DISJUNCTIVE LINEAR OPE
RATORS A
MULTIPLICATIONS IN RIESZ SPACES NP PARTIAL

i

0000 0086 6



Promotor: dr. B. van Rootselaar, hoogleraar in de wiskunde




N o & 320

B. VAN PUTTEN

DISJUNCTIVE LINEAR OPERATORS AND PARTIAL
MULTIPLICATIONS IN RIESZ SPACES

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN

DOCTOR IN DE LANDBOUWWETENSCHAPPEN,

OP GEZAG VAN DE RECTOR MAGNIFICUS

DR. H.C. VAN DER PLAS,

HOOGLERAAR IN DE ORGANISCHE SCHEIKUNDE,
IN HET OPENBAAR TE VERDEDIGEN

OP WOENSDAG 17 DECEMBER 1980

DES NAMIDDAGS TE VIER UUR IN DE AULA
VAN DE LANDBOUWHOGESCHOOL TE WAGENINGEN.

Krips Repro - Meppel

Lino o : SR

Wil liia vwriix

oM. 12303 6- 03



Want het dwaze Gods
is wijzen dan de mensen

(1 Koninthe 1 : 25a}

BIBLIOTHEEK LH.
1 6 DEC. 1380

ANTY. TIIDSCHR. AT,




proLT0!, 930

STELLINGEN

I
ledere semi-norm o op een eindig dimensionale Archimedische Riesz ruimte
E zodanig dat p(x) = p(l%]|) voor alle x € E is een Riesz semi-norm.
De verwijzing die Aliprantis en Burkinshaw voor deze stelling geven is
niet terecht omdat deze stelling reeds in 1961 is bewezen door Bauer,
Stoer en Witzgall.

Aliprantis, C.D, en Burkinshaw, 0.
Locally solid Riesz spaces, Academic Press (1978).

Bauer, F.L., Stoer, J, en Witzgall, [.
Absolute and monotonic norme,
Numer. Math., Vol. 3, pp. 257-264 (1961).

11
Als p een reguliere vectoriéle pseudonorm: g" - ]25 is, N(p)={x € £"; p(x)=0}
en R(p} = {p(x); x € En}lL , dan is dim R(p) < n - dim N{p}.

111
Als op een Archimedische Riesz algebra E een L-norm Il- | gedefinieerd is dan
bestaat er op E een semi-inproduct.
Als E een Archimedische ¢-algebra is en (E, . 1) een AL-ruimte, dan is er
een norm - I' op E zodanig dat (E,#-1'}) een Hilbhert ruimte is.

IV
De lineaire ruimte B{X,Y) met operatornorm van alle norm begrensde lineaire
operatoren van X naar Y, waarbij X # {0} en Y genormeerde lineaire ruimten
over R 2ijn, is juist dan norm compleet als Y norm compleet is.
Het analogon van deze stelling in Riesz ruimten, met orde begrensd in plaats
van norm begrensd en Dedekind compleet in plaatsvan norm compleet, is geldig
onder de beperking dat de orde duale X" van X voldoet aan X" # {0}.

Pfaffenberger, W.E.
A converse to a completeness theorem,
Amer. Math. Monthly, Vol. 87, no. 3, p. 216 (1980).

Aliprantis, C.D.
On order properties of order bounded tranmsformations,
Canad. J. Math., Vol. 27, no. 3, pp. 666-678.




v |
Als X een lineaire ruimte over R 1is, Y een Dedekind complete Riesz rui%
en p: X~ Y een sublineaire operator van de vorm |Lx| (L een lineaire
operator van X naar Y), dan is veor iedere x € X de verzameling
K, = {y € % p(x +¥) = p(x) + p{y)] een pre-kegel in X,

VI
Zij voor allen€ N de n x n matrix An gegeven door An (i,d) = e
(i, §=1, ... ,n).
. _e+1
Voor de spettraalstraal p(A )} van A geldt lim o(A) = o

N+

-13-3]

VII
Veksler en Geijler hebben bewezen dat iedere voorwaardelijk lateraal com-
plete Archimedische Riesz ruimte de projectie eigenschap bezit.
Bernau zegt van deze stelling een generalisatie te geven in tralie-geor-
dende groepen. In tegenstelling tot zijn bewering is zijn resultaat voor
Riesz ruimten zwakker dan dat van Veksler en Geiler.

Veksler, A.I. en Geiler, V.A.

Order and disjoint completeness of lineaqr partially
ordered epaces (Russisch),

Sibirsk Mat. Z., Tom. 13, pp. 43-51,

English transl.: Siberian Math. J., Vol. 13, pp. 30-35.

Bernau, S5.J.
Lateral and Dedekind completion of archimedean lattiece groups,
J. London Math, Soc. (2), Vol. 12, pp. 320-322.

VIII
De statistische selectie- en rangschikkingstechnieken, waarvoor recent
in de statistische literatuur veel belangstelling aan de dag is gelegd,
verdienen in het landbouwkundig onderzoek grote aandacht.

IX
Het verdient aanbeveling de uitdrukking "een x-aantal" niet te bezigen
zonder specificatie van x.

X
De overheid dient ten aanzien van alternatieve groeperingen geen alter-
natieve gedragslijn te volgen.

Stellingen bij het proefschrift "Disjunctive linear operators and partie
multiplications in Riesz spaces",

B. van Putten
Wageningen, 17 december 19¢
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De aanleiding tot het schrijven van dit proefschrift was een projectvoor-
stel, gericht aan de Vaste Commissie voor de Wetenschapsheoefening van de
l.andbouwhogeschool, dat als titel had "vectorial norms on linear spaces"”.
Dit was tevens de titel van mijn afstudeerverslag (mei 1976). Dit project-
voorstel werd goedgekeurd en in september 1977 werd begonnen met de uit-
werking van dit project.

Daartoe werden normen bestudeerd, die waarden aannemen in Dedekind comple-
te Riesz ruimten. Al spoedig kreeg ik daarbij te maken met de operatoren,
die in dit proefschrift een belangrijke plaats innemen en die zeer de
moeite waard leken om te worden bestudeerd. Voor verdere studie van het on-
derwerp was kennis van deze operatoren noodzakelijk en zo langzamerhand
werden de ruimten die het bereik zijn van deze normen het domein van studie.
Intussen bleek dat de operatoren die mijn belangstelling hadden ook bestu-
deerd werden door enkele anderen, meestal vanuit verschillende achtergronden.
Het resultaat is nu een proefschrift op het gebied van de zuivere wiskunde;
de titel ervan heeft met de titel van het projectvoorstel toch nog twee
woorden gemeen.

Bij dezen dank ik mijn ouders voor hun zorg door alle jaren heen en ook mijn
overige familie dank ik voor hun belangstelling,

Professor Dr. A. van der Sluis dank ik vriendelijk voor de fijne afstudeer-
periode en voor het vele dat ik in die tijd van hem heb geleerd.

Mijn promotor, Professor Dr, B. van Rootselaar, dank ik hartelijk voor zijn
hulp en zijn aanmoediging om de sprong in het oneindig dimensionale te maken.
Ook de overige leden van de Vakgroep Wiskunde dank ik voor hun belangstel-
Ting, in het bijzonder Drs. B.R. Damsté voor het corrigeren van de tekst in
de zeer korte tijd die daarvoor nog overig was.

I would Tike to thank Professor Dr. W.A.J. Luxemburg (Pasadena, California)
and Professor Dr. H.H. Schaefer (Tibingen, B.R.D.) for their kind invitation
to visit the conference about "Riesz spaces and order bounded operators",
which was held in Oberwolfach, from June 24 till June 30, 1979.

Jodien Houwers en Ans van der Lande-Heij dank ik voor het typen van dit
proefschrift.

Mijn vrouw Riet dank ik voor faar steun en voor hei accepteren van mijn dag-
en avondindeling.
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Chapter I
RIESZ SPACES

In this chapter we give an exposition of the elements of the theory of
Riesz space; for a short historical introduction we refer to the books
of Aliprantis and Burkinshaw [1978] and Luxemburg and Zaanen [1971].

1. Order relation

An order relation on a non-empty set S is a subset < of the Cartesian
product S x S of S with the following properties:

< is transitive, i.e. if {x,y) € < and (y,z) € € for x,y,z € $, then
also {x,z) € <,< is reflexive, i.e. (x,x) € < for all x € S, < is
anti-symmetric, i.e. (x,y) € < and (y,x} € € for x,y € S implies x = y.

It is common to write x <y instead of (x,y}) € <.

A partially ordered set is now defined as a pair ($,<) where S is a
non-empty set and < is an ¢rder relation on S.

Two elements x and y are called comparable if at least one of the state-
ments x <y, ¥y < x holds, otherwise they are called incomparable.

A non-empty subset X of a partially ordered set {S,<) is called a chain
in ($,<) if all pairs of elements of X are comparable.

(S.<) is said to be totally ordered if S itself is a chain in (5,<).
If x is an element of a partially ordered set (S,<) such that x <y for
¥ €5 implies x = y, then x is called a maximal element of {S,<).

x is a minimal element of (S5,<) if y < x for y€S5 implies y = x.

For elements x,y,z of a partially ordered set (S,<) the following nota-
tions are used:

x<yforx<ydx+#y;

y=x for x<y;

y > x for x <y;

xsy<zforxsybkys<z;

xsy<zforx<z&ysxz;

[ x,¥} for the order interval {z€%; x < z < y},



If X and Y are non-empty subsets of a partially ordered set (S,<), then
X is majorized by Y, in formula X < Y, if x € y holds for all x€X and
y€Y. In that case ¥ is called minorized by X. If Y is a singleton {y},
then we write X <y dnstead of X < {y}. y is said to be a majorant of X
then.

Dually, if X is a singleton {x}, then we write x <Y instead of {x} €Y
and x is said to be a minorant of Y.

A non-empty subset X of (S,<) is called majorized in {S,<)}, in formula
X <, if there exists a z€S such that X < z, minorized in (§,<), in
formula < X, if there exists a y€S such that v < X and bounded, in for-
mula < X <, if X 1s majorized and minorized at the same time.

As a consequence, we have that a non-empty subset X is bounded if and
only if there exist y,z € S such that X € [y,z].

Now we can formulate Zorn's lemma, which we give in the following form.

1.1. Zorn's lemma. If every chain in a pariially orderved set (S,<) is

majorized in (S, <) then (S, <) contains at least one maximal elemant.

An element x of a partially ordered set (S,<) is called a supremum of a
non-empty subset X of S if x is a majorant of X and at the same time a
minorant of the set of all majorants of X, in formula X € x and if X<y
for some y€S5 then x < y. It follows from the anti-symmetry of the order
relation that a supremum is unigue.

The supremum x of X # ¢ is denoted by sup X.

Dually, z€S is called an infimum of X if z is a minorant of X and at the
same time a majorant of the set of all minorants of ¥, in formula z < X
and if y < X for some y€S then y < z. Also an infimum is unique and is
denoted by inf X.

1.2. Definition. 4 lattice s a partially ordered set (S, <) with the
property that for all X,y €5 hoids that Sup {x,y} and inf {x,y} exist

in S.

In the sequel we write XXV e VXq for sup {xl,xz,...,xn} and
xf\sz,..Axn for inf {xl,xz,..,xn}.




A lattice (S,=<) is called distributive if for all x,y,z€S holds that
{xvy)Az = (xAz)v(yAz).

A lattice (5,<) is distributive if and only if for all x,y,z€S holds
that {xAy)vz = (xvz)A{yvz) (cf. e.g. Birkhoff [ 1967, I. 6 thm 9.

1.3. Definition. 4 Zattice {5,<) iz called

(a) (order) complete 1f SuUp X and inf X exist in S for every non-empty
subset X of S.

(b) Dedekind complete 1f sup X exists for every majorized subset X of S

and inf Y exists for every minorized subset Y of S.

(e) Dedekind o-complete if sup X existez for every majorized eountable
subset X of S and inf Y ewpists for every mincrized countable subset
Y of S.

1.4. Definition. A distributive lattice (S,<) is called a Boolean

algebra ¢f 1: = sup S and 0: = inf S exist and <f for every XES there
exists a (necessarilyuniquel X' €S such that xAx' = 0 and x¥x' = 1. In
that case X' is called the complement of X.

2. Partially ordered linear spaces and Riesz spaces

2,1, Definition. 4 tripel (E,+, <) £Zs called a (partially) ordered linear

space 1f

ta) (E,+} 78 a linear space over R

(b) (E, <) <s a partially ordered set

{el) x <y implies X+ 2 <Yy + 2 for all X,¥,Zz € E

{(e2) 0 < X and A 20 implies 0 < Ax for all » €R and x € L.

In the sequel we abbreviate (E,+,<) to E for fixed + and <.

An element %x of a partially ordered linear space E is called infinitely
small with respect to 0 <y € E if nx <y and -nx <y hold for all n€N.
The set of all x € E such that x is infinitely small with respect to a
given 0 < y € E is denoted by IS{y). We abbreviate U{IS{y); 0 <y € E} to
IS(E). E is called Archimedean if IS(E) = {C}.



2.2. Definition. 4 partially ordered iinear space (E,+, <} s called a

Ricez space if (E, &) is a lattice. 4 Riesz space (E,+,<) ie called
Dedekind complete if (E, <) is Dedekind complete, and Dedekind a-complete
if (E,< ) is Dedekind o-complete.

2.3. Proposition. A Riesz space b ig Archimedean if and only if NX = ¥y for
X,¥ € gt and all n €N implies x = 0.
Proof: » : follows directly from the definition

+<  if nx <=y and -nx < y hold for certain x € E, 0 <y € E and all
n € N, then n.sup (x,-x) < y holds for all n € N. Now it follows from
sup (X,-Xx) = x, sup {x,-x)} = -x that 2 sup {x.,-x} = 0, so sup (x,-x) = 0.
Hence sup (x,-x) = 0 or x = 0.

Next we give some examples of partially ordered linear spaces. All examples
which are given here are well known in the Titerature and there exists a
reasonable uniformity in the 1iterature about a standard name of most of them.

2.4. Examples.
{a) R? is the real plane partially ordered componentwise, i.e.

(xl,xz) < (yl,yz) if Xy < ¥ and X < Ya at the same time. Provided
with the usual algebraic operations R2 is a Riesz space, where

(21’22) = (xl,xz)v(yl,yz) if z; is the maximum of X; and ¥; (i =1,2).
Note that R™ is even Dedekind complete.

(b) (Rz, lex} is the real plane ordered lexicographicly, i.e.
{Xlsxz) < (yls.YZ) if [xl < ‘y].] or [Xl = .Y]_ & xz < .yz] .
With the usual algebraic operations (R®, lex) is a Riesz space which
is totally ordered. However GRZ, lex) is not Archimedean, because
n{0,1) < {1,0) for all n €N. .

(c) P(R) is the linear space of all real polynomials on the real axis

with paintwise linear operations and pointwise partial ordering, i.e.
x=<yin PR) if x{t) = y(t) for all t €R.
PR} is a partially ordered linear space, which is moreover Archime-
dean. However, P{R) is not a Riesz space because xvy does not exist
for x and y incomparable, which obviously exist in P(R), e.g. x and
y with x(t) = 1 and y{t) = t for all t € R are incomparable.




(d)

(fl

(h)

(1)

C(X) is the linear space of all continuous real valued functions on
a topological space X with pointwise linear operations and pointwise
partial ordering.

C{X) is an Archimedean Riesz space, but in general not Dedekind com-
plete. If C(X) is Dedekind complete then X is called extremally dis-
connected.

(cf. e.9. Luxemburg and Zaanen [ 1971, ex.11.2(ix)}).

If K is a Hilbert space over the complex numbers, with inner product
(.5-)» then by ¥ we denote the real Tinear space of all bounded Her-'
mitean operators on H, provided with the partial ordering given by
§<T for S,T € ® if {Sx,x) < {Tx,x) for all x € H.

I is an Archimedean partially ordered linear space. ¥ is a Riesz
space only if the dimension of H is 0 or 1.

(Compare e.g. Aliprantis and Burkinshaw [ 1978, ex. 2,13 (2)]).

If (X,T,u) is a measure space, i.e. a non-empty set X and a o-field
I of subsets of X on which is defined a non-negative countably
additiye measure y, then let M(X,n) be the Tinear space of all real
measurahle functions on X. If we provide M(X,u) with the partial
ordering given by x < y if x(t) < y(t) for all t € X, then M{X,u,<)
is a Dedekind o-complete Riesz space.

(c¢f. e.g. Luxemburg and Zaanen [ 1971, ex. 11.2(v)]}. If in M(X,u) from
example (f) x is called equivalent with y (x v y) if x = y p-almost
everywhere, then ~ 15 an equivalence relation on M(X,u). The linear

‘space M(X,u) of all equivalence classes [x] in M(X,u} (natural algebraic

operations) can be provided with a partial ordering given by [x] < [y]
if x < y p-almost everywhere. M(X,u,<) is a Dedekind complete Riesz
space.

5 is the linear space of all sequences of real numbers. With pointwise
partial ordering s is a Dedekind complete Riesz space.

b is the linear space of all bounded sequences of real numbers. With
pointwise partial ordering b is a Dedekind complete Riesz space.



(i) ¢ is the linear space of all sequences of real numbers which converge.
With pointwise partial ordering ¢ is an Archimedean Riesz space, which
is not Dedekind complete, because if A = {(1,0,0,0,...},(1,0,1,0,0,...),
{1,0,1,0,1,0,0,...), ...}, then A < (1,1,1,...}. however sup A does not
exist.

(k) ) is the linear space of all sequences of real numbers which converge
to 0. With pointwise partial ordering <o is a Dedekind complete Riesz
space.

(m o0 is the linear space of all sequences of real numbers which are
eventually 0. With pointwise partial ordering oo is a Dedekind complete

Riesz space.

(m) FR is the linear space of all sequences of real numbers which have a
finite range. With pointwise partial ordering FR is an Archimedean
Riesz space which is not Dedekind complete, because if A = {(1,0,0,0,...),
(152:0,0,05...),(1r5:5,0,0,. )50 then A< (1,1,1,...), however sup A
does not exist.

3. Elementary properties of Riesz spaces

In this section some abbreviations are given, most of which are commanly
used, further some elementary properties are derived.

For an element x of a Riesz space E the positive part X" of x is defined
by x = xv0, the negative part x of x by x” = (-x)V0 and the absolute
value [x|of x by (x| = xv(-x).

x 15 said to be orthogonal to y, or disjoint to y, in formula xly, if
|x]A|yl = 0. The orthogenal complement X' of a subset X of F is defined by
o= {y & E; ylx for all x € X}; {x}l is abbreviated to xl. A subset X of
E and a subset Y of E are said to be orthogonal, or disjoint, in formula
X1Y if xLy for all x € X and y € Y. {x}LY is abbreviated to xLY.

3.1. Definition. A subeet P of a Riess epace £ <8 ealled a polar of E if

p=rph ‘




It is known that for every subset X of a Riesz space E the equality

¥ = X hotds (cf. e.9. Luxemburg and Zaanen [ 1971, thm 19.2(11)]).

This implies that every subset of the form X {for some X< E) is a polar
of £; it is evident that conversely every polar is of this form. Every
polar of E is a linear subspace of E (cf. e.g. Luxemburq and Zaanen [ 1971,
thm 14.21).

For subsets X and Y of a Riesz space E we use xF = ot xe X},

X=X 3 x€XP|X] ={|x]; x€X}, X+ ¥ ={x+y; xEX, y€EV}
X-Y={x-y; x€X, y€ Y}, Xv¥ = {xvy; x € X, y € Y} and

XAY = {xAy; X € X, y € Y}. We abbreviate {x} + ¥ to x + Y, similar abbre-
viations are made in the other cases. For X € R we denote {Ax; x € X} by AX.
In every Riesz space E the equality £ = EY - £ nolds (cf. e.g. Schaefer
11974, p. 581 ). EY is called the positive cone of E; the elements of £t are
called the positive elements of E.

3.2. Proposition. For x and y positive elemente of a Riesz space B the
inelusion 5 + vt € (x + y) hotds.
Proof: If x + y L s for some s € E then from 0 < x, 0 < y it follows that

x1l s and yl s. But then also ul s and vi s for all u € xll and v € y}l,

hence U + v 1 s, which implies u + v € (x + y)ll.

3.3. Theorem.(cf. e.g. Aliprantis and Burkinshaw [ 1978, thm. 1.1], Luxem-
burg and Zaamen [ 1971, cor. 12.3] and Schaefer {1974,II, prop,1.4, cor 1,
cor, 21).

For X,¥.,2 elements of a Rieszs space E we have

ta) x = x =%, [x| =xT+x, xPaxT =0

(B) xvy = -({-x)A(-y)),s xAy = -({-x)v(=¥})

{e) x + (yvz) = (x + yIV{x + 2), x + (yAz) = (x + y)A(x + 2)

(d) Mxvy) = (WX)V(Ay) for all » € R*; [Ax| = |A||x]| for aZl X €R

(e) (xvy)Vz = xv(yvz), (xAY}Az = xA(yAz)

(F} %+ ¥y = xvy + xAy, |x - y| = 2vy - xAy

(70 (x -y) = x and (x - y) =y £fxpy = 0

(h) uy if and only if |X +y| = |x - y|

(L} (Birkhoff's idemiity) |xvz - yvz| + |xAz - yAz| = [x - ¥|

(J) {x + y)rz < (xAZ) + (yAZ)} Zf X,¥.Z € et

H



(k) x £y is equivalent to «t < y+ & y <= x

() Vx| - dyll < Ix+y| < x|+ lyl. (x + y)+ sxteyt, ey x4y
(m) if xiy then |x +y| = x| + |yl. (x + ) = xF eyt ey = x4y
M) XAy S XV S X+y 2if X,y € et

The following theorem is frequently used in Riesz space theory.

3.4. Theorem. (compare e.g. Luxemburg and Zaanen [1971, cor. 15.6])

{a) (Dominated decomposition property) If KpsenesX and ¥y arve pogitive

n
elements of a Riesz space E such that y < Xp oot X holds, then
there extst Yys--os¥y in €7 sueh that y = Yo+ oot ¥, andyi < Xy
For all i = 1,..,n.

(b} (Riesz interpolaiion property) IF Xs¥sZsX s oX, are positive elements

n
of a Riess space b such that x =y + 2 = X] t ..+ X then there exist
Yis-oo¥psZ sy in £ such that Y=yt vy, and

Z=2Z]4 ..+ 2Z) and Xy =¥y 4 fbr atli=1,..,n.
3.5. Theorem. (cf. e.qg. Schaefer [ 1974, Il thm 1.5])
If X is a now-empty subset of a Riesz space b such that sup X exists in E,
then for every X € E also sup (xAX} exists <n b and the equality
sup (xAX) = xA sup X Eolds.

Now we collect some notions of extreme importance in Riesz space theory.

3.6. Definition. IFf E <5 q Riesz space, then

(a) a linear subspace R of E is callaed a Riesz subspace of E if for
X,¥ € R holde that xAy € R,

(b} a linear subspace J of E is called an (ovder} ideal of E if x| < |y|
for X €E and y € J implies X € J.

{¢) an ideal B of E is called a band of E if the following holds:
if X 18 a subset of B such that sup X ewxists, then sup X € B.

(d) an ideal J of E is called a o-band if for every countable subset X
of J for which sup X existe holde that sup X € J.

(e) an ideal J of E t8 called a principal ideal if there exists a z € L
such that J = {x € E; |x| = xz for some A € R}.

(fi a band B of E is called a prineipal band if there exists a z € b such

that B = ill.




{g) a band B of E is called a projection band if B + B - E.
(h) a band B of E which is a prineipal band and a projection band is called

a principal projection band.

For an element z of a Riesz space E the ideal {x € E;|x| < xz for some

X € R} is called the principal ideal generated by z, and is denoted by IZ.
The band zll is called the principal band generated by z, and is denoted

by Bz'

If z is an element of a Riesz space E, then the set IS(z) of all infinitely
smalls with respect to z (cf. sect. 2) s an ideal of E, because if

%,y € I1S(z) and A,u €R then for all n €N we have n|x| < z and n|y| < 2
hence,for all n € N,n|xl|x| < z and n|u|iy| < z, so n|a||x| + nlu|ly| < 2z,
which implies that njxx + wy| < nixj|x| + nju}jy| < z holds for all n €N,
hence Ax + uy € IS(z). If x € IS(z) and |y| < |x|, then also n|y|<z for
all n €N, hence y € I5(z). Also IS(E) is an ideal in E, which can he proved
likewise.

Note that for a Riesz subspace R of a Riesz space E alsp xvy € R whenever

%x and y are in R. Hence, any Riesz subspace R of a Riesz space E, with the
linear space structure and the order structure inherited from E, is a Riesz
space by itself. Note further that every ideal is a Riesz subspace.

It follows from Luxemburg and Zaanen [ 1971, thm 19.2(i)j that every polar
of a Riesz space E is a band; the converse implication holds under the
additional assumption that E is Archimedean {cf. Luxemburg and Zaanen [ 1971,
thm 22.3]).

As an immediate consequence of the definitions we have (cf. Luxemburg and
Zaanen [ 1971, thm 17.4]).

3.7. Theorem. any arbitrary non-empty set-theoretic intersection of Riesz
subspaces (or ideals, or bands; or volarg) is a Riesz subspace (or an ideal,

or a band, or a polar).

By L{E), respectively R(E}, X(E}, B(E), P{E) we dencte the set of all linear
subspaces, respectively Riesz subspaces, ideals, bands, polars of E, each
partially ordered by inclusion.



