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1. INTRODUCTION

Spectral analysis is known as an important tool in studying time series. This
paper discusses the application of this technique to daily rainfall sequences in
the Netherlands. Univariate and bivariate spectral analysis are studied suc-
cesstvely. The former deals with a rainfall series at one point: the latter with
rainfall sequences at two points.

2. UNIVARIATE SPECTRAL ANALYSIS

2.1. THE SPECTRUM

2.1.1. Definition of the spectrum of a stochastic process

Since the rainfall process is observed at discrete time intervals the definition
of the spectrum will be based on stochastic processes in discrete time. Further
for the definition given here it will be required that the process is stationary or
at least second-order stationary, that is the first and second-order moments
{mean, variance, autocorrelation coefficients) may not change in time.

Let {X;} be a stationary process with mean . and variance o3, then its
autocovariance function is defined by

Yerlk) = E(X: ~ po) (Xewx = fhx). (1)

For k = 0 one gets the variance. The function y..(k) is an even function in &
{and for rainfall sequences y«x{k) is positive and monotonically decreasing in
| k). Division of y..(k) by o gives the autocorrelation function px(k).

The Fourier transform of the autocovariance function is called the power
spectrum:

Falf) = 3 pul)e 2% Yy < £ < s @
k=—-w

But since yx{k) = yxx(—k) Eq. (2) reduces to

Falf) = 7es®) + 23 3aalh) cos 2k, 41z < f < 12 3
Notice further that e

Fxx(f) - Fxx(—f) (4)

1/2

L Tl df = 1o = . Q
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Thus the power spectrum shows how the variance is decomposed over the
various frequencies. Since I'x. (f} is an even function in f'it is usual to define a
power spectrum for non-negative f

FE() = 2Tulf) =2 {ynm) +2 5 pothy cos 2rcfk}1 0<f<s (6)

When the power spectrum is divided by the variance one obtains the spectral
density (the Fourier transform of the autocorrelation function}. This function
has the same properties as a probability density.

2.1.2. Examples
The first example given here is a stationary first-order autoregressive pro-
cess { X} with parameter ay. This process is defined by

Xe=a1 X1 + w‘l—ﬂi zZ, (7)

where {Z,} is a sequence of independent and identically distributed (iid} random
variables with zero mean and unit variance. The process { X;} has zero mean and
unit variance: its autocorrelation function is given by

prsl) = oy ™ )

and its spectral density is

‘on 21 —ad) .
= 1+ of - 20 (:0:521.*.f’0 AN ©

Fig. 1. shows the spectral density for some values of ;. For «1 = 0 one has an
uncorrelated process with a constant spectral density at ali frequencies (so-
called white nois¢ process). For positive values of a1 the spectral density is
large for the low frequencies and small for the high frequencies. Stochastic
processes with this property are called red noise processes. The slope of the
curve in Fig. 1 becomes steeper when a1 increases.

In the following exampie the influence of the tail of the autocorrelation
function is studied. The stochastic process being considered is defined as
follows

Xi=a1Yie + a2 Y, (10}

where {Y1:} and { Y2} are two independent first-order autoregressive processes
with parameter oy and az, respectively. For simplicity it will be assumed that
{Y1:} and {Y2 have zero mean and unit variance. When the parameter «
of the process { Y2} is chosen close to 1 and when a; is taken small with respect
to a;, one gets a stochastic process whose autocorrelation function at small
lags hardly differs from that of a first-order autoregressive process (with
parameter o), but the tail of its correlogram is much longer. The process
{X¢ has zero mean, its variance is af + @3, and its autocorrelation function is
given by

6 Meded. Landbouwhogeschool Wageningen 78-8 (1978)
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FiG. 1. The spectral density of an antoregressive process. The parameter «; is 0 for Process 1
(white noise), 0.3 for Process 2 and 0.6 for Process 3.

pacll) = par®! + (1 —p) a2*! ‘ | an

with p = a1/(a? + a3). So the shape of the autocorreiation function depends on
3 parameters, namely o, oz and the ratio b of a; to a». The spectral density of
{X}is

2p(1 —o}) 2(1 -pY (1 -o3)
1 +af —2opcos2af 1+ af — 2aacoslaf

0<f< Y (12)

Fi(Njei =

Fig. 2 gives the correlogram and the spectral density of some processes with
approximately the same first-order autocorrelation coetficient (0.3), but with
different tails of the autocorrelation function. From this figure it is seen that
the spectra stongly differ at the low frequencies: the spectra of Process 1 and
Process 3 differ only visibly near the initial point. The peak of the spectral

