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STELLINGEN 

1 . Naarmate er meer gebruik gemaakt wordt van röntgenstralen voor de inductie 

van mutaties in vegetatief vermeerderde gewassen zal de behoefte aan een 

mutagens, dat een ander mutatie-spectrum induceert, toenemen. 

2. Wanneer de grootte van de Mj-populatie een beperkende rol speelt bij de 

omvang van mutatie-proeven zijn er redenen om af te wijken van de veelal 

gepropageerde "single seed descent" methode. 

C.F. Konzak en K. Mikaelsen (1977) in: Manual on mutation breeding, 2nd ed.. 

Technical Reports series No 119, IAEA, Vienna: 125-138. 

C.P. Rédei (1975) in: L. Ledoux, Genetic manipulations with plant material, 

Plenum Press: 329-350 

Y. Yoshida, M. Tsuru en S. Kitara (1969) Radiât.Bot. 9: 15-20. 

3. De door Li en Rédei aangeprezen methode voor de schatting van de mutatie­

frequentie per cel heeft slechts een beperkte toepasbaarheid. 

S.L. Li en G.P. Rédei (1969) Radiât.Bot. 9: 125-131. 

4. Gerst is een minder geschikt gewas voor mutatieonderzoek dan men uit de 

veelheid van verslagen zou kunnen opmaken. 

5. Bij generatief vermeerderde gewassen wordt het uiteindelijk resultaat van 

een mutatie veredelingsprogramma bepaald door de mate waarin de selectie 

methodiek toelaat om begeleidende ongewenste mutaties te elimineren. 

Dit proefschrift. 

6. Plantenveredeling is de beste werkwijze om, zonder drastisch in te grijpen 

in locale landbouwsystemen, vooruitgang te boeken in de voedselvoorziening, 

mits het juiste veredelingsdoel gekozen wordt. 

7. De gevonden typen van waardplant-resistentie tegen biotrofe schimmels doen 

vermoeden dat d.m.v. selectie op celniveau geen resistente planten kunnen 

worden verkregen tegen deze schimmels. 

8. In tegenstelling tot selectie voor partiële resistentie bevordert selectie 

voor volledige resistentie van de waardplant tegen biotrofe schimmels het 

ontstaan van virulente schimmel-populaties. 



9. Het streven naar verlaging van het gehalte aan nitraat in groentegewassen 

is toe te juichen; het is echter onwerkelijk om te streven naar een gehalte 

van maximaal 1500-2000 mg NO., per kg vers produkt in alle gewassen. 

H.J. Mol (1979) Bedrijfsontwikkeling, 10e jaargang: 948-954. 

10. De rechtzoekende is meer gebaat bij een inzicht in hetgeen niet bereikbaar 

is dan bij de bereidheid in ieder geschil naar een juridische overwinning 

te streven. 

11. Planmatige woonkernen voor specifieke bevolkingsgroepen leiden tot getto­

vorming . 

12. Er bestaat een aanzienlijk verschil tussen de maximum toegestane snelheid 

en de toegelaten maximum snelheid. 

Lidwine M.W. Dellaert 

X-ray- and fast neutron-induced mutations in Arabidopsis thaliana and the 

effect of dithiothreitol upon the mutant-spectrum. 

1 februari 1980 
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GENERAL INTRODUCTION 

HISTORY OF MUTATION RESEARCH 

The Dutch botanist Hugo de Vries introduced the term 'mutation' for 

sudden hereditary changes in Oenothera lamarckiana, the evening primrose 

(de Vries, 1901). Although it was later proved that these changes were not 

due to mutations but to polyploidy, polysomy or rare recombination events 

in a very unusual karyotype, the term has been preserved for changes in 

the quality, quantity or arrangement of genes. 

The first clearly effective mutagen discovered was X-rays. In 1927, 

at the third International Congress of Genetics in Berlin, Muller presented 

data that demonstrated unambiguously the capacity of X-rays to produce 

mutations in Droeophila. In 1928 Stadler showed the same for maize. Since 

then many radiation types and chemicals have been listed as being mutagenic. 

Comparisons between the types of mutants induced by radiation and 

different chemicals showed that the mutant spectra, i.e. the proportions 

of different mutant phenotypes or mutations at different loci, were not 

always the same. This was first discovered in plants where the proportions 

of different types of chlorophyll mutants were shown to depend on the 

mutagen used (Gustafsson and McKey, 1948). It was subsequently confirmed 

for reverse mutations in micro-organisms, from a specific biochemical 

requirement to independence, where the very large numbers screened confirmed 



the reality of the phenomenon beyond doubt (Demerec, 1953; Kölmark, 1953) -

The analysis of mutagen specificity, i.e. all cases in which mutagens 

differ from each other in the proportions of the effects they produce, 

became a tool for studying mutagenesis as a process. In this thesis the 

term mutagen specificity is applied to specificity with respect to the 

proportions of different mutant phenotypes or mutations at different loci. 

This type of mutagen specificity is of interest for the production of commercial 

mutants in plants. 

MUTAGEN SPECIFICITY 

Research into mutagen specific effects, in terms of mutant spectra, 

has mainly concentrated on the comparison of the effects of different 

types of chemical mutagens and UV in prokaryotes. These studies, reviewed 

by Drake (1970), revealed that some cases of specificity can be attributed 

to the reaction between DNA (base or base sequence) and the mutagen. How­

ever, even closely related mutagens, which presumably act by very similar 

mechanisms, may yield specific mutant spectra (Chevalier, 1964). Such 

specificities may be due to treatment effects on the fixation of potential 

mutations and on the viability of the mutant, especially in haploid cells. 

Direct evidence for the origin of at least some of the mutagen specificity 

at later steps of the mutation process was obtained in experiments in which 

specificity was modified by experimental conditions, mutagen dose, genetic 

background or cell phase (examples will be found in the reviews by Auerbach, 

1976 and Auerbach and Kilbey, 1971). 



In some plant species significant differences between the spectra of various 

chlorophyll mutants induced with ionizing radiation and alkylating chemicals 

were found, such as in barley (Ehrenberg et al, 1959; Gustafsson, 1963; Ni 1 an and 

Konzak, 1961), in rice (Rao and Gopal-Ayengar, 1964) and in Arabidopsis 

(Jacobs, 1969; Röbbelen, 1962). Differences in radiation- and chemical-

-induced morphological mutants were observed in barley (Lundqvist, 1975; 

Lundqvist and Wettstein, 1962; Lundqvist et al, 1968; Persson and Hagberg, 

1969), in Arabidopsis (McKelvie, 1963) and in peas (Monti, 1968). Some 

of the observed specificity can be explained by the specific effects of the 

mutagen on DNA. In general, however, the interpretation of specificity in 

higher plants is more difficult than in micro-organisms, because usually 

the number and location of genes, proportions of deletions, and chromosome 

rearrangements among the mutants are not known. In barley (Lundqvist, 1975; 

Lundqvist and Wettstein, 1962; Lundqvist et al, 1968) X-rays, fast neutrons 

and various chemical mutagens yielded different spectra of eaeriferwn mu­

tants, many of which involved known loci. Among possible explanations the 

authors consider the presence of viability loci in the vicinity of some of 

the eaeriferwn genes. In maize no significant difference between ionizing 

radiation and ethyl methanesulfonate (EMS) in the proportions of mutations 

at the I , Sh and Wx loci was observed. However, it was found that single-

-locus mutations were frequently and almost exclusively induced with EMS, 

while irradiation produced a high proportion of "multiple-locus mutations", 

i.e. closely linked genes were "mutated" simultaneously, presumably due to 

deficiencies (Amano and Smith, 1965)-

In Drosophila, ai lei ism tests were performed between X-ray and EMS-

-induced lethals that were located on the X-chromosome in a region covered 

by the Y.ma-l translocation (Lifschytz and Falk, 1968 and 1969). A map of 
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3^ functional units could be constructed. The distribution of the mutations 

in the affected units was highly non-random and was different for X-ray- as 

compared to EMS-induced mutations. Furthermore, it was observed that 80 per 

cent of the EMS-induced lethals comprised single units, while most X-ray-

-induced lethals covered several functional units, and were presumably small 

deficiencies. Lifschytz and Falk (1969) suggested that mutagen specificitie 

lay arise from differences between genes in the number of "essential sites" 

in their code message. Mutagens that produce base changes will yield more 

mutations in those genes with many essential sites than in those with only 

a few; mutagens that produce frameshifts or deletions will be less selective. 

The preferential action of some mutagens on specific chromosomes or 

chromosome regions, as observed in Oenothera (Krautblatter and Arnold, 1967', 

Kressel and Arnold, 1967), in Vicia faba (Schubert and Rieger, 1976) and in 

Drosophila (Pimpinelli et al, 1977) may also explain the observed differences 

in mutant spectra. 

X-ray- and fast neutron-induced mutant spectra 

Differences between X-ray- and fast neutron-induced mutant spectra in 

higher plants have been demonstrated in barley (1) for the different types 

of chlorophyll mutants (Conger and Constantin, 1974; Dellaert, unpublished; 

Ehrenberg et al, 1959), (2) for different types of viable mutants (Dellaert, 

unpublished; Ehrenberg et al, 1959). and (3) for the erectoides and eceriferum 

mutant spectra, which indicate differences in mutant frequency of specific 

loci (Lundqvist, 1975; Lundqvist and Wettstein, 1962; Lundqvist et al, 1968; 

Persson and Hagberg, 1969). Unfortunately, the mutants were induced at various 

radiation doses and under various conditions, and were collected by different 



observers over many years. Therefore, the observed differences might have 

been due, at least partly, to differences in experimental conditions or 

mutagen dose. However, my experiments under standardized conditions, re­

sulted in X-ray- and fast neutron-induced eaerifevum mutant spectra pheno-

typically similar to the spectra described by Lundqvist and Wettstein in 

1962 (Dellaert, unpublished). Apart from these observations in barley, very 

little evidence of a qualitative difference between mutations induced by 

X-rays (low-LET) and fast neutrons (high-LET) is on record in the literature. 

In the mouse, there is evidence that more d-se deficiencies are induced 

by fast neutrons than by X- or y-irradiation. On the other hand, the spec­

trum of specific locus mutations (apart from the d-se mutation) in the 

original 7-locus stock is very similar after both types of radiation 

(Batchelor et al, 1966; Russell, 1965; Russell and Russell, 1959). 

In Neurospora, it was observed by de Serres (1970) that, compared to 

X-rays, high-LET irradiation with kO MeV helium or 108 MeV carbon ions is 

more efficient in inducing recessive lethal mutations by chromosome dele­

tions than by point mutations. However, comparison of the spectra of allelic 

complementation among X-ray-, helium-ion- and carbon-ion-induced ad-SB mu­

tants in Neurospora did not indicate differences in the spectra of induced 

genetic alterations at the gene level resulting in point mutations (Mailing 

and de Serres, 1967a and b). 

Very little relevant work has been reported in bacteria or other pro-

karyotes. This may be partly due to the masking of the mutations by asso­

ciated lethal effects as the LET increases. In the bacteriophage T/j as well 

as in E. coli a decrease in the effectiveness for the production of gene 



mutations with increasing LET has been observed (Bridges and Munson, 1968; 

Munson and Bridges, 1969 and 1973). 

Molecular mechanisms of X-ray and fast neutron mutagenesis 

The molecular mechanisms of radiation mutagenesis is very complex. Che­

mical changes in nucleic acid bases, breakage of hydrogen bonds in the double 

helix, single- and double-strand breakage in DNA, cross-linking between the 

two strands of DNA, between different molecules of DNA and between DNA and 

protein - all these and more indirect ones, such as the release of endonu-

clease from lysosomes - have been reported (Auerbach, 1976; Box, 1977)-

X-rays and fast neutrons differ from each other in linear energy transfer 

(LET), i.e. the ion density along the tracks they produce. X-rays (except 

very soft ones) produce mainly sparse ionizations (low-LET), while fast neu­

trons yield densely ionized tracks caused by recoil protons (high-LET). Re­

cent studies concerning the efficiency by which various types of lesions were 

produced by fast neutrons compared to Y"rays (* X-rays) in bacteriophage DNA 

indicated that neutron-induced double strand-breaks sometimes occur in clus­

ters of more than 100 in the same phage and that the relative efficiency with 

which double strand-breaks form is about 50 times that of y-induced double 

strand-breaks (Hawkins, 1979). 

In a recent review (Traut, 1978) the molecular nature of gene mutations 

produced by ionizing radiation is discussed. Studies with phage ((fX 171*, T j 

revealed that ionizing radiation is able to induce true gene mutations, i.e. 

chemical changes in nucleic acid bases. Furthermore, a remarkable observation 

is that, irrespective of the organism studied, most radiation-induced gene 

mutations are characterized by "double-stranded segregation", i.e. they pro-



duce mainly mutant daughter cells in unicellular organisms and "whole body 

mutants" in multicellular organisms. A discussion about the origin of the 

"double-strandness" of the radiation-induced gene mutations is beyond the 

scope of this chapter (For a review the reader is referred to Auerbach, 1976). 

Relative biological effectiveness of fast neutrons compared to X-rays 

The difference between X-rays and fast neutrons in the proportions of 

various types of induced lesions, i.e. fast neutrons produce relatively more 

double strand-breaks (Hawkins, 1979), has already been indicated by studies 

on the relative biological effectiveness (RBE) of fast neutrons compared to 

X-rays for different types of genetic damage (Anonymus, 1972). Two peculia­

rities of fast neutrons as opposed to X-rays were observed; a higher RBE for 

translocations than for point mutations and, in general, absence of an oxygen 

effect. A differential effect of the irradiation condition (dose; dose rate; 

oxygen and moisture content; concentration of sulphydryl compounds) on the RBE 

for chromosomal aberrations and point mutations has been reported (Broertjes, 

1968; Malvarez et al, 1965; Smith, 1969; Smith and Combatti, 1967; Smith et 

al, 1968; Underbrink et al, 1970). Besides, it has recently been shown that at 

the molecular level the relative proportion of radiation-induced strand-breaks 

is modified by changing the oxygen concentration or the concentration of 

sulphydryl compounds (Christensen et a ] , 1972; de Jong et al, 1972; van der 

Schans et al, 1979). These observations suggest that manipulation of the ir­

radiation conditions, in terms of oxygen concentration or concentration of 

sulphydryl compounds, may affect the differences between X-ray- and fast 

neutron-induced mutant spectra, provided that they are due to differences 

in the proportion of various lesions, such as double strand-breaks, single 

strand-breaks and molecular changes in nucleic acid bases. To see to what 



extent sulphydryl compounds influence X-ray and fast neutron specificity, 

various effects of both types of radiation were compared, with and without 

dithiothreitol pre-irradiation treatment, in Arabidopsis. 

X-RAY- AND FAST NEUTRON-INDUCED MUTANT SPECTRA IN ARABIDOPSIS 

The aim of the present investigation was to determine whether, in 

addition to the results obtained in barley, a difference between X-ray-

and fast neutron-induced mutant spectrum could also be observed in Arabidopsis. 

Furthermore, to find out whether the induced mutant spectra are influenced by 

radiation dose or pre-irradiation treatment with the sulphydryl compound di-

thiothreitol (DTT). 

It is of interest to see whether X-ray- and fast neutron-induced mutants 

differ in their general performance, due to differential "pleiotropic" effects 

of the mutation. To study "pleiotropic" effects one needs to isolate mutants 

in an otherwise undisturbed background, since direct selected mutants might 

carry, in various amounts, other mutations in their genetic background. With 

a view to research concerning this aspect, a study on the efficiency of various 

selection methods in self-fertilizing crops for the isolation of mutants in 

an undisturbed genetic background was made. Besides, for the production of 

commercial mutants in agricultural crops, mutants in an undisturbed genetic 

background are to be preferred. 

The results of these studies are reported in seven articles, presented 

as different chapters. Chapters I and II are devoted to irradiation effects, 

with or without a DTT pre-treatment, measured with MUller's embryo test 

(Müller, I960 in the M1- inflorescence of Arabidopsis. In chapter III the 



spectra of X-ray- and fast neutron-induced morphological mutants are des­

cribed, and the effects of radiation type, radiation dose and a DTT pre-

-treatment on the induced spectra are discussed. In chapter IV the results 

of a study on the genetic behaviour of the radiation-induced mutants are 

discussed. The emphasis is laid on gametophytic and sporophytic selection 

of mutant genotypes. The results are discussed with reference to the trans­

formation of the observed mutant frequency to mutation frequency per cell. 

In chapter V the frequencies and morphology of a specific group of mutants, 

namely the eaerifevvm mutants, is described in detail. Finally, chapter VI 

makes a (theoretical) comparison of selection methods for specified mutants 

in self fertilizing crops. 
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CHAPTER I 

DOSE RESPONSE CURVES AFTER IRRADIATION OF 

ARABIDOPSIS SEEDS: A POSSIBLE EXPLANATION FOR THE 

"SATURATION" IN MUTANT FREQUENCY AT HIGH RADIATION DOSES* 

Lidwine M.W. Dellaert 

Institute for Atomic Sciences in Agriculture, P.O. Box k8 

Wageningen, The Netherlands. 

ABSTRACT 

Tests were done to see whether the "saturation" in mutant frequency 

in Arabidopsis' "main" inflorescence, after fast neutron or X-ray treat­

ment of seeds, was found because cell populations with heterogeneous 

radiation-sensitivities were studied. Mutant frequencies were determined 

in (1) morphologically normal and conspicuous plants, (2) main and lateral 

inflorescences, and (3) different M.-fertility classes. At moderate radia­

tion doses (kj Gy fast neutrons and 233 Gy X-rays) significant differences 

in mutant frequencies between different M.-fertility classes were observed. 

Thîs suggests that cell populations with heterogeneous sensitivities were 

studied. No significant differences were observed either between the mutant 

frequencies in main and lateral inflorescences or between the ones in in­

florescences of morphologically normal and conspicuous plants. This sug­

gests that these inflorescences were formed by cell populations with similar 

but heterogeneous sensitivities. 

* Research carried out jointly at the Institute for Atomic Sciences 

in Agriculture, Wageningen and at the Department of Genetics, Agricul­

tural University, Wageningen, The Netherlands. 
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INTRODUCTION 

To compare the effect of different mutagenic treatments (type of 

mutagen, dose) only cell populations uniform in mutagen sensitivity 

should be studied. When the mutagenic treatment does not interfere with 

normal histogenesis, the scored M?-progenies can be traced back to the 

M..-main inflorescence cells, the apical initial cells present in the L„ 

layer of the embryonic shoot apex at the time of seed-treatment. 

The "overall" sensitivity for X-rays, EMS and MNU treatment of these 

initial cells in a given seedlot of Arabidopsis is said to be uniform 

(18, 23, 30). 

Although an increase in mutant frequency with increasing dose is 

expected (2, 6, 17) f°r Arabidopsis progenies of the main inflorescences, 

no further increase in chlorophyll mutant frequency after relatively high 

radiation doses was found (Fig. 1). This could be explained for instance 

in terms of a deviating histogenesis after the applied relatively high 

doses (i.e. 20, 33, ̂ 7 and 60 Gy fast neutrons; H O , 233, 327 and 420 Gy 

X-rays). Since irradiation may severely damage the embryonic shoot apex, 

a new apex may be formed either from one or a few surviving cells within 

the apex, or the whole apical function may be taken over by axillary or 

adventitious buds (1, 5, 12, 13, 1*4, 15, 26, 29, 32). This "replacement" 

of the apical initial cells will reduce the mutation frequency only when 

the cells which form the new apex are less radiation-sensitive. 

An increase in dose increases the number of plants without apical 

dominance of the main inflorescence (this report). It could be that in 

these plants the original shoot apex is severely damaged. The decrease in 

the mutant frequency at relatively high radiation doses could then be due 

to the presence of these plants. Also, at higher doses the main inflores­

cence cannot easily be distinguished with the naked eye from equally vigo­

rous rosette lateral inflorescence(s). Partial replacement of themain in­

florescences by lateral ones during scoring can lead to reduced mutant 

frequencies if cells forming the lateral inflorescences are less sensi­

tive to radiation. 

To explain the differences in observed and "expected" mutant fre­

quencies, the effect of X-ray and fast neutron irradiation on M.-plant 
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development was studied. The mutant frequencies in plants with normal 

apical dominance, with reduced apical dominance, or without apical 

dominance were compared, as were the mutant frequencies in main and 

lateral inflorescences. The mutant frequencies in different M.-fertility 

classes were also compared. Partial replacement of the apical initial cells 

by cells which are less radiation-sensitive would produce M.-"initial" cell 

populations with heterogeneous sensitivities. After a given dose M.-spo-

rophytic tissues that had descended from sensitive cells would then pro­

duce a higher sterility and a higher mutant frequency than those, that had 

descended from less sensitive cells. Therefore, the partial replacement of 

the initial cells would produce within-treatment dependence of mutant 

frequency and M.-fertility class. 

MATERIAL AND METHODS 

Arabidopsis seeds used in the experiment were mutant ereota of the 

ecotype "Landsberg" (27). To break dormancy, seeds were kept on moist 

filter paper at 2 C for 5 days and re-dried (2k C, 2k hr). Approximately 

300 re-dried seeds per treatment per replication were submerged into 22 °C 

tap water 3 hr before irradiation. To standardize environmental conditions, 

the irradiation was applied to seeds submerged in 22 C tap water, be­

cause it can then be assumed that oxygen concentration and water content 

was equal in all seeds. X-radiation (60 Gy, 233 Gy and 327 Gy) was applied 

with an MG 301 X-ray machine with an MCN-420 tube, operating at 320 kVp 

and 10 mA with an additional 0.25 Cu and 1.0 Al filter and a k Gy/min. 

dose rate. Fast neutrons (33 Gy, kl Gy and 60 Gy) were given in the irra­

diation room of the BARN (Biological Agricultural Reactor Netherlands, 

Wageningen) with a 1 Gy/min. dose rate and a y'contamination of approx­

imately 3 percent on a Gy basis. Seven treatments (including the con­

trol, 0 Gy) were given in two replications with a two month interval. 
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After irradiation the seeds were sown (equally spaced) in portions of 

30 in a petri dish on a standard mineral medium and put to germinate at 
n 

2k °C under continuous illumination by fluorescent light tubes, 8000 lux/cm 

After 8 days 265 seedlings per treatment per replication were transplanted 

into soil in an air-conditioned greenhouse. The culture medium and culture 

conditions used were as described by Feenstra (9) and Oostindiër-Braaksma 

and Feenstra (25)- To have equal conditions for the plants of all treat­

ments within one replication, randomization on a single plant basis was 

done at transplanting. 

