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Abstract 

Van Boekei, M.A.J.S. (1980) Influence of fat crystals"in the oil phase on stability of 
oil-in-water emulsions. Agric. Res. Rep. (Versl. landbouwk. Onderz.) 901, ISBN 90-220-0739-1, 
(XII) + 94 p., 36. figs. 16 tabels, 125 refs. Eng. and Dutch summaries. . 
Also: Doctoral thesis Wageningen. ':v.i- : . •• ' •'• " ,< .' •• . ,.: ' : :. ." •. '"..:'. ."' ' 

Coalescence at rest and during flow was studied in emulsions of paraffin oil in water 
with several surfactants and with crystals of solid paraffin or tristearate in the oil 
phase. Solid fat in the oil phase was estimated by pulsed nuclear magnetic resonance. 
Without crystals, oil-in-water emulsions were mostly stable and flow hardly influenced 
coalescence, even of unstable emulsions. Emulsions with crystals in the dispersed oil 
phase were less stable if crystals appeared at the interface. The contact angle 
indicated that crystals could be oriented in the interface; if so, instability was pro
moted by creaming, Couette flow, turbulence or flow with Taylor vortices. Coalescence 
in such systems could be caused by crystals sticking through the interface and piercing 
the film between the globule and a second approaching globule. The effect of variables 
such as type of surfactant, type of crystal, amount of crystalline fat, globule size, 
volume fraction of fat and ionic strength fitted this view. Natural'cream with part of' 
the globular fat crystallised behaved to some degree like the model systems but there 
were deviations. 

Free descriptors: coalescence; crystallisation; Couette flow; Taylor vortices; 
turbulence; cream; pulsed nuclear magnetic resonance; glycerol tristearate; solid 
paraffin; paraffin oil; contact angle. .•••:'.. 

This thesis will also be published as Agricultural Research Reports 901. 
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Stellingen 

1. Het coalescentiemechanisme van emulsies van olie in water met kristallen in de 

disperse fase verschilt van dat van echte emulsies. 

Dit proefschrift. 

2. De schuimbrekende werking van emulsies met vaste deeltjes in de disperse fase is met 

hetzelfde mechanisme te verklaren als de coalescentie van dergelijke emulsiedruppels. 

Dit proefschrift. 

3. De conclusie van Back dat de op elektronenfoto's waargenomen vervorming van melk-

vetbolletjes veroorzaakt is door laminaire stroming, is gebaseerd op foutieve bereke

ningen. De vervorming kan veroorzaakt zijn door de prepareertechniek. 

W.D. Back, 1975. Dissertatie, Technische Universität, Hannover. 

4. De 'nieuwe en nauwkeurige' methode ter bestudering van emulsiestabiliteit met behulp 

van pulse-NMR (kernspinresonantie), zoals ontwikkeld door Trumbetas et al., is weliswaar 

nieuw doch onjuist. 

J. Trumbetas, J.A. Fioriti & R.J. Sims, 1976. J. Am. Oil Chem. Soc. 53: 722-726. 

5. Het beschrijven van reologische eigenschappen van materialen met behulp van 

mechanische modellen van veertjes en zuigertjes geeft geen wezenlijk inzicht in de 

fysische achtergrond van die eigenschappen. 

o.a. B.W. Barry, 1975. Adv. Colloid Interface Sei. 5: 37-75. 

6. Volgens Fleming heeft het thermiseren van melk als hoofddoel het voorkomen van 

lipasewerking, terwijl een bijkomend voordeel zou zijn dat bacteriën gedood worden. 

Gezien de thermoresistentie van sommige bacteriële lipasen is het grootste voordeel 

juist het doden van bacteriën. 

M.G. Fleming, 1979. IDF report of Group A3-lipolysis, A-Document 43. p. 40-52. 



7. Pectine blijkt een specifiek aandeel te hebben in de fysiologische werking van 

voedingsvezel. Veel bepalingsmethoden voor de samenstelling van voedingsvezel vertonen 

tekortkomingen bij de bepaling van pectine en dienen op dit punt verbeterd te worden. 

M. Stasse-Wolthuis, 1980. Wld. Rev. Nutr. Diet (in druk). 
D.A.T. Southgate, G.J. Hudson & H. Englyst, 1978. J. Sei. Food Agric. 29: 979-988. 

8. In tegenstelling tot de hypothese van Chiba et al. dat enzymatische omzetting van 

aldehyden, ter verwijdering van de bonesmaak van soya-eiwit, ook plaatsvindt wanneer 

aldehyden gebonden zijn aan het eiwit, steunen hun experimenten veeleer de veronder

stelling dat alleen vrije aldehyden worden omgezet. 

H. Chiba, N. Takahashi, N. Kitabatake & R. Sasaki, 1979. Agric. Biol. Chem. A3: 
1891-1897. 

9. De suggestie van Kramer dat het beter benutten van afvalprodukten die vrijkomen bij 

het verwerken van landbouwprodukten, bijdraagt aan een oplossing van het wereldvoedsel-

vraagstük, is een treurig voorbeeld van een eenzijdige benadering van ontwikkelings

problematiek. 

A. Kramer, 1977. J. Food Quality 1: 279-289. 

10. Het gebruik van extract van schapemest voor de kleuring van biologisch-dynamische 

Texelse schapekaas is vooral microbiologisch-dynamisch. 

"11. Voorstanders van de idee dat sport en politiek niets met elkaar van doen hebben, 

miskennen het sportieve element in de politiek. 

Proefschrift van M.A.J.S. van Boekei. 



Woord vooraf 

Het gereedkomen v a n een proefschrift biedt e e n goede gelegenheid om een ieder te 

bedanken d i e , direct of indirect, daaraan heeft bijgedragen. Ik denk dan in de eerste 

plaats a a n m i j n ouders, die mij steeds gestimuleerd h e b b e n o m te studeren. Beste o u d e r s , 

beschouw dit proefschrift als een tastbaar resultaat v a n jullie inspanningen. 

Corrie, het is m e d e jouw verdienste dat ik dit proefschrift heb k u n n e n voltooien. 

Ik dank je v o o r h e t geduld dat j e getoond hebt tijdens m i j n letterlijke, e n vaak ook 

figuurlijke, afwezigheid. ••>. : . ' n . . • 

Beste Pieter, hooggeleerde promotor, mede dankzij h e t feit dat ik steeds een beroep 

mocht doen op jouw ontzaglijke kennis op velerlei gebied, is de afgelopen periode v o o r 

mij tot een zeer leerzame geworden. Ik b e n je zeer erkentelijk voor de uitstekende e n 

stimulerende begeleiding die je m e gegeven h e b t . 

Professor Prins heeft in de loop van het onderzoek ook het nodige bijgedragen v i a 

vele discussies e n ik w i l hem daarvoor hartelijk bedanken. 

Hugo Stempher heeft een belangrijk aandeel gehad in het verrichten v a n de 

experimenten. Beste H u g o , jouw lijfspreuk 'eerst zien e n dan geloven' w a s vaak v a n 

toepassing. Niettemin hebben w e veel gezien dat ongelooflijk leek. H e t w a s in ieder 

geval een genoegen m e t jou te m o g e n samenwerken. 

Verder w i l ik alle medewerkers v a n de Sectie Zuivel en v a n de Centrale Dienst 

Biotechnion dank zeggen v o o r de h u l p bij allerhande zaken e n v o o r d e prettige sfeer w a a r 

door de afgelopen drie jaar, behalve een leerzame, ook een plezierige periode is geweest. 

J a n van der Horst hééft in het kader van zijn doctoraalstudie een gewaardeerde 

bijdrage geleverd aan de N M R experimenten. 

D e h e e r C. Rijpma bedank ik voor de vakkundige wijze waarop hij de figuren v a n dit 

proefschrift heeft getekend. 

Mijn dank gaat verder uit naar Dave Waddington en Don Darling, die de Engelse taal

fouten zoveel mogelijk hebben verwijderd, hoewel hun daarvoor nauwelijks de tijd werd 

gegund. 

Ik ben ook zeer erkentelijk voor de snelle en accurate wijze waarop het manuscript 

werd getypt door Betty de Jong, Rosy Janssen en Geke Nass. 

Tenslotte gaat mijn dank uit naar de medewerkers van Pudoc voor de uiteindelijke 

vormgeving van het proefschrift. 
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B constant defined in Equation 34 

B-, shortest dimension of a deformed sphere 

B(r ) function defined in Equation 54 

a relative standard deviation of the surface weighed 

distribution 

C{v ) function defined in Equation 54 
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e elementary charge 
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E energy level of a proton in a magnetic field 

ƒ factor used in pulse NMR, Equation 27 

F mass fraction of fat in emulsions 
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g acceleration due to gravity . 

G; G' shear rate; apparent shear rate 

h distance between the surfaces of two equal sized 

spheres: h = r - 2b 

h thickness of a cream layer 
cr ' 

H height of cylinders of Couette and Taylor equipment 

HQ static magnetic field 

H-, pulse of radio frequency 

J; J„ capture frequency per particle; according to 

Smoluchowski 

Jç.; J* capture frequencies defined in Equations 67 and 68 

k Boltzmann's constant (1.38 x 10"23) 

k ; k^\ k~; fc, coalescence rate; estimated by spectroturbidimetry 

at one wavelength; by Coulter Counter; by spectro

turbidimetry 

I thickness of a layer, Equation 9 (m) 
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I characteristic length in Re, Equation 22 
s 

£; £* semi-axis of the boundary of the capture cross-

section; dimensionless semi-axis (L/b) 
M molecular weight 

Mn resultant magnetisation vector 

n, ; 
n_ refractive index of medium 1 ; of medium 2 

(m) 

(m; 1) 

(kg kmol ) 

(J T"1) 

(1) 
(nf3) 

(m-3) 

Cm"3) 

(1) 

(1) 

(1) 

CD 

n- number of ions per unit volume 
N; If.; N number of particles per unit volume; of particles i; 

at time t 
N - N. number of particles in Equations 67 and 69, 

respectively 

N, ; N, number of protons in lower and higher energy level 

(NMR), Equation 26 

p 2ir h/X 

Pe translational Pêclet number, Equation 58 

q viscosity ratio nVn-

light-scattering coefficient; corrected; of 

particles i (1) 

r ; r* distance between centres of two spheres; dimension-

less distance (r/b) Cm; 1) 
— 1 —1 

R molar gas constant (8.314) (J K mol ) 

R; R^ radius of outer and inner cylinder of Couette and 

Taylor equipment Cm) 

R- • 'collision radius' of particles i and j (b• + b . ) (m) 

Re; Re Reynolds number, Equation 23; particle Reynolds 

number, Equation 59 (1) 

s gap width, R - R . (m) 
SF'' SEM specific surface area of the fat; of the emulsion (m ) 
S the n-th moment of particle size distribution, 

Equation 1 (m11) 
S ( y ) ; S(_Tm) NMR signals at temperature T; at temperature T (1) 
•?£ mass fraction of solid fat (1) 
SR(r); S R C ^ ) NMR signals of reference oil at temperature T; at 

temperature T (1) 
s b' S„ solubility of particle with radius i; 'of a particle 

with b = », Equation 30 (1) 
t; * time; dimensionless time (* G) (s; 1) 
?'< 2*m temperature; temperature of fusion of solid fat (K) 
T\> T2 longitudinal (NMR) relaxation time; transversal (NMR) 

relaxation time (s) 
T

c>
 Tf final melting point; fusion temperature, Equation 29 (K) 

Ta critical Taylor number, Equation 24 (1) 
"0; "i circumferential velocity of outer cylinder; of inner 

cylinder (m s"1) 



"1 ' u2' "3 velocity components along x-, ; a^; «, axes (m s ) 

V^; V-^ attraction energy; repulsion energy (J) 
v circumferential speed of a sphere rotating in Couette 

flow (m s"1) 
v s velocity of a sphere according to Stokes' law, 

Equation 48 (m s~1) 
ff^. rate of encounters of particles i and j in 

Brownian motion (m s ) 
We Weber number, Equation 61 (1) 

Xy ; ^2 ; a:, Cartesian coordinate axes ; distance coordinates (m) 
a?s mole fraction of solute, Equation 29 (1) 

Z(xj); Z (x- ) function describing boundary of the capture cross 

section; dimensionless (Z{xj)/b) (m; 1) 
2 valency of ion (1) 

Z reduced turbidity, Equations 11 and 14 (1) 

a; a., coalescence efficiency: fraction of encounters in 

Couette flow leading to coalescence; efficiency 

defined in Equation 68 (1) 

aQ; a; a' orthokinetic capture efficiency, Equation 52; 

perikinetic capture efficiency, Equation 45 ; 

fraction of encounters leading to h < 30 nm or 

h < 25 nm in Couette flow (1) 

Y; Y Q W interfacial tension; oil-water interfacial tension 

Y ; Y ^ interfacial tension of the pure phase; dispersive 

contribution to the interfacial tension, Equation 35 
Y g gyromagnetic ratio, Equation 25 

r surface excess, Equation 32 

Ä average displacement of a particle in Brownian motion, 

Equation 49 

AY interfacial-tension gradient 

A J? enthalpy of fusion 

ç electrokinetic potential 

n; n ; ru viscosity; of the continuous phase; of the disperse 

phase 

0 polar coordinate 

0 contact angle 

K reciprocal double-layer thickness 

X wavelength 

v magnetic moment of a proton 

v kinematic viscosity 

p; p 3 2 size parameter in spectroturbidimetry, Equation 8; 

volume-surface average size parameter, Equation 13 

a coefficient of variation of size distribution, 

Equation 3 
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a pressure in a cream layer, Equation 47 (N m ) 

T average life time of a transient doublet in Couette 

flow, Equation 66 (s) 

<(> polar coordinate (1) 

4 ' , <j> volume fraction of fat; in a cream layer (1) 

i|<j stern potential (mV) 
_1 

u angular velocity (s ) 

u, Larmor frequency, Equation 25 (s~ ) 



1 Introduction 

1.1 GENERAL INTRODUCTION 

An emulsion is a dispersion of one liquid in another, the.two being immiscible. 

Emulsions are used, for example, in foods, pharmaceutics, cosmetics and insecticides. 

In some uses, an emulsion must remain stable (e.g. during processing and storage of 

milk), in others instability is required (e.g. when making butter from cream). Research 

mainly deals with emulsification and stability (creaming, flocculation, coalescence). 

Mostly, stability is studied in a quietly standing emulsion, in which only Brownian 

motion of the droplets would occur, but sometimes a flow field is applied ('mechanical 

stability'). Most studies are made on model systems and are of a fundamental nature and 

the results may then be difficult to apply to practical systems, which are much more 

complicated. On the other hand, many studies of practical interest are difficult to 

rationalise with a theoretical model. Consequently there is a gap between fundamental 

research and its practical application. 

In practice, the oil phase may crystallise at a certain temperature. There is hardly 

any literature describing this effect and its consequences on the stability of the emul

sion. Information as to the effect of crystals on stability of emulsions is effectively 

limited to the stabilisation by solid particles (Pickering stabilisation). Lucassen-

-Reynders (1962) studies stabilisation of water-in-oil emulsions by trisearate crystals 

as a model system for margarine. Some of the features she observed may also apply to 

oil-in-water emulsions with crystals in the oil phase, but on the whole conditions were 

far different. Skoda & Van den Tempel (1963) used oil-in-water emulsions with trigly

cerides in the oil phase to study crystallisation kinetics of triglycerides. These emul

sions were observed to be. rather unstable. Walstra & Van Beresteyn (197S) studied the 

crystallisation of milk fat in the emulsified state (oil-in-water emulsions) but again 

the interest was in kinetics of crystallisation. El-Difrawi & Ismail (1979) studied the 

stability, thermal.dilatation and solidification properties of emulsions of partially 

hydrogenated cottonseed oil in skim milk. However, they did not properly measure the 

stability of the emulsion, nor did they pay any attention to the possible effect of 

crystallisation on stability. 

Sideman et al. (1972) studied coalescence of droplets containing Na^SO.-IOH^O 

crystals in saturated Na2SO. mother liquor, dispersed in kerosene or perchloroethylene. 

Experiments were made in agitated vessels and it appeared that droplets with crystals 

coalesced easier than droplets without crystals. These droplets were, however, several 

orders of magnitude larger than those normally observed in emulsions: droplets with 

crystals were 1-3 mm and droplets without crystals 0.1-0.3 mm. 

Fukushima et al. (1976, 1977) observed that emulsions of cetyl alcohol in water 

1 



(stabilised by a polyoxyethylene surfactant) were unstable if the alcohol crystallised in 

a certain polymorphic form. A similar effect was found by Barry (1968), when adding 

cetyl alcohol to paraffin oil-in-water emulsions stabilised by sodium dodecylsulphate. 

Slight instability was accompanied by crystallisation of the alcohol. 

Churning of cream to produce butter is impossible without crystals in the oil phase 

or when the fat is completely solidified (Mulder & Walstra, 1974). According to Berger & 

White (1971), fat crystals are necessary for clumping of fat globules ('churned fat') in 

ice-cream. 

Addition of certain solids could enhance coalescence in emulsions (Mizrahi & Barnea, 

1970). For example, Labuschagne (1963) noticed that addition of solid particles to cream 

could impair stability when cream was churned in the absence of air. The latter pheno

mena, however, are caused by addition of solids to emulsions, whereas this investigation 

is concerned with the possible effect of crystals on stability, the solid phase being a 

part of the emulsion droplet itself. 

It appears from this superficial survey that crystals can influence the stability to 

coalescence, but it remains uncertain how and under what circumstances the effect can be 

explained. The aim of this study was to investigate the effect of fat crystals in the 

oil phase on stability of oil-in-water emulsions. Strictly speaking, these systems are 

not true emulsions but three-phase systems. Since, however, the fat crystals appear at a 

certain temperature in what originally are real emulsions, it is acceptable to refer to 

these systems as oil-in-water emulsions. The use of the terms 'oil' and 'fat' may be 

somewhat confusing because in the literature 'oil' is sometimes used to mean liquid oil 

and 'fat' a partially crystalline fat. Here the term 'oil' refers to the non-polar 

phase, thus liquid as well as solid fat. 

1.2 STABILITY OF EMULSIONS 

It is possible to distinguish between several types of stability or instability in 

emulsions: creaming, flocculation, coalescence and occasionally disruption. Stability 

may be defined as resistance to physical change by external factors (Mulder & Walstra, 

1974). Thus the term stability refers to a characteristic time (e.g. a half-life) for a 

certain change to occur. Emulsions may have half-lives of minutes, days or years and 

may kinetically be stable, but in a thermodynamic sense they are always unstable. Free 

energy is accumulated in the interface due to the large interfacial area in emulsions. 

The system strives for the lowest possible free energy, which eventually means complete 

phase separation. Microemulsions, which are thermodynamically stable, are not considered 

here. 

Instability to gravity creaming (or generally to sedimentation) is due to the density 

difference between the two phases. Amongst other factors, size of the emulsion droplets, 

density difference and viscosity of the continuous phase govern the extent of creaming 

(Walstra & Oortwijn, 1975). Creaming is not a reversible process, but the effect can 

easily be destroyed. 

A second type of instability is flocculation which may be defined as the capture of 

particles to form aggregates, in which particles remain together for some time whilst the 



individual particles still exist. The classical theory of colloid stability for hydro

phobic sols applies to flocculation of emulsion droplets. This theory describes the de

pendence of flocculation on the interaction energy between two particles as a function of 

interparticle distance. The total interaction energy is the resultant of attraction and 

repulsion. Attraction is usually caused by London-Van der Waals forces, whereas in emul

sions, repulsion is mostly due to the presence of surfactants at the oil-water interface. 

In the case of ionic surfactants the interaction can conveniently be described by the 

theory of Deryagin-Landau-Verwey-Overbeek (DLVO theory) (Van den Tempel, 1953). For non-

ionics and macromolecular substances steric repulsion comes into play, and for polyelec-

trolytes a combination of electrostatic and steric repulsion is present (for example 

Van Vliet, 1977). Figure 1 gives an example of the interaction energy between two glo

bules. In principle, particles can flocculate in the primary minimum (A in Fig. 1) and 

in the secondary minimum (B in Fig. 1). An energy barrier (maximum at point C) can pre

vent the particles from flocculation in the primary minimum. But in the primary minimum 

emulsion droplets are so close together that coalescence is inevitable. The location as 

well as the depth of the secondary minimum depend on the actual interaction energy. When 

the depth is less than about 1 kT no flocculation takes place, but only short time en

counters. When this depth is more than a few times kT flocculation may occur. Floccula

tion may be retarded because of viscous drag when the particles approach each other, the 

more so when the interparticle distance becomes small. When flocculated in the secondary 

minimum the particles are separated by a thin film of continuous phase with a thickness 

ranging from about 10 to 100 nm. 

Rupture of this thin film results in the flowing together of the droplets. This 

process is called coalescence, a third cause of instability in emulsions. If the energy 

interaction energy VT 

distance of separation h 

Fig. 1. Schematic representation of the interaction energy (the energy needed to bring 
particles from h = °° to h) as a function of the interparticle distance h. A refers to 
the primary minimum, B to the secondary minimum and C to the maximum energy barrier. 



barrier has been overcome, rupture will take place rapidly, because it will be accelerat
ed by Van der Waals attraction. Rupture can occur, however, when there is still an ener
gy barrier to overcome, perhaps when the globules have been flocculated for a longer 
time. Besides the repulsive interaction energy, other aspects are also involved. Inter-
facial phenomena like Gibbs-Marangoni effects tend to stabilise the thin film between 
droplets when disturbances arise in the film (Van den Tempel, 1960). Viscous resistance, 
experienced when liquid has to flow out of the film, can also have a stabilising effect. 
Finally rupture or desorption of surfactant must take place, and this requires son« ac
tivation energy as well. The process of rupture of thin films is not yet fully under
stood The theory developed to date (Vrij et al., 1970) attempts to correlate the 
probability of rupture with interaction energy and distance of separation. It is studied 
y examining whether small waves along the interface (surface ripples as a result of ex

terna disturbances) are damped, or grow until rupture occurs. This depends on the in
teraction energy as a function of interparticle distance and on the possible development 
of mterfacial tension gradients. For most practical systems, however, theory predicts 
no rupture to occur, whereas in practice emulsions may be unstable 

expen!e0tofrthhenTn " ^ ^ ^ ^ " ^ iS *" ^ h ° f ^ <**ules « * » expense o£ ̂  smaller ones. ft ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
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perikinetic aggregation for particles larger than 1 \m, because the rate of encounters is 

proportional to the cube of the particle radius (and to the shear rate). Recently, 

Van de Ven & Mason (1976a, 1977) applied corrections to the Smoluchowski equation by in

troducing hydrodynamic and colloidal interaction (see also Zeichner & Schowalter, 1977). 

Their analysis revealed that, depending on the interaction energy and shear rate, en

counters can either lead to separating doublets (short-time encounters) or to permanent 

doublets; in the latter case, flocculation may be in the primary or in the secondary 

minimum. 

Most experimental work on flocculation and/or coalescence pertains to perikinetic 

aggregation. Some experiments have been carried out on aggregation of lattices in simple 

shear flow (Stamberger, 1962; Swift & Friedlander, 1964; Curtis & Hocking, 1970; Warren, 

1975; Utracki, 1973; Ives, 1978; Zeichner, 1978; Zeichner & Schowalter, 1979, and the 

work by Mason and coworkers, summarized by Mason, 1977). Flow was found to promote ag

gregation of particles. Most results were, at least qualitatively, in agreement with the 

theory of Van de Ven & Mason (1976a, 1977). 

Studies on the effect of flow on stability of emulsions are scarce. Labuschagne 

(1963) studied the behaviour of natural cream in flow with Taylor vortices and cream was 

found to be very unstable in this type of flow. Swift & Friedlander (1964) carried out 

some experiments with emulsions in Couette flow. They observed that stable emulsions 

were also stable in shear flow (no coalescence). Back (1975) studied the stability of 

milk in Couette flow and he found instability only when the flow had changed from laminar 

to turbulent. 

Besides aggregation of particles in shear flow, disruption of aggregates and even 

emulsion droplets may occur. Normal emulsion droplets in the micron size range are not 

disrupted in simple shear flow unless the shear rate is very high and the droplet very 

large. Moreover, fat crystals in the emulsion droplets make disruption more difficult. 

Other types of flow-like turbulence or elongational flow (pure shear) are more effective 

in disruption (Walstra, 1980). Kao & Mason (1975) showed that disruption of aggregates 

(flocculated in the secondary minimum) was three times faster in elongational flow than 

simple shear flow of the same velocity gradient. 

In conclusion, the stability of an emulsion to flocculation or disruption may be 

affected by flow. The effect must depend on properties of the emulsion (such as droplet 

size, interaction forces) and on the flow field applied. Very little is known about the 

effect of a flow field on coalescence stability. 

1.4 OUTLINE OF THIS STUDY 

The purpose of this study was to investigate influence of fat crystals in the oil 

phase on stability of oil-in-water emulsions. Most attention was directed to model sys

tems, in which parameters could be varied independently, such as surfactants (anionic 

soaps, nonionics, polymers, oil-soluble surfactants), crystals (type and content), fat 

content and droplet size of the emulsions. The study was restricted to oil-in-water 

emulsions, but results may in some respects also apply to water-in-oil emulsions. 

Stability against coalescence at rest (perikinetic) and in flow fields was studied 



for emulsions with and without crystals. Most experiments were done in simple shear 

(Couette flow), since a theoretical analysis is available for this kind of flow. 

Furthermore, emulsions were subjected to flow with Taylor vortices and occasionally to 

turbulent flow. Finally, the behaviour of cream was compared with that of the model 

emulsions. Since air bubbles can destabilise an emulsion very effectively (Mulder & 

Walstra, 1974), care was taken to exclude air. 

The results obtained show a striking difference in behaviour between true oil-in-

water emulsions and emulsions with crystals in the oil phase. A mechanism is proposed 

by which the specific effects of fat crystals, together with the effects of flow, could 

be explained, thereby indicating one possible cause of coalescence in these systems. 

Although practical systems are much more complicated than model systems, it is hoped 

that this work represents a useful compromise between the practical and fundamental ap

proach. 