Meded. Landbouwhogeschool Wageningen 78-8 (1978) 7
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Fi1G. 2. The autocorrelation function and the spectral density for an autoregressive process
(Process 1) and for mixtures of autoregressive processes (Processes 2 and 3). The parameter
o1 of Process 1 is 0.3; the parameters of Process 2 are oty = 0.23, a2 = 090 and # = 3, and
the parameters of Process 3 arc oy = 0.29, a2 = 0.98and b = 7.

density at the zero frequency becomes more pronounced when the correlogram

falls off more slowly,

From the examples given here it can be concluded:

a. Differences in the first-order autocorrelation coefficients give rise to dif-
ferences in the slope of the spectral density.

b. Differences in the tail of the correlogram give rise to differences at the low
frequencies.

8 Meded. Landhouwhogeschool Wageningen 78-8 (1978)



2.1.3. Relation to the variance-time diagram

Since the power spectrum is the Fourier transform of the autocovariance
function it gives the same information about the stochastic process. Another
measure equivalent to the autocovariance function is the variance-time dia-
gram. Let V«(n) be the variance of X1 + Xz + ... + X, then the variance-
time diagram gives ¥.(n) as a function of ». Clearly

n—1

Ven) = Y (n—|k]) yxstk). (13)

k=—(r—1)

From this relation it follows that
Sx(n) = Viln+1) — Viln) = k_Z PxxlK ). (14)

When n tends to infinity one gets

lim Sx(m) = 3, yuslk) = Fxsl0) (15)
using Eq. (2). So the asymptotic slope of the variance-time diagram is equal to
the power spectrum at f = 0.

2.2, ESTIMATION OF SPECTRA
2.2.1. The sample spectrum

Let x,. ... . xx be a realization of a stationary stochastic process. Then the
sample autocovariance function is defined by

N-&k
exlk) = %{ T (x5 ek -8 k=0, ..., N-1 (16)
i=1

where ¥ is the mean of the N xj5. Dividing cxx(k) by the sample variance s2
gives the lag & autocorrelation coefficient r«<(k), shortly denoted by r. The
sample (power) spectrum is obtained by taking the Fourier transform of (16)

Cedf) = cxx(0) + 2:;1 cxxlk) cos 2nfk iz < F <2 a7
or, when only non-negative frequencies are considered

CH() =2 [cx,(()) +2 :i: cxd) cOS 21rfk} 0 << Y (18)
The sample spectrum has the following properties

Cxx(0) = 0, see Appendix (19)
Meéded. Landbouwhogeschool Wageningen 78-8 (1978) 9



1/2

S/ mcxx(f) df = cxxl0) = 52 (20)

that is the sample spectrum shows how the sample variance is distributed over
the various frequencies.

For f < 0 the sample spectrum Cxx(f) is an asymptotically unbiased estimator
of Ixx(f): its asymptotic variance is I'%:(f) when = !/z and 2I'%(f) when
=13 8o Cx{f) is an inconsistent estimator since its variance does not tend
to zero when N tends to infinity.

2.2.2. Smoothing of spectral estimates

The variance of spectral estimates can be reduced by smoothing. Smoothed
estimates can be obtained by giving weights to the estimated autocovariances
at different lags

Cresl ) = W(0) cxx(0) -+ 2 wa(k) exlk) cos 2nfk, < f< Yo, (21)
k=1

The weight function w(k) is called the lag window. To preserve the relation
(20) w(0) is taken to be 1.

There are many different types of lag windows known in the literature (JENKINS
and WATTs, 1969: NEAVE, 1972). In this study use was made of the Tukey
window

e
t I+cos1z—),k:-;M
/2( M

0 k> M.
When this window is used Eq. (21) becomes

wr(k) = { (22)

M-1
Tolf) = cxd® + Y (1 + cos E‘Mf) cxsle) cos 2fk.
K=1
< f< 23)
or, when only non-negative frequencies are considered

M-1

TN =2 {Cxx(o) + Y (1 + cos T;—];) cxdlk} cos ank} ,
k=1
0<f< s (24)
A crude approximation of var {Cu()} is

var {Cxd{/)} =~ 0.75 -i:/! i) (25)

It is not permitted to apply this approximation in the neighbourhood of f = Oand f = /3.
Caution is also needed in the neighbourhood of peaks and troughs.

10 Meded. Landbouwhogeschool Wageningen 78-8 (1978)



From (25) it is seen that the variance is considerably reduced for small
values of M (that is the number of lags for which the autocovariances have to
be estimated is small), On the other hand a small value of M may give rise to
considerable bias. In practice different values of M are tried in estimating the
spectrum.

