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VOORWOORD 

Een proefschrift wordt in het algemeen nauwelijks gelezen, behalve dan 

het voorwoord, de niet-wetenschappelijke stellingen en de levensloop van de 

schrijver. De redenen hiervoor liggen eigenlijk wel voor de hand. Ik heb 

daarom gemeend het hoe en waarom van het onderzoek te moeten uitleggen in 

min of meer begrijpbaar nederlands, zodat hopelijk een leek een indruk 

krijgt van wat ik nu eigenlijk heb gedaan. 

Een organisme bestaat uit een groot aantal cellen, die allen dezelfde 

erfelijke informatie bevatten, maar verschillende funkties kunnen hebben in 

een organisme (bv. bloedcellen, spiercellen, zenuwcellen, e t c ) . Het voort­

komen van deze verschillende celtypen uit één oorspronkelijke cel (bv. de 

bevruchte eicel) wordt differentiatie genoemd. 

De erfelijke informatie ligt in de cel opgeslagen in een code, het DNA. 

Wordt een deel van de informatie opgevraagd, dan wordt het DNA eerst overge­

schreven in een nieuwe code, het boodschapper-RNA. Het overschrijven van het 

DNA in het RNA, de transcriptie, wordt verzorgd door een eiwitcomplex, dat 

de DNA-afhankelijke RNA polymerase wordt genoemd. Het boodschapper-RNA wordt 

vertaald in een eindprodukt, het eiwit, de "bouwstenen" van een cel. 

De transcriptie en vertaling van de erfelijke informatie ligt ten grond­

slag aan de ontwikkeling en differentiatie van een organisme. De controle en 

regulering van de transcriptie is één van de meest "duistere" processen in de 

moderne biologie. De regulerings-mechanismen moeten uitzonderlijk verfijnd en 

precies zijn, als men bedenkt, dat een hoger organisme, zoals de mens, uit 

een groot aantallen cellen en celtypes bestaat, die allen voortgekomen zijn 

vanuit een "niet-gespecialiseerde" cel. Omdat ontwikkeling en differentiatie 

van de hogere organismen zeer gecompliceerd zijn, kunnen relatief eenvoudige 

organismen, zoals de schimmel Aspergillus nidulans waarmee ik gewerkt heb, 

gebruikt worden als model systemen voor dit soort studies. 

Tijdens de drie jaren van het promotie-onderzoek heb ik mij beziggehouden 

met de eiwitcomplexen, de RNA polymerases, die de transcriptie van het DNA 
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STELLINGEN 

1. Een k l ass i f i ka t i e van eukaryote DNA-afhankelijke RNA polymerases op basis 

van d i f f e ren t ië le remming door a-amanitine kan misleidend z i j n : de DNA-

afhankeli jke RNA polymerase I I u i t Aspergillus nidulans wordt n ie t be­

ïnvloed door de remmer a-amanitine. 

Kedinger, C , Nuret, P. & Chambon, P. (1971) FEBS Letters 15: 169-175. 

Di t p roe fschr i f t . 

2. De regulering van de RNA polymerase-act iv i tei t door fosfory ler ing-de-

fosfory ler ing van subeenheden van het eiwit-molecuul is als mechanisme 

voor de regulat ie van de RNA synthese waarschi jn l i jker dan een regulering 

van het enzymniveau middels een gecontroleerde synthese en/of afbraak van 

het enzym of delen daarvan. 

B e l l , G . I . , Valenzuela, P. & Rutter, W.J. (1976) Nature 261: 429-431. 

3. Op basis van het c r i te r ium, dat de poly(A)-staart covalent gebonden is aan 

boodschapper-RNA's van eukaryoten, mag geconcludeerd worden, dat het poly(A)-

plus RNA u i t Aspergillus nidulans bestaat u i t boodschapper-RNA of een pre­

cursors hiervoor. 

Di t p roefschr i f t . 

4. De conclusie, dat de DNA-afhankelijke RNA polymerase I I u i t Histoplasma 

capsulatum ongevoelig is voor a-amanitine remming, is onvoldoende ge­

fundeerd. 

Kumaf, B.V., McMil l ian, R.A., Medoff, G., Gutwein, M. & Kobayashi, G. 

(1980) Biochemistry 19: 1080-1087. 

5. Het is onwaarschi jn l i jk , dat het "gaan dr i jven" van protoplasten u i t ­

s lui tend door het zout magnesiumsulfaat wordt geïnduceerd. 

de Vr ies, O.M.H. & Wessels, J.G.H. (1975) Arch.Microbiol. 102: 209-218. 

Peberdy, J.F. & Isaac, S. (1976) Microbio l .Let t . 3: 7-9. 

6. Het polyanion polymin P kan n iet verwijderd worden door een selectieve 

p rec ip i ta t ie met ammoniumsulfaat, zoals wordt aangegeven door Valenzuela 

et a l . (1976). 

Valenzuela, P., Weinberg, F., B e l l , G. & Rutter, W.J. (1976) J .B io l . 

Chem. 251: 1464-1470. 
Di t p roefschr i f t . 

7. Sera, die bestaan u i t monoclonale antibodies zul len geen rol gaan spelen 

in de serologische toetsen, die b i j de keuring van pootaardappelen worden 

uitgevoerd. 



8. Vrijdag de dertiende is alleen dan een ongeluksdag, als deze als zodanig 

wordt herkend. 

9. Kunst geeft niet het zichtbare weer, ze maakt zichtbaar. 

W. Kandinsky. 

10. Als de mensheid niet snel een eind maakt aan de kernwapens, zullen de 

kernwapens een eind maken aan de mensheid. 

11. Hopelijk is er na reagan nog zonneschijn. 

Proefschrift van H.G. Stunnenberg 

DNA-dependent RNA-polymerases from the fungus Aspergillus nidulans. 
Wageningen, 13 maart 1981. 



verzorgen. Het eerste hoofdstuk in het proefschrift geeft een overzicht van de 

gegevens van de RNA polymerases, die tot nu toe bekend zijn. Evenals in andere 

hogere organismen komen drie klassen van RNA polymerases voor in de schimmel 

Aspergillus nidulans. In hoofdstuk 2 en 3 worden de zuiverings-procedures en 

de eigenschappen van twee van deze RNA polymerase klassen beschreven.Eén van 

deze twee RNA polymerases blijkt uitzonderlijk te zijn. Deze afwijkende eigen­

schap is daarom diepgaander bestudeerd (hoofdstuk 5). De voor deze laatste 

studies ontwikkelde "protoplasf'-techniek is beschreven in hoofdstuk 4. De 

derde RNA polymerase klasse kon niet meer gezuiverd worden in de korte tijd, 

die voor het projekt beschikbaar was. De gegevens, die uit dit onderzoek zijn 

voortgekomen, vormen slechts één klein stukje van de grote puzzel. In Zurich 

hoop ik verder te kunnen werken aan dit voor mij zeer interessante onderwerp 

in de biologie. 

Aan het tot stand komen van dit proefschrift hebben veel mensen meegewerkt. 

Deze wil ik hier gewoontetrouw, maar zeker niet met minder dankbaarheid, noemen. 

Henk van den Broek als de begeleider van het onderzoek. Ik heb het zeer op 

prijs gesteld, dat ik altijd bij jou aan kon kloppen met wetenschappelijke en 

organisatorische problemen en voor de grote mate van vrijheid, die ik had. 

Bert Wennekes heeft een zeer belangrijk aandeel gehad in de praktische werk­

zaamheden en de discussie over het onderzoek. Ik heb tijdens dit onderzoek, 

maar ook in mijn studententijd veel van je geleerd, en zeker niet alleen van 

je grote praktische vaardigheid. 

Ab van Kammen voor zijn kritische betrokkenheid bij het onderzoek en bij 

het schrijven van het proefschrift. Tevens de gehele vakgroep Molbi voor de 

prettige en nuttige samenwerking. 

Prof. van der Veen voor de goede hulp bij het schrijven van een proefschrift 

op een terrein waarop hij zich toch niet dagelijks begeeft. 

Titus Spierings voor zijn hulp gedurende de anderhalf jaar van zijn ver­

vangende militaire dienst. Hopelijk ben jij uiteindelijk net zo tevreden over 

mij, als ik over jou. 

Henriet Boelema en vooral Trees Makkes voor het vele 



typewerk dat zij verricht hebben op een zeer snelle en prettige wijze. Jan 

Maassen voor het verzorgen van de tekeningen en voor zijn technische hulp 

en vindingrijkheid. Kees Bos voor zijn adviezen en uitleg van de genetica 

van Aspergillus. Hans de Vries voor het verzorgen van de foto's. 

Marcel Hakkaart,Marien Weststrateen Bram Treur waren als studenten 

rechtstreeks betrokken bij het onderzoek. Vele anderen hebben aan het voor­

onderzoek deelgenomen. 

De hele vakgroep Erfelijkheidsleer wil ik bedanken voor de fijne tijd 

en de vele partijtjes tafeltennis. 

Pa en Ma bedankt. 
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A280 absorbance at 280 nm 

ATP adenos ine-5 ' - t r iphosphate 

Ci curie 
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DEAE- diethyl aminoethyl-
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M molar 
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tRNA t r a n s f e r RNA 

UTP ur idine-5'- t r iphosphate 



CHAPTER 1 GENERAL INTRODUCTION 

1.1. Opening remarks 

The aim of the work presented-here was the isolation and characterization 

of the DNA-dependent RNA polymerases from the fungus Aspergillus nidulans, 

which was a part of a project concerning the regulation of gene expression 

in this lower eukaryote. 

The transcription of a genome and the regulation mechanisms involved are 

basic steps in the development and differentiation of an organism. The re­

gulation mechanisms necessary for the development of a single fertilized 

egg cell into an organism like men, must be very precise and complicated, 

if one considers that the organism consists of dozens of different 

cell types, each having a specific function as part of the whole. The signals, 

which trigger a cell to develop into a highly specialized blood or brain 

cell, are largely unknown at the moment. Because the developmental and 

differentiation process in higher eukaryotes is so complex, relatively 

simple differentiating organisms, like Aspergillus nidulans may be more 

suitable for the study of the molecular mechanisms underlying the development­

al regulation of gene expression. The limited knowledge of the biochemi­

cal organization of Aspergillus, as compared to a lower eukaryote like 

yeast, is certainly a disadvantage, but at the same time a challenge for 

the investigator. On the other hand, the genetics of Aspergillus has been 

extensively studied and this can be of great use in biochemical and develop­

mental studies of this organism. 

The transcription of coding sequences of the DNA into RNA, is one of 

the first processes of a complex chain of events underlying the expression 

of genetic information. The specific mechanisms involved in the regulation 

of transcription are largely unknown, but they must directly or indirectly 

affect the activity of the DNA-dependent RNA polymerases, responsible for 

the differential transcription of genetic information. Apart from the regu-
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lation at the cellular level of the enzyme , other mechanisms must be 

responsible for the differential transcription of specific classes of 

genes, that are transcribed by a common enzyme. Structural modification 

of the chromatin could influence the accessibility of specific genes and 

hence their ability to be transcribed by an RNA polymerase. Transcription 

may also be controlled directly by regulators, altering the interaction 

between the enzyme and a specific gene or genes. It is therefore important 

to purify eukaryotic nuclear RNA polymerases and to study their structure 

and function. For understanding the actual transcription mechanism, the 

development and study of cell-free systems,supplemented with purified RNA 

polymerases and well characterized templates, will be required. 

This thesis describes how the DNA-dependent RNA polymerases I and 

II from Aspergillus nidulans can be successfully purified and subseauently 

characterized with respect to their catalytic properties and subunit 

composition (Chapters 2 and 3). Preparation of protoplasts from Aspergillus 

(Chapter 4) was initally thought to be necessary for the isolation of 

the RNA polymerases, because désintégration of the rigid cell wall of 

Aspergillus was the first difficulty encountered. Although large amounts 

of protoplasts could be prepared, the procedure appeared to be rather time-

consuming and impractical as a standard, large-scale procedure for the iso­

lation of the RNA polymerases. Protoplasts, however, can be very useful 

when micro-assays or a gentle treatment to break open the cell wall are 

required. This is demonstrated in Chapter 5, where the effect of inhibitors 

of RNA synthesis has been studied in vivo in metabolically active proto­

plasts. The isolation and characterization of RNA polymerase III could 

not be achieved within the limited time available for the project. 

13 



1.2. Eukavyotia nuclear DNA-dependent RNA polymerases 

The study on the regulation of gene expression in eukaryotes started 

about 20 years ago with the detection in a rat liver homogenate of an 

enzyme activity, responsible for the transfer of genetic information from 

DNA into RNA (Weiss & Gladstone, 1959). A spectacular progress in the study 

of gene expression in eukaryotes,as observed in prokaryotes,was not achieved 

however, because of the considerable larger size and complexity of the 

eukaryotic genome and the reduced practicality of the genetic approach, 

which was successfully used in the study of prokaryotes. Following the 

discovery of the mammalian nuclear RNA polymerase activity, a number of 

studies showed, that variations in ionic conditions effected both quantita­

tive and qualitative changes in RNA synthesis in isolated nuclei (cf. Jacob, 

1973). It was not clear at first, whether these results reflected selective 

ionic effects on different templates transcribed by a common enzyme or 

whether they were due to the presence of distinct RNA polymerases with 

different ionic requirements. 

The method developed by Roeder and Rutter (1969, 1970) for the separation 

of the polymerase activity into three different forms, was the second im­

portant advance in the elucidation of gene expression. They showed, that 

RNA polymerase activity, solubilized from rat liver and sea urchin nuclei 

by a high-salt-sonication procedure, could be separated chromatographically 

into three different forms with distinct catalytic properties. Additional 

evidence for the existence of different forms of RNA polymerases was supplied 

by Kedinger et al. (1970) and Lindell et al. (1970). They were able to 

distinguish distinct classes of RNA polymerases according to the differential 

inhibitory effect of a-amanitin. Structural analysis and immunological 

properties of the purified enzymes have confirmed the multiplicity of the 

RNA polymerases (cf. Chambon, 1975; Roeder, 1976). Subsequently RNA poly­

merases have been purified from a wide range of lower as well as higher 

14 



eukaryotes, but specific transcription of DNA templates by the purified 

RNA polymerases could not be demonstrated. Only in isolated nuclei it was 

possible to achieve a differential transcription of the genome using 

selective concentrations of a-amanitin to inhibit specific classes of RNA 

polymerases. From analysis of the transcripts and subcellular localization 

of the RNA polymerase activity it was suggested, that the distinct classes 

of RNA polymerases were responsible for the transcription of different 

classes of genes. 

Only recently, soluble cell-free systems have been developed in which 

DNA templates are accurately transcribed by endogenous RNA polymerases 

(Wu, 1977; Weil et al., 1979; Manley et al., 1980). These studies confirm 

the specificity of transcription of the different RNA polymerases. The 

regulation of transcription can now be studied with these in vitro eel 1 -

free transcription systems (Ford, 1980; Flavell, 1980), opening the 

way for the study of the developmental regulation of gene expression. 

1.2.1. Nomenolature 

The nomenclature of the multiple RNA polymerases is sometimes confusing 

since different criteria are used to classify the enzymes. The initial 

scheme of Roeder and Rutter (1969) numbered the enzyme species I, II and 

III according to the order in which the enzymes eluted from DEAE-Sephadex 

columns with salt-gradients. Chambon and coworkers (Kedinger et al., 1971) 

classified on the basis of the sensitivity of the RNA polymerases towards 

the toadstool toxin a-amanitin: form A (corresponding to type I) was 

resistant and form B (type II) was highly sensitive to the poison. The 

intermediate sensitive form C (type III) was originally not included in 

the nomenclature of Chambon. Subspecies of each main category were 

distinguished according to their relative elution position from ion-

exchange columns and their a-amanitin sensitivity. Neither system, however, 

has escaped the need for modifications. Type III (C) RNA polymerase from 
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certain tissues, has been reported to be eluted from DEAE-Sephadex between 

form I (or A) and II (or B) (Hossenlop et al., 1975),and type II (or B) 

RNA polymerase from Physarum was reported to be eluted prior to type I (or A) 

(HildebrandtS Sauer, 1973). Considerable variations in the relative and 

absolute sensitivity of RNA polymerase A (or I) and B (or II) to a-amanitin 

was reported for analogous RNA polymerases from different eukaryotes (Huet 

et al., 1975). Also considerable variations in a-amanitin sensitivity of 

the intermediate form C (or III), originally not included in the nomencla­

ture, were observed (Sklar & Roeder, 1975). It is clear, that a definite 

classification of the purified enzymes should ultimately be based on known 

functions of the enzymes. 

In this thesis the original nomenclature of Roeder and Rutter will be 

used. 

1.2.2. Chromatographic resolution 

Roeder and Rutter (1969, 1970) were able to separate the different 

classes of nuclear DNA-dependent RNA polymerases by chromatography under 

discriminating conditions on DEAE-Sephadex. Subsequently, several other 

laboratories confirmed these findings (cf. Roeder, 1976), although in most 

of these early studies only RNA polymerase I and II could be detected. 

From organism to organism great differences in the exact elution positions 

of the three RNA polymerases from several ion-exchange columns are reported. 

Therefore only the generally observed elution positions(summarized in 

Table 1) and some of the marked exception will be mentioned (cf. Roeder, 

1976). 

16 



Table 1. Concentration of ammonium sulphate (M) by which eukaryotic RNA 

polymerases are eluted from different columns 

RNA polymerase 

Ion-exchange resins I 

^0.1 

-vO.l 

^0.15-0.2 

%0.1 

II 

%0.2-0 
^0.2 

^0.1 

<0.05 

25 

III 

^0.2-0.3 
^0.1 

^0.1-0.15 

-^0.1 

DEAE-Sephadex 

DEAE-cellulose 

phosphocellulose 

CM-Sephadex 

The elution positions (in M ammonium sulphate) are those generally found 

for the major forms of RNA polymerases I, II and III. The various hetero­

geneous forms of the three RNA polymerases are not included in the table. 

Especially among lower eukaryotes markedly different elution positions 

can be observed, for example Physarum RNA polymerase II is eluted prior to 

RNA polymerase I on DEAE-Sephadex (Hildebrandt & Sauer, 1973). The elution 

position of RNA polymerase III can be markedly different and the enzyme is 

often eluted prior to or together with RNA polymerase II from DEAE-Sephadex 

(Hossenlopp etal., 1975; Sasaki et al., 1977). 

Classification of the different RNA polymerases solely according to their 

order of elution from DEAE-Sephadex can therefore be misleading (Kumar et 

al., 1980). 

Affinity chromatography on DNA-cellulose can also be used together with 

ion-exchange chromatography for separation and purification of the RNA poly­

merases (Hager et al., 1977). With DNA-cellulose RNA polymerase III can 

very well be separated from RNA polymerase I and II, the latter two being 

eluted at the same low salt position. Heparin, an analog for DNA, covalent-

ly attached to Sepharose can be used for purification of the RNA polymerases, 

but separation of the different classes can usually not be established 

(Teissere et al., 1977). 

17 



1.2.3. Subunit structure and function 

All eukaryotic nuclear RNA polymerases are macromolecular multi-subunit 

enzymes with a molecular weight close to or in excess of 500,000 daltons. 

These molecular weights are determined by centrifugation of the enzymes in 

glycerol or sucrose gradients (Kedinger et al., 1974; Ponta et al., 1972; 

Broght & Planta, 1972). 

The subunit composition of purified RNA polymerases has been investigated 

by Polyacrylamide gel electrophoresis in the presence of sodium dodecyl-

sulphate. In some cases, the molecular structure of the various enzymes has 

been further investigated by Polyacrylamide gel electrophoresis in the 

presence of urea, since possible differences in charge cannot be detected 

with dodecylsulphate gel electrophoresis (Kedinger et al., 1974; Buhler et 

al., 1976; Jendrisak & Burgess, 1977). In one case the isoelectric point 

of the different subunits has been determined (Buhler et al., 1976). In 

all cases, the enzymes consist of two high-molecular-weight subunits 

(in excess of 100 000 daltons) and a variable number of smaller subunits 

(less than 100 000 daltons). There is, however, little resemblance 

in size and number of subunits between different species or at least 

between different analyses carried out in different laboratories (Buhler 

et al., 1974; Valenzuela et al., 1976; Huet et al., 1975). Discrepancies 

in molecular weight determination of the putative subunits, in particular 

due to the lack of sufficient marker polypeptide chains in the range of 

120 000 - 200 000 daltons, explain most of the observed differences in 

molecular weights obtained for the various enzyme components in different 

laboratories. 

The determination of the putative subunits belonging to the enzyme 

complex by means of gel electrophoresis under non-denaturing conditions 

and subsequent Polyacrylamide gel electrophoresis in the presence of SDS 

in the second dimension, is complicated by the possibility of non-specific 

18 



binding of polypeptides to the complex. This electrophoresis technique 

cannot distinguish between a polypeptide that forms a fundamental part 

of the multimeric structure and non-specific protein interaction. The 

number of subunits can therefore be overestimated and too much significance 

may be attributed to small differences in macromolecular composition of 

the enzymes. As pointed out by Sentenac et al. (1978), the term "subunit" 

should be taken in its very broad sense; it refers to the various poly­

peptide chains, which remain tightly bound to the enzyme molecule. The co-

purification of the polypeptides upon glycerol or sucrose gradient centri-

fugation at high ionic strength and during gel electrophoresis under non-

denaturing conditions are used as the operational criteria (Kedinger et al., 

1974; Schwartz & Roeder, 1974, 1975; Sklar & Roeder, 1976; Jendrisak & 

Burgess, 1977; Valenzuela et al., 1976). Another approach is the immuno-

precipitation of the enzyme complex by antibodies against single subunits 

(Huet et al., 1975). A proper definition of the enzyme subunit structure 

should ultimately be based on more sound criteria, requiring biochemical 

and genetic evidence for the functional role of the different polypeptides. 

Up to now, dissociation-reconstitution experiments have failed to elucidate 

the subunit function in eukaryotic RNA polymerases (Sentenac et al., 1978). 

It is almost impossible and certainly not illuminating, to give an ex­

tensive survey of the polypeptide composition of the distinct RNA poly­

merases isolated from a great variety of organisms and to discuss in 

detail the differences between the organisms, with respect to the polypep­

tide composition of their RNA polymerases. The polypeptide composition of 

yeast and mouse plasmacytoma RNA polymerases is shown in Table 2. These 

two organisms, representing the lower and higher eukaryotes, are well 

studied with respect to their RNA polymerases and are therefore chosen to 

illustrate the complexity of the RNA polymerases (Roeder, 1976; Sebastian, 

1977). 



Table 2. The polypeptide composition of RNA polymerase I, II and III, 

from mouse plasmacytoma and yeast 

mouse plasmacytoma 

195 

II 

240 

205 

170 

140 

III 

190 

138 

190 

135 

yeast 

II 

220 

180 

150 

III 

117 

160 

128 

61 

49 

29 

89 

70 
53 
49 

41 

33/32 

29 
27 

22 
19.5 
19 
16.5 

29 

19 

48 

82 

37 

27 

23 
20 

14.5 
12.2 
10 

32 

27 

23 

17 
14. 
12. 

5 
5 

41 
40.5 
37 

28 

24 

20 

14.5 

The numbers indicate approximate molecular weights in daltons x 10" . 

The underlined numbers indicate the polypeptides which are different or 

lacking in the respective subforms. The numbers in italics indicate the 

polypeptides, which are common the to the different enzyme classes. 
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The distinct RNA polymerases cannot be recognized just on the basis 

of the polypeptide pattern,but some characteristics can nevertheless be 

used for their classification. RNA polymerase I can be identified on 

account of the different polypeptide patterns of the respective subforms. 

In most organisms, the class I subforms differ for only one 
D 

polypeptide (60 000 - 70 000 daltons): subform I lacks this polypeptide, 
A R 

while it is present in the I subform. The I subform from yeast however, lacks 

two polypeptides of 48 000 and 37 000 daltons. Furthermore the two class I sub-

forms of yeast differ in catalytic properties, while from all other 

organism they are indistinguishable in this respect. RNA polymerase II can 

be identified on account of the absence of polypeptides in the range of 

50 000 - 100 000 daltons; furthermore the subforms of the class II enzyme 

differ in the molecular weight of the largest polypeptide. These rather 

generally observed differences indicate, that RNA polymerase II is probably 

more conserved than RNA polymerase I and III. Characteristic for RNA poly­

merase III is the presence of one or more polypeptides in the range of 

70 000 - 100 000 daltons. The two high-molecular-weight subunits (in 

excess of 100 000 daltons) are smaller than the two comparable polypeptides 

of the class I and II enzymes. The phenomenon of the heterogeneity of the 

different RNA polymerases will be discussed in detail in section 1.2.7. 

The structural studies of the polymerases indicate, that the three 

classes have a few low molecular weight subunits in common, belonging to 

the small polypeptides (Buhler et al., 1976; Hildebrandt & Sauer, 1973; 

Valenzuela et al., 1976). The existence of common subunits raises questions 

concerning the function of these subunits in the biosynthesis of the RNA 

chain. Part of the mechanism of transcription, for instance the elongation 

step, could be identical for the different RNA polymerases. The presence 

of common subunits also raises important problems concerning the synthesis, 

assembly and regulation of each of the RNA polymerases. 
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Preliminary information on a possible function of some RNA polymerase 

subunits has been obtained by more or less indirect methods. From ex­

periments with pyridoxal 5'-phosphate it was suggested by Valenzuela et al. 

(1978), that the yeast RNA polymerase I subunits of 185 000 and 137 000 

daltons are involved in both nucleotide and DNA binding and that the 48 000 

and 37 000 daltons polypeptides also bind to DNA, although this interaction 

is not strictly required for polymerase activity. The possible involvement 

of the 48 000 and 37 000 polypeptides of RNA polymerase I from yeast (ab-
D 

sent in the I form) in DNA binding was also suggested by Huet et al. (1976) 

and further substantiated by Cooper & Quincey (1979). A significant finding 

was the identification of the a-amanitin binding polypeptide in RNA poly­

merase II by affinity labeling experiments (Brodner & Wieland, 1976). 

Several polypeptide components of the RNA polymerases are phosphorylated 

in vivo (Bell et al., 1976; Buhler et al., 1976; Bell et al., 1977). 

The significance of the phosphorylation in vivo is not clear, but in analogy 

to the regulation of enzyme activities involved in the glycogen metabolism 

through phosphorylation-dephosphorylation (Rubin & Rosen, 1975), it is 

tempting to suggest, that the RNA polymerase activities may also be regulated 

through phosphorylation (Bell et al., 1977). This possibility of control of 

the pre-existing RNA polymerase activities is more attractive, than alter­

ations of the rate of synthesis or degradation of RNA polymerase molecules 

or components (Roeder, 1976). 

1.2.4. Catalytic properties 

It is possible to characterize the three classes of eukaryotic RNA poly­

merases, using an excess of native calf thymus DNA as a template, according 

2+ 2+ 

to the preferent ial act ivat ion by e i ther Mn or Mg , ionic strength optima 

and preferential transcription of native or denatured DNA. However, the 

catalytic properties should not be considered as invariant characteristics 

of the enzyme classes. The enzyme characteristics, in particular the optimal 
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ionic strength, are highly dependent on the nature of the template 

(synthetic or natural), the state of the DNA (native or denatured) and 

its concentration in the reaction mixture (cf. Chambon, 1974; Roeder, 1976). 

The most important difference in catalytic properties between the RNA 

polymerases I, II and III is the optimal ionic strength of the distinct 

enzyme activities under well defined conditions using an excess of native 

calf thymus DNA as a template. The salt activaty profiles of RNA poly­

merase I generally are sharp (optimal < 50 mM ammonium sulphate) and for 

RNA polymerase II more gradual between 50 and 100 mM ammonium sulphate. 

RNA polymerase III shows a very broad plateau or a biphasic curve within 

the range of 50-200 mM ammonium sulphate (cf. Roeder, 1976). The (charac­

teristic) ammonium sulphate activaty profiles sometimes enable the in­

vestigator to distinguish clearly between the enzyme classes, where other 

properties (e.g. a-amanitin sensitivities) do not (Schultz & Hall, 1976). 

2+ 2+ 
Most RNA polymerases are more active with Mn than with Mg when 

assayed at their respective metal ion optima. RNA polymerase II is in 

2+ 2+ 
general 5-10 fold more active with Mn than with Mg , while RNA poly-

2+ 2+ 

merase I and III are only 1-2 fold more active with Mn than with Mg . 