As a consequence of thm 3.7 all these sets form lattices under their or-
dering. For, the infimum fo two elements is the intersection of these ele-

ments, the supremum of two elements is the intersection of all linear sub-
spaces, respectively Riesz subspaces, ideals, bands, polars of E which
contain these two elements.

It is also an immediate consequence of thm 3.7 that all these Tattices are
complete, moreover T{E), B(E) and P(E) are distributive (cf. Schaefer [ 1974,
II prop. 2.3] for J(E), Luxemburg and Zaanen [ 1971, thm 22.6] for B(E), and
e.g. Bernau [ 1965 a, thm 13 for P(E)} I.(E) and R(E) are not distributive in
general.

We give a simple example for B(E): Take E =.R2, R = {(xl,x£ € E; xy = xz},

S = {(xlp)e E; X, € R}, T = {(0,x,) € E; X, € R} then (RVS)A{RVT) = E,

but RV(SAT)} = R, if supremum and infimum in R{E) are denoted by V and &
respectively, PP (E) is a complete Boolean algebra (cf. Sik [ 1956 1 or Bernau
[1956a 1); T(E) and B(E) in general are not.

3.8. Definition. 4n {deal J of an Archimedean Riesz space B 18 called order
dense tf for all T € E with 0 < T there exisis a g€ Jwith 0<g=<f.

In some representation theories of Riesz spaces the following two notions
play an important role. (cf. [ Schaefer, III def. 2.1, II def. 3.2j).

3.9. Definition. An <deal J of a Riesz space E 18 called a prime ideal if
XEELYy€EE and Xy €J imply X € J or y € J.

3.10. Definition. An ideal Mof a Riecsz epace E is called a maximal

ideal if M# b and there is no ideal in E properly beiween Mand E
{(T.e. any ideal J such that M cJ Cc E holds, satisfies either J = M
or J = EJ.

3.11. Definition. (cf. A.L. Peressini [1967, chap II, prop. 5.13b])
A Riess space E 18 called countably bounded if EY contains a countable

subset C with the property that for each x € EY there exiet e € C and
* € R such that x < Xe. E is called bounded if there exists an e € E
such that for each X € £ there exists a X € R such that x < de. In

the last casee is called a strong order wnit of

10




It is evident that every bounded Riesz space is countably bounded; the
converse does not hold, for the Riesz space o0 of all sequences of real
numbers with only a finite number of components not equal te O, is count-
ably bounded {let C be the subset of Cpo whose elements are {1,0,0,0,..},
(2,2,0,0,..), {3,3,3,0,...), ....), but g0 is not bounded.

In a bounded Riesz space E the order unit e has the propertiy that & = {0},
for if xle, then, if |x| < e, we have |x|Ale = 0, which implies x = 0,

3.12. Definition. A Riesz space E 7g called weakly bounded <if there exists

an e € EV with the property that e = {0} . In that case e is called a weak

order untit of E.

It is evident that every bounded Riesz space is weakly bounded and every strong
order unit is a weak order unit. The converse does not hold because the

Riesz space E of all sequences of real numbers has a weak order unit

e = (1,1,1,...), but no strono order unit.

The foregoing two examples can serve to demonstrate that a Riesz space E

can be countably bounded without being weakly bounded, and weakly bounded
without being countably bounded.

The following theorem gives an important characterization of bounded
Archimedean Riesz spaces.

3.13. Theorem {cf. e.g. Luxemburg and Zaanen [ 1971, thm 27.6]).

The imtersection of all maximal tdeals of a bounded Archimedean Rieen epace

consists of the zero element only.

3.14. Definition. 4 Riesz space E is said to have the projection property

{abbreviated to PP} if every band of E ie a projection band. E 18 said
to have the principal property {abbreviated to PPP) if every principal
band of E {5 a (principal) projection band.

Now we can state an important theorem for Riesz spaces.

11
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3.15. Theorem {cf. Luxemburg and Zaanen [ 1971, thm 25.11)

With obvious notational abbreviaticns the following implications hold in

any Riesz space E.

= Ded. o-complete
Ded. compl. PPP = Arch.
PP 7

No implication in the converse direction holds; further E can have PP
without betng Dedekind oO—complete and conversely; Dedekind g-completeness
and PP together imply Dedekind completeness.

Finally, we discuss briefly the notion of lateral completeness.

3.16. Definition. 4 Riesz space E i3 called (conditionally) lateral complete

if for every (bounded) set D in E of pairmvise diejoint elements sup D exists

in E.

We remark that the notion of lateral completeness was already defined in
Nakano [ 1950] for Dedekind complete Riesz spaces.

A fundamental breakthrough was achieved by Veksler and Geiler {1972], who
proved that every Archimedean conditionally lateral complete Riesz space has
PP. Futher contributions are by Aliprantis and Burkinshaw [ 19771, Bernau
[1966], [ 19751, [1976]), Bleier [ 1976], Conrad [ 1969, Fremlin [ 1972], Jakubik
[19751, [1978] and Wickstead [ 1979].

For a Riesz space E lateral completeness and being Archimedean are indepen-
dent properties, for ORZ, lex} is lateral complete but not Archimedean,
00,11 is Archimedean but not lateral complete.

For an Archimedean Riesz space E lateral completeness and Dedekind complete-
ness are independent properties, because the Riesz space of all bounded
sequences of real numbers is Dedekind complete, but not lateral complete.
The Riesz space E of all real functions on R which are right Tocally
constant in every t € R, {i.e. x€ E if for all t €R there exists an

£ > 0 such that x is constant in{t,t + €}) is an examplie of a lateral
complete Riesz space, which is not Dedekind complete. Aliprantis and
Burkinshaw [ 1978, ex. 23.30] and Wickstead [ 19791 give examples of such




a Riesz space; especially the example in Aliprantis and Burkinshaw [ 1978]
is rather complicated.

3.17. Proposition. Every Dedekind complete Riesz space E is conditionally

lateral complete.

Proof: Evident

3.18. Proposition. Every lateral complete Riesz space E contains weak

order untts.

Proof: Let S be the set of all subsets X of E of pairwise disjoint elements.
§=¢, for {0} €5. We suppose § to be ordered by inclusion. Application
of Zorn's lemma gives that there exists a maximal element M in S. Now

e: = sup M is a weak order unit of E, because elx for some x # 0 would
imply that § could be enlarged with |x|, contradiction.

3.19. Definition. 4 Riesz space which is Dedekind complete and at the same

time lateral complete is called universally complete or <nextensible.
Universally complete Riesz spaces are very important in Riesz space theory;

every Archimedean Riesz space admits a unique universal completion (cf. e.g.
Conrad [ 19711 ).

4. Linear operators

In this section, E and F are arbirary Riesz spaces. The zero operator
from E to F will be denoted by 0. The identity operator on E will be
denoted by Ip, or simply by I. For a linear operator T from E to F the
nullspace N(T) is defined by N{T) = {x € E; Tx = 0}. A Tinear operator
T from E to F is called positive, in formula T > 0, if T(E+) crt.

By £(E,F) we denote the Tinear space of all linear operators

from E to F, provided with the partial ordering S < T if and only if
T -8 20, the socalled operator ordering.

In the case E = F the space £(E,F) can be given moreover an algebra
structure by composition. In that case £(E.F) is a partially ordered
algebra, i.e. an algebra which is at the same time a partially ordered
linear space, such that the product of two positive elements is posi-

13
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tive again A linear operator T € £(E,F) is called a Jordan operator

if T is the difference of two positive linear operators. The class
EJ(E,F)ofJordanoperators1s a linear subspace of £(E,F). £J(E,F) is a
partially ordered linear space under the operator ordering and in the
case E = F a partially ordered algebra. A linear operator T from E to
F is called order bounded if the image of every order bounded subset
of £ under T is an order bounded subset of F. Alsg the class Eb(E,F) of
all order bounded Tinear operators is a linear subspace of £{(E,F} and a
partially ordered linear space under the aperator ordering and in the
case E = F a partially ordered algebra under composition.

4,1. Lewma. A mapping t from ' to F which satisfies
(@) t(x +y) = t(x) + t(y) for ali x, y € E¥
() LA} = At(x) for all'x € £ and 2 2 0 admits a unique extension to
a linear operator T from E to F. If morecver the range of t is con—
tatned in F+, then T {g positive.
Proef: Let T: E -~ F he defined by Tx = t(x+) - t(x7), then T is a linear
operator, which is an extension of t. If 8 is ancther linear operator which
is an extension of t, then 8x = sxf - 8x = t(x+} - t{x") = Tx, hence § = T.
If t(E+) c F* then TETY © F*, hence T is pasitive.

4.2. Theorem. (cf. e.g. Schaefer [ 1974, IV prop. 1.2 1). For a linear
cperator T from a Riesz space E to a Riesz space F for the assertions
(a) 1% exiete in £(E,F}

(b) T <8 a Jordan operator

(e} T s order bounded

holds that (a) = (b)Y, (b) = (). In the case F iz Dedekind complets all

assertions are equivalent,

4.3. Theorem. (Riesz-KantoroviE, cf. e.qg. Schaefer 1974, IV prop. 1.31).
If E and F are Riesz spaces and F is Dedekind complete, then £b(E,F) ig

a Dedekind complete Riesz space, in which sup T fbrT’Cib(E,F) such that
T= 15 given by (sup T}(x) = sup {Tlx1 o F T XS {Tl’ vee s Tn} finite
subset of T, STIRTRR 0.and x = Xyt t xn} (x = 0)




Krengel [ 1963 ] gives an example of a Jordan operator T from ¢ [-1, 1]

to C{-1,1 ] for which Tt does not exist. No answer seems to have been
given in the literature to the question whether PP for F is already
sufficient to garantee that EJ(E,F} is a Riesz space.

The following example shows that PP is not sufficient.

4.4. Example, If E is the Riesz subspace of s generated by e = (1,1,1,...}
and Co0° then E, with the Riesz space structure induced by s, is an
Archimedean Riesz space, namely the Riesz space of all eventually constant
real sequences. Note that e is a strong order unit of E.

If for all m € N the element e of E is defined by em(n) = ﬁn,n for all

n €N (where ¢ is the Kronecker function), then the elements €,8)+€p5. ..
form a basis B of E. Let a linear operator T from E to FR be given by

Te = 0, Te1 = e and TE = %-en ﬁlT -1 for all n=2.

For an element y € FR we write ¥, or (¥ )n in stead of y(n) (n € N}.
Let 0 < x € E be arbitrary, say

=]

=)le+ Z Aiei’ then } =0 and }\1. =-x for all i € N; almost
i=1
all Ai are equal to 0.

T is a Jordan operator, because T=1I - {I-T), where I is the canonical
embedding operator from E into FR, and I-T is positive because

e oo o Al As
i i
(I T)x=2x+ Z Xe.,- I A, Te, =g+ I (x e, t—e, -1 e.)
=2 'V =2 V1 =2 PR R S R
so for n € N we have ({I - T)x} =X+ A (5:1} + A (1) = - A(ﬂ:l) - 1(1)= ]
n n*n n+ltn n n :

Suppose T exists in EJ(E,FR), then for all n € N we have T+en = (Ten)+ = % e
1ls
n

n,

hence (T+e )

o " for all meN.

If for certa1n pair (N,M) € N x N holds that ¥ # M and (T e ) > 0, then
let § € £ ( +FR) be defined by (Se ) (T e) for all m # M,

(Se)M = (T e)M - (T EN}M’ (sen) (T e ) for all {n,m) €N x N such that
(n,m) # {N,M) and (SeN)M =

S = 0 because for all m # M we have (Sx)m = (T+x)m =0 and

15
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o o0

"SX)M = J\(Se)M + 151 ki(Sei)M = X(SE)M + ifl As (Se_i)M + AN(SeN)M =
i#N
P il + ot o F—
= AT e}M AT eN)M + 'ifl )\i (T ei)M = {T {Ae 1'31 ATy A(T eN))M = 0
i#N i

S > T because for all m # M we have (Sx)rI1 = (T+x)m > (Tx)m and

0 [+
(Sx)M = A(Se)M + iil ?\1.(Se1.)M = )‘(SE)M + AM(SeM)M + i):l lﬁ(sei)M

i#M

= )\(SeM)M + A(s{e - eM))M + AM(SeM)M + 1.21 Ai(Sei )M > ;\(SeM)M + }‘M(SEM)M >
i#M

" > T = (Tx)M.

+
S < T because for m # M we have (Sx)m = ('1‘+x)m and

+
- AT em)M + Iy (Sei)M + AN(SeN)M

wnM=u$m+_ﬂxﬂaﬂM=ufﬂM

i= =1
N
+ + - +
= MTe), - MTeg), + _21 A (T e'i)M
1=
i#N
< AMTe), + A (T b2 a(Tre,) =T
ey * Ay(T eyly ie1 (T egly = T X
i
+ oy
§<T , because 0 = (SeN)M < (T eN)M.
It follows that for all n,m& N that (T%e ) =0 if n*m.
J

If for certain K € N we have that (T+EK)K >%
such that (Re)'1 = (T+e)n for n # K, (Re)
and ReK =T % .

R > 0, because (Rx)n = (T x)n for all n # K and

» then Tet R€ £ (E,FR) be
K =%,Ren=T+en for all n# K




(=]

= AMRe), + Z 1\1.(1291,)K = xRej, + f A(Res ), + A (Rep)y
£

i=1
i#K

+ X )\i(Rei)K =

R > T because {Rx) = (T*'x),n = (Tx)n for n # K and (Rx), = A(Re)
i=1

K

[==]

J\(ReK)K + A{Re - eK))K + izl ?\i(Rei)K + )\K(ReK)Kz MRep ) + )\K{Re[{)K >
1#K
A A A
AL, KL CK L MKl
re T - = (Tx), -
+ et _ - _
R< T because (Rx) = (T'x), foralln#K and (Rx), = AMRe), + 151 )\i(Rei)K =
N SN (T <
K K ( K) ek
+ + > +
A(T eK)K + AT (e - eK))K + )\K(T e )K + 151 Ai(T ei}K =
=K
+ Fo o ot - + z + _ (T
METep ), + Mt (e - e )}y + iil ?\1_{.. eidp = MT'e) + if A(Te ) = (Tx)y
+ 1 _ +
R< T because % (ReK)K < (T eK)K.

It follows that (17e ) = for all n €N

n‘n
If for certain P € N we have (T{'e)P > (T+eP)P, then Tet W € EJ(E,FR) be such

and We =‘1‘-+en for all n € N.

that (We), = (T'e), for all n # P, (We), = : e

W > 0 because for n # P we have (Wx), = A(Wwe) + T X.{we.) =
n noogep 1V R
('1‘+x) =0 and (Wx), = A(We)  + 020 X {we.) -2y ;:o A ('1‘+e) =
n P P1'=11 1PP1.=1'i'1P
A +A(T+e) —A+A'P>0
P P\ P TF T F .
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W > T because (Wx)n = ('I"Lx)n > (Tx)rI for all n # P and

w0 -\ + A
el . = _ A P+l P
(Wx)P = ?\(We)P + izl J\i(Wei)P sgtpP— = {Tx)

>

D

W<T because (Wx)n = (T+x)n for n # P and (Wx)P = A(We)P + 2y (Wei)P
1=

1

=2

A + + + +
™~ A_ =
+ 1.(T e'i)P < AT e)P + 151 A (T e"l)P {T x)P.

3

I g
AN

1

+ 1 +
W<LT = = < {7 .
because 5 (We)P { e)P

It follows that (T+e)n = % for all n € N, but this is in contradiction
with the finite range of T+e, hence TV does not exist.
Note that FR is not Dedekind complete, but FR has PP (Aliprantis and

Burkinshaw [ 1978, Ex. 2.13 (3} 1}.
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Chapter 11
SOME TYPES OF CONVERGENCE

In this chapter three types of convergence are given; some attention is
paid to the relations between them and finally continuity of linear

operators with respect to these types of convergence is defined.

5. Sequences in Riesz spaces

In this section E is an arbitrary Riesz space.

A sequence in E is a mapping f fromN to E. A sequence f in E is called
increasing, in formula tf, if f(n) < f(n+l) holds for all n €N, and
decreasing, in formula 4f, if f(n) > f(n + 1} holds for all n€ N.

We write ftx if tf and sup f(N) = x, fly if If and inf f(N) = y.

The class of all sequences in E is denoted by seq{E). On seq(E} we define
a linear structure by (f+g){n) = f{n) + g(n), (Af)}(n) = Af(n) for all n € N,
if A€R and f,g€ seq(E).

A partial ordering on seq(E) is defined by f < g if and only if f(n) < g(n)
for all n € N. (seq(E}), <) is a Riesz space in which (fvg)(n) = f(n)vg(n)
for all n €N.

In the sequel (seq(E), < ) is abbreviated to seq(E).

For x € E and f € seq{E) we define x + f € seqg(E) by (x+f}{n) = x + (n)
for all n€ N,
The sequence in E with range {0} is denoted by 0.

For f € seq(E) and n € N we write occasionally f, or (1, instead of f{n).

If fis a sequence in E and o: N =N is a strictly increasing function,
then the sequence fog is called a subsequence of f.

By T(E) we denote the power set of E, i.e. the set {X; X € E}.

6. Order convergence

The first type of convergence we discuss is order convergence.

In this section E is an arbitrary Riesz space.
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We define a mapping %1, called order 1imit, from seq{E) to T(E) which
assigns to f € seq(E) the element of II(E) consisting of all x € E such
that there exists a g € seq(E) with the property that |f - x| € g and
g0,

In the case %Lf # ¢, it is well known (cf. e.g. Luxemburg and Zaanen
[1971, thm 16.1 (i) ]} that there exists exactly one x € E such that
°Lf = {x}. In that case f is called order convergent, or more precisely,
order convergent to x, and we write °Lf = X.

6.1. Theorem (compare Luxemburg and Zaanen [ 1971, thm 16.1 1}.
For f,g € seq{E) and x,¥ € E, A,y ER £t holds that

fa) if fi1x or fix then Oe = x

(b} Lf 1 or 4F and OLf = X then f1x or fix respectively

(a) iy OLF ys then CL(M + ug) = ax + uy

ta iy OLF y then CL(fvg) = xvy and CL{fAg) = xAy
(e} if ' 18 a subsequence of T and OLt = x then OLf' = x

(f) if 0< f < g and °Lg = 0 then CLf = 0

X and 0Lg
X and 0Lg

From this theorem it follows that the class of all order convergent
sequences is a Riesz subspace of seq(E),and the class of all sequences
order convergent to 0. is an ideal of seq(E).

6.2. Theorem (compare Luxemburg and Zaanen [ 1971, exc. 16.10 1)

For a Riesz space E the feollowing assertions are egquivalent

(a) E 28 Archimedean

{b) if for x € E, N\ER, f € seq(E) and a € seq(R) holds that OLf = x and
®la = A, then PL{af) = Ax.

Proof: (a)—(b): There exists a sequence g in E such that |f - x| <g

and gi0. If ag = sup Ja){, then we have for all n €N that

0 < |a(n)f(n) - ax] < |a(n}f(n) - a{n)x| + [a(n)x -Ax].

Further it holds that |af - ax| = 2,9 and a,q40, hence by thm 6.1 (7} it

follows that °L{|af - ax|) = O.

We alsc have that ®t(|ax - »x|) = 0.

By thm 6.1 (c) it follows now that °L{|af - ax| + |ax - Ax|) = 0. One more

application of thm 6.1 (r) gives °L(laf - ax|) = 0, hence °L{af) = Ax.

¢

(b} = (a): Suppose nx < y for certain x,y € E* and all neN. If f.q9 € seg(E)




and a € seqg(R) are such that f{n} = x, g(n) = y and a{n} = = for all
n €N, then 018 = 0, hence OL(ag) = 0y = 0.

From 0 < f < ag it follows now by thm 6.1(y) that OLf = 0, hence x = 0.

=1 S

7. Regulator convergence

In this section E is an arbitrary Riesz space. We define a mapping rL,
called regulator 1imit, from the Cartesian product seq(E) x E* to I{E}
which assigns to (f,u) € seq{E) x E* the element of I{E) consisting of
all x € E such that for alle >0 there existaan N € N such that

|f(n) - x| < ey holds for all n > N.

rL(f,u) is called the regulater 1imit of f with respect to regulator u.
For U{FL(f,u); u € ) we write "LT.

If for some pair (f,u) € seq(E) x E™ there is anx € E such that

{x} = r]'.(f",u}, then we write x = r'L('F,u).

f € seq(E) is called regulator convergent if "Lf# .

It follows directly from the definitions that for all u € EY holds that
rL(O,u) = IS(u). If v is a strong order unit of E, then r‘L(U,u) = IS{E),
because if nix| <y for some x € E, y € t" and all nE€N, and meN is
such that y < mu, then n|x| < mu for all n € N, hence n|x| < u for all
neN, so x € IS(u). Hence, IS{u) = IS(E).

7.1. Theorem (compare Luxemburqg and Zaanen [ 1971, thm 16.2 {ii) ])

If x and ¥ are elemenis of a Riesz space E and if ¥.9 € seq(E) such that
x € "Lf and y € TLq, then

ta) dx + uy € "L(Mf + ug) for alil A\u €R.

(by xVy € TL(fVg) and xAy € "L(fAg)

(c) if ' is a subsequence of T and "Lf = x ihen 'LE' = x

(d) if 0< F<gand 0€ "Lg then 0 € "LF.

From this theorem it follows that the class of all regulator convergent
sequences is a Riesz subspace of seq(E) and the class of all sequences
which are regulator convergent to 0, is an ideal of seq(E).

7.2. Proposition. 77 x € E, u € E' and £ € seq(E) such that x € "L{f,u)
then "L(F,u) = x + IS(u).
Proof: if z € IS(u), then by definition n|z| < u for all n €N.
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X € r'.f_(1°,u), hence for all ¢ > 0 there exists anN_ €N such that

|f(n) - x| < cu holds for all n = N_. If € >0 then for all n €N such

that n > max (Nla, entier (?é» we have that

[fF(n) - (x + 2)f < If(n) - x| + |z] < teu + 3eu = eu, hence x + z € "L(F,u).
Conversely, if y € rL(f,u}, then for all € > 0 there exists anM_ € N such
that [f(n) - y! < cu holds for all n> M_.

Let e > G. For all n = max (N g2 M l_:) we have that

|x - y| < [f(n) - x| + |f(n) - y| < eu + deu = €u, hence x - y € "L(0,u) =
IS(u).

7.3. Example. If E = (R, lex), u = (0,1) and £ € seq(E) is such that

£(n) = (0,z) for all n €N, then "L(f,u) = {0} because 0 € "L{f,u) and
IS{u} = {0}. However IS{E} = {(0,3}; A € R}.
Note that rL(f,(l,l)) = IS({E) because (1,1) is a strong order unit of E.

7.4. Proposition. If x € E and f € seq(E) such that x € "LE, them

TLf = x + IS(E).

Proof: if z € IS(E), then there exists a y € E such that n|z| < y holds
for all ne N, x € "LF implies that there exists a u € EY such that for
all e > 0 there exists ann_ €N such that |[f{n) - x| < eu holds for all
n>u_. If ¢ > 0 then for all n = N_ we have that

[f{n) - {x + z}] < |f(n) - x| + |z] € eu + ey = e{u + y), hence

x +z€LF.

Conversely, if y € r'1'_f, then by thm 7.1.(a) we have x - y € rLD, hence

X = y € IS(E).

7.5. Theorem. 4 Riesz space E is Archimedean <f and only <if for X € E
and € seq(E) ¢ follows from X € "Lf that x = "LF.
Proof: = if x,y € 'Lf, then x - y € "L0 = I${(E} = {0}, hence x = y.

«0€ L0, hence {0} = "LO = 0 + IS(E) = IS(E) by prop. 7.4.

7.6. Theorem (cf. e.g. Luxemburg and Zaanen [ 1971, thm 16.2 (i) ).
In an Archimedean Riesz space b it follows from %= CLf for x€ Eand

f € seq (E) that x = °Lf.

If £ is an Archimedean Riesz space and f € seq{E), u,v € E+, then rL(f,u)
can be different from rL(f,v) if u# v. A simple example to demonstrate




this is E =R, f(n) == for all n€N, u=1, v = 0, then "L(f,u) = 0,
however rL(f,v) =¢.
Note that in any Riesz space E we have rL(f,()) #¢ for f € seq(E) if

and only if f is eventually constant in E.

=)

7.7. Definition (cf. e.g. Luxemburg and Zaanen [ 1971, def. 39.1, def.

39.3 and def. 42.117 ).

Ifue B and f € seq(E) such that for all € > 0 there existsan NEEEl
such that for all N,m = N_ holds that |f{m} - f(n)| < cu, then f is calied

a U-Cauchy sequence in E.

f € seq(E) ©s called a regulator Cauchy sequence in E if £ 45 a u-Cauchy
sequence in E for some u € EF.

E 7g called u-completeif for every u-Cauchy sequence T in E holds that
r'L(f,u) # ¢. E a8 called regulator complete if E {8 U-complete for every
uekE.

7.8. Theorem {cf. Luxemburg and Zaanen [ 1971, p. 281 {ii}]).
For every Riesz space © the following assertions are equivalent
(a) E is Dedekind c—complete

(b} E has PPP and £ <& regulator completa.