Notice that (23) may give a reasonable estimate of I'y.(f) for £ = 0. Therefore
the parameter M should be small with respect to N, but large enough that
yx{k) is negligible for & = M.

A smoothed estimate of the spectral density is obtained by dividing Cxx(/)
by the sample variance.

Usually the logarithms of spectral estimates are plotted, since their variances
are approximately independent of the theoretical valve I'zx(f). From (25) it
follows that

var {In Cexlf)} % 0.75 _‘g (26)
and also when only non-negative frequencies are considered, Eq. (24), one gets

var {In CH{A} =~ 0.75 %{ (27)

2.3. SPECTRAL ANALYSIS OF WINTERSWLIK DATA

2.3.1. Description of the data

The meteorological station of Winterswijk is situated in the east of the
Netherlands (51 °38°N, 6°49’E). The data used were daily values of the period
Dec. 1907 — Nov. 1973

The rainfall data show seasonal variation in the mean, the standard devia-
tion and the autocorrelation coefficients. The largest values for the mean and
standard deviation are found in summer: the largest autocorrelation coeffi-
cients are found in winter (see Fig. 3). To reduce this seasonal variation the
rainfall sequence was split into 4 subseries: each subseries contained the data
for a particular season. The construction of the subseries was done in such a
way that wet or dry spells having days in two seasons were assigned to only one
of these seasons (BUISHAND. 1977a, T11. 2 and I11. 6). Since features of the rain-
fall process show little variation within a season the subseries are approximately
stationary. In this paper special attention is given to the winter (December-
February) and summer season (June-August).

Spectra were also estimated for the sequences of wet and dry days (wet-dry
sequence). A day was taken to be wet when its rainfall amount was at least
0.3 mm. The value 1 was assigned to a wet day and the value 0 to a dry day.

2.3.2. The spectral density of the wet-dry sequence
In this subsection smoothed estimates are compared with theoretical spectra
of fitted processes. The processes considered are:

Meded. Landbouwhogeschoo! Wageningen 78-8 (1978) 11



m,s FiG. 3. Mecan (m), standard deviation

{mm/day) 1 (s) and first-order serial correlation

6 06 coefficient (ry) of daily rainfall at
re Winterswijk.

5 0.5
[ s 0.4
3

a. A first-order Markov chain. For this process the probability of a wet day
depends on the state (wet or dry) of the previous day. Let P(W | D) denote
the probability of a wet day after 2 dry day and P{W | W) the probability of a
wet day after a wet day. Most rainfall sequences have the property that P(W |
W) = P(W | D). For example. for Winterswijk P(W | W) ranges from 0.59 to
0.70 and P(W | D) ranges from0.2710 0.38. For Markov chains the probabilities
P(W | D)and P(W | W) are called transition probabilities.
b. An alternating renewal process. For this process the lengths of successive
wet and dry spells are independent. In this study truncated negative bino-
mial distributions were fitted to lengths of wet and dry spells, Therefore. the
process is abbreviated as TNBID-TNBD process.
Fig. 4 compares smoothed estimates of the spectral density with theoretical
values for the winter and summer season. From the behaviour at the low
frequencies it is seen that the TNBD-TNBD process has a longer memory
than the first-order Markov-chain. Further for small values of M(M = 4) the

12 Meded. Landbouwhogeschool Wageningen 78-8 (1978)



Spectral
density

Summer

T Winter

01 02 03 0% 05
flcycles/day)

!
0

FiG. 4. Smoothed spectral density estimates and spectral densities of fitted processes for
the wet-dry sequence of Winterswijk. Process 1 is a first-order Markov chain and Process 2
is an alternating rencwal process with truncated negative binomial distributions fitted to
lengths of wet and dry spells.

estimates are heavily biased. When only a smali value of M had been taken into
account. one should have come to the wrong conclusion that the first-order
Markov chain is a good model! For M = 16 there is hardly any bias and the
spectrum of the TNBD-TBBD process fits the estimated values well. There
are hardly any differences between the spectra of the winter and summer season.

Meded. Landbouwhogeschool Wageningen 78-8 (1978) 13



indicating that there is little seasonal variation in the dependence of successive
wet and dry days.

The following remarks can be made on the calculation of the theoretical spectra. For the
first-order Markov chain the autocorrelation function and the spectral density have the
same form as those of a first-order autoregressive process, see Eqs. (8) and (9). The parameter
21 can be expressed in the transition probabilities. An expression for the autocovariances of
an alternating renewal process was given by BulSHAND (1977a, IV 4.1). The power spectrum
can be obtained by applying Eq. (6) to the calculated autocovariances. It is, however, also
possible to express the power spectrum or the spectral density in the probability generating
functions of the lengths of wet and dry spells (see Appendix).

