Thonner's analytical key to the families of flowering plants

R. Geesink

A. J. M. Leeuwenberg
C.E. Ridsdale
J. F. Veldkamp

PUDOC, Centre for Agricultural Publishing and Documentation Wageningen, 1981

Leiden University Press
The Hague/Boston/London, 1981
R. Geesink-Rijksherbarium, Leiden, Netherlands
A. J. M. Leeuwenberg - Laboratorium voor Plantensystematiek en Plantengeografie, Agricultural University, Wageningen, Netherlands
C. E. Ridsdale-B. A. Krukoff Botanist of Malesian Botany, Rijksherbarium, Leiden, Netherlands
J. F. Veldkamp-Rijksherbarium, Leiden, Netherlands

This volume is listed in the Library of Congress Cataloging in Publication Data
This is a translated and revised edition of: Anleitung zum Bestimmen der Familien der Blütenpflanzen, 2nd. ed. 1917, Friedländer, Berlin

ISBN 90-220-0730-8
(C) Centre for agricultural publishing and documentation, PUDOC, Wageningen 1981 and Martinus Nijhoff Publishers, The Hague, 1981

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publishers, Martinus Nijhoff Publishers, P.O. Box 566, 2501 CN The Hague, The Netherlands, and PUDOC, P.O. Box 4, 6700 AA Wageningen, The Netherlands

Printed in the Netherlands

Contents

Preface to the 2nd edition (1917) vii
Introduction viii
Acknowledgements \mathbf{x}
Franz Thonner-Life (1863-1928) xii
Franz Thonner-Bibliography xv
Franz Thonner-Derived works xviii
Franz Thonner-Eponymy xx
The Key - Introduction and Notes xxii
Scheme for a diagnostic description xxvi
Concise key to the major groupings 1
Key to the families 3
Glossary 198
Index 214
'All plants are hybrids, but some are greater bastards than others'

Franz Thonner. 1910. Photo L. Grillich, Vienna. Original in Library of the National Botanical Garden of Belgium.

Preface to the 2nd edition (1917)

While most European floristic works contain keys for the identification of families, genera, and species, extra-European ones usually have the keys replaced by a systematic survey, which makes it cumbersome to identify the family to which the plant under investigation belongs. It is, of course, often possible to recognize it immediately by the presence of a conspicuous character, but there are also many cases in which it is not that easy, and then written aid such as given in the present work is desired. The few works of this kind presently available generally consider the typical features of the family only, while they neglect the numerous exceptions. In the present work, however, especially in the second edition, all exceptions have been considered as far as possible, the less significant ones in footnotes, ${ }^{1}$ so that plants with characters that are different from the ones typical for the family may also be identified correctly.
In the choice of differentiating characters those have been preferred that can be seen in a flowering plant with the naked eye. As far as nomenclature, delimitation, and description of the families are concerned Engler and Prantl's Die natürlichen Pflanzenfamilien has been used as the basis for the revision of the present work; in addition, however, many other manuals have been consulted, especially Bentham and Hooker's Genera plantarum, De Candolle's Prodromus, Baillon's Histoire des plantes, and Engler's Pflanzenreich, as well as various floras.

The key is followed by a description of all families of flowering plants, ${ }^{2}$ which mainly serves to check the result of the identification for its correctness, as well as an explanation of the most important botanical technical terms occurring in the book. The addition of figures has been decided against; one finds suitable ones especially in Engler's Syllabus der Pfanzenfamilien.

Introduction

For the identification of a flowering plant the first step usually is to discover to which family it belongs. With some experience, the families commonly encountered in one's area of interest are soon known, but when dealing with specimens from other places, notably those from the vast and rich subtropics and tropics, there is much less certainty. The pertinent literature is often not readily available as it is often found only in expensive, rare or obscure books, or journals, present only in a few specialized institutes.

Basically only a few keys to the families of flowering plants of the world have ever been produced, the best known of which at present is Hutchinson's Key to the families of flowering plants (1973); less well-known are Lemée's Tableau analytique des genres monocotylédones (1941) (incl. Gymnosperms) and his Tableau analytique des genres dicotylédones (1943), and Hansen and Rahn's Determination of Angiosperm families by means of a punched-card system (Dansk Bot. Ark. 26, 1969, with additions and corrections in Bot. Tidsskr. 67, 1972, 152-153, and Ibid. 74 1979, 177-178). Of note also are Davies and Cullen's The identification of flowering plant families, 2nd ed. (1979), which, however, deals only with the families native or cultivated in North Temperate regions, and Joly's Chaves de identifição das familias de plantas vasculares que ocorrem no Brasil, 3rd ed. (1977), which may be useful in other tropical areas too.

There are a number of excellent keys prepared by an Austrian, Franz Thonner (1863-1928), which deal either with European genera (1901, 1903, 1918), or African ones (1908, 1913, 1915), or with all families of the world (1891, 1895, 1917). Some of these have apparently been completely overlooked, others have been known only to a few, and then sometimes served as a base for keys of their own, thereby again influencing keys by others (see Derived works).

At Dutch Universities extensive use has long been made of the Anleitung zum Bestimmen der Familien der Blütenpflanzen, 2nd ed. (1917, Friedländer, Berlin), which to our experience has proven to be the most reliable work in existence. Of course, as the keys deal with a highly complex subject, they require close attention for a profitable use. They may therefore perhaps have scared off even professional botanists, who then had to take recourse to other simpler and therefore less dependable ones. In a few places, Thonner's keys were better appreciated and even introduced in undergraduate courses, for
instance by Pulle and his school in the Netherlands, by Sørensen in Copenhagen, and in Brazil at first by an unknown translator and later by Rawitscher, Alvim and Joly. Elsewhere the Anleitung (1917) has been little known, rare and, for many, inaccessible, as it is in German.

It seemed, therefore, a worthwhile venture to translate it into English. A start was made by Leeuwenberg in the early 1960s, but other obligations soon delayed progress. About twelve years later, he mentioned this in a casual conversation with Geesink and Ridsdale, who had just begun a translation of their own, and his efforts were thankfully incorporated. Veldkamp joined shortly afterwards. It rapidly became apparent that mere translation would be unsatisfactory: the innumerable footnotes should also be worked into the main key; the nomenclature should be brought up to date; and something should be done about the many new families accepted by some authors since Thonner's time. For the latter we have largely restricted ourselves to those mentioned by Airy Shaw in his revision of Willis' A dictionary to the families of the flowering plants and ferns, 8th ed. (1973) and Hutchinson's The families of flowering plants, 3rd ed. (1973), these being currently the most consulted manuals. These 'segregated' families have now all been accounted for.

We have also tried to check the many curious or aberrant genera, but have undoubtedly missed many. The keys have not become easier because of all these additions. The number of key couplets has increased from 812 (excluding footnotes) in the 1917 edition, to 2117 in the present one. Nevertheless, they provide a useful means of identification and force students as we know from experience, to make a clear and careful analysis and logical interpretation of the various parts of the plant. We hope that all those interested through profession or hobby may be aided in a rapid identification of their material, and that we have made Franz Thonner and his works slightly better known and appreciated.
We invite the user to point out errors, difficulties, and omissions. It should then be indicated in which couplets difficulties arose with a suggestion as to how they might be remedied. A representative specimen would be useful, even if only on loan. Any assistance will be acknowledged in future editions. Communications should be sent to R. Geesink or J. F. Veldkamp, Rijksherbarium, Schelpenkade 6, P.O. Box 9514, 2300 RA Leiden, the Netherlands.

Leiden, September 1980

Acknowledgements

Thonner spent about 30 years creating his Anleitung (1917), apparently without much outside help. We were more fortunate and had others to advise and assist us. First of all we thank the Director, Staff, and students of the Rijksherbarium, Leiden, for providing the facilities, expert knowledge, and trial runs of the key, respectively. Other help was promised by many, but given by few. We had many helpful suggestions and criticisms but have applied the remarks in our own fashion, hence all mistakes and misinterpretations made should be attributed to us. Our sincere thanks are due to R. C. Bakhuizen van den Brink Jr. (Leiden, various), M. M. J. van Balgooy (Leiden, Elaeocarpaceae, various), G. M. Barroso (Rio de Janeiro, Lepidocordia), B. G. Briggs (Sydney, Proteaceae, Restionaceae), R. Clarysse (Meise, Thonner/De Wildeman correspondence), M. J. E. Coode (Kew, Elaeocarpaceae), T. A. Cope (Kew, various), T. B. Croat (Saint Louis, Araceae), P. J. Cribb (Kew, Orchidaceae), R. Dahlgren (Copenhagen, esp. Monocotyledones), F. G. Davis (Kew, Compositae), J. Dransfield (Kew, Palmae), L. L. Forman (Kew, Fagaceae), P. S. Green (Kew, Oleaceae), C. Grey-Wilson (Kew, Balsaminaceae), B. Hansen (Copenhagen, Balanophoraceae, various), C. Hansen (Copenhagen, Melastomataceae), R. M. Harley (Kew, Labiatae), P. Hiepko (Berlin, Opiliaceae), Ding Hou (Leiden, Anacardiaceae, Aristolochiaceae, Celastraceae, Hippocrateaceae), S. S. Hooper (Kew, Cyperaceae), D. R. Hunt (Kew, Commelinaceae), B. R. Jackes (Atherton, Epacridaceae, Vitaceae), L. A. S. Johnson (Sydney, Gymnospermae), Hsuan Keng (Singapore, Gymnospermae), R. Kool (Leiden, Ixonanthaceae), K. U. Kramer (Zürich, various), J. Kuyt (Lethbridge, dicotyledonous parasites), D. J. de Laubenfels (Syracuse, Gymnosperms), P. W. Leenhouts (Leiden, Burseraceae, Connaraceae, Sapindaceae), D. J. Mabberley (Oxford, Adoxaceae, Meliaceae, Sterculiaceae), W. Marais (Kew, Chloanthaceae, Liliaceae), W. Margadant (Utrecht, biohistory of Thonner), S. Mayo (Kew, Araceae), J. F. Maxwell (Singapore, Melastomataceae), N. L. Menezes (São Paulo, Joly key), R. van der Meijden (Leiden, Haloragaceae, Polygalaceae), H. P. Nooteboom (Leiden, Simaroubaceae, Symplocaceae), W. R. Philipson (Christchurch, Calycanthaceae, Idiospermaceae, Monimiaceae), P. H. Raven (Saint Louis, promotion in the U.S.A.), J. W. A. Ridder-Numan (Leiden, various small families), R. E. Rintz (Mt. Clemens, Asclepidiaceae), M. J. Sands (Kew, Balanitaceae, Begoniaceae), M.

Schmid (Noumea, New Caledonian taxa), C. G. G. J. van Steenis (Leiden, Bignoniaceae, Sonneratiaceae, various), B. C. Stone (Kuala Lumpur, Pandanaceae, Rutaceae), M. Tamura (Osaka, Ranunculaceae), N. P. Taylor (Kew, Cactaceae), B. N. Teensma (Leiden, Portugese), J. Thompson (Sydney, Tremandraceae), C. C. Townsend (Kew, Amaranthaceae), P. van der Veken (Gent, various), W. Vink (Leiden, Hamamelidaceae, Sapotaceae, Winteraceae), E. F. de Vogel (Leiden, Apostasiaceae, Orchidaceae, seedlings), J. N. Westerhoven (Hirosaki, Ikeno key), W. J. J. O. de Wilde (Leiden, Myristicaceae, Najadaceae, Passifloraceae), K. L. Wilson (Sydney, Cyperaceae, Junсасеае).
We thank the Botanical Garden, Berlin, for the opportunity to show a poster there during its tercentenary celebration in September 1979. We assume that at least those who ran off there with a free copy of the Preliminary Version (or obtained one later) but never bothered to comment have found it to be without blemish.

We are most obliged to P. W. Leenhouts, Leiden, who was willing to assist us in correcting the proofs and who painstakingly checked the numbering again.
The reproductions of the pictures of Thonner were made by B. N. Kieft and the drawings for the plates by J . van Os , Leiden.

Finally, we thank our wives, who first had to miss us on Thursday evenings ('Thonnerstagabend'), and later had to spend holidays during which manuscripts were polished and retyped, but never complained too much.

Franz Thonner-Life (1863-1928)

Franz Thonner was born in Vienna on 11 March 1863 as the son of Franz Thonner, cordwainer at the Imperial Court of Vienna, and Therese Schnaubelt. Very little is known of his life. Most of the following has been extracted from the sources mentioned below, which usually give only the briefest information.

He was educated at the Theresien Gymnasium in Vienna, and then studied Law for a single semester (in Vienna?). His interest then turned to the Natural Sciences, to which he remained devoted for the rest of his life. He studied in Vienna and Berlin, but apparently never obtained an academic degree. In 1891 he married Marie Svoboda, a Czech; there is no record of any children. They first settled in Dresden, but in 1903 moved to Vienna, where they remained until 1920. Afterwards they went to Smichov, a suburb of Prague, where Thonner died on 21 April 1928.

Somehow Thonner was a gentleman of private means, which allowed him to pursue the subjects of his interest and thus became what in German is called a 'Privatgelehrter'. It is remarkable that he turned to larger projects only, at least only one brief article (1897) from his hand is known to us. When only 28 , he had already written and published a key to the families of flowering plants of the world, the Anleitung (1891), a unique work, as no one before him had prepared a similar treatise. He paid for this publication himself, as he did for all his subsequent ones. The absence of an experienced publishing house perhaps explains why his works remained almost unnoticed in the scientific journals of that time and they remained virtually unnoticed to the present day. Possibly to increase his market and also to include his later additions, he translated them into French or English, in which languages he was well versed. For further details see the next chapters on Bibliography and Derived works.
Together with his wife he often travelled through Europe and North Africa. Twice he went on his own to the Ubangi and Mongala Districts of the Belgian Congo. Both expeditions were cut short: the first (23 August - 22 October 1896) because the Congolese went off with his canoe and some of his equipment and collections; the second (28 January - 16 March 1909) because of illness, so he collected much less than he had intended.

He wrote journals on each expedition in German $(1898,1910)$ and in French (1899, 1910), which contain a wealth of orginal botanical, ethnological, and linguistic observations. About the botanical collections, two books were also
written, for the publication of both of which he also paid (De Wildeman \& Durand, 1900; De Wildeman, 1911). In the first book, De Wildeman observed that although only 120 botanical collections were made 50 were new for the area, and 23 species and 4 varieties were new to science. It is rare that such a proportion would be obtained; he apparently had a keen eye and had gone well prepared. In the second book, De Wildeman took the opportunity to publish extensively on the flora and vegetation of the area, an action heartily approved of by Thonner.

Several of the new species were named after him, but unfortunately the only genus named in his honour, Thonnera De Wild. (Annonaceae), has turned out to be a synonym of Uvariopsis Engl. \& Diels (see Eponymy).

Next to nothing is known about his private life and methods. He apparently rarely visited the Naturhistorisches Hofmuseum in Vienna (Thonner, in litt., K.-H. Rechinger, Vienna, pers. comm.) mainly to check identifications and to select material for his illustrations. He probably corresponded with the Botanisches Museum in Berlin, since he asked De Wildeman to send duplicates of his collections to Diels, Engler, and Harms, but the Berlin archives were destroyed during World War II. We procured part of his correspondence, mainly with De Wildman in Brussels (March 1899-May 1921), from which some information could be gleaned. Although the two must have known each other for a long time, met occasionally and visited the Opera together, the brief notes remain formal. Their wives corresponded also; how tantalizing to know more of what they had to tell each other! Thonner's handwriting was even and clear, as is shown by the accompanying sample (p. xvi and xvii), one of the few where mention is made of the Anleitung (1917).
For his plates he privately employed an artist, J. Fleischmann, who was for a short time assisted by another one, not named, who made the analytical drawings. At least one of his manuscripts, written by him in stenography, was worked up to a definitive version by an unknown secretary.

To us his major works are the various keys to the genera and families. Although we have studied the Anleitung (1917) for a long time now, we can still only guess about his methods. Each of his keys was basically different from the preceding ones, as may be noted from the main couplets, a change which necessitates an entirely new structure. He apparently based himself especially on Engler and Prantl's Die natürlichen Pflanzenfamilien (1895-1915) and Das Pflanzenreich as far as it had appeared, as can be seen from the sometimes verbatim quotations. It is interesting to note that many genera originally misplaced there key out in the Anleitung (1917) to the families where they have subsequently been transferred to. Whether he had an extensive file or a prodigious memory we do not know, but the results speak for themselves: they have never been surpassed.

In 1911, he was awarded a Belgian distinction, apparently at the request of De Wildeman, but as yet we have not discovered which nor the citation of the award.

During World War I he sent part of his private library to Great Britain as a payment for the publication of The flowering plants of Africa (1915), as transfer of funds was prohibited. After the War, his fortunes dwindled with the incredible inflation of those times, and he wrote that he tried to subsist by translating novels between English, French and German. His correspondence, if any, with De Wildeman after 1921 is lacking from the archives of Brussels.

Of his last years in Smichov, we know nothing, except that he fell victim to a chronic disease and died on 21 April, 1928 at the age of 65.

The only obituary that we have received (through the kind efforts of the librarian of the Naturhistorisches Museum, Vienna) was in a Viennese anthropological journal; to the botanical world he remained virtually unknown both in life and death.

Sources

Anonymous. (1928). Enciclopedia Universal Ilustrada Europeo-Americana 61: 678. Madrid.
Degener, H. A. L. (1922). Wer ist's? (Unsere Zeitgenossen): 1569. Leipzig. De Wildeman, E. A. J. (1899-1921). Personal correspondence with F. Thonner. Msc. Brussel.
Schmid, B. \& C. Thesing. (1914). Biologen-kalender 1: 325. Berlin.
Želízko, J. V. (1928). Franz Thonner. Mitt. Anthrop. Ges. Wien: 238. Wien.

Franz Thonner - Bibliography

1891. Anleitung zum Bestimmen der Familien der Phanerogamen. viii +280
p. Friedländer, Berlin.
1892. Analytical key to the natural orders of flowering plants. vii +151 p . Swan Sonnenschein, London, Macmillan, New York.
1893. Das Gebiet des Mongalaflusses in Centralafrika (Kongostaat). Globus 72: 117-121, 7 f.
1894. Im Afrikanischem Urwald. Meine Reise nach dem Kongo und der Mongalla im Jahre 1896. x+117 p., 86 t., 3 m. Reimer, Berlin.
1895. Dans la grande forêt de l'Afrique Centrale. Mon Voyage au Congo et à la Mongala en $1896 . \mathrm{x}+115$ p., 87 t ., $30 \mathrm{f} ., 3 \mathrm{~m}$. Schepens \& Cie, Bruxelles.
1896. Introduction, in: De Wildeman, E. \& Th. Durand, Plantae thonnerianae congolenses. xi-xx, $23 \mathrm{t} ., 1 \mathrm{~m}$. Schepens \& Cie, Bruxelles.
1897. Exkursionsflora von Europa. x $+50+356$ p. Friedländer, Berlin. (Reprint, 1980, Rijksherbarium, Leiden).
1898. Flore analytique de l'Europe. vi +322 p. Baillière, Paris.
1899. Die Blütenpflanzen Afrikas. Eine Anleitung zum Bestimmen der Afrikanischen Siphonogamen. xvi+672 p., $150 \mathrm{t} ., 1 \mathrm{~m}$. Friedländer, Berlin.
1900. Vom Kongo zum Ubangi; meine zweite Reise in Mittel-Afrika. xi+116 p., 114 f., 3 m. Reimer, Berlin.
1901. Du Congo à l'Ubangi; mon deuxième voyage dans l'Afrique Centrale. xii+126 p., ill., 1 m. Misch \& Thron, Bruxelles, Rivière, Paris. (n.v.).
1902. Introduction, in: De Wildeman, E., Plantae thonnerianae congolenses. II. ix-xvii, 20 t., 51 f., 1 m . Misch \& Thron, Bruxelles.
1903. Die Blütenpflanzen Afrikas. Nachträge und Verbesserungen. 88 p. Friedländer, Berlin.
1904. The flowering plants of Africa. An analytical key to the genera of African phanerogams, xvi+647 p., $150 \mathrm{t} ., 1 \mathrm{~m}$. Dulau, London. (Reprint, Hist. Nat. Clas. 27, 1962, Cramer, Weinheim).
1905. Anleitung zum Bestimmen der Familien der Blütenpflanzen, ed. 2. vi+280 p. Friedländer, Berlin.
1906. Exkursionsflora von Europa. Nachträge und Verbesserungen. 55 p. Friedländer, Berlin. (Reprint, 1980, Rijksherbarium, Leiden).

Wien Tr. Tanigforse 20, un, 1:I. 191%

Leus gabuter doon of Wieleman!

Naoh langer Lait orlaube ioh min riader sin-mel angefragen, we as Thuen gelt and Then glaiolzaitig unsere beiten Gliokwhinoho zuen Jahiresweakuel zu inbermitreh.

Bei suns gatt alles so giemlich soinem gow ohaton Gang. Figantlich oprinan wir nidh vid vom Krieg and leben flast wie ron demselbon. Den Sommer haben wir teils in Baden bei Wien, teile in Plane in Bihmen zugabraokt. Di englisah Augabe maines Wertes inber dis aprikanischen Planzen ist num endlich esachienter, durch don

Rering verzigert, aber, dank dar Permithung inna soluveizer Colountan, niokt vorkindert. Eine newe Areflage maines ersten Workés (Beoti-mmings, tabalen firs Pfanzonfomilian), die mich in den letgyon fotiren beschifigy hat, mind demmiohat is Druots geher.

Indem ich Sis bitte, Ther vartion Fiam Gernathin and Frinlin Soctiter maine und meimer Fien hergladite ghidkrow'mode zum Nouen Johne ithernitith zu wollon, vablibe id

The uggabenar Fiang Thomar.

Franz Thonner-Derived works

Thonner's efforts remained more or less unknown. Two botanical works were based on his expeditions to the Belgian Congo (De Wildeman \& Durand, 1900; De Wildeman, 1911), of which the first sold only 4 copies in the first year (he gave away a number as complimentary copies). Apparently his two journals did not fare much better, but were perhaps of sufficient importance as an obituary appeared in an anthropological journal. On his keys a few others were directly or indirectly based, and are listed here. Possibly there are more, of which we would like to be notified; they can easily be detected by the sequence of the main couplets, if no mention is made in the introduction.
In 1893 Ikeno published an abbreviated Japanese translation of the Anleitung (1891).

Henriquez (1897) translated it into Portuguese, but the journal in which it appeared did not have a wide circulation, and this translation was for instance apparently unknown in Brazil.

Pittier translated the Analytical key (1895) into Spanish and adapted it for use in South America. The first edition (1917) was used by Standley (1920), who was apparently unaware of its Anglo-American origin, for his Mexican keys. Standley used the second edition of Pittier's Clave (1926) for his Panaman flora (1928). A third edition appeared in 1939.

Joly (1977) discussed in length the discovery in 1939 of a manuscript key in use in Viçosa, Brazil, which turned out to be derived also from the Analytical key (1895). This key was mimeographed several times before it was revised by Rawitscher and Rachid-Edwards (1956), and again independently revised and restricted to Brazil by Alvim (1943) and Joly (1969).

We ourselves also distributed a stencilled Provisional Edition (1979) of 106 copies to various institutes and colleagues for comment.

Alvim, P. De Tarso. (1943). Chave para a determinação das famílias das plantas Pteridophytas, Gimnospermas e Angiospermas brasileiras ou exóticas encontradas no Brasil. (Adaptação da chave de Franz Thonner . . .). Msc. Viçosa. (Fide Joly, 1977). Reprint (1950) 61 p. Viçosa.
Anonymous. (Undated). Title unknown ('Chave . . .'). Msc. 91 p. Escola de Minas da Universidade do Brasil. Several mimeographed editions. Viçosa, later also in São Paulo. (Fide Joly, 1977).
Geesink, R., A. J. M. Leeuwenberg, C. E. Ridsdale \& J. F. Veldkamp. (1979).

Thonner's analytical key to the families of flowering plants. Provisional version. Stencil. Unpaged (173). Rijksherbarium, Leiden.
Henriquez, J. A. (1897). Clave para a determinação das famílias das plantas Phanerogamicas. Bol. Soc. Brot. 14: 82-160.
Ikeno, S. (1893). Kenka-shokubutsu-bunka Kensaku-hen.
Joly, A. B. (1968-1977). Botânica chaves de identifição das famílias de plantas vasculares que ocorrem no Brasil, baseadas em chaves de Franz Thonner. Provisional version (1968); 1st ed. (1970) iv+132 p.;2nd ed. (1975) 159 p.; 3rd ed. (1977) 159 p. Companhia Editora Nacional, São Paulo.
Pittier, H. (1917-1939). Clave analítica de las familias de plantas fanerógamas de Venezuela y partes adyacentes de la América tropical. Ed. 1 (1917) vii+ 108 p.; Clave analítica de las plantas superiores de la América tropical. 2nd ed. (1926) viii +130 p.; 3rd ed. (1939) vii+94 p. Lit. y Tip. del Comercio, Caracas.
Rawitscher, F. K. \& M. Rachid-Edwards. (1956). Title unknown. (Fide Joly, 1977).

Standley, P. C. (1920) Key to the families, in: Trees and shrubs of Mexico. Contr. U.S. Nat. Herb. 23: 19-36. Washington.
-. (1928). Key to the families, in: Flora of the Panama Canal Zone. Contr. U.S. Nat. Herb. 27: 50-65. Washington.

Wildeman, E. A. J. de. (1911). Etudes sur la flore des districts des Bangala et de l'Ubangi (Congo Belge). Plantae thonnerianae congolenses. II xvii +465 p., 20 t., 1 f., 1 m . Misch \& Thron, Bruxelles.
Wildeman, E. A. J. de. \& Th. Durand. (1900). Plantae thonnerianae congolenses, ou énumération des plantes récoltées en 1896 par Fr. Thonner dans le district des Bangalas. ix +49 p., 23 t ., 1 m . Schepens \& Cie, Bruxelles.

Franz Thonner - Eponymy

A number of taxa collected by Thonner have been named after him. Leeuwenberg was able to consult the original set in BRUX and based on this the following list could be compiled. An asterisk indicates that the name has been considered as correct in recent revisions. Unmarked ones for which no synonymy is given have not recently been treated as far as known.

Thonnera De Wild. (Annonaceae) = Uvariopsis Engl. \& Diels
Aframomum thonneri De Wild. (Zingiberaceae)
Antholyza thonneri De Wild. (Iridaceae) = Gladiolus atropurpureus Bak.
Bertiera thonneri De Wild. \& Th. Dur. (Rubiaceae)*
Casearia thonneri De Wild. (Flacourtiaceae) = C. barteri Mast.
Clerodendrum thonneri Gürke (Verbenaceae)*
Combretum thonneri De Wild. (Combretaceae) = C. paniculatum Vent.
Conopharyngia thonneri (Stapf) Stapf (Apocynaceae) = Tabernaemontana thonneri De Wild. \& Th. Dur. ex Stapf
Crotonogyne thonneri De Wild. (Euphorbiaceae) = C. poggei Pax
Dichapetalum thonneri De Wild. (Dichapetalaceae) = D. bangii (F. Didr.) Engl.
Dicranolepis thonneri De Wild. \& Th. Dur. (Thymelaeaceae) = D. buchholzii Engl. \& Gilg
Dinophora thonneri Cogn. (Melastomataceae) $=$ Phaeoneuron dicellandroides Gilg
Dioscorea thonneri De Wild. \& Th. Dur. (Dioscoreaceae)=D. preussii Pax
Harveya thonneri De Wild. \& Th. Dur. (Scrophulariaceae)*
Hygrophila thonneri De Wild. (Acanthaceae)
Impatiens thonneri De Wild. \& Th. Dur. (Balsaminaceae) = I. irvingii Hook. f. ex Oliv.

Isolona thonneri (De Wild. \& Th. Dur.) Engl. \& Diels (Annonaceae)*
Listrostachys thonneriana Kränzl. (Orchidaceae) = Diaphananthe pellucida (Lindl.) Schltr.
Loranthus thonneri Engl. (Loranthaceae) $=$ Agelanthus brunneus (Engl.) v. Tiegh.
Macaranga thonneri De Wild. (Euphorbiaceae)=Alchornea laxiflora (Benth.) Pax \& Hoffm.
Millettia thonneri De Wild. (Leguminosae)*

Monodora thonneri De Wild. \& Th. Dur. (Annonaceae) = Isolona thonneri Engl. \& Diels
Ouratea thonneri De Wild. (Ochnaceae)*
Pycnocoma thonneri Pax (Euphorbiaceae)*
Rhabdophyllum thonneri (De Wild.) Farron (Ochnaceae) = Ouratea thonneri De Wild.
Rinorea thonneri De Wild. (Violaceae) = R. welwitschii (Oliv.) O. Ktze
Rourea thonneri De Wild. (Connaraceae) $=$ Roureopsis thonneri Schellenb. Roureopsis thonneri (De Wild.) Schellenb. (Connaraceae)*
Scaphopetalum thonneri De Wild. \& Th. Dur. (Sterculiaceae)*
Sesamum thonneri De Wild. \& Th. Dur. (Pedaliaceae)=?S. mombazense De Wild. \& Th. Dur.
Tabernaemontana thonneri De Wild. \& Th. Dur. ex Stapf (Apocynaceae)* Thunbergia thonneri De Wild. \& Th. Dur. (Acanthaceae)
Uragoga thonneri De Wild. \& Th. Dur. (Rubiaceae) =? Psychotria sp.
Urera thonneri De Wild. \& Th. Dur. (Urticaceae)*
Vitex thonneri De Wild. (Verbenaceae)

The Key - Introduction and Notes

Each of Thonner's keys was different from the preceding ones. As the present work was initially intended to be a mere translation of the Anleitung (1917), we have not changed its structure, even when some major couplets are notoriously difficult. On the whole Thonner has managed to keep the key as simple as possible, and so have we; but highly technical questions which need some botanical experience and a good dissecting microscope cannot be avoided. Some will therefore find it a difficult book to use at first. We would suggest some methods to facilitate use.

Start with some well-known plants, or back-track your way from a few familiar families; in this way, you will become acquainted with the keys and the terms used. It will then be noted that they are based on relatively few characters which turn up time and again. Unfortunately complete material is required: sterile and exclusively male specimens cannot be identified, female or fruiting ones will cause great problems. For these, Hansen \& Rahn's punch-cards will limit your options.

The key is strictly dichotomous (except for some couplets in the Concise key to the groupings): each couplet is composed of two leads. The latter are usually composed of two parts again, separated by a dash. The first part should be contradicted by the opposing lead of the couplet. The second part contains additional information; features mentioned here may or may not be present in taxa referable to the opposing lead; they are merely given as a possible further aid. In both parts the characters are given in the morphological descriptive sequence, if feasible, and not according to their diagnostic 'weight'. This has been done to facilitate reading; many keys have been made more difficult and confusing because of their scrambled text. Distribution is often also given as an aid, but is of course only valid for plants not introduced, cultivated, or escaped; especially weedy or showy plants should be suspect, while exact distributions are still not always known in some cases.

Read both leads carefully and completely!

Try to visualize their intentions and use your brains! Most misidentifications are due to careless, hasty, sloppy, superficial, and unimaginative reading. Note the numbers encountered on a slip of paper, marking uncertain choices to facilitate retracing if you go wrong.

Do not pick and poke about the specimen!

The various leads are in a haphazard morphological sequence and you should try to limit destruction of your specimen as much as possible; once it has been torn apart it will be difficult to reconstruct and you may need another flower of your precious material!

Boil a single flower!

You can always boil another if required. Fresh material is often easier to handle after boiling, too. Examine it in a Petri-dish under sufficient water so that it will neither float away, nor be obstructed by the surface of the water; a drop or two of detergent will drive off air bubbles (chaffy flowers as in Cyperaceae, Gramineae do not need to be boiled at all, some detergent in water is sufficient); soak overnight in strong ammonia when the floral parts are flimsy and glued together, as in Balsaminaceae and Orchidaceae.

Make a short diagnosis!

It is often useful to do so, working from the outside inwards in such a way that nothing is inadvertently damaged that may be needed later, for instance after you have found the correct family and have to use the material with other keys all over again. See the accompanying scheme as a guide ($\mathrm{p} . \mathrm{xxvi}$). Simple sketches will also be helpful, for instance a floral diagram (aestivation!) and shape of fragile parts.
Add these notes and sketches, and as much as can be saved and dried of the remnants of the object to the specimen for future reference.

A difficult question was how to mention the many new families accepted by some since Thonner's time. We have largely limited ourselves to those in Willis' Dictionary (1973) and Hutchinson's Families (1973). In some cases, we are convinced that their distinction is unacceptable, in others that they are indeed distinct, but in many cases, as in the Liliales, Saxifragaceae s. l. few specialists agree. So who are we to profess expertise to make a satisfactory choice among the options? As this key is primarily intended for practical use, and not as a taxonomic manual, we thought we should have some leeway; in principle we decided to follow Melchior's Engler's Syllabus der Pfanzenfamilien, 12th ed. (1964), but deviated from this course where it suited us. It
was also borne in mind that Thonner himself based his family concept on Engler and Prantl's Pflanzenfamilien. One should therefore not invoke our arbitrary use of names in an argument on the taxonomic distinctness of such a family. The fact that supposedly related taxa often key out close together should not be extrapolated to doubtful cases, as the keys are artificial; such coincidences are merely fortuitous (yet, there may be something in it, one never knows!).

The segregated families are noted in brackets as in the Exkursionsflora (1901) and other works. Genera and some supra-generic taxa have been noted when we had the impression that these would key out exclusively in a particular lead, but only when one or two taxa seemed to be involved, e.g. '(Escalloniaceae:Itea) . . . Saxifragaceae'. This means that only Itea keys out here, which is sometimes treated as an Escalloniacea, which family is treated here as part of the Saxifragaceae. Some notes of warning: a taxon may well turn up in several places without being noted everywhere, partly because of the artificiality of the key (an apetalous species will end up in a different place from its petaliferous congeners), whereby it may run down together with more than two other taxa in places, partly because we overlooked it. More taxa than those mentioned may actually key out to one place, but we were not aware of it. The taxon may not belong here at all (we hope not), but was included because of an error by us, or because the descriptions in the literature consulted were faulty (by necessity we had to lean heavily upon other works). We are convinced that not all aberrant taxa have been included, partly because we simply were not aware of their existence, partly because the conventional, less controversial, and often huge families such as the Euphorbiaceae, Myrtaceae, and those of the Tubiflorae have been much less studied.
Some taxa may appear to have been misplaced in the key but are not the result of a misinterpretation. Instead, their 'wrong' inclusions act as fail-safes, many of which were already built into the system by Thonner in his footnotes. In several instances, features are not what they seem to be, but this is then only known to someone familar with the situation, who will then not use these keys in the first place. Bracteoles may be adnate to a perianth and then resemble a calyx, suggesting a place among the Chori- or Sympetalae; petals may be so cohesive that they appear connate and mislead the unsuspecting to the Sympetalae, on the contrary they may be fused at the very base only, appearing free, suggesting a place among the Choripetalae. As this key aims to be practical, we have maintained despite objections from some learned correspondents, that the plant should also key out according to the interpretation of the structure which would appear most logical to someone not hampered by knowledge, even if this is morphologically incorrect.

Thonner's keys were rarely illustrated and more plates in the current work would have been useful, but as we wanted to remain as concise as possible, we have refrained from adding more. One is therefore referred to the other works
mentioned by Thonner and in our introduction, and to the many other textbooks. For world families. Heywood's recent Flowering plants of the world (1978) provides an inexpensive and well-illustrated survey.

The terms employed will usually cause no great difficulty. We have tried to use as few technical terms as possible, including those required in the Glossary at the end of the book, sometimes ad absurdum; for those we missed one should consult Jackson's A glossary of botanic terms, 4th ed. (1928). We hope to have solved the problem about hypo-, peri-, and epigyny by the footnote to Couplet 548 and by Plate 1, while the most common types of ovules have also been depicted (Plates 2 and 3). One ambiguous term has been pointed out by various colleagues which we refuse to change: epipetalous (or -tepalous) means 'opposite to the petals (or tepals), but not necessarily inserted on them'. Others use these words to indicate insertion only, and not relative position, whereby the term alternipetalous (or -tepalous) has no uninomial, easy counterpart.

Thonner included short descriptions of the families and they are indeed very useful for speedy reference. We had to omit these at present and the user is referred to other manuals. It was not possible to prepare reliable succinct diagnoses, even when so many are available. To copy these from existing literature proved unsatisfactory, as descriptions are often not complete enough to fit the Scheme for a diagnostic description as is given on page xxvi, a most surprising discovery. Their deletion has one minor advantage to the buyer of this book: it would otherwise have been much thicker and more expensive.

Scheme for a diagnostic description

Note position, number, coherence, shape, and size where applicable.

Vegetative characters

Habitat (if not terrestrial).
Life form (annual, perennial, shrub, tree, climber, liana).
Indument (check young parts), type of hairs.
Leaves (arrangement, simple/compound, type of nervation), presence of trans-
lucent lines or dots, crystals (strong pen light useful here, mind your eyes!), Stipules (absence/presence, check young shoots, scars).

Floral characters

Inflorescence (type, mode of branching); bracts; bracteoles.
Flower (sex, actino-/zygomorphic, hypo-/peri-/epigynous, see Plate 1); aestivation (in bud) of sepals, petals, tepals; hypanthium.
Disk (absence/presence; extra-intra-staminal).
Stamens (alterni-/epipetalous or -tepalous); filaments (freelad-/connate); anthers (dehiscence by slits, pores, valves; in-lla-/extrorse-check in bud).
Styles; stigmas (number of lobes may be indicative of number of carpels and locules).
Ovary (superiorl(hemi-)inferior - Plate 1); locules; placentas; ovules (position, type, see Plates 2 and 3, number per loculelovary).

Fruiting characters

Fruit (type, dehiscence, consistency).
Seeds (number per locule or fruit; surface; appendages and their position). Embryo (form, position: the radicle points to where the micropyle was!). Endosperm (absence/presence, consistency).

Origin (only for truly indigenous plants).

CONCISE KEY TO THE MAJOR GROUPINGS

(N.B. When in doubt consult the main key!)
A. Gymnospermae 2

- Monocotyledones. 17
- Dicotyledones. B(158)
B. (Hemi-) parasites or saprophytes. (Dicotyledones only!) 2103
- Autotrophic plants or parasitic or saprophytic condition not distinct. (Parasites and saprophytes are also included in the main key!) C(159)
C. Flowers apetalous. (read 159 and 160 very carefully!). D(161)
- Flowers choripetalous. (read 159 and 160 very carefully!) F(548)
- Flowers sympetalous. (read 159 very carefully!) K(1572)
D. Bisexual and female flowers without a perianth. 162
- Bisexual and female flowers with a perianth. E(232)
E. Ovary superior 233
- Ovary inferior or hemi-inferior. 460
F. Flowers hypogynous. (read 548 very carefully!) G(549)
- Flowers epi- or perigynous. (read 548 very carefully!). J(1149)
G. Disk absent H(550)
- Disk present I(926)
H. Stamens 1-10. 551
- Stamens 11 or more 805
I. Stamens $1-10$. 927
- Stamens 11 or more 1106
J. Ovary superior 1150
- Ovary inferior or hemi-inferior. 1371
K. Ovary superior L(1573)
- Ovary inferior or hemi-inferior: 2003
L. Corolla actinomorphic. M(1574)
- Corolla zygomorphic. 1896
M. Base of filaments free from the corolla 1575
- Filaments adnate to the corolla N(1654)
N. Fertile stamens less than the corolla-lobes 1655
- Fertile stamens as many as the corolla-lobes 1681
- Fertile stamens more than the corolla-lobes. 1859

KEY TO THE FAMILIES

1. Reproductive organs ('flowers') unisexual, often subtended by bractlike structures, rarely by 2 or 4 free or connate, opposite bracteoles (Gnetales), but true perianth absent. Stamens ('micro-sporophylls) more or less developed, several to many together ('pollen cones' or 'micro-sporangia'), each with 2 -many, rarely 1 , anthers ('pollensacs'). Carpels ('macro-sporophylls') not connate into a closed ovary. Ovules naked, rarely enclosed in a utricle, atropous or anatropous, sessile, 1 -several together, subtended by a bract; bracts usually aggregated into cones. Seeds exposed, or enclosed, either by the bracts ('cone-scales') or by parts of the seed-bearing structure ('epimatia'), these usually woody or leathery, sometimes fleshy and pseudo-carp berry- or drupe-like, rarely seed more or less enclosed in a basally attached, fleshy aril.-Stem woody. (Gymnospermae). 2

- Flowers unisexual or bisexual. True perianth usually present. Anthers usually on a filament. Ovules completely enclosed by the ovary. ${ }^{1}$ Fruit very rarely cone-like. Seeds completely enclosed by the fruit, which may dehisce at maturity.-Style usually present. (Angiospermae)16

GYMNOSPERMAE

2. Flowers usually in branched and very compound inflorescences; at least the male ones with a pseudo-perianth of 2 opposite, free and/ or 2 more or less connate bracteoles. Resin absent.-Leaves opposite, simple, sometimes scale-like. Ovule enclosed in a utricle, atropous with a style-like, elongated integument. Seeds nut-like, enclosed by fleshy bracts in a cone or a drupe- or berry-like syncarp. (Gnetales).

- Flowers solitary, or in capitules, or in spikes, or in cones. Pseudoperianth absent, flowers usually subtended by bract-like scales.

3. Shrubs, trees, or woody climbers with well-developed trunks. Leaves more than 2, scale-like or well-developed, pinninerved.. . . . 4

- Woody perennial with a very stout, truncate, subterraneous stem, apically bi-lobed, each lobe with a strap-shaped, parallel-nerved leaf, which may tear to the base.-Male flowers with 2 free and 2 connate bracteoles, 6 micro-sporophylls at base connate into a tube and a pistillode. Deserts of S.W. Africa

Welwitschiaceae
4. Virgate shrubs. Leaves small, scale-like, connate. Flowers in cones. Male flowers with 2 connate bracteoles and 2-8 micro-sporophylls on an androphore. Warm temperate Eurasia, N. and S. America.

Ephedraceae

- Usually climbing shrubs, rarely trees. Leaves well-developed, free, pinninerved. Flowers whorled in spikes. Male flowers with 2 bracteoles connate into a tube. Micro-sporophylls 1 or 2 on an androphore. Tropics. Gnetaceae

5. Bole tuberous or columnar, simple, rarely branched, then usually only at the apex and branches not originating from axillary buds. Sap slimy. Leaves large, palm-like, usually accompanied by scales, terminally tufted. Pollen sacs many (25 or more) per microsporophyll, in clusters of 2-6. (Cycadales).6

- Bole usually branched, branches slender, originating from axillary buds. Sap usually resinous. Leaves moderately sized to small, not palm-like, simple, entire or fan-shaped. Pollen sacs up to 15 per micro-sporophyll, sometimes in 2 rows, never in clusters.

6. Leaflets either with a midrib and lateral nerves, or without a midrib and nerves parallel. Ovules 2 per bract, floral axis not growing through the female pseudo-flower. 7

- Leaflets with a midrib, lateral nerves absent. Ovules $4-8$, rarely 2 per bract. Floral axis growing through the female flower (i.e. the whorls of ovule-bearing bracts). Cycadaceae

7. Leaflets parallel-nerved, nerves straight or wavy, simple or forked at base.

Zamiaceae

- Leaflets pinninerved, midrib distinct, lateral nerves parallel, forked.-Leaflets convolute in bud. S. Africa. Stangeriaceae

8. Leaves usually with a single midrib, sometimes with additional parallel veins, or a dichotomous venation, rarely with 2 unbranched veins, then leaves in whorls of 16-30, each with a small bract at base (Sciadopitys); apex rounded to acute. Ovules either subtended by bracts, or surrounded by sterile parts of a modified shoot structure, almost always by both in a compound structure. 9

- Leaves at base with 2 nerves, which branch dichotomously, midrib absent, apex usually 2 -lobed. Ovules usually 2 , on a long stalk, each with a cupule at base.-Long and short shoots present. Leaves alter-
nate, long-petioled, broad, fan-shaped. Female inflorescences in the axils of leaf-like bracts. (Ginkgoales). Ginkgoaceae

9. Seed either with a fleshy outer surface, or partly to completely enclosed by a fleshy aril, then drupe-like.-Leaves with a single vein. Ovules atropous, at least partly exposed. (Taxales).. 10

- Seed rarely fleshy, then ovule anatropous. Fleshy aril absent, but other fleshy structures sometimes present.-Leaves with a single vein, or with a midrib and additional parallel veins. Ovules atropous or anatropous. (Coniferales).

$$
11
$$

10. Ovule 1, terminal on a specialized shoot, subtended by several decussate bracts. Seed at least partly enclosed by a fleshy aril, when completely so drupe-like.-Pollen cones and ovule-bearing structures sometimes 2-more together on specialized fertile shoots. Taxaceae

- Ovules 2 per bract, axillary; bracts in cone-like inflorescences. Seed with a fleshy outer surface. Pollen structures compound and reduced in cones in the axils of leaves of the preceding year. Cephalotaxaceae

11. Ovule 1 per bract. Seed not winged, each surrounded by a fleshy bract, then drupe-like, or bracts forming a fleshy syncarp, or both. Pollen sacs 2 per micro-sporophyll, inverted. 12

- Ovules 1 -several per bract. Seed usually winged. Syncarp usually woody, rarely fleshy (Juniperus). Pollen sacs 2 -more per microsporophyll. 13

12. Leaves well-developed or scale-like, entire, phylloclades absent. Ovules usually anatropous, either with a thin cup-like epimatium at base, or enclosed by a leathery or fleshy one, then drupe-like, rarely atropous, then epimatium absent (Microstrobos). Pseudo-carp drupe-like.

