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1. INTRODUCTION.

Storm smodels caid be used o maLﬁemati;ally describe chwe proecess .
of the occurrence of sforms in a certain area and the process of
measuring rainfall amounts. Such models can be deterministic or
sLochsstic, '

Adding stochastic components to détérmlnistiC'models means that
rainfall amounts become larger or smaller due to.a probabilistic
mechanism. The most commonly used.condifion in such case is that'
the statistical characteristics of étocﬁastic.comﬁonents do not
depend on the order of magnitude'of:thé rainfall amoun;;

This means that, apart from éyétematic'erfors, on the
averag e nothing wi11 change. However, large negative values
of the stochastic cbmponent obtained by simulation and added to
small rainfall amounts can cause negative values. Used as generated
rainfall time series one would replace such negative values by zero's.
This means that automatically the percentage of zero's will change
and so does the expectation aﬁd_the variance of the time series of
rainfall amounts. B -

In this report the effect of such changes to mathematical
rainfall models will be investigdtedgAnd it ﬁill be tried to find

mathematical expressions that describe the transformed models.

2. MATHEMATICAL INTRODUCTION

The problem stated in the introduction reads in mathematical
terms as follows. '

Given a two-dimensional storm function




h = f(x)

where h rainfall amount

co—ordinate in the storm

X

defined by the following conditions

>0
= £(0)y =0 |
= f (4B) = H
where B = storm diameter or storm width
H = maximum rainfall amount at the center of the storm

We assume storms to be symmetrical about the center and so,
for our present purpose, the complete storm function is defined

by

]f(x), 0<x
h = f(x) (2.1)

A
N
[o5)

2f(x), iIB < x < B
where
A 1
fx) = f(B-x) (2.2)

Without ambiguity we understand by f(x) the first half of the
storm function since, because of the symmetry, transformations
applied to 1f(x) can analogously be applied to 2f(x), using Eq.{(2.2).

In the present study we therefore shall confine ourselves to
h = f(x) = If(x)

Particular values of h measured, say, at x = a are denoted by

ha = f(a), 0 < a < }B, and analogously for hb.



3. ADDING STOCHASTIC COMPONENTS

Now we consider the case that stochastic components are added to
rainfall amounts h. In real life this could mean that we take into
account random fluctuations of storm intensities, measuring and
exposure errors, etc. Influences of these components will be called
random fluctuations and no further distinction between their origin
will be made.

Random fluctuations are superposed to h = f£(x) according to

(see STOL, 19772 p.l4)

h = fla) + £, 0 £, 7 X (3.1)
hb = f(b) + £y 0 & T X (3.2}
where
Ean) = E(Eb) =n=0, all a and b
and
E(Ei) = E(Ei) = T2 , all a and b

and x is assumed to be normally distributed with expectation 0 and
variance 1.

To complete this model we define

Covie ¢, ) = 9T2
—a —b

where @ obviously is the correlation between random fluctuations
occurring in the storm at x = a and X = b respectively.

In conclusion, and defining By and o,

v, = E(h) = f(a) and w = E(h) = £(b) (3.3)
ci = E {Eﬂ - f(a)}2 = E(Ei) = 12
ol =B {n - £} = 5(e)) = 1




Cov ih - £(a)} {h - £(b)} = Cov (g g} = o’

The symbols a and b, rather than the running variable x, are to
be considered points at which rainfall amounts are measured in the

storm.

4, TRUNCATED RAINFALL DISTRIBUTIONS

In equations (3.1) and (3.2) we assume that x is truncated such
that h > 0, since rainfall amounts can not be negative.

In order to be able to apply truncated normal distributions to
rainfall amounts, basic theory is given in Appendix 1, where the
distribution, its mathematical expectation and its variance are derived,
Definitions of special symbols used in truncating distributions are
defined in Appendix 1 as well,

To obtain non-negative rainfall amounts, ¥ has to be truncated,

given X = a, at the lower point of truncation, viz.

o

" A}
]

I A
~al-
==l
-
i

or considering the distribution of €, at the lower poinr of

truncation

*
e, = 7 @) {(4.2)

in virtue of {3.1). The relationship between the Equations (4.1) and

(4.2) is depicted in Figure 1.
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Fig. la. Distribution of random fluctuations ¢ about the value of
the storm function at x = a. Except for difference in size
of the truncated area, the distribution is the same for
all x that satisfies 0 £ x < }B. Realization of a rainfall
amount is illustrated by Eﬂ = f(a) + £, The standarized

point of truncation for e is z; = -f(a)/v

Fig. 1b. Truncated distribution of random fluctuations ¢ about the
value of the storm function at x = a. The distribution is
n ot the same for different values of x, the transformed
storm function approaches the original function for
increasing values of h. The discrepancy equals n; which

depends on the location in the storm

The degree of truncation from below then is

Ple, 2 e*) = N {-f(a)} = N(e})



or, standarized

P(e, £ EZ) = ¢{:£%224 = Q(;—)

ol
a

According to results obtained in Appendix 1, Section 4, we

now have

and so

¢(ezlr)

E(Ea‘l' )=TH:—E‘TE-§7_TTT>O

E {h, +D b= fa) +a*

. 2 .
In an analogous way the variance ¢*” can be obtained.

Parameter values of the distribution of h under truncation from

below can be obtained from Table B, in Appendix 1. We have to

interpret the headings of the columns in the following way (see

Table B, in Appendix 1, lower headings}.