2.3.3. The spectral density of the rainfall sequence
In this subsection the fit of a rainfall model is tested by comparing its spectral

density with estimated values. The most general form of the rainfal model is:

a. The wet-dry process is a TNBD-TNBD process,

b. The distribution of the amount of rainfall on a particular wet day depends
on the number of adjacent wet days: the mean and variance increase with
this number,

¢. Rainfall amounts within a wet speli are correlated according to a first-order
moving average process. That is there is only correlation between adjacent
wet days.

Attention is also paid to the first-order autoregressive process, defined by

Eq. (7). This process has widely been used in the past as a model for persistence

in daily rainfall sequences (LEVERT, 1960).

The spectral density of the first-order autoregressive process can be obtained from (9).
For the general rainfall model Eq. (6) was applied to the autocorrelation coefficients. The
method of calculation of the autocorrelation coefficients was given by BUISHAND (1977a,
IV.4.2andIV.4.3).

Fig. 5 compares smoothed estimates of the spectral density with the theoreti-
cal values of the general rainfall model for the winter and summer season.
There are some differences in the spectra of these seasons, since in suminer
there is less autocorrelation. In summer the spectrum of the rainfall model fits
well: for the winter season there is some indication for lack of long-term
persistence. The estimates at the low frequencies depend strongly on the choice
of M. For small M there is serious bias.

Fig. 6 compares some theoretical spectra of fitted processes for the winter
season. The processes considered are: a first-order autoregressive process, the
general rainfall process mentioned previously, and a simplified version of this
process, namely with iid rainfall amounts within a wet spell. The spectra of the
first two processes only differ at the low frequencies: the first-order autoregres-
sive process shows less long-termn persistence, When rainfall amounts are assum-
ed to be iid the spectrum becomes more flat, indicating that the lower order
autocorrelation coefficients are too small.

14 Meded. Landbouwhogeschool Wageningen 78-8 ( 1978 )
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Fi1G. 5. Smoothed spectral density estimates and the spectral density of a general rainfall
model for the rainfall sequence of Winterswiik.

2.3.4. Comparison with variagnce-time analysis

Since the initial point of the spectrum equals the asymptotic slope of the
vartance-time diagram, a rough estimate of Vi(n) for large n can be based on
0.5 n T (0). Because the variance-time diagram has a small negative intercept
(BUISHAND, 1977a) Vx(n) is somewhat overestimated by this method.

Table 1 gives estimates of ¥x(30) based on Ci(0) and the estimate directly
obtained from the historic series (BUISHAND, 1977a, Table 111.6.3). The estimate

Meded. Landbouwhogeschool Wageningen 78-8 (1978} 15
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FiG. 6. Spectral densities of some processes fitted to the rainfall sequence of Winterswijk.
Process | is a first-order autoregressive process; Process 2 is a general rainfall model, and
Process 3 is a simplification of it, namely with independent and identically distributed rain-
fall amounts within a wet spell.

based on the initial-point of the spectrum heavily depends on the choice of M:
when M is small (that is when too few autocorrelation coefficients are consider-
ed} the variance is seriously underestimated. For large M (M at least 16) there
is a nice correspondence between the two estimates.

Tanig 1. Estimates of Vx (30) for the wet-dry sequence and the rainfall sequence of Winters-
wijk.

Wet-dry sequence Rainfall sequence
(variance in days?) {(variance in mm?)
winter summer winter summer
Based on € & (0) with
M= 4 13.8 13.4 751 978
M= 3 12.0 17.0 949 127
M =16 21.6 20.0 1162 1278
M=132 23.0 20.5 1326 1294
Directly estimated from
the historic sequence 22.0 18.9 1167 1286

16 Meded. Landbouwhogeschoo! Wageningen 78-8 (1978)



2.4. CONCLUDING REMARKS

It was noticed carlier that the autocovariance function, the variance-time
function and the power spectrum are equivalent functions of second-order
moments. One may ask, what are the advantages and disadvantages of these
different techniques? A drawback of autocorrelation analysis is that it hardly
gives information about long-term persistence. On the contrary the variance-
time diagram is very sensitive to the length of the tail of the correlogram. When
use is made of both correlogram and variance-time analysis one gets a clear
insight into the persistence of a rainfall sequence.

The spectrum may give both information about short-term and long-term
behaviour. Moreover the sample propertics of spectral estimates are simpler
than those of autocorrelation coefficients. But when using spectral analysis one
encounters the problem of smoothing. Besides spectra are much harder to
interpret than correlograms or variance-time diagrams. These drawbacks make
spectral analysis intractable for hydrologists.