7.9. Theorem {cf. Luxemburg and Zaanen [ 1971, p. 281 {ii) 1}.
For every Riesz space b Lhe following assertions are equivalent
(a) E s Dedekind complete

() E has PP and E is regulator complete,

7.10. Theorem (cf. Luxemburg and Zaanen [ 1971, thm 43.1]).
The Riess space CU(X) Z& regulator complete for any topological space X.

8. Characteristic convergence

The third notion of convergence we define here is the notion of character-
istic convergence, which seems to be new. In this section E is an arbitrary

Riesz space.
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Let “L be the mapping, called characteristic limit, from seq(E) to TI{E),
which assigns to f € seq{E) the element of N{E) consisting of all x € E
such that there exists a (countable} subset {P ;3 n € N} of the Boolean
algebra P(E) of all polars of E such that f(n) - x € P forallneN,
Pn+1 C Pn for aline€ N and N {Pn; ne€ N} = {0}. f is called character-
istic convergent if °Lf # ¢. If “Lf = {x} for some x € E then we shall
write SLf = x.

8.1. Lemma. If {Pn; neE N} and {Qn; n€ N} are (countable) subsets of

P(E) such ihat Pis1 S Ppr Qyp € Q forall n€ N and 0 {P 5 n€ N}
=n{P3ne€N}=nI{Q;ne N} ={0}, then {(P + Qn)ll; ne N} = {0},
Proof: We shall denote suprema and infima in P(E) by Vv and A respectively.
Now we have for P, Q € P(E) that PAQ = P n Q, Pyq = (P u )t = (P + )it
(cf. e.g. Bernau [ 1965 a, proof of thm 1 1).

Let € N. It follows from Bigard, Keimel and Wolfenstein [ 1977, prop.
3.2.16 1 that n (P, + Q) sme N} =n {(P + Q) sne N, n>n)

cr (P + 0 yne N} =aPv0 ;s ne N} =PO(AQ;neE N

= P,9(0) = P_. It follaws that n {(P_ + Q)3 ne Ncn (P we N = {0],
hence N {(Pn + Qn)ll; ne N} = {0}.

8.2. Theorem, 7f f € seql{l} is characteristic convergent then C1f=x For
some X € E.

Proof: Suppose x, y € CLf, then there exist (countable) subsets

{Pine N}and {Q:ne N} of P(E) such that f(n) ~ x € P» f(n) - y€Q,
Pisy € Ppand Q ., € Q forall ne N and 0 {Pn; n€ N} =n{Q;n EllN}

= {0}. Now we have x - y = f(n) - y - (f(n) - x) € Pn + Qn C (Pn + qn)

for all n€ M. From the foregoing lemma it follows that x = y.

8.3. Theorem. If x, y € E and f, g € seq(E) are such that X = “Lf and
y = CLg, then

(a) SL(AF + ug) = Ax + ny

(b) CL(fvg) = xvy and CL{fAg) = xhy

fe) x = “Lf' for every subsequence f' of f.

(d) “Lg = 0 if 0 < g < f and °Lf = 0.




Proof: Let {Pn; n € N}bea(countable) subset of P(E) such that

f(n) - x € Pn, g{n) —y€ Qn, Pn+1 < Pn and Qn+1 c Qn for all n€ N,

n{Psne Nr=n{Q;neN}= {0}

(a) |AF + ug -~ (Ax + wy)] < |A(f - x}| + |u{g - y)|, hence for all n € N
|2f(n) + ”gff) - Ox W) € P+ Q SR+ QL From (P + Q)
C (P, +Q)" forall ne N and Temma 8.1 it follows that CL{Af + ug)
= AX + Wy

(b) From Birkhoff's identity (thm 3.3 (Z)) and {a) it follows that for
all n€ W we have [(f(n) - g(n)* - (x = y)| < if(n) - g{n) - (x - )|
€ (Pn + Qn)ll, hence “L{f - g)* = {x - y)*. One more application of
{a) gives CL({Ff - g)+ +g) = (x - y)+ + ¥, hence cL(f\/g) = XVy.
CL(frg) = xAy Follows similarly.

(e} If o N » N is a strictly increasing function, then N {PU nys N €N}
= {0}, Po(n+1) c Pc(n) for all n€ N and {fea)(n) - x € Pc(n) for all
ne N, hence *L{feq) = x.

{d) For all n€ N we have 0 < g(n) = f(n) € P,» hence “lg = 0.

Ll

It follows from this theorem that the class of all characteristic con-
vergent sequences in E is a Riesz subspace of seq(E)}, moreover the class
of all sequences which are characteristic convergent to 0 is an ideal of

seq(E).

9. Comparison of convergences of sequences

In this section we compare the foregoing three types of convergence.
In this section E is an arbitrary Riesz space.

The relation between order convergence and regulater convergence for
sequences has been .studied in Luxemburg and Zaanen [ 1971, §16 ].
Their main results are the following.

9.1. Definition. 4 Riesz space E i2 called order convergence stable Lf
for any f € seq(E) with f0 there exists « 0 < a € seqR), such that
ta, {a(n); n € N} is not majorized and °L{af) = 0.
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9.2. Theorem. An Archimedean Riesz space b ig order convergence stable
if and only if every order convergent sequence in b ig also regulator

convergent.

9.3. Theorem. Every regulator comvergent sequence T in an Archimedean

. . r ]
Biesz space E ig alsc order convergent, morveover Lf = "Lf,

9.4. Example. The condition that E is Archimedean cannot be omitted
in the foregoing theorem, because in example 7.3 we have rL(f,u) = IS{E)
for some f € seq(E) and u € Y, while IS{E) is not a singleton.

9.5. Theorem. If for f € seq(E) and X,y € E holds that Lf = x

and °LF = y then x = y.

Proof: It is sufficient to show that if Lf = 0 and °Lf = x then x = 0.
There exists a g € seq(E) such that |f - x| < g and giD, hence

f{n} € [x - g(n}, x + g(n) ] for all n €N.

For all n € N we have [x - g{n + 1), x + g{n + 1)1 C[x - g(n), x + g{n)]
and N [x - g{n), x + g(n) 1 = {x}.

On the other hand f(n) € P with P, € P{E) such that P41 C P, for all

n €N and ﬂ{Pn; n €N} = {0}.

It follows now that x = 0.

9.6. Example. Not every characteristic convergent sequence f in a Riesz
space E is automatically order convergent. If E = C[0,1] and f € seg(E)
is such that (F(n)t) = -n’t + n if t € [0,n"} ] and (f(n))(t) = O if
ten 1,11 for all n €N, then n{f(n)'*; n e N} = {0}, f(n) € £(n)*"
and f(n + 1)ll c f(n)ll for all n € N, hence °Lf = 0.

But °Lf = ¢ because {f(n); n € N} is not bounded.

Next we show that regulator convergence and characteristic convergence

do not imply each other,

If in an arbitrary Archimedean Riesz space E # {0} we have x > 0, then

the sequence f in E with f{n) = n'1 x for all n € N is regulator conver-
gent to {0} (regulator x).

Suppose that f is characteristic convergent, then f is characteristic
convergent to {0} by thms 9.3 and 9.5,

However, f(n)ll = (%—x)ll = xt forall ne N, hence f is not characteris-

tic convergent to {0}, contradiction.




Conversely, if E is the (Dedekind complete) Riesz space of all sequences
% of real numbers with componentwise linear operations and componentwise
partial ordering, such that |x] is bounded by a real multiple of

r = {1,2,3,...) and f is the sequence in E such that

f{n) = {1,2,3,..,n,0,0,0,..) for all n €N, then, if g = f - r, we have
f{n) - re g(n)li, gin + 1)ll Cg (n)ll for all n € N and

n{g(n’*t; n € N} = {0}, hence SLf = r.

Suppose f is regulator convergent, then "LfF=r by thms 9.3 and 9.5.

If u is the corresponding requlator, say u < ir, then certainly ir is
regulator, but then also r is regulator.

It follows that for all € > 0 there exists a N, € N such that for all
n>N_ it holds that [f(n) - r| < er; however, if we take c=1}, then
there does not exist a N € N such that for all n > N holds that

I¥(n) - rl < 3r, because this would imply that f(n) = 3r for n >N,
contradiction.

Hence, f is not regulator convergent.

From the foregecing it follows that order convergence does not imply
characteristic convergence.

10. Some notions of ideals

In the sequel we need some carefully chosen notions of ideals, which are
defined below.

In this section E is an arbitrary Riesz space.

For an element x € E we write IX = {y € E; |yl € Ax for some A € R}
(sect. 3).

10.1. Definition. A d-ideal of a Riesz space E is an ideal J of b with the
property that xt o= yil and X € J, y €E b imply y € J,

The notion of d-ideal seems to have been introduced by Ball [ 1975 ] under
the name full convex %-subgroup.
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10.2. Proposition. (cf. Ball [1975, thm 1.1 (i1)]) 4n ideal J of a Riesz

L1

space E 15 a d-ideal if and only ©f X~ C J for every X € J.

10.3. Proposition. Every band B of a Riesz space E 18 a dideal.
Proof: if x€ B, y € E and xll = yil, then by Luxemburg and Zaanen
[1971, thm 24.7 {ii)] it holds that ly| = supf|y! A n|x|; n€ N}. For all

n € Nwe have |y| A n|x| € B, hence also |y| € B, so y & B.

10.4. Example. Not every d-ideal of a Riesz space is a band. Let E be the

Archimedean Riesz space of all continuous functions x on a locally compact
Hausdorff space S, which is not compact. If J is the ideal of E consisting
of all x € E which have a compact support, then J is a d-ideal of E,

because if y € xll
support of x, hence is compact. But J is not a band because J is not a

polar, for Jll =E and J # E.

for x € J, then the support of y is contained in the

10.5. Definition. An ideal J of a Riesz space E 7s called

fa) an o-ideal if for all 0 < x € J holds that y € J whenever y © Or
for some Q< f € seq(Ix) such that +f.

(b} a r-ideal if jor all 0 < x € ] holds that y € J whenever v € "Lf
for some 0 < f € seq(Ix) such that tf.

{e) a e-ideal if for ail 0 € X € ] holds that y € J whenever y € "Lt Ffor
some 0 € f € seq(Ix) such that 1f.
(OL, YL and L ave taken in EJ.

We note that there is a close retation between r-ideals defined here, and
z~ideals, which are defined by Huijsmans and De Pagter [1980 ].

10.6. Proposition, Every d-ideal J of a Riesz space b 18 an o-ideal.

Proof: if0<x€eJ, 0 f€ seq(Ix), +f and y = O1f, then it follows
from thm 6.1(») that f 4+ y. For all n € N we have that f(n) € I c ¥t

L1l 1l

From X~ is a band it follows now that y € x*~, hence y € J.

A detailed discussion of the mutual connections between o-ideals,
r-ideals and c-ideals is planned for the near future.




11. Continuity of linear operators

In this section we study continuity of linear operators with respect to
the three types of convergence defined above. E and F are arbitrary

Riesz spaces in this section. Every linear operator T from E to F induces
a linear operator, also denoted by T, form seq(E} to seq(F) by (Tf)(n}

= T{f{n}) for all n€ N.

11.1. Definition. A Iinear operator T from E to F ig called

fa) (sequentially) order continucus (or an integral operator) if for
every f € seq(E) holds that °L(TFf) = 0 whenever Of = 0.

(b) (sequentially) regulator comtinuous if for every f € seq(E) holds
that TL(TF) = IS(F) whenever 'L = IS(E).

{c) (sequentially) characteristic continuous Lf for every f € seq(E)
hotds that CL(Tf) = 0 whensver SLf = 0.

11.2. Example. Not every positive linear operator T from a Riesz space
E to a Riesz space F is order continuous, becuase if T is the linear
operator from C [0,1 1 to R which assigns to x the value x(0), then T
is positive, however, if f € seq(C [0, 11) is such that for all n€ N
we have (f(n})(t) = 0 if t € [n-l,l 1 and (f(n)}(t) =1 ~ nt if

te [O,n-ll, then f + 0, hence O1f = 0. However, 0L(Tf) = 1 because
(Tf}{n) = 1 for all n&€ N,

11.3. Theorem. (compare Vulikh [ 1967, thm VIII 1.2 1}. Every Jordan
operator T from a Riesz space b to a Fiesz space F is regulaior con—
tinucus.

Proof: It is sufficient to give a proof for positive T only.

If "Lf = IS(E) then 0 € "Lf, hence there exists a u € E' such that for

all € > 0 there exists a N € N such that for all n= N, holds that

[f(n)| < eu. But then also |Tf(n)| < T|f(n)| < eTu holds for all n > N_,
hence 0 € rL(Tf,Tu) c rL(Tf). By prop. 7.4 we have now that rL(Tf) = IS{F).

11.4. Example. Not every positive linear operator T from a Riesz space E
to a Riesz space F is characteristic continuous, because if T is the
canonical embedding operator from C [0,1 ] into the Riesz space F of
all real functions on [(G,]1 1, then T is a positive linear operator.
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If f € seq{E) is such that for all n€ N and t € [0,1 1 we have

(F(n))(t) = 0 if te[n 1] and (f(n))(t) = -nt + 1 if te (o],

then Lf = 0, because f(n) € f(n)ll for alit ne N, f(n+1)ll c f(n)ll

for all n€ N and N {f(n)ll; ne N} = {0}. But (Tf(n)}ll >t for

all n € N where x € F is such that x{0) = 1 and x(t) = 0 for t € (0,11,
hence CL(Tf) # O.

It may be questioned whether every integral operator is order bounded.
For a rather extensive class of integral operators (not exhaustive) this
guestion is answered by Peressini {1967, prop. I. 5.15, prop. I. 5.13b1,
where it is proved that every integral operator from an Archimedean Riesz
space to an Archimedean countably bounded Riesz space is order bounded.

11.5. Example. Not every positive linear operator T from a Riesz space
E to a Riesz space F is an integral operator. Let E=C[0,1], F =R,
T: E ~+ F such that Tx = x{0), then T is a positive linear operator. If
f € seq{E) is such that for all n € N we have (f(n))(t) = 0 if

te[n 1,11 and (F(n))(t) = 1 - nt if t& [O,n L 1, then °LFf = O, but
Tf(n) = 1 for ali n € N, hence ®L(Tf) = 1.

11.6. Theorem. If E and F are Archimedean Riesz spaces and E is order
convergence stable, then every order bounded linear operator T from E

to F 28 an integral operator.

Proof: If for f € seq(E) holds that O1f = 0, then there exists a

g € seq(E) such that |f| < g and g + 0. E is order convergence stable,
hence there exists a 0 < a € seq(R} such that +a, {a(n); n€ N1} is

not majorized and °L(ag) = 0. The latter implies the existence of x € E
such that [ag! < x. Now we have that {a(n) f(n); n € N} is order bounded,
because -x < -ag < af < ag < x. But then also T({a(n) f(n); n€ N} is
order bounded in F, say -y < T(a(n) f{n)) <y for all n€ N. It follows
that |T(f(n))| < (a(n))_ly for all n € N such that a(n) # 0. Since F is
Archimedean, we have °L(Tf) = 0 by thm 6.2 (b).

11.7. Example. If an Archimedean Riesz space E has the property that
every order bounded linear operator T from E to an arbitrary Archimedean
Riesz space F is an integral operator, then E is not necessary order
convergence stable, even if E is universally complete.




To demonstrate this we use a Riesz space which appears in Tucker [ 1974 1.
If E is the Riesz space (with pointwise linear operations and pointwise
ordering) of all realvalued functions on the set S of all 0 < a € seq(R)
such that ta, a(l) > 0 and {a(n); n€ N} is not majorized, then E is
universally compiete. It follows from Fremlin [ 1975, cor. 1.13 ] that
every order bounded linear operator from E to an arbitrary Archimedean
Riesz space F is an integral operator. However, E is not order conver-
gence stable, because, if f € seq(E) is such that (f{n)}{a) = (a(n))_l,
then f 4 0 because inf{(f(n))}(a); n€ N} =0 for all'a € S, as

(f{n))(a) = (a(n))'1 for all n€ N. But if 0 < a, ta, a{(l) > 0 and
{a(n); n€ N} is not majorized, thén for all n€ N we have that
a{n}{f(n))}{a) = 1, hence 0L(af) # 0. This implies that £ is not order
convergence stable.
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Chapter III
DISJUNCTIVE LINEAR OPERATORS

In this chapter we study disjunctive linear operators, especially ortho-
morphisms and disjunctive Tinear functionals. Further we give some

examples of unbounded orthomorphisms.

12. Orthomorphisms.

A notion of rather recent origin is the notion of disjunctive linear
operator. The study of some special types of disjunctive linear operators

such as Riesz homomorphisms, is much older.

12.1. Definition. {cf. Cristescu [1976, p. 186 ]). 4 Iinear operator T

from a Rtesz apace Eto a RBilesz space F ig called a disjunctive linear

operator if for all x, y € E helds that Tx 1 Ty whenever x 1 y.

12.2. Theorem. For a linear operator T from a Riesz space E to a Riesz

space F the following assertions are equivalent

(a) T ig a disjunctive linear operator

(2) |T|x|| = |Tx| for all x € E

Proof: (a) » (b): x' 1 x7, so ™x* L ™. Now |mx| = |mx* - x|

= |mx" + 7| = |Tix|| by thm 3.3 (%),

(b) » (a}: if x L y then |x| A |y| = 0. Now |T|x| - Tly|| = |o(i|x] - |¥|])]
= |n(Ix| = [y + o(ix] - {yh)7] = |zlx| + Tly[[, because {|x| - |y[)*

u

|x| and (|x| - |¥|)" = |yi by thm 3.3 (gJ. By thm 3.3 (k) we have
T|x| L+ T|y|, hence |B{x|| L |T|y[|, so |Tx| L |Ty|, consequently Tx L Ty.

The most important disjunctive linear operators are the positive ones,
called Riesz homomorphisms. A bijective Riesz homomorphism is called

a Riesz isomorphism; a Riesz space E is called Riesz isomorphic to a
Riesz space F if there exists a Riesz isomorphism from E to F.

With the aid of Riesz homomorphisms factor spaces of Riesz spaces can
be defined, which are Riesz spaces themselves {cf. e.g. Luxemburg and
Zaanen {1971, §18 ] ). This is a consequence of the preservation of the
lattice operations by a Riesz homomorphism, a fact which is stated below.




12.3. Theorem. For a linear operator T from a Riesz space E to a Riesz
space F the following assertions are equivalent

{a) T 18 a Riesz homomorphism

(b} T{xvy) = TXVTy for all x, y € E

(2} T{xAy) = TXATY for all x, Y€ E

(d) |Tx| = T|x| for all x € E.

(compare Schaefer [ 1974, 1I, prop. 2.5 1 where similar statements are
proved; Riesz homomorphism are called lattice homomorphisms there}.

There exists an important relation between realvalued Riesz homomorphisms
on a Riesz space E and maximal ideals of E. This relationship is expressed
in the following theorem,

12.4, Theerem,. (compare e.g. Luxemburg and Zaanen [ 1971, thm 27.3 (i} ]
and Schaefer [ 1974, cor. of II. prop.3.41). If ¢ ie a realvalued Ries=z
homomorphism on a Riess space E, then the nullepace N(¢) of & <8 a mazi-
mal tdeal of E. If M is a maximal ideal of E and X € E" is arbitrary such
that X & M, then there exists ewxactly one realvalued Riess homomorphiam
¢ on E such that $(M} = {0} and ${x) = 1.

12.5. Definition. 4 realvalued Riesz homomorphism ¢ on a Riesz space E
with strong order unit e is called standard if ${e) = 1. The set of all

standard realvalued Riess homomorphisms on a Rieszs epace L is denoted by
R(E), or simply by R if there is no ambiguity.

12.6. Thearem. For an Archimedean Rieesz space E with strong order unit e
the set R fg total, Z.e. R iz not empty and <if ¢{x) = 0 for certain
XE€E and all & € R then x = 0.

Proof: By thm 3.13 the set of all maximal ideals of E is not empty. Let
M be a maximal ideal of E, then e & M. Now by thm 12.4 there exists a
standard realvalued Riesz homomorphism on E, hence R # ¢. If ¢(x) =0
for all ¢ € R, then by thm 12.4 we have that x € M for every maximal
ideal M of E, hence by thm 3.13 we have that x = 0.

12.7. Example, (cf. Meyer [1979, Ex, 1,4 1). Let E be the Riesz subspace

of C{0,1] consisting of all x € C[0,1 ] such that the right differen-
tial quotient of x in the point t = % exists as a real number x'(%).
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Let T: £ > R be the linear operator such that Tx = x'(%}. If xL yineE,

then x'(%) =0 or y'(é) = 0, hence Tx L Ty, so T is a disjunctive linear
operator., Note that neither T nor -T are Riesz homomorphisms.

12.8, Theorem. (cf. Meyer [ 1979, Thm I. 6 1). A disjunctive linzar oper—

ator ig a Jordan operator if an only if 1t is order bounded.

12.9. Definition. 4 Iinear operator T from a Riesz space E to itself

is called a stabilizer on b if T preserves orthogonality in the fol-

lowing strong sense: if x L y then also Tx 1 y.

12.10. Theorem. For a linear cperater T from a Rigez space E to {tself,

the following assertions are equivalent

fa) T is a sitabilizer on E

(b} T is polar preserving, Z.e. T(P) C P for every polar P of E

(2} Tx € xl! For every x € E.

Proof: (a) -+ (b): if x € P, then x L y for all y € Pl, hence Tx L y for
all y € Pl, or Tx 1 Pl, hence Tx € Pll =P

(b} + (e} evident

fe) -+ {a): Suppose x 1L y, Tx € xll,.hence Tx L y.

The linear subspace of £(E,E} consisting of all stabilizers on E is
denoted by Stab(E). In section 4 it was observed that £(E,E) is a par-
tially ordered algebra if we suppose on £(E.E) the operator ordering and
if multiplication is the composition of mappings. Stab(E) is a partially
ordered subalgebra of £{E,E) because x, y € E, x L y and S, T € Stab(E}
imply Sx 1 y, hence TSx 1 y.

Until recently it was unkngwn whether every stabilizer is also a Jordan
operator. A negative answer to this question was given independently by
Meyer [ 1979 1 and Bernau [ 1979 1. Their counterexamples are essentially
the same and in fact a modification of a well known (norm) unbounded
Tinear operator, namely the differential operator in an appropriate
Hilbert space.

Really surprising is the fact that there exist also unbounded stabilizers
in some universally complete Riesz spaces. This was proved by Wickstead
[1979 ] by a kind of Hahn-Banach proof for the existence of an (unbounded)
extension of the Meyer-Bernau stabilizer to the universal completion of




the underlying Riesz space. Abramovi®, Veksler and Koldunov [ 1979 )
assert that there exists a bijective unbounded stabilizer on the Riesz
space M{[0,1 1, u, < ) where u is Lebesque measure (example 3.4 (g)).

We give more examples of unbounded stabilizers in section 14.

The fact that there exist unbounded stabilizers implies that Stab(E} for
a Riesz space E is in general not a Riesz space, because for every Riesz
space E holds that E = et -t (every element of a Riesz space can be
written as the difference of two positive elements, section 3).

12.11. Definition. A limear operator om a Riesz space E which is the

difference of two positive stabilizers on E fg called an orthomorphism

on E.
Note that every positive orthomorphism is a Riesz homomorphism.

The 1inear subspace of £(E,E) consisting of all orthomorphisms on E is
denoted by Orth{E). Orth{E) is a partially ordered subalgebra of Stab(E).

In contrast to Stab{E) we have that Orth{E) is a Riesz space in general,
whenever E is Archimedean. This was independently proved by Bigard and
Keimel [ 1969 | and Conrad and Diem { 1971 ]. A direct proof was given by
Bernau [ 1979 1. However the last proof is rather complicated and not very
transparent.

A Yinear operator T from a Riesz space E to itself is called a sentre
operater on E if T is bounded in the operator ordering of £(E,E) by two
muitiples of the identity operator Ip on E, i.e. if there exist », u€ R
such that AI < T € puI.

Every centre operator T on a Riesz space E is an orthomorphism, because

if AL<T<pI for A, u€ R then T is the difference of [u|T and

lu|T - T. p{I is positive and a stabilizer because x L y implies |p| x 1 y.
Also |u{I - T is positive because T < uT < |u|I and a stabilizer because

if x 1 y then ju]ix|Aly] = 0, hence (|u]T - ) |x|A|y| = 0, so certainiy
[(Iu]T - T)x{Aly| = 0, hence {|u|T - T)x L y.

The Tinear subspace of £{E,E) consisting of all centre operators on E is
denoted by Z{E). We note that Z(E) is a partialiy ordered subalgebra
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of Orth(E). It follows immediately from the definitions that Z(E) is a
Riesz subspace of Orth(E}, whenever E is an Archimedean Riesz space.

12.12. Example. If E is the partially ordered linear space of all func-

tions x from an arbitrary non-empty set S to R, with pointwise linear
operations and pointwise partial ordering, then E is a universally com-
plete Riesz space. If we define an algebra structure on E by pointwise
multiplication, then E is a partially ordered algebra with multiplicative
unit e, the function constant 1 on §,

If for z € E we define the linear operator &, by R x = Xz, then & is a
stabilizer, because if x L y in E, then x(s)y{s}= 0 for all s € S, hence
x{s) z(s) y(s) = 0 and this implies xz 1L y, or azx L y. In fact, ﬂz is an
orthomorphism, because R, = &4 - ﬂz_ and L and &, are pasitive linear
operators.