Column

Column

Column

Column

1

The standarized lower point of truncation z;

- f{a)/t

The degree of truncation from below viz. P(E

A

z*) or
a)

N .
P(_e__a < Ea) or ]’:’(Ea < 0), in percentages

p* - f(a)

: Values of the expression a

T

from which u; [}eing E {Ea + E] can be solved by a
0

linear transformation

*
: Values of the expression Sg from which c;, the standard

T
deviation of the truncated distribution of h, can be

solved by multiplication



The expectation of h thus depends on the location in the storm.
Again using the continuous variable x we can express this fact by

the following formula

- ${ - £(x)/1l
U;(O) = f(x) +_; == L(x) /1] T (4.3)

where the expectation without truncation reads

W = f(x)

5. CORRELATION BETWEEN RANDOM FLUCTUATIONS

Mostly it is assumed that random fluctuations are not correlated
amongst themselves, In Fig. | let a be a first point of interest and

b be a second one then the correlation © between random errors is

(e at a, £ at b) = 0 (see Fig. 2a)

A special case, however, arises when we take © = 1. This means
that

R for all points in [0, %BZI

and a random constant value is added to the storm function, according

to

Ea = f(a) + ¢ for the (see Fig. 2b)

Same

Eb = f(b) * E storm
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Fig. 2a and 2b. Twe medels for adding random errors to storm functions

For 0 = 0 random errors are variable from point to point

For 0 ]l random errors are constant per storm

From Fig., 2 it is clear that the two cases behave differently.

Both cases are briefly commented.
@ =0 Fig. 2a

All points in the storm operate independently. Negative values
need not necessarily occur in adjacent points. In each point a

truncated normal distribution is in action with properties

£, > - f(x) , parameters 0 and T

The storm width B remains constant although zero's may occur,

especially near the edges: x = 0 and x = }B.

[0 =1 Fig. 2b

.

All peints in the storm operate in the same way. Negative values
occur 1in adjacent points. For the whole storm (or if cne wishes:
in only one point) a truncated normal distribution is in action with

properties

£ >~ f(x), parameters O and 7



The storm width B does not remain constant. If zero's occur
they act if the storm width were variable (Fig. 2b, second storm
with reduced width B*).

At the present state of art this complication is not solved and

therefore will not be paid attention to in this report.

In this last case, however, storms behave alsc if it were the
maximum height H that is variable. There is one case in this class
of storm functions that can be treated with the present models,
namely the rectangular storm type (STOL, 1977c¢). Since rainfall
magnitudes then are constant in each storm random fluctuations that
cause negative values do so for the entire storm: cancelling negative
values means that that particular storm is cancelled as a whole.

This situation is sketched in Fig. 3: storm 3 and 6.

——

- T

Fig. 3. Example of 6 rectangular storms affected by random fluctuations
€. Great negative values of ¢ cause h < 0, Cancelling these

storms (no. 3 and 6) means adding dry days to the time series

However, cancelling a complete storm means adding a dry day to
the time series. In this case we will find an increase of the
percentage of (completely) dry days (STOL, 1977b).

The degree to which the percentage of dry days is extended,
depends on the degree of truncation. Let, for short, the degree of
truncation ¢(:%) be P* under truncation, P* say, becomes with © = |

for the rectangular storm type




p* = p + (1-p)P*

Values of P* are given in percentages in Table B, Appendix 1,

column 2.

A start has been made to solve this particular case analytically.

No further details are given here.

6. TRANSFORMED STORM FUNCTIONS

The storm profile as expressed by the storm function in Eq. (2.1)
changes under the influence of random fluctuations. O n t h e

average the profile will show up as being

1 -1 2
= {-f(x)/1}

h = £&) + =T —rreo 70

T (6.1)

as a result of Eq. (4.3).

Correlation functions derived for particular expressions of
the storm function f(x) have now to be developed taking into account
the second term in {(6.1).

However, since the fraction contains in the denominator the
integral ¢ of the normal distribution, it is not possible to write
Eq. (6.1} with elementary functions. The entire expression (6.1) has
to be approximated by more simple functions. Because’'of the structure
we will use exponentials, and, in particular, the exponential storm

function.

The fundamental idea of the construction of transformed storm
models can be illustrated with the following example.

Given the storm function, see Fig. 4,
h = £(x)

Values of h can be considered to be the mean value about which
random fluctuations are superposed, with standard deviation 7 = 3,

say.



So at x = a, for 0 < a < 3B, we have

Ea = f(x) + £,

and according to Egq. (3.3)

= E(h) = f(a)

However, since negative values are truncated, the mean value
will increase. The new values of the mean under truncation viz.
E(hﬂ|0), or u;(O), can be obtained from Table B in Appendix 1.
To prepare the elaboration, values of h = f(x) to be understood

the mean value v, are collected in Table 1, columns | and 2.

‘.
hT16 r" x "1 H
F -~
[~ x s
hﬂ-" l'
12+ ".-' ”
T ) U /.:
= 1 __,.--" ey
—.- f’
” '.'
8-’ o
o’ h=f(x}=
— 5 .---'_' }jx
4 4=
o} ha=f (U)=}Jq
1 1

I N S B L |
o 1. 2 3 4 5 6 7 8 9 10 x
a —

Fig. 4. Example of a storm function h = f(x) and the function obtained

as the locus of mean values (expectations) after truncation

Values of v, are expressed in standard units by dividing them
by 1. Table B in Appendix | is entered with the negative value z, =
-ua/I and the standarized expectation under truncation is returned
(Table 1, columns 3 and 4). Next the inverse linear transformation
is applied (Table 1, columns 5 and 6). Finally the expectation under
truncation, u;, is plotted in Fig. 4. For comparison the function
under truncation for T = 10 is plotted as well. The original function

(no random errors) is valid for 7 = 0.

