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Summary 

This paper considers the development of crop growth modeling. and analyzes some current 
models of crop growth under non optimal supply with nutrients. 
Modeling of growth and production in agricultural situations without any nutrient stress 
received most attention till now, and models have been developped that predict growth and 
transpiration for those conditions fairly reliable. Some of their aspects, though, still need 
much improvement, such as plant morphology and assimilate distribution. 
As more knowledge about availability of nitrogen and minerals in the soil becomes operational, 
modeling in this field is becoming more relevant for growth and production studies. Some 
aspects of crop production in these conditions are discussed. It appears that models of growth 
and production still need considerable strenghtening by experimentation and modeling before 
they will be fairly predictive. 

1. Introducti-On 

This paper presents a brief overview of the modeling of crop growth, with an emphasis 
on growth and production under nutrient stress. Two viewpoints will be taken: a 
historical one to follow the development of models and modeling, and an analytical 
one to describe contemporary models at different levels of crop production. 
Before these viewpoints are given, it is usefull to repeat briefly the definition of some 
terms, and to structure the broad-field of modeling by distinguishing 4levels of crop 
production and by characterization of 3 levels of development of models. 
A 'model' is defined as a schematic representation of a 'system'; the latter being a 
'coherent part of the real world'. 'Simulation' is the 'building. and utilisation of models~. 
Many types of models can be distinguished. Only the most important group of 
tangible models, that of explanatory, dynamic simulation models, will be considered 
in this paper. In such models, processes are described by mathematical equations. 
With the proper combination of those equations growth can be calculated. Such 
calculations are performed for relatively short time intervals, e.g. of 1 day, after which 
the computed increase in dry matter is added to the biomass already present. Changes 
in the leaf surface area and in stocks of soil water and soil nutrients can be computed 
similarly. For the next day, all calculations are repeated, accounting for the changes 
in biomass, leaf surface and stocks that took place and for changes in the plant environ~ 
ment (e.g. radiation) that may have taken place. Cycles of such calculations are repeat-

1 



ed until the growing season is completed. Such models are explanatory in the sense 
that the simulated growth is calculated from, and hence-based on, underlying physio
logical, physical and biochemical knowledge. Models are then used to integrate 
knowledge of processes fundamental to crop growth in order to compute the increase 
in crop biomass, and thus help to bridge levels of knowledge and fields of science 
(De Wit [ 601). The models are called 'dynamic' because the growth rate throughout 
the growing season can be simulated with them, and not only the final production, 
and because the final production of the crop is not a complex, though static regression 
of yield to weather and soil variables. It is the resultant of interacting processes and 
of environmental conditions whose effects depend on their timing with respect to the 
current state of the crop and of the soil. The above terms and concepts are extensively 
discussed and elaborated by De Wit [601, De Wit and Goudriaan [621, Brockington 
[81 and Penning de Vries [471. 
For agricultural production, an elegant and practical delimitation of systems is 
proposed by De Wit [ 631. He distinguishes 4 levels of plant production, ignoring 
diseases, weeds and pests. The systems of plant growth and crop productivity at each 
of these levels can be considered as belonging to one broad class. Those levels are: 

Production level 1: Growth in conditions with ample plant nutrients and soil water. 
The crop growth rate is then determined by weather conditions and amounts to 
100-350 kg dry matter ha-1 day-1 ; crop production depends on the growth rate and the 
duration of the growing season. This situation is sometimes realized in field experi
ments and in glasshouses. Major elements of this type of system are the dry weight 
of leaves, stems, reproductive or storage organs; major processes are photosynthesis, 
growth and maintenance, biomass distribution and leaf a~ea development. 

Production level 2: Plant growth is limited by water shortage part of the time and the 
duration of the growing season may also depend on soil water availability. This occurs 
on heavily fertilized soils in semi arid regions and in temperate climates. The situation 
is neither very common in agriculture, nor in natural ecosystems. The extra elements 
in this class of systems are the plant and soil water balances; crucial processes are 
transpiration and other processes of loss or gain of water from the soil. 

