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SPECIAL PROPERTIES OF STORM FUNCTIONS .
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1. INTRODUCTION

The analytic solution to the rainfall interstation correlation
function depends on the solution of some integrals (STOL, 1977a).

Although the solution is a straightforward application of integral
c&lculug the structure of the intégrals is rather complicated (STOL,
1977b) and need some comments to simplify the elaborations.

In this report the solution of the required integrals will be
given for reference. The integrals are solved step by step, The
final result is the rainfall interstation correlation function for
time series. They are given too and briefly commented with respect

to their specific properties.

Main formulas are given in boxes to clearly distinguish between

definitions or final results and intermediate expressions.

2, GENERAL DEFINITIONS-

The meteo~hydrological background of the elaborations to be
dealt with, will not be paid attention to. They can be found in
publications mentioned.in the list of references.

Instead, the mathematical treatment is subject of our conside-
rations. The development of the required model will be given in |
mathematical terms only. However, symbols are chosen such that
they correspond with those used in the applications, so results
need not be transformed or encoded.

For the same reason functions and variables are given names

according to their hydrological meaning,

Let a model ‘for a storm be given by the stormfunction



h = f(x)

consisting of two parts

=n
1

‘x) if 0gx< B

-
i

B

2¢(x)  if B

A

X

A

(SeerFig. 1)

Fig. 1. Schematic illustration of the relationship between symbols

defined in this report

Values of h obtained by specific values of x are defined by

ha = f(a)

Particular values are

oy = 0, 'e8') = 26B'Y = w, 2£(B) = 0

We assume that x = a is obtained by a random process so x = a%,

where a is supposed-to be uniformly distributed on the interval

Co. ]

¥stochastic variables will be denoted by underlining the symbol



The function lf(x) is assumed to be monotonic increasing while

2 . \ . .
f(x) is assumed to be monotonic decreasing. Now we can define the

probability P by

= ) i
P(a < a) = P(hi < ha), 0<a<B

A

Using intervals, to define probabilities, we have

0 <a<B'

oo

P(hé < ha) =

Dropping indices, and expressing intervals on x in terms of h

we can write
1.-1

P(p_<h)=—fT@, 0<ac<B’

The density of this distribution reads

dP(h < h) _1d - \
—&F—— "Ban L (M, 0gac<B

(A

which can be used to derive expectations,

Function values are connected by the 'interstation' distance D,

.such that
b=a+D, 0<D<B-a
If coordinates are obtained randomly, we have

_ll=a+D

consequently, conventionally, in general

It

by,

£(b) = £(a + D)

but, depending on the magnitudes of the intervals, probable

outcomes are



1= _ |

gh = f{'f (hg?.+ D} : (1)
b, = 2f["f"(hﬁ) + D} (2)
hy = 2_f{2f"(hﬁ) + D} (3

which depend on the location of a and E_With respect to each of the

defined functions.

3. SPECIALVPROPERTIES OF STORM FUNCTTIONS

In this Section some special properties are introduced.

In the first place we take
B'= IB

and assume the storm function to be symmetric about x = 4B, so

Vo) = 2£(8-x) | ' (4)

Consider a pair of points moving along the 1 e £t br anch

~ of the storm function according to

{lf(x), 1f(x+D)] from x = 0 to X = iB-D
where !f(x), because of the trivial argument, is called the leading

point.

After having passed the center the move becomes

{zf(i), 2f(x+D)} from x = B to x = B-D

change the direction of the move, giving

{2f(x), 2f(x+D)} from x =B-D to x = iB



chenge leading points, first by arguments

{2f(x—D), 2f(x)} from x = B to x = }B+D

then by their occurrence in the set

{Zfﬂx), 2f(x-D)] from x =B to x = iB+D

Now we use x = B as a new origin and define y = B-x, so

{zf(B—y), 2f(B—;y-D)} from y =0 toy = {B-D

The last step is that we make use of the symmetry by (4) and

so the move aiong the r 1 ght branchcan be written

('t5), 'E@+)} fromy =0 to y = JBD

But here we arrive at the same structure as the one given for
the move along the left branch. Since x and y are dummies in the
sense that their values are defined by the 'from-to' statements
we see that the moves - under the condition of symmetry - are
identical. - _

All combinations of points on one branch and at distance D
apart (0 <D < {B) produce a combination on the other branch with

the same function values.