Podocarpaceae

- Leaves inconspicuous, scale-like, phylloclades present, flabellate, lobed, or dentate. Ovule atropous with a thin epimatium or aril at base. Pseudo-carp a fleshy cone. (Phyllocladaceae)... Podocarpaceae

13. Pollen sacs usually 3 -more per micro-sporophyll, rarely 2 . Ovules 1 -more per bract, atropous or anatropous. Seed usually with 1-3 wings. Bract adaxially inappendiculate, or with a transverse ridge, or with 1 , rarely 2 scales. 14

- Pollen sacs 2 per micro-sporophyll. Ovules 2 per bract, anatropous. Bracts paired, the two more or less free from each other, the outer usually small and thin, the inner enlarging and finally woody.Leaves solitary or paired or tufted on specialized short shoots with which they are decumbent. Female bracts in a spiral. Pinaceae

14. Leaves usually with 1 midrib, rarely with 2 unbranched main nerves, then in whorls of 16-30 (Sciadopitys). Female bracts usually not deciduous, if so, then seeds 2 -more per bract and bracts without wing-like margins. Ovules usually more than 1 per bract, atropous

$$
\text { or anatropous. Seeds usually with 1-3 wings. } 15
$$

- Leaves usually with both a midrib and several to many parallel veins. Female bracts usually deciduous with adnate, not winged seeds and with winged margins, if not deciduous, seed with 1 or 2 wings.-Female bracts in a spiral.

Araucariaceae
15. Leaves and female bracts decussate or 3 or 4 in a whorl, never di-stichous.-Ovules atropous, 1 -several per bract. Seed not winged or with 1-3 wings.

Cupressaceae

- Leaves and female bracts usually in a spiral, distichous or not; leaves rarely opposite on decussate, specialized branchlets with which they are decumbent (Metasequoia), or in whorls of 16-30 (Sciadopitys).-Ovules atropous or anatropous. Seed with 1-3 wings.

Taxodiaceae
16. (1). Stem in transverse section with scattered vascular bundles. Leaves usually parallel-nerved, rarely reticulately so, or absent, ${ }^{1}$ usually narrow, undivided, entire, sometimes with adaxial appendages. Flowers usually 3 -merous. Pollen usually monocolpate. Cotyledon usually 1 , rarely absent. (Monocotyledones) 17

- Stem in transverse section usually with the vascular bundles in a ring. Leaves usually reticulately nerved, rarely both narrow and entire, or absent. Flowers usually 4 - or 5 -merous. Pollen rarely monocolpate. Cotyledons usually $2,{ }^{2}$ rarely only $1,{ }^{3}$ or absent. ${ }^{4}$ (Dicotyledones). 158

MONOCOTYLEDONES

17. Perianth absent or indistinct, then limited to small scales or hairs, sometimes replaced by tepaloid appendages of the connective, plants then aquatic. 18

- Perianth well-developed in at least the flowers of one sex, then

1 Reticulately nerved in many Araceae, Dioscoreaceae, Musaceae, Orchidaceae, Taccaceae, some Liliaceae s.l.; absent in Corsiaceae, Geosiridaceae, Lemnaceae, Triuridaceae, and some Liliaceae s.l., Burmanniaceae, Cyperaceae, Juncaceae, Orchidaceae, Restionaceae.
2 Cotyledons 3 or 4; whorled in Degeneriaceae, Calcycanthaceae (Idiospermum); and Opiliaceae.
3 e.g. in some Portulacaceae (Claytonia), Gesneriaceae (Monophyllaea), Primulaceae (Cyclamen), Cruciferae (Dentaria), Ranunculaceae (Ficaria), Papaveraceae (Corydalis).
4 In the seedlings of the 'Barringtonia-', 'Garcinia-' and 'Orobanche-' type (cf. De Vogel, Seedlings of Dicotyledons, 1979).
sepaloid, petaloid, or differentiated into a calyx and a corolla 36
18. Flowers, at least the female ones, in simple, rarely compound spa- dices, which are usually surrounded by a sheath; bracts and brac- teoles absent.-Ovary 1 19

- Flowers not in spadices. 24

19. Terrestrial, rarely fresh-water plants 20

- Submerged, marine plants.-Spadix flattened, consisting of 2 rowsof pairs of 1 stamen and 1 ovary. Anthers extrorse. Pollen filiform.Ovule 1. Endosperm absent. (Zosteraceae)....... Potamogetonaceae

20. Flowers bisexual or monoecious, if dioecious leaves dissected. Embryo usually large 21

- Flowers dioecious. Leaves undivided.-Woody plants. Leavesparallel-nerved, usually tristichous, narrow, margin spiny. Maleinflorescences usually compound. Ovule 1, laterally inserted, ormore. Embryo small. Pandanaceae

21. Inflorescences simple. Flowers not enclosed by empty bracts. Ovules 1 -many, free 22- Flowers enclosed by empty bracts. Ovule 1, completely adnate withthe ovary.-Flowers bisexual or monoecious, then male inflor-escences compound. (Coicineae, Zeeae).................. Gramineae
22. Flowers hypogynous, sometimes immersed in the axis, or withnumerous hairs at base, bisexual or monoecious, then with the maleflowers in the upper part, the female ones in the lower part of thespadix23

- Flowers perigynous, rarely epigynous, monoecious, male and femaleflowers alternating in groups or layers in the same spadix.
Cyclanthaceae

23. Leaves distichous, sessile, linear, undivided, entire, parallel-nerved.Male and female inflorescences separated at least initially by abract. Testa dry.-Herbs from marshes or aquatics. Perianth usuallysubstituted by hairs. Anthers with longitudinal slits. Fruit dry.
Typhaceae

- Leaves in a spiral, usually petiolate, blades sometimes reticulatelynerved, sometimes divided. Male part of the inflorescence whenseparate from the female part never subtended by a bract; bractsand bracteoles absent. Testa fleshyAraceae

24. Plant differentiated into stems and leaves. 25

- Plant not differentiated into stem and leaves.-Aquatics, plants con-sisting of leaf- or grain-like, floating or submerged fronds. Flowersin depressions of the frond, in groups of 1 pistil (female 'flower')and 1 or 2 stamens (male 'flowers')25 . Ovary 1 and plants submerged marines, or $2-6$, collateral, sessile atleast at anthesis and plants aquatics26
- Ovary 1 , rarely 2 -more, then stipitate, usually serial. Terrestrials,
or fresh-water aquatics 30

26. Flowers paired or in spikes, bisexual or polygamous. Stamens $2-$ numerous. 27

- Flowers solitary or in cymes, monoecious or dioecious. Stamen 1.-Marine aquatics. Style 1, filiform. Stigmas 1-3. (Cymodoceaceaesometimes included in Potamogetonaceae)......... Zannichelliaceae

27. Plants of fresh- or brackish-water. Ovaries 3-6. 28- Marine plants. Ovary 1.-Spikes compound with leaf-like bracts.Stamens 3. (Posidoniaceae)Potamogetonaceae
28. Flowers several to numerous in simple or compound spikes.Stamens 4 -numerous. Fruits subsessile.29

- Flowers paired. Stamens 2. Fruits finally long-stalked. (Ruppiaceae).
Potamogetonaceae29. Stamens 4, each subtended by a tepal or tepaloid appendage.Ovaries 4. Ovule 1 per ovary, pendulous. Fruits indehiscent.
Potamogetonaceae
- Stamens 6-many, inappendiculate, but 1-3 tepals may be present.Ovaries 3-6. Ovules 2-many per ovary, erect. Fruits dehiscent.
Aponogetonaceae

30. Bracteoles or empty glumes usually present. Filaments well- developed 31

- Bracteoles absent. Anther 1, subsessile.-Marsh plant. Flowers axil-lary and in terminal spikes, monoecious, rarely bisexual. Ovary 1.Ovule 1, erect. Style short in the flowers of the spike, very elon-gated in the basal axillary ones. Endosperm absent. Mountains ofPacific America. (Lilaeaceae)Juncaginaceae

31. Flowers solitary, or in simple or compound spikes, or in capitules.Ovules pendulous, 1 per locule or carpel. Fruit a capsule, veryrarely indehiscent (?)32- Flowers surrounded by membraneous to stiff glumes in variouslycompound spikelets or pseudo-spikelets, rarely simple, sometimesreduced to 1 flower with some empty glumes. Fruit a caryops, rarelydehiscent. Ovules erect to ascending or completely adnate with thecarpel.-Anthers usually 2 -locular35
32. Terrestrial plants, rarely aquatic, then flowers in capitules. Endo- sperm present 33

- Submerged aquatics. Flowers sessile, axillary. Endosperm absent.- Ovary (sub)-sessile. Najadaceae

33. Flowers in capitules, or ovaries several (?). Anthers 2-locular. 34

- Flowers solitary, or in spikelets, or in cymes. Ovary 1. Anthers 1-locular.-Stamens 1 or 2 . Ovary 1 -locular. Ovule anatropous.
Centrolepidaceae

34. Terrestrials, rarely aquatics, inflorescences then not submerged. Anthers versatile. Ovary one, 2- or 3-locular. Ovule atropous. (Eriocaulon)... Eriocaulaceae

- Completely submerged aquatics. Anthers adnate. Ovaries (female flowers ?) 1-several, 1-locular. Ovule anatropous.-W. Australia, Tasmania, New Zealand. (Hydatellaceae). Centrolepidaceae

35. Stem usually triangular, solid, without nodes. Leaves at least in-itially with closed sheaths, ligules often absent. Anthers basifix.Ovule and seed free from the ovary- or fruit-wall, basally attached.Embryo at least partly surrounded by the endosperm.... Cyperaceae

- Stem usually terete, hollow, nodose. Leaves with deeply fid sheaths,ligules exceptionally absent, sometimes replaced by a row of hairs.Anthers usually dorsifix. Ovule and seed adnate with the basal la-teral side of the ovary- or fruit-wall. Embryo basal, outside the endo-sperm. (incl. Anomochloaceae, Bambusaceae, Streptochaetaceae).
Gramineae

36. (17). Perianth calycoid, sometimes slightly coloured, rarely absent in the flowers of one sex 37

- Perianth corolloid, or differentiated into a calyx and a corolla 82

37. Leaves not both folded in bud and becoming divided later, if soperianth-segments 4 or indistinct and ovules many per carpel..... 38

- Leaves folded in bud, usually becoming pinnately or digitately com-pound or 2-partite. Perianth-segments usually distinct, then 6 and atleast present in flowers of one sex. Ovule 1 per carpel.-Woodyplants. Flowers in spatheate spikes, spadices, or panicles. (incl.Nypaceae).38. Flowers in spadices with 1 -several sheaths.-Fruit indehiscent, or
irregularly so, usually fleshy. 39
- Flowers not in spadices. 41

39. Flowers bisexual, monoecious, but then the male ones in the upperpart of the spadix and the female ones in the lower. Spadix usuallywith 1 sheath.-Leaves not plicate. 40

- Flowers monoecious, the male and female ones alternatingly ingroups or layers. Spadix with several sheaths.-Leaves 2-partite orflabelliformily partite and/or plicate................. Cyclanthaceae

40. Perianth undivided or 4-8-partite. Ovary 1. Fruit a berry, rarelydry and/or irregularily dehiscent............................ Araceae

- Tepals 2. Ovaries 3, free. Fruit a follicle. Aponogetonaceae

41. Ovaries inferior or hemi-inferior. 42

- Ovaries completely superior or nearly so, rarely naked. 43

42. Terrestrial plants, or epiphytes. Flowers not spatheate. Perianth- segments 4-6. 77- Aquatics. Flowers spatheate. Perianth 3-partite.-Flowers solitary
or cymosely capitate. Ovary 1-locular. Ovules numerous.
Hydrocharitaceae
43. Ovary 1, 1-locular. 44

- Ovary 1,2-more-locular, or ovaries 2-more, more or less free. 52

44. Ovule 1.-Herbs with narrow leaves. 45

- Ovules 2-more. 48

45. Flowers solitary, or in pairs, or in fascicles. Endosperm absent. 46

- Flowers in spikes, or in capitules, or in panicles. Endosperm present.-Stamens 2 -more. Ovule pendulous or descending. 47

46. Male flower with a 2 -labiate perianth, the female without any,usually surrounded by a sheath. Stamen 1, anther 1- or 4 -locular.Stigmas 2-4. Ovule erect, basal, anatropous. Najadaceae

- Male flower with a cupular perianth or without any, or with one ofa few scales, always present in the female flower. Stamens 1-3,sometimes connate, anthers 1 - or 2-locular. Ovule apical, pendu-lous, atropousZannichelliaceae

47. Leaves strap-shaped, basal. Flowers in globose capitules, monoe-cious. Perianth membranous. Stamens 3 -more. Ovule anatropous.Fruits more or less drupaceous.................... Sparganiaceae

- Leaves small, scale-like, basal and cauline. Flowers in simple spikes,or in panicles, or in spikelets, usually dioecious. Perianth usuallyscarious. Stamens 2 or 3 . Ovule atropous. Fruit a capsule or a nut.
Restionaceae

48. Leaves petiolate. Perianth-segments 4. Stamens 4. Stigmas 2, sessile. Seeds with a pubescent funicle.-Flowers solitary or in cymes. 49

- Leaves sessile. Perianth-segments 6. Stamens 3 or 6 . Stigma 1 or 3 on a simple style. Funicle glabrous. 50

49. Perianth-segments rounded. Ovules apical, more or less anatropous. (Croomiaceae). Stemonaceae

- Perianth-segments acute to acuminate. Ovules basal, atropous.
Stemonaceae

50. Stem herbaceous. Leaves not both stiff and serrate. Flowers not in capitules with leaf-like bracts. 51

- Stem woody. Leaves stiff, serrate. Flowers in terminal capitules with leaf-like bracts.-Ovules 2 or 3, basal, erect. Fruit indehiscent. Seed1. S.W. Australia. (Dasypogon). Xanthorrhoeaceae

51. Stigma 1, simple or 3-lobed, not filiform, nor twisted. Liliaceae

- Stigmas or styles 3, filiform, twisted. Juncaceae

52. Ovule 1 per locule or free carpel 53

- Ovules 2-more per locule or free carpel 55

53. Stamens $1-8(-15)$. Ovary syncarpous, or free carpels $2-9$, rarely numerous, then plants herbaceous, stamens 9, from African marshes. 54- Stamens and free carpels numerous.-Trees. E. Malesia. (Sara-ranga).Pandanaceae
54. Inflorescences various, if a capitule or a glomerule carpels free.Ovary 2-6-locular, or carpels free, 2-9. Ovules various, if anatropouserect or laterally inserted and ovaries 3-6-locular58

- Flowers in capitules without an involucre. Ovary 2-locular. Ovules pendulous, anatropousSparganiaceae

55. Ovaries 3-6, free, or connate at base only 56

- Ovary 1, 3-locular 72

56. Autotrophic plants of bogs or aquatics. Leaves well-developed 57

- Saprophytes of tropical forests. Leaves scale-like. (Petrosaviaceae).
Liliaceae

57. Herbs of bogs. Flowers in racemes. Tepals 6. Scheuchzeriaceae

- Aquatics. Flowers in simple or branched spikes. Tepals 1-3.
Aponogetonaceae

58. Ovules pendulous, atropous or hemitropous 59

- Ovules erect or lateral, anatropous 68

59. Flowers solitary, paired or in fascicles, axillary. Ovaries free.- Usually marine aquatics with cauline leaves. Zannichelliaceae

- Inflorescences otherwise. Ovary 2-4-locular 60

60. Flowers not in capitules, usually bisexual or dioecious 61

- Flowers in capitules, usually monoecious.-Perianth present. Stamens 1-4, or 6, free. (Eriocaulon, Lachnocaulon). Eriocaulaceae

61. Flowers in umbels, or in spikes, or in panicles. Stamens 4-6(-15). 62

- Flowers in spikelets, arranged into various inflorescences. Stamens 2 or 3 66

62. Herbs. Leaves parallel-nerved, exceptionally with apical tendrils. Fruit a drupe, or dehiscent into mericarps 63

- Woody climbers, often with stipular tendrils. Leaves 3-9-pli-nerved, reticulately viened, petiolate. Fruit a berry. (Smilacaceae).
Lilliaceae

63. Flowers in bracteate panicles. Stamens 6. Fruit a drupe 64

- Flowers in simple spikes. Stamens 4-6. Fruit dry, very spongy, ulti-mately dehiscent into mericarps. (Maundia)Juncaginaceae

64. Erect herbs, without tendrils. 65

- Climbers, often woody at base. Leaves with apical tendrils.-Leaves petiolate, not plicate. Flowers bisexual. Styles 3. (Flagellaria).
Flagellariaceae

65. Leaves sessile or very shortly petioled, plicate in bud. Flowers bi- sexual. Styles (2 or) 3. (Joinvilleaceae) Flagellariaceae

- Leaves petiolate, not plicate. Flowers dioecious. Stigma sessile, 3- lobed. (Hanguanaceae) Flagellariaceae

66. Anthers 2-locular. Filaments free. 67

- Anthers 1- or 2-locular, then (Lyginia) filaments connate at least at

67. Radical leaves present, ensiform. Spikelets in spikes or in panicles. Styles 3. Ovary 3-locular. (Anarthriaceae)

Restionaceae

- Radical leaves absent, cauline ones not ensiform, reduced to scales. Spikelets solitary. Styles 2. Ovary 2-locular. (Ecdeiocoleaceae).

Restionaceae
68. (58). Anthers extrorse. Carpels 3-many, free at least in fruit. Endosperm absent.-Herbs. Leaves ligulate. Flowers sessile, or in spikes, or in racemes, or in panicles.69

- Anthers introrse or latrorse. Ovary one, 3-locular. Endosperm present. 70

69. Tepals 6 . Stamens 4 or 6 . Carpels 4 or 6 . Embryo straight.-Flowers in spikes or racemes. Stigma sessile.

Juncaginaceae

- Tepals either 3 and then stamens 9 and carpels many (Burnatia), or 6 and then stamens 3 (Wiesneria). Embryo curved. ... Alismataceae

70. Leaves stiff, leathery, serrate or entire. Tepals scarious or bractlike. 71

- Leaves herbaceous, usually entire. Tepals not scarious, nor bractlike Liliaceae

71. Stem triquetrous, herbaceous. Styles 3, filiform. Exo- and endotesta with a cavity in between. Endosperm mealy. N.E. S. America.

Thurniaceae

- Stem terete, usually woody. Style and stigma 1. Testa without such a cavity. Endosperm cartilaginous. New Guinea to New Zealand.

Xanthorrhoeaceae
72. (55). Style 1. Stigma 1 or 3, rarely styles 3, then not filiform, nor twisted. Endosperm cartilaginous.................................. 73

- Styles or stigmas 3, filiform, usually twisted. Endosperm mealy.Anthers basifix.. . 76

73. Plants herbaceous, if woody erect, leaves long-linear, parallelnerved, flowers in large spiciform panicles and fruit a capsule. ... 74

- Woody plants, usually climbing and with stipular tendrils. Leaves elliptic to hastate, 3-9-pli-nerved, reticulately veined. Flowers small, in umbels, or in racemes, or in panicles. Fruit a berry. (Smilacaceae)... Liliaceae

74. Stem herbaceous. Leaves not leathery and long-linear, usually entire. Flowers not in large, contracted, spiciform panicles. 75

- Stem usually woody. Leaves stiff, leathery, long-linear, entire to serrate. Flowers small, numerous, in large, contracted, spiciform panicles. Australia. (Xanthorrhoea). Xanthorrhoeaceae

75. Leaves in a single pair or in a whorl, reticulately veined. Tepals (4-)6-10(-16), the inner ones sometimes filiform to strap-shaped
('staminodes', actually 'petals'). (Trilliaceae). Liliaceae

- Leaves and flowers different Liliaceae

76. Stigmas not twisted. Seeds fusiform with subulate ends. Exo- andendotesta with a cavity in between.-Flowers terminal on a naked,radical peduncle in dense capitules with leaf-like bracts. Lowlandtropics of N.E. S. America. Thurniaceae

- Stigmas usually twisted. Seeds sometimes fusiform, but ends notsubulate. Testa without such a cavity.-Flowers usually in variouslycompound inflorescences, rarely in involucrate capitules, or solitary.Plants of temperate zones and altitudes.Juncaceae

77. (42). Flowers actinomorphic. Fertile stamens 3-6. 78
Flowers zygomorphic, usually bisexual. Fertile stamens 1 or 2 .-Ovules numerous.Orchidaceae
78. Leaves parallel-nerved or scale-like. Ovary either 1, with 1 style anda simple to 3 -lobed stigma, or ovaries 3, connate at base only. . . 79

- Leaves reticulately nerved. Ovary 1. Stigmas 2 or 3.-Leaves petiolate, usually broad. 80

79. Saprophytes. Leaves scale-like. Ovaries 3, connate at base only. (Petrosaviaceae) Liliaceae

- Autotrophic plants. Leaves well-developed, parallel-nerved. Ovary1; style 1. (Aletroideae, Ophiopogonoideae). Liliaceae

80. Climbers. Flowers 3 -merous. Ovary 3 -locular and ovules axillary, rarely 1-locular and ovules parietal (Rajania) 81

- Stem erect. Flowers 4-merous. Ovary 1-locular, ovules apical.- Flowers bisexual. Anthers inappendiculate. (Croomiaceae: Sticho- neuron). Stemonaceae

81. Flowers unisexual. Connective not apically appendiculate. Ovules 2 per locule. Dioscoreaceae

- Flowers bisexual. Connective apically appendiculate. Ovules many per locule. (Stenomeridaceae). Dioscoreaceae

82. (36). Perianth corolloid. 83

- Perianth differentiated into a calyx and a corolla. 136

83. Ovary superior or nearly so. 84

- Ovary inferior or hemi-inferior. 104

84. Ovary 1, rarely ovaries 3 , connate at base, perianth-segments then 6 (Liliaceae) 85

- Ovaries 3-more, free, when 3 perianth-segments 1-3 102

85. Perianth-segments 6 or 8 , rarely less, subequal when 4 86

- Perianth-segments 4, very unequal.-Flowers in simple or bracteatespikes. Stamen 1. Ovary 1- or 3 -locular. Ovules numerous. Stigma1, punctiform or capitate. Endosperm fleshyPhilydraceae

86. Leaves only very rarely terminated by tendrils, then ovules nu-merous per locule and stigma undivided or with 3 short branches,
stipular tendrils sometimes present.87

- Plants climbing with tendrils terminating the leaves.-Flowers in panicles, actinomorphic. Anthers dehiscing apically. Ovary 3- locular. Ovule 1 per locule, laterally attached. Stigma 1. Styles 3, elongated. Fruit a drupe. Endosperm mealy. Embryo small. (Flagellaria).87. Anthers dehiscing with 1 slit or pore. Aquatics or plants ofmarshes.-Inflorescences spatheate. 88- Anthers usually dehiscing with 2 longitudinal slits, if with 1 slit orpore, then plants not aquatic or from marshes and either ericoidundershrubs or ovules atropous or hemitropous.8988. Flowers in capitules subsessile at the base of the leaves, actino-morphic. Anthers with a terminal pore. Ovary 3-locular. Ovule 1per locule, erect, basal. Embryo minute, broad.-Fruit a capsule.(Maschalocephalus).Rapateaceae- Flowers in racemes, usually zygomorphic. Anthers introrse. Ovaryeither 3 -locular with numerous, axillary ovules, or 1 -locular with 1apical, pendulous ovule. Embryo relatively large, linear. Perianthtubular at base. Style 1. Stigma 1.Pontederiaceae

89. Style 1 , stigmas 3 , usually twisted. 90- Style 1 and stigmas 1 , or 2 , or 3 , then usually short and not spirallytwisted, or styles 3-5, free or connate at base only. 91
90. Leaves with distinct, usually tubular sheaths, 2 - or 3 -stichous. In-florescence cymose with leaf- or scale-like bracts.-Plants grass- orrush-like, terrestrial. Perianth dry. Stamens 6 or less, the outer per-sistent; anthers basifix. Ovules 3-more per locule. Stigmas filiform.
Juncaceae

- Leaves broadly sheathing, usually in a spiral, rarely distichous. In-florescence racemose, bracts large, usually coloured.-Habit dif-ferent, terrestrial or epiphytic. Flowers in spikes or racemes. Ovulesmany per locule.Bromeliaceae

91. Ovules usually anatropous, when atropous either stem woody andovules pendulous, or ovary 1 -locular and tepals 4 . Embryo sur-rounded by the fleshy to cartilaginous endosperm, or basal andpartly free.92

- Ovules usually atropous. Embryo apical, not surrounded by themealy endosperm.-Stem herbaceous, leafy, nodose. Flowers 3-merous, usually in cincinni and blue. Filaments usually hairy. Ovary3 -locular. Ovules ascending, usually few per locule. Commelinaceae

92. Tepals 6. Funicle glabrous 93

- Tepals 4. Funicle hairy.-Erect or climbing herbs. Leaves reticu-lately nerved. Ovary 1-locular. Ovules several, basal, atropous.

93. Stamens 6 or more, rarely less, but then either staminodes present, or flowers not in racemes nor in panicles and not woolly, more or less actinomorphic 94

- Stamens 1-3, staminodes sometimes present and flowers in racemes or in panicles, stamens sometimes 6, then flowers more or less zygo- morphic, woolly. Haemodoraceae

94. Inflorescence with 1 -several spathas, terminal on a leafless, un- branched peduncle, usually umbelloid, rarely a spadix-like spike, or 1 -flowered.-Ovules 2 -more per locule. 95

- Inflorescence without spathas, often with scale- or leaf-like bracts, rarely umbelloid 96

95. Leaves not distichous. Flowers in umbels, rarely in a spadix-like spike (Miluala). Anthers dorsifix, introrse, usually 6, rarely 2, 3, or13. Stigma simple or 3-lobed.-Introduced in Australia and Tas-mania only. (Alliaceae). Liliaceae

- Leaves distichous. Flowers solitary. Anthers basifix, extrorse, 3.Stigmas 3, thick, recurved. Tasmania. (Isophysis). Iridaceae

96. Leaves well-developed, or with leaf-like phylloclades. Flowers not involucrate, bracteate capitules, if so plants woody and/or ovules 2- more per locule. 97

- Plants rush-like, leaves reduced to the sheaths. Flowers 1-3 in an involucrate, bracteate capitule.-Anthers basifix. Ovule 1 per locule. Meditterranean. (Aphyllanthaceae). Liliaceae

97. Phylloclades usually absent, when present flowers axillary and fila- ments free 98

- Phylloclades leaf-like. Flowers small, in terminal racemes or on the phylloclades. Filaments connate into a tube; anthers sessile, ex- trorse.-Fruit a berry. (Ruscaceae). Liliaceae

98. Leaves not very thick and fleshy and fibrous. Flowers solitary or in moderately sized inflorescences. 99

- Leaves very thick, fleshy and fibrous. Flowers in large to enormous spikes, racemes, or panicles, rarely in moderately sized ones, then ovule 1 perlocule and fruit a berry (Sansevieria). (Agavaceae). Liliaceae

99. Evergreen undershrubs. Flowers solitary. Tepals 6. Anthers 6, erect,basifix. Ovary 1 -locular and ovules 3, basal, erect, or 3 -locular andovule 1 per locule. S-, W-Australia. (Calectasiaceae).Xanthorrhoeaceae

- Plants otherwise 100

100. Shrubs or undershrubs, erect or climbing. Leaves reticulately veined. Inflorescences usually several-flowered. Fruit a berry. .. . 101

- Plants otherwise again, back to. 75101. Plants usually climbing with or without stipular tendrils. Flowersusually dioecious, in umbels, rarely bisexual and in racemes or in
panicles (Ripogonum). Anthers basifix. Styles 3-5, free, or connate at base. (Smilacaceae). Liliaceae
- Tendrils absent. Flowers bisexual, usually in cymes, rarely solitary. Anthers dorsifix. Style 1, filiform; stigma small. (Philesiaceae).

Liliaceae

102. (84). Autotrophic aquatics or plants from marshes. Leaves green,
radical. Ovaries 3-6. Ovules $2-$ many per ovary............... 103

- Non-green saprophytes. Leaves scale-like, cauline, alternate. Ovaries numerous. Ovule 1 per ovary.

Triuridaceae
103. Leaves petiolate. Flowers in 1-several spikes. Tepals 2, rarely 1 or 3. Ovaries 3.-Aquatics, leaves submerged or floating.

Aponogetonaceae

- Leaves non-petiolate. Flowers in umbels. Tepals and ovaries 6.-
Plants from marshes. Leaves erect, linear, distichous. (Butomus).

Butomaceae
104. (83). Fertile stamens 1-3. 105

- Fertile stamens 4-more.. 115

105. Fertile stamens 1 or 2 , very rarely 3 and then, as usual, partly adnate with the style. Flowers usually zygomorphic.

106

- Fertile stamens 3, very rarely 2, but always free from the style. Flowers usually actinomorphic. 110

106. Leaves pinninerved, petiolate. Flowers asymmetric, rarely zygomorphic, then leaves ligulate. Staminode(s) petaloid. Ovules and seeds not minute. Endosperm present. 107

- Leaves parallel-nerved, usually sessile, non-ligulate. Flowers zygomorphic, rarely nearly actinomorphic. Staminodes absent, rarely minute. Ovules and seeds minute. Endosperm absent 109

107. Leaves non-ligulate. Flowers asymmetric. Outer tepals usually free. Anther with 1 fertile and 1 petaloid theca. 108

- Leaves ligulate. Flowers zygomorphic. Outer tepals connate. Anther with 2 fertile thecae, connective enlarged. Zingiberaceae

108. Petiole callose below the blade. Ovule 1 per locule, basal. Embryo curved.

Marantaceae

- Petiole not callose below the blade. Ovules many per locule, axillary. Embryo straight. Cannaceae

109. Flowers usually distinctly zygomorphic. Fertile stamens usually 1, adnate to the stylar column, rarely 2 and (sub-)sessile on this column (Cypripedieae). Pollen grains coherent into clusters, or connate into pollinia, exceptionally free. Ovary usually 1 -locular with parietal placentation, rarely 3 -locular with axillary placentation, then flowers very zygomorphic (Cypripedieae)............... Orchidaceae

- Flowers nearly actinomorphic, the dorsal, inner tepal slightly concave. Fertile stamens 2 or 3 , connate, partly free from the style.Pollen grains free, finely granular. Ovary 3 -locular with axillary pla-centation. (Apostasiaceae).............................. . Orchidaceae

110. Stamens opposite to the outer perianth-segments. 111

- Stamens opposite to the inner perianth-segments.-Anthers introrseor latrorse, or with a terminal pore or short slit112

111. Autotrophous herbs with green, often distichous leaves. Style- branches 3, rarely 2 (Diplarrhena), often petaloid......... Iridaceae

- Saprophytic non-green herbs with alternate, scale-like leaves. Style3-lobed. Stigmas flattened.-Rhizome thin. Flowers bluish, ca. 1 cmlong. Madagascar.Geosiridaceae

112. Anthers with an apical pore or longitudinal slit. Style simple. Ovules usually not very numerous.-Plants autotrophous with well- developed leaves. 113

- Anthers with transverse, latrorse slits, rarely with longitudinal, in- trorse ones (Oxygyne), then, as usual, plants saprophytic. Style 3- fid. Ovules very numerous.-Leaves usually scale-like, radical when well-developed. Filaments very short. (Burmannieae).Burmanniaceae

113. Staminodes absent. Anthers introrse with longitudinal slits. Perianth persistent in fruit. 114

- Staminodes 3. Anthers with apical pores or short slits. Perianth de-ciduous.-Ovary 3-locular. Ovules numerous. (Tecophilaea,Tecophilaeaceae). Haemodoraceae

114. Ovules numerous per locule, only 1 locule fertile in fruit. Placentanot peltate. (Pauridia).Hypoxidaceae

- Ovules 1-6 per locule, all locules fertile. Placenta peltate.
Haemodoraceae

115. Fertile stamens 5, staminode 0 or 1 . Inflorescence with large,coloured bracts.-Large, rhizomatous to tree-like plants. Leavespinninerved, often tearing between the nerves. Ovary 3-locular. 116

- Fertile stamens 6-more, rarely 4. Flowers usually actinomorphic.118

116. Leaves distichous. Flowers bisexual. Fruit dehiscent 117

- Leaves alternate. Flowers usually unisexual, monoecious. Fruitleathery, indehiscent, or a pulpy berry.-Five tepals connate, 1 free.Ovules numerous per locule, axillary. Aril absent. Musaceae

117. Five tepals connate into a boat-shaped structure, 1 free. Ovule 1 perlocule, basal. Fruit dehiscing into 3 cocci. Aril absent. (Heli-coniaceae).Musaceae

- Tepals free, or the inner 2 oblique, forming a large, sagitate struc-ture, the third short, boat-shaped. Ovules numerous per locule, axil-lary. Fruit a woody, loculicid capsule. Aril present, fimbriate. (Stre-litziaceae). ... Musaceae

118. Ovary 1-locular, sometimes incompletely so. 119

- Ovary 3-locular. 127

119. Terrestrials. Flowers nearly always bisexual. Placentas 1-3. Endo- sperm present, in minute seeds inconspicuous 120

- Aquatics. Flowers nearly always unisexual, spatheate. Placentas usually 6-more. Endosperm absent Hydrocharitaceae

120. Saprophytic, non-green plants. Leaves scale-like.-Flowers solitary, or in bracteate, cymose racemes, or in capitules. Style simple. Stig- mas 3, short 121

- Autotrophic plants. Leaves well-developed.-Style simple or 3- winged, stigma capitate to 3 -fid, or styles 3 122

121. Flowers actinomorphic. Stamens adnate to the perianth. Anthers in- trorse. (Thismiaceae) Burmanniaceae

- Flowers zygomorphic. Stamens free. Anthers extrorse. . . Corsiaceae

122. Flowers in a spatheate capitule or umbel, sometimes solitary. Stigma 3-fid to -lobed, sometimes inconspicuously so 123

- Flowers in a spike, or in a raceme, without spathas, sometimes with bracts. Stigma 1, capitate, or 3, filiform 125

123. Leaves rarely reticulately veined, then flowers white. Flowers never blackish. Style more or less terete 124

- Leaves reticulately veined. Flowers blackish. Style with 3, some-times deeply incised wings.-Ovules numerous. Taccaceae

124. Leaves radical. Flowers in an umbel, with a corona. Ovules 2-few. (Calostemma, Hymenocallis). Amaryllidaceae

- Leaves cauline. Flowers solitary or sub-capitate, corona absent.Ovules numerous. (Leontochir, Schickendantzia: Alstroemeriaceae).
Amaryllidaceae

125. Acaulescent, hairy herbs, or a few cauline leaves present, plants not climbing. Inflorescences axillary. Anthers introrse 126

- Thorny, scandent shrubs with tendrils. Cymes leaf-opposed. Anthers extrorse.-Leaves cauline. Stigma 1, capitate. Ovules numerous. Fruit a berry. (Petermanniaceae, also included in Smilacaceae).

Liliaceae

126. Leaves plicate. Capitules basal on a naked peduncle. Stigmas 3, filiform. Ovules numerous. Fruit a berry. (Curculigo). Hypoxidaceae

- Leaves not plicate. Stem with a few leaves. Inflorescence a panicle of cincinni. Stigma 1, capitate. Ovules 3 or 6 . Fruit dry, dehiscent (?). (Phlebocarya, Lanaria, the latter also in Liliaceae or Tecophilaeaceae)

Haemodoraceae
127. Locules with several-many ovules, rarely 1 or 2 , but then anthers dehiscing with longitudinal slits, and/or ovary inferior. 128

- Locules with 2 ascending ovules.-Leaves broad, main nerves curved, lateral nerves numerous. Flowers in racemes or in panicles.
Tepals nearly completely free. Anthers longer than the filaments, dehiscing apically. Ovary hemi-inferior, 3-lobed. Stigma lobed. Ovules anatropous. Seed 1 per fruit. Embryo lateral to the endosperm. (Cyanastrum, Tecophilaeaceae or Cyanastraceae).

Haemodoraceae

128. Ovary inferior, rarely hemi-inferior, then ovules many per locule, or flowers neither in spikes nor in racemes, or style and stigma simple. Embryo usually surrounded by the endosperm. 129

- Ovary hemi-inferior. Embryo lateral to the endosperm.-Flowers in spikes or in racemes. Perianth persistent in fruit. Filaments short. Style 3-fid, or simple with a 3 -lobed stigma. Ovules 2 -several per locule. (Aletris, Ophiopogon, Peliosanthes)................ Liliaceae

129. Plants woody, at least at base, then densely covered by a coat of fibres or roots.-Leaves radical or in terminal tufts.............. . 130

- Stem without such a cover, herbaceous, sometimes with a woody rhizome. 131

130. Stem densely covered by a coat of fibres or roots. Flowers solitary. Placentas laminar, \pm peltate. Velloziaceae

- Stem without a coat. Inflorescences large to enormous. Placentasnot laminar, nor peltate. (Agavaceae).Amaryllidaceae

131. Leaves solitary at the end of each branch with a fascicle of flowers at its base.-Roots wiry. Tepals persistent in fruit. Ovules 2 per locule, serial, pendulous, apotropous. Fruit a winged berry. (Tricho- podaceae).- Leaves several, usually radical. Inflorescences different.132
132. Inflorescence an umbel or an irregular raceme, rarely 1 -flowered, provided with more or less membraneous spathas, when 1-flowered, occasionally with 1 leaf-like spatha. 133

- Inflorescence a raceme, or a panicle, or a capitule, rarely 1-flowered, without spathas, with or without scale- or leaf-like bracts.

133. Bulbs absent, roots swollen. Leaves cauline, often twisted at base. (Alstroemeria, Bomarea: Alstroemeriaceae)......... Amaryllidaceae

- Bulbs present. Leaves radical, not twisted at base... Amaryllidaceae

134. Placentas thickly laminar to peltate. Fruit a longitudinally dehiscent capsule 135

- Placentas not thickly laminar, nor peltate. Fruit dehiscing by acircular suture, or by short, vertical, subapical slits.-Leaves plicateor conspicuously nerved. Flowers small, white or yellow.
Hypoxidaceae135. Plants glabrous. Inflorescence a lax raceme, or 1-flowered. Perianthdeciduous. Anthers with an apical pore, rarely with longitudinalslits. (Tecophilaeaceae). Haemodoraceae
- Plants pubescent, hairs often branched. Inflorescence compoundwith cincinnate branches. Perianth persistent in fruit. Anthers withlongitudinal slitsHaemodoraceae

136. (82). Ovary superior or nearly so. 137

- Ovary inferior or hemi-inferior. 151

137. Ovary 1,1-5-locular. 138

- Ovaries 3-more, free or connate at base only, rarely also below the single style, flowers then solitary and involucrate in a secund spatheate spike (Rapateaceae). 149

138. Ovary 1 -locular.-Ovules numerous. 139

- Ovary 2-5-locular. 143

139. Leaves oblong to ovate. Stamens 6-12. Ovules anatropous. Endo- sperm fleshy or cartilaginous 140

- Leaves linear. Fertile stamens 3. Ovules atropous. Endosperm mealy 141

140. Rhizomatous herbs. Leaves herbaceous, in a single pair or whorl. (Trilliaceae). Liliaceae

- Evergreen shrubs. Leaves leathery, numerous, alternate. (Philesia,Philesiaceae). .. . Liliaceae

141. Leaves radical, stem sometimes with a few scales; apex entire.Flowers in spikes or in capitules. Anthers with longitudinal slits. 142

- Leaves cauline, apex bidentate. Flowers solitary or in umbels.Anthers with an apical pore.-Sepals equal, 3. Petals free.
Mayacaceae

142. Sepals homomorphic, 2 or 3. Petals connate. Style with 3 basal appendages. (Abolbodaceae). Xyridaceae

- Sepals heteromorphic, 3. Petals free. Style without basal appen- dages. Xyridaceae

143. Stamens $1-6$. Ovary 2- or 3-locular. Ovules usually atropous. Embryo remote from the hilum 144

- Stamens 6-12. Ovary 3-5-locular. Ovules anatropous. Embryoclose to the hilum.146

144. Flowers bisexual, not minute, usually in cincinni. Stigma 1, simple,or obscurely 3-lobed. Ovules usually several per locule, axillary,ascending.145

- Flowers unisexual, minute, in involucrate capitules, rarely axillary.Stigmas 2-6. Ovule 1 per locule, subapical, pendulous.-Leavesusually narrowEriocaulaceae

145. Flowers racemose, in spikes or in racemes.-Non-succulent, glandu-lar-pubescent herbs. Leaves linear. Petals free. Stamens 6; filamentsglabrous. Ovary 3-locular. Ovules 2 per locule. Fruit a capsule. AruIsl., Australia. (Cartonemataceae)Commelinaceae

- Flowers cymose, usually in cincinni.-Plants otherwise.

Commelinaceae

> 146. Leaves often thorny-dentate, stiff and leathery, if herbaceous in a single pair or whorl. Anthers with introrse to latrorse longitudinal slits. Stigmas $3 . \ldots \ldots . ~$

- Leaves entire, not stiff and leathery, numerous. Anthers with 1, or 2, or 4 apical pores. Style 1; stigma punctiform.-Flowers each with an involucre of several bracts, in spatheate capitules or spikes. Calyx and corolla contort. Rapateaceae

147. Leaves usually thorny-dentate, stiff, leathery, parallel-nerved, numerous, not in a single pair or whorl. Sepals and petals 3..... 148

- Leaves herbaceous, entire, reticulately nerved, in a single pair or
whorl. Sepals and petals (2-)3-5(-8). (Trilliaceae). Liliaceae

148. Bracts green or brownish, rarely white. Flowers dioecious. Petals dry. Ovule 1 per locule, basal. Endosperm cartilaginous. Australia to New Guinea. (Lomandra, cf. also Liliaceae s.s.).

Xanthorrhoeaceae

- Bracts usually brightly coloured. Flowers usually bisexual. Petals not dry. Ovules few to numerous per locule, axillary. Endosperm mealy. Tropical America, many cultivated, occasionally escaping elsewhere in the tropics.

Bromeliaceae
149. (137). Anthers extrorse or with apical pore(s). Ovules 1 or 2 , basal,
rarely a few and axial on 1 placenta. 150

- Anthers introrse. Ovules many, covering the entire inner face of the carpels.-Flowers solitary or in umbels. Fruit a follicle. (Limnocharitaceae, sometimes also in Alismataceae). Butomaceae

150. Flowers without an involucre, in bracteate panicles, thyrses, or umbels, rarely solitary. Carpels 6 -many, free, rarely connate at base, each with 1 free style. Fruit dry, indehiscent. ... Alismataceae

- Flowers each involucrate by several bracts in a secund, spatheate spike. Carpels 3, connate at base and below the single style. Fruit a capsule, only 1 locule fertile. (Spathanthus). Rapateaceae

151. (136). Fertile stamen 1.-Flowers zygomorphic or asymmetric. . . 152

- Fertile stamens 2-more... . 155

152. Leaves usually petiolate and pinninerved. Stamen free from the style or nearly so. Staminode(s) large, usually petaloid. Ovules and seeds not minute. Endosperm present. 153

- Leaves usually sessile and parallel-nerved. Stamen completely adnate to the style or nearly so. Staminodes minute or absent. Endosperm absent.

