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ABSTRACT 

To assess criteria for the determination of actual evaporation 

by remotely sensed surface temperature, a sensitivity analysis of the 

energy balance equation is performed. 

Constraints in the design of field experiments are specified and 

criteria to collect direct spot measurements of actual evaporation 

are formulated. 

By Taylor expansion of the energy balance equation, analytical 

approximations are derived and fitted to experimental data. The latter 

are obtained by the Bowen ratio for both actual bare soil evaporation 

and actual transpiration from natural vegetation. 

A comparison of different equations, with actual evaporation as 

a function only of surface albedo and surface temperature is also 

presented. 



I. INTRODUCTION 

The work contained in this note was performed while the author 

was on leave from TECNECO spA (Italy) for eight months, during 1979. 

According to many recent references, remotely sensed surface 

temperature allows for a rather promising way to the estimation of 

actual evaporation losses from large non-homogeneous surfaces. However, 

plots of direct measurements of actual evaporation versus surface 

temperature show a substantial scatter of the points. Therefore it is 

not easy to define some analytical expression of the relationship be­

tween evaporation rate and surface temperature. The problem is that 

such a scatter is due to the interference of other independent para­

meters of the surface energy balance and due to the lack of some 

a-priori equation to relate the parameters involved. 

A way to solve this problem is to derive analytical expressions 

by Taylor's expansion of the energy balance equation. 

II. TAYLOR'S EXPANSION OF THE SURFACE ENERGY BALANCE EQUATION 

a. C o n c e p t 

According to the previous suggestions, it seems worthwhile to 

specify in a formal way the concept of relationships between evapora­

tion rate and the different variables of the surface energy balance 

equation. There is however no need to establish a new relationship 

as it is already implicitly included in the energy balance equation 

at groundlevel. 



PaCa 4 4 - 2 - 1 
LE - -=-^ (T -T ) + (l-a)R + e'aT - eaT - G (J.cm .day ) (1) 

r ci s s ci s 

where L = latent heat of vaporization of water (at mean air tempe­

rature) (J. g ) 
-2 -1 

E = evaporation rate (g.cm .day ) 

p c = thermal capacity of air (J.cm . C ) 
S a . -1 

r = surface aerodynamic resistance (day.cm ) 
cl 

T = air temperature (K) 
a 

T = surface temperature (K) 

a = surface reflectivity 
-2 -1 

R = shortwave incoming radiation (J.cm .day ) 

e' = air apparent emissivity 

e = surface emissivity 

a = Stephan-Boltzmann constant (J.cm .day . K ) 
-2 -1 

G = heat soil flux (J.cm .day ) 

Such an equation may be thought as a hypersurface in % , with 

the coordinate axes being E, T , r , T , a, R , G. Eq. (1) defines 
cl 3. S S 

a general relationship between evaporation rate and the meteorological 

conditions at the surface level. This relationship is not subjected to 

any kind of constraints related to the kind of surface and/or meteo­

rological situation. That is to say if the turbulent exchange coeffi­

cients are evaluated without restricting hypothesis. The obvious dis­

advantage is the extensive data requirement of this equation: compre­

hensive and area-spread meteorological data are needed for the evalu­

ation of regional evaporation losses by eq. (1). To evaluate regional 

evaporation, using, if possible, only remotely sensed data over large 

areas we thus have, for practical reasons, to look for more simple re­

lations. This is equivalent with defining functions of a degree of 

dimensions lower than eq. (1), for instance a line-relationship (E, T ) , 

or a surface-relationship like (E, T , a ) . These functions can be 

defined through a Taylor's expansion of eq. (1) around some physical 
status E* where E* = f(T*, a*, r*, T*, G*, R*) with a notation in 

IK7 s a a s 

Taylor's theorem, using the vector ŝ  as representing the point 
k+1 

with coordinates (x. x,) in™ can be written as: 



f(s) = f(s*) + f'(s*)(s-s*) + f"(s*)(s-s*) /2! + fn-1(s*)(s-s*)n_1/ 

(n-l)I + R (2) 
n 

where: R is the remainder 
n 

f1 is the total i-th order derivative with respect to s = x » 

The sum of an unlimited number of terms as in eq. (2) approximates 

the function f if, and only if, the remainder approaches zero as the 

number of terms becomes infinite. Such a series is convergent to the 

function f with the number of terms. Then the error in the approxima­

tion of the function f depends on such a number. 