11



Table 1. Determination of the mathematical expectation in a storm
model as given in Fig. 4 under truncation of random

fluctuations with standard deviation 1 = 5

Preparation See Tablg B of Solution of u;
Appendix 1

- * _
a f{a) m{lgl_ [ Tf(a) i u; - f(a)= u; - o; -
1 2 3 4 5 6 7
0 0 0 0.7979 3.9895 3.99 3.0t
1 1 -0.2 0.6751 3.3755 4.38 3.20
2 3 -0.6 0.4591 2.2955 5.30 3.58
3 4 -0.8 0.3676 1.8380 5.84 3.78
& 5 -1.0 0.2876 1.4380 6.43 3.97
5 7 -1.4 0.1629 0.8145 7.81 4.32
6 8 -1.6 0.1174 0.3870 8.59 4,47
7 9 -1.8 0.0819 0.4095 9.41 4.60
8 11 -2.2 0.0360 ¢.1800 11.18 4.79
9 13 -2.6 0.0136 (0.0680 13.07 4.90
10 15 -3.0 0.0044 (.0220 15.02 4.97

7. DISCUSSION

From the foregoing result we observe that small values of h are
influenced much more by truncation then large values. However, this
is true in a relative sense only, since the elaboration depends on
-f(x)/t.
The transformed function, the dotted line in Fig. 4, is a -
function of x again, with — among others - 1 as a parameter. This

function reads, according to Eq. 6.1




-7%; exp-:% {—f(x)/T}2
[ J_f(XJ/T

1 - o exp("%zz)dz

u;(O) = f(x) + (7. )

—co

This is not a simple function of x and cannot be expressed in

elementary functions. The main properties of these functions are:

- if f(x) is large, relative to 1, the numerator in the second term

becomes small, and the denominator tends towards | and so

¥ o= f(x) if £(x) large (near center)

*
X
- 1f f{x) is small, relative to 1, and close to zero, the numerator

1 .
approaches _— and the denominator tends towards } and so

2T

u; ~ f(x) + poral if £(x) small (near edges)
~ f{x) + 0.871 (more exact 0.7979)

In our case the general shape of the transformed storm function
will be: close to the original function in the neighbourhood of the
center, increasing deviations with a maximum of 0.79791 near the
edges.

The type of formula for u; and the shape of the dotted lines
in Fig. 4 suggest that we can try an exponential storm function to
approximate the complicated expression in Eq. (7.1) and to amalytically
describe the situation under presence of random errors. This will be
done for the triangular and the exponential storm function.

The problem that remains now is to determine the values of the
parameters of that exponential storm function that describes the
triangular and exponential storm functioms, in which random fluctuations

are present, best.




8. WORKED EXAMPLES

8,]. The influence of the size 0of random

fluctuations

Before giving details of examples we first consider the influence
of the size of random errors to the correlation function.

In Fig. 5 the correlation function is given for a triangular
storm with characteristics: storm width B = 0.5 (dimensionless,
expressed in units of area size L}, maximum storm value H = 20
(em say) at the center of the storm. Random fluctuations are chosen
to have zero expectation, and standard deviation 1 = 0, 2, 5, 10,
20 and 100 (cm), or dimensionless H/t = «, 10, 4, 2, 1, 0.20,

The first graph shows the situation T = 0, compare with STOL
(1977d, Fig. 4). The graphs illustrace the mean correlation for
various interstation distances, obtained by simulation (dets), and
the interstation correlation function calculated from analytically
derived formulas (full line). For small values of 7 the thecry
describes the simulated results well. From 1T > 5 (%-; 4) discrepancies
become apparent. They can be explained as follows.

Random errors cause fluctuations sbout thc mean value h = f(x).
When these fluctuations are large, algebraically obtained rainfall
amounts can become negative. Cancelling these negative values mean
that the expectation of h increases and so the analytically derived
formula for triangular storms with H = 20 is not valid any more
(Fig. 2). Even the storm model does not hold any longer since the
increase of the mean value depends on x, the location in the storm
(Fig. 4).

Although the wvalue of the standard deviation T = 100 is rather
irrealistic compared with the value of the maximum rainfall amount
H = 20, we will use this illustrative example to modify the storm
function to make it fit the points in Fig. 5 (last case) again.

However, to systematically treat the three important storm
functions, in the examples we will start, after having made some

general remarks, with the rectangular storm type.

14
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Fig. 5. The simulated (dots) and theoritical (full line) correlation

functien for a triangular storm with increasing values for the

standard deviation T of random errors
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8.2, General remarks about examples

After the theory has been fully discussed, examples are briefly
commented. The essential storm characteristics are H, the maximum
rainfall at the center of the storm, and 1, the standard deviation
of the random fluctuations. The storm diameter B is taken B = 0.5.
The correlation between random fluctuations at different points is
taken © = 0, and the fraction of dry days p = (. Interstation
distance D and storm diameter B are expressed in units of area
length L, and so are dimensionless with 0 ¢ D 2 1.

The following items are discussed and illustrated by graphs.

a) definition of the storm function (STOL, 1977c).

Only the left part of the function needs further concern.

b) transformation of the storm function to account for additional
zero's caused by algebraically obtained negative precipitation

amounts. Determination of storm characteristics H and T.

c) determination of further parameters of the transformed storm

function using 11 points in the storm, viz.T% = 0(0.1) 1
2

d) graphical representation of simulated correlations at various
interstation distances D, represented by .... Distances taken
are D = 0(0.05) 1. The simulated values are obtained as a mean
of two series of 1000 storms, in which negative values are
replaced by zeros. They are referred toas s imulated

value s. Storm characteristics used are H and T.

e) general formulas of the correlation function for the storm type
under discussion, after STOL (1977b). The correlation functions

are defined as
pI(D) for 0 <D < }B

pII(D) for 3B < D <B

pIII(D) for B <D< |

Properties and graphical representation of the theoretical



£)

g)

correlation function without transformaticen of the storm function
with parameter values as used under d) are given. Characteristics

B, O and p, are given values as mentioned in the Introduction

?
to thls sub-section.

graphical representation of the correlation function with
transformed storm functions with combinations of values for

the storm characteristics, as follcws (see Table 2)

Table 2. Combination of values of storm characteristics and symbols
with which the correlation function based on them are

represented in the Figures

storm standard curve curve (H,T)
max imum deviation number type
H T | (=,=)
H* T 2 (*,-)
H T 3 —mm. - {(-,*)
u* T* 7 (*,*)

*values valid under truncation

conclusion

Tt must be noted that if the negative rainfall amcunts cbtained

by simulation are n ¢ t made zero, which is an option in the compucter

program, the empirically found correlations are in accordance wirh the

untransformed theoretical correlation function. This means that the

analytical soluticn gives algebraically correct results.