This also means that
B(h, < hylae {0, B]) =
) P(hBﬁg < hB_a]a e [B, i8])
so,

P(hﬂ <h) = 2P(h§ <haefd, E]) = 2P('f(g) < Yegay



Thus, for symmetric univariate moves, we can use the density

wHine

d_

d

=

to calculate all statistical parameters.

For shortness we introduce in this Section symbols te denote

integrals by the following convention. An integrand will be denoted

by i, the integral by 1. Subscripts refer to the occurrence of a

first: 1, and a second: 2, value of h, while, if no values of h

are present,

indicate functions of the left branch: 1, and the right branch: 2.

the subscript equals 0. Superscripts are used to

Consequently, to start with

i

(o]

o
Hh
~
=2
S

d

(5)

~ we can check the formula for the density by the relationships

2

P(h cH) =35I =|I

The univariate density itself is given by

but this formula will not be used explicitely.

B

(6)

(7)

The mathematical expectation will be defined by respectively

I

H
I_h i dh and u
0

=

(8)



The variance then is given by

H
1= [ 6% dn and o= 21, -y (9)
11 J o B .
0

or

22 2 2
o =3I TGP

Note that a more ‘general formula for the integral reads

T = [ i dh (6a)
Tt (0)

which defines the boundary values in terms of ]f(x).

In the same way the covariance between ha and hb can be obtained,

We should consider a bivariate density. However, since values of b

are determined by h_ according to h = h densities for h_ are

a+ D’
required only, Because of the symmetry they can be defined on lf(x).
The second branch need not be used for this purpose.

According to equations (1), (2) and (3) we have to consider several

combinations with which ha and h, can occur, This is subject-matter

b
of next Section.

4. RELEVANT ha AND hb COMBINATIONS

The relevant situatioms that need concern are sketched in Fig. 2,
Increasing values of D give rise to distinguish between three

cases, viz,

Case I : 0 <D< iB<B (large)
Case IT : 0 <}B % < B (medium)
Case III: O <4B < B <D (small)

(The qualification refers to storm sizes)
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Fig. 2. Schemétic i1lustration of the three cases (Roman figures),
the three situations (Arabic figures) and the three equations
(figures between parentheses) to be distinguished for

combinations of ha and hb for increasing values of D

Since the expectation from which the covariance is obtained
vanishes when one of the variables takes on the value zero, only
those combinations of ha and hb need considered in which both
variables are greater than zero. This means that in Case I there
are three relevant situations to be treated with the formulas (1),
(2) and (3), (see Fig. 2); Case II with only one relevant situation
to be treated with formula (2); and Case IITI with no relevant
situation.

Because of the assumed symmetry Case I.l can be treated in the
same way as Case 1.3, which means that the corresponding integral
in Case I.] can be taken twice.

A further special property is that Case 1.2 and Case IT.1] can
be treated with the same integral, although different boundary

expressions have to be used.



From these considerations we see that the formulas for the

covariance are:

Case I:
't (48-n)
e b1 -t .
Ty = J h.'€('£ "(h) + D). i_ dh
| .
£(O)
le(4m)
21 _ 2_.1.-1 .
I12 = I h.“f{ £ "(n) + D}. i dh
1
£(}B-D)
IETIES
Lig=21,* T
1 2
Cov(hﬂ hh) = ﬁ'IIZ i
Case II:
't (B~D)
21" 2.1~ .
112 = J h. £ £ "(h) + D}. 10 dh
't (0)
3K
Y
_ 1 _ .2
Cov(h-E FE) TR I12 i
Case TITII:
Il2 =0
. _1 2 _ 2
Cov(hé_hh) =3 I12 o= =-u

(10)

(11}

(12)

(13)

(14)

(15)



From these results, to be worked'with specific storm functions,
the correlation coefficient is obtained by dividing the covariance
by the variance since Var(ha) = Var(hb), which easily can be verified
with the aid of the foregoing Sections.

It should be noted that the above mentioned correlation refers
to the storm function. The ultimate goal, the interstation correlation
for time series, can be obtained by further transformations (STOL,

1977a). They are briefly discussed in Annex 1.

5. PARTICULAR STORM FUNCTIONS

A.The rectan gular type

A.1, Definition

The rectangular type is defined by

=
n

lf(x) =H, 0% x¢< iB

26(x) = H,

=
1
Al—
=
naA
~
na
==}

| =

The probability that h < H equals 1, because h is constant.