A Taylor's series can be used to approximate the function LE = 

f(T , a, r , Ta, G, R ). For our purposes it is very convenient to 
S 3 - S 

use only the linear terms in eq. (2), i.e. applying only the first 

order derivatives. Then from eq. (2) we get: 

E = E* + DT s E dTs i r i ? + Da E da i ^ + D ^ E d r& i ^ + 

+ DTa E d T a Î4-Î7 + °G E d G ±5'±7 + DRs E d Rs U'h (3) 

where: E* is the value of eq. (1) at (T *, a*, r *, T *, G*, R *) 
S. SL 3. S 

D . is the partial derivative with respect to x. 
XI 1 

i . i s the ve r so r ( un i t v e c t o r ) of ax i s x . 
- J J 
i . . L i s the s c a l a r p roduct between the two ve r so r s ( then 

equal t o t he co s . of the angle i . i ) 
- 2 - 1 . J k 

E, E* a r e in g.cm .day ; L, i s the v e r so r of JE 

b . N u m e r i c a l e v a l u a t i o n o f " " t h e d e r i v a t i v e 

w i t h r e s p e c t t o t h e s u r f a c e t e m p e r a ­

t u r e 

The geometr ica l framework i n R can be followed f u r the r to ob t a i n 

a formal express ion of the r e l a t i o n s h i p between E and T : 
s 

-2 -1 
E(Tg) = E. ( i 8 , i j ) (g.cm .day ) (4) 



E(T ) is the projection of the vector E_ on the coordinate plane 
s 

i_, i,. Such a projection can be approximated according to eq. (1), 
—8 —1 
(3): 

1/Pa°a . , _ ,A ^ ,_ -2 . - I -
E ' (T ) = E'* - f(~-= + 4 E a T ) dT (g.cm ̂ .day ') (5) 

S Li TC S S 

where: E'(T ) is the first-order approximation of E(T ) and 
s s 

E'* the value with T = T * 
s s 

This kind of equation can be applied to fit experimental data on 

evaporation rate vs. surface temperature. As can be seen from eq. (5) 

the slope of the function E'(T ) depends on T (supposed to be known 

everywhere) and the prevailing meteorological conditions over a wide 

range of the surface roughness. 

However, in the common range of surface temperatures, low values 

of the aerodynamic resistance may cause a shift from a small slope of 

E'(T ) to a steeper one. In Table 1 values are reported for different 

aerodynamic resistances, as calculated from: 

- T <-2-2' + 4 e a T3) (g.cm"2.day"1 .K~!) (6) 
Li TC S 

E'(T ) is decreasing everywhere, since quantities inside brackets 

are positive, when ÔT is positive. Anyhow it follows from Table 1 

that experimental points with low values of r require a steeper slope 

of eq. (5) in order to be fitted. 

Table 1. Values of the slope of E'(T ) - eq. (6) - for different values 
S 

of the aerodynamic resistance r 

(day.cm ') 

1.16 

.116 

.0116 

ra 

(s.nf1) 

(1000) 

(100) 

(10) 

"DTs E 

t "2 A "I V~U (g.cm .day .K ) 

.0212 

.0249 

.0617 



c . V a r i a b i l i t y o f e v a p o r a t i o n r a t e a s 

r e l a t e d t o t h e o t h e r m e t e o r o l o g i c a l 

v a r i a b l e s 

In F ig . 1 d a t a of a c t u a l s o i l evapora t ion as ob ta ined by the 

Bowen r a t i o method a re p l o t t e d versus the corresponding su r face tempe­

r a t u r e s . 

actual evaporation E 
(mm day ) • Fitted with eq.(5) and eq. 17) 