Production leve/3: Plant growth is limited by shortage of nitrogen (N) most of the time 
and sometimes by water shortage. This is quite a common situation in agricultural 
systems and is also normal in nature. Important elements of this class of systems are. 
the N in the soil and in the plant; important processes are the transformation of 
nitrogenous compounds in the soil and other processes of theN-balance, absorption 
by roots, growth-availability interactions and redistribution within the plant. · 

Production leve/4: Plant growth is mainly limited by the availability of other elements 
. of which shortage of phosphorus (P) is most common. Growth rates are 10-50 kg dry 
matter ha-1 day-1 over a growing season of about 100 days. This situation occuts in 
heavily exploited areas where no fertilizer is used, such as in the poorest areas of the 
world. Important elements of this class of systems are the P and N contents of the soil 
and plants, and important processes are their transformations in the soil, absorption 
by roots and the respons of plant growth to their absolute and relative availabilities. 
Though it is rare to find cases that fit exactly into any of these production levels, it 
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is a very practical simplification in the beginning of a study to reduce specific cases 
to one of them. Only in more detailed studies, the complex situation in which different 
limitations intertwine during growth, earns consideration. 
Three stages of development of models can be distinguished in each of these situations. 
(Penning de· Vries [ 47]: preliminary, comprehensive and summary models. During its 
development, a model moves gradually from one stage into the next. All of these 
3 stages do exist at the 1 o and 2° level of crop production, but only preliminary models 
are developed at the levels 3 and 4. 
Preliminary models have a structure and contain data that reflect current scientific 
knowledge about the modeled system, but they are simple because insight at the 
explanatory level is still vague and imprecise. As a consequence, the value of such 
models for prediction is quite limited. However, as modeling provides a means to make 
explicit and to quantify hypotheses about processes in a system, preliminary models 
can be useful for the development of science in showing the consistency of such hypoth~ 
eses with other information. Moreover, preliminary models are a first step towards 
comprehensive models, which reflect systems of which essential elements are thoroughly 
understood and in which much of this knowledge is incorporated. Such models are 
often fairly good for predictive purposes, though they should be used with utmost 
precaution in situations that differ considerably from those in which the models were 
evaluated. Comprehensive models are typically intricate and little accessible for its 
potential users. Summary models should therefore be made of satisfactory comprehen
sive models. A summary model is a model of a comprehensive model: essential aspects 
are reproduced in a simple way, and aspects that are only marginally important are 
shedded. Its predictive value is about the same as that of its precessor, but its simulated 
results contain much less detail and are thus more useful to non specialists. 

2. A brief history of modeling growth and production 

Since a little over a decade, modeling crop production and plant growth receives a fair 
amount of attention and had its share of publicity. At any time, models have been 
published that differ enormously in stage of evolution: some are well developed while 
others are still preliminary. This brief history emphasizes the most sophisticated 
models on a subject at any moment in time. 

2.1 1953-1968: preliminary models 

Regression models of crop productivity had been built for a long time to provide 
predictions of yields, and were usually based on rainfall. Scientists, seeking an explana
tion for such relationships, started to calculate potential and actual canopy photo
synthesis on basis of the increasing. operational knowledge of leaf photosynthesis. 
The first study was as early as 1953 by Monsi and Saeki. Preliminary growth models 
considered photosynthesis in detail, but calculated growth, very simple, by substracting 
daily respiration from daily photosynthesis. These models were suitable for well 
developed leaf canopies and in good growth conditions, as leaf photosynthesis was 
measured in similar circumstances. Biochemical and physiological research had 
revealed in detail mechanisms of respiratory processes, but there was little understand
ing of how their rates were geared to processes in whole plants (Beevers [ 6, 7]. As 
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a result, crop respiration was modeled simply as a constant rate per unit plant weight 
or leaf area, taking care to arrive at an intuitively fair cumulative fraction of 20% 