Every stabilizer can be written conversely as an operator &, for some

z € E, hence 1is an orthomorphism. This can be seen as follows. If T is

a stabilizer on E and z = Te, then for every x € E and every s € S we
have (x - x{s}e)(s) = 0, hence x - x(s)e L Xg where Xg(t) =0if t #s,
xs(s) = 1.

It follows that also T(x - x(s)e) l'xs, hence (Tx - x{s)z)(s) = 0, which
implies that (Tx){s) = x(s)z(s). Hence T = ﬂz.

It is one of our purposes to find a description of orthomorphisms as
multiplication operators in an arbitrary Archimedean Riesz space. While
not every Archimedean Riesz space can be provided with an appropriate
multiplication, we shall deal in the sequel with mu]tipﬁications in
Riesz spaces, which are only partial in a certain sense. In order to
develop an independent theory, we shall make no use of the fact that
Orth{E) is a Riesz space whenever E is an Archimedean Riesz space.

12.13. Proposition. (compare Conrad and Diem { 1971, Prop. 2.1 1)

If T 48 a positive linear operator from a Riesz space b to itself, then
{a) T s an orthomorphism whenever 1 + T is a Riesz homomorphism
(b) I + T s an orthomerphism whenever T is an orthomorphism.
Proof:
(a) if I + T is a Riesz homomorphism and x L y in E then
(L+T)|x|A(L + T)]y|] = 0. From |Tx| < T|x| < (I + T}|x| and




ly| < {I + T)|y| it follows now that [Tx|A|y] = 0, hence Tx 1 y.
{) if T is an crthomerphism and x 1 y then we have Tx 1l y and x 1 y,
hence x + Tx L y, or (I + Tix1 y.

12.14. Proposition. If T is a positive orthomorphism on a Riesz space E

then I + T is an injective orthomorphism on E.

Proof: By the foregoing proposition I + T is an orthomorphism on E.
If x, y 20 in E, then from {I + T)x = (I + T)y it follows that

y = x = Hx - y), hence (y - )= (r(x -y = x - v E (x - y)
But also (y - x)* = (x - y)7 € (x - y)"*. It follows that

{y - x)+ € (x - )+ll no(x - y)-ll = {0}, hence x > y. By symmetry also

Yy =X, hence x = y. If x, y € E are arbitrary, then from (I + T}x = {I + T)y
it follows that (I + T)x* = ({I + T)x}" = ((T + T)y)* = (I + T)y’. hence by
the foregoing xt = y*, and similarly x” =y, so x = y.

+1l

The following theorem is a direct consequence of Luxemburg and Schep [1978, thm 1.3].

12.15. Theorem. Every orthomorphism T on an Archimedean Riesz space E s

order continuous.

In this secticn 14 examples are given which show that thm 12.15 does not
hold for arbitrary stabilizers.

12.16. Thearem, Every stabilizer T on a Riesz space b ig characteristic
CONLLNUOUS.

Proof: if “Lf = 0 for some f € seq{E), then there exists a (countable)
subset {P ; n € N} of the Boolean algebra P(E) of all polars of E such
that P ., © P forallne N, f(n) € P, for all n€ N and

n {Pn; ne€ N1 = {0}. Now by thm 12.10 we have that TP, € P, for every
n€ N, hence also (TP, ) C P, forallne N.

It follows that Tf(n) € (TP )“ for all n& N, (TP ,)7" C (TPn)ll

all ne N and ﬁ{(TP ) l; ne N}Cﬂ‘P l, ne N} = {0}, hence

n (TP, Woone N3 o= {0}, so CL{Tf) = 0

il

12.17. Theorem. Every orthomorvhism T on an Archimedean Riesz space E

preserves all c-ideals of E, i.e. TJ C J for every c—ideal J of E,
Proof: It is sufficient to give a proof for positive T only.
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Let 0 < x € J, Define f € seq(lx) by f(n)
0 < f and +f. Further we have |f(n) - Tx|
for all n € N, then f(n} -~ Tx € Pa for

If we define Pn = (Tx - nx)+ll
all n € N. Also Pl € P for allne€ N. n {Pps n€ N} = {0}, because
if for 0 <v € E holds that 0 s v & {Tx - nx)Hl for all n € N, then

v1l (Tx - nx)” for all n€ N, hence v L (n-lim -x) . s0vl {x - nlrx)*
for all n € N. E Archimedean implies that x = sup{{x - %Tx)+; n€ N},
hence by thm 3.5 it follows that v L X, so v 1L Tx. But then certainly

vi (Tx - nx)+, hence v € {Tx - nx}+l for all n€ N. It follows that

v = 0. Hence, “if =mx. “Lf € J because J is a c-ideal, thus Tx € J;

we conclude that TJ € J.

Txinx for all n€ N, then
(rx - )" for all ne N.

12.18. Theorem. Every orthomorphism T on an Avchimedean Riesz space E

preserves all otdeals of E, Z.e. T C J for every o-ideal J of E.

Proof: It is sufficient to give a proof for positive T only. Let 0 € x € J.
Define f € seq{Ix) by f{n} = TxAnx for all n€ N, then 0 < f and +f.

By thm 12.10 we have Tx € xll , hence Tx = sup{f{n); n€ N}. From

thm 6.1 (a) it follows now that Tx = °Lf, hence Tx € J, so TJ C J.

12.19. Remark. Not every orthomorphism T on a Riesz space E preserves all

ideals J of E. If E is the Riesz space s of all sequences of real numbers
and J is the ideal of all sequences converging to 0, e = (1, 1, 1, ...) € E,
Y= (1,3 % ...) € J and T € Orth(E) is such that (Tx)(n) = nx(n) for all
ne N, then Ty = e ¢ J, hence TJ ¢ J.

12.20. Theorem. (Bigard, Keimel and Wolfenstein {1977, thm 12.2.7 |) If

T <5 an orthomorphism on an Archimedean Riesz space [, then the nullspace
N(T) of T is equal to T(E)L .
We note that the proof is by elementary means.

A direct consequence of this theorem is

12.21. Theorem. (compare Bigard [ 1972 1) IFf S and T are orthomorphisms on

, . . .. . 1
an Archimedean Riesz space E which coincide on a subset X for which Xl = X,

then § = T,

Proof: X C N(S - T}, hence E = x it

1

cns -t Ns-T),s085="T




Orthomorphisms on Archimedean Riesz spaces with strong order unit have
special properties. Here we shall prove two of them.

12.22. Theorem. If E <s an Avchimedean Riesz space with strong order
unit e, then ™ C M for every T € Orth(E} and every maximal ideal M of E.
Proof: It is no restriction to give a proof for positive T only.R is the

set of all standard realvalued Riesz homomorphisms on E. Let M be an
arbitrary maximal ideal of E. By thm 12.4 there exists a ¢ € R such that
#(M) = {0}. Let X be the real number ¢(Te). Without loss of_ generality we
may assume that A 4-%, otherwise take the orthomorphism EA- T instead of

T. A= 0 by the positivity of ¢oT.

We shall prove now that if 0 < x € M then Tx € M. We have by the positivity
of &>T that u= 0 if u = ¢(Tx). I + T is an orthomorphism by proposition
12.13 (&), by the positivity of I + T we conclude that I + T is also a

Riesz homomorphism.

It follows now with thm 12,3 that

0< (w(l-Me-x)"<(T+D(l-nre-x)"

= (u(l - A)Te - Tx + u(l - Ae - x)+ € M, because

(1l - A)Te - Tx + u(l - A)e - x)+) = (¢({l ~ M)Te - Tx + p{l - Ne - x)}+
=l -2 -p+pu(1-2)-0"= (- w - p+u- - (-uk2)+ = 0.
By the ideal property of M we have now

(u{l - x)e - x)+ € M, hence #{{u{l - A)e - x)+) = 0, hence

(b (L-2a) - e(x)) =0, sou(l - 1) <0. If u> 0, then necessarilyl-X <0,
so A = 1, contradiction. It follows that u = 0, hence Tx € M,

12.23. Theorem. If E s an Archimedean Riesz space with atrong order

untt e, then OQrth(E) = Z(E).

Proof: It is sufficient to prove that every positive orthomorphism T on E
is a centre operator. There exists a A€ R such that Te < Xe, because e
is a strong order unit. We shall prove now that Tx < ix for all x = 0.

If x> 0 and M is an arbitrary maximal ideal of E, then let ¢: E > R be
the unique Riesz homomorphiém such that ¢(M) = {0} and é{e) = 1. Now we
have x - ¢{x}e € M. With the foregoing theorem it follows that

T(x - ¢(x)e} = Tx - ¢(x)Te € M, hence also (Tx - ¢(x)Te)+ € M, but then
certainly {Tx - ¢(x)ke)+ € M.

Further we have that ¢(x)xe - ix € M, because ¢(d{x)re - Aix)

= Ad{x) = A¢(x) = 0, hence also {${x)re - Ax)+ €M,

Because 0 < (Tx - lx)+ < {Tx - ¢(x)le)+ + (d(x)re - Ax)+ € H we also have
{Tx - Ax)+ € M. So by thm 3.13 we have (Tx - lx)+ = (0, hence Tx < )x.
Consequently 0 < T < AI, so T is a centre operator.




13. Nullspaces of disjunctive linear functignals

In this section we determine the nullspaces of disjunctive linear
functionals on a non-trivial Riesz space E.

It appears that the forms of these nullspaces resemble the notions

of prime ideals and maximal ideals, which we have already encounterad
in section 3.

It will be necessary to apply the notion of primeness t¢ subspaces
of a more general type than ideal.

In this section E is an arbitrary Riesz space.R(E) and 3(E) are
abbreviated to f and ¥ respectively,

13.1. Definition. A Iinear subspace L of E ie said to be primz if it
follows from X,y € E and xAy € L that at Teast one of X and ¥y 18 an

element of L.

13.2. Example. If E = C[0,1] and L = {x € E; x(0) = x(1) = O} then L
is not prime because if x{t) = tande{t) =1 for a1l t € [0,1] , then
x*(e - x)€ L, however x € L and e - x & L.

If M is the linear subspace of all polynomials in E, then M is prime,
because if x,y € M then xAy € M if and only if x and y are comparable,
i.e. XAy = x or xAy = y. It follows that x € M or y € M. Note that M
is not an ideal of E.

13.3. Lemma. For a linear subspacez L of E the fellowing asseriions are
equivalent.

(a) L ie a prime linear subspace

(b) if XNy EL then XE€E Lory€lL

(e) 2f xVy =0 then x €L or y €L

(d) ©¢f x\y =0 then XE L or y €L

Proof: (aq) =+ (b): xvy € L implies -(xVy) = {-x)A{-y} € L, hence x € L or
y € L.

(b) + (c) : evident

fa} ~ (d) : xAy = 0 implies -(xAy) = (-x)v(-y) = 0, hence xe Lor y€ L
(d) + (a): if xAy = h €L then (x - h)Aly - h) =0, sox-helaor
y-h€e€L, hence x€Lorye€l.




As a consequence of (d) we have: if for linear subspaces K and L of E
holds that K O L and L is prime, then K is prime.

If X is a subset of E, then the intersection of all linear subspaces L
of E such that L 2 X is also a linear subspace, which we call the linear
subspace of E generated by X, in formula Lss{X).

Completely simiiar, by thm 3.7, we can define the Riesz subspace, res-
pectively ideal, band, polar of E generated by X as the intersection

of all Riesz subspaces, respectively ideals, bands, polars of E which
contain X, in formula Rss(X), respectively Id(X), Band(X), Polar(X).

In the following we abbreviate Rss(¥{x}) to Rss(¥X,x) and Id(Xu{x}) to
Id(X,x) for X C E, x € E.

In this section we are especially interested in Rss(X) for a given X € E.
In general, it is difficult to give a closed description of the elements
of Rss{X) for X C E arbitrary.

In the following we shall meet two exceptions to the rule, the first in
thm 13.4, where we consider the Riesz subspace generated by a linear
subspace, the second in thm 13.22 where we consider the Riesz subspace
generated by a subset consisting of a prime Riesz subspace and an
arbitrary element of E.

13.4. Theorem. For a linear subspace L of E the Riesz subspace Rss{L}
of b consists of all finite infima of all elements of E which are finite

suprema of elements of L, in formula

Rss(L) = { A v
je€dkek

J and K arbitrary finite index sets}.
Proof: If R(L) is the right hand set, then it is evident that Rss(L) 3 R{L).
We are done if R(L) is a Riesz subspace of E.
If x,y € R(L) then we have also xAy € R(L).
By Bigard, Keimel and Wolfenstein [ 1977, cor. 1.2.18] we have for all
finite indexsets I,J and K and elements X ik (iel, j€J, k€K) that
V A v xjk'i= A ;
iel jed kekK g€EJ

Xjk; X3k €L for all j € Jd, k€ K, with

I Xo(i)ki ®

M M =

jed
k€K

this implies that if x,y € R(L)} then we have also xyy c R(L).

Further, if x = A Vo ox; oand y = A VoY,
: jeakek Ik ielmen ™
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then x + y = A { V Xik + vV oy, 1=

jed kek mepM M
jel
A Vo o {x;, +y. 1 &R(L).
ied kek Jjk im
iel meM

If A= 0, x € R(L} then also Ax € R(L).

Finally, -( A VX )= v A =%y ) =
jed kek K 5eg9 kex K
= K., E .
Py ¥ (X)) € RIL)

c €K jEI

It follows that Rss(L) = R(L).

13.5. Lemma. I x € E'then®ss{{x}) = {ix; A € R}
Proof: evident

13.6. Theorem. For any Riesz subspace S of a Riesz space E and x € E
such that X € S, there exists a Riees subspace R of E with the following
properiies

(a) x ¢ R

(b) R2S

(2) Lf for certain Riess subspace T of E holds that X € T and T O R then
T=R.

Proof: Let Rx,S ={UeR x& U, UDS} be partially ordered by inclusion,
then RX,S # ¢, because S € Rx,s .

If £ is an arbitrary chain in RX,S’ then Rss(Uz) € R and Rss(UZ) > S.

If x € Rss{UZ), then x = A Voooxgy for certain finite indexsets J
jedkek d

and K, xjk € ) ; as a consequence of the finite cardinality of the set
{xjk; j € J, k € K} there exists a W in the chain Z such that
{xjk; JEJ, kEXKICH, so x €EW. Since x € W it follows that x & Rss(UZ).

Hence, Rss{UEZ) € Rx 5
Now, Zorn's lemma can be applied, and the desired result follows.

13.7. Definition. 4 Riesz subspace R with the properties listed in tim

13.6 78 called ¢ Riess subspace maximal in R with respect to the property




of containing S and not having % as element, abbreviated to R g S,x-
maximal in R. A Riesz subspace R is called x-maximal in R 2f R s S.x-
maximal in R for some S. R is calied anRrelative maximal Riesz subspace

if R 18 S,X-maximal in R for some S and x € S.

13.8. Proposition. For Riesz subspaces R and S of E such that R2 S
and x € b such that X € S the following assertions  are equivalent

fa) R i S,x-maximal in R
tb) R is {0}, x-maximal in R
Proof: evident

13.9. Theorem. {cf. e.g. Luxemburg and Zaanen [ 1971, thm 33.51).

For any ideal J of a Rieez space E and X € [ such that x & J, there
extets an tdeal M of B with the following properttes.

fa) x & M

(b) W34

{c¢) if for certain ideal N of E holde that X € N and N D J, then N = J.

13.10. Definition. An ideql M wiih ihe properties listed in tim 13.9 {s

called an ideal maximal in ¥ with respect to the property of containing

J and not having X as element, abbreviated to M is J,x-maximal in X.
an tdeal M is called x-mawmimal in X 2f M s Jd,X-maximal itn T rov some J.
M is catled an Y-relative maximal ideal 1f M s J,x-maximal in I for

some J and x & J.

13.11. Proposition. For idseals M and J of E such that M D J and x €L

auch that x & J the following aasertions arve equivalent

{a) M 28 J,x-mazimal in X.

(b) M ig {0}, x-maximal in .

Proof: evident

In Luxemburg and Zaanen [ 1971, thm 33.4 ] it is proved that every
Y-relative maximal ideal is prime. Here we give a proof based on the
distributivity of the lattice J, in which sup and inf are denoted by Vv
and A respectively.

13.12. Theorem. Every Y-relative mamimal ideal M is prime.
Proof: if M is x-maximal in I and y,z € € are such that neither y nor z
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is an element of M, then since M is x-maximal in I we have x € Id(M,y)
and x € Id{M,z), hence x € Id{M,y)nId{M,z) = Id(M,Iy)nId(M,IZ) =
(MVIy)A(MVIZ) = Mv(IyAIZ) = MV{0} = M. Since x ¢ M it follows that M is
prime.

In thm 6.12 the similarity between R-relative maximal Riesz subspaces
and J-relative maximal ideals breaks down, because, as a consequence of
the fact that R is not distributive in general, for a Riesz subspace to
be prime and to be R-relative maximal are independent properties. This
will be shown in the following example.

13.13. Example. Let E be the Riesz space as defined in ex. 12.7. If x € E
is such that x(t) = t for a1l t € 0,11, and S is the Riesz subspace of
E consisting of all y € E such that y{0) = y(1), then S is x-maximal in

R, because if S is strictly contained in a Riesz subspace R, then there
exists a z € R sych that z(0) # z{1}. Now for r € E with r(t) =

z(0) +(z{1) - z{(0}}t we have r - z € S, hence r -~ z € R, but then also

r € R, hence s € R if s{t) = (z(1) - z(0))}t for a1l t €[0,1 1, thus
(2(1) - 2(0)) s = x € R.

However S is not prime, because if e{t) = 1 for a1l t € [0,11, then
xi(e - x)E S, but x€ S, e - x &8,

If W={xeE; x{}) = x{1) = 0}, then W is a prime Riesz subspace.

But W is not x-maximal in R for some x € E'. For, suppose x'{(3} # 0,
then for T = {y € E; y'(3) = 0} holds that x € T, but W is strictly
contained in T. If x'(1) = 0 and x(}) # O then forV = {y € E;y{3) = 0}
holds that x ¢ T, but W is strictly contained inV, hence W is not a
R-relative maximal Riesz subspace.

13.14. Example. An ideal J in'a Riesz space E can be x-maximal in I for
certain x € E without being x-maximal in R. If E is the Riesz subspace

in the Riesz space of all real sequences, generated by o0 (all real
sequences which are eventually 0), e = (1,1,1,...) and r = (1,2,3,...},
then oo is e-maximal in I, but e € Rss(coo,r), hence o9 is not e-
maximal in R.

13.15. Theorem. Every proper Riecz subspace R ig the intersection of all

Riesz subspaces S such that RC S and § ie R-relative maximal.
Proof: Let Rh be the set of all those Riesz subspaces S such that RC 3




and S is R-relative maximal. It is evident that Rc n RR Suppose x € N R,
% € R. Then there is a § € RR such that § is x-maximalin R, hence x ¢ S,
contradiction. It follows that R = N Rh.

We note that the situation in ¥ is completely similar. Often, that theo-
rem is given in a milder form, namely that every proper ideal is the
intersection of all prime ideals which contain it {c¢f. e.g. Luxemburg
and Zaanen [ 1971, thm 33.51). It is surprising that just the analogue
of this milder form does not hold in R, as the following example shows.

13.16. Example. If E = C (0,1 ] and R = {x € E; x(0) = x(1)} then R is a
proper Riesz subspace of E. R is not prime, hecause if e{t) = 1 and

y(t) =t for all t€[0,1] then y A (e - y) = 0, however y & R,

e - y # R. The only Riesz subspace which confains R properly is E. Hence,
the intersection of all prime Riesz subspaces containing R is equal to E.

It is well known {cf. e.g. Schaefer [ 1974, II! thm. 2.2 |) that
MeI; M> J} is a chain in ¥ whenever J is a prime ideal. Here another
disagreement appears; the following example will demonstrate this.

13.17. Example. Let E be the Riesz space as defined in ex. 12.7. Then

P = {x€E; x(z) = x'(3) = 0} is a prine Riesz subspace of E. The Riesz
subspaces R = {x € E; x(%) =0} and 5=1{x€E; x'(%) = 0} both contain

P strictly, but RZ S and S € R.

13,18, Definition. 4 prime Riesz subspace R is called minimal in R with
respect to g Riesz subspace S if R2 S and if it follows from S < T € R
for certain prime Riees cubspace T that T = R. We abbreviate thie by

saying that R ie a prime Riesz subspace which is S—minimal in R. R is

called Rrelative minimal if R is S-minimal in R for some S.

13.19. Example. If a prime Riesz subspace is R-minimal in R for some
Riesz subspace R then it is not necessarily {0}-minimal in R because if
E=C[0,I JandRis asinexample 13.16 then it follows from this example
that E is R-minimal in R. But E is not {0}-minimal in R, because for

J = {x € E; x{0) = 0} it holds that J is a prime ideal and J # E.

45



46

13.20. Theorem. For szvery Riess subspace R there exists a prime Riesz

subspace S which ie R-minimal in R

Proof: Let Rh = {TER; TDRand T prime! be ordered by anti-inclusion.
RR + ¢, because E & RR' Let Z be a chain in RR' Then by thm 3.7 nz R,
also PEDR. If xAy = 0 for x,y € F and x&N 2, y & NI then there exist
K, L € Z such that x € K, y ¢ L. Without loss of generality we may
suppose K C L. Then x € Kand y € K. Hence N Z is nrime. It follows that
N Z is an upper bound of Z in Rh. By Zorn's lerma there exists a Riesz
subspace which is R-minimal in R.

In the Tight of example 13.16 we cannot expect that every Riesz subspace
R is the intersection of all Riesz subspaces which are R-minimal in R,
although it is correct if R is an ideal, as we prove in the following
theorem,

13.21. Theorem. Every ideal J is equal to the intersection of all prime

Rigsz subspaces which ave J-minimal in R. In partieular, the intersection
of all prime Riesz subspaces which are {0}-minimal in R is equal to {0},
Proof: By Luxemburg and Zaanen [ 1971, thm 33.6 ] J is equal to the inter-
section of all prime ideals M such that M 2 J. For every prime ideal M
such that M D J there exists a prime Riesz subspace R such that RC M

and R is J-minimal in R. But then certainly J is equal to the intersection
of all prime Riesz subspaces which are J-minimal in R.

13.22. Theorem. For every prime Riesz subspace R and ail x € E we have
that Rss(R,x) = Lss(R,x) = {r+ 2x; r€R, A €ER}

Proof: Let K = {r + ax; r&€ R, X €R}. From Rss{R,x) D K it follows that
it is sufficient to prove that K is already a Riesz subspace of E.
Therefore we shall prove that { r + Ax)v(s + ux)€ K for r,s € R and
Asu€R. R is a prime Riesz subspace,

{s - r+{u A)x)+A(r - s+ {A - u)x)+ = 0, hence
(s-r+m-x)"€erRor(r-s+0-ux)fer.

Since r,5 € R it follows that

{s - r+ {u-~- A)x)+ +r€Ror (r-s+(}- p)x)+ + s € R, hence

{s + (u = Ax)vr €ERor {r+ (A - u)x)vs € R. This implies that

(s + wx)v{r + 2x) - Ax € R or (r + Ax)V(s + ux} - ux € R, hence,

there exist t,u € R such that




{(r+ V(s +ux) =t + dxor (r+Xx)V(s +ux) =u+ ux, so
(r+ Ax)V(s + uix} €K,

13.23. Definition. 4 Rizsz subspace R is called stromgly compact in R
if 1t follows from R = OF where T CR that R = S for some S € .

13.24, Theorem, 4 Riess subspace i3 R-relative maximal if and only if

it {8 strongly compact in R.

Proof: If R is a Riesz subspace, x-maximal in R and T is a collection
of Riesz subspaces such that R = NI, then there exists a $ € T such
that x ¢ S. Together with $ > R this implies S = R.

Conversely, if R is a strongly compact Riesz subspace, then

let R* be the Riesz subspace which is the intersection of all Riesz
subspaces S such that R C S properly.

Then R* also properly contains R, because R* = R would imply that R

is equal to a Riesz subspace which properly contains R, a contradiction.
If x € RAR is arbitrary, then R is x-maximal, because if S 2 R, and

S # R, then the intersection is also taken over S, hence x € S because
X € R*.

13.25. Theorem. A prime Riesz subspace R # E is Rerelative maximal if
and only i1f there 18 a x € E such that Rss(R,x) = E.

Proof: Suppose R is R-relative maximal and there exists no x € E such
that Rss(R,x) = E.

Let y € E\R be arbitrary. Then Rss(R,y) +# E, hence there exists a z € I\R
such that z ¢ Rss{R,y).

By the foregoing theorem we have Rss(R,y) = {r + xy; r € R, A €R}.
Because z & Rss(R,y) we have z # r + Ay for all r € R and X €R.

y € Lss(R,z) would imply y =s + uz for certain s € Rand u€R, n# 0
because y € R, hence z = u-l(s - y¥), s0 z € Lss{R,y), contradiction,
hence y ¢ Lss(R,z), so by the foregoing theorem y € Rss{R,z).

It follows now that M{Rss(R,y); y € R} = R; by the strong compactness of
R we have now R = Rss(R,y) for some y € R, contradiction.

Conversely, if Rss{R,x}) = E for some x € E and RC S, R# 5§ form some
Riesz subspace S, then for an arbitrary y € 5\R we have that

¥ € Rss(R,x) = Lss(R,x), so y = r + Ax for some r € R and X # 0.