0 outside the range estimated 
with eq.(7) 

o o 

- " ^ o 

e r * . • 
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il 
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3'7 Ù2 (°C 

surface temperature Ts 

Fig. 1. Evaporation rates as calculated according to eq. (5) with a 

constant slope (middle broken line). The range of scatter due 

to surface albedo as calculated by eq. (7) is shown by the 

short broken lines. Measured evaporation rates E are plotted 

versus measured averaged daily surface temperature T . Dotted 
s 

points are within, open circles are outside the range bounded 

by eq. (7) 

The scatter due to differences in surface albedo is also shown, 

as evaluated from: 

R 
D E - - ~ <ta a L 

(g.cm .day ) (7) 

and evaluated with 6a = (a -a„)/2, corresponding to a 6 E = + 1.4 
x N r e a _ 

mm.day , where ct and a a r e t he maximum (0.583) r e s p . the minimum 

value (0 .262) of the su r face r e f l e c t i v i t y i n the da t a s e t . 



actual evaporation E 

(mm day ) 
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• Fitted with eq.(5) and eq. (8) 

0 outside the range estimated 
with eq.(8) 
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Fig. 2. As Fig. 1, but the range of scatter is not only due to surface 

albedo but also due to air temperature as calculated by eq. 

(8) 

In Fig. 2 the scatter due to the air temperature, according to 

the derivative: 

1 7. P C 

n E = f (4 e' o TJ - -â-i) d T 
Ta L a r a 

t ~2 * "N 
tg.cm .day ) 

(8) 

is also shown. In eq. (8) 6 T = (Tx-TN)/2, where Tx and T are the 
a a a a a 

maximum resp. the minimum value of air temperature in the data set. 

As can be seen from Fig. 2, this may account for a variability in 

evaporation of an additional +0.3 mm.day . A comparison of Fig. 1 

with Fig. 2 shows that the scatter due to the variability of surface 

reflectivity could be justified by a curve E (T ,a). 

Before continuing, the dependence of D E on T must be evaluated. 
J- S s 

In the Figs. 3 and 4 E(T ) is calculated and plotted with a varying 

slope (eq. 5), while the scatter is calculated according to: R x N 

(6E) = ^ ^ L + 
max L 2 

4 e' a T3 Tx 
a / a 

„N P c 
a a . a 

Lr *• 

Xx - T N 

(g.cm .day ) (9) 

As can be seen, the results of Fig. 2 and Fig. 4 are practically 

equivalent. 
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Fig. 3. As Fig. 1, but with the slope dependent on surface temperature 

T 
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Fig. 4. As Fig. 2, but with the slope dependent on surface temperature 

T 

In a way similar to eq. (4), an analytical expression of E(T ,a) 
5 

can be de r ived : 

E (T g , a ) * E . ( i g , ^ , i 2 ) (g.cm .day ) (10) 

or 



E(T , a ) = E* + D^ E dT + D E d a (g.cm . day" 1 ) (11) 
s Ts s a 

d. N u m e r i c a l c a l c u l a t i o n o f t h e d e r i v a ^ - r 

t i v e w i t h r e s p e c t t o s u r f a c e t e m p e r a ­

t u r e a n d r e f l e c t i v i t y 

Eq. (11) can be w r i t t e n a s : 

E(T , a ) - E* - I ( - a - a - d T + 4 e a T3 d T + R d a ) (g . cm"2, d a y ' 1 (12) 
s L r s s s s 

a 

This equation corresponds to eq. (6) and, according to the same 

procedure applied there, the zeros of the second term of the right 

hand side of eq. (12) can be evaluated: 

-^-2- d T + 4 e a T 3 d T +R d a = 0 (J . cm"2, day"1) (13) 
r s s s s 
a 

Solutions I " of eq. (13) depend on the combination of the incre-
s 

ments ÔT and 6a. In Table 2, values T " are shown as included in the 
s s 

interval corresponding to the different values of r (Table 1). The 
cL 

left hand side of eq. (13) can be <0 when either 6T or 6a is negative, 

according to the value of r . The headings of rows and columns in 
3. 