2 Characterisation of materials 

2. 1 PARAFFIN 

Paraffin oil was obtained from Lamers & Indemans, 's-Hertogenbosch, The Netherlands, 

Ph. Ned. VI, viscosity 6.8-8.1 x 10-2 Pa s. It had a density of about 860 kg m-3. The 

oil contained, however, some traces of surface-active material, since the interfacial 

tension yow of paraffin oil against water decreased with time. When an oil layer was 

placed upon a water layer and the interfacial tension measured with a Wilhelmy plate, y 

decreased in about one day from 50 mN m~' to 20-30 mN m-1 (this final value varied for 

different paraffin samples). This very slow (diffusion determined) decrease indicated 

that only traces of contaminant were involved. Diffusion in an emulsion droplet will be 

very fast (e.g. 1 ms over 1 ym) ; the interfacial tension of emulsion droplets may there

fore be regarded as constant. 

Solid paraffin was obtained from Merck A.G., Darmstadt, W-Germany. It had an 

apparent melting point of 52-54 °C and a density of about 880 kg m . 

2.2 TRIOLEIN 

Triolein was supplied by K & K Laboratories Inc. USA. No further specifications were 

available. 

2.3 TRISTEARATE 

Tristearate was obtained from Pfaltz & Bauer Inc., Stanford, USA. It was recrystal-

lised three times in acetone and washed with methanol to remove monoglycerides. Gaschro-

matographic analysis revealed, however, that the tristearate was not pure. The fatty 

acid pattern showed 70% (w/w) stearic acid, 251 (w/w) palmitic acid and 5% (w/w) myristic 

acid. The distribution of these fatty acids over the triglyceride molecules was not de

termined. 

Some experiments were also performed with very pure tristearate, kindly supplied by 

P. de Bruyne, Unilever Research, Vlaardingen, The Netherlands. In this triglyceride was 

99.3% of the fatty acids stearic acid and the content of mono- and diglycerides was less 

than 0.5°6. 

2.4 WATER-SOLUBLE SURFACTANTS 

Polyvinyl alcohol (PVA) is a nonionic water-soluble polymer, consisting of monomers 

of vinyl alcohol and esters of acetate and vinyl alcohol (Fig. 2). The percentage of 



/ X \ " '3 /1-X 
i 

n 
Fig. 2. Structural formula of polyvinyl alcohol, x = fraction hydrolysed, n = degree 
of polymerisation. 

alcohol groups is indicated by the degree of hydrolysis. Following Lankveld (1970) the 
P o w e r e coded by two numbers: the first indicates the viscosity of a 41 (w/v) aqueous 
solution at 20 C and the second the degree of hydrolysis. The PVAs used were the same 
as those used by Lankveld (1970), Fleer (1971) and Koopal (1978). The molecular weights 

i?hT\ 'T863 °f thS POlymerS Were d e t e m i n e d * K 0°Pa l WV and turned out to be 

much higher than the values given by Lankveld (1970) (which were in fact the values stat

edby the manufacturer). Table ^ summarizes the different values. PVAs with a degree of 

TT" h '"I W6re SOlUMe St r ° 0 m temPeratUre «* * ~ » ****** - about T°C. 
ZlZVi I ° £ h y d r ° l y S i S ° f 98?" Were eaSily S ° l u b l e at «*out 80 °C and re-

" 0 Fle°rn9°7irn C°Tn g- ™ ** ^ ^ ^ ^ ta ^ ^ ° * ^ ^ > 1970 Fie r (1971) p01nted out that PVA can be regarded as a nonionic polymer. 

from m " r S U l f t e (NaLS)' a l S° Call6d SOdiUm ^-Xlsulphate (SDS) was obtained 
i M « ? ' t

g ItS grade ̂  SPeClally *™- ^ «-itiaa micelle concen
tration ( O O ln water 1S 8 m l / 1 at 20 oc ^ ,,. ̂  ^ ^ ^ ^ ^ ^ 

T W e e n ^ o t o l v o ^ T ""* ^ ^ ^ ^ ° ^ ^ - e sorbitan monostearate) and 
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wiLer i.pH /.&j. Afterwards it was spray-dried. 

Table 1. Characterisation of polyvinyl alcohols (PVAs). 

Typ 

4-
40-

8-
16-

ie 

•88 
•88 
-98 
•98 

Molecular 
(Lankveld, 

22 
106 
35 
55 

000 
000 
000 
000 

weight 
, 1970) 

Molecular 
(Koopal, 

183 

116 

000 

000 

weight 
1978) 

Manufacturer 

Konam, 
Wacker 
Konam, 
Konam, 

The Netherlands 
, Germany 
The 
The 

Netherlands 
Netherlands 



2.5 ,OIL-SOLUBLE SURFACTANTS 

Glycerolmono-oleate (GMO) was supplied by K & K Laboratories Inc., USA (KEK 11013). 

It was not pure, and consisted of about 501 (w/w) monoglycerides, 401 (w/w) diglycerides 

and 10$ (w/w) triglycerides. 

Span 80 is sorbitan mono-oleate and was obtained from Baker Chemicals, Deventer, The 

Netherlands. 

2.6 NATURAL CREAM 

Fresh cow's milk was used. Cream was obtained by centrifugation at about 35 °C. The 

treatment was essentially the same as described by Labuschagne (1963). The cream was 

pasteurised at 70 °C during 10 minutes, deaerated after cooling and subsequently kept 

overnight at 4 °C. Crystallization in all fat globules has then taken place (Walstra & 

Van Beresteyn, 1975). When a sample was required, a portion was gradually warmed to room 

temperature during a period of about one hour. If necessary, sodium azide was added to 

prevent bacterial deterioration. 



3 Methods 

3.1 PREPARATION OF EMULSIONS 

Weighed amounts of oil (+ fat crystals and in some cases oil-soluble surfactants) and 

water phase with a surfactant were heated to a temperature where the solid fat was melt

ed. The sample was then premixed with a Vibromixer and finally homogenised at a tem

perature where the solid fat was still melted. Mostly, a Rannie 1-stage laboratory homo-

geniser with a LW value and a capacity of 100 1/h was used. Sometimes use was made of a 

Condi laboratory homogeniser (Foss Electric type 127-05). Occasionally an Ultra-Turrax 

was used with a device to exclude air during homogenisation. After homogenisation the 

emulsion was cooled to such a temperature that crystallisation in all globules was en

sured. When it was essential to avoid creaming, the emulsions were stored in 50 or 100 

ml jars, which were slowly rotated. These jars were carefully filled so that air was ex-

eluded. 

11,6 c o n c e n t«ti°n of surfactant was such, that, at least in absence of crystals, 

stable emulsions were formed. In emulsions with a volume fraction * = 0.2, this amount

ed mostly to 5 g/1 in the aqueous phase (exceptions: SDS: 4 g/1; sodium caseinate: 10 

g/1; Manoxol OT: 2.5 g/1. 

3.2 ESTIMATION OF FAT CONTENT OF EMULSIONS 

The fat content of the emulsions was determined by the Gerber method (NEN, 1964). 

Uns method was developed for milk but can also be used for paraffin oil-in-water émul

ions, when the density difference between paraffin oil and milk fat is taken into ac-

oun The volume fraction fat ,y was obtained by multiplying the Gerber reading by 

3.3 ESTIMATION OF GLOBULE SIZE DISTRIBUTIONS 

3.S.1 Characterisation of size distributions 

(d>™«r» î IT T'^T°° C™ "e " » ' « ' "»O = * W y by s™ average 
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and an average diameter by 

«w - &™ w 

m 

The relative width is indicated by the variation coefficient of the distribution: 
S S 

a n = (^L_!Ü2 -1)1 (3) 
n+1 

Now, the total number of droplets per unit volume is given by SQ, the number-average 
diameter by d1Q, the volume-average diameter by d ™ = ( S J / S Q ) 1 / 3 and the volume-surface 
average diameter (the Sauter average) by d,? = S^S7' T^ie most suitable parameter is d,, 
(Walstra, 1965; Walstra et al., 1969). It can be considered as the arithmetic mean of 
the surface-weighted distribution. Then the width can be best expressed as the relative 
standard deviation of the surface-weighted distribution (c = a, from Eqn 3): 

os = (-I-1"!) ~2 W 
S 3 

d,2 is a useful parameter because it relates the surface area of the fat to its volume: 

ZN. df 
d„ = - ^ 4 (5) 

ZNi d\ 

with N. and d- the number and diameter of particles in size class i. The specific sur

face area of the emulsion is: 

SEM d3 2 

6*v (6) 

with *v the volume fraction of the fat phase. The specific surface area of the fat is: 

6 • (7) 
S F - d3 2 

Often, size distributions of emulsions are adequately described by a log normal function. 

Often some upper size limit is found, therefore, truncated log normal functions are fre

quently useful for describing globule size distributions in emulsions. 

11 



3.3.2 Spectroturbidimetry 

Spectroturbidimetiy was among others developed by Walstra (1965, 1968) as a method 
for the determination of globule size distribution in milk. Walstra (1968), Lankveld 
(1970), Böhm (1974) and Van Vliet (1977) used the method for paraffin oil-in-water emul
sions. Since these authors have described the method extensively, only a short descrip
tion is given here (for further details see Walstra, 1965). 

A dielectric sphere with diameter d and refractive index n. in a medium with 
refractive index n2, illuminated by incident light of unit intensity (with wavelength 
X in air), will scatter an amount of light equal to (1/4)TT dZ Q. Q is the light scatter
ing coefficient and is a function of the parameter p: 

p = 2TT d (n1-n2)/A (8) 

Now the optical density S o f a layer I, containing N monodisperse particles per unit 
volume will be (using the law of Beer and Lambert): 

E = J-7T d2 It Q I log e (9) 

The attenuation is thus governed by d Q and per unit suspended phase: 

3IT (n.-n-) I Q log e 
E/*v = LJ ( 1 0 ) 

By rearranging Equation 10 a relation is found between the theoretical quantities Qh saà 

the reduced turbidity Z, which can be determined experimentally: 

Q has to be corrected for forward scattering leading to the corrected scattering coeffi
cient Q . For polydisperse_systems Ô*/P must be replaced by an average reduced turbidity 
W * / P ) , where the average Q* is given by: 

Q ( 1 2j 
r u. d. 

i i 

The average of p is then p3 2: 

P 3 2 - 2* (nrn2) d32/A ( 1 3 ) 

Now Equation 11 can be transformed for polydisperse systems into: 
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7 _ r^*Tï - O-2443g \ ._ 
Z " (a /P) - l * v ( « r n 2 ) ^14^ 

When the optical density of a strongly diluted emulsion (to avoid dependent scattering) 
is measured as a function of the wavelength X, Z can be calculated using Equation 14. 
For ($*/P) theoretical curves can be calculated, assuming a size distribution function. 
A truncated log normal distribution was found to be the most suited to describe the 
emulsions used in this study, d,, and °s

 can De found by matching the experimental and 
theoretical curves. The method can be used for emulsions having d__ between about 0.2 
ym and 15 ym. 

Apart from spectroturbidimetry, d^ can be estimated from the turbidity at one wave
length (Walstra, 1969). Q* as a function of p is nearly constant for larger p. Walstra 
(1969) found that also §* was fairly constant for larger p,2 ( P 3 2 > 4 ) , considering glo
bule size distributions that did not differ appreciably in shape from milk. From Equa
tion 9 it can be shown that the turbidity expressed as optical density E is given by: 

E ~ constant S N± d\ Q* (15) 

where Ç.* is the effective light scattering coefficient of a particle in size class i. 

The weight fat percentage F is proportional to l N- d ? . By expressing the optical densi

ty per weight fat percentage (E/F) and considering that for p „ > 4 S* is constant, it is 

found that: 

E/F = constant Z N. d\ I £ N. d? = constant/d,, (16) 

The requirement p,? > 4 leads to the requirement that for, say, \ = 400 run, d„ should be 

higher than 2 ym. If this requirement is fulfilled, a simple relationship is thus ob

tained between the turbidity at one wavelength (per weight fat percentage) and the aver

age globule size. The relationship no longer applies when the shape of the distribution 

is appreciably altered. 

The instrument used was a Zeiss spectrophotometer with an attachment for turbidity 

measurements and an angle of acceptance of 1.5°. Paraffin oil emulsions were diluted 

with a 0.1 g/l Brij 35 solution (polyoxyethylene laurylether). Milk samples were diluted 

with a solution of disodium ethylenediamine tetraacetate (EDTA) and polyoxyethylene sor-

bitan monolaurate in water. The necessary quantities of these components were given by 

Walstra (1965). The optical density was measured at the wavelengths 380, 420, 470, 530, 

615, 725, 890, 1150 and 1700 nm. The refractive indices of water and paraffin oil were 

given by Walstra (1968). From time to time, the refractive indices were checked with an 

Abbe refractometer. 

Coalescence of emulsion droplets with crystals does not necessarily result in new 

spherical particles, but instead clumps may be formed (Fig. 3 ) . Methods for the estima

tion of globule size distribution are based upon spheres. Therefore, samples were heated 

prior to measuring the turbidity to melt fat crystals so that the clumps changed into 

13 



ä " c r ; s t ^ . m a t i C hr a?-n g °i a C l-m P f 0 m e d b y c o a l e s ""ce of two globules containing 
fat crystals; upon heating the solid fat melts and a globule is formed. 

spherical particles. The turbidity was measured at room temperature. It usually 

requires some time before the onset of crystallization after cooling but, especially in 

large globules, crystallisation may occur. According to Walstra (1965), a little crys

tallisation in the fat globules will not significantly alter the turbidity. Moreover, 

good agreement was found between spectroturbidimetry and Coulter Counter measurements 

[see below). 

S.Z. S Coulter Counting 

The Coulter Counter is a widely used instrument for the determination of size 

distributions, though it has some disadvantages. Walstra & Oortwijn (1969) gave an ex

tensive discussion of the method. The method is based upon registration of voltage 

pulses, arising „hen particles, suspended in an electrolyte solution, pass through a nar-

w opening across which an electric field exists. The height of a pulse is proportional 

he volume of particles passing through. By selecting levels above which pulses of a 

r bu i 0
S 1 Z l a r e ; 0 U n t e d a CUIWlatiVe SlZe d i s t - ^ i o n can be obtained. From this dis-

trioution other data can be obtained snrh p* A 

number of particles (hence also 2 ^ *' %' ^ ^ * * * 

The loirL!? f 3 C0Ulter C0Unter m0del ** Wlth - ° r l f i c e tube ° f aP-ture of 50 ,m. 
S , m ; eZ : r i c l e size that can be detected is i - « * *> ^ ^ *«* 
iZn7::::TZezT 9-°g/i Naci-fntered through a °-2 « * " * » • « ^ 
Pie t h s i d I w r e m W e a i r - C a l i b r a t i o n « s carr ied out with a milk sam-

êe r i 1 f r * * * WaS d e t e m i n e d * ^ ^ u r b i d i m e t r y . The coinci-

^ T ^ ~ ^ C Ï . ? rlue given in the i n s t™ c t i o n ™ a i since 
Since the C o u l t e r 7 f approximately half the real value. 

Lankreid (1970) <, f ™ r „ S , " ' a c c ° « » < * »ith »a l s tr . S Oort»ijn ( 1 » ) and 

14 



Table 2. Comparison of volume-surface average diameter (CZ32) obtained by 
spectroturbidimetry and Coulter Counter. 

d32 from spectroturbidimetry d^2 from Coulter Counter 
(ym) (ym) 

1.75 2.41 
2.88 3.08 
3.31 3.41 
3.89 3.90 
5.13 5.24 

3.4 ESTIMATION OF COALESCENCE RATE 

To estimate the coalescence rate of an emulsion, the change in particle size or 

number with time must be followed. When particles coalesce immediately after floccula-

tion, the latter process is rate determining and the decrease in number of particles fol

lows a second order reaction. If the particles stay together for a long time, 

coalescence is rate determining and the decrease in number follows a first order reac

tion. Van den Tempel (1953, 1957) showed that first order kinetics are often encountered 

in coalescence studies. Flocculation is rate determining only for dilute and unstable 

emulsions (fast coalescence). In the experiments of this study it is expected that 

coalescence will be rate determining, certainly in flow fields where the number of en

counters is very high. As a result of coalescence the number of globules decreases and 

their mean size increases. The relative width of the distribution can remain the same 

(if all globules coalesce at the same rate), it can increase (if larger globules coalesce 

faster), and it can decrease (if smaller globules coalesce faster). The flocculation 

rate will increase with polydispersity, as explained by Miller (Overbeek, 1952). It is 

not known whether polydispersity has an effect on coalescence. Swift & Friedlander 

(1964) claimed that the shape of a particle size distribution remains the same for coagu

lation in Brownian motion as well as in laminar shear flow. It will be seen later that 

this is not so for the systems dealt with in this study. The number of globules N per 

unit volume can be derived from the Coulter Counter method (provided that not too many 

small particles under the lower size limit are present). Spectroturbidimetry gives dn 

and a while turbidity at one wavelength gives E/F, which is related to d^ via Equation 

16. When plotting the logarithm of S, E/F or d^ against coagulation time, a straight 

line was obtained. This indicated a first order reaction. The slope of the straight 

line was taken as the rate constant (fc, = -dlntf/fl/d*. k2 = -dlnff/dt, k^ = d l n ^ / d t ) . 

With very unstable emulsions the linear relationship broke down after a certain time. 

The rate constant was then estimated from the first points only, when linearity was still 

observed. 

Some typical results for coagulation (of cream in Couette flow) are given in Table 3. 

Similar results were obtained with other emulsions. Excellent agreement existed between 

all three rate constants, if cs remained relatively constant. According to Equation 16 

E/F is proportional to ( d 3 2 ) " 1 , hence *, should be equal to -ky When % varied, the re

lation between E/F and d^ no longer held and *, was then no longer equal to ky In 
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Table 3. Comparison of coalescence rates as estimated by three 
methods (see text). Results for various creams in Couette flow. 

k. x 

(s"1) 

4.0 
4 .2 
7.3 
8.3 

12.0 

105 k2 x 

( s _ 1) 

4.1 
4 .2 
7.1 
8.5 

13.0 

105 k3 X 

( s - 1 ) 

4.2 
3 .8 
5.2 
4 .3 
6 .3 

105 Change in a 

0.45 •* 0.52 
0.45 •* 0.61 
0.45 -*• 0.71 
0.45 •* 0.83 
0.45 -* 0.91 

fact, ̂ decreased somewhat with increasing ^ (Walstra, 1969) and this would lead to a 

more rapid increase in k^ than in fc 

The ratio k ^ varied between 1 and 2, depending on the change in the width of the 
distribution „ The relation between mean diameter and particle number per unit volume 
depends o n the k i n d o f average ̂  ^ ^ ^ ^ ^ ^ number-average diame
ter the relation is easy to describe, e.g. for d (d =r«ï/<îïV3 „ , „ . 
constant): 3 0 3 0 ( 3/50^ > E 1 n 2> s

3
 r e m a l n s 

if3çPt_(Vu/3 (»Ay 
JJ^0 ^Y1' Vt) (17) 

i^Ltt T : T ?-r t.indicate the tiwzer°•* «• »*«*•*• ****** 
^ w e 1 1 t : r e - l n C r e a S e l n V O l ~ ^ e particle diameter would be three 

Z c T o T n u T r T ^ ^ * » ^ * " * " • * — ' ^ volume-, to rto^rr^ :rr nrvery r1 because they are v - ~ 
Particles sn, which is usually uncertain. 

Analogous to Equation 17 it follows that for d : 

^ t = ^2^0 ' 
W32:)0 W t (18) 

« » .-47 , t a» & s t e r th„ a« to ' £ * * " e l a t ™ *»*> * ™ * ~ »f Slobules 

i.s » *. ctaEe „ J - i«:;h^H^:„ir" -hy tte ™u° s ^ — • — 
One may wonder whether fc, i s r e i i a M P j , 

estimated by the Coulter Counter method ' " ^ t h e n U m b e r ° f S™H droplets is under-
these systems and only the number n* ' S V e r ' S m a 1 1 ^ " l e s did not coalesce in 
^•2.4.4). Hence, > L y ^ b° ^ ^ ^ * » 1 ym changed (Section 

should then also be possible to ä e t e Z T L V u T ^ " *"*" ° f " " t * 1 " 9 - " 
Elat ive increase in volume-average diame-
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ter djg. This was done in a few cases using the Coulter Counter method and the relation 

indicated by Equation 17 was approximated (the reciprocal of the exponent varied between 

2 and 3). 

An explanation was not found why k. and k? matched so closely. Since this was always 

so, k. was used throughout this study because of the ease of determining k*. According 

to Table 3, k. may be directly related to the relative change in particle number. Only 

for emulsions with small globule size was k, necessarily used. 

When coalescence was studied in a flow field, the coalescence rate was reproducible 

within 30$. Errors could arise due to the following: 

- variation in sampling time 

- uncertainty in shear rate 

- irreproducible way of filling of the apparatus and drawing of samples (especially with 

rather unstable emulsions) 

- errors upon dilution of the samples and estimation of particle size distribution. 

3.5 FLOW FIELDS 

3.5.1 Couette flow 

Simple shear flow is a two-dimensional steady flow with velocity gradient G (see Fig. 

4a). The velocity components along the x^ axes are «1 = 0,-^ = °> "3 = G x2' The r e is 

also a rotational component about the vorticity axis x^ with angular velocity \G. Simple 

shear flow was approached with a Couette equipment with the outer cylinder rotating (Fig. 

4b). The apparatus was built in the workshop at the Laboratory of Food Science and Tech

nology of the Agricultural University. A schematic representation is shown in Figure 5. 

The height of the outer cylinder B = 87 mm, the radius RQ = 65 mm, while two inner 

cylinders were available of radius Ri = 60 and Ri = 63 mm, giving an annular clearance 

s = R - R. of 5 and 2 mm, respectively. The inner cylinders were made of polished 

stainless steel, and the outer one of transparent Perspex. The outer cylinder could be 

Fig. 
text 

*2 

z v 
x3 

A B 
4. Simple shear flow (A) and Couette flow (B). The symbols are explained in the 
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therm o stattin g Z^i 

thermo
couple 

f i l l ing^jJ 
device " H . 

w ° sampling device 
Schematic representation of the Couette equipment (not to scale). Fig. 5 

are explained in the text. 

The symbols 

rotated with an electric motor. The minimum rate of rotation was about 0.5 s and maxi

mum about 7.5 s . In every experiment rotation rate was measured using a tachometer. 

The temperature of the samples was regulated with a thermostat, which controlled cooling 

of the inside of the inner cylinder. The temperature was measured with a thermocouple, 

immersed into the inner cylinder (to avoid disturbances of the flow it did not project 

into the gap between the cylinders). In all experiments the temperature was 22 °C. The 

equipment was so filled that air was excluded. 

When the gap width s is small compared to the outer cylinder radius R , the flow 

field established by rotating the outer cylinder and keeping the inner one fixed, is al

most entirely equal to simple shear flow. The circumferential speed u of the outer 

cylinder is: 

O 0 0 (19) 

where uQ is the angular velocity of the outer cylinder. The shear rate G is constant 

throughout the gap: 

G = 
2 "o *o *j 

(20) 

or if e « R. 
l 
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G = « / s (21) 
O' 

Flow is, of course, not stable under all circumstances. The stability depends on the 

geometry of the equipment, the rate of rotation and the kinematic viscosity of the fluid. 

Laminar flow will change to turbulent at a critical Reynolds number Re. This is a 

measure of the relative contribution of hydrodynamic to inertial effects: 

Re = u ls/\> (22) 

u is the velocity of the flow, I is a characteristic length and v is the kinematic vis

cosity of the fluid. The hydraulic diameter should be used for I , which for concentric 

cylinders is 2[R - R-). Usually, however, R - R- is chosen for Zg (Back, 1975; Taylor, 

1935; Labuschagne, 1963). To facilitate comparison with earlier work l& will be chosen 

as R - R. in this work. Thus for Couette flow with rotating outer cylinder Re may be 

defined as: 

Re = u s/v (23) 

Back (1975) reviewed the influence of the ratios of outer and inner cylinder as a 

function of Re for the change of laminar to turbulent flow; for the systems studied here 

the change from laminar to turbulent flow would take place at Re = 2000 - 3000. End ef

fects that may disturb the flow, can be neglected if H/s > 40 (Back, 1975). This is true 

for the inner cylinder.with fi. = 63 mm but not for *. = 60 mm. The smaller inner cylin

der was therefore only used for small shear rates or for turbulent flow. 

Influence of Couette flow on coalescence of emulsions was studied by drawing small 

samples out of the gap at certain points of time with a needle (care was taken to deter

mine that this operation caused no instability). The first sample was taken immediately 

after filling, just before shearing started. The samples were diluted with Brij solu

tion, and analysed for changes in globule size distribution. 

3.5.2 Taylor vortices 

The equipment for generating Taylor vortices was built in the workshop at the 

Laboratory of Food Science and Technology of the Agricultural University. It was 

basically the same as the one used by Labuschagne (1963). It consisted of two polished 

stainless steel coaxial cylinders, the inner one of which could rotate (Fig. 6 ) . The 

dimensions of the apparatus were as follows: radius of the (fixed) outer cylinder 

RQ - 25.5 mm, radii of the inner cylinders R, - 14.0; 18.0; 20.0; 21.5; 23.5 «,. height 

of the inner cylinder B - 90 mm. The outer cylinder consisted of a double wall, through 
-, j i. ,™^,i Thpre were two Perspex observation windows in which a cooling medium could be pumped. • inere were twu rC t 

m, u ̂  ™A r,f rhp inner cylinder rested on a steel ball bearing, the outer cylinder. The bottom end ol the inner cyxii ^ 
*. j <-„ ™ oiAri-rnmotor. The apparatus was covered with a whilst its upper end was connected to an electromotor. 
» +v,„ -lltpT. rvlinder. The top and bottom end clearances closure that could be screwed onto the outer cylinder, mv <-uy 

_ fllloj ;n euch a way as to prevent the ingress of air 
were 1-2 mm. The apparatus was filled m sucn • ' » ) " ' f 
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U 
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wall of 

outer cylinder 

'B 

S).' ̂ rawi'nstrL":^:^011 °f the T ^ < « équipant (A) and of cellul ar vortices 

-' • o s ™ the highest about SO s ' 

during an experiment, 
system. 