Orchidaceae
153. Flowers zygomorphic or asymmetric. Sepals 3, connate, or with a deep slit. Anther with 2 fertile thecae, connective often enlarged.Leaves ligulate. Ovules numerous. Embryo straight. 154

- Flowers asymmetric. Sepals 3, usually free. Anther with 1 fertile and 1 petaloid theca. Back to................................... . . 108

154. Leaves distichous. Sheaths open. Ovary apically often with erect, sometimes large glands, 1 - or 3 -locular.-Plants aromatic.

Zingiberaceae

- Leaves in a spiral or 4 -stichous. Sheaths initially closed. Ovary apically with depressed, supra-septal glands, 2- or 3-locular.-Supraterranean parts not aromatic. (Costaceae)............. Zingiberaceae

155. Flowers usually actinomorphic. Stamens 2-16, sometimes some staminodial, when 5 plants aquatic. 156

- Flowers zygomorphic. Stamens 5.-Terrestrial. Leaves petiolate, blade large, oblong or ovate, pinninerved, transversally veined. Flowers perigynous, orchidaceous. Lowiaceae

156. Aquatic herbs. Flowers usually unisexual, solitary, or in spatheate cymes. Stamens 2-16. Anthers extrorse or latrorse. Ovary 1locular, sometimes incompletely 6-15-locular. Endosperm absent.

Hydrocharitaceae

- Terrestrial or epiphytic plants. Flowers bisexual; inflorescences otherwise. Stamens 6. Anthers introrse. Ovary 3-locular. Endosperm copious

157. Plants not climbing, often epiphytic, stem usually not developed. Leaves usually radical, margins usually thorny, usually lepidote. Flowers in spikes, or in racemes, or in panicles, or in capitules, usually with coloured bracts. Fruit a berry, or dry and indehiscent (Bromelioideae), or a septicide capsule (Pitcairnioideae).

Bromeliaceae

- Plants climbing or erect with a well-developed stem. Leaves alternate, entire, glabrous. Flowers in umbels with green bracts. Fruit a loculicide capsule. (Bomarea, Alstroemeriaceae). . . Amaryllidaceae

DICOTYLEDONES

158. (16). Plant with chlorophyll, if hemi-parasitic haustorial organs indistinct and usually lacking in the herbarium.-Try in case of doubt this lead also, as parasites and saprophytes have been taken up in the main key as well. 159

- Plant parasitic or saprophytic, either lacking chlorophyll, or hemiparasitic and attached above the ground (e.g. as an epiphyte) to its host by haustorial organs, or with distinct subterranean connections.

159. Perianth either absent, or simple, or composed of a calyx and at least one free petal, i.e. at least at base, rarely connate or cohering
in the middle or at the apex. ('Archichlamydeae') 160

- Perianth differentiated into a calyx and petals, which are all connate at least at base. ('Metachlamydeae' or 'Sympetalae'). 1572

160. Perianth either absent, or present, but then consisting of 2-7(sub-)equal segments not differentiated into a calyx and a corolla, orabsent in the female and/or bisexual flowers and present in the maleones, the latter then exceptionally with a calyx and a corolla.('Apetalae')161

- Perianth either differentiated into a calyx and a corolla, or (rarely) consisting of 8 -more (sub-)equal segments not clearly differentiated into a calyx and a corolla. ('Choripetalae'). 548
APETALAE

161. Bisexu
bracts. 162

- Bisexual and/or female flowers with a perianth. 232

162. Flowers unisexual. 163

- Flowers bisexual or polygamous 214

163. Male flowers without a perianth 164

- Male flowers with a perianth. 192

164. Style or sessile stigma per flower 1 , or 2 -more, then connate at base. 165

- Styles or sessile stigmas per lower 2-more, free to base. 177

165. Ovary 2-4-locular or nearly so. 166

- Ovary 1-locular. 167

166. Ovules 1 or 2 per locule, pendulous. 175

- Ovules 2 per locule, ascending.-Leaves individed. Male flowers in catkins, each with 1(-3) bracts. Female flowers solitary in an in- volucre of many bracts. Stigmas deeply bifid. Ovary incompletely 2- or 3-locular. Australia, New Caledonia, Fiji. Balanopaceae

167. Ovule 1 168

- Ovules 2-more 174

168. Ovule pendulous sometimes from the middle of the adaxial wall. 169

- Ovule erect 171

169. Flowers in a spike or in a panicle. 170

- Flowers on a spreading or thickened common receptacle, the female ones immersed in it.-Style present. Ovule anatropous. .. Moraceae

170. Leaves alternate. Stipules absent. Ovary superior. Stigma decurrent, crenulate with a median groove. Madagascar. Didymelaceae

- Leaves opposite. Stipules present. Ovary inferior. Stigma terminal, truncate. S.E. Asia to New Zealand. Chloranthaceae

171. Leaves simple 172

- Leaves pinnately compound. (Carya, Platycarya). Juglandaceae

172. Flowers in spikes. Ovule atropous 173

- Flowers in glomerules. Ovule campylotropous. (Amaranthus).
Amaranthaceae

173. Leaves usually palmatinerved. Stipules present. Stamens 2 or 3. Fruit a berry. Endosperm present. Piperaceae

- Leaves pinninerved. Stipules absent (Myrica) or present, thenleaves pinnatifid (Comptonia). Stamens usually 4. Fruit a drupe.Endosperm absentMyricaceae

174. Parasitic shrubs or undershrubs. Stipules absent. Female flowerswith an epigynous disk and 3 staminodes. Anthers with a short,apical slit. Ovules 3 , pendulous from the apex of a central placenta.Fruit dry, indehiscent. Endosperm present. Myzodendraceae

- Autotrophic shrubs or trees. Stipules present. Disk hypogynous, cupuliform, or reduced to 1 or 2 scales. Anthers with 2 longitudinal slits. Ovules on 2-4 parietal placentas, ascending. Fruit a capsule. Endosperm absent Salicaceae

175. Leaves simple, usually alternate. Stigmas and locules of the ovary 3-9. 176

- Leaves pinnately compound, opposite. Stigmas and locules of the ovary 2 , rarely 3 , or 4 .-Stamens 2. Ovules 2 per locule. . Oleaceae

176. Stigmas and locules of the ovary 3. (incl. Peraceae). . Euphorbiaceae- Stigmas and locules of the ovary 6-9.-Flowers in dense capituleswith 2 subopposite, white bracts. Male flowers numerous. Femaleflower 1 per capitule with $15-25$ perigynous appendages (stami-nodes ?)177. (164). Ovaries $2-6$178

- Ovary 1 181

178. Ovules numerous per carpel.-Leaves opposite. Stipules present. Stamens 15-20. Ovaries 4-6, substipitate. Cercidiphyllaceae

- Ovule 1 per carpel. 179

179. Stipules absent. Ovule anatropous. Endosperm copious. 180

- Stipules present. Ovule atropous. Endosperm scanty. Platanaceae

180. Flowers with an annular or flask-shaped disk (velum). Anthers de- hiscing with valves. (Siparunaceae). Monimiaceae

- Flowers without such a velum. Anthers with longitudinal slits.
Monimiaceae

181. Ovary 1-locular, sometimes incompletely so 182

- Ovary 2-4-locular, or nearly so. 186

182. Ovules 2-more 183

- Ovule 1.-Flowers in spikes. Ovule erect. Fruit a berry. Piperaceae

183. Ovules 2. 184

- Ovules 4-more.-Flowers in a spike or a catkin. 185

184. Trees. Leaves well-developed. Flowers solitary, or the male ones fasciculate. Stamens 6-10. Eucommiaceae

- Parasitic herbs. Leaves absent or scale-like. Inflorescence spadix-like. Stamens 2. (Lophophytoideae). Balanophoraceae

185. Submerged aquatic herbs. Leaves radical. Stipules absent. Stamen1. Seed glabrous. Endosperm present.Hydrostachydaceae

- Shrubs or trees. Leaves alternate. Stipules present. Stamens 2- more. Seeds hairy. Endosperm absent. Salicaceae

186. Ovules numerous per locule.-Stem woody. Stipules present 187

- Ovules 1 or 2 per locule. 189

187. Leaves terminally tufted or alternate. Flowers in capitules. Stamens 8 -numerous. Styles and locules of the ovary 2. 188

- Leaves opposite. Flowers in catkin-like spikes. Stamens 3-8. Ovary-locules and styles 3 or 4 Myrothamnaceae

188. Male inflorescence a terminal raceme of globose staminal clusters,each at first enveloped by a large membraneous bract. Ovules hori-zontal. (Altingiaceae).Hamamelidaceae- Stamens 8-10 in distinct flowers. Ovules pendulous. (Chunia).
Hamamelidaceae189. Terrestrials. Leaves usually alternate. Styles more or less apical.-Stipules usually present. Stamens 1 -many, free or connate. Stylesor stigmas and locules of the ovary 2 or 3(-many). 190

- Aquatics with submerged or floating, opposite leaves. Styles gyno- basic.-Stipules absent. Stamen 1. Styles 2. Ovary 4-locular. Fruit a schizocarp Callitrichaceae

190. Ovules pendulous.-Fruit usually a capsule. 191

- Ovules basal, ascending.-Male flowers in catkins. Female flowerssolitary, involucrate. Ovary incompletely 2- or 3-locular. Stigmasdeeply bifid. Fruit an acorn-like drupe. Australia, New Caledonia,Fiji.Balanopaceae

191. Embryo minute, apical in copious, oily, blue endosperm. Fruit a 1 -seeded drupe.-Leaves usually glaucous beneath. Stipules absent.Stamens 6-12. Pistillode absent. Ovary incompletely 2-locular. Stig-mas 2, recurved or coiled.Daphniphyllaceae

- Embryo about as large as the endosperm. Fruit usually a capsule.-Stipules usually present. Ovary 3-more-locular, rarely 2-locular,then completely so. (incl. Peraceae, Uapacaceae).... . Euphorbiaceae

192. (163). Style absent, stigma(s) sessile, if 2 -more connate at baseand ovary 1 per flower.193

- Styles 2-more, free to base, rarely ovaries 2-5, free, each with 1 style. 207

193. Stigma 1, sometimes 3 - or 4-lobed.-Ovary 1-locular and ovule 1 ,
rarely locule inconspicuous and ovules 1 or 3. (Balanophoraceae).194

- Stigmas 2-5. 199

194. Ovule 1, basal. 195

- Ovules 1(-3), apical, or adnate with the ovary-tissue. 196

195. Stipules present. Tepals and stamens $1-5$ Urticaceae

- Stipules absent. Male flowers with 4 or 5 sepals and petals and 8-10 stamens. (Podoaceae)

196. Stem herbaceous. 197

- Stem woody.-Leaves well-developed. 198

197. Parasites. Leaves scale-like or absent. Stipules absent. Inflorescence spadix-like or paniculately branched. Balanophoraceae

- Autotrophic annuals. Leaves well-developed. Stipules present. Flowers in a spike. (Piscaria)........................ Euphorbiaceae198. Stipules present. Flowers in an excavated common receptacle.Perianth-segments usually distinct. Anthers with longitudinal slits.
Moraceae
- Stipules absent. Flowers in umbels or capitules. Perianth obscure. Anthers with valves Lauraceae

199. Ovary 1 -locular, rarely with a second sterile locule. 200

- Ovary with 2-4 fertile locules, rarely incompletely locular 206

200. Ovule 1. 201

- Ovules 2-4.-Leaves in whorls, scale-like. Stamen 1. Casuarinaceae

201. Ovule basal. 202

- Ovule apical.-Stipules present. Moraceae

202. Stipules absent. Ovule anatropous or campylotropous. 203

- Stipules present. Ovule atropous.-Trees. Leaves pinnately com-pound. (Carya, Platycarya)Juglandaceae

203. Stamens either as many as the tepals and more or less epitepalous,or less. Ovule campylotropous. Endosperm present. Embryocurved.204

- Stamens as many as the tepals and alternitepalous. Ovule anatro- pous. Endosperm absent. Embryo straight. 205

204. Plants usually mealy to lepidote with stellate or bladder-like hairs.Male flowers without bracteoles. Tepals herbaceous or membranous,usually obtuse. (incl. Halophytaceae ?)............. Chenopodiaceae- Plants glabrous. Male flowers with bracteoles. Tepals acuminate,almost scarious. (Acanthochiton, Acnida). Amaranthaceae
205. Leaves simple, but often dissected. Male flowers in capitules. Stig-mas 2.- Leaves pinnately compound, rarely unifoliolate. Male flowers inspikes or in panicles. Stigmas 3.-Woody plants. Julianiaceae206. Ovary 2 - or 3 -locular. Ovule 1 or 2 per locule, pendulous. Endo-
sperm present 191

- Ovary 4-locular. Ovule 1 per locule, ascending.-Leaves opposite. Stamens 4. Stigmas 2. Endosperm absent. Batidaceae

207. (192). Ovary 1, 1-4-locular, or locule inconspicuous (Balanophora- сеае) 208

- Ovaries 2-5, free, stipitate, 1-locular.-Woody plants. Flowers axil- lary, solitary. Ovules numerous. China, Japan. ... Cercidiphyllaceae

208. Ovary 1 -locular or locule inconspicuous 209

- Ovary 2-4-locular. 212

209. Autotrophic plants. Leaves well-developed, green 210

- Parasitic, yellowish or reddish herbs. Leaves scale-like. Inflores- cence spadix-like or disk-like. (Scybalioideae) Balanophoraceae

210. Ovule 1, basal, campylotropous. Back to 204

- Ovules 2.-Woody plants. Flowers in catkins 211

211. Plants monoecious. Leaves alternate. Stipules present. Betulaceae

- Plants dioecious. Leaves opposite. Stipules absent. Garryaceae

212. Ovary 3-locular, rarely 2- or 4-locular. Endosperm present 213

- Ovary 2-locular. Endosperm absent-Plants woody, monoecious.Stipules present. Flowers in unisexual catkins. Styles 2. Ovule 1 perlocule.Betulaceae

213. Aquatic herbs. Leaves submerged, divided. Styles 4. Ovary 4- locular. Ovule 1 per locule. Haloragaceae

- Terrestrials. Styles 3, rarely 2 or 4 . Ovary 3-locular, rarely 2- or 4 -locular, then either flowers dioecious, or in bisexual spikes, or thefemale in glomerules, or solitary; when 4-locular ovules 2 per locule.(incl. Uapacaceae).Euphorbiaceae

214. (162). Styles either 1 per flower, or 2 -more but then connate at base. 215

- Styles 2-more per flower, free to base 224

215. Ovary 1, 2-more-locular, or ovaries several 216

- Ovary 1, 1-locular 217

216. Leaves opposite. Flowers in racemes, bracts small. Style short. Stig- ma more or less bifid. New Zealand, Norfolk Isl. (Nestegis).
Oleaceae

- Leaves alternate. Flowers in dense capitules subtended by twolarge, showy bracts, composed of many male flowers and 1 bisexualone. Style elongated. Stigma 6-9-lobed. S.W. China... Davidiaceae

217. Ovule 1 218

- Ovules 2-6.-Leaves alternate. 223

218. Ovule atropous.-Leaves simple, rarely lobed or divided. Flowers in spikes or cymes 219

- Ovule anatropous.-Stipules absent. 222

219. Leaves alternate, rarely opposite or verticillate, but then ovule
basal. Stamens 2, if more, stigmas 2 or more. 220

- Leaves opposite. Stamens 1 or 3, connate and adnate to the ovaryor pistillode.-Stigma 1. Ovule pendulous.......... Chloranthaceae

220. Stipules present, sometimes adnate to the petiole. Flowers usually inleaf-opposed spikes.-Shrubs, climbers or small trees. Ovule basal,erect. Fruit a berry. Endosperm present. Piperaceae

- Stipules absent. Spikes axillary and/or terminal. 221

221. Shrubs. Spikes axillary. Stigmas 2 . Ovule basal, erect with an elon-gated, recurved micropylar tube resembling a funicle. Fruit a drupe.Endosperm absent.-New Caledonia. (Canacomyrica). Myricaceae

- Herbs or undershrubs. Spikes axillary and/or terminal. Stigmasimple. Ovule basal, erect, without such a micropylar tube. Fruit aberry. Endosperm present. (Peperomiaceae)Piperaceae

222. Leaves radical, tri-partite or -foliolate. Flowers in spikes. Stamens(6-)9(-12), anthers with valves. Ovule erect. (Podophyllaceae).
Berberidaceae

- Leaves cauline, entire, in whorls. Flowers axillary, solitary. Stamen1, anther with longitudinal slits. Ovule pendulous.-Marsh-plants.Hippuridaceae

223. Stipules absent. Stamen 1. Stigmas 2 or 3 .-Stem woody. (Laci-stemataceae). .. Flacourtiaceae

- Stipules present. Stamens 5 -more. Stigma 1. Leguminosae

224. (214). Locules of the ovary or ovaries 5-more. Stamens 8-many.Stem woody.-Stipules absent.226

- Locules of the ovary or ovaries $1-4$. Stamens $1-10$, rarely more, then stem herbaceous 229

225. (Deleted.)
226. Flowers either axillary, solitary or in clusters, or in terminal cymesor panicles. Stamens homomorphic. Ovaries superior. Fruits samara-like, or follicular, or capsular227

- Flowers terminal, solitary. Inner stamens petaloid, forming apseudo-perianth. Fruit a berry.-Perianth deciduous as a calyptra atanthesis, leaving a scar. New Guinea, E. Australia. . Eupomatiaceae

227. Stamens many. Ovaries more or less free, 6-18. Ovules 1-3 ormany per carpel. Fruits follicular or samara-like.228

- Stamens 8 -11. Ovary 8 - 15 -locular. Ovules 4 per locule. Fruit acapsule. New Caledonia.......................... Paracryphiaceae

228. Flowers in terminal cymose racemes. Bracteoles several per flower.Carpels laterally coherent, sessile. Ovules many per carpel. Fruitsfollicular. Formosa, JapanTrochodendraceae

- Flowers in axillary clusters. Bracteoles absent. Carpels free, stipi-tate. Ovules 1-3 per carpel. Fruits samara-like. Assam to Japan.(Eupteleaceae).Trochodendraceae

229. Ovule 1 . Ovary 1 230

- Ovules 6-many.-Herbs 231

230. Ovary 1-locular. Ovule basal. Piperaceae

- Ovary 2-locular. Ovule apical.—Woody plants. (Distyliopsis).
Hamamelidaceae

231. Terrestrials. Flowers in spikes. Ovules 6-24, parietal, atropous. En- dosperm present. Saururaceae

- Torrential aquatics, moss-like. Flowers spatheate. Ovules very many, central, anatropous. Endosperm absent. Podostemaceae

232. (161). Ovary or ovaries superior or nearly so, sometimes surrounded by the receptacle, but not adnate to it. 233

- Ovary inferior or hemi-inferior. 460

233. Ovary 1, undivided, or lobed. 234

- Ovaries 2-more, free, or connate at base and/or the apex. 425

234. Ovary 1-locular, sometimes incompletely more-locular 235

- Ovary completely 2 -more-locular, or nearly so 338

235. Ovule 1 236

- Ovules 2-more 283

236. Ovule or its funicle basal or nearly so. 237

- Ovule or its funicle apical or distinctly parietal. 267

237. Ovule atropous or nearly so, very rarely (Canacomyrica) with an elongated, recurved micropylar tube resembling a funicle. 238

- Ovule anatropous or campylotropous 244

238. Style 1 or absent. Stigma 1, sometimes penicillate 239

- Styles 2-4, free or connate at base.-Stamens usually 6-9 240

239. Bark inside without silky, tough fibres. Stamens $1-5$.-Perianth en- tire, or segments 2-5. 241

- Bark inside with silky, tough fibres. Stamens 8. Thymelaeaceae

240. Stipules usually connate into a sheath (ochrea). Perianth-segments 3-6. Endosperm copious, mealy Polygonaceae

- Stipules absent. Perianth absent, but several bracteoles present. En-dosperm absent.-Flowers in a spike. Style short, stigmas 2, long.Fruit a drupe.Myricaceae

241. Stipules absent. Flowers in spikes, or in racemes, or in fascicles, in- volucre absent. Stigma sessile, cushion-shaped or $2-5$-lobed. Testa absent.-Woody plants. Endosperm copious 242

- Stipules present, rarely absent, then either flowers solitary or in in-volucrate glomerules. Stigma linear or penicillate. Testa present.--Perianth-segments at least in the female flowers completely connate.

242. Perianth divided down to the disk into 3-5 segments. . . Santalaceae

- Perianth 4- or 5 -lobed, male flowers moreover with 4 or 5 petals.- Flowers in racemes. (Gjellerupia). Opiliaceae

243. Stem usually herbaceous. Latex absent. Stamens incurved in bud.-Leaves undivided or lobed.Urticaceae

- Stem woody. Latex present, rarely watery. Stamens erect in bud.
Moraceae

244. Ovule anatropous. Embryo straight. 245

- Ovule campylotropous. Embryo curved. 257

245. Stigmas 2 or 3. 246

- Stigma 1. 249

246. Flowers bisexual or polygamous 247

- Flowers dioecious.-Tepals 1-5, imbricate. Stamens 3-5. Fruit adrupe. Endosperm absent. (Pistaciaceae)............. Anacardiaceae

247. Tepals rarely 2. Stamens 7 or less. 248

- Tepals 2. Stamens 8 -more. (Bocconia) Papaveraceae

248. Tepals 2-5, imbricate. Stamens hypogynous or perigynous, epitepa-lous, as many as, rarely more than the tepals. Fruit dry. Endospermpresent.-Leaves opposite. (incl. Illecebraceae). ... Caryophyllaceae

- Tepals 4-7, valvate. Stamens perigynous, alternitepalous. Fruit adrupe. Endosperm scanty or absent.Rhamnaceae

249. Stamens perigynous on the upper margin of a more or less concave receptacle, or inserted on the perianth. 250

- Stamens hypogynous or flowers unisexual and stamens on a central column. 251

250. Stipules absent.-Leaves alternate. 255

- Stipules present.-Tepals 5-10. Stamens 1-4, or numerous. Fruitdry.Rosaceae

251. Leaves usually opposite. Anthers introrse or latrorse.-Fruit inde- hiscent. Stamens 5 or more 254

- Leaves alternate. Anthers extrorse or latrorse. 252

252. Young inflorescence resembling a young fir-cone. Filaments epitepa- lous, free or slightly adnate to the perianth. Ovule without integu- ments.-Trees, or shrubs, or lianas. Opiliaceae

- Young inflorescences not as above. Filaments alternitepalous, freeor connate. Ovule with 2 integuments.253

253. Trees. Filaments completely connate. Fruit fleshy, dehiscent.Myristicaceae- Shrubs or lianas. Filaments free or connate at base. Fruit a drupe ora samara. $($ Petiveriaceae $=$ tribe Rivineae $) . \ldots \ldots$. . Phytolaccaceae
254. Leaves with translucent dots and/or lines, crystals absent (lens!).Tepals 4 or 6 , free, imbricate. Fruit fleshy. Endosperm absent.-Stamens many.Guttiferae

- Leaves with raphids and/or cystoliths, without translucent dots orlines (lens!). Perianth corolloid, 4 - or 5 -dentate, plicate or contort.Fruit dry. Endosperm presentNyctaginaceae

255. Plants with peltate scales, at least on undersurface leaves. Stamensalternitepalous, 4 or twice as many as the $4-8$ tepals.-Stamens in-serted on the upper margin of the receptacle. Fruit fleshy.
Elaeagnaceae

- Plants with simple hairs or glabrous, rarely with medifixed hairs. Stamens epitepalous, 4 or 5 , as many as the tepals. 256

256. Flowers usually elongate (at least so in S.E. Asia). Stamens adnateto the perianth-segments. Ovary usually stipitate (at least so in S.E.Asia). Integuments 2. S. Hemisphere. Proteaceae

- Flowers urceolate or shortly-cylindric. Stamens free or slightlyadnate to the base of the perianth-segments. Ovary sessile. Integu-ments absent. S.E. Asia. (Cansjera, Lepionurus). Opiliaceae

257. (244). Perianth-segments either imbricate, rarely reduced to 1 tepal,or absent in the male flowers, or valvate and then either free, orstamens perigynous258

- Perianth undivided or 3-5-lobed, valvate or plicate, persistent infruit, usually surrounded by bracts. Stamens hypogynous.-Leavesusually opposite. Perianth corolloid. Stigma 1. Plants usually withraphids and/or cystoliths (lens!).Nyctaginaceae

258. Stamens as many as the tepals, alternitepalous, or more. 259

- Stamens as many as the tepals, epitepalous, or less, rarely more, then leaves opposite and flowers in fascicles or in cymes, and stig- mas 2 -more 264

259. Leaves alternate. 260

- Leaves opposite or in whorls.-Flowers solitary, or in glomerules,or in cymose panicles. Stigma simple. Endosperm present. (Adeno-gramma).Aizoaceae

260. Endosperm present.-Herbs, shrubs, or trees. Stigmas 1-5. 261

- Endosperm absent.-Shrubs, trees, or lianas. Flowers in fascicles or in panicles. Stigma 1 Sapindaceae

261. Flowers in spikes, or in racemes, or in panicles. Stigmas 1-5. . . 262

- Flowers in racemes of fascicles. Style 3-partite.-Stipules connateinto a sheath (ochrea).Polygonaceae

262. Leaves simple. Flowers usually actinomorphic. Stamens free or con- nate at base only. 263

- Leaves compound. Flowers zygomorphic. Stamens 6, connate into 2 bundles of 3. (Fumariaceae) Papaveraceae

263. Anthers dorsifix. Fruit a drupe or a samara.-Flowers bisexual tomonoecious. (Petiveriaceae $=$ tribe Rivineae)Phytolaccaceae

- Anthers basifix. Fruit a berry.-Flowers dioecious. Stigmas 2. (Achatocarpaceae) Phytolaccaceae

264. Stipules absent. Tepals imbricate or valvate, rarely 1, or absent inthe male flowers. Stamens as many as the tepals, or less, hypogy-
nous or nearly so, rarely distinctly perigynous, then either style simple, at least at base, or leaves alternate..................... 265

- Stipules present, rarely absent, then either stamens more than the tepals, or stamens distinctly perigynous and styles 2 , free or partly connate, and leaves opposite. (incl. Illecebraceae). . Caryophyllaceae

266. Tepals valvate.-Leaves alternate. Stipules absent. Tepals spongious in fruit. Stamens hypogynous. Embryo only slightly curved. Australia

Dysphaniaceae

- Tepals imbricate. Chenopodiaceae

267. (236). Stipules present. 268
— Stipules absent. 272
268. Fruit indehiscent.-Styles 1 or 2. 269

- Fruit dehiscent.-Leaves simple or lobed. Flowers unisexual, solitary, or in fascicles, or in spikes, or in racemes, or in panicles. Stamens hypogynous. Ovule with a caruncle. Endosperm present. Embryo straight.

Euphorbiaceae
269. Stigmas 2-4, rarely 1 , then flowers unisexual and all or the male flowers in a cymose, usually spike-like or capitate inflorescence or on a broadened common receptacle. 270

- Stigma 1. Flowers unisexual and solitary or bisexual.-Leaves usually compound. Endosperm absent. Embryo straight. . Rosaceae

270. Flowers unisexual, the male ones in spike-, or in raceme-, or in capitule-like, or in paniculate inflorescences, or on a broadened common receptacle, rarely in cymose inflorescences, then stamens incurved in bud. 271

- Flowers bisexual or unisexual, then the male ones in lax cymes or in fascicles. Stamens straight in bud.-Shrubs or trees. Leaves simple, usually alternate (Lozanella: opposite). Stigmas 2-4..... Ulmaceae

271. Stipules free. Male flowers with 5 tepals and 5 stamens; female flowers with 1 tepal, enveloping the ovary. Filaments straight in bud.-Young leaves involute.

Cannabidaceae

- Stipules connate, leaving an amplexicaul scar, if free leaves folded and filaments bent in bud. Flowers usually with 4 perianth-segments; stamens usually 4

Moraceae
272. Perianth present in all flowers. 273

- Perianth absent in male flowers, connate in the female ones.-
Flowers in spikes. Leitneriaceae

273. Perianth-segments 6 -many.-Stamens (5-) $10-20(-27)$ 274

- Perianth-segments 2-6. 275

274. Submerged, rootless, aquatic herbs. Leaves in whorls, dichotomous- ly divided. Ceratophyllaceae

- Shrubs or treelets. Leaves opposite, undivided. Trimeniaceae

275. Perianth-segments valvate. 276

- Perianth-segments imbricate.-Embryo straight 280

276. Woody plants, rarely perennials. Leaves not with a dichotomous, open venation. Stamens 4-9, at least some epitepalous. 277

- Annuals. Leaves with a dichotomous, open venation. Stamens 2,rarely 1 or 3 .-Tepals 2 (or 3), membranous. Stamens alternitepa-lous. Himalayas to N.W. China. (Circaeasteraceae)... Ranunculaceae

277. Stamens 4 or 5 278

- Stamens 6-9.-Leaves opposite, tomentose below. Perianth-segments 3 or 4, enlarging in fruit. Anthers with longitudinal slits.Style linear. Endosperm absent. (Barbeyaceae). Ulmaceae

278. At least the male flowers with 4 or 5 perianth-segments. Stamens 4or 5, hypogynous. Style absent or nearly so. Endosperm usuallywell-developed.279

- Perianth-segments and stamens 4, usually inserted on the perianth.Style 1. Endosperm absent.-Stamens free. Anthers introrse withlongitudinal slits. Stigma 1. Placenta not or slightly protruding.Testa present. Proteaceae

279. Perianth-segments 4 or 5. Anthers with longitudinal slits. Stigma 1.Testa absent.-Placentas strongly protruding.Opiliaceae

- Male flowers with 4 or 5 perianth-segments and often with as manypetals, female flowers with 1 or 2 perianth-segments. Anthers withtransversal slits. Stigmas 3. Testa present.-Filaments connate.Anthers extrorse. Embryo and seed curved........ Menispermaceae

280. Bark without tough silky fibres. 281

- Bark inside with tough, silky fibres.-Flowers usually 4- or 5-merous. Perianth-tube cylindric or bowl-shaped. Anthers with longi-tudinal slits.-Embryo straight. Thymelaeaceae

281. Stamens perigynous. Style present 282

- Stamens hypogynous. Stigma sessile.-Leaves opposite. Stamensnumerous. Embryo straight........................... Monimiaceae

282. Leaves usually gland-dotted. Flowers usually 3-merous. Antherswith valves. Embryo straight.-Woody plants, rarely parasitictwiners (Cassytha). Perianth-tube disk- to bowl-shaped. Stamens 8-many.Lauraceae

- Leaves not gland-dotted. Flowers 4- or 5 -merous. Anthers withintrorse, longitudinal slits. Embryo curved.-Plants usually
herbaceous. Perianth-tube globular to tubular. Stamens 8-10.(Galenia).Aizoaceae

283. (235). Ovules 2. 284

- Ovules 3-more 301

284. Flowers unisexual. 285

- Flowers bisexual or polygamous 288

285. Flowers not in catkins. Perianth present. Fruits not capsular. Endo- sperm usually present 286

- Flowers in catkins. Perianth absent, replaced by a disk, either con- sisting of scales, or cupuliform. Fruit a capsule. Endosperm ab- sent.-Stigmas 2-4. Placentas 2. Ovules ascending....... Salicaceae

286. Perianth imbricate. Ovules anatropous. 287

- Perianth valvate. Ovules atropous.-Stamens 3-5. Stigma 1, sessile.
IcacinaceaeOvules collateral, pendulous. Fruit a drupe

287. Fruit dry, indehiscent, or a drupe.-Ovules pendulous, collateral. (Drypetes; Stilaginaceae: Antidesma). Euphorbiaceae

- Fruit a berry.-Flowers solitary or fascicled. Stamens 10 -more. Styles 2. Placentas 2. (Doryalis). Flacourtiaceae

288. Leaves opposite or in whorls. 289

- Leaves alternate. 291

289. Herbs or undershrubs. Tepals 5. Stamens 5, then alternitepalous, or epitepalous, or numerous. 290

- Shrubs or trees. Tepals 4. Stamens 4, epitepalous. Proteaceae

290. Stigma 1.-Stipules absent. (Acrosanthes, Trianthema). . . Aizoaceae

- Stigmas 2. (incl. Illecebraceae) Caryophyllaceae

291. Stipules present, sometimes reduced, or early fugacious, or adnate with the petiole.-Embryo straight. 292

- Stipules absent 296

292. Ovules basal.-Endosperm scanty or absent 293

- Ovules parietal. 295

293. Tepals imbricate. Style gynobasic. 294

- Tepals valvate. Style terminal.-Stamens perigynous, outside thedisk. (Condalia)Rhamnaceae

294. Flowers slightly zygomorphic. Stamens perigynous. Anthers introrse,usually partly sterile. Disk present. Not in Australia. (Licania).
Chrysobalanaceae- Flowers actinomorphic. Stamens hypogynous. Anthers 10, all fertile.Disk absent. S.W. Australia. (also in Chrysobalanaceae orRosaceae)Stylobasiaceae
295. Disk extra-staminal. Placentas 2. Fruit a berry or a fleshy capsule.Endosperm present. Aril present.-Stamens 6-12. (Euceraea,Casearia).Flacourtiaceae

- Disk absent. Placenta 1. Fruit a drupe. Endosperm scanty or ab-
sent. Aril absent.-Perianth apert or imbricate. Stigma 1. . Rosaceae

296. Tepals 5. Stamens 5 or 10. 297

- Tepals 4 or 6 . Stamens 1 or 4.-Fruit not dehiscing transversally. Embryo straight 298

297. Herbs or undershrubs. Stigmas 2-4, sessile, apical. Fruit with atransverse suture. Endosperm copious. Embryo curved. (Celosia).
Amaranthaceae

- Shrubs. Style gynobasic; stigma 1, peltate. Fruit a nut or a drupe.Endosperm scanty. Embryo straight. S.W. Australia. (also in Chry-sobalanaceae or Rosaceae).......................... Stylobasiaceae

298. Tepals 4. Disk absent. Stamens 4. Placenta 1 299

- Tepals 6. Extra-staminal disk present. Stamen 1. Placentas 2 (or 3). (Lacistemataceae) Flacourtiaceae

299. Stamens epitepalous. Endosperm absent 300

- Stamens alternitepalous. Endosperm present.-Stamens 4. Fruit a drupe. (Pyrenacantha) Icacinaceae

300. Leaves not translucent-glandular punctate. Stamens usually adnate to the tepals, epigynous, rarely free and hypogynous (Bellendena, Tasmania). Style and stigma 1 Proteaceae

- Leaves translucent-glandular punctate. Stamens free from the tepals, hypogynous. Stigmas sessile, 2. S. Africa. (Empleurum).Rutaceae

301. (283). Ovules basal or central, or laterally attached to the ovary-walland subbasal in 2 rows.302

- Ovules parietal, or laterally attached to the ovary-wall and then sometimes subapical and in 1 or 2 rows. 316

302. Stigma 1.-Fruit a capsule or a follicle 303

- Stigmas 2-5. 309

303. Terrestrial plants 304

- Aquatic, torrential herbs.-Leaves alternate. Perianth of 2 or 3scales, apert. Stamens hypogynous. Endosperm absent. Embryostraight.Podostemaceae

304. Leaves alternate 305

- Leaves opposite.-Perianth 5-more-merous, valvate or imbricate.307

305. Flowers bisexual. Bracts, if any, not tubular 306- Flowers unisexual, dioecious. Bracts tubular.-N.W. Borneo.Scyphostegiaceae
306. Perianth 4-merous, valvate Proteaceae

- Perianth 4- or 5 -merous, imbricate, usually dry and chaffy.-Flowers in spikes, or in racemes, or in panicles. Stamens usuallyconnate at base. (Celosieae).Amaranthaceae

307. Perianth imbricate. Endosperm copious.-Perianth 5-partite. 308

- Perianth valvate. Endosperm absent.-Stamens perigynous. Embryo straight. Lythraceae

308. Stamens perigynous. Capsules dehiscing with a lid. Placentas axil-lary. Embryo curved. (Trianthema).Aizoaceae

- Stamens hypogynous. Capsule dehiscing with valves. Placenta cen- tral. Embryo straight. (Glaux). Primulaceae

309. Stem woody.--Embryo straight. 310

- Stem herbaceous, sometimes woody at base, rarely entirely woody, but then embryo curved (Amaranthaceae: Deeringia). 312

310. Leaves opposite.-Perianth 5-partite, imbricate. Stamens 5, hypogy- nous, epitepalous. Celastraceae

- Leaves alternate. 311

311. Perianth 4-7-lobed, valvate. Stamens 4-7, perigynous, alternitepa- lous. Rhamnaceae

- Tepals 5, imbricate. Stamens about 12, hypogynous.-Ovules 6 on 3placentas. Fruit 3-winged. Mexico, Guatemala. (Neopringlea, of un-certain position, probably not belonging to:).Flacourtiaceae

312. Terrestrials. Perianth 4-6-partite, imbricate. Endosperm present. Embryo curved. 313

- Aquatic, torrential herbs. Perianth of 2 or 3 scales, apert. Endo- sperm absent. Embryo straight.-Leaves alternate. Stamens hypo- gynous, 1-3.313. Leaves alternate.-Stipules absent. Stamens epitepalous. 314
- Leaves opposite 315

314. Lax herbs or undershrubs. Leaves well-developed, distant. Flowers in spikes, or in racemes, or in panicles. Filaments usually connate at base, 5 or more (Celosieae). Amaranthaceae

- Densely cushion-forming perennials. Leaves small, densely imbri- cate. Flowers solitary. Filaments free at base, usually 3. KerguelenIsl. (Lyallia).Hectorellaceae

315. Stamens hypogynous, rarely perigynous, then 4 -more. Placenta central.-Perianth 4-6-partite. Caryophyllaceae

- Stamens perigynous, 1-3. Placenta basal.-Perianth 5-partite. Styles 2. (Cypselea). Aizoaceae

316. (301). Placenta 1 , or ovules laterally attached to the ovary-wall in 1 row. 317

- Placentas 2 -more, or ovules laterally attached to the ovary-wall in 2 rows. 322

317. Leaves undivided, dentate or crenate.-Trees or shrubs. 318

- Leaves usually compound, rarely unifoliolate, or reduced to a leaf-like petiole, or digitately lobed or -sect, exceptionally simple, thenplant herbaceous, leaves palmatinerved, stamens many (Beesia).-Fruit dry or a berry320

318. Stamens many. 319

- Stamens 4, 3 staminodial.-Ovules laterally attached to the ovary- wall in 1 row. (Placospermum).319. Ovules parietal, exceptionally subbasal. Flacourtiaceae
- Ovules apical.--S. America. (Peridiscus, Whittonia, also included inFlacourtiaceae).320. Leaves digitately or pedately nerved, usually lobed or -sect. Stipulesabsent, petioles often sheathing. Stamens many, hypogynous. Nec-taries, when present, between the stamens and the tepals.-Herbs.
- Leaves pinninerved, usually compound, rarely unifoliolate, or re- duced to a leaf-like petiole. Stipules usually present. Stamens usual-ly more or less perigynous. Nectaries, when present, between thestamens and the ovary.Leguminosae

321. Leaves 2, cauline. Carpels dehiscent along the ventral and dorsal sutures.-Rhizomatous herbs. Flowers solitary. Nectaries absent. Tepals 4. Japan. (Glaucidiaceae). Ranunculaceae

- Leaves several, usually at least some basal. Carpels dehiscent along the ventral suture or a berry.-Flowers usually in inflorescences. Nectaries present. (Helleboraceae). Ranunculaceae

322. Ovary sessile, when stipitate stigmas 2-6. 323

- Ovary stipitate.-Leaves alternate. Tepals 4 . Stigma 1. Ovules cam-pylotropous. Endosperm absent. Embryo strongly curved or in-volute.Capparaceae

323. Ovary initially apically open, closed after pollination.-Tepals 5 or 6. Stamens 10-30. Stigmas 3, sessile. (Ochradenus).... . Resedaceae

- Ovary completely closed. 324

324. Stamens 2-more. 325

- Stamen 1.-Shrubs or trees. Stipules absent. Flowers bisexual, inspikes. Style 1. Stigmas 2 or 3 . Ovules few. C. America, West In-dies. (Lacistemataceae: Lacistema). Flacourtiaceae

325. Perianth well-developed. 326

- Perianth actually absent, replaced by either a cupular, lobed disk,or 1 or 2 scales, which resemble a perianth.-Woody plants.Flowers dioecious, in spikes, or in racemes, or in catkins. Stigmas2-4. Endosperm absent................................ . Salicaceae

326. Stamens as many as the perianth-segments. 327

- Stamens more than the perianth-segments, rarely as many, thenstyle and stigma 1.-Ovary sessile, rarely shortly stipitate thenstamens numerous. 328

327. Stamens 4. Style 1. Proteaceae- Stamens 5 or 6 , rarely 8 or 9 . Styles 3.-Stem usually climbing.Leaves alternate. Stipules present. Flowers bisexual, solitary or in
cymes. Perianth-segments 5 or 6, imbricate. Stamens perigynous.Styles free, or connate at base. Ovaries stipitate, rarely sessile, thenstem herbaceous or woody at base only. (Passifora, Trypho-stemma)... . Passifloraceae
328. Plants autotrophic. Leaves well-developed. 329

- Herbaceous root-parasites. Leaves scale-like.-Perianth undividedor 4-lobed. Stamens numerous, connate. Style 1. Stigma undivided.Rafflesiaceae

329. Stem herbaceous. 330

- Stem woody 333

330. Leaves lobed to compound, the upper cauline sometimes simple and dentate, unarmed. Tepals 2 or 4 . Stamens either 6 or many. Style 1 or stigma sessile 331

- Leaves simple, serrate, underneath thorny on the nerves. Tepals 5- 7. Stamens $10-14$. Styles 2. (Oresitrophe). Saxifragaceae

331. Leaves lobed to dentate. Flowers actinomorphic. Stamens many, free. 332

- Leaves compound. Flowers zygomorphic. Stamens 6, connate into 2 bundles of 3.-Tepals 4, persistent during flowering. (Fumariaceae).Papaveraceae

332. Flowers in panicles. Tepals 2, deciduous before flowering. (Mac- leaya). Papaveraceae

- Flowers solitary. Tepals 4, persistent during flowering. (Glauci- diaceae) Ranunculaceae

333. Perianth-segments 4 or more, rarely 3 , imbricate, rarely valvate, but then tepals 3. (incl. Neumanniaceae and Passifloraceae: Physena, Trichostephanus) Flacourtiaceae

- Perianth-segments 3-8, valvate 334

334. Style 1. Stigma 1, or 4-6. 335

- Styles 3 or 4, subulate with indistinct stigmas.-Trees. Leaves 3- plinerved. S. America. (Flacourtiaceae: Peridiscus, Whittonia).Peridiscaceae

335. Stipules absent. Stamens perigynous.-Leaves opposite 336- Stipules present, but sometimes minute and early fugaceous.Stamens hypogynous337
336. Ovary incompletely 10-20-locular. Stamens numerous.-Fruit aberry. Endosperm absent. S.E. Asia. (Sonneratia). . . Sonneratiaceae

- Ovary apparently 2 -locular with the septs touching each other.Stamens 5 (rarely 6). S. America. (Crypteroniaceae: Alzatea).Lythraceae337. Stamens on a cushion-shaped disk.-Leaves usually alternate,rarely opposite. Fruit a loculicide capsule, opening from the apex.(Sloanea)Elaeocarpaceae
-- Disk absent.-Leaves alternate. Fruit a capsule, opening from thebase and from the apex, fruitwall zigzag and intact. (Itoa).
Flacourtiaceae

338. (234). Ovule 1 per locule 339

- Ovules 2-more per locule. 363

339. Ovules basal, subbasal, or inserted about halfway the locule 340

- Ovules apical or subapical 348

340. Embryo straight.-Woody plants 341

- Embryo more or less curved.-Stamens hypogynous, rarely peri-gynous, then stipules absent and perianth-segments imbricate. . . 344

341. Leaves simple 342

- Leaves pinnately compound.--Perianth-segments imbricate 343

342. Stipules present. Flowers bisexual or polygamous. Perianth-segments valvate. Stamens perigynous, 4 or 5 . Rhamnaceae

- Stipules absent. Flowers unisexual. Perianth-segments imbricate. Stamens hypogynous, 2-4. (Corema). Empetraceae

343. Leaves imparipinnate. Flowers 4-merous, bisexual and female. Diskabsent. Fruit winged.-Stipules present. Stamens hypogynous.Ovary 2-locular, 1 locule empty.Rhoipteleaceae

- Leaves paripinnate. Flowers 5-merous, unisexual, rarely 4-merous. Disk extrastaminal. Fruit not winged. Sapindaceae

344. Flowers bisexual, rarely unisexual. Endosperm present. 345

- Flowers polygamous, rarely unisexual. Endosperm absent.-Woodyplants. Stamens hypogynous.Sapindaceae

345. Flowers in racemes, or in thyrses, rarely solitary then unisexual. Stamens 6-many 346

- Flowers solitary or in glomerules, or in cymes, or in cymose pseudo- spikes or racemes, bisexual. Stamens 4 -more. Aizoaceae

346. Tepals connate at base or free. Flowers usually bisexual, if unisexual staminodes or pistillodes present. 347

- Perianth entire or lobed. Flowers unisexual, staminodes or pistil-lodes absent. Australia. (Gyrostemonaceae). Phytolaccaceae

347. Woody lianas. Ovary 2-locular. Fruit a capsule. Aril present. Mada- gascar. (Barbeuiaceae). Phytolaccaceae

- Plants not climbing. Ovary 5-more-locular. Fruit a berry. Aril absent. (Phytolacceae) Phytolaccaceae

348. Flowers unisexual. 349

- Flowers bisexual or polygamous 353

349. Ovules epitropous 350

- Ovules apotropous. 351

350. Bark with silky, brownish fibres on the inside. Latex absent.Stipules absent. Ovary (3- or) 4-(or 5-)locular. Stigma 1. Ovule
without a caruncle. (Aquilariaceae: Deltaria, Solmsia).