·(De rVit [57]), 33% (Loomis and Williams [32]) or. 30% (De Wit [58]) of gross 
photosynthesis over the whole growing period. The limited understanding of metabolic 
activity and respiration restricted the predictive value of such models considerably. 
Those early models did not simulate the distribution of new biomass over leaves, 
stems, reproductive organs and roots. Although its importance was well realized 
(Ross [ 48]), almost no mechanistic concept was· available to simulate the patterns 
of growth of organs. Formation of plant organs was specified according to plant age 
or development stage. An exception was the distribution of new biomass over roots 
and shoots under mild waterstress, according to a 'functional balance'. This concept 
was included in Brouwer and De Wit's model [9] and its principle was adopted later 
in many other growth models. . 
Effects of moderate or severe water shortage on growth and production were not 
included in these models. Neither were effects of nutrient shortage. The leaf surface 
area of the crop, an important determinant of canopy photosynthesis, was not 
simulated but based on direct measurements. Finally lack of appropriate field obser
vations made evaluation of these models, and the appreciation of their results, quite 
subjective. 
Writing simulation models required considerable skill in using computers. The com
puter language FORTRAN was used predominantly for programming. Yet, simulation 
of micro-economic systems had allready led to the development of the simulation 
language DYNAMO (Forrester [161), that was remarkably suitable to crop physiol
ogists. 

2.2 1969-1976: comprehensive n1odels at the production levels 1 and 2 

2.2.1 Models 

The models developed in agricultural research describe canopy photosynthesis, 
respiration and growth, and mimicked the distribution of biomass according to 
experimental results or attempted to simulate it. Transpiration was simulated in some 
of the models. Annual crops or vegetations were modeled almost exclusively, with 
particular emphasis on vegetative crops. Some models were set up to. simulate types 
or crops ( ELCROS, by De Wit et al. [59 1; SP AM, by Sinclair et a/. [54]; ARID 
CROP by Van Keulen [ 261), but most were specific for certain species (such as: SIM
COTfor cotton [11; SIMED andALSIMfor alfalfa by Holt eta!. [221 andFick [14], 
resp.; SOYMOD for soybeans by Curry eta!., [10],· SUBGRO by Fick eta!. [ 13] for 
sugar beet.) Obviously, these models had much of their scientific content in common. 
ELCROS, SUBGRO and SIMED simulate plant growth in optimal soil nutrient and 
soil water conditions. ARID CROP and SPAN! simulate growth at production level 2. 
Most other agricultural models were ment to simulate plant growth in actual field 
conditions, i.e. at production level 3 and in situations where also diseases.and pests 
may play an important role. The results of such models seem of direct interest for 
application, but they require treatment of the whole gamma of interactions of growth 
with nutrient availability, water shortage and diseases. These aspects were not well 
understood, so that such models were necessarily inaccurate and hence difficult to 
evaluate. They could be extrapolated to conditions only slightly different from the one 
in which they originated. 
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In biological sciences, ambitious attempts were made to model parts of ecosystems, 
particularly in the Biome studies in the IBP programs in the United States of America. 
Examples are studies of desert ecosystems (Goodall [ 17]), tundra ecosystems ( lvfiller 
and Tieszen [ 38]) and ·grassland ecosystems (Innis [ 25]). The Biome models had a 
wider scope than agricultural models, and conclomerate aspects as different as soil 
water and nutrients, weather, native plant species with different physiological and 
ecological characteristics, and species of herbivores and their predators. Consequently, 
plant growth received less attention, and its simulation lagged some years behind its 
formulation in agricultural models. · 
An important development in modeling crop growth was the quantification of energy 
requirements for growth and maintenance processes, to both of which respiration is 
related. McCree [35] quantified experimentally respiration coefficients for both 
processes in white clover plants, and determined subsequently such coefficients for 
other species and for other temperatures (McCree [36])-. Penning de Vries and co
workers, prompted by inadequacies of the ELCROS model, published a study of plant 
metabolism [41, 42, 43] that showed how respiration coefficients for growth pro
cesses can be derived by straight forward stoichiometry from the biochemical compo
sition of the biomass. Insight into maintenance processes was improved, but its 
quantification remained essentially experimental. This approach to metabolism and 
respiration has been adopted since in most crop growth models (Penning de Vries 
[47]). 
The model ARID CROP (Van Keulen [26]) linked successfully the soil water balance 
with growth of the vegetation on well fertilized soils in semi arid regions. This compre
hensive model simulated in detail water transport in the soil, and used a summary of 
C-balance processes and of potential canopy transpiration from ELCROS to calculate 
the transpiration coefficient of the canopy. Division of the crop transpiration rate by 
this coefficient gives crop growth. This principle has been applied since in other models 
at this production level. 