With the inner cylinder rota7"" "" •" * ^ "* ^ ^ ab0Ut S ° S" ' ' 

is no longer laminar and a flow f Z u Z h ^ T ^ ^ """^ ****** ^ w M c h f l ° W 

vortices are due to centrifugal t l \ i ^ ^ is d e V e l o P e d - ™ e s e T ^ ° r 

i r zentrifugal instability. Tavlnr rio?7i A -L , 
ly for viscous fluids, theoretically as well described them very thorough-

tion is given in Figure 6 The cri , T eWimentallv. A schematic représenta

is called the critical T a y i o r r u j ^ ^ ^ ^ ^ ^ ™ " ~ - - a r 

Ta 

(24> 

When Ta » 41.3 Tavln 

and emulsions used i n ^ I I T ^ ^ ^ " ! ̂  larger than 41'3 ** the apparatus 

higher speeds the number and size of t V V ° r t l C e S iS Square at ?« = 41-3. At 

1965). Labuschagne C1963) also renort.I " T ^ ** ^ ^ by WaVy disturbances (Coles, 

vestigation on stability of cream in T I T PreS6nCe ° f th6Se dis^rbances in his in-

authors have published work on the critTcaT TT**' ^ Tayl0I"S WOTk nUmeTOUS 

height and width of the gap between cyl £ t ^ ^ Z ^ ** **« °f <***** 
authors evaluated the behaviour of T a v i s t f " ' ™'' (Ma' 1974>- ° t h e r 

Taylor vortices beyond the critical Taylor number • 
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where new kinds of instability occured (Davey, 1962, 1968; Stuart, 19S8, 1960; Snyder & 

Lambert, 1966; Eagles, 1971). Apparently, the flow field is difficult to characterise 

in detail when Re is larger than the critical Taylor number. Besides, in the present 

work the presence of emulsion droplets may cause some disturbance as well. Flow with 

Taylor vortices is thus a complicated three dimensional flow, although' the motion is 

still highly ordered compared to turbulent flow. There is an important difference from 

Couette flow since elongational flow occurs between the counter-rotating vortices. This 

implies a velocity gradient parallel to the flow direction, whereas in simple shear flow 

the velocity gradient is perpendicular to the flow direction. Elongational flow is es

pecially effective in disruption (Walstra, 1980). Pennings et al. (1970) observed that 

crystallisation of polymers from solution started in particular at the elongational flow 

fields between counter rotating vortices. 

In this study, flow with Taylor vortices was mainly used to compare the effect on 

emulsion stability with Couette flow. In view of the difficulty of characterising the 

flow field adequately, this was characterised by an apparent shear rate G' calculated 

from Equation 21. The stability of emulsions was determined by drawing small samples 

out of the apparatus at regular times. These samples were analysed for changes in size 

distribution. All experiments were performed at 22 C. 

3.6 MICROSCOPE 

A Zeiss WL polarising microscope was used, usually with a 40 x objective and a 

numerical aperture of 0.65. The total magnification was 400 x. 

3.7 VISCOSITY 

Emulsion viscosities were measured with a Haake Rotovisko at different shear rates 

(in the range of 14.1 - 1142.0 s"'). Measurements were made at 22 C. 

3.8 INTERFACIAL TENSION 

The interfacial tension was measured by the static Wilhelmy Plate method, using a 

Prolabo tensiometer from Dognon Abribat. The length of the platinum plate used was 19.50 

mm. The plate was first wetted by the aqueous phase and then brought into contact with 

the interface. Corrections were made for buoyancy. All measurements were performed at 

22 °C. 

3.9 CONTACT ANGLE 

Contact angle measurements were kindly performed by Dr. D. Darling, Unilever 

Research, Colworth House, England. The method used has not been reported (Darling, 

personal communication). A short description of the principles is given here. First, 

the fat crystals were melted and the ensuing liquid was placed upon an aqueous layer. A 

glass rod in a syringe needle was brought into the interface as depicted in Figure 7a. 
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Fig- 7. Schematic representation of the equipment for measuring the contact angle 

Then the temperature „as lowered to induce crystallisation. Afterwards the glass rod was 

removed and llquid oil put into the hole with a „aerometer. In this way a drop of liquid 

m su e T -1 l n t e r f a œ C l y S t a l / w a t e r ^ 7 b ) - * » contact angle of this drop was 
measured with a goniometer. 

the w!teradTtag: " V ^ ""** " *"* « ^ " » t i c n takes place in the presence of 

w a r p h a Se (wrth 0r without surfactant), in this way the situation in emulsion 

droplets l s approached, even though a difference in scale remains a problem. 
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4 Content o£ sol id fat in emulsions 

4.1 INTRODUCTION 

Since the influence of fat crystals on the stability of emulsions was the object of 

the present study, a method was needed to measure the content of solid fat in emulsions. 

Dilatometry could be used, as, for example, applied to emulsions by Skoda & 

Van den Tempel (1961) and Walstra & Van Beresteyn (1975). This method is, however, 

rather tedious. Recently Van Putte & Van den Enden (1974) developed a pulse NMR 

(nuclear magnetic resonance) method, for the determination of the content of solid fat of 

fats and oils. Attempts have been made to apply this method to emulsions. Firstly, some 

of the general principles of NMR have to be considered. A basic treatment was for in

stance given by Farrar & Becker (1971). 

NMR is a method that makes use of the magnetic properties of some atomic nuclei. 

Since the present work is concerned with lipids, the nuclei considered can be restricted 

to protons. Hydrogen nuclei have an angular momentum (spin) and'are charged. Hence, the 

spinning generates a magnetic field along the axis of rotation. The hydrogen nuclei can 

therefore be looked upon as small magnets. When a sample containing hydrogen nuclei is 

placed between the poles of a strong magnet, the nuclei precess about their axis in the 

direction of the magnetic field HQ with the so called Larmor frequency a>L: 

Here Y is the gyromagnetic ratio, indicating the relation between the magnetic moment v 

and the magnetic quantum number. Two energy levels are associated with this alignment 

for a hydrogen nucleus. When aligned parallel to HQ the lowest energy level is obtained 

G L = - y tfn) and when aligned antiparallel to HQ the highest energy level (*m - „ * „ ) * 

The energy diffence A* = 2 y HQ is very small so that because of thermal movement almost 

as many hydrogen n u d e ? are at the higher (less favourable) energy level as at the lower 

level. At thermal equilibrium there will be a net alignment in the direction of HQ, 

yielding a resultant magnetisation MQ. MQ is proportional to the total number of hydro

gen nuclei. The proportion of protons in the two energy levels at equilibrium is indi-

cated by Boltzmann's distribution law: 

"2 V »o (26) 

Here » and * are the number of protons in the lower and higher energy level, 

respectively,* is Boltzmann's constant and T is absolute temperature. By applying 

23 



electromagnetic radiation at the resonance frequency v nuclei can be switched from the 
lower to the higher energy level. This transition (or its consequences) can be measured 
using an NMR apparatus. 

NMR measurements can be made in two ways. With continuous-wave NMR the frequency of 
e ectromagnetic radiation is slowly varied and at the Larmor frequency resonance occurs, 
which can be measured. Continuous-wave NMR can be further distinguished into wide-line 
2 «* high resolution NMR, but that is beyond our scope. The other NMR method is pulse 
NMR. Then a short.intense pulse of electromagnetic radiation at the resonance frequency 

foZ- 7 °f the Signal f0ll0Wing the PUlSe 1S 0 b — d . Fro, this decay, 
mformati n can be obtained (among other things) about the content of solid fat. 

depicteT-nV " ^ T " ^ " ^ * *" ̂  * * * » " * a b ° U t the *1 - i s , as 
Tr the StatlC magnetiC field »0 * e net magnetisation MQ i 

L T h V°' -SinCe the reC6iVer COil 1S aÎ0ng the *3 « * a signalai! be 
1 wi be " 7 ;S 50m m a g n e t i S a t i ° n in the «2*3 P1-? in the static state no 
C l y nul f' 6CaUSe thS ef£eCtiVe « S ^ in the ̂  plane is zero, 

hi X ; y f m T r a d l 0 f n W *1 * « * *" * 2 « * the magnetisation MQ can be 
snuted away from the x. axis. When Mn is shifted 90° fr™ i-j,» • t ° 
n e , c be det d i g the ̂  ̂  this is :Z IZ'112 ̂  H — 

is Z^T^JTJ^^r^ 7is ™t0 M° -d *° 
* * » - equilibria state and I n s " . ^ t T ^ ^ ^ 

^ z z z ^ z r:ing the signai to decay- ^fi-—is »• -
- e n e r g y 8 ^ ^ ^ S ^ T ^ * ^ ^ " » " " 'l ' 
the time it takes tafiJT X ^ molecules, V *, indicates 

is obtained. Z I T T ' ^ ^ * ^ ^ ^ <*» 2 « ' 
diately after the t " ^ * ^ ° f PhaSe « * » « « <* spins. I^ne-
Phase. Howeve t c ^ T r ° t 3 t e * ^ *"» ̂ ^ « * * ^ they rotate in 
the small m l ^ i c i " T T " * " ^ " * S l 1 * ^ ^ e r e n A r e q u e n c y due to-

gnetic fields exerted by neighbouring molecules. This reduces the net mag-

M 0 x3 

*ig- 8. Net magnetisation M f L. ' 
magnetisation MQ d i r e c t l J ° e ° ^ J 6 * J" « s t "*» magnetic field HQ (A). Net 
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netisation along the x, axis (Fig. 8c), though M„ is still in the x.-f:-i Plane- This 

process is called transverse or spin-spin relaxation, characterised by the relaxation 

time Tj- Since ï- « T, the loss of signal after a 90° pulse is always governed by r,-

However, T. has also an influence since the system has to return back to its equilibrium 

value before a new pulse can be given. If this is not so, there will be loss of signal 

and hence an underestimation of the number of hydrogen nuclei. This process is called 

saturation. To avoid saturation, the time between pulses should be about five times 

longer than T,. The relaxation times T^ and 2"2 are strongly related to the mobility of 

nuclei and hence the physical state of the nuclei. T2 increases with mobility. In 

solids the mobility is small so that neighbouring nuclei exert a small magnetic field 

that does not change so fast as in liquids. T2 of solids is about 10 us and T2 of 

liquids about 100 - 1000 ms. This very large difference offers the possibility of 

measuring separately the contribution of the protons in the solid and liquid state and 

hence the solid-liquid ratio. 

4 .2 EQUIPMENT FOR PULSED NUCLEAR MAGNETIC RESONANCE 

The pulse NMR apparatus used was a Bruker Minispec p20, with an operating frequency 

of 20 MHz and several methods for determination of the relaxation times T^ and Tv In 

this study only the 90° pulse method was used. The instrument was equiped with an oscil

loscope and the sample holder could be thermostatted if required. The magnet temperature 

was constant at 33 °C. If a measurement is carried out within, say, 15 seconds, thermo-

statting is not necessary. Phase sensitive detection was used throughout. 

The sample holder was placed in such a way that the bottom of the sample tubes was 

inside the receiver coil. Sample tubes had a diameter of 10 mm and were + 10 cm long. 

They were filled for about 1 - 1.5 cm, so that the samples were within the receiver coil. 

4.3 EVALUATION OF METHODS WITH PULSED NUCLEAR MAGNETIC RESONANCE FOR ESTIMATION OF 

CONTENT OF SOLID FAT IN FATS AND OILS 

The signal decay after a 90° pulse contains information about the proportion of 

liquid and solid protons (Van Putte & Van den Enden, 1974). Consider the signal decay of 

a partially crystalline fat as depicted in Figure 9. Immediately after the pulse the de

cay begins, but the signal cannot be measured then due to electronic problems (the so 

called dead time of the receiver). At about 10 ps after the pulse (s in Fig. 9) the 

signal can be measured. At that point the signal of 'solid protons' has already decayed 

somewhat because of the very small T,. To obtain MQ the signal immediately after the 

pulse (s in Fig. 9) is calculated by multiplying s' by a factor ƒ. The signal of 'solid-

hydrogen nuclei has disappeared after 30 - 40 „s after the pulse. The signal of hydrogen 

nuclei in the liquid state on the other hand does not decay significantly within a period 

of some 100 y s . When measuring 90 ys after the pulse (1 in Fig. 9) only the signal of 

'liquid' hydrogen nuclei is measured, which is virtually the same as immediately after 

the 90° pulse. The fraction of solid fat Sf can thus be calculated as: 
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signal after a 90° pulse 

dead time — I 
receiver 

Fig. 9. Schematic representation of signal decay after a 90° pulse for a partially 
crystalline fat, s is the signal directly after the plane, s' 10 ys after the pulse 
1 90 ys after the pulse.' and 

Sf = J^L 
fs + 1 (27) 

yd" 1 nuT A ^ a C t U a l V 3 l U e ° f t h e ' - * « * " d e P e n d s « ^ ^ i l i t y o£ the 

I I I1 r . 0 n temPeratUre' C °^ S i t i 0 n °f * e »»I". PoD-rphic fbn». 
Td « ; h r eCtl°n °f CryStalS 6tC- ^ '"*"*" **"*. 0f — , also on 
t t kTinto T n t - ^ a r e SOme WayS t 0 d e t e™ t h e ^ - t o r . One way i s 

-ri: : r:nerrir
1 ry (1 in Fig-9) md ~ -° « *— 

due to solid, ™ - ! Î e a S e ln S i g n a l at t h e h i 8 h e r temperature is 

4 ̂  "b r I 1S Called the indlreCt m e t h ° d (V- * « e & V » " e n , 
I « Tt 1 "I ^ the aCtUal f"faCt0r- A ™ i o n - * be made for 

influence of temperature upon magnetisation and detection T H , ^ A 
-oil, which i<= u n „ij «. u ̂ . detection. This is done with a reference 

' w n l c n ls liquid at both temperatures With th~ u n 
solid fat can be calculated: following formula the proportion of 

SR(V 5(2-) 

W ̂ V'W (28) 

SR(r) and S CT ) is the 'liquid signal- of the r e W 
(where all the fat is linmHï reference oil at temperature r and 7 M llcluid), respectively, sen aTlH ,r~ -, M 

the fat at temperature r and y o v -, s ^ M ) a r e the 'liquid signals' of 

the samples of this study paraffin „ T T " f r 6 q U e n t l y "*<* as the reference oil. For 
y Paraffin oil and triolein can be used. The indirect method 
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gives reliable results. A disadvantage is that measurements must be made at two tempera

tures and that a reference oil is needed. Moreover, the sample tubes must be filled in 

such a way that the sample remains inside the receiver coil at the higher temperature, 

because solid fat expands upon melting. Van Putte & Van den Enden (1974) used this 

method to determine the /-factor for several edible oils. They concluded that the use of 

a mean /-factor gives correct results. 

Another way to determine the /-factor is by comparing pulse NMR results with other 

methods like dilatometry or wide-line NMR (Van Putte et al., 1975; Van den Enden et al., 

1978). Another possibility would be to extrapolate the 'solid' signal to time zero (s in 

Fig. 9) by plotting the logarithm of signal against time, as was done by Templeman et al. 

(1977). However, the shape of the signal after a pulse is unknown so that this method is 

not reliable. 

In this study the /-factor was evaluated by performing experiments with pure 

tristearate in oil. This is possible because the solubility of tristearate in paraffin 

oil or triolein is known and can be described by the following Equation (Hannewijk, 

1964): 

In* =^!/j_-J_\ CZ9) 
s R \ r f , rc 

Here * s is the mole fraction of the solute, A ^ is the enthalpy of fusion per mole, R the 

gas constant, Tf the fusion temperature and fQ the final melting point of a mixture with 

composition * . Equation 29 is valid for a perfect solution (no mixed crystals). The 

crystal modification affects the solubility. Presumably crystallisation starts in the 

«-modification, but this form will be rapidly transformed into the ß or ß form (Skoda & 

Van den Tempel, 1963). The solubility of tristearate in paraffin oil and triolein was 

calculated from Equation 29 for the three polymorphic forms a, ß and ß. The (average) 

molecular weight of paraffin oil (a mixture of alkanes) was unknown. Skoda & 

Van den Tempel (1963) determined it by cryoscopy and found M = 440. This value was also 

used here. The results are presented in Table 4. The solubility of tristearate in 

paraffin oil as well as in triolein is thus negligible at room temperature, even if the 

«-modification is present. 

Experiments were performed with tristearate in paraffin oil and triolein. The 

tristearate used was very pure (Section 2.3). Known (weighed) amounts of tristearate in 

oil were analysed by pulse NMR using a 90° pulse. The repetition rate between pulses was 

c,„-u »i. . J re <=-> Measurements were made within 15 seconds so that 
such that no saturation occurred (5 s ) . Measurements w 

temperature control was not necessary. All samples were situated within the receiver 

coil. The samples were treated in three different ways. Firstly (Treatment I ) , tristea

rate was just added to the oil and measured. Secondly (Treatment II), tristearate was 
,, . , „ „ H I the tristearate was melted and there-

added to the oil and the temperature raised until the triswMi 

ri „. , ,. at f.c° . 60 C and then cooled very slowly to 
after it was crystallised during 24 hours at 65 bu / 

„ . n i l the sanroles were melted, quickly cooled 
room temperature and measured. In Treatment III the samples , M / 

r> , • „ „ fw hniirs slowly warmed to room tempera-
to 0 °C and kept at that temperature during a few hours, sio y 
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Table 4. Solubility of tristearate in paraffin oil and in triolein as calculated 
from Equation 29. 

Temperature Solubility of a-form1 Solubility of g -form2 Solubility of g-form3 

(°C) in in in in 

paraffin oil triolein paraffin oil triolein paraffin oil triolein 
(% w/w) (% w/w) (% w/w) (% w/w) (S w/w) (% w/w) 

55 
45 
35 
30 
25 
20 

1. Afff = 1.46 x 

2. Af# = 1.61 x 

3. Afff = 2.05 x 

100.0 
31.5 
6.1 
2.4 
0.9 
0.3 

105 J/mol, 

105 J/mol, 

105 J/mol, 

100.0 
18.7 
3.1 
1.2 
0.5 
0.2 

yf = 328 

2"f = 337 

Tf = 345 

K 

K 

K 

34.4 
6.3 
0.9 
0.3 
0.1 
0.04 

20.8 
3.3 
0.5 
0.2 
0.05 
0.02 

4.9 
0.5 
0.04 

2.5 
0.2 
0.02 

ture and measured. Since the solubility of tristearate may be neglected at 22 °C, the 
/-factor could be calculated from the known mass fraction of tristearate and the 
measured S1gnals (s and 1 in Figure 9). The /-factor depended on the way of cooling 
(Table 5). Th1S was presumably due to differences in crystal modifications or imperfect 
crystals. The more stable a polymorphic form is, the lower T, will be; the T, of a 
tris earate xs about two times larger than that of ß tristearate (Chapman et al., 1960). 
T a l " Y S ' the hlgher thS ̂ ^ Wil1 be- ^ tristearate - the rapidly cooled 
I7u* VT'«' l6aSt Partially' ln S 16SS Stable P O l y m ° ^ h i c f°™> - « " " be ex-
duÎ 'th I I S ln /"faCtor b6tWeen tTiStearate ln tri0lei" and P a r a f f i " oil waS 

™ Til l T'011 COntent ° f P a r a m n 0il- Van **** Van de" * * » 0974) found 

id i r ;ff r 1,4°for mrgarine fats- ^ - ^ *»*•* •»»*» * 
» v d d r t e r £ a t - ^ reSUltS °f Table 5 S h ° W a ^ /-f-tor, which 
l e d r ev t " / " * ^ C ° ° l l n g - ^ * » TOlue ° f t h e ^ « « o r .ust be deter-
r al c Z- ^ H A meah / -& C t o r may be USeful «* f 0 r » **» with roughly 
s- Tde3 :: r ^ i r T r ™ fstoiT-For the—o f this 

-ot prove to be successful " e m U l S 1 ° n S ) ^ U S e ° f t h e ^ f a C t O T d i d 

Table 5." Dependence of the f.f..,. 

/calc is the /-factor calculated fromntheVknoltemPeratUre t r e a t ^nts (see text). 
Measurements were made at 22 °c! content of tristearate. 

/ c a l c for paraffin oil with an f 
amount of tristearate of •'calc t o r triolein with an amount 

: _ o f tristearate of 

. »0.4% 25.4% 39 17 ., .. " 
_ af. T

 Jy-7* I 2 - « 20.9% 33.0% 
Treatment I 2.18 ? ,= 
Treatment II 2 30 , ,, 2-3 4 1.85 
xreatment II 2.30 9 07 ,JH '-85 'I 91 1 qn 
Treatment III 2 . $ 2 ^ 2.3 0 , ̂  j;91 1.90 

1.45 1.42 
2.02 2.00 ,;^ ]•« 1.98 ,.95 
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To overcome this difficulty another method was developed for estimation of the 

content of solid fat from the signal after a 90° pulse taking into account the liquid 

signal (1 in Fig. 9 ) . A reference sample (liquid oil) was needed. The samples were 

situated within the receiver coil and were weighed. From the reference sample (paraffin 

oil or triolein) the signal per unit weight of liquid phase was calculated. The 

'liquid' signal of a partially crystalline fat could in turn be converted to weight of 

liquid oil. Since the total weight of the sample was known, the proportion of solid fat 

could be calculated. This method (called the weight-method) was checked by comparing the 

results with the known (added) mass fraction of tristearate. The indirect method could 

also be used in the case of triolein (not with tristearate in paraffin oil because of the 

difference in proton content). The results of this method are given in Table 6. The 

same temperature treatments were given as in Table S. The weight-method gave correct re

sults, compared with the known mass fractions and with the results of the indirect 

method. Moreover, the weight-method gave results independent of the way of cooling. The 

advantages are that the method does not depend on the signal of solid fat (and hence fac

tors like polymorphism) and that a measurement at one temperature is sufficient. The ma

jor disadvantages are that a reference sample is needed and that the samples must be 

weighed. 

4.4 ESTIMATION OF CONTENT OF SOLID FAT IN EMULSIONS 

A complication in the measurement in emulsions was the presence of water protons 

contributing to the signal. The relaxation time of water is somewhat higher than that 

of oil, but not enough to distinguish the oil and water signal on that basis. In the 

literature some methods can be found to exclude the water signal (Shanbag et al., 1971; 

Conway, 1971). One method is to saturate the water signal by selecting a very short 

repetition time between the pulses. To lower the water signal significantly, however, 

the oil signal becomes somewhat saturated too (incidentally, the 'solid' signal is 

saturated to the same degree as that of water). Another method is to change the relaxa

tion times of water by adding paramagnetic ions (Cu?*, M n 2 + ) . The relaxation time of 

water becomes so small then'that the oil and water signal can be distinguished on that 

basis. However, for at least some emulsions, addition of ions will cause instability. 

Another method was therefore examined which involved deducing the oil signal from the 

measured signal by subtracting the water signal. Trumbetas et al. (1976, 1977, 1978) 

did this also, but they did not check the method. Moreover, they used such a high 

p e t i t i o n rate that the oil signal must have been saturated too. Since the fat and 

water content of the emulsion and the weight of the sample were known, the water signal 

could in principle be calculated when the signal of the water phase was known. Water aP-

*u„ jotortinn floss of signal) when the sam-
Peared to have a large disturbing effect on the detection (loss or s g j 
n 1 ß ̂  • . - -1 it was therefore necessary that the samples were 
Pie height was above the receiver coil. It was tnereruie , 
„! i o worp also weighed so that the weight-method 
Placed within the receiver coil. The samples were also weign 
,. -, , A ,r+*A tn determine whether the oil and water 
c°uld be applied. An investigation was conducted to determine 

p p n e u . A H niveau g signals of oil-in-water emul-

signals could indeed by subtracted from each other. The sign 

-°ns of varying fat content were measured (no c i t a i s in the oil phase). If the 
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signal g"1 emulsion 

1000 

paraffir. . . . . 
Ii8. .0. NMR signals of oil-in-water elisions as a function of the fat content. ^ 
surfactant was NaLS and measurements were made at Li o. p 
1 s (0); 3 s (+); 6 s (T). 

and water phases give independent signals, the measured signals per unit weight of emul

sion should lie on a straight line when plotting them against the fat content Measure

ments were made at different temperatures, different repetition rates and with different 

(water soluble) stabilisers. Some results are shown in Figure 10. The straight lines 

indicated that the separate signals can indeed be added, independent of the repetition 

rate. It was also independent of temperature (not shown). The same results were ob

tained when measuring oil and water phases together in one tube in the u n e m u s l f - d 

, ^ -^aie nf the oil and water phases do not depend 
state. This supports the idea that the signals of the o n ai v o . . p 

on the interfacial area between the phases. An exception was shown by sodiumcasein te 

emulsions: no straight lines were obtained at repetition times higher than 3 s Thi 

Phenomenon is probablv related to interaction of caseinate with water ̂ " ^ * » * 
' .Halved in oil into micelles by monoglyce-

- complication was found when water was dis vedin ^ ^ 
rides, as observed with triolein. In that case htf,r sgn ^ ^ 
These phenomena are the subject of another paper (Van Boekcl, ) 

t « studied these complications were unimportant ^ ^ ^ ^ fey 

Determination of the content of solid fat m emu ^ ^ ^ 

the size of crystals, which in turn depends on , 1 e sx» • ^ ^ ^ ^ ^ 

crystals are formed, and in smaller * ^ « * j £ £ J e i n c r e a s e d compared to large 

microscope). The solubility of very small crystal 

crystals, as indicated by Kelvin's rule: 

(30) 

R T In-U 2 y M 
Pb 

31 



Here, R is the gas constant, T absolute temperature, Sfa the solubility of a crystal with 

radius b, Sœ the solubility of a very large crystal, Y the interfacial tension crystal/, 

oil (Y = 10 mN m , according to Skoda & Van den Tempel, 1963), M is the molecular weight 

and p the density of the crystals. When 301 tristearate in paraffin oil would consist of 

crystals with radius b = 10 run, there would be some 0.6«„ a-tristearate soluble, 0.08°6 ß'-

-tristearate and 0.00051 ß-tristearate. Hence, this effect was negligible. 

