhy,

(A14d) L;.v = %T + nh.{v

(A14e) Ly, = *N]/” (V) + nhw
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where v and i’ denote the digamma and trigamma functions (first and second
derivatives of the logarithm of the gamma function). A numerical methed to
obtain these functions was given by CHor and WETTE (1969),

For small ¢ it follows from (5.2) and (Al.2):

Ae
v41

(Al1.5) A(A,v) = viogz—logv + log (1-s + )

and so the derivatives of A(4,v) are approximately:

—ve
I+v-Aive

(A1.6a) h =

(AL6b) hy x loge- L — 2
v (14#v) (1+v-Ave)

{Al.60) Ay =~ *:(-@i—
{1+ v-dve)?
—£
(14+v-Ave)?
1 N 4&{2+2-2Ave—Az)

(Albe) My >~ — )
vz (412 (1 +v-Ave)?

(AL6d) Iy
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IV. THEORETICAL CONSIDERATIONS ABOUT
THE DAILY RAINFALL MODEL

1. INTRODUCTION

In the previous chapter the adequacy of the daily rainfall model was tested
by correlograms, variance-time curves and the cumulative distribution function
(cdf) of k-day totals. Theoretical correlograms, variance-time curves and, for
some special cases the cdf of k-day totals could be obtained by numerical
methods, In this chapter the formulas underlying these computations are
derived. These formulas are based on a rainfall process in which the rainfall
amounts on wet days are at least  mm (4 is the height of the threshold minus
half the unit of measurement, see IIL, 5.2) and the rainfall amounts on other
days are assumed to be zero. This modified rainfall process will be denoted
by {x} and the wet-dry process by {#.}; n, takes the value 0 if the th day is dry
and the value 1 if the ¢th day is wet.

The formulas derived in this chapter, underly the assumption of indepen-
dence of successive wet and dry intervals. This assumption looks reasonable in
view of the results in III, 3.1. Another assumption is that the processes {a.} and
{x} are stationary, which is approximately true if one considers the rainfall
process for a particular month or season.

In the cases considered here the main difficulty is the derivation of features
of the wet-dry process. For instance, if one considers a rainfall process with iid
rainfall amounts on wet days (model I, see IT1, 6.1) with a SGD (shifted gamma
distribution), the only problem for the derivation of the ¢df of k-day totals is
the derivation of the probability distribution of the number of wet daysin a
k-day period. If one wants an expression for the lag & serial correlation coeffi-
cient of this model, simultaneous probabilities like P(n, = 1, 1.4 = 1) must
be derived from the distribution of wet and dry intervals. Because features of
the rainfall process depend on the wet-dry process, some concepts about this
process are derived in the beginning of this chapter (Section 2). Expressions for
the calculation of the cdf of k-day totals are given in Section 3. Section 4 deals
with the serial correlation coefficients (sccs) for models I, II, III and IV, which
are defined in III, 6.1. The behaviour of variance-time curves is discussed in
Section 5.

For reading this chapter it is assumed that the reader has some knowledge
of conditional probability and conditional expectation. The required level is
that of the contents of Chapter 2 of PARZEN (1962). Also familiarity with
generating functions is a prerequisite; the main results on these, however, are
given in Appendix Al.
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2. RENEWAL THEORY

This section deals with properties of wet-dry processes for which the lengths
of successive wet and dry spells are independent. Further the wet-dry process
is assumed to be a process in discrete time.

In Section 2.1 the renewal process is introduced. The concepts discussed in
this section are mainly adopted from Chapter XIIT of FELLER (1968). Further,
it is shown in Section 2.1 that for a renewal process at least one type of interval
(wet or dry) has a geometric distribution. A generalization of the renewal
process is the alternating renewal process for which lengths of both wet and dry
spells can have arbitrary distributions. Alternating renewal processes are
discussed in Chapter 7 of Cox (1962). However, this author dealt with pro-
cesses in continuous time only. Concepts of alternating renewal processes in
discrete time are given in Section 2.2 and it will be seen that most relations are
nearly equivalent to the corresponding relations in continuous time. A short
review of the concepts of renewal theory was given by BERNIER (1967). This
author also indicated possible applications of renewal theory in hydrology.

2.1. Renewal processes

2.1.1. Ordinary renewal processes :

In Figure 2.1 a realization of a wet-dry process is given for = 0(1)16. The
waiting times between successive wet days are denoted by Ry, R,, ... and are
called recurrence times. If the recurrence times are iid random variables the
process is called a renewal process. Then the process is independent of its history
whenever a wet day occurs. Events with this property are called recurrent
events. .

Let & be a recurrent event and let {f,} denote the distribution of the recurrence

times, that is:
21 fi=Pleatt =m + 1|zat? = m}
2.1 f,.:P{noaat(m,m+n),satt=m+n|satt=m} n>1
for all m > 0. Sometimes it is convenient to define f; = 0. '
The distribution {f,} is called periodic if an integer k > 2 exists such that £,
only takes non-zero values for multiples of k. Otherwise the distribution {f,} is

called non-periodic. When dealing with rainfall processes it is assumed that the
recurrence times are non-periodic.

Ry Ry Ry

W

Rs
W D Diwlwiw b D
T T T T T i
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F1G. 2.1. Realization of a wet-dry process for 1 = 0{1)16. Wet days are denoted by W and (?ry
days by D. The recurrence times R, Ry, . .. are the waiting times between successive
wet days. :
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The survivor function m, is defined by:
(2.2) m,= 2 fi : n=0,1,...
k=n+1

Itis assumed that {f.} is an honest (or non-defective) probability distribution,
that is:

@3 my= Y fi=1.
k=1 .

The following relation exists between the probability generating function
(pgf), F(s), of the recurrence times and the generating function (gf), M(s), of
the survivor function (the gf and the pgf are defined in Appendix Al):

2.4 M(s) = (1-F(s))/(1-5)
{(cf. FELLER (1968), X1.1, Theorem 1).

With reference to Figure 2.1, it might be interesting to investigate the
relation between the recurrence times and the lengths of wet and dry spells.
Let {i*’} and {f{'} denote the distributions of wet and dry intervals and

denote the occurrence of a wet day by ¢. It is assumed that & is 4 recurrent event.
For the distribution of dry intervals one has:

I(.2.5) 9 = pleatr=0,noeat [L,n), eatt=n+1|catt=0,nocati=1}=
_ Pleatt=0,nozat [1,n],satt£n+'l|eatt=0}
P{nogatr=1|gat t=0}
= far1/m1y n_=1,2,...
and {f" has pgf: | '

(2.6) FO(5) = ,,zlf"* L SMmy = (F(s) ffls)/(mﬁ)'-'

For the distribution of wet intervals:

2.7 S = P{noeatt=0,eforevery tat [l;n],nosat t=n+1[noe
: att=0,satr=1}= : :
Pinozatr=2|satr=1} =1-J, n=1

IT Pleat i=k|eat t=k-1} P{no e at t=n+1|catt=n}
=2

= f1711~f) - n>l

since ¢ is a recurrent event. So the distribution of wet intervals is geometric
(see II1, (3.4)) with mean 1/(1-£,) = 1/m, and pef:
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(1-fp)s
1-fis °
From (2.5) and (2.7) it is possible to obtain the distribution of the recurrence

times from the distributions of the wet and dry intervals or the distribution of
wet and dry intervalis from the distribution of the recurrence times.

(2.8) FW(g)=

Relations between moments of the recurrence times and moments of wet and dry intervals
can beobtained from an expansion of (2.6) in powers of s 1 (see Appendix A1) or alternatively
as follows. Let p stand for the recurrence time and let y™ and y*) stand for the lengths of wet
and dry spells. The means of y, y™ and vy are denoted by g, ™ and p', and the central
moments by gy, ™ and 4 (k =0, 1,...).

Moments of y and y® are related by:

29) E(y) = EQG*y > DPQ>1) + EGMy = DP(y=1)=
= mlE(l’(d) + D+ £
For instance, for k =1: ‘
(2.10) W= ml(:“(d) +D+hH= myp® + 1

since m, =.1-f,.
For the central moments one has:

@1 = E(y-p)* = E{(z-w* [y > 1} P >D+

+ E{(y-wtly = L} P =1 =

m E{(y9 + 1-p)*} + fi(1-p)".
Substitution of (2.10) gives:

212) o= m E{Q®-p) + fia O+ filom g =

K
= m 'Zo (f{) (flﬂ(d))k“iﬂild) + fimphE

If the occurrence of a dry day is a recurrent event instead of the occurrence
of a wet day, then dry intervals are geometrically distribute‘d. Charact.eristic f'or
the renewal process is that at least one type of interval is geometrically dis-
tributed,

The simplest case of a renewal process is the Bernoulli process. The wet-dry
process is called a Bernoulli process if the probability of a day being wet or.d_ry
does not depend on the situation of previous days. Let p deqote the probabll.lty
of a day being wet and ¢ = 1 -p (the probability of a day being dry). Assuming

that ¢ corresponds 1o a wet day, one obtains:

(2.13) fo=pg"! , from (2.1)

@14 £ = pg o from25)

(.15  f™ =gp? , from (2.7).
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So the recurrence times and lengths of wet and dry spells have geometric
distributions. From (2.2) one gets for the survivor function:

216y  mn= )} pgl=4"
k =n+1

A bit more complicated is the two-state first order Markov chain. This model
has often been used to describe the sequence of wet and dry days (cf. GABRIEL
and NEUMANN (1962), CaskEY (1963), WEIss (1964), ToboRoVIC and WOOLHISER
(1971) and SmuTH and SCHREIBER (1973)).-

In a two-state first order Markov chain the probability of a day being wet or
dry depends on the state of the previous day. Let:

217 py=Plae=Jln =i} i=0,1;j=0,L

From (2.1), with & corresponding to a wet day (r, = 1), one obtains for the
distribution of the recurrence times:

(218) {fl =P

Jo = ProPgo * P n>1.
From (2.2) one obtains for the survivor function:
e =10
2.19) { o ne pe
( Pin = P1oPo1Pyy Y =poo) = P1oPyo 1 ps0.

From (2.5), (2.18) and (2.19) it follows:
2200 S = popis?
and from (2.7) and (2.18) one has:
@21) S = -p) P = Pl

So for the two-state first order Markov chain, wet and dry intervals have
geometric distributions.

In Figure 2.1 the process started with a wet day at ¢ = 0. Renewal processes
starting with an arbitrary recurrent event are called ordinary renewal pro-
cesses. Let u, denote the probability that & occurs at ¢ = n. By definition
1y = 1; for n > 0 one can write:

(2.22) un = Pleati=njeatr=0} = Plcatt=1and t=nlecatr=0} +
+ kZ‘ZP{nosat [LLk-1],eat t=k and t=n|e at 1==0}

since the events between brackets are mutually exclusive. Because ¢ is a recur-
rent event one has: -
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(2.23) P{noeat [1,k-1}, cat t=k and t=n|eat r=0} =
= P{nocat [Lk-1], e at t=k|eat t=0}P{eat t=n|cat 1=k} =

=fkun—k .

and thus (2.22) becomes:
(2.24) sy = fithoor + Y Sidla_x = Y, fullnoi n>0
k=2 k=1

(cf. FELLER (1968), X111, (3.1)).
From (2.24) and the fact that u, = 1 it follows that for the gf U(s) of {ua}
holds:

(225 Us) = 1/ - F))
(cf. FELLER (1968), XIIL3).

2.1.2. Delayed and equilibrium rencwal processes

In the previous section it was assumed that thé process started with an
arbitrary recurrent event at ¢ = 0. One can also start with the condition that
the waiting time till the first recurrent event has some probability distribution,
say {b,}. Then one calls the process a delayed or modified renewal process
and the waiting time till the first recurrent event is called the forward recur-
rence time. The probabilities b, are defined as follows:

(2.26) b, = P{e occurs for the first time at 1 = n} n=101,...

An example of a delayed renewal process is given in Figure 2.2. If the oc-
currence of a wet day is a recurrent event, the probability distribution of the
waiting time R, differs from the probability distribution of the other waiting
times R,, R, ...

The probability of a recurrent event at ¢ = n is denoted by v,. For the occur-
rence of ¢ at t = » one has the following possibilities:

a. ¢ occurs for the first time at £ = n (with probability bs = butto)-

b. e occurs for the first time at 7 = k < n{with probability by). Startingat# = k&
one has an ordinary renewal process and so the probability of eat ¢ = nis

ts_y. Also for ¢ = k the process becomes independent of its history and so the

probability that & occurs for the first timeat? =k <nandgoccursats = nis

bittn .

R Ml R R, [Rsifs) A1 -
plw]wlw D CIw
1 . 15

DDDDWWDDWD
5

0 t

)16, Wet days are denoted by W and dry

FiG. 2.2. Realization of 4 wel-dry process for ¢ = 0(1)16 ays ar .
aré the waiting times between successive

days by D. The recurrence times Ry, Ras - - -
wet-days. R, is the forward recurrence time.
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Summing over all mutually exclusive possibilities gives:

(227) YV, = kZ bku,,,k n=0,1, -
=0

(cf. FELLER (1968), XIII, (5.1)), that is {v,} is the convolution of {b,} and {u,}.
Therefore, the gfs V(s) of {v.}, B(s) of {b.} and U(s) are related by (sec Appen-
dix Al):

(2.28) Vis) = B)Uls) = B(s)/{1 - F(s))

(cf. FELLER (1968), XIIL, {5.3)). :
When &, = 1 and b, = O for all n > 1, one has an ordinary renewal process
and (2.28) reduces to (2.25).

Assume that {f,} is a non-periodic probability distribution with finite mean g,
then the next limit theorem holds:

(2.29) lim v, = 1/u
(cf. FELLER (1968), X1IL.10). So irrespective of the distribution of the forward
recurrence time, the probability v, tends to 1/u for large .

For a stationary process the distribution of the forward recurrence time is
such that v, = 1/u for all # and thus is:

1 e 1
2.3 = -t
e o=l Seod

Substituting this in (2,28) gives: .

@3 By = 280 _ MO
#(1-5) u
or:

(2.32) by = mau n=01,...

The argument leading to (2.32) underlies the assumption of a renewal
process. It can be shown, however, that this relation is applicable to a much
wider class of processes (cf. Cox (1962), 5.4),

Delayed renewal processes for which the forward recurrence time satisfies
(2.32) are called equilibrium renewal processes.

2.2. Alternating renewal processes

For a wet-dry process the system can be in two states namely wet and dry.
For theoretical considerations it is convenient to take numerical values for the
possible states, for instance the values | and 2. Type 1 and 2 intervals can be
defined in the same way as wet and dry intervals (see III, 2). A process with
alternating type 1 and 2 intervals is said to be an alternating renewal process if:
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a. All type 1 intervals have the same distribution, say {£{1)},
b. All type 2 intervals have the same distribution, say {2},
c. All intervals are independent.

A type 1 event &'V occurs at ¢ = n if the system is in state 1 at ¢ = n and in
state 2att = n + 1; a type 2 event £'%) can be defined analogously. This ter-
minology is the same as for the continuous alternating renewal process where
the end of a type { interval (i = 1, 2) is called a type i event (cf. Cox and MILLER
(1965), 9.3). For instance, assume that for the rainfall process given in Figure
2.1 state 1 corresponds to a wet day and state 2 to a dry day, then &*? occurs at
t=0,5, 8and 13,and e'2? occurs at ¢ = 3, 7, 10 and 15. Because successive wet
and dry intervals are independent, ¢!’ and £») are recurrent events. Since the
distribution of wet and dry intervals is arbitrary, it is possible that neither the
occurrence of a wet day nor the occurrence of a dry day is a recurrent event.

The mean of type i intervals is denoted by u'“ and the survivor function of
these intervals by m,(? (which is obtained by replacing /, by /8" in (2.2)). The
analogue of (2.4) for the alternating renewal process is:

(2.33) MO (s) = (1- FOs)/(1-3) i=12
where M9 (s) and F*V (s) are the gfs of {m{”} and {f{"}, respectively.

The first probabilities of interest are:
(2.34) ul? = pleWate = n|e¢Watt =0} i=1,2;j=1,2;n=0,1,...

By definition u ¥ = 6, (§y = 0ifi # jand d; = 1if i = /). Further, if one
considers type 1 events only, one gets a renewal process in which the recurrence
times are the sums of the associated type 1 and 2 intervals. For this renewal
process the probability us, defined in Section 2.1.1, corresponds to the prob-
ability {11}, Because the sequence formed by type 2 events is a renewal
process with the same distribution for the recurrence times, one has the re-

lation;

(2.35) 1 11) = 4 (22) for all ».

Assume that i # j. One can write the probabxllty u,{9 as the sum of probabili-
ties of mutually exclusive events:

2.362) 1 = 3 P{noe®at [0k-1), eV ati=k, ¢P atr=n|cD at
k=1

=0} = ¥ 9w i#in=12,...
k=1

since the history of the process is irrelevant at ¢ = k. A similar argument leads to:
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@36b)  uf = ¥ 0wy iAin=1,2 ...

k=1

For the derivation of correlograms of models Il and IV (see III, 6.1) the
following probabilities are required:

2.37) wi® = Plstatejatt = n|eWatr =0} i=1,2;j=1,2;n=0,1,...
Some special cases are: w (P = dgand w ™ =135y

Assume that i # j, then w,{¥ can be written as:

(2.382)  wi = P{noeVat [0,n]|ePat =0} +

+ Y P{noeYat [0,.k~1l, eWatt=k, state jat ¢ =nje? at
=1

1=0} = md + ¥ fHOwih, i#jin=12,...
%=1

since the process becomes independent of its history at ¢ = k. An analogous
argument results in:

(2.386)  wi® = 3 A0 wi) iAjin=1,2,...
k=1

1t is not necessary to use both (2.36a) and (2.36b) because:
(2.39) WA+ w = 1 i#£jn=01,...

For obtaining the probabilities wi¥ with Equation (2.38), no use is made of
the probabilities #<”. There are methods which give the {w,%} sequences
from the {u, "} sequences. For instance, let k%) be the number of type j

events at [0, n—1], given that a type i event occurs at ¢ = 0. Assume i # jand
define:

(2.40) gﬂ(i) — ;Sn(ii),k(ij)_

The variable g,,‘" can only take the values 0 and 1 since the two states are
alternating. If g,." = 1 the process is in state jat ¢t = n; if g H = 0 the process
is in state i at £ = » and thus is;

@41a) W = P’ = 1) = Bg") = EG) - Ble'?) =

a—1 B a—1 »
= Y uf - N u® i#iin=1,2,...
k=0 k=0

A similar argument gives:
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r-—-1 w—=1 .
(241b)y  wiP = 14+ 3 uP- % 4 i*j;n=12 ...
k=0 k=0

which could also be found from (2.39) and (2.41a). The relation (2.41b) is the
discrete analogue of Equation (7.3.3) of Cox (1962).

So far alternating renewal processes have been considered which started with
an arbitrary recurrent event ('? or £} at the origin. For the derivation of
features of the rainfall model it is necessary to consider equilibrium processes.

For an alternating renewal process three types of equilibrium processes can
be distinguished
a. The system isinstate 1 at # = 0 and the waiting time to the first type 1 event

{(forward recurrence time) has probability distribution {61/} with b1’ =
= m ) (n = 0, 1, ...). The process is called a type 1 equilibrium process
and the state of the process at 7 = 0 is denoted briefly by type 1 eq. Notice that
&™) can occur at ¢ = 0 with probability 1/ut).

b. The system is in state 2 at ¢ = 0 and the probability that the first type 2 event
occurs at ¢ = #n is b = miP[ut?) (type 2 eq.).

c. The state of the system is not known at 7 = 0, but with probability ¢’ =
= uW/(u + u@)) one has a type 1 equilibrium process and with probability

g3 = u2 /(" - u'») one has a type 2 equilibrium process. This process is

called a pure equilibrium process.

Suppose that state 1 corresponds to a wet day, then the time origin is set at:
a. an arbitrary wet day for a type 1 equilibrium process,

b. an arbitrary dry day for a type 2 equilibrium process,
¢. an arbitrary day for a pure equilibrium process.

For a type / equilibrium process one can define:
(2.42) v = plgWatt = njtypeieq.} i=1,2;j=1,2;n=0,1,...

By definition one has v/ = &;/u'". |

The events & in a type i equilibrium alternating renewal process form a
delayed renewal process in which the distribution of the_ forward recurrence
time is {5,(} and the distribution of the recurrence times is the convolution of
{1} and {£,2’}. The pgaf of the last probability distribution is F(5) FO)(5)
(see Appendix Al) and for the pgl BW (s) of {b,} a similar relation as (2.31)
holds, namely:
MD(s) _ 1-F(s) —12

p u(1-5)
From (2.28) one gets for the gl of {Vruiii)}

[—-F(s)
u(1=5){1-FI()Fs) }
.

(243)  BO() =

(2443) pun () =

-
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Assume i # j, then the events ¢ in a type i equilibrium process form a
delayed renewal process in which the pgf of the forward recurrence time is
B@(5)F (5) and the pgf of the recurrence times is £ (s) F*(s). From (2.28)
and (2.43) one gets for the gf of v,f¥:

{1-F5)} F(s)
1O =-5){1-FO() FE(s)}
which is the discrete analogue of Equation (7.4.3) of Cox (1962).

(2.44p)  VU(s) =

174

Now, assume a pure equilibrium process and define:
{2.45) v = Pl{eDat t =n} i=1,2;n=0,1,...
For the gf F9{s) of {v{"} holds:
(2.46) Vi5) = g (s} + g PiX) i#].
Substitution of (2.44) results in:
@47) V() = @713‘7’ 11:
and thus for v holds:
248) v =@M+ p®) i=1,2,n=0,1,...
as it should be for a pure equilibrium process.

The probability v can be written as the sum of probabilities of mutually
exclusive events:

(2492) v = PlnoePat [0,n-1], e at z=n|typeieq.} +
02 . ,
+ ¥ P{eWatt=k, noe® at k+1,n-1), 6¥
k=0

at t=nitypeieq.} +

+ P{eWats=n-1 D at t=n|typeieq.} =

= 50 + O, 4 e =
) n=1
= pi kzﬂ v fD, i< n=12,...
A similar argument gives:
(2.49b) v = kZ: v £D, i#jn=12...
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In the argument of (2.49) the last recurrent event before f = was taken into account.
One can also pay special attention to the first recurrent event, which was done in the deri-
vation of (2.27). This leads to a system of equations differing from (2.49), namely:

@2.502) v = kio By ) n=0,1,...
@506 v = j B, itin=01,..
=0

The relations (2.49) have the advantage that calculation of the {u %)} sequence is not nzces-
sary.

The following probabilities are important for the derivation of correlograms
and variance-time curves:

(2.51) WY = Plstatejatt = n|typeieq.} i=1,2;j=1,2;n=0,1,...

