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1. I N T R O D U C T I O N 

Spectral analysis is known as an important tool in studying time series. This 
paper discusses the application of this technique to daily rainfall sequences in 
the Netherlands. Univariate and bivariate spectral analysis are studied suc­
cessively. The former deals with a rainfall series at one point : the latter with 
rainfall sequences at two points. 

2. U N I V A R I A T E S P E C T R A L A N A L Y S I S 

2.1. THE SPECTRUM 

2.1.1. Definition of the spectrum of a stochastic process 
Since the rainfall process is observed at discrete time intervals the definition 

of the spectrum will be based on stochastic processes in discrete time. Further 
for the definition given here it will be required that the process is stationary or 
at least second-order stationary, that is the first and second-order moments 
(mean, variance, autocorrelation coefficients) may not change in time. 

Let {Xtj be a stationary process with mean px and variance a\, then its 
autocovariance function is defined by 

yxx(k) = E(Xt - px) (Xt+k - / U (1) 

For k = 0 one gets the variance. The function yxx{k) is an even function in k 
(and for rainfall sequences yxx(k) is positive and monotonically decreasing in 
| k\ ). Division of yxx(k) by ai gives the autocorrelation function pxx(k). 

The Fourier transform of the autocovariance function is called the power 
spectrum : 

00 

rxx(f) = X yxx(k)e-^k , -x/2 < ƒ < V2. (2) 

But since yxx(k) = yxx(-k) Eq. (2) reduces to 
00 

rxx(f) = yxx(0) + 2 £ yxx(k) cos 2nfk , -lU < ƒ ^ lj2. (3) 
i t = l 

Notice further that 

rxJf) = rxx(-f) (4) 

ƒ rxx(f)df=yxx(0) = al. (5) 
- 1 / 2 
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Thus the power spectrum shows how the variance is decomposed over the 
various frequencies. Since Tx* (/) is an even function in ƒ it is usual to define a 
power spectrum for non-negative ƒ 

rUf) = 2 rJif) = 2 ( T«(0) + 2 £ yUk) cos InjkX 0 < ƒ ̂  V2. (6) 

When the power spectrum is divided by the variance one obtains the spectral 
density (the Fourier transform of the autocorrelation function). This function 
has the same properties as a probability density. 

2.1.2. Examples 
The first example given here is a stationary first-order autoregressive pro­

cess {Xt} with parameter oti. This process is defined by 

Xt = <tiX,-i + yfi^älZ, (7) 

where {Z(} is a sequence of independent and identically distributed (iid) random 
variables with zero mean and unit variance. The process {X,} has zero mean and 
unit variance: its autocorrelation function is given by 

pxx(k) = ai1*' (8) 

and its spectral density is 

r ^ ( / )= 2 ( 1 : g l ) o ^ / < V2. (9) 
1 + ai - 2oti cos2nf 

Fig. 1. shows the spectral density for some values of oti. For ai = 0 one has an 
uncorrelated process with a constant spectral density at all frequencies (so-
called white noise process). For positive values of ai the spectral density is 
large for the low frequencies and small for the high frequencies. Stochastic 
processes with this property are called red noise processes. The slope of the 
curve in Fig. 1 becomes steeper when ai increases. 

In the following example the influence of the tail of the autocorrelation 
function is studied. The stochastic process being considered is defined as 
follows 

X, = aiYu + a2Y2, (10) 

where { Yn} and {Y2t\ are two independent first-order autoregressive processes 
with parameter <xi and ct2, respectively. For simplicity it will be assumed that 
{Kir} and {Y2t} have zero mean and unit variance. When the parameter 0C2 
of the process {Y2t} is chosen close to 1 and when a2 is taken small with respect 
to a 1, one gets a stochastic process whose autocorrelation function at small 
lags hardly differs from that of a first-order autoregressive process (with 
parameter ai), but the tail of its correlogram is much longer. The process 
{Xt} has zero mean, its variance is ai + ai, and its autocorrelation function is 
given by 
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FIG. 1. The spectral density of an autoregressive process. The parameter <xi is 0 for Process 1 
(white noise), 0.3 for Process 2 and 0.6 for Process 3. 

pUk)=pOLlW + (\-p)OL2W (11) 

withp = a\j{a\ + ai). So the shape of the autocorrelation function depends on 
3 parameters, namely ocy, 0C2 and the ratio b of ay to az- The spectral density of 
{X,} is 

runioi = 2p{x ' a l ) + 2 ( 1^ ) ( 1-g i ) , 
1 + a? - 2ai cos 2nf 1 + al - 2ot2 cos Inf 