It is also conceivable that very small crystals give a different NMR signal because 

of the large interfacial area crystal/oil. Therefore, the relaxation time T2 was esti

mated for tristearate crystals in the emulsified state, in paraffin oil (bulk) and in 

pure tristearate. 2>2 was determined by evaluating the signal of the solid phase with a 

transient recorder (i.e. an instrument that stores a signal in its memory and this signal 

can afterwards besotted, for example, by a recorder). By plotting the logarithm of the 

signal after a 90° pulse against time, the relaxation T2 was estimated from the slope of 

the straight line. Because of the very low T2 and the inaccuracy of the transient re

corder used, the results were not very accurate. Tz turned out to be about 7 us and no 

systematic difference came out for tristearate in the emulsified state. The 'solid sig

nal' is therefore probably not affected by small crystals. Another possibility is that 

triglyceride molecules at the interface crystal/oil are more mobile than in the crystal 

and behave therefore more or less like liquid molecules; when this effect plays a role, 

it strongly depends on crystal size. Consider an emulsion droplet with diameter 1 ym 

consisting of 70», liquid oil and 301 tristearate. The solid phase could, for example, 

consist of 150 crystals with a length of 200 nm, width 100 nm and thickness 50 nm. This 

leads to a specific surface area of 7 x 10? m"1. This is larger than in bulk (where no 

artefacts were found, Section 4.3): Knoester et al. (1968) found for 251 tristearate in 

paraffin oil (bulk) a specific surface area of 1 x 106 nf1 and 1.5 x 107 m"1 when crys

tallised at 50 C and 20 °C, respectively. Therefore, the surface area in emulsion drop

lets may be a factor 10 higher than in the bulk. The triglyceride molecules are oriented 

in the crystal in the way depicted in Figure 11 (Skoda et al., 1967). The molecules in 

the lateral faces are assumed to contribute to the liquid signal. The lateral faces take 

• 
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Table 7. Content of solid fat in the o i l phase of NaLS emulsions 
containing pure t r i s t e a r a t e as determined by the pulse NMR weight-method. 
Total fat content was 45% and mean droplet size 1 pm. Measurements were 
made at 22 °C. 

Content of solid fat (% w/w) 

10% t r is tearate added 10.7 + 0.9 
30% t r is tearate added 29.9 + 0 . 5 
50% t r is tearate added 49.6 + 0 . 9 

about 451 of the surface of a crystal with length : width : thickness = 4 : 2 : 1. The^ 

unit cell of ß - t r i s t ea ra te has the dimensions 1.197 x 10~9 m, 0.545 x 10' m, 4.59 x 10" 

ra (Skoda e t a l . , 1967). The t r iglyceride molecules in the l a te ra l faces of a crystal 

with dimensions 200, 100 and 50 nm would then represent 1.6% of the volume of the crys

tal. The effect i s thus seen to be small and may be insignificant. 

Emulsions were made with the pure t r i s tea ra te in paraffin o i l . The surfactant was 

NaLS and the mean droplet s ize was about 1 ym. The fat content was 45». The emulsions 

were cooled suff icient ly to ensure c rys ta l l i sa t ion in a l l globules; measurements were 

made at room temperature. The o i l signals were obtained by subtracting the calculated 

water signals, as described above. The content of solid fat was then determined by the 

pulse NMR weight-method. The resul ts are given in Table 7. The amounts determined were 

in agreement with the amounts added. Since the droplet size was fair ly small, crystals 

« t have been small too. Apparently, the determination of the content of solid fat i s 

not affected by small c ry s t a l s . Determination of the content of solid fat m emulsions 

is thus possible, when disturbing effects l ike water dissolved in o i l and/or the beha

viour of emulsifiers such as sodium caseinate can be excluded. 

•̂5 RESULTS 

The content of sol id fa t in emulsions depends on the actual solubil i ty of the fat 

e s t a i s in the o i l phase. Therefore, the so lubi l i t ies of t r i s teara te an s o ^ p f 

e s t a i s in paraffin o i l , used in th i s study, were determined with the puis Nm weight 

- t h o d . The t r i s t e a r a t e (PB t r i s tea ra te ) used for the s t ab i l i ty ^ * ™ J f l 

i^ure (Section 2 .3) . I t turned out that the solubi l i ty characterist es di fe e 

those of p u r e t r i s t e a r a t e when f i r s t dissolved and then c r y s t a l l i s e d . ^ ^ 

« s t é a r a t e was added to the o i l and measured without ^ ^ o f 

to dissolve. Slowly c rys ta l l i s ing a t 55 °C during ^ ° c r y s t a l l i s i ng 
a out 3, a t 2 2 o c ( a d d i t i o n a l c o „ not alter e ^ ^ ^ ^ 

« 0 C resulted in a solubility of about 1.5.. ^ d i n s o l u t i o n w h e n 

« " * that some t r ig lycer ides (containing other fatty acids) ^ ^ 

crystallisation was slow, whereas they were incorporated in the cry 

«§• In the l a t t e r case mixed crystals may have been forme . 
•n. -h ̂ rpHsely known. I t i s a UUALUX 
The so lubi l i ty of so l id paraffin i s not precis ly ^ ^ ^ 

alk*nes. As a model a s ingle alkane was chosen with a mel g P ^ ^ 0Q 

Puf f i n : pentacosane ( n - C ^ . w i t h molecular weight M - . ^ , 



Table 8. Solubility of pentacosane in paraffin oil, calculated from Equation 29, 
and solubility of solid paraffin in paraffin oil, as determined by the pulse NMR 
weight-method. weight--method. 

Temperature 
(°C) 

40 
35 
30 
25 
20 
15 
10 
5 
0 

Solubility of 
pentacosane in paraffin oil 
(Z w/w) 

36.0 
25.0 
17.0 
11.0 
8.0 
5.0 
3.0 
2.0 
1.5 

Solubility of solid 
paraffin in paraffin oil 
(% w/w) 

30.0 
21.0 
15.0 
9.5 
8.0 
6.0 
5.0 
3.0 
2.5 

and enthalpy of fusion Aftf = 5.77 x 10* J / m o l . Ass«ing a molecular weight of 440 for 

paraffin oil (Skoda » Van den Tempel, 1963) the solubility of pentacosane in paraffin oil 

I lubi T T 7A E q U a t i ° n 2 9 ' ^ r e S U l t S a r e P r e S e n t e d i n T a b l e ». a e t h e r with the 

m T V Paraffin ln Paraffin 0 i l ' aS eStimated by t he ***> ™ - i gh t 
del t l th a g r r m e n t b6tWeen the CElCUlated md « * ™ t a l solubilities was good 
des i e the complicated composition of paraffins. I t follows from Table 8 that above 
0 C a certain quantity of solid paraffin will dissolve. 

heloTtlTTT^ l n e m U l S i ° n d r ° P l e t S r e q U l r e S S U p e r C°° l i n8- ™ i s i» -bout 20 - 25 °C 

s i : I : :: rir^ovr; " i o n <*-& - - — > ™» -
for solid paraff n ^ pps 64 T " ^ ^ ° f *» * m ° d i f i C a t i ° n 

in the s J n , T } ' 6 n S U r e C O m p l e t e c i v i l i s a t i on in emulsions, even 

ur ; i :: r* •the emaisions must t h e r e f ° r e be *** - ^ - low t » ^ -
he ̂  tr t " V " ^ e X P ™ t S - ^ " " °f S O l i d fat » - u l s i l with 

rie e T T 6 (PB triStearat6) ln the 0il PhaSe - * ™ » » the amount added: 
3„ appeared to dissolve in NaLS emulsions with d -~ 1 „m Ac A -U A U 

solubility of PB tristear^ A A A 3 2 described above, the 

difficult but th ! P ° n the W 3 y ° f C00ling' "* comparison was therefore 

in bulk S b l l l t / ln e m U l S i ° n S S 6 e m e d t 0 b e in — d a n c e with the solubility 

9 ̂  soluble f ^ ln e m U l S i ° n S COntaining SOlid Paraffin is **«** in TaMe 

withi b r s e
prfi:in r s i o n dropiets was in ~ M e — 

bulk (Table 8), independent of globule size, and hence of crystal size. 

Table 9. Content of solid fat (7 uA,l ne , • 
. ! ^ ü ! ^ W _ b y _ t h e p u l s e ^ t l g g ^ d l 8 1 0 " 5 ^ S ° U d P " a f f i n ' 

^ ^ ^ ^ ^ 
T = 22 °C T = 5 °C 

21.6 
21.3 

T = 22 

42.0 
41.0 

^32 = l um 16.9 •,, , 
d32 = 3 um 16.2 ^ 1 4 2 - ° 46.4 

34 

r = 5 

46.4 
45.7 



It may be concluded that the content of solid fat in emulsions with tristearate and 

solid paraffin crystals, as used for the stability studies, does not differ appreciably 

from the content of solid fat of the same crystals in the bulk. 

4.6 CONCLUSION 

In this chapter some pulse NMR methods were evaluated for measuring the content of 

solid fat in fats and emulsions. A method was developed, independent of the NMR signal 

from the solid phase, with which correct results were obtained for bulk fats. Good re

sults were also obtained with emulsions, provided that the surfactant used caused no dis

turbance. The NMR method seemed to be independent of crystal size. The tristearate and 

solid paraffin crystals used in the stability studies appeared to dissolve at least to 

some extent. 
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5 Crystal habit in emulsion droplets 

5.1 INTRODUCTION 

The literature on the behaviour of crystals in oil droplets is rather scarce, even 

though crystals may often be present in practical systems at a certain temperature. 

Skoda & Van den Tempel (1963) observed that some emulsifiers could promote nucleation at 

the oil-water interface when the molecular structure of the crystal resembled that of the 

emulsifier. 

Walstra (1967) studied extensively the crystal habit of fat globules in milk and 

butter. He distinguished four types of crystallisation, from the appearance of globules 

in the microscope under polarised light (Fig. 12). In the 0 type crystals are absent or 

too small to be visible. The N type (needle-type) consists of small or large fat crystal 

needles inside the droplet. The L type (layer-type) is made up of tangentially oriented 

needles: the crystals in the outermost layer are probably oriented in the oil-water in

terface. Then finally the M type (mixed type), which is a mixture of the L and N type. 

The globules may, to some extent, be distorted from spherical because of crystallisation, 

especially with large needle N types. 

The L type has the same kind of appearance under the microscope as the birefringence 

caused by liquid crystalline layers around droplets (for instance, Friberg, 1971; Krog, 

1977). These layers are built up by association of the emulsifier, oil and water. They 

enhance the stability of emulsions to coalescence, because such a cohesive layer is un

likely to rupture. The L and M types in this work, however, are caused by the presence 

of fat crystals and not by liquid crystalline layers. Moreover, in contrast to the 

stabilising effect of liquid crystalline layers, the L and M types were frequently asso-

0 type N type L type M type 

S e r ' t h e S ™ « S " 2 S S i i ^ S r £ % C O n t a i n i*S f " «ys ta l s , as observed text. polarised light. The different types are explained in the 
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ciated with gross instability. 

In the L and M types, some of the crystals are most probably oriented in the oil-

-water interface, whereas in the 0 and N types all crystals are inside the droplet. The 

crystals will tend to orient in such a way, that the interfacial free energy is at mini

mum. The equilibrium situation is determined by the contact angle. The crystallisation 

type of the globules may therefore depend on this. Usually the contact angle is measured 

in the phase with the highest density (hence water for oil-in-water emulsions). A con

tact angle of 180° means that a crystal is completely wetted by the oil phase, an angle 

of 90 means that a crystal is equally wetted by the oil and water phase, and with an 

angle of 0° the crystal is completely wetted by the water phase. The value of the con

tact angle 0 r is determined by the three interfacial tensions through Young's Equation: 

„ ^so ' T sw (31> 
cose = 

C Y 'ow 

Here Y i s the in te r fac ia l tension and the subscripts o, w and s denote » " . - « t e r a n d 

solid, respectively. Surfactants may thus 'influence the contact angle bee use they af 

feet Y. Bargeman & Van Voorst Vader (1973) and Van Voorst Vader (1977 studied th is e -

feet in more d e t a i l , based upon e a r l i e r work of Lucassen-Reynders (1962). By combination 

of Gibb's law: 

(32) 
ày = -R T T l n a 

(r is surface excess and a the activity of the surfactant) and Young's Equation 31 it is 

found that: 

(33) 

• TA a =traieht l ine with the general 
A graph of YQW cose c against YQW appeared to yield a s traight 

Equation: 
(34) 

y„, COSQ = A Y , + B OW c ow 

• „f surfactants from aqueous solutions on non-
The constant A i s about -1 for adsorption of s una ^ ^ ^ ^ ^ ^ v a l i d f o r 

Polar solids, as follows from Equation 33: i f rso " , _ ^ o * ^ i n s t a n t B i s quite 

water-soluble surfactants , insoluble in o i l ) , then A ^ . { ^ t h i s r e s u i t s in a large 
large for systems a i r /wate r / so l ids , say B = 40 - t e m s ' 0 i i / W a t e r / s o l i d s , however, B 
dependence of e on surfactant concentration. For sys e surfactant con-

c 1 • •„ cmnl 1 dependence UJ- V
C 

l s very small, say 0 - 1 mN m -1 , indicating a smai ^ ^ ^ ^ ^ ^ ^ f o r c e w h i c h 1 S 

centration. When A< = - 1 , B can be related to the o n ^ . ^ ^ . ^ t e n s i o n £ o r pure 

the only force acting with non-polar solids and oi • ^ ^ described by Fowkes r e -

Peases, interacting by London - Van der Waals forces on 



lation (Fowkes, 1964). With the aid of this relation, Bargeman & Van Voorst Vader (1973) 

showed that: 

B= 2 { (yj)1 - ( Y ^ 1 } {(YJ) 1 - (yj)1 } (35) 

(Y denotes the interfacial tension of the pure phase, and y the dispersive contribution 

to the interfacial tension). In those cases where Y values were known, good agreement 

was found between the experimental contact angles and the angles calculated from Equation 

34. Of course, some deviations may occur from the theoretical relationship, especially 

when Y O W is smaller than 10 mN m and when A' is not -1. On the whole a satisfactory 

explanation was found for the rather small influence of surfactants on the contact angle 

as observed by Lucassen-Reynders (1962) and Bargeman & Van Voorst Vader (1973). 

It can be shown from the work of these authors that the contact angle of fat crystals 

is always such that the crystals can orient in the oil-water interface (90° < O < 180°). 

This does not mean, however, that they are indeed oriented in the interface. Tristearate 

crystals in groundnut oil or paraffin oil may be flocculated in a network of considerable 

strength (Van den Tempel, 1961). This network prevents the crystals from reaching the 

interface. Attraction energy between the crystals in the network is reduced by addition 

of oil-soluble surfactants so that they can reach the interface (Lucassen-Reynders, 

1962). In normal milk fat globules crystals are hardly ever seen in the interface, that 

is to say type 0 or N is commonly observed. Wals tra (1967) suggested that some barrier 

at the interface (the nature of which is not understood) prevents the crystals from 

reaching the interface. In butter on the other hand, many L and M types are found. Pos

sibly, the energy barrier has been overcome during churning. Walstra (1967) also ob

served that many water-soluble substances could induce the formation of L and M types, 

even when the fat crystallisation was already complete. It is still not clear how the 

effect of these substances may be explained. They have no effect on the oil-water inter-

facial tension. The only single common factor was the reduction of the water concentra

tion in the aqueous phase. The same observations were made for oil-in-water emulsions of 

tristearate crystals in paraffin oil, stabilised by caseinate. 

This investigation was concerned with the effect of fat crystals on stability. No 

attention was paid to such crystallisation phenomena as kinetics or surface nucleation. 

The investigation on stability started after crystallisation had stopped. 

5.2 RESULTS 

In this section results on the crystal habit in the emulsions investigated are 

presented. The parameters which were varied were the (water-soluble) type of surfactant 

and kind of crystal (solid paraffin or tristearate). Here, no attention was paid to the 

amount of crystals or the concentration of surfactant. The influence of the amount of 

crystals is dealt with elsewhere and the concentration of surfactant was such that, at 

least m the absence of crystals, stable emulsions were obtained. 

Observations were made on the crystallisation type occurring in the various 
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eMsicns. F ro . the i n te r fac ia l tension ^ contact angles were calcu ated (the a of 

surface active material present in paraffin o i l (Section 2.1) had h a rd^ any e e t 

T when surfactant was p resen t ) . According to Bargeman » Van Voorst Vader (1973) the 

theoretical equation for paraffin oi l / t r is tearate/aqueous solution i s : 

(36) 

^owCOs8c = - Yow + 0 ' 6 

tte t e r . 0.6 was calculated f r o , Equation 35. The experimental equation ( d e t a i n e d by 

contact angle measurements) was (Bargeman & Van Voorst Vader, 1973): 

(37) 
Y cose = -0.98 Ynw + 0.2 
'ow c ow 

»o o m e n t a l data are available for the system^araffin ^ ^ ^ ^ [ 

solution, but the following theoret ical relationship could be 

Van Voorst Vader (1973) and Fowkes (1964): 

(38) 

Yow c o s 9 c = "Yow + 1 

m • -Unr, tvDe in the emulsion droplets are 
r*e contact angles calculated and the crysta i saUo^ W ^ ^ ^ ^ ^ o £ L 

given in Table 10. In addition to Table 1U i t u r f a c t a n t type, cooling rate and may-
and M types to N types could vary. I t depended on ^ ^ proportion of L and M 

be globule s ize . For most emulsions, containing ^ an ^ ^ ^ influence on s ta-

types to N types varied from 15 to 30». This v a r i a t l ° ' " m a d e t 0 standardise 

bility and a detrimental effect on reproducibility .^Attempts 

the rate of cooling a f ter preparation of the e m u l s l ° " ' ^ c r y s t a l s c a n indeed be 

The contact angles calculated show (Table 10) t ^ . ^ ^ ^ a p p e a r a n c e of L and 

oriented in the in ter face . This i s , in most cases, c ^ ^ ^ ^ ^ t r i s t e a r a t e and 

M types. There were, however, four exceptions. ^ ^ ^ w e r e £ l o c c u i a t e d in a network 

cream showed no L or M types, probably because the ^ ^ r e a c h i n g the interface. But L 

or because some energy ba r r i e r prevented the crysta s ^ ^ ^ ^ addition of glycerol 

and M types could be induced in these two emulsions, «^ ^ ^ . ^ ^ ^ nQ L t y p e , a l -

(Walstra, 1967). Also PVA 16-98 and PVA 8-98 mthJ^^ ' m i t i o n 0f glycerol did not 

though the contact angle indicated that i t was possi 

change the c rys t a l l i s a t ion type in these cases. ^ ^ ^ Q£ ^gni tude of e c . 

Obviously, the calculated contact angles ref ec ^ ^ o u g h t h e n also artefacts 

^ e actual value of e_ can only be obtained by measure ^ . ^ œ t h o d o f measuring 

* y arise). Some measurements were performed using ^ ^ ^ ^ „_ ^ n -

contact angles (Section 3 .9) . Results for some sys ^ ^ ^ t h o s e c a l c u l a t -
s°n with Table 10 shows tha t the contact angles meas ^ ^ ^ ^ ^ œ a s u r e d o n e s 
ed- The contact angles calculated were probably *** Unfortunately, the contact 

*V also be incorrect , due to i r regular i ty of the i ^ o i l ^ a t e r interfacial ten

s e s against water were d i f f i cu l t to interpret , D ^ ^ ^ ^ r e m a i n ^ a close 
si°n was not constant (Section 2 .1) . Then only val 
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Table 11. Contact angles of c rys ta ls with paraffin oi l and aqueous solutions. ' 

Water 0.5 g/1 PVA 16-98 0.5 g/1 NaLS 

Solid paraffin1 132° + 3 120° + 5 116° + 2 
Solid paraffin2 114° + 2 108° + 3 
Iristearate1 158° + 2 141° + 4 88° + 3 
Iristearate2 ' 1 8 — 3 96° + 4 

1. Crystallisation against water, surfactant added afterwards. 
2. Crystallisation against surfactant solution. _ 

p r i s o n of these r e su l t s with the theoretical equations i s not so ^ ^ ^ 

l e i , i t is c lear that the influence of surfactants on the present sys e . a s * g nan 

»as found hy B a r g e e I Van Voorst Vader (1973) or ^assen-Reyn ers ( • « £ • 

difference i s t ha t , using the method due to Darling (Section 3.9), c ^ t a m a x ^ 

place in the presence of an oi l-water i n t e r f a c e ^ e r e a s - was not ^ ^ t h 

used hy the former authors. This suggests ^ ^ f ^ ^ i n e r a u l s i o n s . 

haps via surface nucleation. The question * w h ^ tfu ^ ^ ^ ^ 

Skoda & Van den Tempel (1961) have shown that surface nu n i s i n g s u b s t ance . 
the molecular s t ructure of the surfactant resembles that ot y 

„ is „ „ « f o r e « m . » to . e cu , i „ * * » ^ ^ X Z ^ ™ 
However, these contact angles could not explain ^ ^ t r i s t e a r a t e . Possi-

type for PVA 16-98 (and PVA 8-98) emulsions with s o l l ^ r ^ ^ n t e r f a c e f a b a r r i e r which 

bly some barr ier prevents paraffin crystals from reac ing anomalous behaviour 
*. i,. TVipre i s also evidence vjj-

can be overcome by tristearate crystals. Ther c r y s t a l l i s e d in the presence or 

of the contact angle for tristearate and PVA 6- wh e ^ ^ ^ , 

absence of emulsifier. This effect was much smaiie ^ . ^ ^ ^ ^ ^ w a s U r g e r 

Finally it is noted that the influence of surfactants ̂ ^ ^ ^ the theoretical 

for tristearate than for solid paraffin. This is a so ̂ ^ ^ ^ possibly it is a 

Equations 36 and 38. No explanation can currently e o 

consequence of the fact that the tristearate used was impure. 

5-3 CONCLUSION 

• , M that may influence the crystal habit 

In this chapter some factors were investigated ^ ^ ^ ^ oil_water in-

in emulsion droplets. The equilibrium position for a
 retically predicted and experi-

terface, as indicated by the contact angle. This was ^ ^ ^ ^ W S i however, 

•»tally confirmed. The influence of surfactant on ^ ^ ^ .g such that £at 

iarger than that predicted theoretically- Althoug ^ ^ ^ always the case. 

oystals should always orient in the oil-water inter J ^ ^ ^ type 0 f solid fat. 

^ crystal habit is ultimately determined by type o ^ ^ ^ interface (the 

Peculation of fat crystals in a network or some ene g y ^ ^ ^ . ^ ^ interface. 
nature of which is not understood) can prevent the cry 
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6 Stabil i ty of emulsions a t r e s t 

6.1 INTRODUCTION 

Coalescence of emulsion droplets must be preceded by flocculation. When the emulsion 
itself is at rest, this can be brought about by Brownian motion. The flocculation rate 
of spherical particles in Brownian motion (perikinetic flocculation) was originally 
described by Smoluchowski (see for a detailed discussion Overbeek, 1952). The equation 
for the 'collision' frequency W.. between particles with radius b. and b. and concentra
tion ff. and N. is: 

?.. = 4, *.. 0.. if. N. (39) 

with: 

Ä i j ° i j - » i + VCD i + V (40) 

and the diffusion coefficient: 

i - 67TF7 W D. 

k is Boltzmann's constant, T absolute temperature, n viscosity. Assuming that every en
counter leads to coalescence and that the particles are monodisperse, it can be shown 
that the total number of particles at time t (jy is governed by the equation: 

3 T = - 8* D b *t
2

 (42) 

Integrating this expression leads tn (n ^ -n,„ v 
v n leaos to (ffQ is the number of particles at time zero) : 

AL = U 

l' 1 + a f * 0 * • (43a) 

or: 

1 1 

t *o f (43b) 
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a^ = 8TT D b (44) 

Equation 43 describes the so called rapid flocculation, because every encounter would 
lead to flocculation (actually coalescence). The number of particles decreases according 
to a second order reaction. Smoluchowski neglected hydrodynamic and colloidal interac
tions between particles, though these are always present. Fuchs took the potential ener
gy between particles into account by introducing a stability factor a into the equa
tions : 

wt
 = 7 ^ + a

P
 a f * (45) 

a can be related to the actual colloidal interaction between particles, as e.g. 

described by DLVO theory. Whenever a < 1 the process is called slow flocculation be

cause not every encounter leads to flocculation. If the energy barrier is high, a can 

be very low, thus providing complete stabilization against flocculation. Hydrodynamic 

interaction has to be taken into account as well as colloidal interaction. This was done 

by Spielman (1970) and Honig et al. (1971). They pointed out that because of viscous re

sistance flocculation would not be possible, unless a net attraction force (like 

Van der Waals) would exist at small separation. Smoluchowski assumed the particles to 

move independently (D.. = D. + D . ) . By incorporating the hydrodynamic interaction into 

D^-, Spielman (1970) and Honig et al. (1971) were able to combine both hydrodynamic and 

colloidal interaction into the Smoluchowski equation. Another improvement to the 

Smoluchowski equation is the introduction of the effect of polydispersity, a phenomenon 

always encountered in emulsions. This effect leads to a higher flocculation rate, which 

is described as the Muller effect (Overbeek, 1952). The smaller particles disappear more 

rapidly than the larger ones. A detailed treatment was given by Swift & Friedlander 

(1964), Suzuki et al. (1969) and Bernstein et al. (1972). 

The repulsion between particles is so high for the emulsions used in this study that 

flocculation in the primary minimum will never occur (a = 0). However, flocculation in 

the secondary minimum can occur and then only Van der Waals attraction comes into play, 

and hydrodynamic resistance on approach of two particles is often roughly compensated by 

the increasing attraction when there is no repulsive force (Spielman, 1978). The 

Smoluchowski equations may thus be applied to flocculation of emulsion droplets in the 

secondary minimum. Polydispersity may still enhance flocculation. 