By definition one has k% = §;. )

Expressions for the probablhtles 79 can be obtained in the same manner as
those for the probabilities w,”). A derivation analogous to that of (2.38) re-
sults in:

@.522) B = ¥ bOw, itjin=01,...
k=0

@52 AP = F a0+ 3 b0, n=0,1,...
k=n+1

It is not necessary to use both relations, because:
(2.53) R 4 {9 =1 i#j,n=01...
Analogous to (2.41) one has:

2.542) A = z WS o i#jn=12,...
k=0 k=0
2.54b) RO =1 + Z yn 2 y izjin=12,...

=0

From (2.54a) one obtains for the gf H¥(s) of {A{}:
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o . w "1 " "
(2.55) HE) = Y B{s = ) (v -yl =
]

=1 n=1 k=

Il
e

i (vk(ii) _ Vk(ij))S":
n=k+1

-
]

0

(£ 0wl [ 5 o=

rn=k+1
= s{V(s) - VOE)}(1-9) i ).
Finally, substitution of (2.44) results in:

s{-FO)} {1 -FI(s)}

. () = _ ‘ -
(2 36a) (S) u(“(l—s)z {1 —F(”(S)FU)(S)} )
For the gf H"(s) of {h (DY it follows from (2.53):
Q566)  HO(s) = Tlf - HUYg) =
-5
D SO £ £ B i ) R E e e ) oy

I-s  uB(1-5)2* {1 -F5)FI )}
which is the discrete analogue of Equation (7.4.4) of Cox (1962).

From (2.56a) it follows:
(257w HD(s) = u HU(s),

This equation is obtained because a pure equilibrium alternating renewal process is
reversible in time. For a stationary time-reversible process:

(2.58) P{state iat 1 =0, state jand ¢t = n}=

= Pistate jatr= 0, state i at ¢ = n} for all n.
Since for a pure equilibrium alternating renewal process:
(2.59) Plstateiatt=0,statejatt =n} =
= Pistatejatt =n|typeieq.} Pitypeieq.} =
= R YD 4 ) i#]

expression (2.58) leads to (2.57).
Let 2" be the probability that the system is in state i at = #. For a pure equilibrium process
one obtains for the gf H™(s) of {A,}:
(260)  HV(s) = ¢ HO(s) + ¢DHU (5) i#).
Substitution of (2.56) gives:
@6 HOs) = ¢i(1-3)
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and thus is 2" = g'? for all n, as was to be expected for a pure equilibrium process.

Assume that for a wet-dry process state 1 corresponds to a wet day and state 2
to a dry day. If the occurrence of a wet day is a recurrent event, then a type 1
equilibrium process is an ordinary renewal process (starting with a wet day at
t = 0). From (2.6), (2.7) and (2.8) onc obtains for the terms on the right side
of (2.56b), withi = 1 and j = 2:

(2.62a) {I—F‘”(s)} {1-F2}5)} = {l—F(“’)(S)} {I—F(")(S)} =
_ {s-F©}(1-5)
mys(l-f5)
1-F(s)
1-fis

{2.62b) 1-FO (5)F2)(5) = 1 - F™ ($)FY(s) =
(2.62¢) M) =pu™ = 1jm,,

So for this alternating renewal process one obtains:
(2.63) HOY(s) = H™(5) = 1/{1-F(5)}.

Thus (2.56b) reduces to (2.25) and one gets:
(2.64) ty = h, 18 = p, 0% '

which was to be expected since both u, and £,™™ denote the probability of a
day being wet at t = n, given that a wet day occurs at ¢ = 0.

3. THE CUMULATIVE DISTREBUTION FUNCTION OF X-DAY TOTALS

In 1I1,7 the cdf of k-day totals was obtained by numerical methods for iid
rainfall amounts on wet days (model I). For this model the number of wet
days in a k-day period is denoted by S.(k) and the k-day rainfall total by S.(k).
Let z; be the rainfall amount on the ith wet day. The carrier of z; is {6,c0) where
Sis the height of the threshold minus half the unit of measurement (see I11, 5.2).

One has:
0 i Sy =0

(3.1) Sulk) = 3 5 if Sa(k) > 0.

. Thus is;
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(3.2) P{S(k)<s} = i P{S, (k) < 5| Sa(k) = jYP{Sak) = J} =

P{S,(k) = 0} | if s <3

P{S,(k) = 0} + f P {i giss} P{S.(k) = j} ifs=d.
j=1 i=1

If 7; denotes the shifted rainfall amount on the ith wetday (= z ;ng), then:
; if s < j5
(3.3) P {2 ;,-.,-;_s} -
=1

j .
P{Z z,-sst} if s3/8.

i=1
In the previous chapter it was assumed that Z; was gamma distributed with

J
shape parameter v and scale parameter A. Then ) Z; is gamma distributed
i=1

with shape parameter # = jv and scale parameter A, and the probabilitics on the
right side of (3.3) follow from a numerical evaluation of the incomplete gamma
function.

The method of evaluation of the incomplete gamma function depends on $and 3 = A(s—j8).
In IIL, 7.2 use was made of an asymptotic expansion (Equation 6.5.32 of ABrRAMOWITZ and
STEGUN (1970)) of the incomplete gamma function when § > ¥ and § > 15, In other cases a

series expansion of the incomplete gamma function was used (Equation 6.5.29, non-alter-
nating version of ARRAMOWITZ and STEGUN (1970)).

The calculation of the cdf of S, (k) with Equation (3.2) also requires knowl-
" edge of the probability distribution of §,(k). There are some special cases of
the wet-dry process for which this probability distribution is well known:
a. The Bernoulli process (see 2.1.1). For this process S, (k) has a binomial dis-
tribution. Calculated cdfs of k-day totals under the assumption of a Ber-
noulli wet-dry process were given by QUELENNEC (1973).
b. The two-state first order Markov chain (se¢ 2.1.1). An expression for the

probability distribution of S.(k) was given by GABRIEL (1959).

A method for the calculation of the probability distribution of S,(k) for a
renewal process was given by ELLIOT (1965). His method is applicable to both
ordinary and delayed renewal processes and is discussed in Section 3.1. In
Section 3.2 Elliot’s method is extended for application to the alternating
renewal process.

The calculation of the cdf of k-day totals becomes very complicated when
the rainfall amounts on wet days are not iid (models I1, TII and IV). For these

models the cdfs of £-day totals were based on Monte Carlo simulations (see
111, 7.2).
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3.1. The distribution of the number of events in a sequence of length n for a
renewal process
For a renewal process one can define:

3.4) R(m,n) = Pl{eyat [0,n-1]|cat t = 0} nzl

where &y, stands for ‘the recurrent event & occurs m times’. Thus R(m,#) is the
probability of m events in a sequence of length #, starting at ¢ = 0, for an or-
dinary renewal process. Some special cases are:

(3.5a) Rm,n =0 ifm>n
(3.5b) R(0,n) =0
(3.5¢) R(l,n) = my., (and thusis R(1,1) = 1)
(S.Sd) R(n,n) = f7 1.
For2 € m< nandn > 2 holds:

(3.6) Rim,m) = Pleatt = 1, en_; at [l,n-1]|eatt=0} +

n—m+1

+ Y P{nocat[l,k-1],eatr=4k, eu_, at
k=2
[k,n-1]]eatt =0} =
= Pleatt=1|satt =0} Ple,_rat[l,n-1]|eatr =1} +
n—m+1
+ Y P{nosat[l,k-1},catt=kjecats=0} x
=2

X P{em_, at [k,n-1]]cat 1=k}
since the process becomes independent of its history at ¢ = k. From (2.1) and
(3.4), relation (3.6) results in:

n—-m+1

3.7 R(m,m) = fiR(m-1,n-1) + ’;2 fiRm-1,n-k) =

n—m+1
Y fiRm-1,n-k) 2€<m<n;nz2.
k=1 .

Let Q(m,n) be the probaf)ility of m events in a sequence of length r for an
equilibrium renewal process. Some special cases are:
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{(3.8a) Qim,n) = 0 ifm>n
38b)  QOn) = 2 b

(3.8¢) O(n,n) = 1 f2-1 (and thus Q(1,1) = i)
M

where &, is given by (2.32).
The probabilities @ (r2,7) can be written as:

(3.9) Q(m,n) = P{eatt =0, en_; at [1,n-1]]equilibrium process} +
+ Y Pnosat [0k-1],zat # =%, enat
k=1
[k,n—1]]| equilibrium process} =

= boR(mm) + 5. ByR(m,n—k) =
k=1

H—m
= Y hR(mnk) I<m<n
k=0

since the past is irrelevant at 7 = k. Substitution of (2.32) results in:

G.10)  Q(mn) =

i mp R(m,n-k) 1<m<n.
k=0

=] -

This relation can be modified as follows:

G Qimn) = - {3 Romnk) -5 (l-m)Rmu-k)} l<m<n,
. k=0 k=90

= -

For the second summation within brackets one can write:

(3.12) S (A-m)Remnk) = 5 f; fiR(m,n-k) 1<m<n.
=0 k=1 j=1 .

n

&
The area of summation is given in Figure 3.1, The contribution to (3.12) of

the n-m points on the line k=j is i JiR(m,n—j); the n-m-1 points on the
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k : Fi1G. 3.1. Area of summa-

\1 point

n-m points

n—m-1

& N tion in Bquation (3.12).

line k=j+1 give a contribution of Y,  fiR(m, n—j-1) and so on. So (3.12)
. =2

results in:

G13) S UemRemak) = 3 SiROnn) +
k=0 j=1

n—m-—1
+ Y fiRemaG-1) + .. + fiR(m,m) l€<m<gn.
j=1

Application of (3.7) for cach term separately gives:
Gy 5 (em)Runk) = Ren+ L) + Ren+La-1) + .. +
k=0
+ R(m+1,m+1) 1<m<n

and thus (3.11) becomes:

(19  Qmm =3 {Z RmB - Y R(m+1,k)} 1<m<n

k=m k=m+1
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which is the discrete analogue of Equation (3.2.9) of Cox (1962).
The term Zn: R{m,k){u represents the probability that there are at least m
k=m ,

events at [0,n-1]; i R(m+ 1,k)/u stands for the probability of at least
k=m+1

m+1 events at [0,n-1].

For computer calculations, (3.15) is a bit faster than (3.10) because it does
not contain multiplications.

From the relations given above it is possible to calculate the probability
distribution of the number of wet days in a k-day period in the following
situations:

a. Wet intervals have a geometric distribution. Then the occurrence of a wet
day is a recurrent event and the required probability is P{S.(k)=j} =

= Q(.k).

b. Only dry intervals have a geometric distribution. Here the occurrence of a
dry day is a recurrent event and the required probability is P{S.(k)=/} =

= Q(k-/.k).

If both wet and dry intervals are not geometrically distributed, it is not
possible to calculate the probability distribution of the number of wet days
with the formulas given in this section. An extension of the theory for this
purpose is given in the next section.

1.2, The distribution of the number of times that the process is in a certain state
in a sequence of length n for an alternating renewal process

For an alternating renewal process one can define:
(3.16) R (m,ny = P{S, at [0,n-1]|eP at 1 =0} i=1,23j=1,2;n=1,2, ...
where S, stands for ‘state j occurs m times’, For n =1 holds:
(3.17a) R (0,1) = 1-8y
(3.17b) R 1,1 = §4.
If i#j, then:
(3.18) R (m,n) = R (n-m,n)
and for n > 1 one has the following special cases:
(3.192) R®(mpm) = R (m,n) = 0 ifm>n
(3.196)  RW(0n) = R (mn) =0 |

ifn=2

(3.19)  R¥(1,n) = RV (n-1,n) = {}U)m @ ' ifn >2
IR '
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(3.19d)  RD(nn) = R (O0,n) =0

(3.19) R¥(n-1,m) = R (L,n) = m?,.

For2<m<n-1;n 2 3and i+; holds:

(3200 R®(mmy =3 Pfnos? at [0,k-1], ¢® at 1=k, S,
k=1

at [k,n-1]1e" at =0} =

n-—m
= Y P{noegVat [0, k-1], e at t=k| e at r=0}x
k=1

x P{S%  at [k,n-1]|e9 at =k}

since the process becomes independent of its history at 1=4. Hence: -

(321)  RP(mm) = Y f9RE (m-1,nk) =
1

k=

S £ RUD (nk-m+1,n-k) i£f; 2Sm<n-1;n2 3,

k=1
From (3.18) and (3.21) it follows:

(3.22) RW(m n) = if}j)RU"’(nfm—l,n—k) = Y fVRWmn-k+1,n-k)
k=1 1

k=

i#f;2€m<n-1;n23.

To make the reader more familiar with this material some formulas are
worked out for a Bernoulli wet-dry process. It is assumed that a wet day cor-
responds to state 1 and that the probability of a wet day equals p. For this
process the probability distributions of dry and wet spells are given by (2.14)
and (2.15). Further, a type 1 event occurs at =0ifa wet day occurs at =0 and
a dry day at t=1. - -

For n3 2 the number of events does not depend on the initial condition,

since the process has no memory. Thus:

(3.23) R‘“}(m,n) — Ru“(m,n) — R(lz)(n_m,n) = R‘“’(n—m,n) "2,

By definition:
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(3.24) RUD(m,m) = P{m wet days at [0,n-1]| wet at =0, dry at t=1 1=

= P{m-1 wet days at [2,n-1]}=
= (n:f)p’"”q"‘”‘“l lsm<n-1;nz3.

The relation (3.21) has the following form:

(3.25) RUD(m p) = nimﬂf)R(“)(mfl,n—k] —
=

" om k-2
— qu—l ( )pm—z qn—k—m —

k=1 m=2
—_ m-—1  p—m—1 nom n—k—z —
=/ 7 E;l (}n—Z
n-2
= \m-1) P gt 2<m<n-l;n=3.

The last equality follows from II, (12.6) or II, (12.8) of FELLER (1968).
Let
(3.26) QW (m,n) = P{SD at [0,n-1]| typeieq.} i=1,2;j=1,2;n=1,2,...

that is Q" (m,n) denotes the probability that state j occurs m times in a se-

quence of length n, starting at 1=, for a type { equilibrium alternating renewal
process. For n=1 holds:

B278) QW1 = 1-5,
B27b) Q1) = 5,

If i#j, then: |
(28) QD (mn) = O Gromnm)

and for # > 1 one has the following special cases:

(329} QW (nn) = QW Gnny = 0 m>n
(3.29b) 0B (0, 1) — 0" (n,5) = i p
k=n-1
{3.29¢) CWmn = QU (0,n) = 0
134
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(3.29d) QW (n-1,m) = QU (1,n) = m¥ ,/u".
For l<m<n-1,n>2 and i#j holds:

(3.30) QW m,n) = P{eVatt=0, 8 at [0,n-1]|typeieq.} +

n—m-—

1
+ Y P{noe™at [0,k-1], ¢ at r=k, S
=1
at [k,n-1]|type ieq.} =

n—m-1
= bg R“"')(m,n)+ Z bé”R‘U’(m,n—k)
k=1

since the process becomes independent of its history at =k. For a type i
equilibrium process 5" = my?/ut® (see Section 2.2) and therefore (3.30)
results in:

n—rmt—1 .
(3.31) QNm,n) = { y mf’R(ij)(m,rz_k)}/u“’ i#j;l€sm<n-1;n22.
k=¢
From (3.18), (3.28) and (3.31}) it follows:

(3.32) O (m,n) = {milmg) Rw)(n—m,nAk)} k=
: k=0

- {milmE)Rlii)(m—k,n—k)}/#“’ 1 lsmsn-lin22.
k=0

Let:
(3.33) Q9 (m,n) = P{SY at [0,7-1]}
then, for a pure equilibrium process holds:
(338 0Omn) = QW) +4" Q) i),
For the Bernoulli process, which was considered earlier in this section, a
type | equilibrium process is & process starting with a wet day and a type 2

o (
equilibrium process is a process starting with a dry day. The means 4 » and
1@ are 1/g and 1/p respectively. For the survivor function one has similar

relations as (2.16), namely:
(3.35a) m) = p"
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(3.35b) m@ = 4.
By definition one has:
(3.36) QUV(m,n) = P{m wet days at [0,n-1]| wet at r=0}=
= P{m-1 wet days at [Ln—1]}=

(nl)pm_1qn—m 1€m<n;n=2.

i

m-1

The relation (3.32) has the following form:

m-1 -
(337 QUY(mn) = ;i“ 3 mit RO ok nk) =

h—2 m—k—1 n-—-m-
=g Zp ( l)p gt =
0 .

_ il n-kﬁZ)
 me1n-m ’"Z“:l nk-2\
- p q k=0 I’!*m—l -
o A W,
= A1l ? q" lsm<gn-1;n22.

The last equality follows from I1, (12.6) and II, (12.8) of FELLER {1968).
Since the process has no memory:

(3.38) Q41 m,n) = @2V (m-1,n) = Q"D (n-m,n) =
= Q@2 (n-m+1,n) l<m<n.
From (3.37) and (3.38) it follows:

339  QWV(mm) = ("-) prgr-m1 l<maninz2

which is the probability of m wet days in a period of length #—1.

Since gt} = P(wet) = p and 4'® = P(dry) = g, substitution of (3.37) and
(3.39) in (3.34) gives:

2 A N [ | R
(340) Q‘.”(m,n) =p (m_l PP 4 g (m) prgrl =
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It can easily be shown that (3.40} also holds for m==0 or m=» and n=1.

Though the probabilities ¥ (m,n) can be obtained from the relations (3.31)
and (3.32) it is more convenient, however, to use some alternative expressions
for these probabilities. The relation ¢3.31) can be written as:

G4y 0W(mn) = {"_fl R (k) +
k=0

n—m-—1
— Z (l—mk“))R“j)(m,nvk)}/y‘”
k=0
i#j;1€<m<n-1;n22,
Analogous to (3.14) one has:

n—ni—1 7 .
(3.42) Y (- MRPmuk) = Y RE(m+1k)
k=0

k=m+2

and so (3.41) becomes:

(3.43) 0V (m,n) =={ i RY (m,ky — i ' Rw’(m+l,k)}/,u“’
k=m+1

k=m+2
i#;1<m<n-1;n=22,

From this relation it follows that

i R(ji)(m,k)_ i R“”(m+1,k)}/uU)'
E

k=m+1 =mt2

(44 QW (mm) = l

i#i;1€<mEn-1;, n22.

(3.45) 0 (myny = QW (n-myn) = { i R (n—m k) +

k=n—m+1

— Zn: RUﬂ(n_m-;-l,k)}/ﬂ‘“ iZi;1<m<n-1;n22.

k=n—nm+2

. 137
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Substituting (3.44) and (3.45) in (3.34) results in:

k=n—-m+1

G46) 09mmy =] 3 ROmE)+ Y RPm-mk)+
k=m+1

k=m+2 k=n-m+2

— i R(ii)(m-+1’k)_ z”: Rw’(n—m-l-l,k)}/

;@D + p) i#j;1<m<n-1;n22.

From (3.46) the probabilities Q” (m,n) can be obtained by using (3.18),
with (3.21) or (3.22).

1t can be shown that (3.46) reduces to (3.15) for a renewal process. For instance, assume
that the occurrence of state [ is a recurrent event ¢, When a type 2 event occurs at =0, the
system is in state 1 at =1 and thus is:

(3.47 RV kY = R(m, k1) k22,
Further, for k=2
(3.48) RV (m, k)

Ii

Pleyat[0,k-1]jeat t=0,nozatr=1} =
_ Plesat [0k 1) nogate=1)gat =0}
-
~ Plemat[0,k-1]|catr=0} - P{sati=1,5,_, at [1,k=1]|eatz=0}
1A )

 R(m.k) — f, Rim=1,k-1)
h 1-f )

From (3.18) it follows:

(349  RUB-mk) = ROVG-n4m,k) = Tlf“ (RUc-n+m,k) +
1

- [LR{k-n+m-1,k-1)} k=2

(3.50)  ROD(m+ 1K) = R2O(K-ntm-1,k) = Rlk-n+m-1,k-1) k2.
And thus is:

(350 RED(mk) - ROy 1E) = ﬁ {R(m,k~1) - RGn+1,k)} k2

(352 RUDGrmk) - RE2(n-m+1,k) = 117 {RUk—+-m,k) +
1

- Rl m-1,k-1)} k2.
Since !’ = L (see 2.1.1) one has:
1-/;
_L 1 #(1) 1
(3:53) 17, 0¥ ™~ g m T p
I38
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and thus (3.46) results in:

5 {R(m,k—l)ﬁR(m+l,k)}-l-_i‘1- S (Rt m)+
1 +1

1
B ok=m+ k=n—m

(3.54) QU%mn) =

- R(k-n+m-1,k-1)} l<mgn-1:022,

The second sum in {3.54) equals:

(3.55) i R{k-n+mk) - "il Rlk-n4+-m,k) = R(m,n) — R(0,n-m) = Rim,n),

k=n-m k=h—m
This result was to be expected since (3.55) represents 11 (m,n) {sec Equations (3.45) and
(3.52)) being the probability that there are m recurrent events in a renewal process starting

with a recurrent event at ¢ = { (ordinary renewal process).
Substituting (3.53) in (3.54) gives:

(3.56) Oy = ;lz {f; Rim,k) - Hiﬂ R(m+l,k)} = Q(m,n)

l<m<n-1;n22.

4., THE CORRELOGRAM

Let {y} be a stationary process in discrete time, then its lag k autocovariance
is defined by:

(4-1) ny(k) = COV(Q;,Z:H) = E(Zrl’t+k)'“E(Zl)E(£t+k) =
E(yeyee) = {E@0}

For k=0 one has:
4D Cp® = B - {EQ@)}* = var 1.

The lag k serial correlation coefficient is the quot!'ent of Cyy(k) and Cyu(0)
and is therefore readily obtained from the autocovartances. ‘

In the subsequent sections, expressions are derived for the autocovartances
of the wet-dry process and of the rainfall models I, IL, I1I and IV. Throughout
this section the wet-dry process is assumed to bf’ an alternating {enewe'il
process in which state 1 corresponds to a wet day. Since the autocovariance is
symmetric in k, non-negative lags are considered only.

4.1. The autocovariances of the wet-dry process ‘and of the rainfall pro;ess with
independently and identically distributed rainfoll amounts on wet days

For the wet-dry process {z,} holds:
43a)  E@) = Pa=1) = ¢V
)
(4'3b) E{agieny) = P(ﬂ,=1,ﬂ;+k=1) = qil)h"(“
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(4_43_) Cnn(k) — q(“hk[“)w (qtl))z k=0
which reduces to:

1 L
(44b) C,m(k) = ; gy — — k; 0

2
if the occurrence of a wet day is a recurrent event (cf. Equation (2.64)).
For the rainfall process {x,} with iid rainfall amounts (model I) holds:

J)_C! =0 if the ¢th day is dry

I

where z is a random variable on the interval {5,00).
For this rainfall process:

462)  E(x)= E(xi|n=0P@=0) + E(xi|ne=DPm=1) =
=0- q(2)+ E(z) - q(1)= q‘“E(z)

(4.5) .
z if the tth day is wet

1=

R

1

and analogously:
(4.6b)  EQXerr) = E@keer| o= L= 1)Ple=1Lnn=1) =
g E(?) if k=0
B {q‘”hk“” (EG))? if & >0.
From {4.1) one obtains for the autocovariance:
g'"WE@Z?) - (¢ {E@)}? ifk=0
[E@) {g VD (g2} = [E(2)}2Culk) ifk>0.