0 < / < V 2 . (12) 
Fig. 2 gives the correlogram and the spectral density of some processes with 

approximately the same first-order autocorrelation coefficient (0.3), but with 
different tails of the autocorrelation function. From this figure it is seen that 
the spectra stongly differ at the low frequencies : the spectra of Process 1 and 
Process 3 differ only visibly near the initial point. The peak of the spectral 
Meded. Landbouwhogeschool Wageningen 78-8 (1978) 7 
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FIG. 2. The autocorrelation function and the spectral density for an autoregressive process 
(Process 1) and for mixtures of autoregressive processes (Processes 2 and 3). The parameter 
a.\ of Process 1 is 0.3; the parameters of Process 2 are ai = 0.23, u.j = 0.90 and b = 3, and 
the parameters of Process 3 are ai = 0.29,0C2 = 0.98 and b = 7. 

density at the zero frequency becomes more pronounced when the correlogram 
falls off more slowly. 
From the examples given here it can be concluded : 
a. Differences in the first-order autocorrelation coefficients give rise to dif­

ferences in the slope of the spectral density. 
b. Differences in the tail of the correlogram give rise to differences at the low 

frequencies. 

Meded. Landbouwhogeschool Wageningen 78-8 (1978) 



2.1.3. Relation to the variance-time diagram 
Since the power spectrum is the Fourier transform of the autocovariance 

function it gives the same information about the stochastic process. Another 
measure equivalent to the autocovariance function is the variance-time dia­
gram. Let Vx(n) be the variance of Xi + Xi + . .. + X„. then the variance-
time diagram gives Vx(n) as a function of«. Clearly 

W = "Z («-1*1) ?»(*). (13) 
* = - ( n - l ) 

From this relation it follows that 

Sx{n) = Vx(n + l) - Vx(n) = £ yxx(k). (14) 
k=-n 

When n tends to infinity one gets 
oo 

lim Sx(n) = £ yxx(k) = rxx(0) (15) 
n-»oo k = - oo 

using Eq. (2). So the asymptotic slope of the variance-time diagram is equal to 
the power spectrum at ƒ = 0. 

2.2. ESTIMATION OF SPECTRA 

2.2.1. The sample spectrum 
Let Xi. ... , XN be a realization of a stationary stochastic process. Then the 

sample autocovariance function is defined by 

, N-k 

cxx(k) = - Y (xj -x) (xj+k -x),k = 0,...,N-l (16) 

where x is the mean of the N xjs. Dividing cxx(k) by the sample variance si 
gives the lag k autocorrelation coefficient rxx{k), shortly denoted by rk. The 
sample (power) spectrum is obtained by taking the Fourier transform of (16) 

CxJf) = MO) + 2 W£ cxx(k) cos 2nfk , -lj2 <f^ih (17) 
k=\ 

or, when only non-negative frequencies are considered 

CUf) = 2 (c«(0) + 2 W]£ c^(A:) cos 2TT/Â:] , 0 < ƒ ^ V2. (18) 

The sample spectrum has the following properties 

Cxx(0) = 0, see Appendix (19) 
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1/2 

S Cxx(f) df = MO) = si (20) 
- 1 / 2 

that is the sample spectrum shows how the sample variance is distributed over 
the various frequencies. 

F o r / =ƒ= 0 the sample spectrum CXx(f) is an asymptotically unbiased estimator 
of rxx(f): its asymptotic variance is rxx(f) when ƒ=ƒ= 1I2 and 2rxJJ) when 
ƒ = V2. So Cx*(/) is an inconsistent estimator since its variance does not tend 
to zero when N tends to infinity. 

2.2.2. Smoothing of spectral estimates 
The variance of spectral estimates can be reduced by smoothing. Smoothed 

estimates can be obtained by giving weights to the estimated autocovariances 
at different lags 

Cxx(f) = w(0) cxx(0) + 2 X w(k) cxx(k) cos 2nfk, ~l/2 < ƒ < lh. (21) 
* = i 

The weight function w(k) is called the lag window. To preserve the relation 
(20) w(0) is taken tobe 1. 

There are many different types of lag windows known in the literature (JENKINS 

and WATTS, 1969: NEAVE, 1972). In this study use was made of the Tukey 
window 

„ , Nzll+cos^] ,k 
wT(k) = \ Ml 

10 ,k 
(22) 

< M 

k > M. 

When this window is used Eq. (21) becomes 

M~1 ( TTk\ 
Cxx(f) = cxx(0) + V (1 + cos —) cxx(k) cos 2nfk, 

jt = l \ Ml 

- 1 / 2 < / < 1 / 2 (23) 

or, when only non-negative frequencies are considered 

tUf) = 2 |Cjcx(0) + Ç (l + cos ^ cxx(k) cos 2TTAJ , 

0 < / < V 2 . (24) 

A crude approximation of var {Cxx(fj} is 

var {Cxx(f}} * 0.75 ^ Tlx(f). (25) 

It is not permitted to apply this approximation in the neighbourhood of /= 0 and ƒ = lj2. 
Caution is also needed in the neighbourhood of peaks and troughs. 
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From (25) it is seen that the variance is considerably reduced for small 
values of M (that is the number of lags for which the autocovariances have to 
be estimated is small). On the other hand a small value of M may give rise to 
considerable bias. In practice different values of M are tried in estimating the 
spectrum. 