At flowering, the plants were grouped into three classes depending on 

the degree of main inflorescence apical dominance (Fig. 2). A subdivision 

was made into plants with or without main inflorescence fasciation. The 

main inflorescence was marked. In doubtful cases, i.e. when two (or more) 

of the first flowering inflorescences flowered simultaneously, one of 

them was taken at random. 

For scoring mutants, Mül1er's embryo test (21, 22) was applied to 

silique number 5 or 6 of the main inflorescence and of the first flowering 

lateral inflorescence (formed in the rosette leaf axils). For ease of 

handling scoring in a silique was done at one side of the septum. 

The frequency of non-fertilized ovules in the M.-siliques 

was expressed as a percentage of the total number of ovules, and the 

frequency of embryonic lethals in the M.-siliques was expressed as a per­

centage of the total number of fertilized ovules. The chlorophyll mutant 

frequency, m, was expressed as the chlorophyll mutation frequency per cell 

(10, 11); 

m = -y- , where 

m = the number of mutated cells among the total number of cells, 

m' = the number of mutants among the total number of non-lethal 

M_-embryos, 

f = the segregation frequency of recessive mutants, i.e. the probability 

that a non-lethal l^-embryo descending from a heterozygous flower is a 

homozygous mutant. 
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In applying Miiller's embryo test, a cluster sampling was used. 

With this method the silique is the sampling unit. Within each sampling 

unit the individual ovules (fertilized and non-fertilized ovules) or 

embryos (normal, lethal and "chlorophylls") were classified. Therefore, 

in estimating the percentage of non-fertilized ovules, the total number 

of ovules scored per silique formed the cluster and in estimating the per­

centage of embryonic lethals, the number of fertilized ovules per silique 

formed the cluster. In the case of chlorophyll mutants, the cluster was 

the number of non-lethal embryos scored per silique. The clusters varied 

in size. For the calculation of the standard error, Sp, of the mean pro­

portion of non-fertilized ovules and embryonic lethals, Snedecor's (28) 

formula was used: 

Sp = W where 

S = — v /., , v (Sa. - 2pXa.n. + p In. }, the sample standard deviation, 
(N-1) i r i i i r 

n 

N = number of siliques scored, 

n. = s ize of cluster i, 
i 

n = En./N, the mean clustersize in the sample, 

a. = the number of units within cluster i that belong to a specified class, 

p = Ea./En., their overall proportion in the sample. 

For chlorophyll mutants it is possible to estimate the mutation 

frequency per cell (m), as the segregation frequency of récessives (f) 

can be used. A confi-dence interval for m is calculated using Stam's formula 

(pers. comm.). This formula is based on the assumption that; 

- each M2-line (M^-silique in our case) originates from a single cell, 

- the segregation frequency (f) in segregating M_-lines is equal for all 

types of recessive mutants, 

- the total number of mutants (K), is normally distributed. 
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The 90 per cent confidence 1imits of K for given m are 

e(K) + 1.6it5Vv7r*n<), 

where both e(K) and var(K) are functions of m, i.e. 

e(K) = mfln., and var(K) = f 2m(l -m) In.1 + mf(1-f)ln.. 

The confidence limits of m are the values of m that satisfy 

K-E(K) = + 1 .645Vvar(K). 

The solutions of this quadratic equation in m are asymmetric with re­

spect to the estimate m. 

RESULTS AND DISCUSSION 

A. The effect of fast neutrons or X-rays on M^-plant development. 

The distribution of the M.-plants over the different development 

categories after irradiation is given in Table 1. For analysis of the 

data a computer program for discrete multivariate analyses was used 

(tests of independence in a multi-way contingency tabl e; see appendix). 

Significant effects (p < 0.01) were found for the two-factor-

- interact ions;treatment x development class, treatment x fasciation and 

development class x fasciation, and for the three-factor-interact ion 

treatment x replication x development class. This indicates that: 

a) The fasciation of the M.-plants was influenced by the irradiation 

and by the main inflorescence development. 

b) The main inflorescence development was affected by the irradiation. 

The extent of this effect was dependent on the growing season, i.e. 

was different in the two replicates. 

Fasciation mainly occurred in those plants with normal main inflores­

cence apical dominance. The observed proportion of fasciated plants 

in this group is given in Fig. 3. Fasciation results from the inhibition 

of cell differentiation which leads to a broad apex with forks (12). 

Thus it may be assumed that fasciation only occurs when inhibition of 
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wi th; 

O normal apical dominance (including fasciation) of the total 
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domi nance. 
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cell differentiation takes place in multicellular apices. In the mature 

Arabidopsis embryo the apex is about 6 cells in diameter (20). The 

primordia of the first two leaves, present in the seed (1 , 12, 19) 

probably reduce the shoot apex to 2 or 3 cells in diameter. No pre-

-formed axi 1 lary buds are present. The fact that almost no fasciated 

plants were found in the group of plants without main inflorescence 

apical dominance suggests that the shoot apex was severely damaged in 

these plants and that new apices were formed by one or more surviving 

cells after the irradiation. 

The proportion of plants with normal main inflorescence apical domi­

nance decreased with increasing dose (Fig. 3). It was of interest, 

therefore, to determine whether the reduction in mutant frequency at 

relatively high radiation doses could be attributed to 

1) an increased proportion of plants with reduced or without main 

inflorescence apical dominance, because these plants might be con­

nected with cell replacement, or 

2) a partial replacement of the main inflorescences by lateral ones 

during scoring, due to an increased frequency of plants in which 

the main inflorescence could not easily be distinguished from laterals. 

These two points will be discussed in B and C, respectively. 

B. The mutant frequency -in plants of the different development categories 

For the analyses of the mutant frequencies (in B, C and D resp.) 

the data from the two replications were pooled, since within dose no 

significant difference in mutant frequency between the replications was 

found. Table 2 gives the data obtained in the "main" inflorescence of ptants 

from each development category, excluding those with fasciation. It can 

be seen from the table that plants with reduced apical dominance gene­

rally tended to have higher mutant frequencies than those with normal 

apical dominance. It is concluded that the reduction in mutant frequency 

at relative high doses cannot be attributed to the increased proportion 

of plants with reduced apical dominance. Plants without apical dominance 
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had a lower frequency of embryonic lethals than plants with normal or 

reduced apical dominance after some irradiations. However, it can be 

seen from Table 2 that this effect was not consistent for all doses 

(not after k~l and 60 Gy fast neutrons for instance). Because a "satu­

ration" of mutant frequency was also indicated in plants with normal 

and reduced apical dominance, it is concluded that the reduction in 

mutant frequency can at the most only partly be ascribed to the plants 

without apical dominance. 

C. The mutant frequency in main and lateral inflorescences 

In comparing the mutant frequency in the main inflorescence with 

that in the lateral inflorescence, the data of the following M.-plants 

were not included: 

1) those without apical dominance, since they have main inflorescences 

not distinguishable from the lateral one(s), 

2) fasciated ones, because of their small number, 

3) plants of which the data were obtained from either the main or the 

lateral inflorescence. 

No significant differences were found between the frequencies of 

non-fertilized ovules, embryonic lethals and chlorophyll mutants in 

the main and in the lateral inflorescence (Table 3)- The lateral 

inflorescence had the same, or perhaps slightly higher, mutant fre­

quency as the main inflorescence after a given dose. It can be con­

cluded therefore, that a (partial) replacement of the main inflores­

cences by lateral ones will not affect the mutant frequency. 

The data indicate that in the irradiated seeds of the plants 

considered (i.e. without fasciation and with normal or reduced main 

inflorescence apical dominance), the cells which formed the sporophytic 

tissue of the lateral inflorescences had the same radiation-sensitivity 

as the ones which formed the sporophytic tissue of the main inflorescence. 
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D. The mutant frequency in different M~-fertility classes 

Having excluded the effects under B and C as possible causes for 

the "saturation", a comparison of the mutant frequency in different 

M--ferti1ity classes was considered. M.-fruits were divided into three 

fertility classes, namely 0-10, 11-20, and > 20 embryos per fruit half. 

The frequency of embryonic lethals and chlorophyll mutants were 

calculated for each fertility class. The data were analysed inclusive 

(Table 4a) and exclusive of lateral inflorescences (Table 4b). From 

Table 4 it can be seen that at a given dose the frequency of embryonic 

lethals decreased with increasing M.-ferti1ity. Thus, with fast neutron 

and X-ray exposures embryonic lethals are strongly correlated with the 

degree of NL -steri1ity. Similar results were obtained by Muller (23) 

and van der Veen (30) for X-ray or EMS-treated Arabidopsis seeds. Müller 

and van der Veen concluded that this correlation indicated a common 

causal factor, i.e. maternal effects. Because no correlation between 

chlorophyll mutants and degree of M--steri1ity was found within-treat-

ment, M.-"initial" cell heterogeneity in mutagen sensitivity was ex­

cluded. 

In the present experiment similar results were found for relatively 

low and high radiation doses. However, with moderate doses (47 Gy 

fast neutrons and 233 Gy X-rays) significant differences in chlorophyll 

mutant frequency between the M^-fertility classes were found. The 

chlorophyll mutant frequency decreased with increasing M--ferti1ity. 

Hence, there was a within-treatment dependence of mutant frequency and 

M.-fertility class. This suggests that the M.-progenies scored for 

these treatments originated from M^-embryo cells which were hetero­

geneous in radiation-sensitivity. This was also observed when only 

M.-progenies of the main inflorescence were scored (Table 4b). 

Oftedal (24) has theoretically demonstrated that mutagenic and cell 

killing effects on cell populations with heterogeneous sensitivities 

result in a "humped" dose-response curve for mutant frequency, if there 

is coïncidence of the sensitivities for both effects. Therefore, it 

is concluded that the "saturation" of mutant frequency in Arabidopsis 

at relatively high doses, may be attributed to a more frequent scoring 

of M^-progenies originating from M-|-embryo cells which were less sen­

sitive to irradiation. 

28 



^ 

+-

~z_ 
u 

CM 

o 

X 

• <u 
l4-
c 

3 

>• 
Q. 
O 

o 
-C 

Ô-9 

t/1 

03 

<D 

U 
O 

^ 
S 

"O 3 

— <f\ 

1 W 

U- °" 
O « 

(U 

O =J 
z > 

o 

™ 

o 
z 

ru 

T3 

o 
CM 

A 

1 

"~ 

O 

Y 
O 

0 CM 

A 

V 
,— "~ 

O 

O 

o 

A 

o 

J-
*" 
o 

O 

O 

O 
CM 

o 

o 

O) . - , 

1/1 > -
o o 

<D 

>-

O 
vD 

o 

— o 

v 

o 

o 

o 

— 
+1 

*~ 
_ 
+ 1 

v O 

r -

j ! 

+ 1 

vO 

•" 
en 

OD 
CM 

CO 

MD 

CM 

^ 
r-» 

co 

L A 

O 

0 

0 
u 

L A 
CM 

L A 

\£> 
O 

C A 

V 

r -

~ 
V D 
OO 

MD 

V 

r -

m 

v 
O 

O 

CM 

- 3 -

[— 

OO 
L A 

rA 

V 
co 
vO 

-
LTl 

+ 1 C A 

^ 
CA 

+ 1 

CO 

— 
+ 1 

CA 

_* 
MD 
CM 

CM 

L A 

L A 

r -

- 3 " 

r A 

r A 

z 

(M 

CM 

CM 

— v 
MD 
MD 

O 

_T CO 

_ 
V 

MD 

r-. 

v 

co 

- T 

P^ 
rA 

C A 

co 

c c 

co 

LA 

en 

+ 1 

o 

+ 1 

co 

•— 
+ \ 

"— 
co 

J -

t M 

o 

i n 

m 

cn 

CM 

r~-

f - . 

r-, 

CN 

V 

Cn 

o 

co 
-q-

V 

MD 

-
V 

LA 

o 

L A 
CO 

CA 

L A 
r--

L A 

CM 
r A 

m 

o 

_ + 1 
LT\ 

.̂ 
+ 1 

,-— 
m 

+ | 

vO 

~ 
r-, 

j -
CM 

CA 

-* 

m 

j -
o~\ 

L A 
M i 

L A 

\0 

MD 
MD 

-
O 
co 

o 

v rA 

o 

•-r A 

V 

CM 

o 

v 

o 

o 

0 0 
CO 

r A 

I - -

r A 

C A 

o 

CM 

a + 1 
m 

CM 

_ 
+ | 

-d-

CA 

+ 1 

CT\ 

co 

r^. 
CM 

r*. 

L A 

0 
L A 

C A 

MD 

rr\ 

1 
X 

\o 
f A 

V 
- T 
O 

CM 

v 
— -
L A 
CO 

_3 -

V 

1— 

CM 

V 
O 
L A 

-
I-» 

_ 
L A 

r-. 

co 

-=r 

MD 

0 + \ 

j -

+ | 

r-» 

,— 
+ 1 

-T 

— 
- 3 -

MD 
CM 

-
I A 

- d " 

_T 
L A 

L A 

L A 

f A 
CM 

r A 

L A 

MD 

v 
"— r A 

C A 

CM 

V 

— MD 

V 
MD 
C A 

CM 

O 
C A 

CA 

cn 

° 
o 

— MD 

J -

+ 1 

"̂  
vO 

+ 1 

r-"-
r-~ 

+ 1 
C A 

— 
CA 

-3-
CM 

• 3 -

L A 

C A 

M 3 

C A 

CM 

^ 

(L> 5 
u "O 

E 
• o 

QJ O) 

tl) 
I_ 

m 
4-J 

XI 

m 
u 
1) 

•w 

" O T 3 
O) 
C — 

29 



§ g1 

_̂ — 
0) 
u 

o 

x 

CT 
0) 

U-

c 
fa 

=3 
E 

a . 
O 

0 

U 

d-e 

ro 

QJ 

M 
O 

>-- Q 

"O 3 
CD C " 

— !ƒ) 

£ -H 
^ "»-^~ QJ 

Q . 

O ui 
a> 

ó 3 

0 

0) 
3 
c r 

O 

O 
z 

c 
o 

4 - 1 

a? 

-o 
a) 

o 
CM 

A 

O 

7* 
^ 

o 

— o 

CD 

* 

O 

,— 
~~ 

CD 

1 
CD 

O 

CM 

CD 

1 

O 

CD 

o 

A 

O 

o 

o 

CU ~~~ 
L/) > . 
0 CJ 

-a •«—-

0) 
CL 

>-

CA 
CO 

o 

— O 

v 

o 

CD 

CD 
O 

o 

o 
o 

CD 

CM 

O 

+ 1 o 

C O 

o 
+ 1 

— 
CA 

r-. 
+ | CM 

O 

"" 
C A 

CO 

C A 

v D 

j . 

L A 

C A 
L A 
- 3 " 

CO 

CA 

O 

O 

c 
o 
o 

C A 
MD 

L H 

- S -

CM 

v 
C A 
o 

-
V D 
o 

C A 

O 
CM 

- 3 -

C A 

_ [ 

L A 
V D 

CM 

o 
o 

L A 

CA 

~ 
V D 

O 

+ [ 
MD 

C A 

_ + 1 MD 

CO 

L A 

,_ + 1 O 

CO 

C A 

L A 

_ 
L A 

- 3 " 

L A 

MD 

"~ 
CD 

CD 

-
C A 
r A 

Z 

C A 
L A 

L A 

V 
r A 
CD 

_ 
v 

C A 

«— CD 

CA 

— CO 

V 

CD 

-
r-. 
L A 

V O 

v O 
o 

CD 

CO 
CA 

-
C A 
C A 

\D 

-
T — 

+ | 
MD 

\£> 

+ 1 CO 

C A 

r A 

,_ _+l 

CA 

L A 

- 3 " 

CA 

.̂ 

r A 

"̂  
L A 
CO 

- d " 

L A 
O 

r-. 
- 3 " 

MD 
MD 

C O 

CD 
MD 

v 
co 
CM 

CD 

- T 

— O 

V 

CM 

C A 

r-» 
CA 

CD 

L A 
L A 

_ 
CO 
C A 

-*-
V 
CA 
CD 

CM 

O 

+ 1 MD 

rA 

CM 

CM 

+ \ 

^ 
— CM 

+ 1 CO 

MD 

"~ 
CA 

^ r 

MD 
j . 

^ 
C A 

C A 

CM 

CD 
MD 

_ 
-sr 

-
r A 

O 

V 

C D 

CD 

C3 
CD 

O 

C A 

- 3 " 

C A 

CO 
O 

-* 
V 

CO 

f - -

CD 

C A 

CD 

+ 1 

O 

_ + 1 CO 

C A 

,-CD 

+ 1 CD 

CM 

MD 

r-. 
CM 

— 
M3 

C A 

CO 

CM 
MD 
C A 

J -
MD 

CD 
C A 

O 
v O 

l/> 
J'­
en 

X 

- 3 " 
MD 

C A 

CO 
- 3 " 

_ 
V 
O 

MO 

CD 

C A 
C A 

r-» 

o 
r -

CA 

co 

_J 

C O 
CO 

CM 

CO 
f - -

MD 

CD 
L A 

C A 

r*. 

CD 

+ | CO 

LA 

C A 

CD 

+ 1 
CA 

r-. 

MO 

_ + 1 C A 

"~ 
CM 

MD 

CD 

L A 

_ 
L A 

MD 

CM 

MD 
CO 

- 3 -

~ 
C A 
C A 

CA 
V Û 

CD 

CO 
CO 

CM 

v 
- 3 -

r -

o 

o 
CD 

O 

- 3 " 
CM 

C A 

C A 
\D 

L A 

L A 
C A 

r -

c o 

_ + 1 L A 

,_ 
CM 

+ 1 

^ 
— CM 

rt' 
CA 

CD 

L A 
CM 

CM 

L A 

CO 

J 

CM 
L A 

L A 

CO 
CO 

r~-

C A 

30 



GENERAL DISCUSSION AND CONCLUSION 

No significant difference in chlorophyll mutant frequency among the 

different fertility classes was found, neither at relatively low doses 

(33 Gy fast neutrons and 60 Gy X-rays) nor at relatively high doses (60 Gy 

fast neutrons and 327 Gy X-rays). Therefore, the M.-"initial" cell hetero­

geneity suggested by the data from Table k (at kj Gy fast neutrons and 

233 Gy X-rays) cannot be due to NL-seed heterogeneity since, in that case, 

a correlation between chlorophyll mutant frequency and M.-fertility should 

occur with all doses, at least if there is coïncidence of the sensitivities 

for mutant induction and induction of sterility. This was however not ob­

served. For instance at 33 Gy fast neutrons the mutant frequencies were the 

same for all M.-fertility classes (Table ^a) . A significant difference was 

observed in the transition area of the applied dose range (at kj Gy fast 

neutrons and 233 Gy X-rays). Therefore, the data indicate that heterogeneity 

in radiation-sensitivity of the M1-"i n i t ia1 ' ' cells is dependent on dose. This 

was also found for the "initial" cells of "pre-formed" barley tillers after 

X-ray and thermal neutron treatment (31) and for the "initial" cells of 

the "main" shoots of tomato after fast neutron irradiation (7). 

The effect of dose upon the heterogeneity of the M.-"initial" cell 

population can be explained by differential effects of various irradiations 

on the development of the shoot apex. It is postulated that in Arabidopsis 

an M.-"initial" cell population with homogeneous sensitivity is found 

after specific mutagenic treatments. Firstly, for treatments that do not 

influence the stability of the apices, i.e. where no replacement of the 

few stable initial cells in the shoot apex occurs (for instance at 33 Gy 

fast neutrons and 60 Gy X-rays in the present experiment). Secondly, for 

treatments that severely damage the shoot apices, i.e. replacement occurs 

by cells that are homogeneously less sensitive (for instance at 60 Gy fast 

neutrons and 327 Gy X-rays). The M.-cell heterogeneity in radiation-sen­

sitivity - e.g. due to differences in mitotic activity between and within 

cell layers in the embryo (13, 16) - is then expected to be found after 

mutagenic treatments where partial replacement of the original initials 
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occurs. This hypothesis agrees with our experimental results and explains the 

"contrasting" results between our experimental data and the data obtained 

by Müller (23) and van der Veen (30). 

Müller (23) found a within-treatment independence of chlorophyll 

mutant frequency and fertility class after 200 and 250 Gy X-irradiation 

of presoaked (l8 hr) Arabidopsis seeds. These irradiations induced 52 and 

56 per cent M.-steri1ity, respectively. At these high doses the shoot apices 

may have been severely damaged and, therefore, the original initials could 

have been replaced by cells that were homogeneous but less sensitive. 

Van der Veen (30) and Müller (23) observed within-treatment independence 

of chlorophyll mutant frequency and fertility class after EMS treatment of 

Arabidopsis seeds. The EMS treatments applied [8.3 mM EMS, 2k hr at 2k C and 

20 mM EMS, 18 hr at 22 °C, respectively] may not have influenced the sta­

bility of the shoot apices. 

In conclusion, the "saturation" in mutant frequency at high doses 

is explained by M.-"initial" cell heterogeneity in "overall" mutagen sen­

sitivity. It is suggested that this heterogeneity is induced by random 

cell killing of the initial cells with higher doses. 

An M--"initial" cell heterogeneity is also indicated in plants with 

normal apical dominance. Hence, it is concluded that the meristematic cell 

replacement in the shoot does not necessarily manifest itself in the 

morphology of the plant, i.e. does not only occur in the morphologically 

conspicuous plants, the plants without apical dominance. 

Acknowledgement - I wish to thank Professor J.H. van der Veen for his help 

and advice in preparing the manuscript and to R. Verdoorn and P. Stam for 

their advice in statistical analyses of the data. 
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APPENDIX 

Discrete multivariate analysis of the distribution of M^-plants over the 

different development categories. 

The distribution of M.-plants over the different development categories 

after the irradiation is given in Table I . It can be seen from the table 

that the data form an incomplete multidimensional contingency table. First­

ly, the dead plants could not be classified as plants with or without fas-

ciation, and secondly, the dose of 327 Gy X-rays was only applied in the 

second replication. 

Because the main points were to test whether or not the distribution 

of the surviving plants was associated with the irradiation and whether 

or not there was a replication effect, the data were divided into two 

sub-tables (— in Table 1). Each sub-table formed a complete multidimensional 

contingency table. The variables which may have affected the distribution of 

M..-plants over the distinguished classes are given in Table 5- To test 

whether these variables were associated, a test for independence (G-test) 

was applied by discrete multivariate analysis of the data in each sub-table. 

A computer program was used for the calculations and an attempt was made 

to find the best log-linear model to fit the data (k, 8). 