9. THE RECTANGULAR STORM TYPE

9.1.Definition

The rectangular storm type 1s defined as follows

1f(x)

j=n
1l

H, 0

A
"

A
Mt
[==]

Zf(x)

o
n

H, 3B < x < B

So we pay attention to the storm function

h = £{x) = H, 0<2x¢ iB

where H is constant and also represents the maximum amount in the
center.

With uncorrelated randem fluctuations the model reads

f(a) + g, (e, = 0

H + £
2 2
We choose H = 10, E(Ea) = 0 for all a, and T = E(Ea) = 2500
and so T = 50. With these values the correlation functicn has been

evaluated.

3.2. Transformation

Truncation of the normal distribution of Ea is at h = 0. Truncation
of the normal distribution of £ is at -H, which in standard units
reads z; = =H/1, numerically this equals -0.20.

From column 3 of Table B in Appendix | we read

u; - H
E(z, +_0_20) = 0.675] = ————
and so
u; =50 x 0.6751 + 10

43,755 for all a: 0 2 a = iB

18



The standard deviation after truncation becomes

50 x 0.6397

Q
*
]

It

31.985
The transformed storm function now reads

h = H* = 43.755 0 < x

[N
~ot—
l@s]

9.3. Parameters

No further parameters need to be determined.

G4, Simulated values

Simulated values of the correlation coéfficient after applying

zero's are collected for several values of the interstation distance

D in Fig. 6 and are represented by dots {(...).

AT

(H,X}
{-—1 ©.20
(=s#) 0.31
(%,~) 0.88

(M, %) 1.42

Fig. 6. Illustration of elaborations with the rectangular storm

type. Explanation in text

19




9.5. The correlation function

The general formula of the correlation function in the present

case reads, and-can be written

ML B + D(H/1)’
I, 11 B (1+B) + (H/T)2

|
—

[}
.

2
o =1 - (1+B) \ o+ (H/7) >
(1+B) + (H/7)
from which it is easily verified that
=0 £ D= B ind dent of H and T
PI.II or 5 » independe n

All curves with B = 0.5 intersect at (D, p) = (%~, 0). Allowing

7 -+ = produces % + 0 and the correlation function for large values
of T with respect to H, becomes a horizountal straight line, since
then

0 and D + 0 (9.1)

Pr,11 7 111

For H= 10 and 1 = 50, the employed values, we almost have the

situation given by Eq. (9.1). See curve ! in Fig. 6.

9,6, Correlation funection for transformed

storm funections

According to the scheme given in Table 2, combinations of values
of storm characteristics are given in Fig. 6, curve }, 2, 3 and 4,

respectively.

9.7.Conclusion

After transformation the correlation function with (H*, 1) gives
the best result in approximating the correlation coefficients obtained
by simulation. The transformed storm model with (H*, 1*){curve 4)
apparently has too low a standard deviation of random fluctuations to

be considered an adequate approximation to the simulated values.

20




10, THE TRIANGULAR STORM TYPE

10,1. Definitilion

The triangular storm type is defined as follows

h=1f(x)=?,.gx, 0<x< 4B
2H
h=2f(x)=2H-HB—x, 5B<x;B

So we pay attention to the storm function

h=f(x)=2—[§x, 0

I A
4
A
[N
jws]

where H is the maximum rainfall at the center and B is the storm
width.

With uncorrelated random fluctuations the model reads
=—a+¢e, (g, = )

We choose H = 20, to obtain the same mean storm value as in
Section 9 (STOL, i977e), E(Ea) = 0 for all a, and T2 = E(Ea)z = 10 000
and so T = 100. With these values the correlation function has been

evaluated.

10.2. Transformatil1on

Truncation of the normal distribution of Ba is at h = 0. Truncation
of the normal distribution of £, is at -2Ha/B, which in standard units
reads -2Ha/Bt, numerically this equals -2 x 20a/0.5 x 100 = - % a,
where a is taken a = 0(0.05 B) 0.5 B.

Special values occur at a = 0 and a = 3B giving a = 0 and a = 0.25

giving for the standardized point of truncation

zx =10 and = = 0.20

*
0 “0.25
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From Table B, Appendix I, we read

Ez, + ) = 0.7979 and E(zt ) = 0.675]
-4 9 Y =0.20

and so, since H = 20 and 1 = [00, uz becomes

E(h + a=0)=79.79 and E(h t a = §B) = 87.51

The standard deviation after truncation becomes

0; = 50.28 {a=0) and U; = 63.97 {a=4B)

respectively. From these last values an average of g*= 62 is

congtant, has been employed for numerical elaborations.

linear anymore. This is illustrated in Fig. 7.

Since u; = E(E_a + ) depends on a, the storm function is not

hIQO_ | l

expectation of
M..L hg=fla)+Eq
80—

70 -

60+

40l

30

|
|
|
|
|
|
|
|
|
|
|
|
|

10 fla)ahg

Fig. 7. The triangular storm funection and its transformed functiomn.
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Dots: calculated expectations according Table B of Appendix I;
curve: gpproximation of calculated expectations by an exponential

functien




The structure of Equaticn (7.1) and the shape of the locus of
expectations suggested an exponential function to approximate the
obtained values. Use was therefore made of the exponential storm

type with

_ 1
h o= f(x) = mre?P X 7 2B)

(]
A
W
A
Aot
=]

in which a further parameter, b, cccurs. The storm characteristic

H is taken H* = 87.51.

100.3. Parameters

It remains to determine the parameter b such that the exponential
function fits the points in Fig. 7 best. This problem was solved as
a simple case of a least squares problem. However, it was treated
iteratively as a nonlinear problem without taking logarithms (STOL,
1975},

Numerical results are obtained by a computerprogram written by
MAASSEN (1977a).