For combination of values we have to determine probabilities
instead of densities since h is constant. On the basis of intervals

we have (see Fig. 2)

Case Probability
I.1 (iB-D) / B
1,2 (D) /B
1.3 (iB-D) / B
II.1 (B-D) / B
II1 0
Since h = H for 0 £ x < B we can combine the cases by adding,

giving

10



Case Probability

1 (B-D) / B (also for D = 0)
11X (B-D) / B
111 0o

A.2. Expectation

The mathematical expectation is found to be

B oy
E(ha) =3 - H=H

=
)]

A.3. Variance

The variance is found by

2 2, 2 _B a2
o —E(hi) W=z H -H =0

A.4, Covariance

A.4.1, Case I

The covariance between ha = H and hb = H is obtained by

2
Cov(hE hh) = E(h.i ﬁk) - u

50

Cov(hE hb) =——H

A.4.2., Case 11

Cf:m'(hE hg) =——H" - H =—8

A.4.3, Case II1

]
1
==}

Cov(h.i ﬁh)




B. The triangular type

B.l. Definition

The triangular type is already sketched in Fig, 2. The definition

is
h = ]f(x) =-2§-x, 0 < x < iB
h = 2f(x) = 2H —-Zg-x, iB<x<B

The inverse of the first function is

B _ Bh
X = f (h) —TH—

and so, by (5) and (6):

N

1 = B =-_B =
1= 5 and I0 TR h .

The check according to (7) reads

B.2, Expectation

First the integral (8) has to be solved which gives

i : H
B B 2 BH
= h._. S e—, = m—
o ! o 9 = 5 th , T
0
and so
.2 BH_H
- N 2

B.3., Variance

Inserting i& in (9) produces

12



H H )
N 2. __B 1.3 _BH
I, = th i dh ==, 3 h 7
0 0
and
2 2 m? w
T B 6 4 12

B.4. Covariance

Elements to be used in the determination of the covariance
according to formulas given in Section 4 are, putting

2HD/B = X,

ey = 0; epd) mm-x

'f{'f' (h) + D} = lf{%-+ D} = h + K
d 1.1 . _ B
E £ (h) -10 -"-'—ZH

te(4B-p) = w-x; 't(®) = n

zf{lf_](h) + D} = 2f{Bh

-ﬁ+D}=2H—h—K

T¢0) = 0; '£@-D) = 28 - K

with which the integrals can be obtained.

B.4.]1, Case 1

B-K
11 _ B
I, = ,[ h. (h+K) . - dh
0
H-K
=D 1.3 .2
X (3 h™ + 1 h7K)
0



=E:l(2H3 ~ ek + 6nk2 - 287 + MK - euk? + 3K°)

1D .3 L2 3
I = 6K(2H k 3JH°K + K7)

12

and for the second part

H
21 _ Ch - _B
I, ,[ h.(2H - h - K). —rdh
H-K
o H
-2 2o -y - L3
=z {ih“(2H - K) 5 h'}

H-K
=6_3{3H?' (2HK) - 200 - 3(H-K)Z(2HK) + 2(HK)7}
=-6-%-{6H3 - 3%k - 28° - (H-K)2(4H-K))

2] __D 2, _ 2 3
Iy, = gx (6HK = 6HK® + K7)

which finally leads to (see (10)):

2

1. =—2(an® - en’k + 2> + 60K - 6HKZ + K°)
12 ~76K
D 3 2 3
=K (4H 6HK® + 3K7)
B 3 2% 24n?p’
=T (W v 3 )
B B
w2 3 2 3
I|2=""—"2-(B -~ 6BD” + 6D7)
3B

giving for the covariance, according to (11):

21 2

Cov(hE hh) =3 II2 u
2 ' 2
Cov(h h ) =—2 (8% - ¢8D% + %) - L
a b’ g3 4




B.4.2. Case II

-

We can use the second integral of Case T but have to change the

boundary values, so we have to work out

2H-K
21" D 42,00 oy _ 1035
I, —K{gh(ZHK) 3h]
0
=D )3 - Loy
= X {3 (28-K) 3(211 K)~}
__D (oq - ZDy3 B 8113(]3_1))3=I
~ 6K B’ 20 ° .3 12
which, according to (12) yields
2
3B
and according to (13) finally gives
2 2
Cov(n_h ) =28 (3 -p)3 -1
a "y T3 .