Table 2 show the different choices of ÔT and ôa. 
s 

For a proper interpretation of these results it must be kept in 

mind that they have been derived by Taylor's expansion of eq. (1), 

Thus the trend of the evaporation rate E is, strictly speaking, de­

termined only in the neighbourhood of the point one is dealing with. 

After collecting experimental values of the evaporation rate for 

different surfaces and periods one by one, the procedure to be applied 

is the following. Firstly one checks for a point P. if D E| •£ 
l Is,a 

0 or >0. Secondly, for the points P. -> P„ if 6 E| <0 or >0. 1 

This means to check if the points P. and P„ can be 1 connected by 

a monotonie single-value function of the couples (T ,a). The points 
2 s 

P and P constitute a data set denoted S . Then the same procedure 
is applied to a certain point P- looking for the nearest point in S 
with respect to the coordinate system T ,a. Now one has to check if 



Table 2. Surface temperatures T " (K) satisfying eq. (13) for different 
s -1 

choices of <5T and ôa, with 0.0116 .£ r .£1.16 (day.cm ). 
S 3. 

When ÔT < 0 , E > E for T > T " . The r eve r s e holds for <5T > 0 s s s s 

6a = .i ôa = -.i 

K (°C) K (°C) 

ô T = 1 -553<T "<-488 (-826<T "<-761) 
s s 396<T "< 386 ( 123<T "< 213) s s 

ô T = -1 396<T "< 486 ( 123<T "< 213) 
s s 

-553<T "<-488 (-826<T "<-761) 
s s 

ô T = 5 -424<T "<-287 (-697<T "< 560) 
s s 

-31 KT "< 283 (-584<T "< 10) 
s s 

Ô T = -5 -31 K T "< 283 (-584<T "< 10) 
s s -424<T "<-287 (-697<T "< 560) 

s s 

2 P- can be connected to its nearest point in S with a slope of the same 
2 2 3 

sign as in S . If so, add P~ to S to get S . If not, add P_ to a second 
data sub-set where the slope is of opposite sign. Then repeat the pro­

le-1 
cedure for each P with respect to S . Then it is possible to fit 

K. 

independently the two sets with positive (<5T E>0) and negative 
J- S y ot 

(<STs a<0) variation. 
In the following, different relationships between E, T , a will 

S 

be a n a l y t i c a l l y der ived and f i t t e d to da ta ob ta ined from a s e r i e s of 

experiments performed i n an inhomogeneous d e s e r t a r e a . 

e . F i r s t - o r d e r a p p r o x i m a t i o n o f t h e 

s u r f a c e E(T , a ) 
s 

In the present case the well known condition for four points be­

longing to the same plane leads to the following expression of the 

linear function E'(T ,a): 

T -T 
s s 

T'-T2 

s s 
3 2 
s s 

1 
a-a 

1 2 
a -a 

3 2 
a -a 

E-E 

E'-E2 

3 2 
E -EZ 

= 0 (14) 



The points P. = (T1, a1, E 1 ) , P = (T2, a2, E 2 ) , P E (T3, a3, E3) 
J S £. s s 

must be chosen on the basis of eq. (1). This means that, with a minimal 

quantity of data, the Figs. 1 to 4 together with eq. (1) can be used 

to choose the points P , P , P . The terms E jU.i, and E i7«ï2 *
n e<*' 

(10) can be represented on the coordinate planes (E, T ) and (E, a) 
S 

respectively. If a constant value for D E is used, E'(T ) and E'(a) 
J. s s 

are straight lines in the two planes. Evaluation of the slope of E'(a) 

requires an estimation of the shortwave incoming radiation. In this 

paper the average R of the whole data set (winter time and summer 

time data) is used. Evaluation of the slope of E'(T ) is more cumber­

some, because D E = f (T ,r ). As can be seen from Figs. 3 and 4, 
JL S S3, 

D E is not varying strongly in the interval 280<T <320 (K) (7<T <47 °C). 
Ts s s 

As far as r is concerned, there is a strong variation of r in the 
a a 

existing data set. This problem will be discussed later in detail in 

section III.c. Anyhow, in order to evaluate the feasibility of very 

simple formulas (as derived in a formal way from the energy balance 

equation) only mean values are used. 