It should be emphasised that the stability of an emulsion is determined experimental

ly from the change in the particle size distribution which is a result of coalescence on

ly. Van den Tempel (1953, 1957) analysed under what conditions either flocculation or 

coalescence would be the rate determining step. According to his analysis coalescence is 

a first order reaction: 

Nt = N0 exp(-fect) C46) 

and flocculation is a second order reaction, as described by Smoluchowski (Eqn 43a). 
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The ratio of flocculation to coalescence rate is given by af NQ/kc. Whenever af NQ/kc 

» 1, flocculation is the fastest step and coalescence is rate determining (hence a first 

order reaction is measured). When af NQ/kc « 1 coalescence is the fastest step and 

flocculation is rate determining (hence a second order reaction). The theoretical value 

of af is about 10" m s' . Van den Tempel (1953) found experimental values for af 

ranging from 1CTla to 3 x 10~16 m3 s"1 for fast flocculation in emulsions (realised by 

adding salts). For stable emulsions, say kQ = 10"7 s "\ the ratio «, NJk is always 

much larger than 1 and then a first order reaction is to be expected. FoV unstable emul

sions, say kQ = 10 s , the ratio af NQ/kQ will still be larger than 1, if the number 

of droplets is not too small (say % > 1016 m-3j. ^ f o r y e r y ^ ^ ^ ^ ^ 

emulsions a second order reaction is to be expected. 

6.2 RESULTS -

6.2.1 Emulsions uithouv crystals in the oil phase 

Several -true' emulsions, that is with only a liquid oil phase, were investigated 

regarding their stability to coalescence, in order to facilitate comparison between the 

same emulsions with and without crystals in the oil phase 

iJTfr SrbillSed by m 40"88' WA 16"98' m 4"88' S0di- c a s e i n a t e > *°*™ laury sulphate (NaLS) § ̂ ^ ^ R ^ . ^ ^ ^ ^ ^ ^ 

The observed stability for these emulsions is in accordance with the literature. 

Lankveld (1970) foundno instability for his PVA emulsions over 21 years. Rowe (1965) 

o served that NaLS emulsions were stable for at least two years when the concentration of 

o r T l T W a 7 e a r T a b W e the ^ A 1 S ° V a n d e n T e ^ e l 0957) found no instability 

ZCilT • T (USlng 3 C O n C e n t r a t i o n °f ̂ S that was just above the O Q . This 

fo m t L f T " 6 " W h 6 n " 1S C ° n S i d e r e d t h a t the g l 0 b u l e s s h o u l d *t«ir together 

oirmin 1 T T 6 3 0 6 " 6 t0 be P0SSible- ^ POtential « ^ diagram shows no sec-
CTnl Zt r ̂  e m l S i 0 n S m S n t i 0 n e d «*' * very large repulsion at short distance. 

Ta al tl:e.enC0UnterS °C C U r - d C O a l — becomes unlikely. Addition of 

1 - v l d n T : Z : T lndUCe f l ° C C U l a t i 0 n - E ™ then the coalescence rate was very 

m e 0T2 7 x T? s"' f 0 U n d £0r 3 N a L S e m U l S i 0 n W l t h °-1 m 0 l / 1 N a C 1 a C O a l — 

brearthrimulsStabili:ed * " ^ ™ " ^ ^ ^ Md^°» °f -"could l c : r t ; :ay-AManoxo1 OT emuision was ̂  ** * *** *>™*»-
LU give a concentration of 0.04 mol/1 Nan n nncc , /, ,. 
W n m ,-„ ,„17 -̂  ' °-0056 mol/1 Manoxol OT, * = 0 2 d = ; ::x I:}; ^emision was rotated s^ «-« — * •£» P-
ent creaming. The coalescence rate was found to be 3.4 + 0.4 x 10"5

 s"1 : :: ̂ IT: forfor about the - —̂  —- ; * ̂  ̂  ^^zz^—z^r"0:also found that a iower coaies-
soap was precipitated by salt so tit Te ,COnCentratl0n' P ~ b l y because some 
creased. This could alL 1 ^ ' ^ i t y ' of the interfacial film was in-
0.08 m o V ^ , : d

ab
a S1"11 the P r e S e n t °b S e r V a t i 0 n * * *» «alescence rate with 

about the same as with 0.04 mol/1 NaCl. Comparison with literature 



data may also be hampered by the possible influence of globule size on coalescence rate. 

Sometimes the coalescence rate increased with increasing globule size, but the results 

were too scarce to draw,conclusions. Such an effect may be expected because the film 

area between droplets increases with increasing droplet size, and hence the probability 

of coalescence. Further research on this subject is needed. No further attention was 

paid to these phenomena, since the main object was to get an impression of the coales

cence rate of emulsions without crystals. 

In conclusion, most stabilisers used in this study produced stable emulsions when 

the oil phase was liquid. This is not a very sensational conclusion, but the signifi

cance of it becomes clear in Section 6.2.2. 

6.2.2 Emulsions with crystals in the oil phase 

When the same emulsions, described in Section 6.2.1, contained crystals in the oil 

phase, the stability could be influenced in a negative way. In some cases, instability 

was observed at the very moment that crystallisation started. Coalescence of two glo

bules with crystals does not result in a new globule, but instead clumps are formed (Fig. 

3; upon heating (melting of the fat crystals) complete coalescence is achieved). Visible 

clumps could eventually be seen in unstable emulsions. Creaming was found to enhance 

possible instability and should therefore be prevented for a real measure of instability 

of emulsions at rest. Nevertheless, the stability at rest when creaming was not elimi

nated gave a first indication of the factors involved. The time after cooling when 

visible clumps were seen was taken as a measure of instability. This was, of course, not-

a very quantitative measure, but the differences were quite clear. 

Table 12 shows the results. The presence of fat crystals could have a pronounced 

effect on the stability, since all these emulsions were stable without crystals. A mech

anism has to be considered first, by which this effect can be explained. Since coales

cence is an interfacial phenomenon, crystals may have an effect only when they act via 

the interface. Table 12 indicates that instability was always accompanied by the appear

ance of L and M types. The behaviour of cream is revealing in this respect. Normal milk 

fat globules with N crystallisation types were stable, but when L and M types were in

duced the stability decreased considerably. This dependence on crystallisation type 

rules out that coalescence is caused by the action of surface active components, which 

could be present as contaminants of the solid phase. . , • »u 

It may be assumed that in L and M types some of the fat crystals are oriented in the 

interface of the droplet. This is allowed by the contact angle (Chapter 5). The free 

energy is at minimum in the equilibrium situation, which is in this respect e s « as 

minimum surface free energy (Lucassen-Reynders, 1962). A crystal will be wetted for a 

part by the water phase if that lowers the surface energy. Whether this occurs or ™ t 

depends, of course, on the contact angle, but also on the size and geometry of the c ^ -

tal. Tie change in surface free ener^ can be calculated when a crysta « d - v e from 

the oil phase to the oil-water interface. The calculation is easy f o r ^ l e ,e.me 

tries su h as a cube or a sphere. The surface free energy is for a cub e way — 

when one face is in the oil-water interface and nothing sticks out into the water phase. 
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Table 12. Stability of emulsions with crystals in the oil phase when 
the emulsions were at rest and creaming was not prevented. 

PVA 4-88 
PVA 4-88 
PVA 4-88 
PVA 40-8J 
PVA 40-8£ 
PVA 40-85 
PVA 40-881 

PVA 16-98 
PVA 16-98 
sodium caseinate 
sodium caseinate 
Tween 60 
Tween 80 
Tween 80 

NaLS 
NaLS 
NaLS 
NaLS 
NaLS 
Manoxol OT 
Cream 
Cream3 

Content (% w/w) and 
kind of crystals 

17% 
42% 
42% 
42% 
42% 
42% 
42% 
+ 0. 
42% 
20% 
22% 
25% 
22% 
22% 
22% 
+ 0. 
17% 
17% 
42% 
42% 
20% 
17% 
20% 
20% 

solid paraffin 
solid paraffin 
solid paraffin 
solid paraffin 
solid paraffin 
solid paraffin 
solid paraffin 
2% GMO 
solid paraffin 
tristearate 
solid paraffin 
tristearate 
solid paraffin 
solid paraffin 
solid paraffin 
2% Span 80 
solid paraffin 
solid paraffin 
solid paraffin 
solid paraffin 
tristearate 
solid paraffin 
solid milkfat 
solid milkfat 

^32 
(ym) 

2.5 
2.5 
4.0 
3.0 
3.0 
5.0 
3.0 

3.0 
3.0 
2.5 

2.5 
5.0 
1.0 
3.0 
3.0 
3.0 
3.0 
3.0 

Crystalli
zation 
type 

N,M,L 
N,M,L 
N.M.L 
N,M,L 
N,M,L 
N,M,L 
N,M,L 

N 
N,M,L 
N,M,L 
N 
N,M,L 
N,M,L 
N,M,L 

N,M,L 
N,M,L 

.2 
N,M,L 
N,M,L 
N,M,L 
N 
N,M,L 

Time after cooling 
for visible clumps 
to appear 

> I week 
> 1 week 
1 day 
1 day 
> 1 week 
> 1 week 
1 day 

> 1 week 
< 1 hour 
> 1 week 
> 1 week 
> 1 week 
< 1 hour 
> 1 week 

> 1 week 
1 day 
> 1 week 
I day 
< 1 hour 
< 1 hour 
> 1 week 
1 day 

1. Creaming was prevented during the first 24 hours 
2. Droplets were too small to observe different crys 
3. L and M types were induced by addition of glycero 
was removed by dialysis. 

after preparation, 
tallization types. 
1; afterwards glycerol 

The surface free energy for a sphere is on the other hand at minimum, when the solid is 

partially wetted by the water phase (Fig. 13). When the contact angle is 120°, a sphere 

would stick out over a distance of half the radius of the sphere. Now, it may be possi

ble that a fat crystal, being wetted for the larger part by the oil, sticks also somewhat 

. out into the water phase. Of course, a crystal will neither be a cube nor a sphere, but 

- r e like a platelet. F u r t h e r , the oil-water interface is curved in the case of an 

Z i l T , 7 T " ' ^ l a r g S r P a r t ° £ t H e C r y S t a l W i l 1 *"*"*>* ^ »tick out of the 
dropl t, but the curved interface and the typical geometry of fat crystals can possibly 
lead to a situation where an edge stick* nut n-F i-t, -, u -, , 

r r SLICKS out of the globule, as shown in Figure 13c. The 

S™/ tTT " dePlCted in FigUre 13C' iS in « «*« Reality 
n fi s lim

 }H i f lfc ^ a * " - * • " » * « * Pâture. This situation may occur 

I L n c ^ a f °bUleS.drPending ° n 8 e 0 m e t r y ' ̂  * » and contact angle and a protruding crystal may stick out some 20-30 ran 

pierce the tM„ s J J ™ t tt^l? t 0!aCh Mhe r ' "» ' ro""»»e "y*" «™>« 
— globus, coe.es™« s t e C r b T 1 " " " " * " *" " " " * " * * 

inevitable, because the contact angle will strive for its 
46 
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water water 

B. 

water 

C 
Fig. 13. Possible orientation of fat crystals at the oil-water interface. Orientation 
of a cube for 90° < 0C < 180° (A); of a sphere with 0C = 120° (B); of a fat crystal at 
the interface of an oil droplet (C). The drawing is to scale in case C for a droplet 
with diameter 3 ym and a crystal with length 450 nm and width 150 nm. 

equilibrium value. Figure 14 illustrates this. 

A similar mechanism for film rupture has been proposed for a very different system 

by Anfruns & Kitchener (1977), who observed that flotation of angular quartz particles, 

which were rough on a microscopic scale, was faster than of spherical, more or less 

smooth, particles. The authors suggested that the film between a particle and a bubble 

ruptured quite easily at edges and corners of the rough particles, whereas the film be

tween a bubble and a spherical particle had to thin further before rupture occured and 

thinning was opposed by viscous drag. Blake & Kitchener (1972) investigated stability 

of aqueous films on hydrophobic silica and assumed that surface roughness of the silica 

could be a cause of film rupture. Also Garret (1979) postulated this as a part of the 

mechanism for the antifoaming behaviour of polytetrafluorethylene particles. Protruding 

fat crystals could destabilise the film formed between approaching globules in a similar 

way at a relatively large film thickness. _ 

Several phenomena of Table 12 were explained by this mechanism. The influence of the 

content of solid fat may be explained by considering that the number of droplets with 

protruding crystals increased with increasing content of solid fat or that crystals stick 

. t . crystal. The arrows 
Fig. 14. Schematic drawing of the coalescence P ™ « ^ " ^ ^ contact angle, 
indicate the flow direction of oil established by the non equ 
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out further when globules contain more crystals. The difference between solid paraffin 
and tristearate may be due to the difference in contact angle (Section 5.2). The contact 
angle was smaller for surfactants with tristearate than with solid paraffin, hence an in
creased probability on protruding crystals, which may stick out further too. The effect 
of droplet size on stability may also be reduced to an effect of crystals. In larger 
globules crystals may grow larger so that they stick out further, thereby increasing the 
probability of coalescence. Another effect is that the contact area between droplets in
creases with increasing droplet size. 

Surfactants have an influence on stability via the repulsion they bring about when 

globules approach each other. The forces on globules in a cream layer should be consid

ered in this respect. The pressure at the top of the cream layer was approximated by: 

Tcr 
(Pc - Pd) 9 hcr ( 4 7 ) 

with *cr the volume fraction of fat in the cream layer, P(; and p d the density of the 
continuous phase and disperse phase, respectively, g the acceleration due to gravity, hQT 

the thickness of the cream layer. Assuming that ̂ = 1 , 10"2
 m and *cr = 0.5 it is 

found that^ocr - 8 N m" . The area that is taken in by a globule with diameter 3 ym is 
about 10 m 2 . The force on a globule is then 8 x 10"11 N. Of course, this is only an 
order of magnitude, because, for example, the pressure on the globules decreases from top 
to bottom. This force must be compared with the interaction force between globules. The 
interaction between globules stabilised by NaLS is taken as an example. This interaction 
can be described by DLVO theory and is treated in more detail in Sections 7.2.2 and 
7.2.4.1. The total interaction force (resultant of attractive and repulsive forces) be
tween two globules with diameter 3 pm is 7 x 10"" N at h = 16 nm and 1 x 10"'1 N at 
h = 17 nm. Hence, globules (d = 3 ym) in a cream layer where a force of 8 x 10~11 N acts 
would be pressed together to a distance of about 16 nm. Without such a force the glo
bules cannot approach each other closer than about 32 nm. Creaming could enhance insta
bility m this way, when other parameters (globule size, amount and type of crystals) 
favour coalescence. • . . -

The overall picture is that the stability depends on the magnitude of the repulsion 
and if repulsion can be overcome to some extent, protruding crystals can accomplish 
coalescence. In general, steric repulsion (by PVAs, sodi™ caseinate, Tweens, the mem
brane of milk fat globules) is stronger than electrostatic repulsion (NaLS, Manoxol OT, 
and also somewhat by sodium caseinate and the membrane of milk fat globules) and is ef-

ZTZ\°r a l0nger diStanCS- Stm' there Sre S ° m e P a r i t i e s -en in Table 12. 
W A 40-88 gave only stable emulsions when creaming was avoided during the first 24 hours. 

TT":, t J ; : 7
P ° l y m e r ******** "fter emulsification and this takes some time 

l^ol Z ff APParently' the reCOnf-dP— gave rise to stronger steric re-

du diff! : " S t a b i n t y b6tWeen m 4"88 Snd W A 40"88 « * » * « » - t be 
s r : 1!\ T Wei8ht- m 4 ° - 8 8 ̂  3 h i ^ r molecular weight which 

causes stronger repulsion (Van Vliet 1Q771 MA-+- * •. 
PVA 40-88 emulsions led to a lei ab \ ^erolmono-oleate (GNC) to 

from the interface by ̂  ( g ̂  * ̂ T' ^ ^ "" ^ * ^ ^ y lugaen, 1973). GMO may also affect the crystal habit and size 
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of crystals. GMO can also affect the contact angle so that crystals can stick out fur

ther. The difference in stability of PVA 16-98 stabilised emulsions with tristearate and 

solid paraffin, or actually the difference in crystallisation type, is difficult to ex

plain (PVA 16-98 with tristearate showed also anomalous behaviour in contact angle 

measurements, Section 5.2). 

Finally the behaviour of Tween 80 with Span 80 is worth noting. Without Span 80 the 

emulsion was quite unstable, but the stability was strongly increased when Span 80 was 

added to the oil phase. This must have been due to the association at the interface of 

the two emulsifiers, giving a very cohesive interfacial layer and hence a good stability 

to coalescence (Boyd et al., 1972). A reason why Tween 60 gave stable emulsions and 

Tween 80 did not was not found. The difference between the two is that Tween 80 is more 

hydrophobic. 

Since creaming influenced the stability, the stability at rest was also investigated 

when creaming was prevented. This was achieved by rotating the emulsions slowly (about 

6 rpm) in a jar under exclusion of air. Although the formation of a cream layer was pre

vented'in this way, there was some movement of the globules due to creaming. The veloci

ty can approximately be calculated from Stokes' law: 

g ( P C - Pd) d (48) 

18"c 

with g the gravity acceleration, P C and P(J the densities of the continuous and disperse 

phase respectively, d the diameter, and nc the viscosity of the continuous phase. -A glo

bule "of d - 3 pm would move about 0.2 u» in one second. This has to be compared wxth the 

displacement of two globules relative to each other because of Brownian motion as 

projected on a plane perpendicular to the creaming motion. This is (4/3)» A (Walstra 

Oortwijn, 1975) and A is: 

TkTt-y (49) 

3ir n c d J 

This displacement is about 0.5 m per second for a globule of 3 u». The -tion due^o 

gravity may therefore not be totally negligible and the rate of encounters may be some 

what enhanced compared to normal Brownian motion. 

Some of the emulsions described in Table 12 were investigated under «™*™£ 

creaming. The very unstable emulsions PVA 16-98 and NaLS with tristearate cou ^ n b e 

investigated in this way, because the slightest movement (e.g. when d r a w , a a ^ l 

caused already instability. The emulsions investigated and some results a r e s e n ed 

in Table 13. The emulsions that were unstable in 1 day when creamed we e « t ^ s able 

when creaming was avoided. This demonstrates that some^ repuls xon m u s t e e ^ ^_ 

order to achieve instability. Only the NaLS emulsion with d, 5.05 ym w 

stable. The coalescence rate was about 6 x 10"8 s 1. The efficiency o, - 4 

calculated from the rate of coalescence and the rate of encounters (Eon^43) n other 

words, roughly only four encounters in a million lead to coalescence. The coalescence 
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Table 13. Stability at rest of emulsions with crystals in the oil phase when 
creaming was prevented. 

PVA 4-88 
PVA 40-88 
PVA 40-88 + 0.2% GMO 
NaLS 
NaLS + NaCl (0.1 mol/1) 
NaLS 

Solid paraffin 
(% w/w) 

42 
42 
42 
17 
17 
17 

«("v 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

d32 at t0 

(ym) 

2.48 
3.31 
4.22 
2.00 
2.00 
5.05 

c?32 after 

23 days: d$2 
15 days: d^2 

23 days: d32 

10 days: ££32 
10 days: d32 

1 day : d32 

2 days: d%2 
5 days: (f32 

= 2.50 
= 3.31 
= 4.25 
= 2.00 
= 2.00 
= 5.07 
= 5.13 
= 5.19 

NaLS + NaCl (0.1 mol/1) 17 0.2 5.05 (visible clumps after 1 day) 

rate was less than 10~10 s_1 for the other emulsions. Compared to the rate of encount

ers, it follows that ccp < 10"9, or even less, because it was reasoned above that the rate 

of encounters was somewhat higher under slow rotation than in normal Brownian motion. 

Table 13 shows also that addition of NaCl caused no additional instability when d^ = 2 

ym. The double layer repulsion decreases by addition of NaCl, the globules can approach 

each other closer and they flocculate in the secondary minimum at a distance of about 8 

nm. Yet, no instability was found. It may be argued that the globules, once flocculat

ed, do not move (or very little) relative to each other and when the number of globules 

with protruding crystals is small, a situation is reached in which protruding crystals 

cannot be effective anymore. Nevertheless, addition of NaCl to the NaLS emulsion with 

dz2 = 5.05 ym had a drastic effect. The number of 'reactive' globules may be larger 

when the droplet size increases and crystals may stick out further, but the inevitable 

mixing of the emulsion with the salt solution could also be a cause. In Chapter 7 the 

rather drastic influence of flow on these systems will be treated. 

The hypothesis of protruding crystals as the cause of coalescence was not 

contradicted by the present results. Factors that influenced the distance of approach 

between globules and the probability of protrusion of crystals influenced the stability. 

In addition, some force was necessary (like in a creamed layer) which was able to over

come some repulsion, otherwise the emulsions were stable. 

6.2.S Effect of crystals on aqueous films in oil 

In Section 6.2.2 it was suggested that crystals, sticking out of emulsion droplets, 

were able to pierce the film between globules and thus cause coalescence. Attempts were 

made to simulate such an effect in a macroscopic way with aqueous films in oil with crys

tals. These experiments served merely as an indication, because factors such as film 

thickness and crystal size were unknown but certainly different from emulsions. Films 

were made with a platinum wire of 0.! on thick. The frames were heated in a flame to 

remove dirt and grease before any experiment. The fil»* were drawn in two ways: 

(a with a circular frame (diameter 0.5 cm) in such a way that the films were horizontal 

and isolated in the oil (Fig. 15a) 

(b) with a rectangular frame of width 0.5 cm that was drawn out of the aqueous phase for 
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Fig. 15. Schematic drawing of aqueous films drawn in an oil phase containing crystals. 

about 0.5 on in such a way that the films were vertical and remained in contact with the 

aqueous phase (Fig. 15b). 

tte films drawn in these ways were rather stable (say at least one day) when there 

were no crystals in the oil phase. When crystals were allowed to settle slowly on the 

films formed, the films remained stable. In fact, the crystals did not come into the in

terface of the film, because they could be removed after one day by rotating the circular 

frame. However, when the films were drawn in the presence of crystals in the oil phase, 

films of some surfactant solutions were found to be unstable: they collapsed within 10 

seconds or could not even be drawn. This was so with solutions of NaLS, Tween 80 and 

Manoxol OT. As seen in Table 12, emulsions of these surfactants with crystals in the oil. 

phase were very unstable. Films could be drawn in the presence of crystals in the oil 

Phase (and remained stable) with PVAs and sodium caseinate. There is thus a striking 

agreement between the stability of films in an oil phase, drawn in the presence of crys

tals and the stability of emulsions with crystals in the oil phase ^ " ' . J ™ ^ 

one exception: a FVA 16-98 emulsion with tristearate was very unstable, but a film of IVA 

16-98 solution could be drawn in the presence of tristearate crystals. Once again, 

explanation could be found for the behaviour of PVA 16-98 with tristearate. 

Although these film experiments were only of a tentative nature, some>r es mb ^ 

with the stability of emulsions was found. It illustrated that at < ^ £ £ ™ 

an effect on the stability of aqueous films, when they penetrated in the interface 

some way. 

6•3 CONCLUSION 

In this chapter the stability at rest of emulsions with and without « y s t ^ t o 
oil phase was investigated. The emulsions without crystals were, with one e eP on^ 

-, • rftj, rrvt;tals in the oil phase could, however, be unsta 
very stable. The same emulsions with crystals m uie u± v 
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ble, dependent on several factors. Instability was always accompanied by the crystal 

habit in which some crystals are probably oriented in the oil-water interface. The sug

gestion was made that coalescence is caused by this presence of crystals, which may stick 

out somewhat in the water phase. When droplets can approach each other close enough, 

these protruding crystals may pierce the film between approaching droplets. The surfac

tant adsorbed is one of the factors that determine how close globules approach each 

other. Most emulsions were stable when creaming was avoided, but instability could arise 

when creaming was not avoided. The conclusion was that the pressure in a cream layer 

pushed the droplets more close to each other, thereby, increasing the probability that 

protruding crystals induce coalescence. The influence of factors such as globule size 

and type and amount of solid fat was explained by their influence on the probability of 

protruding crystals. Additional evidence for the hypothesis proposed was obtained from 

experiments with aqueous films, drawn in an oil phase containing crystals. 
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7 Stability of emulsions in flow fields 

7.1 INTRODUCTION 

A flow field may affect the stability of emulsions by increasing the frequency of 

encounters. Experiments have been reported on the instability of latices in flow 

(Stanfcerger, 1962; Swift & Friedlander, 1964; Curtis & Hocking, 1970; Utracki, 1973; 

Warren, 1975; Van de Ven & Mason, 1977; Ives, 1978; Zeichner, 1978; Zeichner & 

Schowalter, 1979). Flow can promote aggregation as well as de-aggregation of particles, 

depending on the strength and nature of the flow. In addition, the process of coales

cence is important in emulsions. Little is known how coalescence is affected by a fi«** 

field. Swift & Friedlander (1964) showed that emulsions, which were stable at rest could 

not be made unstable in Couette flow. 

The stability of emulsions was investigated in the present study in three different 

types of flow, namely Couette flow, flow with Taylor vortices and turbulent flow. Em-, 

phasis was laid on Couette flow, since a theoretical analysis was available for interac

tions of spheres in this type of flow. 

7.2 STABILITY OF EMULSIONS IN COUETTE FLOW 

Simple shear was approached with Couette flow, as described in Section 3.5.1. 

Recently, Van de Ven > Mason (1976a, 1977) have presented a theory, which describes en

counters of particles in simple shear, taking into account hydrodynamic as wel as col

loidal interaction. This theory may be useful for an explanation of the effect of 

Couette flow on the stability of emulsion droplets and is treated m more detail 

Section 7.2.1. 

7.2.1 Trajectories of spheres in simple shear flow 

consider , „e«r,Uy buoy.« spheres of ̂  r.oios » I - « j * ' £ « » £ ^ . 

shear no» „lth v . ^ y , - i « •• » « « - ^ rf £—« 
ers, Js, of spheres with a reference sphere (Fig. 16) was calculated y 

(Overbeek, 1952) and given by: 

Js=VNGb3 
(50) 

Smoluchowski assumed that the spheres *oved along ^ ^ ^ ^ ^ f " 
dynamic effects) and that interaction forces were absent until the spheres touched 
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boundary of 
capture cross 
section 

Fig. 16. An encounter between two spheres in simple shear flow. The reference sphere is 
at the origin of the coordinate system (r, 0 and <(> are spherical coordinates) and the 
other sphere enters the capture cross section so that a permanent doublet is formed (af
ter Van de Ven & Mason, 1976a, 1977). 