The starting value for the iterative process was obtained by

h
b = l in 2B
o B h*
[ ]
which gives
R 87.51
b = 5.5 " 79,79
= 2 1n 1.0967
= 2 x 0.0923
= 0.1846

After 3 iteration cycles the following result was obtained
(Table 3). Discrepancies between values to be used and their
approximation are small (less than 0.03). The final value of b
then is b = 0.18523.



It must be noted, however, that for smaller values of T the fit

is less accurate. See Appendix 2.

Table 3. Numerical results of the fit of the exponential storm
function to data obtained by simulation with a triangular

storm function (Fig. 7)

a h = f(a) o = -f(a) E(Ea) E(ha) Expone?tia%
a T approximation
.0 0 0 .79788 79.79 79.77
.025 2 -.02 .78520 80.52 80.51
.050 4 -.04 .77260 81.26 81.26
.075 6 -.06 .76008 82.01 82.01
. 100 8 -.08 .74766 82.77 82.78
125 10 -.10 .73533 83.53 83.55
.150 12 -.12 .72309 84.31 84.32
.175 14 ~-. 14 .71095 85.09 85,11
.200 16 -.16 .69889 85.89 85.90
.225 18 -.18 . 68693 86.69 86.70
<250 20 -.20 .67507 87.51 87.51

Mean rainfall in storm before transformation 10.00
1" n 1" 1" after " 83-58

10,4, Simul ated values

Simulated values of the correlation coefficient after applving

zero's are given in Fig. 8 and are represented by dots (...).
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Fig. 8. Illustration of elaborations with'the‘ttiangular storm type.

Explanation in text

10.5. The correlation ‘f‘u'n'ﬁ-t ion

The general formula of the correla;ion funcrion in the prosent
case reads

2 33

_12(1+B)  2H%(B-D) D* + B7q

or = | . ™~
I g’ (148) (2+121%) + 3
4(1+B)  HAH{BS - 2(B-D)>} + 3p3:?
prp =1 - —3 - RN 5
B (1+B)(H"+1217) + 3H
H2 ; 312-

111 (|+B)(H2+|2T2) + BH?
from which it easily can be verified that pi = 0 if
B (4rB) (B-D) D?, independent of H and .
T2(1+8) » 1ndgpen en§ & a. T.

For B = 0.5 we have D = 0,25, so all curves with B = 0.5
2

intersect at (D, o) =(}, 0). Dividing tﬁrough by t° and allowing
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T > @ prodﬁces % + 0 and the correlatien function for large values
of t with respect to H, becomes a horizontal straight line, since
then

-+ 0, 11 - 0 and Pirt -0 (10.1)

For H= 20 and 1 = 100, the employed values, we almost have the

situation given by Eq. (10.1). See curve 1 in Fig. 8.

10.,6. Correlation function for transformed

storm functions

According to the scheme given in Table 2, combinations of values of
storr characteristics are given in Fig. 8, curve 1, 2, 3 and 4,

respectively.

10.7. Conclusicn

After transformation the correlation function with (H*, T) as
characteristics gives the best result in approximating the correlation
coefficients obtained by siuulation. The transformed storm model with
(H*, 1*) (curve &} apparently has too low a standard deviation of
random fluctuations to be considered an adequate approximation to the

simulated data.

'1. THE EXPONENTIAL STORM TYPE

11.1.Definition
The exponential storm type is defined as follows

Ye(x) = HeZP(x7IB)

=
H

. Oix;%B

lp_ 1
2f(x) = HeZb(ZB X), 2B < X ; B

=
il
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So we pay attention to the storm function

2b(x-4B)

h = £(x) = He 0 <x g iB

where H is the maximum and b is a further parameter.

With uncorrelated random fluctuations the model reads

|
. petb(a-iB) |

—a —a’ (E-a = ™)

We choose H = 20, to obtain the same maximum storm value as in
Section 10, E(Ea) = 0 for all a, and T2 = E(E_a)2 = 10 000 and so
T = 100.

The parameter b has been chosen such that the mean rainfall
amount in the storm equals 10, as was the case for the rectangular
and the triangular storm type. The appropriate value then is
b = 3.187 (STOL, 1977e).

With these values the correlation function has been evaluated.

11.2. Trans formation

Truncation of the normal distribution of Eﬂ is at h = 0. Truncation
of the normal distribution of £, is at - H expl2b(a=-}B)f, which han

to be devided by 1T to obtain standard units. Numerical results are

2% = -20 exp{2b{(a-0.25)}

a 100 (b

3.187)

where a is taken a = 0(0.05 B) 0.5 B.

Special values occur at a = 0 and a = B, so a = 0 and a = 0.25,

giving hO = 4.1 and h0 95 = 20 which yields for the standardized
point of truncation

26 = - 0.041 and - 0.20

* =
%0.25
From Table B, Appendix 1, we read

E(z, 1 ) = 0.7722 and E(z_ 4 ) = 0.6751
~0.04] 2 -0.20
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and so, since H = 20 and v = 100, uz becomes

EC(h + a=0)=281.28 and E(h }+ a = §B) = 87.5]
—a 'y —a

The standard deviation after truncation becomes

c; = 60.28 (a=0) and 0; ~ $63.97 (a = IB)
respectively. From these last values an average of o*= 62 is
constant, has been employed for numerical elaborations. Since

u; = E(Ea $ ) depends on a, the storm function cannot be obtained
by a simpleoshift in vertical direction of the original storm

function. This is illustrated in Fig. 9.

hl1100 - |
|

. expectation of
P

J
|
80 . —*_7. -~ ? hy=fla)+Egq

1

| |

S0 | ‘

- | |

40 - | |

L I !

20 l .LH
| t(a)=hg
0" s i

L
2

Fig. 9. The expounential storm function and its transformed function.
Dots: calculated expectations according Table 2 of Appendix |,
curve: approximation of calculated expectations by an

exponential function
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The structure of Eq.(7.1)} and the shape of the locus of
expectations suggested an exponential function to approximate
the obtained values. Use was therefore made of the exponential

storm Lype with

b= Flx) = mre PR

o
A
b
(1)
e
v =]

in which a further parameter, b, occurs. The storm characteristic

H is taken H* = 87.51.