The calculation of the autocovariances of the wet-dry process with (4.4) and
of the rainfall process with (4.7) only involves the calculation of the proba-
bilities #;,11). These probabilities can be obtained from (2.54b), using (2.49)
for the calculation of the probabilities v,''1? and v,12) (/=0, ..., k-1).

(4.7 Calk) = {

From (4.4) and (4.7) it follows that the autocovariances Cp,(k) and Cy (k) are mono-

tonically decreasing in k if the probabilities 4,11 are monotonically decreasing in k. The
reverse Is also true.

For k=1 holds:
(4.8a) hy11 = P{state I at r=1|type 1 eq.} = 1-b,‘V
and for k=2 holds:
(4.8b) B0 = Pstatelatt=1,statelats=2|typeleq.} +
4+ Pistate2atr=1,state lats=2|typeleq.} =
= 1-b b M) . pfLif 2,
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The difference of these probabilities is:

(4.9) h!(ll)_,kzun = bl[“*bo(”flm :(1—f1m—f1(2))f#m
and thus holds:
Coun(2)< Can(1)
(4.10) < hl‘”’—hz‘llbo = 0 4B,
Ca(D < Cul1)

For most rainfall series the distributions fitted to the length of weather spells are such
that the inequalities in (4.10) are satisfied.

4.2. The autocovariances of the rainfall process with non-identically distributed
rainfall amounts on wet days
In III, 4.2 it was demonstrated that the distribution of the rainfall amount
on a particuiar wet day depends on the adjacent number of dry days. Rainfall
amounts on wet days bounded by ¢/ wet days (i=0,1,2) were called type i
amounts. The occurrence of a type i amount is denoted by ». For the rainfall
process {x,} with different types of rainfall amounts on wet days holds:

% =0 if the rth day is dry
@1 x>~ z® if the ¢th day is wet and is bounded by / wet
days.

The random variable z'9 is defined on [§, c0). In this section the rainfall
amounts on wet days are assumed to be uncorrelated (model Hi), The process
with correlation between successive rainfall amounts (model IV) is discussed
in the next section.

For a stationary process the probability that ) occurs at ¢ does not depend

on ¢. If this probability is denoted by p'¥, then

(4.12a)  E(xy) - PV E(ZD)

e

]
=)

POEEWY,

e

(4.12b)  E@x?) =

"
li

0

The variance {Cx(0)) is obtained by substituting (4.12) in (4.2). The only
problem for the calculation of this quantity is the calculation of the probabili-
ties p¥, These probabilities are obtained as follows. If a wet day occurs at 1 =0
(or another arbitrary time point}, one can distingu_ish 4 different cases (a,b, c
and d) depending on the state (wet or dry) of the adjacent days '(§ee Figure 4.1).
Let p be the probability of situation a (this is the probability of a type 0
amount); p® the probability of situation b and so on. Then:

(4132) p@=grw
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21 2 1
a —0WD b DWW ¢ MWW 4 __WWW
[H i} 1 0

FiG. 4.1, Different possibilities for the occurrence of a wet day (W) at ¢ = 0. State 1 corres-
ponds to a wet day. Al theend of'a weather speli the type of event (1 or 2)isindicated.

@.136)  p®=Bm®

(4.13c)  p©=p®  (since the process is time-reversible)

(@.13d)  pN=0W(3,3) =qW QW (3E3) = ¢V (1-bV-b{V) =
= g -1-m{V)

where 0 stands for 1/(u" 4 u2?). This is the probability that £ (or 82’} occurs

at an arbitrary time point (sec Equation (2.48)). From (4.13) one gets for the
probabilities p*:

(4.14a)  p@ = p® = ff{V
@.14b)  pW =p® 4 p® = 20m®
(4.14c) P(z) - p(d) - 3(}1(1)_1_,”1(1)) = q(l)_p(()]_p(l).

For k> 1 holds:

(4.15) E(xxivs) = i i E(z™E@EMpiP

i

with: pf = P{nPat £, 7% at 1+ k} = P{nPat 0, y at k}.

The autocovariances are obtained by substituting (4.15) and (4.12a) in (4.1}
and so the problem of the calculation of the autocovariances is reduced to the
calculation of the probabilities pi¥’. Now if a wet day occurs at t=0 and at
t=/k there are different possibilities leading to this event, depending on the
states at £=—1, 1, k-1 and k+1. These possibilities are given in Figure 4.2.
From this figure it can be seen that for k=1 and k=2 not all 16 situations are
possible.

Thus the lag 1 and lag 2 autocovariances of a rainfall process with a Bernoulli wet-dry

process are in general not equal to zero. For instance, if the probability of a day being wet
equals 4, then:

(@16  E(s) = g {BE®) + 2B + E@))

since each of the situations a, b, ¢ and d can occur with probability 1. For k=1 only the
situations be, bd, de and dd are possible, each with probability 4; and thus:

(@160 Blxne) = ¢ (IBGU)E + 2B EE) + () )
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an OWD = DWD .., cc WWD WWD 423
[} k 0 )
21 2 21
ab AW WW 42z ad DWD,_ WWW, .,
k ] ¥
21 1 21
ac  OW WWD 423 do WWW __ DWD 4oy
e k 0 k
2 21 2
ba DWW WO 423 bd _EWW WWW
0 K [ K
1 21 1
ca WWD  DWD 4= cd WWD  WWW yay
0 k 0 k
H 2 2
bb DWW WW. 4 =3 do WWW = DWW 4=y
0 L ) k
2 1 1
be DWW w =1 de Www WWD o
0 & 0 k
] H
b WWD W gz dd WWW WWW 2y
0 k 8 k

F1G, 4.2. Different possibilities for the occurrence of a wet day (W) at r=0and at s = £,
State 1 corresponds to a wet day. At the end of a weather spell the type of event

(1 or 2} is indicated.

which does not depend on E(z'?).
From (4.1) and (4.16} it follows:
4.17) Coll) = [BIEE) ] - [EO) ] +4EECV) E' )+
—4E(§(°]) E(gu )) —ZE(E(D))EQ(“)}/@L
If E(z')) < E(z') « £(z'?"), then Cuf1)is positive, since then: 3[E(z*) ]2 > [EZ")]* +

+2E(z%) E(E(Z)) and E(z*1?) E(gizl) >E(Z(0))E(§{H). . .
When dealing with real rainfall processes a model with different types of rainfall amounts
(model III) usually has a larger first scc than a model with identically distributed rainfall

amounts {model 1), see III, Table 6.2.

Let p,“ be the probability that situation a occurs at /=0 and 1=k (k>1).
The probabilities of the other situations can be defined analogously. From

Figure 4.2 it is seen that:
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(a182)  po0 = p

(4.18b)  pot = p + p

(418)  p{t® = p& + pf

@18d)  ptt = p + p 0+ pf + p
(4.18¢)  p{o2 = p¥

@18f)  p = p

@18  p{?=p& +p&

(4.18h)  p*V=p{ 4 pf

(4.18i) PP = plad,

For the probabilities p ), p/®, ... one can derive the following relations:

0 ifk=1
4.19) pl =

o0, 212> ifk=2
0 if k=1

(4.196)  pl {gflmuil_zl)mlm . ifk>2
IO if k=1,2

(4.19c) pf = |ofiupn pom if k>3

(419d)  po = po

(4.19¢) pEY = p )

. . 0 if k=1,2
19 = '

N p Bul22m (1 _ p (&) if k=3
Igfz(l) ifk=1
419g) p™ = o1 if k=2
21— p fo)_p se)._ p () ifkz3
(4.19h) (eb) ° ' -
. Py = gDy 12D (1) = B(m, V)2 1 (12) ifk=2

(4.19)  pé = pob
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0 ifk=1,2

i fad) _
(4.19j) P = ﬂfl“]WI:UILP;}M)‘P;‘(ab)—pk(“) ifk>3

(4.19k)  p = p e

B, 1) if k=1
(@19)  p™ = fom ifk=2
' Ow, 2 P p—pleb)_p r_pon_peb)_p o) piadigp s 3
jo if k=1,2
(4.19m) o) —
1 Py ]q(”bl‘“wk‘l”—pk(”)—p;?") pfe) =
= le(llwk(l1)7pk[ca)wpk(cb)_pk(cc) ifk>3

@.19n)  pA» = plb)
(4.190)  pE) = p o0

(4.19p)  p = gW ROV p I p O p ),

If one takes k= 2 in 8f,Vu, 11 - p (Equation (4.19c)) one gets: 0f, 10 +
—-0(f,")? 4,12) = @, using the fact that u, 1" = £, 4,112} Taking k=1
gives: 8,V 4, "1 = 0 and so it can be concluded that:

P = f 5 1) _p o) forall k21.

Something similar holds for the other relations (4.19). Thus, substitution of
(4.19) in (4.18) results in:

(4.203) pktoo) = g(fl(ll)z H;fizl)

(4.20b) pk(m) = Pk(m) = efil]{uk(ll) +m1[1)uk(li)}_pk(uu}

(420c)  p,aV = 92mV 00 + u B+ (m VY w12} p {00 2p{oV)
(200 poV = p 29 = BVWED (e —poV

@206 p{D = plD) = OSEY +mwi)p0D2p0 D _pon
(4.20) P22 = qu)hk(l1)7Pr§00]_2pk(01)_pk[1l)nzpéozl_zpk(lz)_

One can substitute (4.20a) in the right side of (4.20b); (4.20a and b} in the
right side of (4.20c¢) and so on, giving:
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@210)  plV = DR uY

(4.21b) pk(OIJ = p,fm) = gflu){(ml(l)_fltl))uk(lzl) +“k(”)}

(4.21c)  piY = #{(m D 124,21 +2(fn1‘1’—f1‘1’)u,§11’ +uZY)
@2 p = p39 = O D D 1)

(4.21e) péIZ) = pk(21) — 9{("11[”*1"1“))“’::(1” + wﬁill)fml(l)(ml(l)kflfl)) X
X u(1_21) _(zml(l]_fl(l)) “k(“)“"k(ill)}

(4.21) pézz) = q(l)hk(ll) + g{(mlu))z ur‘(ﬁ) +2m1{1)uk(11) +uk(3_11)+

_2m1(1) Wk(l 1)_2w’(‘2+1%} .

For the calculation of the probabilities p{* from (4.21) one needs:
a. the probabilities {12, 11! and 1,2, These probabilities can be obtained
from (2.36).
b. the probabilities w{1*? and w21}, These probabilities can be obtained from
the probabilities ¥ (/=0, ..., k), using (2.35) and (2.41).
c. the probabilities #,'1. These probabilities can be obtained from the prob-
- abilities w1 ({1 =0, ..., k), using (2.52).

4.3. The autacovariances of the rainfall pracess with correlated rainfall amounts
within a wet spell )

In HI, 6.1 two models (Il and IV) were described with serial correlation
between rainfall amounts within a wet spell, In that section it was assumed that
rainfafl amounts within a wet spell were correlated according to a first order
moving average process, but here no special assumptions are made about the
sccs at different lags.

In {4.1) only the term E(x.x,.4) is influenced by correlation between rainfall
amounts within a wet spell. The difference between the autocovariances of
models with and without correlation between rainfall amounts within a wet
spell is the difference between E(x,x,,x) for these models.

First, the process with iid rainfall amounts (model II) is considered. The lagk
sce of rainfall amounts within a wet spell is denoted by p;. To get an expression
for the autocovariances of this model let W, (k=1,2, ...) stand for the event
that & consecutive wet days occur. For a pure equilibrium process the prob-
ability of this event P(W}) does not depend on the time . If W, denotes the
complement of this event (there is at least 1 dry day), then:
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E{iXeso | Wy at {te+1]} P(W,) iThk=1
E{Xekein| Wiyy at [t +&]} P(Woy ) +
+ E{xeri| W, Wi Wy at [t,14k]} x
x P(W Wi W) ifk=2.

4.22)  E(xgis) = {

For the conditional expectations on the right side of (4.22):

(4.23a) E{xXepx| Wesy at [t,t4k]} = cov{xs,xerx| Wiy, at [t.e+k]} +
+ E{x,| Wiy, at [t,1+k1} X E{xesn| Wiey at [t,t+k]} =

= pevar z + {E(2) }?
and similarly:
(4.23b)  EQe| WiWio W, at{t,t+k]) = {E@)}? k=2.
Further
(“242)  PW) = QVGk) = ¢V QD kK)
(and thus is P(W,) = qWh,Y11)

(4.24b)  P(W Wi W) + P(Wi, ) = ¢Vh 0D k=2.

The probability Q1 (k,k) follows from (3.29b).
Substituting (4.23) and (4.24) in (4.22) gives:

(4.25)  Elxonn) = pQW (k+1,k+1) var z + ¢VEAV (E@) k21,

From (4.6b) and (4.25) it follows that there is a difference of px QW (k+1,
k+1) var z between the autocovariances of models I and II.

When the rainfall amounts are not iid (model IV) the situation is slightly
more complicated. If there are k+1 consecutive wet days at [0,k] one can .
distinguish four cases:

a. Dry at t= -1, dry at t=k+1, giving a type 1 amount at =0 and at t=%.

The probability of this event is denoted by P(1, Wiy, 1) and equals 974}

- (0 is as before 1/(u® + u@)).
b. Dry at t=-1, wet at t=k+1, giving a type 1 amount at r=0 and a type
2 amount at t=4k. The probability of this event is P(1,Wy,1,2) = 6miii.
c. Wetat 1=-1,dry at t=Fk+1, giving a type 2 amount at t=0 and a type 1
amount at r=Fk. The probability of this event is P(2,Wiy1,1) = 0myi}).
d. Wet at r=—1, wet at 1=k + 1, giving a type 2 amount at 1 =0 and at r =4.
This event occurs with probability P2, Wi.1,2) = @V (k+3,k+3).

Analogous to (4.25) it can be shown that:

: 14
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2 2 , ) .
(4.26) Exxen) = o 3 Y {var 2 var 29 PG Wi, ) +
o =

-

+ Ez (l))E(Z(J))p (if} k=1

I
it

i

i

assurning that the lag k scc p; does not depend on the different types of rainfall
amounts (this assumption is also made in III, 5.1).
From (4.15) and (4.26) it is scen that there is a difference of

2
E fvar ¥ var 2PV PG W)

ILMN

between the antocovariances of models IIT and IV,
For the calculation of the first scc it should be noted that:

(4.27) PEW o)) = py P i=1,2;j=12
‘which simpliﬁes Equation (4.26).

5, THE VARIANCE-TIME CURVE

In this section a short discussion is given about the calculation of the va-
riance-time curve for different types of models. The main body of this section
deals with the asymptotic behaviour of the variance-time curve.

Expressions for the variance-time curve can be readily obtained from those

of the autocovariances. Let S,(k) be the number of wet days in a k-day period,
then its variance is:

(5.1 var S,(k) = kCp(0) + 2"21 (k=D Cn(D).
=1

The autocovariances Cpu(f) follow from (4.4). An analogous relation exists
between the variance of the k-day rainfall total S.(k) and the autocovariances
Ce() of the rainfall process.

When dealing with a model with iid rainfal amounts (Model 1, see (4.5)) the
following relation exists between var S.(k) and var S,(k):

(5.2) var Sx(k) = E{var [Su(k) | Si(k)]} + var{E [S:(k)| S.(k)]} =
= E[S,(k)] var z + [E(z))? var S,(k).

The wet-dry processes, considered in the previous chapter, have approxima-
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tely the same mean and therefore, only the second term on the right side of
(5.2) is different for these processes. The type of wet-dry process has therefore
a larger influence on var §,(k) than on var S, (k)(see also II1, 6.2).

In this section special attention is paid to the asymptotic behaviour of var
Sa(k). It is shown that for the wet-dry processes considered in the previous
section

(5.3) var S,(k) = a,k + b, + o(l)

when & tends to infinity. In (5.3), o(1) denotes a function of & tending to zero
when k— o0, The coefficient ¢, only depends on the first 2 moments of the
lengths of wet and dry spells, whereas the coefficient b, depends on the first
3 moments. For model I the asymptotic behaviour of var S,(k) follows imme-
diately from (5.2) and (5.3). :

Section 5.1 deals with the asymptotic behaviour of var §,(X) when the
occurrence of a wet day is a recurrent event. The asymptotic behaviour of var
Sa(k) for an alternating renewal process is discussed in Section 5.2.

5.1. The asymprotic behaviour of the variance-time curve for renewal processes

Discussions about the asymptotic behaviour of the variance-time curve of
a renewal process were given by FELLER (1949), SmrtH (1954, 1959) and Cox
(1962). The first author dealt with a process in discrete time, while the others
discussed processes in continuous time. The derivation, given here, follows the
one given by Cox (1962) closely.

Instead of working with var S,(k) or {E[S.(k)]}?, it is easier to consider
(cf. Cox (1962), Section 4.5):

G4 i = E[Sa (k) {Su(k) + 1}] k=12,...

One sces immediately that for an equilibrium renewal process ¥, = 2/u.
For this process the s and the variances are related by:

(5.5) Wi = var Sy(k) + {E[S«(R) 1} 4+ E[S/(B)] =

: ok
var S,;(k) -l-]iz—kf k=1,2,..
H M

Substituting (5.1) in (5.5) gives:

k=1 kz k k=1,2

(5.6) Y = kCun(0) + 2;} (k-DCull) + ] +1; =12,....
From (4.4b) it follows: 2

ok 28 e Pl + B 45 2

(5.7 Wy = 0 +; l; (k-Dw w2 ( LA
2% 2! - k=1,2,....

=41 2F (k-Du o

i # 1;

: . 1
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For the gf P(s) of { .} holds:

(5.8) P(s) = k}i Yrst =

ﬂk1 =1 k=141

_2 UGs) Y, ks
i k=1

Since Y ks* = s/(1-%)% and substituting (2.25), one gets:
=

2s 1
p(1-s)* 1-F(s)

which is the discrete analogue of Equation (4.5.5) of Cox (1962).
For the term 1-F(s) in (5.9) it follows from (A1.2):

(5.9) Y(s) =

510 LR = (1) {um+5‘—21(s—1)+@( 1y + }

where figq1, Hizp Heap, - - - are the factorial moments (see Appendix Al) of the
recurrence times.

Since pp,; = p> 0 the equation F(s)=1 has a simple root at s= 1. The follow-
ing remarks can be made about the other roots of F(s)=1:

a. Ifsisacomplex root, then its conjugateFis also a root. Namely, from F(s)=1
it follows F{(s) = F(3) =1.

b. There are no roots within the unit circle, since if
(st < 1 then: | F(s)| < F(|s|) < F(1) = 1.

c. If s=e" isaroot of F(s)=1, then:

F(s)+ FG) = Z file™® 4 ety =2
giving z frcos kdp=1.

But, since Z JSi=12and 0<f, <1 this can only be true if fy =0 for values of k
k=1

for which cos k¢ 1. That is f; can only be non-zero if k=2mmn/¢ (mis a posi-
tive integer).

For rainfall processes {fi} is a non-periodic distribution and therefore the
equation F(s)=1 has a simple root at s=1 and the other roots lie outside the

unit circle. Hence, expanding (5.9) in powers of s—1 results in an expression of
the form:
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(5.11) W()—_?‘S{ 4 A A I
. s} = _,u_ e + 1) +;:l—+o(;1—)}

where o(s—1)" stands for functions f{s) with the property that

Insight into the behaviour of the s for large values of k can be obtained by
inverting (5.11) term by term. This technique is discussed for F(s) being a
rational function in s. Then ¥(s) also is a rational function in s and the re-
mainder term in (5.11) can be split into partial fractions. For the inversion of
(5.11), one needs:

(5.12a) 3 #F =S
k=1 1-s

8

(5.12b) ket = 3
= (1-s)?

o 252 = 2s
(5.12¢) kZz k(k~1)s* = e k; k(k+1s*t = =

The Equations (5.12b and c) follow from differentiation of (5.12a).
Therefore, Equation (5:11) can be written as:

S gt 2a, §ord, $oast-La, T okterns +
(513) kgl lf]ks - ,”-{ Al kgl + z kZI 2 3 kgl

+2 X 9115"}
=1 k=1
where # is a finite number related to the roots of F(s)=1. A simple real root s;

. 5 &
of F(s)=1 gives a ; proportional to 57 (smce;— = kz,l (s/57)%). A root s

¥
. - — -k
with multiplicity 7+ 1 gives 8s proportional to 57, ksi*, ...,K'sj"", whereas a
simple complex root, s; = | s;|¢'¢, and its conjugate lead toa 0 proportional to
Is;] ~* cos(k¢). However, since |s;| > 1, the term O tends to zero for large .
Therefore if k— o one gets:

(5.14) Y = 2 {lA:,k2 + (l As-A)k+A} +o(1).
n2 2

The argument leading to (5.14) underlies the assumption that F{s) is a ra-
tional function in s. It can be shown, however, that (5.14) holds under very
weak assumptions about the distribution of the recurrence times. A rigorous
proof requires difficult Tauberian arguments, analogous to the continuous
case (cf. SMITH (1959)).

. 151
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From (5.9) and (5.10) it follows:

(5.15) - W)= % {1+ E(HH s (s-1)% -+ -}_1=
) u2(s-1)* ATy 611111
-2
== {1— [i“i‘ (1) 4 121 (s—1)2+...] +
uA(s-1)3 2445 Opty )
2
+ [_’i?_’(sq)Jr st 1y 4 J + ... }=
20y 6y
2
_ X {I— ﬂ(stl)+[ﬁ—iz}_ ﬂ{a}](s_l)z 4
#E(s-1)° 2up; 4t 6upy
+0(s—1)2}
when s—1.

From a comparison of (5.11) and (5.15) one gets relations between the
coefficients A4,, 4,, A, and the first 3 factorial moments. To express these

coefficients in the mean, the variance and the third central moment, use is
made of the relations:

(5.162)  ppyy = p, + p2
(5.16b)  pyy; = My + 3ppy + p® -3, - 32 4 2u.
One finally gets:
(5172) A, = 1

— 2 _
5.07b) 4, = ZP2tH-n)
22
L I O
(5.17¢) 4, = 12 _ B _ Ly

Substituting this in (5.14) gives:

k* gy +p2 o 1 1
5.18) Stk = - = - £ s,
(_ Vi e e Wt 3 &2 6 (1)
From (5.5) and (5.18) the asymptotic formula for the variance becomes:
2 1 1
(5.19) var S,(k) = !Ek +ﬁ__‘[fi__u_+,+o(1)_
I 2t 3 e 6
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Problems arise when g, [, or gy are infinite. For instance, assume that for large n the
survivor function has the form:

(5.20) My, ~ An™* l<a<2.