Thymelaeaceae

- Bark without such fibres. Latex usually present. Stipules usually present. Ovary usually 3 -locular. Stigmas 2 -more. Ovule usually with a caruncle. Euphorbiaceae

351. Stipules absent. Flowers in spikes or in capitules. Fruit a capsule or a drupe. 352

- Stipules present. Flowers solitary or in glomerules. Fruit a berry. (Doryalis).352. Leaves opposite. Tepals (4-)5(-6). Ovary 3-locular. Styles 3. N.America. (Simmondsiaceae).Buxaceae
- Leaves alternate to subverticillate. Tepals 4. Ovary 2-locular. Stig- ma 1, sessile. New Guinea, Australia. (also in Aquifoliaceae).
Sphenostemonaceae

353. Stamens hypogynous. 354

- Stamens perigynous. 360

354. Leaves alternate, simple. 355

- Leaves opposite, tri-foliolate.-Herbs, woody at base. Stipulespresent. Flowers solitary. Perianth-segments 5, valvate. Stamens,styles 5. Embryo straight. (Seetzenia)............... Zygophyllaceae

355. Stipules absent. Stigmas 1 or 2 . Embryo curved or ruminate. 356

- Stipules present. Stigmas 2-5, if 1 sessile and 3- or 4-lobed andovary 3- or 4 -locular. Embryo straight, not ruminate.-Woodyplants.357

356. Herbs, sometimes woody at base. Style 1, stigmas 1 or 2. Fruit capsular. Embryo curved. Cruciferae

- Woody plants. Stigma 1, sessile. Fruit a drupe. Embryo ruminate.- New, Guinea, Australia. (also in Aquifoliaceae).
Sphenostemonaceae

357. Flowers solitary, or in fascicles, or in racemes. Stigmas 2-5. Fruit dry, indehiscent, or a berry, or a capsule. 358

- Flowers in thyrses. Stigma 1, sessile, discoid, lobed. Fruit a drupe.-Sumatra, Malaya. (Endospermum). Euphorbiaceae

358. Trees. Stigmas 2. Fruit dry, indehiscent or a drupe, 2-seeded. 359

- Shrubs. Stigmas 3-5. Fruit a berry, 3-5-seeded.-Flowers solitaryor in fascicles. Endosperm present. N.E. N. America. (Nemopan-thus).Aquifoliaceae

359. Flowers in fascicles. Fruit indehiscent, winged. Endosperm absent.(Ulmus)Ulmaceae

- Flowers in racemes. Fruit a capsule. Endosperm present.
Hamamelidaceae

360. Bark inside without silky fibres. Stigmas 2-5 361

- Bark inside with tough, silky fibres. Stigma 1.-Shrubs or trees.
Stipules absent. Flowers in umbels or in capitules. Embryo straight.
Thymelaeaceae

361. Woody plants. Fruit dry, indehiscent. 362

- Herbs or undershrubs. Fruit a capsule.-Flowers solitary, or in glomerules, or in cymes. Stigmas 2-5. Embryo curved. (Galenia, Plinthus). Aizoaceae

362. Leaves opposite. Flowers solitary or in panicles. Stigmas 4. Embryo curved. Australia. (Aphanopetalum) Cunoniaceae

- Leaves alternate. Flowers in spikes, or in racemes, or in capitules. Stigmas and styles 2. Embryo straight. (Hamamelioideae).
Hamamelidaceae

363. (338). Ovules 2 per locule. 364

- Ovules 3-more per locule. 393

364. Ovules erect, or ascending, or patent, or one ascending and one descending. 365

- Ovules pendulous or descending. 375

365. Flowers bisexual. 366

- Flowers unisexual or polygamous. 372

366. Leaves usually opposite. Stamens perigynous 367

- Leaves usually alternate, rarely pseudo-verticillate then shrubs with 5 fertile stamens opening with pores. Stamens hypogynous. 368

367. Herbs, at most woody at base. Stamens 5-many. Endosperm present Aizoaceae

- Ericoid shrubs. Stamens 4. Endosperm absent.-Flowers 4-merous, solitary or in spikes. (Penaeae). Penaeaceae

368. Stamens 8 -more 369

- Stamens 5.-Flowers 5-merous, in cymes. Endosperm present. (Lasiopetaleae)... Sterculiaceae

369. Leaves without translucent glandular dots. Stipules present.Perianth-segments valvate.-Stamens 10 -more.370

- Leaves with translucent glandular dots. Stipules absent. Perianth-segments imbricate.-Stamens 8-10. (Asterolasia). Rutaceae

370. Filaments free. 371

- Filaments connate. S. India, Ceylon. (Cullenia) Bombacaceae

371. Leaves alternate or distichous. Anthers with longitudinal slits. Fruit not winged. (Grewia) Tiliaceae

- Leaves opposite. Anthers with apical slits. Fruit with 3 wings. Bur-ma, Thailand. (also in Tiliaceae, Flacourtiaceae). ... Plagiopteraceae

372. Leaves alternate. 373

- Leaves opposite.-Stigmas 2. Aceraceae

373. True perianth present. Disk present.-Leaves usually compound. 374

- True perianth absent: male flowers (in catkins) with 1(-3) bracts,female flowers (solitary) involucrate. Disk absent.--Leaves simple.
Stamens (2-)5-6(-12), subsessile. Ovary incompletely 2- or 3locular. Stigmas deeply bifid. Fruit an acorn-like drupe. Australia. New Caledonia, Fiji.
Balanopaceae

374. Male flowers with a large, intra-staminal disk, lobed, between the lobes with 5 stamens and 5 staminodes. Female flowers with a 2 - or 3-locular ovary, only 1 locule fertile. (Alvaradoa).... Simaroubaceae

- Disk extra-staminal, small to well-developed. Female flowers with all the locules fertile.
Sapindaceae

375. Ovules anatropous or campylotropous with a ventral raphe, or hemitropous. 376

- Ovules anatropous with a dorsal raphe, rarely atropous......... 389

376. Flowers bisexual. 377

- Flowers unisexual or polygamous. 381

- Leaves opposite.-Stipules absent. 380

378. Herbs or undershrubs. Flowers not fascicled. Tepals free. Style
developed. Fruit a silique, or dry and indehiscent, or a schizocarp.
379

379. Stipules absent. Flowers in racemes. Perianth-segments 4 , imbricate. Stamens 2-6. Stigmas 1 or 2. Embryo curved. Endosperm scanty to absent. .. Cruciferae

- Stipules present. Flowers in cymes or panicles. Perianth-segments 5, valvate. Stamens 10 -more. Stigmas 2-5. Endosperm present. (Triumfetta). ... Tiliaceae

380. Spiny shrubs. Flowers solitary or in fascicles. Perianth-segments 5 , imbricate. Stamens 10. Stigmas 5. (Rhynchotheca, also in Biebersteiniaceae, Ledocarpaceae, Vivianiaceae). Geraniaceae

- Woody plants. Flowers in racemes or panicles. Perianth-segments 4,

381. Ovary 2 -locular or nearly so.-Shrubs or trees. Style 1 and stigmas 1
or 2 , or stigmas 2 , sessile... 382

- Ovary 3-more-locular, rarely 2 -locular, then either styles 2 , free, or connate at base only, or stigma 1, sessile........................ 386

382. Leaves paripinnate or trifoliolate.................................. . 383

- Leaves simple.. . . 384

383. Leaves paripinnate. Stipules absent. Stamens 5-7. Tropical Africa, Asia and Australia. (Ganophyllum). Sapindaceae

- Leaves digitately trifoliolate. Stipules present, minute. Stamens
numerous. West Indies Picrodendraceae

384. Stipules absent. 385

- Stipules present.-Leaves alternate. Flowers in cymose panicles. Stamens $10-18$. Style and stigma 1. (Heliocarpus). Tiliaceae

385. Leaves opposite. Flowers in racemes or in panicles. Stamens (1-)2(-5). Ovary completely 2-locular. Style 1. Stigmas 1 or 2 . Oleaceae

- Leaves alternate. Flowers in racemes. Stamens 6-12(-18?). Ovaryincompletely 2 -locular. Stigmas 2, sessile, recurved.-Embryominute, apical, 4-6 times smaller than the copious endosperm. S.E.Asia.Daphniphyllaceae

386. Leaves simple 387

- Leaves 3-7-foliolate. (Oldfieldia, Piranhea, and Bischofiaceae).Euphorbiaceae

387. Male flowers in axillary triads of catkins. Female flowers axillary, solitary--Leaves opposite. Stipules leathery, intrapetiolar. Disk ab- sent. Stamens many. Ovary 3 -locular. S.E. tropical Africa, Mada- gascar. (Androstachydaceae).......................... Euphorbiaceae

- Inflorescence and plants different. 388

388. Leaves alternate. Flowers in axillary catkin-like spikes or racemes. Tepals of male flowers imbricate. Disk absent in all flowers. Ovary2-locular. Fruit a winged capsule. Endosperm scanty. Embryo large.Tropical Africa, S.E. Asia. (Hymenocardiaceae)..... Euphorbiaceae

- Plants different again. (incl. Uapacaceae). Euphorbiaceae

389. (375). Leaves alternate, simple. Flowers solitary or in fascicles. -Stipules present, often early caducous. Stamens 10-20. Styles 2-8. Endosperm present. Embryo straight. (Doryalis).
Flacourtiaceae

- Leaves opposite or alternate, but then flowers in spikes or in capi- tules. 390

390. Stipules absent. Inflorescences variously compound. Flowers uni- sexual or polygamous. 391

- Stipules present. Flowers solitary, bisexual.-Perianth-segments 4.Stamens 8, perigynous. Styles 4.Geissolomataceae

391. Fruit winged. Endosperm absent. Embryo curved Aceraceae

- Fruit not winged, sometimes horned. Endosperm present. Embryo straight.-Flowers in spikes or in capitules. 392

392. Leaves alternate or opposite. Stamens 4-6 Buxaceae

- Leaves opposite. Stamens many.-Locules of the ovary divided bysecondary longitudinal septs. Colombia to Bolivia... Stylocerataceae

393. (363). Ovules basal, subbasal, parietal, or covering the septs nearly entirely. 394

- Ovules axillary, in 2-locular ovaries inserted on the middle of the sept 401

394. Styles 2-8.-Endosperm present. 395

- Style 1. 396

395. Stamens many. Fruit indehiscent. (Doryalis) Flacourtiaceae

- Stamens 5 or 8. Fruit a capsule. (Coelanthum, Macarthuria).
Aizoaceae

396. Ovules more or less basal or on the septs. 397

- Ovules parietal on 2 placentas, connected by a false sept.-Herbs orundershrubs. Tepals 4. Stamens 1-6, hypogynous. Embryo curved.
Cruciferae

397. Leaves opposite. Stamens perigynous.-Perianth-segments valvate. Endosperm absent 398

- Leaves alternate. Stamens hypogynous. 400

398. Ericoid shrubs. Stipules present, very inconspicuous. Ovules basal, 4 in each of the 4 locules of the ovary. S. Africa. (Penaeae).
Penaeaceae

- Trees. Stipules absent or very inconspicuous. Ovules numerous. S.E. Asia, N. Australia. 399

399. Flowers large, over 1 cm in diameter. Stamens numerous.
Sonneratiaceae

- Flowers small, 3 mm or less in diameter. Stamens 4 or 5. (Crypte- ronia, also in Sonneratiaceae). Crypteroniaceae

400. Leaves without beaker-shaped appendages. Flowers bisexual. Ovarystipitate. Fruit a berry or a drupe. Endosperm absent. Embryocurved.Capparaceae

- Leaves with beaker-shaped appendages. Plants dioecious. Ovary(sub-)sessile. Fruit a capsule. Endosperm present. Embryostraight.-Perianth-segments imbricate................ Nepenthaceae

401. Stamens hypogynous 402

- Stamens perigynous or epigynous. 416

402. Perianth-segments valvate 403

- Perianth-segments imbricate or apert. 406

403. Woody plants, rarely undershrubs, then stigma 1 and embryo straight 404

- Herbs or under shrubs. Stigmas several. Embryo curved. Aizoaceae

404. Flowers bisexual. Filaments free.-Stipules present. Stamens 8-many. Embryo straight405

- Flowers unisexual, rarely bisexual, then fertile stamens 5. Flowersmore or less connate, rarely free, then either styles several, or sti-pules absentSterculiaceae

405. Stinging hairs absent. Leaves simple or compound, then opposite. Endosperm present 407- Stinging hairs present. Leaves pinnately compound, alternate. En-dosperm absent.-Fruit a drupe with 2 pyrenes. N.E. Australia.
(Davidsoniaceae) Cunoniaceae
406. Plants woody 407

- Herbs or undershrubs 411

407. Styles $2-8$, or stigmas $8-15$, sessile, 408

- Style and stigma 1.-Leaves simple, alternate or opposite. Fruit aspinous or barbed capsule. Seeds arillate. (Sloanea). Elaeocarpaceae

408. Leaves alternate. Styles 2-8 or stigmas sessile, 8-15 409

- Leaves opposite or in whorls. Styles 2 or 3 . Cunoniaceae

409. Leaves simple 410

- Leaves compound. Styles 2.-Peru. (Gumillea) Cunoniaceae

410. Stigmas sessile, 8-15. Fruit a loculicide capsule.-New Caledonia.
Paracryphiaceae

- Styles 2-8, usually well-developed, stigmas rarely sessile. Fruit aberry. (Flacourtieae).................................. Flacourtiaceae

411. Terrestrials. Endosperm present. 412

- Torrential aquatics. Endosperm absent.-Ovary 2- or 3-locular.
Podostemaceae

412. Styles 2 -more 413

- Style 1.-Endosperm fleshy. Embryo straight 414

413. Leaves incised. Flowers solitary or in panicles. Nectaries present. Endosperm fleshy. Embryo straight.-Stipules absent. (Hellebora- ceae: Komaroffia, Nigella) Ranunculaceae

- Leaves undivided. Flowers solitary, or in glomerules, or in cymes. Nectaries absent. Endosperm mealy. Embryo curved. . . . Aizoaceae

414. Leaves opposite or scale-like. Stamens 10 . Ovary 5 -locular 415

- Leaves radical, simple, tubular. Stamens many. Ovary 3-locular.-Stipules absent. Flowers in racemes. (Heliamphora). Sarraceniaceae

415. Plants autotrophic. Leaves opposite, pinnately compound, green. Stipules present. Flowers paired. (Miltianthus)...... Zygophyllaceae

- Saprophytes. Lezves scale-like, alternate, reddish-brown. Stipulesabsent. Flowers in racemes. (Allotropa).Monotropaceae

416. (401). Stigma 1 per flower.-Perianth-segments valvate 417

- Stigmas 2-more per flower 420

417. Ovary-locules with 2 ascending and 2 descending ovules.-Leaves opposite. Perianth-segments, stamens and locules of the ovary 4. (Endonemeae) Penaeaceae

- Ovules when few not so arranged. 418 418

418. Trees or shrubs. Endosperm present 419

- Plants usually herbs or undershrubs. Endosperm absent.-Ovulesfew, ascending, or many. Embryo straightLythraceae

419. Perianth-segments and stamens 5. (Lasiopetaleae) Sterculiaceae

- Perianth-segments 3. Stamens many.-Leaves alternate. Stipules
present. Flowers in racemes. Ovary 3-5-locular. (Flacourtieae).
Flacourtiaceae

420. Herbs or undershrubs 422

- Shrubs or trees.-Leaves opposite or in whorls. Perianth-segments valvate. Endosperm fleshy. Embryo straight 421

421. Stipules present. Stamens perigynous, 8-10 Cunoniaceae

- Stipules absent. Stamens epigynous, 5. (Antoniaceae: Antonia)
Loganiaceae

422. Endosperm fleshy. Embryo straight. 423

- Endosperm mealy. Embryo curved.-Flowers solitary, or in glomer- ules, or in cymes. Aizoaceal

423. Flowers in cymes or panicles. Stamens 5-10. 424

- Flowers solitary. Stamens 12.-Perianth-segments valvate. Stigmas 6. (Asarum). Aristolochiaceae

424. Flowers in cymes. Perianth-segments valvate. Styles 5-8, each with 1 capitate stigma.-Stamens 10. Carpels connate to half-way. E. Asia, E. N. America. (Penthoraceae, also in Saxifragaceae).
Crassulaceae

- Flowers in panicles. Perianth-segments imbricate. Stigmas 2 or 3.- Stamens 5-10. (Saxifragoideae) Saxifragaceae

425. (233). Ovule 1 per carpel, rarely accompanied by a second one, which is then early abortive 426

- Ovules 2 -more per carpel. 442

426. Stamens hypogynous 427

- Stamens perigynous. 434

427. Perianth-segments 2-6, rarely more, then either stamens more than perianth-segments, or flowers bisexual. 428

- Perianth-segments 6 -more, stamens as many or less.-Woodyplants. Flowers unisexual433

428. Leaves alternate, when opposite plants woody and leaves usuallycompound, endosperm not mealy, embryo minute, straight (Clema-tis)429

- Leaves opposite, simple.-Herbs. Stipules absent. Flowers inglomerules or cymes. Perianth-segments imbricate. Endospermmealy. Embryo large, curved. (Gisekia). Aizoaceae

429. Stipules absent. Perianth-segments usually imbricate, if valvate plantannual, or a shrub, or a liana, and filaments free430

- Stipules present. Perianth-segments valvate.-Trees. Flowers uni-sexual, in panicles. Filaments connate. (Heritiera, Octolobus).
Sterculiaceae

430. Fruit dry, if a drupe leaves compound and flowers in umbels. En- dosperm fleshy, or cartilaginous, or horny. Embryo small to minute, straight 431

- Fruit juicy. Leaves simple Endosperm mealy. Embryo large,curved.-Flowers in spikes or in racemes. Phytolaccaceae

431. Leaves with an open, dichotomous venation.--Himalaya to China.432

- Leaves not so veined. (Ranunculoideae). Ranunculaceae

432. Tepals 2 (or 3), sepaloid. Stamens 2, rarely 1 or 3, staminodes ab- sent. (Circaeasteraceae). Ranunculaceae

- Tepals 4-7, petaloid. Stamens 11-21, the outer staminodial. (Kingdoniaceae) Ranunculaceae

433. Leaves usually simple, often 3- or 5 -plinerved. Style usually gyno-basic, rarely terminal. Fruit composed of drupelets with a distinctlysculptured endocarp. Pantropical.Menispermaceae

- Leaves 3 -foliolate (rarely simple just below the inflorescences). Style terminal. Fruit composed of berries. China. Sargentodoxaceae

434. Leaves not tubular. 435

- Leaves tubular.-Herbs. Flowers in panicles. Flowers 6-merous. Stamens 12. Fruits follicular. Endosperm copious. ... Cephalotaceae

435. Stipules absent.-Leaves simple. 436

- Stipules present 440

436. Woody plants. Leaves usually opposite. Fruit dry, indehiscent. En- dosperm fleshy. Embryo straight. 437

- Herbs. Leaves alternate. Fruit a berry. Endosperm mealy. Embryo curved. Phytolaccaceae

437. Leaves opposite. 438

- Leaves alternate.-Anthers with introrse, longitudinal slits. Recep-tacle open. Carpels free, stipitate. New Caledonia. (also in Moni-miaceae).Amborellaceae

438. Anthers with valves. 439

- Anthers with extrorse, longitudinal slits. Monimiaceae

439. Flowers with an annular or flask-shaped disk (velum). Receptacleenclosing the carpels. Tropical Africa and America. (Siparunaceae).Monimiaceae

- Flowers without a velum. Ovaries free. New Guinea, Australia to Chile. (Atherospermataceae). Monimiaceae

440. Leaves alternate. Endosperm scanty or absent 441

- Leaves opposite or in whorls. Endosperm copious.-Woody plants.Flowers in panicles. Stamens 4-10. Carpels 2-5. New Guinea,Polynesia. (Spiraeanthemum).Cunoniaceae

441. Stipules extra-petiolarily connate. Perianth indistinct. Ovules atro-pous.-Trees. Leaves palmately lobed. Flowers unisexual, in capi-tules. Connective peltate.Platanaceae

- Stipules free, or adnate with the petiole. Perianth-segments 4 or 5.Ovules anatropous.-Anthers introrse.Rosaceae

442. (425). Ovules 3 -more per carpel. 443

- Ovules 2 per carpel. 446

443. Stamens perigynous (when flowers unisexual try also other lead). 444

- Stamens hypogynous. 453

444. Perianth-segments 4- or 5-partite. Stamens 4-10. Carpels 2-5. 445

- Perianth connate into a calyptra. Stamens and carpels many.-New Guinea, E. Australia. Eupomatiaceae

445. Stem herbaceous, woody at base only. 423

- Stem woody.-Leaves opposite or in whorls. Flowers in panicles. Perianth-segments valvate. Stamens 4-10. Carpels 2-5. Fruit de-hiscent. New Guinea, Polynesia. (Spiraeanthemum). Cunoniaceae

446. Stamens hypogynous 447

- Stamens perigynous.-Filaments free 451

447. Terrestrials. Leaves not peltate. 448

- Aquatics. Floating leaves peltate, submerged ones finely divided.- Flowers solitary, bisexual. Perianth-segments 6, imbricate. (Cabom- baceae) Nymphaeaceae

448. Shrubs or trees. Perianth-segments apert or valvate. 450

- Herbs or shrubs. Perianth-segments imbricate, 3-5.-Leaves lobed, or incised, or pinnately compound 449

449. Nectaries absent. Fruit a red, fleshy berry--Tepals 3. Japan, E. N. America. (Hydrastidaceae). Ranunculaceae

- Nectaries present. Fruit a dry capsule.-Tepals 3-5. (Hellebora-ceae: Callianthemum, Xanthorrhiza)Ranunculaceae

450. Trees. Leaves not glandular-punctate. Flowers in panicles.-Flowers unisexual or polygamous. Perianth-segments valvate 452

- Shrubs. Leaves with translucent glandular dots. Flowers solitary orin capitules (Diplolaena).-Leaves simple. Perianth-segments 5, val-vate or apert (Diplolaena).Rutaceae

451. Leaves alternate. Endosperm scanty or absent. Fruit indehiscent.
Rosaceae

- Leaves opposite or in whorls. Fruit dehiscent. Endosperm co-pious.-Leaves opposite or in whorls. Filaments free, 4-10. Carpels2-5. New Guinea, Polynesia. (Spiraeanthemum). Cunoniaceae

452. Leaves opposite or in whorls. Filaments free.-S. America, West Indies Brunelliaceae

- Leaves alternate. Filaments more or less connate. (Sterculieae)
Sterculiaceae

453. (443). Stem herbaceous, woody at base only.-Filaments free, usually many 454

- Woody plants. 456

454. Terrestrials, rarely aquatics with peltate, floating leaves, then sub-merged ones, if any, similar, flowers $2-6$ together, tepals 5 and
ovules many per carpel (Caltha). Endosperm fleshy, or cartilaginous, or horny

- Aquatics with peltate floating leaves and finely divided submerged ones. Endosperm mealy.-Flowers solitary. Tepals 6 . Ovules 3 or 4 per carpel. (Cabombaceae)

Nymphaeaceae
455. Leaves 2, cauline. Carpels dehiscent along the ventral and dorsal sutures.-Rhizomatous herb. Flowers solitary. Nectaries absent. Tepals 4. Japan. (Glaucidiaceae)

Ranunculaceae

- Leaves several, usually at least a few basal. Carpels dehiscent along the ventral suture.-Flowers usually in inflorescences. Nectaries present. (Helleboraceae). Ranunculaceae

456. Leaves alternate. 457

- Leaves opposite.-Leaves undivided. Stipules absent. Flowers soli-tary, unisexual. Tepals (or bracteoles) 2-8, apert or imbricate. Fila-ments numerous, connate at base.Cercidiphyllaceae

457. Flowers unisexual or polygamous. 458

- Flowers bisexual.-Leaves undivided. Stipules absent. Flowers incatkin-like spikes. Tepals and stamens 4. (also in Magnoliaceae).
Tetracentraceae

458. Stipules present. 459

- Stipules absent.-Leaves compound. Flowers solitary or in racemes.Tepals 3 or 6 . Stamens 6 . Fruit juicy.Lardizabalaceae

459. Flowers solitary, or 2 or 3 together. Tepals 3, imbricate. Filaments free.-Leaves undivided. Stamens 6. Carpels 3. Fruit dry. Juan Fer- nandez. Lactoridaceae

- Flowers in panicles. Perianth-segments 3-5, connate at base, val-vate. Filaments more or less connate. Sterculiaceae

460. (232). Ovary one, 1-locular, sometimes incompletely more-locular.461

- Ovary completely 2 -more-locular or nearly so, or ovaries several per flower. 509

461. Ovules quite distinct, at least in the older flowers 467

- Ovules not clearly distinct from the ovary-tissue.-Parasites 462

462. Fleshy, yellowish to brownish or red herbs without chlorophyl.
Balanophoraceae

- Parasitic shrubs with green leaves.-Male flowers without perianth,or perianth segments valvate; when stamens epipetalous, then asmany as the segments. Stigma 1463

463. Flowers unisexual, the male flowers consisting of a group of up to 3stamens. Fruit dry, with 3 feather-like bristles.-Epiphytic, shrubby,green parasites on Nothofagus. Temperate S. America.

Myzodendraceae

- Flowers bisexual or unisexual, in the latter case the male flowers
either with a perianth, or (Antidaphne) consisting of a group of 4 stamens. Fruit usually fleshy, without feather-like bristles. 464

464. At least the bisexual or female flowers with a rim-like calyx (calyculus) below the corolla.-Flowers usually brightly coloured and usually bisexual, if flowers unisexual then plants dioecious.

Loranthaceae

- Calyx or calyculus absent.-Plants monoecious or dioecious. Flowers usually inconspicuous, greenish; unisexual. 465

465. Leaves usually decussate. Flowers in cymes or produced from the stem, not the leaf-axils (Tropical America, West Indies: Dendrophthora, Phoradendron). Anthers usually sessile or cohering.

Viscaceae

- Leaves usually alternate. Flowers in axillary or terminal racemose inflorescences. Anthers neither sessile, nor cohering. 466

466. Plants attached by means of large, distinct primary haustoria, sometimes also with secondary haustoria on creeping roots. Fruitwall without conspicuous longitudinal fibres. S. America, Mexico, Caribbean

Eremolepidaceae

- Plants without a distinct primary haustorium. Branches either leafy or with scales and then originating from endophytic parts. Fruitwall with conspicuous longitudinal fibres. S. E. Asia, New Guinea.

Santalaceae

467. Ovule 1. 468
— Ovules 2-more. 487
468. Ovule more or less basal. 469

- Ovule more or less apical. 475

469. Ovule atropous.--Shrubs or trees. Flowers unisexual. Perianth calycoid.. 470

- Ovule hemitropous or anatropous................................. 471

470. Leaves undivided. Stipules present. Flowers in glomerules. Stigma 1. Endosperm present.

Urticaceae

- Leaves usually pinnately compound. Stipules absent. Flowers in spikes or in catkins. Stigmas 2. Endosperm absent. ... Juglandaceae

471. Perianth calycoid. Stamens as many as the perianth-segments, epitepalous, or more, or less. Ovule hemitropous. Embryo curved.

- Perianth corolloid. Stamens as many as the perianth-segments, alternitepalous. Ovule usually anatropous. Embryo straight. 474

472. Perianth-segments imbricate. Stamens 1-5. Stigmas 2-5. Fruit a capsule or a nut

473

- Perianth-segments valvate. Stamens 10-30. Stigma 1. Fruit a drupe.-Herbs. Leaves alternate. Stipules present.... Theligonaceae

473. Stipules absent.-Stamens 1-5. Stigmas 2-5....... Chenopodiaceae

- Stipules present.-Herbs. Leaves opposite. Flowers in capitules, bisexual. Stamens 5. Stigmas 2. (Paronychioideae). Caryophyllaceae

474. Flowers solitary or in cymes, rarely in spikes or in racemes, or in capitules. Stigma 1, surrounded by a cup-shaped involucre. Endosperm present.-Flowers bisexual.

Goodeniaceae

- Flowers usually in capitules. Stigmas 2, involucre absent. Endo-

475. Fleshy, herbaceous, red-brown root-parasites. Leaves scale-like.Leaves alternate. Stipules absent. Flowers in a terminal, clavate spike. Stamen 1. Fruit a nut.

Cynomoriaceae

- Autotrophic herbs or woody plants. Leaves well-developed. 476

476. Ovule anatropous or hemitropous. 477

- Ovule atropous.-Leaves opposite. Stipules present. Stamens 1-3, connate and adnate to the ovary. Stigma 1. Fruit a drupe. Endosperm present. Chloranthaceae

477. Stipules absent. 478

- Stipules present.-Flowers unisexual. Stamens 1-6. Ovule hemitro- pous. Moraceae478. Leaves opposite, or in whorls, or radical, then sometimes spirallyso.-Anthers with longitudinal slits. Ovule anatropous. Embryostraight.479
- Leaves alternate, cauline. 481

479. Usually herbaceous terrestrials. Leaves opposite or radical. Perianth distinct. 480

- Aquatics. Leaves in whorls. Perianth an indistinct ridge.-Flowers solitary, bisexual. Stamen 1. Endosperm present. Hippuridaceae

480. Leaves radical, spirally arranged. Tepals 2 or 3, calycoid, apert.Styles or stigmas 2. Endosperm fleshy.-Stamens 1 or 2. (Gunnera-сеаe)... Haloragaceae- Leaves opposite, also when radical. Perianth-segments (3-)5, corol-loid, imbricate. Style 1. Stigma 1, or 2- or 3-partite. Endosperm ab-sent.-Stamens 1-4.
Valerianaceae
481. Anthers with valves. Endosperm absent.-Woody plants. Perianth calycoid. Stigma 1. Embryo straight. 482

- Anthers not with valves. Endosperm present.-Leaves pinninerved. 484

482. Leaves tripli- or palmatinerved. Stamens in 1 whorl. Anthers 2- locular. 483

- Leaves pinninerved. Stamens in 3 whorls. Anthers 4-locular.-Flowers unisexual. Tepals and stamens 6. W. Africa. (Hypodaph-nis). .. Lauraceae483. Leaves without cystoliths. Tepals in 2 whorls, valvate. Stamens asmany as the outer tepals. Cotyledons wrinkled....... Hernandiaceae
- Leaves with cystoliths. Tepals in 1 whorl, imbricate. Stamens less than the tepals. Cotyledons plicate or convolute. (Gyrocarpaceae).

Hernandiaceae

484. Flowers bisexual, solitary or in fascicles, or in spikes. Ovule hemi- tropous. Embryo curved.-Herbs or undershrubs. Tepals 3-5. En- dosperm mealy. (Tetragoniaceae). Aizoaceae

- Flowers arranged differently, if solitary flowers female and plants woody, dioecious. Ovule anatropous. Embryo straight 485

485. Woody plants. Flowers unisexual, in racemes, or in panicles, or in capitules, rarely the male in umbels. Style 1, or 3, rarely 2. Fruit a drupe, or a berry; or samara-like 486

- Woolly herbs. Flowers polygamous, in involucrate capituliformumbels, the outer flowers often male. Styles 2. Fruit woody, indehis-cent.-Tepals 5, sepaloid, stamens 5, epitepalous. Endosperm carti-liginous. Australia, New Zealand. (Hydrocotylaceae: Actinotus).
Umbelliferae

486. Plants usually epiphytic or climbing, branches glabrous. Maleflowers with calyx and corolla; stamens 5, alternitepalous. Femaleflowers in racemes or panicles; tepals sepaloid; style 1 with 3 stig-mas, or style 3. Fruit a berry. (Griselinaceae)............ Cornaceae

- Plants terrestrial, branches silky-pubescent. Male flowers with corol-loid tepals; stamens usually 10, diplostemonous. Female flowerssolitary or in capitules, with calyx and corolla; style 1, rarely 2, eachwith 1 stigma. Fruit a drupe or samara-likeNyssaceae

487. (467). Ovules 2 488

- Ovules 3-more 495

488. Stamens as many as the tepals, alternitepalous. Ovules ascending.489

- Stamens as many as the perianth-segments, epitepalous, or more. Ovules pendulous 490

489. Stipules present. Perianth calycoid. Stigma without an involucre. (Condalia). Rhamnaceae

- Stipules absent. Perianth corolloid. Stigma with a cup-shaped in- volucre. (Scaevola) Goodeniaceae

490. Stipules present, usually very distinct.-Flowers in spikes or in cat- kins. Male flowers without a perianth. Styles 2. Fruit dry. Endo- sperm absent. (incl. Corylaceae). Betulaceae

- Stipules absent 491

491. Styles 2.-Leaves opposite. Flowers in spikes or in catkins. Male and female flowers with a perianth. Fruit juicy. Endosperm present. Sub(tropical) America. Garryaceae

- Style 1.-Flowers usually bisexual. 492

492. Leaves opposite.-Perianth-segments valvate. Endosperm present.493

- Leaves alternate. 494

493. Stamens 3-6, as many as the perianth-segments. S.E. Asia, Aus- tralia Santalaceae

- Stamens 8, twice as many as the perianth-segments. S. Africa.
Grubbiaceae

494. Perianth-segments (3-)5(-8), valvate or imbricate. Stamens 10.Endosperm absent.Combretaceae

- Perianth-segments 3-6, valvate, as many as the stamens. Endo- sperm present. Santalaceae

495. Ovules 3-5 496

- Ovules 6-more 501

496. Style 1. 497

- Styles 2-4, free.-Herbs or undershrubs. Tepals 3 or 4, stamens twice as many. Endosperm present. (Haloragis, Laurembergia).
Haloragaceae

497. Ovary incompletely 3-locular.-Woody plants. Flowers in spikes or in racemes. Perianth 4-6-lobed, corolloid. Stamens 4-6. 498

- Ovary locular. 499

498. Flowers unisexual. Stigma 3-5-lobed, lobes bifid. (Octoknemaceae).
Olacaceae
-- Flowers bisexual. Stigma shortly 3-lobed, lobes entire. (Schoepfia).
Olacaceae
499. Stamens 1-6. Ovules pendulous from a central, sometimes parietal placenta. Integuments and testa absent. Endosperm present. 500

- Stamens 4 -more, usually 8 or 10 . Ovules apical, pendulous. Integu- ments and testa present. Endosperm absent.-Stigma 1.
Combretaceae

500. Male flowers without a perianth. Female flowers with 3 featheryappendages.-Epiphytic, shrubby, green parasites on Nothofagus.Flowers in spikes or in capitules. Temperate S. America.
Myzodendraceae

- Perianth present in all flowers, segments 3-6. Stigma 1, undivided or lobed. Santalaceae

501. Ovary 1 -locular, or incompletely more-locular with more than 2 ovules per 'locule'. 502

- Ovary, at least in the older flowers, incompletely 3-6-locular, ovules 2 per 'locule'.-Stem woody. Stipules present. Flowers uni- sexual or polygamous. Styles 3. Endosperm absent Fagaceae

502. Flowers unisexual or polygamous. 503

- Flowers bisexual. 505

503. Autotrophic, green plants. Leaves well-developed. Styles 2-more,
free. Endosperm absent. 504

- Coloured, non-green parasites. Leaves scale-like. Style 1. Endo- sperm present.-Stamens numerous. Rafflesiaceae

504. Stipules absent. Placentas parietal. (incl. Tetramelaceae). Datiscaceae- Stipules present. Placentas axillary.Begoniaceae
505. Autotrophic, green plants. Leaves well-developed. Stamens epitepa- lous, as many as the perianth-segments or more. 506

- Parasites, non-green, leafless. Stamens 3 or 4, as many as the tepals,alternitepalous.-Flowers solitary. Tepals valvate. Style 1. Placentasnumerous.Hydnoraceae

506. Perianth 2-5-lobed, or undivided, nearly entire. 507

- Tepals 7 or 8.-Woody plants. Stamens numerous. Placentas 2 or 3 . (Bembicia). Flacourtiaceae

507. Perianth-segments 2 or 3 , rarely 6 , valvate, or perianth undivided,nearly entire. Placentas 4-6. Styles connate into a column withradiating stigmas. (Aristolochia).Aristolochiaceae

- Perianth-segments 4 or 5, imbricate. Placentas 2 or 3. Styles 2-4.- Herbs. 508

508. Staminodes absent. Stamens $4-10$. Styles 2 or 3. (Saxifragoideae).
Saxifragaceae

- Staminodes 5. Stamens 5. Styles 3 or 4, short.-S. N. America, Chile. (Lepuropetalaceae) Saxifragaceae

509. (460). Ovule 1 per locule. 510

- Ovules 2-more per locule 534

510. Ovule basal, subbasal, or median. 511

- Ovule apical or subapical. 515

511. Stigmas without a cupular involucre. 512

- Stigmas with a cupular involucre.--Stipules absent. Perianth corol-loid. Stamens 5. Style 1. Stigmas 1 or 2. Fruit a drupe (Scaevola),or dry, indehiscent (Dampiera).512. Shrubs or trees. Perianth calycoid.513
- Herbs or undershrubs. Perianth corolloid.-Fruit dry, indehiscent.514513. Stamens 4 or 5. Disk intra-staminal. Ovary 2- or 3-locular. Style 1.
Rhamnaceae- Stamens 2-many. Disk extra-staminal, annular to flask-shaped.Ovary 4-many-locular. Styles 4-many. (Siparunaceae).
Monimiaceae514. Leaves alternate. Stipules absent. Stamens numerous. Tepals free.-Twining herbs. Style 1. Stigmas (3 or) 4. (Agdestidaceae).
Phytolaccaceae
- Leaves opposite or in whorls. Stipules present, sometimes leaf-like (check axillary buds!). Tepals connate. Stamens 4 or $5 . .$. . Rubiaceae

515. Style 1, stigma 1, or 2 -more, then adjacent at base 516

- Styles 2-more, free, or connate at base with free stigmas, or styleabsent and stigmas several, sessile, free.521

516. Leaves alternate. 517

- Leaves opposite or radical. 520

517. Stamens 4-7, as many as the tepals, not forming a corona or pseudo-corolla. 518

- Stamens numerous, the outermost staminodial, forming a coloured, many-nerved and -dentate, plicate corona or pseudo-corolla.- Flowers solitary or in fascicles, bisexual. Tepals 5. Stigma 5-20- lobed. (Napoleonaeaceae). Lecythidaceae

518. Stamens epitepalous.-Flowers in racemes. 519

- Stamens alternitepalous.-Flowers bisexual or polygamous, in capi-tules, or in umbels, or in racemes. Tepals and stamens 4-7. Stigmas3-more.519. Flowers unisexual. Stigma 3-5-lobed, lobes bifid. (Octoknemaceae).
Olacaceae
- Flowers bisexual. Stigma shortly 3-lobed, lobes entire. (Schoepfia).
Olacaceae

520. Perianth 3- or 4-lobed. Anthers with longitudinal slits. Ovary with 1 fertile and 2 empty locules. Fruit dry, indehiscent. Endosperm ab-sent.
Valerianaceae

- Perianth-segments 7-10. Anthers with valves. Ovary with 2 or 3fertile locules. Fruit a drupe. Endosperm copious.-Trees. Chile.
Gomortegaceae

521. All flowers with a perianth. Endosperm present. 523

- Flowers unisexual, the male without a perianth. Endosperm ab- sent.-Shrubs or trees. Stipules present. Styles 2................. 522

522. Female flowers in catkins, each flower with a large membranous in-volucre. Male flowers without bracteoles. (Carpinaceae). Betulaceae

- Female flowers in pairs in the axil of a bract. Male flowers with bracteoles.-Anthers with a dorsal tuft of hairs. (Corylaceae).
Betulaceae

523. Endosperm fleshy or cartilaginous. Embryo nearly always small, straight or nearly so. 524

- Endosperm mealy. Embryo large, strongly curved.-Climbing or prostrate, rather succulent herbs or undershrubs. (Tetragoniaceae).
Aizoaceae

524. Perianth calycoid. 525

- Perianth corolloid. 531

525. Carpels 2-4. 526

- Carpels numerous, sunk into the receptacle. Monimiaceae

526. Woody plants. 527

- Herbs or undershrubs, usually aquatic.-Perianth 3- or 4-partite.

527. Stipules present. 528

- Stipules absent. 529

528. Flowers in small epiphyllous fascicles from the midrib on the upper side of the leaf. Style 1, stigmas 3 or 4, recurved. Fruit a drupe. (Helwingiaceae, sometimes in Araliaceae) Cornaceae

- Flowers not epiphyllous. Styles 2. Fruit dry, indehiscent.
Hamamelidaceae

529. Flowers unisexual. Styles 3, or style very short and stigmas usually 3. 530

- Flowers bisexual. Style 1, stigma lobed. Cornaceae

530. Ovary 2 -locular. Fruit a berry. New Zealand, S. America. (Grise- liniaceae). Cornaceae

- Ovary 3- or 4-locular. Fruit a drupe. Himalaya, S. China. (Tor- ricelliaceae).531. Leaves radical and 2 cauline, opposite. Stamens $8-12$, twice asmany as the tepals.-Herbs. Flowers in a terminal glomerule. Styles3-5.- Leaves alternate. Stamens as many as the tepals, rarely numerous.

532. Usually herbs. Flowers in umbels, rarely in capitules, or solitary.Disk 2-lobed or -partite. Styles 2. Fruit a schizocarp, or dry, in-dehiscent, very rarely a drupe and then flowers solitary. Umbelliferae

- Shrubs or trees, very rarely herbs (some Araliaceae) and then styles,as usual, 3-5. Flowers in umbels, or in capitules, or in racemes.Disk usually undivided. Fruit a drupe or a berry, very rarely aschizocarp then flowers in paniculate capitules (some Araliaceae). 533

533. Flowers in epiphyllous umbels or fascicles. Leaves simple, serru- late.-Himalaya, E. Asia. (Helwingiaceae, also included in Aralia- ceae) Cornaceae

- Flowers not epiphyllous. Leaves usually compound or divided, rarely simple then usually entire.534. (509). Autotrophic plants with well-developed, green leaves..... 535- Parasites, non-green. Leaves absent or scale-like.-Stamens numerous.Style 1. Ovary with many locules. Flowers solitary. Rafflesiaceae

535. Perianth corolioid.-Leaves alternate. Ovules numerous per locule.536

- Perianth calycoid. 539

536. Styles 1-3. Ovary 2- or 3-locular. 537

- Styles 4-6, or 1 with 4-6 stigmas. Ovary 4-6-locular.-Flowers bisexual. Perianth-segments connate, 1- or 2-labiate, or 3 -lobed.

Stamens 5-more. Filaments short, thick, usually adnate to the style(s). Anthers extrorse or latrorse. Endosperm copious.

Aristolochiaceae

538. Flowers bisexual. Perianth 5 -lobed with a dorsal slit. Stamens 5. Filaments connate. Style 1. Stigma 2-lobed. Endosperm present. (Delissea).