11.3. Parameters

It remains to determine the parameter b such that the expomential
function fits the points in Fig. 9 best. The same procedure as the
one described in the former Section has been applied.

The starting value this time was

1 87.51

1n = 0.1476

by = 5.3 81.78

After 3 iteration cycles the following result was obtained
(Table 4). Discrepancies between values to be used and their
approximation are small but greater than in the former case (less

than 0.9). The final wvalue of b then is b = 0.17155,

Table 4. Numerical results of the fit of the exponential storm function

to data obtained by simulation with an exponential storm function

(Fig. 9}
_ « - —f(a) Exponential

a h = f(a) 2a T 7T E(Ea) E(ha) approximation
.0 4.064 -0.041 77219 81.28 80.31
.025 4.766 -0.048 . 76780 81.55 81.01
.050 5.590 -0.056 .76264 81.85 81.70
.075 6.555 -0.066 . 75663 82.22 BZ.41

. 100 7.688 -0.077 . 74960 82.65 83.12
.125 9.016 -0.090 74139 83.15 83.83

. 150 10.573 -0.106 .73181 83.75 84.56
175 12.400 -0.124 . 72066 84.47 85.28

. 200 14.542 ~0.145 70767 85.31 86.02
.225 17.054 -0.171 .69258 86.31 86.76

. 250 20.000 -0.200 . 67507 87.51 87.5i
P.T.O.
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10

Mean rainfall in storm before transformation

" " " " after " 85.64

1l.4. Simulated values

Simulated values of the correlation coefficient after applying

zero's are given in Fig. 10 and are represented by dots {...).

[ 10
ot
o
.
AN
ar ~
N
~
2k “
: ~
F H
—— —_ inT) T
© —_—T— —_— _— {(—-! 0.20
~ 3iow) 031
. . LI : M PYPRS ST P
\\
L e — 4 4 Oex) 142
s
L
-6F
L
_af
-10 P S S S T T P S SR T R N S
0 g 2 3 4 5 6 7 8 CEE

Fig. 10. Illustration of elaborations with the expomnential storm

type. Explanation in text

11.5. The correlation function

The corrvelation function for the exponential storm type is even
more complicated than the one for the triangular storm type.
{(Section 10.5), it will not be given here explicitely but the
reader 1s referred to to STOL (1977bh).

The properties of this correlation function, however, are analogous
to those of the former functions discussed in this report. Compare

Fig. 10 with Fig. 8.
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11.6. Correlation function for trapsformed

storm functions

According to the scheme given in Table 2, combinations of values of
storm characteristics are given in Fig. 10, curve 1, 2, 3 and 4,

respectively.

It,7. Conclusion

After transformation the correlation function with {H*,T) as
characteristics gives the best result in approximating the correlation
coefficients obtained by simulation. The transfprmed storm model with
(H*, 1*) (curve 4) apparently has too low a standard deviation of random
fluctuations to be considered an adequate apgreximation to the simulated

data.

12. CONCLUDING REMARKS
1) In all examples values of the storﬁ characteristics H and 1 are

chosen such that they meet theorytical conditions. Values used are

collected in next summary (Table 5):

Table 5. Summary of combinations of used values for storm characteristics

H and
No. Character-| Rectangular type | Triangular and H
istics : exponential type 1
1 H, t 10 50 20 100 0.20
3 H, t* 10 31 20 62 0.3i1
2 H*, t 44 50 88 100 0.88
4 H*, <* 44 31 88 62 1.42
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Although in Figures 6, 8 and 10 these values are used, no. 2
{H * under truncation, T without truncation) giving the best results
in all three cases, it is the ratio %-that really matters. This is
the reason that in all three cases about the same results are
obtained since the ratio's are the same. It still is to explain why
the unaltered value of T gives the best results. A still better
approximation could be obtained with a slightly lower value of %
but it is mnot clear whether T should be taken less than 88 (but
greater than 20).

These alternative choices are not supported by the theory

developed thus far.

2) A1l storm models employed behave in the same way. Introducing
large random fluctuations does give correlationm functions that

are much alike. To demonstrate this the simulated values of the
correlation coefficient are collected in Fig. 11. Here the conclusion
is that the random fluctuations, actually the H/1 ratio, determine

in the present study the shape of the correlation function.

Xea
48 Nea xad xea Mes xéh K%a Xes ki R 4y

stormtype
-6 x rectangular
- a trigngulor

+ exponential

-10 SO RS NN S SR R S | L IV WY T N

Fig. 11. Values of simulated correlation coefficients have been
collected from Figs. 6, 8 and 10, The shape of the simulated

correlation function appears to be the same
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3) Finally it should be remembered that an irrealistic value of v
had been used. This te enlarge discrepancies between simulated and
analytically derived values. Other combinations of values, applying
stormwidth B as a parameter as well, could be used to enlarge insight

in the problem stated.
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APPENDIX

TRUNCATED NORMAL DISTRIBUTIONS

This Appendix is meant to give some theory on trucated normal
distributions that will be used in connection with storm functions,
Symbols introduced in this Appendix do not match those in the
Report especially the use of the constants a and b is different.
Symbols commonly used in statistics are employed here, All symbols

are defined in the text.

l. General

Let ¥ be normally distributed with expectation O and variance 1,

to be written x (0, 1). Then
X=u+ox

is normally distributed with expectation p and variance 02, or is
x (i, 02). Following MOOD and GRAYBILL (1963)'s notation and writing
densities with the aid of differentials, so0 employing probability
elements (HALD, 1967, p. 93) we define the density n(x) of x by
X-p, 2
- 15

n{x) dx = E%ﬁ; e o dx

and the cumulative distribution by

. J 'é(t;u)z dt
N(x) = e g
ov2m

bl -+

Some particular values are given in Table A.
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Table A. Particular values of the normal distribution and its

density
X ni{x) N{x)
- O 0
H /v 2n 1/2
+ 0 1

Now we assume that, given the normal distribution, values below
a given value x = a do not occur and that values greater than a
given value x = b do not occur either. Thus the distribution of x

is assumed to be defined on the interval

st}
A

]
(1)

o

and the distribution of ¥ consequently on the interval

or, by definition, in standard units

Q
A
P
A
hes)