With respect to the preferential transcription of a certain template, RNA 

polymerase II appears to be more active with denatured DNA than with native 

DNA, RNA polymerase III is almost equally active with either template and 

RNA polymerase I is in general more active with a native DNA template. These 

preferences should be considered with great caution, because single stranded 

regions (internal gaps or free ends) and nicks in the template can serve as 

initiation sites for the RNA polymerases and therefore not only influence 

the denatured versus native DNA activity ratios, but also the specific 

transcription by a particular RNA polymerase (Gissinger et al., 1974; Flint 

et al., 1974; van Keulen et al., 1975; Dynan et al., 1977). The enzymes 

often show markedly distinct activities with synthetic polynucleotide templates 

relative to their activities with native DNA (Blatti et al., 1971; Dezélée 

et al., 1974; Sasaki et al., 1976). Synthetic templates, like poly(dA-dT), 
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are very useful in detecting minor polymerase components, such as RNA 

polymerase I I I , which transcribes the synthetic template more e f f i c i e n t l y 

than native DNA; the reverse is true fo r RNA polymerase I and I I . 

1.2.5. a-Amanitin inhibition 

The amatoxins (a- and ß-amanitin) are the lethal poisons from the toad­

stool Amanita phalloides ( f i g . 1) . The amatoxins are cyc l ic octapeptides of 

which the r ing is divided and held in compact shape by a sulfoxide bridge 

(Wieland, 1972) ( f i g . 1). The primary action of the poison, a-amanitin, is 

a reduction of l i v e r and kidney funct ion, resul t ing in a decreasing blood 

sugar level (Wieland, 1972). 
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Fig. 1. Amanita phalloides and the chemical structure of amatoxins 

I t was shown by Fiume & Stirpe (1966) and Se i far t & Sekeris (1969), that 

h is to logical changes in the mammalian nucleus upon a-amanitin administration 

were related to an i nh ib i t i on of RNA synthesis and that the DNA-dependent 

RNA polymerase a c t i v i t y was d i rec t l y influenced by the poison a-amanitin. 

At a concentration of 10 ng/ml (10 M) of the t ox i n , the so lubi l ized RNA 
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polymerase a c t i v i t y could be inh ib i ted fo r 60-80%. Increasing the a-amanitin 

concentration did not resul t in a complete i nh ib i t i on of the RNA polymerase 

a c t i v i t y . A f ter separation of the so lubi l ized RNA polymerase a c t i v i t y from 

rat l i ve r in to the forms I and I I through DEAE-Sephadex chromatography, i t 

could be demonstrated, that only RNA polymerase I I is sensit ive to a-amanitin 

i nh ib i t i on (50% i nh ib i t i on level at 10-50 ng/ml ) and that RNA polymerase I 

was completely insensi t ive (Kedinger et a l . , 1970; L indel l et a l . , 1970). 

The mammalian RNA polymerase I I I was la ter shown to be intermediate sensit ive 

to a-amanitin (50% i nh ib i t i on level at 10-25 yg/ml ) (Sei far t et a l . , 1972; 

Weinmann & Roeder, 1974). 

The early studies indicate that a-amanitin exerts i t s e f fect through 

in teract ion with the RNA polymerase and not with the template (Se i far t & 

Sekeris,1969). More detai led studies have shown, that a-amanitin blocks the 

elongation step in the t ranscr ip t ion by d i rect in teract ion with the RNA 

polymerase enzyme (Mandel & Chambon, 1971; Cochet-Meilhac & Chambon, 1974). 

The receptor s i te of a-amanitin was shown to be located on the 140 000 

dalton subunit of RNA polymerase I I from ca l f thymus (Brodner & Wieland, 

1976). 

I t was suggested by Chambon and coworkers (Kedinger et a l . , 1971), that 

the c lass i f i ca t ion of the d i s t i nc t RNA polymerases should be based on the 

d i f f e ren t i a l i nh ib i t i on of the enzyme classes by a-amanitin. The class I , 

I I and I I I ( referred to as A, B and C, respectively) enzymes from animal 

ce l ls could readi ly be distinguished with respect to t he i r a-amanitin 

sens i t i v i t y as shown for the enzymes from mouse t issue (Schwartz et a l . , 

1974), ra t l i v e r (Se i far t & Benecke, 1975; Kedinger et a l . , 1971), ca l f 

thymus (Weil & B l a t t i , 1975) and human ce l ls (Hossenlopp et a l . , 1975; 

Weil & B l a t t i , 1976). Similar RNA polymerases from d i f fe rent eukaryotes 

showed, however, considerable var ia t ion in t he i r re la t ive and absolute 

sens i t i v i t i es towards a-amanitin. From the silkworm Bombyx mort and from 

the crustacean Artemia salinea, the class I I enzymes showed a-amanitin 
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sens i t i v i t i es equivalent to those of the animal class I I enzymes, whereas 

RNA polymerase I and I I I were both completely res istant to a-amanitin con­

centrations as high as 1 mg/ml (Sklar & Roeder, 1975; Renart & Sebastian, 

1976). Other insect class I I enzymes showed s imi lar a-amanitin s e n s i t i v i ­

t ies (Ph i l l i ps & Forrest, 1973; Greenleaf & Bautz, 1975; Greenleaf et a l . , 

1976). S t r ik ing differences in a-amanitin sens i t i v i t i es have mainly been ob­

served with enzymes from the lower eukaryotes (Table 3) . In yeast, RNA 

polymerase I I shows a moderate sens i t i v i t y to a-amanitin (1 yg/ml for 50% 

inh ib i t i on ) more closely approximating the sens i t i v i t y of the animal class 

I I I enzymes than that of the class I I enzymes (Sebastian, 1978). Similar 

moderate sens i t i v i t i es of RNA polymerase I I enzymes were observed with 

mushrooms from the Amanita species (Vaisius & Horgen, 1979; Johnson & 

Preston, 1979). Yeast RNA polymerase I is sensit ive to very high concen­

t rat ions of a-amanitin (0.2-0.6 mg/ml for 50% i n h i b i t i o n ) , whereas yeast 

RNA polymerase I I I i s insensi t ive (Schultz & H a l l , 1976; Valenzuela et a l . 

1976; van Keulen, 1979). (Table 3) . 

Table 3. a-Amanitin sens i t i v i t y of the eukaryotic RNA polymerases 

Organisms Concentration of a-amanitin causing 50% i nh ib i t i on (yg/ml) 

RNA polymerase I RNA polymerase I I RNA polymerase I I I 

Animal cells 1000 0.01-0.05 10-50 

S. aerevisiae 200-600 1 1000 

Bombyx movi 1000 0 .01-0.05 1000 

Amanita -^' 5-300 - ^ 

(1) These values were not determined 

Mutant animal cell lines containing an a-amanitin resistant RNA poly­

merase II have been an important tool for studying the regulation of RNA 

synthesis at the enzyme level (Chan et al., 1972; Amati et al., 1975; 

Ingles et al., 1976; Somers et al., 1975 a/b.; Wulf & Bautz, 1976; Bryant 

et al., 1977). The evidence, that these mutations may involve a 

structural alteration of RNA polymerase II,is based on: a) there is a 
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measurable decrease in the a f f i n i t y of the enzyme to a-amanitin (Ingles 

et a l . , 1976); b) there can be a coexpression of w i ld type sensit ive and 

resistant forms of RNA polymerase I I when cel ls are grown in e i ther the 

presence or absence of a-amanitin (Somers et a l . , 1975 a /b . ; Wulf & Bautz, 

1976); c) there is an increase in the thermolabi l i ty of RNA polymerase I I 

fo r the CHO ce l l l i n e , which is a-amanitin resistant (Lobban et a l . , 1976). 

The a-amanitin resistant ce l l l ines ( Ing les, 1978) have been useful in 

studying several aspects of RNA polymerase biochemistry, including the re­

gulation of biosynthesis of the enzyme (Somers et a l . , 1975 a /b . ; Crerar 

& Pearsons, 1977; Guialis et a l . , 1977, 1979) and i t s role in v i ra l gene 

expression (Amati et a l . , 1975; Ben-Ze'ev & Becker, 1977). Mutants of 

Drosophila, d isplaying amanitin res istant growth, were raised by Greenleaf 

et a l . (1979) and i t was shown, that these mutants contained an RNA poly­

merase I I which is 250-times more resistant to i nh ib i t i on by a-amanitin 

than the w i ld type enzyme. The a-amanitin resistance of the mutant appeared 

to be control led by a locus on the X-chromosome, which might represent the 

s t ructural gene for the a-amanitin binding subunit of RNA polymerase I I . 

I t must be concluded, that a c lass i f i ca t ion of eukaryotic RNA poly­

merases solely based on t he i r a-amanitin sens i t i v i t y can be highly mis­

leading and does not seem feasib le. 

1.2.6. Specificity of transcription 

Dif ferent RNA polymerase a c t i v i t i e s could be observed when in tac t 

nuclei were incubated under d i s t i nc t conditions (Widnell & Tata, 1966). 

2+ At low ionic strength in the presence of Mg ,(G+C) r ich RNA s imi lar to 

ribosomal precursor RNA was synthesized in rat l i v e r nuc le i . This RNA 

synthesis was local ized in the nucleolus (Pogo et a l . , 1967) and appeared 

to be resistant to a~amanitin (Novello & S t i rpe, 1969). At high ionic 

2+ strength in the presence of Mn however, the endogenous nuclear RNA pc 

merases synthesized mainly (A+U) r i ch RNA in the nucleoplasm (Widnell & 
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Tata, 1966; Pogo et al., 1967) in a reaction, which was highly sensitive 

to a-amanitin (Novello & Stirpe, 1969). Whether these results reflected 

the activity of distinct RNA polymerase enzymes or whether they were due 

to selective ionic effects on the template transcribed by one enzyme, 

was not clear at first. The demonstration of the eukaryotic RNA polymerase 

multiplicity (Roeder & Rutter, 1969) gave rise to the supposition, that 

distinct enzyme classes were responsible for the different transcription 

activities and thus for the expression of particular classes of genes. 

Subcellular localization of the different enzyme classes supported the 

idea of enzyme specificity. Lt was demonstrated, that RNA polymerase I, 

which was not sensitive to a-amanitin (Lindell et al., 1970; Kedinger et 

al., 1970), was located exclusively in the nucleolar region (Roeder & Rutter, 

1970; Sebastian et al., 1973; Hildebrandt & Sauer, 1973). This localization 

suggested, that RNA polymerase I was responsible for the synthesis of ribo-

somal RNA, as already indicated by the results of Widnell & Tata (1966). 

The highly sensitive RNA polymerase II activity was found in the nucleo­

plasm^ fractions and was thought to be responsible for the synthesis of 

heterogeneous nuclear RNA, the precursor to messenger RNA (Widnell & Tata, 

1966; cf. Jacob, 1973; Chambon, 1975; Roeder, 1976). Administration of 

a-amanitin in vivo inhibited the hnRNA synthesis and sometimes also the 

rRNA synthesis, probably as a secondary indirect effect (Hadjiolov et al., 

1974), but left the tRNA synthesis unaffected (Shaaya & Sekeris, 1971). 

More detailed studies with isolated nuclei showed, that the synthesis of 

small RNA species, like tRNA and 5S RNA, was sensitive to very high con­

centrations of a-amanitin, which paralleled those concentrations needed 

to inhibit solubilized form III RNA polymerase (Weinmann & Roeder, 1974). 

This RNA polymerase III activity was found in the nucleoplasmic as well as 

in the cytoplasmic fractions (Seifart et al., 1972; Seifart & Benecke, 1975; 

Austoker et al., 1974). Although the storage and/or function of RNA poly-
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merase III in the cytoplasm could not be ruled out, it seemed likely that 

the observed discrepancies in localization, reflected leakage of nuclear 

enzymes during cellular fractionation (Schwartz et al., 1974). The overall 

evidence clearly indicated, that RNA polymerase I was responsible for the 

synthesis of ribosomal RNA, polymerase II for that of messenger RNA and 

form III RNA polymerase for that of 5S and transfer RNA. 

The complexity of the eukaryotic genome forced the different investigators 

to concentrate either on the transcript analysis from reiterated genes or 

to use simple templates such as viral DNAs. These viral DNAs, like SV.Q 

and adenovirus-2 genomes, could readily be isolated in intact form and 

were transcribed by class II (SV.„) or class II and III (adenovirus-2) enzymes 

in infected cells. The function of specific host RNA polymerases in the 

transcription of viral genes was established by determination of a-amanitin 

sensitivities of specific viral RNA synthesis in isolated nuclei. It was 

demonstrated, that the class II RNA polymerases were involved in the synthesis 

of the major population of viral RNA, representing viral mRNA or precursors 

to viral mRNA (Price & Penman, 1972; Wallace & Kates, 1972; Weinmann et al., 

1974, 1975). The RNA polymerase activity involved in the viral mRNA 

synthesis was demonstrated to be of host origin, since the respective a-

amanitin sensitivities of viral mRNA synthesis and the host RNA polymerase 

II activity were indistinguishable (Weinmann et al., 1974, 1975; Amati et 

al., 1975). Class III RNA polymerases were shown to synthesize low-jtiolecular 

weight viral RNA species in human cells lytically infected with adenovirus-2 

(Roeder, 1976; Jaehning et al., 1976). These viral RNAs appeared to be 

localized in a small region of the adenovirus-2 genome and the RNAs were 

transcribed from the same strand of the viral DNA (Weinmann et al., 1976). 

Initiation studies with soluble, purified enzymes initially did not 

provide support for the hypothesis of the enzyme specificity of trans­

cription. Integrity of the template - no single-stranded breaks in the DNA -

appeared to be critical for a bonafide initiation (Flint et al., 1974; 

Beebee & Butterworth, 1974; van Keulen et al., 1975). Several studies on 
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the transcription of specific genes in vitro by exogenous RNA polymerases 

were performed using isolated chromatin as a template. The use of chromatin 

templates was based on the premisses, that the template might be less 

damaged and that specific chromatin-associated proteins might be 

necessary cofactors for selective gene transcription (cf. Roeder, 1976). 

In no case however, were class I and II enzymes found to transcribe specific 

genes more accurately or efficiently than prokaryotic RNA polymerases 

(Honjo & Roeder, 1974; Wilson et al., 1975). 

In similar studies, RNA polymerase III was shown to transcribe selective­

ly and accurately the 5S genes in chromatin, but not in naked DNA (Parker 

et al., 1976; Parker & Roeder, 1979; Jaehning & Roeder, 1977). These 

findings were the first indication , that specific transcription events in 

living cells could be duplicated in reconstituted cell-free systems. It was 

shown that besides the RNA polymerase enzymes and a DNA template, other 

nuclear or chromatin-associated factors were necessary for the accurate 

transcription of these genes. 

Rapid progress has been made in the study of gene transcription after 

this first report of accurate in vitro transcription of the 5S gene by 

RNA polymerase III. One of the reasons for this progress was the use of 

the recombinant DNA technique. Through this technique it was possible to 

isolate a specific gene or a set of genes from the bulk of the DNA and to 

replicate this DNA fragment independently in bacteria. Through sequence 

analysis it was possible to characterize the putative template and to define 

exactly the coding region. The integrity of the template could now be 

guaranteed and the difficulty of the complexity of the eukaryotic genome 

could nqw be avoided. 

An important advance in the study of transcription regulation was made 

by Wu (1978), who established an in vitro system, in which the virus-

associated (VA) RNA genes of purified adenovirus-2 DNA were selectively 

transcribed by RNA polymerase III. Subsequently, several other soluble 
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enzyme systems were developed from amphibian oocytes and cultured amphibian 

and mammalian cells, in which DNA templates, containing class III genes 

were accurately transcribed by endogenous class III RNA polymerases (Korn 

& Brown, 1978; Birkemeier et al., 1978; Schmidt et al., 1978). The various 

studies, reported thus far, show that in these systems a variety of class 

III genes (tRNA, 5S RNA or viral genes) are accurately transcribed. Even 

genes from simple eukaryotes like yeast are accurately transcribed in 

germinal vesicle (GV) extracts from Xenopus oocytes (Schmidt et al., 1978). 

Besides these in vitro transcription systems, a mechanical injection technique 

was developed, through which cloned and modified DNA probes, injected into 

the large nucleus of Xenopus laevis oocytes, could be accurately transcribed 

(Mertz & Gurdon, 1977; Kressmann et al., 1978). The results from in vivo and 

in vitro transcription studies suggest, that structural features of the 

transcription components of type III genes are highly conserved (Sakonju et al., 

1980; Bogenhagen et al., 1980; Telford et al, 1979; Thimmappaya et al., 1979; 

Ng et al., 1979; Weil et al., 1979). An internai promoter site seems to exist 

in at least the 5S genes and probably in all RNA polymerase III transcribed 

genes; the polymerase binding and transcription appears to be dependent on 

this internal region (cf. Ford, 1980). 

Recently, an in vitro transcription system for class II genes has been 

developed by Weil et al. (1979), existing of an S100 extract of mammalian 

cells in which adenovirus-2 DNA could be specifically transcribed by RNA 

polymerase II. A similar system has been developed by Manley et al. (1980) 

using a Hela nuclear extract. In both cases, the transcription of a major 

late adenovirus-2 pre-mRNA could be demonstrated. The in vitro system of 

Weil et al. (1980) has recently been used for the transcription of conal-

bumin and ovalbumin genes and has been compared with the adenovirus late 

and early regions (Wasylik et al., 1980). The authors showed, that the 

conalbumin gene and the adenovirus-2 late region are both efficiently 

transcribed in this in vitro system. However, the ovalbumin genes and the 

adenovirus-2 early regions are only poorly utilized. It is not clear, 
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whether these differences reflect weak and strong promoters. The promoter 

regions of most of the eukaryotic class II genes appear to consist of a 

highly conserved sequence (TATAAA), the Hogness box, which may be similar 

to the Pribnov box in prokaryotes ( Pribnov, 1975; Proudfoot, 1979). 

It seems clear, that some of the sequences required for the transcription 

of structural genes by RNA polymerase II are localized in the DNA upstream 

of the coding region. Deletion of this region upstream the H„A gene, in­

cluding the Hogness box, did reduce, but not eliminate the transcription 

of the gene (Grosschedl & Birnstiel, 1980). The results from studies of 

the transcription of class II genes are in strong contrast to those ob­

tained with the class III genes (Sakonju et al. , 1980; Bogenhagen et al., 

1980; Kressmann et al., 1979). Some of the aspects of transcription appear 

to be regulated in a similar way as with prokaryotes. 

It should be concluded, that specific transcription by the distinct RNA 

polymerase classes can be unequivocally demonstrated in the in vitro and 

in vivo transcription systems. 

1.2.7. Heterogeneity of the enzyme classes 

Heterogeneous forms of RNA polymerase I, II and III can be detected in 

enzyme preparations from various organisms by ion-exchange chromatography 

and by Polyacrylamide gel electrophoresis under non-denaturing conditions. 

The polypeptide composition of the subforms within each class appear to 

differ only by one or two polypeptides. The heterogeneous subforms are in 

general indistinguishable with respect to catalytic properties such as 

metal-ion requirement, optimal ionic strength and a-amanitin sensitivity 

(Chesterton & Butterworth, 1971; Hossenlopp et al., 1975; Sklar & Roeder, 

1976). Whether these subforms are physiologically significant is unknown 

and speculative. Most of the data suggest the loss or modification of 

specific polypeptides during the isolation procedure (Weaver et al., 1971; 

Dezélée et al., 1976; Osuna et al., 1977). 
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Although the significance of the heterogeneity of the different classes 

of RNA polymerases must be treated with great caution, a short survey will 

be presented considering the different classes independently. 

Class I. Two chromatographycally distinct forms of RNA polymerase I have 

been observed following DEAE-Sephadex, CM-Sephadex and phosphocellulose chro­

matography (Chesterton & Butterworth, 1971; Gissinger & Chambon, 1975; Huet 

et al., 1975). These distinct forms differ in having (I ) or missing 
D 

(I ) one polypeptide in the range of 60 000-70 000 dal tons, or as is the 

case with yeast in two small polypeptides of 48 000 and 37 000 dal tons (Huet 

et al., 1975). Two electrophoretic forms have been reported for mouse plasma­

cytoma RNA polymerase I, as given in Table 2 (Schwartz & Roeder, 1974). The 

subforms of RNA polymerase I from Artemia satina larvae appeared to be pro­

duced by proteolysis during the extraction and solubilization of the RNA 

polymerases (Osuna et al., 1977). It was reported by Kellas et al. (1977), 

that through the high-salt-sonication technique, often used in RNA poly­

merase purification, one RNA polymerase I subform could be quantitatively 

converted into the other one. 

Class II. At least three subforms of RNA polymerase II have been dis­

tinguished in Xenopus (Roeder, 1974) and mouse myeloma (Schwartz & Roeder, 

1975) and probably four species in calf thymus (Kedinger et al., 1974). 

The occurrence of these forms, differing only in the size of the largest 

subunit, seems to be a fairly general observation. In wheat germ (Jendrisak 

& Burgess, 1975) and cauliflower (Goto et al., 1978) only one form could be 

detected. This could be due, however, to the isolation procedure, since 

Hodo and Blatti (1977) were able to isolate subforms of wheat germ RNA poly­

merase II by a slightly modified isolation procedure. In combination with 

the fact, that the subspecies of RNA polymerase II appear to be indis­

tinguishable with respect to their catalytic properties, it seems likely, 

that the subforms are derived from one original form by proteolytic cleavage 

of the largest subunit during the isolation procedure, as suggested by Dezêlée 

et al. (1976). Nevertheless, the occurrence of these polymerase II subforms 
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can be regarded as characteristic for the class II enzymes and is often used 

as an additional classification criterium. 

Class III. RNA polymerase III from various organisms has been separated 

A B 

into two forms, designated III and III following DEAE-Sephadex chromato­

graphy or Polyacrylamide gel electrophoresis (Benecke & Seifart, 1975; Weil 

& Blatti, 1976; Hossenlopp et al., 1975; Sklar et al., 1976).The two subforms 

differ only in one low-molecular-weight subunit which is present in the III form, 
D 

but not in III . There are no apparent differences in the catalytic properties 

in vitro. 

1.3. Aspergillus nidulans 

Aspergillus nidulans is a sexually reproducing member of the Aspergillaceae 

which belong to the obligate aerobe Asoomyoetes, a class of fungi having a 

vegetative and generative growth cycle, shown in fig. 2 (Raper & Fennel, 1965). 

branched multinucleate 
mycelium 

clcistothccium 

\ young ascus 

meiosis f ' \ 

Fig. 2. Life cycle of Aspergillus nidulans 
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In the vegetative form, haploid conidiospores are uninucleated and have 

in general a green colour. The hyphae, arising from the haploid conidio­

spores, consists of a string of multinucleated cells surrounded by a rigid 

cell wall, consisting of chitin and glucan polymers. The hyphae have 

septea with a pore , which allow the exchange of nuclei and cytoplasm 

(Pontecorvo, 1953). Due to external signals, like nutrient exhaustion, 

condiogenesis takes place (Clutterbuck, 1976). The genes involved in the 

process of conidia formation, can be considered as those controlling induc­

tive competence and those controlling the morphological competence. Several 

mutants are available affecting the regulation and development of conidia 

formation (Orr & Rosenburg, 1976; Morris, 1976; Clutterbuck, 1976). For 

example, the bristle mutants are altered in the genes controlling the in­

ductive competence, resulting in the formation of only footcells (conidio-

phores), the first step in conidiogenesis. 

A. nidulans was the main object in the study of the parasexual "cycle" in fungi 

(Pontecorvo, 1954), which has the sequence: (1) anastomosis between geneti­

cally different hyphae resulting in heterokaryon formation, (2) nuclear 

fusion giving diploid nuclei, (3) mitotic crossing over and haploidization. 

Among wild type strains of A. nidulans heterokaryon incompatibilities occur 

(Grindle, 1963), but among the frequently used Glasgow strains, failure 

to form heterokaryons is rare (da Cunha, 1970). Where diploid nuclei are 

present in the hyphae, also a number of diploid (uninucleated) conidia are 

formed. When placed on a selective . 

medium, heterozygous (diploid) conidia will give rise to colonies. In such 

a selected heterozygous diploid strain,haploidization and mitotic crossing 

over result in recombination .These inter- and intra-chromosomal recombination 

processes facilitate the determination of linkage groups and the linear 

arrangement of genes relative to the centromere (Pontecorvo & Käfer, 1958). 

The genetics and the metabolism of Aspergillus have been extensively 

studied but little is known about the biochemical organization of the nucleus. 

High-molecular-weight DNA has been prepared from nuclei of A. nidulans 
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(Morris, 1978) and was found to have a buoyant density in CsCl of 1.709 g/ml 

(unpublished results) corresponding to a (G+C) content of about 51% (Ponte-

corvo, 1957; Lopez-Peres & Turner, 1975). The genome size was calculated to 

be 2.6 x 10 base pairs or 0.028 pg per haploid nucleus (Timberlake, 1978; 

Brainbridge, 1971). From DNA-DNA reassociation studies it was concluded, that 

the genome of Aspergillus consists of approximately 97 to 98 percent unique 

and only 2 to 3 percent reiterated sequences. These reiterated DNA sequences 

were calculated to have a complexity of 11 000 base pairs and should be 

repeated about 60 times per haploid genome. Hybridization experiments in­

dicated, that most of the reiterated DNA codes for ribosomal RNA (Timber-

lake, 1978). The existence of histones in A. nidulans and the organization 

of histones and DNA in nucleosomes has been reported by Morris et al. (1976). 

The DNA repeat length after micrococcal nuclease digestion appeared to be 

smaller in A. nidulans (154 bp) than in most higher eukaryotes (180-220 bp). 

The ribosomal RNAs has been isolated and the sedimentation values of the 

two ribosomal RNA were estimated to be 26 and 17S, respectively (Edelman 

et al., 1971; Verma et al., 1970). Together with the ribosomal RNAs a 5.8S 

RNA could be isolated from the ribosome fraction and from the post-ribosomal 

supernatant 5S rRNA and 4S tRNA could be purified (unpublished results). 

The data indicate, that the biochemical organization of the chromatin 

in Aspergillus nidulans and in higher eukaryotes may be similar. The 

differences in the amount of repetitive sequences and, probably organization 

between the lower eukaryotes, like A. nidulans and Neurospora (Krumlauf & 

Marzluf, 1979) and more advanced systems,do not necessarily imply that 

they possess different molecular mechanisms for controlling gene expression, 

since it has not yet been fully established that the interspersed repetitive 

DNA plays a role in gene regulation in higher eukaryotes (Murray & Holliday, 

1979). At present it is only possible to speculate on the selective value 

and function of these sequences. 
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1.4. Funga I pro top lasts 

Yeast and filamentous fungi have a rigid cell wall, consisting of chitin 

and glucan polymers, which can only be desintegrated with severe mechanical 

force. When cell-free extracts and intact cell organelles should be prepared, 

mechanical désintégration of the cell wall cannot be used. Through enzymatic 

degradation of the cell wall, it is possible to obtain protoplasts, which 

can be lysed in a gentle manner. Protoplasts, like cultured animal cells, 

are characterized by the (complete) absence of a cell wall and are therefore 

very useful for investigating particular biological problems, such as DNA 

and RNA synthesis. The last few years, new approaches to genetic manipulation 

of bacteria, fungi and plants, caused a renewed interest in the use of proto­

plasts. Removal of the cell wall and exposure of the protoplast membrane to 

specific biochemicals allowed manipulation involving the uptake of nucleic 

acids, being difficult to achieve or even impossible with intact cells. 

An example of fungal transformation was recently reported by Hinnen et al. 

(1978). These authors showed, that a bacterial plasmid (Col E , ) , with a 

yeast gene incorporated, was taken up by the protoplasts of yeast. Evidence 

indicated, that the complete plasmid was integrated into the yeast genome, 

including the gene within the plasmid. 

The first reports on the isolation of protoplasts by means of cell wall 

degrading enzymes were from Eddy & Williamson (1959) and Bachmann & Bonner 

(1959) using yeast and Neurospora cvassa, respectively. Although mechanical 

and other non-enzymatic methods for protoplast isolation have been reported 

(Berliner, 1971; Carbonell et al., 1972), most investigators have favoured 

the use of lytic enzymes, generally being the most rapid procedure. The 

first lytic enzyme system used by Eddy & Williamson (1959) for the preparation 

of yeast protoplasts was a digestive juice of the snail Helix pomatia. Next 

to this enzyme system, which could be used for yeast as well as filamentous 

fungi (cf. Peberdy, 1978, 1979), several other lytic enzyme systems have 

been derived from a variety of organisms from both bacterial and fungal 

origin (Dziengel et al., 1977; Mann et al., 1972; Garcia & Villanueva,1962; 

37 



de Vries & Wessels, 1972; Musilkova & Fencl, 1968; Peberdy & Isaac, 1976). 