Meded. Landbouwhogeschoo!l Wageningen 78-8 (1978) 17



3. BIVARIATE SPECTRAL ANALYSIS

3.1. THE CROSS SPECTRUM

3.1.1. Definition of the cross spectrum of a bivariate stochastic process

The definition of the cross spectrum will be based on a stationary (or at
least second-order stationary) bivariate process. As an example of a bivariate
stochastic process one may take the rainfall sequences at two different stations.
When these rainfall sequences are considered for a particular season {(e.g. the
winter) they are approximately stationary and the ‘theory given below is ap-
plicable.
Now let {X:, ¥} be a stationary bivariate stochastic process with mean {x.
¢ and variance {2, 67}, then its cross covariance function is defined by

Yarlk) = E(Xe —pix) (Yerr — p). (28)

Division of y.y(k) by ox6; gives the cross correlation function px,(k ).
From the definition it follows

Ve k) = pyulk). (29

So unlike the autocovariance function the cross covariance function needs
not to be an even function. But one may split this function into an even and an
odd part.

Yl ) = Aa(k) + Yl (30)
with

Axdk) = Ya{yxlk) + yx{-k)} being an even function
Valk) = a{yalk) — vx{-k)} being an odd function.

The Fourier transform of the cross covariance function is called the cross
spectrum

To(N= ¥ pok)e ™ 1, <f<ip 31

k= -

For the even part of the cross covariance function one may define

Ak = Aei0) + 2 Iﬁ] Ak} cos 2ufk . Ny < F< 1 (32)
(the co-spectrum) and for the odd part

¥l = Zki Yelk)ysin 2nfk -t < f< 2 &k))

(the quadrature spectrum). Substitution of (30) n (31) results in

rxr(f) = Ax}'(ﬂ - itpxy(f)- (34)

18 Meded. Landbouwhogeschool Wageningen 78-8 ( 1978)



From the Eqs. (32), (33) and (34) one sees immediately

Asplf) = Aw(*f) (35)
Pulf) = ~Fry (-f) (36)
Faff) = TN (37

where the bar denotes the complex conjugate.

Further for the co-spectrum holds

1/2

[ AN df = 2(0) = yx(0). (38)

-172

Thus the co-spectrum shows how the lag zero cross covartance is distributed
over the various frequencies.

The cross spectrum is often written in complex polar notation

Folf) = axdf) exp 2rid{)) (39

with ax{f}: the cross amplitude spectrum
b=/} the phase spectrum.
From (34) and (39) it follows

arlf) = AN + P (40)

and
tan @ {f) = Yo, (fH Ae(f)- (41)
Instead of the cross amplitude spectrum one may use the coherency spectrurn
kel = (NI T} Tilf). (42

Just like the correlation coefficient the coherency spectrum is a normalized
measure of linear dependence. It shows the correlation between the two se-
quences { X} and { ¥} as a function of frequency.

3.1.2. Relation to covariances and correlation coefficients of n-day totals

It was seen earlier that for large » the variance of r-day totals could be
derived from the initial point of the power spectrum. Analogously, the initial
point of the cross spectrum (or the co-spectrum} gives information about the
asymptotic behaviour of the covariance of n-day totals. Let Vyn) be the
covariance of n-day totals of the sequences {X;} and { Y}, then

Vo) = S - Kelasth). (@3)

k=-(n—1)

When Vyn) is plotted versus » the slope of the curve is
Meded, Landbouwhogeschoo! Wageningen 78-8 ( 1978) 19



Soln) = Valnt1) = Vol = z Ve, (44)

When r tends to infinity one obtains
lim Sy{n) = ,‘72‘ Par(k) = I'xy(0) = Ax(0) (45)

H—= X

since ¥:{(0) = 0. So the asymptotic slope of the curve is equal 1o the initial
point of the co-spectrum and of the cross spectrum.
Now for large » holds

Viln) = nl:(0) + o(n) (46)
Vi(n) = nl'y(0) + o(n) (47)
V() = nlx(0) + 0(”) (48)

where o(r) stands for functions f(n) of #n with the property that lim f(r)/a
= 0. e

So the correlation coefficient becomes
Vkn)

V V#) Viln)

ni ', (0) + o(n)
T 0) E o(n}} {nT (0) + o(m)}

Ryy(n) =

= Ke(0) + o(1) (49)

where o(1) tends to zero when » tends to infinity. So the correlation coefficient
of n-day totals tends to the initial point of the coherency spectrum.