But then x € Lss(R,y) = Rss(R,y) C S, hence x € §. It follows that R is
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x-maximal in R

13.26. Theorem. If R 1s a prime Rizes subspace which 1s R-relative
maximal, then Lss(R.y)} = E for every y € E\R.
Proof: By the foregoing theorem there exists an x € E such that

Rss(R,x} = E.

Let y € ENR be arbitrary, then there exists a A # 0 such that y = r + Ax
for some r € R. Hence x = - A 1r + A'ly. If 2z € E then z = t + ux, where
teR,s0z = (t- A“lur) + A'luy € Lss(R,y).

It follows that Lss{R,y) = E.

13.27. Definition. 4 Riesz subspace R is called (absolute) maximal in

R i7 the only Fiesz subspace which contains R preperly is E.

It is -evident that every Riesz subspace which is (absoluta) maximal in Ris R

relative maximal. The converse holds under the additional assumption
that the Riesz subspace is prime, as we show in the following theorem.

13.28. Theorem. Every prime Riesz subspace which is “—pelative maximal

is {absolute) maximal in R.
Proof: this is an immediate consequence of thm, 13.26.

13.29. Theorem. 7f R is a prime Riesz subspace which is x-maximal in R

for some x € E, then for every y € b there exists precisely one J\y €R
such that y - J\yx € R,

Proof: By thm 13.26 we have Lss(R,x)} = E.

If y€ E then y = r + Ayx for certain r € R, Ay €ER, hence y - Ayx € R.
If also y - Ax € R for certain A€R, sayy - 2x = s, then s - r =

(Ay - A)Xx € R, From x € R it follows now that X = Ay.

In the following theorem we determine the nullspaces of disjunctive
linear functionals on E.

13.30. Theorem. The nullspacee of non—-trivial disjunctive linear func-

tionals are precisely the prime Riess subspaces which are R-relative
maximal.

Proof: Let T be a non-trivial disjunctive linear functional on E and




denote the nullspace N{T} of T by N.

x € N implies |Tx| = O, hence |T|x|| = O by thm 12.2, hence |x| € .
Together with N a linear subspace this implies that N is a Riesz sub-
space.

Furthermore, N is prime, because if xAy = 0 then Tx! Ty, hence Tx = O
or Ty =0, so xXE Nory&€N.

Because T is non-trivial there exists a x € E\N such that Tx = 1.

Now we have that N is x-maximal in R, because, if R 2 N and R # N then
there exists a y € R with Ty = 1. Now x - y € N, hence x - y € R, but
then alse x € R.

Conversely, let N be a prime Riesz subspace which is x-maximal in R.
By thm 13.29 there exists a map Tx from E to R, which assigns to y € E
the real number A such that y - Ayx € N.

We shall prove now that T, is a disjunctive Tinear functional with null-
space N. T, is linear because if y,z € E then y + z - (Ay + xz)x & N,
hence T&(y +2z) = Ty + T2 and for X € R we have Ay -Akyx € N, hence
T (AY) = ATy

For y € E we have by definition y - (Txy)x e Nand [y] - (T%lyl)x €N,
hence

lyl = (zlyD)x + (v - (Ty)x) = 2" = (T |y| + T,y)x € N and

ly| = (T, lyDx - (¥ - (T¥)x) =2y - (T,|y] - Ty)x € N.

2y+A2y_ = 0, hence 2y+ € N or 2y € N because N is prime.

It follows now that also

(Txlyl + T y)x € Nor (Txly} - Ty)x € N. By the fact that x & N we have
Tx[yl + T,y =0or TX1YI - T,y = 0, hence (in both cases) ITxlyll = [Txy[,
50 Tx is a disjunctive linear functional.

N(Tx) = N because TV = O for y € E implies y =y - Ox € Nand y € N
implies y - Ox € N, hence TY = 0.

13.31. Theorem. For every 0 # x € E there exists an X-maximal prime Riesz

subapace.

Proof: It follows from thm 13.9 that there exists an ideal J maximal in

L with respect to the property J > {0} and x € J. J is prime by thm 13.12.
Now by thm 13.6 there exists a Riesz subspace R maximal in R with respect
to the property R 2> J and x & R.

From R 2 J and J prime it follows that R is prime.
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13.32. Corollary. For every Riesz space E # {0} the intersection of all

prime Riesz subspaces which ave Rrrelative maximal is equal to {0},

13.33. Theorem. The set of all disjunctive Ilinear functionals om an

arbitrary Riesz space E is total, Z.e. not empty and such that x = 0 if
Tx = 0 for all disjunctive linear functionals T on E.

Proof: From thm 13.31 and thm 13.30 it follows that the set of all dis-
junctive linear functionals is not empty. If Tx = 0 for all disjunctive
linear functionals T on E then x is an element of the intersection of
all nullspaces of disjunctive linear functionals, hence, by thm 13.30
and cor. 13.32 we have x = 0.

It was conjectured by Krull that for every Archimedean Riesz space E
there exists an injective Riesz homomorphism T from E to a Riesz space
of all realvalued functions on an appropriate non-empty set S. A counter-
example to this conjecture was given by Jaffard [ 1955/56 ] and many
others. Note that if E is an Archimedean Riesz space and T: E *-RS is

an injective Riesz homomorphism, then ¢<T is a realvalued Riesz homo-
morphism for every point-evaluation in RS, hence in E there exist maxi-
mal ideals. But there exist Archimedean Riesz spaces without any maxi-
mal ideals (cf. e.g. Schaefer [1974, III, exc.6]).

A general representation theory for Archimedean Riesz spaces was given
by Bernau [ 1965a 1., who. proved that every Archimedean Riesz

space can be imbedded (by an injective Riesz homomorphism} in a Riesz
space of extended realvalued continuous functions on an appropriate
compact Hausdorff space.

Related to this is a theorem of Brown and Nakano [ 1966 } which states
that every Archimedean Riesz space is a factor space of an appropriate
Riesz space RS.
With the help of nullspaces of disjunctive linear functionals we can
prove the Krull-type conjecture for a T disjunctive linear operator in-
stead of a Riesz homomorphism.

13.34. Theorem. For gvery Archimedean Riess space b there exists an

injeetive disjunctive Ilinear operator T from E to a Riesz space of all
real valued functions on an appropriate non-empty set S.
Proof: Let D be the set of all disjunctive linear functionals on E and




let F be the Riesz space of all realvalued functions on D with pointwise
Tinear operations-and pointwise partial ordering.

Define the linear operator T: E = F by (Tx)(S) = Sx for all s € 7.

xL1 y for x,y € E implies Sx 1 Sy for all S€7, hence Tx L Ty in F, so
T is a disjunctive linear operator,

If Tx = 0 for all x € E then Sx = (0 for all S € U, hence by thm 13.33
we have that x = 0, so T is injective.

14, Examples of unbounded stabilizers

In this section we give some new examples of unbounded stabi-
lizers and we give some counterexamples for stabilizers of statements
which hold for orthomorphisms.

14.1. Example. Let E be the Archimedean Riesz space of all functions

x on [1,2 ] which are piecewise polynomials, i.e. to every x € E there
exist real numbers 7.(x) such that 1 = TO(X) <... < tn+1{x) = 2 such
that x coincides with a polynomial x5 on every [TT(X) 1.+1(x)} for

i =0,...,n-1 and a polynomial X, on [Tn( x}, n+1(x)
To any t € [1,2) and any x € E there is an i(t,x) such that
tE[T; i(t, x)( x)s T i(t, x)+1(x)), let i{2,x) = n. Then define

T, :

¢ E-RbyrT

% = %i(,x){(0)-

If we define a ring structure on E by pointwise multiplication, then
for all t €{1,2 1 the operator Tt
Tte = 1 (where e is the function constant 1 on[1,2 ] and N(Tt) = Jt’
where Jt is the maximal ring ideal of all functions x such that

{0) = 0.

is a.ring homomorphism such that

Xi(t,x)

But Ty is for t €[1,2 ] not only a ring homemorphism, but alse a dis-
junctive linear functional, because if x! y in E then xi(t x)(0) =0

]
or yi(t y)(ﬂ) = 0, hence TyX = 0 or Ty = 0, so T, x1 T,y.
Now we define a linear operator T from £ to itself by (Tx)(t) = Ttx(t € [1,2]).
If xly in E then x(t) = 0 or y(t) = 0 forall t€[1,2], so if X5 #0
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for some i = 0,...,n then y1(t y}( }=0for te [ i(t, x)(x), (e, x)+1(x))
s0 x1 Ty,hence T is a stabilizer on E.

T is unbounded, because T([0,e ]} is unbounded in E. Namely, if f € seq(E)
is such that (f(n)){t) = -nt +n+n Lt ifte[1,1 +n 2] and (F(n})(t) = O
ifte[l+n S, 2], then for all n = 2 we have 0 < f(n) < e, however
{T(f{n}))s n > 2} is unbounded, because T{f(n)}{0} = n + n"! for all n € N.
T is not regular continuous, because for all n € N we have 0 < f(n)< n-le,
hence "Lf = 0, but Tf is not even order convergent, because by the fore-
going {T{f(n)}; n = 2} is unbounded. Hence T is also not order continuous.

Another example of an unbounded stabilizer on E is the following.

If for every £t €[1,2) and x € E we write x' i(t, x)( ) for the right deri-
i (t,%) in the point t and x1(2 )(2) for the left
limit of x'i(t,x)( ) for t » 2, then define for every t € [1,2] a linear
operator 8¢ from E to R by St i(t,x)(t)‘

Now again St is a disjunctive linear functional for every t€1{1,2].

vate of the polynomial x,

Define a linear operator S from £ to itself by (Sx)(t) = Stx {(te[l,21),
then with a similar proof as for T we can show that S is a stabilizer;
with the same order interval {0,e] and the same f € seq (E) we can show
that also S is unbounded .

Also with the same f € seq {E) we can show that S is not regulator
continuous and not order continuous.

If we compare S and T, then the following differences are conspicuous.

We have Te = e, but Se = 0, further T2 = T, but for S holds that for
every x € E there exists a n € N such that snxx = 0 {take n the maximum
of all degrees of the polynomials X5 (i=20,..,n)}.

In general, orthomorphisms on an Archimedean Riesz space commute (Bernau

[ 1979 D. However, arbitrary stabilizers on an Archimedean Riesz space need
not commute.

We give an example in the above Riesz space E.

Let R be the orthomorphism on E which is the right multiplication with z
where z(t) =t for all te[1,2].

Then RS # SR because RSz = Re = z, but SRz = 822 = 2z.




Chapter IV
f-ALGEBRAS

In this chapter Riesz spaces are studied which also have a ring structure,
which is connected with the Riesz space structure via a very strong com-
pability condition, the socalled f-algebras. Relations between ring ideals
and {order) ideals are discussed, just as relations between ring homo-
morphisms and Riesz homomorphisms. A variant is given of a theorem of
E114s [ 1964 ] and Phelps [1963 ].

15. Introduction tg f-algebras

f-algebras were introduced in Nakano [ 1950 1, Amemiya [ 1953 | and Birkhoff
and Pierce [ 1956 ] . Before giving the definition of f-algebra, we give the
definition of Riesz algebra, which is less restrictive.

15.1. Definition. 4 Riesz algebra i3 a quadrupel (E, +, <, .) where

{E, +, <) s a Riesz space and (E, +, <) <8 an algebra, such that
X .yE€ et for all x, y € £t

In the sequel for fixed x, < and . we abbreviate (E, +, <, .) to E.
Unless otherwise stated we indicate a product of two elements of a Riesz
algebra by juxtaposition.

16.2. Definition. An f~algebra is a Riesz algebra E in which for every
Xs ¥, Z € £ hoide that YyANZ=0 tmplies xy A2 =0andyx Az =0,

15.3. Thecrem, (cf. Bernau [1965b 1 for positive elements) A Riees algebra

E ?8 an f-algebra if and only If jor all X, ¥ € b holds that xy € xton yll.

Proof: »:if x, y € E* then x A z = 0 for some z € E implies xy A z = 0,

hence xy € W Likewise xy € yll. If x, y € E are arbitrary, then by the

foregoing we have x'y' € (x+)ll, X'y € (x+)ll, xyte (x )M and

Xy € (x_)ll. It follows that xy = (x' - x )(y" - y7) =

Syt o Ty -yt Ty e OO O o xt = K Likewise

Xy € yll, hence xy € st
+:if y Az =0 for some z € E, then for all x € E* we have

0<xye y}l, S0 Xy Az =0, Likewise yx A 2z = 0,

n yll.
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15.4. Definition. An f-multiplication on a Riesz space (E, +, <) s a

mapping . 2 E X E + E such that (E, +, <, .) <8 an f-qlgebra.

We note that every Riesz space can be given the structure of an f-algebra,
namely by the zero-multiplication. Although this f-multiplication seems

to be of no value at a first glance, sometimes it is important however;
for an exampie see Keimel [ 1971, Introduction ). Such an f-algebra is
called a zero-algebra.

In our case f-algebras with the property that many products vanish can
give rise to pathology. A simple extra assumption can avoid this. We

call f-algebras with this property faithful, They will be introduced in
the following section.

15.5. Definition. For an element X of an f—algebra F, left multiplication

by x is denoted by Lx’ and right multitplication by ax.

15.6. Lemma. For each f-algebra F and each x € F the mappings £ and Rx

are orthomorphisms on F. Moreover, they are posilive in the cperator
ordering L{f x =2 0.
Proof: straightforward.

15.7. Examples.

{a) Rz'with componentwise linear operations, componentwise partial or-
dering and componentwise multiplication. Note that there exists a
multiplicative unit, namely e = (1,1).

{b} The componentwise multiplication on (R2 » 1ex) is not an f-multipli-
cation because (1,-1) = 0, (0,1) > 0, but (1,-1)(0,1) = (0,-1) # 0.
Note that (xl,xz)(yl,yz) = (xlyl,xzyl) is an f-multiplication on
(R®, lex), but is not commutative

(c) The Riesz space C(X) where X is a topological space, provided with
pointwise multiplication is an f-algebra.

(d) The Riesz space o0 of all seguences of real numbers which are
eventually zero, provided with componentwise multiplication is an
f-algebra.

15.8. Remark. Not every Archimedean f-algebra with a strong order unit

is Riesz isomorphic to a Riesz space C(X) with X a (pseudocompact)




Hausdorff space (for a definiton of pseudocompact see Gillman and Jerison
{1976, 1.4 ]}, If the Riesz space FR of all sequences of real numbers with
a finite range is given an f-multiplication structure by componentwise
multiplication, then FR is an Archimedean f-algebra with strong order
unit e = (1,1,1, ...}. However FR is not regulator complete, because FR
has PP but is not Dedekind complete {Aliprantis and Burkinshaw [ 1878,

Ex. 2.13(3) ] and thm 7.9). Hence FR is not Riesz isomorphic to any Riesz
space C{X) by thm 7.10.

15.9. Theorem. In every f-algebra F we have for all X, ¥, Z € F that
fa) 220 Zmpides z{x vV y) = zx V zy and (X V y)z = xz V yz.
(B) |xy| = [x{lyl.
(e} x Ly implias Xy = 0.
(d) %2 > 0.
(e) 0. 2 < % and yx = 0 implies yz = 0 (y not necessarily positive).
(£} 2F X, y 20, xy =yx and (x Vy){x Ay) = (x Ay)(x Vy) then
(x A y)z = 52 ¥, xvy)fexlvy
(g) 17 xy = yx, Xy = y'x and (x Vy){(x Ay) = (x A y)(x V y) then
{(x Vy)x Ay) = xy.
Proof: (a)s (bJ)s {e) and (d) are given by Bigard, Keimel and Wolfenstein
[1977, prop.9.1.10 1.
() yx ® 0, s0 y'x - y'x > 0. Together with y'x A y'x = 0 this implies
that y"x = 0. But then also y z =0, hence yz = y z - y z=y'z = 0,
(F) (X VyHXAY) = (xVy)x A (X Vy)y = (x5 v yx) A (xy v ¥)
= (x2 v oXy) A (xy Vv y2) = (x2 A yz) V Xy = xy. On the other hand we
have (x V y)(x Ay} = (x Ay)(x Vy) = (xAy)xV (xAy)y =
(Z Ayx) v (xy A y8) = (8 Axy) v (xy AyD) = (v yd) Ay < xy,
hence (x V¥ y){x A y) = xy. At the same time we see that
(x2 A yz) V Xy = Xy, §0 x2 A y2 < Xy and (x2 v yz)
x2 v 12 = xy. It follows now that (x A y)2 (x Ay)x A (x Ayly

x2 Ayx Axy A yz = xz-A y2 and {x V y)z (x Vylx Vv {xVyy

A Xy = Xy, S0

x2 V yx V Xy Vv yz = xz v yz.

(g) in (f) the statement is already proved for x, y » 0. By () and (c)
we have now for arbitrary x, y € F that (x V y)(x V ¥)

(xvy) - kv Nx AN - (xay7)

(Evy" 4 (-7 vy N Ay +(-x7 A -yT) =

A U G i e I G A I P U A I
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oyt e T A =y vyt T A -y Xy

o

Sy P e o -ty )+ (cyTxT A0+ Ty =ty oty - T Ty
+4+ 4~ -k = + -+ -
Xy =xy =xy +xy ={x -x}y -y)=x.

A remarkable property of Archimedean f-algebras is the following theorem,
for which there exist two entirely different proofs, one by Zaanen [ 1975 ]
by means of thm 12.20. Another proof is given by Bernau [ 1965b 1.

15.10. Theorem. In every Archimedean f-algebra the multiplication is

commutative.

The following theorem shows that f-multiplication in an Archimedean
f-algebra is sequential continuous with respect to each of the three
types of convergence, defined in Chapter II.

If f, g € seq{F) for an f-algebra F, then the sequence h with
h{n) = f{n) g{n) for all n € N is denoted by fg. If x € F then xf,
fx € seq(F) are defined by (xf}{n) = xf(n), (fx)(n) = f(n)x for all n € N,

15.11. Theorem. If f and g are sequences in an Archimedean f-algebra F and

(@) °tf = x, PLg =y then CUfg = xy

X r‘Lg =y then r

(c) CLf = x, ch y then CLfg

(b) "LE

Lfg = xy

Xy

Proof:

(a} if p, q € seq (F) are such that
[f-x|<p+v0 and |g-y| <q+ 0, then
Ifg - xy| < |fg - fy[ + [fy - xy]
= fllg -yl + [f - xllyl < (If - x| + [x]) |9 - y| + [f - x[]y]
< (p(1) + [x])gq + plyl.
£p(1}+|x\ and ﬁly! are orthomorphisms in F, hence by thm 12.15 se-

quential order continuous. It follows that (p{l) + |x|)q + ply| + 0,
hence 0Lfg = XY.

(b) if "L{f,u) = x, "L(g,w) =y for u, w€E F*, then for every € > 0 there
exists a N € N such that for all n € N holds that [f(n) - x| < <cu
and |g{n) - y| € ew if n = N-




Let 0 < e < 1, then we have for all n € N with n = max(Nl,NE) that
|f(n) g{n) - xy| < [f(n) g(n) - f(n)y| + |[f(n)y - xy|
< ({f(n) - x| + {x]) lg(n) - yi + [f(n) - x||¥]
< (u+ |[x|) ew + eu|y| = e(u + |x|w+ uly!l), hence Tifg = xy.
{c) if for all n € N we have that Pn and Qn are polars in F such that
f(n) ~x€P ,g{n)-yeQ forallne N and P cp., C
for all n € gu and N {Pn; an N}=n {Qn; ne N ?+i {O}T tgg;lfoéqn
all n € N we have that |f(n) g(n) ~ xy| < [f(n) g(n) - F(n)y!
+ [f(m)y = xyl = [F(n)ligln} - v + |f(n) - x||y| € +P < (P +0Q)"
by thm 15.3, hence for all n € N we have that f(n) g(n) - xy € (Pn +Qn)ll.
With Temma 8.1 and thm 8.2 it follows now that CLfg = Xy.

16. Faithful f-algebras

f-algebras for which also holds the converse of thm 15.9 {c),the socalled
faithful f-algebras, are interesting. They have already been studied by
Bigard, Keimel and Wolfenstein [ 1977 | under the name "f-anneau réduit"
and by Cristescu [ 1976, 4.3.3.1 under the name "normal Tattice ordered
algebra". In the latter the underlying Riesz space is supposed to be
Dedekind o-complete. Here we give another account.

16.1. Definition. An f-algebra F for which holds that xy = 0 implies Xly
{x,¥ € F} 18 called a faithful f-algebra.

16.2. Theorem. For an Avchimedean f-algebra F ithe following statements

are equivalent

{a) F ie faithful

(b) x > 0 implics x° > 0 4n F

{¢) the nilradical of F is equal to {0}.

Proof:

(a)~(b) x% = 0 implies xlx, so x = 0

(b)~>(c) if n €N is arbitrary and x # 0 then |x| > 0; repeated application
of (b) gives |x|2" > 0, hence x2" # 0, but then certainly x" # 0.

{e)={a) it is sufficient to prove that for x,y = 0 in F holds that xAy > 0
implies xy > 0. xAy > 0 implies (xAy)z > 0, but then it is sure
that (xAy)(xAy) > 0, hence, by thm 15.9(q), xy > 0.
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16.3. temma. If x and y ave positive elements of a fatthful Archimedean
f-algebra F, then x2 > y2 holde if and only If X = Y. 48 a consequevce
x2 = y2 holds if and only i X = ¥.

Proof: If x = y, then x - y = 0. Together with x = 0 and y = 0 this
igplie; x2 - xy =0, so x2 = xy and xy - yz =90, so xy = yz. Now we have
X Zy.

Conversely, if x2

= y2, then we have (xVy - x)z < (xVy - x)(xVy + x) =
2 2
(xvy)™ - x".

By thm 15.9 ¢f)we have(;VY) )

Z . x2Vy2, and this implies

(xvy - x)2 < x2Vy - X =X - x2 = 0,

By thm 16.2 (a),fb)we have now xvy - x = 0, hence x = y,

16.4. Definition. A %-algebra s an falgebra F in which there exisis a

muliiplicative unit e, Z.e. xe = ex = x for all x € F.

From now on the symbol e (or eF) is always reserved for the multiplicative
unit of a ®-algebra F.

The following lemma will be used frequently.

16.5. lemma. 7f x and ¥ ave arbitrary elements of an f-algebra T and
Y = 0 then for every n € N we have xzy -nxy +ny =0 and

xzy - nyx + n2y = 0.

Proof: if F is a ¢-algebra, then by thm 15.9¢d) we have (x - ne)2 =0,
hence (x - ne)zy =0 and y(x - ne)2 = 0, but then certainly

xzy - nxy + n2y =0 and yx - nyx + n2y =0,

If F is an arbitrary f-algebra, we have (ny - xy)+i\(xy - ny)+ = 0, s¢
by definition (xy - %xzy)*'a(xy - ny)" = 0, which implies

L(xy - 5Py n(xy - ny) 11 = 0, s0 [y - (3xPyany) 1% = 0, but then

certainly (xy - Y- ny)+ =0, hence x"y - nxy + n'y = 0.

The following theorem is proved by Bigard, Keimel and Wolfenstein [ 1977,
cor. 12.3.9 ]. Here we give a direct proof.

16.6. Theorem. Every Archimedean d-algebra F is faithful.
Proof: by thm 16.2 it is sufficient to prove that x° > 0 for every
0<xeF.




If 0 < x € F then since F is Archimedean there exists a n € N such that

{nx - e)+ > 0. By thm 15.9(d} we have {nx - e)2 > 0, hence

{-nzx + 2nx - e)+ = 0. Now (nzx2 - nx)+ = (nzx2 - nx)+ + (—nzx2 + 2nx - e)+
= (nzx2 - nx -n2x2 + 2nx - e)+ = (nx - e)+ > 0,

So (1 - x)* > 0 and this implies x° > 0.

16.7. Lemma. The multiplicative wnit e in a $-algebra F is a weak order
unit.
Praof: e = 0 because e e2 = 0.

eAx = 0 implies ex = x = 0, hence e is a weak order unit.

Although every Riesz space can be given an f-multiplication structure,
there are Riesz spaces, even with weak order units, which cannot be
given a &-multiplication structure. We come back to this question in
Chapter VI.

In Archimedean ®-algebras also the cenverse of lemma 15.6 holds.
In fact they are characterized by this property.

16.8. Theorem. (cf. Zaanen [1975, thm 3 1). IFf T s an orthomorphicm on

an Arvchimedean b~algebra F, then there exists @ 2 € F such that T = £Z.

Proof: if z = Te, then T and £, coincide on fe}. Because e = F we have
T = Ez by thm 12.20.

It is a direct consequence of this theorem that z is the unique element
of F such that T = £Z, because if also T = £Z. for z' € F, then

L, . ,0=4L, - L, =0, hence {z -2 =0,s502z=2".

If 7 0, then z > 0 because z = Te,

16.9. Theorem. For every Archimedean %-algebra F it holde that F ie
Falgebra Lsemorphic to Orth(F).

Proof: if A is the mapping from F to Orth(F) which assigns to z the
element £z of Orth{(F}, then A is a linear operator, bijective by thm
16.8 and Temma 15.6. _

2l s positive by the foregoing.

It follows from Luxemburg and Zaanen [ 1971, thm 18.5 ] that T is a Riesz
isomorphism.

Further for all x,y € F we have A{xy) = £xy = £x£y = {Ax)(ay), since
multiplication in Orth(F) is composition.