Considering the diversity in cell wall composition of especially the 

filamentous fungi (Bartnicki - Garcia, 1968), it is not surprising, that 

a wide range of lytic enzyme systems has been developed. 

In most cases reported so far, the synthesis of the cell wall degrading 

enzymes by the different organisms required the presence of inducer sub­

strates in the growth medium. In general, these inducers were supplied in 

the form of either homogenized mycelium (Musilkova et al., 1969) or semi-

defined substrates. The latter were purified from cell walls (de Vries & 

Wessels, 1972) or commercially available substrates, similar to those found 

in the cell wall, such as chitin.laminarin and pustulan (Laborda et al., 

1974). The enzyme composition of the lytic systems, involved in protoplast 

release, is known in only a few cases. The enzymes of Tvichoderma harzianum 

were extensively studied with respect to protoplast release from Schizophyllwn 

commune by de Vries & Wessels (1973). Three major enzyme components, S-gluca-

nase, R-glucanase and chitinase, were shown to be necessary for protoplast 

release. The R-glucanase could be left out, since S. commune was able to 

produce this enzyme during the incubation of the cells with the other lytic 

enzymes. Aspergillus nidulans is an example of an organism producing exogenous 

enzymes, which are able to degrade their own cell wall. It was demonstrated 

by Zonneveld (1972 a/b), that under starvation conditions A. nidulans pro­

duced lytic enzymes, with a-l,3-glucanase as the main component. These extra­

cellular lytic enzymes were able to degrade part of the mycelial cell wall 

mainly a-l,3-glucan, which obviously served as a reserve carbon and energy 

source for the cleistothecial formation. 

The state of the mycelium, used for protoplast isolation, is very 

difficult to standardize, but is probably the most important factor deter­

mining protoplast yields. Two aspects of growth of the mycelium are important: 

the culture medium and the growth phase of the culture. It was shown by Musil­

kova & Fencl (1968), that protoplast formation from A. nidulans was dependent 

on both the carbon and nitrogen source as well as on their respective con-
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centrations used in the medium. Similar effects have been reported for other 

fungi (cf. Peberdy, 1979), however, large differences were observed with 

respect to the optimal culture medium even when the same organism was used. 

This is obviously due to the fact, that each laboratory uses its own lytic 

system each with a different enzyme composition. Changes in the cell wall 

composition, caused by different amounts and varieties of carbon, nitrogen 

or phosphate sources in the growth medium (Zonneveld, 1972 a/b, 1975; San 

Bias & Cunningham, 1974 a/b), will directly affect the susceptibility of 

the mycelium to the lytic enzymes used. The addition of thiol compounds, 

Triton-X-100 or chelating agents to the growth medium or preincubating the 

mycelium with these chemicals prior to the exposure to the lytic enzymes, 

have been shown to alter the susceptibility to lysis. The mechanisms of 

action are largely unknown and speculative (cf. Peberdy, 1979). The state 

of the cells used for the protoplast production is also very important. In 

general, maximal yields of protoplasts are obtained with cultures in the 

early and mid-exponential growth phase (Peberdy et al., 1976; Anne et al., 

1976). Cells in the stationary phase are poorly susceptible to the lytic 

enzymes, probably due to the formation of melanin in older cells (Carter 

& Bull, 1969; Bull, 1970 a/b). 

An extensive range of inorganic salts, sugars and sugar alcohols have 

successfully been used to stabilize the protoplasts after the removal of the 

cell wall (Villanueva & Garcia Archa, 1971). In general, inorganic salts 

have proved to be more effective with filamentous fungi, while sugars and 

sugar alcohols were more effective with yeasts. These differences in effec­

tiveness have not been explained, but they must somehow be related to un­

known factors in the uptake and utilization of the particular compounds. 

A specific effect of high magnesium sulphate concentrations on the protoplasts 

and their release from the mycelium has been reported by de Vries & Wessels 

(1972). The mycelium of Schizophyllwn became highly fragmentated in the 

early period of lytic digestion in the presence of 0.6 M magnesium sulphate 

and the protoplasts released from the mycelium appeared to float following 
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centri f ligation. A similar effect of magnesium sulphate on protoplasts from 

A. nidulans has subsequently been found by Peberdy & Isaac (1976). The 

reason for this magnesium sulphate induced buoyancy remains to be explained. 

When suspended in an osmotically stabilizing growth medium, part of 

the protoplast population demonstrates the capacity to return to the normal 

hyphal form of the organism. Two basic patterns of regeneration (sometimes 

indicated as reversion) can be identified. In Rhizopus nigricans (Gabriel, 1970) 

and in Schizophyllvm commune (de Vries & Wessels, 1975), a cell wall is 

gradually formed and one or more hyphae emerge directly from the thick-

walled spherical cell. Occasionally a few protoplasts develop a chain of bud­

like cells and hyphae are formed from some of these. The second pattern of 

development is a more wide-spread phenomenon among different fungal species; 

the protoplast bulges out to one of more sides developing aberrant hyphae. 

From the latter structure normal hyphae develop, usually from the growing 

tip distal to the protoplast (Gibson & Peberdy, 1972; Anne et al., 1974; 

Benitez et al., 1975). This gradual regeneration of the protoplast into 

normal hyphae has made it possible to study more extensively the wall 

synthesis and ultrastructure during regeneration (de Vries & Wessels, 1975; 

Peberdy, 1978; Zonneveld, 1977). 
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CHAPTER 2 

RNA Polymerase from the Fungus Aspergillus nidulans 
Large-Scale Purification of DNA-Dependent RNA Polymerase I (or A) 

Hendrik G. STUNNENBERG, Lambertus M. J. WENNEKES, and Hendrikus W. J. VAN DEN BROEK 

Laboratorium voor Erfelijkheidsleer, Landbouwhogeschool, Wageningen 

(Received December 4, 1978; April 17, 1979) 

The DNA-dependent RNA polymerase I (or A) from the lower eukaryole Aspergillus nidulans 
has been purified on a large scale to apparent homogeneity by homogenizing the fungal hyphae 
in liquid nitrogen, extraction of the enzyme at high salt concentration, precipitation of RNA poly­
merase activity with polymin P (a polyethylene inline), elution of the RNA polymerase from the 
polymin P precipitate, ammonium sulphate precipitation, molecular sieving on Bio-Gel A-1.5m, 
binding to ion-exchangers and DNA-cellulose affinity chromatography. By this procedure 1.6 mg 
of RNA polymerase I can be purified over 2000-fold from 500 g wet weight of starting material 
with a yield of 30 — 35%. The isolated RNA polymerase I is stable for several months at — 20 C. 

The subunit composition has been resolved by Polyacrylamide gel electrophoresis on two-
dimensional gels, using either non-denaturing or 8 M urea (pH 8.7) cylindrical gels in the first 
dimension and sodium dodecyl sulphate slab gels in the second dimension. The putative subunits 
have molecular weights of 190000, 135000, 63000, 62000, 43000, 29000, 29000, (28000), 16000 
and probably 13000 and 12000. 

Two distinct forms of RNA polymerase I (la and lb) have been resolved by DEAE-Sephadex 
A-25 chromatography showing ample differences in enzymatic properties and subunit pattern. 

Additional information is given on RNA polymerase II (or B) which appears to be highly 
insensitive to a-amanitin at concentrations up to 400 ug/ml. 

Aspergillus nidulans represents a well-defined ge­
netic system within which mutations affecting regula­
tion, development and mitosis [1 ] are available; further­
more, it has one of the smallest genomes of any 
differentiating eukaryote [2]. Since it has been sug­
gested [3] that the biochemical organisation of the 
nucleus may be similar in Aspergillus and higher 
eukaryotes, the fungus Aspergillus may become an 
important model system for studying the molecular 
biology of the eukaryotic nucleus and the regulation 
of RNA synthesis at the transcriptional level. Because 
A. nidulans can be obtained in reasonably large quan­
tities and the method presented allows the handling 
of large amounts of mycelia, it can be a good starting 
source for the purification of the fungal RNA poly­
merases. 

Recently several large-scale procedures have been 
published on the isolation and purification of one or 
more DNA-dependent RNA polymerases from a wide 
range of organisms (cf. [4]) such as plants [5,6], 
animals [7,8] and yeast [9,10]. Up to now only one 
large-scale procedure with sufficient yields is known 

Enzyme. Ribonucleoside triphosphate :RNA-nucleotidyltrans-
ferase (EC 2.7.7.6). 

for the isolation of RNA polymerases from fungi [11]; 
all other procedures given for fungal systems [12— 15] 
are hampered by low recoveries of enzymatic activity 
and instability or inhomogeneity of the isolated RNA 
polymerases. This omission, in general, is due to 
difficulties in cell disruption and most of all to the 
presence of high concentrations of RNase and protease 
activities in fungi [16]. 

In this report a method is presented for the large-
scale isolation and purification of the DNA-dependent 
RNA polymerase I (A) from A. nidulans. The advan­
tage of the procedure is the release of large amounts 
of enzyme activity of both RNA polymerase I (A), 
II (B) and III (C) by simply blending large quantities 
of the Aspergillus hyphal mass in liquid nitrogen, 
removal of nucleic acids by polymin P (a polyethylene 
imine) precipitation [17] and selective extraction of 
the polymin P pellet. Molecular sieving on Bio-Gel 
A-1.5m, followed by chromatography on DEAE-
Sephadex A-25, phosphocellulose and DNA-cellulose 
results in a homogeneous preparation of RNA poly­
merase I (A). No time-consuming sonication or other 
cell disruption methods or high-speed centrifugation 
steps are necessary. 
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By slightly changing and modifying the developed 
procedure, it should be possible to isolate the more 
labile RNA polymerases II (B) and HI (C) with proper 
yields and to purify them to apparent homogeneity. 

MATERIALS AND METHODS 

Biochemicals 

All chemicals used were reagent grade and were 
in general obtained from Merck, British Drug House 
or Difco. Ribonucleoside triphosphates (ATP. GTP, 
CTP and UTP). crystalline bovine serum albumin (frac­
tion V) and calf thymus DNA (grade V) were purchased 
from Sigma; [5-3H]UTP (25-50Ci/mmol) from Amer-
sham. The solutions for liquid scintillation counting 
(Lumasolveand Lipoluma) were obtained from Lumac. 
Electrophoresis reagents (acrylamide. A',A'-methylene 
bisacrylamide, N.N.A'". A''-tetramethylethylene diamine 
and ammonium persulphate) were purchased from 
Serva; Coomassie brilliant blue R-250 from Merck 
and xylene brilliant cyanine G from Gurr. The molec­
ular weight markers, e.g. /j-galactosidase, Phospho­
rylase a, Escherichia coli RNA polymerase, ovalbu­
min, bovine serum albumin, chymotrypsinogen, horse 
heart cytochrome c and aldolase from Boehringer. 
DEAE-Sephadex A-25 was obtained from Pharmacia, 
Bio-Gel A-l .5m from Bio-Rad, phosphocellulose P-11 
and cellulose from Whatman. a-Amanitin was a kind 
gift from Dr M. Govindan (Heidelberg) or purchased 
from Boehringer. Polymin P was kindly donated by 
BASF (Ludwigshafen, F.R.G.). Partially purified 
RNA polymerase I from yeast was kindly provided by 
Dr H. van Keulen (Amsterdam). 

Organism and Growth Conditions 

A biAi (biotin-deficient) strain of Aspergillus nidu-
lans of Glasgow origin was used throughout these 
studies. For both maintenance and the preparation of 
conidial suspensions Aspergillus was grown on com­
plete medium [18] supplemented with 40 ug/1 of D( + )-
biotin. Conidiospores were induced by growth on 
25 ml of agar-solidified medium in 100-ml infusion 
bottles for three days at 37 C. Conidia for inoculation 
were collected by thoroughly shaking the sporulation 
fl: ks with 10 ml of a 0.8% (w/v) solution of NaCl 
containing 0.005% (v/v) of Tween 80. Cultures were 
inoculated with about 10s conidia/1 medium, con­
sisting of 0.5% (w/v) of yeast extract and 3% (w/v) 
of glucose, supplemented with 40 ug/1 of biotin ; cul­
tures were grown in 1-1 infusion bottles, containing 
250 ml of medium, for 16 h at 37 C with shaking in 
a home-made shaker-incubator. Approximately 500 g 
(wet weight) blotted mycelia (100 g dry weight) could 
be obtained from 80 1. 

Buffers 

Buffer A contained 50 mM Tris, pH 7.9 (adjusted 
with HCl at 4 C). 10"„(v/v)glycerol, 1 mM NaEDTA. 
5 mM MgCl2, 10 mM 2-mercaptoethanol, 1 mM 
phenylmethylsulfonyl fluoride; ammonium sulphate 
was added from a 3 M stock solution to a concen­
tration as indicated. Buffer B was identical to buffer A, 
but with 0.5 mM MgCl2 instead of 5 mM. Buffer C 
was identical to buffer A, except that the glycerol 
concentration was 50% (v/v) and the ammonium 
sulphate concentration 100mM. Phenylmethylsulfonyl 
fluoride was added from a 200 mM stock solution in 
96",, ethanol immediately before use [19,20]. All solu­
tions were freshly made up in glass-double-distilled 
water. 

RNA Polymerase Assay 

The standard RNA polymerase assay mixture with 
a final volume of 0.2 ml contained: 50 mM Tris-HCl 
pH 7.9 (at 4 C). 1 mM dithiothreitol, 1 mM ATP, 
GTP and CTP, 0.05 mM UTP. 1 uCi [5-3H]UTP, 
4 mM MnCl2, 20 ug heat-denatured calf thymus DNA 
and 20 ul of sample; the final ammonium sulphate con­
centration was in general between 20 and 30 mM. In 
some experiments a-amanitin, in water, was added to 
the reaction mixture at the concentrations indicated. 

The reaction was started by addition of the enzyme 
and the mixture was' incubated for 30 min at 35 C. 
The reaction was terminated by adding 4 ml of 5% 
(w/v) ice-cold trichloroacetic acid, containing 0.5% 
(w/v) sodium pyrophosphate. After 5 — 10 min at 0"C 
the trichloroacetic-acid-insoluble material was col­
lected by suction on GF/C (Whatman) glass-fiber 
filter discs, washed three times with 15 ml of the ice-
cold trichloroacetic acid solution, and once with a mix­
ture of cold ethanol/ether (1/1). The filters were dried 
and incubated for 30 min in 0.25 ml of Lumasolve at 
60 C. After addition of 2 ml of the scintillation liquid 
Lipoluma the samples were mixed thoroughly, cooled 
to 4 C and counted in 6-ml polypropylene minivials 
in an MR300 Kontron liquid scintillation counter with 
an overall efficiency of 35 —40%, as determined from 
calibration curves. 

One unit of RNA polymerase activity is defined 
as the amount of enzyme activity necessary for the 
incorporation of 1 nmol of UMP into trichloroacetic-
acid-insoluble material in 60 min under the standard 
assay conditions. Specific activity is defined as units/ 
mg protein. 

Preparation of Columns 

Bio-Gel A-l.5m (100-200 mesh) was washed and 
equilibrated in buffer A containing 300 mM ammo­
nium sulphate. To remove sticky materials the column 
was washed, in between several runs, with three volumes 
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of 5 M urea, 1 M NaCl and reequilibrated as described. 
DEAE-Sephadex A-25 (40—120 nm) was prepared as 
indicated by the manufacturer and equilibrated in 
buffer A. Phosphocellulose P-l 1 was prewashed as 
described by Burgess [21] and equilibrated with buf­
fer B. DNA-cellulose was prepared as described by 
Alberts and Herrick [22] and modified by Hager et al. 
[23]. Irradiation of the ethanol-suspended DNA-
cellulose was performed with a Hanau TQ 150 high-
pressure mercury arc through a quartz filter under 
continuous stirring for 30 min (distance within 3 cm). 
The DNA-cellulose was dried by lyophilization and 
stored as dry powder at — 20 C. The final preparation 
contained 3 — 5 mg of DNA/g cellulose. 

Gel Electrophoresis 

Polyacrylamide gel electrophoresis in the presence 
of sodium dodecylsulphate was carried out in lOOx 130 
x 1-mm slabs using the discontinuousdodecylsulphate 
Tris/glycine buffer system as described by Laemmli 
[24]. Samples were treated as described by Laemmli 
[24] and subjected to electrophoresis for 4 —5 h at 
40 mA, using bromophenol blue (0.004%, w/v) as a 
dye marking the position of the front. 

Polyacrylamide gel electrophoresis in the presence 
of 8 M urea (pH 8.7) was performed according to 
Jovin et al. [25]. Samples were dialysed against the 
Tris/glycine (pH 8.3) electrophoresis buffer, containing 
8 M urea prior to electrophoresis and gels were run 
in glass tubes (70 x 2.5 mm) at a constant voltage of 
15 —20 V per tube until the marker dye had reached 
the bottom of the tube. 

Gel electrophoresis under non-denaturing con­
ditions was performed essentially as described by 
Ornstein [26] and Davis [27], and modified by Smith 
and Braun [11]. Gels were run at 4eC in glass tubes 
(70 x 2.5 mm) at a constant voltage of 15 V per tube 
until the marker dye had reached the bottom of the 
tube. 

Two-dimensional gel electrophoresis was performed 
as described by Jendrisak and Burgess [28] : either 8 M 
urea (pH 8.7) or native gels for the first dimension 
were run in glass tubes as described above until the 
marker dye was within 1 cm of the bottom of the gel. 
After electrophoresis the gels were immediately re­
moved and equilibrated by soaking in the dodecyl­
sulphate sample buffer of Laemmli [24] for 5 min at 
80 "C. The gels were mounted horizontally on top of 
a slab gel (100 x 130 x 2 mm) containing 12.5 % acryl-
amide and electrophoresis in the second dimension 
in the discontinuous dodecylsulphate/Tris/glycine gel 
system was performed as described above. Gels were 
stained with Coomassie brilliant blue R-250 and de-
stained as described by Burgess and Jendrisak [29]. 

Molecular weights of polypeptides were estimated 
by simultaneous electrophoresis of RNA polymerase 

with molecular weight markers in Polyacrylamide gels 
containing 0.1 "„ (w v) sodium dodecylsulphate by the 
general method of Weber and Osborn [30]. The molec­
ular weight markers used were: /J-galactosidase 
(116000). Phosphorylase a (92500), transferrin (80000), 
bovine scrum albumin (68 500), catalasc (60 000), 
ovalbumin (45000), chymotrypsinogen (25000), cyto­
chrome c (12500). the two heavy subunits of RNA 
polymerase I from yeast [9] (190000, 135000) and 
E. coli RNA polymerase subunits [29] (165000,155000. 
87000 and 39000). 

Molar ratios of the polypeptides were determined 
as described by Burgess and Jendrisak [29] by densito-
metric scanning of diapositives of stained slab gels or 
by scanning directly the stained cyclindrical gels at 
550 nm in a Gilford recording spectrophotometer 
with scanning attachment. 

General Procedures 

Salt concentrations in solutions were determined 
with a Philips PW 9501 conductivity meter using stand­
ard curves prepared with buffers of known salt con­
centrations. Protein determination was performed as 
described by Bramhall et al. [31] with xylene brilliant 
cyanine G using bovine serum albumin as a standard. 
DNA and RNA concentrations were determined with 
diphenylamine [32] and orcinol [33], respectively. The 
10"„ (v v) stock solution of polymin P was prepared 
and neutralised as described by Jendrisak and Bur­
gess [29]. 

Purification of RNA Polymerase I 

All operations were carried out at 0 —4'C; all 
centrifugations were performed in an MSE 18 high­
speed centrifuge. 

Preparation of the Crude Extract and Solubilisation 
of the Enzyme. 500 g wet weight (100 g dry weight) 
of Aspergillus mycelia, harvested at log phase by filtra­
tion over cheesecloth, washed with distilled water and 
buffer A containing 300 mM ammonium sulphate, 
were suspended in 500 ml of buffer A containing 
300 mM ammonium sulphate. The suspension was 
frozen rapidly in liquid nitrogen and disrupted into 
two portions in liquid nitrogen in a one-gallon (4.5-1) 
stainless steel Waring blendor at 'high' setting by 
blending nine times for 45 s at 160 V with intervals 
of 60 s at 90 V as described by Gealt et al. [34]. The 
frozen homogenate was rapidly thawed to 4 C, diluted 
with 1.5 1 of buffer A containing 300 mM ammonium 
sulphate, homogenized in a 1-1 stainless steel Waring 
blendor and centrifuged for 30 min at 15000 xg. 

Polymin P Fractionation. The crude extract from 
the previous step was filtered through one layer of 
Miracloth (Calbiochem) and diluted with 5 vol. of 
buffer A. RNA polymerase was precipitated from this 
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fraction by slow addition of 70 ml of a 10%polyminP 
solution with continuous stirring. After 10 min the 
precipitate was collected by centrifugation at low 
speed. The polymin P pellet was washed by suspending 
it in 500 ml of buffer A containing 50 niM ammonium 
sulphate by means of a Potter-Elvehjem teflon-in-glass 
homogenizer and centrifuged at 26000 x g. RNA poly­
merase activity was extracted from the resulting pellet 
by homogenizing it in 500 ml of buffer A containing 
300 mM ammonium sulphate, incubating on ice for 
30 min and centrifuging for 20 min at 26000 xg. 

Ammonium Sulphate Precipitation. RNA poly­
merase activity was precipitated from the clear yellow-
brown supernatant by slowly adding 35 g of solid 
ammonium sulphate/100 ml solution. After centrif­
ugation at 26000 xg for 30 min the pellet was re-
suspended in 100 ml of buffer A containing 300 mM 
ammonium sulphate and dialysed against the same 
buffer for 2 —3 h to a final ammonium sulphate con­
centration of 300 mM as determined by conductivity 
measurement. 

Bio-Gel A-1.5m Chromatography. The resulting 
clear yellow-brown solution from the previous step 
was loaded onto a Bio-Gel A-l.5m column and de­
veloped with buffer A containing 300 mM ammonium 
sulphate. Fractions containing the bulk of the RNA 
polymerase activity were pooled. 

DEAE-Sephadex A-25 Chromatography. The Bio-
Gel pool was diluted with buffer A until its conduc­
tivity was equal to that of 30 mM ammonium sulphate 
in the same buffer. DEAE-Sephadex A-25, equilibrated 
in buffer A containing 30 mM ammonium sulphate, 
was added (1 ml settled DEAE-Sephadex/2 mg of 
protein) and the mixture was slowly stirred for 15 — 
20 min. The slurry was poured into a column, washed 
after packing with 1.5 column volumes of equilibration 
buffer and eluted with buffer A containing 500 mM 
ammonium sulphate. The fractions containing the 
RNA polymerase activity were pooled. 

Phosphocellulose Chromatography. The DEAE-Se­
phadex pool was dialysed for 2 h against buffer B 
containing 30 mM ammonium sulphate and the dial­
ysed RNA polymerase activity was batchwise bound 
to phosphocellulose, equilibrated with buffer B (1 ml 
settled bed volume/2 — 2.5 mg of protein) and adjusted 
to a conductivity equal to 30 mM ammonium sulphate 
in the same buffer. The slurry was stirred for 1 h, 
p~ured into a column, washed with two column 
volumes of equilibration buffer and developed with a 
linear salt gradient of 30 — 300 mM ammonium sul­
phate in buffer B. The RNA polymerase I activity 
eluting at 200 mM ammonium sulphate was pooled. 

DEAE-Sephadex A-25 Rechromatography. The 
pooled fractions from the phosphocellulose column 
were diluted with buffer A to 50 mM ammonium sul­
phate and bound in batches to DEAE-Sephadex as 
described above. The enzyme activity could be re­

covered by applying a linear salt gradient of 50 — 
200 mM ammonium sulphate in buffer A. 

DN'A-cellulose Chromatography. The pooled en­
zyme activity from the previous step was diluted with 
buffer A to 50 mM ammonium sulphate, as determined 
from the conductivity measurement. DNA-cellulose 
(1 g of dry DNA-cellulose/400 units of RNA poly­
merase I activity) was added and after stirring for 
15 min the column was packed, washed with binding 
buffer and developed with a linear gradient of 50 — 
200 mM ammonium sulphate in buffer A. Fractions 
containing RNA polymerase activity were pooled. 

Storage. Peak fractions from the DNA-cellulose 
column were pooled and dialyzed against buffer C at 
- 20 °C and stored at - 80 °C. 

RESULTS AND DISCUSSION 

As confirmed by our studies and already indicated 
by Gealt et al. [34], the liquid nitrogen procedure has 
several advantages : (a) it increases mycelial breakage 
during homogenization, (b) it will stop enzymatic 
reactions instantaneously, thus minimizing the de-
gradative effect of proteases and nucleases; further­
more ; (c) the method allows handling of large amounts 
of mycelia in a very short time and (d) is highly re­
producible due to its controllable conditions. 

As judged from the DNA/RNA concentration in 
the crude extract obtained after centrifugation and fil­
tration, at least 50—60 % of the cell content was set free 
by the liquid nitrogen homogenization procedure. 
From 500 g (wet weight) of Aspergillus mycelia 10 — 
12 g of protein an 2 g of nucleic acid (^2so/^26o 
= 0.62) could be extracted. The total RNA poly­
merase activity in the crude extract, as determined 
by the standard assay, corresponded very well with 
the total activity found at later stages of the purifica­
tion procedure; however, no inhibition with a-amani-
tin at concentrations up to 10 ug/ml could be demon­
strated in the crude extract. 

Other methods of cell disruption were less success­
ful. Disruption of mycelia with the French press, the 
MantonGaulin press, the X-press, or a special grinding 
mill, or combining these methods with sonication 
were time-consuming, heat-denaturing and highly 
irreproducible. Using the French press at high pres­
sure values resulted in massive cell disruption and 
maximal release of contaminating protease and nucle­
ase activities, but the amounts of RNA polymerase 
activity released were highly variable and in general 
resulted in low recoveries and selective losses. The 
large-scale protoplast preparation procedure devel­
oped in our laboratory (method submitted for publi­
cation) could not be scaled up to these large amounts 
of cells needed for the isolation of RNA polymerases. 
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Table 1. Purification of RNA polymerase I from Aspergillus nidulans 
The values given in the table are average values calculated from 3 — 6 different preparations. The values for RNA polymerase I are based 
on the assumption that 60 — 65% of the total RNA polymerase activity (given between the brackets) in the homogenate, Bio-Gel pool, 
DEAE-Sephadex eluate and dialysate can be ascribed to RNA polymerase I (see text). Units of activity are defined in the text 

Fraction 

Homogenate 
Ammonium sulphate precipitate 
Bio-Gel pool 
DEAE-Sephadex 500 mM eluate 
Dialysate after DEAE-Sephadex 
Phosphocellulose pooled fractions 
DEAE-Sephadex rechromatography 

pooled fractions 
DNA-cellulose pool 

Volume 

ml 

2000 
100 
485 
110 
80 
29 

21 
14 

Total 
protein 

mg 

10000 
1350 
423 
251 
240 

18 

5.2 
1.6 

Total activity 
of polymerase I 

units 

7000(11000) 

6500(10250) 
5800 (9100) 
5530 (8700) 
3800 (5000) 

2750 
2320 

Yield 

"|( 

100 
100 
93 
83 
79 
54 

39 
33 

Specific 
activity 

units/mg 
protein 

0.7 
5.2 

15.4 
23.1 
23.0 

212 

529 
1450 

Purification 

-fold 

-
7.4 

22 
33 
33 

303 

756 
2071 

Polymin P Fractionation 
and Ammonium Sulphate Precipitation 

Total enzyme activity was precipitated from the 
cleared homogenate with polymin P [17] by adding 
14 ml of a 10% solution/100 g (wet weight) of starting 
material. Although it was stressed by Jendrisak and 
Burgess [29] that optimal conditions for the precipita­
tion of RNA polymerase activity with polymin P and 
elution of the activity from the polymin P pellet should 
be derived from typical analysis curves as given by 
these authors, we were not able to produce similar 
precipitation and elution curves due to interference 
of residual polymin P. Neither in the supernatant after 
polymin P precipitation, nor in the eluate of the 
polymin P pellet, could reproducible values for the 
RNA polymerase activity or the protein content be 
obtained. Residual polymin P could be removed with 
cellulose and in this way reliable and reproducible 
elution curves could be obtained (Fig.l). A decrease 
in polymerase activity could be observed at higher 
ammonium sulphate concentrations (> 400 mM), 
probably due to polymin P residues left in the solution 
or high RNase and protease activities (see also [7]). 
In combination with experiments using variable poly­
min P concentrations for precipitation and ammo­
nium sulphate concentrations for extraction of the 
polymin P pellet, followed by partial purification 
through chromatography on Bio-Gel A-1.5m and 
DEAE-Sephadex A-25 or DNA-cellulose, it was ex­
perimentally derived that 14 ml of 10% polymin P/ 
100 g (wet weight) of Aspergillus mycelia, resulting 
in a final concentration of 0.05 % polymin P, were 
sufficient to precipitate all RNA polymerase activity. 
Also the elution of the polymin P pellet with 100 ml 
buffer A containing 300 mM ammonium sulphate/ 
100 g of starting material resulted in complete re­
covery of the RNA polymerase activity without ex-

200 300 400 500 
(NH4)2S04 (mM) 

600 700 

Fig. 1. Elution of Aspergillus RNA polymerases from the polymin P 
pellet. The polymin P pellet was prepared as described in the text 
and divided into seven portions. Each portion was extracted with 
buffer A containing increasing amounts of ammonium sulphate 
and then centrifuged. The supernatants were assayed for protein 
( D — D). DNA (A- A) and RNA polymerase activity (O -O) . 
In order to remove residual polymin P and to determine the amount 
of RNA polymerase extracted, the supernatant was either applied 
directly to a column of 4 g of cellulose, prewashed with buffer A 
containing the ammonium sulphate concentration used for elution, 
or treated in batches with cellulose ; the flow-through of the columns 
or the supernatants after pelleting of the cellulose were assayed 
for RNA polymerase activity under the standard reaction con­
ditions 

trading contaminating amounts of RNA and DNA. 
These conditions gave highly reproducible results. 