3.2. ESTIMATION OF CROSS SPECTRA

The sample cross covariance function for a realization (x1, 31}, ... (xXn, ¥¥)
of a stationary bivariate stochastic process is defined by

lN—k
— Y - D -D k=0.1,.... N1
N5

cnlk) = . (50}
Ly Gy DT k=—N-1).....-1.0
Nj=Te1

where ¥ and ¥ are the means of the N x;s and N y;s, respectively. The even part
of cxy(k ) will be denoted by ¢x,(k) and the odd part by gx,(k).

20 Meded. Landbouwhogeschool Wageningen 78-8 (1978)



As is the case in univariate spectral analysis the Fourier transform of the
sample cross covariance function gives an inconsisient estimate of the cross
spectrum, Consistent estimates can be obtained by smoothing. Smoothed
estimates of the co-spectrum and the quadrature spectrum follow from

L) = £x(0) + 2”21 W)k ) cos 2nfk . < f< Y2 (5D
k=1

N;
Do) =2 2 Wk gnsk) sin 2k /s < 1< V2 (52)

where w(k ) stands for the lag window. In this study use was made of the Tukey
window, defined by Eq. (22). Substitution of smoothed estimates of the spectral
densities, the co-spectrum and the quadrature spectrum in Eqs. (40), (41) and
(42) gives smoothed estimates Ay (f), Fey(f) and Ko{f) of the cross-amplitude
spectrum a.,(f), the phase spectrum ¢.{f) and the coherency spectrum r.,(f).
respectively. One usually plots cross spectral estimates for the non-negative
frequencies only. Then the estimates of the co-spectrum, the quadrature
spectrum and the cross amplitude spectrum should be multiplied by 2: the
estimates of the phase spectrum and the coherency spectrum remain unchanged.
As in univariate spectral analysis the variance of cross spectral estimates decrea-
ses with M. However, for small values of M the estimates may be considerably
biased.

3.3. CRrROSS SPECTRAL ANALYSIS OF WINTERSWIIK AND TWENTE DATA

3.3.1. Description of the data
The aviation-base of Twente (52°16'N, 6°54°E) is situated 36 kilometers
from Winterswik. The data used were daily values for the period Dec. 1952-
Nov. 1971. These data were mainly obtained from magnetic tapes of the Royal
Netherlands Meteorological Institute. From the positions of these rainfall
stations and the time-increment used one may not expect time-shifts between
the two rainfall sequences, This means that
a. the phase spectrum and the quadrature spectrum are approximately zero
at all frequencies.
b. the cross covariance function (and also the cross correlation function} is
approximately an even function of lag.
Therefore the emphasis of this study is stressed on the shape of the coherency
spectrum,
Because of seasonal variation coherency spectra were estimated for each
season separately. Therefore, instead of Eq. (50), use was made of
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with
n: the number of years (here n = 19),
m: the length of the season in days (m takes the values 90, 9 or 92),
xi;: the amount of rainfall on the jth day of the ith year for station X,
¥ij: the amount of rainfall on the jth day of the ith year for station Y.

So the lag k cross covariance of a particular season is estimated by shifting one
rainfall series by &k days and then taking the sample covariance of all pairs of
observations belonging to the same year. The same procedure was followed
for estimating the autocovariances.

3.3.2. The estimated coherency spectrum

Fig. 7 shows smoothed estimates of the coherency spectrum for the winter and
summer season. For the winter the coherency estimates are larger, indicating
that in winter there is a better correlation between the two rainfall sequences. In
both seasons the largest coherence is found at the low frequencies.

A crude approximation of the variance of the smoothed coherency estimates
(neglecting for instance the influence of non-normality) is

var Ko(f) ~ 0.375 % {1 -x3,(N} (54)

where N stands for the number of data (about wm). (It is not permitted to
apply this approximation in the neighbourhood of f = 0 and f = /2. For
these frequencies it is better to take twice the value given by (54)).

To obtain estimates whose variance is approximately independent of kx(f)
Fisher’s z-transform was applied.

Zodf) = Yz In {1 + KN - Kol D) (55)

The variance of Zy,(f) is approximately
var Z.{f) =~ 0.375 A—A{ . (56)
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FiG. 7. Smoothed coherency estimates for the rainfall sequences of Winterswijk and Twente.
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The standard derivations given in Fig. 7 are based on this approximation.

The estimates at the zero frequency can be compared with correlation coef-
ficients of n-day totals for large n. For 30-day totals the estimated correlation
coefficient is 0.962 for the winter and 0.843 for the summer (BuisSHAND, 1977b).
These values correspond nicely with the initial point of the estimated coherency
spectrum for M not too small (e.g. M = 16).