This produces a so—called two sided truncated nermal distribution.
We employ the following notational convention. In connection with

random variables:

b
X + = 'under truncation', lower point being a, upper point
a .
being b
2]
X 1 =x 1 = under truncation from below
a a

under truncation from below: only positive values and

t
—+
S
1

zero's can occur
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In connection with variables and parameters an asterisk (*) is

used. We define its use as follows:

x* = a lower point of truncation for the random variable x

which i1s truncated at x = a from below

u* (a) mathematical expectation of the random variable x,
when the distribution of X is truncated at x = a from

below

Without ambiguity the argument in the last definition can

sometimes be dropped.

Since the two-sided truncated distribution is defined on the
interval [éJﬂ only, probabilities have to be expressed in fractions
of the total probability mass valid for the distribution.

So

N(x) ~ N{a)

b b
PG xf) = NE ) = Ky T NG

a
which is illustrated in Fig. 1.

The density of this distribution is obtained by differentiating

this expressing with respect to x which yields

b vz e 16D

dP _ _
- nx +a) = N(b) - N(a)
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Fig. |I.

In
called t

of trunc

I (4)

a

Example of a normal distribution supposed to be truncated
at a and b respectively. Legend: | = N(x) = area under the
curve from — ® to x; 2 = N(a) = area under the curve from
- » tp a: the degree of truncation from below; 3 = 1 - N(b) =
area under the curve from b to + =: the degree of truncation

from above

this case a is called the lower truncation point and b is
he upper truncation point, while N{a) stands for the degree

ation from below and | — N(b) for the degree of truncation

from above.

2. The

The

obtained

E(x

The

b

d

a

mathematical expectation
mathematical expectation of x and functions of x can be
from the density. So we have
b
! &2
b o J X e g dx
RS (1)
N(b) - N(a)
integral in the numerator can be worked out as follows:

ER s by e {-%(‘—‘;—“)2} dx
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b
= GZJ Eél exp {_%(§§g)2} d(Eégﬁ + p{N(b) - N(a)} oV27
a
b
= -O'ZJ exp {—i(x—;”—)z} d{—i(%y-)z} + p{N(b) - N(a)} o¥2r
a
b
= ~o’lexp ~1EH |+ wiN®) - NGa)} ov2n
a

which by means of symbols introduced before becomes
= -02 {a(k) - n(a)} aV2m + p {N(b) - N(a)} o2

Inserted in Eq. (1)} the mathematical expectation becomes

p{8(b) - N(a)} = odn(b) - n(a))
N(b)-N(a)

b
Ex1t )=

a

and finally, see also Mood and Graybill {1963, p. 138):

b
_ n(a) - n(b) 2
E(z +a ) =Vt Ny = N &

Now we will express a and b in standard units and define the

parameters o and B as follows

z = 28 S50 X =p + 0z
g
X=a =+ z*= Egﬁ =g and a =y + ao
x=b +» 2z = Eéﬂ =8 and b = yu + Ro
X=t > z = Egi and t =y + cz
with differentials dx = adz

and dt = odz
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This gives

() = G e
.
and
u+ag
N(a) = E%EF J exp {_%(Eég)z dt

-0

The upper boundary for t, viz. t = a, 1is written a = U + aog.
X = U

Consequently z = is satisfied for x = a with the corresponding

value z = @ and we can write

o

N(a) = 7%;—] exp {—ézz} dz

-0

and analogously

B
N(b) = V%J exp (-4z2} dz

[+=]

Define ¢(z) to represent the cumulative s tandarized

normal distribution, and 4(z) to represent its density so

and

2
_1
b(z)dz = ﬁ?e 2 4z

then we have
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n(a) = = $() = = o
ab) = Loe) = 1o
Na) = o) = (D)
NB) = 0B) = e

and so we can express the required expectation with standarized

normal distribution functions by

- b=
b $ER - 9 (h

E(x + ) =y o+ bO o
= Sy _ g2
a & ( 5 ®( = )

as given by JOHNSON and KOTZ (1970, p 81).

3. The variance

Truncating normal distributions means that the scattering of
individual points about the mean becomes less. The variance of tae
truncated normal distribution therefore is smaller than the variance
of the original distribution. The general formula for the variance
of truncated mormal distributions can be derived along lines given

in Section 2. The result as given by JOHNSON and KOTZ (1970) reads

Var(x + ) =
a

- a-u a-u b-u b-u
b [ L, ( - Y o ( = ) = ( 5 ) ¢ ( = )

W& e

s(EEy - o XYy 2
{ o '] } ]02

@(Egﬁ- - o(2H)

(7)
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4, Special cases

Next we assume that ¥ is truncated only from the left and so

b >+ = giving
b-u

$ ( 5 )+ 0
b-u

o S y =+ 1

This means that, using our notational convention

o (ED
E(x t) = u+—————0 = u*a) (2)

a 1- @(Eg—)

the variance being

so withou: arguments,

2 a-y o u*-p. o pF-p 2 2
o l} + = ( = ) ( 0') ] o (3)

or

2

o* 02 + (a=w) (u*-pn) - (u*-u)2

If a = y we have a further special case, namely {(see Table A),
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pF ) =y 4 1{52% =+ 0.7978 ¢

for x (u,cz)
o*z(u) = 02 - {(0.7978 0)2 = (0.6028 ¢

If we haveur = 0 and 0 = ! the final most simple result reads

p*(0) = 0.7978 )
for x (u,07) = x (0, 1)

6*2(0) = 0.6028

which is valid for standard normal distributions.
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5. Special case for rainfall

Applied to rainfall amounts we will consider normal distributions
that are truncated at zero to avoid the occurrence of negative

precipitation values. So a = 0 and we have from Eq. (2)

$ (5

P*(0) =y + —2— (4)
- e (T

g

and from Eq. {3) after adding terms

- 1
20y = [u RELA g (5)

o]

Since the integral ¢ of the normal distribution canmot be
expressed in elementary functions values of it can be obtained only
by numerical integration. In our case, however, values ars obiained
by approximating formulas given by HASTINGS (1955) that furnish
enough accurate decimals for our practical purposes. Values ars
calculated in a computer program developped by MAASSEN (1977h:.
Results are given in Table B.