In earlier experiments the majority of the nucleic 
acids was removed by precipitation with protamine 
sulphate as employed in purification procedures for 
both prokaryotic [35] and eukaryotic [36] RNA poly­
merases. Highly variable recoveries of enzyme ac­
tivity and selective losses of RNA polymerase II and 
III were observed, variable from preparation to prepa­
ration and from batch to batch of protamine sulphate. 
As indicated by Hager et al. [23], the conditions under 
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which the precipitation is carried out might be very 
critical. The introduction of polymin P [5,17] circum­
vented these problems. 

In order to remove most of the residual polymin P 
[37] and to concentrate the enzyme preparation, the 
eluate from the polymin P pellet was precipitated with 
ammonium sulphate. The precipitated material was 
dissolved and dialyzed as described before. Solu-
bilizing the drained ammonium sulphate pellets in 
buffer A containing 0 or 50 mM ammonium sulphate 
and adjusting the ammonium sulphate concentration 
to 300 mM resulted in variable degrees of irreversible 
aggregation of protein as deduced from molecular 
sieving on Bio-Gel. The ammonium sulphate frac­
tionation resulted in a 5—10-fold concentration, an 
additional 2-fold purification and almost complete 
recovery of RNA polymerase activity. As judged from 
the ultraviolet absorption spectrum the RNA poly­
merase preparation through this step was nearly com­
pletely freed from nucleic acids (A2aolA26o = 1.5 — 1.6). 
At this stage the enzyme preparation can be stored 
at — 80 °C for several weeks without detectable loss 
of activity. 

Bio-Gel A- 1.5m Chromatography 

Molecular sieving of the concentrated crude en­
zyme extract over a Bio-Gel A-1.5m column appeared 
to be the most critical step in the procedure for the 
isolation of the three classes of RNA polymerase from 
Aspergillus. If no optimal separation is obtained, the 
binding to DEAE-Sephadex in the following step of, 
in particular, RNA polymerase II and III will be 
disturbed, resulting in a complete loss of these enzyme 
activities. A typical elution pattern is given in Fig. 2. 
The relative high exclusion peak (fractions 80 —95) 
consisted mainly of protein, as determined from the 
ultraviolet absorption spectrum and protein deter­
mination; it is probably due to complexation of pro­
tein with residual polymin P. 

The type of column used and the conditions for 
developing the column should be chosen very carefully. 
Although RNA polymerase activity could be separated 
completely from contaminating inhibitory compo­
nents, including RNase activity which eluted well 
behind the polymerase peak, on changing the dimen­
sions of the column these substances may interfere 
very markedly. Secondly, this step of the purification 
procedure should be performed under high salt con­
ditions, for lowering the ammonium sulphate concen­
tration resulted in a strong, partially irreversible 
aggregation of protein. Removal of the aggregated 
material also means removal of a great deal of the 
RNA polymerase activity. Thirdly, if the ammonium 
sulphate fractionation was omitted the degree of 
aggregation (under the high salt conditions) was much 
higher (higher exclusion peak from the Bio-Gel), 

KM 120 140 
Fraction number 

Fig. 2. Chromatography of RNA polymerase* of Aspergillus on Mo-
Gel A-l.5m. The crude RNA polymerase extract was chromato-
graphed on a Bio-Gel column ( 55x9 cm) as described in the text. 
The column was run at a flow rate of 80 ml, h and fractions of 13 ml 
were collected; aliquots of 20 ul were assayed for RNA poly­
merase activity ( • — • ) . The absorbance at 2S0 nm ( o O) 
was monitored with an Isco model UA-5 Absorbance monitor 
using a standard 1-cm flow cell. Fractions 95— 135 were pooled 

indicating that the ammonium sulphate precipitation 
might remove most, but definitely not all, polymin P 
from the eluate [37]. Some of the components causing 
inhibition or complex formation could be removed 
by subjecting the initial homogenate to high-speed 
centrifugation prior to polymin P fractionation. This 
suggests that proteins from ribosomal or mitochon­
drial origin might also be causing some of these 
disturbing effects apart from the polymin P residues. 

The RNA polymerase through this step has been 
purified about 20-fold with 93 % yield of the initial 
activity; this Bio-Gel pool which showed a typical 
protein absorption spectrum (/42»o/̂ 26o ~ 1-7) could 
be stored at — 80 'C for several weeks without de­
tectable loss of activity. This fraction also was resistant 
to a-amanitin at a concentration of 10 ug/ml in the 
standard assay mixture. 

DEAE-Sephadex A-25 Chromatography 

The active fractions from the Bio-Gel column were 
pooled, diluted and bound in batches to DEAE-
Sephadex as described. The batch procedure was 
chosen since the method is very quick and simple, 
making a long dialysis step unnecessary. Furthermore, 
at this stage no ammonium sulphate precipitation 
could be used since it resulted in extensive losses of 
enzyme activity, probably due to the low protein con­
centration. 

After packing and washing the column, RNA 
polymerase activities were eluted from the column by 
applying a linear salt gradient of 30 -500mM am­
monium sulphate in buffer A or, as routinely per­
formed, by step elution with 500 mM ammonium 
sulphate in buffer A, resulting in an overall yield of 
polymerase activity of 80 — 85%. Using the linear 
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Fig. 3. DEAE-Seplicuh'x A-25 ihrotiuilo^iuphy of Aspergillus RNA 
polymerases. The Bio-Gel pool was diluted and bound in batches 
to DFAE-Sephadex A-25 as described. The column (20x4.2 cm) 
was developed at a flow rate of 150 ml h with a linear salt gradient 
of 30 —500 mM ammonium sulphate in buffer A using the LKB 11 300 
Ultrograd gradient mixer. Fractions of 6 ml were collected and the 
absorbance at 280 nm ( • • ) was monitored. 20-ul aliquots 
were assayed for RNA polymerase activity in the presence (A— -A) 
or absence (O - O) of 10 ug/ml of a-amanitin. The ammonium 
sulphate concentration is indicated by the solid line 

salt gradient, two major peaks of activity were re­
solved (as illustrated in Fig. 3), one peak eluting at 
130 mM ammonium sulphate, a second one at 260 mM. 
This salt elution profile is very similar to the ones ob­
tained for higher eukaryotic systems and yeast [4]. 
Based on the chromatographic behavior of the Bio-
Gel pool and the DEAE-Sephadex enzyme activities 
on different types of columns (DEAE-Sephadex, 
DEAE-cellulose, phosphocellulose, DNA-cellulose), 
the enzymatic properties (conditions for optimal ac­
tivity of the enzyme with respect to salt concentration, 
Mn2 + /Mg2 + activity ratio, denatured/native DNA 
activity ratio) and the presence of the typical high-mo­
lecular-weight subunits (this report and unpublished 
observations) we have adopted the nomenclature 
of Roeder [4]. The first peak eluting at 130 mM was 
called RNA polymerase I or 1(A) and the second elut­
ing at 260mM, RNA polymeraseII or 11(B). The third 
type of RNA polymerase III or III(C) was masked on 
this type of ion-exchanger, since by chromatography of 
the Bio-Gel pool over DNA-cellulose this activity 
could be separated at high salt concentration from 
the other two RNA polymerase activities without 
grossly changing the elution profile on DEAE-Sepha­
dex thereafter (RNA polymerase III from Aspergillus 
constitutes only 5 — 10% of total activity). A similar 
separation pattern on DNA-cellulose was found for 
RNA polymerase III from yeast by Hager et al. [23], 
while a masking of RNA polymerase III on DEAE-
Sephadex was described for cauliflower RNA poly­
merase [38]. 

In all eukaryotic systems known [4] the RNA poly­
merase activities can also be discriminated by their 
sensitivity towards the toxin a-amanitin. However, the 
activities eluted from the DEAE-Sephadex column 
were insensitive to this toxin at 10 ug/ml. Increasing 
the amount of a-amanitin to 400 ug/ml resulted only in 
a slightly detectable inhibition of enzyme activity. 
Although the enzyme activity eluting at 260 mM is 
exceptional in its sensitivity towards a-amanitin, we 
believe that it is a real RNA polymerase II. This is 
supported by the criteria given before, but also by 
preliminary binding studies of a-amanitin with RNA 
polamerase II from rat liver and RNA polymerase II 
from Aspergillus (unpublished observations). 

Phosphocellulose Chromatography 

The pooled activity from the DEAE-Sephadex, 
routinely eluted with buffer A containing 500 mM 
ammonium sulphate, was dialysed as described to 
lower the Mg2+ and salt concentration. It should be 
remarked that DEAE-Sephadex step elution was pre­
ferred to applying a salt gradient, since this resulted 
in higher protein concentrations and a smaller total 
volume. This was necessary for obtaining efficient 
binding to phosphocellulose. It was found that both 
prolonged dialysis and direct dilution of the pooled 
fractions to low salt concentrations resulted in con­
siderable losses of enzyme activity. Concentrating the 
enzyme fraction at these stages of purification by 
ammonium sulphate precipitation or by membrane 
filtration as described for yeast RNA polymerase by 
Hager et al. [23] resulted in complete loss of activity. 

The dialysed fraction was bound in batches to 
phosphocellulose and eluted from the column as 
described in Materials and Methods. A typical elution 
profile is given in Fig. 4. RNA polymerase I was eluted 
at 200 mM ammonium sulphate, well behind the 
activity peaks of RNA polymerase II and III. The 
positions of these polymerases had been derived from 
separate experiments where fractions from DEAE-
Sephadex or DNA-cellulose columns had been applied 
to phosphocellulose under similar conditions (data 
not shown). Also these fractions were insensitive to 
a-amanitin at a concentration of 10 ug/ml. 

Based on the assumption, derived from the use of 
several types of columns, that the total RNA poly­
merase activity in the crude extract consisted of 60 — 
65% of RNA polymerase I, 2 5 - 3 0 % of RNA poly­
merase II and 5 —10 % of RNA polymerase III, the 
recovery of RNA polymerase I from this column was 
70 %. With respect to the initial activity of RNA poly­
merase I the overall yield at this stage was 50 — 60% 
and a 400-fold purification had been achieved (Table 1). 
The observed loss in total activity on the phospho­
cellulose column was partly due to inactivation of 
RNA polymerase II and III. 
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Fig. 4. Phosphoeellulose ehromatography oj Aspergillus RNA poly­
merases. The active fractions from the DEAE-Sephadex column, 
stepwise cluted with buffer A containing 500 mM ammonium 
sulphate, were combined and after dialysis bound in batches to 
phosphocellulose. The column (20 x 2.4 cm) was developed at a 
flow rate of 50 ml, h with a linear salt gradient of 30 — 300 mM 
ammonium sulphate in buffer B. The absorbance at 280nm ( • • ) 
was monitored and fractions of 3 ml were collected. 20-ul aliquots 
were assayed for RNA polymerase activity (O O). The am­
monium sulphate concentration is indicated by the solid line. 
Fractions 25 — 35 were pooled 

DEAE-Sephadex A-25 Rechromatography 

By binding the phosphocellulose fractions con­
taining the RNA polymerase I activity to DEAE-
Sephadex A-25 as described before and developing 
the column with a shallow gradient of 30 — 200 mM 
ammonium sulphate in buffer A, two peaks of activity 
could be eluted from the column (Fig. 5). The enzyme 
activity eluting at 110 mM ammonium sulphate was 
designated RNA polymerase la, that at 130 mM RNA 
polymerase I b, as suggested by Roeder [4], Although 
several chromatographically distinct forms of RNA 
polymerases have been described in the literature, it 
cannot be excluded that form la might be a modifica­
tion of form lb as a result of the purification proce­
dure, or might be due to a specific protease activity [39]. 
No significant differences could be observed if samples 
of the peak fractions were analyzed on sodium 
dodecylsulphate gels (Fig. 5, insert). 

The DEAE-Sephadex rechromatography step re­
sulted in a 2.5 —fold purification with a recovery of 
about 70 -80%. 

DNA-celluhse Chromatography 

The affinity chromatography step using denatured 
calf thymus DNA bound to cellulose removed the 
last traces of impurity very effectively. The amount 
of DNA bound to the cellulose strongly determined 

the capacity of the column. At this stage in the 
purification procedure, using the type of DNA-
cellulose described in Materials and Methods, 400 
units of RNA polymerase I could be bound/g 
cellulose. At earlier stages, smaller amounts of ac­
tivity can be applied due to the presence of other 
DNA-binding proteins. Salt gradient development of 
the column resulted in the appearance of only one 
single activity peak eluting at 80— 100 mM ammonium 
sulphate (Fig. 6). Another threefold purification with 
a recovery of 80 —85 "„ was achieved (Table 1). Across 
the elution peak a constant specific activity of the 
enzyme was measured, indicating a high degree of 
purity. Both native nondenaturing and dodecylsul-
phate-denaturing gel electrophoresis confirmed this 
result (see below). 

Purity and Properties of the Enzyme 

The purification of RNA polymerase I from 500 g 
of Aspergillus nidulans mycelia is summarized in 
Table 1. 1.6 mg of essentially pure RNA polymerase I 
is obtained with a specific activity of 1450units/mg 
of protein as determined in the standard assay mixture. 
Based on the assumption that the initial homogenate 
consisted of about 60 — 65% of RNA polymerase I, 
the overall yield was 33 % and the overall purification 
2000-fold. Dtalyzing the final preparation against 
buffer C which contained 50 % of glycerol resulted in 
an enzyme preparation that was stable for several 
months at — 80 C as well as — 20 °C; without this 
precaution a lower degree of stability was obtained 
at this stage or at earlier stages of purification. 

The purified RNA polymerase I preparation has 
a high degree of purity as indicated by the constant 
specific activity of the DNA-cellulose peak fractions 
and the Polyacrylamide gel patterns. The final prepara­
tion contained no detectable RNase and protease 
activities. No degradation of synthesized RNA was 
observed upon continued incubation of the reaction 
mixture after addition of EDTA at several tem­
peratures for several hours. The absence of protease 
was indicated by the fact that RNA polymerase I 
preparations stored at - 20 'C for several months 
or at room temperature for several hours were 
identical in subunit pattern to freshly purified prep­
arations. 

The purified enzyme was further characterized by 
determining the conditions for optimal activity of the 
enzyme. The enzyme is completely dependent on 
added DNA, all four nucleoside triphosphates and a 
divalent cation for activity. The reaction at 30° or 
35 C is almost linear for the first 20 —30 min; the 
product of the reaction is completely sensitive to ribo-
nuclease digestion (data not shown). A monophasic 
salt titration curve was obtained with an optimum 
between 10 — 30 mM ammonium sulphate (Fig.7A). 
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Fig. 5. DEAE-Sephadex A-25 recltromaiogmphy (?/ Aspergillus RXA polymerase I. The fractions containing RNA polymerase I from the 
phosphocellulose column were bound in batches to DEAE-Sephadex A-25 as described. The column (10x1.6 cm) was developed at 
a flow rate of 10 ml h with a linear salt gradient of 50 — 200 mM ammonium sulphate in buffer A. Fractions of 2 ml were collected. 
The absorbance at 280 nm ( • • ) was monitored and 20-ul aliquots were assayed for RNA polymerase activity (O O). The 
ammonium sulphate concentration is indicated by the solid line. Fractions 8— 18 were pooled. Insert: aliquots of the peak fractions were 
analyzed on 12.5 ",t dodecylsulphate/polyacrylamide gels as described; from left to right fractions 8—18, respectively 

The divalent cation activity ratio was determined from 
the divalent metal titration curves. The effect of Mn2 + 

and Mg2 + was very clear as shown in Fig. 7 B ; a sharp 
optimum at low concentrations of Mn2+ (3 — 4 mM) 
and a broad optimum around 10 mM for Mg2+ were 
observed. The Mn2+ /Mg2+ activity ratio at optimal 
divalent cation concentration was 1.5, being very 
similar to the ones obtained for other lower and higher 
eukaryotic systems [5,7 —9,11]. Upon testing the 
chromatographically separated forms la and lb from 
the DEAE-Sephadex rechromatography (shown in 
Fig. 5) no differences could be observed with respect 
to salt and divalent metal cation conditions. 

RNA polymerase 1 was not inhibited by a-amani-
tin, even at concentrations of 400 ug/ml; at a-amanitin 
concentrations of 300 — 400 ug/ml RNA polymerase 
A(I) from yeast showed 50 % inhibition [40]. 

Subunit Composition 

Enzyme purity and complexity were monitored by 
Polyacrylamide gel electrophoresis under non-dena­
turing and denaturing conditions. Native non-dena­
turing gels [26,27] showed only one single band, 
although chromatographically distinct forms were 
observed on DEAE-Sephadex. Denaturing acrylamide 
gels revealed a complex structure of the enzyme. For 
a better resolution of the polypeptides, two denaturing 
gel systems were used to analyze the subunit com­
position, these being Polyacrylamide gels in the pres­
ence of dodecylsulphate [24] and 8 M urea, pH 8.7 
[25], i.e. separation based on charge as well as on 
molecular weight. Complete resolution could be ob­
tained by performing two-dimensional Polyacrylamide 
gel electrophoresis using either native non-denaturing 
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Fig. 6. DNA-cellulose chromatography of Aspergillus RNA poly­
merase I. Fractions from the DHAE-Sephadex A-25 ^chromatog­
raphy step containing RNA polymerase I ( la and lb) were pooled 
and chromatographed over DNA-cellulose. The column (10x1 cm) 
was developed at a flow rate of 8 ml/h with a linear salt gradient 
of 50 — 200 mM ammonium sulphate in buffer A and fractions of 
2 ml were collected. The absorbance at 280 nm ( • • ) was 
monitored and 20-ul aliquots were assayed for RNA polymerase 
activity (O O). The ammonium sulphate concentration is in­
dicated by the solid line. Fractions 9—15 were pooled 

gels or 8 M urea gels in the first dimension and dodecyl-
sulphate gels in the second dimension. 

As indicated by the 12.5% and 7.5% acrylamide 
gels shown in Fig. 8, the Aspergillus RNA polymerase I 
has a complex structure consisting of two high-molec­
ular-weight polypeptides and several polypeptides 
with molecular weights lower than 63000, showing 
thus a striking similarity with other eukaryotic systems 
[4]. Through the DNA-cellulose peak fractions identi­
cal subunit patterns were observed (Fig. 8 A), con­
firming the high degree of purity of the enzyme. Similar 
subunit patterns were observed after centrifuging 
RNA polymerase I over a glycerol or sucrose gradient, 
indicating that the observed subunits are associated 
with the polymerase activity. This correlation is also 
confirmed by the native-dodecylsulphate two-dimen­
sional gel electrophoresis shown in Fig. 10B. A typical 
densitometric tracing of a sodium dodecylsulphate gel 
is shown in Fig. 9. The doublet in the 62000-63000-
M, region can only be seen in higher-resolution gels. 

Complete resolution could only be obtained on 
the two-dimensional gels (Fig. 10), using different gel 
systems in the first dimension. From these analyses 
and using the molecular weight markers given in 
Materials and Methods, the molecular weights of the 
putative subunits of Aspergillus RNA polymerase I 
were estimated to be: 190000(a), 135000(b), 63000(c), 
62000 (d), 43000 (e), 29000 (f and g), 28000 (h) and 

50 100 
(NH4)2S04(mM) 
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Mg2* or Mn2* (mM) 

Fig. 7. The effect of ammonium sulphate (A] and metal i/ivalent 
cation ( Bj concentrations on the activity of RNA polymerase I from 
Aspergillus. The RNA polymerase I pool from the DNA-cellulose 
column was diluted tenfold with buffer A lacking MgCh in order 
to lower the concentration of Mg2 ' as well as that of ammonium 
sulphate. RNA polymerase I activity was assayed in the standard 
reaction mixture (A) with increasing amounts of ammonium 
sulphate or (B) with increasing amounts of Mg 2 + in the absence 
of Mn2 ' ( • D) and increasing amounts of Mn2 + in the presence 
of 0.05 mM Mg 2 + (O -O) 

16000 (i), and probably also 13000 (j) and 12000 (k). 
The molecular weight estimations of the slowest and 
fastest moving subunits are uncertain due to (a) lack 
of reliable high-molecular-weight markers, (b) dis­
crepancies in the literature with respect to the molec­
ular weights of the different protein markers used 
(cf. ß-galactosidase, Mr = 116000 [41] instead of 
130000 [29]), and (c) deviation from linearity in these 
regions of the standard curve shown in Fig. 11. 

The molar ratios of the polypeptides (Table 2) 
were determined from scans of one-dimensional and 
two-dimensional gels. The high-molecular-weight 
polypeptides (a and b) appeared in an almost 1 :1 ratio. 
Greater differences, however, were observed for the 
other polypeptides, partly due to the fact that some 
of them could only be resolved on the two-dimensional 
gel. As shown in Fig. 10A the 29000-Mr polypeptide 
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Fig. 8. Polyacrylamide gel electrophoresis of Aspergillus RNA polymerase I under denaturing conditions. Dodecylsulphate/polyacrylamide 
gel electrophoresis on 12.5"0 (A) and 7.5% (B) acrylamide was performed in a slab gel apparatus using the Tris/glycine discontinuous 
buffer system of Laemmli [24] as described in the text. The enzyme was purified as described and the fractions from the final DNA-
cellulose column (shown in Fig. 6) were used. (A) Fractions 9—12 from the DNA-cellulose column containing 15, 20, 20 and 10 jig of 
protein, respectively. (B) Fraction 11 from the DNA-cellulose column 20 or 10 ug of protein. Gels were stained and destained as described 

Migration direction-

Fig. 9. Densitometrie tracing of Aspergillus RNA polymerase I as 
derived from a sodium dodecylsulphate/polyacrylamide gel. 14 ug of 
DNA-cellulose-purified enzyme was applied to a 12.5 % acrylamide 
gel containing dodecylsulphate and using the Tris/glycine-buffered 
system of Laemmli [24]. The gel was stained, destained and scanned 
as described in Materials and Methods. The direction of electro­
phoresis is indicated 

could be resolved into two distinct forms based on 
their charge. The low-molecular-weight polypeptides 
of M, 13000 (j) and 12000 (k) could not be detected 
with certainty in the gel system used, probably because 

they did not enter the 8 M urea stacking gel or they 
moved together with the dye front. This was also the 
case in the two-dimensional gel system using native-
dodecylsulphate gel electrophoresis (Fig. 10B). The 
two high-molecular-weight components a and b, as 
well as polypeptides c and the one depicted as f, did 
not enter the 8 M urea separation gel (Fig. 10 A) and 
remained at the interphase. Similar observations were 
done by Jendrisak and Burgess [5] for wheat germ 
RNA polymerase II and these authors suggested that 
these subunits might still be bound to each other 
under these conditions. Due to aberrations in the 
second dimension of the dodecylsulphate electro­
phoresis (Fig. 10 A), it seems that subunit d has a 
higher position, thus a higher molecular weight, than 
subunit c but this is definitely not the case. 

Several examples of electrophoretically and chro-
matographically distinct forms of RNA polymerase I 
are known [4]. The presence or absence of one or two 
subunits, as for instance observed for yeast [40] and 
mouse plasmacytoma [42], might cause the appearance 
of the two forms. However, samples taken from the 
DEAE-Sephadex gradient (Fig. 5, insert) did not show 
any difference in subunit pattern of RNA polymerase la 
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Fig. 10. Two-dimensional Polyacrylamide gel electrophoresis of Aspergillus RNA polymerase I. The first dimension was either (A) run in 
the 8 M urea, pH 8.7 Tris-glycine-buffered system containing 7.5% acrylamide, or (B) in the non-denaturing gel system containing 5% 
acrylamide as described in Materials and Methods. The cylindrical gel was 7-cm long and the marker dye was run to within 1 cm of the 
bottom of the gel tube. After electrophoresis in the first dimension the gel was mounted on top of the slab gel for the second dimension 
which contained 12.5% acrylamide in dodecylsulphate and run in the Tris/glycine-buffered system of Laemmli [24]. The direction of 
migration is indicated by the arrows. (A) 4 ug and (B) 14 ug of the DNA-cellulose-purified RNA polymerase 1 

Table 2. Polypeptide composition «/Aspergillus RNA polymerase f 
Molecular weights of polypeptides were determined by simultaneous 
electrophoresis of RNA polymerase with marker protein standards 
(cf. Fig. 11). Molar ratios were determined by electrophoresis in 
Tris/glycine-buffered dodecylsulphate gels in the first or second 
dimension (in the latter case with 8 M urea gels in the first dimen­
sion) as described in the text and normalized to polypeptide a. 
The molar ratios of polypeptides f, g and h could only be deter­
mined from the two-dimensional gels, those of j and k could not 
be determined with certainty in our system 
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Fig. 11. Molecular weight estimation of RNA polymerase I poly­
peptides in dodecylsulphalelpolyaerylamide gels containing a linear 
gradient of 5—15% (wjv) acrylamide. The position of the poly­
peptides are indicated by the horizontal lines. The standard curves 
were made from the migration of marker proteins of known molec­
ular weight, indicated by number: (1) subunit of yeast RNA poly­
merase (190000); (2,3) E. coli RNA polymerase subunits (165000 
and 155000); (4) yeast RNA polymerase subunit (135000); 
(5) 0-galactosidase (116000) ; (6) Phosphorylase a (92 500) ; (7) E. coli 
RNA polymerase subunit (87000); (8) transferrin (80000); (9) bo­
vine serum albumin (68 500) ; ( 10) catalase (60 000) ; ( l l )ova lbumin 
(45000); (12) E. coli RNA polymerase subunit (39000); (13) chymo-
trypsinogen (25000); (14) cytochrome c (12500) 

Polypeptide 

a 
b 
c 
d 
e 
f 
g 
h 
l 

j 
k 

Molecular 
weight 

190000 
135000 
63000 
62000 
43000 
29000 
29000 
(28000) 
16000 

(13000) 
(12000) 

Stoichio 
dodecyl 

— urea 

mol/mo 

1.0 
1.2 
0.9 
0.6 
2.0 

-
3.0 

-
1.2 

-
-

metry in 
ulphate gels 

enzy 

+ urea 

me 

1.0 
1.2 
0.9 
0.6 
2.0 
1.8 

-
1.2 
1.2 

-
— 
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and lb , using both 7.5% and 12.5% dodecylsulphate/ 
acrylamide gels. The possibility that separation of 
subunits was masked due to the type of gel system 
used, cannot be excluded (e.g. polypeptides c and d) ; 
this needs further investigation. 