3.3.3. Comment on a simple model for cross correlations

In hydrology it is often assumed that the cross correlation function is separa-
ble in a space and a time component (RODRIGUEZ-ITURBE and MEJia. 1974).
That is the cross correlation function takes the form

pxdk}y = p*(d) p(k). (57

Here p*(¢/) denotes the lag zero cross correlation coefficient as a function
of the distance ¢, and p(k) denotes the lag & autocorrelation coefficient. Since
p*(d) is usually less than 1 the lag k cross correlation coefficient is smaller than
the lag & autocorrelation coefficient.

Though this seems a reasonable correlation model it might be impractical
for daily rainfall sequences in the Netherlands since its coherency spectrum is
constant at all frequencies. This fact follows from the following relation be-
tween the cross spectrum I'.,(f) and the autospectra I () and T ,(f)

Tol) = 3 o) =270k
k=—co
= o) 3 plkye
k=—~a

= p*d) I'xlf) = p*(d) Ty(f) (58)

(for brevity of notation it is assumed that the variance at both stations equals
1}. Inserting this relation in (42) gives that ix,(f) = p*(d) for all frequencies.

3.4, CONCLUDING REMARK

It was noticed that the height of the smoothed coherency estimates decreases
with the frequency f. This is an indication for an increase of the correlation
coefficient of »-day totals with #. But this information could also be obtained
by estimating these correlation coefficients for different values of # (BUISHAND,
1977b). This last technique may be preferred to cross spectral analysis since
the results are more readily interpretabie.
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APPENDIX

Al, THE SAMPLE SPECTRUM AT THE Z7ERO FREQUENCY

From (17) it follows for Cx(0)

Cxx(O) = Cxx(o) + 2 Nil Cxx(k)- (Al)
k=1
Substitution of (16) results in
N~1N-k
Cxx(0) = {Z (xj-xr+2 % Z (x; - %) (x,+ux)] (A2)
k=1 j=1

Putting mr = j  k in the second term in braces and changing the order of sum-
mation one obtains

Cxd0) =

m=2 k=1

N m-—-1
(-xj _f)2 + 2 Z Z (Xrn—k - i) (Xm —.7?)]

=i
i

1 N N m-1
_E[Z( -2 2 Y Y (X)) (km - x)}
i=1 m=2 k=1
N
! [-Zl (x,._;z]z o, (A3)
=

A2. THE SPECTRAL DENSITY OF AN ALTERNATING RENEWAL PROCESS

First, an expression for the spectral density is derived under the assumption
that wet spells have a geometric distribution. Thereafter the result is extended
to an alternating renewal process.

3 Ry R, R |Rs| Ry

Ry
w 0o plwiwoolwoolwlwiwo o

0 5 10 15

4
-
t

Fi1G. 8. Realization of a wet-dry process for ¢ = 0(1)16. Wet days are denoted by W and dry
days by D. The recurrence times Ry, Ra, ... are the waiting times between successive wet days.

Fig. 8 shows a realization of a wet-dry process for t = 0(1)16. The waiting
times between successive wet days are denoted by Ry, Ry, ... and are called
recurrence times. If the recurrence times are idd random variables the process
is called a renewal process. Then the process is independent of its history
whenever a2 wet day occurs and the lengths of wet spells have a geometric
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distribution. Let {fa} denote the distribution of the recurrence times. Further,
let wz be the probability of a wet day at t = & = 0 given that a wet day occurred
at7 = 0. (Note that up = 1.)

It is convenient to introduce the generating functions

Fis) — i fi st (Ad)
U(s) = xi"o ux s~ (A5)

It can be shown (FELLER, 1968, XII1.3) that the following relation exists be-
tween these generating functions

Us) =1/1-Hs)) .is| < L. (A6)

Since the autocovariance function vx«(k) is symmetric in & Eq. (2) can be
written as

Fadf) = 10} + F pealk) €775 4 ) yxlky e 270K (A7)
k=1 k=1

For a renewal process it can be shown that (BUISHAND, 1977a, IV.4.1)

Pex(k) =1 (ux - 1) k=20 (A8)
u #

in which y stands for the mean recurrence time. Substitution of (A8) in (A7)
results in

Fxxm:l 1 _lJr Y (un —l) etk Y (ux 21 6"“”"]- (A9)
i [T K 7

k=1

The problem is that Zuus* and Ts* do not converge for s on the unit circle.
Bur for rencwal processes relevant in hydrologic time series ifs*, with ik =
ux — 1/u, converges for|s| = 1. Let T(5) denote the generating function of the
s, that is