Assuming that every encounter leads to coalescence, that only two-body encounters take 

place and that no de-aggregation occurs, the following relationship can be derived (Swift 

& Friedlander, 1964; Zeichner & Schowalter, 1979): 

dt 

4 G (j> N Tv (51) 

where $ is the volume fraction of the spheres. Hence, the,change in number of (initial

ly monodisperse) particles follows a first order reaction. 

In the absence of interparticle forces, however, most of the spheres never touch but 

separate after an encounter because of hydrodynamic interaction (Arp & Mason, 1976). 

When interparticle forces act between spheres, these may either capture each other on an 

encounter (permanent doublet formation), or separate after a short time encounter (sep

arating doublets). Two kinds of permanent doublets can be formed; primary doublets 

(flocculated in the primary minimum) in which the spheres touch and secondary doublets in 

which the spheres do not touch but orbit around each other at a certain (small) distance 

in the secondary minimum. Van de Ven & Mason (1976a, 1977) showed that Equation 50 can 

readily be adjusted for permanent doublet formation or the so called capture frequency J 

by: 

J = 
32 

a„ N G tf (52) 

with the orthokinetic capture frequency a = J/J~. The same authors showed that a0 can 

be calculated when the trajectories of spheres relative to the reference sphere are 

known. The trajectory equations are: 
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^ * = 4(r*) sin26 sin2* • ̂  ^ f (53) 
dt* 3TT n G ir 

— = jB(r*) sin2e sin2(j, (53) 
dt* 

dt x 
i { 1 + B(r• ) cos2<|> } *1 cos2<b 1 (54) 

where r* = r/b, v being the distance between the partiele centers, the dimensionless 

time t* = t G, n the viscosity of the suspending fluid, and v, 6 and $ are spherical 

coordinates (Fig. 16). A[v%), B{r*ï and C(r*) take the hydrodynamic interaction for 

two equal sized spheres into account and are dimensionless functions of r*. They are 

available in tabular form (Lin et al., 1972; Batchelor & Green, 1972; Zeichner & 

Schowalter, 1977 and Arp & Mason, 1977). Kao et al. (1977) and Arp & Mason (1977) gave 

approximation formulas for A(r*) and B(r*), while Honig et al. (1971) gave an approxima

tion formula for C(r*). The formulas are: 

ü(r") = 0.5 x 8.15 (r* - 2) {1 + 0.9 (r* - 2) l n t f j ^ ) } • when r* < 2.09 

., *, , * 2.5 . 4 12.5 „hen r* > 2.09 
H')-l* - s + -J* "TS 

y p r 

„ r *, , * „ B 1 1 S _ K 9 1 2 8 _ . 2.25 } / r* w h e n r * < 2.09 (54) 
B(r ) = {r - 0.8118 — — ?, * ,-, 

ln(r - 2) In (r - 2) 

n, *, 1 16 . 10 when r* > 2.09 
S(r ) = 1 rr + —"ig 

3r 3r 

r( *, 6 0 * - 2 ) 2 + 4fr* - 2) for all r* 
Cfr ) = — -TT r 

6(r* - 2 ) 2 + 13(r* - 2) + 2 

and were used in the calculations in this study. F^M is the interaction force as a 

function of distance between the spheres and is usually composed of a repulsive force, 

FR, and the Van der Waals attraction force, ̂ . When F^ is Known the trajectory 

Equations 53 can be solved and aQ determined as follows. 

Consider particles that will flocculate with the reference sphere; the number of 

particles, àJ, passing through one quadrant of the 'capture cross section- between * 2 

and x2 + dx, per unit time (Fig. 16) is then: 

(55) 
àJ = N G x2 Z 0 2 ) dx2 

G x 2 represents the particle velocity (equal to the fluid velocity) and Z{x ) is some 

function describing the boundary of the 'capture cross section'. This boundary can be 
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calculated from the trajectory equations. If L is the semi-axis of the 'capture cross 

section', then the total number of particles passing through this per unit time is: 

L , L 
àJ = 4ff G QS x2 Z(x2) dx2 = AN G b Qf x* Z*{x*) dx* 3 r __* „*/-_*-, j . . * (56) 

Hence x* = xJb, Z*(a:*) = Zix^/b and L* = L/b. Combining Equat ions 56 and 52 y i e l d s : 

3 L* a = -£ ƒ x2 Z {x2) Ax2 • (57) 

Van de Ven & Mason (1977) found that in the absence of renulsion the rate of doublet 

formation is not proportional to G, as would follow from the original Smoluchowski Equa-

tion 50 but to G . If repulsion forces predominate at all interparticle distances, no 

permanent doublets can be formed, hence a = 0 . Otherwise a depends on the actual in

teraction energy and the shear rate. At very high shear rates, primary doublets may be 

formed, at low shear rates secondary doublets, while at intermediate shear rates no 

permanent doublets may be formed. In other words, a suspension can be unstable at low 

and high shear rates, and stable at intermediate rates. 

7.2.2 Application of trajectory analysis to emulsion droplets in Couette flow 

The trajectory analysis, as described in Section 7.2.1, was used in discussing the 

results for the behaviour of emulsions in Couette flow. The application of the traject

ory analysis involves several assumptions, some of which need justification. 

Brownian encounters should be negligible. When the so called translational Péclet 

number, Pe^, is much greater than unity, Brownian encounters can be ignored (Van de Ven 

& Mason, 1.976a) : 

P e t - ^ (58) 

where D^ is the translational diffusion coefficient of a particle i. For the lowest 

shear rate used (G ~ 50 s ) and the smallest (mean) particle radius (fc = 0.5 ym) with 

Di = 4.4 x 10"1 3 m s"1, Pet = 25 and the condition was fulfilled. 

There is an absence of inertial effects. The Reynolds number for the particles, Äep, 

should be much less than unity to avoid inertial effects: 

* p - ^ • • • • > • • (59) 

Taking extreme conditions of G = 1500 s"1 (about the highest shear rate used), the 

kinematic viscosity v = 10"6 m 2 s~1 and b = 

1 - 2 pm) Re = 0.038. 
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The trajectory analysis is based upon hard non-deformable spheres. According to 

Torza et al. (1972), the maximum deformation of fluid spheres in simple shear flow is 

given by: 

D = 5(19q H- 16) | (60) 

4(1 + q) {(19q)2 •+ (20/Jfe)2}5 

where D = (£.. - B^/{Ly .+ B^) with ̂  and B, being the largest and smallest dimensions of 

the deformed droplet, respectively, q is the ratio of the viscosity of the disperse phase 

to that of the continuous phase and.Ute is the Weber number given by: 

„ G h nc (61) 
We = 

Y 

For a shear rate G - 1500 s"1, interfacial tension yQW = 10 mN nf1, droplet radius b -

1.5 pm D • 10"4. The deformation is thus seen to be small. Furthermore, internal cir

culation inside emulsion droplets is inhibited by surfactants, because the tangential 

stress is compensated for by an interfacial tension gradient. In this respect, 

deformation of the emulsion droplets is also reduced. 

Tlie generated change in interfacial tension, Ay, is very small, as calculated from 

the tangential shear force (Goldsmith & Mason, 1967): 

A Y = f n c G f c 

For G = 1000 s"1 and b = 1.5 pm, Ay = 4 x 10"6 N nf1, indeed a very small change. 

The globules in a doublet may independently rotate and then a velocity profile may 

develop as depicted in Figure 17; this could also generate an interfacial tension gra

dient. When the globules rotate as free spheres in simple shear flow, the phenpheral 

velocity v of a globule is: 

Fig. 17. 
flow. 

• „ f-i™ tetween two globules rotating in a doublet in Couette 
Flow pattern in the film between two gi 
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v = \G b (63) 

The velocity gradient in the film with thickness h is then (JG fc)/(P0, and this leads 

to a stress of n G b/h, which is SO N m~2 for i = 1.5 x 10"6 m, nc = 10 - 3 Pa s, G = 

103 s-1 and h = 3 x 10~8 m. This in turn leads to a change in interfacial tension Ay = 

7.5 x 10~5 N m~1. It is believed that these changes in interfacial tension are too low 

to cause any appreciable disturbance in the flow. 

The spheres must be neutrally buoyant, but this is rarely true in emulsions. 

However, creaming of the droplets during an experiment will, to a large extent, be pre

vented by the streaming of the fluid (Walstra & Oortwijn, 1975). However, the density 

difference may have some influence on the trajectories of emulsion droplets in Couette 

flow (Goldsmith & Mason, 1967). 

A serious defect which cannot be taken into account is the heterodispersity of 

emulsions, since the analysis is given for monodisperse spheres. Van de Ven & Mason 

(1976a, 1977) emphasised.that the analysis is valid only for two sphere encounters, 

hence for strongly diluted suspensions (say * < 0.01). Interactions between more than 

two droplets take place at higher volume fractions, resulting in a different behaviour. 

For example, a permanent doublet in the secondary minimum can be transformed into a per

manent doublet in the primary minimum by collision with a third sphere. More important 

perhaps is that the trajectories of the spheres, in concentrated dispersed systems, are 

disturbed (Goldsmith & Mason, 1967). 

Hence, it is unlikely that the measured and calculated stability factors will be the 

same. Therefore, the trajectory analysis cannot give a quantitative explanation but it 

can give information about the interplay between hydrodynamic and colloidal forces acting 

between emulsion droplets in Couette flow. 

The colloidal interaction between emulsion droplets depends upon the type of 

emulsifier. The interaction force F. in Equation 53 is composed of a repulsive force 

F R and an attractive force F^. With ionic emulsifiers the DLVO theory is applicable for 

which a useful approximation formula (when K h > 1) is (Verwey & Overbeek, 1948): 

64TT n- b k T 
CR ~ \ = < tanh V~4TT7 e x P ( _ K *) (64) 

where n^ is the number of ions with valency z per unit volume, b the radius of the 
spheres, k Boltzmann's constant, T absolute temperature, K is the reciprocal double layer 
thickness, ̂  the electric potential of the Stern layer, e the elementary charge, h the 
distance between the spheres [h = r - l b ) . The question whether the constant potential 
or constant charge model should be used for FR is not of interest here, since K h > 1 
(Frens & Overbeek, 1972). 

The formulas given by Schenkel & Kitchener (1960) were taken for the Van der Waals 
attraction: 
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F = J_È ( 1 + 3'54p \ when p < 1 
A " ^2h2 V(1 + 1-77p)V 

(65) 

F = _Al / M i . °-434 + g-0674 \ when p > 1 
A 12Ä2 \ p P2 P / 

where 4 is the Hacker constant and p = 2, h/x with X being the characteristic wavelength 

o£ the dispersion interaction. - The value for X is not precisely known but is usually 

chosen to be 100 nm. The formulas of Schenkel • Kitchener (1960) differ from the ones 

given by Vincent (1972) but give essentially the same results when b > 0.5 „m. For 

b < 0.5 ym the formulas given by Vincent (1972) are in fact.better. 

Often, steric repulsion is important in the stabilisation of emulsion droplets for 

example, with polymers and nonionic surfactants. There is, however, not a simp e formula 

that can adequately describe steric repulsion. Therefore, some e x p e r » data were 

taken from the literature, when steric repulsion came into play (Section 7.2.4.1). 

The trajectory Equations 53 were solved numerically using a DEC 10 computerof h 
™,^0 „f the fSMP language (continuous system modelling Agricultural University. Use was made of the LbMF language i 

jr „ „ J >w n fnnrth order Runee-Kutta method with program). Numerical integration was performed by a fourth order Kung 

variable step size. 

7.2.3 Stability of emulsions without crystals in the oil phase 

The stability of emulsions without crystals in the oil phase in Couette flow was 

investigated to compare their behaviour with similar emulsions containing c r y s a l s * 
oil pha e. Real oil-in-water emulsions, stabilised by Tweens, sodium a - PVAs, 

NaLS which were stable at rest for several weeks, were subjected ^ ™ £ ^ " rf 

various shear rates. The volume fraction ,y was 0.2 and = 2 - J u. « d ^ 

instability were found in any case. Also addition of NaCl (0.1 mol/ o a N 

did not c a L measurable instability during the time span of an ̂ ™ °. 

hour). It was concluded that emulsions which were stable at rest, we«also 

Couette flow, a conclusion also ^ ^ ^ £ % ^ 7 L . « also 
A Manoxol OT emulsion which was unstable at rest up ^ ^ ^ 

concentration of Manoxol OT 0.0056 M. an coalescence rate was determined from 
emulsion was subjected to various shear rates. ^ ^ ^ 

the change in particle s i , « « ^ ^ ^ ^ e U i o n at rest. It is. 
given in Figure 18a, together with the c ° a ^ e

 d by Couette £low. An im-

apparent that the coalescence rate is « * ̂  ^ Q£ encounters leading t0 

pression of the 'collision efficiency , « , ^ ^ ^ ^ ^ ^ coalescence rate and 

coalescence, was calculated as V theor' 1 ^ g ^ ^ o n 43 for Brownian motion., 

"theor is derived £ r ° m EqUati0n ̂ ^ T o T t h e s L r rate and although a will only be 
in Figure 18b loga is given as a fun & monodisperse and dilute emulsion, it.is 
an approximation since k heor is oen as red t0 Brown-
clear that the efficiency a decreased appreciably in 
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Fig. 18. Coalescence rate fej (A) and coalescence efficiency a (B) in Couette flow of a 
Manoxol OT emulsion (<(iv = 0.20, d32 = 3-40 um, 0.04 mol/1 NaCl) . 

ian motion. This is because the rate of encounters increases considerably, whereas the 

coalescence rate was not significantly affected by the flow. It is not a consequence of 

disruption because the droplet size and the shear rate were not large enough (Walstra, 

1980). In this sense, Couette flow can be said to have a stabilising effect, which, to 

the author's knowledge, has not been mentioned before. 

Trajectories of emulsion droplets stabilised by Manoxol OT in Couette flow were 

considered for an explanation of the above observations. It was assumed that the inter

action can be described by the DLVO theory, hence Equations 64 and 65 are applicable. 

The surface potential ̂  approximated the zeta potential, which is about 100 mV for a 

Manoxol OT emulsion droplet in 0.04 mol/1 NaCl (Van den Tempel, 1953; Sherman, 1968) and 

the Hamaker constant A for paraffin oil is 1.7 x 10"2 0 J (Visser, 1972). Because of the 

high zeta potential, a very high energy barrier exists at distances smaller than about 

10 nm, while a weak secondary minimum is present at about 12 nm. The trajectory calcula

tions showed that permanent secondary doublets could be formed up to a certain shear 

rate, above which no permanent doublets were formed. The minimum distance of approach 

was about 11 nm, which was not largely affected by the shear rate (10 nm at G = 1000 

s-1).' 

The calculated aQ for permanent (secondary) doublet formation is illustrated in 

Figure 19. The calculated c*0 was much higher than the experimental a for coalescence, in 

other words, coalescence was much slower than f lobulation. The observed decrease in co

alescence rate above G = 210 s"1 (Fig. 18) is in qualitative agreement with the traject

ory calculations, which show that above G = 120 s"1 no permanent doublet formation was 

possible. The maximum in coalescence rate (Fig. 18) was reproducible for this particular 

emulsion, but not for another Manoxol OT emulsion having a larger particle size. The co

alescence rate increased then somewhat with increasing shear rate. 

Nevertheless, independent of globule size the experimental a was found to decrease 

with increasing shear rate as depicted in Figure 18b. An explanation for this may be 

that, when no permanent doublets are formed, only short time encounters take place and 
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flow of Manoxol OT stabilised emulsion droplets W 3 2 3.40 ym, 

the life time of an encounter may become important. The average life time Ï of a 

transient doublet is (Arp & Mason, 1976): 

5w 
6G 

(66) 

hence, the life time decreases as shear rate increases. 

I may be concluded that the coalescence process is not drast ail af y 

Couette f L w . The fact that two globules stay together for some time is probably 

important than that they meet each other frequently. 

7.2.4 Stability of emulsions with crystals in the oil phase 

i ^ c*»hiiitv at rest of emulsions containing crystals in 
Several factors influenced the stability at or stability in Couette 

the oil phase (Section 6.2.2). These factors may also m lu ene ^ t b i y 

flow. Therefore, the influence of several parameters such s h ype o 

globule s i , , density ^ ^ ^ ^ Z ^ - — with ionic 
sions, amount and type of crystals, <"•" 
stabilisers, was investigated. 

7.2.4.1 Influence of surfactant type 

d-„hiUtv was investigated as a first parameter. 
. The influence of surfactant type on ^ £ > ^ ^ m u l s i o n systems with crys-

Three representative surfactant types were selected from 



tais in the oil phase, as characterised in the Chapters 5 and 6. These were NaLS, PVAs 

and sodium caseinate (NaCas). As described in Section 7.2.3, 'true' emulsions (without 

crystals) stabilised by these surfactants were stable in Couette flow. These emulsions 

with crystals in the oil phase were also fairly stable at rest (Section 6.2.2). 

The effect of crystals on emulsion stability in Couette flow is indicated in Table 14 

together with the crystal habit in the unclumped and clumped droplets. The presence of L 

and M types in the original droplets caused instability. In one case, L and M types were 

originally absent but appeared in the clumps formed from unstable droplets (NaCas with 

tristearate) suggesting that N types may be transformed into L and M types. The question 

arises whether the possible transformation of N to L types took place before, during or 

after coalescence. If N types persisted, no instability was found (PVA 16-98 with solid 

paraffin). In the latter case, raising of the content of solid fat did not affect the 

stability. A tentative conclusion is that for instability to occur some crystals must be 

somehow in the interface as was concluded for unstable (creamed) emulsions (Section 

6.2.2). 

The same mechanism for coalescence is proposed as for creamed emulsions is operative, 

namely some fat crystals at the oil-water interface can be oriented in such a way that 

they stick out into the water phase (Fig. 14). Such a protruding crystal could pierce 

the thin film between two globules thereby inducing coalescence. The emulsions of Table 

14 were, however, stable at rest when creaming was not prevented (confer Table 12). The 

destabilising effect of Couette flow has therefore to be considered in more detail. 

For a more quantitative understanding the instability was further characterised by 

determination of the coalescence rate. It was found convenient to indicate instability 

by the efficiency a, defined as the measured coalescence rate divided by the theoretical 

rate of encounters (derived from Eqn 51). The reproducibility was usually within 30%. 

The reasons for this rather poor reproducibility have already been discussed in Section 

3.4.4. 

The effect of surfactant type on stability under Couette flow is depicted in Figure 

20 for three systems, though type of surfactant was not the only variable. An increase 

in content of solid fat and in globule size decreased stability. PVA emulsions were more 

stable than NaLS emulsions; in fact, PVA emulsions containing 17°& solid paraffin were 

completely stable. The variation in the volume fraction of fat, $ , as seen in Figure 

•20, had no effect on the results (Section 7.2.4.3). 

The results of Figure 20 show that the effect of Couette flow on stability is large 

Table 14. Stability of some emulsions with crystals in the oil phase in 
Couette flow in relation to their crystal habit. 

NaLS 
PVA 4-88 
PVA 40-88 
PVA 16-98 
Sodium caseinate 

Crystals 

solid paraffin 
solid paraffin 
solid paraffin 
solid paraffin 
tristearate 

Crystal habit in 
unclumped droplets 

N,M,L 
N.M.L 
N,M,L 
N 
N 

Cs 
Instab: 

yes 
yes 
yes 
no 
yes 

LI: ity? .Crystal habit 
in clumps 

M,L,N 
M,L,N 
ll.L.N 

M,L,N 
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Fig. 20. Coalescence efficiency a in Couette flow: ^ ^ ^ oil 
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oil phase; of a PVA 40-88 emulsion (0), <t>v - O.^U, a3 2 

paraffin in the oil phase; = 20% (w/w) tristearate in the 
C of a sodium caseinate emulsion, <|>v - U.iy, a 3 2 

oil phase. 
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very likely since the stability of emulsions with solid paraffin depended on crystallisa

tion type (Table 14). It can, however, not completely be ruled out for tristearate. 

Once again, the hypothesis of protruding crystals was considered as the cause of 

instability. The destabilising effect of Couette flow may then be explained by consider

ing the way in which globules encounter each other. During an encounter a 'contact area' 

may be defined (though the globules are still separated by a thin film of continuous 

phase). This area does not change during an encounter in Brownian motion or during the 

life time of a doublet, rotating as a rigid dumbbell in Couette flow. Mostly, however, 

there may be some relative rotation of globules in a permanent (non-touching) or separat

ing doublet (Arp & Mason, 1977a, 1977b; Van de Van & Mason, 1976b). This rotational 

movement depends in a complicated way on the orientation of the spheres towards each 

other. A more quantitative treatment is therefore not feasible, but qualitatively it is 

clear that the 'contact area' may be increased in Couette flow. The average life time of 

an encounter is also much longer in Couette flow (5 x 10"2 s at G = 50 s"1 and 2.5 x 
-3 —1 

10 s at G = 1000 s~ , as calculated from Eqn 66); in Brownian motion it is about 4 x 
10"5 s (Overbeek, 1977). 

Globules can approach each other closer in Couette flow than in Brownian motion. 

This effect depends on the strength of the flow and the interaction between the globules, 

hence on the surfactant. The trajectory analysis, as treated in Section 7.2.1, may be 

helpful in this respect. 

First, emulsion droplets stabilised by NaLS are considered, the interaction of which 

can be described by the DLVO theory, hence by Equations 64 and 65. The zeta potential 

was taken as a measure for ̂ d and was taken from literature. Values were found ranging 

from -90 to -110 mV (Anderson, 1959; Haydon, 1960; Groot, 1965). The interaction energy 

is not sensitive to its exact value for this range of i|), and a value of -100 mV was 

selected. For the Hamaker constant the value for paraffin oil was chosen: 1.7 x 10"2 0 J 

(Visser, 1972). The Hamaker constants for solid paraffin and tristearate lie in the same 

order of magnitude (Srivastava & Haydon, 1964, and Van den Tempel, 1961, respectively). 

The potential energy diagram of two droplets with radius 1.5 pm shows a weak secondary 

minimum (1 kT) at h = 32 nm and very strong repulsion at shorter distances (several 

thousands kT). The trajectory analysis showed that permanent doublet formation was not 

possible for SO < G < 1000, hence aQ = 0. Only short time encounters occured, during 

which coalescence must have taken place. 

The minimum distance of approach varied from 32 nm at G = 0 s- 1 till 21 nm at G = 

500 s" . Assuming a crystal to stick out some 20 - 30 nm (Section 6.2.2), Couette flow 

could thus accomplish coalescence. The fraction of encounters a', which would lead to an 

encounter with a minimum distance h less than either 30 nm or less than 25 nm, was cal

culated (Fig. 21a). The shear rate had an effect on a' when h < 25 ran but not when h < 

30 nm. Experimentally, the shear rate appeared to have little effect on a in case of the 

NaLS emulsion containing 171 solid paraffin (indicating that the coalescence rate was 

directly proportional to the rate of encounters). Figure 21a shows that below G = 100 

s no encounter with h < 25 nm would occur, but Figure 20a shows that the NaLS emulsion 

was unstable below G = 100 s"1. This would mean that protruding crystals were sticking 

out over a distance of more than 25 nm in this particular emulsion. 
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Fig. 21. Calculated fraction of encounters a' in Couett^ flow for which either 
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The value of a' is much higher than the expérimentai '„, but this can be explained as 

follows. Assume that, on average, one crystal per globale sticks out far. ™ M £ . 
i u i o rnn̂ irlpr a snhere1 of diameter 3 urn with such a 

pierce the film between two globules. Consider a spnere ™ a W p T l c e 

protruding crystal (cf. Fig- 13). The area over which he crystal can ca se c - n e e 

m to a f J approximation be taken as the cross sect on of a cire le wi * a , -

25 nm. This means that instead of the whole spherical urface only 7 x 10 a t f it 

is -réactive'. The probability that an encounter results in coa escence 

10" However, only 15 - 301 of the globules is of.the 
tins with the fraction of encounters that could i n ^ ^ ^ 

L and M type and consequently 

'reactive'. Combining this with tne rracLiuu ^ ^ - . y — --
„ _. T 1 O I i-u„ value of a' 'reduces to 4.^ x lu . 

to coalescence (at uost 0.2, Fig. 21a), the value » „er5i,plific.-

»ay the experimental „ is approached. This rea.on.ng ts of course » n o , W 

«ion of * actual situation. Out it explains ^ ^ ^ X ^ ^ . , e 
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distance of separation increases ioi cm cî u 

equal sized spheres. lÄ^nT1= stabilised by surfactants 

Qualitatively, the same reasoning may apply to emuls on , * * £ ^ 

other than NaLS. The type of surfactant could possibly m luenc o^ e t 

crystals via the contact angle, but the differences between V A ^ J 

will be small. The effect must therefore be explained y n « 

on the distance over which the globules can approach eacother A n a l y * ^ 

of droplets stabilised by W A ^ ^ ^ ^ T J ^ some 

steric repulsion tei.. ^ « ^ J ^ ^ . Van Vliet (1977) and Lyklem* . • 

experimental results were adapted from the li ^ ^ ^ o f . ^ 

Van Vliet (1978) measured the thickne of VA ^ ^ ^ _ ^ 

adsorbed polymer play an important role in stenc repuis 
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dependence of steric repulsion on molecular weight of the polymer. Recently, Sonntag 

et al. (1979) also published results on steric repulsion by PVA in aqueous films between 

an apolar fluid phase. The repulsion increased with decreasing film thickness more than 

was found by Lyklema & Van Vliet (1978), and no effect of the molecular weight on steric 

repulsion was found with one exception. This effect was ascribed to penetration of PVA 

in the apolar phase, but in the author's opinion it may also have been a consequence of 

poorly defined PVAs, since Koopal (1978) showed that large differences could exist be

tween the molecular weights as stated by the manufacturer and the true values. The dif

ferent results of Lyklema & Van Vliet (1978) may also have been a consequence of a dif

ferent experimental technique, since Sonntag et al. (1979) applied pressures that were 

ten times higher and consequently measured much smaller film thicknesses. 