The variables u. (irradiation) and ui, (replication) are explanatory 

variables, which classify in this case the plant, according to the experi­

mental conditions. Therefore, the log-linear model describing the data 

of sub-table I should include the variables u, and u^ and their interaction 

u.j, (8). The variables u~ (plant development) and u, (fasciation) are re­

sponse variables, which describe what happens to the plant during the ex­

periment (3, 8) . 

To cover the range of all possible models, the fitting of models 

with terms of uniform order was tested in the initial computations. The 

goodness of fit (G-test) of these models is given in Table 6. It can be seen 

from this table that for the data of sub-table I , a log-linear model in­

cluding three-factor-interact ions gave a well-fitting description 
2 

(G = 2.940; d.f. 10 •* p > 0.975), but a log-linear model including only 

main effects and two-factor-interact ions did not give a fitting description 

(G2 = 49.215; d.f. 37 •+ p < 0.25). 
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The next step was confined to the "intervening models", i.e. models with 

all first and second order terms and one or more third order terms. The 

best-fitting "intervening model" found for sub-table I was a model in­

cluding the three-factor-interaction u.... (model 2.1 in Table 7 ) . The 

effects of the parameters in the models were then measured as the diffe­

rence between the goodness of fit of the models that provided a well-fit­

ting description and the models that did not include the parameter(s) ('t). 

From Table 7 it is apparent that of the three-factor-interactions, the in­

teraction U._, (treatment x development class x replication) had the 

largest effect, and that u., (treatment x fasciation) and u„, (development 

class x fasciation) were the most important ones among the two-factor-in­

teractions. 

The data of sub-.table I I , were well described by a log-linear model 

including all two-factor-interactions (Table 6). From Table 7 it can be 

seen that the two-factor-interact ions u.- (treatment x development class) 

and Uj, (treatment x fasciation) were the most important ones. 

Table 8 gives the expected cell frequencies and the Freeman-Tukey 

deviates of the data in Table 1 according to the models that provided a 

well-fitting description (i.e. J 2.1 and I I 3.1 in Table 7). 

Table 6. Models with terms of uniform order for data in Table 1. 

sub-table 

I 

I I 

model 

u + u, 

u *• u, 

u + u, 

"123 + 

u • u, 

u *- u, 

+ u 2 + 

+ "2 + 

+ "2 + 

u12<. + 

+ "2 + 

+ u 2 + 

"3 + 

"3 + 

"3 + 

u13<> 

u3 

"3 + 

"1. + U H 

"i, + "H + "12 + 

" I t + "Ut + "12 + 

+ "23". 

u 12 + "13 + "23 

"13 + 

"13 + 

u23 + u2>. + 

"23 + "2i. + 

"3-t 

"3<t + 

G 2 a) 

986.138** 

Ii9.215* 

2.91*0 

"12.685** 

0.000 

d.f. 

57 

37 

10 

7 

2 

Test of: 

i ndependence 

two-factor-interact ion 

three-factor-interact ion 

i ndependence 

two-factor-interact ion 

a) significant value for G implies that the model does not fit the data; ** significant for p < 0.005; 

* significant for p < 0.25. 
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SUMMARY 

A study was made on the effect of dithiothreitol (DTT; present 

during irradiation) on M.-ovule sterility, M.-embryonic lethals, M,-

chlorophyll mutants and M.-viable mutants induced with fast neutrons 

or X-rays in Arabidopsis thaliana. It was found that DTT provides 

considerable protection against both fast neutron and X-ray-induced 

genetic damage. However, a higher protection was observed against M.-

ovule sterility, than against embryonic lethals, chlorophylls and 

viable mutants. This implies a significant DTT-induced spectrum 

shift (0.01 <p<0.05), i.e. a shift in the relative frequencies of the 

different genetic parameters. This spectrum shift is explained on the 

basis of a specific DTT protection against radiation-induced strand-

breaks, and by differences in the ratio strand-breaks/base damage for the 

genetic parameters concerned i.e. a higher ratio for ovule sterility 

than for the other parameters. 

The induction of the genetic damage by ionizing radiation, 

either with or without DTT, is described by a mathematical model, 

which includes both strand-breaks and base damage. The model shows that 

the resolving power of a test for a "mutation" spectrum shift depends on 

the relative values of the strand-break reduction factor of -SH compounds 

and on the ratio strand-breaks/base damage of the genetic parameters. 

For each genetic parameter the DTT damage reduction factor (DRF) is cal­

culated per irradiation dose, and in addition the average (over all doses) 

ratio strand-breaks/base damage. 
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INTRODUCTION 

Since the radioprotective action of cysteine was first observed [ 26] , 

many other sulphydryl compounds have been reported to act as radioprotectors 

when present during X- and Y"[2, 3, 16] or fast neutron irradiation 

[2, 6, 331- One of the most effective SH-protector reported is 

dithiothreitol (DTT, Cleland's reagent) [h, 10, 13, 28, 29, 35, M ] . 

It has been suggested [5, 11, ̂ 1] that -SH compounds primarily protect 

by increasing the concentration of radical-reducing species (i.e. hydrogen 

donating compounds), resulting in radical scavenging and in an enhanced 

repair of free-radical damage in the targets. This hypothesis is supported 

by the data of (1) Chapman et al. [11], describing the radioprotection by 

cysteamine of Chinese hamster cell inactivation and sensitizer binding 

to DNA in vitro, (2) van der Veen and Sree Ramulu (pers. comm.), who studied 

the radioprotection by dithiothreitol of genetic damage in Arabidopsis in 

relation to the oxygen concentration, and (3) of others who described the 

radioprotect ion of bacteria by -SH compounds [ 17, 30] . 

A few studies on sulphydryl protection against radiation-induced 

damage show that the extent of the protective effect is, amongst others, 

dependent on the endpoint studied. Malvarez et al. [19] concluded for 

barley that cysteamine protects seeds against X-rays by improving M,-

seedling growth and adult survival, and reducing the frequency of 

chromosomal aberrations, without changing the frequency of chlorophyll 

mutations. Van der Veen et al. [39] found for Avdbidopsis that DTT, present 

during X-irradiation, gives considerable protection against induced M.-

lethality. The protective effect for induced M.-ovule sterility and 

M„-embryonic lethality was less. These studies suggest that -SH compounds 

preferentially protect against chromosome breaks, at least when one 

assumes that M.-lethality is to a greater extent caused by gross 

chromosomal aberrations, and M.-mutants (embryonic lethals and chlorophylls) 

to a greater extent by gene mutations. 



Thus, a spectrum shift towards a higher ratio gene mutations/chromosome 

breaks might be obtained when -SH compounds are present during irradiation 

[6, 39] • Recently, the same hypothesis was formulated by van der Schans 

et al. [31], based on studies on sulphydryl protection against radiation-

induced damage on the molecular level under anoxic conditions. De Jong 

et al. [ 18] found that y-irradiation in the presence of -SH compounds 

enhances the ratio of the number of biological hits (single strand-breaks 

+ nucleotide damage) to the number of single-strand-breaks from approximately 

2.5 to 16 when cysteamine was added to a solution of single-stranded DNA 

of the bacteriophage IX 17*» before y~i rradiation. 

Van der Schans et al. [ 3'] found for Chinese hamster ovary cells that 

cysteamine protects against Y~ray induced single strand-breaks(and alkali-

labile sites), whereas it did not significantly affect the number of 

endonuclease-susceptible sites. If the number of induced endonuclease-

susceptible sites corresponds to the number of nucleotide impairments which 

gives rise to gene mutants, then the number of radiation-induced gene 

mutations will not be affected by -SH compounds. The result then, is a 

spectrum shift towards an increased mutant frequency at a given level of 

survival after irradiation in the presence of -SH compounds [31] • 

Since in higher plants (barley and Arabidopsis) irradiation in the 

presence of -SH compounds resulted in a spectrum shift in favour of more 

"mutants" (M.-ovule sterility, M.-embryonic lethals and M.-chlorophyl1 

mutants) at a given level of survival [ 19, 39], a similar effect of -SH 

compounds at the molecular level can be expected in higher plant cells, 

i.e. preferential protection against strand-breaks. Studies on the effect 

of -SH compounds, present during irradiation, on the ratio between 

different genetic parameters, such as M.-ovule sterility, M_-embryonic 

lethals, M_-chlorophy11 mutants and M_-viable mutants, may then increase 

our knowledge concerning the kind of radiation-induced damage responsible 
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for these genetic changes ("mutants"). Only when the ratio strand-

-breaks/nucleotide damage for these genetic parameters 

is different, can it be expected that irradiation in the presence of 

-SH compounds will alter the ratio between these genetic parameters, 

e.g. at a given level of ovule sterility more embryonic lethals, 

chlorophylls and viable mutants. 

The following comparison between the effect of DTT on M.-ovule 

sterility, M2-embryonic lethals, M2-chlorophy11 mutants and /^-viable 

mutants in Arabidopsis induced by X-rays or fast neutrons, is presented 

to extend the results concerning sulphydryl protection against induced 

mutations, and to obtain more information about the effect of DTT 

on the ratio between different genetic parameters. This study 

may also reveal differences in the mode of action of X-rays 

and fast neutrons, since differences in the protective effect for a given 

genetic parameter might reflect a different action at the molecular level, 

i.e. differences in the ratio of the number of biological hits to the 

number of strand-breaks for this parameter. A theoretical model, based on 

sulphydryl protection against strand-breaks, is constructed in order to see 

how sensitive a test for an induced shift in mutation spectrum by 

-SH compounds is for a given difference in the ratio strand-breaks/nucleotide 

damage between two genetic parameters. 
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MATERIALS AND METHODS 

Plant material 

Seed stocks used in the experiments were of the mutant ereata 

of the ecotype "Landsberg" [27]. In experiment I a control line 

was used (C = MsMs), while in experiment II seeds of a male sterile 

line were used (maintained as msms cross-pollinated with Msms -> msms + 

Msms). 

Dithiothreitol treatment 

Van der Veen et al. [39] and Sree Ramulu and van der Veen [33] 

tested a series of DTT concentrations (0 to 2.4%) and pre-treatment durations 

(0.5 to 't h) in Arabidopsia. Based on their results 1.2 per cent (= 78 mM) 

given 3 h before irradiation was selected as the optimum concentration 

and duration for DTT treatment. Notably higher concentrations reduced the 

germination speed, the final germination percentage and the seedling 

survival, as a result of the toxic effect of DTT. 

Radiation treatment 

In order to break dormancy, seeds were kept on moist filter paper 

at 2 °C for 5 days, and re-dried (24 °C, 24 h ) . The re-dried seeds 

were then submerged in tap water or DTT-solution {].2%) , at 22 C, 3 h 

before irradiation. 

X-irradiation was carried out with an MG 301 X-ray machine with an 

MCN-420 tube, operating at 320 kVp and 10 mA, with an additional filter of 

0.25 Cu and 1.0 Al and with a dose rate of 4 Gy/min. (= 400 rad/min). Fast 

neutrons were given in the irradiation room of the BARN (Biological 

Agricultural Reactor Netherlands, Wageningen) with a dose rate of 1 Gy/min. 

The y-contamination was only approximately 3 per cent on Gy basis. 

Preliminary studies indicated that under the conditions used fast 

neutrons were 7 times more effective than X-rays in inducing M^"ovule 
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sterility i n Arabidopsis (Dellaert, unpublished). Therefore, 

to obtain comparable levels of induced genetic damage, the doses of 

X-rays applied to seeds submerged in tap water (140, 233, 327 and 420 Gy) 

were 7 times the dose of fast neutrons (20, 33, 47 and 60 Gy) applied, 

in experiment I. In the same experiment the doses applied to 

seeds submerged in 1.2 per cent DTT were twice the dose applied to seeds 

submerged in tap water (i.e. 280, 467, 653, 840 Gy X-rays and 40, 67, 93, 

120 Gy fast neutrons), because for DTT a dose reduction factor of 

approximately 2 has been found for the induction of M.-ovule sterility in 

Arabidopsis [33, 39] . The maximum duration of irradiation was 3-5 h. 

To standardize the effect of environmental conditions, t^e seeds 

for all irradiation's were kept submerged for 6.5 h at 22 °C, and 

subsequently rinsed with tap water (5 min.) and sown. In total 18 different 

treatments (including the controls; 01 and 1.2% DTT at 0 Gy) were given 

in experiment I (Table l). In experiment II, different fast neutron doses, 

such as 0, 20, 40 and 60 Gy were applied to seeds submerged in tap water, 

likewise 0, 33, 67 and 100 Gy were given to seeds submerged in 1.2 per cent DTT. 

Other treatments were as in experiment I. 

Culture medium and culture conditions 

The seeds were sown (equally spaced) in portions of 30 in a 

petri dish on a standard mineral medium and put to germinate at 24 C under 

continuous illumination by fluorescent light tubes, 8000 lux/cm . 

After 8 days the seedlings were transplanted to soil in an air-conditioned 

greenhouse. The culture medium and culture conditions used were as 

described by Feenstra [ 14] , and Oostindiër-Braaksma and Feenstra [25] . 

Scoring for genetic 

For s co r i ng the gene t i c parameters M,-ovule s t e r i l i t y , M--embryonic 

l e t h a l s and M.-chlorophy11 mutants in experiment I , M ü l l e r ' s embryo t e s t [ 21] 
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was applied to M.-silique number 5 or 6 of the main inflorescence. For 

ease of handling, scoring in asilique was done at one side of the septum. 

Viable mutants were scored in the M„-generation by testing the 

progeny of one silique per M.-plant from the top of the main inflorescence 

(to avoid chimerism). In the M, only well filled siliques (indicating 

good fertility) were harvested, in order to (1) increase the germination 

frequency of the M»-seeds, (2) increase the fertility in the M_-generation, 

and (3) decrease the number of deviant M.-plants caused by chromosomal 

aberrations [20, 2 2 ] . There might be an induced shift in the ratio M.-ovule 

sterility/M» viable mutants by selection for fertility in the M.-generation, 

since within-dose a correlation between M.-ovule fertility and M.-mutant 

frequency was found [ 12]. However, this correlation is relatively 

small and only occurred at intermediate dose levels [ 1 2 ] . Viable mutants 

in the M.-generation were defined as flowering plants showing deviations 

from wild type in plant morphology or leaf colour. Thus, pre-flowering 

lethal mutants were not included. 

In experiment II, male sterile plants (msms) were selected at 

flowering time. The flower numbers 5 to 10 of the main inflorescence were 

crossed with the non-irradiated control (C). Müller's embryo test 

was applied to M,-silique number 9 or 10 of the main inflorescence, both 

from msms plants crossed with C and Msms self-pollinated plants. The 

siliques 5 to 8 from the msms x C plants, were used for the indication of 

the right time to apply Müller's test to silique number 9 or 10. Within 

a given treatment, the percentage of embryonic lethals in msms crossed with 

C (i.e. non-recessive lethals) was compared with the percentage of embryonic 

lethals in Msms self-pollinated (i.e. non-recessive and recessive lethals). 

Mj-ovule sterility in the two groups of plants was compared to obtain (1) 

a measure for mechanical damage in crossing within the control (0 Gy, 0% 

and 1.2% DTT), and (2) a measure for the availability and quality of Msms-
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pollen (for relatively high radiation doses). 

Calculations 

The frequency of non-fertilized ovules and embryonic lethals is 

expressed as a percentage of the total number of ovules and as a 

percentage of the total number of fertilized ovules, respectively. 

Snedecor's formula [ 12, 3**] was used to calculate the standard error. 

The chlorophyll mutant frequency (embryo test) and the viable mutant 

frequency is expressed as the mutation frequency per cell [151; i-e. 

i 
m , 

m = -g—, where 

m = the frequency of mutated initial cells, 

m' = the number of embryonic chlorophyll mutants per total number 

of non-lethal embryos, or the number of viable M_-mutants 

per total number of (flowering) M„-plants, 

f = the segregation frequency of recessive mutants, i.e. the 

probability that a plant (or embryo) descending from a 

heterozygous flower is a homozygous mutant. 

For chlorophylls and viable mutants a realistic value for 

f, f= 0.20, was used (assuming non chimeric fruits). This makes it 

possible to calculate a 90 per cent confidence interval for the mutation 

frequency per cell using Stam's formula [ 12] . 

RESULTS 

A. The effect of UIT on radiation induced M^-ovule sterility, M „-embryonic 

lethals, M „-chlorophyll mutants and M„-viable mutants. 

The results of experiment I are given in Table 1. It should be noted 

that in this experiment the effects of the fast neutron dose range and 

the X-ray dose range are approximately the same. Thus, in Ardbidopsis and 

under the treatment conditions used, fast neutrons on a Gy basis are 
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roughly 7 times more effective than X-rays in the induction of ovule 

sterility, embryonic lethals, chlorophyll mutants and viable mutants. 

This agrees with the results of preliminary experiments (Dellaert, 

unpublished), Furthermore, it can be concluded from Table 1 that DTT 

provides considerable protection against both fast neutron and 

X-ray- induced genetic damage. However, we will see that the extent of 

the protective effect depends on the irradiation as well as on the 

genetic parameter studied. Finally, it is observed that there 

is a general tendency for a decrease in the number of ovules per 

silique with increasing dose (Table 1). 

In Fig. 1 the percentage M.-ovule sterility has been plotted as a 

function of fast neutron dose (Fig. 1A) and X-ray dose (Fig. IB), either 

with or without 1.2 per cent DTT. It is calculated (by interpolation) that 

DTT gives a damage reduction factor (DRF) of about 2 at relatively low 

doses, which agrees with the results obtained by van der Veen et al. [39] 

and Sree Ramulu and van der Veen [33]. At relatively high doses (60 Gy 

fast neutrons and 420 Gy X-rays) the damage reduction factor for the 

induction of ovule sterility is about 1.6 (Table 4; DRF.-values). Thus, 

there is a tendency for a decrease in the protective effect of DTT with 

increasing dose. 

To see whether DTT has an effect on the spectrum of the different 

genetic parameters, the percentage of embryonic lethals (Fig. 2 ) , chlorophyll 

mutant frequency per cell (Fig. 3) and viable mutant frequency per cell 

(Fig. 4) are plotted against the induced percentage of M.-ovule sterility, 

for treatments with or without DTT. It appears that there is a tendency 

towards more embryonic lethals (Fig. 2) and chlorophyll mutants (Fig. 3) 

at a given level of M.-ovule sterility in the presence of DTT. 
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Fig. 3 The ratio chlorophyll mutants/ovule sterility, induced in 

Arabidopsis with fast neutrons and X-rays, 

either with or without dithiothreitol (DTT). 

60 70 80 10 

ovule sterility (%) 

Fig. k The ratio viable mutants/ovule sterility, induced in 

Arabidopsis with fast neutrons and X-rays, 

either with or without dithiothreitol (DTT). 
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A rank-test [40] shows that for the data of experiment I, there is a 

significant increase (p<0.0l) in embryonic lethals, but the increase in 

chlorophylls is not significant. If in addition the data obtained in 

experiment II (Table 2) are taken into consideration, then a significant 

increase is found with DTT (0.01<p<0.05), not only in embryonic lethals 

but also in chlorophyll mutants at a given level of M.-ovule sterility 

(Table 3)- For the frequency of viable mutants no significant increase 

is found. However, the ovule sterility is scored in silique no 5 or 6 of 

the M.-main inflorescence, while the viable mutants are scored in M_-

progenies of "wel 1-fi1 led" siliques from the top of the M.-main inflorescence. 

Therefore, the ratio viable mutants/ovule sterility might be influenced 

by the effect of selection on fertility in the M.-generation. This of 

course is not the case for the ratio's embryonic lethals/ovule sterility 

and chlorophyll mutants/ovule sterility since these parameters are all 

scored in the same M.-population. Because the possible effect of selection 

on fertility in the M.-generation on the frequency of viable mutants in 

the M_, and because no significant effect of DTT was found on the relative 

frequency of these mutants, the viable mutants are not longer taken into 

cons ideration. 

The DTT induced "spectrum shift" can be seen directly in tables 1 and 2, 

when the genetic effects at the approximately equal fast neutron doses of 

60 Gy (0% DTT) and 67 Gy (1.2% DTT) are compared. Without DTT the induced 

percentage of M.-ovule sterility is significantly higher, the percentage of 

embryonic lethals is equal, and the chlorophyll mutant frequency is lower 

than with 1.2 per cent DTT. 

The DTT induced "spectrum shift" suggests that the ratio strand-breaks/ 

nucleotide damage is less for chlorophyll mutants and embryonic lethals than 

for ovule sterility (cf. introduction). Therefore, the data support the 
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hypothesis of van der Veen et al. [39] and van der Schans et al. [31] 

that -SH compounds induce a spectrum shift towards more "gene" 

mutations. 

The results of experiment TI are listed In Table 2. It is seen 

that within the control treatments {0% and 1.2% DTT) there is a small 

difference in ovule sterility between Msms self-pollinated plants and 

msms plant crossed with C. This difference is attributed to mechanical 

damage during crossing. After relatively high doses such a difference is 

not observed. This is probably due to the reduced availability and 

quality of the Msms-pollen. [37] 

Comparison of the data of experiment II (Table 2; columns of Msms) 

with those of experiment I (Table 1; all plants MsMs) shows that for 

the genetic parameters equal results were obtained with equal irradiations. 

Therefore, it is concluded that there were no differences induced by 

treatment conditions or the material (i.e. Msms versus MsMs) so that 

the results of the two experiments could be pooled for analysing the DTT 

effect on the induced spectrum, as was done in the rank-test mentioned 

above. 

In Fig. 5 the percentage embryonic lethals observed in msms plants 

crossed with C, i.e. the fraction due to non-recessive mutations, has been 

plotted against the percentage of embryonic lethals in Msms self-pollinated 

plants. It is observed that for all irradiations, either with or without 

DTT, the percentage of embryonic lethals in msms plants crossed with C 

is about 30 per cent of the lethals in Msms self-pollinated plants. 

Thus, DTT does not cause a spectrum shift towards more recessive 

embryonic lethal mutations. The results suggest that for both types of 

embryonic lethals, the ratio strand-breaks/nucleotide damage is similar. 

After 10 mM EMS treatment (24 h, 2k °C, which induces about kS% M.-ovule 

sterility) the same percentage of non-recessive embryonic lethals of 
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the total embryonic lethals was found f 37] . Van der Veen [38] showed 

by a crossing program in the M„-generation, that the EMS induced non -

récessives were mainly caused by maternal effects. It is remarkable that 

the fast neutron-induced non-recessives are the same proportion of the 

total embryonic lethals as in the case of EMS-induced non-recessives. 

However, the present data do not permit any conclusion about similarity 

in origin, i.e. whether also with irradiation there is no substantial 

contribution of (1) dominant embryonic lethals mutations (2) gene-dose 

effects in the triploid endosperm, or (3) effects of the embryonic 

cytoplasm. 