Notice that (23) may give a reasonable estimate of rxx(f) for ƒ = 0. Therefore 
the parameter M should be small with respect to N, but large enough that 
yxx(k) is negligible for k ^ M. 

A smoothed estimate of the spectral density is obtained by dividing Cxx(f) 
by the sample variance. 

Usually the logarithms of spectral estimates are plotted, since their variances 
are approximately independent of the theoretical value rxx(f). From (25) it 
follows that 

var {In Cxx(f)} « 0.75 — (26) 

and also when only non-negative frequencies are considered, Eq. (24), one gets 

var {In ££(/)} « 0 . 7 5 — . (27) 
N 

2.3. SPECTRAL ANALYSIS OF WINTERSWIJK DATA 

2.3.1. Description of the data 
The meteorological station of Winterswijk is situated in the east of the 

Netherlands (51 °58'N. 6°49'E). The data used were daily values of the period 
Dec. 1907-Nov. 1973. 

The rainfall data show seasonal variation in the mean, the standard devia­
tion and the autocorrelation coefficients. The largest values for the mean and 
standard deviation are found in summer: the largest autocorrelation coeffi­
cients are found in winter (see Fig. 3). To reduce this seasonal variation the 
rainfall sequence was split into 4 subseries: each subseries contained the data 
for a particular season. The construction of the subseries was done in such a 
way that wet or dry spells having days in two seasons were assigned to only one 
of these seasons (BUISHAND. 1977a, III. 2 and III. 6). Since features of the rain­
fall process show little variation within a season the subseries are approximately 
stationary. In this paper special attention is given to the winter (December-
February) and summer season (June-August). 

Spectra were also estimated for the sequences of wet and dry days (wet-dry 
sequence). A day was taken to be wet when its rainfall amount was at least 
0.3 mm. The value 1 was assigned to a wet day and the value 0 to a dry day. 

2.3.2. The spectral density of the wet-dry sequence 
In this subsection smoothed estimates are compared with theoretical spectra 

of fitted processes. The processes considered are : 
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a. A first-order Markov chain. For this process the probability of a wet day 
depends on the state (wet or dry) of the previous day. Let P(W \ D) denote 

the probability of a wet day after a dry day and P( W \ W) the probability of a 
wet day after a wet day. Most rainfall sequences have the property that P( W \ 
W) > P(W | D). For example, for Winterswijk P(W\W) ranges from 0.59 to 
0.70 and P{ W \ D) ranges from0.27to 0.38. For Markov chains the probabilities 
P( W | D) and P{ W | W) are called transition probabilities. 
b. An alternating renewal process. For this process the lengths of successive 

wet and dry spells are independent. In this study truncated negative bino­
mial distributions were fitted to lengths of wet and dry spells. Therefore, the 
process is abbreviated as TNBD-TNBD process. 
Fig. 4 compares smoothed estimates of the spectral density with theoretical 
values for the winter and summer season. From the behaviour at the low 
frequencies it is seen that the TNBD-TNBD process has a longer memory 
than the first-order Markov-chain. Further for small values of M{M = 4) the 
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FIG. 4. Smoothed spectral density estimates and spectral densities of fitted processes for 
the wet-dry sequence of Winterswijk. Process 1 is a first-order Markov chain and Process 2 
is an alternating renewal process with truncated negative binomial distributions fitted to 
lengths of wet and dry spells. 

estimates are heavily biased. When only a small value of M had been taken into 
account, one should have come to the wrong conclusion that the first-order 
Markov chain is a good model! For M = 16 there is hardly any bias and the 
spectrum of the TNBD-TBBD process fits the estimated values well. There 
are hardly any differences between the spectra of the winter and summer season. 
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indicating that there is little seasonal variation in the dependence of successive 
wet and dry days. 

The following remarks can be made on the calculation of the theoretical spectra. For the 
first-order Markov chain the autocorrelation function and the spectral density have the 
same form as those of a first-order autoregressive process, see Eqs. (8) and (9). The parameter 
ai can be expressed in the transition probabilities. An expression for the autocovariances of 
an alternating renewal process was given by BUISHAND (1977a, IV.4.1). The power spectrum 
can be obtained by applying Eq. (6) to the calculated autocovariances. It is, however, also 
possible to express the power spectrum or the spectral density in the probability generating 
functions of the lengths of wet and dry spells (see Appendix). 

2.3.3. The spectral density of the rainfall sequence 
In this subsection the fit of a rainfall model is tested by comparing its spectral 

density with estimated values. The most general form of the rainfal model is : 
a. The wet-dry process is a TNBD-TNBD process. 
b. The distribution of the amount of rainfall on a particular wet day depends 

on the number of adjacent wet days: the mean and variance increase with 
this number. 

c. Rainfall amounts within a wet spell are correlated according to a first-order 
moving average process. That is there is only correlation between adjacent 
wet days. 
Attention is also paid to the first-order autoregressive process, defined by 

Eq. (7). This process has widely been used in the past as a model for persistence 
in daily rainfall sequences (LEVERT, 1960). 