Both results of Lyklema & Van Vliet (1978) and Sonntag et al. (1979) have been made 

use of for the trajectory analysis. These authors observed a linear relationship between 

the steric repulsion force and h , so that their results can be extrapolated to other 

distances than experimentally determined. It is realised that this approach will intro

duce errors, but it may at least serve as an indication of the effect of shear on the 

distance of separation. This method probably underestimates the actual repulsion at 

larger distances using the results of Sonntag et al. (1979) and at shorter distances 

using the results of Lyklema & Van Vliet (1978). From the latter authors the results for 

PVA with molecular weight M = 42 500 and M = 143 000 were taken, and from the former 

authors PVA with M = 35 000 (the exception with less repulsion than all other PVAs) and 

M = 55 000. All these PVAs had the same degree of hydrolysis (88$). The data were re

arranged for interaction between two spheres by a method given by Derjaguin (1934). The 

possible effect of the adsorbed PVA layers on the Van der Waals attraction was neglected, 

because the polymers are strongly expanded and the Hamaker constant of the adsorbed layer 

is then close to that of water. Equation 65 was used to describe Van der Waals attrac

tion. 

The results of the calculations showed that only short time encounters were possible, 

but that flow could overcome steric repulsion to some extent. This seems not unrealistic 

when steric repulsion is dominated by tails (at larger distances). The fraction of en

counters a', leading to encounters with h < 30 nm, is shown in Figure 21b as a function 

of shear rate. Also shown is a' for encounters with h < 25 nm for PVA with M = 42 500 

(h < 25 nm was not reached for the PVAs with M = 55 000 and M = 143 000). Again a' was 

much higher than the experimental a, which may be explained by the same arguments as giv

en previously. The minimum distance of approach depended strongly on molecular weight of 

the polymer and on the shear rate. This could explain the difference in a between PVA 

4-88 and 40-88 emulsions, as shown in Figure 20b. Figure 21b indicates that encounters 

can be more effective when the shear rate increases, because the particles approach each 

other closer. This is reflected in the increase of a for PVA 40-88 and for PVA 4-88, 

when G > 500 s . However, a' depended more on the shear rate than a, suggesting that 

some crystals stick out further than 30 nm. The rate of coalescence of the PVA 4-88 

emulsion remained constant for 100 < G < 500, so that a decreased in that region (Fig. 

20b). An explanation for this behaviour was not found. 

The results for the sodium caseinate emulsion with tristearate are given to show the 
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effect of tristearate. This emulsion was the only one with tristearate studied, which 

was stable at rest. The efficiency a was in between that of the emulsions stabilised by 

the two PVAs with different molecular weight. The repulsion by sodium caseinate will al

so largely be of a steric nature (as well as some electrostatic repulsion), which could 

explain the increase in a with increasing shear rate; the globules can approach each 

other closer at higher shear rates so that encounters can be more effective. 

As indicated in Table 14, a change in crystallisation type occured from N types m 

unclumped droplets to L and M types in clumps. Assuming the hypothesis of protruding 

crystals and assuming that in N types crystals do not stick outside, L and M types should 

be forced before coalescence can occur. They could possibly be formed because of defe

ction of globules in shear flow, which can be calculated from Equation 60 and lies m 

between 10"5 and 10"4 for 100 < G < 1000. A network of 25* tristearate crystals in 

paraffin oil breaks down at a deformation in between 10"4 and 10 accor m g to Nederv n 

(1963) and Van den Tempel (1961), and the required stress for this breakdown is about 10 

N n - 2 . However, the stress on a globule is only 5 N m"2 at 0 = 1000 s , suggesting h 

the crystal network in a globule would not be broken down in Couette ^ ^ ^ ^ 
not be detected in unclumped globules during an experiment, but the possibility remains 

that they coalesced very rapidly after they had been formed. Tne low value of a may m -

dicate that L types were formed rarely. ' r™ie>icence 

in conclusion, the present results do not contradict the hypot esis th o 1 s ene 

of oil droplets with fat crystals is caused by protruding fat ciysta s ,, ere ng tfe t 

film between approaching globules. The destabilising effect of Couette flow compared 

Brownian motion may be explained by: • 
- the relative motion of the globules about each other during an encounter, 

- the relatively long life time of an encounter; v i s i o n -
• ,-• i0 s tance because flow can overcome some repulsion. 

- the decrease in interparticle distance because stability, 

there are other interfering parameters. Their mtiuei 

and is described in the Sections 7.2.4.2 - 7.2.4.7. 

7.2.4.2 Influence of mass density of the oil phase 

a rfmsitv difference between the water phase and the Unfortunately, there was density d f e ^ ^ ^ ^ . ^ Q£ 

^ Z T ^ T J Z r » cLtte Low and may .en hinder interpreta-

tl0n0il with a density equal to water was made * ^ ^ £ ^ r 
mine to unsaturated fatty acids in glyceric«»;. ^ described by Walstra & 
column chromatography (for removal of mono- and dig yce i ^ ^ ^ ^ 
Van Beresteyn (1975). After shaking some bromine w h s lad ^ ^ 

bromine by evaporation, the density was ^ equa £ ^ w a y . 
different densities, and an emulsion was then made ^ ^ ^ ^ ^ ^ 

Two elisions were made: ™™™»^' g i s i o n s were perfectly stable at 
one without crystals (both stabilised by NaLfa). 
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rest. They were also subjected to Couette flow. The emulsion without crystals remained 

as stable as at rest. The one with crystals could be made unstable in Couette flow and 

the crystallisation type in the original globules was N, M and L. The efficiency a did 

not depend on the shear rate and amounted 5.0 x 10"7, somewhat lower than of the NaLS 

emulsion of Figure 20a, but this was attributed to a smaller globule size (d . = 1.60 um) 

and a lower content of solid fat. The point is that the instability, as observed for 

emulsions with crystals in the oil phase in Couette flow, is not caused by the density 

difference between the oil and water phase. 

7.2.4.3 Influence of volume fraction of fat 

On first consideration one would expect a direct proportionality between the 

coalescence rate and the volume fraction of fat, •y, since the rate of encounters is 

proportional to *v (Eqn 51). However, other factors play a role as well. Encounters 

between more than two droplets (n-body interactions, with n > 2) occur when the volume 

fraction *y exceeds 0.02 (Goldsmith & Mason, 1967). This results in unsymmetrical en

counters and displacements in other directions than the flow direction. Van de Ven & 

Mason (1976a) emphasised that the trajectories of spheres are influenced by n-body inter

actions. Moreover, the Couette flow will be disturbed at a certain volume fraction, 

probably at ̂  = 0.25 - 0.30, and partial plug flow may develop (Karnis et al., 1966), 

leading to a larger velocity gradient at the inner wall and a smaller velocity gradient 

inside the annulus. 
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In view of these points, the influence of the volume fraction of fat on stability of 

emulsions in Couette flow was investigated. The results are again presented as the ef

ficiency a: the measured coalescence rate divided by the theoretical rate of encounters. 

Since the theoretical rate of encounters is proportional to the volume fraction <(> , dif

ferences in a would indicate that the coalescence rate is not proportional to the volume 

fraction. The results, given in Figure 22, show no difference in a for <|>v = 0.11 and 

0.21, and • = 0.08 and 0.18. The a for $ = 0.33 was, however, higher, indicating that 

the coalescence rate was more than proportional to <f>v and this may be caused by distur

bance of the Couette flow. Incidentally, in all cases a was independent of the shear 

rate, indicating that the coalescence irate was directly proportional to the rate of en

counters. It seems justified to conclude from these results that the volume fraction of 

fat only had an effect on the rate of encounters for these systems and caused no extra 

disturbances when 4. < 0.21. It means that the instability was not largely affected by 

n-body interactions. This may seem somewhat surprising, but is probably a consequence of 

the fact that the number of encounters resulting in coalescence was very low. 

7.2.4.4 Influence of globule size 

Little is known about the effect of particle size on the coalescence stability of 

emulsions. Polydispersity is considerable in emulsions and is known to enhance f lobula

tion (Overbeek, 1952). The shape of the particle size distribution of an unstable emul

sion would remain the same both in Brownian motion and in Couette flow according to Swift 

& Friedlander (1964) ('self preserving size distribution'). Back (1975) noted, however, 

that larger milk fat globules (> 2 pm) coalesced easier in Couette flow than the smaller 

ones (< 2 pm). Also Labuschagne (1964) observed in his investigation on stability of 

cream in Taylor vortices that smaller globules were more stable than larger ones. Some 

results have already been presented, in which an influence of particle size has been ob

served (Sections 7.2.4.1 and 7.2.4.3). 

Experiments were performed with emulsions, which differed only in particle size. A 

NaLS emulsion with d „ = 0.9 pm and 171 (w/w) solid paraffin in the oil phase was sub

jected to Couette flow. No changes in particle size distribution could be detected, even 

when the solid fat content was raised to 421 (w/w): the emulsion remained stable. The 

emulsions became unstable, however, with increasing particle size (Fig. 23). When d^ > 

3 pm, NaLS emulsions containing 17» (w/w) solid paraffin became rather unstable and dif

ficult to handle. For the emulsion with d^ = 4.80 pm the volume fraction of fat had to 

be lowered to 0.01 to be able to measure the coalescence rate. This emulsion was also 

somewhat unstable at rest, as indicated in Figure 23. This dependence of the stability 

on particle size was also found for a PVA 40-88 emulsion with 421 (w/w) solid paraffin m 

the oil phase, though the measure of instability was lower than for NaLS (Fig. 24). No 

explanation was found for the dependence of a on the shear rate for the NaLS emulsion 

with d „ = 4.80 pm (Fig. 23) and for the PVA 40-88 emulsion with d^ - 4 pm (Fig. Z4j. 

An emulsion was made unstable in Couette flow until visible clunrps appeared The 

size distribution was measured before the experiment and also of the emulsion that re

gained after removal of the visible clumps (Table 15). The mean size decreased, indicat-
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Fig. 23. Influence of droplet size on the coalescence efficiency a of NaLS emulsions 
containing 17% (w/w) solid paraffin in the oil phase in Couette flow: 
+ (f32 = 2.50 um, <f>v = 0.11 
0 <f32 = 3.00 um, 4>v = 0.18 
• c£32 = 4.80 pm, $ = 0.01 

ing that the smaller globules were more stable and the relative width increased somewhat, 

indicating that some larger globules were present too but not large enough to be removed 

with the visible clumps. 

This large dependence on globule size was not necessarily a consequence of the 

droplet size but probably of the crystals inside the droplet. By slowly cooling a PVA 

40-88 emulsion with 421 solid paraffin in the oil phase, practically only N crystallisa-
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Fig. 24. Influence of droplet size on the coalescence efficiency a of PVA 40-88 
emulsions containing 42% (w/w) solid paraffin in the oil phase in Couette flow: 
T d32 = 3.80 pm, * - 0.17 
x d32 = 4.06 pm, if = 0.14 
0 di2 = 3.16 pm, <fv = 0.20 
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Table 15. Changes in size distribution parameters when clumps were formed in 
Couette flow. The parameters 'after experiment' were determined after removal 
of clumps. Results were obtained with a NaLS emulsion with 17" (w/w) solid 
paraffin in the oil phase. 

d-v 
°-
Tv 

G = 130 s"1 

before 
experiment 

3.00 
0.52 
0.18 

after 
experiment 

2.72 
0.63 
0.15 

G = 280 s-1 

before 
experiment 

3.00 
0.52 
0.18 

after 
experiment 

2.57 
0.63 
0.11 

G = 540 s"1 

before 
experiment 

3.00 
0.52 
0.18 

after 
experiment 

2.16 
0.62 
0.09 

tion types were obtained (the dependence of crystallisation types on cooling rate was 

discussed in Section 5.2). d,7 was 5.20 pm, but in spite of this the emulsion was stable 

in Couette flow and further it illustrates that droplets with N types were stable. 

Therefore, the influence of particle size on stability must be due to an effect of crys

tals-inside these droplets. 

There is little effect of droplet size on the hydrodynamic and colloidal interaction 

for this relatively small increase in particle size. The large difference in a could not 

be explained by trajectory analysis. A possible explanation for the influence of globule 

size could be that the deformation increases somewhat with increasing droplet size. 

However, it raises from 6 x 10~5 for G = 100 s"1 and d^ = 3 pm to 1 x 10" for G = 100 

s"1 and d32 = 5 pm, so this effect is probably not very important. 

An explanation that remains is the effect of droplet size on crystal size, since 

crystals can grow larger in larger globules. The probability that crystals stick out 

must depend on size and geometry of the crystals (Section 6.2.2) and larger crystals may 

stick out further. Larger crystals would also mean fewer crystals, but this effect is 

considered negligible since only few crystals will stick out. Therefore, the result of 

larger droplet size may be that more droplets contain protruding crystals, and/or that 

encounters are more effective because crystals stick out further and because the contact 

area between droplets is proportional to droplet size. 

7.2.4.5 Influence of content of solid fat and of glycerol mono-oleate 

When the presence of fat crystals has an effect on stability it is to be expected 

that the amount of solid fat will also have an influence. Emulsions without crystals are 

usually very stable, and 'emulsions' with completely solidified fat globules cannot 

coalesce and a maximum instability may be found in between 01 and 1001 solid fat. The 

measure of instability is governed by the surfactant present and the possible effect of 

solid fat content must therefore also depend on the type of surfactant. 

The following results were obtained for PVA stabilised emulsions. PVA 16-98 with 

solid paraffin was very stable in flow (only N types were found), and variation m the 

content of solid fat had no effect at all. Addition of the oil-soluble surfactant gly

cerol mono-oleate ((M0) to a concentration of 2 g/1 in the oil phase was unsuccessful be

cause emulsification was not possible: the emulsion broke down immediately after prepara-
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tion. Probably, GMO prevented adsorption of (the rather hydrophilic) PVA 16-98. 

PVA 4-88 emulsions were unstable in flow with a content of solid fat of 42% (w/w) 

solid paraffin in the oil phase, but no instability was found at an amount of 17°Ô. The 

same held for PVA 40-88 emulsions, although the instability was less than for PVA 4-88. 

Addition of GMO (2 g/1 in the oil phase) did not alter the stability at rest as long as 

creaming was avoided (Section 6.2.2). The stability in Couette flow, however, was less 

when GMO was present. Figure 25 compares the results for PVA 40-88 emulsions with and 

without GMO. 

The effect of GMO can be twofold. First, crystallisation can be affected by it and 

the tendency of crystals to flocculate will be less (Lucassen-Reynders, 1962), so that 

crystals can reach the interface. This would then lead to more globules with protruding 

crystals, and hence an increase in a. GMO can also affect the contact angle and cause 

the crystal needles to stick further into the water phase. Secondly, GMO may influence 

the adsorption of PVA 40-88. Ogden (1973) obtained evidence that mono-oleate in paraffin 

oil pushed to some extent PVA 16-88 out of the interface. The rather strong increase in 

a with increasing shear rate of the emulsion with GMO might have been a consequence of 

the latter effect; flow could then overcome more easily the steric repulsion. This leads 

to a shorter interparticle distance, hence to an increased probability of coalescence. 

NaLS emulsions were very sensitive to the content of solid fat. This is reflected in 

Figure 26 where the efficiency a is expressed as a function of the shear rate for 

emulsions which differed in solid fat content. It is recalled that a NaLS emulsion with 

42% solid paraffin was unstable when creamed and this emulsion was too unstable to 

measure in Couette flow. The results of Figure 26 show quite clearly the large effect of 

the content of solid fat in these emulsions. 

An explanation of the influence of the fraction of solid fat could be that more 

globules contain protruding crystals, while crystals may stick out further too, when 

there are more crystals in the oil droplet, or when crystals grow larger. Attempts to 
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Fig. 25. Influence of glycerolmono-oleate (GMO) on the coalescence efficiency a of PVA 
40-88 emulsions containing 42% (w/w) solid paraffin in the oil phase in Couette flow: 
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Fig. 26. Influence of content of solid fat in the oil phase on the coalescence 

efficiency a of NaLS emulsions in Couette flow: 

x 6% (w/w) solid paraffin, d 3 2 = 2.60 ym, <t>v = 0.20 
• 10% (w/w) solid paraffin, d 3 2 = 2.66 ym, <(>v = 0.20 
0 17% (w/w) solid paraffin, d 3 2 = 2.55 ym, <f>v = 0.20 

obtain small crystals in the droplets by cooling the emulsion very quickly in ice-water 

were unsuccessful. The crystals had the same appearance under the microscope as when 

cooled in the normal way. Moreover, some stirring was inevitable for cooling larger 

amounts of emulsion quickly and this caused instability. 

7.2.4.6 Influence of ionic strength 

NaLS is an ionic surfactant and the interaction between droplets stabilised^ NaLS 

depends on ionic strength, as described by DLVO theory. Droplets containing fa crystals 

and stabilised by NaLS could be susceptible to NaCl. Addition of 0.1 mol/1 NaC to a 

NaLS emulsion without crystals did not cause measurable instability m Couette flow 

(Section 7.2.3). Furthermore, addition of NaCl to a NaLS emulsion containing sol d • . 

paraffin had no effect on the stability at rest, when the droplet S1ze was about 2 -

m' No changes in particle size distribution could be detected when a NaLS emulsion with 

h l - 0 , ym and 42, (w/w) solid paraffin and * * 0 1 mol/1 NaC was s ^ e -

Couette flow. But for NaLS emulsions with a higher d^ the stability was 

NaCl (Fig. 27). The-effect was most pronounced at the lower shear rates ™ e ™ 

in., due to the addition of NaCl was about three times (at the lower shear a ) f o r * » 

emulsion with 10» (w/w) solid paraffin and about twice for the emulsion with 17. (w/w) 

^ r a Ï t o . .alysis was helpful for an e l a t i o n of the effect * « - £ £ -

the effect °£ Nacl can be -l^^^J^Z^Z^"^ -
energy diagram shows a secondary minimum tor two 
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Fig. 27. Influence of NaCl on the coalescence efficiency a of NaLS emulsions in Couette 
flow: 
V no NaCl added, 17% (w/w) solid paraffin in the oil phase, d-^i = 2.55 ym, <(>v = 0.20 
0 0.1 mol/1 NaCl, 17% (w/w) solid paraffin in the oil phase, d3 2 = 2.60 ym, <|>v = 0.19 
+ no NaCl added, 10% (w/w) solid paraffin in the oil phase, dj2 = 2-66 Mffl» 4>v

 = 0 - 2 ° 
• 0.1 mol/1 NaCl, 10% (w/w) solid paraffin in the oil phase, d^ = 2.66 V™» •v = 0 - 2 ° 

mol/1 NaCl at about 8 run but still a large repulsion at shorter distances. The traject

ory analysis revealed that at the lower shear rates permanent, secondary, doublets were 

formed. The orthokinetic capture efficiency a (for permanent doublet formation) was 

calculated for d = 1 pm and d = 3 ym (Fig. 28) and for d = 1 ym permanent doublets were 

formed over a wide range of shear rates. Experimentally, no instability was found for 

d = 1 ym and therefore flocculation had no effect when coalescence was not possible, 

probably because the crystals were too small to be effective. Permanent»doublets were 

formed for d = 3 ym up to a shear rate of 450 s , which seems to correspond with the 

experimental result for NaLS with 101 solid paraffin (Fig. 27), because the a for the 

emulsion with 0.1 mol/1 NaCl approached that of the one without NaCl when G > 400 s" . 

Unfortunately, no experiments were carried out for the emulsion containing 174 solid 

paraffin when G > 400 s" . 

These results indicate that flocculation in shear flow had a negative influence on 

stability when coalescence was possible. There is probably some relative motion of the 

spheres in a permanent doublet and a protruding crystal will then have more chance to be 

effective. Furthermore, addition of NaCl results in a closer approach of the particles, 

say 8 - 10 nm (Van den Tempel, 1958). The fraction of encounters with h < 10 nm was the 

same as the orthokinetic capture efficiency a for G < 450 s (Fig. 28). The fraction 

of encounters with h < 10 nm was for G > 450 s about the same as the fraction of en

counters for which h < 30 nm for NaLS droplets without NaCl (Fig. 21a). The effect of a 

smaller interparticle distance would be that crystals that protrude only to a small ex

tent (say between 10 and 20 nm) can be effective as well, that is the fraction of 'reac

tive' globules would increase. This is, however, not in accordance with the behaviour of 
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Fig. 28. Calculated capture efficiency aQ for permanent doublet formation in Couette 
flow of NaLS stabilised emulsion droplets in 0.1 mol/1 NaCl with d = 3 um ( ) or 
d = 1 um ( ) . 

the emulsion with 101 solid paraffin for which above G = 400 s the a with and without 

NaCl became about the same. A tentative conclusion is that only crystals that stick out 

some 20 - 30 nm can induce coalescence. However, more experiments are needed to justify 

this conclusion. The most important effect of NaCl would thus be the capture of globules 

into doublets where they can orbit around each other, thereby increasing the probability 

of coalescence. The difference between the emulsion with 10'0 and 171 solid paraffin was 

explained by assuming that a higher content of solid fat gave rise to a higher number of 

'reactive' globules, or to more effective crystals. 

7.2.4.7 Influence of emulsion droplets containing crystals on stability of emulsion 

droplets without crystals 

It has been shown that most emulsions without crystals were stable in Couette flow. 

With the picture of protruding crystals in mind it would be interesting to observe wheth

er emulsion droplets without crystals would coalesce with emulsion droplets containing 

crystals, when subjected to Couette flow. In principle the following encounters are pos

sible: 

(a) between droplets with crystals; 

(b) between a droplet with and one without crystals; 

(c) between droplets without crystals. 

It has been shown (Section 7.2) that in case (a) coalescence can occur, but not in case 

(c). It is to be determined whether case (b) leads to coalescence. 
When emulsions with crystals and without crystals in the droplets are mixed with each 
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other, the number of 'reactive' globules changes and this must lead to a change in kine

tics of coalescence in Couette flow. This change can be expressed in the rate of en

counters leading to coalescence (cf. Eqn 51, with <f>v = 4/3 TI N b ) : 

j = i ^ N2 G b3 (67) 

J: =^N2
0G J (68) 

where N„ is the total number of emulsion droplets, JQ the rate of encounters leading to 

coalescence with efficiency a for emulsion droplets containing crystals, and J^ the rate 

of encounters leading to coalescence with efficiency c^ for emulsion droplets with and 

without crystals. If the total number of droplets, NQ, is kept constant and the number 

of droplets containing crystals is varied, the change in J^/JQ can be determined from the 

experimental change in c^/a. The change in J}/JQ can also be calculated when the number 

of 'reactive' globules, ̂ , changes according to case (a) or case (a) and (b) by replac

ing N„ in Equation 67 by Ny It then follows that: 

£l-d-!l (69) 
J0 N2

0
 a 

Mixing experiments were performed with a NaLS emulsion without crystals and one with 

12% (w/w) solid paraffin (d,2 = 2.72, ̂  = 0.22); and also with a PVA 40-88 emulsion 

without crystals and one with 421 (w/w) solid paraffin (<j>v = 0.2, d^ = 3-90 urn). Mixed 

emulsions were subjected to Couette flow while the shear rate was kept constant (300 and 

500 s~1 for the NaLS and PVA 40-88 emulsion, respectively). The results are presented in 

Table 16. The experimental ratio a../a is close to the theoretical ratio J J J Q for case 

(a) + (b). This is strong evidence for the picture of a protruding crystal piercing the 

thin film between two globules and it does not matter whether the second globule con

tains crystals or not. 

Table 16. Coalescence efficiencies in Couette flow of emulsions 
with different proportion of droplets with and without crystals. 

Fraction of emulsion 
droplets containing crystals 

0.52 
0.50 
0.40 
0.37 
0.22 
0.20 0.04 0.36 0.21 

J\Ual 

0.27 
0.25 
0.16 
0.14 
0.05 

JiUo2 

0.77 
0.75 
0.64 
0.60 
0.39 

a j / a ' 

0.84 
0.69 

. 0 .66 
0 .53 
0.34 

1. Calculated from Equation 69 on assumption that only encounters 
between droplets with crystals were effective. 
2. Calculated from Equation 69 on assumption that encounters be
tween droplets with and without crystals were effective. 
3. Calculated from the experimentally determined efficiencies. 
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7.2.4.8 Behaviour of natural cream 

The behaviour of model emulsions was compared with that of natural cream in Couette 

flow. Mulder & Walstra (1974) gave a survey of the complicated structure and composition 

of milk fat. When stored long enough at low temperature ( 2 - 4 °C), milk fat globules 

contain crystals. Apart from bacterial deterioration and cold agglutination, milk fat 

globules are quite stable at rest. Flow can, however, destabilise the milk fat globules, 

as is necessary, for instance, in buttermaking and whipping of cream, and it is known 

that the presence of crystals is necessary for these processes to occur (Mulder & 

Walstra, 1974). Labuschagne (1963) studied the stability of cream in flow with Taylor 

vortices and found that this type of flow could destabilise the cream. Back (1975) in

vestigated the behaviour of milk (with 3.5% fat) in a Couette apparatus and found insta

bility only at rates of revolution that caused turbulent flow. 

In this section, experiments are described on cream with different fat contents in 

Couette flow. The cream was pasteurised and cooled long enough to ensure crystallisa

tion in all globules. Before an experiment, the cream was gradually warmed to room 

temperature (22 °C), where the content of solid fat in the fat phase was about 15% (w/w) 

as estimated by pulse NMR. More details about estimation of content of solid fat in 

cream are described in another paper (Van Boekel, 1980). 

Coalescence of milk fat globules was more complicated than that of model emulsions, 

since milk fat globules coalesced somewhat in absence of crystals at 40 C (Walstra & 

Van Boekel, 1980). Even so, coalescence was faster in presence of crystals. The results 

on coalescence of cream containing crystals in Couette flow at different volume fractions 

are given in Figure 29. The crystallisation habit in milk fat globules was of the N and 

0 type. However, L types were frequently seen in the clumps formed by coalescence. 