General Conclusion 

The purification procedure presented here is simple, 
rapid and highly reproducible, resulting in reasonable 
recoveries of homogeneous RNA polymerase I from the 
differentiatable lower eukaryote Aspergillus nidulans. 
With minor modifications similar procedures might 
be used to isolate and purify the other classes of RNA 
polymerases, although they seem to be more labile. 
Keeping in mind the exceptional character of RNA 
polymerase II towards a-amanitin, it will be of great 
interest to study the properties of this enzyme in 
different Aspergillus strains and to compare them 
with those of known systems. 
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colleagues were highly appreciated. We are indebted to Dr M. 
Govindan (Heidelberg) for a gift of a-amanitin, Dr H. van Keulen 
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CHAPTER 3 

AN g-AMANITIN RESISTANT DNA-DEPENDENT RNA POLYMERASE II FROM THE 

FUNGUS ASPERGILLUS NIDULANS 

Summary 

An a-amanitin resistant DNA-dependent RNA polymerase II has been purified 

from the lower eukaryote Aspergillus nidulans to apparent homogeneity by 

extraction of the enzyme at low salt concentration, polymin P (polyethylene 

imine) fractionation, binding to ion-exchangers and density gradient centri-

fugation. By this procedure 0.4 mg of RNA polymerase II can be purified over 

6000-fold from 500 g of wet weight of starting material with a yield of 25% 

and a specific activity of 550 units/mg. 

The subunit composition has been resolved by Polyacrylamide gel electro­

phoresis in the presence of dodecylsulphate and by two-dimensional gel 

electrophoresis using a non-denaturing gel in the first dimension and a 

dodecylsulphate slab gel in the second dimension. The putative subunits 

have molecular weights of 170 000, 150 000, 33 000, 27 000, 24 000, 19 000, 

18 000 and 16 000. Only one electrophoretical form of RNA polymerase II 

could be resolved. The chromatographic and catalytic properties and the 

subunit composition of the purified RNA polymerase II are clearly different 

from RNA polymerase I from A.nidulans but throughout comparable with other 

class II enzymes. It differs from all other class II enzymes by its insensiti-

vity towards the toxin a-amanitin,even at concentrations upto 400 yg/ml,and 

appears to be unable to bind 0-[ cj-methyl-y-amanitin at a concentration 

of 10 yg/ml of the toxin. 

We conclude, that the purified RNA polymerase from Aspergillus nidulans 

is a real, but exceptional type of the class II RNA polymerases. 

Introduction 

DNA-dependent RNA polymerases have been purified and characterized from 

a variety of organisms (cf. Roeder (1)), belonging to the higher (2,3,4) 
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as well as the lower eukaryotes (6,7). It appeared to be more difficult to 

purify RNA polymerases from the lower eukaryotes, like fungi, than higher 

eukaryotes, due to the difficulties in desintegrating the cell wall. Up to 

now only a few useful procedures for lower eukaryotes other than yeast are 

reproducible by blending the hyphal mass in liquid nitrogen and to prepare 

a homogenate suitable for the isolation of RNA polymerase I (9). We now 

present the purification and characterization of RNA polymerase II from 

A.nidulans, using the same method of homogenization. 

Sensitivity towards the toxin a-amanitin is often used as a classification 

criterion for eukaryotic RNA polymerases (10), although large differences 

in the sensitivity of especially RNA polymerase II from various organisms 

are observed. The 50% inhibition level of a-amanitin for mammalian RNA 

polymerase II is as low as 10-25 ng/ml, while the enzyme from the lower 

eukaryotes is far less sensitive, e.g. RNA polymerase II from yeast is 50% 

inhibited at 1 yg/ml (11) and the enzyme from the mushroom Agariaus bisporus 

at 6.8 yg/ml (12). 

The isolated RNA polymerase from A.nidulans was classified as a class II 

enzyme, although it appeared to be insensitive through all stages of its 

purification towards the toxin a-amanitin, even at high concentrations upto 

400 ug/ml. Furthermore,the enzyme was unable to bind 0-L Cj-methyl-y-amanitin 

at 10 yg/ml. The insensitivity of RNA polymerase II from Aspergillus to 400 yg/ 

ml of a-amanitin is much higher than that reported for all other class II enzymes; 

even class II RNA polymerases from mutants {Drosophila, CH0 cell line), selec­

ted on their resistance towards a-amanitin (13,14) are completely inhibited 

at this toxin concentration. 

Materials and Methods 

Bioahemiaals 

All biochemical s used were reagent grade and were in general obtained 

from Merck, British Drug House or Difco. Ribonucleoside triphosphates 

(ATP, UTP, GTP, CTP), crystalline bovine serum albumin (fraction V),calf 
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thymus DNA (type 1) and phosvitin were purchased from Sigma; [5- HJ-

UTP (25-50 Ci/mmol) and [32p] -Y -ATP (>2000 Ci/mmol) from Amersham. 

The solutions for liquid scintillation counting (Lumasolve and Lipoluma) 

were obtained from Lumac. Electrophoresis reagents (acrylamide and N,N'-

methylene bisacrylamide both recrystallized, N,N,N',N'-tetramethylethyl ene 

diamine and ammonium persulphate) were purchased from Serva; Coomassie 

brilliant blue R-250 from Merck and xylene brilliant cyanine G from Gurr. 

The molecular weight marker kits for gel electrophoresis, DEAE-Sephadex 

A-25, DEAE-Sepharose CL-6B were obtained from Pharmacia; Bio-Gel A-1.5m from 

Bio-Rad, phosphocellulose P-ll from Whatman and E.coli RNA polymerase from 

Boehringer. a-Amanitin was a kind gift of Dr. M. Govindan (Heidelberg) and 

0-[ cj-methyl-y-amanitin (63.4 Ci/mol) was a gift of Dr. C E . Sekeris 

(Athens). Polymin P was kindly donated by BASF (Ludwigshafen, F.R.G.). 

Organism and Growth Conditions 

A biA, (biotin-deficient) strain of Aspergillus nidulans of Glasgow 

origin was used throughout this study. Growth conditions, maintenance 

and preparation of conidial suspensions were as described (9). 

Buffers 

Buffer A contained 50 mM Tris pH 7.9 (adjusted with HCl at 4°C), 10% 

(v/v) glycerol, 1 mM EDTA, 5 mM MgCI2 > 10 mM 2-mercaptoethanol, 1 mM 

phenylmethylsulfonyl fluoride, and ammonium sulphate at various concen­

trations as indicated in the text. Buffer B and C were similar to buffer 

A, but with 25% and 50% (v/v) glycerol, respectively. Phenylmethylsulfo­

nyl fluoride was added from a 200 mM stock solution in 96% ethanol, 

immediately before use (15,16). All solutions were freshly made up in 

glass-double-distilled water. 
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RNA polymerase assay 

The standard RNA polymerase assay mixture (200 nl) contained: 50 mM 

Tris, pH 7.9, 1 mM dithiothreitol, 1 mM ATP, GTP and CTP, 0.05 mM UTP, 

1 yCi L5-3HJ UTP, 4 mM MnC12, 20 ug heat-denatured calf thymus DNA and 

20 yl of sample. The ammonium sulphate concentration in the samples, 

determined with a Philips PW 9501 conductivity meter, was adjusted if 

necessary with a neutralised ammonium sulphate stock solution to 50-80 

mM with RNA polymerase II and 10-30 mM with RNA polymerase I in final 

concentration in the reaction mixture. 

Heat-denatured calf thymus DNA was replaced in some experiments by 

either 40 pg of native calf thymus DNA or 2 pg of poly(dA-dT) for the 

determination of template specificity of RNA polymerase I and II. The 

reaction was started by addition of the enzyme and the mixture was 

incubated for 30 min at 35°C. The reaction was stopped by addition of 

4 ml of 57o (w/v) ice-cold TCA, the precipitate collected on GF/C filters 

(Whatman), washed and counted as described (9). 

One unit of RNA polymerase activity is defined as the amount of enzyme 

activity necessary for the incorporation oflnmole of UMP into TCA-in-

soluble material in 60 min under standard conditions. The specific 

activity is defined as units/mg protein. 

Partial Purification of Rat Liver RNA Polymerase II 

Rat liver nuclei were isolated according to Chauveau (17) from male 

rats (U strain) and the polymerase activity was extracted from the nuclei 

by sonication in a high salt buffer as described by Chesterton & Butter-

worth (18). RNA polymerase II activity was separated from RNA polymerase 

I activity through DEAE-Sephadex A-25 chromatography (18). The peak 

fractions containing RNA polymerase II were pooled and used as a control 

in the amanitin binding experiments. 
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Amanitin binding assay 

Amanitin binding assay with 0-[ cj-methyl-y-amanitin (63.4 Ci/mol) 

was performed according to the method of Cochet-Meilhac et al. (19) with 

either purified RNA polymerase II from Aspergillus or partially purified 

rat liver RNA polymerase II. Simultaneous measurement of the polymerase 

activity under standard conditions was as described above. 

Preparation of Columns 

Bio-Gel A-1.5m, DEAE-Sephadex A-25, DEAE-Sepharose CL-6B and phospho-

cellulose P-ll were prewashed and equilibrated as described before (9). 

Gel Electrophoresis 

Polyacrylamide gel electrophoresis in the presence of sodium dodecyl-

sulphate was carried out in 100 x 130 x 1 -mm slabs using a modification 

of the discontinuous dodecylsulphate Tris/glycine gel system of Laemmli 

(20);the concentration of N,N'-methylene bisacrylamide was lowered, com­

pared to the Laemmli system, to 0.085%, 0.10%, 0.135% for a 15%, 12.5% 

and 10% acrylamide gel respectively. Samples were treated as described 

by Laemmli (20) and subjected to electrophoresis for 3-4 h at 150 V, 

using bromophenol blue (0.004% w/v) as a dye marking the position of the 

front. 

Gel electrophoresis under non-denaturing conditions was performed 

as described by Smith and Braun (8) using a slab gel (100 x 130 x 1 -mm). 

Two dimensional gel electrophoresis was performed as described before (9), 

Molecular weights of the polypeptides were estimated by simultaneous 

electrophoresis of RNA polymerase with molecular weight markers in the 

acrylamide gels in the presence of dodecylsulphate by the general method 

of Weber and Osborn (21). The molecular weight markers used were: 
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thyroglobulin (330 000), ferritin (220 000 and 18 500), phosphatase 

(92 500), bovine serum albumin (68 500), catalase (60 000), ovalbumin 

(45 000), lactate dehydrogenase (36 000), carbonic anhydrase (30 000), 

trypsin inhibitor (20 000), a-lactalbumin (14 400) and the E.coli RNA 

polymerase subunits (22) (165 000, 155 000, 87 000 and 39 000). 

The gels were stained with Coomassie brilliant blue R-250 and destained 

as described by Burgess and Jendrisak (23). Molar ratios of the poly­

peptides were determined as described by Burgess and Jendrisak (23) by 

densitometric scanning of diapositives of stained slab gels. 

General procedures 

DNA, RNA and protein concentrations were determined with diphenylamine 

(24), orcinol (25) and xylene brilliant cyanine G (26), respectively. The 

10% (v/v) stock solution of polymin P was prepared and neutralised as 

described by Jendrisak and Burgess (2). 

Standard Purification Procedure of RNA Polymerase II 

All operations were carried out at 0-4°C; centrifugations were 

performed in a MSE 18 high speed and 65 ultracentrifuge. 

Solubilization of the enzyme. The hyphal mass (500 g wet weight) 

was harvested, washed and disrupted in liquid nitrogen as described (9), 

with the exception, that the extraction buffer A contained only 25 mM 

ammonium sulphate. The homogenate was diluted after rapid thawing with 

1.5 1 buffer A (25 mM), homogenized in a 1 1 Waring blendor and centri-

fuged for 30 min at 15,000 x g. 

Polymin P Fractionation. The crude extract was filtered through one 

layer of Miracloth (Calbiochem) and diluted with one volume of buffer A 

(75 mM). The RNA polymerases were precipitated by slowly adding 70 ml of 

a 10% (v/v) polymin P/100 g wet weight mycelia with continuous stirring. 

After 10 min the precipitate was collected by centrifugation, washed and 
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extracted with buffer A (300 mM) as described before (9). The polymin P 

extract was precipitated by slow addition of solid ammonium sulphate 

(0.35 g/ml). The precipitate was collected by centrifugation, dissolved 

in buffer A (300 mM) and dialysed against the same buffer as described 

before (9). 

Bio-Gel A-1.5m Chromatography. The dialysed crude enzyme preparation 

was loaded onto a 55 x 9 cm Bio-Gel A-1.5m column and developed with 

buffer A (300 mM) at a flow rate of 80 ml/h. Fractions containing the 

bulk of RNA polymerase activity were pooled. 

DEAE-Sephadex A-2S Chromatography. The Bio-Gel pool was diluted with 

one volume buffer A to give a final ammonium sulphate concentration of 

150 mM. DEAE-Sephadex A-25 equilibrated with buffer A (150 mM) was added 

(1 ml settled bed volume of DEAE-Sephadex/3 mg of protein) and the mixture 

was slowly stirred for 30 min. The slurry was poured into a column and 

washed with one volume of equilibration buffer. The flow through contained 

RNA polymerase I. The bound polymerase activity was eluted by applying a 

150-400 mM ammonium sulphate gradient in buffer A. The polymerase activity 

eluting at 260 mM ammonium sulphate was pooled. 

DEAE-Sepharose CL-6B Chromatography. The pooled fractions from the 

DEAE-Sephadex were diluted or dialysed against buffer B to give a final 

concentration of 25% glycerol and 150 mM ammonium sulphate. The dialy-

sate was loaded, with one column volume/h, onto a DEAE-Sepharose CL-6B 

column equilibrated with buffer B (150 mM), (1 ml DEAE-Sepharose/mg pro­

tein). After washing the column with equilibration buffer, the RNA poly­

merase activity was eluted with buffer B (400 mM). The fractions containing 

the RNA polymerase activity were pooled. 

Suarose Gradient Centrifugation. The DEAE-Sepharose pool was loaded 

onto a 5-20% (w/v) sucrose gradient in buffer A (300 mM) containing 30%(v/v) 

glycerol. Two ml containing maximum 500 units of RNA polymerase activity 

were loaded onto a 10 ml gradient and centrifuged at 155,000 x g,„ for 

av 
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68-72 h at 4°C in a MSE 65 ultracentrifuge. The gradients were fractionated 

from the bottom of the tube into 0.5 ml fractions with a MSE gradient fractionator. 

The fractions were tested for RNA polymerase activity. 

Phosphoeellulose P-ll Chromatography. The fractions from the density 

gradient containing the RNA polymerase activity were dialysed twice against 

?+ buffer B without Mg to give a final concentration of 15-20 mM ammonium 

sulphate. The dialysate was loaded, with one column volume/h onto a five ml 

phosphoeellulose P-ll column equilibrated with buffer B (20 mM) without Mg . 

The column was washed with 2 volumes of equilibration buffer and developed 

with a 20-300 mM ammonium sulphate gradient in buffer B without Mg . The 

RNA polymerase activity was pooled. 

Storage. Storage of impure enzyme fractions at either -80 C or -20°C 

should be avoided to prevent loss of activity, but if necessary, the salt 

and protein concentration should be as high as possible. At two stages of 

purification, after the ammonium sulphate precipitation step and after 

sucrose gradient centrifugation, the partially purified enzyme can be stored 

at -80 C without loss of activity for several months. The purified enzyme can 

be stored at either -80°C or -20°C without loss of activity for prolonged 

periods, provided it is dialysed against buffer C (100 mM) containing a 

high concentration of stabilizing glycerol. 

Results and discussion 

Aspergillus nidulans mycelium was harvested at log phase (16-18 h) and 

the cell wall was disrupted by blending the hyphal mass in liquid nitrogen. 

This method of breaking up the cells, also used for the isolation of RNA 

polymerase I (9), appeared to be highly reproducible with respect to the 

amount of polymerase activity solubilized. The cell content was solubilized 

with a low salt buffer and after removal of cell wall debris, the total RNA 

polymerase activity could be measured in the homogenate; no inhibition with 

a-amanitin at 10 yg/ml could be measured. 
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The RNA polymerase activity could be extracted from the hyphal mass 

with either a low or high salt buffer. No differences in the total poly­

merase activity could be measured if the extraction was performed with a 

buffer containing either 25 mM or 300 mM ammonium sulphate. Extraction 

with 300 mM ammonium sulphate resulted at a later stage in an aggregation 

of part of the polymerase activity (mainly influencing the purification 

of RNA polymerase II). Aggregation was strongly reduced, if the solubili­

zation was done with 25 mM ammonium sulphate. Solubilization at low 

ionic strength was also successfully used for the isolation of RNA poly­

merase II from wheat germ (2), calf thymus (3) and Acanthamoeba (7). 

Polymin P Fractionation and Ammonium Sulphate Précipitation. 

The cleared homogenate was diluted with buffer A (75 mM) to give a 

final concentration of 50 mM ammonium sulphate. Nucleic acids were removed 

through precipitation with polymin P (2,27) and polymerase activity was 

extracted selectively with 300 mM ammonium sulphate (9). The polymin P 

released into the extract could only be partially removed by ammonium 

sulphate precipitation, therefore only variable values for RNA polymerase 

activity could be obtained at this stage. As indicated in our earlier 

publication on RNA polymerase I, the presence of trace amounts of polymin 

P resulted in a very weak binding of polymerase activity to DEAE-Sephadex, 

if loaded directly onto this column (9). Under these conditions all RNA 

polymerase activities eluted from the column at an ammonium sulphate con­

centration lower than 100 mM. 

Selective binding of RNA polymerase II to DEAE-cellulose has been used 

after polymin P fractionation and ammonium sulphate precipitation as the 

first chromatographic step (2,3). If at this stage the crude enzyme extract 
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of Aspergillus was loaded onto a DEAE-cellulose column at 150 mM ammonium 

sulphate, the retention of RNA polymerase ac t i v i t y by th is type of column 

was very low and i r reproducible. 

DEAE-Sephadex A-25 Chromatography 

When the crude enzyme extract from Aspergillus was sieved on Bio-Gel 

A-1.5 m at high ionic s trength, as described ea r l ie r ( 9 ) , i t was possible 

to bind the RNA polymerase a c t i v i t y reproducible to DEAE-Sephadex A-25 and 

to obtain a separation into two d i f fe rent RNA polymerase a c t i v i t y peaks. 

The f i r s t peak e lut ing from DEAE-Sephadex A-25 at 110-130 mM ammonium sulphate 

was c lass i f ied as RNA polymerase I and the second peak e lut ing at 260 mM 

ammonium sulphate was c lass i f ied as RNA polymerase I I according to the Roeder 

c l ass i f i ca t i on , based on the order of e lut ion of the d i f fe rent RNA polymerases 

from DEAE-Sephadex (28). The pu r i f i ca t ion of the f i r s t RNA polymerase a c t i v i t y 

peak to apparent homogeneity confirmed that i t consisted of RNA polymerase 

I (or A) (9 ) . 

The Bio-Gel pool could also be loaded at 150 mM instead of 50 mM ammonium 

sulphate onto the DEAE-Sephadex in th is pu r i f i ca t ion procedure. This selec­

t i ve binding of the RNA polymerase a c t i v i t y (e lu t ing at 260 mM ammonium 

sulphate) onto the column appeared to be more reproducible. Under these 

conditions RNA polymerase I was found in the f low-through. Af ter applying 

a 150-400 mM ammonium sulphate gradient, two peaks eluted from the column 

( f i g . 1) . The f i r s t minor peak elutes at 150-170 mM ammonium sulphate and 

consists probably of residual RNA polymerase I . The major RNA polymerase 

a c t i v i t y peak elutes at 260 mM ammonium sulphate and has to be regarded 

s a RNA polymerase I I , although i t is not sensit ive to a-amanitin even 

to concentrations upto 400 yg/ml of the tox in . Because i t is impossible 

to measure or to estimate the exact amount of RNA polymerase I I a c t i v i t y 

in the homogenate or Bio-Gel pool (no a-amanitin s e n s i t i v i t y ) , the amount 

of RNA polymerase I I e lu t ing from the DEAE-Sephadex is taken as 100% to calcu-
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Fig. 1. DEAE-Sephadex A-2S chromatography of Aspergillus RNA polymerase 

The Bio-Gel pool was d i luted and bound in batches to DEAE-Sephadex A-25 at 

150 mM ammonium sulphate as described. The column (26 x 2.6 cm) was developed 

at a flow rate of 25 ml/h with a l inear sa l t gradient of 150-500 mM ammonium 

sulphate in buffer A ( ) using the LKB 11300 ultragrad gradient mixer. 

Fractions of 6 ml were collected and the absorbance at 280 nm ( ) was 

monitored with an Isco model UA-5 Absorbance monitor using a standard 1-cm 

flow c e l l . 20 ul al iquots were assayed for RNA polymerase a c t i v i t y ( o - o ) 

and f ract ions 66-77 were pooled. 

Fraction number 

Fig. 2. Sucrose gradient centrifugation of Aspergillus RNA polymerase II 

The pooled f ract ions from the DEAE-Sepharose CL-6B column, containing the 

RNA polymerase a c t i v i t y , were loaded onto a 5-20% (w/v) sucrose gradient in 

buffer A (300 mM) containing 30% (v/v) glycerol as described. The gradient 

was centrifuged at 155,000 x g a v f o r 68-72 h at 4 °C and fract ionated from 

the bottom of the tube. Fractions of 0.5 ml were col lected and the absor­

bance at 280 nm ( ) was monitored. 20 yl al iquots were assayed fo r RNA 

polymerase a c t i v i t y ( o - o ). Fractions 12-15 were pooled. 
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Fig. 3. Phosphooellulose P-ll chromatography of Aspergillus RNA polymerase 

II. The pooled f ract ions from the sucrose gradient were loaded onto a phos-

phocellulose P- l l column ( 5 x 1 cm) as described. A l inear sa l t gradient o f 

20-300 mM ammonium sulphate in buffer B minus Mg ( ) was appl ied. The 

absorbance at 280 nm ( ) was monitored and f ract ions of 0.6 ml were 

col lected. 20 ul al iquots were assayed for RNA polymerase a c t i v i t y ( o - o ). 

Fractions 30-34 were pooled. 

Table 1. Purification of PMA polymerase II from Aspergillus nidulans 

The values given in the table are average values calculated from 3 

d i f fe ren t preparations. The amount of RNA polymerase I I a c t i v i t y in the 

DEAE-Sephadex pool is taken as 100% in calculat ing the y i e l d , and was 

used to calculate the specif ic a c t i v i t y in the homogenate and Bio-Gel 

pool. These values were then used as the basis for the calculat ion of 

the y ie ld and the pur i f i ca t ion at each stage. 

Fraction 

Homogenate 

Bio-Gel A-1,5 m 

DEAE-Sephadex A-25 

DEAE-Sepharose CL-6B 

Sucrose gradient 

Phosphocellulose P -11 

Volume 

ml 

2 000 

420 

72 

12 

11.5 

2.4 

Total 

protein 

mg 

10 000 

450 

11 

5.5 

1.2 

0.4 

Total a c t i ­

v i t y poly­

merase I I 

Units 

890(11 000)* 

890(10 000)* 

890 

841 

577 

219 

Yield 

% 
-

-

100 

94 

65 

25 

Spec. 

act. 

U/mg 

0.09 

2.1 

81 

153 

480 

550 

P u r i f i ­

cation 

- f o l d 

-

23 

900 

1700 

5340 

6090 

Total RNA polymerase a c t i v i t y 73 



late the specific activity in the homogenate (Table 1). 

The specific activity after DEAE-Sephadex chromatography is 81 units/mg. 

The amount of RNA polymerase II activity is very low (~ 900 units) at this 

stage of purification compared with that RNA polymerase I (6 000 units). In 

general RNA polymerase II from other systems represents more than 50% of the 

total RNA polymerase activity (29). 

DEAE-Sepharose CL-6B Chromatography 

The pooled RNA polymerase activity eluting at 260 mM ammonium sulphate 

from the DEAE-Sephadex, was diluted or dialysed and loaded at 150 mM 

ammonium sulphate onto a DEAE-Sepharose CL-6B column (1 mg protein/ml 

settled bed volume). Step elution of the polymerase activity with 400 mM 

ammonium sulphate was preferred since applying a salt gradient resulted in 

a broad elution of the RNA polymerase activity without improving its 

specific activity. Through this step an almost 2-fold purification was 

achieved with a 90% yield of activity. 

Sucrose Gradient Centrifugation 

Since the average molecular weight of the proteins loaded onto the 

sucrose gradient was high (300 000-400 000 daltons), due to the molecular 

sieving on Bio-Gel A-1.5 m, it was necessary to use a 5-20% (w/v) sucrose 

gradient containing 30% (v/v)glycerol (fig. 2 ) . Because of the high density 

in the gradient, a 2-3 fold higher initial protein concentration could be 

loaded onto this sucrose gradient, than onto the normally used 15-30% (v/v) 

glycerol gradient, resulting in a similar purification, but a 2-fold better 

recovery of the polymerase activity. This is in agreement with the findings 

of Goldberg et al. (4), that a higher initial protein concentration and a 

higher glycerol concentration gives a better recovery of the polymerase 

activity using a gradient centrifugation step. In contrast to the results 

of Goldberg et al.(4), the presence or absence of Mg had no influence on 
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the yield of activity. The high ionic strength in the gradient was necessary 

to avoid aggregation of the polymerase activity. 

The sucrose gradient centrifugation resulted in a 3-fold purification 

with a 70-80% yield of activity. The pooled enzyme could be stored at -80°C 

for several months without loss of activity, because of the stabilizing 

effects of the glycerol and sucrose concentration. 

Phosphocellulose P-ll Chromatography 

Fractions from the preceeding sucrose gradient containing the polymerase 

activity were loaded onto a phosphocellulose column. The column was developed 

with a 20-300 mM ammonium sulphate gradient and the RNA polymerase activity 

eluted at approximately 60 mM ammonium sulphate (fig. 3 ) . The recovery of 

RNA polymerase activity from the phosphocellulose column was low and 

variable (40-60%) and appeared to be dependent on the initial protein con­

centration of the fraction loaded onto the column; a higher initial protein 

concentration resulted in a better recovery. Similar low recoveries and a 

dependency on the protein concentration have also been reported by Hodo and 

Blatti (3). 

A change in the preference of RNA polymerase II for a certain DNA 

template through phosphocellulose chromatography has often been reported 

(30,31). We could not detect a change in preference for native or heat-

denatured calf thymus DNA of this Aspergillus RNA polymerase through phospho­

cellulose chromatography. Although more than 50% of the contaminating 

proteins were removed through phosphocellulose chromatography, only a 

1.1-1.2 fold purification was achieved, because of the decrease in the 

enzyme activity (Table 1). The specific activity of the enzyme was 550 

units/mg at this stage. 
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Submit Composition 

The polypeptide composition of the purified RNA polymerase was deter­

mined by Polyacrylamide gel electrophoresis under denaturing conditions 

in the presence of sodium dodecylsulphate. It appeared, that a modifi­

cation of the Laemmli Polyacrylamide gel system (20), using a 3-5 fold 

lower concentration of N,N'-methylene bisacrylamide, resulted in a better 

resolution of the polypeptides. The range in which a linear correlation 

exists between the log of the molecular weight of the polypeptides and 

their relative distance migrated is larger in these modified acryl ami de 

gels than is the case with the Laemmli system (not shown). Based on the 

better resolution the molecular weights of the subunits of RNA polymerase 

I, from Aspergillus, as reported in our earlier publication (9), have 

been revised and are listed in Table 2. The polypeptide pattern of the 

purified RNA polymerase, together with that of a partially purified RNA 
A 

polymerase I from Aspergillus are shown in fig. 4 . The purified RNA poly­

merase (lane 1) consists of two heavy polypeptides with molecular weights 

higher than 100 000 daltons and 6 or 7 polypeptides smaller than 100 000 

daltons; this is characteristic for all RNA polymerases. The two heaviest 

polypeptides (a+b) are clearly different in molecular weight from those 

of RNA polymerase I from Aspergillus (lane 7). The polypeptides of the 

purified RNA polymerase smaller than 100 000 in molecular weight are also 

different from those of RNA polymerase I, although some polypeptides seem 

to be present in both RNA polymerases (e.g. the polypeptides of 33 000 (c) 

comigrates with a subunit of RNA polymerase I). Characteristic of the puri­

fied RNA polymerase is also the absence of polypeptides in the range of 

50 000-100 000 daltons. The molecular weights of the putative subunits of 

the purified RNA polymerase complex were estimated to be: 17000 (a), 150 000 

(b), 33 000 (c), 27 000 (d), 24 000 (e), 19 000 (f) 18 000 (h) and 16 000 

(1). That these polypeptides are the subunits of the polymerase complex, 
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Fig. 4 . Polyacrylamide gel electrophoresis of RNA polymerase II under de­

naturing conditions. Dodecylsulphate/polyacrylamide gel electrophoresis on 

15% acrylamide slab gels was performed as described in Materials and Methods. 
Essentially pure RNA polymerase II (20 yg), pooled after P-cellulose chroma­

tography, is shown in lane 1. Lanes 2-5 contain respectively the fractions 

29, 34, 35 and 36 from the phosphocellulose column (fig. 3). Lane 6 contains 

10 wg of partially purified Aspergillus RNA polymerase I. Lane 7 contains 

5 yg of partially purified RNA polymerase I and 5 yg of pure RNA polymerase 

11 from Aspergillus. 
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Table 2. Polypeptide composition of Aspergillus RUA polymerase I and II 

Molecular weights of the polypeptides were determined by simultaneous 

electrophoresis of RNA polymerase with marker protein standards [Materials 

and Methods). Molar ratios were determined by electrophoresis in Tris/glycine-

buffered dodecylsulphate gels in the first or second dimension as described 

and normalized to the largest polypeptide a in the case of RNA polymerase I 

and to the second polypeptide of RNA polymerase II. 