Campanulaceae

- Flowers unisexual. Tepals 2 or 4 or perianth 2- or 4-lobed. Stamens many, free or an androphore. Styles 2 or 3 , free or connate at base. Endosperm absent

Begoniaceae
539. Plants herbaceous, at most woody at base.-Flowers bisexual. Ovules many per locule. 540
— Plants woody. 541
540. Perianth 4- or 5-partite, imbricate. Styles 2-5. Endosperm present.-Stamens $4-10$. Fruit a capsule............ Saxifragaceae

- Tepals 3-5, free, valvate. Style 1, stigma undivided or lobed. Endosperm scanty to absent.-Stamens 1-8. Fruit a capsule or a berry. Onagraceae

541. Leaves opposite, if alternate glandular-punctate.-Flowers bisexual. 542

- Leaves alternate, not translucent-glandular punctate, rarely whorled

542. Stipules present. Leaves not glandular-punctate. Perianth-segments valvate. Stamens 4-10. Endosperm present. 543

- Stipules absent, interpetiolary ridge sometimes present. Leaves translucent-glandular-punctate. Tepals free, imbricate or apert, or calyptrately connate. Stamens numerous. Endosperm absent.-Style 1 , stigma undivided or lobed.

Myrtaceae
543. Style 1. Stigma $8-10$-lobed. Ovary $9-10$-locular. Ovules many per locule. Fruit a berry.-Tepals 4 or 5 . Stamens 8-10. (Pellacalyx). Rhizophoraceae

- Styles 2, stigmas punctiform. Ovary 2-locular. Ovules 2-4 per locule. Fruit a nut.-Perianth (3- or) 4 - or 5 -partite to -fid. Stamens (6 or) 8 or 10. (Ceratopetalum, Codia)................. Cunoniaceae

544. Stipules present. Flowers small, unisexual or polygamous, solitary or in spikes, or in catkins, or in fascicles........................... 545

- Stipules absent. Flowers bisexual, fairly large, solitary, or in
racemes, or in panicles.-Perianth-segments valvate. Endosperm absent.

547
545. Male flowers without a perianth. Anthers basifix. Ovary 2-locular. Ovules 6-many per locule. Fruit a capsule. Endosperm present. 546

- Male flowers with a perianth. Anthers dorsifix. Ovary 3-6-locular. Ovules 2 per locule. Fruit dry, indehiscent. Endosperm absent.

Fagaceae
546. Male inflorescence a terminal raceme of globose staminal clusters, each at first enveloped by a large membranous bract. Ovules horizontal. (Altingiaceae). Hamamelidaceae

- Stamens 10 in distinct flowers. Ovules pendulous. (Exbucklandia).

Hamamelidaceae
547. Flowers in racemes or in panicles. Tepals 3 or 4. Stamens 6 or 8 . Styles 3 or 4 . Ovary 3- or 4-locular. Ovules 2 per locule. Fruit a winged nut. (Anisophylleaceae: Combretocarpus). . . Rhizophoraceae

- Flowers solitary or in few-flowered cymes. Tepals 3-5. Stamens numerous. Style 1 with 4 short slender divaricate stigmas. Ovules 12 -20 per locule. Fruit a drupe. (Foetidiaceae)........ Lecythidaceae

CHORIPETALAE

548. (160). Ovary or ovaries superior on a small or dome-shaped receptacle. (When broadly sessile, try also the other lead). ${ }^{1}$.......... 549

- Ovary inferior, or ovary or ovaries hemi-inferior, or superior on a distinctly enlarged, flat to hollow receptacle or hypanthium ${ }^{2}$.... 1149

549. Disk absent, flowers occasionally with a corona.................. 550

- Disk present, at least in the flowers of one sex. 926

550. Stamens 1 -10. 551

- Stamens 11-more.. . . 805

551. Style 1 per flower (even when ovaries free), either simple with 1 or 2 -more stigmas adjacent at base, or absent and stigma 1, sessile.
552

- Styles either 2-more per flower, free or connate at base but not up to the stigmas, or stigmas 2 -more, sessile........................ 720

1 Thonner apparently sometimes interpreted petals and stamens as perigynous when the ovary is distinctly superior and the receptacle only slightly enlarged, e.g. some Saxifragaceae; in the 1917 -version such plants were included after (the present) 1149. In this revision we have added such border-line cases also after 549 but perhaps not all instances have come to our attention.
2 Sometimes (e.g. Rosaceae: Rubus) the receptacle is flat or hollow, but also provided with a central dome.
552. Ovary 1 and 1 -locular, sometimes incompletely so. 553

- Ovary either 1 and 2 -more-locular or nearly so, or ovaries 2 -more, 628free, or connate at base, or at the apex

553. Ovule 1 554

- Ovules 2-more 571

554. Filaments free, or connate into 2 -more bundles 555

- Filaments all connate, at least at base, into a tube which may have a longitudinal slit on one side. 567

555. Stipules absent 558

- Stipules present, though sometimes minute.-Stigma undivided. 556

556. Leaves simple. Sepals free. Ovule basal. 557

- Leaves usually compound, rarely unifoliolate, or simple. Sepals con-nate at least at base. Ovule parietal.Leguminosae

557. Trees. Wood not yellow. Flowers 4- or 5-merous. Stamens 8 or 10. Anthers with longitudinal slits. Tropical Africa. (Hua, also in Ster- culiaceae, Styracaceae). Huaceae

- Shrubs. Wood yellow. Flowers 3-merous. Stamens 6. Anthers with valves. Temperate areas and tropical mountains. (Berberis).
Berberidaceae

558. Stem woody 559

- Stem herbaceous, or woody at base only.-Petals 4. Stamens 6. 565

559. Leaves opposite 560

- Leaves alternate. 561

560. Shrublets. Sepals 2. Petals 5. Stamens 4-7. Style 3-partite. Fruit 3- winged. S. Africa. (Portulacaria) Portulacaceae

- Trees. Sepals, petals, epipetalous stamens 3-5. Style simple. Fruit not winged. S.E. Asia. (Bouea) Anacardiaceae

561. Leaves not translucent-glandular-punctate 562

- Leaves translucent-glandular-punctate.-Leaves unifoliolate. Flow- ers 4-merous. Rutaceae

562. Trees or shrubs. Flowers bisexual. 563

- Woody climbers. Flowers unisexual.-Leaves simple. Sepals 7. Pet-als 3 or 4. Stamens 6-10. Stigma simple. Menispermaceae

563. Sepals $3-6$ in 1 or 2 whorls. 564

- Sepals many, in a spiral.-Leaves 2- or 3-pinnately compound. Anthers sessile, with valves. China, Japan. (Nandinaceae).
Berberidaceae564. Non-resinous plants. Perianth of 3-merous whorls, the outer 1 or 2calycoid, the inner 2 corolloid. Anthers with valves.-Wood yellow.(Berberis).Berberidaceae
- Plants often with copious (poisonous!) resin or latex. Perianthusually 4 - or 5 -merous and differently composed. Anthers withlongitudinal slits.Anacardiaceae

565. Sepals 4 566

- Sepals 2.-Leaves divided. Corolla zygomorphic, more or less spurred. Stamens in 2 bundles, each with one 2-locular and two1-locular anthers. Endosperm copious. Embryo basal, minute.(Fumariaceae). Papaveraceae

566. Filaments all equal in length. (incl. Cleomaceae). Capparaceae

- Filaments unequal in length.-Corolla actinomorphic, not spurred.Stamens free, or 4 pairwise connate, all anthers 2 -locular. Endo-sperm scanty or absent. Embryo large, curved. Cruciferae

567. (554). Anther with 1 transverse slit or with 1 pore. 568

- Anther with 2 longitudinal slits or 2 apical pores. 569

568. Flowers bisexual, zygomorphic. Stigma undivided or 2-partite. Embryo straight.-Stamens 8 . Polygalaceae

- Flowers unisexual. Stigma 3-5-partite. Embryo curved.
Menispermaceae

569. Flowers actinomorphic. Stamens 4-9.-Trees or shrubs. Fruit a berry. 570

- Flowers zygomorphic, rarely actinomorphic, then stamens 10.Leguminosae

570. Leaves alternate, usually compound. Stipules absent. Calyx 4- or 5-partite or -fid. Ovule pendulous.Meliaceae

- Leaves opposite, undivided. Stipules or an intra-petiolary ridgepresent. Calyx 2-4-dentate. Ovule erect............. Salvadoraceae

571. (553). Ovules 2 572

- Ovules 3-more 590

572. Ovules apical or central, pendulous. 573

- Ovules basal or lateral. 574

573. Ovules apical. 586

- Ovules central.-Woody plants. Leaves undivided. Corolla actino- morphic, valvate. Stamens 5-10, free. Stigma 3-lobed.... Olacaceae

574. Ovules anatropous or hemitropous. 575

- Ovules atropous.-Shrubs or trees. Leaves usually compound.Stipules absent. Stamens 5 or 10, connate at base. Flowers actino-morphic. Ovules collateralConnaraceae

575. Sepals 2, free. 576

- Sepals 3-more, rarely 2 , then nearly completely connate 578

576. Leaves divided. Stipules absent.-Herbs. Petals 4. 577

- Leaves undivided. Stipules present or leaves with axillary tufts ofhairs.-Flowers actinomorphic. Stamens 1-5, free. ... Portulacaceae577. Flowers zygomorphic; outer 1 or 2 petals saccate to spurred.Stamens 6 in 2 bundles. Stigma capitate. (Fumariaceae).
Papaveraceae
- Flowers actinomorphic; petals neither saccate, nor spurred. Stamens
4, free. Stigma 2-lobed. (Pteridophyllaceae) Papaveraceae

578. Stamens 6. 579

- Stamens 2-5, or 8-10 580

579. Sepals and petals clearly differentiated, both 4 566

- Perianth-segments numerous, not clearly differentiated into calyxand corolla.-Leaves bi- or ternately pinnately compound. China,Japan. (Nandinaceae)Berberidaceae

580. Stamens free, or $8-10$, rarely 3-5 and filaments connate, then either leaves compound and/or flowers zygomorphic and/or stamens alternipetalous. 581

- Stamens 4-5, epipetalous. Filaments connate.-Leaves alternate, simple. Flowers actinomorphic. Calyx 5 -fid, valvate. Petals contort.
Sterculiaceae

581. Leaves not translucent-glandular-punctate, or rarely so, then either stipules present, or flowers zygomorphic. 582

- Leaves translucent-glandular-punctate.-Shrubs or trees. Stipules absent. Flowers actinomorphic. Rutaceae

582. Ovules parietal. 583

- Ovules basal.-Leaves simple. 585

583. Placenta 1 584

- Placentas 2.-Leaves alternate, simple. Anthers 5, nearly sessile, connate. Fruit a berry. Violaceae

584. Stipules usually present, sometimes early fugacious, when absent flowers actinomorphic. Anthers with longitudinal slits. 584a

- Stipules absent. Flowers zygomorphic. Anthers with 1 terminalpore.-Leaves usually densely hairy, simple, rarely 3 -foliolate.Sepals 4 or 5, inbricate, free, unequal. Endosperm absent. Ameri-ica.Krameriaceae
584a. Stipules present, sometimes early fugacious. Flowers zygomorphic oractinomorphic. Calyx-segments and petals usually 5. Endospermscanty or absent, rarely copiousLeguminosae
- Stipules absent. Flowers actinomorphic. Sepals 3. Petals 6. Endo-sperm ruminate.-Medullary rays in twigs on cross-section usuallyregular and distinct, dilating in the bark. Leaves simple, undivided.Sepals valvate. Petals imbricate.Annonaceae

585. Leaves opposite. Stamens 4 or 5. Salvadoraceae

- Leaves alternate. Stamens 10. (Guilfoylia). Simaroubaceae

586. (573). Petals 4. Stamens 6, free, or the 4 longer ones pairwise con-nate.-Herbs or undershrubs. Leaves simple. Stipules absent.
Cruciferae

- Stamens 2-5, or 7-10, rarely 6, then either all connate, or petals3. .. . 587

587. Filaments free, rarely connate, then either flowers zygomorphic or
stipules present. 588

- Stipules absent. Flowers actinomorphic. Filaments connate.-Shrubsor trees. Leaves pinnately compound.Meliaceae

588. Leaves not translucent-glandular-punctate, or rarely so, then either stipules present or flowers zygomorphic. 589

- Leaves translucent-glandular-punctate. Stipules absent. Flowers actinomorphic.-Shrubs or trees. Leaves compound. Calyx 3- or 4 -dentate. Petals 3 or 4, imbricate. Stamens 6-8. Fruit a drupe.
Rutaceae

589. Leaves simple. Stipules absent. Flowers actinomorphic.-Shrubs or trees. Stamens 4 or 5 , free. Fruit a drupe or a nut. Icacinaceae

- Leaves compound, rarely simple, then either stipules present orflowers zygomorphicLeguminosae

590. (571). Placenta 1, basal or central 591

- Placentas 1 -several, parietal 598

591. Ovules erect or laterally attached on a central placenta. 592

- Ovules pendulous.-Stigma 1. Ovules 3-5 Olacaceae

592. Anthers with longitudinal slits, rarely with apical pores.-Leaves simple. 594

- Anthers with valves.-Leaves alternate or radical. Stamens 6. Stig- ma 1. Ovules basal 593

593. Stem herbaceous, rhizome tuberous or creeping, fleshy.-Leaves radical or cauline. (Leonticaceae) Berberidaceae

- Stem woody
- Stem woody Berberidaceae Berberidaceae

594. Sepals 3-more, or calyx 2- or 3-fid 595

- Sepals 2.-Stigmas 2-8. Portulacaceae

595. Stem woody. Leaves alternate. Stigma undivided or lobed. 596

- Stem herbaceous, at most woody at base. Leaves opposite. Stigma grooved, lobed or divided.-Leaves undivided. Fruit a capsule.Caryophyllaceae

596. Petals and stamens 4 or 5.-Fruit a drupe Myrsinaceae

- Petals 5. Stamens 10 597

597. Leaves simple. Calyx 2- or 3- fid. Style terminal. Tropical Africa. (Afrostyrax, formerly in Styracaceae) Huaceae

- Leaves pinnately compound. Sepals 5. Style gynobasic. Mexico. (Recchia) Simaroubaceae

598. Placentas 2-more 599

- Placenta 1 601

599. Petals 3 600

- Petals 4-more 606600. Non-green parasites. Leaves scale-like. Sepals 3. Stamens 6.Embryo very small. (Hypopitys). Monotropaceae- Autotrophic, green plants. Leaves well-developed. Sepals 5.
Stamens 3-10. Embryo large. (Lechea) Cistaceae

601. More stamens than petals, rarely as many or less, then either stem woody or stipules present. 602

- Stamens as many as the petals, epipetalous.-Herbs. Stipules ab- sent. Flowers actinomorphic. 605

602. Stipules present, sometimes early fugacious. Flowers zygomorphic or actinomorphic.-Calyx-segments and petals usually 5. Endosperm scanty or absent, rarely copious. Leguminosae

- Stipules absent. Flowers actinomorphic. 603

603. Sepals and petals (4 or) 5, imbricate.-Twigs without such medul- lary rays as in Annonaceae (see sub 604). Leaves simple or com-pound, hairy or glabrous. Endosperm, if present, not ruminate.
Connaraceae

- Sepals either 3 and valvate or calyptrate and caducous, or persistent and then cup- or saucer-shaped, entire or ruptured into more or less irregular 'lobes'. 604

604. Wood with vessels. Twigs on cross-section with a regular pattern ofradial medullary rays, dilating in the bark. Leaves hairy or glabrous.Calyx either with distinct lobes or sepals free. Endosperm ruminate.Annonaceae- Wood without vessels. Twigs without such medullary rays. Leavesglabrous. Calyx either calyptrate and caducous, or persistent, thencup- or saucer-shaped, entire or ruptured into more or less irregular'lobes'. Endosperm not ruminate. (Belliolum, Bubbia, Drymis,Pseudowintera)... Winteraceae
605. Sepals 12-15, or stamens 4. (Epimedium, Vancouveria).
Berberidaceae

- Sepals 4-8, or stamens 6-more. (Podophyllaceae). Berberidaceae

606. Sepals 2 or 3 607

- Sepals 4-more. 611

607. Petals 4 or 6 608

- Petals 5 or 10 610

608. Petals not spurred. Stamens 4. 609

- Outer 1 or 2 petals saccate to spurred. Stamens 6 in 2 bundles of 3 .(Fumariaceae).Papaveraceae

609. Flowers actinomorphic, petals entire. Ovules 3 or 4. (Pteridophyl-laceae).Papaveraceae

- Flowers more or less zygomorphic, outer petal 3-lobed, inner 3-
Papaveraceaepartite. Ovules many. (Hypecoaceae)

610. Stamens connate, 10. Fruit a berry.-Shrubs or trees. (Canella, Warburgia). Canellaceae

- Stamens free, 10-more. Fruit a capsule. (Hudsonia) Cistaceae

611. Sepals and petals 4 612

- Sepals and petals 5-8. 616

612. Leaves alternate. Stigmas 1 or 2. 613

- Leaves opposite. Stigmas 2-4.-Herbs or undershrubs. Leaves simple, often ericoid. Stipules absent. Fruit a capsule. Salty areas.
Frankeniaceae

613. Leaves usually simple. Filaments free or connate at base only. 614

- Leaves usually pinnately compound. Filaments connate.-Woody plants. Stamens 8. Stigma 1. Fruit a capsule Meliaceae

614. Stipules absent. Ovules campylotropous. Fruit rarely a berry. En- dosperm absent. Embryo curved. 615

- Stipules present. Ovules anatropous. Fruit a berry. Endosperm present. Embryo straight.-Plants woody. Flowers often before the leaves. Seeds arillate. Himalaya to Japan. Stachyuraceae

615. Stamens 6,2 shorter than the others. Ovary usually sessile. Stigmas 1 or 2.--Herbs or undershrubs. Fruit dry, dehiscent. Cruciferae

- Stamens either 6, equal, or 4, or 8 . Ovary usually stipitate. Stigma 1.Capparaceae

616. Calyx imbricate or apert. 617

- Calyx valvate. 618

617. Anthers introrse, latrorse, or apically dehiscent 619

- Anthers extrorse.-Insectivorous herbs. Leaves radical, glandular. Stipules present. Flowers bisexual. Stamens 5, filaments long. Stami- nodes absent. Droseraceae

618. Leaves opposite. Stamens 4-6. Stigmas 2-4.-Halophilous herbs or undershrubs. Anthers extrorse or latrorse. Frankeniaceae

- Leaves alternate. Stamens 6-9. Stigmas 2.-Shrubs or small trees.E. Australia, Tasmania. (Escalloniaceae: Anopterus). Saxifragaceae

619. Stamens 5-8. 620

- Stamens 10 621

620. Flowers bisexual or polygamous. 625

- Flowers unisexual.-Flowers actinomorphic. Stamens 5 or 6. Corona present. (Adenia). Passifloraceae

621. Leaves simple, undivided. 622

- Leaves pinnately-compound.-Woody plants. Leaves translucent-glandular-punctate. Fruit a berry.622. Herbs. Anthers adnate, usually with apical pores or slits, if withlongitudinal slits, plants non-green saprophytes.623
- Woody plants, rarely herbs. Anthers versatile, usually with longi- tudinal slits. 624623. Autotrophic plants with well-developed, green leaves. Anthers in-curved in bud, with 2 apical pores or tubules. Pyrolaceae- Non-green saprophytes without well-developed leaves. Anthers
erect in bud, thecae with a common slit, or with 2 longitudinal slits. Monotropaceae

624. Herbs or undershrubs, often ericoid.-Anthers introrse. Ovary completely 1 -locular. Stigmas 3 or 4 . Endosperm absent. (Tamari- ceae).. Tamaricaceae

- Woody plants, non-ericoid.-Stamens epipetalous. Fruit a capsule. (cf. Homalium) Flacourtiaceae

625. Fertile stamens 5-8, staminodes absent. Fruit a loculicide capsule, or a berry, or dry, indehiscent, 1 -seeded. 626

- Fertile stamens 5, rarely 8 ; staminodes in an outer whorl. Fruit a septicide capsule.-Stipules present Ochnaceae

626. Stipules absent. Flowers actinomorphic or nearly so.-Woody plants. 627

- Stipules present, rarely absent, then flowers distinctly zygomorphic. -Filaments short. Anthers usually appendiculate. Violaceae

627. Stamens 5, alternipetalous. Embryo minute. Pittosporaceae

- Stamens 5-8, epipetalous. Embryo relatively large.-Leaves alter-nate or in whorls. Anthers latrorse. Connective broad. (cf. Gerrar-dina)Flacourtiaceae

628. (552). Ovule 1 per locule 629

- Ovules 2-more per locule. 659

629. Ovule erect, ascending, or patent.-Stamens as many as the petals, or more. 630

- Ovule pendulous or descending. 638

630. Leaves opposite 631

- Leaves alternate. 632

631. Stipules present. Flowers unisexual.-Flowers solitary, or in spikes, or in racemes, or in panicles. Petals 4. Stamens 4, free.Salvadoraceae

- Stipules absent. Flowers polygamous.-Leaves with translucent to black glandular dots or lines. Guttiferae

632. Flowers bisexual, at least apparently so, or polygamous 633

- Flowers unisexual.-Stem woody. Stipules present. Flowers infascicles. Petals 4. Stamens 4, free..................... . Celastraceae

633. Stamens not 4. 634

- Stamens 4.-Trees. Petals 4. (Tetrameristaceae). Theaceae

634. Aquatics or marsh-plants.-Stamens and petals 5. (Hydrocera).
Balsaminaceae

- Terrestrial plants 635

635. Shrubs or trees. Stamens $3-5$, or $7-10$, rarely 6, then petals 3 or 6. 636

- Herbs or undershrubs. Petals 4. Stamens 6 Cruciferae

636. Stipules present. 637

- Stipules absent.-Leaves usually compound, rarely unifoliolate.Filaments connate. Anthers with longitudinal slitsMeliaceae

637. Calyx imbricate. Filaments free.-Anthers usually with apical pores.
Ochnaceae

- Calyx valvate. Filaments free or connate.-Stamens 5, epipetalous.
Sterculiaceae

638. Flowers bisexual or polygamous 641

- Flowers unisexual. 639

639. Petals valvate. Endosperm absent. (Picrolemma). .. . Simaroubaceae

- Petals imbricate. Endosperm present.-Ovules usually with acaruncle640

640. Petals in a whorl. Micropyle pointing outward. Euphorbiaceae

- Petals decussate ($2+2$, rarely only 2). Micropyle pointing in-ward.-Ovary 2-locular. Stigma 1, sessile. Seed ruminate. (also in-cluded in Aquifoliaceae)........................ . Sphenostemonaceae

641. Filaments free, stamens rarely paired with connate filaments 642

- Filaments all connate at least at base 654

642. Anthers with 1 or 2 apical pores. 643

- Anthers with 2 longitudinal slits 645

643. Stipules absent. Flowers solitary, axillary.-Shrubs 644

- Stipules present. Flowers in racemes or in panicles.-Calyx Ochnaceae

644. Leaves, young stems, and calyx with long, club-shaped glands.Calyx and corolla imbricate. Anthers with 2 apical pores or shortslits.-Leaves alternate. S. Africa.- Plants without such glands. Calyx valvate, corolla induplicative-valvate. Anthers with 1 apical pore.-Leaves alternate, or opposite,or in whorls. Australia.Tremandraceae
645. Usually trees or shrubs. Petals 5 , rarely 3 or 6 , or 4 , then either flowers polygamous or stamens 8 or stigma 1 , sessile. 646

- Herbs or undershrubs. Flowers bisexual. Petals 4. Stamens 2, 4, or 6. Style 1 , stigmas 1 or 2 .-Ovary 2-locular.646. Corolla imbricate, rarely valvate, then endosperm scanty or absent.Micropyle extrorse, rarely introrse.647
- Corolla valvate. Endosperm copious. Micropyle introrse.-Leaves undivided. Stipules absent. Flowers actinomorphic, bisexual. Ovary 3- or 4-locular. Fruit a drupe. Olacaceae

647. Leaves not translucent-glandular-punctate, or rarely so, then stipules present 648

- Stipules absent. Leaves translucent-glandular-punctate. Rutaceae

648. Calyx imbricate. 649

- Calyx valvate.-Plants usually herbaceous. Leaves simple. Stipulespresent. Flowers in cymes. Stamens 5-10.Tiliaceae

649. Stipules present, sometimes early fugacious. 650

- Stipules absent 651

650. Sepals eglandular. Pedicels not articulate. Ovules anatropous. Embryo straight.-Medifixed hairs absent Zygophyllaceae

- Sepals usually with large glands at base. Pedicels articulate. Ovules usually hemi-anatropous. Embryo usually curved.-Medifixed hairs present Malpighiaceae

651. Leaves alternate. 652

- Leaves opposite or in whorls. (see 650) Malpighiaceae

652. Ovary 1 with 2 locules 653

- Ovaries 3-5, free.-Flowers in umbels or in panicles. Petals 3-5.Stamens 6-10, appendiculate at base. Endosperm present or ab-sentSimaroubaceae

653. Flowers usually solitary. Petals 5. Stamens 5. Endosperm absent. Tropical America. (Pelliceriaceae) Theaceae

- Flowers in racemes. Petals 4, rarely 2. Stamens 4-6, rarely more. Endosperm ruminate. New Caledonia to New Guinea. (also in-cluded in Aquifoliaceae).......................... . Sphenostemonaceae

654. (641). Anthers with 2 longitudinal slits 655

- Anthers with 1 apical pore.-Leaves undivided. Stipules usually ab- sent. Flowers zygomorphic. Polygalaceae

655. Herbs, sometimes woody at base, or undershrubs. Stipules present.Fruit a 5 -locular schizocarp, not winged, usually awned. Temperateparts.-Leaves pinnately partite to -compound, or digitately nerved.656

- Woody plants, rarely somewhat herbaceous, then leaves opposite orin whorls, simple and stipules absent. Fruit a capsule, or a berry,rarely a schizocarp, then 2 - or 3 -locular and often winged. (Sub-)tropics657

656. Flowers solitary, paired, or in umbels. Mericarps awned, very rarelynot so, leaves then palmatinerved.-Lower cauline leaves opposite.(Geranieae)Geraniaceae

- Flowers in spikes or racemes. Mericarps unawned.-Lower caulineleaves alternate, pinnately partite to -compound. Greece to C. Asia.(Biebersteiniaceae)Geraniaceae

657. Leaves simple, undivided, usually opposite. Filaments connate atbase only658
-- Leaves pinnately compound, rarely 3-partite, usually alternate. Fila-ments connate into a tube for most of their length.-Stipules absent.(Melioideae)Meliaceae
658. Woody plants. Stipules usually present. Sepals imbricate, often withlarge glands. Petals imbricate.-Indument usually with medifixedhairs.Malpighiaceae

> - Woody herbs or undershrubs. Stipules absent. Sepals valvate, eglandular. Petals contort.-Chile, S. Brazil. (Vivianiaceae).

Geraniaceae
659. (628). Ovules 2 per locule. 660

- Ovules 3-móre per locule. 690

660. Stipules present, sometimes early fugacious. 661

- Stipules absent. 677

661. Flowers unisexual.-Ovary 2-locular. Ovules erect. 662

- Flowers bisexual or polygamous.................................. . . . 664

662. Petals 4, imbricate. Stamens alternipetalous.-Leaves undivided. 663

- Petals 4 or 5, valvate. Stamens epipetalous.-Leaves alternate. Fruit
a berry. Endosperm copious.......................... Vitaceae

663. Leaves opposite. Fruit a berry. Endosperm absent. . . Salvadoraceae

- Leaves alternate. Fruit a drupe. Endosperm scanty..... Celastraceae

664. Calyx valvate. 665

- Calyx imbricate or apert. 668

665. Filaments free.-Ovules pendulous................................ . . 666

- Filaments usually connate.-Endosperm present. 667

666. Stem usually herbaceous. Flowers in fascicles. Endosperm present.

Tiliaceae

- Stem woody. Flowers in panicles. Endosperm absent.

Dipterocarpaceae
667. Leaves alternate. Petals contort. Ovules ascending to patent.

Sterculiaceae

- Leaves opposite. Petals valvate. Ovules pendulous. (Anopyxis).

Rhizophoraceae
668. Stigma 1, undivided or lobed. 669

- Stigmas 2-5.-Flowers solitary, or in umbels, or in racemes, or in cymes. Fruit dehiscent, or a schizocarp, mericarps usually beaked.

Geraniaceae
669. Leaves compound. 670

- Leaves simple.. . . 672

670. Inflorescences axillary or terminal. Stamens alternipetalous or more
than the petals. .. 671

- Inflorescences usually leaf-opposed. Stamens epipetalous, 4 or 5.Woody plants, usually climbing, then often with tendrils. Leaves usually digitately or 1-pinnately compound. Petals valvate. Vitaceae

671. Small, unarmed annuals. Leaves alternate. Sepals and petals 4. Stamens 6. Ovary 2-locular. Endosperm absent. Embryo curved. (Oxystylidaceae, also in Cleomaceae). Capparaceae

- Much-branched perennials or shrubs, often armed. Leaves opposite. Sepals and petals 5. Stamens 10. Ovary 5-locular. Endosperm present. Embryo straight. (Fagonia, Plectrocarpa). Zygophyllaceae
672 Anthers with longitudinal slits, rarely with pores, then ovary 2 - or3-locular.673
-- Anthers with apical pores. Ovary 4- or 5-locular.-Stamens 5, alter- nipetalous. Ochnaceae

673. Corolla imbricate or apert, rarely valvate, then stamens twice as many as the petals. 674

- Corolla valvate. Petals 4 or 5 . Stamens epipetalous. Vitaceae

674. Leaves alternate. 675

- Leaves opposite, if alternate, stipules free and sepals 5.-Flowers solitary or in fascicles. Fruit a schizocarp. (Fagonia, Viscainoa).
Zygophyllaceae

675. Flowers in panicles or in fascicles. 676

- Flowers solitary.-Stipules intra-petiolary connate. Sepals 8-10, very unequal. New Caledonia. Strasburgeriaceae

676. Flowers in panicles. Fruit dry, indehiscent, rarely ultimately dehis- cent, usually with an enlarged calyx.-Ovary 2- or 3-locular.
Dipterocarpaceae

- Flowers in fascicles. Fruit a septicidal capsule or a drupe.-Stemwoody. Petals imbricate. Stamens as many as the petals, alternipeta-lous, or twice as many, obdiplostemonous. Anthers with longitudi-nal slits. (Ixonanthaceae).Linaceae

677. (660). Leaves not translucent-glandular-punctate, or rarely so, then either stamens connate at base, or less than the petals. 678

- Leaves translucent-glandular-punctate. Stamens as many as thepetals or twice as many, free.-Stem woody. Anthers with longi-tudinal slits.Rutaceae

678. Stem woody, rarely only so at base, then stamens 5 , or 8 , or 10 679

- Stem herbaceous, or woody at base only, then stamens 2 , or 4 , or6.-Petals 4. Ovary 2-locular.Cruciferae

679. Stamens as many as the petals, alternipetalous, or more, or less. 680

- Stamens as many as the petals, epipetalous.-Calyx valvate. Petals5, small, scale-like. Anthers usually with 2 apical pores. Sterculiaceae

680. Anthers with apical pores, or with poriform or transverse slits.- Filaments free. Anthers basifix. 686

- Anthers with longitudinal slits. 681

681. Leaves opposite. Filaments free. 682- Leaves alternate, rarely opposite, then filaments more or less con-nate into a tube.683
682. Petals contort. Stamens 8-10. Embryo curved. (Vivianiaceae).
Geraniaceae

- Petals not contort. Stamens 2(-4). Embryo straight. Oleaceae683. Stamens 6-10, rarely less, then either leaves pinnately compound,or filaments more or less connate into a tube, or ovary 3 -more-
locular, or sepals and petals 3 or 4 684
- Leaves simple, entire. Sepals and petals 5. Stamens 5. Filaments atbase connate into a ring. Ovary 2 -locular. (Ixonanthaceae: Cyril-lopsis).Linaceae

684. Sepals and petals usually 4 or 5 , imbricate. 685

- Sepals and petals 3 or 4 , valvate.-Twigs and petioles with a wavy,pale, sclerenchymatous ring around resinous ducts in transverse sec-tion. Filaments free...................................... . . Burseraceae

685. Filaments usually connate into a tube Meliaceae

- Filaments connate at base only.-Madagascar. (Asteropeiaceae).
Theaceae

686. Ericoid (under-)shrubs. Flowers solitary, axillary 687

- Shrubs or trees. Flowers in infiorescences.-Calyx and corolla imbri- cate. Anthers with 2 pores or slits. S.E. Asia. 688

687. Leaves, young stems, and calyx with long, club-shaped glands. Calyx and corolla imbricate. Anthers with 2 apical pores or short slits.--Leaves alternate. S. Africa. Roridulaceae

- Plants without such glands. Calyx valvate, corolla induplicative-valvate. Anthers with 1 apical pore.-Leaves alternate, or opposite,or in whorls. Australia.688. Fertile stamens 2-5. Anthers with apical pores or transverse slits.689
- Fertile stamens 10. Anthers with poriform, introrse slits.-Flowers in cymes. Ovary 3 -locular. Ovules collateral. (Sladeniaceae).
Theaceae

689. Flowers in panicles. Fertile stamens 2 or 3, epipetalous. Ovary 2- or 3-locular. Ovules serial. (Meliosmaceae: Ophiocaryon). . Sabiaceae

- Flowers in racemes. Fertile stamens 5, alternipetalous. Ovary 5-locular. Ovules collateral...................... . Pentaphylacaceae

690. (659). Placenta(s) central, or axillary, or apical. 693

- Placentas parietal.-Sepals and petals 4. Endosperm absent. Embryo curved. 691

691. Calyx 4- or 5 -lobed. Petals 5 . Ovary with a longitudinal false sept.- Herbs or shrubs. (Astragalus) Leguminosae

- Sepals 4. Petals 4.-Endosperm absent. Embryo curved. 692

692. Filaments all equal in length. - Undershrubs. Capparaceae

- Filaments unequal in length.-Corolla actinomorphic or radiate, notspurred. Stamens free or 4 pairwise connate; anthers 2 -locular. En-dosperm scanty or absent. Embryo large, curved......... Cruciferae

693. Stamens as many as the petals, or less. 694

- More stamens than petals. 704

694. Stamens as many as the petals, or less, then bracts of the sterile flowers (if any) not strongly modified. 695

- Petals 5. Stamens 3. Bracts of sterile flowers modified, saccate,pitcher-like, or spathulate, brightly coloured........ . Marcgraviaceae

695. Anthers free 696

- Anthers connate around the ovary.-Herbs, rarely shrub-like. Flow- ers zygomorphic. Petals and stamens 5 Balsaminaceae

696. Flowers actinomorphic or nearly so. 697

- Flowers zygomorphic.-Woody plants. Petal and fertile stamen 1. C.-, S.-America. Vochysiaceae

697. Trees or shrubs, rarely herbs. Leaves simple, undivided, or digi-tately compound. Stipules usually present, sometimes absent.Flowers 3-5-merous.698

- Herbs. Leaves 3-foliolate. Stipules absent. Flowers 8-merous. C.-, S.-America. Tovariaceae

698. Stamens epipetalous. Filaments usually connate 699

- Stamens alternipetalous. Filaments free.-Calyx imbricate 700

699. Leaves simple. Anthers 2-locular, locules rarely sub-confluent at the apex.-Calyx valvate. Sterculiaceae

- Leaves digitately compound. Anthers 1-locular.-Stipules present.
Bombacaceae

700. Well-developed leaves present. Fruit a loculicid capsule or in- dehiscent 701

- Leaves reduced to minute scales. Fruit an apically irregularily septi- cid capsule.-Texas, Mexico. (Canotia, also in Koeberliniaceae).
Canotiaceae

701. Leaves either serrate or with 3 apical teeth. Ovary 3 - or 5 -locular.702

- Leaves entire. Ovary 1- or 2-locular. Pittosporaceae702. Leaves either with 3 apical teeth, or glandular serrate, without longclub-shaped glands. Ovary 3- or 5-locular. America or Australia. 703
- Leaves usually pinnatifid, with long club-shaped glands. Ovary 3- locular. S. Africa Roridulaceae

703. Leaves with 3 apical teeth. Ovary 3-locular. S. America. (Tribelaceae). Saxifragaceae

- Leaves glandular-serrate. Ovary 5-locular. N.E. Australia. (A brophyllum, Cuttsia, also included in Escalloniaceae) Saxifragaceae

704. (693). Stamens 6-10. 705

- Stamens 5.-Herbs or undershrubs. Flowers zygomorphic. Petals 3. Anthers connate Balsaminaceae

705. Anthers with apical pores 706

- Anthers with 2 longitudinal slits, sometimes poriform, but opening from the base up. 709

706. Anthers with 2 apical pores. Calyx and corolla imbricate. 707

- Anthers with 1 apical pore. Calyx valvate, corolla induplicative-
valvate.-Ovary 2-locular. Australia. Tremandraceae

707. Stipules absent. Anthers dorso-versatile 708

- Stipules present. Anthers basifix-adnate.-Stem woody. Ovary 3-5- locular Ochnaceae

708. Herbs. Ovary 5-locular Pyrolaceae

- Woody plants. Ovary 3-locular Clethraceae

709. Sepals valvate.-Leaves alternate, simple, rarely absent. Sepals free or connate 710

- Sepals imbricate or apert.-Leaves compound, or simple, then if also alternate, either without stipules, or stamens free. 713

710. Filaments free. 711

- Filaments connate.-Stipules present. Sepals usually connate.
Sterculiaceae

711. Woody plants. Stamens 8 . Ovary long-stipitate. Stigma usually ses- sile. Fruit a berry. Endosperm absent. Embryo curved. Capparaceae

- Herbs or undershrubs. Stamens 10. Ovary sessile, rarely with an androgynophore. Style present. Fruit a capsule. Endosperm present. Embryo straight.-Flowers yellow. 712

712. Staminodes absent. (Corchorus). Tiliaceae

- Staminodes present. (Corchoropsis also in Sterculiaceae) Tiliaceae

713. Stipules present.-Leaves not translucent-glandular-dotted. Stamens free. Anthers dorsifix. Endosperm present. 714

- Stipules absent 715

714. Leaves compound. Flowers solitary, or in dichasia, or in fascicles. Aril absent.-Leaves usually opposite. Flowers 4 - or 5 -merous. Fruit a capsule or a berry. Zygophyllaceae

- Leaves simple. Flowers in spikes or racemes. Aril present.-Leaves alternate, serrate. Flowers 4-merous. Fruit a berry. S.E. Asia.
Stachyuraceae

715. Filaments free. 716

- Filaments more or less connate into a tube.-Anthers basifix.
Meliaceae

716. Leaves simple or rarely absent 717

- Leaves compound, translucently-glandular-dotted. Rutaceae

717. Bracts of sterile flowers (if any) not strongly modified.-Shrubs. Leaves simple, undivided 718

- Bracts of sterile flowers pitcher-like, saccate, or spurred, brightlycoloured.-Anthers basifix, introrse. Ovary 2-many-locular. Trop-ical AmericaMarcgraviaceae

718. Stamens 6-10. Endosperm scanty or absent 719

- Stamens 10. Endosperm copious.-Anthers dorso-versatile. Ovary5-locular. W.-, C. China. (Clematoclethra). Actinidiaceae

719. Anthers basifix. Ovary sessile. (incl. Asteropeiaceae). Theaceae

- Anthers dorsifix. Ovary short- to long-stipitate. (incl. Koeber
liniaceae: Koeberlinia).