For this renewal process the distribution of the recurrence times has a finite mean, but the
higher moments are infinite.
For the equilibrium renewal process it can be shown, that as koo :
24 k
(=1} (2—¢) (o™ -
The proof is analogous to that of FELLER {1949) for the ordinary renewal process. So the
variance-time curve tends to a straight line on double logarithmic paper.

3-x

(5.21) var S,(k} ~

The correctness of (5.19) can easily be verified for the Bernoulli process,
discussed in 2.1.1. For this process the recurrence times are geometrically
distributed (see (2.13)); expressions for the mean, the variance and the third
central moment of this distribution are given in Table 3.3 of Chapter III.
Substituting these expressions in (5.19) gives:

1 1 1 1
(5.22) var S,(k) = kpg + qu - 5q(1+q) - gpz + s +o(l) =

= kpg + o(1).
which is abviously correct, since kpq is the variance of a binomial variable.

5.2. The asympiotic behaviour of the variance-time curve for alternating renewal

processes . _ o
In this section the asymptotic formula of the variance-time curve is given for

a pure equilibrium alternating renewal process. It is a}ssumed that state 1
cortesponds to a wet day and state 2 to a dry day. For this reason these events
are denoted by w and d, respectively. '

For /. defined by (5.4) one gets the expression:
(5.23) Y = var S, (k) + k2 (g™ + kg™ .

Analogous to (5.7) it can be shown that:

k-1
(5.24) W = 2kq™ + 2¢™ Y (k-Dh™™.
=1
The analogue of (5.9} is:
(5.25)  P(s) = 24 sH™ (5)/(1-5)*.

Substitution of (2.56b) gives:

29™s (1 s{l—ﬁw)(s)}{l—Fd](S)} }
(1-5)? {1__} T (1) {1 FM () FO ()}
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Let K(s) and L(s) be functions of s, such that
(5.27a) {1I-FM (O }{1-FY(s)} = (s-1)*K(s)
(5.27b) 1-F™ (5)F®(s) = —(s-1)L{s)
then (5.26) becomes:

Zq(w)s 2q(w)sz K(S)
(1-5)*  p™(-1P L)

(528)  ¥(s) =

Since both wet and dry intervals have non-zero means it follows that K(1)#0
and L(1)#0. Therefore expansion of (5.28) gives, as s—1:

2q™s  2q™Is2 [ A, A, A, 1
+ + 0 .
(1-s5)° ™ =102 (=12 sl s—1

(5.29)  W(s) =

Using {5.12) one gets for k— c0:
{5.30) Wy = g™+ 1) +2¢™ {- Lk(k—1) A+ (k1) A,—A4, ™ +o(1)

provided some convergence conditions are satisfied. Equation (5.30) can also
be writien as:

' Y 24, A
(5.31) !!/k = q(w) {lr r(tws)}kZ + q(w) {1 + 2 + _37} k— ZQ(WJ

{w)

X

x {Al +A2} +o(l).

For obtaining expressions for the coefficients 4,, 4, and 4, the functions
K(s) and L{s), defined by (5.27), are expanded in powers of s—1. Since for the
pefs F9 (5) and F™ (s) similar expressions hold as (5.10), one gets if s—1:

(5322)  KGs) = #E‘Hf{i‘}+%{ﬂE‘HﬂE§5 +ufZiuf)) -1 +
+ {20 S + 266l + 3uu) ) (-1 +ols-1)? =

KD +K (D) + 1K) (1) +o(s-1)2
iR+ R ) 2 6D+

I

(5.32b)  L(s)
1w "
g ] ) 3 el 3 ) (12 ol =

= LI+ L D) (1) + 4L (1) (s-1)* +o(s-1)2.

A similar expansion as (5.13) gives, for s—1:

63 5= oA Rene [E’-Q’-—E'@](s_nz} Fols 2.

L(s) L)y L) L1y 2L(1)
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Multiplication of (5.32a) by (5.33) gives:

K(s) _ K@) {K’(l) _K()LQ)

(5.34)
L& L) Ly Ly

} -1y +

{K(I)L’(I)Z IEOL VI OT A " K"(l)}( 1y
L(1)3 2L(1)? L1 2L(1) S

+to(s-1)2 = Ay + Ay(s-1) +4,(5-1)2 + o(s-1)?

using (5.28) and (5.29).

Relations between the coefficients 4,, 4, and 4,, and the first 3 factorial
moments of lengths of wet and dry spells are readily obtained from (5.32) and
(5.34). Expressing these coefficients in the mean, the variance and the third
central moment of wet and dry intervals by (5.16) involves lengthly com-
putations. One finally gets:

{w) . (d)
(5352) 4,= L K

u(w)_i_“(d)
(5.35b 4, = RS +pp ) 4 ) ) R
-35b) BT 2™ @y 2™ g gy A 1

e SO i M G
4™ 4+ @) 6(u™) + Dy
200 @ 4 (@2
1204 4 @)
From (5.23), (5.31) and (5.35) it follows, for k— oc:
R A PO e it
(U +p )3 2™ 4 )
(92 4 ()2 @ N 26 @ g () @2
3™ +p@)3 6™ +p 0y

(5.35¢) A,4+4, =-

(5.36) var S.(k) =

+ o(l).

When the wet-dry process is a renewal process (wet or dry intervals are geometrically

distributed) it can be shown that Equation (5.36) reduces to (5.19).
For insta)nce, let the occurrence of a wet day be a recutrent event, then it follows from (2.7)

and Table 3.3 of Chapter I11:
(5.37a) 2™ = 1m,

(537b) #2(“") = flf'mi
B37%) ™ = AQ+AYm.
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From the relations (2.10) and (2.12) it can be shown that for lengths of dry spells:
(5.38a)  p = (-1)/m,
(5.38b) = {mypof; 1) }im?
(5.38¢) J“:Sd] = {mip; -3m fiu -0 +A, 0D 1) ) ms.
From (5.37) and (5.38) it follows:
(5.392) ™ +p" = pim,
(5395)  (9u =fiu-1)2/mi

" By Sl
(5.39c)  @WPu = . “l_m-;—
and thus the coefficient of k in (5.36) is:
(5.40) EOP 4 @2 oy

(ﬂ(w}+ﬁ(d))3 us'
For the constant term in {5.36) it can be deduced that:
) AWt _ (W), dya 2 -1 ,1)2
(5.41) ¢ p ud;uz) _ B AkDe, y w
T N e
ORI+ GRS g fimGeD) ] 1y
(4ly) - 3™ & )3 I V7 B 3H0HD mi p?
) @) ™}, @N2 _ 12
(5.41¢) 2™ +(.Ud wy 2(p-1) + 1 (1) .
6(}1“”+u‘ ))z 62 [ m3 2
Since:

G lp-lnaen el s len-n- v = G-y D= ¢m

the constant term in (5.36) reduces to:

I R (o Y IR 0 ) GO SR 1 1
5.43 Rak S e ST ak il U el N o2 S ac N NI
(543) 2t 3pd 6u? 62 2ut 3ud 6u? + 6

For different distributions for lengths of weather spells, Table 5.1 shows the
coefficients of the asymptotic expression of the variance for both the wet-dry
process and the rainfall process (model I} of the winter season of Winterswijk

TABLE 5.1. Coefficients of the asymptotic expression of var S, (k) and var S, (%) for the winter
season of Winterswijk (¢ = 0.8 mm). The asymptotic formula is of the form a,k+b, (se¢
Equation (5.3)). The asympiotic variance of the rainfall process is based on model I with a

SGD for rainfall amounts on wet days.

var S,(k) var S (k)
Type of wet-dry -
process (see I11,6.1) b, a, b, a;
GD-GD -0.32 0.46 T =173 18.8
GD-LSD -1.85 0.71 -42.8 24.5
SNBD-SNBD -1.03 0.62 -23.7 224
TNBD-TNBD -1.09 0.62 -24.8 22.1
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TasLE 5.2. Exact and approximated values of var S, (%) and var $.(k) for the winter season
of Winterswijk (6 = 0.8 mm). The calculated values are based on model I with TNBD's for
lengths of weather spells and a SGD for rainfall amounts on wet days.

var S,(k) in days? var 8,(k) in mm?
k Exact Approximated Exact Approximated
5 2.18 1.99 90.1 85.8
10 5.12 5.07 197.4 196.3
15 8.17 816 307.2 306.9
20 . 11.24 11.24 417.5 417.4
30 17.41 17.41 638.5 638.5

(6 = 0.8 mm). The asymptotic variance of model I of the rainfall process was
obtained by substituting (5.36) in (5.2). The mean and the variance of the rain-
fall amounts were based on ML estimates of the SGD. The central moments
in (5.36) were obtained from the expressions in Table 3.3 of Chapter I11.

The seasonal value of a particular parameter in the model was obtained by averaging
monthly estimates (cf. ITI, 6.1). The SNBD was treated in the same way as the TNBD,

The coefficients strongly depend on the type of wet-dry process. The inter-
cept always turns oul to be negative. From (5.36) it is seen that this can only
be so when the lengths of weather spells have large third central moments
(skew distributions). The largest negative value of the intercept is found for
the GD-LSD process, which is a consequence of the large third central moment
of the LSD. On the basis of Figure 6.3 of Chapter 111 (winter) and Table 5.1 it
can be concluded that the intercept is comparatively small.

For different values of &, Table 5.2 compares the exact variances (obtained
from (5.1)) and the approximated variances (obtained fr(_)'m (5.36)) for a
TNBD-TNBD process of the winter scason of Winterswijk (6 = 0.8 mm),
This table also gives the variances for model I of the rainfall process. The
approximation is reasonable for values of & larger than 10.
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APPENDIX

Al. GENERATING FUNCTIONS

The generating function (gf) A(s) of a sequence, a,, a,, a,, ... of real numbers
is defined by:

(ALD)  A(s) = 20 "

The sequences considered in this chapter have the property that 0<a, <1
for nz1 and therefore A(s) converges within the unit circle |s| = 1.

Let x be a non-negative integral valued random variable with probability
distribution {a,}, then the function A(s) is called the probability generating
function (pgf) of x. This function has the following properties:

a. A(s) = E(sH).
b A(1) = 1.
. AN1) = 3 n(r1)... 1kt Day = EfxGe-1) ... k+1)]

n=k

which is the kth factorial moment pup, of x.
Because of this last property A(s) can also be written as:

(Al2) A =1+ 21 [ (s-1)nt ).

For this reason A(s) is sometimes called the factorial moment generating
function of x (cf. LINDGREN (1968), 2.4.2).

Let {a,} and {b,} be sequences with gfs A(s) and B(s) and let {c,} be their
convolution, that is:

(Al.3) Cn= Y, Gkbu i n=0,1,...
k=0

then the gf C(s) of {¢,} satisfies:
(ALY C(s) = A(s) - B(s)
{cf. FELLER (1968), X1.2).

If x and y are independent non-negative integral valued random variables
it can be shown that the probability distribution of x+y is the convolution of
the probability distributions of x and y, and from (A1.3) and (A1.4) it follows

that the pgf of x4y is the product of the pgfs of x and y. This follows also
immediately from:

(ALS)  E(#*Y) = E(s5 E(sY).
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V. ANALYSIS OF RAINFALL DATA
FROM FOREIGN STATIONS

1. INTRODUCTION

In Chapters III and 1V a rainfall model was developed for Dutch rainfall
series. In this chapter the adequacy of this model is tested for some foreign
rainfall data. The following rainfall series are considered:

a. From India: Bangalore (1901--1930; 1933-1970), Calcutta (1901-1970) and

New Delhi (1901-1970).

b. From Indonesia: Jakarta-27 (1942-1973) and Pasar Minggu (1880-1885;
1889—1911; 1913-1920; 1922-1944; 1951-1959).

¢. From Surinam: Paramaribo (1899-1968) and Domburg (1910-1968).

d. From Sudan: Khartoum (1902-1940).

e. From Egypt: Alexandria (1901-1940).
For Bangalore the years of 1931 and 1932 were omitted because data are

missing for several days; these could not easily be supplemented with rainfall
data from nearby stations. For the same reason the years of 1912, 1921 and the
period 1945-1950 of the Pasar Minggu series were not taken into consideration;
the period 1886-1888 was omitted, because the data were highly suspicious.
Figure 1.1 compares annual totals of Pasar Minggu and Jakarta-27 for the
periods 1880-1899 and 1910-1939. This figure shows that annual totals of

Fasar Minggu
mm « 1007

4000+ 1885
35004
«1868

30004

2500

1250 -1899

2000

*
1500 \|g|u-1939

FiG. 1.1, Annual totals of Pasar Minggu and

T T T T
2500 3000 nm B +
e 0 sakarta 21 Jakarta-27 for two different periods.

Meded. 1andbouwhogeschool Wageningen 77-3 (1977) 159


file:///l880-1899

Pasar Minggu are extremely large for the years of 1886, 1887 and 1888. A
reasonable explanation for this phenomenon is not known.

Spells or cycles bounded by a gap in the series were discarded in the analysis.

The rainfall series from India, Indonesia and Surinam were analysed in the
same manner as Dutch rainfall series (see Section 2). For the series of Khartoum
and Alexandria the techniques applied to Dutch rainfall series can be trouble-
some since these series are characterized by long periods with no rainfall at all.
Therefore, these series are discussed in a separate section (Section 3).

2. ANALYSIS OF RAINFALL DATA FROM INDIA, INDONESIA AND SURINAM

For each month daily means are given in Figure 2.1 for the series of Banga-
lore, Calcutta, New Delhi, Jakarta-27, Pasar Minggu and Paramaribo. This
figure also shows the means of wet days. As in previous chapters a wet day is
defined as a day with a rainfall amount of at least & miltimeters. In Figure 2.1
the value of 4 is 0.2 mm for Indian rainfall series, 3.0 mm for Indonesian rain-
fall series and 0.3 mm for Paramaribo. All rainfall series given in Figure 2.1 are
characterized by wet and dry periods. It should be noted, however, that season-
al variations in the mean rainfall amounts on wet days are less obvious,
especially for Indonesian (Pasar Minggu) and Surinam data.

On the basis of Figure 2.1 months were grouped in seasons. The different
seasons are given in Table 2.1. The driest season is always denoted by Sd and
the wettest season by Sw. The seasons Sdw and Swd are transition periods.
For Surinam the season Sdw includes the short rainy season (December-

January), the short dry season (February-March) and the transition period to
the long rainy season.

If a seasonal estimate of a parameter is given from an analysis by wet-dry or dry-wet cycles,

the season Sdw relates to the period 1900-1969 for Paramaribo and to the period 19691967
for Domburg,

. During the wet season the number of wet days can be quite large. For
Instance, the fraction of wet days during the wettest month is 0.77 for Calcutta
A2 and 0.87 for Paramaribo A3. This fraction is lower for the other series,

TaBLE 2.1. Classification of seasons. The dry season is denoted by Sd; the wet season by Sw;

the period between the dry and wet season by Sdw, and the period between the wet and dry
season by Swd.

Season
Country Sdw Sw Swd Sd
India  April-May June-August September-October November-March
Indgnesm "October-December  January-February March-May June-September
Surinam  December-April May-June Juty-August September-November
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namely: 0.56 for Bangalore A2, 0.40 for New Delhi A2, 0.52 for Pasar Minggu
A30 and 0.68 for Paramaribo A22. The large difference between Paramaribo
A3 and Paramaribo A22 is an indication for a J-shaped frequency distribution
of the rainfall amounts.

There is some difference between the dry periods of the rainfall series given
in Figure 2.1. For Jakarta-27, Pasar Minggu and Paramaribo there is still a
considerable rainfall amount during the dry period; for Indian series the daily
mean is very small for months in the dry period. There are many months with
no rainfall at all (see Figure 3.3 of Chapter 11}, but it is also possible that showers
of more than 40 mm oceur during the dry pericd.

For data from India, Indonesia and Surinam homogeneity of the rainfall
series and of the wet-dry series is discussed in Section 2.1. Because the analysis -
of homogeneity was based on the annual totals and the annual number of wet
days, some features of the distribution of these quantities are also given in
that section. Section 2.2 deals with the distribution of lengths of wet and dry
spells, whereas in Section 2.3 the behaviour of rainfall amounts on wet days is
discussed. Serial correlation coefficients and variances of k-day totals of the
historic series and various rainfali models are compared in Section 2.4. Section
2.5 gives a comparison between features of the historic series of Pasar Minggu
and those of some generated sequences.

2.1. Homogeneity

Homogeneity was tested with the Von Neumann’s ratio (see II, 3.1 and
11, 6).

For annual totals the Von Neumann’s ratio (d) is given in Table 2.2. This
table also gives estimates of the mean, the standard deviation and the coefficient
of skewness. Only for the series of Paramaribo does the Von Neumann’s ratio
show lack of homogeneity at the 5 per cent level. This is mainly a consequence
of the low annual mean during the period 1955-1968, as is seen from the
partial sums of departures from the mean (see 1I, 5.3), given in Figure 2.2.
In nearly all cases there is no evidence for departures from normality. Only
for the series of New Delhi is there evidence for positive skewness at the 5 per

TA?LE 2.2. Mean (m), standard deviation (s}, coefficient of skewness (#)and Von Neumann’s
ratio (d) of annual totals.

Station m{mm) s{mm) ? d

Bangalore 9416 184 0.307 1.181
Calcutta . 1600 284 0.244 1.097
New Delhi 690 242 0.638 1.0i7
Jakarta-27 1790 29] -0.535 1.170
Pasar Minggu 2111 412 —-0.250 0.853
Paramaribo 2198 361 0.013 0.767
Domburg 2087 357 0.442 . 0.850
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cent level. This phenomenon is characteristic for rainfall stations for which a
few showers form the main contribution to the annual total (see Section 3).

Secular variations in the annual totals of India were assumed by PARTHASARATHY and
DuaR (1974, 1975). Using about 3,000 rainfall stations, these authors found a significant
positive difference of about 5 per cent between the means of the periods 1931-1960 and 1901
1930. There is, however, a large regional variation in this difference. For the rainfall series
of Bangalore and New Delhi the mean of the period 1931-1960 is larger than the mean of the
period 1901-1530. A two-sample Student test, however, gave no evidence for a difference in
mean at the 5 per cent level (two-sided).

JAGANNATHAN and PaRTHASARATHY (1973) found a first serial correlation coefficient
(scc) of —0.237 for Bangalore (1837-1967). This value supports the existence of serial cor-
relation at the 5 per cent level, The fact that the Von Neumann’s ratio is larger than 1 for
Bangalore (see Table 2.2) is also an indication for a negative serial correlation.

Table 2.3 gives the Von Neumann’s ratio for the annual number of wet days,
together with estimates of the mean, the standard deviation and the coefficient
of skewness. There is no evidence for non-normality at the 5 per cent level.
The Von Neumann’s ratio supports non-homogeneity for the series of Pasar
Minggu (6 = 1 mm), Paramaribo and Domburg (x = 0.05). It should be noticed
from Table 2.3 that the number of days with a rainfall amount between 1 and
3mm is smaller for Pasar Minggu than for Jakarta-27. Besides at the lower
threshold (1 mm) the number of wet days is smaller for Pasar Minggu than for
Jakarta-27, though its annual mean is larger (see Table 2.2). The number of
days with a rainfall amount between (.3 and 2.2 mm is also much smaller for
Domburg than for Paramaribo. So it can be concluded that the low values of
the Von Neumann’s ratio for Pasar Minggu (6 = 1 mm) and Domburg (6 =0.3
mm) are due to man-made non-homogeneities. This is not so for the other
Surinam wet-dry series. From the partial sums of departures from the mean
of the wet-dry series of Domburg and Paramaribo, given in Figure 2.3, it is
seen that the mean number of wet days is low during the period 1955-1968.
For § = 2.2 mm the curves of Domburg and Paramaribo are of the same form.

TAPLE 2.3, Mean (m), standard deviation (s), coefficient of skewness (§) and Von Neumann’s
ratio {(d) of the annual number of wet days. .

Station 5(mm) m § 1l d
Bangalore 0.2 103.0 11.9 -0.196 1.068
Calcutta ' 0.2 119.2 99 0.180 0.913
* New Delhi 0.2 522 11.2 0.371 0.885
Jakarta-27 1.0 128.4 17.6 -0.001 1.191
) 30 95.0 12.9 0.003 1.072
Pasar Minggu 1.0 119.5 27.2 -0.294 0.582
3.0 104.5 20.5 -0.278 0.798
Paramaribo (3.3 217.0 © 200 -(.488 0.758
2.2 153.0 17.8 -0.316 0.762
Domburg 0.3 184.3 28.0 -0.222 0.570
2.2 151.7 20.5 0.412 0.626
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Moreover, their behaviour is similar to that of the curves of the annual totals
(see Figure 2.2).

j i i i Tabte 2.3 and
The adjusted ranges of the Surinam data are quite large. For instance, fl"orn ]

Figure 2.% it followi that the rescaled adjusted ranges of the wgt-dry series of Paramaribo
are 16.1 and 13.6 for 6 — 0.3 and 2.2mm, respectively. From Figure 6.4 of Chapter IT it is
seen that these values are significant at the 5 per cent level (the length of the Paramaribo

series is 70 years).

i i in the model, there
Since rainfall amounts smaller than  mm are set to zero m t ,
is some reduction of the annual mean. For Jakarta-27 a thresl}old o{l 3.0 1?1%
leads to a reduction of 46 mm (nearly 3 per cent); for Paramaribo a thresho
of 2.2 mm gives a reduction of about 70 mm (3 per cent).

2.2. The occurrence of wet and dry dlizys 01
. For Dutch rainfall series it was shown {5¢ :
and dry days could be described by a seasonal .altematlng renewal plroceslf.
Modifications of the negative binomial distribution were ﬁtte:cll1 to the engta ;
of weather spells. In this section it is investigated whether such a process ¢
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TamriE 2.4. Lengths (in days) of the three longest dry spells and the three longest wet spells.

Dry spells Wet spells

Bangalore A2 127 124 119 24 22 19
Calcutta A2 136 126 123 33 32 28
New Delhi A2 153 139 125 15 15 15
Jakarta-27 A10 105 84 67 24 23 22
A30 145 84 82 17 16 14

Pasar Minggu A30 156 115 87 13 13 13
Paramaribo A3 30 30 26 56 43 41
A22 49 42 35 24 20 19

Domburg A22 56 54 50 38 32 25

TaBLE 2.5. Estimated cotrelation coefficients between lengths of wet and dry spells. Values
differing more than 2/ /N (¥ is the number of paired observations) from zero are denoted
by an asterisk.

June July August September
Bangalore WD2 0.034 —0.043 —0.029 ~0.170*
Calcutta WD2 —0.070 -0.059 0.028 -0.095
New Delhi WD2 -0.057 -0.063 -0.011 -0.022
December January February March
Jakarta-27 WD10 0.090 —0.038 -0.094 -0.053
WD30 —0.063 —0.008 -0.147 -0.017
Pasar Minggu W30 0.034 -0.020 -0.022 -0.056
Sdw Sw Swd Sd
Paramaribo WD3 —0.106* -0.023 -0.051 -0.074*
WD22 -0.074* —-0.055 -0.067* -0.013
Domburg WD22 -0.086* 0.013 —-0.073* —0.048

also describe the behaviour of wet-dry sequences of rainfall data from India,
Indonesia and Surinam.