B.4.3, Case III

No integrals need be solved since in this case

IIZ =0

so we have at once with (14} and (15):

H2
CO\.'r(hE h..ll) = -




C. The exponential type

C.l. Definition

The exponential type is defined by the following equations in

which b is a storm parameter,

lex) = He2b —%B),

=
1]
o
A
=
FaN
-
=]

zf(x) _ HeZb(%B—x),

-
]

iB

A

x < B

Here, |f(O) = 2f(B) = He_bB # 0, but b can be taken large

enough to make h0 and hB small,

The inverse of the first function is

h

ﬁ+%B

o i - —L
x = £ (h) = b 1n

and so, by (5) and (6):

i = and| 1 =-—11nh1-l
o 2bh o 2b
~bB
He
which yields
_ 1 | i
I =—=—IlnH-——1n H+——. bB = B

c 2b 2b 2b

The check according to (7) reads

16



C.2. Expectation

First the integral (8) has to be solved which gives

H H
I ~h
L I TS “oB
-bB He
He
__H,, -bB
I =5 (e )
and so
_ 2 -_H . __ "bB
w=g I =g U-e )

It will appear to be convenient to define

-bB
u= ] - e

bB

ve | +e

50

C.3. Variance

Inserting io in (9) produces

PP S S S i L
11 J ' 2bh 4b
-bB
He b3 He
2 2
H 2bB H
I =g ¢ ) " W
and so, since ¢ %'Ill u2
2 2
2 H 2 2 H, 2
o 758 UV b232 u® or o =} GEEQ u(bBv =~ 2u)

17



C.4, Covariance

Elements to be used in the determination of the covariance

according to formulas given in Section 4 are

T£0) = me P, e(4B-D) = pe 2PP

'f{]f'](h) + D}

I 1 h
E{E]?lnl{-l- %B+D}

= H exp 2b(5%—ln h —-5%—1n H + D)

= H exp(ln h - In H + 2bD)

g o200

'epp) = we™® ; leyp)

n
=

2e Ve lmy + 0y = % PE%-ln-% + 1B + D)

] h _
H exp Zb(*ﬁln m D)
H -2bD
h

'£¢0) = He™®® ; '£(B-D) = H exp 26(}B-D)

with which the integrals can be obtained.

C.4.]1, Case I

He—ZbD
11 26D |
I = . . ——
12 J h.he ST dh
He-bB

18



2bD
e

~ 2 —4bD 2 -2bB
=% 1 {He He }
2bD
11 _ . 2e -4bD ~2bB
Ty = B—gp—(e e )
and for the second part
H 2
21 J H° -2bD ]
1 = h,—e . =— dh
12 _9bD h 7bh
He
2 =2bD _
= He (InH-1nH - 1ln e ZbD)
2b -
2 =2bD
='E"EEE'-" 26D = HZp o 2PD

which finally leads to (see (10)):

I (¢~4bD _ -2bB 4bD
12 7b

I - e "% 4 2nDe” 7Y

giving for the covariance, according to (11):

2

|
Cov(hﬁ hh) 3-112 u

C.4.2. Case 1II

We can use the second integral of Case I but have to change

the boundary values, so we have to work out

bBE~2bD
e

H
2 =2bD
21 H |
Ty =~ w
-bB
He

19




H2e—2bD
=____§E-__(bB - 2bDh +,bB)

so using the equallity given in (12):

1. = gle 2

bD
12 : (B-D)

giving for the covariance, according to (11):

) om2bD 2
Cov(h, hy) = B {=—5—(BD) -— =}

— b'B

C. 4,3, Case III

No integrals need be solved since in this case

IIZ=0

so we have at once with (14) and (15):

, H2u2
COV(hE h_t_)__) = "W

20
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ANNEX |

MODIFIED SOLUTIONS FOR TIME SERIES

The solutions obtained in Section 5 refer—in the hydrological
sense- to statistical parametexs in storms, It is usefull to have
solutions for time éeries.‘The relatioﬁship between both is given
by Stol (1977a). With the aid of the integrals the modified solutions
can be obtained easily,

Consider the correlation coefficient

) A Cov(héhb) + (A-B) u2

7 (sTOL, 1977a, Annex 1)

0

) A Var(ﬂ;) + (A-B) u

where A = L + B, where L is a constant. Actually L plays the role of
area length which, in the mathematical treatment, is immaterial,

We may write for symmetric storm functions, according the basic
integrals (8), (9) and (I1):

A 1, -—21?) 4 (A—B)-ii
. B 712 B2 ] Bz
' 41
11y b+ e
. B B
which equals
AL, ~ 4T,
p =—'_—_j
ZAIII - 4Il

a. Rectangular storms

For rectangular storms the first equation is more convenient.