Molecular weight Stoichiometry 

I 

190 000(a) 

115 000(b) 

70 000 
(c+d) 

69 000 

46 000(e) 

33 000 

(f+g+h) 

32 000 

19 500(i) 

II 

170 000(a) 

150 000(b) 

33 000(c) 

27 000(d) 

24 000(e) 

19 000(f) 

18 000(g) 

16 000(h) 

I 

1.0 

1.2 

1.5 

2.0 

3.0 

1.2 

II 

0.9-1.0 

1.0 

2.0 

0.7 

0.9 

1.2 

0.9 

0.5 

15 000(j) 0.9 

78 



was concluded from their unchanged stoichiometry throughout the phospho-

cellulose (partly shown in fig. 4 A ) . This was confirmed by two dimensional 

gel electrophoresis of the purified enzyme using a 5 % (w/v) Polyacryl­

amide gel under non-denaturing conditions in the first dimension and 12.5 % 
D 

(w/v) modified Polyacrylamide gel in the second dimension (fig. 4 ). It is 

not clear, whether the 47 000 MW polypeptide (fig. 4 lane 1) belongs to 

the polymerase complex. The molar ratios of the polypeptides of the puri­

fied RNA polymerase (Table 2) were determined from densitometric scans of 

stained Polyacrylamide gels in the presence of dodecylsulphate (fig. 5 ) . 

The high-molecular-weight polypeptides appear in an almost 1:1 ratio. In 

both RNA polymerases, the polypeptide of 33 000 is present more than once 

in the complex (Table 2 ) . The subunit composition of the RNA polymerases 

from class II is first of all characterized by the absence of subunits 

in the range of 50 000-100 000 dal tons in which they differ clearly from 

the class I and III RNA polymerases (cf. 1). The subunit composition of 

the purified RNA polymerase is in this regard comparable with the class 

II RNA polymerases from higher eukaryotes like mouse plasmacytoma (1), 

calf thymus (3,32) and wheat germ (2) as well as lower eukaryotes, like 

yeast (33,34), Physarum (8) and Aoanthamoeba (7). 

The second characteristic of the class II enzymes is the presence of 

subforms of RNA polymerase II, differing in the molecular weight of the 

largest subunit. A magnification of the scan of the polypeptide pattern 

of the purified RNA polymerase, reveals a shoulder in the peak of the 

largest subunit and two minor peaks, migrating slower, which may indicate 

that subforms exist (insert fig. 5 ) . We were not able to reveal these sub-

forms of the purified RNA polymerase from Aspergillus by two dimensional 

gel electrophoresis. In wheat germ, as described by Jendrisak and Burgess 

v2) and cauliflower as described by Goto et al. (35), RNA polymerase II 

enzymes were also present in only one form. This could be due to the iso-
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5 % Nat ive ge l —•-

Fig. 4 . Two dimensional polyaeryUrm.de gel electrophoresis of Aspergillus 

R:;A polymerase II. Pure RNA Polymerase I I (15 yg) was run in the f i r s t d i ­

mension under non-denaturing conditions in a 5% acrylamide slab gel as 

described in Materials and Methods. A f ter electrophoresis the lane containing 

RNA polymerase I I was cut out, equi l ibrated with Laemmli sample buffer and 

mounted on top of a 12.5% Polyacrylamide gel in the presence of dodecyl-

sulphate as described in Materials and Methods. The d i rect ion of migration 

is indicated by the arrows. 

>AJUJ 
— Migration direction 

80 

Fig. 5. Densitometrie tracing of Aspergillus RNA polymerase II as derived 

from a sodium dodecylsulphate Polyacrylamide gel. 20 yg of P-cellulose puri­

fied enzyme was applied to a 15% acrylamide gel (fig. 8, lane 1). The gel 

was stained, destained and scanned as described. The insert shows a magnifi­

cation of the scan from the upper part of the gel, containing the largest 

subunits. The vertical arrows indicate the minor polypeptides preceeding 

the 170 000 dalton subunit. The direction of migration is indicated by the 

horizontal arrows. 

http://Urm.de


lation procedure, because Hodo and Blatti (3) reported two subforms of 

wheat germ RNA polymerase II isolated with a slightly modified procedure 

of Jendrisak and Burgess (2). It is possible, that subforms of RNA poly­

merase II from Aspergillus can also be revealed after modifications of the 

isolation procedure. 

We conclude, that the subunit pattern of the purified RNA polymerase 

is throughout comparable with class II RNA polymerases and is clearly 

different from class I and III RNA polymerases. 

Properties of the Enzyme 

The purified enzyme remained stable for prolonged periods at -80 °C 

as well as -20 °C when dialysed against buffer C (100 mM) containing 50% 

(v/v) glycerol. The final enzyme preparation did not contain detectable 

RNase or protease activity. The RNase activity was measured through 

continuous incubation of the enzyme in the standard polymerase assay mix-
3 

ture after addition of EDTA to stop the incorporation of H-UMP into TCA-
3 

insoluble material; no loss of TCA-insoluble H-UMP could be measured 

after several hours. Protease activity was monitored by incubation of 

the enzyme at room temperature for several hours, followed by Polyacryl­

amide gel electrophoresis in the presence of dodecylsulphate. No changes 

in the stoichiometry of the polypeptides were observed. The purified en­

zyme was further characterized by determining the optimal conditions for 

activity. The purified RNA polymerase was completely dependent for its 

activity on the addition of DNA, as a template, all four nucleotides and 
3 

divalent cations. The rate of incorporation of H-UMP into TCA-insoluble 

material was almost linear for 20 min under standard reaction conditions 

at 35 C using heat-denatured calf thymus DNA as a template; the product 

was sensitive to alkali and RNase digestion (not shown). 

The optimal salt concentration appeared to be dependent on the type 

of template (added in excess) used. With heat-denatured calf thymus DNA, 

the purified RNA polymerase had a broad salt optimum between 50-100 mM 
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Fig. 6. The effect of the ammonium sulphate concentration on the activity of 

RNA polymerase I and II with different templates. RNA polymerase I, isolated 

as described (9), and essentially pure RNA polymerase II, both in storage 

buffer, were assayed for their RNA synthesizing capacity with increasing 

amounts of ammonium sulphate in the presence of 20 pg heat-denaturing calf 

thymus DNA (o - o ) , 40 ug native calf thymus DNA ( A - Û ) or 2 mg poly(dA-dT) 

(o-o) per assay. (A) RNA polymerase I and (B) RNA polymerase II. 

30-

20-

10-

0-

1 \ 
B 

Mg or Mn (mM) 

16 24 32 40 

Mg2 + or Mn2+ (mM) 

Fig. 7. The effect of metal divalent cation concentration on the activity 

of RNA polymerase I and II. RNA polymerase I and II activity were assayed in 

the standard reaction mixture, containing 25 mM and 60 mM ammonium sulphate 

( o - o ) respectively with increasing amounts of Mg in the absence of Mn 

or increasing amounts of Mn + in the presence of 0.5 mM Mg (o-o). (A) RNA 

polymerase I and (B) RNA polymerase II. 
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ammonium sulphate. In contrast, RNA polymerase I activity was optimal 

at a salt concentration of 10-30 mM ammonium sulphate (fig. 6 ) . Native 

calf thymus DNA as a template appeared to be less efficiently trans­

cribed by RNA polymerase I as well as by the purified RNA polymerase. 

The denatured versus native calf thymus DNA activity ratio was 2 for 

RNA polymerase I and 3 for the purified RNA polymerase II. For both RNA 

polymerase activities the optimal salt conditions with native calf thymus 

DNA as template were similar compared to denatured calf thymus DNA as a 

template (fig. 6 ) . 

The transcription of the synthetic template poly(dA-dT) by the puri­

fied RNA polymerase was optimal at low salt conditions, when tested at 

a low template concentration (2 yg/assay) and was not transcribed at all 

at 80-100 mM ammonium sulphate. Under the same conditions RNA polymerase 

I was optimal at 30-50 mM ammonium sulphate with poly(dA-dT) as a template 

(fig. 6 ) . The divalent cation conditions were determined by incubation 

2+ 2+ 
of the RNA polymerase activity with an increasing Mn or Mg concen­
tration. The purified RNA polymerase was optimal with Mn + at 4-8 mM; 

2+ the activity was 7-8 fold higher than with Mg (fig. 7). RNA poly-

2+ merase I from Aspergillus was optimal at 3-4 mM Mn and the activity 

with Mn 2 + was only 1.5 fold higher than with Mg2 + (9) (fig. 7 ) . The 

catalytic properties of the purified RNA polymerase are clearly different 

from those of RNA polymerase I from Aspergillus (9) and are throughout 

comparable with class II RNA polymerases (cf. Roeder (1) and Chambon (29)). 

a-amanitin insensitivity 

The purified RNA polymerase from Aspergillus was classified as a 

class II enzyme because of its chromatographical behaviour,subunit com­

position and catalytic properties. In contrast to other class II en­

zymes the RNA polymerase II from Aspergillus appeared to be insensitive 
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Fig. 8. Inhibition of RUA synthesis and binding of amanitin to RNA polymerase 

II, as a function of 0-{ CJ -methyl—^-amanitin concentration.The incubation 

mixture (0.5 ml) was as described by Cochet-Meilhac et a l . (19) and contained 

e i ther 8 y g Aspergillus RNA polymerase I I (closed symbols) or p a r t i a l l y p u r i ­

f ied rat l i ve r RNA polymerase I I (8 ug) (open symbols) and various concen­

t rat ions of 0-L cJ-methyl-y-amanitin as indicated. After 10 min at 37 C, 

100 ui a l iquots were removed and processed fo r determination of enzyme-bound 

amanitin as described (19). 100 gl a l iquots were added to a mixture (100 u l ) 

containing 20 ug heat-denatured ca l f thymus DNA, 2 mM ATP, CTP and GTP, 0.10 

mM UTP, 1 PCi [5-3HI-UTP, 100 mM Tris-HCl pH 7.9, 2 mM d i t h i o t h r e i t o l , 8 mM 

MnClp for RNA synthesis determination (30 min, 35 °C). 100% amanitin binding 

to rat l i ve r RNA polymerase I I was 1620 dpm. (o - o . » - • ) RNA synthesis; 

( Û - A . A - A ) amanitin binding. 

84 



to a-amanitin at concentrations upto 400 yg/ml, tested throughout the 

pu r i f i ca t ion procedure. Binding experiments with C labeled methyl-

y-amanit in, performed as described by Cochet-Meilhac e t a l . (19) , showed, 

that RNA polymerase I I from A.nidulansms unable to bind the toxin at 

10 yg/ml, the highest concentration tested ( f i g . 8 ) . Rat l i v e r RNA poly­

merase I I , tested in a s imi lar way, was inh ib i ted by 0-L Cj-methyl-Y-ama-

n i t i n (50% at 18 ng/ml) and simultaneous binding of the labeled toxin 

could be measured ( f i g . 8 ) . 

The values obtained fo r ra t l i v e r RNA polymerase I I are comparable 

with those of Cochet-Meilhac et a l . (19). The class I I RNA polymerases 

from lower eukaryotes are in general less sensit ive to i nh ib i t i on with 

a-amanitin (e .g . 50% i nh ib i t i on of RNA polymerase I I from yeast at 1 yg/ 

ml (12) and Agarious bisporus at 7 yg/ml (13) than from higher eukaryotes 

(50% i nh ib i t i on of RNA polymerase I I from mammalians and insects at 

0.01-0.05 yg/ml (1) and plants at 0.1-0.3 yg/ml (3 ,35) ) , but they are a l l 

completely inh ib i ted at 400 ug/ml of a-amanitin. Even the 50% i nh ib i t i on 

level of a-amanitin " res is tant" mutants of RNA polymerase I I , is important­

ly lower (14,15). Although the pur i f ied RNA polymerase from Aspergillus 

is insensit ive to i nh ib i t i on with the toxin a-amanitin, we regard the 

enzyme as a r e a l , but exceptional class I I RNA polymerase. 

Concluding Remarks 

We conclude, that the pur i f ied DNA-dependent RNA polymerase from 

A. nidulans is an exceptional type of the class I I enzymes. No crucial 

differences concerning chromatographic and ca ta ly t i c properties or 

subunit composition were found, when compared to RNA polymerases 

of the class I I from higher or lower eukaryotes. I t is therefore very 

in terest ing and unexpected, that no i nh ib i t i on with a-amanitin could 

be measured e i ther in the crude extract or in the f i na l pu r i f i ed form 
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even at concentrations upto 400 yg/ml of the tox in . Several w i ld types 

of A.nidulans, belonging to d i f fe rent incompatabil i ty groups, were tested 
3 

in an in vivo H-uridine incorporation study in the presence of a-amanitin; 

they also appeared to be insensi t ive towards the toxin a-amanitin ( i n pre­

parat ion). The i nsens i t i v i t y may be a more widespread phenomenon among 

fung i . 

I t w i l l be of in terest to study the t ranscr ip t ion of lower eukaryotes, 

l i ke A.nidulans in vitro in S-100 ce l l - f ree t ranscr ipt ion systems, which 

perhaps can be derived from protoplasts of A.nidulans . I t may also be 

possible to study the pur i f ied RNA polymerase I I from Aspergillus in a 

wel l-defined heterologous ce l l - f ree t ranscr ipt ion system, l i ke Hela S-100 

extract supplemented with DNA as described by Weil et a l . (36) and Manley 

et a l . (37) and to compare the mechanism of gene t ranscr ipt ion between 

higher and lower eukaryotes. I t should be kept in mind however, that high­

ly pur i f ied RNA polymerases may have los t speci f ic subunits or factors 

necessary for bona f ide t ranscr ip t ion of speci f ic genes. 
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CHAPTER 4 

Protoplasts from Aspergillus nidulans 

Hendrikus W. J. van den Broek, Hendrik G. Stunnenberg and Lambertus M. J. Wennekes 

Department of Genetics, Agricultural University, 53 Generaal Foulkesweg, 
Wageningen, The Netherlands 

Abstract 
A very effective lytic enzyme system for massive micro/macro-scale production of protoplasts 
from the filamentous fungus Aspergillus nidulans is described. A striking coincidence was 
observed between maximal lytic activity towards Aspergillus mycelium and the presence of both 
chitinase and a -(1 - • 3)-glucanase activities. 

The release of protoplasts was greatly enhanced by preincubating the mycelium with 2-deoxy-
D-glucose. Furthermore, protoplast formation was influenced by fungal age, culture conditions, 
pH of incubation and the osmotic stabilizer used. From 40 mg of fresh mycelium, grown for 
14—16 h on 1 % glucose in a low phosphate-citrate medium, preincu bated with 2-deoxy-D-glucose 
for 45 min, and then incubated with the lytic enzyme mixture at pH 6.5 in the presence of 0.3— 
0.4 M ( N H 4 ) ä S 0 4 , 2.5 x 10* stable protoplasts were produced within 3 h of incubation at 30°C. 
Comparable results were obtained with 40—50 g of mycelium. At low osmotic stabilizer concen­
trations a peculiar type of regeneration was observed in the presence of the lytic enzyme system; 
within 12 h of incubation aberrant hyphal structures emerged from the large vacuolated protoplasts. 

Introduction 

The isolation and characterization of cell components of filamentous fungi has, in 
general, been hampered by the drastic mechanical procedures used to rupture the 
tough fungal cell wall. Although the liquid nitrogen procedure of Gealt et al. (1976) 
has proven that for Aspergillus nidulans some of these problems can be overcome, 
the preparation of protoplasts may provide another reasonable and useful alternative 
for the isolation and the study of intact organelles and their biochemical constituents, 
provided a simple and general procedure is available for obtaining protoplasts in large 
quantities. Cells and organelles obtained in this gentle way may be very useful for 
biochemical and metabolic studies. 

Suitable lytic enzymes should be able to degrade the complex cell wall of A. 
nidulans (Bull, 1970a; Zonneveld, 1971), and this should result in a massive release 
of protoplasts. Since it has been shown (Villanueva and Garcia Acha, 1971) that 
several micro-organisms are able to induce the formation of extra-cellular lytic 
enzymes when grown on cell walls or semi-defined media containing substrates such 
as chitin, laminarin and pustulan, a great diversity of organisms has been introduced 
for the production of lytic enzymes. In the case of A. nidulans, good protoplast 
preparations have been obtained by Peberdy and coworkers (Peberdy and Gibson, 
1971 ; Gibson and Peberdy, 1972; Peberdy and Buckley, 1973; Peberdy et al, 1976; 
Peberdy and Isaac, 1976), and Ferenczy etal. (1975a,b) using the lytic enzymes 
produced by Streptomyces Venezuela and Trichoderma harzanium. These micro-
scale procedures were satisfactory in the study of cell wall synthesis, protoplast 
regeneration and cell fusion. Efforts to prepare protoplasts on a scale sufficiently 
great to generate large amounts of nuclei failed (Gealt etal, 1976), although very 
recently the preparation of small amounts of DNA from protoplasts was described 
by Morris (1978). 

In this report a method is given for the production of large amounts of protoplasts 
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from A. nidulans, based upon a combination of extra-cellular lytic enzyme extracts 
from A. nidulans in a cleistothecium-producing stage and Oerskoviaxanthineolytica 
grown on Aspergillus cell walls. The effective release of protoplasts from Aspergillus 
mycelium is independent of strain and stage of growth. 

Materials and methods 

Organisms and growth conditions 

A biAi (biotin deficient) strain of A. nidulans (Glasgow origin) was used in most 
experiments. Some experiments were performed with wild type isolates, kindly 
provided by Dr J. H. Croft. The fungus was maintained on complete medium 
(Pontecorvo et al, 1953), supplemented with D(+)-biotin (40 îg/1) if necessary. 
For the preparation of protoplasts Aspergillus was grown in a shaker-incubator at 
37° C on a citrate-phosphate medium containing (g/1): glucose, 10; Na-citrate, 5.9; 
Na-pyruvate, 1.0; NaN03,6.0; KH2P04,0.4; MgS04.7H20,0.5; KCl, 0.5; FeS04. 
7H2 0,0.001 ; ZnS04.7H2 0,0.001 ; and adjusted to pH 6.0 before sterilization. 
Cultures were inoculated with conidial suspensions to a final concentration of 106 

conidia/ml of medium. For the preparation of cell wall fractions, and a-D-(l -»• 3)-
glucan according to Zonneveld (1971), Aspergillus was grown at 37°C for 24—30 h 
in a 3% (w/v) glucose-containing mineral salts medium. For the induction of lytic 
enzymes Aspergillus was grown from thick conidial suspensions on agar plates 
(Zonneveld, 1971) and incubated at 37°C for 5—6 days. 

O. xanthineolytica (strain G-62, ATCC 27402), provided by Dr M. P. Lechevalier, 
was maintained at 30°C on an agar-solidified mineral salts medium in phosphate buffer 
(pH 7.0) (Mann et al, 1972), supplemented with 0.1% (w/v) Trypton (Difco) and 
0.5% (w/v) yeast extract (Difco). For the induction of lytic enzymes Oerskovia was 
grown at 28—30°C for 28 h in a liquid mineral salts medium with 0.5% (w/v) of 
Aspergillus cell walls; cells grown in a similar medium containing in addition 0.1% 
(w/v) Trypton were used as inoculum. 

S. violaceus MR and S. Venezuela RA, provided by Dr M. V. Elorza, were maintained 
and used for induction of lytic enzyme, by growing either on chitin or chitin-laminarin 
medium as described (Elorza et al, 1966, 1969; Laborda et al, 1974) or on Aspergillus 
cell wall fractions (0.5%, w/v) in a similar medium. 

Bacillus circulons, kindly donated by Dr F. Rombouts, and T. viride G.A.G., 
provided by Dr J. A. Schellart, were maintained and used for induction of lytic 
enzymes on Aspergillus cell wall fractions according to published procedures (Fleet 
and Phaff, 1974a; de Vries and Wessels, 1972). 
Preparation of lytic enzyme extracts 

The Aspergillus lytic enzyme system was prepared according to a slightly modified 
procedure of Zonneveld (1972a). Aspergillus cultures (5—6 -day-old) on agar plates 
were homogenized in the cold in a Waring Blendor for 10 min at maximum speed after 
addition of an equal volume of 0.05 M Na-citrate-phosphate buffer, pH 6.2. The 
homogenate was centrifuged for 10 min at 4°C at 15,000 x g. The supernatant was 
saved and the pellet was re-extracted once more. Two volumes of cold acetone (—18°C) 
were added to the combined supernatants and after 2—4 h at —18°C the resulting pre­
cipitate was collected by centrifugation. The pellet was resuspended in 0.05 M citrate-
phosphate buffer (pH 6.2), and dialysed at 4°C overnight versus the same buffer. After 
dialysis insoluble material was removed by centrifugation. The clear brown super-
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natant contained the Aspergillus lytic enzyme system; it was either stored at — 80°C 
or lyophilized and stored at 4°C. From 1 litre of medium at least 80 ml of a highly 
active and stable enzyme preparation was obtained. 

The Oerskovia lytic enzyme system was prepared according to a modified proce­
dure of Mann et al (1972). Freshly grown Oerskovia was subcultured in a liquid 
mineral salts medium supplemented with 0.1% (w/v) Trypton and 0.4% (w/v) of 
Aspergillus cell walls. After 18-20 h of incubation at 28°C in a shaking bath (foaming 
should be prevented), the seed culture (30 ml) was used to inoculate 270 ml of 
medium containing 0.5% of Aspergillus cell walls without Trypton and incubated at 
28°C for 28 h under careful shaking. At the end of the incubation period the Oerskovia 
cells and the residual cell wall fragments were removed by centrifugation at 4°C 
(30 min, 20,000 x g). The cleared yellowish culture medium was saturated with solid 
ammonium sulphate, the pH being adjusted to 7.0 with NH4OH, and after 2 h at 0°C 
the resulting precipitate was collected by centrifugation. The pellets were solubilized 
in 0.2 M K-phosphate buffer (pH 6.5), containing 0.5 mM CaCl2 and dialysed for 
5-6 h at 0-4°C versus the same buffer. The dialysed material was cleared by centri­
fugation and either stored at —80°C or lyophilized and stored at 4°C. From 1 litre of 
medium 25—30 ml of highly active and stable Oerskovia lytic enzyme preparation was 
obtained. 

Similar procedures were used to obtain lytic extra-cellular enzyme preparations 
from Streptomyces, Bacillus and Trichoderma. 
Preparation of protoplasts 

In general protoplasts were prepared as follows: A. nidulans mycelium was grown for 
14—16 h at 37°C in the citrate-phosphate medium containing 1% (w/v) of glucose, 
harvested by filtration and washed several times with 0.2 M K-phosphate buffer (pH 6.5) 
containing 0.4 M ( N H ^ S04 and 0.5 mM CaCl2. The washed mycelium was suspended 
in the same buffer (1 g wet weight/20 ml), containing 100 u%jm\ of 2-deoxy-D -glucose 
and incubated for 45 min at 37°C under mild agitation. The hyphae were filtered 
again, washed with buffer without 2-deoxy-D-glucose and resuspended in the same 
buffer [40—50 mg wet weight (5-6 mg dry weight)/ml]. The lytic enzyme systems 
were added (in general 0.1 ml each of both lytic enzyme systems per ml) and the 
mixture was incubated at 30°C in a shaker-incubator (130 osc/min). Release of proto­
plasts was followed with the light microscope by counting the total number of proto­
plasts using a haemocytometer. 
Enzyme assays 

Chitinase activity with crustacean chitin (Skujinserai, 1970) as a substrate, was deter­
mined according to the method of Reissig et al (1955); glucanase activities were deter­
mined as described (Fleet and Phaff, 1974a,b) using defined glucan substrates. 

Results and discussion 

In the course of our studies on the isolation of nuclei, chromatin, DNA, RNA and 
RNA polymerases from the filamentous fungus A. nidulans (Stunnenberg et al, 1979), 
we investigated the use of different lytic enzyme systems for the large scale production 
of protoplasts. From the literature it was known that release of protoplasts from 
Aspergillus could be obtained by using either freeze-dried gastric juice of Helix pomatia 

Protoplasts from A nidulans 91 



(Ferenczy et al, 1976) or extra-cellular lytic enzymes as produced by Streptomyces sp 
(Peberdy and Gibson, 1971; Peberdy etal, 1976), or T. harzanium (ex T. viride) 
(Peberdy and Isaac, 1976, Kevei and Peberdy, 1977; Morris, 1978). These lytic 
enzymes were induced by growth of the organisms on mineral salts medium con­
taining Aspergillus cell walls or chitin-laminarin as sole carbon source. In contrast 
to such results, these or similar systems, including the use of the commercial enzyme 
preparation Driselase (Schafrick and Horgen, 1978), resulted in our experiments in 
relatively low yields of protoplasts after rather long incubation periods. Because it 
was not possible to reduce the incubation periods needed or to scale up the amounts 
of mycelium to be digested we investigated the use of other lytic enzyme systems. 

From the work of Mann et al (1972) it became evident that the actinomycete 
O. xanthineofytica was able to grow very effectively on yeast cell walls, producing 
a lytic enzyme system specific for yeast. When Oerskovia was grown on Aspergillus 
cell walls, the concentrated culture extract was more effective in producing proto­
plasts than the other lytic systems tested. Since the glucanase/chitinase-containing 
preparation Onozuka 10 R cellulase (Wakasa, 1973) was able to promote protoplast 
formation, extracts from agar-grown Aspergillus, which also produce lytic activities 
to supply the carbon and energy for cleistothecium development (Zonneveld, 1971), 
were tested. These extracts on their own, however, were found to have a poor ability 
to produce protoplasts, but by combining the extracts with the concentrated Oerskovia 
extract, an optimal release of protoplasts could be obtained. From 40 mg of fresh 
weight mycelium ( * 5 mg of dry weight) at least 2.5 x 108 protoplasts could be 
obtained within 3 h of incubation under our standard conditions (Figure 1 ). Similar 
results were obtained by scaling up to 40—50 g of mycelium. In general, the release 
of protoplasts followed an S-shaped curve (Figure 2), the lag being dependent on the 
state of the cells and the incubation conditions (see below). During this lag-period 
small, non-vacuolated protoplasts were released, while during the exponential period 
much larger protoplasts with large vacuoles were produced (Figure 1 ,B—E). On pro­
longed incubation they even increased to sizes of 25 urn, depending on the concen­
tration of the osmotic stabilizer and the carbon source used in the growth medium. 

Optimal production of the lytic enzyme activities produced by Aspergillus and 
Oerskovia was determined from combination of extracts of both cultures, harvested 
at different times and concentrated as described. From Figure 3 it can be concluded 
that optimal production of Aspergillus lytic enzyme extract was obtained after 5—6 
days of incubation at 37°C, and that of Oerskovia after 28 h at 28°C. Optimal pro­
duction of the Oerskovia lytic system was strongly promoted by using fresh and 
dense sub- or seed-cultures adapted to Aspergillus cell walls. Although Oerskovia 
was able to grow very effectively on the semi-defined media containing chitin or 
chitin-laminarin, these concentrated culture extracts were far from effective in pro­
ducing protoplasts; a-(l -*• 3)-glucan from Aspergillus was a poor substrate for growth. 