These observations were the same as for sodium caseinate with tristearate (Section 
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Fig. 29. Coalescence efficiency a of natural cream in Couette flow, d3 2 - 3.30 pm, 
T = 22 o C : 4,v „ o.lO (x); <t»v = 0.20 (•) ; <t>v = 0.32 (V); *v = 0.43 (0). 
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7.2.4.1). The explanation given there could also apply to milk fat globules. It is not 

certain whether the L types were formed before, during or after coalescence, but from the 

results of the model emulsions one would conclude that L types are necessary for coales

cence. If the latter, they should be formed before coalescence. The transformation of N 

types to L types is, however, unlikely, because the stress on a globule is probably not 

sufficient to break the crystal network in the globule. Alternatively, the efficiency a 

was very low and this may be explained by the small probability of L or M type formation. 

Incidentally, Buchheim & Precht (1979) stated that L types would be very stable 

against coalescence. They concluded this from electron micrographs and the fact that 

many globules with L types can be seen in butter and they suggested that these globules 

could resist the mechanical treatment during churning. The results of the present work 

indicate that the opposite is true. 

Several phenomena are reflected in Figure 29. The measure of instability strongly 

depended on the volume fraction of fat. The behaviour at <b > 0.30 was in accordance 

with the behaviour of model emulsions (Section 7.2.4.3). Probably, the Couette flow 

field was disturbed at these volume fractions and these disturbances had apparently a 

destabilising effect. The behaviour at the lower volume fractions was, however, not in 

accordance with model emulsions, where a was the same for * = 0.1 and 0.2. The excep

tion shown by cream, may be related to the occurence of N types. When it is assumed that 

in some globules L types were formed before coalescence occured, the volume fraction of 

fat could have an influence on the formation of L types because of encounters between 

more than two droplets. The increase in a with increasing shear rate may be explained by 

the increasing deformation caused by the flow, even though this deformation is small. 

The dependence of a on volume fraction is in line with the observation of Back (1975) 

that milk with 3.51 fat was stable in Couette flow. 

The dependence of a on shear rate, especially at the lower shear rates, might also 

have been due to the fact that the interparticle distance was too large for coalescence 

to occur. The trajectory analysis should give more information, but the interaction be

tween milk fat globules cannot be described in a quantitative way. Factors involved are 

Van der Waals attraction, electrostatic repulsion and steric repulsion. The zeta poten

tial of milk fat globules is only -11 mV (Mulder & Walstra, 1974) but the influence of 

steric repulsion is unknown. The absorbed layer (mainly protein) is about 10 run thick 

(Mulder & Walstra, 1974) but tails may stick out further. Because the membrane is fairly 

thick and not so strongly expanded, it also influences the Van der Waals attraction. As 

will be shown in another paper (Walstra & Van Boekel, 1980), the interaction between milk 

fat globules cannot adequately be described by DLVO theory because then always a consid

erable secondary minimum is found. Milk fat globules, however, do not flocculate (apart 

from cold agglutination) and, steric repulsion must be taken into account. The presence 

of at least a few tails must be assumed, which should stick out over a distance of some 

10 - 15 nm from the outer surface of the adsorbed layer to prevent flocculation in the 

secondary minimum. Flow may overcome the relatively weak steric repulsion by tails to 

some extent, as with PVA stabilised emulsion droplets (Section 7.2.4.1). 

In conclusion, the stability of milk fat globules in Couette flow is not fully 

understood. Although milk fat globules coalesced also in absence of crystals, the effect 
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of Couette flow on milk fat globules containing crystals may, at least partially, be ex

plained by the same mechanism as was assumed for model emulsions containing crystals in 

the oil phase. Some uncertainty remains about the transformation of N to L and M types, 

while the interpretation of the effect of Couette flow is hindered by the uncertainty 

about the interaction between milk fat globules. 

7.3 STABILITY OF EMULSIONS IN TURBULENT FLOW 

A flow field is called turbulent when the motion of the fluid is random. The fluid 

velocity components vary in a chaotic way in direction and time. Eddies develop which 

transfer their kinetic energy to successively smaller eddies and eventually the energy is 

dissipated by viscous friction. The bulk flow may be taken as anisotropic, but on the 

scale of the smallest eddies the flow may locally be isotropic. In the case of isotropic 

turbulence, equations can be derived to describe turbulent motion and particle encounters 

in turbulent flow (for instance, Spielman, 1978). For isotropic turbulence to occur the 

Reynolds number (Eqn 23) must be very high {Re > 40 000). Strong shearing and elonga-

tional streaming occurs in turbulent flow and emulsion droplets can be deformed to a 

large extent and disruption is possible (turbulent flow is effective in homogenisation, 

Walstra, 1980). Coalescence is also possible as a result of particle encounters and in-

ertial effects may well play a role. 

Turbulent flow was achieved with the Couette equipment in the present investigation. 

Instabilities which normally arise in the flow, are no longer damped at a certain Re but 

reinforce and develop into turbulence. Laminar flow will change into turbulent flow at 

Re = 2000 - 3000 with the Couette equipment of the present study (well below the iso

tropic turbulence region). 

The effect of turbulence on the stability of emulsions with crystals in the oil 

phase was studied with a model emulsion and with natural cream. Re could be varied with

out changing the shear rate by using different gap widths and results were expressed in 

coalescence rates as function of the shear rate and Re. The results for a PVA 40-88 

emulsion with 42», (w/w) solid paraffin are given in Figure 30, where for comparison the 

coalescence rate in laminar flow is also given. The results for cream are given in 

Figure 31. The coalescence rate increased rather steeply at Re ~~ 2000 in both cases. 

Unfortunately, the results could not be analysed in a more quantitative way, because 

theoretical equations are only valid for isotropic turbulence. Qualitatively, the fol

lowing considerations may apply. Inertial forces can overcome repulsion forces, so that 

droplets can approach each other closer than in laminar flow. Deformation of globules 

can also have an effect, especially on milk fat globules as N types may be transformed m 

L and M types, which may coalesce easier. The results for cream are to some extent in 

accordance with the observation of Back (1975) that milk (3.51 fat) was unstable m 

turbulent, but not in laminar flow. 

Although a more quantitative analysis of the present results was not possible, it is 

clear that emulsions with crystals in the oil phase were very sensitive to flow and also 

type of flow, in accordance with the picture obtained so far of the factors that in-

fluence the stability of these systems. 
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Fig. 30. Influence of Reynolds number Re on the coalescence rate 7cj of a PVA 40-88 
emulsion in Couette flow, <(>v = 0.20, 1̂ 32 = 3.16 um, 42% (w/w) solid paraffin in the oil 
phase: s = 2 mm (0); s = 5 mm (•). 
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Fig. 31. Influence of Reynolds number Be on the coalescence rate k, of natural cream in 
Couette flow, ̂  - 0.20, d32 - 3.30 um, T - 22 °C: s = 2 mm (0); s = 5 mm (•). 
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7.4 STABILITY OF EMULSIONS IN FLOW WITH TAYLOR VORTICES 

Laminar flow between two concentric cylinders can be achieved by rotating the inner 

or the outer cylinder. When the inner cylinder rotates, however, Taylor vortices arise 

at a relatively low Re due to centrifugal instability. They were described in more de

tail in Section 3.5.2. The flow field that develops is a complicated three dimensional 

motion of both shear flow and elongational flow present between counterrotating vortices. 

Elongational flow may particularly influence the stability of emulsions. It can be ef

fective in disruption (Walstra, 1980), but the situation will be more complicated for 

emulsions with crystals in the oil phase, because the presence of crystals will hinder 

deformation. Labuschagne (1963) studied the stability of cream in flow with Taylor vor

tices and found that this type of flow could make the milk fat emulsion quite unstable. 

Firstly, the effect of Taylor vortices was determined for emulsions without crystals 

in the oil phase. Emulsions which were stable at rest could not be made unstable in flow 

with Taylor vortices. A Manoxol OT emulsion, which could be made unstable at rest upon 

addition of NaCl was subjected to flow with Taylor vortices. The flow was characterised 

by an apparent shear rate, calculated as if it were normal Couette flow in order to en

able comparisons with Couette flow. The coalescence rate is presented in Figure 32 as a 

function of the apparent shear rate and, for comparison, the result for Couette flow is 

also given. The coalescence rate decreased with increasing apparent shear rate and it 

was lower than in Couette flow. As for Couette flow, the explanation may be that glo

bules do not stay long enough together for coalescence to occur. Disruption of globules 

0 : 200 ' 400 600 ' 800 1000 1200 

s 3! c . ;„ i ; r^j,-.^j^jsfzjzsar1-'-• 
and Couette flow (0), <fv = U./u, "32 J-1*" f i 
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was unlikely because the droplets were too small. The conclusion is that the coalescence 

process in 'true' emulsions is not promoted by this type of flow. 

A PVA 16-98 emulsion with 421 (w/w) solid paraffin in the oil phase remained as 

stable in flow with Taylor vortices as at rest or Couette flow and only N types were 

found in this emulsion. Model emulsions containing solid paraffin (L and M types) and a 

Na caseinate emulsion containing 20?. (w/w) tristearate (only N types) showed in flow with 

Taylor vortices a different behaviour from that in Couette flow. In the latter case, the 

coalescence rate could fairly well be determined before visible clumps eventually ap

peared. In flow with Taylor vortices, however, some visible clumps were often seen after 

a few minutes, and yet the coalescence rate measured was not much different from that in 

Couette flow and sometimes even lower. Some representative results are given in Figures 

33 and 34, and the results for Couette flow are also given for comparison, even though 

the conditions were not completely the same. Re was higher (ranging from 4000 - 10 000) 

in flow with Taylor vortices while in Couette flow Re was below 2000. Analysis of the 

results was not feasible, because on the one hand the flow is of a complicated nature and 

on the other hand visible clumps were formed too quickly. This latter observation 

suggests that coalescence was quite rapid in the beginning of the experiment. The fact 

that the coalescence rate constant was about the same as in Couette flow or even smaller 

suggests that disruption of clumps, formed in the beginning, interfered with the coales

cence rate as estimated in this study. The coalescence rate estimated would then not on

ly reflect the disappearance of globules, but also the formation of droplets formed by 

disruption of clumps. 

The fact that visible clumps appeared indicates that flow with Taylor vortices can 

destabilise emulsions with crystals in the oil phase and it can be explained by the same 

0 400 800 1200 1600 2000 

6.6'(s-1) 

Fig. 33. Coalescence rate fe, of a NaLS emulsion in flow with Taylor vortices (•) and 
in Couette flow (0), ^ = 0.18, d32 = 3.00 pm, 17% (w/w) solid paraffin in the oil 
phase. 
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Fig. 34. Coalescence rate L of a PVA 40-88 emulsion in flow with Taylor vortices (•) 
and in Couette flow (0), $ = 0.20, d^0 = 3.16 um, 42% (w/w) solid paraffin in the oil 
phase. 

z32 

mechanism as in the case of Couette flow. An explanation about what happened after the 

rapid formation of clumps is not so easy, but appears to be due to some disruption in the 

elongational flow fields between counter-rotating Taylor vortices. 

In contrast to the behaviour of model emulsions with crystals in the oil phase, cream 

was found to be much more unstable in flow with Taylor vortices than in Couette flow. 

Visible clump formation was much more regular than in model emulsions and the coalescence 
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Fig. 35. Coalescence rate fc, of cream in flow with Taylor vortices (•) and in Couette 

flow (0), <f,v - 0.20, d32 = 3.30 urn, T = 22 °C. 
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Fig. 36. Coalescence rate k, of cream W32 = 3.30 um) with different volume fraction 
of fat in flow with Taylor vortices, G' = 370 s-1 (•) and in Couette flow, G = 370 s-' 
(0). 

rate could be determined before visible clumps appeared. The coalescence rate in Taylor 

vortices was much higher than in Couette flow (Figs. '35 and 36), but Re was higher in 

flow with Taylor vortices [Re = 2000 - 4000) than in Couette flow {Re < 2000). 

The enormous effect of Taylor vortices on milk fat globules could be due to the 

effect on crystallisation type. The deformation of globules in Taylor vortices will be 

greater than in Couette flow, and this could mean that N types are more rapidly trans

formed into L types, thereby increasing the probability of coalescence. The influence 

of the volume fraction of fat (Fig. 36) could then be explained by considering that the 

coalescence rate is proportional to the number of globules than can change in crystalli

sation type and that the rate of encounters was proportional to the fat content. The 

possible influence on the formation of L and M types should also be valid for the Na . 

caseinate emulsion with tristearate, but visible clumps rapidly formed with this emul

sion in Taylor vortices, whereas the coalescence rate was not much different from that 

in Couette flow. An explanation could not be found for the different behaviour of cream. 

Apparently, disruption of clumps formed by milk fat globules does not take place, perhaps 

because milk fat crystals form a stronger network than solid paraffin or tristearate 

crystals. 

7.5 CONCLUSION 

In this chapter the effect of flow on stability of emulsions with and without 

crystals in the oil phase was investigated. Emulsions without crystals that were stable 

at rest, were also stable in a flow field. An emulsion being unstable at rest in the 

flocculated state, was not more unstable in Couette flow and even less unstable in flow 

with Taylor vortices. This was explained by considering that for coalescence to occur 
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the globules should stay together for some time and this is mostly not realised in flow. 

In contrast, emulsions containing crystals in the oil phase were in general very 

sensitive to flow, indicating that the mechanism of coalescence is different from that 

of true emulsions. As at rest, the instability was always accompanied by the crystal 

habit in which some crystals are probably oriented in the oil-water interface, either in 

the unclumped globules or in the clumps formed by coalescence. The hypothesis of pro

truding crystals, piercing the film between approaching globules, was used to explain 

the mechanism of coalescence. The influence of flow was explained by making use of a 

theory that describes trajectories of spheres in simple shear flow. The destabilising 

effect of flow as compared to Brownian motion was explained by: 

- the smaller distance of approach between globules because flow can overcome some 

repulsion; 
- the rolling motion of spheres about each other during an encounter; 

- the longer life time of an encounter. 

The (very small) deformation of droplets in flow, possibly changing the orientation of 

crystals in the droplets, could also have an effect. 

The kinetics of the coalescence process indicated that the surface area of a 

protruding crystal must be very small compared to the surface of the whole globule and 

that only a small number of globules would contain protruding crystals. The influence of 

several parameters like surfactant type, content of solid fat, droplet size, fat content 

and ionic strength, was explained by their influence on the distance of approach and 

their possible effect on protruding crystals. The fact that emulsion droplets containing 

crystals coalesced also with emulsion droplets without crystals was in agreement with the 

hypothesis of protruding crystals. 

The behaviour of cream differed in some respects from model emulsions and it may be 

explained by the difference in crystal habit. With reference to the hypothesis of pro

truding crystals, if was reasoned that crystals had to reorient in such a way that they 

could come into the interface and then cause coalescence. However, coalescence of milk 

fat globules was not fully understood. 

Finally, some experiments have been described with turbulent flow and flow with 

Taylor vortices. Turbulent flow had a large destabilising effect, probably because re- . 

pulsion was more easily overcome and deformation greater. 

Clumps were formed with model emulsions in Taylor vortices and these clumps were 

probably to some extent disrupted again by the elongational flow between counter-rotat

ing vortices. Cream behaved differently from model emulsions, as it was much more un

stable than in Couette flow. It fitted in the hypothesis that crystals have to orien 

in the interface, since the deformation in Taylor vortices with elongational flow will 

be larger, hence the probability of protruding crystals might have been increased. 
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Summary 

Properties of oil-in-water emulsions with fat crystals in the oil phase were 

investigated. These systems may serve as a model for many foods, pharmaceutics, cos

metics and insecticides. For many purposes the emulsion should be stable, but for some 

purposes unstable. Factors, which influence the stability to coalescence of these emul

sions, at rest and in flow, were investigated. 

Chapter 1 reviews literature on crystallization in emulsions. It examines stability 

of emulsions in general and the influence of flow on it. Little proved to be known about 

the effect of crystals on stability and the effect of flow. 

The materials used are described in Chapter 2 and the methods in Chapter 3. Most ex

periments were performed with model emulsions of paraffin oil in water containing solid 

paraffin or tristearate crystals. The stability of natural cream was investigated too. 

Spectroturbidimetry and Coulter counting were used to study coalescence. 

Chapter 4 deals with crystallization of solid paraffin and tristearate in paraffin 

oil, in bulk or in emulsion droplets. Content of solid fat was measured by nuclear mag

netic resonance (pulse NMR). The method was independent of properties of crystals (such 

as polymorphism). It could also be applied to emulsions, provided that the surfactant 

did not interfere. 

Chapter 5 is devoted to the crystal habit in emulsion droplets. The principal para

meter was the contact angle, which depended on the kind of crystal and surfactant used. 

Contact angle measurements showed that the influence of surfactants on the contact angle 

was larger than predicted* 

Stability to coalescence of emulsions at rest is treated in Chapter 6. Most 

surfactants used yielded emulsions- that were stable in absence of fat crystals. The same 

emulsions Could, however, be unstable if fat crystals were present in the oil droplets. 

The difference in coalescence rate could, for instance, be six orders of magnitude. Glo

bules of an unstable emulsion contained crystals that were most probably partly in the 

interface of the droplet. Coalescence could be caused by crystals sticking out of a glo

bule and piercing the thin film between that globule and a second approaching globule. 

The influence of factors like globule size, kind of crystal, surfactant and the destabil

izing effect of creaming could be explained by this hypothesis. Most emulsions with 

crystals appeared to be stable when creaming was avoided. Additional evidence for the 

hypothesis was obtained from experiments in which aqueous films were drawn in oil in the 

presence of fat crystals. 

Chapter 7 deals with the influence of flow (Couette flow, turbulence, flow with 

Taylor vortices) on stability of emulsions. True emulsions (without crystals) that were 

stable at rest, were also stable when flowing. The coalescence rate of a true emulsion, 

unstable at rest, was hardly affected by Couette flow. The 'efficiency' (the proportion 
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of encounters leading to coalescence) decreased sharply with Couette flow, as compared 

to Brownian motion. 

Flow could destabilize emulsions with crystals in the oil phase, if crystals were 

oriented in the oil-water interface. The efficiency increased by a factor 103 to 105. 

In explaining the destabilizing effect of Couette flow, a theory was used that describes 

the trajectories of spheres in simple shear flow by taking into account hydrodynamic and 

colloidal interaction. Compared to Brownian motion, the destabilizing effect of Couette 

flow could be explained by considering that the droplets: 

- approach each other closer 

- roll about each other during an encounter 

- stay longer together in a transient doublet. 

The influence of parameters like fat content, droplet size, content of solid fat and 

ionic strength on stability in Couette flow fitted in the hypothesis that protruding 

crystals induce coalescence. The fact that emulsion droplets with crystals coalesced 

with droplets without crystals favoured the hypothesis. According to the kinetics of 

coalescence, only a few globules need contain crystals protruding sufficiently far to 

achieve coalescence. 

Stability of cream in Couette flow largely corresponded to that of model emulsions, 

although there were some deviations. 

Emulsions with crystals were very sensitive to turbulent flow: the coalescence rate 

increased strongly over that with laminar flow, probably because the droplets approach 

each other closer. 

Furthermore, flow with Taylor vortices could destabilize emulsions with crystals in 

the oil phase, but the coalescence rate did not differ much from that in Couette flow. 

Possibly clumps formed by coalescence were disrupted again in the elongational flow field 

between Taylor vortices. Cream, however, was less stable in flow with Taylor vortices 

than in Couette flow. This might have been caused by the difference in crystal habit be

tween cream and model emulsions. 
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Samenvatting 

In dit proefschrift zijn emulsies van olie in water met vetkristallen in de disperse 

fase onderzocht. Deze systemen komen vaak voor als levensmiddelen, farmaceutische en 

cosmetische produkten en als bestrijdingsmiddelen. Afhankelijk van de toepassing wil men 

graag dat emulsies stabiel, dan wel instabiel, zijn. Onderzocht is welke factoren in

vloed hebben op de coalescentiestabiliteit van deze emulsies, zowel in rust als in stro-

mingsvelden. 

In hoofdstuk 1 is enige literatuur over kristallisatie in emulsies besproken. Ook is 

enige aandacht besteed aan de stabiliteit van emulsies en de invloed van stromingsvelden 

daarop. Over het effect van kristallen alsmede van stroming is weinig literatuur be

schikbaar. 

De gebruikte materialen zijn beschreven in hoofdstuk 2 en de gevolgde methoden in 

hoofdstuk 3. De meeste experimenten zijn verricht met modelemulsies van paraffine-olie 

in water met vaste paraffine of tristearaat als kristallen. Daarnaast zijn ook enige ex

perimenten met room verricht. Het coalescentieproces in de emulsies werd gevolgd met be

hulp van spectroturbidimetrie en Coulter Counter. 

De kristallisatie.van vaste paraffine en tristearaat in paraffine-olie, zowel in bulk 

als in emulsiedruppels, is beschreven in hoofdstuk 4. Een pulse-NMR methode (kernspin

resonantie) werd ontwikkeld, waarmee het vast-vetgehalte gemeten kon worden, onafhanke

lijk van eigenschappen van kristallen (modificatie, mengkristallen e.d.). Ook voor 

emulsies bleek deze methode toepasbaar, mits de gebruikte grensvlakactieve stof geen ver

storing veroorzaakte. 

In hoofdstuk S is beschreven welke factoren de plaats van kristallen in emulsie

druppels beïnvloeden. De voornaamste parameter is daarbij de randhoek, die afhangt van 

het soort kristal en de grensvlakactieve stof. Uit randhoekmetingen bleek dat de invloed 

van grensvlakactieve stoffen groter was dan theoretisch voorspeld. In de evenwichtssitu-

atie bevinden vetkristallen zich altijd in het grensvlak van olie en water. Toch was dat 

niet altijd de plaats waar ze zich bevonden, bijvoorbeeld omdat de kristallen vastgehou

den werden in een kristalnetwerk of omdat een (onbekende) barrière verhinderde dat ze in 

het grensvlak kwamen. 

De coalescentiestabiliteit van emulsies die in rust verkeerden, is behandeld in 

hoofdstuk 6. Met bijna alle in dit onderzoek gebruikte grensvlakactieve stoffen werden 

zeer stabiele emulsies verkregen, wanneer geen kristallen aanwezig waren. Dezelfde emul

sies konden echter zeer instabiel worden wanneer kristallen aanwezig waren in de druppel

tjes. De coalescentiesnelheid werd dan b.v. 106 maal zo groot. Daarbij werd steeds het 

kristallisatietype waargenomen waarbij (zeer waarschijnlijk) enige kristallen in het 

grensvlak van het druppeltje aanwezig zijn. De hypothese werd opgesteld dat coalescentie 

veroorzaakt wordt door kristallen die gedeeltelijk uit het bolletje steken en bij 
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nadering van een tweede bolletje het dunne waterfilmpje tussen de bolletjes 

'doorprikken'. De invloed van factoren zoals druppelgrootte, soort kristal en de grens-

vlakactieve stof, kon met deze hypothese verklaard worden, evenals het feit dat oproming 

de instabiliteit sterk bevorderde. Wanneer oproming vermeden werd, bleken de meeste 

emulsies vrij stabiel. De genoemde hypothese werd verder bevestigd door filmexperimen-

ten, waarbij met draadraampjes dunne waterige vliesjes getrokken werden in olie in aan

wezigheid van kristallen. 

In hoofdstuk 7 is de invloed van stroming (Couette-stroming, turbulentie, stroming 

met Taylor-wervels) op de stabiliteit van emulsies beschreven. Emulsies zonder kristal

len die in rust stabiel waren, bleken ook in een stromingsveld stabiel. Een in rust in

stabiele emulsie zonder kristallen bleek in Couette stroming niet veel instabieler te 

worden. Betrokken op het aantal ontmoetingen per tijdseenheid, betekende dit, dat de 

'efficiëntie' (de fractie van het aantal ontmoetingen dat tot coalescentie leidt) in 

Couette-stroming sterk afnam ten opzichte van de situatie in rust. 

Stroming bleek een sterk destabiliserende werking te hebben op emulsies met kristal

len in de oliefase, wanneer het kristallisatietype werd bereikt, waarbij (waarschijnlijk) 

kristallen uit het druppeltje steken. De 'efficiëntie' nam toe met een factor 103 tot 

105. Ter verklaring van het effect van Couette-stroming werd gebruik gemaakt van een 

theorie die de banen van bolletjes in eenvoudige afschuiving beschrijft met inachtneming 

van hydrodynamische en colloïdale wisselwerking. Het destabiliserende effect van 

Couette stroming ten opzichte van Brown beweging kon verklaard worden doordat de bolle

tjes: 

- dichter tegen elkaar worden aangedrukt 

- over elkaar heen schuiven tijdens een ontmoeting 

- langer bij elkaar blijven in een tijdelijk doublet. 

De invloed van factoren, zoals vetgehalte, druppelgrootte, hoeveelheid kristallen en 

ionensterkte paste in de hypothese dat kristallen die uit bolletjes steken, coalescentie 

veroorzaken. Ook het gegeven, dat emulsiedruppeltjes met kristallen kunnen coalesceren 

met emulsiedruppeltjes zonder kristallen paste in de hypothese. Uit de coalescentiekine-

tiek werd afgeleid, dat slechts weinig bolletjes voldoende ver uitstekende kristallen be

vatten. 

Het gedrag van room in Couette stroming kwam in grote lijnen overeen met dat van 

modelemulsies, hoewel óok enige afwijkingen optraden. 

Emulsies met kristallen in de oliefase bleken erg gevoelig voor turbulente stroming: 

de coalescentiesnelheid nam sterk toe, waarschijnlijk omdat de druppeltjes elkaar veel 

dichter konden naderen. 

Ook in stroming met Taylor-wervels bleken emulsies met kristallen in de oliefase vrij 

instabiel, maar de coalescentiesnelheid verschilde niet veel van die in Couette-stroming. 

Mogelijk trad enige disruptie op van door coalescentie gevormde kluitjes in de rekstro-

ming tussen Taylor-wervels. Room bleek evenwel in stroming met Taylor-wervels instabie

ler dan in Couette-stroming. Mogelijk werd dit veroorzaakt door het kristallisatietype, 

dat anders was dan in modelemulsies. 
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