In Table B the following values are tabulated.

Column l: The standardized lower point of truncation,
z*¥ = o = -ufo,{which corresponds with x* = yu )

ranging -3.0(0.2)3.0

Column 2: The degree of truncation from below viz. P(E < a) or

P(E.i u), in percentages.

*
Column 3: Values of the expression H ou according Eq. (4)

*
Column 4: Values of the expression %—-accbrding kg. {5} by taking the

square root

Application of Table B is discussed in the main text of this
‘report. The meaning of the 'heading at the bottom' shall be

explained in Sectiom 4.
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Table B. Characteristic values of the standard normal distribution

which 1s truncated from below

1 2 3 4
point of degree of expectation standard
truncation truncation deviation

a = -u/o P(z £ a) Ve o* _
g o
oo 160 ] 4]
3.0 99.87 3.2829 0.2667
2.8 99.74 3.0978 0.2784
2.6 99.53 2.9140 0.2913
2.4 99.18 2.7319 0.3056
2.2 98.61 2.5515 0.3211
2.0 97.72 2.3732 0.3380
1.8 96.41 2.1973 0.3563
1.6 94.52 2.0241 0.3762
1.4 91.92 1.8541 0.3977
1.2 88.49 1.6876 0.4210
1.0 84.13 1.5251 0.4462
0.8 78.81 1.3674 0.4734
0.6 712.57 1.2150 0.5027
0.4 65.54 1.0688 0.5341
0.2 57.93 0.9294 0.5675
0.0 50.00 0.7979 0.6028
- 0.2 42,07 0.6751 0.6397
- 0.4 34.46 0.5619 0.6779
- 0.6 27.43 0.4591 0.7167
- 0.8 21.19 0.3676 0.7555
- 1.0 15.87 0.2876 0.7935
-1.2 11.51 0.2194 0.8298
- 1.4 8.08 0.1629 0.8634
- 1.6 5.48 0.1174 0.8936
- 1,8 3.59 0.0819 0.9197
- 2.0 2.28 0.0552 0.9415
- 2.2 1.39 0.0360 0.9589
- 2.4 0.82 0.0226 0.9723
- 2.6 0.47 0.0136 (3.9820
- 2.8 0.26 0.0079 0.9888
- 3.0 0.13 0.0044 0.9933
-« 0 0 1
2t = 'f(a) Pz £ 2%) nt-f(a) _ i;_ i
T T
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The values given in columns 1, 3 and 4 are plotted in a graph
to visualize the relevant relationships between point of truncation
and the mathematical expectation and standard deviation for standard

normal distributiens (Fig. 2).

values under

truncation
—2.6
- 2.2
expeﬁioﬁon
H
standard deviation
ag
.2
1 1 1 | ! 1 1 1 1 | -
1 2 a

point of truncation

Fig. 2. Curves for the expectation (u*) and standard deviation {(o*)
at increasing points of truncation from below for a standard

normal distribution (see also Table B)

It is seen that with increasing degree of truncation from below

the mean value increases while the standard deviation decreases.
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THE FIT OF THE TRIANGULAR STORM TYPE BY AN EXPONENTIAL STORM
FUNCTION WHEN t IS SMALL

In Section 10.3 the fit of the triangular storm type with
random fluctuations, by an expomential storm function was treated.
Storm characteristics were H = 20 and 1 = 100. The fit was reasonable.
(Fig. 7 and Table 3).

If the value of T is much smaller, T = 5, say, then the influence
of random fluctuations near the center of the storm is limited.
Namely in this neighbourhood ~h/t is approximately -20/5 = -4 and
the degree of truncation is small. This causes the shape of the
storm function tec remain straight. (See Fig. 3). Discrepancies from!
the straight line only occur for values x <0.25 B. The exponential
fit to the straight line is poor and less accurate as the one

demonstrated in Section 10.3 where : = 100.

The results for H = 20, v = 5 are given in Table C and Fig. 3.

1
B X

0

Fig. 3. The triangular storm function and its transformed function for
H= 20 and T = 5
Dots: calculated expectations according Table B of Appendix 13
Curve: approximation of calculated expectations by an exponential

function
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Table C. Numerical results of the fit of the expomential storm
function to data obtained by simulation with a triangular

storm function (Fig. 3) where H = 20 and 1t = 5

a h=f (a) zZ = :E%El E(Ea) E(Eﬂ) Expone?tia}
approximation
.0 0 Q .79788 3.99 4.87
.025 2 - .4 .56188 4.81 5.60
.050 4 - .8 .36756 5.84 6.46
.075 6 -1.2 .21943 7.10 7.44
100 8 -1.6 11735 8.59 8.56
125 10 -2.0 .05525 10.28 9.86
.150 12 -2.4 .02258 12.11 11.36
.175 14 -2.8 .00794 14,04 13.09
.200 16 -3.2 .00239 16.01 15.08
.225 18 -3.6 .00061 18.00 17.36
.250 20 -4.0 .00013 20.00 20.00

Mean rainfall ip storm before transformation 10.00
after " 10.71

n " " mn

The starting value of b was b0 = 3.2242

after 5 iterations the value b = 2.8271 was found. Discrepancies
between values to be used and their approximation now amounts .88 or
less. This 1s much greater than the value of 0.03 which was found in

Section 10.3.