The spectral density of the first-order autoregressive process can be obtained from (9). 
For the general rainfall model Eq. (6) was applied to the autocorrelation coefficients. The 
method of calculation of the autocorrelation coefficients was given by BUISHAND (1977a, 
IV.4.2andIV.4.3). 

Fig. 5 compares smoothed estimates of the spectral density with the theoreti­
cal values of the general rainfall model for the winter and summer season. 
There are some differences in the spectra of these seasons, since in summer 
there is less autocorrelation. In summer the spectrum of the rainfall model fits 
well: for the winter season there is some indication for lack of long-term 
persistence. The estimates at the low frequencies depend strongly on the choice 
of M. For small M there is serious bias. 

Fig. 6 compares some theoretical spectra of fitted processes for the winter 
season. The processes considered are: a first-order auto regressive process, the 
general rainfall process mentioned previously, and a simplified version of this 
process, namely with iid rainfall amounts within a wet spell. The spectra of the 
first two processes only differ at the low frequencies: the first-order autoregres­
sive process shows less long-term persistence. When rainfall amounts are assum­
ed to be iid the spectrum becomes more flat, indicating that the lower order 
autocorrelation coefficients are too small. 
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Spectral 
density 

5-

2-

Summer 

âJ_S_ {h* 

2-

Winter 

Theoretical 

0 
—r -

0.1 0.2 0.3 
~~I 
0.5 0.6 

Mcycles/dày) 

FIG. 5. Smoothed spectral density estimates and the spectral density of a general rainfall 
model for the rainfall sequence of Winterswijk. 

2.3.4. Comparison with variance-time analysis 
Since the initial point of the spectrum equals the asymptotic slope of the 

variance-time diagram, a rough estimate of Vx(n) for large n can be based on 
0.5 n Ctx (0). Because the variance-time diagram has a small negative intercept 
(BUISHAND, 1977a) Vx(ri) is somewhat overestimated by this method. 

Table 1 gives estimates of Fx(30) based on Ci(0) and the estimate directly 
obtained from the historic series (BUISHAND, 1977a, Table III.6.3). The estimate 
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FIG. 6. Spectral densities of some processes fitted to the rainfall sequence of Winterswijk. 
Process 1 is a first-order autoregressive process; Process 2 is a general rainfall model, and 
Process 3 is a simplification of it, namely with independent and identically distributed rain­
fall amounts within a wet spell. 

based on the initial point of the spectrum heavily depends on the choice of M: 
when M is small (that is when too few autocorrelation coefficients are consider­
ed) the variance is seriously underestimated. For large M {M at least 16) there 
is a nice correspondence between the two estimates. 

TABLE 1. Estimates of Vx (30) for the wet-dry sequence and the rainfall sequence of Winters­
wijk. 

Based on C £ (0) with 
M= 4 
M = 8 
M = 16 
M = 32 

Directly estimated from 
the historic sequence 

Wet-dry sequence 
(variance in days ) 

winter 

13.8 
18.0 
21.6 
23.0 

22.0 

summer 

13.4 
17.0 
20.0 
20.5 

18.9 

Rainfall sequence 
(variance in mm2) 

winter 

751 
949 

1162 
1326 

1167 

summer 

978 
1127 
1278 
1294 

1286 
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2.4. CONCLUDING REMARKS 

It was noticed earlier that the autocovariance function, the variance-time 
function and the power spectrum are equivalent functions of second-order 
moments. One may ask, what are the advantages and disadvantages of these 
different techniques? A drawback of autocorrelation analysis is that it hardly 
gives information about long-term persistence. On the contrary the variance-
time diagram is very sensitive to the length of the tail of the correlogram. When 
use is made of both correlogram and variance-time analysis one gets a clear 
insight into the persistence of a rainfall sequence. 

The spectrum may give both information about short-term and long-term 
behaviour. Moreover the sample properties of spectral estimates are simpler 
than those of autocorrelation coefficients. But when using spectral analysis one 
encounters the problem of smoothing. Besides spectra are much harder to 
interpret than correlograms or variance-time diagrams. These drawbacks make 
spectral analysis intractable for hydrologists. 