Hence, T is also a ring isomorphism.
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17. ldeals and ring ideals

From the last theorem of the foregoing section a fundamental relatien
can be derived between orthomorphisms on an Archimedean ®-algebra F
and the ¢-multiplication structure on F.

We use the word ideal for order ideal and ring ideal for a twosided
ringideal.

17.1. Theorem. Every orthomorphism on an Archimedean $-algebra F preser—
ves all ring ideals of F.

Proof: if T € Orth(F), then by thm 16.8 there exists a z € F such that
T=£Z.

For every ring ideal J of F we have now Tx = zx € J for all x € J.

Also in faithful Archimedean f-algebras and even in a certain sense in
every Archimedean Riesz space this phenomenon plays an important role.

It is well known {cf. e.g. Birkhoff [ 1967, XVII.5, theorem of Fuchs 1)
that a Riesz algebra is an f-algebra if and only if every polar is a
ring ideal. In an Archimedean f-algebra even every o-ideal is a ring
ideal.

17.2. Theorem. Every o-ideal J of an Archimedean f-algebra F is a ring
tdeal.

Proof: it is sufficient to show that 0 < x € J and 0 < y € F implies

xy € J. If f € seq (1,) is such that f(n) = xyAnx for all n €N then

0< fandtf. By thm 15.3 we have xy € o ; from Luxemburg and Zaanen

[ 1971, thm 24.7 | it follows now that ftxy, hence by thm 6.1{a) xy = Ort,
S0 Xy € J.

17.3. Theorem. Every r—ideal J in an f-algebra F is a ring ideal.

Proof: it is sufficient to prove that 0 < x € J and 0 < y € F implies

xy € J and yx € J. By lemma 16.5 we have yx - nx € %yzx and thus

{yx - nx)+ = %yzx for all n €N.

Define f € seq (Ix) by f(n} = yxAnx for all n € N, then 0 < f and tf.

For a1l n € N we have now [f(n) - yx| = |0A(nx - yx)| = (yx - nx)4'€ %yzx.
hence yx € r'J‘.‘F,. S0 yx € J.

It can be proved similarly that xy € J; then xyz can be taken as a regulator.




17.4. Theorem. Every c—ideal J in an Archimedean f-algebra F is a ring
tdeal.

Proof: it is sufficient to show that 0 < x € Jand 0 <y € F implies

¥x € J.

If f € seq (IX) is such that f(n) = yxAnx for all n € N, then 0 = f and
t+f. Now we have that f(n) - yx = 0A{nx - yx) = -(yx - nx)+ € (yx - nx)+ll.
For all n €N it holds that (yx - (n + 1)x)+ll C (yx - nx)+ .

If for 6 < v € F holds that v € (yx - nx)+ll then vL{yx - nx) for all
nEMN. Since F is Archimedean we have y = sup{{y - %yx)+; n € N}, by
thm 3.5 it follows now that viy, hence vlyx, but then for all n €N we
have vl (yx - nx)+, hence v € {yx - nx)+l. It follows that v = 0, so
N{{yx - nx)+il; n € N} = {0}. Hence yx = oLf, SO yx € J.

17.5. Remark. Not every ideal J in a f-algebra F is a ring ideal. If F

is the f-algebra of all sequences of real numbers where the f-multi-
plication is the componentwise multiplication, and J is the ideal of

all sequences converging to 0, e = (1,1,1,...)€Fandy = (1,%,%,..) €4,
z=(1,2,3,...) € F then yz = e#¢ J.

In some f-algebras we are in the pleasant situation that every ideal is
a ring ideal. By Luxemburg and Zaanen [ 1971, p.210, 211 ] it is observed
that in an f-algebra C{X) where X is a compact Hausdorff space (point-
wise multiplication on C(X)} this is the case indeed.

Their arguments in fact are sufficient to show that every ¢-algebra in
which the multiplicative unit is a strong order unit, is of this type.

17.6. Theorem. Every ideal J in a ®-algebra F in which the multiplicative
unit 18 a strong order wnit, is a ring ideal.

Proof: if x € J, y € F then there exists a » € R such that |y| < Ae.

Now |xy| = [x||y] < |x|.xe = A|x| € J, hence xy € J. Similarly yx € J.

17.7. Remark. The assumption that the multiplicative unit e of F is a
strong order unit of F is necessary in thm 17.6. In the f-algebra C(0,1)
(pointwise multiplication) the element e with e(t) = 1 for all t € {0,1)
is multiplicative unit, but not a strong unit. If x(t) = t = for all

t € {0,1), then the ideal Ix is not a ring ideal, because e ='xy if
y{t) =t for all t € (0,1).
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In Luxemburg and Zaanen [ 1971, p. 211 1 it is shown that in C[ 0,11 not
every prime ideal is a ring prime ideal.

17.8. Theorem. (Fremlin's theorem, Luxemburg and Zaanen [1971, p.2111).
In every d-algebra C(X) where X i8 an avbitrary topological space (point—

wise multiplication) every ring prime ideal is a prime tdeal.

We not that in the given reference a proof is given under the condition
that X is compact Hausdorff, which is not used,

In more general ¢-algebras thm 17.8 does not hold, as the following
example shows.

17.9. Example. Let F be the ®-algebra of all continuous functions on
[1,%); which are eventually polynomials (pointwise linear operations,
partial ordering and multiplication}. e with e(t) = 1 for all t € [1,»)
is the multiplicative unit of F.

If J is the linear subspace of F consisting of all x € F such that x is
eventually polynomial with constant term equal to O, then J is a ring
prime ideal.

But J is not a prime ideal, not even an ideal, because for x and y such
that x(t) = 2t and y(t) = t + 1 for all t € [1,=) it holds that
0<y<xeld, y¢ld.

Note that the mapping T: F + R which assigns to x € F the constant term
of the eventual polynomial of x, not only is a ring homomorphism, but
also a disjunctive linear functional. T is not order bounded, because,
if z(t) = t2 for all t € [1,»), then [0,z ] is not bounded in R. let
therefore z, = zZAX, where xn(t) =t +n for all n € N.

Now we have z € [0,z ] for all n €N, but Tz, =n for all n € N, hence
T is not order bounded.

17.10, Theorem. In every f-algebra F every ring prime ideal J is a Riesz

subspace.
Proof: it is sufficient to show that x € J implies |x] € J for every
x€EF.

2 2 2 2
If x € J, then x" € J. By thm 15.9(b) and (d} x© = o= gx|5,
hence |x| € J, because J is ring prime.




17.11. Remark. The foregoing theorem does not hold if we take an
arbitrary ring ideal. If F = C[ 0,1}, x{t) =t - 4 for all t € [0,1]
and J = {xy; ¥y € F} then J is a ring ideal; however |x| € J, because
if |x| = xy for some y € F, then y(t) = -1 for all t €1(0,3] and
¥(t) =1 for all t € (3,1].

It is a rather natural question to ask for necessary and sufficient
conditions for an ideal of an f-algebra to be a ring ideal.

In the light of thms 17.2, 17.3 and 17.4 we can ask whether every
ring ideal of an f-algebra is necessarily an o-ideal or a r-ideal

or a ¢-ideal. The following example gives an answer to this question,

17.12. Example. If F is the f-algebra of boundéd real sequences with
pointwise linear operatiens, partial ordering and multiplication and
J is the ideal of all sequences converging to 0, then J is a ring
ideal.

If e = (1,1,1,..),x = {1,%3%3...) € J and en is the sequence such

that en(m) =1ifm=<n and en(m) =0 if m>n (m€N), then for

f € seq (Ix) with f(n) = e, for all n € N, it holds that 0 < f and tf.
Further we have e = °Lf = 'Lf = CLf, but e € J. Hence, J is not an
o-ideal, nor a r-ideal, nor a c-ideal.

18. Ringhomomorphisms in Archimedean f-algebras

In this section we study connections between Riesz homomorphisms and
ring homomorphisms from an Archimedean f-algebra E to an Archimedean
f—a]gebra F. Further a variant of a recent theorem of Kutateladze is
proved, as is a variant of the E1lis-Phelps theorem.

18.1. Theorem. In every Archimedean ®-algebra F in which the multi-
plicative unit €8 a strong order unit, for a linear operator ¢: F + R
holds that for the asseriions

(a) ¢ s a Riessz homomorphism with $(e) = 1 or ¢{e) = 0.

(b) ¢ is a ring homomorphism

(e) o(xZ) = {$(x))% for qll x € F
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we have (a) implies (b), (b) implies (2}, (e) implies (b).

In the cagce F ig a d-algebra C(X) (with pointwise linear operations,
partial ordering and multipiication) and X ig peeudocompact and
Haussderyf, all assertioms are equivalent,

Proof:

fa) > (b} if ¢(e) = 0 then the positivity of ¢ implies that ¢ = 0,
hence ¢ is a ringhomomorphism. If ¢(e) = 1, then the nullspace J of %
is a maximal ideal of E. The following is a modification of a lTemma of
Papert [1%62 |. Let x, y € F* be such that o(x) = ¢(y) = 0. If ¢ = ¢(xy},
then ¢ > 0. Hence ¢({ce - x){e + y)) = 0. Now we have

0< (ce - x)+ < (ce - x)+(e +y) = {(ce - x){e + y))+ € J, which implies
(ce - x)* € J, hence ¢({ce - x)7) = 0, so (s({ce - x))" = 0.

Now ¢(ce - x} = 0, hence c < ¢(x) = 0. Together with ¢ > 0 this implies
c = 0, hence ¢(xy) = ¢(x) ¢(y). If x, ¥y € F are arbitrary such that
(x) = ¢(y) = O then o(x") = &(x") = ¢(y") = ¢(y") = 0, hence by the
foregoing ¢(xy) = o(x'y") + #(xy7) - o(x’y") - o(xy") = 0.

For the general case x, y € F let a = ¢{x), b = ¢o(y) and ¢ = $({xy).
Then ¢(ae - x) = ¢{(be - y) = 0. By the foregoing we have

0 = ¢({ae - x)(be - ¥)) = c - ab, hence $(xy) = ¢(x) #{y). So, ¢ is a
ring homomorphism and J is a maximal ring ideal, even a hyper-real
ideal in the sense of Gillman and Jerison {1976, 5.6 1.

(b)+ {cf: evident.

fe)+ (b} : for x, ¥y € F we have ¢(xy) = %(¢{(x + y)z) - ¢(x2) - ¢(y2))

f\

= 30+ % - 0012 - ()P 9 9.

If Fis a ¢-algebra C(X) with X pseudocompact and Hausdorff, then e is a
strong order unit of F, so the only implication we have to show yet, is
{e) » (al. ¢(e) = ¢(e2) = (¢(e))2, hence ¢{e) = 1 or ¢{e) = 0. ¢ is
positive, because if x > 0, then 4(x) = ({vX)2) = {6(+X))% > 0, where
/X is the pointwise square root of x. Now ¢ is a Riesz homomorphism,
because for x € F we have ¢{|x[}2 = ¢(Ex|2) = ¢{x2) = (¢{x})2, which
implies, together with the positivity of y, that ¢{|x{) = |¢(x)].

As a consequence of this theorem, every maximal ideal is a maximal ring
ideal.




18.2. Example. For an arbitrary ¢-algebra with strong order unit the
implication (e) + {a)in the foregoing theorem does not hold in general.
If F is the Archimedean %-algebra of all piecewise polynomials on

11,2 ) {ex. 14.1) and e € F is such that e(t) = 1 for all t €[1,2 1,
then e is a strong order unit of F and at the same time the multiplica-
tive unit of F.

If ¢: F = R is the Tinear operator which assigns to x € F the constant
ternlxo(O) of the polynomial XU (ex. 14.1), then ¢ is'arﬁng homomorphism,
but ¢ is not a Riesz homomorphism, for ¢ is not positive, because

${x) = -1 <0 for x such that x{t) =t - 1.

In the foregoing example it appears that the ring homomorphism is at
the same time a disjunctive linear functional. The following theorem
shows that this is a particular case of a more general phenomenon.

18.3. Theorem. Every ring homemorphism ¢ from an Archimedean f--algebra
E to a faithful Avchimedean f- algebra F 1s a disjunctive linear operator.
Proof: For all x € E we have ]xJ2 = %2, so ¢(|X|2) = ¢(x2), hence
(b(1x13)% = (400)% or (Jo(xD 1% = (1#(x) )7, Lemna 16.3 inplies

[o{|x|}! = |o(x)}|. hence ¢ is a disjunctive Yinear operator.

18.4. Example. The converse of thm 18.3 does not hold in general, even
if F= R. If E is the Archimedean f-algebra of all continuous functions
x on [0,1 ] such that x'(0) {i.e. the right differential guotient of x
in the point t = 0) exists, then ¢: E > R with ¢$(x) = »x'{0) is a dis-
junctive linear functional, for let x € E, if (x(t) - x(()))t'1 has not

a fixed sign for t € [0,8) for every 6 > 0, then it follows from the
existence of x'{0) that x{0) = 0 and x'{0) = 0. For |x| similar argu-
ments show that (|x|){(0) = 0 and (|x|')(0) = 0. This implies |&{|x]|}|

= |o(x)|. If thereexists a § > 0 such that (x(t) - x(D))t_l has a fixed
sign on [0,8), then x{t) < x(0) on [0,8) or x{t) = x(0} on [0,8}. In the
case x(t) < x(0) on [0,8) we consider two subcases, namely x(0) < 0 and
x(0) > 0. In the first {|x])(t) = -x(t) on [0,8), hence

oclxhl = |vim PLELZ O < Jrin KEL L XOM - o009 = Jogul.
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In the second, by the continuity of x there exists a 61 € [0,68) such that
x(t) > 0 on [0,5)). Now we have (Ix1)(t) = x(t) on [0,8,), hence [o(|x]|)]
= |4{]x]|}]. The case x{t) = x(0) on [0,8) goes similarly. ¢ is not a

ring homomorphism, because ¢{e) = 0 and ¢ # 0.

Next, we give a theorem which is a variant of a theorem of Kutateladze
(Kutateladze [1979, thm 2.5.4 1) and a theorem of Meyer (Meyer [1979,
Thm 3.3 1). The statement in the theorem of Kutateladze is that if S

and T are linear operators from a Riesz space E to a Dedekind complete
Riesz space F and 0 € S < T and T a Riesz homomorphism then there exists
a linear operator m: F > F such that 0 <7 < I and S = m°T  No proof
is given. A proof for this theorem in the case E is Archimedean is given
by Luxemburg and Schepl 1978, Thm 4,3 j. In this proof the advantage is
used that £b(E,F) is a Dedekind complete Riesz space. Meyer's theorem
states that if E is an Archimedean Riesz space and F a regulator complete
Riesz space and S and T are linear operators as above, then there exists
a linear operator m: J > J such that 0 <7 < I, and § = meT  The
proof of this theorem makes use of representation theory.

18.5. Theorem, If S and T are linear cperatcrs from a Riesz space E to
an Archimedean b-algebra F in which the multiplicative unit e is a
strong order unit, and 1f 0 € 8 £ T and T ig a Riesz homomorphism, then
TeSx = TxSe holds for all x € E.

Proof: Let x € E be arbitrary, ¢ an arbitrary Riesz homomorphism from
F to R with ¢{e) = 1 (such a ¢ exists by thm 12.5).

If y = ¢(Te)x - ¢(Tx)e, then (4T} (y) = #(Te)¢(Tx) - ¢(Tx)d(Te) = 0.
$oT is a Riesz homomorphism from E to R, hence also (¢°T}(y+)

= (4°T)(y") = 0. We have O < ¢°S < ¢°T, so (¢°S)(y") = (¢°8)(¥") = O,
which implies (¢°S)(y) = 0.

Now 0 = {¢°5)(¥) = #{Te)s(Sx) - ¢(Tx)¢(Se), hence ${Te)d(5x)
¢(Tx)p(se). By thm 18.1 4 is a ring homomerphism, hence ¢(TeSx)
¢(TxSe). By thm 12.6 it follows now that TeSx = TxSe.

Note that the form of the foregoing theorem is not entirely the same as
the form of Kutateladze's theorem. In the following chapter methods
are developed which can bring this theorem in the same form.




Finally, we prove a theorem which is a variant of the El11is-Phelps theorem
(Schaefer [ 1974, IIL. prop.9.1 1}. First we have to establish some pre-
liminaries.

18.6. Definition. 4 subset C of a linear space L ie called convex if the
conditions €1s € € Cand 0 €A <1 mply Acl + {1 - A)c2 €C.cel ?s
called an extremal point of C if the conditions € = Acl + (1 - A)cz,

€Cand 0 <A<1dmplyc=c

s Cp 1
18.7. Lemma. (cf. e.q. Semadeni [ 1971, lemma 4.4.3 ]) If C Z2 a comvex
get of a linear space L and C and ¢' are elements of C, then ¢ is an
extremal point of C if and cnily ©f ¢ + ¢' € C together with c - ¢' € C
implies ¢' = 0,

18.8. Theorem. For a positive linear operator T from an Archimedean
d-algebra b to an Archimedean $-algebra F such that Tep = ep, the
Following asseritions are equivalent

(a) T i8 an extreme point of C = {R€ £(E,F}; R> 0 and Rep = F}

(b) T 18 a ring homomorphism satisfying Teg = ep

(¢) T 4e a Riesz homomorphism satisfying TeE = er.

Proof:

(a) - (B): The first part of this implication is similar to Semadeni
[1971, thm 4.5.3 1, although there E = C(X) and F = C{Y) with X and Y
topological spaces.

Let Yo be a fixed element of E, such that 0 < Yo < er. Then

0 < Tyo < Tep = er by the positivity of T. Let S: E » F be the linear
operator such that sx = T(xyo) - TXTY,- Now we show that T + S € C and
T-SeC. (T+ S}eE =ep + Ty, - Yy = €f» similarly (T - S)eE = er.
Further, if 0 < x € E, then

(T + S)x = Tx + T(xyo) - TXTYO
(T - 8)x = Tx = T(xyo) + TxTy,
and T - 5 are positive.

By lemma 18.7 we have now S = 0, hence T(xyo} = TXTy, for every x € E.
Now let Yo be a bounded element of E* , say 0 < Yo < AeE for some

0 < » € R. Then by the preceding argument T{x)~ 1y0) TXT(A~ yo), hence
T(xyo} = TXTYg-

Tx(eF - Tyo) + T(xyo} =0 and
T(X(GE - yo)) + TXTy, 20, hence T + &
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let y € E* be arbitrary. Define f € seq(E) by f{n) = yhnep for all n € N.

By lemma 16 5 we have y2 - ny + ntep =0, sony -n e < y©, hence

(v - nep)t < lyz, or |f(n) - y| <2 1 2,

It follows that if =y. Thm 15, llfb)gives now that rL(xf) =

By thm 11.3 this implies that "LT(xf} = T{xy). By the foregoing for
every n € N holds that T(xf(n)) = TxTf(n), hence also LT{xf)

= "ioxrf = X"LTF = TxTy. From the unicueness of the regulator limit it
follows that T{xy) = TxTy.

Finally, let y € E be arbitrary. From T(xy) = T(xy+ - xy)

= T{xy") - T(xy") = Txe{y’) - mxr(y") = ™xr(y* - y7) = TxTy it follows
now that T is a ring homomorphism,

() > (e): F is faithfull because F is a ¢-algebra. Thm 18.3 implies
now that T is a disjunctive linear operator. Now, by the positivity
of T we have that T is a Riesz homomorphism.

(¢) » (a): Let E = {x € E; [x| < xe; for some A€ R}, F={yeF;
|yl < uep for some u € R}. Then T(E) < F because, if x € E, say

< rep for some A € R, then ITx| = T|x| < ATep = Xep, 50 Tx € F.
Let T: E ~ F be defined by Tx = T« for all x € E, then T is a Riesz
homomorphism.
If 8 is a linear operator from E to F such that 0 € § < T then we can

|x|

define in a similar way a linear operator §: E + F satisfying 8x = sx
for all x € E.

By thm 18.5 we have now 5x = ixSeE for all x € E. If v from F to F is
the multiplication operator RSeE then w € Orth(F} and § = 7eT,

Suppose now that T = lTl + (1 - A)T2 with T, Ty €C, »€ (0,1}, then
0<ATy<Tand 0 < (1L - )\)T2 < T.By the foregoing, there exist
Tys Ty € Orth(F) such that AP = m oF and (1 - X} T, = 205
Iflpl Ao and vy = (1 -3 e ,thenT-on' = v,oT. From
T e TZEE ey we have wl F= wzeF = e, fo ¥, and w coincide on the
subset {er} of the Archimedean Riesz space F. By thm 12 21 it follows
now that wl ¥ss SO T, = T2, hence T, and T, coincide on E.
Let x € E" be arbitrary. If f € seq(E) is defined by f(n) = xAne for all
n€ N, then as in the proof of (a) ~ (b) we have that Tif =
Now by thm 11.3 we have that rL(T1 - Tz)f = (T1 - Tz)x, hence
(T1 - Tz)x =0, so T = Tp.




18.9. Remark. The positiveness of T is essentially used in the implica-
tion (b) » {(e) (compare ex. 18.2). However, if E is supposed to be
regulator compiete, then this assumption can be omitted, as we shall
see in thm 22.1.

19. Normalizers and Tocal multipliers on f-algebras

In this section F is an f-algebra.

19.1. Definition. A linear operator A : F -+ F i3 called a normalizer on
F if for all x € F holds that A°£x =L

A’

19.2. Definition. A linear operator B : F —+ F 18 called a local multiplier
on F ©f there exists a mapping o: F = F such that for x € F holds that

LB =Lax) -

19.3. Theorem. Every normalizer R on F is a Jordan operator.
Proof: A = A°£e = £Ae = £(Ae)+ - £(Ae)' By lemma 15.6 £
are positive linear operators.

(AE)+ and 'C(AE)H

In a general (Archimedean) f-algebra thm 19.3 is false, because on a zero-
algebra F every linear operator A is a normalizer, since A°£x =0 = £Ax
for all x € F. But it is well known that not every linear operator on a
Riesz space is a Jordan operator (cf. Meyer [ 1979, €x. 2.6. 1).

19.4. Theorem. Every orthomorphism T on an Archimedean faithful f-algebra
F iz a normailizer.
Proof: Let x,y € F.

First, suppose that Tx = 0. By thm 15.3 we. have xy € xll. It is a consequence

of thm 12.20 that the nullspace N(T) of T is a band in F, hence X' ¢ N(T)
and thus xy € N(T), so T(xy) = 0.

In this case we have therefore T(xy) = (Tx)y.

In the general case, let S = ﬂXOT -ITX, then 5 also is an orthomorphism,
because S is the difference of two orthomorphisms.
We have now Sx = ﬂx(Tx) - {Tx)x = 0.
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With the foregoing it follows that S{xy) = (Sx)y, hence (T{xy))x = (Tx)xy,
and since F is commutative (T{xy))x = (Tx)yx, hence {T(xy) - {Tx)y)x = O.
Since F is faithful T(xy) - (Tx}yix. On the other hand we have Tx € ¥ 1,
hence (Tx)y € xll; Xy € xll, hence T(xy) € xll. It follows that also

T(xy) - {Tx)y € xll, hence T(xy} = (Tx)y, soTeL = Lo for all x € F.

19.5. Theorem. Every normalizer A on a fatlthful f-ulgebra T 18 a stabilizer.
Proof: if xly then xy = 0, hence A{xy) = 0, so {Ax)y = 0. Since F is faith-
ful we have Axly, hence A is a stabilizer.

19.6. Theorem. Zvery orthomorphism T on an Archimedean f—algebra F is a

Local multiplier.

Proof: Let x € F be arbitrary, then £xoT is an orthomorphism and

NG om) o Kt
_ ] oL

For X = {x,x } holds that = F.

(£Tx)x = {Tx)x = x{Tx) (£x°T}x.

If y € xl, then (£Tx)y {Tx)y = 0 and (£x°T)y = x(Ty) = 0 hence

L)Y = {£,°T)y.

1t follows now by thm 12.21 that £x°T = fo’ so T is a Tocal multiplier.

it

19.7. Theorem. Every local muliiplier B on a faithful Arvchimedean f-algesbra

F whieh is a Jordan operator, is an orthomorphism.
Proof: it is no restriction to take B > 0.

Let x,y € F be such that xAy = 0.

There exists a mapping a: F = F such that £x°B = fu(x)’ hence (£X°B)y = Em(x)y.

We may assume a{x) = 0, for otherwise replace a(x) by u(x)+ (because
((BY)x)" = (a(x)y)", so (B(y)Ix = a(x)'¥).

Ay = 0 and afx) > 0 impiy xAo{x})y = 0, so xAx(By) = 0.

Suppose xABy # 0, then, because F is faithful, xBy # 0, hence (xBy)2 #0,
so, since F is commutative, xz(By)2 # 0, but then certainly szy * 0, hence,
since F is faithful, xAxBy # 0, contradiction. It follows that xABy = 0,

so B is an orthomorphism.

The following theorem follows directly from the foregqoing theorems of
this section.




19.8. Theorem. For a Jordan operator T on a faithful Archimedean f-algebra F
the following assertions are equivalent.

fa) T is a normalizer

(b) T i3 a local multiplier

{¢) T is an orthomorphism

We remark that in Brainerd [ 1962 ] the class of all Vinear operators on
an f-algebra F which are normalizer and local multiplier at the same
time, is studied under the name "the normalizer of F". It is proved
there by elementary means that the normalizer of an f-algebra without
non-zero left or right annihilators is an f-algebra. Since every faith-
ful Archimedean f-algebra satisfies this condition, we have by thm 19.8
the follewing theorem.