B. Theoretical model for a shift in mutation spectrum in the •presence 

of -SB compounds. 

It is of interest to test the hypothesis [31] that DTT causes a 

spectrum shift towards a relatively higher number of gene mutations. 

The present experiments were focused on a test for differences between 

genetic parameter j (for instance embryonic lethals, chlorophyll mutants, 

viable mutants), induced either with or without DTT at an equal level 

of genetic parameter i (for instance ovule sterility, dominant embryonic 

lethals). The underlying idea was that where for genetic parameter j the 

ratio strand-breaks/nucleotide damage is smaller than the ratio strand-

breaks/nucleotide damage for genetic parameter î, a spectrum shift will 

occur in the presence of DTT, i.e. the ratio parameter j/parameter i will 

become larger. 

A model has, therefore, been constructed to see if the test is indeed 

sensitive for the detection of a spectrum shift towards a relatively 

increase of gene mutations. 
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Définitions and formulae 

K refers to the type of induced genetic damage protected by DTT 

(i.e. strand breaks and al kali-labile sites) 

0 refers to the type not protectable by DTT (.i.e. endonuclease-suscep-

tible sites, which cause gene mutations) 

Consider a given dose N: 

KM and r KM are the overall amount (e.g. per cell) of K type damage at 

dose N, in the absence and the presence of DTT, respectively. So b is the 

corresponding damage reduction factor. 

0M is the overall amount of 0 type damage at dose N, both in the 

absence or presence of DTT. 

Ij. and JN are the mutational yield (e.g. per cell) for genetic para­

meter i resp. j. 

Thus I.. = î, K., + i 0., 
N k N o N 

and J.. = i, K., + j 0.,, where i, , i , j. and j are the fractions of the two 
N J k N J o N k o Jk J o 

types of damage (K and 0) of which I., resp. JN are composed (in the 

absence of DTT). 

At a fixed dose N: 

J. = -jLl °JL without DTT 
J J. K., + j 0.. 
dN Jk N Jo N 

1 .. r i, K., •+ i 0., 
__N = b k N o N w i t h DTT 
J+N k K N + jo°N 

DRFiN 'N J+N 
now — = —- x DRFJN ' % JN 

' ^ + ' o 0 N ; : È J k l S , + Jo°N h . . . 

K K N + ' o ^ l J ' k ^ + J'o°N 
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Fig. 5 The percentage of embryonic lethals in msms plants crossed with C 

(i.e. non-recessive lethals) plotted against the percentage of 

embryonic lethals in Msms self-pollinated plants (i.e. non-

recessive + recessive lethals), induced in Arabidapsis with fast 

neutrons, either with or without dithiothreitol. 

4 6 8 10 12 14 
damage reduction factor b 

DRFi Fig. 6 The expected spectrum shift pR ., due to dithiothreitol . (DTT), 

for different values of b, C. and C.. 
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DRF.,, and DRF... are the damaqe reduction factor in the presence of DTT i H jN 3 

for I Ll and J.,, respectively. 
N " 

Denote 'k'Sl by C.M and ̂ k1^ by C... 

o N o N 

one obtains; 

D R FiN <CiN + " <EC]N + ° 

D R FjN (BCÎN + ,} (CjN + ]) 

This ratio is unity (i.e. no spectrum shift due to DTT) not only if b = 1, 

but also if C... = C..., i.e. k J k 
I N |N T — = -!— 

! J 
i i 0 0 
k Jk 

Conversely i— ? -T—, i . e . C... ^ C..,, i . e . DRF.N î D R F ; N I ' i m P ' i e s a spectrum 
o JQ 

shift (when applying DTT at dose N ) . 

The ratio DRF.N/DRF..,, i.e. the resolving power of the test, depends on the 

values b, C. and C... 

It is implicitely assumed that i, , i , j, , j and b are independent 
K o K o 

of dose; hence the omission of subscript N. If moreover no relative 

change of damage types K and 0 with dose is assumed, we may also omit N 

from KN and 0 . And consequently from C... and C... One then obtains: 

DRF. (C. + 1) (j Cj + 1) 

DRF. {k. + 1) (C. + 1) 
j b i J 

DRF • 

This has been done in Fig. 6, where the value of L 's Q i v e n f° r 

DRF, 
different values of b, C. and C . It is shown that for certain values 

' J 
o f C. and C. (and C. t C.) the r eso l v i ng power o f the t e s t f o r a d i f f e r e n c e 

i J i J 
DRF * between C. and C. is small, i.e. [_ _ 1. 

' J DRF. ~ 
J 
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DISCUSSION 

The damage reduction factor of DTT for the genetic parameter i at a 

given dose N (DRF..,), i.e. the ratio between the value of parameter i in 

the absence of DTT and the value of parameter i in the presence of DTT 

at a given dose N, is estimated from the data of Table 1 (by interpolation) 

for M.-ovule sterility, M.-embryonic lethals and M.-chlorophy11 mutants 

(Table k). It is found that the value of DRF... is dependent on the 

irradiation as well as on the genetic parameter studied. In general a 

tendency for a decrease in DRF... with increasing dose is observed. 

This decrease in DRF.M can be explained by: 

1. a decrease in the reduction factor b (i.e. dose reduction factor for 

type K damage) due to a limited concentration of DTT [28, 29] 

2. formation of two-hit types of chromosome aberrations, which due to 

elimination results in a decrease of the k.,/0.. ratio, or by 

3. cell replacement of the initial cells by cells which are less radio­

sensitive [12]. In the case of irradiation in the absence of DTT, 

this may occur at lower levels of induced genetic damage, since an 

increased cell survival after DTT treatment would lead to the inclusion 

of a larger number of sensitive (initial) cells in the population 

sampled. 

For the chlorophyll mutants some values of DRF. N are <1 (at 't 7 and 60 

Gy fast neutrons). These values can only be explained by point 3. i-e. DTT 

protects more effectively against cell killing than against induced 

mutations and therefore cell replacement (which explains the plateau in 

mutation frequency [12])occurs at a higher level of mutation frequency in 

the presence of DTT. However, it is noticed that the estimates of the 

DRF... values for chlorophylls might be unreliable, because of the large 

confidence intervals of the mutant frequency data. 
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The DRF with fast neutrons is less than with X-rays for all genetic 

parameters studied. This might be due to a relative decrease in the 

participation of K type damage (strand-breaks) in the induction of the 

genetic parameters. This suggestion is in agreement with postulations 

formed in the early days of radiation genetics [35] and with the observed 

decrease in effectiveness of different types of ionizing radiation with 

increasing LET for the production of gene mutations in E. coli and in 

the bacteriophage T k [ 7, 23, 2k ] . This is to be expected from target 

hypothetical considerations if the primary lesion is caused by a single 

energy loss event [ 36] . 

In Table k the calculated average value for the ratio strand-breaks/ 

endonuclease-susceptible sites (C. = i. K/i 0) for the genetic parameters 

M.-ovule sterility and embryonic lethals are given for different values 

of b. Because the chlorophyll mutant frequency data obtained have 

large confidence intervals, an estimation of the C. value for chlorophylls 

from these data will be unreliable. Therefore this C. value is omitted 

from Table k. 

For the explanation of the DTT induced spectrum shift, observed 

in the present experiments, it is assumed that both radiation-induced 

strand-breaks and base damage (=endonuclease-susceptible sites) play a 

significant role in the generation of the genetic parameters studied. 

The role of base damage is suggested by the following facts on record 

in the literature; 

1. base damage is a major component of damage induced by ionizing 

radiation in prokaryotic as well as eukaryotic systems and is subjected 

to excision repair [8, 9, 31] 

2. true gene mutations, i.e. intragenic changes (presumably the result of 

base damage), are induced by ionizing radiation in micro organisms 

and higher organisms (for reviews see 32, 36). 
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CONCLUSIONS 

In the present experiments it is found that with both X- and fast 

neutron irradiation of Arabidopsis seeds, the presence of OTT results in: 

1. a reduction of the induced genetic damage, such as M.-ovule sterility 

and embryonic lethals, and 

2. a slight spectrum shift in favour of more mutants at a given level of 

ovule sterility, i.e. with DTT the ratio mutant frequency/M.-ovule 

sterility percentage is significantly higher than without DTT (Figs. 

2 and 3; Table 3). In other words the DRF is higher for ovule sterility 

than for mutants. 

In terms of our model, this DTT-induced spectrum shift suggests 

that the ratio strand-breaks/base damage is higher for M.-ovule sterility 

than for mutants. It is known [31] that -SH compounds protect against 

radiation-induced strand-breaks, whereas they do not affect the number of 

induced base damage (i.e. endonuclease-susceptible sites). Unfortunately 

however, no conclusive data about the involvement of radiation-induced base 

damage in mutation induction in higher organisms ara available in literature. 

The extent of the DTT protection depends not only on the genetic 

parameters studied but also on the irradiation (dose and type). 

In spite of the fact that in the experiments the effects of X-ray and fast 

neutron doses were approximately the same, it is found that the average DTT 

damage reduction factor is higher with X-rays than with fast neutrons. This 

is in agreement with other data in 1iterature f 1, 7, 23, 24, 35, 36] which 

suggest a different action on the molecular level between both types of 

radi ation. 
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SUMMARY 

Arabidopsis seeds were irradiated with X-rays or fast neutrons, 

in the presence or absence of dithiothreitol. Well-filled siliques 

were selected in the M,-generation, resulting in a good M--ferti1ity. 

In the M_-generation, where specific mutants were used as parameter, a 

significant difference (p<0.005) was found between X-ray- and fast 

neutron-induced mutant spectra. X-rays, for instance, induced more 

mutants with closely packed broad leaves with short petioles, while 

fast neutrons induced more mutants with loosely packed leaves with 

long petioles as well as more eeeriferum mutants. This difference 

between the mutabilitity of certain characters by X-rays and fast 

neutrons was consistent over several doses. 

The -SH radioprotector dithiothreitol did not significantly 

influence the mutant spectra induced. Although certain mutant types, 

notably those more frequently induced by fast neutrons, seem to be 

less frequent after irradiation in the presence of DTT. 

INTRODUCTION 

Research into the specific effects of mutagens in higher plants 

indicates that particular mutants are more frequently or even exclusively 

obtained with a specific mutagen (EHRENBERG et al, 1959; GUSTAFSSON, 

1963; McKELVIE, 1963; NI LAN and KONZAK, 1961 ; RAO and GOPAL-AYENGAR, 1964; 

ROBBELEN, 1962). Differences in mutability of certain chlorophyll 
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characters by X-rays and fast neutrons were found in barley 

(EHRENBERG et al, 1959; CONGER and CONSTANTIN, 1974), and significant 

mutagen specificity of X-rays or y-rays and fast neutrons for some 

individual loci was revealed by genetic analysis of ereotoîdes and 

eoerifervm mutants in barley (LUNDQVIST, 1975; LUNDQ.VIST and von 

WETTSTEIN, 1962; LUNDQVIST et al, 1968; PERSSON and HAGBERG, 1969). 

Although CONGER and CONSTANTIN (197*0, GAUL (1964) and NI LAN (1964) 

showed that both experimental conditions and mutagen dose affected 

the mutant spectrum, these factors have not usually been considered 

in work on mutagen specificity. 

The present study about the effect of X-rays or fast neutrons 

on the mutant spectrum in Arabi-dopeis was carried out to extend the 

data on X-ray and fast neutron specificity and to study more closely 

the effect of dose on mutant spectrum. Moreover, irradiation was 

applied with or without a dithiothreitol (DTT) pre-treatment. 

Fast neutrons induce relatively more chromosome breaks and less 

base damage than X-rays ( AHNSTROM, 1977 and 1979; HAWKINS, 1979). This 

could possibly explain the difference in induced mutant spectrum. Since 

the data recorded in the literature (MALVAREZ et al, 1965; van der 

SCHANS et al, 1979) indicate that irradiation in the presence of -SH 

compounds reduces the ratio strand-breaks/base damage, the effect of 

DTT on X-ray and fast neutron-induced mutant spectra could illucidate 

whether the specificity of radiation type is influenced by its relative 

frequency of induced strand-breaks. 

MATERIAL and METHODS 

Plant material. Arabidovsis thaliana (L.) Heynh. is a small, fast 

growing, self-fertilizing crucifer. Seed stocks used in the experiment 

were of the mutant ereota of the ecotype "Landsberg" (REDEI, 1962). 
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P mutants was less with a DTT pre-treatment than without, irrespective 

of radiation type by which the mutants were induced, suggests that P--

mutants more often originate from strand-break damage than the P and 

P_ mutants. Therefore, the data indicate that the difference between 

X-ray-and fast neutron-induced mutant spectra is caused by the 

relatively higher frequency of breaks after fast neutrons than 

after X-rays. In this respect it is worth mentioning that SCHUBERT and 

RIEGER (1976) found differences between segmental response of chromosomes 

I and V in Vicia faba for the induction of aberrations by X-rays and fast 

neutrons. This indicates that certain parts of the chromosomes have 

a better ability to 'repair' induced strand-breaks than others. This specific 

'repair' ability might be the basis for differences between X-ray-and fast 

neutron induced mutant spectra. 

Induced mutations are widely used in commercial breeding of vegetatively 

propagated plants. Irradiation is generally more effective than chemicals 

for the induction of mutants in these plants, possibly because of limited 

penetration of chemicals into vegetative tissues (BROERTJES and van HARTEN, 

I973) because of/or "elimination" of undesirable dominant genes in a 

given heterozygous genotype by the induction of chromosome deficiencies. 

The present study, as well as other data on record in literature, have shown 

that fast neutrons are more efficient for the induction of mutants of 

specific groups. This specificity seems of importance especially for mutation 

breeding of vegetatively propagated crops. 
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SUMMARY 

The segregation of viable mutants derived from various fast 

neutron and X-ray treatments of Arabidopsis seeds was studied in 

the M2_ and Mj-generation. An equal segregation frequency in the 

M2- and M^-generation was observed. This indicates that the M2-

lines, each of which descended from a single silique from the top 

of the main inflorescence of an M-|-plant, originated from non-

chimeric tissue. Furthermore, it was found that neither radiation 

type nor radiation dose affected the segregation frequency of the 

mutants. The average segregation frequency of the mutants was 

2I.5 per cent and significantly below the Mendelian expectation 

of 25 per cent. It was found that the mutant deficit was mainly 

due to reduced transmission of the mutant gene through the 

gametophyte. These findings are discussed with reference to the 

transformation of mutant frequency scores to mutation frequency 

per eel 1. 

KEYWORDS 

Arabidopsis thaliana, radiation-induced mutants, haplontic and 

zygotic selection, chimerism, mutation frequency. 

INTRODUCTION 

The scoring of recessive mutants, e.g. chlorophyll mutants or 

other specific mutants, is extensively used for evaluating the 

genetic effects of a mutagenic treatment of plant material. For 

the comparison of various treatments, within and among species, the 

mutation frequency should be expressed as mutation frequency per eel 
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or genome (Li and Rédei, 1969). As has been pointed out by 

Frydenberg (1963) and Yonezawa and Yamagata (1975), transformation 

of mutant frequency scores to mutation frequency per cell requires 

knowledge about the genetic behaviour of the mutants. 

When the mutation frequency is expressed as the number of 

segregating M^-progenies among the total number of progenies tested, 

an estimate of the number of meristematic cells (initials) contributing 

to the formation of the progeny is needed (Li and Rédei, 1969) as well 

as information about the number of f^-plants per M-|-progeny 

(Frydenberg, 1963; Yonezawa and Yamagata, 1975)- With respect to the 

estimation of the number of initial cells, the segregation frequency 

of the mutants in the offspring of their heterozygotes should be 

ascertained. This frequency is also needed to convert mutant 

frequencies, expressed as the number of mutant plants among the total 

number of (^-plants (Gaul, 1957), into mutation frequencies per cell. 

In addition, the transformation actually requires estimates of the 

following selection variables (Frydenberg, 1963; Yonezawa and 

Yamagata, 1975); 

- the relative multiplication ability of the initial cells carrying 

a mutated gene,compared to normal initial cells belonging to the 

same primordium (6; in the absence of diplontic selection 6 = 1), 

- the relative viability of mutant gametes compared to gametes 

carrying the normal allele (g; in the absence of haplontic selection 

ß = 1), 

- the viability of the mutant plants relative to normal plants in the 

interval between fertilization and scoring (y). 

Induced chlorophyll mutants often segregate with a frequency below 

the Mendelian expectation of 25 per cent in the offspring of 

heterozygotes (Avanzi et al., 1960; Mon and Smith, 1951)- This may be 

due to disturbances acting during meiosis and at the gametophyte stage 
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(ß <1), or after fertilization (y <1). Mon and Nilan (1956) and 

Doll ( 1968) concluded from a study on the segregation frequency 

of radiation-induced chlorophyll mutants in barley, that the 

deviation was mainly due to reduced transmission of the mutant 

gene through the male gametophyte, i.e. ß <1. With regard to the 

segregation frequency of a number of radiation-induced chlorophyll 

mutants in Arabidopsis it was found that the deficit was due to 

reduced transmission through the male and the female gametophyte 

as well as to decreased viability of the mutant plants, i.e. ß <1 

and y <1 . (Batalov et al., 1972). Furthermore, in Tritioum durum 

a larger deficit was found for the albina and striata mutants than 

for the xantha, tigrina, viridis and ohlorina mutants (D'Amato et al., 

1962). In Arabidopsis, the average segregation frequency of the 

ohlorina and viridis mutants was significantly less than that of the 

albina and xantha mutants (Ivanov, 1971). These data suggest that the 

segregation frequency depends on the mutant phenotype and the plant 

species. However, from these data it could not be determined whether or not the 

observed difference in segregation frequency was due to a hetero­

geneity between the individual mutants which by chance happened to 

have a different phenotype. 

A number of data indicate that the segregation frequency is 

affected by mutagen type and dose (D'Amato et al., 1962). However, 

the data and conclusions are derived from l^-segregation frequencies, 

and thus influenced by the number of initial cells contributing to 

the Mj-progeny. This number of initial cells is itself affected by 

mutagen type and dose (Eriksson, 1965). Ivanov (1971) and Moh and 

Smith (1951) did not observe an effect of mutagen type or dose on 

the mutant segregation frequency in the M-j-generation. 
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Observations on the progressive loss of chimerism in Arabidopsis 

along the flowering stem showed that this was (with a few exceptions) 

a random process in which the lost tissue did not preferentially 

contain the observed (chlorophyll or embryonic lethal) mutation 

(Balkema, 1972; Grinikh et al., 197**; Müller, 1963). Therefore, it 

can be assumed that, in general, the relative multiplication ability 

of mutated initial cells equals that of non-mutated ones, i.e. 6 = 1 . 

This paper presents a study of the segregation frequency of 

radiât ion-induced viable mutants in Arabidopsis thaliana in the 

M2" and M-j-generat ion. The objective of this investigation was to 

determine the factors which influence the segregation, i.e. chimerism, 

the viability of mutant gametes (ß) and the viability of mutant 

plants (y)• In addition, the effect of radiation type, i.e. X-rays 

or fast neutrons, and radiation dose on the segregation frequency 

was studied. 

MATERIAL AND METHODS 

Plant material 

Arabidopsis thaliana (L.) Heynh. is a small, fast growing, self-

fertilizing crucifer. Seed stocks used in the experiments were of 

the mutant ereata of the ecotype "Landsberg" (Rédei , 1962). 

X- and fast neutron-irradiation were applied to seeds submerged in water 

(0 per cent) or in 1 .2 per cent d i thiothrei tol (DTT), 3 h before 

irradiation. A detailed description of the radiation treatment and 

the handling of the M-|-generat ion is given elsewhere (Dellaert, 1979) • 

Since chimerism is progressively lost upwards along the stem 

(Balkema, 1970 and wi thi n-f lower chimerism does not occur frequently 

in Arabidopsis (Ivanov, 1973), chimerism was in the majority of cases 
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avoided by harvesting a single silique from the top of the 

main inflorescence per Mpplant for progeny testing. Five to twelve 

seeds were sown per (1-|-progeny. A random sample of 1 i nes from the Il2_ 

1 ines, which segregated for speci fie viable mutants, as descri bed by 

Burger (1971), Dellaert (1979) and Kranz (1978), was harvested 

per plant. These f^-plants were progeny tested by germinating, 

when available, 20 seeds per plant. 

Culture medium and culture conditions 

Seeds were sown in petri dishes on perlite saturated with a 

standard mineral solution. The culture medium was as described 

by Oostindiër-Braaksma and Feenstra (1973)- To break dormancy, 

the dishes were kept at 2 °C for 5 days, and subsequently placed 

at 2k °C under continuous illumination by fluorescent light tubes, 

8000 lux/cm2, for germination. After 8 days, the seedlings were 

transplanted into soil and cultivated in an air-conditioned green­

house. 

Segregation frequency 

In the Mo" and M-j-generat ion the number of plants as well as 

the number of segregating mutants were recorded for each tested 

plant progeny. This was done either in the seedling stage, e.g. 

long hypocotyl mutants, at the start of flowering, e.g. vital 

chlorophyll deficient mutants, Rosetomut and Foliomut mutants, or 

approximately two weeks after f lower ingse .g . Florimut, Flosculimut and 

Semine-coloremut mutants. Segregating f^-progenies (each wi th approxi­

mately 20 plants) were considered to descend from heterozygous plants, 

while the parent plants of non-segregating progenies were regarded 

as wild-type homozygotes. 



In order to exclude dominant mutants, plasmatic mutants, 

extreme cases of haplontic or zygotic selection and "mutants" 

resulting from residual instabilities (Auerbach, 1976) from the 

data, the recorded mutants were chosen so that they met the 

followi ng cri ter ia: 

1. A mutant observed in the M2 also appears in the M3. 

2. At least one of the progeny-tested normal M2 plants yields a 

segregating M? line. 

Lines containing mutants not fulfilling these criteria were a 

posteriori excluded from the random sample of progeny-tested M2~ 

lines. It will be clear that this procedure may lead to the 

exclusion of some "true recessive" mutants from the data because 

they did not happen to meet the above criteria. Therefore, the 

estimation of the mutant segregation frequency in the M2 and M? 

(p-| and P3, respectively) and the estimation of the frequency of 

heterozygous M2"plants (p2) necessitates a proband correction. 

The probability that a plant descending from an Mj-flower with a 

number, in the case ofwithi n- f lower chimerism, or with all heterozygous 

sporocytes, is a recessive mutant is denoted by p-| . Estimation of p-| 

was done by the method proposed by Mantel and Li (1968) which, by 

discarding the singletons, corrects for the ascertainment of a hetero­

zygous parent when family sizes are small. 