To get some idea about the wet-dry processes of these series, lengths of the
longest dry and wet spells are given in Table 2.4. The longest wet spells are
always shorter than the longest dry spells, except for Paramaribo A3. Rainfall
series from monsoon climates (India, Indonesia) are characterized by very
long dry spells during the dry period.

Asin I11, 3.1 the adequacy of an alternating renewal process was tested with
correlation coefficients between successive wet and dry spells. Estimated
correlation coefficients of rainfall series analysed by wet-dry cycles (WD) are
given in Table 2.5. For Indian and Indonesian data this table gives the estimated
correlation coefficients for the wet months only. During the dry months of
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these series testing for an alternating renewal process with correlation coeffi-
cients between successive wet and dry spells is senscless, since these months
are characterized by short wet spells (nearly all these spells have a length of 1 or
2 days) and occasionally very long dry spells. From Table 2.5 it is seen that
most estimated correlation coefficients are negative, though only a few of
them (denoted by an asterisk) differ more than twice their approximated
standard deviation from zero.

These negative estimates are not a consequence of seasonal variations. For instance for
Paramaribo WD3 the means of monthly estimated correlation coefficients are -0.111,
~0.066, —0.079 and —0.084 for the seasons Sdw, Sw, Swd and Sd, respectively. These values
correspond quite well to those given in Table 2.5.

Analysing the series by dry-wet cycles (DW) gives similar results and there-
fore the assumption of an alternating renewal process seems reasonable.

The goodness of fit of modifications of the negative binomial distribution
to the distribution of lengths of weather spells was tested in the same way as in
III, 3.2. Table 2.6 indicates significant values of the X3-test of goodness of fit
at the 5 and 10 per cent level for the truncated negative binomial distribution
(TNBD), the geometric distribution (GD) and the logarithmic series distribu-
tion (LSD).

For dry intervals the following remarks can be made:

a. The TNBD fits well in nearly all cases. For Indian data there is lack of fit
during the dry season because the frequency distribution of dry intervals

TABLE 2.6. Results of the X-test of goodness of fit for different distributions for lengths
of weather spells. Critical levels in the interval (0, 0.05), (0.05, 0.10) and (0..10, b are deno_ted
by =, (+) and blank, respectively. A question mark is used when there is no information
(number of classes is too small for application of the X?-test and/or the likelihood equations
do not have a solution within the parameter space).

Dry spells
Month 1 02 3 4 5 6 7 8 ¢ 10 11 12
Bangalore A2 TNBD  » *
GD - . . (,) = » ] »
LSD = (¥) « o+ 2+ # *
Calcutta A2 TNBD . (= (=)
GD % * * * (') - (‘)
LSD I * s
New Delhi A2 TNBD : .. :
GD N * - * *
) 1L.SD T
' 2
Jakarta-27 A10 TNBD ) = L.
GD () » =+ = .
LSD s < 9 -
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'TABLE 2.6. (continued)

Month 1 2 3 4 5 6 7 8 9 10 11 12
Jakarta-27 A30 TNBD (l) * *
GD * (0) x * * *
LSD * * » " * * (:) (l)
Pasar Minggu A30 TNBD *
GD * L ¥ * * * * *
LSD ("‘) * * oW * * * »
Paramaribo A3 TNBD * * ?
GD * " * * * (t) * *
LSD * * (:r) * *
Paramaribo A22 TNEBED o (%)
GD DR O] (*) ok s
LSD ® * *) (») = * * * *
Domburg A22 TNBD :
GD * * * * * * * M
LSD * * » * * »
Wet spells
Bangalore A2 TNBD 7 9 ' ' ‘
GD ? 2 » {¢) *® ® (t)
LSD 707 * . .
Calcutta A2 TNBD ? ? * ' 7 ?
GD » (:-) * ?
LSD * . . * * * * . ?
New Delhi A2 TNBD P S S B ? 7 7
GD . @ © 2 ()
LSD . * » 7 .
Jakarta-27 A10 TNBD T 7 9 N
GD * . *
LSD . (*) = * *
Jakarta-27 A30 TNBD * T T 7
GD + {¥) - * 7 9 *
LSD * * 2 2 ?
Pasar Minggu A30 TNBD T 7
GD = (#) - *
LSD -
Paramaribo A3 TNBD - *
GD * * » &
LSD L - * * * * L] * *
Paramaribo A22 TNBD * (*) (1-)
GD (+) * *
LSD * * * * - = * * * (*) L]
Domburg A22 TNBD (=)
GD o« (%) *
LSD * % s *
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TaBLE 2.7. Frequency distributions of the length of dry spells.

Class with upper bound (in days) 10 20 30 40 30 60 70 80 90 100 <0
Observed frequencies for:
Bangalore A2 (January) 18 4 7 8 1 5 6 7 4 90 0
New Delhi A2 (October) 14 13 8 2 0 5 3 4 6 6 3

sometimes has two tops. Two examples are given in Table 2.7. For the month

of October of Jakarta-27 A10 the iterative solution of the likelihood equations

by means of the Newton-Raphson procedure fails because the optimum value
of r is close to zero. Then the TNBD is nearly equivalent to the LSD (see I1I,

3.2).

b. The GD and the LSD usually give a poor fit.

For wet intervals it can be concluded:

a. The TNBD fits well in nearly all cases. For Indian and Indonesian data
there are some months during the dry season for which the likelihood

equations of the TNBD have no solution within the parameter space. In all

these months there are no wet spells longer than 5 days. Because of these
troubles it would be desirable if a one parameter distribution (GD, LSD)
could fit the distribution of wet intervals during the whole year.

b. For Indian data the LSD prevails over the GD for Bangalore, whereas for
Calcutta the GD is preferred. For New Delhi the LSD fits poor_ly dux'rmg

the dry season. Therefore the GD might be preferred to the LSD for this station.

¢. For Indonesian data the LSD gives a reasonable fit when a threshold of
3.0 mm is used. At this threshold the LSD is preferable to the GD, since the
last distribution fits the data poorly for all months of the wet season of Pasar

Minggu. For Jakarta-27 A10 the fit of the LSD is poor. _ .

d. For Surinam data the LSD gives a poor fit. The fit of the GD 1s only slightly
worse than the fit of the TNBD. .
Instead of a TNBD for lengths of weather spells one can also thu}k in terms

of a shifted negative binomial distribution (SNBD), becaus.e of its sxrppler

form. It is remarkable, however, that for dry spells of Ir_ldonesmn and Sun.n‘am
data the TNBD usually gives a slightly better fit. This is seen from the critical

levels of the X2-test of goodness of fit, given in Table 2.8,

2.3. The behaviour of rainfall amounts on wet days
In this section four features of the behaviour of rainfall amounts on wet days

are discussed :
a. The correlation between the length of a dry

on the day following that period. o
b. The correlation between rainfall amounts within a wet spell.

¢. The marginal distribution of rainfall amounts. ;
d. The dependence of the distribution of the rainfall amounts on the day o

occurrence.

period and the rainfall amount
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TaBLE 2.8. Critical levels of the X2-test of goodness of fit for the SNBD and the TNBD,
fitted to lengths of dry spells. For June of Paramaribo A3 the number of occupied classes is
too small for a X?-test.

Pasar Minggu A30 Paramaribo A3 Paramaribo A22
Month
SNBD TNBD SNBD TNBD SNB> TNBD
January 0.549 0.726 0.025 0.042 0.003 0.566
February 0.899 0.877 0.260 0.350 0.049 0.194
March 0.764 0964 0.000 0.034 0.372 0.633
April 0.156 0.448 0.836 0.770 0.135 0.397
May 0000 0.184 0.965 0.975 0.156 0.224
June 0.000 0.008 0.053 0.133
July 0.960 0.940 0.108 0.464 - 0197 0.258
August 0.072 0.333 0.233 0.204 0.225 0.512
September 0.314 0.332 0.276 0.559 0.303 0.347
October 0.015 0.200 0.329 0.274 0.002 0.002
November 0.142 0.136 0.247 0.686 0.012 0.016
December 0.137 0.105 0.216 0.445 0.000 0.094

TabLE 2.9. Estimated correlation coefficients between the rainfall amount on the first day
of a wet spell and the length of its preceding dry spell. Values differing more than 2/ \/ N (¥ is
the number of paired observations) from zero are denoted by an asterisk.

Sdw Sw " Swd Sd

Bangalore A2 -0.083 -0.037 -0.042 0.003
Calcutta A2 -0.021 0.057 —0.086 -0.044
New Delhi A2 0.043 -0.014 0.136% 0.010
Jakarta-27 A10 -0.024 0.037 -0.041 -0.030
A30 -0.011 0.034 0.011 —0.065
Pasar Minggu A30 0.033 0.094* 0.066™ ~0.022
Paramaribo A3 -0.055* ~0.041 —0.053 0.028
A22 —-0.064* 0.002 —0.045 0.034

Domburg A22 0.018 0.081* 0.003 T 0.080*

Estimated correlation coefficients between the rainfall amount on the first
day of a wet spell and the length of its preceding dry spell are given in Table 2.9.
The correlation coefficients were obtained in the same way as in II1, 4.1. Most
correlation coefficients are small; only a few of them (these are denoted by an

aste.ris_k in Table 2.9) differ more than twice their approximated standard
deviation from zeto.

Estimated first serial correlation coefficients of rainfall amounts within a wet
spell are given in Table 2.10. For the wet season of India and Indeonesia, and the
season Sdw of Surinam the data usually support a small positive correlation
between successive rainfall amounts, which differs significantly from zero.

The existence of serial correlation is less obvious for the seasons Sw, Swd and
Sdw of Surinam data. :
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TABLE 2.10. Estimated first serial correlation coefficients of rainfall amounts within a wet
spell. Values differing more than 2/ N (N is the number of paired observations) from zero
are denoted by an asterisk.

June July August September
Bangalore A2 0.116* 0.124» 0,128+ 0.088%
Calcutta A2 0.249* 0.182# 0.136* 0.226*%
New Delhi A2 0.190* 0.065 0.200* 0.060
December January February March
Jakarta-27 A10 0.166* . 0.198% 0.097 -0.017
A30 0.106 0.200* 0.109 -0.001
Pasar Minggu A30 0.156* 0.160* 0.082 0.118*
Sdw Sw Swd Sd
Paramaribo A3 0.144%* 0.015 0.018 0.062*
A2 0.073* 0.002 0.015 0.041
Domburg A22 0.124* 0.066* 0.080* -0.035

In ITL, 5.2 the shifted gamma distribution (SGD) was ﬁtted_to the rainfall
amounts on wet days, because for shifted rainfall amounts (rainfall amounts
minus some positive value in order to make the lower bound of the carrier
zero) the monthly mean of §/€ (y is the cocfficient of skewness, see II, (2‘.1),
and C is the coefTicient of variation, see IT, (3. 10e)) was close to tl'le thegretlcal
value 2 of the gamma distribution. For the data analysed in this section lh.e
monthly means of this ratio are given in Table 2.11. The values given in this
table are close to 2 and therefore the use of the SGD looks promising. ‘

The parameters of the gamma distribution were estimated by the modified
ML method, given in ITI, 5.2. and 111, Al.

TABLE 2.11. Goodness of fit for the SGD for rainfall amounts. The first cglu?lr; f;‘rf?;tit:s
Mmonthly mean of the quotient of the coefficient of skewness (§) and the coefﬁ_c;en} 10 s in the
(€). The other columns give the results of the X?-test of goodness of fit. Erltlc& c?ivvel
interval (0, 0.05), (0.05, 0.10) and (0.10, 1) are denoted by +, (+) and blank, respectively.

g6 1 2 3 4 5 6 7 8 9 101112
* * (.)
Bangalore A2 2.05 * * Yo *
Calcutty A2 2.09 LA () - * v
New Delhi ‘A2 222 . e
Jakarta-27 A 10 1.81 (*) a
Jakarta-27 A3 1.81 {+)
Pasar Minggu A30 196 ) "
Paramaribo A3 2.12 (*)
aramaribo A22 2,14 . !
omburg A2 211 ON )
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For the parameter ¢ int FII, (5.1) the value 1.0 mm was chosen for Indian series and 2.0 mm
for Indonesian and Surinam series. This gives on the average a relative error of about 0.1
per cent in the integral of I, (5.2).

The fit of the SGD was tested in the same way as in III, 5.2. Frequency
distributions of rainfall amounts were constructed to apply the X?-test of
goodness of fit.

The class boundaries were at 2.1(1.0)10.1¢2.0) 20.1(5.0)50.1(10.0) 100.1{25.0) 150 mm for
Indian series and at 2.0¢1.0)14.0(2.0)22.0¢5.0)52.0(10.0) 102.0¢25.0) 152.0 mm for Jakarta-27
A10. Notice that the class boundaries are chosen such that the first class contains all rainfall
amounts of which the actual value was ignored in the modified ML procedure. For this
reason the first two classes of Jakarta-27 A10 were omitted for Jakarta-27 A30 and Pasar
Minggu A30. For Paramaribo A22 and Domburg A22 the classes were the same as for
Indian data, except that the first class had its upper bound at 4.1 mm. The values of the
boundaries of the Indian series were augmented by 0.1l mm for Paramaribo A3. The first
class of this serics had its upper bound at 2.2mm.

In Table 2.11 it is indicated whether the X2-test leads to significant values at
the 5 and 10 per cent level. For Indian data the SGD gives a poor fit; for the
other stations the fit looks reasonable,

When the SGD does not fit the data well, the empirical distribution is ofien so anomalous
that it might be expected that commonly used probability distributions fail to fit the data.

In III, 4.2 the relation between the intensity and the length of wet spells was
investigated. It was shown in that section that the mean intensity depends on
the length of the corresponding wet spell. Differences of the mean intensities
at various lengths of wet spells were mainly caused by the mean rainfall amount
of a particular day depending on the number of adjacent wet days. Rainfall
amounts on days with 7adjacent (i = 0, 1,2) wet days were calied type i amounts.

An F-test, based on the regression model I, (4.1), was used to test equality
of mean intensities at different lengths of wet spells. This test was also used for
testing equality of mean intensitics when the first and last day of wet spells
(that is all type 0 and 1 amounts) were omitted.

The last test is .]ess powerful than the first, because there is a reduction in the number of
data. For the period June-September of Indian series the fraction of type 2 amounts ranges
from 0.26 to 0.47 for Bangalore A2; from 0.53 to 0,69 for Calcutta A2 and from 0.18 to 0.36
for New Delhi A2. During the wettest months (November-March) the fraction of type 2
amounts ranges from 0.25 to 0.40 for Pasar Minggu A30. For Paramaribo A3 this fraction

i3 0.75 for the season Sw, but only 0.29 for the season Sd; for Paramaribo A22 these values
are 0.50 and 0.15, respectively.

The equality of means of type 0, 1 and 2 amounts was also tested by an F-test.
Tabl.e 2.12 shows the results of testing at the 5 and 10 per cent level for rain-
fall series analysed by method A. For New Delhi and the seasons Sdw and Sw
of the Surinam data, diffcrences between mean intensities are found at the $ per
cent level, which usually disappear when only type 2 amounts are taken into

172 Meded. Landbouwhogeschool Wageningen 77-3 (1977)



TaBLE 2.]12. Results of tests for dependence of the mean rainfall amount on a wet day and

its position in the wet-dry sequence, The tests considered are:

1. An F-test for equality of mean intensities at different lengths of wet spells (cf. III, Table
4.2).

2. An F-test for equality of means of type 0, 1 and 2 amounts (cf. ITI, Table 4.3).

3. An F-lest for equality of mean intensities of type 2 amounts at different lengths of wet
spells, omitting the first and last day (cf. III, Table 4.5).
Critical levels in the interval (0, 0.05), (0.05, 0.10) and {0.10, 1) are denoted by =, (+} and

blank, respectively.

June July August September
1 2 3 1 2 3 1 2 3 1 2 3
Bangalore A2 * - * (t] ® * *
Calcutta A2 * * (*) * . .
New Delhi A2 * * * * * . - * «
idem, cube root * * * * * ® ¥ * *
December January February March
1 2 3 1 2 3 1 2 3 1 2 3
Jakarta-27 A10 « (%) M. * *
A30 (*) (*) * L] * *
Pasar Minggu A30  « * + .
Sdw Sw Swd sd
1 2 3 1 2 3 1 2 3 1 2 13
Paramaribo A3l * * = * * * (*) * (s)
A22 LI =
Domburg A22 . * *

account. There are also significant differences in the means of different types of
rainfall amounts for these series. For New Delhi the same results are ol?lamed
with a cube root transformation on the data. For the other rai'nfall series apd
the seasons Swd and Sd of the Surinam data non-homogeneity of mean in-
tensities and differences between different types of rainfall amounts are less
obvious.

Sometimes there are significant differe
fallamounts, but no significant departures
of wet spells (Calcutta A2 (July) and Ja

In these three cases only the mean of type 2
the mean of type 0 and 1 amounts, which can be tested by a two-sample Student

test (see IT1, 4.2). No differences in mean intensiti)e:l are found since the fraction
of type 2 amounts is only slightly more than 0.30 here.

For Bangalore A2 (July) and Pasar Minggu A30 (Jam(l)arlya:;r:id;-;igguuz:lrt);)
there are no significant differences between means of type 0, and2¢ amoun;
However there is evidence for dependence between the mean
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nces between different types of rain-
from homogeneity at various lengths
Kkarta-27 Al0 (February, March)).
amnounts is significantly larger than
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TARLE 2.13. ML estimates of v (shape parameter) and v/A (shifted mean) of the SGD fitted
to rainfall amounts (mm) of different types.

Type 0 Type 1 Type 2
P B/h v /i v 94
Bangalore A2 Sw 0.375 6.4 0.437 6.5 0.516 7.6
Calcutta A2 Sw 0.447 11.0 0.345 11.5 . 0592 15.9
New Dethi A2 Sw:  0.541 8.5 0.567 14:4 0.628 19.2
Jakarta-27°A10 Sw 0.620 11.0 0.614 .6 0.684 22.5
A30 Sw 0706 121 0.724 17.1 0.843 25.8
Pasar Minggu A30 Sw 0.915 17.0 ., 0900 71 0.881 18.6
Paramaribo A3 Sdw  0.288 4.0 0.479 74 . 0643 12.1
Sw 0.570 6.3 0.711 11.5 0.777 12.0
Paramaribo A22  Sdw  0.619 7.8 0.712 10.9 0.792 15.5

Sw- 06920 100 . 0830 130 0.889 13.2

and the length of the corresponding wet spell because of a small number of long
spells with high intensity. For instance, for Pasar Minggu A30 the January
mean of the rainfall amount on a wet day is 20.8 mm (see Figure 2.1) and its
standard deviation is 19.5 mm, but at a length of 12 days two spells are found
in this month with a mean of 36.0 mm,

Table 2.13 gives estimated parameters of the SGD fitted to different types of
rainfall amounts. As for Dutch series (see 11, 5.2), the mean and shape para-
meter usually increase with the number of adjacent wet days. This increase is
most obvious for the series of New Dethi and Paramaribo. For New Delhi A2
and Paramaribo A3 (Sdw) the mean of type 0 amounts is less than 50 per cent
of the mean of type 2 amounts. A remarkable point is the large difference be-
tween Jakarta-27 A30 and Pasar Minggu A30. The behaviour in time of the
mean rainfall amount on a wet day is also different for these series (see Figure
2.1).

Significant differences were found (even at the 1 per cent level} between the means of the
ﬁr§t and last day of a wet spell for the season Sdw of Paramaribo. The means of the shifted
rainfall amounts of the first and last wet day of spells longer than two days are 8.6 and

6.4mm, respectively, for Paramaribo A3. For Paramaribo A22 these values are 12.0 and
9.6 min, respectively.

2.4, Persistence
The rainfall series analysed in the previous sections show positive serial cor-

relation. This is indicated by the wet-dry process not being describable by a

Bernoulli process (sce 2.2) and by rainfall amounts within a wet spell usually
being correlated (see 2.3).

Serial correlation coefficients were estimated in the same way as in IT1, 6.1.
Both .for the wet-dry process and the entire rainfall process estimated first sccs
are given in Table 2.14. For Indian and Indonesian series first sccs are given
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TaBLE 2.14, Estimated and theoretical first sces. The theoretical sccs are based on models
with TNBDs for wet and dry intervals and SGDs for rainfall amounts on wet days. For
Paramaribo (§ = 2.2 mm} the first sccs between brackets are means of monthly values.

Wet-dry process Rainfall process

Esti- Model  Esti- Model Model Model Model

Station &{mm) Season mated mated I I 1 v
New Delhi 0.2 July-August0.346  0.344 0.202 0.090 0.142 0.160 0222
Jakarta-27 1.0 Sw 0217 0238 0252 0.049 0.137 0.147 0.249
LR Sw 0209 0.231 0.239 0.075 0.137 0,190 0.264
Pasar Minggu 3.0 Sw 0221 0220 0.155 0.085 0.132 0.103 0.153
Paramaribo 0.3 Sdw 0320 0.323 0.231 0.058 0.141 0,145 0.236

22  Sdw 0319 0314 0228 0.115 0.141 0205 0235
0.314) (0.310)  {0.224) (0.112) (0.138) (0.198) (0.229)
03  Sw 0132 0146 0059 0.017 0033 0.040 0056
22 Sw 0134 0131 0067 0.037 0.040 0063 0.066
(0.129) (0.129)  (0.064) (0.037) (0.040) (0.062) {0.066)

for the wettest months; for Paramaribo these values are given for different
seasons. For Paramaribo (¢ = 2.2 mm) the influence of seasonal variation was
investigated by comparing seasonal estimates with means of monthly estimates.
The differences between these estimates are negligible which supports the
estimation on a seasonal base. From Table 2.14 it is seen that the ﬁrs.t sce of
the entire rainfall process is small for the wet season (Sw) of Paran}arlbo and
also for the scasons Sd and Sdw of this series. A remarkable point is the large
difference between the first sccs of the entire rainfall processes of Jakarta-2.7
and Pasar Minggu. For Jakarta-27 the first scc of the entire rainfall process is
larger than the first scc of the wet-dry process. .

For different models one can calculate theoretical first sccs. With respect to
the behaviour of rainfall amounts theoretical values were calculated for models
L 11, TIT and TV, defined in I1L, 6.1. Throughout this section it ifs assumed that
the wet-dry process is a seasonal alternating renewal process with TNBDs for
lengths of wet and dry spells (TNBD-TNBD process, s¢€ 111, (_5.1). Further,
the assumption is made that the rainfall amounts have a SGD with seasonally

changing parameters.

obtained by averaging monthly A and B estimates.
that both parameters of the TNBD were sgeasonally
n be large differences between ML estimates of
nths as was the case for Dutch series (sec III,
whether the mean of monthly estimates is a

Seasonal values of the parameters were
The only difference from Section 111, 6 i,
changing for the wet-dry process. There ca
the parameters of the TNBD for consecutive mo
Figure 3.1). It might be questionable, therefore,
good seasonal estimate.

ondence between the theoretical values an'd
r the entire rainfall process this
for Dutch series (sce 111, 6.1).
he theoretical first sccs.