Meded. Landbouwhogeschool Wageningen 78-8 (1978) 17 



3. B I V A R I A T E S P E C T R A L ANALYSIS 

3.1. THE CROSS SPECTRUM 

3.1.1. Definition of the cross spectrum of a bivariate stochastic process 
The definition of the cross spectrum will be based on a stationary (or at 

least second-order stationary) bivariate process. As an example of a bivariate 
stochastic process one may take the rainfall sequences at two different stations. 
When these rainfall sequences are considered for a particular season (e.g. the 
winter) they are approximately stationary and the theory given below is ap­
plicable. 
Now let {Xt, Yt} be a stationary bivariate stochastic process with mean {/u, 
fiy} and variance {crj, <jj}, then its cross covariance function is defined by 

yxy(k) = E(X, -n*)(Yt + k~ny). (28) 

Division of yxy(k) by GxGy gives the cross correlation function pxy(k). 
From the definition it follows 

y*y(-k) = yyx(k). (29) 

So unlike the autocovariance function the cross covariance function needs 
not to be an even function. But one may split this function into an even and an 
odd part. 

yXy(k) = Xxy(k) + >M£) (30) 

with 

Àxy(k) = ljï{yXy(k) + yXy(-k)} being an even function 
4>xy(k) = lli{yxy{k) - yxy(-k)} being an odd function. 

The Fourier transform of the cross covariance function is called the cross 
spectrum 

OD 

rXy(f)= I yxy(k)e-2Kifk , - 1 / 2 < / ^ 1 / 2 . (31) 
fc= — 00 

For the even part of the cross covariance function one may define 
GO 

Axy(f) = 1^(0) + 2 X -W*) cos 2%fk .-1l2<f<1li (32) 

(the co-spectrum) and for the odd part 
OD 

V*Af) = 2 £ <M*) sin 2nfk . -lj2 <f^1/2 (33) 
i k = i 

(the quadrature spectrum). Substitution of (30) in (31) results in 

rXy(f) = Axy(f) ^ Wxy(f). (34) 

18 Meded. Landbouwhogeschool Wageningen 78-8 (1978) 



From the Eqs. (32), (33) and (34) one sees immediately 

Axy(f) = AxJrf) (35) 

Vxtf) = -Vxy (-ƒ) (36) 

rxy(f) = rxy(-f) (37) 

where the bar denotes the complex conjugate. 

Further for the co-spectrum holds 

ƒ Axy(f)df=Xxy{0) = yxy(0). (38) 
- 1 / 2 

Thus the co-spectrum shows how the lag zero cross covariance is distributed 
over the various frequencies. 

The cross spectrum is often written in complex polar notation 

rxy(f) = <xxy{f) exp {In i<f>xy(f) ) (39) 

with a.xy{f) '• the cross amplitude spectrum 
(/>xy(f) '• the phase spectrum. 

From (34) and (39) it follows 

a&Jf) = Axy(f) + <F2
xy(f) (40) 

and 

tan (t>xy(f) = -Vxy(f)IAxy(f). (41) 

Instead of the cross amplitude spectrum one may use the coherency spectrum 

Kxtf) = ocXy(f)ljrxx(f)r„(f). (42) 

Just like the correlation coefficient the coherency spectrum is a normalized 
measure of linear dependence. It shows the correlation between the two se­
quences {Xt} and { Yt} as a function of frequency. 

3.1.2. Relation to covariances and correlation coefficients ofn-day totals 
It was seen earlier that for large n the variance of «-day totals could be 

derived from the initial point of the power spectrum. Analogously, the initial 
point of the cross spectrum (or the co-spectrum) gives information about the 
asymptotic behaviour of the covariance of «-day totals. Let Vxy(n) be the 
covariance ofn-day totals of the sequences {Xt} and {Yt}, then 

M » ) = "Z (n-\k\)yxy(k). (43) 
fc=-(n-l) 

When Vxy(n) is plotted versus n the slope of the curve is 
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Sxy(n) = Vxy(n+\) - Vxy(n) = £ yxy(k). (44) 

When n tends to infinity one obtains 
00 

lim Sxy{n) = £ yxy(k) = rxy(0) = Axy(Q) (45) 

since Yxy(0) = 0. So the asymptotic slope of the curve is equal to the initial 
point of the co-spectrum and of the cross spectrum. 

Now for large n holds 

Vx(ri) = nrxx(0) + o(n) 

Vy(n) = nryy(0) + o(n) 

Vxy{n) = nrxy(0) + o(ri) 

(46) 

(47) 

(48) 

where o(n) stands for functions ƒ(«) of n with the property that lim ƒ(«)/« 
= 0. 

So the correlation coefficient becomes 

Rxy(n) 
Vxy{ri) 

JvMVM 
nrxy(0) + o(n) 

V K - ( O ) + o(n)} {nryy(0) + ^ 

Kxy(0) + 0(1) (49) 

where o(l) tends to zero when n tends to infinity. So the correlation coefficient 
of «-day totals tends to the initial point of the coherency spectrum. 