Us) = ¥ wst (A1D)

k=1
then the power spectrum becomes
Fedf) = * {1 g o U(e*“ff)}. (Al1)
Hu H ' .
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For|s| < 1 holds

Us)=Us) -1 - — .= A s (A12)
p(l-s) 1-Fs) u(l-s)
using (A6).
Since Zdis* converges for | s|< 1, U(s) is a continuous function for |s} < 1

(Abel’s theorem) and hence

gy 2 mif 2 aif
ﬁ 2mify F‘(E’ ) _ € _ Al3
(6’ ) 1 - F(ez mf) “(1 . 92 mf.) ( a)
-~ —2nif —2=if
U (e-2mty — e "™) ¢ (A13b)

1 — F(é,élmf) ‘u(l _e—Zm'f)'
Substitution of (A13) in (A1l) gives

_1! (3 Glid) Fle™2 1)
rxx(f) - “ ll + 1 - F(ez,“'_r) + 1 _ F(e_zm.f)}. (AI4)

This relation corresponds to the expression given by BARTLETT (1963) for the
spectrum of counts in a continuous renewal process.

One can not apply Eq. (A 14) directly for those values of ffor which F(e**) =
I. For renewal processes encountered in hydrology (with a so-called non-
periodic distribution of the recurrence times) this situation only occurs for f
= 0. But at the zero frequency the power spectrum equals the asymptotic
slope of the variance-time diagram, see Eq. (15). From renewal theory it is
well known (see for instance FELLER, 1968, XIII. 6) that this asymptotic value
equals o2/ in which 2 stands for the variance of the recurrence times.

The result given above can be extended for application to an arbitrary
alternating renewal process. Let {fi*"} and {f{¥"} stand for the distributions of
the lengths of wet and dry spells: their generating functions are denoted by
F™)(s5) and F'9(s), respectively. The means of the lengths of wet and dry spells
are denoted by u™ and u‘?, and the variances by p$™" and uf?, respectively.
Further, for a stationary alternating renewal process one can define the con-
ditional probability 48 of a dry day at ¢ = & > 0, given that a wet day oc-
curred at ¢ = 0. (Note that #§*® = 0.) An analogous definition can be given
for the probability 2. It is convenient to introduce the generating functions

HO () = 3 g (Al5a)
k=0

H) (5) = 3 b & (A15b)
k=0

These functions can be expressed in the generating functions of the lengths
 of wet and dry spells (BUISHAND, 1977a,1V.2.2), for instance
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HOO (o) — s{l —F™ (s)} {1 - F9 (s)}
O = 0 5 (1= F (9 F(s)) (A10

Since A™ + ™" = 1, one has

H™) (5) + H™ (5) = 1/(1 —s). (A1T)
For the autocovariances it can be shown that (BuisHAND, 1977a, 1V.4.1)
yeke) = g™ (hE™ — ™) k20 (A18)

in which g™ = u™/(u™ + p'?) stands for the probability of a wet day in a
stationary alternating renewal process.
Set Zf™) = pf*™ ~ g™ and let ™")(5) be the generating function

B () = ¥ pm (A19)
k=1

then the power spectrum becomes
rxx(f) e aiw} {I _q{w) + f’{(ww] (92 xif) + ﬁ(ww) (e—Z n:if‘)}‘ (A20)
For{s| < 1 holds
HO™ (5) = H™ () — 1 — g™ s/(1 -)
= —H"%(s) + (1 -4 5i(1 - ). (A2D)
Since TA{™™ s* converges for|s| = | it is permitted to apply this result on the
unit circle. Then the power spectrum becomes
rxx(f) _ q(w} {H(wd} (92 nif) + H(wd) (‘,}7 2 xi]‘)} {A22)

in which H*® (™) and H™? (¢~ 2"/} can be obtained from (A16).
This relation can not be applied directly for f = 0. For this frequency holds

( (dn2 &W] + (why2 {fll
a0y = U I (A23)

being the asymptotic slope of the variance-time diagram (BuisHanD. 1977a,
IV.5.2).

As an example assume that the wet-dry process is a Bernoulli process. That
is the probability of a day being wet or dry does not depend on the situation of
previous days. Let p denote the probability of a day being wetand g = 1 - p.
For k =1 holds h*? = ¢ and hf*™ = p. since the process has no memory.
Then it follows

H™ () = gs{(1 -5) (A24)

and thus the power spectrum becomes
o2 S e 2w
Idf) = ~p ¢ | - o2ms + ql _ ()—Zm'f} =P (A25)
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So the power spectrum is constant at all frequencies (Note that pg is just the
variance of the process.)
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