Table 2.14 shows a nice corresp
the estimated values for the wet-dry process; fo
is only true for model IV, as was also the case

The height of the threshold é hardly influences t
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TanLE 2.15. Estimated and theorctical variances of the number of wet days and of the rain-
fall amount for a period of considerable length. For Paramaribo the length of the period is
30 days, whereas for New Delhi and Indonesian series the length of the whole season is taken,
Theoretical values are based on models with TNBDs for wet and dry intervals and SGDs for
rainfall amounts on wet days. For Paramaribo (§ = 2.2 mm) the variances between brackets
are means of monthly values. Variances of the rainfall process are in cm?.

Wet-dry process Rainfall process

Edti- Model Estic  Model Model Model Model

Station &(mm) Season mated mated 1 Rt 1t w
New Delhi 0.2 July-August 578 457 361 207 220 244 261
Jakarta-27 1.0 Sw 428 307 680 273 312 381 426

30 Sw 507 303 680 298 326 398 430
Pasar Minggu 30 Sw 561 309 320 223 238 231 246
Paramaribo 03  Sdw 293 177 1208 484 545 609 686
22 Sdw 275 17.0 594 6l4 T1.s 739
(28.6) (169) (123.6) (59.6) (61.7) (71.6) (74.0)
03 Sw 78 67 885 577 593 609 626
22 Sw 96 96 60.7 610 638 642
(12.7) (10.0)  (894) (61.8) (62.2) (65.3) (65.7)

For Paramaribo A22 the seasonally calculated sces correspond quite well with the mean

of monthly calculated values, which supports the averaging of monthly estimates of the para-
meters,

To get some idea about the tail of the correlogram, estimated and theoretical
variances were compared for periods of a considerable length. For New Delhi
the period July-August (62 days) was taken, whereas for Indonesian serics the
period January-February (59 days) was taken; for Paramaribo a 30-day period
was considered. Estimated and theoretical values are given in Table 2.15.

For Paramaribo A22 it was investigated whether there are differences between a seasonal
value and a value obtained by averaging monthly values {the estimated 30-day variance of ¢.g.

January was obtained by multiplying the monthly estimate by 30/31). In general, the

differences between the two values are small, except for the estimate of the wet-dry process
for the wet season.

From Table 2.15 it is seen that the model underestimates the variances.
However, it should be emphasized that the standard deviation of the estimate
is large. For instance, the estimated values of New Delhi and Pasar Minggu are
based on 70 and 69 observations, respectively. It follows from II1, (6.2a) that
the standard deviation of 5? should be approximately 0.17 % when the distri-
bution of the rainfall amount of the wet period is assumed to be Gaussian.
Because of departures from normality the standard deviation is usually a bit

larger than this value (see 111, 6.2). Therefore the large differences between the
estimated and theoretical values can still be acceptable.

Figure 2.4 compares cumulative frequencies and the cumulative distribution function
{cdf) of model I for the wet season of New Delhi. There is a good correspondence between
the two curves even though the variance of medel I is much smaller than the estimated valug.
Something similar holds for Pasar Minggu, which will be shown in the next seclion.
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FiG. 2.4. Cumulative frequencies of the rainfall amount in the period July-August (62 days)
for the historic series of New Delhi and a calculated cdf. The theoretical curve is
based on a TNBD-TNBD process and a SGD for rainfall amounts on wet days
with a threshold of 0.2 mm.

In fact, only for the Paramaribo series is there a serious underestimation of
the variance during the season Sdw.

For this season the variance-time curves of both the wet-dry process and the entire rainfall
process are approximately straight lines on double logarithmic paper. This is seen from
Figure 2.5 where estimated variance-time curves are given for Domburg and Paramaribo
(8 = 2.2mm). The same result is obtained at a threshold of 0.3 mm. A straight line on double
logarithmic paper means that the correlogram falls off very slowly. For Paramaribo DW3
sces up to lag 35 were estimated. Both for the wet-dry process and for t}?e entire rainfall
process all 35 values were positive. Asymptotically a straight line of the variance-time curve

Variance [days?) variance l[cm?]

100+ 1000+ ’ :
+ H
* L]
504 L 500 .
+e
+ .
+ " e
. o
+ et
Domburg
.
+ \ *
104 . 186+ .
+
M +
51 e 50+
H ’ . . Paramaribe
+ ) -
?
3
p, e
1 . : [+ . , .
* y T 1 5 B 50
5 0 50 kldays)
fe (days)

i i ot days and the rainfall amount for a k-day
F1G. 2.5, Estimated variances of the number of w x ]); e (6 = 2.2 mm). The r o ke

eriod in the Sdw season for Paramaribo an :
f::l'e given fi oer different vatues of k and are based on data with a (k1) day overlap.
177

Meded. Landbouwhogeschool Wageningen 77-3 (1977)



on double logarithmic paper is theoretically possible, ¢.g. if the wet-dry process is a renewal
process with an infinite variance {and higher order moments) of the recurrence times (see IV,
5.1).

2.5. Comparison of historic and synthetic data for Pasar Minggu

In the previous sections features of the rainfall process were often investigated
for the wet season only when dealing with series from India and Indonesia.
Hardly any attention was paid to the dry season and transition periods between
wet and dry monsoons. Especially during the transition periods it is difficult to
evaluate the fit of a certain model by statistical tests or numerical computations,
since there is a strong seasonal variation. However, features of a certain model
can often be compared with those of the historic sequence by Monte Carlo
simulations.

In this section some synthetic sequences for Pasar Minggu are compared
with the historic sequence after a modification (see below). The series of Pasar
Minggu was preferred to the Indian series because it is seen from the results of
previous sections that a stochastic model underlying this series can have a
simple form. There are hardly any differences between type 0, 1 and 2 amounts
(see Table 2.13), the SGD provides a good fit to the rainfall amounts on wet days
(see Table 2.11) and the TNBD fits lengths of dry spells well (see Table 2.6).
Only for wet spells during the dry season (east monsoon) are there sometimes
troubles with the solution of the likelihood equations of the TNBD (see 2.2 and
Table 2.6). Therefore the LSD was taken for the distribution of wet spells. In

the wet season the fit of this distribution was only slightly worse than the fit of
the TNBD. ' '

A model with a scasonal LSD-TNBD wet-dry process and rainfall amounts with a S5GD
can describe the distribution of the total rainfall amount during the wet season (Sw) quite
well, asis shown in Figure 2.6. Theoretical cdfs are based on estimated parameters for January
or February or on the average of these estimates. There is only a small difference between
the three theoretical curves. If a TNBD is taken for the distribution of wet spells instead of a
LSD one gets cdfs which are indistinguishable from those given in Figure 2.6.

Two independent series of 70 years were generated, The synthetic series are
denoted by S1 and 82, respectively. A third series (S2”) was generated with the
same wet-dry process as 52, but with other rainfall amounts. The (irst year of
the synthetic sequence is discarded in the comparison with the historic series;
so the historic series and synthetic sequences have the same length.

There are 5 parameters in the generation model, namely 1 for the LSD of the wet intervals,
2 for the TNBD of the dry intervals and 2 for the SGD of the rainfall amounts. Because of
seasonal variation the value of a certain parameter was changed from month to month. In
contrast with the generation model for Dutch series, deseribed in 111, 7.2, the estimates of the
parameters were not smoothed. The month to which the first day of a weather spell belongs
determines its distribution; during a wet spell the parameters of the SGD are constant and
are taken from the month to which the wet spell belongs. . :

For gencrating the LSD-TNBD wet-dry process use was made of a geometric approxi-
malion (see I, 7.2.1) for lengths of spells longer than 32 days, Gamma variates were obtained
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FiG. 2.6, Cumulative frequencies of the rainfall amount in the period January-February
(59 days) for the (modified) historic series of Pasar Minggu and calculated cdfs.
The theoretical curves are based on a LSD-TNBD process and a SGD for rainfall
amounts on wet days with a thresheld of 3.0 mm.

by using JOHNK’s {1964) algorithm. For the synthetic series the length of the month of
February is taken to be 28 days.

For a comparison of features of the historic sequence with those of the
model, special attention is paid to the seasons Swd, Sd and Sdw. In the historic
series values of 1 and 2 mm are set to zero and the 29th of February is discarded
(modified series). At the end of this section annual totals are compared.

Figure 2.7 gives the cdfs of the rainfall amounts of the dry season (Sd) of the
historic series and of the synthetic series S1 and S2. The fit of the model is poor
for small rainfall amounts because of the strange shape of the cdf of the
historic sequence for rainfall amounts smaller than 120 mm. There are also
considerable differences between the cdfs of the two synthetic series. However,
because of the small number of data (69 years) these differences are acceptabl;,
as can be shown by the Smirnov test. On the average 'the c'dfs c_>f the synthetl_c
series correspond quite well to the calculated cdf, given In Flgure 2.8. This
figure also gives the cdf of a model with a LSD for the distribution of dry spe!ls.
The fitted LSD has a longer tail than the fitted TNBD and, hence, small rain-
fall amounts are more probable for this model. The difference between the two

theoretical cdfs is only small.

For the wet season (Sw) the cdfs of the syntheti
Figure 2.6. For this season there is a large difference bet

¢ series fit well, as was (o be expected from
ween the estimated variances of the
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Fig. 2.7. Comulative frequencies of the rainfall amount in the period July-August (62 days)
for the {(modified) historic series of Pasar Minggu and two (51, S2) synthetic series,
based on model I
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Fic. 2.8. Cumulative frequencies of the rainfall amount in the period July-August (62 days}
for the (modified) historic series of Pasar Minggu and calculated values, based on
model I with a SGD for rainfall amounts on wet days (6 = 2.2 mm).

series S1 and S2. The estimated variances are 331 and 202 cm?2, respectively. The first value
corresponds quite well to the value 320 em? given in Table 2,15, Differences between these esti-
mated variances can be explained by differences in the right tail of the empirical distribution.
For the {modified) historic series the three largest rainfall amounts are 947,982 and 1126 mm;

for the series S1 these values are 963, 981 and 1033 mm, and for the series S2 these values are
800, 869 and 878 mm, :

A criterton has to be found for a comparison of the historic series with syn-
thetic series during the transition from the dry to the wet scason. SCHMIDT and
VAN DER VECHT (1952) considered the cumulative rainfall amount after August
31st. The day on which this cumulative rainfall amount exceeded the 350 mm
level was defined as the beginning of the wet season. The value of 350 mm was
chosen because then the soil is in general sufficiently wet for preparing the seed
beds for the rice-crop in the wet season. The so defined beginning date of the
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F1G 2.9. Cumulative frequencies of the beginning date of the wet season (west monsoon)
of the (modified) historic series of Pasar Minggu and three (S1, 52, 82°) synthetic
sequences, based on model I The first day of the wet season is defined as the day
for Ivh[ch the cumulative rainfall amount after August 31st exceeds the 350 mm
evel.
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FiG. 2.11, Normal probability plots of annual totals of the (modified) historic series of Pasar
Minggu and three (81, 52, 82°) synthetic sequences, based on model 1.

historic series and the generated sequences. In this figure the cdf does not reach
the value | when the 350 mm level is not reached before March 1st in at least
one year, Figure 2.10 shows a reasonable correspondence between the cumu-
lative frequencies of the historic series and those of the synthetic sequences.

Normal probability plots of annual totals are given in Figure 2.11 for the
historic series and the synthetic sequences. The plots of the synthetic sequences
have a smaller slope than the plot of the historic series, which indicates a smaller
variance. The estimated standard deviations of the three synthetic sequences
are 300, 304 and 365 mm, respectively. For the modified historic series this
value is 411 mm, which corresponds quite well to the value 412mm of the
original historic series (see Table 2.2).

3. ANALYSIS OF RAINFALL DATA FROM SUDAN AND EGYPT

In this section daily rainfall data from Khartoum and Alexandria are
analysed. In contrast to the rainfall scries discussed in the previous section
these series are characterized by some period with no rainfall at all, For Khar-
toum the months of December, January and February are always completely
dry and for Alexandria there is no rain in July (except for some drops). In such
a situation generating a wet-dry process by sampling alternately lengths of wet
and dry spells can lead to serious problems. For instance, it is difficult to fita
probability distribution to the length of weather spells. This point is illustrated
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TabLe 3.1. Critical levels of the X2-test of goodness of fit for the TNBD and the GD fitted
to the lengths of dry spells,

Alexandria Al Alexandria Bl
Month
TNBD GD TNBD GD

November 0.674 0.740 0.000 0.000
December 0.108 0.133 0,284 0219
January 0.647 0.666 0.327 0411
February 0.762 0.003 0.205 0.138
March 0.002 0.000 - 0:115 0.167

in Table 3.1 where the TNBD and the GD are fitted to lengths of dry spells of
Alexandria. For months in the wet period (January, December) these distribu-
tions fit well'but in transition periods there is the problem that very long dry
spells (even longer than 200 days) can occur (Alexandria Al, March and
Alexandria B1, November). The frequency distribution of dry intervals has
two peaks for these months, as was the case for some Indian serigs (see Table
2.7). For the drier months one has the problem that there are only a few spells
beginning or ending in a particular month. Even months with no wet spells
oceur,

When generating synthetic sequences for such stations it_can be wolrthwhile .
to start with generating lengths of the wet and the dry perloq or equivalently
the first and last day of the wet season. For Khartoum the begmmng.of the wet
season of a particular year is defined as the day on which the curpulatwe rainfall
amount after January Ist reaches the 2.0 mm level for the first tme. The end of
the wet season of a particular year is defined as the first day after which the total
rainfall amount is less than 2.0 mm. For Alexandria the first and last day of the
wet season can be defined analogously with the exception that the cumulative
rainfall amount is not counted from the beginning of a calendar year but from

July Ist.

Table 3.2 shows realizations of the Von Neumann's ratio and estimates of
the mean, the standard deviation: and the coefficient of skewness for such
quantities as the annual number of wet days, the annuali total, the .ﬁrst am.i l?si;
day of the wet season, etc. A wet day is defined here as a day with a rainla
amount of at least 0.1 mm. ) '

The annual means of both stations lie in the same order, but there 1s a; dlfffer—
ence with respect to the number of wet days. For Khartoum ;hﬁre are (:11: z ;;1 Pi::
wet days (on the average less than 20) for which the raniall amou 1 can B
considerable. The annual total consists of a sum of a };ma}l nl{mlﬁzr 0f rain 1aD
amounts with a very skew distribution and its distribution 1s ];1 ere :ﬁ; i f
markedly skew. For Alexandria, however, the:rells a consndz}e]ra e n:l wber of
wet days in a year and because of the central limit theorem the annu

approximately normatly distributed.
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TagiE 3.2. Mean (m), standard deviation (s), coefficient of skewness (7) and Von Neumann’s
ratio (d) of the annual number of wet days {n,), the annual total (¢,), the date (1 corresponds to
January 1st) of the beginning and the end of the wet season (b,, and e,,, respectively), the length
of the wet season {4}, the average number of wet days during the wet season (n,/4,) and the
average rainfall amount during the wet season {t.//,} for the stations of Khartoum and
Alexandria. The 29th of February is excluded.

Khartoum Alexandria
m § ¥ d m 5 f d
M, 18.8 6.3 0366 0475 3.4 8.3 3.469 1.006
t. (mm) 167.0 83.7 1.135 0.724 181.8 53.1 0.228 1.080
b, 156.1 313 -0.314 0.878 302.5 194 -1.176 0.840
[ 269.6 18.2 0.156 0.810 97.6 275 -0.171 0.824
L, (days) 114.6 389 0.236 0.798 161.1 351 0.296 0.304
Rl 0.163  0.063 1.010 0.845 0.241 00357 0.270 0.927
/L, (mm/day) 1.66 LIl 1.386 0.906 1.18 038 0.132 1.023

For the series of Khartoum the realizations of the Von Neumann’s ratio of
the annual number of wet days and of the annual totals give evidence for non-
homogeneity or serial correlation at the 5 per cent level. However, there is no .
evidence for non-homogeneity or serial correlation when these quantities are
divided by the length of the wet season. It is assumed, therefore, that the low
values of the Von Neumann’s ratio of the annual number of wet days and of the
annual total are caused by persistence in the process underlying the beginning
and the end of the wet season.

For Khartoum the beginning and the end of the wet season as well as the
duration of the wet season are approximately normally distributed, whereas
the distribution of the beginning date of the wet season of Alexandria is
markedly skew. This phenomenon can occur, for instance, in a seasonally
changing Bernoulli process.

During the wet season the SGD usually provides a reasonable fit to rainfall
amounts on wet days. For Khartoum Al the critical levels of the X2-test of
goodness of fit are 0.168, 0.153, 0.104, 0.287 and 0.401 for May, June, July,
August and September, respectively. The critical levels for Alexandria Al are
0.736, 0.313, 0.572, 0.031, 0.148, 0.022 and 0.055 for October, November, De-
cember, January, February, March and April, respectively,

_'Ihe parameters of the SGD were estimated by the modified ML procedure, which was
discussed in 111, 5.2 and IIT, Al. The parameter & in III, (5.1) was taken to be 0.5mm for
Alexandria and 1.0mm for Khartoum, The upper bounds of the classes of the [requency
distributions of the rainfall amounts were 0.6, 1.1(1.0Y10.1(2.5}30.1, 40.1 and 50.1mm for
Alexandria Al. For Khartoum Al the first class was omitted.

For Khartoum the mean rainfall amount on a wet day is seasonally changing.

The means of May, June, July, August and Septemberare 3.6,5.8,10.8,11.9and

6.8 mm, respectively. Seasonal variation of the mean is less obvious for Alexan-
dria.
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When the beginning and the end of the wet season are generated first, the
application of TNBDs to lengths of weather spells is complicated. For instance,
if one starts generating lengths of wet and dry spells from the first day of the
wet season, one has the problem that the last day of the wet season is fixed.
This problem does not arise when a Bernoulli wet-dry process is used during
the wet season. This process can be applied when there is no evidence for serial
correlation. For Khartoum the estimated first sces of July and August are
~0.,014 and -0.001, respectively, and therefore the wet-dry process could be
approximated well by a Bernoulli process. The estimated first sccs of Alexan-
dria are 0.249 and 0.288 for the months of December and January, respectively,
which shows evidence for serial correlation.

The estimated first scc of a particular month is based on all pairs of observations with a
time-lag of 1 day in that month. The estimation technique used previously (see Section 2,4 and

II1, 6.1) can be cumbersome since dry spells can be quite long: The estimated correlation coef-
ficients of Alexandria relate to the period July 1900-June 1940.

For Alexandria Figure 3.1 gives the empirical distribution of the rainfall
amount in the period December-January and some calculated cdfs. The
calculated cdfs are based on model I with a SGD for the distribution of the
rainfall amounts on wet days and a Bernoulli or a GD-GD (first order Markov
chain) wet-dry process. The GD-GD process is chosen here, because the GD
fits the distribution of wet and dry intervals well for the months of December
and January. For dry spells this is seen from Table 3.1; for wet spells the critical
levels of the X2-test of goodness of fit are 0.591 and 0.725 for December and
January, respectively (method A). '

As in the previous section the parameter values of the model were obtained by.averaging
monthly A and B estimates. Al spells beginning (method A) or ending (method B) in January
and December were taken into account.

The cdf fits the empirical frequencies well when a GD-GD process is as-
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sumed for the sequence of wet and dry days. The fit becomes poorer when a
Bernoulli wet-dry process is used, but the difference between the cdf based on
this process and that based on a GD-GD process is only small.

The theoretical first scc of the model with a GD-GD process is 0.118. This value is much
smaller than the estimated values given eatlier. It should be emphasized that this value is
based on model I which underlies the assumption of iid rainfall amounts within a wet spell.
This assumption seems invalid here. For instance, the hypothesis of homogeneity of the
mean intensity at various lengths of wet spells is rejected at the 5 per cent level by an F-lest
based on the regression model described in I, 4.2. When a more advanced model is
used (e.g. model III) the difference between the estimated and theoretical {irst scc becomes
smaller. '

From the results of the analysis given above it can be concluded that synthetic
data for Khartoum can be obtained as follows. First, the beginning and the
end of the wet season are generated. Both the first and the last day of the wet
season can be obtained from a normal distribution but serial correlation must
be built in. For a model of serial correlation it seems advisible to extend the
series with data after 1940, Second, the rainfall process during the wet season
is generated. This process can be approximated by a Bernoulli wet-dry process
with a SGD for the distribution of wet days. Both the probability of a day being
wet and the mean of the SGD are seasonally changing.

For Alexandria a similar procedure can be foliowed. However, since there
is no evidence for serial correlation in the first and last dates of the wet season
it is not necessary to generate these dates first. An alternative procedure can
consist of generating a wet-dry sequence by a first order Markov chain. During
the dry period this Markov. chain might be simplified to a Bernoulli process
with a very small probability of a day being wet (cf. Lowry and GUTHRIE
(1968)). This last method gives a reasonable description of the wet-dry process.
For the lengths of dry spells this is seen from Table 3.3. In this table cumulative

TasLE 3.3. The distribution of the lengths of dry spells for Alexandria (§ = 0.1 mm). Cu-
mulative relative frequencies are given for the historic series and 3 synthetic sequences.

Length Historic series Synthetic series
(days) -
S1 52 53

1 0.185 0.158 0.136 0.131
2 0.301 0.258 0.234 0.238
3 0.405 0.364 0.338 0.328
4 0.475 0.452 0.444 0.415
5 0.547 ©0.515 0.512 0.489
10 0.735 0.719 0.715 0.681
20 0.868 0.866 0.848 0.848
30 0914 0.902 0.899 0.897
40 0.929 0.920 4.925 0.918
50 0.939 0.929 0.932 0.937
100 0.947 0.947 0.949 0.944
150 0.959 0.960 0.954 (.958
200 0.97% 0.987 . 0.981 0.985
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frequencies of these lengths are given for the historic series and for 3 synthetic
sequences (denoted by S1, 82 and S3, respectively).

The transition probabilities of the first order Markov chain were estimated for each month
separately. For a particular month the estimates of these probabilities were obtained by
counting the number of wet-dry, dry-wet, dry-dry and wet-wet transitions in all pairs of
successive observations beginning in that month. For July the probability of a day being
dry was taken to be 1 and the probability of a day being wet was taken to be 0.

In the synthetic sequences the month of February always has 28 days.

The model only underestimates the number of short spells. This often occurs
when dealing with geometric distributions (see 111, 3.2).