R - S , 
Pj = T _ s, where 

Pi = the estimate of pi 

R = the total number of mutants in the segregating NL-lines 

S = the number of M2-lines with a single mutant (i.e. singletons) 

T = the total number of plants in the segregating N^-lines. 

The probability that a plant in the offspring of a heterozygous 

M2"plant is a recessive mutant is denoted by p,. In M? the line sizes 
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were not so small. The maximum likelihood method (see Lejeune, 1958) 

was employed to estimate p? from the total number of segregating 

lines of which the average size is known. 

R = P 3 ^ n e j.frfo )e). where 

p-3 = the estimate of p? 

R = the total number of mutants in the segregating M-j-1 ines 

e = the size of segregating M2 progenies 

ne = the number of M2 progenies with size e. 

The probability that a non-mutant plant in a segregating N^-line 

is heterozygous is denoted by P2• A first estimate of p£ was obtained 

by the method of Mantel and Li, mentioned above. This estimate was 

then corrected for the ascertainment of a heterozygous parent on 

the basis of p? ((1~P3)e being the probability that a heterozygous 

parent has no mutants among e offspring). 

The procedure employed for the estimation of 

Pi actually needs a second proband correction for the exclusion of 

some "true segregating" f^-lines from the data because they did 

not happen to have a segregating progeny in the Mo 

({(1~P2)+P2(1~P3)e}^ being the probability that a segregating M2-

line has no segregating progeny among the H progeny-tested M2 plants). 

However, in our range of N values this correction factor is so small 

that it can be neglected. (Stam, pers. comm.). 

Factors affecting the segregation frequency 

The mutant segregation frequency in the M2, i.e. pi, and the 

frequency of heterozygous plants among the non-mutant M2 plants, i.e. 

P2, may a priori be influenced by; 

a) the degree of chimerism in the M-j sub-epidermal cell-layer; chimerism 

may result in a deviation from the 1:1 ratio of normal and mutant 
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Table 1. The fraction of wild-type (genotype AA), heterozygous 

plants (genotype Aa) and mutants (genotype aa) in a 

segregating f^-line 

I.A. in case of random union of gametes per flower 

1.B. in case only pollen of heterozygous anthers participate 

i n the fert i1izat ion 

I .A. 

1.B. 

M^-gametes 

sex 

9 

9 

6 

6 

9 

9 

Ô 

6 

genotype 

A 

a 

A 

a 

A 

a 

A 

a 

f r a c t i o n 

1 

Ctß-| 

1 

aß2 

1 

aßi 

1 

ß2 

M2"sporophyte 

genotype 

AA 

Aa 

aa 

AA 

Aa 

aa 

f r a c t i o n 

1 

a(ß-,+ß2) 

a2ß1ß2Y 

1 

aßl + ß2 

aß1ß2Y 

For the definitions of a, ßi , ß2 and y see text. 

Table 2. The fraction of wild-type (genotype AA) , heterozygous plants 

(genotype Aa) and mutants (genotype aa) in a segregating Mj-line. 

M2-gametes 

sex 

9 

9 

6 

6 

genotype 

A 

a 

A 

a 

f r a c t i o n 

1 

ßl 

1 

ß2 

Mo-sporophyte 

genotype 

AA 

Aa 

aa 

f r a c t i o n 

1 

ßl + ß2 

ßlß2T 

For the definitions of ß-| , ß2 and y see text. 
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alleles in the Mpsporocytes, 

b) haplontic selection; difference in viability of normal and 

mutant gametes may further disturb the 1:1 ratio of normal 

and mutant gametes at the moment of fertilization, 

c) zygotic selection; differential viability of non-mutant and 

mutant zygotes will change the theoretical 3:1 ratio of pheno-

types 

Table 1 gives a parameterization of the factors. Notice that 

absence of chimerism corresponds to a = 1; absence of haplontic 

and zygotic selection corresponds to ̂  = ß 2 = 1 anc' Y = 1> 

respect ively. 

In the case of random union of gametes per flower, the mutant 

frequency in the segregating h^-lines is (Table 1.A) ; 

_ c t2ßiß?Y / ^ 
P 1 1 + a{B] + ß 2 ) + a z ß 1 ß 2 Y 

However, the possibility cannot be excluded that pollen clustering 

occurs (Müller, 1961; van der Veen, pers. comm.). If only pollen 

of one anther participates in fertilization and no within-anther 

chimerism is assumed, p-j is (Table l.B); 

_, = « Siß2Y ,,, 
p1 1 + aß! + ß 2 + aß!ß2Y ' ^' 

since segregating progenies arise only if pollen of a heterozygous 

anther participates in the fertilization. 

The frequency of heterozygous plants among the non-mutant M2 

plants, p 2 , is either 

_ °(B1 + ß2) /,x 
p2 - 1 + a ( e i + ß2) ' (3) 

n the case of random union of gametes, or 

aßl + ^2 lh\ 
P2 = i + „g| + e2 ' ( 4 ) 

if only pollen of a heterozygous anther participates in the 
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fertilization. Note that for a = 1 and ß-| = ß 2
 = ' > P2 = 0-6667. 

Segregating M,-lines originate of course from non-chimeric 

heterozygous M2-plants. Thus, the mutant segregation frequency 

in M T , i.e. P3, may a priori be influenced by haplontic selection 

and zygotic selection. Table 2 gives a parameterization of the 

factors. It can be seen from this table that 

ß!ß2Y , . 

P 3 1 + ß! + ß 2 + ß!ß2Y 

In the case of ß-| = ß2 = ß, or ß-| = 1 and ß 2 = ß (or the reverse), 

the values a, ß and y are obtained when the frequencies p^, p 2 and 

p, are known, by solving either equations (1), (3) and (5), or 

(2), (k) and (5)- With respect to the value of a it is noted that 

a = 1 for pi = p-3 and a is <1 for p-| < p->. 

In Mi the survival frequency, i.e. the number of plants at the 

time of scoring per number of seeds sown, of the offspring of mutant 

heterozygotes (segregating M^-lines) was compared with the survival 

frequency of the offspring of homozygous normal plants (non-

segregating M,-lines) by means of a sign test. Differences in 

survival frequency indicate differences in viability of the mutant 

sporophyte compared to the wi Id-type. 11 shou 1 d be noted that early 

zygotic selection is not detected in this way, because only "good" 

seeds were sown. 

RESULTS 

Descents disregarded for the determination of the segregation frequency 

In total ^67 segregating M2-lines were progeny tested. Excluded from 

the data were 32 M2-lines which yielded no mutants in the offspring of 

M 2 wild-type plants. From these 32 descents at least 22 contained 

a dominant mutation, because segregation was observed in 
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the progeny of M2 mutant plants (assuming no cross pollination 

of mutant plants in M2). Dominant mutations were indicated for 

roundish or broad leaf (5x), narrow leaf (5x), chlorophyll 

deficiency (5x), compact dwarfness (kx) , late flowering (ix), 

eaerifervm (Ix) and club-shaped pods (1x). The mutants in the 

remaining 10 descents might have resulted from either a dominant 

mutation, a plasmatic mutation, an> induced residual instability 

in the DNA, or the mutant might have an extreme disadvantage, 

compared to wild-type, in the gametophytic or sporophytic stage 

(haplontic or zygotic selection, respectively). Of course,some 

descents might not have had any mutants in the offspring of 

M2-wild type plants (i.e. either no heterozygous M2_plants or no 

mutants in the offspring of heterozygous M2-plants). 

The segregation frequencies pi, pg and p$ 

The estimates of the mean segregation frequencies of mutants in 

the segregating N^-lines (p-| ) and in the segregating M-j-lines 

(P3), as well as the estimate of the frequency of heterozygous M2-

plants among the non-mutant plants in segregating M2"lines (P2) 

are presented in Table 3- It can be seen from the table that the 

frequencies p-| , P2 and p? fluctuate with radiation dose. 

However, a tendency for a consistent change with increasing dose is 

not observed either in the M2 or in the M^-generation. The data 

from Table 3 also indicate that there is no difference between 

X-ray- and fast neutron-induced mutants with respect to their 

segregation frequencies. Thus, neither an effect of radiation type 

nor of radiation dose on the mutant segregation frequency is found. 

These findings agree with observât ions made by Ivanov (1971) and 

Moh and Smith (1951) concerning the segregation frequency of 

107 



1 
^ > CM 

c a Z 
O. 

Cn 
• c 

ai — 
• 4 -1 

.- ra —- O! 
Ol 

r a L . 

z : en 
.— Q) 
5 - o u i 

c 
- o ra c 
c — 

ra *-̂  »— ui 
^ CL 4-t 

UI C 
<u • ra 
c o> — 

— . CL 
i — . — 

1 * - ^ -M 

r a c 
£ CM ra 

2 : « 
CH =3 
c ai e 

— j e i 
4-1 4-» C 
ra o 
4J c c - o 
O) . - 0) 

s- 0) o 
cn ui _c 3 
ai ai 4-» x i 
in — c 

•—• o cn — 
c c 

m ai o ai 
ai 3 E i -
4-» o " ra ai 
0 01 3 
O l 1 - UI 
> U - L UI 
N ai 4-> 
o — c 
L- C L . 03 
0) O 1 - 4-1 
4-1 — ra 3 
ai 4-> o E 

. e ra 
en 4-1 oi 

4-1 a) c J Z 
c i - ra 4-1 
ra en 4-t 
4-1 a) 3 . e 
3 UI E O 
E 

•M U) X I 
4 - C =3 2 
o ra o 

4-1 en >~ 
en 3 >~-Q 
c E N 

0 4-1 
u a) i - c 
CL en ai 0) 
ui ra 4-1 E 

4 - L . 0 ) 4-1 

M - oi x : ra 
O > 01 

ra 4 - L. 
0) O 4J 

. e ai 
4-1 -C > - c 

4-1 o o 
14_ c — 
o " o ai 4-1 

c 3 ro 
ui ra e r — 
01 01 X I 

. - - i - ra 
o • 4 - L. 
e ui 
01 01 C L . 
3 c ra ai 
e r — ai CL 
0) — E 

!_ | .-̂  4 - r a 0) CM 
z : - n CL 

— 4-1 
ra en 
> c UI Ol 

— — 03 • 
> 4-1 
L. ra — — ' 
3 cn — 
UI 01 ai ui 

s- 3 01 
ai en c 

_c ai ui — 
1— u i ra — 

r a 

01 
• — 

- Q 

ra l -

X I 

oX> 

UI 
01 

O 
c 
01 
3 
er 
01 
i _ 

4 -

C 
O 

4-1 

ra en 
01 
L. 
Ol 
01 

co 

&Ç 

i — 

ra > 
•— > i _ 

3 
CO 

-—* o 
UI 
4-> 
c 

ra • — 

Q -

4 -
0 

O 
C 

C 

ra ai 
£ 

L. 
en 
01 
ui 

4 -
o 

o 
z 

^̂  ra l -
1 -
Q 

ra c 
0 

z 
ra •— X I 

ra i _ 

i _ 

— 

r a 
(CL 

CM 
<CL 

— <CL 

UI 
01 

L . C 

c i l T 
01 , 
<" r a 

£ 

L. U) 
en ai 
01 c 
ui — 
i — 
C 1 
O m 
C n 

0) 
c 

L. .— 

01 — 
CL 1 

r a 
•z. 

ai 
c 

1_ — 
01 — 
CL 1 

CM 
£ 

- — v 

- O 
UI 
0) 
C 

•— • — 

1 
CM 

~3~ 

&Q 

01 *-~. 
u» >-
0 C3 

X I * - " 

0) 
CL 

>-4-1 

r a — c a CM 

CM CM — CM 

+1+1+1+1 
ur\ r a CM -3" 

- 3 " CO CD — 
CM •— CM CM 

CM r a c o — 

r a -3- r a La 

+I+I+I+I 
O -3- — — 

LPl CJO r a CM 
\ D ^D N v O 

r ^ r — \ û o 

r a r a r a -3-

+I+I+I+I 
CA N O PA PA 

LA CM PA-3" 
CM CM CM CM 

CD C A r-* r--. 

r - > ^ r i— oo 
C O C O 0 O N 

r ^ o o o r -

r ^ T - O O O 
CO COCO N 

CM CALT» J " 

CM cM CM PA 

+1+1+1+1 
O L A - 3 " PA 

1 ^ VO vO LA 

VO O CO LA 

CM na CM CM 

+1+1+1+1 
0 \ D O I A 

C O N N v O 

CM C A P-» L A 
CM CM CM CM 

O O O O 

O t ^ \ | S O 
- 3 " CM CM CM 
i— CM r A _ 3 -

i n 

>-fD 
i _ 

1 
X 

CD 

+ 1 
— 
,_ CM 

r A 

CM 

+ 1 
CD 

r^. 
vO 

CA 

i — 

+i 
CD 

- 3 " 
CM 

c a 

CM 
c o 

- 3 -

o 
c o 

c a 

CM 

+ 1 
CM 

MD 

r~-

CM 

+ 1 
CM 

r-* 

p^. 
C A 

o 

w 

N \ 0 f - v û 

>— *— CM C A 

+I+I+I+I 
L A L A - d " O 

C A CM CD N O 

i— CM CM *— 

^ T • - n N 

r A r A - d - CA 

+I+I+I+I 
O <— L A C A 

O C A CM P A 
V Û \ Û V O LPl 

CO NO CM O 

CM CM P A r-. 

+I+I+I+I 
- 3 " MD CO V O 

— — - 3 - - 3 -
CM CM — — 

r-^ CD e n -3" 

c a — c o o 
r ^ c o r ~ . c o 

c o r a c o c o 

c o — r ^ r ^ 
N C O t v t v 

r » — -3- c a 

CM r a CM -3" 

+I+I+I+I 
vO \ û vO v û 

LA LA LA -d" 

O CD r A CO 

r A C A r A »— 

+I+I+I+I 
O CO r A CO 

N N N L A 

\£> r A \ ß CO 
P A - = T CM 

CM CM CM CM 

O I N f ^ O 
CO v O L A - 3 -
CM - 3 " \0 CO 

CD 

+ 1 
c o 

CD 
CM 

CD 

CM 

+ 1 
-3-

•— V O 

V O 

i — 

+ 1 
r-» 

C A 
i — 

^ 
CD 
CO 

- 3 " 

C A 
P-* 

C A 

CM 

+ 1 
L A 

L A 

CD 

r A 

+ 1 
L A 

r-» 

r A 

,— ~̂ 

CM 

W 

CM C A C O CA 

CM i— -— i— 

+I+I+I+I 
ff^orovo 

CO CM C A C A 
T- CM ^ - — 

C A <X> - 3 " CM 

-3- CA CA ^f 

+I+I+I+I 
LA r A r A CA 

o N f - r o 
v û v û v D \ û 

CA «— CO LA 

r A r A CM CA 

+I+I+I+I 
f - r v CM c o 

r - I N O LA 
CM *— CM CM 

- J - t— LA -3" 

t— CO r A «— 
CA CO 00 00 

CM r^. *— CA 

CA CD v£> CM 
CO CA CO CO 

-=r r**. r*- .co 

•— <— CM CM 

+I+I+I+I 
-^- -=r T - o 

oo r-̂ . MO \D 

- - N J -

r A r A CM CM 

+I+I+I+I 
(M O C O N 

C O C O C O v û 

C O N r O r -
T— CM P A P A 

CD CD O O 

CD C A r - - CD 
CM P A -Zf \D 

U) 
C 
O 

!_ +J +J 
œ D 
fD <U 

Li- C 

CD 

+ 1 
r A 

CD 
CM 

CD 

CM 

+ 1 
C A 

P A 
NO 

N 0 

r— 

+ 1 
~̂ 
~̂ CM 

CD 

L A 
CO 

L A 

\D 
CO 

N D 

CM 

+ 1 
rN. 

N O 

C A 

CM 

+ 1 
C A 

r*-

cr» 
CD 
T 

o 

w 

L A v O - - CO 

CM i— CM CM 

+I+I+I+I 
c a — L A — 

— O - 3 " CM 
CM CM CM CM 

r ^ — r ^ vO 

-3" r a r a -3-

+ I + I + I + I 
P A CM - T C A 

C A O ^— C A 
J - V U N L A 

M A C A N 

P A CM C A P A 

+I+I+I+I 
CA LA CO CO 

LA CO -d" LA 
CM *— CM CM 

CA — CA-3-

N L T l O M N 
r^. r-. r*- r-» 

^ T CM L A C A 

r - KD NO CM 
oo r^. r N P-. 

vD L A O LA 

C A r A r A P A 

+1+1+1+1 
CO M N I N 

LA ^3" LA PA 

vO CO C A N D 

CM CM CM CM 

+I+I+I+I 
r A - J " CA NO 

c o i N . r N c r \ 

CM CO CO CO 
CM -3" CM i— 

CM CM CM CM 

O P-. r A O 
^d- N O CA CM 

,— 

i — 

+ 1 
— 
CM 
CM 

O 

CM 

+ 1 
La 

o 
^ O 

\o 

,— 
+ 1 

0 0 

CM 
CM 

r A 

r-«. 
r-» 

.— 
r-. 
r N 

-3" 

PA 

+ 1 
CD 

LTV 

CO 

CM 

+ 1 
CD 

C O 

V O 
i — 

,— 

CM 

W 

c 
o 

4-1 

ra 
X I 

ra L. 
L . 

0) 
L . 

0 
1 4 -

01 
- O 

- C - ^ 
c a 

r a r~-
c a 

,—^ 1 - -
1 - -M 

^ - ai 

ra 
o — 
4-1 ai 
— Q 
01 • — ' 
L . 

. c u 
4-1 1 -
O 0) 

— -C 
- e 3 
4-1 01 

X I — 
ai 

<K> 
CM c 

— > 
._ L. cn 

O 
ui 

A4? — 
CD 

UI 
e -u 

— c 
01 

T 3 E 
ai 4J 
cn ra 
s. ai 
ai u 
E 4 J 

- Q 
3 C 
ui 0 

.— UI 4-» 

x i ra 
ai — 
ai -o 
ui ra 

L. 
O 
4-1 01 

- C 
X I 4-1 
01 

— u -
— 0 
CL 
Q . C 

ra o 
U) 4J 
ra C L 

3 — 
L-

c o 
0 ui 

. - a) 
4 J X I 

ra — X I 
X I 0) 

ra — u — 
L. ra 

4-1 
ai 

01 X I 
- C 

1 - <. 
^—s 
fD 

U) 
fD 

• M 

fD 

T3 
ro 

^ 
• M 

fD 

• M 

UI 
<D 
c 

.— 1 
CM 

T7 

aJ 

tn to 
0) * J 

— c 
o ro 

CU Q. 
3 
c r + j 
a> c 
1 - fD 

M - +J 
D 

c E 
0 I 

— c 
+J O 
fD C 
CD 
(D CJ 
s_ _C 
a> -M 
fü 
c/l CD 

c 
CU o 

-C E 
•M CO 

cn i_ 
c <D 

c L_ 
— L. 
E ro 
L. o 
CU 

4-1 4-1 

CU c 
"O ro 

4-J 

i - D 
0 E 

<+-
i / ) 

" O D 
o o 
in O) 
u > -

N 
cn o 
CU s-
C CU 

— 4-) 
~- <u 
1 ^ 
CM 

2 " (U 
c 

en o 
c 

— 4-» 
4-t m 
ro ro 
O l CU 
CU — 
i _ 

a i o-» 
CU ro 
in 

"D 
M- C 
0 ro 

i - 4-t 
CU c 

-Q ro 
E 4-t 
3 3 
C E 

CU CU 
-C c 
I - o 

^ - v 

- Q 

c 

o 
1 / 

CU 
1_ 
CU 
2 

ui 
""O 
d 
a 
UI 

o 

M_ 
o 

E 

E 

X 
ro 
Ê 

ro 

CU 
c 

1 
c-

2T 

i _ 
(U 
CL 

" O 
c 
ro 

in 
"O 
CU 
CU 
in 

CM 

i 
LA 

CU 
c 

_ 1 
CM 

i _ 

CU 
Q_ 

-̂̂  O 

108 



Chlorophyll deficient mutants in Arabidopsis, barley and durum 

wheat (cf. introduction). Besides, dithiothreitol (DTT) pre-irradiation 

treatment does not seem to influence the 

mutant segregation frequency. 

A sign test showed that the mutant segregation frequency in 

the M2 (pi) and M3 (pj) was significantly below the expected 25 

per cent (p = 0.021 and p < 0.004, respectively). With the same 

test it was observed that the frequency of heterozygous M2"plants 

(P2) was also significantly below the expected 66.67 per cent 

(p = 0.077). 

The distribution of the individual mutant segregation frequencies 

in the Mj-generation was very skew with a marked tail below the 

expected 25 per cent, and with a significant heterogeneity of 

segregation frequencies between individual mutants (x2 test; 

p < 0.005). The deviation of these frequencies from the expected 

25 per cent was tested (per independent mutant) on binomial paper 

(Mosteller and Tukey, 19^9); 5 per cent limits of significance 

were used. It was found that 18.1 per cent of the mutants had a 

segregation frequency significantly lower than 25 per cent, 2.8 

per cent of the mutants segregated with a frequency significantly 

higher than the expectation. 

Factors affecting the segregation frequency 

Inthecaseofwithi n- f lower chimerismintheM-|-plants the mutant 

segregation frequency in the M3 should be higher than in the M2, 

.e. po > pi . From Table 3 it can be seen that in the present 

nvestigation these frequencies do not differ significantly. This 

ndicates that there was no chimerism, i.e. a = 1. Thus, each of 

the tested Mi-progenies, descending from a single flower from the 

top of the Mi-main inflorescence, oriqinates from qenetically 
1 ' 109 



homogeneous ti ssue and can, therefore.be traced back to a single 

cell in the irradiated embryo. This result is in agreement with 

the observations from Balkema (1971) and Ivanov (1973)- Balkema 

found that chimerism is progressively lost upwards along the stem, 

and Ivanov concluded from the segregation frequency of 

chlorophyll embryos in M-j flower progenies that wi thin-flower 

chimerism does not occur frequently in Arabidopsts. 

To find out to what extent the deficit in the mean segregation 

frequency of the mutants was associated with haplontic selection 

(i.e. ßj + ^2 K 2) and the viability of mutant plants compared to 

wild-type (i.e. y < 1), the quantities ß-| + ß2 a nd Y were calculated. 