19.9. Theorem. For every faithful Archimedean f-algebra T the space
Orth{F) Zs an Archimedean F-algebra under the operator ovdering and

compogition ag multiplication.
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Chapter V
INVERSIONS AND SQUARE ROOTS IN ARCHIMEDEAN ¢-ALGEBRAS

An Archimedean ®-algebra can be closed more or less under taking inverses
and square roots. For the case of inversion three closure property condi-
tions are given; each of them seems to be natural. For the case of square
roots only one closure property condition is given.

As a corollary of this theory a generalization of a theorem of E17is [ 1963 ]
and Phelps [ 1964 ] is given.

20. Inversions in Archimedean ¢-algebras.

In this section F is a given Archimedean ¢-algebra, so in particular F
is faithful by thm 16.6 and commutative by thm 15.10.

20.1. Definition. x € F s called inveriible Lif both the following conditions

are sattsfled.

fa} the band BX generated by X is a projection band

(b} there sxist a y € Bx such that xy = Pxe,where Px 1§ the projection on
the band Bx(Px exists by wirtue of(all}.

In that case y is called an inverse of x.

20.2. Theorem. dny x € F has at most one inverse.

Proof: if Y and ¥y, are inverses of x then by definition Yo ¥y = Bx and
Xy; = Xy, =P e € Bx’ hence Yy~ ¥ € Bx and xfyl - y2} = 0. F is
faithful, hence the latter implies Y- ¥ € Bx .

It follows that Yy = ¥Ype

The inverse of x is denoted by x ..

1

It follows directly from the definition that x = is invertible and

-1,-

(x ) l. X,

20.3. Lemma. For every X € F £t holds that (XZ)-I

L2 2yl

extists if and only if
X * exists; in that case (X
Proof: By thm 15.3 we have sz c Bx'

Te prove the converse, let 0z € Bx. It is sufficient to show that
ssz =0 for s € F implies sAz = 0. If ssz = 0, then also stxz =0,




hence x{sAx} = 0, s0 since F is faithful x L sAx, so sAx = 0,
hence sAz = 0., It follows that Bx = sz and Px = sz. Further
we have that P ep e = (e - (e - Pxe))Pxe = (e - (T - Px}e)PXe = Pe

by thm 15.3. If (J<2)'1 =y, then xZy = P2e = P e, hence x(xy) = P e,

s0 x " exists and is equal to xy. If x Vexists, then xz(x'l)2 = xx-Ixxd
- _ _ -1,2 _ ., 2,-1

= PePee = P e = P2e. It follows that (x )% = (x"} ".

20.4. Theorem. (compare Vulikh 11948 1 and Rice [1968 1). If x and ¥

are invertible in F, then

(a) [x| s invertibie and |xJ-1 = Jx_ll

(b} x>0 if and only if X > > 0

fe} R L y implies x + y invertible and in that case {x + y)-1 - xly y-1

Proof: (a) From thn 15.9 (b) it follows that 2 e = Be = |pe] = PR
B, = B/ and |x“1! €B,-1 B, hence |x| is invertible and \x}_l = |x .
(k) it is sufficient to show that x = 0 implies 1> 0. x1 - X P&

= x o= 0H20> 0 by the 15.9 (@) .

(e) from Bx n By = {0} it follows that Bx + By =1Bx+y and Bx+y a projection
band. Now we have Px+ye = €eB,xle B, it follows
that xy_l = 0, _yx"1 =0, hence (x + y)(x71 + y~1) = xx=1 + xy~1 + yx~1 4 yy-1
=Pe+Pe.

X-

Pe + Pe and from y~

Now the announced three closure property conditions for taking inverses
are given, Note that the conditions are arranged according to increasing
strength.

20.5. Definition. F <s ealled
{a) closed under bounded inversion, abbreviated to Bl, if every x = e

ia invertible

(b) weakly closed under inversion, abbreviated to WI, if every weak
order unit is invertible

(e) completely inveriible, abbreviated to Cl,if every element of F

18 invertible.

Note that for every weak order unit x € F condition (a) of definiton
20.1 is fulfilled automatically.

BI was defined by Henriksen and Johnson [ 1961 ]. They proved by means
of representation theory that regulator completeness is a
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sufficient condition for F to be BI. Here we give a direct proof of this
fact and an example to show that this condition is not necessary.

CI is already defined by Vulikh [ 1948 1 in Dedekind complete Riesz $paces
with respect to a given weak order unit, and was studied by Rice [1968 ].
Their results depend on Freudenthal's spectral theorem (cf. e.g. Luxemburg
and Zaanen [ 1971, Ch. 6 ] ) which holds in Dedekind complete Riesz spaces.

20.6. Theorem. Every regulator complete Archimedean 9-algebra T <s BI.
Proof: Let x € F, x = e.

Define f, g € seq(F) by f(n) = xAne and g(n) = (e - %x}+ for all ne N,
Then 0 < g(n) < (e - +e)* =™l e forall ne N. Let for all ne N a
n in F be defined by s (m} = e + g(n) + ... + g(n)m, then Sh
is a regulator Cauchy sequence for all n € N, because for all € > 0

sequence §

3 n , n-1.9 £, n
there exists an N_ € K such that (=) €< & ifmp > m, > N_ then
m,+1 n n
2 1
s, (my) = s (m)] = a(n) 2 + ... +g(n) T = g(n) 2(e+ a(n) + ...

m1-mo+1 -1 M2 -1 ~1.Mp-mo+l
1 )< (Eﬁ—-e )y (e + {I%T_)e +o.L 4 (E%TJ e)

Now we can define a sequence s in F by s{n) = r‘L's.n.
Using f(n) = ne - ng(n) for all n€ N it follows by induction that

f(n}s (m) = n{e - g{n)™1) holds for all m& N. If for all ne N a
sequence hin F is defined by h (m) = g(n}m+1 {m € ln,‘then rL(hn,e) =0 for
all n€ N, hence, if t € seq(F) is defined by t(n) = n"ts(n) for all

n€ N, then we have f{n)t(n) = rLf(n)n'lsn= nl an(e - hn) = rL(e- hn)= e.
Hence, t(n) is the inverse of f(n) for all n € N. We shall prove now that
tis a xz-Cauchy sequence in F. Let e > 0. If "€ N is such that ¥ = é,
then for all n, m€ N with m> n = N we have |[t(m} - t(n)]| = t(n) - t(m)

< (t{n) - t{m))f{m} = t(n) f{m) - e = t(n){xAme) - e= (t{n)xAt{n)me) - e

= (t{n)x - e) A {t(n)m - e) < n"1x? < n71x < ex?. From the regulator
completeness of F it follows that y = rL(t,xz) exists in F. It can be

proved similarly as in thm 18.8 (a) + (k) that "Lf = x. Now by thm 15.11 (b}
we have xy = "Lf "Lt = VLft = e.




20.7. Example. FR, the Archimedean %-algebra of all sequences of real
numbers with a finite range (with componentwise multiplication) is not
regulator complete {remark 15.8), but FR is BI, even CI. Hence, regulator
completeness 15 not necessary in the foregoing theorem.

20.8. Example.

{ay If Fy is the Dedekind complete ¢-algebra of all bounded sequences of
real numbers {componentwise multiplication), then x = (I, %, %, eer)
is a weak order unit in Fl’ however x1 does not exist.

(b} If F2 15 the Archimedean ¢-algebra of all functions x on R such that
for all t € R there exists a ¢ > 0 such that x is constant on
[t, t +¢) (pointwise multipiication), then F2 is lateral complete
and not Dedekind complete. {section 3}. Observe that F2 is CI.

A ¢o-algebra which is CI has PPP by definition, however PP is not auto-
matically fulfilled, as the following example shows.

20.9. Example. If F is the Riesz subspace of the ¢-algebras s of all
sequences of real numbers with componentwise multiplication, generated
by oo and all elements rk (k€ Z) with r = {1, 2, 3, ...), then F has
PPP, but F does not have PP because the band of all elements of F with
odd components all equal te 0, is not a projection band in F. Provided
with the ®-multiplication of €, F is itself a $-algebra. It is easy

to see that F is CI.

20.10. Theorem. If F ig an Archimedean b—algebra which is WI, then for

every weak order unit U € F there exists an f—muliiplication * on the
underlying Riesz space such that F provided with this multiplication *
18 a b-algebra with multiplicative unit U.

Proof: Let * be defined by x * ¥y = xyu'l for all x, y € F. Then (F,*)
i$ a Riesz algebra by the positivity of u'1 .

If for x, ¥, Z € Et holds that yhz = 0, then xyu'lAz = (0, hence

x*y Az=0, hence (F,*) is an f-algebra. For all x € F we have that

X *us=s >u.|u_I = Xe = X, S0 u is the multiplicative unit of (F,*).
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21. Square roots in Archimedean ¢-algebras

In this section we prove that for an Archimedean 9-algebra to be closed
under taking square roots, its regulator completeness:isasufficient con-
dition.Some results can be generalized to arbitrary f-algebras, but here
we restrict ourself to Archimedean ¢-algebras, In this section F is a
given Archimedean $-algebra, so in particular F is faithful by thm 16.6
and commutative by thm 15.10.

21.1. Definition. If for x, y € F* holde that y’

square root of X.

= X then y is called a

n th roots are defined by Rice [1966 1, [1968 1 in Dedekind complete
Riesz spaces with respect to a given weak order unit and by Cristescu
[1976, 4.3.2 ] in Dedekind o-complete Riesz spaces.

21.2. Theorem. 4ny x € F* hae at most ome square root.

Proof: if for Yi» ¥y = 0 holds that y% = % and y% = X then yf = yg; since
F is faithful we may apply Temma 16.3, hence Yy = ¥p-

1
The square root of x is denoted by v/x or xZ.

21.3. Lemma. If /% and /y exist for x, y € F*, then also vxy existe and
Xy = VX VY.

Proaf: if x = w2

2.2 2

s ¥ = 22 for certain w, 2z € F+, then xy = w"2" = (wz)

and wz > 0, hence /Xy exists and is equal to /% Vy.

21.4. Theorem. If Vx for 0 € x € F exists then VX € B,

Proof: it is sufficient to prove that vx A z = 0 for all z € F such that
%Az = 0. From xAz = 0 it follows that vX{vx A z) = x A ¥x z = 0. Since F
is faithful this implies that vX L v/X A z, hence vX A z = 0 because

0< /X AzZZX.

21.5. Thearem. If vX and vy exist for x, y € F' then x | y implies that
VX ¥ ¥ exists and VX + y = VX + VY.
Proof: by the foregoing theorem we have that /x € Bx and vy € By, hence




X L vy, so ¥x vy = 0. 1t follows that (/X + (Y)Z =X +y+ 2y =X+
Together with 0 < VX + vy this implies that vX + y exists and vXx + y
= /X + Jy.

In general not every positive element of an Archimedean ®-algebra
has a square root; e.g. in ex. 17.9 the element z such that z(t) = t

has no square root.

21.6. Definition. F is called closed under taking square rootis, abbre-

viated to SR if VX exista for every x € F'.

Similar to the case of bounded inversion (sect. 19), a sufficient con-
dition for an Archimedean ¢-algebra F to be SR is regulator completeness
of F. That this condition is not necessary is clear if we take FR, as in
ex. 20.7. FR is S8R, but not regqulator complete.

21.7. Theorem. Every regulator complete Archimedean $-algebra F ig SR.
Proof: The proof is by means of an approximation procedure, which is a
generalization to regulator compiete Archimedean 9-algebras of the well
known Newton method for approximating zeros of a real- or complex valued
function on R. For the proof that there exists a limit we have to be
more careful than in the real case, where in general the proof is based
on the Dedekind completeness of R.

The proof that our approximating sequence is monotone is similar to the
proof of Visser [1937 | (see also Luxemburg and Zaanen {1971, p. 377 1).
However, in the sequel of that proof a property of the ordered vector
space of Hermitean gperatars on a Hilbert space is used (Luxemburg and
Zaanen [ 1971, Thm 53.4 1), which is analogous to Dedekind completeness
of a Riesz space and is not available in our case, so we have to proceed
differently. First we prove that /X exists for every x € [ée,e ],

where § € (0,1 ].

Let f € seq{F) be defined inductively by f{l1) = e, f(n + 1}
= f{n) + %(x - f(n)z) foralln€ N. If z=e - xand g=e - f, then
z€10, (1-6)el, g(1) = 0and g(n + 1) = 5(z + g(n)?) for all n€ N.

Y.
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Now we prove by induction that g(n) and g(n + 1) - g{n) are polynomials
in z with non-negative coefficients for all n€ N. For n = 1 the state-
ment is true, because g(l) = 0 and q(2) - g¢{1) =-%z. If for certain

ke N, k=2, holds that g(k - 1) and g(k) - g(k - 1} are polynomials

in z with non-negative coefficients, then also g{k) is such a polynomial,
but then also g{k} + g(k - 1). Now we have that g(k + 1} - g{k)

= 3% - gk - 1)?) = Lg(k) + glk - 1))(a(k) - gk - 1)) is a poly-
nomial in z with non-negative coefficients. It follows that 0 < g and +q.

In order to prove that f is an e-Cauchy sequence in F we show that
0<g=<(l-4)e. 0<g(1) <(l ~ §)e because g(1) = 0. Suppose

0 < g(k) < (1 - 6)e, then g(k + 1) = 2(z + g(k)?) < 3({1 - &)e + (1 - &)%)
<-%((1 - §)e + {1 - 8)e) = (1 - 8)e. Now by induction we have 0 < g < {1 - &§)e.
[t follows that g(n + 1) - g{n) = %{g(n) +g(n - 1}){g{n) - g(n - 1))
< (1 -6){g(n) -g{n~-1)} for all n€ N. How f{n) - f(n + 1)
=g{n+1) - g{n) < {1 -38){g(n) - g(n-1)) =(1-38)(f(n-1) - F(n))
holds for all ne N. Further 0 < f(1) ~ £(2) =-5(x - £(1)?)

1 1 1 1 i s . 1 n
= -3{x - &) = 3¢ - 5x < ze. This implies that |f(n) - f(n + n| < w(1-¢)"e

holds for all n€ N.

let € >0. If N € K is such that 5(1 - &) < e, then for all
ny me& N such that n > m > N holds that |f(n) - f(m)| = f(m) - f(n)
= (F(m) - f(m+ 1)) + (F(m + 1)- f(m + 2)) + ... (f(n - 1) - f(n))
é-%(l -8)"e+ %(1 -o™l e L4 %(1 -snle

s31-8" 2 (1-8 e<1- 5™ 5T e<ece
k=1

It follows that f is an e-Cauchy sequence in F; if y = "Lf, then by
thm 15.11 (b) we have that y° = "L(f%)

N+l 6-1

But also r'L(fz) = X, because if ¢ > 0, then take N € N such that

(1 - 6)N < £, Then for all n€ N such that n > ¥ we have |x - f(n)z\
= 2(f(n + 1)- f(n) <2 . +(1- 8" e< (1 -6 <ce. Nowby the
uniqueness of the regulator 1imit in F we have x = y°.

Suppose now x € [(,e ] arbitrary. By the foregoing Van-Ie exists for

every n € N, Let h € seq(F) be defined by h{n) = Vxvn 'e for all n€ N.




We show that h is an e-Cauchy sequence in F. Let € > 0, Take N € N such
that ¥ = 23'2. For all n, m& N such that n > m > N we have that

W/(XVm_le)(an_le) exists.

Further {N— -m )e < N 1 QA? c%e. Now we have (x - N'le}+ < (x - m'le)+,
hence (xvi™le) - (xwn le) < (w1 - mhe< & .

L. ; -1 V/ -1 -1 2
This implies that 2(xvy “e) - 2V (xvm “e){xvn “e) € c%e, s0 >

(me'le) + (annle) - ZV/(XVm-le)(an'Ie) < eze, hence {V&Vm-le - V&Vn'le]

< (ce)?. It follows from thm 16.6 that Vivm le - Vkvn le< ce, so h is an

e-Cauchy sequence in F.

Let w = "Lh, For all n& N it holds that 0= (ue - x) < 1e this implies
(thm 7.1 (e)) that "tp = 0 if p{n) = (—e - x) for all n € D{ It follows
that for q € seq(F) with gq{n) = xvn 1e holds that Lq

By thm 15.11 () we have w

Finally, let x € F+ be arbitrary. Then vXAe exists by the foregoing.
1

By thm 20.6 we have that (XVE)_I exists and (x\/e)'1 = (xve) "e

< (xVe)'l(xVe} = e, hence by the foregoing we have that V{xve) = exists.

v e 2)-1

(XVe)'l = %V (xve)'I is invertible, so [fv (xVe)'I] ] exists and is

equal to xve. )
-1 — -1

By lemma 20.3 also [V (xve) I] exists and it holds that [LV {xve) 1] ]

T

= ( {xve) 1] ] = xve, 50 vXve exists. It follows by lemma 21.3 that

Yx = J(xhe)(xve} = /xAe /xVe exists,

22, A generalization of the E1lis-Phelps theorem

The following theorem is a variant of thm 18.8 and a generalization of
the E11is-Phelps theorem (Schaefer [1974, III thm 9.11]).

22.1. Theorem. If E and F are Avchimedean $-algebras and moreover b is

regulator complete then for T € E£(E,F} the following assertions are

equivalent
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fa) T i8 an extreme point of C = {R€ £(E,F); R> 0 and Rep = eF}

(b) T s a ring homomorphism satisfying Teg = ef

{¢) T is a Riesz homomorphism satisfying Te = er.

Proof: The proof is essentially the same as the proof of thm 18.8 except
{b) + {c) where we have to prove that T = 0.

By thm 21.7 E is SR. Now we have for every x € E' that Tx = T((vX)
= (T{(+X) )% = 0, hence T > 0.

22.2. Remark. It is obvious that assertion (d) of Schaefer [ 1974, III fhm 9.1

cannot be taken into account here.




Chapter VI
PARTIAL f-MULTIPLICATIOAS IN ARCHIMEDEAN RIESZ SPACES

In this chapter a mapping reminiscent of f-multiplication is definedon
Archimedean Riesz spaces with a strong order unit, and a connection with

orthomorphisms 1is demonstrated.

23. Introduction and definitions

In section 15 it was shown that every Riesz space can be made into an
f-algebra by the zero-multiplication, but it was remarked that for our
purposes this multiplication is not useful.

It is a natural question to ask whether every Archimedean Riesz space E

can be provided with an f-multiplication (def. 15.4) such that a previously
given weak order unit e of E is the unit of muTtiplication. The answer is
no. If E = ¢y and e = (1,3,5, ...) then Orth (E) is Riesz isomorphic to b
(Zaanen [ 1975, ex.vi 1). But b is not Riesz isomorphic to €gs because b

has a strong order unit and o has not, hence by thm 16.9 there exists

ng f-multiplication on g such that e is the unit of multinlication.

Hager and Robertson { 1977 ] ask for necessary and sufficient conditions

for the existence of such an f-multiplication, but the authors remark that
in general they had little success in identifying such "rings in disguise”.
In section 24 this question is answered for Archimedean Riesz spaces with
& given strang order unit.

From Conrad [ 1974 1 it can be deduced that in fact the ring structure of

an Archimedean &-algebra is determined by the Riesz space structure of E,
because he proved that if £ is an Archimedean ¢-algebra with f-multipli-
cation #, and * is another f-multiplication on E, then x * y = x # y # z
for all x,y € E and some fixed z € ET. Hence, if there exists an f-multipli-
cation on a given Archimedean Riesz space E with a weak order unit e such
that e is the multiplicative unit, then there exists no other f-multiplica-
tion on E with the same multiplicative unit.

The foregoing is & reason to study Archimedean Riesz spaces on which is
defined a partial f-multiplication or a partial ¢-multiplication, of which
the definitions are given below. To avoid the situation that too many
products vanish, we require a kind of faithfulness of the partial f-multipli-
cation.
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_23.1. Definition (cf. Veksler [1967 ] )4 pair (E.*) <8 called an Archimedean

Riesn space with a partial f-multiplication (abbreviated to Archimedean
pf-algebral if E is an Archimedeon Riesz space and * is a mapping from ExE
tc EV{¢} such that for all X,¥.2 € [ holds that (we write X*y in stead
of *(x,¥))

(PF1) x*y = y*x

(PF2) <f x*y + ¢ and y*z # ¢, then x*(y*2) = (x*y)*z

(PF3) 2f x*y # ¢, X*Z # ¢, then x*{y + Z) = x*y + x*z

(PF4) Zf X,y 2 0 and x*y #* ¢ then x*y 2 0

(PF5) 2f x*y # ¢ then (MX)*y = A{x*y)} for ail * €R

(PF6) x*y = 0 if and only if xlLy.

For fixed * we abbreviate (E,*) to E.
* is called a pf-multiplication on E.

23.2. Definition. An Archimedean pf-algebra {E,*) is called multiplication
complete if X*y # ¢ for all X,y € L.

Mote that if * is a pf-multiplication on an Archimedean Riesz space E,
then it follows from (PF6) that *_1(E) D {{x,y} € ExE; xLy}.

23.3. Theorem. On every Archimedsan Riesz space b a pf-multiplication

ecan be defined.

Proof: Let * be the mapping from ExE to EU{¢} which assigns to (x,y)} € ExE
the element O if xLy and ¢ otherwise. Then it follows from the elementary
properties of orthogonality that * is a pf-multiplication on E.

23.4. Theorem. Every multiplication complate Avchimedean pf- algebra (E,*)
18 a fatthful Archimedean f~algebra and conversely.

Proof:—:if x,y,z € E' such that yrz = 0, then y*z = O, hence xly * z, 50
x*{y*z) = 0.

It follows that {x*y)*z = 0, hence x*ylz.

Together with x*y > 0 and z = Q0 this implies x*yAz = 0. The other equality
follows from the fact that (x*y)*z = 0 implies (y*x)*z = 0, so {y*x)}lz,
and the positiveness of y*x and z. (E.*) is faithful by (PF6).

+« :(PF1) follows from thm 15.10, {PF4) follows from the fact that E is a
Riesz algebra, (PF6) follows from the faithfulness of E. The remaining PF's
are easily verified.




Now we state a result similar to thm 15.3.

23.5. Theorem. If x and ¥ ars elements of an Avchimedean pf-algebra E such
that x*y # ¢, then X*y € )(“'ﬁyll .

Proof: if x*y ¢ xllfwAl, assume x*y & xl , then there exists a z € xl such
that x*ylz does not hold. If w = |x*y|A|z| then w > (, wE (x*y)ll and
WE xl, so w*x = 0, hence (w*x)*y = 0 so w*{x*y) = 0, consequently wlL (x*y),
contradiction. It follows that x*y € xllrw}i.

1

Veksler [ 1967 ] gives an interesting 1ist of properties an Archimedean
pf-algebra can have. We give this list here and we show that none of these
properties follows from the axioms for an Archimedean pf-algebra. Our
notation is slightly different from Veksler's.

23.6. Definition. An Archimedean pf-algebra E ie said to have property

Ao (normality of the multiplication) If X*y +¢ . xl*yl * ¢
for every Xy»¥ € E such that |x1| < x| and |y1| < |y]|.

B. (monotony of the multiplication) if |x1| < |x|, |y1| < |y| and x*y # ¢,
e T Ixy*yq ] < [x*yl.

C. ©f for certain z € E holds that the band BZ 8 a projection band and

x*y F 6 - sz* sz * ¢,

if xxy =6 s |x|xly| = [xvy]

if x*y F ¢~ x=|y|#£ ¢

LFxey #¢ > (xVy)*(xAy) = x*y

(Rule of signe)ifiey)™! ¢ ((x*ay )vix ay7))

S

L1

23.7. Examples.
{a) Let E be the Riesz space of all piecewise linear continuous functions
xon[0.1], i.e. to every x € E there exist real numbers Ti{x) such

that 0 = ro(x) < ... < rn+l(x) = 1 such that x coincides with a linear
function X3 on every[wi(x),wi+1(x)) (i=0, ..., n=-1) andwitha linear
function X, on [Tn(x)’Tnﬂ(x) ].

Let e{t) = 1 for all t € [0,1].

Define x*y = z for x, y, z € E if for all t €[0,1 1 holds that

x(t) y(t) = z{t); if for x, y € E there exists no z € E such that

x*y = z, then define x*y = ¢. Then (E,*} is an Archimedean pf-algebra,
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{c

(e

—

)

—

but does not have property 4 because e*e # ¢, but x*x = ¢ if x{t) = ¢
for al t € {0,111, although x| < |e|.

Let E be the Riesz space ORZ, <} where < is the componentwise partial
ordering.

Define * from ExE to EU{¢tby x*y = 0 if xly, x*y = (4 ipip) if

= (2n% and ¥y = (2, ) (A uER), xty = (A Ay) if x = (A A) and
y = (u,1) (A,u €R) and x*y = ¢ otherwise.

Then (E,*) is an Archimedean pf-algebra.(E,*} does not have property
B, because if x=y = (2,1) and x; = y; = (1,1) then [x;] < |x| and
|y1[ < |yl, however x*y = (1,0) and XYy = (1,0).

Let E be the Riesz space GRZ, <) where < is the componentwise partial
ordering.

Define * from ExE to BU{p} by x*y = 0 if xly, x*y = (M) if x = (A,})
and y = {u,u) (A, u €R), otherwise x*y = ¢.