So with results obtained in Section A.2 through A.4 we have:
Case I and Case II:

ACEH?) + (4-B) B

p =p =
I IT (A-B) H2

22



_ —AD + B(A-B) _ -AD + BL

B(A-B) BT,
_ . L+B:
or pp =P =1 =P
Case ITI:
L ACHY 4 am) W -
I1T (AB) 12 T
., _Lz*s
Pr11 L

b. Triangular storms

_For triangular storms we apply the last equation for p. So with

results obtained in Section B we have

Case I:

2 2.2
n? | 3 2. .3 BH
A? (B 6BD” + 6D7) ~ 4T
p. =
1 " , 2A
3 T6
_ 4a(B>-6Bp+60%) - 3p°
4aB° - 3p°
2 |
_ | _ 24ap° (B-D)
B>(4A - 3B)

and finally

B-D

3

oy = 1 = 24(L+B)D”
B (4L + B)

23



Case II:

2 2.2
A-zﬂi—(B -p)3 -4 Blg
o .38
11 ol o
6 6

_8a (3 -D)° - 38"
448> - 3p"
and finally
3 3
pr = 1 - 4L+ B B - 2(B - D)
B (4L + B)
Case TTI:
» B2y
o - 16
111 N = ) 222
6 16
-~ 3B
ZA - 3B
-1 - 4(L + B)
Prir L+ B

c.Exponential storms

For the exponmential storms we apply the equation for p with the

results obtained in Section C. We have

Case I:

We have to divide

24



2 2D _ _ - 2
AM” e7 ( -4bD _ =2bB o0 =4bDy _, H 2

2b 4b

by
2am”  _aHe 2
4b 4b2
which gives
 apePD (TP BBy ABDy 2
P1 Abuv - 2 ul
s 268 _ _-2bD , -2b(B-D) _ , - -~2bD
u(Abv - 2u)

which, possibly not can be written in a better way than by

L v (e D (| _ m26(B-20)y o -2bD
P1 u(Abv -~ 2u)

(where A = L + B) to match the following expressions.

Case II:
ane™2PP (g-py - 4—7“2 u2
P11 2 7,
ZA'_ZE'uV - 4 7 U
: 4b
_ 28b%e PP py - 2u?
Abuv - 2u2
finally
oo = 1 - Ap AV - 2b(B—D)e“2bD
11 u{Abv - 2u)

25




Case TII:

50

26

2
" H2 2
} 4b
P11 ) 2
ZAE uv — 4 5 u
4b*~
- - 2u2
Abuv - 2 u2;
_ _ 1 uv
p]:]:I 1 Ab_____.
. u{abv - 2u)




ANNEX 2.

SPECIFIC PROPERTIES OF THE CORRELATION FUNCTIONS

The correlation function for time series as derived in Anmex [,
have some special properties with respect to the transition from
. comments will be given here,
o1 to pII to PIIT A few co nts w g

a. Th'e rectangular storm function

It was found that pI(D) = pII(D)

Further we have

.01(0) =1
pI(ﬁB) = DII(QB), {same function)
pr(®) = 1 == - g
B
pIII(B) == (constant)

So the complete function is continuous at the transition points
from one case to another.

The derivatives are:

de(D) deI(D) L+ B

aD T ap TR
dp117(®) _ o
ap

The complete function is not 'smooth' in the sense that the
first derivatives are continuous. The complete function consista

of two straight lines that intersect at D = B,

b, The triangular storm function

There are three different correlation functions, pI(D), pII(D) and

pIII(D), pertaining the cases I, II and ILI respectively,

27



We have

pI(O)‘= 1
: ; 3 .
1
pI(gs) =1 -.24(L + B) (?§)
(41 + B)
' L +3B
=1-337 5%
and
3 i3
o (4B) = 1 - 4 (1 + p) 2T 20P)
B (4L + B)
L I
=} 3 (L + B) L
Finally,
-y AL+ B)
Prr(B) = | AL * B
and
4(L + B
pIII(B) a | --—éi-i—gl, (constant)

The complete function is continuous at the transition points,

The derivatives are:

0} (D) =.:§ﬁ£2_:;22_(2aﬁ - 1%
B~ (4L + B)
8(L + B)

B (4L + B)

(D) = .3.(B -~ DY2(~1)

]
P11

_ —§4(L + B) (3 - )2
B (4L + B)

1 =
Pryr®™ =0
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The conplete functiém is 'smooth' since