4. SUMMARY AND CONCLUDING REMARKS

In this chapter rainfall sequences of some foreign stations were investigated.
With respect to the behaviour of the rainfall process during the dry season
one can distinguish:

a. Surinam data. For these series there is a considerable rainfall amount during
the dry scason. Dry spells are usually not much longer than those of Dutch
series.

b. Indonesian data. Dry spells can be quite long for these series. There are,
however, only a few months with no rain. _

¢. Indian data. These series are characterized by long dry spelis during the dry
scason. There are many months without rain. . ] )

d. Sudanese and Egyptian data. For these stations there is even a period with
no rainfall at all. .

Generating wet-dry series by sampling alternately from distributions of wet
and dry intervals gives problems for the last two categon.es, since itis s_ometlmﬁs
hard to fit distributions to lengths of dry spells beginning ina certain month.
An alternative is to describe the wet-dry series of such a raqull process by a
Markov chain of a certain order. For instance, fOIfl Alexandria a first order
Markov chain describes the wet-dry series quite well. '

With respect to the behaviour rgf rainfall amounts on wet days it can be
concluded :

8. There usually exists a small Positil\fe serial ¢
rainfall amounts within a wet spell. _ .

b. It is often necessary to discriminate between different types of rainfall
amounts, .

C. The shifted gamma distribution usually provides a good fit, except for Indian
data,

As was the case for Dutch serjes the mode
of k-day totals for large values of k. But it shr.)tt:3 res
standard deviati the estimators are quit¢ 1aTge.

For the :E'ﬁggn(?fo}fasar Minggu some synthetic sequences were genera::c;

orrelation between sucecessive

] usually underestimates.variances
1d be emphasized again that the
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based on a stochastic model with 5 parameters for each month. This model
gives a good fit to the rainfall amount during the wet season and it can also
describe the beginning of both the wet and the dry season reasonably well.
The fit to the rainfall amount during the dry season is poor due to an anomalous
shape of the empirical distribution function.

For the station of Khartoum it might be advisable to generate the beginning
and the end of the wet season first, since there is some evidence for persistence
in the lengths of successive wet and dry seasons. Within the wet season the rain-
fall process can be described by a Bernoulli wet-dry process with a shifted gam-
ma distribution for the rainfall amounts on wet days. The parameters of this
process show seasonal variation.
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VI. REMARKS ON THE DATA

In this chapter it is described how the data, used in the previous chapters,
were obtained. It is also indicated what was done with unreliable data and how
missing data were supplemented.

With respect to the monthly and annual data, used for the analysis of homo-
geneity of Dutch stations (see 1I), the following remarks can be made:
a. Belgian series. Annual totals of Ghent Observatory were obtained from the
University. The data of the Belgian national network were supplied by the
Belgian Royal Meteorological Institute. For the rainfall station of Moerbeke
Waas rainfail data from a nearby station (OQorderen) were used to get an un-
interrupted sequence.
b. German series. Annual totals up to and including 1965 were supplied by the
‘Deutsche Wetterdienst’. The other annual totals and monthly totals were
obtained from yearbooks (ncarly all these books are available in the library
of the KNMI).
¢. Dutch series. Monthly totals up to and including 1970 were obtained from
notebooks in the archives of the KNMIL. The other monthly and at.mual
totals were obtained from yearbooks of the KNMI. However, the series of
Zwanenburg-Hoofddorp (1735-1944) and Leyden (1736-1786) were adopted
from LABRUN (1945). The other rainfall totals of these series were ta}{en from
yearbooks of the KNMI. The rainfall series of Den Helder (see IT, Figure 5.3)
was taken from LABRUN (1948). )
Annual totals were always rounded to the nearest millimeter, also monthly
totals of German stations and of Hoofddorp. The monthly totals of the other

Dutch stations are in tenths of millimeters.

Daily rainfall seqﬁences of Dutch stations were obtained in the.followin gway.
The data for the period 1953-1971 were copied from magnetic tapes of the

KNMI. The daily data of Winterswijk and Hoofddorp for the period before

1953 came from copies of the punch cards on which the frequenFy tables' of
.v tables also give information

the KNMI (1956) arc based. These frequency
about missing data for this period. Values for the 20th of February and the

31st of May, July, August, October and December, which were;1 no:1 g}iver(li (11;
the original punch cards, were inserted at a later stage. The ot er afl_ 31(.1 a 2
were obtained from yearbooks of the KNMIL Gaps 10 the ser_llf:§VI o 1;1;10
(October 1954), Lochem (Tune-July 1968) and Hengello (Aprl -May : R
June-November 1912, March-May 1919) were filled up wnh rainfall data ron}
nearby stations (Vilsteren, Markelo and Enschede, respectwely). Afs;rv;yc:]ao
supplements and corrections of incomplete and unreliable daf.a.do . e lgg40
(December 1907-1940) is given in Appendix Al. For the period alter o0
corrections were carried out by the KNMI and are marked on their magn
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tapes (after 1952) and their punch lists. From 1968, onwards, supplements and
corrections are also given in their yearbooks.

For daily data of Indian series use was made of duplicates of punch cards of
the Indian Meteorological Office. Missing observations (denoted by a blank)
were assumed to be zero. For the period 1879-1900 monthly totals of Bangalore
(sce 11, Figure 3.3) were obtained from a publication of the SMITHSONIAN
INsTITUTION (1927). The other monthly totals were obtained by adding daily
totals. Rainfall observations in inches were converted to millimeters,

Daily data of Jakarta-27 and Pasar Minggu were based on photocopies of
the original observations. Data of Jakarta-27 were substituted for missing
observations of Pasar Minggu (November 1938, August 1959). During
December 1945 there were no daily observations for Jakarta-27. Only the total
rainfall amount of this month (108 mm) was given. Because there were no
rainfall observations of neighbouring stations available, the data of this month
were taken identical to those of December (1960), except for the first day on
which the rainfall amount was assumed to be 15 mm (is 16 mm for December
1960) in order to get a correct monthly total,

Daily observations of Domburg and Paramaribo were taken from books
available in the library of the KNMI. Missing observations of Domburg were
completed by data from Brownsweg (November 1916, November 1929) or
Moengo (October 1955). Supplements of incomplete data of Domburg are
given in Appendix A2,

The observations of Khartoum and Alexandria were obtained from year-
books. Most of these books are available in the library of the KNMI. The
following remarks can be made with respect to incomplete data of Khartoum:
a. The rainfall amount on the 17th of July 1902 was assumed to be zero.

b. The rainfail amounts on the 21st and the 22nd of July 1932 were assumed

to be both 5.1 mm.
¢. The rainfall amounts on the 1st and the 2nd of August 1932 were assumed

to be 0 and 19.3 mm, respectively.
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Al. SUPPLEMENTS AND CORRECTIONS FOR HENGELO (DECEMBER 1907-1940)

APPENDICES

_ Thi; appendix contains values of the series of Hengelo which differ from those
given in the yearbooks of the KNMI. The reason for another value can be that

the wrong date was recorded for a rainfall observation. 1

t is also possible that

the rainfall amount was only observed for a successive number of days. Then
the rainfall amount was split up proportional to the daily values of a nearby
station (Almelo, Borne, Denekamp, Enschede or Enter). The supplemented
and corrected values are given in the next table.

Rainfall amounts {mm)

Year Month(s) Days
1908 5 6,7 0,62
© 1909 5 1826 10.4,0,0,0,0,0,0,0,2.6
12 811 2.6,0.4,0,0
1916 2 19,20 52,0
11 21-23  1.2,02,0
12 4,5 0,51
19-22  0.3,4.0,04,0
1911 1 2,3 13,22
6,7 30,1 39,21
1912 2 20-23  0,35,2.7,93
3 820 28,0.0,0,0,0,24,0,27,0,22,24, 2.7
4 46 0,60,73
5 1.9 43,0,0,0,79,14.9,2.5
12,13 0,167
1915 3 12,13 04,08
1916 2 2328 04,64,37,14,0,14
12 22,23 14,126 :
1919 3 30,31 3.0,15
4 13,14 11.0,0
27,28 153,38
1920 4 11,12 34,113
8 7.8 54,0
12 2596 7.4,0,0,29,3.3
1922 7 27,28 26,0
8 g 0201345136002 29
12 25,26 0,45
231 67,2.1,67,0
1923 7 2431 3.0,0,9.833,02,63 0.1,0.6
12 2427 0.7,63,20,0
1924 1 2.5 0.1,03,44,0
89 0,12
10 g9 4844
27,28 49,68
1925 11 28-30 5.4.13,0
12 2528  6.4,01,46,39
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Year Manth(s} Days Rainfall amounts (mm)
1926 1 18-20 3.8,0,0
8 11-15  4.4,2.3,11.7,5.7,0
1927 1 20-24  0.1,0,5.3,0,0.1
7 3.4 45,20
8 5-10 0,0,7.6,0,41,0
14,15 78,83
12 25-27  3.0,148,30
1928 2 14,15 90,24
4 3,4 0,75
8 -5 0.9,29.0,0,0,69
12 23-31 1.3,96,4.0,38,67,0.1, 1.5,1.9,9.9
1929 1 24-26 0.1,06,1.1
3 37 0,13,0,08, 1.4
8 1-4 13.4,2.3,0,0
1930 1 3,4 32,25
12,13 11.1,4.0
10 12,13 3.0,0
12 25-28 0.7,2.6,6.2,53
1931 1 1,2 7.2,0
14-16  3.3,0,2.7
2 3-5 43,0,02
5 27,28 0,17.0
6 7.8 4.6,3.0
7 8.9 41,32
17,18 9.5,125
11 6-8 7.0,0,05
12 46 5.0,44,0
1932 1 10-14  0,0,0.1,0.2,4.3
2 19,20 0,0.7
6 4,5 0,03
7 26,27 21,65
9 26,27 10,25
i2 25,26 30,16
1933 2 16-19  1.7,22,0.2,0.2
6 17-20  0,17.8,1.1,7.6
10 8,9 0,85
15-18 0,0.2,1.6,5.0
12 28-30 1500
1934 8 56 348,72
12 9,10 0,55
1935 1 16,17 1.6,0.4
3 23,24 1.2,120
4 7,8 46,44
5 20-22  1.2,4.0,3.0
6 10-12  0,29.0,0.5
10 21-26  4.0,0,0.3,0,0,2.2
1936 1 19,20 22,0
2 16,17 94,35
10 19-21  0,11.3,2.0
1937 3 1,2 0,15
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Year Month(s) Days Rainfall amounts (mm})

1938 11 20,21 26,09

12 8-10 0.1,3.5,19
1939 7 79 0,28,12

11 2426 0.5,4.3,126

12 2831 04,0,02,96
1940 4 17,18 22,0

12 18-20 26,7.7,37

27,28 13,0

The large number of Christmas days in this table is remarkable.

A2. SUPPLEMENTS FOR DOMBURG (DECEMBER 1909-1968)

For Domburg there are some days for which the observed rainfall amounts
relate to a number of successive days. The values obtained by splitting up these
accumulated rainfall amounts are given in the next table.

Year Month(s) Days Rainfall amounts (mm)

1912 6 30 39.5,85,23,5.3,19,06,57, 244, 19.9, 10.2, 0,0,
08,0, 13.1,9.1,72.3,0,0,0,0,08, 6.2, 0,0, 22.8,
08,16.2,5.1,0

-1912 10 131 0,0,32,188,0,0,0,0.0.78, 11.5,0,0,0,0,0,0,
0.0,0.0,0,0,0,0,0,8,0,0,09,2.3

1956 12 24,25 67,66

30,31 299,50

1957 1 1,2 80,69

6.7 120,25
2 17.18 165,25
1958 4 39 17,40
5 3.4 240,315
6 28,29 21,20
7 .23 0,91
9 45 141,140
7.8 240,47
12 10,11 50,215
1959 1 20.30 7.6,10.0
4 19.20 90,110
5 10,11 40,44
6 21,22 32,270
7 20.30 84,86
: 10 28,29 2.5,280
1960 1 39 0560
1964 3 20,21 40,45
6 14.15 368,50

1965 1 0,11 72,203

1966 6 12 367,200

1967 7 12 08194
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SUMMARY AND CONCLUDING REMARKS

Rainfall series of different climatic regions were analysed with the aim of
generating daily rainfall sequences. A survey of the data is given in I, 1.
When analysing daily rainfall sequences one must be aware of the following
points:
a. Scasonality. Because of seasonal variation of features of the rainfall process
the analysis is done for each month or season separately (see III, 2).
b. Non-homogeneity. A rainfall series is called non-homogeneous when it is
non-stationary even after elimination of seasonal variation.
c. A large fraction of days with no rain.
d. Dependence between rainfall amounts on successive days (serial correlation).
It is the combination of the last two points which makes the generation of
daily rainfall sequences difficult. When dealing with rainfall observations over
periods longer than one day this difficulty is mostly obviated because one gets
less zeroes and evidence for serial correlation usually disappears. For instance,
there is no evidence for serial correlation in monthly data of Dutch stations
{see 11, 3.1). Besides, theoretical distributions can easily be fitted to the marginal
distribution (e.g. the ‘loi des fuites’, see II, 3.2). The generation of these data
is therefore not compticated. For annual totals the Gaussian distribution often
fits reasonably well (see II, 2 for Dutch series, and V, 2.1 for foreign series).
Departures from normality are found for rainfall stations with a few wet days
in a year (New Delhi, Khartoum).

Homogeneity of Dutch rainfall series is discussed in Chapter 11. It is assumed
that non-homogeneities are man-made, e.g. due to a change in rain gauge in-
stallation or a change of observer and therefore non-homogeneities usually
consist of jumps.

A problem when dealing with Dutch rainfall series is the lowering of the rain
gauges (from 1.50 m to 0.40 m) during the period 19461954 (see I, 4). Due to
a smaller wind effect it is expected that such a reduction in height results in
larger rainfall measurements. To find a jump in the mean, annual totals of
Dutch stations were compared with contemporary totals of foreign stations
yvhere no change of height took place. For such a comparison two points are
important:

a. The distance between the various rainfall stations. In order to obtain a
powerful test for a jump, one should choose the stations close together.

Therefore Dutch rainfall stations near the Belgian or German border were

taken.

b. There are other non-homogeneities, for instance, due to changes of site.
The consequence of such non-homogeneities is that the estimates of a jump,
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causg% by a reduction of height, may be biased. Moreover, these non-homo-
geneities give rise to a smaller correlation between the rainfall series and the
tests for a jump become therefore less powerful. The influence of local changes
can be reduced by taking averages of different stations in a certain area.
With regression models and plots of partial sums, a jump in the mean of
about 2 per cent is found for stations remote from the coast ; for coastal stations
. the height of the jump can be much larger (even more than 10 per cent), but
there is a large variation due to differences in the degree of protection against
the wind. The results correspond quite well with those of earlier research by
Braak (1945).
By comparing monthly data of Dutch and German stations in the northern
coastal area (see II, 4.2) it is found that the largest jumps occur in the winter
season.

Another point of investigation is the homogeneity of the Zwanenburg-
Hoofddorp (1735-1972) series (see 11, 5). Since here there is no nearby rainfall
station, with no changes in the way of measuring during the period of obser-
vation, the analysis of homogeneity was merely based on the series under
consideration. The tests which were considered are less powerful than the ones
based on a comparison between changed and unchanged stations. Yet, there is
obvious evidence for differences in the means of Zwanenburg (1735-1860) and
Hoofddorp (1861-1972). There isno evidence for departures from homogeneity
in the Hoofddorp series. Since there is also a poor correlation between the
. Zwanenburg data and other old rainfall series, these data can be considered
useless for present-day hydrological research.

Because of the large number of zeroes in daily rainfali sequences, it is sug-

gested to generate first the occurrence of wet and dry days and subsequently
the rainfall amounts on wet days. Since small rainfall amounts are often re-
gistered as zero it is advisable t0 call a day wet if its rainfall amount ex_cceds
some specified value. For the Netherlands a threshold of 0.8 mm is advisable
(see 11, 6); for smaller thresholds there are only a few rainfall stations for which
the series of wet and dry days (shortly denoted as wet-dry series) is homo-
geneous.

d for Dutch rainfall series, using daily
1971) and Henge!o

del are given 11

In Chapter TII a model is develope
data from Winterswijk (1908-1973) Hoofddorp (1867-
(1908-1973). Theoretical considerations about the mo
Chapter IV.

es it can be concluded:

. With 1 - uences of these seri .
espect to the wet-dry seq engths of successive wet

a. There is no evidence for correlation between the |
and dry spells (see III, 3.1).

b. Modifications of the negative binomial distribution (the shifted negative
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binomial distribution, see III, (3.2) and the truncated negative binomial
distribution, see 111, (3.3)) fit the lengths of weather spells well.

Seasonal dependence of the parameters of the truncated negative binomial
distribution was extensively studied. For a particular type of spell it was shown
that it is reasonable to keep one of the parameters, , constant throughout the
year. Further, for dry spells the other parameter, p, can be smoothed according
to a moving average scheme (see 111, (3.17)}; for wet spells seasonal variation
of the parameter p can be described by a Fourier series with one harmonic
component (see 111, (3.12)). ’

With respect to the behaviour of rainfall amounts on wet days the following
remarks can be made.

a. There is no evidence for correlation between the rainfall amount on the first

day of a wet spell and the length of the preceding dry spell (see I1L, 4.1).

b. The first and the last day of a wet spell have smaller means than the other wet

days; the smallest mean is found for solitary wet days (see 111, 4.2).

c. There is some evidence for serial correlation of successive rainfall amounts
within a wet spell (see I, 5.1). It is assumed that this serial correlation can

be described by a first order moving average process (see 111, 6.1).

The last two points are most evident during the winter season.

A shifted gamma distribution fits the marginal distribution of the rainfall
amounts on wet days reasonably well (see 111, 5.2). There is no evidence for
seasonal variation of the shape parameter; the mean, however, shows an
obvious seasonal variation.

Though synthetic sequences resemble the historic series with respect to
features contained in the model (such as the marginal distribution of daily
rainfall amounts and the lengths of wet and dry spells), this is not necessarily
true for other features. As examples the correlogram and features of k-day
sums (k = 2,3, ...) were considered. This was done for both the wet-dry process
and the entire ramfall process.

Some features of the rainfall model can be obtained by numencal methods.
These features are:

a. The cumulative distribution function (cdf) of the number of wet days in a
k-day period. Under the assumption of iid rainfall amounts within a wet

spell it is not difficult to derive an expression for the cdf of £-day rainfall totals

(see IV, 3).

b. The correlogram for both the wet-dry process and the entire rainfall process

(see IV, 4).

c. The variance-time curve of the wet-dry process and of the entire rainfall
process (see IV, 5). For large values of £ (£ > 10) the variance of the number
of wet days in a k-day period can be approximated well by an asymptotic for-
mula (Equation IV, (5.36)) involving only the first three moments of the lengths
of wet and dry spells. This approximation can also be done for the variance of
k-day rainfall amounts when the rainfall totals within a wet spell are iid.
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For the derivation of the formulas, underlying these numerical calculations,
the following assumptions are made.
a. The process is stationary.
b. The wet-dry process is an alternating renewal process. A definition of this
. process is given in IV, 2.2,
These assumptions turn out to-be reasonable when the rainfall process is
examined for a particular month or season.

For the correlogram it can be concluded (see III, 6.1):

a. Thereis a good correspondence between the estimated first serial correlation
coefflicient and the theoretical value for both the wet-dry process and the
entire rainfall process. This quantity is usually underestimated when simpli-

fying assumptions are made about the behaviour of rainfall amounts within a

wet spell.

b. For larger lags the model usually underestimates the serial correlation coef-
ficients of the rainfall process, especially during the winter season. For the

wet-dry process the model usually provides a better fit at the higher lags.

Closely related to the last point is the fact that the model underestimates the
variances of 30-day rainfall amounts (see III, 6.2). During winter and autumn
sometimes long wet spells occur with very high intensity (see II1,4.2) which

inflate the estimated variances of k-day totals for large values of k.

The following remarks can be made on the cdf of k-day sums.

a. For the number of wet days in a k-day period there is a good correspondence
between theoretical and empirical cdfs (see I11, 7.1).
b. For the entire rainfall process theoretical cdfs fit well for small values of k;

poor fit may occur for larger values of £ (e.g. k = 30). This poor fit usually
consists of an underestimation of the probabilities of large values (see III,
7.2.2).

Th)ough the cdf was only investigated under the assumption of independent
rainfall amounts within a wet spell, it may be expected that the shape of the C(?f
is hardly influenced when serial correlation between these rainfall amounts is
assumed, since the increase in the variance of k-day totals is only very small
for 2 model with serial correfation (see 111, 6.2).

For the rainfall process it was investigated how different features of the model
affect the shape of the cdf of 30-day totals. The rnail.] results are:

a. The shape of the cdf is hardly influenced by the distribution of the lengths of
weather spells (see 111, 7.1). N ) )
b. The shape of the cdf is to some extent not sensitive to the marginal dis-

tribution of the rainfall amounts on wet days (see 111, 7.2). o
c. The shape of the cdf is hardly altered when rainfall amounts within a wet

spell are assumed to be iid. ' "

For Winterswijk (1908-1973) nearly the same resul_ts were obtained when the
threshold defining a wet day is taken to be 0.3 mm instead of 0.8 mm.

Though there are many corrections and supplements in the series of Hengelo
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(1908-1973) the results for this station correspond quite well 10 those of the
adjacent station of Winterswijk.

In Chapter V daily rainfall sequences of stations with a more pronounced
seasonal variation than Dutch stations are discussed.
The problems encountered for Dutch stations usually arise here too:

a. In order to get a homogenous wet-dry series one is often forced to call only
those days wet for which the rainfall amount exceeds a rather large threshold
(see V,2.1).

b. Rainfall amounts within a wet spell are often non-identically distributed.
Moreover, there usually exists a small serial correlation between rainfall
amounts within a wet spell (see V, 2.3).

c. The rainfall model underestimates the variances of k-day totals for large
values of k (see V,2.4).

Besides, for the series analysed in Chapter V there are some problems as-
sociated with dry seasons with no or hardly any rainfall:

a. Itis often not possible to fit the shifted negative binomial distribution or the
truncated negative binomial distribution to lengths of wet spells during the

dry season. Since there are no long wet spells during this season, the likelihood

equations of these distributions often do not have a solution within the para-
meter space. In such cases it is possible to fit a one-parameter distribution

(geometric, logarithmic series) to the lengths of wet spells (see V, 2.2).

b. Dry spells can be quite long. Modifications of the negative binomial dis-
tribution sometimes cannot fit the lengths of these spells (see V, 2.2and V, 3).

In such cases it might be advisable to use transition probabilities for the gener-

ation of the wet-dry series instead of generating lengths of wet and dry spells.

For instance, it was shown, by simulation, that a first order Markov chain

describes the right tail of the distribution of the lengths of dry spells well for the

station of Alexandria (see V, 3).

The generation of synthetic data for Pasar Minggu (Indonesia) was in-
vestigated in more detail (see V, 2.5). Special attention was paid to the begin-
ning of both the wet and the dry monsoon. The model can describe the transi-
tions between these seasons quite well.