III. NUMERICAL DEVELOPMENT OF LINEAR EVAPORATION EQUATIONS 

a. S e l e c t i o n o f s u i t a b l e e x p e r i m e n t a l 

p o i n t s 

whether or not the use of eq. (14) is successful depends on the 

selection of the points P , P , P (section II.e). The most reasonable 

choice seems to use extreme values either for T or a. One of the 
s 

points P. can be on the axis E, the other two on the coordinate planes 

(E, T ) and (E, a). With this solution it is likely that the experimental 

values of E are closer to the plane E'(T ,a). The first step is to 

calculate the intercepts of the straight lines E'(T ) and E'(a) from 

eq. (5) and (7). When using the input data presented in Table 3, the 

following values for the derivatives are found: 

D E = -0.206 (mm.day"'.K-1) D E = -8.86 (mm.day-1) (15) 
Ts a 

10 



Table 3. Numerical input data used for the calculation of the functions 

E'(T ) and E'(a) 
s 

Parameter Value Units 

p c 1.154 J.cnf 3.K-1 

a a 
4 e a 18.615.lO-7 J.cm"2.day"1.K~4 

r 2.15 day.cm 
cl 

T 300.8 K 
s 

R 2154.8 J.cm~2.day~1 

s J 

L 2432.3 J.g"1 (at 27°C) 

The functions E'(a), E'(T ) are described as: 
5 

E'(T) = -0.206 (T -280) + m (mm.day"1) (16a) 
S s 

E'(a) = -8.86 (a-.25) + n (mm.day-1) (16b) 

The intercepts m and n can be calculated simply by imposing that 

two known points belong to the lines. The origin of the coordinate 

planes was chosen corresponding to a = 0.25 and T = 280 K, both 
S 

values being smaller than the minimum values in the data set. The point 

0. = (280, 0.362, 3.8) is on the plane (E,a) and the point Q_ = (300.8, 

.25, 3.8) is on the plane (E,T ). The average values are: I = 3.8, 

T • 300.8, c; = 0.362, and accordingly m =* 8. 1 and n = 5.0 were found. 
S 

One of the three points required was chosen as Ë = (m+n)/2. Then an 

arbitrary choice of the points P(T , a, E) can be: 
P = (280., .25, 6.6); P = (300.8, .25, 4.); P = (280, .7, 1.2) 

The point P w a s also calculated from eq. (16b) on the plane (E,a). 

From such a selection and according to eq. (14), a relationship between 

E. T and a was obtained as: 
s 

E'(T ,a) = -12.a - 0.125T + 44.6 (mm.day-1) (17) 
s s 

Since a poor agreement was obtained for experimental values cor-

11 



responding to high reflectivities and low temperatures, a new trial 

was done with: 

Pj E (280, .25, 6.6); P2 = (300.8, .25, 4.); P3 = (282.9, .583, 3.4) 

where P_ is measured. In this case the relationship obtained was: 

E*(T ,a) = -8.52a - 0.125T + 43.73 (mm.day"1) (18) 

s s 

b . C o m p a r i s o n b e t w e e n c a l c u l a t e d a n d 

e x p e r i m e n t a l v a l u e s 

The accuracy of eq. (18) and eq. (5) was t e s t e d a ga in s t the expe­

r imen ta l p o in t s of the Figures 1 to 4 . In Table 4 measured E -da ta , e s ­

t imated va lues E ' (T ) from eq. (5) and E ' (T , a ) from eq. (18) a re com-
s s 

pared. Standard deviations are also shown. The experimental values 

were collected over quite different surfaces and different periods of 

the year. 