The crude culture extracts of both micro-organisms, harvested at different times 
after induction, were also analysed for different enzyme activities being lytic towards 
amylose, laminarin, a-(l -»• 3)-glucan, pustulan and chitin. As shown in Figures 4A 
and 4B a striking coincidence of maximal release of protoplasts and the presence of 
a-(l ->• 3)-glucanase and chitinase activities, was observed, indicating that these enzyme 
activities might be rate-limiting factors in the formation of protoplasts. This obser­
vation is in good agreement with the results of Bull (1970b) and Zonneveld (1971), 
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Figure 1 Protoplasts from Aspergillus nidulans. Fresh mycelium, grown and pretreated with 
2-deoxy-D-glucose under standard conditions, was incubated at 30°C with the combined extra­
cellular lytic enzyme systems from Aspergillus and Oerskovia. Photographs were taken at the 
times indicated using a Zeiss photomicroscope. Bars represent 10 Mm. (A) Massive release of 
protoplasts after 3 h of incubation. (B) Small non-vacuolated protoplasts in the first h of 
incubation. (C) Vacuolated protoplasts after 2—3 h of incubation. (D—E) Large protoplasts 
after 3—4 h of incubation. 

on the composition of the Aspergillus cell wall, although differences were observed in 
our curves relating enzyme activity and incubation time. Since the addition of 
commercial chitinase to lytic preparations with low chitinase activity did not promote 
the release of protoplasts, the possibility exists that other lytic enzyme activities 
might be even more essential for lysis. Due to the complexity of these lytic enzyme 
systems, purification of the different lytic enzyme activities and reconstitution to an 
active complex has not been achieved until now. 

As already indicated by several authors and summarized by Peberdy (1976), release 
of protoplasts might be influenced by several factors such as type of mycelium used 
for digestion, nature and concentration of osmotic stabilizer, pH of incubation mixture, 
and pretreatment of mycelium. In order to determine the conditions for optimal 
release of protoplasts with our lytic enzyme systems some of these factors were inves­
tigated. 

The state of the cells used for the production of protoplasts is most important. 
Maximal yields of protoplasts were obtained from homogeneous cultures in expo­
nential growth phase under our culture conditions for this biAï -strain, 14—16 h after 
inoculation. With older mycelia slightly lower final levels were obtained and longer 
incubation periods were needed due to an increase in the length of the lag period of 
the S-shaped release curve (cf. Figure 2). Highly branched irregularly grown hyphae, 

Protoplasts from A nidulans 9 3 



e 
3 

o 
o. 

2 . 

o 1 -

^S 

j f 

1 I I 
2 4 

Incubation t ime (h) 

Figure 2 Effect of mycelial age on the t ime course of protoplast release f rom Aspergillus nidulans. 
Mycelium, grown on citrate-phosphate medium containing 1% (w/v) of glucose, and harvested 
at 16 h ( • — • ) and 24 h ( O— O) after inoculation, was pretreated wi th 2-deoxy-D-glucose and 
incubated w i th the combined extra-cellular lyt ic enzyme systems under standard conditions. 
Release of protoplasts was monitored by l ight microscopy; numbers of protoplasts were counted 
as described. 

normally obtained when old conidiospores were used for inoculation, were very in­
sensitive. Upon testing some wild type isolates of Aspergillus a close correlation was 
found between the growth rate of the strain and the sensitivity of the mycelium of 
different ages, towards the lytic system, pointing to the importance of the physio­
logical age of the cells. 

The medium used to culture Aspergillus mycelium also had a marked effect on 
the release of protoplasts. By lowering the phosphate concentration and introducing 
a chelating agent such as citrate the yield of protoplasts could be greatly enhanced. 
Cells grown on glucose/mineral salts medium supplemented with yeast-extract or 
trypton were less susceptible. Also mycelium grown on concentrations of glucose 
> 2% (w/v) appeared to be less sensitive. Substituting glucose by other growth pro­
moting carbon sources did not greatly influence the formation of protoplasts, although 
differences could be observed in the dimensions of the protoplasts, e.g. mycelium 
grown on sucrose released very large protoplasts (25 jum). 

Although melanization of the cell wall has been implicated in the action of lytic 
enzymes on the hyphal wall (Bull, 1970a,b; Peberdy, 1976), other factors such as 
changes in the glucan or chitin components in the cell wall may be much more 
important: (1) melanization starts after complete exhaustion of the glucose in the 
medium (Bull, 1970a; Rowley and Pirt, 1972), and higher glucose concentrations, 
which prevent the formation of melanin but support the formation of a-(l -> 3)-
glucan (Zonneveld, 1972b; 1974), result in a mycelium that is less susceptible to the 
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action of the lytic system. (2) The glucose concentration can greatly influence the 
relative synthesis of alkali soluble and insoluble glucan (Zonneveld, 1972b), thus 
drastically changing the cell wall composition. (3) The low phosphate concentration 
affects the amount and composition of certain wall components such as phospho-
mannan in yeast (San Bias and Cunningham, 1974a,b). A comparable situation might 
exist in Aspergillus. (4) The presence of a chelating agent such as citrate might cause 
a deficiency in trace elements resulting in a decrease in the amount of a-(l ->• 3)-glucan 
(Zonneveld, 1972b; 1975), although this might also result in a decrease in the amount 
of melanin (Kuo and Alexander, 1967; Rowley and Pirt, 1972). All these observations 
strongly support the suggestion that a rather complex enzyme system is necessary to 
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Figure 3 Production of lytic enzyme activities by cleistothecia developing Aspergillus nidulans 
and Oerskovia xanthineolytica grown on Aspergillus cell walls. At the times indicated, extra­
cellular lytic enzymes produced by Oerskovia were isolated and concentrated. Combinations of 
these extracts with extracts from Aspergillus isolated at different days after inoculation were 
used to release protoplasts from Aspergillus mycelium under standard conditions. The number of 
protoplasts was counted after an incubation period of 3 to 3.5 h. Symbols represent extracts 
used from respectively 3 ( O - O ) , 4 ( • - • ) , 5 ( D - D), 6 ( • - • ) and 7 ( A - A ) days old 
Aspergillus cultures. 
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Figure 4 Relation between incubation t ime of extra-cellular lyt ic enzyme producing Oerskovia 
(Figure 4A) and Aspergillus (Figure 4B), and the presence of specific lyt ic enzyme activities in 
their concentrated extracellular extracts. Cultures of Oerskovia and Aspergillus were grown and 
the extracellular lyt ic enzyme activities were isolated and concentrated at the times indicated, 
as described in Materials and methods. Enzymatic activities lyt ic towards a-(1 -* 3)-glucan 
( O— O ) , chit in ( • — • ) , laminarin ( A— A ) , amy lose ( • — • ) , and pustulan ( A— A ) , were 
measured. Protoplast producing capacity of these extracts under standard conditions ( • — • ) 
was determined by combining the different Oerskovia extracts wi th a lyt ic extract f rom a 5-
day-old Aspergillus culture (Figure 4A) and by combining the different Aspergillus extracts 
wi th a lyt ic extract f rom a 28-h-old Oerskovia culture (Figure 4B). Numbers of protoplasts 
were counted after 3 h of incubation. 

solubilize the Aspergillus cell wall effectively. This is further substantiated by the 
fact that selective induction of extra-cellular lytic enzymes on single cell wall com­
ponents does not result in a similar digestion of the cell wall. 

Pretreatment of mycelium with various agents has been used with some organisms. 
In several cases thiol compounds or Triton X-100 were found to support protoplast 
release. In our system, however, preincubation of washed mycelium with 2-mercapto-
ethanol, 2-mercaptoethylamine, thioglycol, cystein, dithiothreitol, Triton X-100 or 
EDTA was not effective, sometimes being even highly inhibitory. However, preincu­
bation with 2-deoxy-D-glucose promoted the formation of protoplasts, being maxi­
mal at 100 tig/ml of incubation mixture containing 50 mg of fresh mycelium (Figure 5). 
Similar promoting effects could be obtained by introducing this compound at low 
concentrations (5-10 /ig/ml) in the culture medium during growth of the mycelium. 
It is clear from the studies of Zonneveld (1973) that 2-deoxy-D-glucose might inter­
fere with the incorporation of glucose in the cell wall, and thus change the cell wall 
composition by decreasing the a-(l -»• 3)-glucan synthesis. Therefore, the stimulating 
effect of a relatively short preincubation with this glucose analogue cannot only be 
explained in terms of making the cells more fragile (Foury and Goffeau, 1973). It is 
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more likely that lytic activities, endogenously derived from the fungus are activated by 
this preincubation. This suggestion is substantiated by the effect of 2-deoxy-D-glucose 
on the formation of protoplasts from agar-grown conidiospores (C. J. Bos and S. M. 
Slakhorst-Wandel, manuscript in preparation). It is also in agreement with the obser­
vations of Moore and Peberdy (1976) that conidia produced in liquid cultures are 
more sensitive to lytic enzymes than agar-slant grown conidia due to differences in 
their cell wall structure. 

With 0.4 M (NH^SC^ as osmotic stabilizer, optimal release of protoplasts was 
obtained within a relative wide pH range of 5.5 to 6.5 in 0.2 M K-phosphate buffer; 
higher and lower pH values resulted in lower yields of protoplasts probably due to 
inactivation of the lytic enzyme system during incubation. 

Several osmotic stabilizers were tested for their ability to promote the release of 
stable protoplasts from Aspergillus. In contrast to the results of Peberdy et al (1976) 
obtained with the Streptomyces extracts, in our system 0.3-0.4 M ( N H ^ S04 gave 
the highest yields of stable protoplasts. Sugars or sugar alcohols were very ineffective. 
Although similar high yields could be obtained with 0.5 M KCl, the total number of 
protoplasts decreased upon prolonged incubation (Figure 6A). Lower yields of proto­
plasts were also obtained with NH4 CI or NaCl and were probably due to instability. 
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Figure 5 Effect of 2-deoxy-D-glucose pretreatment on the formation of protoplasts from 
Aspergillus. Fresh Aspergillus mycelium from a 16 h culture was preincubated for 45 min at 
37°C with different concentrations of 2-deoxy-D-glucose. The pretreated mycelium was washed 
and incubated with the combined lytic enzyme system under standard conditions. Numbers of 
protoplasts were counted after 3 h of incubation. 
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Figure 6A Effect of different osmotic stabilizers of similar osmotic potentials on the formation 
of protoplasts. Fresh Aspergillus mycelium, pretreated with 2-deoxy-D-glucose, was incubated 
under standard conditions in the presence of 0.4 M ( N H 4 ) , S 0 4 ( O - O ) , 0.45 M KCl ( • - • ) , 
0.47 M NH4CI ( • - O) , 0.43 M NaCI ( • - • ) or 0.72 M sorbitol ( A - A ) . The formation of 
protoplasts was monitored with the microscope and numbers of protoplasts were counted at 
the times indicated. 

Figura 6B Effect of different concentrations of the osmotic stabilizer ( N H 4 ) j S 0 4 on the release 
of protoplasts.Conditions were as described in Figure 6A. Incubations were performed in 0.1 M 
( « - » ( . O ^ M ( D - D ) , 0.3 M ( • - • ) , 0.4 M ( O - O ) , 0.5 M ( A - A ) , 0.6 M ( T - Y ) a n d 
0.8 M ( A - • ) ( N H 4 ) , S 0 4 respectively. 

Higher concentrations of the (NH»^ S04 stabilizer were strongly inhibitory. At low 
concentrations, i.e. 0.1-0.2 M (NH^SO,, , slightly larger amounts of protoplasts 
were released initially, but after 1.5 to 2 h of incubation a levelling off was visible 
(Figure 6B). In general, protoplasts formed at lower osmotic stabilizer concentrations 
had very large vacuoles and were larger in size than at the higher concentrations, indi­
cating that the osmotic pressure can greatly influence the dimension and the degree of 
vacuolization. 

At the lowest (Nrtt^SC^ concentrations it was also observed that in the presence 
of the lytic enzyme system regeneration of protoplasts could occur within 12 h of 
incubation. Increasing the (NH4)2 S04 concentration greatly delayed this develop­
ment and above 0.5 M it was even completely prevented, although sometimes clustering 
(fusion ?) of protoplasts could be seen (Figures 7A and 7B). The regeneration observed 
was completely different from that described by Peberdy and Gibson (1971). It started 
with the formation of a specific germ tube-like outgrowth from a protoplast followed 
by development of a mycelium-like structure with a dimension twice that of normal 
hyphae (Figures 7C—7G); no lengthening of a chain of cells was visible. Since sep-
tation in the hyphae was observed and a mycelium-like structure was obtained, the 
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Figure 7 Regeneration of protoplasts from Aspergillus nidulans in the presence of the combined 
lytic enzyme systems. Fresh mycélium was pretreated with 2-deoxy-D-glucose and incubated at 
30°C with lytic enzymes. Samples were taken at the times indicated and photographs were made 
with a Zeiss photomicroscope. Bars represent 10 pm. (A) Clustering of protoplasts in 0.6 M 
(NH4 )2S04 , t = 24h. (B) Limited regeneration in 0.4 M (NH4) ,S04 , t = 24 h. (C) Early stage 
of regeneration in 0.1 M (NH4 ) ,S04 , t = 10—12 h. (D—G) Regenerating structures in 0.1 M 
(NH4),SO„, t = 20—24 h; in (E—G) the preparation was stained on the slide with 0.2% 
naphthalene blue black. 
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presence of the lytic system does not seem to prevent the formation of cell wall-like 

structures. However, due to their dimensions and their high degree of vacuolization 

these structures were completely different from the normal hyphae. 

Hie procedure described above can result in large amounts of protoplasts both on 

micro- and macro-scale, and seems to be applicable to different stages (from conidia 

up to older mycelium) and different strains (cf C. J. Bos and S. M. Slakhorst-Wandel, 

manuscript submitted). The protoplasts obtained can be purified by differential 

centrifugation or filter filtration, but not by flotation. They can be used for further 

studies, such as uptake of labelled compounds in the study of the regulation of tran­

scription in vivo and the isolation of highly polymerized (labelled) DNA and 

chromatin (van den Broek et al, in preparation). 
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CHAPTER 5 

THE EFFECT OF g-AMANITIN AND ACTINOMYCIN D ON THE RNA SYNTHESIS IN PROTO­

PLASTS FROM ASPERGILLUS NIDULANS 

Summary 

RNA synthesis has been studied in protoplasts from Aspergillus nidu-

lans , which remained metabolically active for several days under the 

appropriate conditions. From the results it is concluded, that at certain 

actinomycin D concentrations the ribosomal RNA synthesis can be selective­

ly inhibited. However, a-amanitin at concentrations upto 400 yg/ml did 

neither influence the total nor the RNA polymerase II directed RNA synthe­

sis. It was possible to discriminate between the RNA polymerase I or II 

directed RNA synthesis due to the presence of poly (A) tails attached to 

at least part of the RNA, presumably messenger RNAs or their precursors. 

Introduction 

Three d i s t i nc t classes of nuclear DNA-dependent RNA polymerases can 

be pur i f ied from lower as well as higher eukaryotes ( c f . Roeder, 1976). 

As suggested by Roeder and Rutter (1969) they can be c lass i f ied by the i r 

order of e lut ion from DEAE-Sephadex as RNA polymerase I , I I and I I I , res­

pect ively. Later Chambon and coworkers (Kedinger et a l . , 1971) i n t r o ­

duced the nomenclature RNA polymerase A, B and C, according to the i r sen­

s i t i v i t y towards the toxin a-amanitin. This l a t t e r c lass i f i ca t ion was 

based on the i r f ind ings, that from animal sources, RNA polymerase A was 

insensit ive towards a-amanitin, B highly sensit ive (10-50 ng/ml for 50% 

i nh ib i t i on ) and C sensit ive at high concentrations (10-25 yg/ml for 50% 
2+ 2+ i n h i b i t i o n ) . Other enzyme character is t ics , l i ke salt-optimum, Mn /Mg 

a c t i v i t y ra t io or preference for certain natural or synthetic templates, 

were merely used to confirm these c lass i f i ca t ions . 

Subcellular d i s t r ibu t ion of the d i f fe rent enzyme classes and analysis 

of the gene t ranscr ipts ( c f . Chambon, 1975) led to the assumption, that 

RNA polymerase I (or A) synthesizes r-RNA (B la t t i et a l . , 1971), RNA poly­

merase I I (or B) hn-RNA, the precursor of m-RNA (Zylber and Penman, 1971) 

and RNA polymerase I I I (or C) t-RNA and 5S RNA (Weinman and Roeder, 1974). 

The spec i f i c i t y of the d i s t i nc t RNA polymerases for certain genes was re­

cently confirmed in studies using min vitro c e l l - f ree t ranscr ip t ion 

system (Manley et a l . , 1980; Weil e t a l . , 1979). I t was demonstrated, 

that for example genes coding for 5S RNA were only transcribed by RNA 

polymerase I I I and not by RNA polymerase I or I I (Weil e t a l . , 1979). 
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The mammalian nuclear RNA polymerases are readily distinghuisable 

with respect to their sensitivity towards a-amanitin (Kedinger et al., 

1971). Differences are observed with insects, where RNA polymerase 

III (or C) is insensitive to a-amanitin (Sklar et al., 1975) and with 

lower eukaryotes, where RNA polymerase I is sensitive at high concen­

trations, e.g. from yeast at 300-600 yg/ml for 50% inhibition (Huet et 

al., 1975), and RNA polymerase II only sensitive at higher concentrations, 

e.g. from yeast at 1 yg/ml (Schultz and Hall, 1976) and from the mushroom 

Agariaus bisporus at 7 yg/ml for 50% inhibition (Vaisus and Horgen, 1979). 

Also mutant cell-lines (e.g. CHO-line) have been developed, containing a 

RNA polymerase II, which is 100-800 fold less sensitive to a-amanitin in­

hibition than the wild type enzyme (Chan et al., 1972; Ingles, 1978). 

Adult mutants of Drosophila melanogaster, grown at concentrations of a-

amanitin lethal to the wild types, contain a RNA polymerase II, which is 

250-fold less sensitive than the wild type enzyme. The RNA polymerase II 

acitivities isolated from these a-amanitin mutants, differ in their sen­

sitivity towards inhibition with a-amanitin, but their catalytic and chro­

matographic properties and their subunit composition are indistinguishable 

from the wild type polymerase enzyme complex (Greanleaf et al., 1979). 

Although variations in the a-amanitin sensitivity of the RNA polymer­

ases occur, it is generally accepted, that RNA polymerase II is the most 

sensitive class of the RNA polymerases. However, we have isolated a DNA-

dependent RNA polymerase II from the fungus A. nidulans, which is not sen­

sitive to a-amanitin even at concentrations upto 400 yg/ml. Nevertheless, 

we have concluded that it belongs unequivocally to the class II RNA poly­

merases, because of its chromatographic and catalytic properties and its 

subunit composition (Chapter 3 ) . In this chapter, we will give additional 

evidence, that a-amanitin has no influence on the transcription activity 

of RNA polymerase II from A. nidulans when tested in vivo in protoplasts 

from A. nidulans. At selective concentrations of the antibiotic actino-

mycin D, the ribosomal RNA synthesis is reduced compared to the overall 

RNA synthesis. 

Materials and Methods 

Biochemicals 

All chemicals used were reagent grade and in general obtained from 

Merck, British Drug House or Difco. Actinomycin D was purchased from Sigma, 

[5,6- Hj -uridine (43 Ci/mmol) from Amersham, D( + )-biotin from Merck. The 

solutions for liquid scintillation counting (Lipoluma and Lumasolve) were 

purchased from Lumac; electrophoresis reagents (acrylamide, N,N'-methylene 

bisacrylamide, N,N,N',N'-tetramethylethyl ene diamine and ammonium per-
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sulphate) from Serva; 01igo(dT)-cellulose was obtained from P.L. Bioche-
micals Inc. a-Amanitin was a kind g i ft of Dr. M. Govindan (Heidelberg). 
Wild type i solates from Aspergillus nidulans were kindly provided by Dr. 

J.H. Croft (Leicester). 

Organism and Growth conditions 

A biA, (biotin deficient) strain of Aspergillus nidulans from Glasgow 

origin was used in most experiments; some experiments were performed with 

wild type isolates. Maintenance and preparation of conidial suspensions 

were performed as described (van den Broek et al., 1979). For preparation 

of the protoplasts, Aspergillus was grown on a citrate-phosphate medium 

for 12-14 h at 37 °C (van den Broek et al., 1979). 

Preparation and purification of protoplasts 

Mycelium of Aspergillus was harvested, washed and pre-incubated with 

2-deoxy-D-glucose as described (van den Broek et al., 1979). The mycelium 

was suspended in a K-phosphate/ammonium sulphate buffer 0.2 M K-phosphate 

buffer pH 6.5 , 0.4 M (NH.)„S04, 0.5 M CaClp , the lytic enzyme systems 

(derived from Oerskovia xanthineolytica and Aspergillus nidulans) were 

added (van den Broek et al., 1979) and the mycelium suspension was incu­

bated for 12-16 h at 30 °C. 

Cell wall debris and residual mycelium were separated from the proto­

plasts by repeated centrifugation of the suspension through a 30% (w/v) 

sucrose cushion for 20 min at 600 x g (Bos and Slakhorst, in prep.).The 

protoplasts remained on the top of the cushion, while mycelium and cell 

wall debris were found at the bottom of the tube. The protoplasts were 

removed from the tube and diluted, if necessary, with the K-phosphate 
o 

buffer to obtain a concentration of 0.5-1 x 10 protoplasts/ml. 

Measurements of H-UMP incorporation 

Q 

The purified protoplasts (0.5-1 x 10 /ml K-phosphate buffer) were 

pre-incubated for 5 hours at 30 C in the presence or absence of either 

a-amanitin or actinomycin D at the concentrations indicated. Biotin 

(40 yg/1) was added, when the biA, strain of Aspergillus was used. 

After 5 hours 40 pCi/ml of [ H_]-uridine was added and the protoplasts 

were further incubated at 30 °C for the times indicated. 
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To determine the incorporation of radioactivity, samples (100 pi) of 

the incubated protoplast suspension were taken and the reaction was stop­

ped by the addition of 5 ml of 10% (w/v) ice-cold TCA-1% (w/v) pyrophos­

phate. After 20 min on ice, the precipitate was collected on Whatmann 3 MM 

filters. The filters were washed twice with 5% TCA, three times with 1 M 

HCl containing 0.1 M pyrophosphate, to remove acid-soluble nuleic acids, 

and twice with 80% (v/v) ethanol, successively. All washings were done for 

10-15 min on ice. The dried filters were treated with 0.5 ml of Lumasolve 

for 2 hours at 60 °C and counted after the addition of 5 ml of Lipoluma in 

a Kontron liquid scintillation counter 

For the isolation of RNA, the incubation of protoplasts was stopped 

by transfering the samples into centrifuge tubes and collecting the proto­

plasts at 4 °C by centrifugation at 1 000 x g for 20 min. The pellets were 

stored at -20 °C. 

Isolation and analysis of RNA 

RNA was isolated from protoplasts by a modification of the method of 

Glisin et al. (1974). A protoplast pellet, obtained after incubation of 
o 

1 x 10 protoplasts as described above, was dissolved in 3 ml 50 mM Tris-

HC1 pH 8.2, 0.1 M NaCl and 10 mM EDTA containing 2% (w/v) para-ami no-sali-

cylate, 1% (w/v) sodium deoxycholate, 0.5% (w/v) TPNS and 2% (w/v) sarco-

syl (the latter four reagents were added immediately before use). This 

mixture was incubated for 5 min at 60 °C. To the solution solid CsCl 

(2.7 g/3 ml) was added, solubilized and layered on a CsCl-containing 

cushion (1.0 ml of 5.7 M CsCl, 20 mM Tris-HCl pH 8.2, 0.1 M EDTA) in tubes 

for the SW 50.1 Beekman rotor. The tubes were centrifuged for 16 hours at 

35,000 rpm and 18 °C. The supernatant was pipetted off and the pellets were 

dissolved in 200 pi 10 mM Tris-HCl pH 8.0, 1 mM EDTA. The RNA was precipi­

tated overnight at -20 C after addition of ammonium acetate to a concen­

tration of 0.24 M (Osterburg et al., 1975) and two volumes of ethanol. 

The precipitate was collected by centrifugation at 10,000 x g for 10 min, 

dried and solubilized in 100 pi Loening sample buffer, supplemented with 

10% (w/v) Ficoll. Aliquots (10 pi) were subjected to electrophoresis accord­

ing to the method of Loening (Loening and Ingle, 1967). 

After electrophoresis (3-4 hours at 100 V) the gel was stained with 

0.01% (w/v) toluidine blue in 40% (v/v) methanol and destained with water. 

For autoradiography, the gels were soaked in 1 M Na-salicylate for 1 hour 
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at room temperature, dried on Whatmann 3 MM paper and exposed to Kodak 

XRP-1 film. Fractionation of RNA into poly(A)-plus and poly(A)-minus 

species, by oligo(dT)-cellulose chromatography was carried out according 

to the method of Pemberton et al. (1975). 

Results 

RNA polymerase II, isolated from A. nidulans (Chapter 3 ) , appeared to 

be insensitive towards the toxin a-amanitin when tested either in the 

homogenate or in the final purified form. In order to investigate, whether 

this in vitro insensitivity reflects the actual situation in vivo in the 

cell, we looked for a system to test the in vivo inhibition by a-amanitin. 

The cell wall of Aspergillus is very impermeable and prevents the up­

take of antibiotics, like actinomycin D (unpublished observations). 

It was reported by Cheung et al. (1974), that the conidia of Neurospora 
crassa were impermeable to a-amanitin and actinomycin D, but the vege­

tative mycelium was not. Because Aspergillus medium was impermeable 

to actinomycin D, we took it for granted, that a-amanitin would also 

not be taken up into the mycelium. 

Inhibition of the RNA synthesis can be studied with isolated nuclei 

(Zylber and Penman, 1971; Price and Penman, 1972;Hadjiolov et al., 1974), 

but the results are often ambiguous, due to leakage and instability of 

the nuclei especially after long incubation times. This problem can be 

avoided by preparing protoplasts, which remain stable and metabolically 

active for several days at 30 °C. As described in an earlier publica­

tion (Chapter 4 ) , large amounts of protoplasts can be prepared from A. 
nidulans rather easily (van den Broek et al., 1979). Depending on the in­

cubation condition, the protoplasts are able to bud and form aberrant 

hyphae and after 24-36 hours normal hyphae (unpublished observations). 

These protoplasts can therefore be considered as metabolically active. 

Since intact cells or protoplasts may not be freely permeable to 

a-amanitin, long incubation times are necessary. Therefore the freshly 

prepared and purified protoplasts from Aspergillus were pre-incubated 

with the inhibitors of RNA synthesis for 5 hours before addition of the 

labeled uridine. The RNA synthesis was measured as the incorporation of 
3 

H-UMP into TCA-insoluble material. After a short lag-time, the rate of 
-J 

incorporation of H-UMP into TCA-insoluble material was constant during 

107 



300 

200 

< z 
CE 

100 

16 20 24 28 

Incubation time (h) 

Fig. 1. The tine-course of H-UMP incorporation into HUA of Aspergillus 

nidulans protoplasts. Freshly prepared protoplasts from Aspergillus nidulans 

st ra in biA, were pur i f ied and incubated with or without e i ther a-amanitin 

or actinomycin D for 5 h at 30 °C as described. Then |_ Hj-ur idine (40 uCi/ 

ml) was added to the protoplast suspension and the incubation at 30 C was 

continued. Samples (100 y l ) were taken at various times and the label i n ­

corporation into RNA was determined as described. 

Incorporation into RNA of protoplasts without (o - o ) and with e i ther 

a-amanitin at a concentration of 400 pg/ml ( • - • ) or actinomycin D at a 

concentration of 5 yg/ml ( A — A ) , 15 ug/ml (o - - o) and 45 ug/ml(o - - o ) , 

respectively. 
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the first 12-18 hours and levelled subsequently (fig 1). 

Pre-incubation of the protoplasts with actinomycin D at a concentra­

tion of 45 yg/ml resulted in a more than 90% inhibition of RNA synthesis, 
3 

whereas only a partial inhibition of H-UMP incorporation was observed at 

5 and 15 yg/ml of actinomycin D (fig. 1). Incubation of the protoplasts 

with a-amanitin did not result in a decrease of H-UMP incorporation into 

TCA-insoluble material, even at concentrations of 400 yg/ml of the toxin 

(fig. 1). This could be due however, to a limited contribution of the a-

amanitin senstive RNA synthesis to the overall RNA synthesis (Horgen and 

Key, 1973; Chambon, 1975). In order to investigate this possibility, we 

purified the RNA from control and treated protoplasts by a modified method 

of Glisin et al. (1974] 12 hours after the addition of the label. The poly 

(A)-plus RNA was separated from the poly(A) - minus RNA by repeated chroma­

tography on oligo(dT)-cellulose in the presence of dodecyl sulphate (Pem-

berton et al., 1975). 