3.2. ESTIMATION OF CROSS SPECTRA 

The sample cross covariance function for a realization (xi, vi), .... (XJV, VN) 
of a stationary bivariate stochastic process is defined by 

cxy(k ) 

| 1\ - K 

- X (xj -x) (yJ+k -y) ,k = 0A,.... N-l 

- I (xj-x)(yJ+k-y) ,k = -(N-l)....,-L0 

(50) 

where x and y are the means of the V̂ xß and N yß, respectively. The even part 
of cxy(k) will be denoted by Sxy(k) and the odd part by qxy(k). 
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As is the case in univariate spectral analysis the Fourier transform of the 
sample cross covariance function gives an inconsistent estimate of the cross 
spectrum. Consistent estimates can be obtained by smoothing. Smoothed 
estimates of the co-spectrum and the quadrature spectrum follow from 

Lxy(f) = /x , (0) + 2 *£ MkVxAk) cos lufk . -lj2 < ƒ < V2 (51) 

Q*y(f) = 2 X w(k)qxy(k) sin 2nfk ,-ll2 < ƒ < V2 (52) 

where w(A:) stands for the lag window. In this study use was made of the Tukey 
window, defined by Eq. (22). Substitution of smoothed estimates of the spectral 
densities, the co-spectrum and the quadrature spectrum in Eqs. (40), (41) and 
(42) gives smoothed estimates Äxy{f), Fxy(f) and Kxy(f) of the cross-amplitude 
spectrum ocxy(f), the phase spectrum 4>Xy(f) and the coherency spectrum Kxy(f), 
respectively. One usually plots cross spectral estimates for the non-negative 
frequencies only. Then the estimates of the co-spectrum, the quadrature 
spectrum and the cross amplitude spectrum should be multiplied by 2: the 
estimates of the phase spectrum and the coherency spectrum remain unchanged. 
As in univariate spectral analysis the variance of cross spectral estimates decrea­
ses with M. However, for small values of M the estimates may be considerably 
biased. 

3.3. CROSS SPECTRAL ANALYSIS OF WINTERSWIJK AND TWENTE DATA 

3.3.1. Description of the data 
The aviation-base of Twente (52°16'N, 6°54'E) is situated 36 kilometers 

from Winterswijk. The data used were daily values for the period Dec. 1952— 
Nov. 1971. These data were mainly obtained from magnetic tapes of the Royal 
Netherlands Meteorological Institute. From the positions of these rainfall 
stations and the time-increment used one may not expect time-shifts between 
the two rainfall sequences. This means that 
a. the phase spectrum and the quadrature spectrum are approximately zero 

at all frequencies. 
b. the cross covariance function (and also the cross correlation function) is 

approximately an even function of lag. 
Therefore the emphasis of this study is stressed on the shape of the coherency 

spectrum. 
Because of seasonal variation coherency spectra were estimated for each 

season separately. Therefore, instead of Eq. (50), use was made of 
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Cxy(k) 

1 1 
_ E E XijVi.j + t -

nm l,= i j=i n(m -k) 

n m — k n m — k >• n i iv « rri iv \ 

E E *«/ E E vi,j+ftj 
i=lj=l i = 1 J = 1 J 

1 

.k^O 

(53) 
i / n m—K 

[HZ Xi- J + kVij -
nm \i=i j=i n(m-k) 

n m — k n m—k \ 

x E E Xi>j+k E E yu) -k < o 

with 
n : the number of years (here n = 19), 
m : the length of the season in days (m takes the values 90,91 or 92), 
Xij\ the amount of rainfall on theyth day of the z"th year for station AT, 
\'ij\ the amount of rainfall on the/th day of the /th year for station Y. 

So the lag k cross covariance of a particular season is estimated by shifting one 
rainfall series by k days and then taking the sample covariance of all pairs of 
observations belonging to the same year. The same procedure was followed 
for estimating the autocovariances. 

3.3.2. The estimated coherency spectrum 
Fig. 7 shows smoothed estimates of the coherency spectrum for the winter and 

summer season. For the winter the coherency estimates are larger, indicating 
that in winter there is a better correlation between the two rainfall sequences. In 
both seasons the largest coherence is found at the low frequencies. 

A crude approximation of the variance of the smoothed coherency estimates 
(neglecting for instance the influence of non-normality) is 

var Kxy(f) 
M 

0.375 ~ { 1 -KIM 
N 

(54) 

where N stands for the number of data (about nm). (It is not permitted to 
apply this approximation in the neighbourhood of ƒ = 0 and ƒ = lJ2- For 
these frequencies it is better to take twice the value given by (54)). 

To obtain estimates whose variance is approximately independent of Kxy(f) 
Fishers z-transform was applied. 

Zxy(f) = V2 In {(1 + ~Kxy(f))l(\ - ~Kxy{f))}. 

The variance of Zxy(f) is approximately 

(55) 

var Zxy(f) * 0.375 M 
N' 

(56) 
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F IG . 7. Smoothed coherency estimates for the rainfall sequences of Winterswijk and Twente. 
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The standard derivations given in Fig. 7 are based on this approximation. 
The estimates at the zero frequency can be compared with correlation coef­

ficients of «-day totals for large n. For 30-day totals the estimated correlation 
coefficient is 0.962 for the winter and 0.843 for the summer (BUISHAND, 1977b). 
These values correspond nicely with the initial point of the estimated coherency 
spectrum for M not too small (e.g. M = 16). 