32

p1(4B) = ;”(’:E : 2; (8° - )
o1 (4B) =-};§-’(‘%<5B)2
pr7(B) =0

p1y7(B) = O

giving_

tel = ' (1 Al =l
pp(zB) = p;;(3B) and o, (B) = p; . (B)
Further we observe that

py(0) = 0

c. The exponential storm function

There are, again, three different correlation functions, We

have, with

-bB
u =1]1-e
v =1+ e-bB
-2bB
uv = 1 - e
the results_
_ uv = uv - 0
pI(O) =1 Ab u{Abv - 2u) !
(3B) = 1 - Ab 2= {e—bB(l-l)] - bBe"hB
Py u(Abv - 2u)
~LB
-1 uv_~ bBe
pII(ﬁB) ! Ab u(Abv - 2u)
C - Ap—— Y ]
DIII(B) =1 - Ab S(Abv = 20)° (constant), pII(B)



The complete function is continuous at the transition points

-

D = iB and D = B.

The first derivatives are:

' - +Ab 1
pr(D) = Tmpy - 20y - &1 D)
where '
g, () = 726D _ =2b(B-D) , . -2bD
and
g (D) = -2b e 2D | g BB (BD) g 72BD 42200
80
01 (D) = ~4ap> D 48 2b(B 20)) ~2bD
1 u(Abv - 2u) 2b
Next we have
1 (D) = +2Ab2 '(D)
°11 ulAbv - 2u) © B2
where
g, (D) = ge=2bD _ o =2bD
and
gé(D) = —2bBe-2bD - e—2bD + 2bDe_2bD
- -Zbe-ZbD(B - D) - e-ZbD
giving

3

~4Ab | .. -2bD
1 E e— -

P =Ty 2y B "D tap) e

and finally

(D) =0

]
P11
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The complete function is 'smooth' only at the first

D = B, namely it is readily seen that

17 (4B)

pi(iB)

but also that

—2ab2 ~2bB

u({Abv - 2u) €

) L}
DII(B)
which only equals piII(D) =0 for b=20

which has no physical meaning.
Finally we observe that

~2Ab2 ~2bB

u(Abv - 2u) €

pr(0) =

which surprisingly equals piI(B).

transition
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ANNEX 3,

. SUMMARY..OF GENERAL FORMULAS .}, . ..
‘ Sbneropte
It is assumed that the storm function has two branches and that

it is symmetric about the center.

Definitions,

b = storm parameter (if present) o
R = storm maximum, in center o o
B = storm diameter et e e i
L = length of gaged area o o
D = inter-station distance L »

i .
h = rainfall amount in storm S e P R R
x = storm coordinate
h=£(a) for x = a R 7Eﬂilj

TR .
Case TI: 0 <D< 4B < B (large)

T P S A

Case II: 0 < iB <D<B (me&ium)

Case III: 0.< iB

A
[=~]
A

<D {small)

Left branch: h ]f(x). 0<x< iB

Right branch: h 2f(x), iB < x <B

Properties,

R

lecoy = 2e(m) -

'£(iB) = %e(4B) = H

Tex) = 268 - %)

Integrals,

i =—=—"f (h)
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le(ym)

1 = J i dh
[a) (4]
l£c0)
besm)
I, = I h i dh
1 o
Lt o)
Tt(sm)
_ [ .2
Ill = J h 1 dh
ey
i
£(4B-D)
! - I h €067 (h) + D). i dh
12 ] ! " To
£(0)
|
£(4B)
21 2. 1,.-1, . .
I, = J Ih. f{'f (h) + D} , i dh
'e(4n-p)
L
. £(B~D)
21" 2 1.~1 )
Il2 = ;[ h.“£{ £ (h) + D}, i dh
be oy
1L 21
Iy ™ 2 112 + II2 (Case T)
1, =12 (Case 1I)
I,=0 (Case TIT)

Total probability: -% I0
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]
wiro
-

Expectation: u
. 2 2
Variance: g = 3 I -u

T —

. o
Covariance: Co_v(h-E EQ) =3 12

. Covariance
Correlation: p =

h h Variance
a b

Correlation for time series:

A=L+ 8B

AI12 -4 I?
(D) = —2 L
2AI|] -4 II

Alternative form:

2L, - Ipy

2
2AIll 4 Il

p(D) = 1 = A

First derivative:

dp (D) _ A dI;, (D)
e 7 "

=
. Fh
o
-
o
[
=
©
=}
-
]
o

and I12 = IlI

giving I..=2T1

and p(0) = |