2.2.2 Modeling 

The Trebon Conference in 1969, organized by the International Biological Program 
( Setlik [53]), marked the beginning of development of comprehensive growth 
models. This development resulted from advances in the knowledge about the subject 
and by advances in modeling techniques. 
A major paper in Trebon was given by De Wit [ 60] about concepts in modeling, and 
was followed by an excellent discussion about merits of simulation (Waggoner 
[56]. The main points of those papers are the distinction between demonstrative and 
explanatory models, the idea that models can serve to integrate knowledge from diffe
rent levels of biological organization, and a discussion of limitations to modeling of 
physiological processes. The conference, and many following ones, showed a. large 
interest in modeling and considerable optimism about its future. The latter was based, 
among others, on the large success of canopy photosynthesis models in the preceeding 
years (Farquhar [12]). In addition, suitable computer facilities appeared to be ready 
for use in this field, at least in some situations. As a result, this period Witnessed the 
proliferation of extensive and complex models. 
The frequent comparison of simulation results and field data upgraded the quality of 
model prediction considerably. Disagreement between experimental and simulated 
results led sometimes to discarding the experimental results, but caused usually 
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reconsideration of model parameters and design of new experiments. The danger that 
adjusting parameters to a particular situation results in a curve fitting procedure of 
little value is clearly recognized (e.g. De Wit [ 60]) but not always resisted. 
As a result, not ali scientists were impressed by these development. Hesketh and 
Jones [21] express concern about the superficiality with which, they claim, many 
models were built. Passioura [ 40], reflecting on a developing fashion of modeling, 
stated that 'there is a much quicker way of getting ... a framework in. which to hang · 
ones research ... than spending a year to create a comprehensive simulation model'. 
Seligman [51] comparing grasslands models, saw the future value of such models 
rather than their actual performance as a justification for modeling, and the lack of 
an alternative integrative approach strengtened his conclusion. 
On the technical level, many modelers continued to write their simulation programs 
in FORTRAN. It has the important advantage of being widely available but large 
programs are often difficult to read. Others prefered user oriented simulation languages 
like DYNAMO, or C.S.M.P., (IBM [24]) thatrequireless.programmingskill. In th~ 
U.S. Grassland Biome, the simulation language SIJYICOMP (Gustafson [19]) was 
developed and intensively used. 

2.3 1977-?: Comprehensive and summary mod.els at the production levels 1 and 2, and prelimi
nary models at the level 3 

2.3.1 Modeling 

Evaluation is an important issue in this period. Some important papers were written 
around 1977 (Baker and Curry [2], Penning de Vries [44], Innis [25]) about concepts, 
terminology and procedures of evaluation. It is this point in time that has been taken 
as the benchmark for the beginning of this period. Its end cannot yet be indicated. 
In theory, evaluation is treated very seriously indeed. In practke, under the pressure 
for quick results and due to sloppiness of modelers, only a few modds are thoroughly 
evaluated. In fact, experiments that are only used for evaluating model behaviour and 
not for derivation of one or more parameters are still rare. Still, the emphasis on 
evaluation is quite a healthy one. 
Some models grow considerably in size and complexity. Particularly models that 
integrate many disciplines increase in size and maintain all known detail. Their growth 
suggest that its users are satisfied with their behaviour, at least to a certain extent. 
One should keep in mind, however, that if the scope of the model increases but its 
transparency decreases, the advantage of modeling can tum into a disadvantage by 
disorienting and misleading its user. The fact that this occurred quite a few times made 
some modelers and many non-modelers shy away from large simulation models. 'this· 
leads to an important question: how to deal with very large models? Is increasing 
complexity inevitable in the process of model development? Technical limitations are 
sometimes also a reason for this concern, but they are generally offset by technical 
developments. One route leading away from the dilemma of further developf!lent that 
brings unmanagable complexity can be the use of summary models of well studied 
aspects. Summary models can be a suitable replacement for comprehensive models 
if less detail is needed than the large model can provide. But a summary can only be 
made when the subject is really well understood, and as yet, few summary models of 
crop growth have been published (Penning de Vries [ 47]). 
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Many comprehensive models are published in this period. However, it is alarming that 
these publications are usually too brief to get a good impression of the model. Fairly 
complete descriptions are sometimes given in little available internal reports or 
uncitable literature. 