3.3.3. Comment on a simple mode] for cross correlations 
In hydrology it is often assumed that the cross correlation function is separa­

ble in a space and a time component (RODRIGUEZ-ITURBE and MEJIA. 1974). 
That is the cross correlation function takes the form 

pxy(k) = p*(d) p(k). (57) 

Here p*(d) denotes the lag zero cross correlation coefficient as a function 
of the distance d, and p(k) denotes the lag k autocorrelation coefficient. Since 
p*(d) is usually less than 1 the lag k cross correlation coefficient is smaller than 
the lag k autocorrelation coefficient. 

Though this seems a reasonable correlation model it might be impractical 
for daily rainfall sequences in the Netherlands since its coherency spectrum is 
constant at all frequencies. This fact follows from the following relation be­
tween the cross spectrum rxy(f) and the autospectra rxx(f) and ryy(f) 

oo 

rxy(f)= £ pxAk)e-2«"> 
k= — oo 

00 

= p*{d) £ p{k)e~2^k 

k= — co 

= P*(d) rxx(f) = P*(d) ryy(r) (58) 

(for brevity of notation it is assumed that the variance at both stations equals 
1). Inserting this relation in (42) gives that Kxy(f) = p*(d) for all frequencies. 

3.4. CONCLUDING REMARK 

It was noticed that the height of the smoothed coherency estimates decreases 
with the frequency ƒ This is an indication for an increase of the correlation 
coefficient of «-day totals with n. But this information could also be obtained 
by estimating these correlation coefficients for different values of« (BUISHAND, 

1977b). This last technique may be preferred to cross spectral analysis since 
the results are more readily interprétable. 
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APPENDIX 

AI. THE SAMPLE SPECTRUM AT THE ZERO FREQUENCY 

From (17) it follows for Cxx(0) 

Cxx(O) = cxx(0) + 2 *£ Cxx(k). (Al) 

Substitution of (16) results in 

Cxx(0) = I [ J (x, -x)2 + 2 Y Y (x, -5c) (xj+k -x)j . (A2) 

Putting m = 7; + k in the second term in braces and changing the order of sum­
mation one obtains 

1 
N m-1 

Cxx(O) = i- £ (x, - x ) 2 + 2 X Z (*—* ^ Jc) (x„ 
jy [j=l m=2 k=l 
, t N N m-1 1 

= - I (*; -x)2 + 2 Z Z (Xk ~*) (x>» -x) 
JV h= i m = 2 k = l 

- X ) 

i(z(x,-,))^o. (A3) 

A2. THE SPECTRAL DENSITY OF AN ALTERNATING RENEWAL PROCESS 

First, an expression for the spectral density is derived under the assumption 
that wet spells have a geometric distribution. Thereafter the result is extended 
to an alternating renewal process. 

»I 

W D D D 

»3 

W D D W D D 

ff7 

W D D 
10 15 

FIG. 8. Realization of a wet-dry process for t = 0(1)16. Wet days are denoted by W and dry 
days by D. The recurrence times Ri, Ri,... are the waiting times between successive wet days. 

Fig. 8 shows a realization of a wet-dry process for / = 0(1)16. The waiting 
times between successive wet days are denoted by R\, R2, ••• and are called 
recurrence times. If the recurrence times are idd random variables the process 
is called a renewal process. Then the process is independent of its history 
whenever a wet day occurs and the lengths of wet spells have a geometric 
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distribution. Let {/"„} denote the distribution of the recurrence times. Further, 
let Uk be the probability of a wet day at t = k ^ 0 given that a wet day occurred 
aW = 0. (Note that u0 = 1.) 

It is convenient to introduce the generating functions 

m= tfksk (A4) 

U(s) =Y, "* **• (A5) 
*=o 

It can be shown (FELLER, 1968, XIII.3) that the following relation exists be­
tween these generating functions 

U(s) = 1/(1 -F(s)) ,\s\ < 1. (A6) 

Since the autocovariance function yxx(k) is symmetric in k Eq. (2) can be 
written as 

CO 00 

rxx(f) = yxx(0) + £ yUk) e2*ifk + £ yxx(k) e~2^k. (A7) 
k=l k=l 

For a renewal process it can be shown that (BUISHAND, 1977a, IV.4.1) 

yxx(k) = I L - I ] , k > 0 (A8) 

in which /x stands for the mean recurrence time. Substitution of (A8) in (A7) 
results in 

rxx(f) = I 1 - I + g L - I] e2*«* + £ ( « * - -) e-2*«" (A9) 

The problem is that Ei/*/ and Es* do not converge for s on the unit circle. 
Bur for renewal processes relevant in hydrologie time series Eŵ y*, with Uk = 
Uk - I In, converges for | * | = 1. Let Ü(s) denote the generating function of the 
ükS, that is 