The stained Polyacrylamide gel and the autoradiogram of the purified 

total RNA from control and a-amanitin or actinomycin D treated protoplasts 

are shown in fig. 2. No differences in the RNA pattern of control (lane 1) 

and a-amanitin treated (lane 2) protoplasts can be detected. The poly(A) 

minus RNA from protoplasts incubated with 400 yg/ml of a-amanitin, is 

shown in lane 3. The rRNA is not visibly degraded through the oligo(dT)-

cellulose chromatography fractionation. The effect of increasing concen­

trations of actinomycin D on the incorporation of radioactivity into the 

RNA of the protoplasts is shown in lane 4, 5 and 6. It is interesting,that 

besides an overall reduction of label incorporation into the RNA with in­

creasing amounts of actinomycin D, a marked reduction of the incorporation 

of radioactivity into the large ribosomal RNA component can be observed 

compared to the small ribosomal RNA component. It is not clear whether 

this reflects a more rapid degradation or a reduced synthesis of the large 

rRNA component compared to the small rRNA component. 

Separation of the total RNA through oligo(dT)-cellulose chromatography 

into a poly(A)-plus and poly(A) - minus RNA fraction showed no difference 

in the amount of radioactivity incorporated into the poly(A) - plus RNA 

between control (% 14%) and a-amanitin treated (̂  14%) protoplasts 

(Table 1). These results indicate, that under these conditions, RNA poly­

merase II directed RNA synthesis was not influenced by a-amanitin even at 

a concentration of 400 yg/ml. 
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Fig. 2. Analysis of RNA from control and either a-amanitin or actinomycin 

D treated protoplasts from Aspergillus nidulans. Pur i f ied p ro top la s t s were 

pre-incubated with or without e i ther a-amanitin or actinomycin D fo r 5 h; 

the incubation was continued for 12 h at 30 °C a f ter the addit ion of [ 3 H ] -

uridine (40 uCi/ml). The RNA was isolated from the protoplasts and samples 

were analyzed on a 3% Polyacrylamide gel as described. The gel was stained 

and destained, soaked in 1 M Na-sal icylate, dried and exposed to Kodak 

XRP-1 f i l m . 

(A): Polyacrylamide gel stained with to lu id ine blue, (B): autoradiogram 

of the stained ge l . 

Lane (1 ) : RNA from control protoplasts 

Lane (2 ) : RNA from protoplasts incubated with 400 yg/ml of a-amanitin 

Lane (3 ) : Poly(A)-minus RNA,separated from poly(A)plus RNA as described, 

from protoplasts incubated with 400 yg/ml of a-amanitin 

Lane (4 ) : RNA from protoplasts incubated with 5 yg/ml of actinomycin D 

Lane (5) : RNA from protoplasts incubated with 15 yg/ml of actinomycin D 

Lane (6) : RNA from protoplasts incubated with 45 yg/ml of actinomycin D. 
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A relative increase in the percentage of radioactivity incorporated 

into poly(A)-p1us RNA, can be observed, when the protoplasts are treated 

with 5 or 15 yg/ml of actinomycin D (Table 1). This can be explained as 

a selective inhibition of rRNA synthesis by actinomycin D at these con­

centrations. As the RNA polymerase transcribed rRNA genes are more 

sensitive to actinomycin D than the RNA polymerase II transcribed (pre)-

mRNA genes, it should be concluded that the (G+C) content of the ribosomal 

genes or part of the genes is importantly higher than the overall (G+C) 

content of total DNA from Aspergillus nidulans, which is reported to be 

^ 51% (Pontecorvo, 1967; Lopez-Peres and Turner, 1975). At 45 yg/ml of 

actinomycin D both the synthesis of rRNA and (pre)-mRNA is more than 90% 

inhibited. The actinomycin D concentration necessary to inhibit the RNA 

synthesis completely is 4-5 fold higher than appeared to be necessary for 

complete inhibition of RNA synthesis of aowpea mesophyl protoplasts 

(Rottier, 1980). In that case, more than 90% of RNA synthesis was 

inhibited at 10 yg/ml of actinomycin D, compared to 40-50% with Asper­
gillus, and 10 yg/ml of a-amanitin resulted in a 6% inhibition of RNA 

synthesis, derived from inhibition of (pre)-mRNA synthesis by RNA poly­

merase II. 

Data on a possible inhibition of the RNA polymerase III directed RNA 

synthesis could not be derived from the experiments described here, be­

cause tRNA and 5S RNA are not isolated together with rRNA and mRNA by 

the method of Glisin et al. (1974). 

Wild types of Aspergillus nidulans belonging to different incompata-

bility groups (Pontecorvo et al., 1953), were also tested for their 

sensitivity towards inhibition with a-amanitin and actinomycin D. The 

results were identical to those obtained with the biA, strain, although 
3 differences in the rate of H-UMP incorporation into TCA-insoluble 

material were observed (not shown). The insensitivity towards a-amanitin 

inhibition appears to be common for the different Aspergillus nidulans 
strains and is perhaps a more widespread phenomenon among fungi. 

Discussion 

We have shown that the RNA synthesis in protoplasts from different 

strains of Aspergillus nidulans is not inhibited by a-amanitin even at 

a concentration of 400 ug/ml. This in vivo result confirms our in vitro 
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Table 1. The e J'f eat of t-arnanitin and aatinomyoin D on the RNA synthesis 

in protoplasts fron Aspergillus nidulans. 

Ant ib io t i c Concentration Incorporation Incorporation in to 

(ug/ml) into RNA poly(A)-plus RNA 

{% of control) {% of to ta l RNA) 

101 13.8 

96 14.1 

103 15.3 

74 45.4 

31 70.1 

9 18.8 

100 14.1 

Protoplasts were incubated with or without the i nh ib i to r for 5 h. Then [ H j -

ur idine (40 yCi/ml) was added and the incubation was continued for 12 h. 

Protoplasts were harvested, RNA was isolated and f ract ionated in to poly(A)-plus 

and poly(A)-minus RNA through ol igo(dT)-cel lulose chromatography as described. 
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f ind ings, that the pur i f ied RNA polymerase I I from Aspergillus s t ra in biA, 

is not inh ib i ted at a l l at 400 yg/ml of a-amanitin and that the polymerase 

complex is unable to bind[p- CJ-methyl-Y-amanitin at a concentration of 

the amanitin derivate of 10 ug/ml (Chapter 3) . Some res t r ic t ions should be 

made concerning the in terpretat ion of the in vivo i nh ib i t i on experiments 

as described in th is Chapter. I t can not be excluded, that the protoplasts 

of Aspergillus may be impermeable to a-amanitin and not to actinomycin D. 

As already indicated, Cheung et a l . (1974) have reported that the vegata-

t i ve mycelium of Neurospora i s permeable to both a-amanitin and act ino­

mycin D, in spi te of the presence of the ce l l wa l l . I t seems un l i ke ly , 

that Aspergillus p rotoplasts, lacking the ce l l w a l l , are spec i f i ca l l y im­

permeable to a-amanitin. a-Amanitin i nh ib i t i on experiments using fused pro­

toplasts from A. nidulans and a fungus, which is known to be a-amanitin 

sens i t ive , may give the answer, whether impermeability of Aspergillus ni­

dulans protoplasts to a-amanitin i s causing the in vivo i n sens i t i v i t y t o ­

wards th is t ox in . 

An important resul t from the studies described here, is the demonstra­

t ion of the presence of a po ly (A) - ta i l attached to a part of the (newly 

synthesized) RNA of Aspergillus nidulans. Following the f inding from Dar­

nel l et a l . (1971) and many others, that only messengers are known to 

have a poly(A)-sequence (at the 3' end of the molecule), we conclude, 

that the poly(A)-plus RNA from Aspergillus nidulans, separated from the 

bulk RNA through o l igo(dT)-cel lu lose chromatography, consists of me-

senger RNAs or i t s precursor. 
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CHAPTER 6 GENERAL DISCUSSION AND SUMMARY 

The investigations of the biochemical organization and the regulation 

of transcription in filamentous fungi have been delayed by the presence of 

a rigid cell wall, which can only be desintegrated with severe mechanical 

force. Various procedures have been developed for the mechanical désinté­

gration of the fungal cell wall, such as the French press or the X-press. 

These methods are often poorly reproducible and suffer from a relatively 

low yield in terms of release of the cell content. The method for the pre­

paration of nuclei from Aspergillus nidulans developed by Gealt et al. (1976) 

appeared to be highly reproducible. Through blending large amounts of hyphal 

mass in liquid nitrogen, 50-60» of the DNA content could be released. We used 

a similar désintégration procedure to prepare a homogenate suitable for the 

purification of DNA-dependent RNA polymerases from Aspergillus. 

It is also possible to prepare protoplasts from the filamentous fungi 

by an enzymatic method, which can be used to investigate DNA, RNA or protein 

synthesis in vivo. The preparation of protoplasts from yeast was first re­

ported by Eddy & Williamson (1959) who used Belix pomatia digestive juice 

as the lytic enzymes degrading the cell wall. Several different lytic enzyme 

systems have been developed since, but these procedures could only be used 

at a micro-scale. Furthermore, protoplasts could only be released from the 

mycelium at a certain state of growth under very defined conditions. We 

have developed a more widely applicable method for the release of protoplasts 

from mycelium in both the exponential and stationary phase of growth. With 

a slightly modified procedure even protoplasts from conidiospores of A. 

nidulans can be obtained (Bos and Slakhorst, in prep.). The cell wall de­

grading enzymes were a mixture of enzymes produced by A. nidulans in the 

cleistothecium-producing stage and by Oerskovia xanthineolybica grown on 

Aspergillus cell walls. This mixture of extra-cellular lytic enzymes was 

able to effectively degrade the Aspergillus cell wall, independent of the 

strain used and the phase of growth (Chapter 4 ) . The protoplasts appeared 
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to be metabolically active and could be used to study the RNA synthesis 

in vivo and to purify intact RNA (Chapter 5). The protoplasts can also be 

used for the isolation of high-molecular-weight DNA (unpublished results). 

It should also be possible to prepare cell-free extracts from these proto­

plasts, which can be used as an in vitro system for accurate transcription 

or RNA processing, in analogy to the cell-free extracts derived from 

mammalian cells (Weil et al., 1979; Manley et al., 1980). The procedure for 

the protoplast release from Aspergillus was however rather time-consuming 

and was therefore not used for the isolation of DNA-dependent RNA polymerases. 

For the purification of Aspergillus RNA polymerases, the mycelium was 

desintegrated through blending the hyphal mass in liquid nitrogen. The RNA 

polymerase activity could be extracted from the mycelium with either a low 

or a high salt buffer, both resulting in a similar yield of RNA polymerase 

activity in the extract. Extraction of the desintegrated mycelium with a 

high ionic strength buffer resulted in a homogenate suitable for the purifi­

cation of RNA polymerase I (Chapter 2 ) , but not for that of RNA polymerase 

II. In the latter case it was necessary to extract the hyphal mass with a 

low ionic strength buffer instead of a high ionic strength buffer, in order 

to avoid instability and inactivation of the RNA polymerase II enzymes 

during purification (Chapter 3). The reason for this instability and in­

activation has not been revealed. 

Nucleic acids were removed from the homogenate upon precipitation with 

polymin P and selective extraction of the polymerase activity from the 

polymin P pellet (Zillig et al., 1970; Jendrisak & Burgess, 1975). Residual 

polymin P in the crude polymerase extract appeared to affect the binding 

of the RNA polymerases to DEAE-Sephadex and DEAE-Sepharose. As a consequence 

the separation of the different enzyme classes could not be achieved using 

these columns. The residual polymin P could not entirely be removed by 

precipitation of the RNA polymerases with ammonium sulphate as suggested by 

Valenzuela et al. (1976). Subsequent molecular sieving on Bio-Gel A-1.5 m 

appeared to be suitable to remove the polymin P, since it enabled correct 

116 



binding and elution of the different enzyme classes from DEAE-Sephadex 

and DEAE-Sepharose columns. 

In Chapter 2 the purification and characterization of RNA polymerase 

I (or A) from A. nidulans is described. The chromatographic and catalytic 

properties of the Aspergillus class I enzyme are comparable with those of 

the class I enzymes from both lower and higher eukaryotes. The subunit 

composition of the Aspergillus RNA polymerase I resembles that of class I 

enzymes from higher eukaryotes. The presence of polypeptides in the range 

of 60 000 - 70 000 dal tons, typical for the mammalian class I enzymes, 

distinguishes Aspergillus RNA polymerase I from class I enzymes from 

some lower eukaryotes, like yeast and Aaanthamoeba (Table 1). Class I 

enzymes generally are characterized by their occurrence in two subforms, 

which can be separated chromatographically or by Polyacrylamide gel electro­

phoresis under non-denaturing conditions. The mammalian class I subforms differ 

for only one polypeptide in the range of 60 000 - 70 000 dal tons, which is 

A B 
present in subform I , but is lacking in subform I . The corresponding 
enzyme from yeast differs in two polypeptides of 48 000 and 37 000 daltons, 

D 

which are lacking in the I subform. These subforms are usually indis­

tinguishable with respect to the catalytic properties and the transcription 

specificity in vitro. No physiological significance, at all, could be 

attributed to these subforms, so far. By means of DEAE-Sephadex chromato­

graphy two subforms of Aspergillus RNA polymerase I could be distinguished, 

but no differences in polypeptide composition were observed after Poly­

acrylamide gel electrophoresis in the presence of dodecylsulphate. Further­

more, Aspergillus RNA polymerase I could not be separated into two sub-

forms through Polyacrylamide gel electrophoresis under non-denaturing 

conditions. However, two dimensional urea-dodecylsulphate Polyacrylamide 

gel electrophoresis revealed, that the subunit of 33 000 {29 000*) daltons 

The number in italics represents the molecular weight of the polypeptide 

as reported in Chapter 2. The molecular weights have been revised in 

Chapter 3 and are indicated in roman. 
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could be separated into two polypeptides, which may represent two different­

ly charged forms of one polypeptide. A correlation between these two poly­

peptides of 33 000 (29 000) dal tons and the occurrence of Aspergillus RNA 

polymerase I in two subforms seemed very likely,but could not be proved 

so far. 

Aspergillus RNA polymerase II also contains a polypeptide of 33 000 

dal tons, comigrating with the respective polypeptide of RNA polymerase I. 

The 33 000 dal tons subunit is present twice in both enzyme complexes. With 

various organisms,the existence of polypeptides common to the three RNA 

polymerases has been demonstrated through immunology and tryptic mapping 

(Buhler et al., 1976). It is striking, that the common subunits can be 

phosphorylated in vivo and in vitro, as reported by Bell et al. (1976) for 

the 24 000 dal tons polypeptide of yeast. These authors have suggested, that 

the RNA polymerase activity is regulated in vivo through phosphorylation-

dephosphorylation. We assume, that the subforms of Aspergillus RNA poly­

merase I reflect the in vivo active and inactive forms of the enzyme and 

that one subform can be converted into the other through phosphorylation-

dephosphorylation of the 33 000 (29 000) daltons subunit. A similar regu­

lation of the enzyme activity may occur with RNA polymerase II, which 

also contains a 33 000 daltons polypeptide. 

The purification and characterization of Aspergillus RNA polymerase II 

is described in Chapter 3. It is demonstrated, that the purified RNA poly­

merase is clearly different from RNA polymerase I with respect to its 

chromatographic properties, its subunit composition as well as its catalytic 

properties, although both enzymes are insensitive to a-amanitin. Although 

it is not unequivocally demonstrated, that the purified RNA polymerase is 

not a class III enzyme, circumstantial evidence strongly indicates, that 

we are dealing with a class II enzyme, which is not sensitive to a-amanitin 

inhibition. First of all, the subunit composition of the purified RNA poly­

merase is characterized by the absence of polypeptides in the range of 
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50 000 - 100 000 dal tons, which can be regarded as character is t ic for the 

class I I enzymes. The class I I I enzymes, in contrast , possess two or more 

polypeptides in th is molecular weight range(Table 2 ) . Secondly, densito­

me t r y scans of stained Polyacrylamide gels of pur i f ied RNA polymerase I I 

show minor polypeptides larger than 180 000 daltons, which might indicate 

subforms of the RNA polymerase I I enzyme. Th i rd ly , the pur i f ied RNA poly­

merase I I elutes from a DNA-cellulose column at 80-100 mM ammonium sulphate 

(not shown), while class I I I RNA polymerases are reported to be eluted 

at 200-400 mM ammonium sulphate (Hager et a l . , 1975). An Aspergillus RNA 

polymerase a c t i v i t y could be detected at the e lut ion posit ion expected for 

an RNA polymerase I I I enzyme. The l a t t e r enzyme appears to be more active 

with native DNA as template than with denatured DNA, which is character is t ic 

fo r a class I I I RNA polymerase. In contrast , RNA polymerase I I is more 

active with denatured DNA as template than with native DNA. We therefore 

conclude, that the pur i f ied enzyme is a class I I RNA polymerase. 

The pur i f ied RNA polymerase I I appeared to be insensi t ive to i nh ib i t i on 

with a-amanitin, even at concentrations upto 400 ug/ml of the tox in . Further­

more, Aspergillus RNA polymerase I I was unable to bind 0-|_ c j -methyl-y-

amanitin at 10 ug/ml, the highest concentration tested. Addit ional evidence 

for the a-amanitin i nsens i t i v i t y is given in Chapter 5. In th is chapter, 

i t is demonstrated, that the RNA polymerase I I directed RNA synthesis in 

metabolically act ive protoplasts from A. nidulans i s not affected by a-

amanitin at concentrations upto 400 pg/ml. I t could not be excluded, how­

ever, that the protoplasts were impermeable to a-amanitin. The a-amanitin 

sens i t i v i t y of the class I I enzymes is often regarded as the most important 

character is t ic of the enzyme, although large differences in absolute and 

re la t i ve sens i t i v i t i es are observed (section 1.2.5). We have concluded, that 

the pur i f ied a-amanitin insensi t ive Aspergillus RNA polymerase should be 

c lass i f ied as a class I I enzyme. The f i na l evidence can only be provided 

from in vitro c e l l - f r ee t ranscr ip t ion studies as reported by Weil et a l . 
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(1979) and Manley et a l . (1980). 

Incubation of Aspergillus protoplasts with increasing concentrations 

of actinomycin D showed, that the poly(A)-minus RNA synthesis could be i n ­

h ib i ted at a concentration of the an t i b io t i c by which the poly(A)-plus RNA 

synthesis remained unaffected. I t seems l i k e l y , that the poly(A)-plus RNA, 

separated from the poly(A)-minus RNA through o l igo(dT)-cel lu lose chromato­

graphy, represented the messenger RNAs or t he i r precursors, in analogy to 

the po ly (A) - ta i ls attached to the (pre)messenger RNA species in most eukary-

otes. Because at select ive actinomycin D concentrations only the poly(A)-

minus RNA, representing mainly ribosomal RNA, was i nh ib i t ed , we have con­

cluded, that the (G+C) content of the ribosomal genes or part of the genes 

should be s i gn i f i can t l y higher than the overal l (G+C) content of 51% of the 

DNA (Lopez-Peres & Turner, 1975). 
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SAMENVATTING 

Omdat ontwikkeling en differentiatie van de hogere organismen zeer ge­

compliceerd zijn, kunnen relatief eenvoudige organismen, zoals de schimmels 

Aspergillus nidulans, gebruikt worden als model systemen voor de bestudering 

van deelprocessen. In dit proefschrift is een aanvang gemaakt met het onder­

zoek naar het overschrijven, de transcriptie, van de genetische informatie 

in deze schimmel door middel van DNA-afhankelijke RNA polymerases. Eén van 

de aspecten van de transcriptie-studies is het zuiveren en karakteriseren 

van deze RNA polymerases. Het grootste gedeelte van het onderzoek in dit 

proefschrift is hieraan gewijd. 

In hoofdstuk 1 is een overzicht gegeven van de DNA-afhankelijke RNA poly­

merases, van eukaryoten. De eigenschappen van de verschillende klassen van 

de RNA polymerases, die gebruikt kunnen worden bij hun indeling in de klassen 

I, II en III, zijn beschreven. De functies van de drie RNA polymeraseklassen 

met betrekking tot hun specifieke transcriptie van de verschillende genen 

zijn aangegeven. Uit in vitro transcriptiestudies aan celvrije systemen kan 

geconcludeerd worden, dat RNA polymerase I de ribosomale genen overschrijft, 

RNA polymerase II de boodschapper-RNA genen en RNA polymerase III de 5S genen, 

de transport-RNA genen en enkele virus-geassocieerde VA-genen. De verschillen­

de categorieën van genen blijken zeer uiteenlopend georganiseerd te zijn, 

waardoor de transcriptie slechts door één bepaalde RNA polymeraseklasse ver­

zorgd kan worden. Binnen één categorie blijken de genen echter een grote mate 

van overeenkomst te vertonen in opbouw en organisatie, zowel binnen één or­

ganisme als tussen niet verwante organismen. 

De zuivering en karakterisering van de DNA-afhankelijke RNA polymerase I 

van Aspergillus is beschreven in hoofdstuk 2. De catalytische en chromato-

grafische eigenschappen van Aspergillus RNA polymerase I blijken overeen te 

stemmen met die van andere klasse I RNA polymerases uit lagere en hogere 

eukaryoten. De subunit samenstelling van het gezuiverde enzym is te verge­

lijken met de subunit samenstelling van RNA polymerase I uit zoogdieren, 

maar wijkt af van die van lagere eukaryoten, zoals gist en Aoanthamoeba. 
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Klasse I RNA polymerases worden gekarakteriseerd door de twee subvormen 

waarin het enzym kan voorkomen.Bij zoogdieren verschillen de twee RNA poly­

merase I subvormen in één polypeptide met een molecuulgewicht van 60 000 -

A B 
70 000 dal tons; deze is aanwezig in subvorm I doch afwezig in subvorm I . 

D 

RNA polymerase I uit gist mist twee Polypeptiden namelijk die met een 

molecuul gewicht van 48 000 en 37 000 dal tons; deze zijn wel aanwezig in 

subvorm I . De fysiologische betekenis van deze subvormen is onduidelijk 

aangezien geen verschillen van betekenis in de transcriptie-specificiteit 

van de subvormen is waargenomen. Aspergillus RNA polymerase I blijkt even­

eens gescheiden te kunnen worden in twee subvormen, die echter niet ver­

schillen in subunit samenstelling. Met behulp van twee-dimensionale ureum-

dodecylsulfaat gel electroforese kan de subunit van 33 000 dal tons geschei­

den worden in twee Polypeptiden, welke mogelijk twee ladingsvormen van één 

polypeptide voorstellen. Een verband tussen de twee subvormen van RNA poly­

merase I en de twee Polypeptiden van 33 000 daltons lijkt zeer waarschijn­

lijk, maar kon nog niet worden aangetoond. Wij veronderstellen, dat de twee 

subvormen van Aspergillus RNA polymerase I de in vivo actieve en inactieve 

vorm van het enzym vertegenwoordigen en dat de enzym-activiteit gereguleerd 

wordt door middel van fosforylering-defosforylering van de 33 000 daltons 

subunit. 

In hoofdstuk 3 is de zuivering en karakterisering van de DNA-afhankelijke 

RNA polymerase II uit Aspergillus beschreven. De catalytische en chromato-

grafische eigenschappen van het gezuiverde enzym zijn te vergelijken met die 

van andere klasse II RNA polymerases. De gezuiverde Aspergillus RNA poly­

merase blijkt echter niet gevoelig te zijn voor een remming door a-amanitine 

in concentraties tot 400 y g/ml en blijkt niet in staat te zijn 0-L cj-methyl-

Y-amanitine in een concentratie van 10 yg/ml te binden. In het algemeen wor­

den de klasse II enzymen juist gekarakteriseerd door hun grote gevoeligheid 

voor de remmer a-amanitine, in tegenstelling tot de enzymen uit de klasse 

I en III. Op grond van indirecte bewijzen is toch geconcludeerd, dat het 

gezuiverde enzym behoort tot de klasse II RNA polymerases en niet tot de 125 



klasse III RNA polymerases. 

- de subunit samenstelling van ons gezuiverde RNA polymerase is verge­

lijkbaar met klasse II enzymen uit andere organismen. Allen worden 

gekarakteriseerd door het ontbreken van Polypeptiden in het gebied 

van 50 000 - 100 000 dal tons. RNA polymerase III enzymen daarentegen 

bezitten twee of drie Polypeptiden in dat gebied, 

- klasse II enzymen worden tevens gekenmerkt door de aanwezigheid van 

twee of meer subvormen, die verschillen in het molecuulgewicht van 

het grootste polypeptide. Ons gezuiverde RNA polymerase heeft even­

eens kleine hoeveelheden Polypeptiden, die groter zijn dan 170 000 

daltons. Dit kan duiden op de aanwezigheid van subvormen, 

- een gedeeltelijk gezuiverd RNA polymerasemengsel uit Aspergillus kan 

gebonden worden aan een DNA-cel lul ose kolom ende RNA polymerase-acti-

viteiten kunnen van deze kolom geëlueerd worden met een ammonium sul­

faat gradient. Ons gezuiverde RNA polymerase wordt geëlueerd bij 

80-100 mM ammonium sulfaat tegelijk met RNA polymerase I terwijl een 

derde RNA polymerase-activiteit bij 200-400 mM ammonium sulfaat van 

de kolom geëlueerd kan worden. Deze laatste RNA polymerase-activi-

teit prefereert natief DNA boven gedenatureerd DNA als matrijs voor 

de RNA-synthese, wat als kenmerkend beschouwd wordt voor een klasse 

III RNA polymerase. Ons gezuiverde RNA polymerase, daarentegen, pre­

fereert gedenatureerd DNA als matrijs, evenals andere klasse II en­

zymen, 

- de RNA polymerase II geleide RNA-synthese in Aspergillus proto­

plasten wordt niet geremd, als protoplasten geïncubeerd worden in 

aanwezigheid van 400 ug/ml a-amanitine. Dat de protoplasten niet 

doorlatend zouden zijn voor a-amanitine kon echter niet uitgesloten 

worden. 

Het uiteindelijk bewijs, dat de gezuiverde RNA polymerase-activiteit een 

a-amanitine ongevoelige klasse II enzym is, kan alleen geleverd worden met 

behulp van in vitro cel vrije transcriptiesystemen, zoals die recentelijk 
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voor eukaryoten ontwikkeld zijn. 

De bereiding van protoplasten van Aspergillus nidulans is beschreven 

in hoofdstuk 4. Met behulp van lytische enzymen is het mogelijk gebleken 

de taaie celwand van Aspergillus zodanig aan te tasten, dat protoplasten 

vrijkomen. Een mengsel van lytische enzymen, geproduceerd door Aspergillus 

nidulans tijdens de vorming van cleistothecia en door Oerskovia xanthineo-

lytiaa gekweekt op Aspergillus celwanden, blijkt in staat de celwand van 

Aspergillus nidulans af te breken, onafhankelijk van het groeistadium en 

van de gebruikte stam. De bereiding van protoplasten op grote schaal bleek 

te arbeids- en tijdsintensief te zijn om gebruikt te kunnen worden voor de 

zuivering van RNA polymerases, waarvoor de procedure in eerste instantie 

was ontwikkeld. De RNA-synthese in vivo kon echter goed bestudeerd worden 

in deze metabolisch actieve protoplasten (hoofdstuk 5). 

Het effect van remmers op de RNA-synthese in protoplasten is beschre­

ven in hoofdstuk 5.Zoal s reeds aangegeven heefta-amanitine geen enkele in­

vloed op de RNA-synthese in vivo. Incubatie van Aspergillus protoplasten 

met toenemende concentraties actinomycine D resulteert in een remming van 

de poly(A)-min RNA-synthese bij een concentratie van het antibioticum waar­

bij de poly(A)-plus RNA-synthese niet beïnvloed wordt.Op basis van het 

criterium dat de poly(A)-staart covalent gebonden is aan de boodschapper-

RNAs van de meeste eukaryoten, werd geconcludeerd, dat het poly(A)-plus 

RNA uit Aspergillus bestaat uit boodschapper RNA of hun precursors. Omdat 

bij bepaalde actinomycine D concentraties alleen de poly(A)-min RNA-

synthese (hoofdzakelijk ribosomale RNA-synthese) werd geremd, kon hier­

uit geconcludeerd worden, dat het (G+C) gehalte van de ribosomale genen 

of delen daarvan beduidend hoger moest zijn dan het (G+C) gehalte van 51% 

van het totale DNA. 
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