2.3.2 Models 

A few generalities of the developments of models are presented here; some examples 
of the most sophisticated models will be discussed in the next chapter. Not much pro
gress has occurred in the last few years in modeling the C-balance processes, which are 
of principal interest at production levell. Further developments are still needed in the 
understanding of the dry matter distribution over the organs of plants, and that of the 
development of the surface area of the leaves. Such improvements are necessary to 
make models more versatile and to predict better the yields of economic products 
rather than total dry matter production. The reader is referred to Loomis et al. [331 
and Penning de Vries [ 471 for further detail. 
Transpiration and soil water balance models are reviewed by Hall [201, Hsiao et al. 
[231 and Fischer and Turner [151. Basic concepts changed little recently, and fair 
simulation models for growth at production level 2 are available. Models to simulate 
the daily course of carbon and water balances produce the effect of water stress always 
through stomatal closure. Some growth models that use time steps of 1 day reduce 
photosynthesis by a factor that depends on the average waterstress of the. last day. 
Other models with 1 day time steps calculate growth by dividing daily transpiration 
by a transpiration coefficient (g water g-1 dry matter). This approach seems indeed 
superior due to the constancy and predictability of this coefficient, particularly when 
transpiration is expressed relative to potential evapotranspiration ( Doorenbos and 
Kassam [ 111). This constancy is brought about by 1. gross photosynthesis and transpi
ration are almost proportional throughout the day, because stomata offer the largest 
diffusion resistance to both, particularly under water stress; 2. the efficiency of the 
growth process is unaffected by water stress; 3. the rate of maintenance respiration 
diminishes probably slightly as a result of the lower overall metabolic activity. 
It has recently become evident that the transpiration coefficient of plants without 
water stress shows a ~imilar constancy often, but not always. It is constant if stomata 
open and close in correspondence with the rate of photosynthesis, as the result of a 
regulating mechanism that maintains a constant C02-concentration within stomata 
over a wide range of photosynthetic rates (Raschke [ 481, Goudriaan and VanLaar 
[181, Wong et al. [641). It has for consequence that the rate of canopy photosyn~ 
thesis determines the rate of canopy transpiration under fixed atmospheric conditions, 
which leads to a transpiration rate in the field that is much lower than is often realized.· 
This was shown with the model BA CROS, that simulates such a mechanism [Van 
Keulen et al. [29 1) and confirmed experimentally. 
The effect of a sub-optimal N-supply to crops is studied increasingly with simulation 
models. Four of such models.will be·discussed in 3.3. Such models concentrate_on the 
rate of absorption of N by the crop and on its concentration of N. In what way low 
or high N-concentrations modify the distribution of dry matter over organs, and how 
low concentrations reduce photosynthesis and grmvth is poorly understood. The 
problem of how the growth rate is related to the rate of uptake of N is confounded by 
the observation that tissues have maximum anq minimum concentrations of N that 
diminish with age of the plant (e.g. Penning de Vries eta!. [ 451) and by fact that a part 
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of the absorbed N remains mobile and is translocated fro_q:1 old parts to growing 
tissues if the N-uptake by the root system becomes too low. Both aspects are not yet 
well-known, and the existing models of uptake, redistribution and growth are largely 
descriptive in nature, rather then explanatory. Examples of such models are given 
elsewhere [ 471. 
Uptake of N by the crop under conditions of N-limitations is relatively fast and effi
cient, so that the question of uptake under conditions of N-limited growth becomes 
largely one of the availability of N in the soil. Reviews by Beek and Frissel [ 5], Reuss 
and Innis (in: [25]) and Van Veen [55] and further research by Seligman and Van 
Keulen [52] and Kru/ (in: [ 46]) showed considerable progress in the modeling of 
mineralization of N from soil organic matter and of immobllization back into it, 
and of the recovery of fertilizer N. 
Modeling crop growth at production level 4 is still almost absent. The effect of P
shortage on growth and also the uptake of P by roots are even less known than those 
for N. One simulation model has been published for growth of a natural vegetation 
(ELM, Sauer, in: [25]) and. it will be discussed in 3.3. It regards absolute concentra
tions of P in tissues. Penning de Vries et al. [ 45] suggested that the ratio of P to N in 
the plant may often be more relevant a variable than the absolute concentration of 
either of them, as these elements are functionally related in the metabolism of cells. 
They .showed that t~e P/N ratio varies over a narrow range of 0.04 g P g-1 N in 
P-starved plants to ·0:15· g P g-1 N in N-starved plants. This implies that the 'effect ·or 
P-shortage can be seen as a reduced availability of N to the crop. Cole et at. (in: [ 25]) 
presented an interesting preliminary model on transformations of organic P in the soil 
and on uptake by roots. It was coupled to the growth model of Sauer mentioned earlier. 
Beek [ 4] discussed transformations of forms of inorganic P in fertilized soils. 