Table 4. Comparison between experimental data with values obtained from 

eqs. (5) and (18) 

(mm.day ) 

1.26 

1.43 

1.46 

1.21 

1.1 

According to the theory developed in section II.d, it is still 

necessary to check the sign of the derivative for every point in the 

data set. Such a check was performed, with the derivatives evaluated 

using the average shortwave radiation R , and the actual data of T 
S E 

and r . The aerodynamic resistance r was evaluated according to 
a a 

FEDDES (1971) as: 

12 

E-function 

E 

E'(T ) from eq. (5) 

E-E'(T ) s 
E'(T ,a) from eq. (18) 

E -E'(Ts,a) 

Mean 

(mm. day 

3.8 

4.1 

-.3 

3.2 

0.6 

') 



e*Pa r _ 7.T1 

r |~f(l) 1.15 u""#75l (s.nf1) (19) 
a pa L 

where £* = ratio of molecular weight of water vapour to dry air 

p = atmospheric pressure (pascal) 
a . -i 

u = wind velocity (m.s ) 
b 

f(l) = a 1 
1 •= height of roughness elements 

a - 0.167 x 10~7 when 1 ̂  20 cm 

a = 0.3704 x 10~7 when 1 > 20 cm 

b = .59 when U 20 cm 

b = .2827 when 1 > 20 cm 

The increments ÔT and 6a were evaluated according to the proce­

dure described in section II,d. 

With such a procedure it was possible to separate the experimental 

points in two sub-sets, according to the negative and positive values 

of D„ E. The sub-set with the positive derivative included five 
Ts,a 

points out of the 33 presented in Figs. 1 to 4. A new evaluation of 

the accuracy of eq. (18) was performed for the sub-set with the negative 

derivative. Results are shown in Table 5. 

Table 5. Comparison between experimental and calculated values of the 

sub-set with the negative derivatives 

E-function Mean a 

(mm.day ) (mm.day ) 

E 3.6 1.25 

E'(T ,a) 3.1 1.2 
S 

E -E'(T ,a) 0.5 1.1 
a s 

The results of Table 5 are not excellent, but they still support 

the theory. In the following sections the effect of air temperature 

and the way how to handle data with very low r , will be analysed. 
3. 

13 



c. E f f e c t i v e n e s s o f t h e a e r o d y n a m i c r e ­

s i s t a n c e , r 

Up till now the dependence of E upon r was not taken into account 

Such a hypothesis seems rather inaccurate because thus points of high 

aerodynamic resistance were connected with points of low aerodynamic 

resistance. From eq. (1) D E is derived as: 
a 

D E = 1 p c (T -T ) i , d r 
r L a a a s 2 a 

a r a 

(g.cm .day ) (20) 

Since a finite evaluation of 6 E is needed, it is better to write 

eq. (2 

6 E 
ra 

.0) as: 

P. 
J 

= | p c (T -T ) 
L a a a s 

P. 
1 

P. 
J 

1 
-S- d r 

r2 a 

P. a 
l 

(g.cm .day ) (21) 

where P., P. are points in the data set, and the average (T -T ) is 
l j a s 

taken between P. and P.. The correction according to eq. (21) must be 

evaluated for the points in the data sub-set where D_ < 0, for those 
Ts ,a 

points showing the highest roughness. The points to be considered to­

gether with the data required for the calculation are depicted in 

Table 6. 

Table 6. Experimental input data corresponding to days and sites with 

low aerodynamic resistances r . The last column represents 

data obtained from calculations with eq. (18) 

1 

2 

3 

4 

T 
s 

(K) 

308.7 

309.2 

309.9 

30 7.9 

T 
a 

(K) 

305.7 

312.7 

310.3 

306.2 

a 

0.298 

0.301 

0.303 

0.304 

r 
a _, 

(day.cm ) 

0. 11 

0.11 

0.13 

0.07 

E 

(mm.day ) 

5.5 

6.3 

6.4 

5.2 

E'(Ts,a) 

(mm.day ) 

3.58 

3.54 

3.50 

3.56 
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Until now the relationship between actual evaporation rate E and 

surface characteristics T and a has been sought in a three-dimensional 
s 

space (E , T » a). In principle evaluation of the effectiveness of r 
3 S 3 

on E (without shadowing contributions from T and a) requires couples 

of points differing from each other only with respect to r . It is 

impossible to match with the data available such a constraint. Then 

points with almost the same value of T , but with different albedos 

were selected from the data-set. The data for these points are given 

in Table 7. 