Capparaceae
720. (551). Ovary 1, undivided or lobed. 721

- Ovaries 2-more, free, or connate at base 770

721. Ovary 1 -locular, sometimes incompletely more-locular. 722

- Ovary completely 2 -more-locular, or nearly so 740

722. Ovules 3-more, or flowers unisexual. 723

- Ovules 1 or 2 725

723. Petals of all flowers free 724

- Petals of the male flowers connate.-Trees. Leaves digitately lobed to -compound. Flowers unisexual or polygamous Caricaceae

724. Petals 4-7. 730

- Petals 2.-Stem herbaceous, sometimes woody at base. Leavesalternate, sometimes in tufts. Stigmas 4, free. Ovules parietal. En-dosperm absent. Embryo curved.Resedaceae

725. Ovules erect or ascending.-Flowers bisexual, rarely unisexual. 726

- Ovules pendulous or descending.-Leaves alternate. Filaments more or less connate. Styles 3 or 4 . Fruit a drupe. 729

726. Leaves alternate. Stipules absent. Ovule 1.-Stamens 5 727

- Leaves opposite. Stipules scarious, or an inter-petiolary ridgepresent. Ovules 2.-Herbs or undershrubs. Calyx imbricate. Fruit acapsule, or dry, indehiscentCaryophyllaceae

727. Shrubs, rarely herbs or trees. Stamens either alternipetalous, or more than the petals. Styles 3 , or 1 with 3 stigmas. 728

- Herbs, undershrubs, or climbers. Stamens epipetalous. Styles 5.-Calyx plicate. Aril absent. (Plumbagineae). Plumbaginaceae

728. Stipules absent. Petals, stamens 5.-Tropical Africa. (Stapfiella, also in Flacourtiaceae) Turneraceae

- Stipules present, usually connate into a sheath. Petals 3, sometimes4. Stamens or staminodes 3-9. (Coccolobeae)........ . Polygonaceae

729. Stipules absent. Flowers unisexual. Stamens 1-5. Anthers adnate. Embryo curved. Menispermaceae

- Stipules present. Flowers bisexual. Stamens 10. Anthers versatile. Embryo straight. Erythroxylaceae

730. Staminodes, if present, shorter than the petals, or not both filiform and pubescent. 731- Staminodes filiform, 5 , longer than the petals, densely pubescent.-Trees. Ovary 1 -locular with a slender central column and 3 or 4 car-pels. Ovules pendulous from the apex of the locule, close to thecolumn, 6-8. W. Africa. Medusandraceae
731. Placentas several, parietal, rarely basal, then all leaves radical. Embryo straight 732

- Leaves opposite, undivided. Placenta 1, basal or central. Embryo
more or less curved.-Herbs or undershrubs. Flowers bisexual.Sepals 4 or 5, imbricate. Caryophyllaceae

732. Flowers unisexual. 733

- Flowers bisexual or polygamous.-Herbs or (under-)shrubs. 735

733. Shrubs or undershrubs, climbing with hooks or tendrils 734

- Erect shrubs or trees without tendrils or hooks.-Leaves undivided. Stipules present. Flacourtiaceae

734. Stipules present, usually small and fugacious. Midribs of leaves not excurrent into hooks. Passifioraceae

- Stipules absent. Midrib of at least some leaves excurrent into 2 re- curved hooks.-Seeds large, discoidal Dioncophyllaceae

735. Sepals 4-7. 736

- Sepals 2 or 3.-Leaves alternate, usually incised. Stipules absent. Sepals free, imbricate. Petals 4-6. Style 2- or 3-partite. Papaveraceae

736. Sepals free.-Leaves alternate. Stipules absent. 737

- Sepals connate at base 738

737. Leaves often scale-like. Placentas usually basal. Seeds hairy.
Tamaricaceae

- Leaves entire, crenate, or lobed, or pinnatifid. Placentas parietal. Seeds arillate. Turneraceae

738. Leaves alternate, or all radical, rarely in whorls. Calyx imbricate.739

- Leaves opposite. Calyx valvate. Frankeniaceae

739. Plants insectivorous. Petals imbricate. Anthers extrorse, 4-10. Seeds not arillate Droseraceae

- Plants not insectivorous. Petals contort. Anthers introrse, 5. Seeds arillate.-Herbs or undershrubs. Turneraceae

740. (721). Ovules 1 or 2 per locule. 741

- Ovules 3 -more per locule. 760

741. Ovules patent or ascending 742

- Ovules pendulous or descending. 750

742. Leaves opposite.-Flowers unisexual or polygamous, 4- or 5- merous. Anthers 2-locular. 743

- Leaves alternate. 744

743. Filaments free. Styles 2. Aceraceae

- Filaments connate. Styles 4 or 5. Guttiferae

744. Anthers 1- or 3-more-locular. 745

- Anthers 2-locular. 746

745. Sepals 5. Anthers 1-locular. Malvaceae

- Sepals 3. Anthers 3-more-locular Bombacaceae

746. Flowers bisexual or polygamous. Sepals 5, connate at base. Stamens 5-10. 747

- Flowers unisexual. Sepals 2 or 3, free. Stamens 2 or 3.-Ericoid
undershrubs. Stipules absent. Sepals imbricate. Petals 2 or 3. Fila-ments free. Ovule 1 per locule.Empetraceae

747. Stipules absent. Petals imbricate or valvate. 748

- Stipules present. Petals contort.-Filaments connate. Style 1.Ovules 2 per locule.Sterculiaceae

748. Leaves simple. Flowers bisexual. Filaments connate at base. Styles2-7, free. Endosperm mealy749

- Leaves pinnate. Flowers polygamous or unisexual. Filaments free.Style 1. Stigma 5 -lobed. Endosperm absent or scanty.-Sepals con-nate at base. Ovule campylotropous. Madagascar. (Ptaeroxylaceae:Cedrelopsis).Meliaceae

749. Sepals free. Ovule erect, epitropous.-Leaves fleshy. Stamens 10. Aril present. C. America. (Stegnospermataceae). Phytolaccaceae

- Sepals connate at base. Ovule erect or patent, apotropous.-Aril present, Australia (Macarthuria), or aril absent, Africa to India(Limeum).Aizoaceae

750. Flowers unisexual 751

- Flowers bisexual or polygamous 752

751. Petals imbricate. Ovules epitropous, usually 2 per locule, collateral, usually with a caruncle.-Stipules usually present. ... Euphorbiaceae

- Petals valvate. Ovule 1 per locule, more or less campylotropous,without a caruncle.-Stipules absent. New Caledonia. (Phelline,also in Aquifoliaceae).Phellinaceae

752. Leaves usually alternate. Calyx rarely with glands outside, some-times with apical calli (Anisadenia). Ovules anatropous, rarely atro-pous or campylotropous. Endosperm present, sometimes scanty. 753

- Leaves usually opposite. Calyx usually with glands outside. Ovule 1 per locule, more or less hemitropous. Endosperm absent.-Woody plants, rarely undershrubs. Petals usually clawed, dentate, or fim- briate. Leaves undivided. Ovary usually lobed. Styles 2-4.
Malpighiaceae

753. Filaments free 754

- Filaments connate at base 756

754. Leaves compound, imparipinnate.-Flowers 5 -merous. Calyx slightly connate, slightly imbricate. Madagascar. (Ptaeroxylaceae: Cedre- lopsis). Meliaceae

- Leaves simple 755

755. Sepals imbricate, or calyx 4 - or 5 -dentate, or nearly entire. Stamens 4 or 5. Stigma sessile, capitate, or discoid.-Flowers solitary, or in fascicles. Endosperm present. Aquifoliaceae

- Sepals valvate. Stamens 10, or 5, then style 2- or 3-lobed, or long and undivided.-Leaves usually alternate. Cyrillaceae

756. Leaves simple, undivided. Ovary undivided. 757

- Leaves usually compound, sometimes unifoliolate. Ovary lobed.
Styles 5, free. (incl. Averrhoaceae)

Oxalidaceae
757. Petals inside without appendages. 758

- Petals inside with inflated or scale-like appendages.-Woody plants.Stipules present. Flowers solitary or in fascicles. Stamens 10. Styles3 or 4. Fruit a drupe................................ Erythroxylaceae

758. Leaves alternate. Flowers without an epicalyx. 759

- Leaves opposite. Flowers with an epicalyx.-Flowers solitary or in fascicles. Stigmas usually 3. Argentine, Chile. (Ledocarpaceae: Wendtia). Geraniaceae

759. Petals longer than the sepals, usually contort and clawed. Staminal tube usually with alternipetalous glands, when absent plants either herbaceous, or woody and climbing with hooks. Styles and/or style- branches filiform. Endosperm present. Embryo straight.... Linaceae

- Petals ca. as long as the sepals, imbricate, not clawed. Staminal tube eglandular. Styles 3, very short. Endosperm scanty. Embryo curved.-Woody plants, not climbing with hooks. Madagascar. (Asteropeiaceae). Theaceae

760. (740). Styles or sessile stigmas free 761

- Styles connate at base. 762

761. Flowers bisexual. 763

- Flowers unisexual or polygamous.-Woody plants. Leaves opposite, with translucent-glandular dots or lines. Stipules absent. Filaments connate. Endosperm absent Guttiferae

762. Flowers bisexual. Petals always free. 768

- Flowers polygamous or unisexual. Male flowers with connate pet- als.-Trees. Leaves digitately lobed or divided, terminally tufted. Anthers with 2 longitudinal, introrse slits. Caricaceae

763. Filaments connate at base.-Leaves alternate. Endosperm present. 764

- Filaments free 765

764. Leaves usually compound, sometimes unifoliolate. Ovules axillary. (incl. Averrhoaceae). Oxalidaceae

- Leaves simple. Ovules basal.—Australia, New Caledonia. (Mac- arthuria).765. Stipules absent. Endosperm scanty to copious.766
- Stipules present. Endosperm absent or nearly so.-Herbs or under- shrubs. Leaves opposite or in whorls, simple or undivided.
Elatinaceae

766. Herbs. Carpels connate up to the middle. 767

- Undershrubs. Carpels connate up to the stigmas.-Flowers solitary. Sepals, petals 5. Endosperm scanty. S. America. (Balbisia, also in Ledocarpaceae). Geraniaceae

767. Leaves opposite, undivided. Calyx 4-6-partite. Petals 4-6. Endo-sperm scanty.-Flowers in cymes.Crassulaceae

- Leaves alternate, partly lobed. Flowers 5-merous. Endosperm copious.-Tepals 5, corolloid. Nectaries lobed. (Helleboraceae).Ranunculaceae

768. Calyx imbricate.-Leaves undivided. Stipules absent. 769

- Calyx valvate.-Calyx 5 -lobed or -partite. Filaments more or lessconnateSterculiaceae

769. Calyx 5-partite. Filaments free or nearly so. Anthers with 2 apical pores.--Stamens 10 . Clethraceae

- Sepals 5, free. Filaments distinctly connate at base. Anthers with slits.-Stamens 8-10. Madagascar. (Asteropeiaceae). Theaceae

770. (720). Ovule 1 per carpel 771

- Ovules 2 -more per carpel. 786

771. Ovule ascending, basal. 772

- Ovule descending. 778

772. Herbs 773

- Woody plants.-Anthers introrse or latrorse. Endosperm copious.775

773. Leaves alternate or radical. Carpels indehiscent 774

- Leaves usually opposite. Carpels dehiscent.-Anthers dorsifix, in- trorse. Carpels 3-9. Endosperm scanty Crassulaceae

774. Anthers introrse. Carpels 3-5. Endosperm absent.-Leaves incised or compound. Sepals andpetals 3-5. Anthers versatile. ... Limnanthaceae

- Anthers extrorse or latrorse. Carpels numerous. Endosperm co- pious. (Ranunculoideae). Ranunculaceae

775. Petals up to 6 776

- Petals many.-Anthers introrse or latrorse 777

776. Ovaries in a whorl, 5-20. Fruit consisting of ventrally dehiscing fol- licles. (also in Magnoliaceae). Illiciaceae

- Ovaries in a spiral, many. Fruit either indehiscent, or consisting of
Magnoliaceaedorsally dehiscing follicles.

777. Petals 6. Anthers extrorse. Carpels rarely dehiscent.-Sepals 3. Anthers adnate Annonaceae

- Petals 3-5. Anthers introrse or latrorse. Carpels dehiscent. (Dides- mandra, Hibbertia). Dilleniaceae

778. Flowers unisexual.-Leaves alternate 779

- Flowers bisexual or polygamous. 781

779. Leaves simple 780

- Leaves pinnately compound.-Tree. Stipules absent. Flowers inpanicles. Stamens epipetalous, as many as the petals, free, 4(-7).Fruit a drupe. Peru, Brazil. (Picrolemma)............ Simaroubaceae

780. Shrubs, rarely herbs or undershrubs. Stipules absent. Flowers not in
globose capitules. Stamens epipetalous, rarely less or more than the petals. Mericarps drupaceous. Menispermaceae

- Trees. Stipules present. Flowers in globose capitules. Stamens alter- nipetalous, nearly free, 3-8. Carpels 3-8, nut-like Platanaceae

781. Leaves alternate or radical.-Stipules absent. Ovaries free. Endo- sperm present 782

- Leaves opposite or in whorls. 784

782. Climbers or herbs. Leaves not terminally tufted. 783

- Trees. Leaves terminally tufted.-Stamens, staminodes, ovaries 5. Indomalesia. (Eurycoma). Simaroubaceae

783. Woody climbers. Anthers introrse. Ovaries 3-12.-Sepals and petals 6. Stamens 6-8. (Parabaena, Tiliacora)..... Menispermaceae

- Herbs. Anthers extrorse or latrorse. Ovaries many. (Ranun- culoideae) Ranunculaceae

784. Stipules absent. Filaments free.-Anthers extrorse 785

- Stipules present. Filaments connate.-Woody plants. Petals 5. Car- pels 3. Endosperm absent Malpighiaceae

785. Shrubs. Petals 5, greenish. Stamens 10. Mericarps nut-like.- Anthers introrse. Carpels 5-10 Coriariaceae

- Herbs. Petals 3-9, coloured. Stamens 3-9. Carpels follicular.- Carpels 3-9. Endosperm scanty. Crassulaceae

786. (770). Ovules 2 per carpel. 787

- Ovules 3 - more per carpel 796

787. Herbs.-Flowers 3-5-merous. 788

- Trees or shrubs, rarely undershrubs.-Leaves alternate, rarely in whorls. 789

788. Terrestrial plants. Leaves opposite. Crassulaceae

- Aquatics. Leaves alternate, the floating leaves peltate, submergedleaves dissected. (Cabomba: Cabombaceae). Nymphaeaceae

789. Ovules descending 790

- Ovules ascending. 793

790. Sepals connate. 791

- Sepals free.-Endosperm present. 792

791. Leaves translucent-glandular-punctate, usually compound. Stamens $3-5$, as many as the petals. Carpels 2-5. Endosperm present. Embryo straight Rutaceae

- Leaves not translucent-glandular-punctate, undivided. Stamens 10,at least twice the number of the petals. Carpels 5 . Endosperm ab-sent. Embryo curved.-Flowers bisexual. Fruits drupaceous. (also inSimaroubaceae).Surianaceae

792. Leaves pinnately compound. Flowers in panicles, polygamous. Fila-ments free. Carpels 5-15. Fruit a dry follicle. (Helleboraceae:

- Leaves simple. Flowers solitary, unisexual. Filaments connate or coherent at base. Carpels many. Fruit drupe-like. (Schisandraceae).
Magnoliaceae

793. Leaves simple, undivided, sometimes absent. Ovules anatropous. 794

- Leaves compound. Ovules atropous, collateral......... Connaraceae

794. Anthers adnate. Endosperm copious. 795

- Anthers versatile. Endosperm absent. (also in Simaroubaceae). Surianaceae

795. Sepals 3. Petals 6. Anthers extrorse. Annonaceae

- Sepals 5. Petals 3-5. Anthers extrorse or latrorse. Dilleniaceae

796. (786). Anthers adnate or basifix, extrorse, rarely introrse or latrorse. 787

- Anthers dorsoversatile or basiversatile, introrse................. . 802

797. Leaves compound.-Flowers unisexual or polygamous. Stamens 6.
Lardizabalaceae

- Leaves simple... . 798

798. Style(s) present. 799

- Stigma subsessile.. . 801

799. Petals 6.-Endosperm ruminate........................ Annonaceae

- Petals 3-5. 800

800. Ovules 3-15 per locule. Aril present. (Hibbertia)...... Dilleniaceae

- Ovules many per locule. Aril absent.-Tasmania. (Tetraсаrpaeaceae)....................................... Saxifragaceae

801. Wood with vessels. Twigs on cross-section with a regular pattern of radial medullary rays, dilating in the bark. Leaves hairy or glabrous. Calyx either with distinct lobes or sepals free. Endosperm ruminate.
Annonaceae

- Wood without vessels. Twigs without such medullary rays. Leąves glabrous. Calyx either calyptrate and caducous, or persistent, then cup- or saucer-shaped, entire or ruptured into more or less irregular 'lobes'. Endosperm not ruminate. (Drimys, Pseudowintera).
Winteraceae

802. Stipules absent.-Anthers with 2 longitudinal slits. Carpels dehiscent. 803

- Stipules present.. . 804

803. Filaments free. Endosperm scanty or absent............ Crassulaceae

- Filaments connate at base. Endosperm copious.-Calyx 5-partite. Brazil. (Eichleria). Oxalidaceae

804. Calyx spatha-like. Anthers with 1 longitudinal slit. Staminodes corolloid. Sterculiaceae

- Sepals 5, free. Anthers with 2 longitudinal slits. Staminodes absent. .. . Simaroubaceae

805. (550). Ovary 1, undivided, or lobed. 806

- Ovaries 2-more, free, or connate at base, or connate by the styles
only 912

806. Ovary 1-locular, sometimes incompletely more-locular 807

- Ovary 2-more locular or nearly so 845

807. Ovules basal or nearly so 808

- Ovules parietal or central 813

808. Styles 2-5. Stigmas 2-5 809

- Style 1. Stigmas 1-4. 811

809. Non-insectivorous plants, usually woody 810

- Insectivorous herbs.-Leaves with glandular hairs or marginalbristles. Flowers in cincinnate cymes. Styles 5, free, or connatealmost up to the 5 free stigmas. Placentas not extending to the apexof the loculeDroseraceae

810. Leaves scale-like. Stipules absent. Flowers solitary. Placentas ex- tending almost to the apex of the locule. (Reaumurieae).
Tamaricaceae

- Leaves well-developed. Stipules present, usually connate into asheath. Flowers in long racemes or spikes. Ovule 1, basally attachedwith a long funicle.-Tropical America. (Symmeria). . Polygonaceae

811. Woody plants, rarely herbaceous, then leaves herbaceous orcoriaceous. Embryo straight812

- Succulent herbs or shrubs with succulent leaves. Embryo curved.- Sepals 2(-8). Petals 3-15. Style-branches 2-8. Endosperm present, usually thin Portulacaceae

812. Leaves alternate, rarely opposite, then, as usual, fruit follicular and seeds arillate. Endosperm copious Dilleniaceae

- Leaves opposite. Fruit a drupe or a berry. Endosperm absent.- Leaves with translucent-glandular lines or dots Guttiferae

813. Placenta parietal. 814

- Placenta central, free.-Corolla valvate. Ovules 3, pendulous. Fruit a drupe. Olacaceae

814. Placenta 1 815

- Placentas 2-more 825

815. Leaves simple, rarely incised or compound, then stipules absent. 816

- Leaves compound, or reduced to a broadened, leaf-like petiole.-Stipules more or less distinct. Ovules 2-moreLeguminosae

816. Calyx valvate. Corolla valvate or imbricate 817

- Calyx and corolla imbricate or apert 818

817. Stipules present. Calyx 5-fid. Petals 5, imbricate. Anthers 1-locular.Ovule 1, pendulous.-Filaments connate.Malvaceae

- Stipules absent. Sepals 3, valvate. Petals 6, usually valvate, some-times imbricate. Anthers adnate, 2-locular. Ovules 2 or more.

818. Herbs. Leaves lobed to compound 819

- Plants usually woody. Leaves undivided. 821

819. Flowers in racemes or panicles. Sepals 3-5. 820

- Flowers solitary. Sepals 6. (Podophyllaceae: Podophyllum).
Berberidaceae

820. Ovules 2 -more per carpel. (Helleboraceae). Ranunculaceae

- Ovule 1 per carpel. (Ranunculoideae). Ranunculaceae

821. Leaves alternate. 822

- Leaves opposite 824

822. Style distinct 823

- Stigmas subsessile.-New Zealand. (Pseudowintera). Winteraceae

823. Seeds arillate. Endosperm copious. Embryo straight. (Hibbertia).
Dilleniaceae

- Seeds exarillate. Endosperm scanty. Embryo curved. Theaceae

824. Leaves translucent-glandular-dotted or -lined. Fruit a drupe, or a berry, or a capsule. Endosperm absent. Guttiferae

- Leaves not glandular-dotted or -lined. Fruit a follicle. Endosperm copious.-Seeds arillate Dilleniaceae

825. (814). Anthers dehiscing apically. 826

- Anthers with longitudinal slits. 830

826. Style distinct 827

- Stigma (sub-)sessile.-Madagascar. (Takhtajania) Winteraceae

827. Style 1. 828

- Styles 2-5, free Flacourtiaceae

828. Flowers in panicles, rarely in racemes. Filaments free or slightly connate at base.-Woody plants. 829

- Flowers in racemes. Anthers subsessile, partly connate.-Leaves un- divided. Placentas 3-5 Ochnaceae

829. Leaves undivided, rarely lobed. Thecae curved. Placentas and valves of the capsule 2. Seeds glabrous, aril fleshy Bixaceae

- Leaves lobed or compound. Thecae straight. Placentas and valves ofthe capsules 3-5. Seeds hairy, aril not fleshy or absent.
Cochlospermaceae

830. Filaments free or partly connate, rarely completely so, then sepals more than 3 831

- Filaments completely connate. Sepals 3.-Leaves alternate. Anthers extrorse. (Cinnamodendron, Pleodendron) Canellaceae

831. Sepals usually distinct, if connate into a 5 -dentate tube leaves with climbing hooks 832

- Calyx saucer-shaped, entire or more or less irregularily ruptured.-Leaves without climbing hooks. Madagascar. (Takhtajania).Winteraceae832. Sepals 4 , rarely 3 , then either stem woody or petals $3-5$, rarely
sepals 2 , then either stem woody, or sepals connate at base. 833
- Sepals 2, free, rarely 3, then stem, as usual, herbaceous and petals 6.-Leaves alternate. Papaveraceae

833. Sepals usually 4 , rarely 3 , then either stem woody or petals $3-5$, rarely sepals 2 , then either stem woody, or sepals connate at base, rarely sepals 5 834

- Sepals 3. Stem woody. Leaves alternate. Petals 12 or 13, imbricate. Stamens 12. Staminodes 11 or 12. Ovary open along ventral suturein very young stages.-Fiji IslandsDegeneriaceae

834. Leaves opposite or in whorls. 835

- Leaves alternate. 838

835. Leaves without translucent-glandular dots or lines. Endosperm mealy 836

- Leaves with translucent-glandular dots or lines. Endosperm ab-sent.-Stipules absent. Flowers actinomorphic. Stigmas usually 2-5.Embryo usually straight.Guttiferae

836. Woody plants. Sepals 4, valvate, free. Petals 4, imbricate. Seeds arillate, stellately hairy. Endosperm scanty. S. Africa. (Pseudosco- lopia). Flacourtiaceae

- Herbs or small shrubs. Sepals 3 or 5-7. Petals 5-7, when 4 imbri- cate. Seeds exarillate, glabrous. Endosperm mealy 837

837. Sepals 3 or 5, contort, free. Petals 5, contort Cistaceae

- Sepals 6 or 7, induplicative-valvate, connate into a tube. Petals 4-7, imbricate Frankeniaceae

838. Ovary sessile or subsessile. 839

- Ovary usually long-stipitate.-Stigma 1, usually sessile. Endospermabsent. Embryo curved. (incl. Cleomaceae: Tetratelia). Capparaceae

839. Sepals valvate.-Indument usually stellate. 840

- Sepals imbricate, or contort, or apert 842

840. Inflorescences terminal or axillary 841

- Racemes opposite to the leaves.-Leaves crenate. Petals 5, without scales at base. Ovary slightly stipitate. Australia (?, once found). (Nettoa) Tiliaceae

841. Leaves entire to serrate. Bracteoles present, minute. Petals 3-5,without a scale at base. Fruit subsessile, a berry or a capsule.Embryo straight.-Placentas 2-8. S. America. (Banara, Pineda,also in Flacourtiaceae).Tiliaceae

- Leaves sinuately lobed. Petals 4, with a hairy scale at base. Fruitstipitate, swollen with constrictions. Embryo curved.-Placentas 2.New Caledonia. (Oceanopapaver, also in Capparaceae).... Tiliaceae

842. Petals contort 843

- Petals imbricate or valvate.-Woody plants. Endosperm fleshy.Embryo straightFlacourtiaceae

843. Plants erect. Leaves without climbing-hooks. Sepals free, or connateat base only. Seeds ripening within the developing fruit. Embryocurved.844

- Soft-wooded lianas. Midrib of leaves excurrent into 2 recurvedhooks. Sepals connate into a 5 -dentate tube. Fruit a very early de-hiscent capsule, the ovules ripening on elongated, rigid funicles intolarge discoidal seeds. Embryo straight. Tropical W. Africa. (Dion-cophyllum).Dioncophyllaceae

844. Herbs or smallish shrubs. Sepals contort. Ovary strictly 1-locular.Placentas 3-10, each with 2-many, usually atropous ovules. Endo-sperm mealyCistaceae

- Large shrubs or trees. Sepals imbricate. Ovary 3-locular at base.Placentas 3, each with 2 anatropous ovules. Endosperm scanty toabsent.-Tropical Africa. (Marquesia).............. . Dipterocarpaceae

845. (806). Ovule 1 per locule 846

- Ovules 2-more per locule. 861

846. Flowers unisexual. Ovary 2-4-locular. Ovule pendulous. Endo- sperm present 847

- Flowers bisexual or polygamous, rarely unisexual, then either ovary 5-10-locular, or ovule ascending 848

847. Trees or shrubs. Male flowers with petals. Female flowers with staminodes. Sepals 4, valvate. Petals 4. Stamens 15 -more. Ovary4-locular. Ovule without a caruncle. Peru, Brazil. (Hydrogaster,Vasivaea)Tiliaceae

- Plant otherwise. Ovule usually with a caruncle Euphorbiaceae

848. Calyx valvate.-Leaves alternate 849

- Calyx imbricate or apert, rarely closed or dome-shaped 853

849. Stipules present, sometimes early fugacious. 850

- Stipules absent.-Carpels many, more or less connate. . Annonaceae

850. Filaments connate into several bundles or free 868

- Filaments connate into 1 bundle. 851

851. Anthers with 2 slits 852

- Anthers with 1 slit Malvaceae

852. Calyx 3-lobed with an epicalyx. Ovary 2- or 3-locular. Style- branches 2 or 3 . Bombacaceae

- Calyx 5-partite, epicalyx absent. Ovary 5-10-locular. Styles 5-10.
Sterculiaceae

853. Trees or shrubs. 854

- Herbs or undershrubs.-Leaves alternate, divided. Stipules absent.Filaments free.Cruciferae

854. Leaves compound. 855

- Leaves simple, undivided. 856

855. Leaves digitately compound.-Styles 4 -more, free. Endosperm absent.
Ovules ascending. Tropical America. (Caryocar). Caryocaraceae

- Leaves pinnately compound.-Leaves alternate. Stipules absent.Filaments connate into a tubeMeliaceae

856. Leaves alternate. 857

- Leaves opposite.-Endosperm absent. 860

857. Stipules absent 858

- Stipules present 859

858. Corolla valvate.-Filaments free or nearly so. Ovules pendulous.
Olacaceae

- Corolla imbricate. (Ternstroemiaceae) Theaceae

859. Anthers adnate. Ovules ascending. Endosperm absent... Ochnaceae

- Anthers versatile. Ovules pendulous. Endosperm usually present.(Nitraria)Zygophyllaceae

860. Stipules absent. Ovules ascending Guttiferae

- Stipules present. Ovules pendulous.-Styles 3. Malpighiaceae

861. (845). Calyx valvate.-Stipules present. 862

- Calyx imbricate or apert, rarely closed 872

862. Ovary sessile or nearly so, when stipitate petals 5 . Ovules usually axillary 863

- Ovary usually long-stipitate. Petals 4 . Ovules inserted on the sept.-Stigma, usually sessile. Endosperm absent or nearly so. Embryocurved.Capparaceae

863. Filaments free, or connate into several bundles 864

- Filaments all connate into 1 bundle 869

864. Flowers not lepidote outside, epicalyx absent. Anthers 2-locular, locules sometimes confluent at the apex. 865

- Flowers lepidote outside. Epicalyx 2-5-lobed. Anthers 1-more- locular, apically dehiscent. Bombacaceae

865. Petals calycoid or incised, usually sessile with a broad base, pu- bescent outside, valvate or induplicative-valvate, rarely imbricate, never contort. Filaments free 866

- Petals corolloid, margin entire, rarely incised, then filaments con-nate into several bundles; base attenuate, glabrous, imbricate,usually contort, rarely valvate, then filaments connate into severalbundles.867

866. Anthers narrow, apically dehiscent.-Trees or shrubs. Ovules de-scending, or 1 descending and 1 ascending.Elaeocarpaceae

- Anthers broad, longitudinally dehiscent. Flacourtiaceae

867. Ovary 3-locular. Ovules 2 per locule, descending.-Resinous trees. Flowers in panicles. Dipterocarpaceae

- Ovary 2-, or 4 -more-locular, rarely 3 -locular then ovules either many or ascending, rarely with 2 descending ovules, then herbs or undershrubs. 868

868. Staminodes present. (incl. Nesogordonia, also placed in Tiliaceae).Sterculiaceae

- Staminodes absent Tiliaceae

869. Corolla contort.-Petals 5 870

- Corolla valvate.-Anthers with 4 pores. Flacourtiaceae

870. Anthers 1 -locular, with 1 slit, rarely 2 -more-locular, then epicalyx present and flowers with stiff scales 871

- Anthers 2-locular, with 2 slits or pores. Epicalyx absent, rarely present (Dombeya), then leaves simple and pollen spiny.Sterculiaceae

871. Pollen spiny.-Leaves simple. Anthers 1-locular. Malvaceae

- Pollen smooth, rarely reticulate or pusticulate.--Trees. Bombacaceae

872. (861). Stipules present, sometimes early fugacious. 873

- Stipules absent or very minute 889

873. Leaves opposite 874

- Leaves alternate or all radical. 876

874. Style undivided. 875

- Styles 2-more, free.-Shrubs or trees 888

875. Filaments connate at base. Endosperm absent.-Africa to India. (Monsonia, Sarcocaulon) Geraniaceae

- Filaments free. Endosperm present Cistaceae

876. Styles 3-more, free 877

- Style 1, stigmas 1 -several 878

877. Ovary lobed. Ovules many per locule Dilleniaceae- Ovary undivided. Ovules 2 per locule. S. America. (Roucheria).
Linaceae
878. Ovary sessile or nearly so, rarely stipitate, then anthers adnate and embryo straight. Ovules axillary 879

- Ovary usually long-stipitate. Anthers dorso-versatile. Ovules usually inserted on the sept. Embryo curved.-Stigma 1, usually sessile.Capparaceae

879. Ovules 2 per locule, ascending, or more, then sometimes descend- ing 880

- Ovules 2 per locule, descending or patent. 887

880. Calyx apert, or closed, or valvate, rarely slightly imbricate 881

- Calyx distinctly imbricate. 883

881. Filaments connate. Anthers usually with 1 slit. 882

- Filaments free. Anthers with 2 longitudinal slits.-Herbs. Leavesirregularily multifid. Sepals nearly free to base. (Peganum).882. Leaves usually digitately compound or lobed. Pollen smooth, rarelyreticulate or pusticulate.-TreesBombacaceae
- Leaves simple, pinnately or digitately nerved. Pollen spiny.-Calyx
with a nearly entire margin Malvaceae

883. Anthers with apical pores. 884

- Anthers with longitudinal slits.-Leaves undivided 885

884. Leaves undivided or pinnately compound. Filaments short. Embryo straight Ochnaceae

- Leaves lobed or digitately compound. Filaments long. Embryo curved. Cochlospermaceae

885. Filaments connate at base. Ovary completely locular. 886

- Filaments free. Ovary incompletely locular.-Leaves without trans- lucent-glandular lines or dots. Ovules ascending. Fruit septicide. Embryo curved. Cistaceae

886. Ovules descending, many. Embryo large, straight.-Fruit septicide. (incl. Mahurea, also in Bonnetiaceae or Theaceae)........ Guttiferae

- Ovules erect, basal, 3 or 7-9 per locule. Embryo minute.-Fruit in-dehiscent, globose or kidney-shaped, densely muricate. Madagascar.(Sphaerosepalaceae).Cochlospermaceae

887. Trees or shrubs. Flowers in spikes, or in racemes, or in panicles.Ovary usually 3 -locular, rarely 4 - or 5 -locular (Pakaraimaea).-Anthers basifix-adnate and plants from S.E. Asia (Dipterocar-poideae), or more or less basiversatile and plants from Africa (Mar-quesia, Monotes), or S. America (Pakaraimaea). .. Dipterocarpaceae

- Herbs. Flowers solitary or in umbels. Ovary 5-locular.-Anthers versatile. (Monsonia, Sarcocaulon) Geraniaceae

888. (874). Flowers large, solitary. Stamens very many. Ovules several per locule. Endosperm present. S. temperate. Eucryphiaceae

- Flowers small, in racemes or in panicles. Stamens 15-30. Ovules 2 per locule. Endosperm absent. Tropical S. America. Quinaceae

889. (872). Leaves not tubular. 890

- Leaves tubular.-Insectivorous herbs. Leaves radical. Flowers 5-merous. Endosperm copious. America............... Sarraceniaceae

890. Sepals 4 -more, rarely 2 or 3 , then either plant woody, or petals 3 or 5 891

- Sepals 2 or 3. Petals 4 or 6.-Herbs. Flowers solitary. Endosperm copious. Papaveraceae

891. Leaves compound, rarely lobed, then sepals 5 , free and petals 5 or 8 modified into nectaries with lids 892

- Leaves simple 896

892. Leaves digitately compound. 893

- Leaves pinnately compound or lobed. 894

893. Ovary distinctly stipitate, 2-6-locular. Capparaceae- Ovary sessile, 8-20-locular.-Leaves translucent-glandular-punc-tateRutaceae
894. Herbs. Flowers solitary or in cymes. Sepals free. Ovules many perlocule.895

- Woody plants. Flowers in spikes, or in racemes, or in panicles. Sepals connate. Ovules 2 per locule.--Leaves cauline..... Meliaceae

895. Leaves radical. Flowers in cymes. Petals 5, contort, not modified into nectaries. Embryo coiled. Andes. (Hypseocharitaceae).
Oxalidaceae

- Leaves cauline. Flowers solitary. Petals 4 or 8, imbricate, modified into nectaries with lids. Embryo straight. Eurasia. (Helleboraceae- Nigelleae). Ranunculaceae

896. Plant terrestrial. 897 897

- Plant aquatic.-Leaves floating, peltate. Petals many. Nectaries ab- sent. Styles and locules of the ovary many. Nymphaeaceae

897. Sepals or calyx-segments developing normally. 898

- Calyx cup- or saucer-shaped, margin rupturing into more or less irregular lobes. New Caledonia. (Zygogynum). Winteraceae

898. Sepals and petals either less than 6 or more than 7 , rarely 6 or 7 , then stigmas several. 899

- Sepals and petals 6 or 7. Stigma 1.-Shrubs. Anthers with apical porès. Embryo minute. Ericaceae

899. Petals imbricate, or contort, or valvate. 900

- Petals closed in bud, dropping as a cap.-Trees. Calyx apert. Tropical Africa Scytopetalaceae

900. Ovary sessile or nearly so. 901

- Ovary usually long-stipitate.-Stigma 1, usually sessile. Ovulesusually on the sept. Endosperm absent or nearly so. . . . Capparaceae

901. Anthers with apical pores or slits. 902

- Anthers with longitudinal slits. 905

902. Leaves and twigs without elastic threads (break!). Leaves alternate. Sepals and petals imbricate. Ovules axillary, or, when 2, apical, pendulous. 903

- Leaves and twigs with elastic threads. Leaves opposite. Sepals apert. Petals valvate. Ovules 2, basal, erect.-Burma to Indo-China.
Plagiopteraceae

903. Styles 3-more. Ovules numerous per locule, axillary 904

- Style 1, shortly 3-fid. Ovules 2 per locule, collateral, apical.(Sladeniaceae). .. Theaceae

904. Stamens inflexed in bud. Ovary-locules numerous. Placentas not protruding into the locules. Actinidiaceae

- Stamens not inflexed in bud. Ovary 3-5-locular. Placentas pro-truding into the locules. (Saurauiaceae). Actinidiaceae

905. Bracts of sterile flowers, if any, not strongly transformed. 906

- Bracts of sterile flowers pitcher-, spoon-shaped, or saccate, brightly
coloured.-Trees or climbers. Flowers in spikes, or in racemes, or in umbels. Corolla not contort. Filaments connate at base. Ovules many per locule. Tropical America.
Marcgraviaceae

906. Leaves opposite, rarely alternate then petals contort, filaments free or nearly so and ovules descending. 907

- Leaves alternate, stem woody, leaves rarely opposite, then stem herbaceous, petals numerous and embryo curved. 909

907. Sepals imbricate. Endosperm absent. Embryo straight. 908

- Sepals contort, at least the inner 3 when much larger than the outer2. Endosperm copious. Embryo bent, coiled, or folded. ... Cistaceae

908. Leaves with translucent-glandular stripes or dots. Ovary 2-15- locular. Ov́ules 1 -many, when 2 not 1 ascending, 1 descending.Guttiferae

- Leaves without such dots or stripes. Ovary 17-25-locular, locules with 1 ascending, 1 descending ovule.-Fruit umbrella-shaped. Seeds winged. Seychelles Isl. Medusagynaceae

909. Petals imbricate, rarely contort, then ovules ascending 910

- Petals contort.-Flowers in panicles. Filaments more or less com- pletely connate. Ovules 2 per locule, descending. Meliaceae

910. Aril absent. Endosperm scanty or absent 911

- Aril present. Endosperm copious.-Sepals free or nearly so. Petals5. Styles 3-more, free or connate at base only. Embryo more orless straightDilleniaceae

911. Flowers usually solitary Theaceae

- Flowers in panicles.-Madagascar. (Asteropeiaceae, also in Bon- netiaceae) Theaceae

912. (805). Styles distinct. 913

- Stigma(s) (sub-)sessile. (Drimys, Pseudowintera) Winteraceae

913. Styles nearly completely connate.-Ovule 1 per carpel 914

- Styles free 916

914. Calyx valvate. Anthers with 1 slit.-Stem herbaceous. Flowers solitary. Filaments connate. Ovule 1 per carpel. Fruit dry. Endosperm present Malvaceae

- Anthers with 2 slits or pores. Calyx imbricate. 915

915. Leaves translucent-glandular-punctate. Carpels warty by numerous peltate glands. Ovules 2 per carpel.-Madagascar. Diegodendraceae

- Leaves not punctate. Carpels not glandular-warty. Ovule 1 per car-pel.-Trees or shrubs. Stipules present. Flowers in panicles. Endo-sperm absent. Embryo straight

916. Stipules absent, rarely present, then calyx imbricate and endosperm present 917

- Stipules present. Calyx valvate. Endosperm present or not.-Woody
plants. Flowers in panicles. Calyx 5 -fid. Carpels 5 . Seeds numerous.

Sterculiaceae

Abstract

917. Herbs or undershrubs. Sepals, petals, and carpels of the same number, 6 -more. Stamens twice as many. Anthers dorso-versatile. Endosperm scanty or absent.-Flowers bisexual. Ovules many.

Crassulaceae

- Sepals, petals, and carpels not of the same number, rarely so, then stamens not twice as many. Anthers usually adnate or basifix. Endosperm copious, rarely scanty or absent, then shrubs or trees. 918

918. Stipules absent, when present leaves alternate 919

- Stipules present. Leaves opposite.-Climbing shrubs. Sepals (actually tepals) ca. 12 , imbricate. Anthers petaloid, 12-25, introrse, only the outer fertile. Ovaries ca. 8, free. Styles 2-lobed. New Guinea, Queensland........................... Austrobaileyaceae

919. Calyx usually caducous. Petals $2-4$, or 6 -more, rarely 5 (Ranunculaceae), then either herbs, or twining shrubs with opposite leaves. Seeds exarillate, rarely arillate, then endosperm ruminate....... 920

- Woody plants, leaves alternate, rarely erect shrubs with opposite leaves, or herbs with stipules. Calyx persistent, imbricate. Petals 5, rarely 6 , then, as usual, seeds arillate, endosperm not ruminate; imbricate.

Dilleniaceae
920. Stem herbaceous, rarely woody, but then twining and leaves op- posite.-Filaments free. 921

- Stem woody, climbing or erect. Leaves alternate, undivided orlobed.923

921. Aquatics with peltate, entire leaves. Flowers 3-merous.-Ovule 1 per carpel, parietal, pendulous. (Brasenia: Cabombaceae).

- Plants usually terrestrial. Leaves often incised to compound. Flowers never 3-merous 922

922. Ovules 2-more per carpel. (Helleboraceae) Ranunculaceae

- Ovule 1 per carpel. (Ranunculoideae). Ranunculaceae

923. Carpels many, rarely $2-6$, then either ovule 1 , erect, or 2 -more per carpel. 924

- Carpels 3-6. Ovules 2 per carpel, pendulous, descending, orpatent.-Leaves not translucent-glandular-punctate. Stipules absent.Flowers unisexual, in fascicles, or in racemes, or in panicles.Mericarps drupaceous.Menispermaceae

924. Petals 2-6. Endosperm ruminate.-Stipules absent. ... Annonaceae

- Petals 6 or more or tepals 8 or more. Endosperm absent, or ifpresent, not ruminate925

925. Ovaries in a whorl, 5-20. Fruit consisting of ventrally dehiscing fol- licles. (Magnoliaceae: Illicium) Illiciaceae

- Ovaries spirally arranged. Fruit indehiscent or consisting of dorsally
dehiscing follicles
Magnoliaceae

926. (549). Stamens 1-10. 927

- Stamens 11-more 1106

927. Ovary 1, undivided, or lobed 928

- Ovaries 2-more, free, or connate at base and/or apex. 1097

928. Ovary 1-locular, sometimes incompletely so. 929

- Ovary completely 2 -more-locular or nearly so. 967

929. Plants not obviously parasitic. Ovules not fused with each other or the ovary-wall 930

- Mistletoe-like parasites. Ovules either fused with each other or even with the ovary-wall Loranthaceae

930. Ovule 1 931

- Ovules 2-more 941

931. Flowers unisexual. Stamens 6-10. Style simple.-Leaves undivided, alternate. Stipules absent. 932

- Flowers bisexual or polygamous, rarely unisexual, then either stamens 4 or 5 , or leaves pinnately compound, or styles $3-5$. 934

932. Stamens 6-10. Filaments free, or connate at base, only 933

- Stamens 4. Filaments connate into a tube.-Indo-China, Malaya. (Aptandraceae: Harmandia) Olacaceae

933. Flowers in panicles. Stamens 6. Ovary sessile. Simaroubaceae

- Flowers in fascicles. Stamens 8-10. Ovary stipitate Capparaceae

934. Flowers distinctly zygomorphic 935

- Flowers actinomorphic or nearly so.-Anthers with 2 longitudinal slits. 936

935. Leaves undivided. Sepals 5, free. Well-developed petals 3. Stamens 8. Woody plants. Polygalaceae

- Leaves pinnately compound. Sepals connate. Well-developed petals 4 or 5 . Stamens 10 Leguminosae

936. Stipules present. 937

- Stipules absent. 938

937. Leaves opposite, undivided, tendrils absent. Stamens as many as the petals. (Dobera, Salvadora). Salvadoraceae

- Leaves alternate, pinnately compound. Tendrils present or not. Stamens more than petals. Sapindaceae

938. Stem woody. Petals $2-6$, if 4 , then stamens $1-5$ or $7-10$. 939

- Stem herbaceous, or woody at base only. Petals 4. Stamens 6.
Cruciferae

939. Flowers usually in racemes. Endosperm absent or nearly so.- Resiniferous (poisonous!). 940

- Flowers in racemes or umbels. Endosperm copious.-Leaves undi-
vided. Corolla valvate. Stamens as many as the petals, epipetalous.
Opiliaceae

940. Leaves opposite, paripinnate or 2-foliolate.-Female flowers in woody, many-valved cupules, formed by flattened, grooved branches. Australia. (Blepharocaryaceae). Anacardiaceae

- Leaves alternate, if opposite (Bouea), not compound. Anacardiaceae

941. Ovules 2. 942

- Ovules 3-more. 952

942. Corolla valvate.-Woody plants. Leaves alternate, undivided. Stipules absent. 943

- Corolla imbricate... . . 944

- Stamens as many as the petals, epipetalous, or less, or more. Ovules pendulous, central. (incl. Aptandraceae: Aptandra).

Olacaceae

944. Filaments free. 945

- Filaments more or less connate. 949

945. Flowers actinomorphic or nearly so.............................. . . 946

- Flowers zygomorphic.-Leaves undivided. Stamens 8-10.

Polygalaceae
946. Stamens $3-5$ or $8-10$, rarely 6 , then petals 3 947

- Stamens 6. Petals 4.-Herbs or undershrubs. Leaves simple.

Cruciferae
947. Filaments inserted outside the disk, or on its edge, or between its lobes

948

- Disk extra-staminal.-Woody plants. Leaves pinnately compound. Flowers polygamous. Stamens 5-8. Stigma 1.......... Sapindaceae

948. Shrubs or trees. Leaves with translucent-glandular dots, not lepidote. Flowers bisexual. Stigma 1, lobed or undivided. Rutaceae

- Woody plants. Leaves undivided, not glandular-punctate, lepidote. Flowers unisexual. Stamens 5. Stigmas 2.-Chile. (Aextoxicaceae).

Euphorbiaceae
949. Leaves alternate, compound, sometimes unifoliolate. 950

- Leaves opposite, undivided.-Flowers actinomorphic. Filaments 4 or 5, connate at base only. Fruit a berry. Salvadoraceae

950. Stipules absent. Flowers more or less actinomorphic. 951

- Stipules present. Flowers zygomorphic.-Fruit usually dehiscent.