A special problem arises for the rainfall series of Khartoum (1902-1940). For
this station there is some evidence for serial correlation in the annual totals and

- in the annual number of wet days (see V, 3). This serial correlation can be ex-
plained by persistence in the lengths of successive wet and dry seasons. It is
proposed therefore to generate the beginning and the end of the wet season
first. Within a wet season the rainfall process can be approximated by a
Bernoulli process for the occurrence of wet and dry days and a shifted gamma
distribution for the rainfall amounts on wet days. The probability of a day

being wet and the mean of the rainfall amount on a wet day show seasonal
variation. :
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The main shortcoming of the daily rainfall model is that it underestimates
the variance of k-day totals for latge values of & which may result in it poorly
fitting' the distribution of these totals. It is, however, by no means certain
whether this shortcoming is important in practical situations. When dealing
with hydrological systems with a long memory one may expect serious problems
but studies on such systems can often be based on a time-scale longer than one
day. Therefore it is necessary to test the model on some real problems to obtain
a better insight into its shortcomings.

One may ask whether improvements of the model are possible. For Dutch
series the description of the wet-dry process by a seasonal changing alternating
renewal process seems reasonable, since the model fits well the probability
distributions of the annual number of wet days (see III, 7.2.2) and of the number
of wet days in a 30-day period (see IH, 7.1). Therefore one must think of a
better model for the behaviour of rainfall amounts on wet days. It is impractical
to incorporate serial correlation of higher order between rainfall amounts
within a wet spell as the effect on the variance-time curve of the process is
negligible, because wet spells usually are of short duration. The model could
be improved by:

a. a random slowly changing mean of the rainfall amounts on wet days. This
certainly will increase the variance of k-day totals for large values of £.
The main problem of this method is the estimation of the parameters. Another
problem can be the choice of the type of distribution for the rainfall amounts
on wet days.
b. generating a total rainfall amount for a particular period {e.g. a mopth) and
splitting this rainfall amount into the rainfail amounts of the various wet
days of that period. Because of the method of generation this model may give a
reasonable fit to monthly and annual totals. A disadvantage of this method is
that the model contains a large number of parameters.

But before thinking of such improvements one must realize that tl}ere are
large local differences for the variances of 30-day totals (see LI, 6.2). It is there-
fore necessary to analyse a large number of daily rainfall sequences of the
Netherlands and its neighbouring countries.

For some foreign stations analysed in Chapter V one also has Fhe trouble
that for large values of k an alternating renewal process leads to a serious under-
estimation of the variance of the number of wet days in a k-day period. Research

still has to be done to get a better model for such series.
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SAMENVATTING ENSLOTOPMERKINGEN

Dit onderzock behandelt een analyse van neerslagreeksen van stations met
een verschillend klimaat met tot doel het genereren van dagelijkse neerslag-
sommen. Een overzicht van de gebruikte gegevens wordt gegeven in I, 1.

Bij de analyse van dagelijkse neerslagreeksen dient men rekening te houden
met de volgende punten:

a. Seizoenmatige veranderingen. Vanwege de jaarlijkse gang van eigenschap-
pen van het neerslagproces wordt de analyse voor iedere maand of seizoen
afzonderlijk uitgevoerd (zie 111, 2), .

b. Inhomogeniteit. Een neerslagreeks wordt inhomogeen genoemd indien deze
door andere oorzaken dan een seizoenmatige verandering niet stationair is.

¢. Een grote fractie neerslagvrije dagen.

d. Afhankelijkheid tussen neerslaghoeveelheden van opeenvolgende dagen
{autocorrelatie). :

De combinatie van de laatste twee punten maakt het genereren van dage-
lijkse neerslagreeksen moeilijk. Bij neerslaggegevens voor perioden van een
toenemend aantal dagen treft men deze moeilijkheid doorgaans in geringere
mate aan daar men minder nullen krijgt en evidentie voor autocorrelatie ge-
woonlijk verdwijnt. Voor maandsommen van Nederlandse stations is er bij-
voorbeeld geen evidentie voor autocorrelatie (zie I, 3.1). Het is bovendien niet
moeilijk de marginale verdeling door een theoretische verdeling te benaderen
(b.v. de ‘“toi des fuites’, zie IT, 3.2). et genereren van maandsommen is daar-
door betrekkelijk eenvoudig. De normale verdeling geeft vaak een redelijke
aanpassing voor jaarsommen (zie I, 2 voor Nederlandse reeksen, en V, 2.1 voor
buitenlandse reeksen). Afwijkingen van normaliteit worden gevonden bij
neerslagstations waarvoor het aantal natte dagen in cen jaar gering is (New

Delhi, Khartoum).

In Hoofdstuk I{ wordt de homogeniteit van Nederlandse neerslagreeksen
onderzocht. Verondersteld wordt dat inhomogeniteiten door de mens veroor-
zaakt zijn, b.v. door een verandering van de installatie van de regenmeter of
een verandering van waarnemer; daardoor bestaan inhomogeniteiten gewoon-

lijk uit sprongen.

Een probleem bij Nederlandse neerslagreeksen is de verlagi:‘ig van de re-
genmeters (van 1.50m naar 0.40m) in de periode 1946_—1954 (zie 11, 4). Men
mag verwachten dat deze verlaging hogere neerslagmetingen tot gevolg hc}eft
door een geringer windeffect. Teneinde een sprong in het gemiddelde te vin-
den worden jaarsommen van Nederlandse stations vergeleken me't gelifktij-
dige waarnemingen van buitenlandse stations waar geen ver‘:a.nfiermg_ van de
opstellingshoogte heeft plaatsgevonden. Bij zulk een vergelijking zijn twee
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punten van belang:

a. De afstand tussen de verschillende neerslagstations, Voor het verkrijgen van
een onderscheidende toets dient men de stations dicht bij elkaar te kiezen.

Nederlandse stations dichtbij de Belgische of Duitse grens zijn daardoor ge-

kozen.

b. Er zijn andere inhomogeniteiten, bijvoorbeeld door plaatsveranderingen.

Het gevolg van dergelijke inhomogeniteiten isdat schattingenvan cen sprong,
veroorzaakt door een verlaging van de opstellingshoogte, onzuiver kunnen zijn.
Bovendien geven deze inhomogeniteiten aanleiding tot een geringere samen-
hang tussen de neerslagreeksen en toetsen op een sprong worden daardoor
minder onderscheidend. De invioed van lokale veranderingen kan men redu-
ceren door gemiddelden te nemen van verschillende stations in een bepaald
gebied.

Door middel van regressiemodellen en tekeningen van pariiéle sommen
wordt een sprong in het gemiddelde gevonden van ongeveer 2 procent voor
landstations; voor kuststations is de hoogte van de sprong veel groter (zelfs
meer dan 10 procent), maar door verschillen in de mate van beschutting is er
een grote variatie tussen deze stations. De resultaten komen redelijk overeen
met die van een eerder onderzoek van Braak (1945).

Bij een vergelijking van maandsommen van Nederlandse en Duitse stations
in het noordelijk kustgebied (zie IT, 4.2) worden de grootste sprongen in het
winterseizoen aangetroffen.

Een ander punt van onderzoek is de homogeniteit van de Zwanenburg-
Hoofddorp (1735-1972) reeks (zie 11, 5). Daar men in dit geval niet over een
nabij gelegen station beschikt, waarop de ncerslag steeds op dezelfde manier
gemeten is gedurende de waarnemingsperiode, wordt de homogeniteitsanalyse
uvitsluitend op de beschouwde recks gebaseerd. De beschouwde toetsen zijn
minder onderscheidend dan toetsen gebaseerd op een vergelijking van stations
met en zonder veranderingen. Toch is er evidentie voor verschillen in de gemid-
delden van Zwanenburg (1735-1860) en Hoofddorp (1861-1972). Er is geen
cvidentie voor inhomogeniteiten in de Hoofddorp reeks. Doordat er ook een
slechte samenhang bestaat tussen de gegevens van Zwanenburg en andere oude

neerslagreeksen, mag men deze gegevens ongeschikt achten voor het huidige
hydrologisch onderzoek.

- Daar het aantal nullen in dagelijkse neerslagreeksen groot is wordt eerst het

optreden van droge en natte dagen gegenereerd en daarna de neerslaghocveel-
heden op natte dagen. Doordat kléine neerslaghoeveelheden vaak als nul ge-
registreerd worden is het raadzaam pas van een natte dag te spreken als de neer-
slaghoeveelheid op die dag een zekere waarde overschrijdt. Voor Nederland is
een drempelwaarde van 0.8 mm redelijk (zie I1, 6); voor kleinere waarden van

de drempel zijn er slechts weinig neerslagstations waarvoor de reeks van droge
en natte dagen homogeen is.
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In Hoofdstuk IIT wordt een model ontwikkeld voor Nederlandse neerslag-
reeksen, waarbij gebruik wordt gemaakt van dagsommen van Winterswijk
(1908-1973), Hoofddorp (1867-1971) en Hengelo (1908-1973). Theoretische
beschouwingen over het model worden gegeven in Hoofdstuk IV.

Met betrekking tot de opeenvolging van droge en natte dagen van deze reek-
sen kan het volgende worden opgemerkt:

a. Er is geen evidentie voor correlatie tussen de lengien van opeenvolgende
natte en droge perioden (zie I1I, 3.1).

b. De verdeling van de lengten van droge en natte perioden kan goed beschre-
ven worden door modificaties van de negatief binomiale verdeling (de ver-

schoven negatief binomiale verdeling, zie III, (3.2) en de afgeknotte negatief

binomiale verdeling, zie I11, (3.3)).

Uitgebreide aandacht wordt geschonken aan de seizoenafhankelijkheid van
de parameters van de afgeknotte negatief binomiale verdeling. Voor zowel
droge als natte perioden is aangetoond dat het redelijk is om één der parameters,
r, constant te houden gedurende het jaar. Voor droge perioden kan de andere
parameter, p, gladgestreken worden volgens een voartschrijdend gemiddelde
(zie III, (3.17)); voor natte perioden kan de seizoenafhankelijkheid van de
parameter p door een Fourier reeks beschreven worden met één sinusoide (zie

11, (3.12)).

De volgende opmerkingen kunnen worden gemaakt over het gedrag van
neerslaghoeveelheden op natie dagen: :
a. Er is geen evidentie voor correlatie tussen de neerslaghoeveelheid op de
eerste dag van een natte periode en de lengte van de voorafgaande droge
periode (zie 1L, 4.1). '
b. De eerste en de laatste dag van een natte periode hebben een kleiner gemid-
delde dan de andere natte dagen; het kleinste gemiddelde wordt gevqnden
bij natte dagen die aan beide zijden door droge dagen begrensd worden (zie I1I,
4.2).
c. %Er is enige evidentie voor autocorrelatie tussen opeenvolgende neerslag-
hoeveelheden binnen een natte periode (zie III, 5.1). Verondersteld worq.t
dat deze autocorrelatie beschreven kan worden door een eerste orde voortschrij-

dend gemiddelde proces (zie 111, 6.1).

De laatste twee punten zijn het duidelijkst in het wi‘r.lterseizoen. '

Een verschoven gammaverdeling geeft een redehjkc? aanpassing voor de
neerslaghoeveelheden op natte dagen (zie IIL, 5.2). Ex is geen evidentie voor
seizoenafhankelijkheid van de vormparameter; het gemiddelde vertoont echter

een duidelijke seizoenmatige verandering.

sen zullen gelijken op die van de histo-

bouwd zijn (zoals de marginale verde-
atte en droge

- Eigenschappen van synthetische reek
rische reeks indien zij in het model inge
ling van dagelijkse neerslaghoeveelheden en de lengten van n
perioden); dit is niet noodzakelijk waar voor andere eigenschappen. Als voor-
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beelden worden het correlogram en eigenschappen van k-daagse sommen
(k =2,3,...) beschouwd. Dit wordt gedaan voor zowel de recks van droge en
natte dagen als voor het gehele neerslagproces.
Sommige eigenschappen van het neerslagmodel kunnen afgeleid worden
met behulp van numerieke methoden. Deze eigenschappen zijn:
a, De cumulatieve verdelingsfunctie (cdf) van het aantal natte dagen in een
k-daagse periode. Onder de veronderstelling van onafhankelijke neerslag-
hoeveelheden met dezelfde kansverdeling binnen cen natte periode kan men
een uitdrukking voor de cdf van k-daagse ncerslagsommen afleiden (zie IV, 3).
b. Het correlogram van het proces van droge en natte dagen en het gehele neer-
slagproces (zie IV, 4).
¢. De variantie-tijd curve van het proces van droge en natte dagen en van het
gehele neerslagproces (zie IV, 5). Voor grote waarden van k£ (k > 10) kan de
variantie van het aantal natte dagen in een k-daagse periode goed benaderd
worden door een asymptotische formule (vergelijking IV, (5.36)) waarin slechts
de cerste drie momenten van de lengten van natte en droge perioden voorko-
men. Dit is ook het geval voor de variantie van k-daagse neerslagsommen
indien de neerslaghocveelheden binnen ecn natte periode onafhankelijk en
tsomoor zijn.
Yoor de afleiding van de formules, die aan deze numerieke berekeningen ten
grondslag liggen, worden de volgende veronderstellingen gemaakt:
a. Het proces is stationair.
b. Het proces van droge en natte dagen is een alternerend vervangingsproces.
Een definitie van dit proces wordt gegeven in 1V, 2.2,
Deze veronderstellingen blijken redelijk te zijn indien het neerstagproces
bestudeerd wordt voor een bepaalde maand of een bepaald seizoen.

Voor het correlogram kunnen de volgende opmerkingen worden gemaakt
(zie 111, 6.1): J
a. FEris een goede overeenstemming tussen de geschatte eerste orde autocorre-
latiecogfficiént en de theoretische waarde voor zowel het proces van droge
en natte dagen als het gehele neerslagproces. Deze correlatiecoéfficiént wordt
gewoonlijk onderschat indien vereenvoudigende aannamen worden gemaakt
over het gedrag van neerslaghoeveelheden binnen een natte periode.
b.-Het model onderschat gewoonlijk de hogere orde autocorrelatiecoéfficién-
ten van het neerslagproces, vooral in het winterseizoen. Voor het proces van
droge en natte dagen geeft het model gewoonlijk een betere aanpassing voor
hogere orde autocorrelatiecoéfficiénten,
Nauw verwant aan het laatste punt is het feit dat het model de varianties van
30-daagse neerslagsommen onderschat (zie II1, 6.2). In de winter en de herfst
komen soms lange natte perioden voor met een zeer hoge intensiteit (zie IT1,

4.2}, die de geschatte varianties van k- daagse sommen verhogen voor grote
waarden van k.
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De volgende opmerkingen kunnen worden gemaakt over de cdf van k-daagse
sommen:

a. Voor het aantal natte dagen in een k-daagse periode is er een goede over-

eenkomst tussen theoretische en empirische edfs (zie 111, 7.1).

b. Voor het gehele neerslagproces geven theoretische cdf’s een goede aanpas-
sing voor kleine waarden van k& ; de aanpassing kan slecht zijn voor grote

waarden van k (b.v. k = 30). De slechte aanpassing bestaat gewoonlijk uit een

onderschatting van de kansen op grote waarden (zie II1, 7.2.2).

Hoewel de cdf slechts onderzocht wordt onder de veronderstelling van onaf-
hankelijke necerslaghoeveetheden binnen een natte periode mag verwacht
worden dat de vorm van de cdf nauwelijks verandert indien autocorrelatie tus-
sen deze neerslaghoeveelheden verondersteld wordt, daar de toename in de
variantie van k-daagse sommen slechts zeer klein is voor een model met auto-
correlatie (zie 1IT, 6.2). '

Voor het neerslagproces is onderzocht hoe verschillende eigenschappen van
het model de vorm van de cdf van 30-daagse sommen beinvioeden. De belang-
rijkste resultaten zijn:

a. De vorm van de cdf wordt nauwelijks beinvlioed door de verdeling van de
- lengten van droge en natte perioden (zie III, 7.1).
b. De vorm van de cdf is enigszins ongevoelig voor de marginale verdeling van

de neerslaghoeveelheden op natte dagen (zie IT1, 7.2).
¢. De vorm van de cdf verandert nauwelijks indien verondersteld wordt dat

neerslaghoeveelheden binnen een natte periode onafhankelijk en isomoor

zijn.

Voor Winterswijk verkrijgt men vrijwel dezelfde resultaten als men voor de
drempel, die een natte dag definicert, een waarde kiest van 0.3 mm in plaats
van 0.8 mm. :

Hoewel men vele correcties en aanvullingen in de recks van Hengelo (1908-
1973) aantreft komen de resultaten voor dit station redelijk overcen met die van

het nabijgelegen station Winterswijk.

In Hoofdstuk V worden dagelijkse neerslagreeksen van stations onderzocht

met een meer uitgesproken seizoenvariatie dan Nederlandse sta.t.ions. ‘
De problemen, die bij Nederlandse stations voorgekomen zijn, doen zich

hier ook voor: o

a. Om een homogene reeks van natte en droge dagen te krijgen is men vaak ge-
dwongen slechts die dagen nat te noemen, waarop de neerslaghoeveelbeid

een tamelijk hoge drempelwaarde overschrijdt (zie V, 2.1). _

b. Neerslaghoeveelheden binnen een natte periode hebben.vaak niet dezelf@e
kansverdeling. Bovendien bestaat er doorgaans een germge autocorrelatie

tussen neerslaghoeveelheden binnen een natte periode (zie V, 2.3).

¢. Het neerslagmodel onderschat de varianties van k-daagse sommen voOr
groie waarden van k (zie V, 2.4). .
Voor de reeksen, die geanalyseerd zijn in Hoofdstuk V, geven droge setzoe-
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nen met geen of nauwelijks enige regen aanleiding tot enkele problemen:
a. Voor lengten van natte perioden in het droge seizoen is het vaak niet moge-
lijk om de verschoven negatief binomiale verdeling of de afgeknotte negatief
binomiale verdeling aan te passen. Daar er geen lange natte perioden in dit
seizoen zijn hebben de aannemelijkheidsvergelijkingen van deze verdelingen
vaak geen oplossing binnen de parameterruimte. In zulke gevallen is het moge-
lijk om voor lengien van natte perioden een één-parameter verdeling (geo-
metrische, logaritmische verdeling) aan te passen (zie V, 2.2).
b. Droge perioden kunnen zeer lang zijn. Modificaties van de negatief bino-
miale verdeling kunnen soms niet aangepast worden aan de lengten van deze
perioden (zie V, 2.2 en V, 3). In zutke gevallen kan het raadzaam zijn om over-
gangswaarschijnlijkheden te gebruiken voor het genereren van een reeks van
droge en natte dagen in plaats van het genereren van lengten van natte en droge
perioden. Zo is door simulatie aangetoond dat een eevste orde Markov keten
een goede aanpassing geeft voor de rechter staart van de verdeling van droge
perioden voor het station Alexandrié (zie V, 3).

Het genereren van synthetische gegevens voor Pasar Minggu (Indonesié)
wordt uitvoeriger onderzocht (zie V, 2.5). Speciale aandacht wordt besteed aan
het begin van de natte en van de droge moesson. Het model kan de overgang
tussen deze scizoenen redelijk beschrijven.

Een speciaal probleem doet zich voor bij de neerslagreeks van Khartoum
(1902-1940). Voor dit station is er enige evidentie voor autocorrelatic in de
~jaarsommen en in het jaarlijks aantal natte dagen (zie V, 3). Deze autocorrelatie
kan verklaard worden door persistentic in de lengten van opeenvolgende natte
en droge seizoenen. Daarom worden eerst het begin en het einde van het natte
seizoen gegenereerd. Binnen een nat seizoen kan het neerslagproces benaderd
worden door een Bernoulli proces voor de opeenvolging van droge en natte
dagen en een verschoven gamma verdeling voor de neerslaghoeveelheden op
natte dagen. De kans op een natte dag en de gemiddelde neerstaghoeveelheid
op een natte dag zijn seizoenafhankelijk.

De belangrijkste tekortkoming van het dagelijks neerslag model is de onder-
schatting van de variantie van k-daagse sommen voor grote waarden van X,
die kan leiden tot een slechte aanpassing voor deze sommen. Het is echter
geenszins zeker of deze tekortkoming belangrijk is in praktische situaties. Voor
trage hydrologische systemen kan men ernstige problemen verwachten, maar
studies over dergelijke systemen kunnen vaak gebaseerd worden op tijdseen-
heden van meer dan een dag. Het is daarom noodzakelijk om het model op

enkele reéle problemen te toetsen om een beter inzicht te krijgen in de tekort-
komingen.
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S

Men kan zich afvragen of het mogelijk is om het model te verbeteren. Voor
Nederlandse reeksen kan het proces van droge en natte dagen goed beschreven
worden door een seizoenafhankelijk alternerend vervangingsproces, daar dit
model tot een goede aanpassing leidt voor de kansverdelingen van het jaarlijks
aantal regendagen (zie IIL, 7.2.2) en van het aantal natte dagen in een 30-daagse
periode (zie ITI, 7.1). Men moet daarom in de eerste plaats denken aan een
beter model voor het gedrag van neerslaghoeveelheden op natte dagen. Het is
onpraktisch om autocorrelatie van hogere orde in te bouwen tussen de neerslag-
hoeveelheden binnen een natte periode, omdat het effect hiervan op de varian-
tie-tijd curve gering is, daar natte perioden doorgaans van korte duur zijn.
Voor verbetering van het model kan men denken aan:

a. een siochastische, langzaam veranderende verwachting van de neerslag-
hoeveelheden op natte dagen. Hierdcor zal voor grote waarden van & de
variantie van k-daagse sommen zeker toenemen. Het belangrijkste probleem
bij deze methode is gelegen in hét schatten van de parameters. Een ander pro-
bleem kan de keuze van het type verdeling voor de neersiaghoeveelheden op
natte dagen zijn.
b. het genereren van een totale neerslaghoeveelheid voor een bepaalde periode
(b.v. een maand) en het opsplitsen van deze neerslaghoeveelheid in de neer-
slaghoeveelheden voor de verschillende natte dagen van die periode. Door de
manier van genereren kan dit model een redelijke aanpassing geven voor
maand- en jaarsommen. Een nadeel van deze methode is dat het model een
groot aantal parameters bevat.

Maar voordat men aan dergelijke verbeteringen begint dient men zich te
realiseren dat er grote lokale verschillen voor de varianties van 30-daagse som-
men bestaan (zie 11, 6.2). Het is daarom noodzakelijk om een groot aantal
neerslagreeksen uit Nederland en omringende landen te analyseren.

Bij enkele buitenlandse stations, die in Hoofdstuk V geanalyseerd zijn, heeft
men ook nog de moeilijkheid dat een alternerend vervangingsproces de va-
riantie van het aantal natte dagen in een k-daagse periode onderschat voor
grote waarden van k. Veel onderzoek moet nog gedaan woiden om een beter
model voor zulke reeksen te verkrijgen.
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