Table 7. Experimental input data corresponding to days and sites with 

T and a-data similar to those in table 6, but with high 
S 

aerodynamic resistances, r . The last column again computed 
with eq. (18) 

1 

2 

3 

T s 
(K) 

308.2 

307.2 

307.6 

T a 
(K) 

308 

309.4 

309.8 

0 

0 

0 

a 

.477 

,422 

,442 

r 
a 

(day.cm 

2 

2 

2. 

33 

68 

43 

' ) 

E 

(mm. day 

4.4 

2.3 

2.7 

S 
E'(T ,a) 

s -1 
(mm.day ) 

2.09 

2.58 

2.4 

It must be emphasized that the term 6 E (eq. 21) is independent 
ra 

from the formulation given by eq. (18). Therefore taking care of the 
sign, the variation 6 E must be added to thé values of the column 

ra 
headed E'(T ,ot). According to eq. (21) the variations ô E between 

S . . . ra 
each separate point in Table 6 in combination with all the points of 
Table 7 were calculated. Results are shown in Table 8. From Table 8 

it can be concluded that the calculation of <5 E requires only 
• a -1 

approximate values of r . When r can be assigned to about 0.1 day.cm a a -1 
for a rough surface, and about 2 day.cm for a smooth one, 5 E is 

ra 
determined sufficiently accurate. In Table 8 the row-index applies to 
the rows of Table 6 and the column-index to the rows of Table 7. 
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Table 8. Values of 6 E (mm.day ) evaluated from Tables 6 and 7. The 
r a . 

sign of 5 E is for decreasing values of r 
ra 

Average 

1 1.65 1.5 1.5 1.55 

2 0.9 0.9 0.9 0.9 

3 1.0 1.0 1.0 1.0 

4 3.5 3.3 3.05 3.3 

For each row averages can be taken and can be used for estimation 

of corrections for differences in r . 
a 

Similar calculations as performed for Table 5 yield the results 

shown in Table 9. Improvement in the estimation of E is evident when 

comparing the standard deviations of E and E-(E'(T )+<5 EJ. It is 

important to recall that, unless Table 4, only those data were used 
with DTs,a K °' 

Table 9. Comparison between experimental and calculated values. Eq. 

(18) corrected according to eq. (21) 

E-function Mean a 

(mm.day ) (mm.day ) 

E 3.6 1.25 

E ' (T CÜ+6 E 3.3 1.4 
s , r a 

E-rÉ ' (T ,a)+<5 E ] 0 .3 0.9 *̂ s r « "̂  

d. E f f e c t i v e n e s s o f a i r t e m p e r a t u r e 

The results of Table 9 show that calculated values are rather 

close the measured data. However standard deviation is still too high. 

When looking at the data it seems that a systematic underestimation 

occurred during the period from 2 September to 8 September, 1978. This 

period was characterized by very high values of air temperature: the 

mean air temperature amounted to 35.8 C, while being 27.4 C over the 

16 



remaining data. Thus it was decided to evaluate an additional correct-
_ o — 1 

ion from eq. (8), using ÔT - 8.4 c. Accordingly 6 E = 1.8 mm.day 
a. i.ci 

was found. As for 6 E the correction 6 E is independent from the 
ra la 

previous ones and must be added to E'(T ,a). Applying such a correct­

ion yielded the results shown in Table 10. 

Table 10. Comparison between experimental E and calculated (eq. 18) 

evaporation data with the corrections 6 E (eq. 21) and 
ra 

6 E (eq. 8) being included 
J. a. 

E-function Mean a 

(mm.day ) (mm.day ) 

E 3.6 1.25 

E'(T ,a)+<5 E+ôT E 3.7 1.28 

s' ra Ta 
E-1E'(T ,a)+ó E+ôm E 1 -0.1 0.5 

L s' ra Ta -» 

e. S u m m a r y o f t h e r e s u l t s 

Experimental values of actual evaporation rate, from different 

surfaces and periods, were compared with values calculated from eq. 