Leguminosae
951. Stamens 5 or 6 , rarely $7-9$, all fertile. Filaments connate for most of their length. Fruit a berry. Seeds exarillate. (Aglaia)... Meliaceae

- Stamens 10, sometimes all or the epipetalous sterile. Filaments free, or shortly connate at base only. Fruit a capsule or dry, indehiscent.
Seeds arillate. Connaraceae

952. Placenta 1, basal or central 953

- Placentas 1 or more, parietal or apical. 956

953. Sepals usually free. Corolla imbricate or apert. Stigmas usually several. 954

- Sepals connate. Corolla valvate. Stigma 1.-Plants usually woody. Leaves usually alternate. Placenta central. Ovules few, pendulous.Endosperm copious. Embryo straight. (incl. Aptandraceae: Ongo-kea). Olacaceae

954. Leaves alternate or radical. Embryo straight. 955

- Leaves opposite. Embryo more or less curved.-Herbs or under- shrubs. Endosperm copious Caryophyllaceae

955. Plants usually woody. Leaves alternate, often scale-like. Anthers with longitudinal slits. Endosperm scanty or absent.... Tamaricaceae

- Herbs with swollen or rarely creeping rhizomes. Leaves radical,simple or pinnately compound. Anthers with 2 valves. Endospermcopious, fleshy. (Leonticaceae)Berberidaceae

956. Placentas 2 -more 957

- Placentas 1.-Stipules present. Flowers usually zygomorphic. Stamens 9 or 10. Style 1, undivided. Leguminosae

957. Style 1, undivided 958

- Styles 2-more, free, or partly connate. 959

958. Leaves simple or digitate 960

- Leaves pinnately compound.-Woody plants. Flowers polygamous. Stamens 7 or 8, inserted within the disk. Embryo curved.Sapindaceae

959. Flowers actinomorphic 964

- Flowers zygomorphic.-Herbs. Stamens 7-10. Ovary open at the apex. Endosperm absent. Embryo curved. Resedaceae

960. Petals usually 4. Stamens usually 6. Embryo curved.-Endosperm scanty or absent 961

- Petals usually 5. Stamens usually 3-5 or 7-10. Embryo straight.-Plants woody. Leaves undivided.962

961. Flowers actinomorphic or nearly so. Stamens 6, 4 longer than the other 2.-Leaves simple. Stipules absent. Sepals 4, free. Petals 4. Ovary sessile or nearly so. Placentas $2 \ldots \ldots$. . Cruciferae

- Flowers usually more or less zygomorphic. Stamens 1-10, when 6 then not 4 longer than the other 2. (incl. Cleomaceae).Capparaceae

962. Flowers actinomorphic. Endosperm present. 963

- Flowers zygomorphic. Endosperm absent.-Stipules absent.Stamens 7-10. Stigma 1. (incl. Xanthophyllaceae). Polygalaceae

963. Plants erect. Stamens not surrounded by a corona of a complicatedstructureFlacourtiaceae

- Plants climbing with tendrils. Stamens 5, inserted on the disk, sur-rounded by a corona of a usually complicated structure, usuallycomposed of filamentous appendages.Passifloraceae

964. Leaves small. Stipules absent. Anthers usually extrorse. Ovules nearly basal.-Fruit a capsule. Seeds hairy. Endosperm absent, rarely present, but then placentas becoming free from the fruitwalls.
Tamaricaceae

- Leaves usually large. Stipules present or absent. Anthers usually in- trorse or latrorse. Ovules distinctly parietal or nearly apical.-En- dosperm present. 965

965. Plants herbaceous or climbing. Ovary usually stipitate.-Corona nearly always present, outside the stamens. Passifloraceae

- Plants woody, erect. Ovary usually sessile. 966

966. Leaves opposite. Corona absent. Ovules 4, apical. Fruit an irregu- larly dehiscent capsule. Tropical Africa and Asia. (Ctenolophon, also in Ctenolophonaceae or Olacaceae). Linaceae

- Leaves usually alternate, rarely opposite or in whorls. Corona some- times present. Ovules usually more than 5 , usually parietal, rarely apical. Pantropical Flacourtiaceae

967. (928). Ovule 1 per locule 968

- Ovules 2 or more per locule. 1008

968. Ovule erect or ascending 969

- Ovule pendulous, descending or patent. 977

969. Herbs or undershrubs. Flowers actinomorphic or nearly so. Sepals 4, free. Petals 4. Stamens 6, free. Cruciferae

- Shrubs or trees, rarely herbs or undershrubs then flowers distinctly zygomorphic. Stamens more or less than 6 , rarely 6 then either fila-ments connate, or petals 3 , or sepals united. 970

970. Stamens inserted outside the disk or on its margin, 4 or 5 971

- Disk extrastaminal. 976

971. Leaves glandular-dotted Rutaceae

- Leaves not glandular-dotted. 972

972. Filaments free. 973
Filaments connate, at least at base. 975
973. Leaves simple.-Flowers actinomorphic. Celastraceae

- Leaves pinnately compound. 974

974. Leaves usually alternate. Flowers bisexual Meliaceae

- Leaves opposite. Flowers unisexual.-Stamens 4. S. Africa.(Ptaeroxylaceae: Ptaeroxylon)............................ . Meliaceae

975. Flowers bisexual. Ovules 1 or more, usually descending. . Meliaceae

- Flowers unisexual. Ovule 1 per locule, ascending.-Trees or shrubswith a cactus-like habit, often with spines. Madagascar. Didieraceae

976. Flowers unisexual or polygamous. Endosperm absent. Embryo more or less curved. Sapindaceae

- Flowers bisexual. Endosperm copious. Embryo straight.-Leavescompound. Stipules present. Flowers zygomorphic, 5 -merous.
Melianthaceae

977. Flowers unisexual. 978

- Flowers bisexual, at least apparently so, or polygamous. 985

978. Disk extra-staminal.-Ovule apotropous 979

- Disk intra-staminal 980

979. Leaves pinnately compound. Flowers unisexual (staminodes some-times very well-developed, but not functional). Petals usually imbri-cate. Filaments free or connate at base only. Ovary usually 3-locular. Ovule ascending. Endosperm absent. Sapindaceae

- Leaves simple. Flowers bisexual. Petals valvate. Filaments connateinto a tube. Ovary incompletely 2 -locular. Ovule pendulous. Endo-sperm copious. Tropical S. America, W. Africa. (Aptandraceae:Aptandra)Olacaceae

980. Flowers solitary.-Leaves pinnately compound with axillary thorns.Stamens with 2-lobed scales at base, which enclose the pistil. Fruit aschizocarp with a persistent columella. S.W. Africa. (Neoluederit-zia).. . Zygophyllaceae

- Flowers in distinct inflorescences 981

981. Ovule atropous.-Trees or shrubs. Leaves simple. Flowers in racemes or in panicles. Stamens 10. Styles 3 or 4. Endosperm present. (Panda, also in Euphorbiaceae). Pandaceae

- Ovule anatropous. 982

982. Ovule apotropous.-Resinous (often poisonous!) plants. Leaves simple or compound. Flowers in panicles. Endosperm absent.Anacardiaceae

- Ovule epitropous 983

983. Styles usually long and distinct. Fruit usually a 3 -valved capsule. En- dosperm copious. Euphorbiaceae

- Styles either short or stigma subsessile. Fruit a drupe or a schizo- carp with indehiscent mericarps. Endosperm absent. 984

984. Flowers in cymes or in heads, these composed in panicles. Ovary 4-locular. S. Africa. (Kirkiaceae) Simaroubaceae

- Flowers in thyrses or in panicles. Ovary 2- rarely 3-locular. Asia, New Caledonia. (Soulamea) Simaroubaceae

985. Filaments more or less connate. 986

- Filaments free. 992

986. Anthers with an apical pore.-Leaves undivided. Flowers distinctly zygomorphic Polygalaceae

- Anthers with 2 longitudinal slits 987

987. Leaves glandular-dotted.-Leaves simple, alternate. Endosperm ab-sent.. . Rutaceae

- Leaves not glandular-dotted 988

988. Herbs, sometimes woody at base, or undershrubs. Stipules present. Fruit a 5 -locular schizocarp, not winged, usually awned. Temperateparts.-Leaves pinnately partite to -compound, or digitately nerved.656

- Woody plants, rarely somewhat herbaceous, then leaves opposite orin whorls, simple, and stipules absent. Fruit a capsule, or a berry, ora drupe, rarely a schizocarp, then 2 - or 3 -locular and often winged.(Sub-)tropics989

989. Filaments connate into a tube, usually for most of their length. 990

- Filaments connate at base, only.-Leaves simple 991

990. Leaves usually pinnately compound, rarely simple. Anthers introrse. Ovules epitropous. (Melioideae). Meliaceae

- Leaves simple. Anthers extrorse. Ovules apotropous. (Aptan- draceae: Aptandra) Olacaceae

991. Leaves usually opposite or in whorls. Fruit a capsule, or a schizocarp. Plants usually pubescent somewhere. 658

- Leaves alternate. Fruit a drupe. Plants entirely glaborous.-Trees or undershrubs. Stipules absent or small. Sepals imbricate, eglandular. Petals imbricate or contort. Ovary 5-locular. Endosperm copious. Tropical America, W. Africa. (Hylocarpa, Sacoglottis).

Houmiriaceae

992. Petals alternisepalous. Stamens episepalous, or more than the petals. 993

- Petals and stamens episepalous.-Fertile stamens 2, or 3, or 5. Styles 1 or 2. India to the Solomons. Sabiaceae

993. Styles 2 or more, free or connate at base or at the apex.-Stamens 4 994or more. Anthers with longitudinal slits

- Style 1, simple. Stigmas 1-more 997

994. Stamens 5 or 8 or 10. Fruit a drupe. Embryo straight.-Resinous (often poisonous) trees or shrubs. Ovary not or slightly lobed.Anacardiaceae

- Stamens 4 or 6 or 8 or 10. Fruit either dry or embryo curved 995

995. Styles free at base, connate at the apex. (Harrisonia).
Simaroubaceae

- Styles or stigmas entirely free. 996

996. Ovary 2-, rarely 3-locular. Stigmas sessile. Seychelles to W. Pacific. (Soulamea) Simaroubaceae

- Ovary 4-locular. Styles distinct. S. Africa. (Kirkiaceae).
Simaroubaceae

997. Leaves simple, sometimes incised.-Leaves alternate 998

- Leaves compound, but sometimes unifoliolate 1004

998. Calyx valvate.-Trees. Leaves not glandular-punctate. Flowers in spikes, these arranged in panicles. Petals valvate. Ovary 4-locular. Endosperm absent. (Poga) Rhizophoraceae

- Calyx imbricate or apert. 999

999. Stem herbaceous or woody at base only.-Sepals 4, free. Petals 4, imbricate. Stamens 6, rarely less. Ovary 2-locular. Endosperm scanty or absent. Embryo large, curved Cruciferae

- Stem woody.-Leaves simple 1000

1000. Leaves glandular-punctate.-Corolla valvate or flowers fascicled. Embryo large, straight. Rutaceae
-- Leaves not glandular-punctate. 1001
1001. Corolla valvate.-Endosperm copious. 1002

- Corolla imbricate.-Stamens 8-10. 1003

1002. Inflorescence paniculate. Ovary completely divided into locules. Embryo large, curved.-Disk small, annular. Stamens 4 or 5.Icacinaceae

- Inflorescence usually fasciculate. Ovary not completely divided intolocules, 1-locular near the apex. Embryo small, straight, on top ofthe endospermOlacaceae

1003. Flowers in a panicle. Disk large, cushion-shaped. Fruit a drupe. En- dosperm absent or nearly so. Embryo large, straight, or nearly so. (also in Linaceae or Simaroubaceae). Irvingiaceae

- Flowers in a raceme. Disk little developed. Fruit dry, indehiscent.Endosperm copious. Embryo small, in the centre of the endosperm.AmericaCyrillaceae

1004. Leaves not translucent-glandular-punctate 1005

- Leaves translucent-glandular-punctate. Rutaceae

1005. Stipules absent, or leaves with 2 sub-basal spines. 1006

- Stipules present, rarely absent, then with 1 axillary spine (Balani-taceae).-Flowers bisexual. Stamens 10, often appendiculate at base.Disk intra-staminal. Stigma usually lobed. Ovary $5-$, or $10-$, $12-$locular. Fruit usually a schizocarp. Embryo straight. Zygophyllaceae

1006. Disk intra-staminal. Stamens 8-10 1007

- Disk extra-staminal. Stamens 5-8.-Flowers polygamous. Ovary 2- or 3-locular. Embryo curved Sapindaceae

1007. Flowers bisexual. Stamens with 2 -lobed appendages at base. Stigma 4- or 5 -lobed. Embryo curved. Tropical Africa to Australia. (Harri- sonia) Simaroubaceae

- Flowers polygamous. Stamens unappendaged. Stigmas 4 or 5,filiform. Embryo straight. Mexico. (Cyrtocarpa). Anacardiaceae

1008. (967). Ovules 2 per locule 1009

- Ovules 3 or more per locule 1062

1009. Ovules erect or ascending or patent or one ascending and the other descending. 1010

- Ovules pendulous or descending 1026

1010. Filaments more or less connate. 1011

- Filaments free. 1015

1011. Disk extra-staminal 1012

- Disk intra-staminal. 1013

1012. Shrubs or trees. Leaves alternate, usually pinnately compound. Petals imbricate. Endosperm absent. (Dodonaeoideae). Sapindaceae

- Herbs or undershrubs. Leaves opposite or in whorls, simple. Petalscontort. Endosperm present.-Chile, S. Brasil. (Vivianiaceae).
Geraniaceae

1013. Leaves glandular-punctate. Ovary deeply lobed, rarely terete, but then leaves 1-3-foliolate Rutaceae

- Leaves pinnately compound or simple, rarely 1-3-foliolate, but then not glandular-punctate. Ovary terete or only slightly lobed. 1014

1014. Flowers zygomorphic. Stigma simple, punctiform. Capsule inflated, membranous, loculicide.-S. Africa. (Aitoniaceae). Meliaceae

- Flowers actinomorphic. Stigma not both simple and punctiform.Fruits otherwiseMeliaceae

1015. Fertile stamens as many as the sepals, or more, 3-10. 1016

- Fertile stamens less than the sepals, 2 or 3.-Leaves usually op-posite. Ovary 3-locular. Style 1. (also in Celastraceae).
Hippocrateaceae

1016. Flowers bisexual. Sepals 4. Petals 4. Stamens 6, unequally long. Ovary 2-locular.-Herbs or undershrubs. Cruciferae

- Stamens 3-5 or 7-10, rarely 6, but then either petals 3 or 6 , orflowers unisexual or polygamous or stamens equally long. 1017

1017. Disk extrastaminal.-Flowers unisexual or polygamous. 1018

- Stamens inserted outside the disk or on it (near the margin). 1020

1018. Leaves alternate. Sapindaceae

- Leaves opposite 1019

1019. Flowers actinomorphic. Stamens twice as many as sepals, rarely asmany and episepalous. Ovary 2-locular. Stigmas 2. . . Aceraceae

- Flowers zygomorphic. Stamens more than sepals, but less than twiceas many, rarely as many but then alternisepalous. Ovary 3-locular.Stigma 1.-Leaves compoundHippocastaneaceae

1020. Stamens as many as petals and epipetalous.-Leaves alternate. Stipules present. Corolla valvate. Vitaceae

- Stamens as many as petals, alternipetalous, or more 1021

1021. Stamens as many as petals, or petals 4 and stamens 5 or 6.-Leaves simple, not glandular-punctate 1022

- Stamens twice as many as petals, rarely as many, but then leaves
glandular-punctate 1023

1022. Stamens as many as petals. Ovules usually collateral, basal, rarelysuperposed and one ascending and the other descending (May-tenus), but then stipules present and fruit a capsule.-Not wild inNew Zealand.Celastraceae

- Stipules absent. Petals 4. Stamens 4-6. Ovules superposed, oneascending, the other descending. Fruit a berry.-New Zealand.(Aristotelia). .. Elaeocarpaceat

1023. Stipules present 1024

- Stipules absent 1025

1024. Leaves simple. Sepals valvate. Anthers with terminal pores.
Elaeocarpaceae

- Leaves simple or 3-partite. Sepals imbricate. Anthers with 2 longi-tudinal slits. (Fagonia). ZygophyHaceae

1025. Leaves glandular-punctate Rutaceae

- Leaves not glandular-punctate.-Leaves opposite. Flowers unisexual or polygamous. Stigmas 2. Aceraceae

1026. (1009). Stipules present. 1027

- Stipules absent 1043

1027. Leaves opposite 1028

- Leaves alternate, rarely (Geraniaceae) opposite, but then filaments connate at base and styles or stigmas 2-5 1032

1028. Stamens 5 or less 1029

- Stamens 8-10. 1030

1029. Stamens 2 or 3. (also in Celastraceae) Hippocrateaceae

- Stamens 4 or 5 Celastraceae

1030. Filaments free. Seeds not winged. 1031

- Filaments connate. Seeds winged.-Large trees. Sepals and petals valvate. Fruit a capsule. W. Africa. (Anopyxis)..... Rhizophoraceae

1031. Woody plants. Leaves simple. Sepals and petals valvate. Filaments inappendiculate. Fruit a berry. New Guinea. (Sericolea).
Elaeocarpaceae

- Herbs or shrubs. Leaves pinnately compound, rarely simple, plantthen a succulent annual with valvate sepals and apert, trifid petals(Augea), otherwise sepals and petals imbricate. Filaments appen-diculate. Fruit a capsule or a schizocarpZygophyllaceae

1032. Flowers bisexual. Fruit dry 1033

- Flowers unisexual, rarely bisexual or polygamous, then fruit a drupe and stamens usually free 1039

1033. Styles or stigmas 2-5 1034

- Style 1. Stigma 1, entire or lobed. 1036

1034. Herbs or woody perennials. Stamens 5-10. Filaments connate at base.-Disk extra-staminal. (Geranieae) Geraniaceae

- Stem woody. Stamens 10, free 1035

1035. Calyx valvate. Disk intra-staminal. Tiliaceae

- Calyx imbricate. Disk extra-staminal.-Sepals 3. Madagascar. (Lep- tolaena). Sarcolaenaceae

1036. Stamens 6, free. Capparaceae

- Stamens 8-10, free or connate. 1037

1037. Stipules free. Sepals usually 5 , subequal. 1038

- Stipules intra-petiolarily connate. Sepals 8-10, very unequal.-Stamens 10, filaments free. New Caledonia....... Strasburgeriaceae

1038. Filaments more or less connate. Meliaceae

- Filaments free.-Flowers solitary, terminal. Petals bright yellow.Somalia. (Kelleronia).Zygophyllaceae

1039. Leaves undivided or unifoliolate, then flowers 5 -merous. 1040

- Leaves pinnately compound.-Flowers 3- or (Garuga) 5-merous.
Burseraceae

1040. Sepals 5, imbricate. Fruit a drupe. Endosperm absent.-Stamens 5. Stigmas 2 or 3. Dichapetalaceae

- Fruit a capsule, rarely a berry or a drupe, but then calyx valvate. Endosperm usually copious 1041

1041. Leaves simple, pedicel not articulated, stipels absent. Disk extra- staminal. 1042

- Leaves unifoliolate, pedicel articulated, stipel 1, early fugacious(scar!). Disk intra-staminal.-Flowers unisexual. Ovule and seedwith a caruncle. Ovules collateral. Fruit a capsule. Nigeria to Con-go.Lepidobotryaceae

1042. Flowers unisexual. Ovules collateral. Caruncle present on ovules and seeds. (Phyllanthoideae, incl. Centroplacus, generally included in Pandaceae) Euphorbiaceae

- Flowers bisexual or polygamous. Ovules more or less serial. Car-uncle absent.-Fruit a drupeElaeocarpaceae

1043. (1026). Stamens less than petals and alternipetalous 1044

- Stamens as many as petals or more, or less and then epipetalous.1045

1044. Petals 4. Stamens 2. Cruciferae

- Petals 5. Stamens 3, rarely 2 or 4. (also in Celastraceae).Hippocrateaceae

1045. Stamens as many as petals and epipetalous (some stamens some-times sterile) or less (and then epipetalous). 1046

- Stamens as many as petals and alternipetalous, or more. 1048

1046. Flowers unisexual. Petals alternating with the sepals or calyx-lobes.Stamens in the male flowers all fertile.-Leaves pinnately com-pound. (Picramnia). Simaroubaceae- Flowers bisexual or polygamous. Petals opposed to the sepals.
Stamens either all fertile and then leaves simple, or stamens 5,only 2 or 3 of which fertile, then leaves simple or pinnately com-pound... . . 1047
1047. Fertile stamens 2 or 3 . Staminodes 3 or 2.-Leaves simple or pin-nately compound. (Meliosma, Ophiocaryon, also placed in Melios-maceae).Sabiaceae

- Fertile stamens 5. (Sabia) Sabiaceae

1048. Filaments connate at least at base.-Leaves pinnately compound or undivided, rarely 1 -3-foliolate then not glandular-punctate. ... 1049

- Stamens free or inserted on the disk, rarely filaments connate atbase, then either leaves 1-3-foliolate and glandular-punctate, orovary deeply lobed. 1050

1049. Bark of twigs and petioles with a light-coloured, wavy, scleren-chymatic band and with resin ducts between this and the woodcylinder. Filaments connate at base only. (Canarium, Scutinanthe).
Burseraceae

- Bark of twigs and petioles without such a band and not resinous.Filaments connate into a tube for most of their length. (Melioideae).
Meliaceae

1050. Stamens 6, rarely 4, then, as usual, herbs with non-glandular-punctate leaves. Sepals 4 , free. Petals $4 \ldots \ldots \ldots \ldots$....................

- Stamens as many as or (nearly) twice as many as the petals. Shrubsor trees, rarely herbs, then either leaves glandular punctate, orflowers 5-merous.1051

1051. Stamens 3 or 4.-Leaves alternate, simple, translucent-glandular- punctate. Peduncle adnate to the petiole of its bract. Flowers bi- sexual, solitary, or in cymes, axillary. Petals 3 or 4, imbricate. Style 1. Stigmas 3 or 4 . Schizocarp dehiscing into 3 or 4 drupelets, columella persistent. Endosperm fleshy. Embryo horse-shoe-shaped.
Cneoraceae

- Stamens 5-10, if 3 or 4 plant not as above. 1052

1052. Leaves opposite, not punctate. 1053

- Leaves alternate, rarely opposite, but then translucent-glandular- punctate 1056

1053. Flowers unisexual or polygamous. Fruit dehiscent into 2 samaras. Endosperm absent. Stigmas 2.Aceraceae

- Flowers bisexual. Style simple with 1 stigma or with 2 branches with 1 stigma each. Endosperm present. 1054

1054. Stamens 5. Fruit a drupe.-Corolla imbricate.......... Celastraceae

- Stamens 10. Fruit a capsule. 1055

1055. Shrubs. Corolla induplicative-valvate. Australia..... Tremandraceae

- Trees. Corolla imbricate. Tropical Africa and Asia. (Ctenolophon, also in Olacaceae or Ctenolophonaceae). Linaceae

1056. Leaves not translucent-glandular-punctate, alternate 1057

- Leaves translucent-glandular-punctate.-Bark resinous. Fruit some-times a drupe, then either leaves opposite, or endosperm present.
Rutaceae

1057. Bark resinous (also in the twigs).-Leaves usually compound. Stig-ma 1. Fruit drupaceous, but sometimes dehiscent. Endosperm ab-sent.Burseraceae

- Bark not resinous. 1058

1058. Leaves undivided. Endosperm present. 1059

- Leaves compound. Endosperm absent.-Stigma 1. 1060

1059. Fruit a capsule. Stamens 5. Stigmas 2 or 3. Cyrillaceae

- Fruit a drupe or dry and indehiscent. Stamens 4 or 5 . Stigmas 1 or 4 or 5 1061

1060. Petals 4 or 5. Stamens 8-10. Disk intra-staminal. Fruit a capsule or a berry Meliaceae

- Stamens 5-8, less than twice as many as petals. Disk extra- staminal. Fruit a capsule. Sapindaceae

1061. Erect woody plants, or lianas rarely with tendrils (Iodeae), thenstigma simple to indistinctly lobed, or twining herbs. Base of leaveswithout warty fields. Ovary 1 -locular, sometimes also 2 abortivelocules present. Fruit usually drupaceous, not winged... . Icacinaceae- Lianas with tendrils. Base of leaves with warty fields. Ovary (4- or)5 -lobed. Fruit indehiscent, winged.-S.E. Asia, W. Pacific.
Lophopyxidaceae
1062. (1008). Ovules basal, axillary, or apical. 1063

- Ovules parietal.--Endosperm absent. Embryo usually curved. 1064

1063. Ovules axillary or basal. 1066

- Ovules apical.-Leaves alternate, not translucent-glandular-punctate. Stipules absent. Stamens 5. Styles 2 or 3. Ovules 3, pen-dulous. America.Cyrillaceae

1064. Stamens 6-10, rarely 4. Ovary usually stipitate.-Shrubs or trees. Stigma 1. Fruit juicy, berry-like Capparaceae

- Stamens 4-6. Ovary usually sessile.-Herbs or shrubs or treelets.1065

1065. Herbs or undershrubs. Stipules absent. Ovary 2-, rarely 3- or 4-locular. Fruit dry, usually dehiscent.-Sepals 4, free. Petals 4, imbricate. Stamens 6, unequal, rarely less. Stigmas 1 or 2.Cruciferae

- Shrubs or treelets. Stipules present. Ovary 4-7-locular. Fruit adrupe.-Sepals, petals and stamens equal in number, 4-6. Sepalsimbricate or valvate. Petals imbricate. Stigma 4-7-lobed. (Brexia,Brexiaceae)Saxifragaceae

1066. Style 1, simple 1073

- Styles 2-5 and free or stigmas 2-5 and sessile. 1067

1067. Leaves opposite or in whorls. 1068

- Leaves alternate or radical. 1071

1068. Stipules absent 1069

- Stipules present.-Stem woody. 1070

1069. Leaves simple. Stamens 9 in 3 bundles. Styles 3. Guttiferae

- Leaves 3 -foliolate, seemingly in whorls of 6 leaflets. Stamens numer- ous, free. Styles 2. (Bauera, Baueraceae). Saxifragaceae

1070. Stamens 8 or 10 . Styles 2 or 3.-Shrubs or trees. Cunoniaceae

- Stamens 5. Styles 3. Staphyleaceae

1071. Stem herbaceous. Stipules absent. Stamens 4 or 8 or 10. 1072

- Stem woody. Stipules small, early fugaceous. Stamens 5.-Brazil, Guianas. (Goupiaceae). Celastraceae

1072. Leaves alternate, undivided. Ovary deeply lobed. Styles 3 or 4.
Crassulaceae

- Leaves radical, lobed. Ovary weakly lobed. Styles or stigmas 4 or 5.Saxifragaceae

1073. Stamens as many as petals or less 1074

- Stamens more than petals. 1083

1074. Anthers dehiscing with 2 longitudinal slits or with 1 transverse slit.1076

- Anthers dehiscing with 2 apical pores or with 1 longitudinal slit.- Shrubs. Leaves alternate, udivided. Stipules absent. Flowers actinomorphic. Ovary 5-locular. Style 1. 1075

1075. Sepals usually connate, sometimes absent or free. Anthers dehiscing with 2 apical slits. Ericaceae

- Sepals entirely free and imbricate. Anthers dehiscing with 1 longi tudinal slit. Epacridaceae

1076. Flowers zygomorphic. 1077

- Flowers actinomorphic. 1078

1077. Leaves opposite, undivided. Petals 5. Stamens connate. Ovary 3- locular. Trigoniaceae

- Leaves alternate, pinnately compound. Petals 4. Stamens free. Ovary 4-locular.-Stipules present. Sepals 5. Fruit a capsule.
Melianthaceae

1078. Leaves pinnately compound, rarely simple, then translucent- glandular-punctate 1079

- Leaves simple, not partite, not translucent-glandular-punctate, usually opposite 1082

1079. Stipules present, sometimes early fugacious (!). 1080

- Stipules absent. 1081

1080. Woody plants. Ovary 3-locular Staphyleaceae

- Herbs. Ovary 4- or 5-locular. (Tetradiclis, Tribulus). Zygophyllaceae

1081. Trees. Leaves not translucent-glandular-punctate. Stamens inserted on the upper margin of a cushion-shaped or columnar disk.-Leaves alternate. Flowers in racemes. Stigma 1, discoid. Ovary 4- or 5locular.

Meliaceae

- Woody plants. Leaves translucent-glandular-punctate. Stamens usually inserted at the base of a cup-shaped disk.-Ovary 3-, or 5-more-locular. (incl. Flindersiaceae). Rutaceae

1082. Stamens as many as petals, 4 or 5 , inserted on or outside the disk. Anthers usually introrse. Endosperm usually present. . . Celastraceae

- Stamens less than petals, 3 or rarely 2 or 4 , inserted on or inside the disk, very rarely as many as the petals, 5 , and inserted within the disk. Anthers extrorse. Endosperm absent. Hippocrateaceae

1083. (1073). Filaments free. 1084

- Filaments more or less connate. 1094

1084. Ovary sessile, rarely stipitate, but then either ovary deeply lobed, or
leaves compound. 1085

- Ovary usually stipitate, undivided.-Woody plants. Leaves alternate, simple. Fruit a berry.. 1092

1085. Leaves compound and stamens $5-8$, or leaves simple, then not translucent-glandular-punctate and stamens up to $10 . .$. 1086

- Leaves compound, rarely simple, then translucent-glandularpunctate. Stamens 8-10.-Stamens inserted outside the disk or on its margin. Anthers with 2 longitudinal slits. 1093

1086. Stipules present (scars).—Leaves simple. Calyx valvate. 1087

- Stipules absent.-Leaves simple or compound. 1088

1087. Inflorescence usually elongate. Corolla valvate. Anthers dehiscing apically.

Elaeocarpaceae

- Flowers in axillary fascicles. Corolla apert or slightly imbricate. Anther dehiscing longitudinally. (Gynotroches). Rhizophoraceae

1088. Leaves compound.-Stamens 5-8. Disk extra-staminal. Anthers with longitudinal slits. Ovary 3-locular. Sapindaceae

- Leaves simple. 1089

1089. Herbs. 1090

- Woody plants. 1091

1090. Autotrophic plants with well-developed, green leaves. Anthers incurved in bud, with 2 apical pores or tubules. Pyrolaceae

- Non-green saprophytes without well-developed leaves. Anthers erect in bud, thecae with a common slit, or with 2 longitudinal slits.

Monotropaceae
1091. Shrubs. Stamens 6-10, inserted on the margin of the disk or outside the disk. Anthers dehiscing by 2 pores or slits. Ericaceae

- Small trees. Stamens 10. Disk extra-staminal. Anthers dehiscing longitudinally.-Ovary 5-locular. (Greyaceae). Melianthaceae

1092. Petals 2-4, free. Stigma sessile.-Endosperm absent. . . Capparaceae

- Petals 5, coherent at base. Style 1. Stigma 3-5 lobed. Tropical W.Africa. (Pentadiplandraceae, sometimes in Celastraceae). Capparaceae

1093. Leaves translucent-glandular-punctate. Stipules absent. Stamens usually inappendiculate. (incl. Flindersiaceae) Rutaceae

- Leaves not translucent-glandular-punctate. Stipules present. Stamens usually appendiculate.-Calyx and corolla imbricate.
Zygophyllaceae

1094. (1083). Leaves opposite or in whorls. 1095

- Leaves alternate. 1096

1095. Leaves translucent-glandular-punctate. Stipules absent. Flowers actinomorphic. Stamens $8-10$. Ovary 4 - or 5 -locular. Rutaceae

- Leaves not glandular-punctate. Stipules present. Flowers zygomor- phic. Stamens 6. Ovary 3-locular.-Leaves undivided. Petals 5.
Trigoniaceae

1096. Leaves undivided. Flowers usually zygomorphic. Embryo curved.- Ovary stipitate Capparaceae

- Leaves pinnately compound, rarely simple, then, as usual, flowersactinomorphic, ovary sessile to immersed in the disk, and embryostraight.-Stipules absent. Ovary 2-6-locularMeliaceae

1097. (927). Styles or stigmas connate 1098

- Styles and stigmas completely free. 1100

1098. Leaves translucent-glandular-punctate. Rutaceae

- Leaves not translucent-glandular-punctate.-Shrubs or trees. Fila- 1099ments free. Ovule 1 per carpel

1099. Disk extra-staminal.-Leaves usually paripinnate, sometimes impari- pinnate or simple Sapindaceae

- Disk intra-staminal.-Leaves either imparipinnate or simple.
Simaroubaceae

1100. Ovules 1 or 2 per carpel.-Shrubs or trees 1101

- Ovules numerous, rarely 1 or 2 per carpel, then plant a herb or an undershrub (Crassulaceae). 1103

1101. Leaves simple, undivided, not translucent-glandular-punctate 1102

- Leaves compound, if simple translucent-glandular-punctate 1104

1102. Ovule 1 per carpel, more or less apical, or 2. Simaroubaceae- Ovule 1 per carpel and basal.-Stamens 8-10...... Anacardiaceae
1103. Herbs or undershrubs. Leaves simple. Fruit a capsule. Crassulaceae

- Lianas with palmately compound leaves or trees with pinnately com-pound leaves. Fruit composed of berries.-Sepals and petals 3.Stamens 6Lardizabalaceae

1104. Ovule 1 per carpel, more or less apical. (incl. Kirkiaceae).
Simaroubaceae

- Ovules 2 per carpel 1105

1105. Leaves translucent-glandular-punctate. Stamens 3-5.-EndospermpresentRutaceae

- Leaves rarely translucent-glandular-punctate, then endosperm ab-sent. Stamens 10, sometimes 5 staminodial.Connaraceae

1106. (926). Ovary 1, undivided or lobed 1113

- Ovaries 2 or more, free or only connate at base 1107

1107. Styles entirely free. 1108

- Styles connate, at least at the base or at the apex 1110

1108. Stipules absent. Flowers actinomorphic. 1109

- Stipules present. Flowers zygomorphic.-Flowers in spikes or inracemes. Sepals 5, connate at base. Anthers introrse. Carpels 5 or6. Ovules 1-3 per carpelResedaceae

1109. Ovule 1 per carpel.-Aquatics. Flowers solitary. Sepals free, numer- ous. Anthers extrorse. Carpels 9-17. Nympheaceae

- Ovules several or many per carpel.-Leaves simple. 1112

1110. Leaves undivided. Stipules present.-Disk intra-staminal. Anthers adnate. Ochnaceae

- Leaves absent or pinnately compound. Stipules absent. 1111

1111. Sepals free. Disk extra-staminal. Ovaries 2 or 3 Sapindaceae

- Sepals connate at base. Disk intra-staminal. Ovaries 5 or 6.-Sub- tropical and tropical America. (Castela, Quassia). ... Simaroubaceae

1112. Shrubs or trees. Sepals 3. Anthers adnate. Fruit a berry.Annonaceae

- Herbs or undershrubs. Sepals 6 or more. Anthers versatile. Fruit a capsule Crassulaceae

1113. Ovary 1 -locular, sometimes incompletely so. 1114

- Ovary 2-more-locular, sometimes nearly so 1124

1114. Ovule 1 1115

- Ovules 2-more 1117

1115. Leaves opposite.-Flowers polygamous, solitary or in fascicles. Petals 4. Ovary sessile. Guttiferae

- Leaves alternate. 1116

1116. Flowers in fascicles. Petals 2-4. Stigma sessile.-Flowers unisexual. Ovary stipitate Capparaceae

- Flowers in panicles. Petals 3 or 5 or 6 . Style well-developed.
Anacardiaceae

1117. Leaves opposite 1118

- Leaves alternate 1119

1118. Style simple. Embryo curved.-Petals 5 and contort, or 3. Calyx im- bricate. Ovules usually atropous. Fruit a capsule. Cistaceae

- Styles or style-branches 2-5. Embryo straight.-Leaves undivided,opposite. Stipules absent. Flowers actinomorphic. Guttiferae

1119. Flowers distinctly zygomorphic. Ovary open at apex.-Herbs.
Leaves simple, undivided, or pinnately partite. Flowers in spikes or in racemes. Styles 3-6. Endosperm absent or nearly so. Resedaceae

- Flowers actinomorphic or slightly zygomorphic. Ovary closed at apex 1120

1120. Flowers actinomorphic. Ovary and fruit usually not stipitate, if so plant woody, branches stellately pubescent, and leaves linear, sinuately lobulate.-Woody plants. Endosperm usually present, if scanty leaves linear or scale-like... 1121

- Flowers slightly zygomorphic. Ovary and fruit usually stipitate, ifsessile plants glandular annuals (Cristatella).-Either herbs with 3-foliolate or palmately compound leaves, or shrubs. Style 1, simple.Endosperm scanty to absent. (incl. Cleomaceae). Capparaceae

1121. Leaves often linear or scale-like. Stipules absent. Endosperm scanty. -Flowers solitary. Calyx imbricate. Anthers extrorse. Fruit a capsule, with placenta separating from the wall. Seeds hairy. Tamaricaceae

- Leaves normally developed. Stipules present, often soon caducous. Endosperm present 1122

1122. Disk appendiculate. 1123

- Disk inappendiculate.-Flowers in racemes. Sepals 4 or 5, valvate,free. Stamens more than 10. Style simple. Stigma small. Australia(Nettoa, ? once found) or New Caledonia (Oceanopapaver, also inCapparaceae, doubtfully included here).Tiliaceae

1123. Calyx imbricate or valvate. Ovules anatropous. Embryo straight. (incl. Prockieae, also in Tiliaceae). Flacourtiaceae

- Calyx imbricate. Ovules usually atropous. Embryo curved.-Petals 5, contort, or 3. Style simple. Fruit a capsule. Cistaceae

1124. (1113). Ovules 1 or 2 per locule 1125

- Ovules 3 or more per locule. 1139

1125. Flowers bisexual, at least apparently so, or polygamous, rarely uni- sexual, then stipules and endosperm absent. 1126

- Flowers unisexual.-Stipules usually present (early fugacious!). Ovules anatropous, pendulous, axillary, usually with a caruncle. En- dosperm present. Embryo straight.................... Euphorbiaceae

1126. Calyx valvate. 1127

- Calyx imbricate or apert. 1129

1127. Petals entire.-Stipules present. Endosperm present. Tiliaceae

- Petals dentate or fimbriate. 1128

1128. Flowers in racemes or corolla imbricate Elaeocarpaceae

- Flowers in simple or compound cymes. Corolla valvate. (Anopyxis, Crossostylis). Rhizophoraceae

1129. Corolla imbricate, or contort, rarely valvate, then calyx divided up to halfway. 1130

- Corolla valvate.-Calyx slightly lobed or dentate. Olacaceae

1130. Leaves alternate, rarely opposite, then either compound or stipules present. 1131

- Leaves opposite, undivided.-Leaves often translucent-glandular- punctate or -striped. Stipules absent. Endosperm absent. Guttiferae

1131. Style 1. 1132

- Styles 3.-Resinous (often poisonous!), usually woody plants. Leaves pinnately compound, not translucent-glandular.
Anacardiaceae

1132. Filaments free. 1133

- Filaments connate, at least at base. 1137

1133. Leaves not translucent-glandular-punctate 1134

- Leaves translucent-glandular-punctate.-Shrubs or trees. Leaves 1- or 3 -foliolate or undivided. Stipules absent. Disk intra-staminal.
Rutaceae

1134. Trees or woody lianas.-Disk extra-staminal. 1135

- Shrubs or herbs. 1136

1135. Leaves pinnately compound. Stipules absent. Ovule 1 per locule. Endosperm absent- Leaves simple. Stipules present. Ovules 2 per locule. Endosperm
1136. Herbs. Basal leaves bipinnatipartite. Stipules absent. Flowers 4-merous, in panicles. Petals imbricate. (Megacarpaea)..... Cruciferae

- Shrubs. Leaves entire or apically trifid. Stipules present. Flowers 5-merous, in cincinni. Petals valvate. (Nitraria)....... Zygophyllaceae

1137. Leaves simple. Filaments connate at base only. 1138

- Leaves pinnately compound. Filaments connate into a tube.Meliaceas

1138. Shrubs or trees. Flowers in cymes or in panicles. Stigma 1. Fruit a drupe. Endosperm present. Embryo straight. Houmiriaceae

- Herbs or undershrubs. Flowers solitary or in umbels. Stigmas 5. Fruit a capsule. Endosperm absent. Embryo curved. (Monsonia, Sarcocaulon) Geraniaceae

1139. (1124). Ovary \pm distinctly stipitate.-Shrubs or trees. Leaves al- ternate. Stigma 1. Fruit a berry. 1140

- Ovary \pm sessile.--Either endosperm present, or embryo straight.1141

1140. Petals 2-4, free. Stigma sessile.-Endosperm absent. Embryo curved. Capparaceae

- Petals 5, coherent at base. Style 1. Stigma 3-5-lobed.-Stamens 11-13. Tropical W. Africa. (Pentadiplandraceae, sometimes in Celas-traceae).Capparaceae

1141. Calyx valvate.-Stipules present. Endosperm present. 1143

- Calyx imbricate or apert. 1142

1142. Leaves undivided, rarely 1 - or 3 -foliolate 1144

- Leaves divided.-Leaves alternate. Stipules present. Disk intra- staminal. Endosperm present. Embryo straight. (Malacocarpus, Peganum). Zygophyllaceae

1143. Petals entire or emarginate, membranous, either glabrous or downy at base, usually imbricate. (incl. Muntingia, also in Elaeocarpaceae).
Tiliaceae

- Petals dentate or fimbriate, rarely entire, but then either scarious or hairy, valvate.-Shrubs or trees. Leaves undivided. Filaments free.
Elaeocarpaceae

1144. Leaves usually opposite. Stamens inserted outside the disk or on its margin. Endosperm either present and embryo curved, or absent.- Leaves alternate. Stamens inserted within the disk or on its margin.Endosperm present. Embryo straight.-Shrubs or trees. Stipulespresent. Ovary 3 -locular. Stigma 1. Sarcolaenaceae
1145. Leaves translucent-glandular-punctate.-Endosperm absent 1146

- Leaves not translucent-glandular-punctate. 1147

1146. Leaves opposite. Stipules absent, but sometimes with an interpeti- olary ligule or an intrapetiolar ridge. Guttiferae

- Leaves alternate. Stipules absent. Rutaceae

1147. Leaves simple. Style 1. 1148

- Leaves trifoliolate, apparently in whorls of 6 leaflets. Styles 2.- Petals (4-)6-8(-10). Endosperm present. Australia. (Baueraceae).
Saxifragaceae

1148. Petals 3 or 5. Filaments free. Endosperm present. N. temperate.
Cistaceae

- Petals 4-6. Filaments connate at least at base. Endosperm absent or scanty. Tropics.

1149. (548). Ovary superior or nearly so. 1150

- Ovary inferior or hemi-inferior. 1371

1150. Stamens 1-10. 1151

- Stamens 11 or more. 1312

1151. Style 1, undivided. Stigma either 1 or more, adjacent at base, or stigma 1, sessile 1152

- Styles either 2 or more, free or partly connate but with free stigmas, or stigmas sessile, 2 or more. 1261

1152. Ovary 1-locular, sometimes incompletely so. 1153

- Ovary completely or nearly completely 2 - or more-locular 1194

1153. Ovule 1 1154

- Ovules 2 or more. 1165

1154. Stigma 1. 1157

- Stigmas 2 , or 3 , or 5 1155

1155. Herbs or undershrubs, rarely shrubs.-Leaves simple, usually op- posite. Petals usually minute. Stigmas 2 or $3 \ldots .$. . Caryophyllaceae

- Woody plants. 1156

1156. Trees. Leaves pinnately compound. Stigmas 2 or $3 \ldots$. Staphyleaceae

- Woody plants. Leaves simple, opposite. Stigmas 5.-Stamens 5,epipetalousRhamnaceae

1157. Flowers actinomorphic, rarely slightly zygomorphic, then not pap- ilionate 1158

- Flowers usually zygomorphic and papilionate, when actinomorphicstipules present, as usual, and ovule parietal.-Stamens 8-10.
Leguminosae

1158. Stipules present, sometimes minute, and/or early fugacious 1159

- Stipules absent.-Shrubs or trees 1163

1159. Corolla valvate 1160

- Corolla imbricate or apert 1161

1160. Plants usually herbaceous. Leaves lobed, or partite, or compound. Endosperm absent.-N. America. (Gillenia). Rosaceae

- Trees. Leaves undivided. Endosperm copious.-Flowers solitary orin fascicles. Sepals valvate, calyptrate. Stamens 8-10. Anthersquadrangular. Ovule erect. Tropical Africa. (Hua, also in Stercu-liaceae or Styracaceae). Huaceae

1161. Leaves undivided. Corolla imbricate. Ovule erect, basal 1162

- Leaves lobed. Flowers in capitules. Corolla apert. Ovule pen- dulous.-Endosperm present. (Platanus) Platanaceae

1162. Flowers cymose or solitary. Stamens 4 or 5 . Style terminal.
Celastraceae

- Flowers in a terminal panicle. Stamens 3-10. Style gynobasic.- Madagascar, Tropical America. (Hirtella)........ Chrysobalanaceae

1163. Staminodes petaloid.-Trees without resin. Leaves alternate, un- divided. Flowers in panicles. Fertile stamens epipetalous. Ovule pendulous, anatropous, apotropous. Endosperm present.
Corynocarpaceae

- Staminodes not petaloid or absent 1164

1164. Resiniferous plants. Bark not silky fibrous inside. Flowers usually in panicles. Ovule with dorsal raphe, usually erect, micropyle down- wards.-Endosperm absent or nearly so. Anacardiaceae

- Plants without resin. Bark inside with tough silky fibres. Flowers inspikes, or in racemes, or in capitules, or in umbels, or solitary,rarely in panicles. Ovule with ventral raphe, pendulous.-Leavessimple.Thymelaeaceae

1165. (1153). Ovules 2. 1166

- Ovules 3 or more 1177

1166. Leaves undivided or lobed. 1167

- Leaves compound. 1176

1167. Leaves opposite. Stamens 1-5. 1168

- Leaves alternate, rarely opposite or in whorls, but then stamens 10.

1168. Flowers zygomorphic. Calyx valvate. Stamens 6-9...... Lythraceae

- Flowers actinomorphic. Calyx imbricate. Stamens 1-5. 1169

1169. Stem herbaceous or woody at base only. Stamens $1-5$. Ovary not immersed in a disk.-Stigmas usually 2 or 3 . Ovules basal or on a central placenta. Endosperm present. Embryo more or less curved.
Caryophyllaceae

- Stem woody. Stamens 5 . Ovary usually immersed in a large disk.
Celastraceae

1170. Style gynobasic.-Ovules basal. Chrysobalanaceae

- Style terminal or stigma sessile and terminal. 1171

1171. Stipules present, usually distinct, rarely inconspicuous or soon ca- ducous. 1172

- Stipules absent 1174

1172. Placenta 1 Leguminosae

- Placentas 2 1173

1173. Calyx imbricate. Stamens 5, alternipetalous.-Anthers connate. Australia, New Zealand, Norfolk Isl. (Hymenanthera)..... Violaceae

- Calyx valvate. Stamens 4-7, epipetalous.-Ovules ascending.Rhamnaceae

1174. Calyx valvate.-Stamens 10. Ovules pendulous, apical.Combretaceae 1175- Calyx imbricate.-Stamens 5-10.
1175. Stamens 5, epipetalous. Ovules pendulous from 1 usually free placenta. Olacaceae

- Stamens 5-10. Placenta basal. Celastraceae

1176. (1166). Stipules absent. Flowers actinomorphic or nearly so. Ovules atropous, collateral, ascending.-Leaves imparipinnate or uni- foliolate. Connaraceae

- Stipules usually present. Flowers usually distinctly zygomorphic.Ovules anatropous or hemitropous, serial, rarely collateral, but thenflowers very zygomorphic.-Leaves variously compound, or simple,or unifoliolate.
Leguminosae

1177. (1165). Placenta basal or central, but sometimes also incomplete septa present. 1178

- Placentas one or more, parietal 1183

1178. Corolla usually valvate.-Shrubs or trees. Leaves alternate. Stipules absent. Ovules 3-6 on the apex of a free central placenta. 1179

- Corolla imbricate or apert.-Ovules basal, ascending on a free cen- tral placenta, at least the upper ones. 1180

1179. Stipules absent. Ovules pendulous, 3-5. Olacaceae
 1185

- Calyx ascendingly imbricate (i.e. the odd sepal below), rarely closed, or apert, or valvate, then leaves simple and entire, or 2lobed or -partite, or, as usual, compound.-Stipules present.