3. Some current crop growth models 

Some examples of relatively advanced crop growth models at 3 of the 4 levels of 
production will be discussed. No models are published about growth limited by 
P-availability. For more detail, the reader is referred to the original papers and to 
recent reviews [33, 47]. 

3.1 Crop growth with ample nutrients and water 

De Wit's [61] ll}Odel BACROS may serve as an example of a comprehensive model. 
It simulates vegetative growth of crops at non limiting levels of soil water and soil 
nutrients (production level 1) on basis of standard meteorological observations. It 
considers neither germination nor the reproductive growth phase. It has been develop
ped over more than a decade by De Wit and a team of co-workers, and was called 
ELCROS at an earlier stage. It comprises a thorough treatment of the processes of the 
C-balance and of transpiration. Laboratory research, literature study and frequent 
evaluations led to a model that simulates growth, yield and water use quite reliably over 
a wide range of environmental conditions for C3 and C4 crops; Its structure reflects 
cereal and grass crops, and small but specific sets of parameters and functional re
lationships specify the actual species under consideration. The model is adaptable to 
other types of species, but this has not yet been done. Like all models in this group 
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De Wit's model is particularly weak iri the section :regulation of distribution of bio
mass, and in the development of leaf surface area. The latter limitation is a serious 
handicap in simulation of the early stages of growth. 
An example of a summary model at this production level is that by Van Keulen [27] 
for potential rice production. It is based on structure, data and concepts. of BA CROS. 
Its basic growth equation can be given as: 

growth= (GP x 0.68 - MC x DW) x CE 

GP stands for gross photosynthesis (in kg C02 m-2 day-1; 0.68 converts it to kg 
glucose m-2 day-1), DW for total dry weight (kg dry matter m~Z), MC for the mainte
nance coefficient (kg. kg-1 day-1) and CE for the conversion efficiency of the growth 
process (kg . kg-1). Van Keulen distributes biomass formed over roots, leaves, stems 
and, after flowering. to inflorescences plus seeds in predetermined proportions and 
related to the physiological age of the crop. GP is calculated from standardized data. 
The leaf surface area, required in the photosynthesis calculation, is found by dividing 
the leaf weight by 0.1 kg. m-2• MC i 0.02-0.015; the effect of temperature on MC 
could be neglected as this model was applied in a fairly constant environment. CE 
depends only on the chemical composition of the biomass formed, and a value of 
about 0.7 is common. Final yield is calculated by proceeding. with time steps of 10 days. 

·The structure of this summary model is correct for many other crops with a determinate 
growth pattern; parameters and functions might need adjustment. The model is also 
principally correct at lower levels of productivity. However, the equation focusses on 
photosynthesis as the limiting factor for growth, which is then not correct. Only very 
cautiously may thus the above summary growth model be applied to other pro~ 
ductivity levels. 