Since a = 1, the value of ßj + ß£ could be directly obtained by 

solving equation (3), discussed in material and methods. With a = 1, 

equation (1) becomes equal to equation (5). Assuming that 

ßl = &2> a minimum value of y could be calculated from the mutant 

segregation frequency in the M2 (p]) as well as from the mutant 

segregation frequency in the M? (pj), i.e. Y61 minimum and YBT 

minimum, respectively. In the same way a "maximum value" of y was 

obtained, i.e. ys. maximum and YR-J maximum, respectively, assuming 

that f$i = 1 or 62 = 1 • The computed values of ß-| + ß2 and the 

minimum and maximum values of y are given in Table 't. From the 

table it can be deduced (sign test) that ß-| + ß2 is, in general, 

less than 2 (p = 0.077), but neither the minimum nor the maximum 

value of y differs significantly from 1 (p > 0.25). A comparison 

of the survival rates of segregating Ms-lines with those of non-

segregating lines also indicated no difference in viability of 

mutant plants compared to wild-type (p > 0.50). Therefore, it is 

concluded that Y is approximately 1 and that the deficit in the 

mutant segregation frequency can be attributed to haplontic selection. 

10 
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Table 4. Factors affecting the segregation frequency of radiation-induced 
mutants ; 
- ß] + 62 ' s t n e fraction of ? and 6 mutant gametes from a hetero­

zygous flower, participating in the fertilization 
- y is the viability of mutant plants relative to wild-type in the 

interval from fertilization to scoring. 

1 rrad 

type 

X-rays 

fast 
neutrons 

iat ion 

dose (Gy) 

140 
233 
327 
420 

Ia) 

280 
467 
653 
840 

20 
33 
47 
60 

Ï. 

40 
67 
93 

120 

E 

DTT 

°/ '0 

0 
0 
0 
0 

0 

1.2 
1.2 
1.2 
1.2 

1.2 

0 
0 
0 
0 

0 

1.2 
1.2 
1.2 
1.2 

1.2 

1.2 

ß, + ß 2
C ) 

1.8571 
2.1676 
2.7120 
1.6392 

2.1125 

1.5019 
1.7093 
1.6638 
1.1711 

I.5947 
1.8339 

I.5336 
2.0618 
I.586O 
1.7724 

1.7482 

O.9728 
I.5113 
2.4928 
I.4552 

1.6374 
1.6911 
I.7929 
1.7689 

YP1 

mi n. 

1.1570 
O.7856 
0.6133 
1.2640 

O.9452 

I.2058 
1.0196 
O.667O 
I.O852 

1.0024 
O.976O 

1.1543 
0.6175 
1.0430 
1.2255 

1.0079 

2.9086 
O.9949 
O.7403 
1.6083 

1.3916 
1.2057 
1.0365 
1.0211 

max. 

1.1639 
O.79O3 
O.6587 
I.3283 

O.977I 

I.3549 
1.0498 
0.6954 
2.1741 

1.1451 
1.0675 

I.2719 
0.6180 
1 .1190 
1.2460 

1.0563 

1.1111 
0.7704 
1.8705 

1.1550 
1.1020 

d) 
YP3 

mi n. 

1.0765 
0.6049 
O.5113 
I.O678 

O.805I 

1.0775 
1.0739 
O.9876 
1.2035 

1.0644 
0.9446 

1.0008 
O.8121 
1.0141 
0.8577 

O.9174 

2.3358 
1.1065 
O.7296 
1.3142 

1.2809 
1.1048 
1.0340 
0.9714 

max. 

I.O83O 
0.6085 
O.5492 
1.1222 

O.832O 

1.2107 
1.1057 
I.0296 
2.4112 

1.2141 
1.0376 

1.1030 
O.8129 
1.0881 
O.8722 

O.96IO 

1.2357 
O.7592 
1.5284 

I.1498 
1.0484 

a) Calculated as weighted average, according to the number of segr. M2"lines 
used for determining the segregation frequencies (see Table 3)• 

b) Weighted average if the observations at 40 Gy fast neutrons + 1.2% DTT are 
omi tted. 

R 1 +ft*5 
c) ßi + ST is obtained by solving the equation po = . 

l+ß}+ß2 

Pi fl+fil-4-ßo) 
d) Yni 's obtained by solving the equation yg = /•._- si ; 

Yp. is minimal for ß-| = ß2 and maximal for either ß-| = 1 or ß2 = 1. 

For the calculation of Yf>->, p-| is substituted by po. The value Ymax a t 

40 Gy fast neutrons + 1.2% DTT is omitted, because the value ßi + ß2 < 1 

and thus for ß-| -> 1 , ß2 -»• < 0, or the other way round. 
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DISCUSSION AND CONCLUSIONS 

It has been shown that the segregation frequency of radiation-

induced viable mutants in Arabi-dopsis is, in general, below the 

Mendelian expectation of 25 per cent. The average mutant segregation 

frequency in the M£- and Mo-generation is 21.5 per cent. The extent 

of the deficit in segregation frequency is not affected by 

radiation type or dose, by which the mutants were induced. Because 

the viability of the mutants was, in general, similar to the 

viability of non-mutant plants (i.e. y * 1)> the deviation in 

mutant segregation frequency from 25 per cent can be ascribed to 

haplontic selection. The average viability of female and male 

mutant gametes (i.e. ß-| + Q^) compared to normal ones was 1.7625/2. 

It was calculated (for y = 1) that g,-\ = 1.0229 and ß2 = 0-7396 

or vice versa. Thus, haplontic selection mainly occurs 

between either the female or the male gametes. In all likelihood 

selection occurs between the male gametes, because very few 

deficiencies can survive the haplophase as microspores and besides, 

male gametes are involved in certation. 

The fact that the viability of mutant plants was similar to the 

viability of non-mutant plants implies that the estimated 

segregation frequency of the mutants in the M3-generation, i.e. p? , 

can be used directly co convert the mutant frequency expressed as 

the frequency of mutant M2-plants among the total number of M£" 

plants, i.e. m', into the mutation frequency per cell, i.e. m, 

using the formula 

m = ̂ - (Gaul, 1957, Frydenberg, 1963). 
P3 

Besides, because either g-j » 1 or 02
 œ ' > P3 c a n be used to 

estimate the degree of chimerism in the M1 sub-epidermal cell-layer from 

which the tested Mj-lines descended, using equations (l) and (5) 



(or (2) and (5) in the case of non-random union of gametes) described 

in material and methods, and the estimate p-| . 

In the present investigation no indication of within-flower 

chimerism was found. This means that when the progeny of 

one silique from the top of the main inflorescence per M^-plant 

is tested in the M2, as was done in this study, one can obtain the 

estimate of the mutant segregation frequency in the offspring of a 

heterozygous parent, i.e. P3, directly from the f^-data, since 

Pj = po in the absence of chimerism. 
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CHAPTER E 

ECERIFERUM MUTANTS IN ARABIDOPSIS THALIANA (L.) HEYNH: 

1. INDUCTION BY X-RAYS AND FAST NEUTRONS. 

Lidwine M.W. DELLAERT 

Research carried out jointly at The Institute for Atomic Sciences in 

Agriculture (ITAL), P.O. Box 48, Wageningen, The Netherlands and the 

Department of Genetics, University of Agriculture, Wageningen, The 

Netherlands. 

ABSTRACT 

The effect of fast neutrons and X-rays (in the presence or absence 

of dithiothreitol) on the absolute and relative frequency of eceriferum 

mutants in Arabidopsi s is studied. It is found that there are significant 

differences (p < 0.01) in 'group' mutability between the mutant spectra 

induced by X-rays and fast neutrons. It is shown that fast neutrons 

induce relatively more eceri ferum mutants than X-rays, and that this 

difference is consistent over several irradiation doses. For the -SH 

radioprotector DTT, no effect on the relative frequency of eceri ferum 

mutants is found. 
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INTRODUCTION 

Research into the specific effects of mutagens in higher plants, in terms 

of mutant spectra, has mainly concentrated on the comparison between ioni­

zing radiation and alkylating agents. Extensive data on chlorophyll mutants 

as well as viable mutants demonstrated significant differences in 'group' 

mutability between the two types of agents in Arabidopsi s (MCKELVIE, 1963; 

RÖBBELEN, 1962), in barley (EHRENBERG et al, 1959; GUSTAFSSON,1963 ; MILAN 

and KONZAK, 1961) and in rice (RAO and GOPAL-AYENGAR, 1964). Differences 

in 'group' mutability between X-ray and fast neutron induced mutant spectra 

have been demonstrated in barley for the different phenotypes of chlorophyll 

mutants (EHRENBERG et al, 1959; CONGER and CONSTANTIN, 1974) and for the 

relative frequency of erectoides mutants among the total number of viable 

mutants (EHRENBERG et al, 1959). Genetic analysis of induced erectoides and 

eceriferum mutants in barley revealed, w i t h i n these mutant classes, spe­

cificity in the mutability of individual loci, and a significant mutagen spe­

cificity of sulfonates, ethyleneimine, X-rays, y-rays and fast neutrons for some 

loci (PERSSON and HAGBERG, 1969; LUNDQVI ST, 1975; LUNDQV/IST and WETTSTEIN, 

1962; LUNDQVIST et al, 1968). 

Although GUSTAFSSON (1963) and MCKELVIE (1963) reported that the diffe­

rence in mutant spectrum between alkylating chemicals and radiation in barley 

and Arabidops i s was similar for several 'mutagen dose' levels, other data 

show that apart from experimental conditions,the mutagen dose also differen­

tially affects the (chlorophyll) mutant spectrum (CONGER and CONSTANTIN, 1974; 

GAUL, 1964; NILAN, 1964). These factors have not usually been taken into considera­

tion in work on mutagen specificity. 

As in barley (LUNDQVIST and WETTSTEIN, 1962), mutants with reduced or 

absent wax coating are common among the induced viable mutants in Arabidopsi s 

(DELLAERT; unpublished). The present study Into the effect of X-rays 

and fast neutrons - both in the presence or absence of dithiothreitol 

(DTT) - on the absolute and relative frequency of eceriferum mutants in 

Arabidops i s is executed in order to: 
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1. extend the data about X-ray and fast neutron mutagen specificity, 

2. study the effect of mutagen dose on mutagen specificity, 

3- study the effect of DTT on the induced mutant spectrum. 

MATERIAL AND METHODS 

After 5 days on wet filter paper at 2 C (to break dormancy) and 

re-drying on filter paper (24 C, 24 hrs), seeds of Arabidopsis thaliana 

ecotype Landsberg, mutant 'erecta', were submerged in tap water or DTT-

solution (1.2%), at 22 C, 3 hours before irradiation. Different X-ray 

doses, such as 140, 233, 327 and 420 Gy (10 Gy = 1 Krad) were applied 

to seeds submerged in tap water, likewise 280, 467, 653 and 840 Gy were 

given to seeds submerged in 1.2% DTT. The irradiation was carried out 

withanMG 301 X-ray machine with an MCN-420 tube, operating at 320 kVp 

and 10 mA, with an additional filter of 0.25 Cu and 1.0 Al and with 

a dose rate of 4 Gy/min. Fast neutrons (20, 33, 47 and 60 Gy to seeds 

submerged in tap water; 40, 67, 93 and 120 Gy to seeds submerged in 

1.21 DTT) were given in the irradiation room of the BARN (Biological 

Agricultural Reactor Netherlands, Wageningen) with a dose rate of 

1 Gy/min. The Y~cor|taminat ion was only approximately 3 per cent, on a Gy basis. 

The maximum duration of irradiation was 3-5 hours. In order to equalize 

the environmental conditions, the seeds for all treatments were kept 

submerged for 6.5 hours at 22 °C. In total, 18 different treatments 

(including the controls) were given (Table 1). The X-ray and fast neutron 

doses applied - both in the presence or in the absence of DTT - induced 

approximately comparable levels of genetic damage, i.e. M.-ovule sterility, 

M.-embryonic lethality, frequency of chlorophylls and viable mutants 

(DELLAERT, 1979). 

Subsequent to irradiation the seeds were rinsed with tap water 

(5 min.) and sown (equally spaced) on perlite saturated with a standard 

nutritional solution and put to germinate at 24 C under continuous 
2 

illumination by fluorescent light tubes, 8000 lux/cm . After 8 days the 

seedlings were transplanted into soil in an air-conditioned greenhouse. 

The culture medium and culture conditions used were as described by 
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FEENSTRA (1965), and 00STIND1ER-BRAAKSMA and FEENSTRA (1973). 

In the M -generation MULLER's embryo test (MÜLLER, 1961 and 1963) 

was applied to silique number 5 or 6 of the main inflorescence, for 

scoring M -ovule sterility, M -embryonic lethals and chorophylls 

(details about the results will be published elsewhere). Viable 

mutants were scored in the M.-generation, by testinq the progeny of 

one silique per M -plant from the top of the main inflorescence (to 

avoid chimerism). In the M. only well-fil led siliques were harvested, 

in order to (1) increase the germination frequency of the 

M.-seeds (2) increase fertility in the M.-generation, and (3) decrease 

the number of deviant M»-plants caused by chromosomal aberrations (MULLER, 

1966; MESKEN and van der VEEN, 1968). Viable mutants in the M2-generation 

•were defined as plants showing deviations from wild type in plant morphology 

and/or leaf colour. Among these, plants with visually reduced or absent 

epicuticular wax from siliques and/or stems were defined as eceriferum mutants. 

Initially, plants with glossy rosette leaves were also included in this class. 

However, because ultrastructural analysis of the wax coating on leaves of the 

wild type revealed very limited wax deposition (DELLAERT et al, 1979) it was 

decided to classify mutants with glossy rosette leaves in a separate mutant 

class. 

The mutant frequency (m) for chlorophyll mutants, eceriferum mutants and 

total number of viable mutants, has been expressed as the mutation frequency 

per cell (GAUL, 1957). For the segregation ratio of récessives (f), the 

value of 0.20 has been used. A confidence interval for m has been calculated 

by means of a formula derived by STAM (DELLAERT, 1979). 

RESULTS AND DISCUSSION 

In total 36 M„-lines segregated for eceriferum mutants (i.e. 16 induced 

with neutrons; 11 induced with neutrons + 1.21 DTT; 5 induced with X-rays; 

and 3 induced with X-rays + 1.2% DTT). In the M,-generation selfed progenies 

of viable M^-mutants and normal 'sister' plants were grown in order to 

confirm the mutant type. Among the latter, 5 more(independent) eceri ferum 

mutants were isolated. These 5 mutants escaped detection in the M„-generation 

(due to small progeny size) and are not included for the calculation of the 

mutation frequency. The phenotype description of the isolated eceri ferum 
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mutants in Arabidopsis and the data about mutagen, dose and the conditions 

of the treatment, by which the mutations are induced, are given elsewhere 

(DELLAERT et al., 1979)-

In Table 1 the calculated mutation frequencies per 100 cells (m) for 

chlorophylls, viable mutants and eceri ferum mutants are presented. It is 

observed that in general the eceriferum mutant frequency is higher after 

fast neutrons than after X-rays. It has been calculated that with fast 

neutrons the average eceri ferum mutation rate per Gy per cell is about 16 

times higher than with X-rays. For chlorophylls and viable mutants, the 

average mutation rate per Gy per cell is only about 6.4 times higher with 

fast neutrons than with X-rays. A rank test (WHITE, 1952) shows that in 

the dose range studied the ratio eceri ferum mutants/viable mutants and 

the ratio eceriferum mutants/chlorophyll mutants are significantly higher 

(p < 0.01) among fast neutron induced mutants than among X-ray induced 

mutants (Table 2). With a similar rank test no significant effect of 

DTT on these ratios is found. 

Concerning the ratio eceriferum mutants/chlorophyll mutants, it is 

noted that the chlorophyll mutants are scored in silique numbers 5 and 6 

of the M..-main inflorescences, while the eceri ferum mutants are scored 

in M„-progenies of well" filled siliques from the top of the NL-main 

inflorescences. Therefore, the ratio eceriferum mutants/chlorophyll 

mutants might be influenced by differences in mutagen sensitivity between 

the "initial" cells which form the sporophytic tissue of siliques number 5 or 6 

and the "initial" cells which form the sporophytic tissue of the well- filled 

siliques at the top of the inflorescences. This does not apply to the ratio 

eceriferum mutants/viable mutants, since both types of mutants are scored in 

the same M?-population. 

The relatively low number of X-ray-induced eceri ferum mutants, 8 

independent mutants among the 653 X-ray-induced viable mutants, is in ac­

cordance with MCKELVIE's results (1963). MCKELVIE found no eceriferum mutants 

among 427 (independent) X-ray induced viable mutants. It should be noted that, 

seeing the phenotype description of the waxless mutants bv MCKELVIE (1962), 

in his case only mutants with (visual} a b s e n c e of the expidermal wax 

coating of the stem are included in the waxless murant class in the experiment 
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reported here, only 3 such X-ray induced mutants are found (DELLAERT et 

al., 1979). From the 27 fast neutron induced eceriferum mutants, 9 mutants 

have no (visual) epidermal wax coating on the stem. The relative frequency 

of these eceri ferum mutants among the total number of fast neutron induced 

viable mutants (i.e. 9 per 68k viable mutants) is comparable to the 

relative frequency of eceri ferum mutants observed after EMS treatment 

(i.e. 7 per 55^ viable mutants) by MCKELVIE (1963). 

KOORNNEEF (1979, pers comm.) has used criteria for the classification 

of the eceriferum mutants which are equal to the criteria described here. 

He observed for EMS induced eceriferum mutants in Arabidopsi s (seed treat­

ment; 10 mM EMS; 2k hrs, 2k °C) a mutant frequency of 2.3 per 100 cells. 

This mutant frequency is comparable to the mutant frequency observed after 

fast neutron irradiation in this experiment 

In conclusion, the experimental data reported here demonstrate 

significant differences in 'group' mutability between the mutant spectra 

induced by X-rays and fast neutrons in Arabidops i s• It is shown that fast 

neutrons induce relatively more eceri ferum mutants than X-rays, and that 

this difference in mutant spectra is consistent over several mutagen 

doses. The data conform with the results found in barley for 

differences in X-ray and fast neutron induced mutant spectra 

(EHRENBERG et al, 1958; CONGER and CONSTANTIN, 1971*). Since phenotypic and 

genetic analysis of the ecer iferum mutants in Arabidopsi s (DELLAERT et al, 

1979) indicate that there are at least \k different cer loci in Arabidopsis, 

the number of mutants per locus per mutagen are still too low to 

pronounce upon mutagen specificity for individual loci. 
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ECERIFERUM MUTANTS IN ARABIDOPSIS THALIANA (L.) HEYNH : 

U PHENOTYPIC AND GENETIC ANALYSIS. 

Lidwine M.W. DELLAERT, Jeanette Y.P. van ES and Maarten KOORNNEEF. 

Research carried out jointly at The Institute for Atomic Sciences in 

Agriculture (ITAL), P.O. Box 48, Wageningen, The Netherlands and the 

Department of Genetics, University of Agriculture, Wageningen, The 

Netherlands. 

ABSTRACT 

The phenotype of the wax coating of 53 eceriferum mutants of Arabidops i s 

thaiiana (L.) Heynh is characterized by macroscopic and by scanning-electron 

microscopic techniques. Based on the macroscopic characterization of the 

wax coating on stems and siliques, and other morphological deviations of 

wild type (i.e. semi-sterility and dwarfness), the mutants are classified 

into 7 main phenotypic categories. Based on the results of the genetic 

analysis obtained so far, the minimum and maximum number of loci per 

main phenotypic category have been determined. The scanning-electron 

microscopic analysis of the wax coating on stems and siliques revealed 

that in wild type Arabidopsis the epicuticular waxes are phenotypically 

characterized by (l) a high proportion of rodlet-shaped crystals, (2) 

plate-like structures, and (3) an organized wax layer on the stem bases, 

decreasing in quantity towards the siliques. In the eceriferum.mutants 

the rodlet-shaped crystals are reduced in size and/or frequency, or 

completely absent. The plate-like structures are reduced in size and/or 

frequency, or completely absent in mutants which are visually described 

as being waxless. In these mutants there is often, in contrast to the 

wild type, a thick organized wax layer present on the siliques and the 

stems. 
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INTRODUCTION 

In a study about the effects of X-rays and fast neutrons [ in the 

presence or absence of dithiothreitol (DTT) ] on induced mutant spectrum 

in Arabidopsi s thai Jana (L.) Heynh, special attention is paid to the 

mutants with altered epidermal wax coating (DELLAERT, 1979)- Like in 

barley (LUNDQVIST and WETTSTEIN, 1962), mutants with a reduced or 

without wax coating are common among the viable mutants in Arabidopsis. 

In Arabidops i s a b s e n c e of wax coating has been variously described 

as lucida (MCKELVIE, 1962), shiny stalk (BURGER, 1971), virescens 

(REDEI, 1965), and conform to the denotation in barley as erceri ferum 

(KOORNNEEF and van der VEEN, 1978). The gene symbols hj. and j_u,, vc-1 

and vc-2, and cer, respectively, have been used by these aythors for this 

character. The first (and only) mutant with r e d u c e d wax coating has 

been described as rhomboidea (gene symbol jji) , based on the simultaneous 

morphological change of leaves, by MCKELVIE (1962). In order to have a 

generally acceptable name, we have adopted the word eceri ferum for all 

mutants with visually reduced or absent wax coating, and we thus use 

the gene symbol cer, in analogy with the barley eceri ferum mutants. 

In barley the large group of eceriferum mutants is characterized 

by a change in quantity or composition of the wax coating on different 

organs such as spike, stem, leaf-sheath or leaf-blade. LUNDQVIST (1975) 

has localized 988 induced and k spontaneous mutations at 59 loci by 

dial lei crosses. Biochemical and phenotypic (visually and ultrastructurally) 

examination of the epidermal wax coating of the wild type and some cer 

mutants showed that there is a distinct correlation between the mutated 

loci involved and the phenotypic and biochemical characteristics of the 

mutants. In barley it is found that the eceri ferum loci determine the 

synthesis and deposition of the epicuticular waxes (WETTSTEIN-KNOWLES, 

1971, 1 9 7 ^ , 197i*b, 1976). Based on the data of the biochemical analysis 

from the cer-mutants, the biosynthetic pathway of different wax components 

could be deduced (WETTSTEIN-KNOWLES, 1976). 

As a means to obtain more information about the genetic control of the 

structure and deposition of the epicuticular waxes in Arabidopsi s, 53 isolated 
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eceriferum mutants were phenotypically analysed (using macroscopic and 

scanning-electron microscopic techniques). Based on this analysis the 

mutants are classified into different phenotypic categories, and a start 

is made for genetic analysis by dial lei crosses. 

MATERIAL AND METHODS 

The 30 fast neutron, 11 X-ray, 10 EMS induced and 1 spontaneous 

eceriferum mutants of Arabidopsis thaiiana (DELLAERT, 1979; KOORNNEEF 

unpublished), and also vc-2 (REDEI, 1965) used in the present study 

are 1 i sted i n Table 1 . 