Ü(s)= £ Uks" (A10) 

then the power spectrum becomes 

rxJf) = - (l - I + V{e2™f) + Ü(e-2«')). (All) 
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For|s| < 1 holds 

^ ~l " M I -S) I -m Ml s) 
Ü(s) = U(s) - 1 — = — ^ - — (A12) 

using (A6). 
Since "Lü/J* converges for | s\ ̂  1, U(s) is a continuous function for |s\ ^ 1 

(Abel's theorem) and hence 

ü(e^f)^-^n 
1 _ F(e2*iT) n(l - e2nif) 

(A13a) 

U(e-2*") = —ü£ J _ <L (A13b) 
1 -FCe-2""') /i(l - e - 2 m / ) 

Substitution of (A13) in (Al 1) gives 

r (f)~l fi i F{e2niI) i F{e~2*if) \ (AM) 

This relation corresponds to the expression given by BARTLETT (1963) for the 
spectrum of counts in a continuous renewal process. 

One can not apply Eq. (A 14) directly for those values of/for which F(e2nif) = 
1. For renewal processes encountered in hydrology (with a so-called non-
periodic distribution of the recurrence times) this situation only occurs for ƒ 
= 0. But at the zero frequency the power spectrum equals the asymptotic 
slope of the variance-time diagram, see Eq. (15). From renewal theory it is 
well known (see for instance FELLER, 1968, XIII. 6) that this asymptotic value 
equals a2In3 in which a2 stands for the variance of the recurrence times. 

The result given above can be extended for application to an arbitrary 
alternating renewal process. Let {/Jw)} and {/Ïd)} stand for the distributions of 
the lengths of wet and dry spells : their generating functions are denoted by 
i*w)(.y) and ƒ* d)(s), respectively. The means of the lengths of wet and dry spells 
are denoted by /z(w) and n(d\ and the variances by fAw) and fiid\ respectively. 
Further, for a stationary alternating renewal process one can define the con­
ditional probability hkwd) of a dry day at t = k ^ 0, given that a wet day oc­
curred at t = 0. (Note that héw d) = 0.) An analogous definition can be given 
for the probability h^ww). It is convenient to introduce the generating functions 

Hiwd)(s)= £ ht**" (A15a) 

#<»»> (s) = f) h{ww) s*. (A15b) 
k = 0 

These functions can be expressed in the generating functions of the lengths 
of wet and dry spells (BUISHAND, 1977a, IV.2.2), for instance 
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&"*> (s) = s{l'Fiw)(s)}{l^d)(s)} ( A 1 6 ) 

Hiw) (1 -s)2 {1 - ƒ<»> (s)I*dKs)} ' 

Since fo*""" + hk
{ww) = 1, one has 

^ w d ) (*) + # ( w w ) (j) = 1/(1 -5). (A17) 

For the autocovariances it can be shown that (BUISHAND, 1977a, IV.4.1) 

Yx*(k) = q(w) (htw) - giw)) , k 5* 0 (A18) 

in which g<,v) = /z(w)/G«<w) + i"( d)) stands for the probability of a wet day in a 
stationary alternating renewal process. 

Set"htw) = htw) - 9(w) and let H{ww\s) be the generating function 

H^^(s) = £ À r w ) / (A 19) 

then the power spectrum becomes 

rxx(f) = ^"> {1 - 4<w> + ƒƒ<—> (e2 *if) + /7<M',,') («•" 2 " 0 } . (A 2°) 

Fo r | i | < 1 holds 

Hiww)(s) = H(ww)(s) - 1 - qlw)sl(l - s ) 
= -#<wd) (s) + (1 -q(w)) 5/(1 -5). (A21) 

Since T,h!iww) s* converges for| s| = 1 it is permitted to apply this result on the 
unit circle. Then the power spectrum becomes 

rxx(f) = _ 0<»> {#<-<> (e2 "") + //(M"" (<•-2 «")} (A22) 

in which /7(M",) (e"2*'7) and H(wd) (e~2nif) can be obtained from (A 16). 
This relation can not be applied directly for ƒ = 0. For this frequency holds 

r ^ . i ^ y ^ + in^)2^ (A23) 
r*m - — (p^T^r ( } 

being the asymptotic slope of the variance-time diagram (BUISHAND, 1977a, 
IV.5.2). 

As an example assume that the wet-dry process is a Bernoulli process. That 
is the probability of a day being wet or dry does not depend on the situation of 
previous days. Let p denote the probability of a day being wet and q = 1 -p. 
For k >. 1 holds hkwi) = q and h ^ = p. since the process has no memory. 
Then it follows 

H{wd) (s) = qs/(l -s) (A24) 

and thus the power spectrum becomes 

„2 ni f p-2nif \ 

r*Af) = -p q y—^ + q ̂ - ^ T ^ J = PI- <A 2 5> 
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So the power spectrum is constant at all frequencies (Note that pq is just the 
variance of the process.) 
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