Then (E,*) is an Archimedean pf-algebra which has PPP, If z = (1,0),

x = ¥ = (1,1) then x*xy = (1,1) € E, Px = P,y = (1,0) and (P,x)*(R,y) = ¢,
hence (E,*) does not have property C.

Let E be the Riesz space s of all sequences of real numbers. We define
x*y to be the componentwise product of x and y 1f1i§1x1yi| <o,
otherwise x*y = ¢, then (E,*} is an Archimedean pf-algebra. If

X = (1,%,%,...) and y = {1,-1,1,-1,...) then x*y € E, however

|x]*|y! = ¢ and |x*y| # ¢ so (E,*) does not have property 2

The example {d) shows at the same time that (E,*) does not have property
Z. However, there exists an example of an Archimedean pf-algebra which
does have property D, but not property E. This example is given by
Veksler [ 1967 1. Let E be the set of all pairs [f,g ] where f and g

are continuous functions from [0,1 ] to the two-point compactification

R of R, such that there exist A,u,v €R and ¢,p € C[D,1 ] (all depending
on [f,g ] such that for all t €[0,1 ], t#3 holds that

¢(t) + X + E
(t - %)

f{t) I and

g(t)

n

<

-

ot

—

+
]

o
et




E can be made into an Archimedean Riesz space by componentwise pointwise
operations. Let [fl,g1 ]*[f2,92 ] be the componentwise pointwise product
{(where by definition -«.0 = ».0 = Q.- = 0.« = 0) only if this product
is again a member of E, otherwise [fl,gll* {f2,92 } =¢.

Then {E,*) is an Archimedean pf-algebra.

If £: [0,1] - R is such that f(t) = Ti'%"ET for t # 3, (3) = =,

then, if x =y = [ f.-f 1, we have x*y = [ 5,2 ] € E, but x*|y| = ¢.
We remark that [fz,fz } 4s a strong order unit of E.

Note that the pf-multiplication used here is rather natural; this
seems to be an indication that the conditions given by Bernau [ 1965a ]
and Papert [ 1962 1 for a Riesz space to be an Archimedean pf-algebra
are too strong.

(Veksler [ 1967, ex.2 1) Let E be the Riesz space of all sequences

of real numbers. Define x*y to be the componentwise product of x and

y only if min { sup{x(n); n € N}, sup {y(n); n € N}) < e, where

N = {n € N; XYn # 0}, and x*y = ¢ otherwise.

If x = (-1,2,-3,4,...) and ¥ = (1,1,1,...) then x*y # ¢, but
(xvy)*(xAy) = ¢, hence {E,*) does not have property F.

Let E be the Riesz space aRz,é) where < is the componentwise partial
ordering. Define x*y = 0 if xly, x*y = (=Ap, =iy) if x = (X,-1) and
¥ = (us-u}(A.u € R}, otherwise x*y = ¢.

Then (E,*) is an Archimedean pf-algebra.

If x = {1,-1}, y = (-1,1), then (x Ay )¥(x"Ay) = 0, hence
vy )
This implies that (E,*) does not have property G.

= {0}. However, (x*y)+ = (1,1), hence (x*y}+ll = E.

23.8. Theorem. Fvery Archimedean pf-algebra b which i3 multiplication

complete Has properties A,B,C,D,E,F and G.

Proof: A4,C and £ are evidently fulfilled. (E,*) is an Archimedean f-algebra
by thm 23.4. Hence (E,*) does have property D by thm 15.9 (b},

(E,*) does have property B, because if |x;| < |x| and |y | < iy| then by
{PF4) we have (|x| - lel)*|yll >0 and |x]|*{|y!] - |yl|) > 0, hence by

property D we have |xy*y [ = |xj|*ly;] < [x!*|y;| < Ix[*]y| = |x*y].
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(E,*} does have property F by thm 15.9 (g).
1t was proved by Veksler [ 1967, prop. 4, prop. 7 ] that properties I and
¥ together imply property G, hence (E,*} does have property G.

23.9. Definition. For every x in an Archimedean pf-algebra (E,*) let

=iy € E x*y # ¢} and
{y €E; x*z2# ¢ for all z € E with |z| < |y]}

Yy
Wy

Let K(E) = {x € E; x*y # ¢ for all y € E}; K{E) ig called the kernel of
(E,*).

From ex,23.7 {e) it follows that VX is not always a Riesz subspace of E.
However, we have the following proposition.

23.10. Proposition. Ir an Archimedesan pf-algebra E which has property E

every Vx(x € E)} 748 a Riesz subspace of L.

Proof: By (PF3) and {PF5) we have that Vx is a linear subspace of E, If
y € V., then x*y # ¢, hence, by property Z, x*iy| #¢, so |y| € VX.

It follows that Vx is a Riesz subspace of E.

23.11. Proposition. In an Archimedean pf-algebra E every wx(x € k) fe

an tdeal of E.

Proof: From the definition of W it follows that |y1| < |y2| and y, € W
imply ¥ € wx.

It is sufficient to show now that ¥1+¥o = wx and Al,k € R imply that
ApYp * ¥y € W . Let 2 € E be such that |z] < ]Alyl + hzyzl, then certainly
lil < ([0 + Diygl+ gl + Dlyyls hence

25 < (Il + Dyl + (Dl + 1)y,

With thm 3.4 (2} it follows now that

zt = zl + zf such that 0 < zl < (IAi[ + l)tyil, hence

o< (Il + 07l < |y (i =1.2). _

It follows that x+(|A;| + 1)1 2] # 6, but then also xxz] # ¢ (i = 1,2).
With (PF3) we have now x*z" # 4.

Similarly x*z~ # ¢, hence x*z # ¢; this implies that A¥p *+ Ao¥p € Wy

23.12. Theorem. Tn every Archimedean pf -algebra (E,*) which has property
E the set K(E) s a Aleez subspace of E. With the induced pf-algebra
structure K(E) e a faithful Archimedean f-algebra.




Proof: K(E) = ﬂ{Vy; ¥y € E} because if x € K{E) then x*y € E for all

y € E, hence x € Vy for all y € E. Conversely if x € Vy for all y € E

then x*y # ¢ for all y € E, hence x € K(E).

By thm 3.7 and thm 23.10 it follows that K(E) is a Riesz subspace of E.
Hence, K(E) is,with the induced Riesz space structure,an Archimedean Riesz
space.

Although the product of an element of K(E} with an element of E may fall
outside K(E), we have that K{E}*K{E) C K(E), because if x,y € K{E} then
x¥(y*z) # ¢ for all z € E, hence, by (PF2) we have {x*y)*z # ¢ for all

z € E, so x*y € K(E). If K is the pf-multiplication * restricted to K(E),
then (K(E}, *K)satisfies (PF1), (PF2), {(PF3), (PF4), (PF5) and {PF6), hence
(K(E}, *K) is an Archimedean pf-algebra.

But (K(E), *K) is multiplication complete, hence, by thm 23.4 we have that
{K(E), *¢) is a faithful Archimedean f-algebra,

23.13. Definition. A linear subspace J of an Archimedean pf-algebra (E,*)

18 called a pf-tdeal i1f x € J, ¥y € E and x*y # ¢ imply x*y € J.

In Archimedean pf-algebras which are multiplication complete the pf-ideals
are precisely the ring ideals.

23.14. Definition. 4 tripel (E,e,*) <3 called an Archimedean Riesz space

with a partial O—multiplication (abbraviated to Avehimedean pl-algebra)
if {E,*) e an Archimedean pf-algebra and e is a weak order wnit of E,
such that for all % € E holds

(P2} x*e = x.

Then there is onlyong suchanewhich is called the pd—umit of (E.e,*).
For fixed e and * we abbreviate {E,e,*) to E.

* is called the pd-multiplication of E.

23.15. Theorem. Every multiplication complete Archimedean pd-algebra (E,e,*)

ig an Avchimedean d-algebra and conversely.

Proof:+ :By thm 23.4 we have that E is an f-algebra.

From {P®) it follows that the pé-unit of E is the multiplicative unit of E.
< : it follows from thm 16.6 that E is a faithful Archimedean f-algebra,
so E is an Archimedean pf-algebra. From femma 16.7 it follows that e is a
weak order unit of E.
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O0f particular interest are the pd-multiplications studied by Vulikh [ 1948 )
and Rice [ 1968 1, which are defined intrinsically on a Dedekind complete
Riesz space with respect to a given weak order unit. In connection with
this subject we mention Tucker [ 1972 1.

In the following section we provide another class of Riesz spaces with
a pd-multiplication, namely the class of Archimedean Riesz spaces with
a strong order unit. A pleasant accidental circumstance there is that
property E is always fulfilled.

24. Intrinsically defined po-multiplication on Archimedean Riesz spaces with

a strong order unit

In this section E is an Archimedean Riesz space and e is a fixed strong
order unit of E.

Let R be the set of all standard Riesz homomorphisms ¢: E = R.

By thm 12.6 we have that R is non-empty,and in fact there is a 1-1
correspondence between R and the set J of all maximal ideals of E, and
for the last set it holds that nJ = {0}. Hence, it follows from ¢x = 0
for all ¢ € R that x = (.

We define a mapping : ExE - EU{¢} by *{x,¥) = z for x,y,z € E if for all

¢ € R holds that &(x}¢(y) = ¢(z). In that case z is unique by the foregeoing.
x*y =¢if no z € £ exists with the abovementioned property. In the
sequel we write x*y in stead of *{x,y).

24.1. Theorem. If L Zs an Arvehimedean Riesz space with a strong order unit

e, and * iz the mapping as defined above, then (E,e,*) <3 an Archimedean
pb-algebra.

Proof:

{PF1) if x*y = z for x,y,z € E, then for all $¢€ER we have that o(x)¢(y) = ${2)
or ¢(y)e(x) = ¢{z), hence y*x = z.

If x*y = ¢, then by the foregoing also y*x = ¢.

(PF2) if x*y, y*z and x*(y*z) are in E, then for all ¢ € R we have &(x*(y*z))
= ¢(x)d({y*z) = ${x)d(y)¢(z) = ¢{x*y)d(z), hence (x*y}*z = x*(y*z).




If x*({y*z) = ¢, then by the foregeing also {x*y)*z = ¢.

(PF3) for all ¢ € R we have &{x*y}) = d{x)d(y) and ¢(x*z) = ¢(x)¢(z}, hence
d(x*y + x*z) = d{xHo(y + z)}. This implies x={y + z) = x*y + x*z.

(PF4) for all ¢€ Rwe have ${x*y) = ¢{x)¢(y) > 0 by the positivity of ¢.
Hence ¢{x*yA0) = ¢(x*y)AD = 0, so x*yr0 = 0, so x*y = 0.

(PFB) if A # 0 and x*y+# ¢, then for all ¢ € R we have $(x*y} = o(x)d(¥),
hence ¢{X(x*y)) = o{dx)¢(y), s0 (Ax)*y = A{x*y).

(PFB)} suppose x*y = 0, then #{x)¢(y) = 0 for all ¢<R. Because R is a
faithful Archimedean f-algebra it follows that ¢(x)L4{y}, so
[¢(x)[Al9(y)|= 0, hence ¢(|x{)Ad([y]) = 0, so {[x|Aly]) = 0 for all ¢ € R;
this implies |x|A|y| = 0, so xly.

On the other hand xly implies that for all $€R we have ¢(x)Ld{y}, sa
${x)e(y} = 0, hence x*y = 0.

(Pe) for all x € E and ¢ € R we have ¢(x) = ¢{x)¢(e), so x*e = x.

24.2. Definition. The mapping *, defined above tg called the intrinsically

defined pd-multiplication on b {relative to &).

In the sequel the symbol * is reserved for this intrinsically defined
pd-multiplication on E.

Now we shall examine which properties of Veksler's list {def. 23.6) are
fulfilled in the case of our intrinsically defined pe-multiplication.

24.3. Proposition. Property A <s not fulfilled in general.

Proof: We take the Riesz space E of ex. 23.7{a).

As a consequence of the compactness of [0,1 ] the only realvalued Riesz
homomorphisms ¢ with ¢(e) = 1 are the pdint-eva]uationth(t €10,11),
i.e. ¢t(x) = x(t) for x € E (¢f. e.g. Schaefer [1974, III. 1 Ex. 11]).
Hence, * is exactly the pf-multiplication as defined in ex. 23.7 (a),
hence also (E,*) does not satisfy property 4.

24.4. Proposition. Property B is always fulfilled.

Proof: Let ¢ € R be arbitrary. By the positivity of ¢ we have
o([x 7y 1) = letxpy )| = lolx doly)] = [olx} ey )l =
o(Ixholly 1) < e(IxDoCly]) = loG) o) = Te0ey)| = o([x*y]).
Hence [x;*y;| < [x*y].

89



90

24.5. Proposition. Property C 18 always fulfiilled.

Proof: Suppose x,y,z € E such that x*y # ¢ and BZ is a projection band.

If for certain s,t € E we have that P_s = sup {sAn|t|} exists in E,

t
then we shall write St in stead of P 5.

t
For w € £ we have wiz if and only if wie, because wiz implies wlnz|
for all n € N, hence win|z|Ae for all n € N, so wiez. Conversely wle,
implies |w|A(|z|Ae} = O, hence [|w|A|z|)Ae = 0, so |w|Aalz| = O, hence wiz.
This implies BZ = Be and P, =P, .
z z
By elementary projection properties we have ezA(e - ez) = 0 hence

* - = - =
e, (eZ e} =0, and I Pez Pe-ez

Further we have ez*e =e,.
With (PF3) it follows that e e, = e, hence for all ¢ € R we have
ole ele,) = ofe,), so ¢(e,) is 0 or 1.

0 if d)(ez) =0

This implies o(e )9(x) =
o(x) if ofe,) = 1

We have ¢(sz) = ¢(Pe X) = ¢(sup{xAneZ;n EN}) = sup{¢(xAnez);n € N} =
z
sup{¢({x)An¢{e_);n € N}
0 if ¢(ez) =0
- = b(e,)o(x) e (1)
¢(x) if ¢fe,) = 1

Now we shall prove that in (7} in fact ecuality holds.
We do that by observing that

o((T = 2)5) = 6((T - By Ix) = 6(2 o

X)

= #(sup{xrn{e - ez);n € N}) =

sup{d(xAn{e - ez);n € N} = sup{o(x)rng(e - ez); n €N} =
0 if ¢{e -e,)) =0 0 if ¢le,) = 1

= ee (99)

W(x) i ofe =€) = 1 (#(x) if 6(e,) = 0

(7) and (17) give now that ¢(x} = ¢(sz + (I - Pz)x) = ¢(sz) + ¢((T - Pz)x)
= ¢(x) for all ¢ €R, so in {7) equality holds.




Now it follows that e,*x = P X.
Similarly can be proved that ety = Py and ez*(x*y) = Pz(x*y).

Finally, Pz(x*y) = ez*(x*y) = (ez*ez}*(x*y} = ez*(ez*(x*y)) =

= e *((e,*x)y) = e *(y*(e,*x)) = (e, 7y)*(e,*x} = (e *xj*(e,*y) = P,X*P.y.
24.6. Proposition. Property D is always fulfilled.
Proof: If x*y € E then for all ¢ € R we have ¢(|x*y|) = |s(x*y}| =

[o(x)e(¥)| = Te(x)[1e(y)| = $([x])o{ly|). Hence [x|*|y| = Ix*y|.

24.7. Proposition. Property F is always fulfilled.

Proof: Let x,y € E be such that x*y € E. e is a strong order unit of E,

hence there exists a A €R such that |x|€ le, so -x € e, so x + e = 0.

de*y € E by (P#} and- (PF5}. So by {PF3)(x + Xe)*y € E.

The foregoing proposition now gives that |x + xe|*|y] € E, so (x + Ae)*|y| € E.
(-re)*ly| € E; it follows by (PF3) that also x*|y| € E.

24.8. Proposition. Property F is always fulfilled.
Proof: For all ¢ € R is ¢(xvy)o{xAy) = {o(x}ve{y)Ho(x)r¢(y)} = d(x}o(y) =
d{x*y), hence (xvy)*(xAy) = x*y.

24.9. Proposition. Property G is always fulfilled.
Proof: In Veksler [ 1967, prop. 4, prop. 71 it is proved that properties D
and F together imply property &, hence (E,*} does have property G.

24.10. Theorem. IFf E <s an Avchimedean Riess space with a strong order uniil

e, and b <8 morecver a ®-algebra such that e is the multiplicative unit of

E, then the intrinsically defined pb-multiplication * on b (relative to e}
cotnetdes with the d-multiplication, hence in particular (E,*) iz multiplica—
tion complete.

Proof: Let # be the ¢-multiplication on E. If x,y,2 € E are such that

Z = x #y, then by thm 18,1 we have for all ¢ €R that ¢(z) = ¢(x}o{¥y},

hence z = x*y.

24.11. Theorem. An Archimedean Rieez space b with a given strong order unit

e can be provided with an f-multivlication such that € is the multipiicatiive
wnit 1f and only 1f (E.*) 18 multiplication complete, where * iz the

intrineically defined pd-multiplication on E (relative to e).
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Proof: if £ is a ¢-algebra with multiplicative unit e, then by thm 24.10
multiplication * coincides with the &-multiplication, hence (E,*) is
multiplication complete.

Conversely, if (E,*) is multiplication complete, then, by thm 23.4, *is
an f-multiplication on E. e is the pd-unit, hence is the multiplicative
unit.

25, Orth{E) for E an Archimedean Riesz space with a strong order unit

In this section, we prove, independentiy of Bernau [ 1979 ],that Orth(E)
is an Archimedean f-algebra if E is an Archimedean Riesz space with a
strong order unit e.

Let * be the intrinsically defined pd-multiplication on E {relative to e)
(section 24}; let K = K(E) be the kernel of (E,*){section 23), then by
thm 23.12 we have that K with the induced ordering and multiplication is
an Archimedean f-algebra. Let Z = Z(E) be the class of all centre
operators on E (section 12),then provided with the operator ordering and
composition as multiplication, Z is a partially ordered algebra.

25.1. Theorem. For every X € K the mapping £x from E to E which assigns to
y € E the element x * y of E, g an element of I; conversely, for every
T € I there exists an X € K such that T = £x

Proof: ~ : if x € K, then on account of the fact that e is a strong order

unit of E there exists a A € R such that x| < xe. For all y € E¥ we

have now by prop 24.4 that |£xy| = |x *yl < |xe * y| = Ay, hence L is

a centre operator.

Conversely, if T € Z, then there exists a » € R such that |Tx! < Ax for
all x € E¥. We shall prave now that T = £Te' Therefore, we have to show
that Te € K. If x € E and ¢ € R are arbitrary and if y = x - ¢{x}e, then
t{y) = o(x) - ¢(x) = 0. N{¢} is an ideal of E, hence also [y| € N{¢), but
then also y+ € N{¢), ¥ € N(¢). Further it holds that Ty = Tx - ¢{x)Te
New we have that

0 < o(2(y")) < $(xy") = 2o(y") = 0 and 0 = o(2(y")) < ¢(hy7) = M(y") = 0,
hence ¢{Ty) = ¢(T(y+)} - ¢(T{y")) = 0; together with Ty = Tx - 4(x)Te this
implies 0 = ¢{Tx) - ¢(x)d(Te), s0 ¢(Tx) = ¢(Te)¢(x), hence (Te) * x = Tx.




consequentlyTe € K and T = £t
Next we prove that in fact K can be identified with Z, i.e. there exists

an order isomorphism A from K to Z.

25.2. Theorem. The linear operator A from K to I which assigns to x € K
the element L, of I ig an order isomorphism.

Proof: A is injective, because £x =L for x, y € X implies £Xe = £ye,

hence x = y. A is surjective by thm 25.1. A is positive because x> 0
implies £ >0, a™' is positive because £ >0 inplies £ e > 0, hence

x 2 0. It follows that T is an order isomorphism.

25.3. Theorem. For every Archimedean Rissz space b with strong order unit

e the space Orth{E) Ze an Archimedean f-algebra under the operator ordering

and composition as multiplication.

Proof: by thm 12.23 we have Orth(E) = Z(E}. K is an Archimedean Riesz space

by thm 23.12, hence, by thm 25.2 Z(E) isalso an Archimedean Riesz space.
A is not only an order isomorphism, but also an algebra isomorphism,

foc = (@)

because, if x, y € K, then A{x * y) = Lx*y y

It follows that Z is an Archimedean f-algebra.
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~ SAMENVATTING

In dit proefschrift worden lineaire operatoren op Riesz ruimten bestu-
deerd, in het bijzonder disjunctieve lineaire operatoren. Enkele voor-
beelden van niet orde begrensde disjunctieve lineaire operatoren van

een Riesz ruimte op zichzelf worden gegeven, terwijl de orde begrensde
disjunctieve lineaire operatoren in verband worden gebracht met een par-
tieel gedefinieerde vermenigvuldigingsoperatie in de Riesz ruimte.

Hoofdstuk I geeft een inleiding in de theorie van Riesz ruimten, In
hoofdstuk I worden enkele typen van convergentie bestudeerd in ver-
band met lineaire operatoren. Disjunctieve Tineaire operatoren worden
in hoofdstuk ITI bestudeerd. In het bijzonder wordt aandacht geschon-
ken aan disjunctieve Tineaire functionalen en orde begrensde disjunc-
tieve lineaire operatoren van een Archimedische Riesz ruimte met een
sterke orde eenheid op zichzelf. In hoofdstuk IV worden Riesz ruimten
bestudeerd die vocrzien zijn van een vrij star gedefinieerde vermenig-
vuldigingsstructuur, de zogenaamde f-algebra's. Enige overeenkomsten
en verschillen tussen Riesz homomorfismen en ring homomorfismen werden
aangegeven en een variant van de stelling van E11is-Phelps wordt afge-
leid. Met behulp van de in hoofdstuk V ontwikkelde theorie van inver-
teren en worteltrekken in regulator complete ¢-algebra's wordt een
generalisatie verkregen van bovengenoemde stelling. In hoofdstuk VI
worden partiéle vermenigvuldigingsoperaties op Archimedische Riesz
ruimten met een zwakke orde eenheid axiomatisch ingevoerd. Op iedere
Archimedische Riesz ruimte met sterke orde eenheid wordt tenslotte een
intrinsieke partiéle vermenigvuldiging aangegeven en in verband ge-
bracht met de ruimte van alle orde begrensde disjunctieve lineaire ope-
ratoren van de Riesz ruimte op zichzelf.
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ERRATA to Disjunctive linear operators and partial multiplications in
Riesz spaces - B. van Putten.

46 XY € ¥ should read %Xy = 0

45.30,11 sup(x,-x} should read sup{x,-x}

82’1 t (f} a polar P of E is cglled a pringipal polar if thefe exists a
2 € E suoh that P = 2

g2s3 : should be deleted

96'7 : The polar zllis called the principal polar generated by z, and is
denated by Pz.

11 : Def. 3.14 should read The intersection of all bands which contain

an element 2 of a Riesz space b (which 1o a band by thm 3.7) is
called the prineipal band generated by Z. Every band of this form
ia called a principal band. b ia satd to have the projection property
(abbreviated to PP) if avery band of E is a projection band. E is
satd to have the principal projection property (abbreviated to PPP)
if every pr;zlncipal band of E ia a projeation band.

1312 : S should read M

o«

2 .= gt -

16 s= (T (e + iil Aiei ReN))M 20
AN
+ +
16, : T x should read (T Xy
283 : a Riesz space should read an Archimedean Riesz space
28,  :ye "Lf should read y € “if
355 : P& pr < u|I should read T< pr < |ulI
3715 : In this section 14 should read In section 14
38, : ¥ = X should read ¥ = ¢
4015-13 t should read In ex.13.13 the Riesz subspace T is prime. Note that
T is not an ideal.

41 POA v X ..

3 oedl je1  olilki

keK

4315 ¢ N2 J, then N=J should read N 2 M, then N=M




44 : thm 6.12 should read thm 13.12

44,, :x€E should read x € E

44, : 1 should read 1

as11 : yA{e-y) = 0 should read yA{e-y) € R

46° :nE>Rshould read NE DR

4711 : By the foregoing theorem should read By thm 13.22

516 : for all x € E should read for some x € E

52 : T(f(n))(0) should read (f(n)){1)

529 U the maximum should read n, greater then the maximum
5813 : x2y - nyx + nzy should read yx2 - nyx + nay

543 : ¥ should read ¢

6616 .S - weTif = IdT(E))

6613 : Tz5x = TxSz holds for all x,z € E.

6610_1 : e should read z

5912 : on F should read on a ¢-algebra F

7216 : (for a definition of P, see Luxemburg and Zaanen [ 1971, thm 24.5 }}.
Y < y(1-8)" shou]d read < 3(1-5)"le

78, (1 -5)™1 671 shourd read 3(1- 6)“ -1

78, : < p{1-6)" . (1-5)%e < 3(1-8)%s" lo < ce

7911, thn 7.10c) should read thn 7.1¢;

8317438 . ¢ 17 B, projection band (z € E), xvy # ¢ = Px*Py*é
851° : min (sup{|x{n}|: n € N}, sup{{y{n)i; n € N})

903 : P,s = sup {s"An|t|; n €N} - sup {s"An|t]s n €N}

t
90'® . We have should read Assume first x > 0, then we have
91!

: Now it follows that e,*x = sz for all x » 0, hence for all x € E
+

+ - -
P =P - = * - * = *y
we have 2~ 2% sz e, *x e,*x e, *x

92, :0<o((ry)*} <o(iTyl) < rp(ly|) = 0, similarly ¢({1y)7) =