Seeds of the eceriferum mutants and of the wild type A. thaiiana 

ecotype Landsberg, mutant 'erecta', were sown on perlite saturated 

with a standard nutritional solution. After 5 days at 2 C (to break 

dormancy) the seeds were put to germinate at 2k C under continuous 

illumination. Two weeks after sowing the seedlings were transplanted 

into soil in an air conditioned greenhouse. The culture medium and 

culture conditions applied, were as described by FEENSTRA (1965a) and 

OOSTINDIËR-BRAAKSMA and FEENSTRA (1973). 

In order to characterize the mutants phenotypically, the following 

two methods were adopted: 

A. Macroscopic determination of the wax coating on siliques, stems, 

and leaf-blades: 

Under greenhouse conditions the wax coating on rosette leaves was 

visually determined at the start of flowering and approximately 

two weeks later on stems and siliques. In analogy to the method 

used for the phenotype description of the barley eceriferum mutants 

(LUNDQVIST and WETTSTEIN, 1962), the wax coating of the wild type 

was denoted by ++, reduced wax coating by +, and absence of wax 

coating by -. The signs -/+ and +/++ were used if seasonal 

variation was observed. 

B. Scanning-electron microscopic determination of the wax coating on 

siliques, stems and leaf-blades: 
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For the scanning-electron microscopic determination of the wax 

coating, plants were harvested approximately two weeks after the 

start of flowering. Per plant various plant-parts, namely (1) 

silique no h, (2) 1 cm stem at silique no k, (3) 1 cm stem at the 

first cauline leaf, and (4) occasionally a part of one rosette 

leaf, were exposed to liquid N„ (a few seconds) and freeze-dried. 

The dried plant parts were mounted on object trays with silver 

paste and coated with gold. The objects were examined in a Jeol 

JSM-U3 scanning-electron microscope. 

For the characterization of the epicuticular wax of wild type 

Arabidopsis, the wax of a wild type plant was removed with chloroform. 

Wild type plant parts with and without wax were compared and the 

ultrastructure of the wax extrusions was determined. Subsequently, the 

waxes of the eceri ferum mutants was compared with those of the wild 

type and specific differences were described. 

The eceriferum mutants in Arabidopsis were classified into a 

number of phenotypic categories, based on the visual phenotypic analysis 

of the wax coating on siliques and stems and taking into account other 

morphological deviations of the wild type (probably due to pleiotropic effects 

of the particular cer genes). A start was made for the genetic analysis 

of the mutants by complementation tests. Crosses were made as described 

by FEENSTRA (1965b). 

RESULTS AND DISCUSSION 

In Table 1 the phenotype description - macroscopic and scanning-

electron microscopic - of the mutant collection is given. 

M a c r o s c o p i c p h e n o t y p e d e s c r i p t i o n 

At the moment of visual determination of the wax coating of 

the rosette leaves it was found that (l) the rosette leaves of some 

mutant lines had become necrotic, and (2) in other mutant lines, 

the leaves which were originally described as glossy, showed no 

difference in wax coating with those of the wild type. We, therefore, 
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decided to classify the mutants according to the visual description 

of the wax coating on siliques and stems, without taking into consideration 

the description of the leaves. This reduced the possible number of 

phenotypic formulas for wax coating to 25 (including wild type; ++ ++). 

Since moreover, wi thin the group of about 400 barley eceri ferum mutants 

described by LUNDQVIST and WETTSTEIN (1962) and LUNDQVI ST et_ aj_. (1968), 

no mutants were found which had fewer wax on stems than on spikes, 

and because so far no such mutants were observed in Arabidopsis 

(i.e. fewer wax on stems than on siliques), it is proposed to restrict 

the number of phenotypic formulas for wax coating in Arabidopi s to 15-

These 15 phenotypic formulas are given in Table 1. 

Within the group of mutants lacking the wax coating on siliques 

and/or stems, a further distinction is made amongst them, based on other 

phenotypic deviations from the wild type, namely semi-steri1ity 

and/or dwarfness. This is done because, as far as is known, all mutants 

which are allelic to mutant F, , the one with a mutation on locus cer-1 

localized on chromosome 1 (KOORNNEEF and van der VEEN, 1978), are also 

semi-sterile. Moreover, this characteristic does not recombine with the 

waxless character (van der VEEN, 1976 pers. comm.). We consider this to be a 

true pleiotropic effect of some genes. This semi-steri1ity, both male 

and female, is dependent on environmental conditions. During the 

winter the sterility is almost complete, although fertility can 

always be restored by coverinp the plant with a polythene bag (FEENSTRA, 

1977 pers. comm.). 

At present we can distinguish 7 main phenotypic categories 

(categories A through G in Table l). 

S c a n n i n g - e l e c t r o n m i c r o s c o p i c d e t e r m i ­

n a t i o n o f t h e w a x c o a t i n g 

The use of the scanning-electron microscope provides important details 

of wax depositions. In Fig. 1 the wild type phenotype of the stem of 

Arabidopsis (Fig. 1a) and for comparison the phenotype of the chloroform 

treated stem of the wild type (Fig. lb) are reproduced. The latter is 
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characterized by a smooth surface and, therefore, all epicuticular 

structures seen in Fig. la are wax structures. The epicuticular 

waxes of the wild type (stem and sHlque) are characterized by 

1. An organized wax layer, and on top of it the following surface structures, 

2. irrigular shaped plate-like wax structures, and 

•>• a high proportion of rodlet-shaped crystals, varying in size, which 

might be associated with a high ß-diketone or ketone content of the 

wax, similar to the tube-like wax crystals in Brass ica, Poa, 

Eucalyptus and barley (HALL et aj_. , 1965; LUNDQVI ST et aj_. , 1968). 

In Table 1 the ultrastructural composition of the wax coating 

for each mutant (as far as available) is given. When the scanning-

electron microscopic observations of the eceri ferum mutants are 

compared, it is observed that there is a significant difference 

(p < 0.005) between the occurrence of rodlet-shaped crystals in 

mutants belonging to the phenotypic main categories A, B, C and D, and 

in mutants belonging to the phenotypic main categories E, F, and G (Table 1). 

In almost all mutants belonging to the phenotypic main categories 

A, B, C and D (i.e. mutants with visually reduced or absent wax coating 

of the siliques, and with wild type or reduced wax coating of the stems) 

the rodlet-shaped crystals are reduced (in size or frequency) or rare, 

15 and 5 mutants, respectively (Fig. 2a). This suggests that in these 

mutants, genes which regulate the quantity of the rodlet-shaped wax 

extrusions are affected. Exceptions are D., in which the rodlet-shaped 

crystals are absent, and A , in which the ultrastructure of the wax 

coating is similar to the wild type. 

In contrast it is found that in the mutants belonging to the pheno­

typic categories E, F and G (i.e. mutants with visual absence of wax 

coating on the siliques and the stems) the rodlet-shaped crystals are 

absent or rare, 11 and 3 mutants, respect ively. In these mutants, also, the 

plate-like structures are absent (Fig. 2b) or reduced in size and/or 

frequency. (Fig. 2c). In mutant G-, the plate-like wax structures 

are erect and clearly crystalline with sharp borders (Fig. 2d), unlike 

all other plate-like structures observed in Arabidops i s so far. 

The ultrastructural composition of the wax coating of the mutants, 
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visually classified as — types, suggest that in most cases structural 

genes, responsible for the formation of specific wax components, 

are affected (in analogy with barley (WETTSTEIN-KNOWLES, 1976)). 

The organized wax layer decreases in quantity in the wild type from 

the stem base towards the siliques. In the eceriferum mutants it is 

found that some mutants show a thick organized wax layer on the stems 

and siliques (denoted by + in Table 1). This layer occurs mainly 

(0.10 < p < 0.25) on mutants in which the other surface wax structures 

are severely affected (Fig. 2e), i.e. in mutants which are visually 

classified as -- types. 

When the phenotypic categories A + B are compared with the phenotypic 

categories C + D, it is observed that there are no significant differences 

in the descriptions of the ultrastructures of the wax coating of the mutants. 

Although in the latter categories there is a tendency towards an increasing 

number of mutants in which the rodlet-shaped crystals are rare. Also, 

between the phenotypic categories F and G, the observed ultrastructures 

of the wax coating in the mutants are similar. 

In Fig. 2f the epicuticular wax of a wild type Arabidops i s leaf is 

reproduced. It can be seen that the wax extrusions on the leaf are 

different in composition and frequency compared to the wax extrusions 

on stem and silique. Wax structures on the leaf are rare and 

no rodlet-shaped crystals are present. This may be due 

in contrast to the wax structures on the leaves of maize (L0RENZ0NI 

and SALAMINI, 1975; BIANCHI, 1978) and barley (LUNDQVIST et al., 1968), 

Brassica, Poa and Eucalyptus (HALL et al., 1965) , to the relatively 

short period during which wax is produced on leaf-blades of wild type 

Arabidopsis before the leaves die-off (the life-span of rosette 

leaves of Arabidops i s under the greenhouse conditions used, is 

approximately 2 or 3 weeks). Comparison of the wax on the leaf of the 

wild type with the wax on the leaf of mutants being visually 

characterized by glossy leaf-blades did not show distinct differences. 

Therefore, it was decided to classify these mutants in a separate 

mutant class. 
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Fig. 1. 

Fig. 1. Epicuticular wax structures on the stem of wild type (Fig. la) 

compared to the epicuticular surface of the stem of wild type 

after pretreatment with the wax solving chloroform (Fig. lb) 

(enlargement; 1500 x ) . 

Fig. 2. Epicuticular wax structures on different eceri ferum mutants in 

Arabidop_s_i_s. (enlargement; 1500 x) . 

a Mutant D. (stem base); rodlet-shaped crystals are reduced in size 

and in frequency. 

b Mutant vc-2 (Gr) (stem .base) ; rodlet-shaped crystals and plate-like struc­

tures are absent, the wax layer is more developed than in the wild type. 

c Mutant ^2 (stem base); rodlet-shaped crystals are absent, but 

not the plate-like structures. 

d Mutant G- (silique); rodlet-shaped crystals are absent, the plate-

-like structures are erect and crystalline with sharp borders. 

e Mutant F_ (silique); thick organized wax layer on silique, other 

surface wax structures are severely affected. 

f Wild type leaf; wax extrusions are rare in frequency and size, 

no rodlet-shaped crystals are present. 
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G e n e t i c a n a l y s i s 

A start is made for genetic analysis of the eceriferum mutants by 

dial lei crosses (Table 2, 3 and 4 ) . Based on the results obtained so 

far, the minimum and maximum number of loci per main phenotypic category 

has been determined (Table 1). In order to do this, it has been assumed that 

mutants from the different main categories are non-allelic. The results 

of crosses between mutants of different main categories obtained so 

far (Table 5) support this assumption, since no cases of al lei ism 

were detected in the crosses, except the mutant line Afi, which did not 

complement D and D„. This mutant line AR carried several other mutations, 

e.g. lateness, curly leaves and siliques without petioles. It is suggested 

that these other mutations may have interfered with the scoring for wax 

coating. All eceriferum mutants used in the crossings were completely 

recessive, except D9 which is semi-dominant. The complementation observed betwe« 

the non-allelic mutants (within and between different phenotypic 

categories - Table 2, 3, 't and 5) was always complete. 

We do not take intragenic complementation into consideration 

since this ,1s more often than not Imcomplete. 

C o m p a r i s o n o f t h e w a x c o m p o s i t i o n i n 

a l l e l i c m u t a n t s a n d i n n o n - a l l e l i c 

m u t a n t s 

It is found that allelic mutants have an identical composition of 

the epicuticular wax structures. There might, however, be some variation 

in the density of the different wax compounds (for example the allelic 

mutants A, and A, differ in frequency of the rods). It should be noted that 

the allelic mutants F , F and F, have the same epicuticular wax 

structure (i.e. thick organized wax layer as well as absence of plate-like 

structures and rodlet-shaped crystals) as the allelic mutants Gj-

and G0. On the basis of semi-sterility these mutants are classified into 
o 

different phenotypic categories (i.e. F and G) and it is proved that 

they are non-allelic. From the results of the scanning-electron micro­

scopic analysis of the epicuticular wax structures of the stems and 

siliques of non-allelic mutants within a phenotypic category, it 
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Table 2. Results of the complementation tests between the mutants of the 

phenotypic categories A and B, i.e. eceriferum mutants with visually 

reduced wax coating on the siliques, and normal or reduced wax 

coating on the stems. 

V A6 
A2 

A3 

\ 
Ä 9 

A,0 

B, 
B2 

B3 

V A6 

0 

+ 

+ 

• 

+ 

+ 

1 
* 
0 

+ 

• 

+ 

h. 
+ 

+ 

0 

+ 

s 
* 

a 

+ 

b. 

+ 

0 

• 

*1° 
+ 

• 

+ 

0 

+ 

!i 

0 

+ 

h 
+ 

* 
+ 

+ 

+ 

0 

h. 

+ 

0 

+ = complete complementation 

Table 3. Results of the complementation tests between the mutants of the 

phenotypic categories C and D, i.e. eceriferum mutants without 

visual wax coating on the siliques, and normal or reduced wax 

coating on the stems. 

C3 

D2 

Ag, Dj. Dg 

\ 
°S 

"i 
D 7 

D9 

D13 

c, c2 c3 

0 

0 

0 

+ + 

+ + + 

+ 

+ 

D, D2 A8, D3, Dg D,, D5 0 6 D? Dg D,3 

+ + + + 

+ 

0 + + + 

0 + + 

+ + 0 + + + 

0 + + + 

+ 0 + 

+ + 0 

+ + + 0 

+ 0 

+ + + 0 

complete comp]ementat ion 

incomplete complementation (D = partially dominant) 
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Table k. Results of the complementation tests between the mutants of the 

phenotypic categories E, F and G, i.e. eceriferum mutants without 

visual wax coating on the siliques, and stems. 

E2 

F,, F2 , F„, F6 . F7 

F 3 

F 5 

G, 
G 3 

V G8 
G 6 

G 7 

0 

F,, F, , 

F„, F6> F7 F3 F5 

0 + 

0 

+ 0 

+ 

+ + 

+ + 

G l G3 V G8 G6 G7 

+ + + + 

+ + 

+ + 

0 + + 

0 + + 

+ + 0 + 

0 + 

+ + + + 0 

complete complementation 

Table 5. Results of the complementation tests between the phenotypic 

category D and the phenotypic categories A, B, E, F and G. 

The mutants from phenotypic category D mentioned, showed com­

plementation with the mutants referred to in this Table. 

The cross D. x B, showed incomplete complementation. 

In addition, B. did not complement with C., E„, F, and G^, 

and B, did not complement with C^. 

Phenotypic ca tegor ies 

D 

D 

D2 

V V D8 

\ 
\ 
D 6 

D 7 

°9 
D 1 3 

A 

V V A2 

A l ' A 6 ; A 2 

B 

B 3 

B , ; 6 3 

B 2 

B 2 

B, 

E 

E2 

E2 

E2 

F 

F,. F2 , F v F6 , F7 ; F,. 

F3 

F,, F, , F„, F6 . F7 

G 

V G8 
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follows that especially for mutants belonging to the phenotypic 

categories F and G, the scanning-electron microscopic analysis may 

reveal non-allelic mutants. However, the results also show that equality 

in epicuticular wax structures of mutants of a specific phenotypic 

category does not necessarily imply that the mutants are allelic. This 

seems especially true for mutants in which, compared to the wild type, the 

epicuticular wax structures are similar, but reduced in size and/or 

frequency. 

CONCLUSIONS 

The phenotypic analysis of the wax coating on stems and siliques 

of the 53 eceriferum mutants and the wild type, by macroscopic and by 

scanning-electron microscopic techniques, revealed that the eceriferum 

mutants in Arabidopsis are characterized by a change in composition 

(ultrastructural) and/or quantity (visual and ultrastructural) of the 

wax coating. In general, it has been observed that in mutants with 

visually reduced wax, the wax is ultrastructurally characterized by a 

change in quantity of the rodlet-shaped crystals. The wax coating 

of mutants with visual ly absent wax on the siliques and stems, 

is in general ultrastructurally characterized by a change in composition. 

The scanning-electron microscopic analysis of the composition of the 

wax coating of the latter mutants has shown that in these mutants 

specific wax "structures", such as rodlet-shaped crystals and/or 

plate-like structures and/or the organized wax layer, are 

severely affected. Therefore, it is suggested that especially within 

this mutant group, the mutants which differ in their composition of the wax 

coating, might be of interest for the biochemical examination of the 

epicuticular waxes in Arabidops is• 

The limited results of the genetic analysis of the eceriferum 

mutants obtained so far, indicate that the 53 eceriferum mutations are 

located at a minimum of 14 loci and at a maximum of kk loci. This suggests that 

the number of eceriferum loci in Arabidopsis is in the same order of 

magnitude as the number of eceriferum loci in barley (LUNDQVIST, 1975). 
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Abstract 

COMPARISON OF SELECTION METHODS FOR SPECIFIED MUTANTS IN SELF-
FERTILIZING CROPS: THEORETICAL APPROACH. 

The most efficient method to extract lines, mutated for a specified character, fixed in an 
otherwise undisturbed genetic background is discussed. A mutation breeding programme, based 
on detection of M! cells heterozygous for the desired mutation by means of single-seed progeny 
testing, and the selection of the desired mutant line in the progeny of these Mi cells (spare 
seed of M2 is available) is proposed. The optimum mutation rate (mop t) for detecting the 
desired mutation depends on the number of loci that, when mutated and in the homozygous 
state, do not allow expression of the desired mutation. For probability, p, to select in the 
progeny of an Mi cell, heterozygous for the desired mutant, a mutant with desired phenotype, 
the mutation rate has an upper limit, m m ax . This depends mainly on the number of loci that 
cannot mutate desirably (L2) and on the progeny size N. In general mmax < m o p t , and thus 
the maximum mutant yield is determined by mmax. From M2 onwards selection is for an 
undisturbed genetic background, within the Mi progenies heterozygous for the desired mutation. 
For high values of L2 the degree of heterozygosity in plants with desired phenotype in the M2 

will be high when the mutation rate per allele s mm a x . In this case negative mass selection up 
to M4 followed by line selection in Ms for the desired genotype is proposed. Compared with 
the optimum mutation rate for selecting mutant plants with undisturbed genetic background 
direct in the M2, the upper limit of the mutation rate for the proposed breeding programme is 
9 to 10 times higher. The number of independent mutants with undisturbed genetic background 
obtained are 1 to 100 times (depending on M2 line size) the number obtained when conventional 
mutation breeding procedures are used. 

INTRODUCTION 

Freisleben and Lein [ 1 ] were the first to construct theoretical models that 

could serve as a basis for the design of selection procedures in mutation breeding. 

These models were later modified, extended and generalized by various authors 

[2—13]. The selection procedures based on these models aim at isolating either a 
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f(m)A = the relative frequency of the plants in the progeny of an M [ cell, 
heterozygous for the desired mutation, that are homozygous for desirable 
mutated alleles at one or more Lt loci, and that have no negatively 
mutated allele(s) at the remaining L, loci, and no mutated alleles at the 
L2 loci (which includes the L3 loci) 

f(m)R = the relative frequency of plants in the progeny an an M, cell, 
heterozygous for the desired mutation, that are heterozygous or 
homozygous for desirable mutated alleles at one or more L! loci, and 
that have no negatively mutated allele(s) in the homozygous state at 
the remaining Li loci, and no mutated alleles in the homozygous state 
at the L2 loci (which includes the L3 loci). 

These symbols are similar to the symbols used by Yonezawa and Yamagata [12]. 
New are the definitions of the L3 loci, f(m)i, f(m)A and f(m)ß. 

The L3 loci are loci that can only mutate in an undesirable way and that when 
mutated and in homozygous state cause, for example, non-germination, lethality 
or sterility, through which the Lt loci cannot come to phenotypic expression. 
The number of the L3 loci thus depends on the selection criterion. The minimum 
number of the L3 loci are the loci that affect germination and seedling growth. 

The frequency f(m)i is related to the probability of detecting the desired 
mutations in the M2 generation. The frequency f(m)n is the frequency of mutants 
for direct use in the M2 generation, the frequency regarded as an index for 
efficiency of breeding by Yonezawa and Yamagata [12]. The frequencies f(m)A 
and f(m)ß are directly related to the probability of selecting the 'ideal recombinant' 
in the progeny of an M] cell, heterozygous for the desired mutation. 

Formulae 

If the original allele A mutates to desirable allele a and undesirable allele a', 
with mutation rates ma and m(l-o;) respectively, the relative genotype frequencies 
for this locus in the Mt cells are: 

Genotype: A A Aa Aa aa aa a a 

Frequency: (1-m)2 2am(l-m) 2(l-a)m(l-m) a Jm2 2(l-a)am2 {(l-a)m)2 

Form2 = 0 ^ 1-2 m 2am 2(l-a)m - -

After self-fertilization the relative genotype frequencies in the M2 for this locus 
are: 

Genotype: AA Aa Aa aa a a 

Frequency: 1-jm am (l-a)m 5am ^( l-a)m 
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The relative frequencies of genotypes at the L, loci in the M2 are: 

Genotype 

AA + Aa + aa 

AA + Aa 

AA + Aa + Aa' 

AA + Aa + Aa' 

+aa 

Frequency 

| f i ( m ) | L ' 

| l ' j ( m ) | L ' 

|f3(m)lL' 

|f4(m)|L ' 

0 « a < 1 

|l-?(l-Q)m| 

| l -(i-a)m| 

| l - i ( l -a)m| 

11 -i ml 

definition of f(m) for 

a= 1 

1 

1 - j m 

1 

1 -im 

a = k 

1-1 m 

1-m 

1-im 

1-im 

In the same way the relative frequencies of genotypes at the L2 loci (which cannot 

be changed desirably, i.e. a = 0) are: 

Genotype Frequency 

BB + Bb 

|f6(m)|L ' =|l-?m[L* 

Similarly for L 3 loci. 