(18). Further corrections for the aerodynamic resistance r as obtained 
a 

from eq. (21) and for the air temperature T as obtained from eq. (8) 
ci 

were applied (Table 10). The accuracy of the fit is also shown in 

Fig. 5, where measured versus calculated values are plotted. An inter­

val equal to 20 of E -jE'(Ts,a) + 6 E + 6 Ej is also shown in Fig. 5. 

In the evaluation of the corrections, the effect of atmospheric 

instability was not taken into account. However such an effect may be 

very important as far as period 2/9-8/9 is concerned. In those days 

surface temperatures even higher than 60 C were observed. In these 

conditions strong buoyancy phenomena develop. For these reasons the 

evaluation of r& by eq. (19) under unstable conditions might be unre­

liable. 
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Fig. 5. Measured versus calculated (eq. 18) evaporation rates. Correct­

ions included relate to surface aerodynamic resistance and air 

temperature. A scatter equal to twice the standard deviation 

is shown (broken lines) 

IV. SUMMARY AND CONCLUSIONS 

A simple procedure to evaluate actual evaporation has been derived 

by a geometrical representation of the energy balance equation, ex­

pressed as its first order Taylor's expansion. The role of the physical 

variables involved in the energy balance equation has been analysed. 

A linear relationship between actual evaporation and surface tempera­

ture was calculated and compared with experimental data. A bi-linear 

relationship between actual evaporation, surface temperature and 

albedo was also determined. Comparison with experimental data yielded 

promising results. 

Corrections were applied as related to differences in aerodynamic 

resistance and air temperature for each day-experiment. The slope of 

the relationships between "actual evaporation and surface characteristics 
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was shown to be strictly tied to aerodynamic resistance. 

No relevant effect of the indétermination of the soil heat flux 

in desert dry soils was found. 

After corrections were applied agreement between calculated and 

experimental evaporation data was shown to be good. 

The formulas derived are oriented to applications involving remo­

tely sensed surface temperature and albedo. The required basic data 

are: meteorological data, height and kind of soil coverage, mean value 

of the evaporation rate. These data allow the calculation of first-

stage evaporation formulas. Short term experiments over different ex­

treme situations were shown to be more useful than long-lasting expe­

riments over a few surfaces. 

The linear functions derived can be used for a straight forward 

evaluation of actual evaporation from MSS and IRLS data. These data 

provide the required values of surface temperature and albedo for 

each single area. The present procedure can be followed as a scheme, 

when evaluating evaporation losses from large inhomogeneous areas. 
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LIST OF USED SYMBOLS 

Symbol Interpretation Units 

a surface reflectivity 

-2 -1 
E evaporation rate g.cm .day 

E(T ,a) evaporation rate calculated as an 
S _2 _i 

arbitrary function of T , a g.cm «day 

E'(T ,a) evaporation rate calculated as a 
s -1 

linear function of T , a mm.day 
s 

e surface emissivity 

e' air apparent emissivity 

E* ratio of molecular weight of water 

vapour to dry air 

G soil heat flux 

1 height of roughness elements 

L latent heat of vaporization of water 

p atmospheric pressure 

p c thermal capacity of air 
a a 

r surface aerodynamic resistance 
R shortwave incoming radiation 

s 
a Stephan-Boltzmann constant J.cm .day .K 
T air temperature K 

a 
T_ surface temperature K 

S 

D ,E(x., .., partial derivative of E with respect 
X l 1 V 

xn' to x.. E is any function of 

vx » .., x ) 
Ô E(x., .., finite variation of E with respect 

X i x ) 
n to x.. E is any function of 

(x.» •., xn) 

21 

J . cm 

cm 

J . g " 

Pa 

J . cm 

day . 

J . cm 

-2 

1 

-3 

2m 

-2 
* 

day 

K"1 

-1 

day 

1 

1 