3.2 Crop growth with ample nutrients 

An example of a comprehensive model at production level 2 is ARID CROP by 
Van Keulen [26] and Van Keulen eta!. [28]. It simulates the growth of annual vege
tations of natural pastures in semi-arid regions with winter rains, and has also been 
applied to wheat. The model SdRGFfor siinuhition of growth of sorghum (Maas.and 
Arkin [ 34]), designed for optimization of growth and water use during the season, has 
much in common with ARID CROP, scientifically spoken. Both simulate the water 
balance of a number of soil layers by accounting for rain and drainage from one layer 
into the next, for evaporation from the surface and for extraction of water from the 
rooted layers, due to transpiration. Run off of water from surfaces with a slope under 
intensive rain and interception were added to ARID CROP for its use in a summer 
rainfall area ( Stroosnijder, in: [ 46]). Canopy transpiration is close to the potential 
evapotranspiration when the soil is well covered. The transpiration rate is reduced if 
soil water runs low in one or more rooted layers. Daily growth equals daily transpira
tion divided by the transpiration coefficient. The latter is equal to the ratio of the 
transpiration rate and the growth. rate with ample water but otherwise in similar 
conditions. The transpiration coefficient is lower when photosynthesis determines the . 
rate of transpiration through the regulation of the internal C02-concentration in . 
stomata [2.3.2] than when the regulation is absent. Effects of severe water stress on 
development, grmvih and death ·or tissues are included in ARID CROP, although 
little physiological basis exists for their actual formulation. ARID CROP simulates 
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growth and the soil water balance in winter and in summer rainfall areas fairly re
liably [28, 46]. 
A summary model of a soil water balance and the growth of a vegetation of annuals 
with ample nutrients in semi-arid regions has been described by Stroosnijder (in: 
{46]). It is based on concepts and data of ARID CROP. It presents a calculation of 
the amount of soil water that is available to the plants over time intervals of 10 days, 
and computes growth by dividing the transpired water by the transpiration coefficient. 