THE OPTIMUM MUTATION RATE FOR DETECTING THE DESIRED 

MUTATION 

The relative frequency of mutants that can be detected in the M 2 . f(m)i, is 

defined as the frequency of mutants that are homozygous for desirable mutated 

alleles at one or more loci among the L 1 ; carrying no negatively mutated allele 

homozygous at the remaining L, loci and no mutated alleles in homozygous state 

at the L3 loci. Thus: 

f(m), = { |f3(m)|L ' - | i ' 4 (m) | L >} | f 5(m) |L3 

= { | l - i ( l - e 0 m | L ' - | l - i m | L i } H-im|L;> 

a {e-è(l-a)mL, _ e - i m L , | e - jmL 3 I 

or 

f(m)i ^ g - jmKl-aJL^Lal _ e - i m(,L, + L3) 

- ~ ^ = - i l ( l - c v )L 1 + L3|e-ïml<l-«)Li + L3l + i | L i + L 3 j e - im(L , + L3) 

a •. df(m)[ 
t(m)i maximum is obtained when = 0 

dm 
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number of L, and L2 loci. Calculating in the same way as before and using the 
approximations 

Ln ( l - |m) = - § m 

and 

L n ( l - i ( l - a ) m ) S ï - ! ( l - a ) m 

one obtains 

2 Ln 0.25-2 Ln f'(m)A 
n l m a x A • 

31(1-a) ( L ^ D + L,! 

2 Ln 0.25-2 Ln f'(m)A 
mmax A = — for a = 1 

2 Ln 0.25-2 Ln f'(m)A 
mmax A = T~ . . , . , for a ^ 0 

3|(L,-1) + L2 | 

m max A ( a = 1) _ ( L , - l ) + L2 

"imax A(a-»0) L2 

which is = 1 for Lj <K L2 

The upper limit of the mutation rate per allele, mm a x A , is given in Fig.2. 
It is seen that mm a x A is mainly determined by the value of L2 and N. 

As suggested in the introduction, apart from the genotypes called desired 
genotypes there is another important category of genotypes that can also be used 
for breeding purposes called useful genotypes. When in the progeny of useful 
genotypes selection is for an undisturbed genotypic background, the desired 
genotypes can be obtained. 

The relative frequency of desired + useful genotypes, f(m)ß, in the progeny 
of an M, cell heterozygous for the desired mutation is the relative frequency of 
plants (in the progenies of these M, cells) that are heterozygous or homozygous 
for desirable mutated alleles at one or more L, loci and that have no negatively 
mutated allele(s) in homozygous state at the remaining Lj loci and no mutated 
alleles in homozygous state at the L2 loci. 

f(m)B = i l f3(m)|L>-1 | f s(m)|^ 

^ l l - ia-cOmlL'- ' l l - iml 1 -* 
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" — ^ ^ - - — L2 =100 

10 25 50 100 200 500 
progeny size( N) 

FIG.3. The upper limit of the mutation rate per allele for probability, p, to select the desired or 
useful genotype in the Mi progeny, size N, of an Mi cell heterozygous for the desired mutation. 

p = 0.80, a = 1; p = 0.99,a = 1; p = 0.99, a-* 0, Li = 50. 

The probability, p, to select in the M, progeny of a cell heterozygous for 
the wanted mutation, useful + desired genotypes, is 

p = l - | l - f ( m ) B | N 

Thus like f'(m)^, f(m)R has a minimum value, f'(m)B, depending on progeny 
size N and p. 
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TABLE I. THE RATIO mm a x B/mmaxA= 0.86 + 3 Ln f'(m)/l .39 + Ln f'(m) 
( fo rLnf ' (m)<-1 .39) 

\ N 

P \ ^ 

0.80 

0.99 

10 

9.35 

-

25 

5.37 

11.51 

50 

4.61 

6.15 

100 

4.20 

4.94 

200 

3.96 

4.38 

500 

3.76 

4.00 

And thus the mutation rate has an upper limit, mm a x B, determined by 
f"(m)B, a, L-! and L2. Again, calculating in the same way as before and using the 
approximations Ln( 1 -{ m) a - \ m and Ln( 1 -\ ( 1 -a)m) = — j ( 1 -a)m one obtains 

m max B — 

mmax B — 

mmax B (a 

2 Ln 0.75 —2 Ln f '(m)B 

( l - a ) ( L 1 - l ) + L2 

2 Ln 0.75 

2 Ln 0 .75-

L , -

= 1) (L, 

- 2 Ln f '(m)B 

L7 

-2 Ln f'(m)fl 

+ L2 

- 1 ) + L2 

imaxB(a-*0) 
which is a 1 

for a = 1 

for a -* 0 

for L[ <ÎC L2 

Figures 2 and 3 give the values of mm a x A and mm a x B respectively, for 
increasing Mj progeny size, N. It is seen that: 

(a) There is a minimum in progeny size for probability, p, to select the 
desired genotype or the desired + useful genotypes 

(b) nimax is mainly determined by the number of L2 loci 
(c) L! only has an effect on mm a x when the number of L2 loci is small 
(d) The effect of an increase in N diminishes above a certain value of N 
(e) The ratio mm a x ß/mmax A increases with decreasing value of N (Table I). 

Mmax B is 4 to 10 times mm a x A . 
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DISCUSSION 

For values of L3 <äC L2 the mutation rate per locus that will give the maximum 
mutant yield is determined by the upper limit of the mutation rate, mmax, for the 
proposed breeding procedure, i.e. selection of Mj plants by means of single-seed 
progeny testing, and M2 spare seed per M, plant is kept in store. 

When selection in M2 is for the desired genotype, the suggested breeding 
procedure allows mutation rates 1 to 8.5 times (N > 20) the optimum mutation 
rate calculated by Yonezawa and Yamagata [12] for direct selection (moptnin 
Fig.2). When selection in M2 is for desired + useful genotypes, the mutation rate 
may increase 2.85 to 14.29 times (N > 5) moptii (see Fig.3). Therefore, contrary 
to the conclusion of Yonezawa and Yamagata [12], to obtain mutant lines for 
direct use, mutagenic treatments are required that give effective mutation rates. 

If L3 is replaced by L2 in formula f(m)i, this formula gives the frequency of 
genotypes in the M2 that are homozygous for the desired mutation at one or more 
loci of the Lj and that have no negatively mutated allele(s) homozygous at the 
remaining loci of the 1^ and no mutated alleles in homozygous state at the L2 

loci. From these genotypes the desired genotype can be obtained, when from M3 

onwards selection is for an undisturbed genotypic background. Therefore mopti 
(L3 replaced by L2) is the optimum mutation rate for direct selection of M2 

mutant (aa) plants within the group desired + useful genotypes. The mutation 
rate per allele may increase (N > 10) when selection in M2 is for these genotypes 
and M2 spare seed is available. 

Then it follows that the mutation rates per allele may obtain a larger value 
than mop ti and m o p tn, when M2 spare seed is available (m^x depends on N and 
L2 mainly). 

However, we must realize that the degree of heterozygosity for unwanted 
alleles in the selected plants increases with increasing number of L2 and with m, 
and thus the ease of selecting the desired genotype in their progenies decreases. 
With the mutagens and treatments used in mutation breeding mutation rates per 
allele of 10"4 to 10~3 and even higher are obtained [12, 18]. 

With a mutation rate of 10"3 per allele, the probability, p, to select a desired 
or useful genotype in the progeny of an M, cell heterozygous for the desired 
mutation is 80% for L2 = 104 and N a 100. For mutation rate m, the mean 
number of mutations per cell, n, is 

n = m(L, + L2) a mL2 for L( <C L2 

thus 

n= 10 for m = 10"3and L2 = \0f* 
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SUMMARY AND CONCLUSIONS 

The genetic effects of X-ray and fast neutron seed-irradiation 

of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-

irradiation treatment with the radio-protector dithiothreitol (DTT), 

are the main subjects of this thesis. 

Chapters I and II deal with the effects of radiation - with 

or without a pre-irradiation treatment - on M.-plant development, 

and on ovule sterility, embryonic lethality and frequency of chlorophyll 

deficient embryos in the M.-siliques. These investigations revealed that: 

- with increasing radiation doses, no further increase in chlorophyll 

mutant frequency is found at relatively high doses, for Arabidopsis 

progenies of the "main" inflorescence; 

- this observed "saturation" in chlorophyll mutant frequency is, at least 

partly, due to scoring of progenies from initial cells - forming the 

sub-epidermal cell layer - which have heterogeneous radiation-sensitivities; 

- this heterogeneity, which was indicated after some of the X-ray as well 

after some of the fast neutron treatments, is most likely caused by 

replacement of the original initial cells by less sensitive cells; 

- fast neutron-irradiation of pre-soaked (3 hours) Arabidopsis seeds is 

approximately seven times more effective than X-irradiation with respect 

to the induction of M.-ovule sterility and NL-embryonic lethality; 

- dithiothrei tol (DTT) provides considerable protection against X- and 

fast neutron-irradiation, using M.-ovule sterility, and, to a lesser 

extent, the number of embryonic lethals and chlorophyll mutants as 

parameters. This, as compared to irradiation without DTT, leads to 

more mutants at a given level of M.-ovule sterility. 
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To compare the genetic effects of different mutagens, a standardized 

mutagen dose with reference to a specific genetic effect is necessary. 

The applied doses of X-rays and fast neutrons as reported in chapter II -

the X-ray doses were seven times the applied fast neutron doses -

induced similar levels of ovule sterility and embryonic lethality in 

Arabidopsie. Therefore, these doses were applied in the analysis of the 

X-ray and fast neutron induced mutant spectra. In chapter III the results 

of a study on the effects of (l) radiation type, (2) radiation dose and 

(3) a DTT pre-irradiation treatment, on the spectra of X-ray- and fast 

neutron-induced morphological mutants are reported. These investigations 

demonstrated that; 

- the X-ray- and fast neutron-induced spectra of different types of 

viable mutants vary significantly; 

- throughout the studied dose range, some mutant types occur significantly 

more frequently with fast neutrons than with X-rays, i.e. mutants 

with loosely packed leaves with long petioles and the eaeriferum mutants; 

- mutants with closely packed leaves with short petioles were more 

frequently induced with X-rays. Other mutants, e.g. the vital chlorophyll 

deficient mutants, were induced with equal frequencies by X-rays and 

fast neutrons in the studied range of radiation doses; 

- certain mutant types are relatively less frequent after irradiation 

in the presence of DTT. Since DTT preferentially protects against 

radiation-induced single and double strand-breaks, this observation 

suggests that these mutants more often than other mutants, originate 

from strand-break damage. It is striking that these mutant types were 

more frequently induced with fast neutrons than with X-rays. 

In order to compare different mutagenic treatments, the mutation 

frequency should be expressed per cell. For the transformation of the 
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mutant frequency scores, expressed as the number of mutant plants 

among the total number of M.-pi ants (or embryos in the case of 

Müller's embryo test), a mutant frequency of twenty per cent in 

the offspring of a heterozygous parent and an equal viability 

of mutant and non-mutant plants have been assumed for all treatments 

in chapters I, II and III. 

In chapter IV, the segregation frequency of mutants induced 

by various X-ray and fast neutron doses, with and without DTT 

pre-treatment is studied. 

From this investigation the following conclusions can be drawn: 

- the average mutant segregation frequencies of X-ray-and fast 

neutron-induced mutants are equal; 

- a DTT pre-irradiation treatment does not influence the segregation 

frequency of radiation-induced mutants; 

- there is no consistent change in the mutant segregation frequency 

with increasing radiation dose; 

- progenies from single flowers in the top of the M.-main inflorescence 

originate, in general, from genetically homogeneous tissue; 

- the average mutant segregation frequency is 21.5 per cent. Since 

no difference in viability of mutant and non-mutant plants is 

observed, the mutant deficit is due to reduced transmission of the 

mutant gene through (probably the male) gametophytes; 

- the observations lead to the conclusion that the mutant segregation 

frequency in the offspring of a heterozygous parent can be estimated from 

the M„-segregation frequencies, provided that progenies from a single 

flower from the top of the M.-main inflorescence are tested. The 

obtained value can then be used directly for the calculation of the 

mutant frequency per cell. 
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Arabidopsis mutants with a reduced or absent wax coating, 

i.e. eceriferum mutants, are relatively more frequently induced 

with fast neutrons than with X-rays (chapters III and V ) . The 

phenotypic analyses - by macroscopic and scanning-electron 

microscopic techniques, reported in chapter V - of the wax coating 

on stems and siliques of the wild type and of 30 fast neutron -, 

11 X-ray-, and 10 EMS-induced and of 1 spontaneous mutant, indicate 

that: 

- in eaerifervm mutants with visually reduced wax coating, the 

quantity of rodlet-shaped wax extrusions is less than in the 

wi1d type; 

- in eaerifervm mutants, with visually absent wax coating, the wax 

extrusions are affected in specific ways. Compared to the wild type, 

the rodlet-shaped crystals are absent or rare; the plate-like wax 

structures are absent or reduced, and often there is, in contrast to 

the wild type, a thick organised wax layer present on the siliques 

and stems. 

Genetic analysis of the eaerifervm mutants, reported in chapter V 

revealed that the mutants were conditioned by many different loci 

(minimum 1A, maximum kk). The ultrastructural research of the eceriferu 

mutants with absent wax coating demonstrated that, at the level of 

resolution of the scanning-electron microscope, we can distinguish 

between differential effects of different loci. However, the number 

of mutants per locus was still too low to pronounce upon X-ray or 

fast neutron specificity for individual loci. 

In chapter VI, various methods to select lines, mutated for a 

specific characteristic and with an otherwise undisturbed genetic 
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background, are discussed. A mutation breeding programme is 

proposed. It is based on the determination of M.-heterozygous 

plants by means of single seed progeny testing. Subsequently, 

the desired mutant line is selected in the progeny of these 

M.-plants of which M» spare seed is available. As compared to 

M»-bulk testing, the mutation frequency can be increased considerably 

with the proposed method. Besides, the number of independent mutants 

is higher compared to M.-progeny testing (without spare seed) and 

Mj-bulk testing. The mutant frequency and the number of spare 

seed determine to what extent. 
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SAMENVATTING EN CONCLUSIES 

Het centrale thema van dit proefschrift omvat het onderzoek 

naar de genetische effecten van Röntgen en snelle neutronen be­

straling van Ardbidopsis thaliana (L.) Heynh. zaden en de invloed 

daarop van een voorbehandeling met de tegen straling beschermende 

stof dithiothreitol (DTT). 

Het onderzoek naar de bestralings effecten, al dan niet met een 

DTT voorbehandeling, op de ontwikkeling van de M-|-plant en op de 

fertiliteit van de eicellen, de letaliteit van embryos en de fre­

quentie van chlorophyl mutanten in de M-|-hauwen is beschreven 

in de hoofdstukken I en II. Dit onderzoek liet zien dat: 

- bij hogere stralingsdoses de frequentie van chlorophyl mutanten 

in de hauwen van de M-|-hoofdas niet meer toeneemt bij verdere ver­

hoging van de doses; 

- deze "verzadiging" van de chlorophyl mutanten frequentie ten dele 

of geheel kan worden toegeschreven aan het scoren van nakomelingen 

afgeleid van (subepidermis vormende) initiaal cellen die verschil­

len in stral ingsgevoeligheid; 

- dit verschil in stra1ingsgevoeligheid waarschijnlijk zijn oorzaak 

vindt in vervanging van de oorspronkelijke initiaal cellen door 

minder gevoelige cellen, zowel na Röntgen als na snelle neutronen 

bestral ing; 

- betreffende de inductie van steriliteit en embryonaal letaliteit 

bestraling met snelle neutronen van voorgeweekte Ardbidopsis 

zaden ongeveer zeven maal zo effectief is als bestraling met 

Röntgen stralen; 
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- dithiothreito) (DTT) een goede bescherming geeft tegen Röntgen 

stralen en snelle neutronen. DTT vermindert duidelijk de steri­

liteit, en in geringere mate ook de embryonaal letaliteit en de 

frequentie van chlorophyl mutanten. De grotere bescherming te­

gen de inductie van steriliteit is waarschijnlijk het gevolg 

van specifieke bescherming door DTT tegen chromosoom breuken. 

Om de genetische effecten van verschillende mutagentia te kun­

nen vergelijken is het gebruik van een standaard mutagene dosis met 

een specifiek genetisch effect noodzakelijk. De toegepaste doses 

Röntgen stralen en snelle neutronen - de Röntgen doses waren zeven 

maal zo hoog als die van snelle neutronen - induceerden, zoals in 

hoofdstuk II is vermeld, vergelijkbare niveaus van steriliteit en 

embryonaal letaliteit bij Arabidopsis. Daarom werden deze doses ge­

bruikt om het verschil tussen de door Röntgen stralen en snelle 

neutronen geïnduceerde mutanten spectra en de invloed hierop van 

een DTT voorbehandeling te onderzoeken. Uit dit onderzoek, beschre­

ven in hoofdstuk III, bleek dat: 

- er significante verschillen bestaan tussen de door Röntgen stralen 

en door snelle neutronen geïnduceerde mutanten spectra; 

- sommige typen mutanten in groter aantal voorkomen na bestraling 

met snelle neutronen dan na Röntgen bestraling, te weten de mu­

tanten met ver uit elkaar staande rozet bladeren met lange blad-

steel en de ecer-iferwn mutanten; 

- mutanten met dicht opeenstaande brede rozet bladeren met korte 

bladsteel in grotere mate voorkomen na Röntgen bestraling. Andere 

mutanten, b.v. chlorophyl mutanten, worden relatief even frequent 

door snelle neutronen als door Röntgen stralen geïnduceerd; 

- bepaalde typen mutanten relatief minder vaak voorkomen na een 

DTT voorbehandeling. Vermoedelijk zijn deze mutanten vaker door 

chromosoom of Chromatide breuken ontstaan dan het geval is bij 
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andere mutanten, omdat DTT specifiek beschermt tegen inductie 

van breuken. Opmerkelijk is dat deze mutant typen vaker voor­

komen na bestraling met snelle neutronen dan na Röntgen bestra­

ling. 

Ten einde verschillende mutagene behandelingen te vergelijken, 

dient de mutatie frequentie per cel weergegeven te worden. Bij 

het omrekenen van de mutanten frequentie, uitgedrukt in het aan­

tal mutanten per totaal aantal f^-planten (of embryos, in het 

geval van Müller's embryo toets), is in de hoofdstukken I, II en 

III aangenomen dat de mutanten frequentie in de nakomelingschap 

van een heterozygote ouder-plant twintig procent bedraagt en dat 

de levensvatbaarheid van de mutanten gelijk is aan die van niet 

mutanten. 

In hoofdstuk IV zijn de resultaten van een onderzoek naar deze 

frequentie en levensvatbaarheid van de door Röntgen stralen en 

snelle neutronen geïnduceerde mutanten weergegeven. Uit dit onder­

zoek blijkt dat : 

- er geen significant verschil is tussen de door Röntgen stralen 

en de door snelle neutronen geïnduceerde mutanten wat betreft 

de frequentie waarmee ze in de nakomelingschap van een hetero­

zygote ouder-plant voorkomen; 

- er geen systematische verandering in deze frequentie optreedt 

bij toenemende bestralingsdoses ; 

- er geen verschil is waargenomen in levensvatbaarheid tussen 

mutanten en niet mutanten; 

- de gemiddelde frequentie van mutanten in de nakomelingschap van 

een heterozygoot 21.5 procent bedraagt. Het tekort aan mutanten 

is veroorzaakt door gameten selectie (certatie); 

- nakomelingen van een bloem in de top van de M-j-hoofdas in het 
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algemeen voortkomen uit genetisch homogeen weefsel, m.a.w. 

dat er geen binnen-bloem chimaerie is. 

Uit deze gegevens (hoofdstuk IV) blijkt dat de gemiddelde 

frequentie van mutanten in de nakomelingschap van een hetero-

zygoot voor alle toegepaste bestralingen bepaald kan worden uit 

de splitsingsverhoudingen in de M2, tenminste wanneer de nakome­

lingschappen van één hauw van de top van de Mj-hoofdas getoetst 

worden. De gevonden waarde kan dan gebruikt worden om rechtstreeks 

de mutatiefrequentie per cel te berekenen. 

Ardbidopsis mutanten met een gereduceerde waslaag of zonder 

waslaag op stengel en hauwen, de zgn. eeevifenm mutanten, worden 

relatief vaker met snelle neutronen dan met Röntgen stralen geïndu­

ceerd. Deze mutanten zijn met behulp van een rasterelektronenmicroscoop 

(REM) fenotypisch gekarakteriseerd (hoofdstuk V ) . Hieruit bleek dat: 

- in eceviferum mutanten, met een op het oog gereduceerde waslaag, 

de staafvormige was structuren in het algemeen geringer in aantal 

of korter zijn dan in niet mutanten; 

- wanneer men de waslaag van eoerifevwn mutanten, met een op het oog 

ontbrekende waslaag, vergelijkt met die van normale planten, bepaal­

de was structuren geheel ontbreken of anders zijn. Staafvormige 

structuren zijn zeldzaam of afwezig; plaatvormige structuren zijn 

geringer in aantal, omvang of afwezig en vaak is er, in tegenstel­

ling tot normale planten, een dikke amorfe waslaag aanwezig op 

stengel en hauwen. 

De kruisingsexperimenten, beschreven in hoofdstuk V, toonden aan 

dat de ecerifemm mutanten door een groot aantal verschillende loei 

bepaald worden (minimaal 14, maximaal kk). Het aantal mutanten per 
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locus was te gering om een uitspraak te doen over verschil in 

specificiteit tussen Röntgen en snelle neutronen voor afzonder­

lijke loei. Het rasterelektronenmicroscopisch onderzoek van mu­

tanten met een op het oog ontbrekende waslaag, toonde aan dat op 

deze wijze specifieke effecten van verschillende loei kunnen wor­

den vastgesteld. 

In hoofdstuk VI zijn verschillende selectie methoden bij zelf-

bevruchters besproken voor het verkrijgen van specifieke mutanten 

die, met uitzondering van de gewenste mutatie, genotypisch gelijk 

zijn aan het uitgangsmateriaal. Er is voorgesteld om eerst de M^-

planten op te sporen die heterozygoot zijn voor de gewenste mutatie 

d.m.v. het toetsen van een nakomeling per plant. Vervolgens kan men 

dan na uitzaai van M2_reserve zaad van deze heterozygote Mi-planten 

de gewenste mutante M^-lijnen selecteren. Op grond van een theore­

tisch model wordt aangetoond dat met deze selectie methode de muta­

tie frequentie per locus hoger kan zijn dan bij t^-massa selectie. 

Bovendien is, bij een gegeven mutatiefrequentie en een bepaalde om­

vang van de M2"popuIatie, het aantal onafhankelijke mutanten met 

het gewenste genotype dat zo verkregen wordt groter dan door 

middel van M2-nnassa selectie of door middel van afzonderlijk toet­

sen (zonder reserve zaad) van Mj-nakomelingschappen. Hoeveel gro­

ter dit aantal is, is afhankelijk van de mutatiefrequentie en de 

hoeveelheid reserve zaad per M^-plant. 
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