3.3 Crop growth under conditions of N- or P-limitation 

Given the large amount of field. experimentation· and also. the numerous measurements 
of ion uptake by plant roots, the number of simulation models that try to combine, or 
even to make use of all this information. is still amazingly small. Only a few models for 
growth at this level of ptoduction were found: GOSSYM + RHIZOS (Baker et al. 
[3], Lambert et al. [31]) for cotton, PAPRAN (Seligman eta!. [50], Seligman and 
Van Keulen [52] and ELM (Sauer, in: [25]) for natural pastures in semi-arid regions, 
and SOYMOD/OARDC (l'vfeyer et al. [37]) for soybeans. The approaches in these 
models differ considerably. However, there are many parameters and even processes 
that are poorly known in such systems so that there is sufficient freedom in the choice 
of parameters to let all models show a fairly realistic behaviour. This remark is not to 
criticize these models, as for each choice good arguments are presented, but it under
lines the preliminary stage of these models. As these models are much larger than the 
growth-nutrients interactions discussed, their value should not be inferred from the 
description below. 
The ELM model harbours the simpliest description of the reduction of the growth rate 
by N-shortage: a reduction factor between 1 and 0 with which the potential grc·wth 
rate is multiplied. The factor depends on the currentN-concentration in the x:,lants, 
but young plants are more reduced at any concentration than old plants are. N iri tops 
and roots and the translocation of N from one to the other are simulated · The sup ... 
porting sub-models of N-transformation (Reuss and Innis, in: [25]) and c1f P-trans
formations (Cole et a!., in: [25]) in the soil and of N and P uptake are ~~o'phisticated 
and thoughtfully developped. The rate of uptake of nitrate ha-1 is a function of root 
biomass, the nitrate concentration in the soil solution, and of the soil water potential. 
The uptake of P depends on similar factors, plus on the concentration of N in the 
roots. Too high concentrations in the plants are. avoided by. reducing the rates of 
uptake. 
The uptake of N in RHIZOS equals the amount of nitrate dissolved in the transpira
tion stream. This view neglects the contribution of diffusion to the N~supply of roots, 
which can be substantial (Van Keulen, [30]). GOSSYM is coupled to RHIZOS and 
calculates the potential growth rates of the organs of the cot~_plant and the. corre
sponding demands for C and for N. The actual growth rates arcc found by multipli
cation of these maximum rates by reduction factors due to C-stress and to N-stress. 
These factors are numerically equal to the current reserves of carbohydrates and of N 
divided by the demands for them, a formulation that resembles the transpiration coeffi
cient concept. The pool of labile N is filled by uptake by roots and by 'mining' for N 
in older organs. In addition to growth rates, the C-stress and N~stress factor ·modify 
the morphogenetic development of the plants and control the rate of abortion of 
flowers. 
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PAPRAN computes also the growth rate by multiplication of the potential rate, 
derived from ARID CROP, by a reduction factor. This factor depends on the difference 
between the actual N-concentration in the tissues and the minimum concentration. 
The latter diminishes a the plant ages from about 2.5% to 1%. At any moment, its 
optimum concentration is about 2 x its minimum value above which there may still 
be some h1xuous consumption of N. The daily uptake of N by the crop is essentially 
equal to half its demand for N (the current weight of its biomass times the difference 
between its current maximum and actual N-concentration), limited only by a maxi
mum rate of N -absorption by the crop and not exceeding the amount of N available 
in tqe soil. Redistribution of N from vegetative parts to ·grain occurs up to a maximum 
seed yield or untill the minimum N-concentration of the straw is attained, and as long 
as weather conditions permit. The amount of N available in the soil is computed as 
the resultant of mineralization and immobilization of -N in 10 soil layers, in which 
inorganic N, and N in fresh and 'stabile' organic matter are considered (Seligman and 
Van Keulen [52]). The rates, efficiencies. and regulations of these processes are simu
lated according to current knowledge. From comparisons of simulations and experi
ments the authors conclude that the model provides a good framework for further 
investigations but also that more physiological and soil micro-biological information 
is required before the model can be aplied more widely. 
SOYMOD/OARDCrepresents a particular case: that of a legume which assimilates N
only as N2 in its root nodules. The growth of N-free material and of proteins are 
simulated basically independent, but their ratio's are not allowed to exceed the limits 
of 2% Nand of 6% (8% in the seed). The rate of N-assimilation is controlled by the 
average level of N in the plant. Photosynthesis and growth are simulated for each node 
separately; both rates become reduced at all N-levels below the maximum concentra
tion, and are 0.0 at 2% N. The basic limitatioi:1 to crop growth remains thus canopy 
photosynthesis. 
The direct effect of water shortage at these production levels is the reduction of photo
synthesis and growth in all models, except in ELlvl where a direct relationship between 
the grmvth rate and the soil water potential is programnied. Ah 'indirect effect of water 
stress results from a reduced uptake of N, and is related to the soil water potential in 
ELM and to the transpiration rate in RHIZOS. This indirect effect is small in PAP
RAN as diffusion of nitrate towards the roots is fast and plays an important role in 
theN-supply (Van Keulen [30]). (There is noN-uptake in SOYMOD). Both effects 
of water shortage reduce the final yield most when the crop was relatively well supplied 
with N. The reduction is only small if the final yield was limited by the small amount 
of N absorbed by the crop and the minimum concentration of N was attained. It is 
interesting to note that the transpiration coefficient of vegetation of annuals of natural 
rangelands in the Sahel, where production is limited by N or P, was observed to be as 
low as that of crops under optimal growth conditions. This is ascribed to the function
ing of the stomatal internal C02-concentration regulating mechanism (2.3.2, Penning 
de Vries and Djiteye [ 46]). Annual grasses of rangelands in the mediterranean zone 
do not regulate their stomata in this way (Van Keulen, pers. comm:), which leads to a 

· less efficient water use. This feature of stomatal regulation has not yet been included 
in models at this production level. 
The differences between those models indicate that modeling at the levels of crop 
production 3 and 4 still need considerable strel)gthening by research involving experi
mentation and modeling before they witl be fairly predictive and more widely applicable. 
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