Leguminosae

1186. Leaves simple. Anthers with 2 longitudinal slits or apical pores. 1187

- Leaves pinnately compound. Anthers with 1 longitudinal slit.Trees. Flowers zygomorphic. Fertile stamens 5, epipetalous. Ovules many. Endosperm absent.

Moringaceae
1187. Stamens as many as the petals, alternipetalous.. 1188

- Stamens more than petals, rarely as many, then epipetalous. . . 1191

1188. Tendrils absent.-Corona absent, staminodes occasionally present. 1189

- Climber with tendrils.-Inflorescence axillary. Flowers actinomorphic. Ovary stipitate or corona present. Stigma 1, broad.

Passifloraceae
1189. Flowers actinomorphic. Filaments well-developed. Staminodes 5.-

- Flowers more or less zygomorphic. Filaments short. Staminodes ab-sent.-Anthers bent together into a tube, usually appendiculate. Ovary sessile. Stigma 1, rarely $2-5$, then stem woody. Violaceae

1190. Herbs. Leaves radical. Staminodes 5, incised. (Parnassiaceae).

Saxifragaceae

- Shrubs or trees. Leaves alternate, cauline. Staminodes absent. (Escalloniaceae). Saxifragaceae

1191. Herbs.-Ovules many. 1192

- Woody plants. 1193

1192. Sepals 4 or 5, valvate, persistent. Petals 4 or 5 Saxifragaceae

- Sepals 2, early deciduous as a cap. Petals 4.-Pacific N. America. (Eschscholzia). Papaveraceae

1193. Stamens usually more than the petals, rarely as many, then epi-petalous, but calyx imbricate, ovules pendulous and fruit dry.
Flacourtiaceae

- Stamens epipetalous.-Thorny shrubs. Calyx valvate. Ovules 4, ascending. Fruit a drupe. Rhamnaceae

1194. (1152). Ovule 1 per locule 1195

- Ovules 2-more per locule. 1213

1195. Ovule erect or ascending. 1196

- Ovule pendulous or descending. 1201

1196. Stamens as many as the petals, epipetalous.-Stem woody. Calyx valvate. 1197

- Stamens either as many as the petals and alternipetalous, or more.1198

1197. Sepals, petals, and stamens 8. Ovary 8 -locular.-Socotra. (Dirach- maceae). Geraniaceae

- Sepals, petals and stamens 4 or 5 . Ovary 2-4-locular. . Rhamnaceae

1198. Stamens inserted outside the disk or on it. Embryo straight. 1199

- Stamens inserted inside the disk. Embryo more or less curved.- Stem woody. Flowers polygamous. Stamens usually 8. Endosperm absent. Sapindaceae

1199. Flowers actinomorphic or nearly so. Stamens 4 or 5. Endosperm usually present. 1200

- Flowers zygomorphic. Stamens 10. Endosperm absent.-Flowers bisexual. Style gynobasic. (Parinari).............. Chrysobalanaceae

1200. Herbs. Petals connate in the middle.-Leaves alternate. Stigmas 2-5. Malaysia to New Zealand. (Stackhousia, Tripterococcus).

- Woody plants. Petals free. Celastraceae

1201. Stem herbaceous.-Endosperm absent. 1202

- Stem woody. 1204

1202. Flowers actinomorphic, 4-merous. Stamens 2-6. Ovary 2-locular. Stigma 1. Fruit a capsule or dry and indehiscent. 1203

- Flowers zygomorphic. Calyx-segments 5. Petals 5, exceptionally 2.Stamens 8. Ovary 3-locular. Stigmas 3. Fruit a schizocarp, rarely aberry. .. Tropaeolaceae

1203. Flowers racemose. Calyx imbricate. Fruit a capsule. Embryo curved.Cruciferae- Flowers solitary, axillary. Calyx valvate. Fruit dry, indehiscent.
Embryo straight Onagraceae
1204. Corolla imbricate 1205

- Corolla valvate or apert 1209

1205. Stamens 4-6 1206

- Stamens 8 or 10 1208

1206. Ovary irregularily 20 -locular, apex with a hollow tubule, inside with
5 stigmatic lines and a central, free column which simulates astyle.-Leaves alternate. Stipules minute. S.E. Asia to N.E. Aus-tralia. (Siphonodontaceae)

- Ovary and style different. 1207

1207. Ovule apical, pendulous.-Stipules absent. N. Zealand. (Brexiaceae: Ixerba).- Ovule basal, erect.Celastraceae
1208. Distal part of petioles and nodes of inflorescences with annular glands. Stamens 8, 2 free and in 2 bundles of 3 each. Ovary 2- locular.-Guiana (Barnhartia). Polygalaceae

- Petioles and inflorescences without such glands. Stamens 10, con-nate at least at base. Ovary 5-, sometimes apparently 10-locular.(incl. Ixonanthaceae).1209. Corolla valvate. 1210
- Corolla apert.-Bark inside with tough, silky fibres. Petals 4-10,scale-like. Stamens 8-10. 1211

1210. Leaves undivided. Fruit a drupe or dry and indehiscent.-Flowers actinomorphic. Stigma 1. Endosperm present. 1212

- Leaves at least partly lobed. Fruit a berry.-Inflorescence umbel- late. Stamens 5. Endosperm ruminate. Himalaya to Malaya. (Gamblea, Hederopsis).1211. Flowers in panicles. Anthers transversally dehiscent. Ovary 3-5-locular. Embryo curved. (also in Thymelaeaceae). . . . Gonystylaceae
- Flowers in umbels or capitules. Anthers longitudinally dehiscent.Ovary 2-locular. Embryo straight. Thymelaeaceae

1212. Leaves opposite. Stipules present.-Moluccas to Fiji. (Mastixioden- dron). Rubiaceae

- Leaves alternate. Stipules absent. Olacaceae

1213. (1194). Ovules 2 per locule 1214

- Ovules 3-more per locule. 1244

1214. Ovules erect or ascending. 1215

- Ovules pendulous, or descending, or patent, or one descending and one ascending. 1222

1215. Stamens 4-more 1216

- Stamens 3, less than the petals.-Filaments short or broad. Anthersextrorse. Ovary 2- or 3-locular. Endosperm absent. (also in Celas-traceae).Hippocrateaceae

1216. Stamens epipetalous. 1217

- Stamens alternipetalous, or more than the petals 1218

1217. Leaves opposite. Stigmas 2 or 3. Endosperm scanty Rhamnaceae

- Leaves alternate. Stigma 1. Endosperm copious. Vitaceae

1218. Stamens more than petals. 1219

- Stamens as many as the petals.-Leaves undivided. Stipules usuallypresent. Calyx imbricate or apert. Flowers actinomorphic. Stamensinserted on the margin of the disk or close to it. Anthers usuallyintrorse. Endosperm usually present.Celastraceae

1219. Leaves not translucent-glandular-punctate. 1220

- Leaves translucent-glandular-punctate.-Flowers actinomorphic. Disk intrastaminal. Rutaceae

1220. Leaves opposite, simple 1221

- Leaves alternate, usually compound.-Flowers polygamous. Disk extrastaminal. Sapindaceae

1221. Flowers zygomorphic.-Calyx valvate Lythraceae

- Flowers actinomorphic.-Leaves usually lobed. Stipules absent. Flowers unisexual or polygamous. Stigmas 2. Fruit a schizocarp. En- dosperm absent. Aceraceae

1222. Ovary 4 - or 5 -locular. 1223

- Ovary 2- or 3-locular. 1231

1223. Flowers actinomorphic. 1224

- Flowers zygomorphic.-Stipules present. Flowers solitary or inumbels. Corolla spurred, spur adnate to the pedicel, inconspicuous.Stamens 2-7(-10). Stigmas 5. Endosperm absent. (Pelargonium).
Geraniaceae

1224. Stamens 4 or 5 1225

- Stamens 8-10. 1228

1225. Leaves not translucent-glandular-punctate. 1226

- Leaves translucent-glandular-punctate.-Leaves alternate, un-divided. Stipules absent. Stamens 5, alternipetalous. Endosperm ab-sentRutaceae

1226. Leaves opposite or in whorls. Stamens alternipetalous, 4 or 5. . 1227

- Leaves alternate. Stamens epipetalous. Calyx valvate. Petals scale-like. Stamens 5. Stigmas 4 or 5. Endosperm present... Sterculiaceae

1227. Disk thick. Anthers broad. Stigma lobed. Endosperm copious.
Celastraceae

- Disk thin. Anthers narrow. Stigma undivided. Endosperm scanty.
Saxifragaceae

1228. Leaves alternate, undivided, or compound. 1229- Leaves opposite, undivided.-Calyx and corolla valvate. Stigma 1.Fruit dehiscent. Endosperm present. (Cassipourea, Macarisia).
Rhizophoraceae
1229. Leaves compound. Endosperm absent 1230

- Leaves undivided. Endosperm present.-Calyx and corolla imbri- cate, persistent. Stigma 1. Fruit a capsule. (incl. Ixonanthaceae).
Linaceae

1230. Leaves trifoliolate. Calyx apert. Corolla imbricate. Stigma 4- or 5- lobed. Fruit a berry.-Mauritius, Indomalesia. (Sandoricum).
Meliaceae

- Leaves pinnately compound. Calyx and corolla valvate. Stigma 1. Fruit a drupe. Burseraceae

1231. Stigmas 2 or 3 1232

- Stigma 1 1235

1232. Calyx imbricate. 1233

- Calyx valvate.-Leaves alternate. Stipules present. Stamens 5,epipetalous. Fruit a capsule.1233. Leaves alternate. Stipules present. 1234
- Leaves opposite. Stipules absent.-Flowers in racemes, unisexual orpolygamous. Fruit a winged schizocarp.1234. Stamens 10. Fruit a capsule, or dry and indehiscent.Dipterocarpaceae
- Stamens 5. Fruit a drupe.-Flowers in cymes. Dichapetalaceae

1235. Stamens 3-10. 1236

- Stamen 1.-Leaves opposite or in whorls, simple, undivided. Flowers zygomorphic.1236. Stamens as many as the petals or more. 1237- Stamens 3. Petals 5.-Leaves undivided. (also in Celastraceae).
Hippocrateaceae

1237. Leaves opposite, undivided. 1238

- Leaves alternate, undivided, or compound. 1239

1238. Petals imbricate, 5. Stamens 5. Celastraceae

- Petals valvate, 4 or 5. Stamens 8-10. (Macarisia). . Rhizophoraceae

1239. Petals imbricate or contort. 1240

- Petals valvate.-Petals 3 or 4 . Stamens 6 or 8 . Calyx valvate. Fruit a drupe1240. Stipules present. Stamens 3-5 or 10 .-Leaves undivided. Flowersbisexual.1241
- Stipules absent. Stamens 5-9.-Petals 4-7. 1242

1241. Petals 3. Stamens 3 or 4. Trigoniaceae

- Petals 5. Stamens 5 or 10. Dipterocarpaceae

1242. Flowers bisexual. Disk absent.-Leaves pinnately compound. 1243

- Flowers polygamous. Disk present.-Endosperm absent. Embryo curved.1243. Petals imbricate, clawed. China. Bretschneideraceae
- Petals contort, not clawed. Australia. Akaniaceae

1244. (1213). Anthers with longitudinal or transverse slits. 1245

- Anthers with terminal pores.-Leaves opposite or in whorls, rarely radical. Stamens twice as many as the petals, rarely as many.
Melastomataceae

1245. Calyx valvate. 1246

- Calyx imbricate or apert. 1249

1246. Stigma 1. 1247

- Stigmas 2-5.-Endosperm present. Embryo straight. 1248

1247. Leaves undivided. Endosperm absent. Embryo straight. Lythraceae

- Leaves palmately compound. Endosperm scanty. Embryo curved.
Bombacaceae

1248. Leaves undivided or lobed, cauline. Stipules present. Stamens 5. Stigmas 3-5. Sterculiaceae

- Leaves pinnatifid, subradical. Stipules absent. Stamens 4, or 8-10. Stigmas 4, rarely 2.-Herbs. S. America. (Francoaceae: Francoa).
Saxifragaceae

1249. Woody plants 1250

- Herbs.-Petals 4. Stamens 6. Ovary 2-locular. Embryo curved.
Cruciferae

1250. Flowers actinomorphic 1251

- Flowers zygomorphic. 1255

1251. Stamens as many as the petals and alternipetalous, or less. 1252

- Stamens either 5 and epipetalous, or 7-10 and more than the petals.-Leaves usually translucent-glandular-punctate and with a marginal nerve 1256

1252. Petals valvate, rarely imbricate, then either petals 6-9, or disk cupular and fimbriate, or disk indistinct.-Endosperm usually present. 1253

- Petals imbricate, 4 or 5 , or less, if 4 or 5 disk thick and more or less expanded. 1258

1253. Stipules absent 1254

- Stipules present. (Brexiaceae). Saxifragaceae

1254. Disk present. (Escalloniaceae). Saxifragaceae

- Disk absent. (Philadelphaceae). Saxifragaceae

1255. Leaves opposite, undivided.-Stamens as many as the petals and epipetalous, or more. Ovary 3-locular 1260

- Leaves alternate, pinnately compound.-Flowers 4-merous. Tropical and S. Africa. Melianthaceae

1256. Stamens $7-10$, more than the petals. 1257

- Stamens 5, epipetalous.-Leaves alternate. Stigma capitate. S. Africa. (Heteropyxidaceae). Myrtaceae

1257. Leaves alternate. Stigmas 3 or 4, subsessile.-Mascarenes. (Psiloxy- laceae). Myrtaceae

- Leaves usually opposite. Style usually simple and stigma capitate.

Myrtaceae
1258. Stamens 4 or 5 . Anthers introrse, rarely extrorse, then ovary 4 - or
5 -locular. ... 1259

- Stamens 3. Anthers extrorse. Ovary 3-locular.-Endosperm absent. (also in Celastraceae). Hippocrateaceae

1259. Leaves present. Disk usually conspicuous. Ovary 1-5-locular.

Celastraceae

- Leaves absent. Disk absent. Ovary 5-locular.-Texas, Mexico.
(Canotia, also in Koeberliniaceae)................. Canotiaceae

1260. Petal 1. Stamen 1. Endosperm absent. Vochysiaceae

- Petals 5. Fertile stamens 6. Endosperm present. Trigoniaceae

1261. (1151). Ovary 1, undivided or lobed. 1262

- Ovaries 2-more, free or connate at base only.................. . 1303

1262. Ovary 1-locular, sometimes incompletely so. 1263

- Ovary 2-more-locular or nearly so. 1278

1263. Ovule 1.-Shrubs or trees. Leaves usually alternate. Endosperm absent or scanty. 1264

- Ovules 2-more, rarely 1 , then herbs or undershrubs, leaves usually opposite, stipules usually present................................. . . . 1267

1264. Stipules absent. 1265

- Stipules present.-Ovule erect...................................... . 1269

1265. Ovule pendulous, adnate to the ovary-wall, or pendulous from a basal funicle. 1266

- Ovule basal, erect.-Tropical Africa. (Stapfiella, also in Flacourtiaceae)... Turneraceae

1266. Bark usually with black (poisonous!) resin. Staminodes, if present, not petaloid. Anacardiaceae

- Bark without resin. Staminodes 3-6, petaloid.-Calyx imbricate. Fertile stamens 3-6, epipetalous. Styles 2. New Guinea to New Zealand. Corynocarpaceae

1267. Trees. Flowers in radiate capitules, connate at base, only the outer with $1-4$ petals and then usually strongly zygomorphic. Stamens 710. Styles 2. Ovules parietal, 1 or 2. Endosperm present.-S.E. Asia. (Rhodoleiaceae), Hamamelidaceae

- Plants otherwise. Flowers usually actinomorphic or nearly so... 1268

1268. Endosperm present. 1270

- Endosperm absent.-Woody plants. Leaves alternate, undivided. Stipules absent. Flowers in racemes. Anthers extrorse. Styles 4-7. Ovules basal or parietal. Embryo straight.

Tamaricaceae
1269. Calyx valvate. Stamens 4-7, epipetalous. Style 2-4-partite.

Rhamnaceae

- Calyx and corolla imbricate. Stamens 3-9, usually more than the
petals, if as many alternipetalous. Styles usually 3, less often simplewith 3 free stigmas.Polygonaceae

1270. Ovules 2 -more, parietal. 1271

- Ovules basal or central, 1-more.-Herbs or undershrubs. Leavesundivided, usually opposite. Stipules present. Embryo more or lesscurved.1271. Anthers introrse or latrorse, rarely extrorse, then stem woody, andcalyx valvate.1272
- Anthers extrorse.-Herbs, usually with stalked glands or glandular hairs. Leaves involute in bud. Calyx imbricate, Stamens as many as petals, 4-8.

1272. Corolla imbricate or valvate, if contort stamens twice as many as thepetals, 8-10.1273

- Corolla contort. Stamens 5, as many as the petals.-Calyx ca- ducous.1273. Styles apical on the ovary, adjacent at base, rarely somewhat dis-tant, then plants woody and stipules present.1274
- Styles subapical on the ovary, free to base.-Erect or prostrate herbs. Stipules absent. Stamens 5, as many as the petals. Aril ab- sent. S. America.1274. Stem erect. Tendrils absent. Corona usually absent, rarely present,exceptionally double. Ovary (sub-)sessile1275
- Climbers. Tendrils present, plants rarely erect without tendrils. Corona usually present. Ovary usually stipitate.-Stamens 4-6, asmany as the petals, alternipetalous, rarely more. Styles or style-branches 3, rarely 4 or 5 . Aril present. Passifloraceae

1275. Stem herbaceous. 1276

- Stem woody.-Leaves undivided. 1277

1276. Staminodes absent Saxifragaceae

- Staminodes present. (Parnassiaceae). Saxifragaceae

1277. Leaves 3 -foliolate, apparently in whorls of 6 leaflets.-Australia. (Baueraceae). Saxifragaceae

- Leaves undivided, alternate. Flacourtiaceae

1278. (1262). Ovule 1 per locule 1279

- Ovules 2-more per locule 1290

1279. Ovule erect or ascending. 1280

- Ovule pendulous or descending.--Woody plants. 1283

1280. Stamens as many as the petals, alternipetalous, or more. 1281

- Stamens 4 or 5 , epipetalous.-Woody plants. Leaves undivided. Calyx valvate. Endosperm present. Embryo straight. . . . Rhamnaceae

1281. Herbs. Flowers bisexual. Embryo straight. 1282

- Woody plants. Flowers polygamous. Embryo curved.-Endospermabsent.Sapindaceae

1282. Radical leaves undivided, cauline ones pinnatifid. Calyx valvate.Fruit a capsule.-Australia. (Eremosynaceae).Saxifragaceae

- Leaves all entire. Calyx imbricate. Fruit a schizocarp or nutlets 2- 5. Stackhousiaceae

1283. Filaments free, if connate at base plant glabrous. Leaves alternate and endosperm present. 1284

- Filaments connate at base.-Indument with medifixed hairs. Leavesundivided, opposite. Anthers with longitudinal slits. Fruits indehis-cent. Endosperm absent.Malpighiaceae

1284. Leaves compound, alternate 1285

- Leaves simple, alternate, or opposite. 1286

1285. Stipules present. Stamens as many as the petals. Styles 3. Endo- sperm absent.-Leaves pinnately compound.- Stipules absent. Stamens twice as many as the petals. Styles or style-branches 4 or 5 . Endosperm present.Anacardiaceae
1286. Ovary irregularily 20 -locular, apex with a hollow tubule, inside with5 stigmatic lines and a central column, which simulates a style.-Leaves alternate. Stipules minute. Flowers axillary, solitary or incymes. Stamens 5. S.E. Asia to N.E. Australia. (Siphonodon-taceae). Celastraceae

- Ovary and style different. 1287

1287. Stipules absent, when present leaves opposite and anthers with longitudinal slits 1288

- Stipules present.-Leaves alternate, rarely opposite, then, as usual, anthers with valves. Flowers in spikes or capitules. Styles 2. Fruit a capsule. Endosperm present. (Hamamelis, Trichocladus).
Hamamelidaceae

1288. Leaves alternate. Stipules absent.-Styles 2. 1289

- Leaves opposite. Stipules present.-Flowers solitary or in panicles. Stamens 8-10. Anthers with longitudinal slits. Cunoniaceae

1289. Shrublets. Flowers in capitules. Stamens 5, alternipetalous. Fruit a capsule. Endosperm present. S. Africa. Bruniaceae

- Shrubs or trees. Flowers in panicles. Stamens 3-6, epipetalous.Fruit a drupe. Endosperm absent. S.W. Pacific. . . . Corynocarpaceae

1290. (1278). Ovules 2 per locule. 1291

- Ovules 3-more per locule. 1297

1291. Leaves opposite.-Stem woody. 1292

- Leaves alternate. 1293

1292. Stipules absent. Flowers unisexual or polygamous. Fruit a winged schizocarp. Endosperm absent.- Stipules present. Flowers bisexual. Fruit dehiscent, or dry and in-dehiscent. Endosperm presentCunoniaceae
1293. Ovules pendulous.-Leaves undivided. 1294

- Ovules erect or ascending.-Flowers bisexual 1296

1294. Stipules present, sometimes early fugacious. 1295

- Stipules absent.-Ericoid shrubs. Flowers bisexual, in capitules.Stamens 5. Styles 2. Fruit a capsule. S. Africa.Bruniaceae

1295. Fruit usually a capsule. Endosperm present.-Flowers unisexual.Euphorbiaceae

- Fruit a drupe, sometimes ultimately dehiscent. Endosperm ab-sent.-Stem woody. Leaves beneath often with small saucer-shapedglands, especially near the base. Flowers in fasciculate or umbellatecymes, these sometimes reduced, rarely to 1 flower. Petals often bifid oremarginate. Stamens 5. Disk intra-staminal, 5 -lobed. Dichapetalaceae

1296. Leaves undivided. Flowers in racemes or in panicles. Stamens 5.Styles 2. Ovules erect. Fruit a capsule or a nut. Celastraceae

- Leaves pinnately compound. Flowers in racemes. Stamens 8. Styles3. Ovules ascending. Fruit a capsule.Staphyleaceae

1297. Stamens 5 , as many as the petals.-Stem woody. 1298

- Stamens twice as many as the petals, 8-10, or petals 1-6 and stamens 7-10. 1299

1298. Leaves alternate, undivided. Flowers in 2- or many-flowered capi- tules. Anthers with 2 lateral valves. Styles 2.-Flowers actinomor- phic. Staminodes 5. (Disanthus). Hamamelidaceae

- Leaves opposite, usually compound. Flowers in panicles. Antherswith longitudinal slits. Styles or style-branches 3.-Corolla imbri-cateStaphyleaceae

1299. Leaves usually alternate. Stipules absent. 1300

- Leaves opposite. Stipules present.-Stem woody. Flowers in capi-tules, or in racemes, or in panicles.Cunoniaceae

1300. Stem woody. Leaves simple. Petals 1-6. Stamens 7-10. 1301

- Stem herbaceous, rarely woody, then leaves trifoliolate. Stamens 8- 10 , twice as many as the petals. 1302

1301. Flowers in radiate capitules, more or less zygomorphic, bisexual, surrounded by a coloured involucre. Styles 2, free. China to Malaya. (Rhodoleiaceae). Hamamelidaceae

- Flowers in axillary racemes or panicles, actinomorphic, unisexual orpolygamous, without a coloured involucre. Stigmas 3, subsessile.Mascarenes. (Psiloxylaceae).Myrtaceae

1302. Herbs. Saxifragaceae- Stem woody.-Leaves trifoliolate, apparently in whorls of 6 leaflets,sessile. Australia. (Baueraceae).Saxifragaceae
1303. (1261). Stipules present. 1304

- Stipules absent. 1307

1304. Leaves alternate. 1305

- Leaves opposite.-Leaves usually compound. Flowers in panicles.
Stamens 5. Staphyleaceae

1305. Flowers bisexual or polygamous 1306

- Flowers unisexual.-Trees. Leaves pinnately lobed. Stipules anti-dromous. Flowers in capitules. Stamens as many as the petals.
Ovule 1 per carpel Platanaceae

1306. Herbs. Leaves alternate, compound. Flowers in panicles. Stamens 8 -10 . Carpels adnate at base with the receptacle. Ovules 2 or 3 percarpel.Saxifragaceae

- If not as above, try: Rosaceae

1307. Anthers extrorse or with valves. Carpels many.-Leaves opposite, undivided. Carpels indehiscent. 1308

- Anthers introrse with longitudinal slits. Carpels 3-10. 1309

1308. Anthers usually with valves. Ovule 1 per carpel. Endosperm copious. Monimiaceae

- Anthers with longitudinal slits. Ovules 2 per carpal. Endosperm very scanty. China. (Chimonanthus)................ Calycanthaceae

1309. Leaves simple, undivided or lobed. 1310

- Leaves compound.-Stem woody. Leaves alternate. Flowers in racemes or panicles. Carpels 3-5, each with 2 collateral ovules.
Connaraceae

1310. Carpels as many as the petals, 4-10, rarely 3, then stamens 3 . En- dosperm absent or very scanty 1311

- Carpels 2 or 3, less than the petals. Stamens 8-10. Endosperm copious.-Herbs. Leaves alternate. Saxifragaceae

1311. Carpels free or connate at base only Crassulaceae

- Carpels connate to about halfway, 5-8.-Carpels circumscissile atthe base of the free part. E. Asia, E. N. America. (Penthoraceae,sometimes in Saxifragaceae).Crassulaceae

1312. (1150). Ovary 1 , undivided or lobed. 1313

- Ovaries 2-more, free or connate at base only 1362

1313. Ovary 2 -more-locular, or nearly so 1314

- Ovary 1-locular, or nearly so 1318

1314. Leaves deeply divided or compound 1315

- Leaves undivided. 1336

1315. Leaves deeply divided or palmately compound. 1316

- Leaves pinnately compound.-Leaves alternate. Stipules absent. Flowers in a panicle, polygamous. Style 1. Ovary 2- or 3-locular. Ovule 1 per locule Sapindaceae

1316. Leaves opposite. Stipules absent. Ovary 2-locular 1317

- Leaves alternate. Stipules present. Ovary 5-locular.-Flowers soli- tary or in fascicles, bisexual. Filaments connate. Anthers 1-locular. Style 1. Ovules many per locule Bombacaceae

1317. Flowers solitary, bisexual. Ovules many per locule.-Leaves pal-
mately compound. Styles 2. Saxifragaceae

- Flowers in racemes, unisexual or polygamous. Ovules 2 per locule.-Leaves deeply divided. Styles 2-partite. Aceraceae

1318. Ovules 1 or 2 1319

- Ovules 3-more 1325

1319. Leaves alternate. 1320

- Leaves opposite 1322

1320. Leaves simple, undivided, or lobed, rarely ternately dissected. 1321

- Leaves compound.-Petals 3-5. Ovule 1. Leguminosae

1321. Leaves translucent-glandular-punctate. Stipules absent. Ovule 1, erect.-Petals 5. Style basal. Calyx with an entire margin. N. Brazil, Guianas. Rhabdodendraceae

- Leaves not translucent-glandular-punctate. Stipules usually present.Ovules 1 or 2 .-Style and stigma simple. Shrubs or trees.1324

1322. Stigma sessile, terminal. 1323

- Style present, 1 -several.-Leaves simple, or compound, or reduced to a widened petiole. 1329

1323. Leaves translucent-glandular-punctate. Ovule pendulous. Endo- sperm fleshy Monimiaceae

- Leaves not translucent-glandular-punctate, pusticulate by crystalswhen dry. Ovule basal. Endosperm absent.-Cotyledons 3 or 4,massive, fleshy. Queensland. (Idiospermaceae). Calycanthaceae

1324. Style terminal. Ovules 1 or 2, parietal. (Prunoideae) Rosaceae

- Style gynobasic. Ovules 2, basal. Chrysobalanaceae

1325. Ovules on 1 or more parietal or central placentas. 1326

- Ovules apical on a central column, about 6 in 2 groups, pendu-lous.-Flowers 5 -merous. W. Africa. (also in Flacourtiaceae,Passifloraceae, Medusagynaceae).
Soyauxiaceae

1326. Placenta 1, parietal.-Leaves alternate. Stipules usually present. Style and stigma simple. 1327

- Placentas 2 or more, or central, rarely apparently parietal, thenleaves undivided, nearly always opposite, stipules absent, calyx lobes6, valvate, and stamens 11.1329

1327. Leaves compound (leaflets entire) or reduced to a widened petiole. Flowers actinomorphic or zygomorphic.-Ovules 1 or more and serial. Leguminosae

- Leaves simple, entire or serrate, rarely lobed or dissected in 3 Iobes 1328

1328. Ovules 1 or more, collateral Rosaceae

- Ovules numerous on intrusive parietal placentas. (Prockieae, also in Tiliaceae). Flacourtiaceae1329. Ovary distinctly, usually long stipitate. Sepals and petals 4.-Leavesalternate. Style and stigma simple. Embryo curved. Capparaceae
- Ovary sessile or nearly so, rarely shortly stipitate but then petals 5or more.1330

1330. Shrubs or woody plants. 1331

- Herbs, sometimes climbing 1334

1331. Leaves opposite.-Ovary completely divided into locules, at the base more or less adnate to the receptacle. Sonneratiaceae

- Leaves alternate or absent. 1332

1332. Ovary sessile. Embryo straight.-Endosperm present. Flacourtiaceae - Ovary stipitate. Embryo curved. 1333
1333. Flowers 8-merous, zygomorphic. Stigmas 2 or 3, sessile.-Leafless shrubs. Resedaceae

- Sepals 2, imbricate. Petals 5. Style simple.-Ovules basal. Endo- sperm absent. Capparaceae

1334. Style 1. Stigma usually 1, rarely 3-7, then sepals more than 2. 1335

- Stigmas 4-6, (sub-)sessile.-Herbs. Leaves dissected. Sepals 2, early caducous as a cap. Petals 4, imbricate. Pacific N. America. (Eschscholzia). Papaveraceae

1335. Calyx valvate. Staminodes usually absent. Endosperm absent.- Ovary not broadly sessile in the receptacle. Lythraceae

- Calyx imbricate or apert. Staminodes present, hollow. Endosperm present. Loasaceae

1336. (1314). Ovule 1 per locule 1337

- Ovules 2-more per locule. 1340

1337. Ovules pendulous.-Leaves alternate, rarely opposite. (Aëtoxylon). 1338

- Ovules erect, ascending or patent.-Leaves alternate or opposite.1339

1338. Bark with tough silky fibres inside. Stipules absent. Filaments free.Ovary 3-8-locular.-Flowers actinomorphic. Petals partite. Fruit aberry. Endosperm absent. (also in Thymelaeaceae). . Gonystylaceae

- Bark without such fibres. Filaments connate at base. Ovary 10- locular. Linaceae

1339. Leaves opposite. Stipules absent. Flowers actinomorphic. Guttiferae- Leaves alternate. Stipules present. Flowers zygomorphic.-Ovary 2-locular. Style gynobasic. (Parinari). Chrysobalanaceae
1340. Ovules 2 per locule. 1341

- Ovules 3 or more per locule 1351

1341. Flowers unisexual or polygamous.-Leaves opposite. Stipules ab- sent Aceraceae

- Flowers bisexual. 1342

1342. Ovules ascending 1343

- Ovules pendulous, or descending, or patent. 1345

1343. Flowers zygomorphic.-Calyx 6-lobed, valvate. Petals 6, rarely 2 or
4, imbricate. Stamens 11. Style undivided. Lythraceae

- Flowers actinomorphic, 4- or 5-merous. 1344

1344. Leaves opposite. Stipules absent. Endosperm absent. Guttiferae- Leaves alternate. Stipules present. Endosperm present.-Filamentsconnate at base.Bombacaceae
1345. Leaves opposite. 1346

- Leaves alternate. 1348

1346. Calyx and corolla valvate. (Cassipourea, Dactylopetalum).
Rhizophoraceae

- Corolla imbricate 1347

1347. Calyx valvate. Filaments free. Elaeocarpaceae

- Calyx imbricate. Filaments connate at base. Linaceae

1348. Calyx valvate.-Corolla imbricate. Filaments free. Ovary 2-7- locular. Elaeocarpaceae

- Calyx imbricate, or contorted, or cupular and entire, or slightly den- tate. 1349

1349. Calyx cupular, entire or slightly dentate.-Stipules absent. Petals valvate, 5-8. Ovary 3-6-locular.-Tropical Africa. Scytopetalaceae

- Calyx usually partite or divided to some degree.-Stipules present or absent. 1350

1350. Filaments free. Ovary 5-locular.-Calyx usually accrescent, usually imbricate. Petals 5. Dipterocarpaceae

- Filaments connate at base. Ovary 5-locular.-Calyx and corolla im- bricate. Linaceae

1351. (1340). Corolla valvate.-Leaves alternate. Calyx apert. Style 1. En- dosperm present.-Tropical Africa. Scytopetalaceae

- Corolla imbricate or apert 1352

1352. Aquatic herbs. Leaves all radical.-Flowers solitary. Petals numer- ous. Styles numerous or stigmas sessile. Endosperm present.
Nymphaeaceae

- Woody plants or terrestrial herbs. Not all leaves radical. 1353

1353. Leaves alternate. 1354

- Leaves opposite or in whorls. 1357

1354. Sepals valvate.-Leaves oblique. Flowers solitary or in pairs. Petals 5-7. Stamens numerous. Endosperm present. Elaeocarpaceae

- Sepals imbricate or apert. 1355

1355. Stipules present, often early caducous. Petals sepaloid, 3-5. Stigma1. Endosperm present.-Flowers in panicles or in racemes. Stamensusually numerous, rarely few. (Flacourtieae)......... Flacourtiaceae
-- Stipules absent. Petals not sepaloid. Stigmas 2 or more. Endosperm absent. 1356
1356. Stamens 11 or 12 . Filaments inserted on a disk on the hyp- anthium.-Mascarenes. (Psiloxylaceae).

- Stamens usually numerous. Filaments free, not on a disk. Theaceae

1357. Stigma 1. 1359

- Stigmas 2 or more 1358

1358. Flowers usually unisexual. Calyx imbricate. Endosperm absent.- Leaves often translucent-glandular-dotted or -striped. Guttiferae

- Flowers bisexual. Calyx usually valvate. Endosperm present.- Shrubs. Flowers in panicles. Petals 5-7. Styles 5-7 fid. (Philadelphaceae).Saxifragaceae

1359. Calyx valvate. Anthers dehiscing with longitudinal slits. 1360

- Calyx imbricate or apert, or with tardily separating segments, orwith a calyptrate apical part, rarely valvate but then anthers de-hiscing with terminal pores.-Leaves opposite or in whorls..... 1361

1360. Stamens about twice as many as the petals, if more either herbs orshrubs, or inflorescences many-flowered. Ovules axillary, in 2-locular ovaries central on the sept.-Flowers usually more or lessperigynousLythraceae

- Stamens many. Ovary 4-21-locular, ovules on the septs.-Trees.Flowers more or less epigynous. (Probably not distinct fromLythraceae)... Sonneratiaceae

1361. Leaves translucent-glandular-punctate, with 1 distinct main nerve,sometimes with a distinct submarginal vein. Anthers with a smallgland, but without other appendages, nearly always with longi-tudinal slits. Myrtaceae

- Leaves not translucent-glandular-punctate, usually with 3-11 sub-equal nerves from the base. Anthers with various appendages, nearlyalways with 1 or 2 apical pores.-Filaments bent inwards in bud.
Melastomataceae

1362. (1312). Aquatics.-Leaves peltate. Sepals 4. Petals numerous. Ovar- ies free, sunken in the enlarged receptacle. (Nelumbonaceae).
Nymphaeaceae

- Terrestrial plants. 1363

1363. Ovule 1 per carpel. Stipules absent 1364

- Ovules 2 or more per carpel, if only 1 , stipules present. 1367

1364. Carpels 4 or more 1365

- Carpels 1 or 2 .-Embryo with 4 or 5 massive fleshy cotyledons.Queensland. (Idiospermaceae). Calycanthaceae

1365. Flowers in inflorescences. Anthers either with an operculum or with introrse slits. 1366

- Flowers solitary. Anthers with extrorse slits.-Leaves opposite.Flowers $4.5-7 \mathrm{~cm}$ in diameter. China. (Sinocalycanthus).
Calycanthaceae

1366. Leaves opposite. Ovule anatropous, basal. Endosperm copious.
Monimiaceae

- Leaves alternate. Ovule atropous, apical. Endosperm scanty. New Caledonia. (also in Monimiaceae). Amborellaceae

1367. Leaves opposite, undivided. Stipules absent. Anthers extrorse. Ovules 2 per carpel.-Shrubs or trees. Flowers solitary. Perianth segments numerous, gradually merging from sepals to petals. Car- pels numerous. Endosperm very scanty. Calycanthaceae

- Leaves compound and then stipules present or absent, or simple, usually alternate. Anthers introrse or latrorse. Ovules 3 or more per carpel, rarely 1 or 2 , but then either leaves alternate, or stipules present, or compound without stipules. 1368

1368. Stipules present, rarely absent, but then trees or shrubs with flowers in racemes or in panicles. Aril absent. Rosaceae

- Stipules absent. Herbs or undershrubs or climbers, rarely shrubs but then flowers solitary and aril present 1369

1369. Leaves simple, rarely compound but then plant usually succulent. 1370Leaves compound. Herbs.-Stipules absent. Carpels 2-5. Endo-
sperm copious. (Paeonia, also in Ranunculaceae). Paeoniaceae
1370. Shrubs. Flowers 5-merous. Crossosomataceae

- Herbs or undershrubs. Flowers 6-30-merous.-Flowers in cymes or in panicles. Stamens as many or twice as many as petals.
Crassulaceae

1371. (1149). Stamens $1-10$. 1372

- Stamens 11 or more. 1519

1372. Stamens as many as petals and epipetalous 1373

- Stamens as many as petals and alternipetalous, or more, or less.1383

1373. Stamen 1. Flowers zygomorphic.-Leaves undivided. Petal 1.
Vochysiaceae

- Stamens 4-9. Flowers actinomorphic or nearly so. 1374

1374. Leaves palmately compound. Filaments nearly completely connate.
Bombacaceae

- Leaves simple and undivided or lobed. Filaments free or connate at base only. 1375

1375. Styles 2-8, free or connate at base, with free stigmas. Ovary 1-locular with 3 or more ovules, rarely with 2 pendulous ovules. 1376

- Style 1, undivided. Stigma undivided or lobed, rarely divided andwith several stigmas and then ovary $2-4$-locular, rarely 1 -locularwith 2 erect ovules. ... 1378

1376. Shrubs or trees. Sepals 4-8.-Anthers extrorse. Endosperm co-
Flacourtiaceaepious.

- Herbs. Sepals 2 or 5 1377

1377. Flowers solitary or in fascicles. Sepals 2. Placenta central. Embryo
curved. (Portulaca) Portulacaceae

- Flowers in racemes. Sepals 5. Placentas parietal. Embryo straight.
Saxifragaceae

1378. Autotrophic plants. Ovary with 2 -more clearly distinct ovules. 1379

- Green hemi-parasites, usually epiphytic, exceptionally terrestrial.Ovules either fused with each other or even with the ovary-wall.-Corolla valvate. Fruit juicy. Loranthaceae

1379. Ovary 2-5-locular with 1 ovule per locule, rarely 1-locular with 2-5 ovules. Calyx and corolla both valvate. 1380

- Ovary 2-5-locular with 2 or more ovules per locule, rarely with 1ovule or ovary 1 -locular with 1 or more ovules, but then calyx andcorolla imbricate or apert.-Leaves opposite. Stipules absent or veryinconspicuous. Stigma 1. Endosperm absent. 1382

1380. Ovules pendulous.-Leaves alternate. Stipules absent. Corolla val- vate. Stigma 1. Endosperm copious 1381

- Ovules erect.-Leaves alternate or opposite. Stipules usually present Rhamnaceae

1381. Flowers unisexual. Stigma 3-5-lobed, lobes bifid. (Octoknemaceae).
Olacaceae

- Flowers usually bisexual. Stigma not with bifid lobes. Olacaceae

1382. Leaves more or less glandular-punctate. Corolla imbricate.
Myrtaceae

- Leaves not punctate. Corolla valvate.-Ovary 3-5-locular. Ovules 2or 3 per locule. Fruit a drupe.-Tropical and S. Africa. . Oliniaceae

1383. (1372). Styles 2 or more, free or more or less completely connate, but not up to the stigmas, or with several sessile stigmas. 1467
-- Style 1, with 1 stigma or with several stigmas adjacent at base, or stigma 1 , sessile. 1384
1384. Ovary 1-locular, sometimes incompletely so. 1385

- Ovary completely or nearly completely 2 - or more-locular. 1419

1385. Ovule 1. 1386

- Ovules 2 or more. 1406

1386. Ovules erect. Stamens usually 10 , rarely less. 1387

- Ovules pendulous, rarely erect, then stamens $1-5$. 1388

1387. Climbers or sprawling shrubs with watch-spring hooks. Leaves not translucent-glandular-punctate.-Petals shortly connate or coherentat base. Stigmas 3. Endosperm ruminate. Tropical Africa to W.Malaysia.Ancistrocladaceae

- Shrubs or trees. Leaves translucent-glandular-punctate.-Leaves usually with a marginal nerve. Calyx imbricate or apert. Corolla im- bricate. Myrtaceae

1388. Anthers with slits or pores. 1389

- Anthers with valves. 1391

1389. Calyx valvate.-Herbs. Corolla imbricate or apert. 1390

- Calyx imbricate or apert. 1393

1390. Flowers 5-merous. Loasaceae

- Flowers 2-merous. Onagraceae

1391. Leaves with cystoliths. Tepals in 1 whorl. Stamens less than tepals. Anthers latrorse, dehiscing with valves opening upwardly. Staminodia! glands less than stamens or absent.-Leaves simple or palmately 5 -lobed. Flowers polygamous. (Gyrocarpaceae). Hernandiaceae

- Leaves without cystoliths. Tepals in 2 whorls. Stamens as many asthe tepals of the outer whorl. Anthers introrse, longitudinally de-hiscing with laterally opening valves. Staminodial glands in 1 or 2whorls.1392

1392. Leaves either palmately compound or 3 - or 5 -foliolate. Flowers bi- sexual. Fruit with 2-4 lateral wings. (Illigeraceae). . Hernandiaceae

- Leaves simple. Flowers unisexual. Fruit globose, enclosed in 2 large bracts or in a fleshy cupule. Hernandiaceae

1393. Flowers unisexual and monoecious. Anthers extrorse.-Climbing or prostrate herbs or undershrubs with tendrils. Leaves cordate, an- gular or lobed. Endosperm absent Cucurbitaceae

- Flowers bisexual or polygamous, or dioecious. Anthers introrse or latrorse. 1394

1394. Leaves compound or pinnately partite 1395

- Leaves undivided or lobed. 1396

1395. Woody plants. Leaves compound. Sepals entire.-Petals valvate. Tropics Araliaceae

- Herbs. Leaves pinnately partite. Sepals pinnately partite.-Petalssmall, broad, with 2 setae. Mediterranean. (Lagoecia). Umbelliferae

1396. Flowers actinomorphic, not spurred. Fruit not winged 1397

- Flowers zygomorphic. Calyx spurred. Fruit winged.-Trees. Flowersbisexual, in panicles. Petal 1. Stamen 1. Endosperm absent. N.Brazil, Guianas. (Erisma)Vochysiaceae

1397. Flowers 3-7-merous 1398

- Flowers 2-merous.-Herbs. Flowers in spikes, or in racemes, or in panicles. Endosperm present. (Gunneraceae) Haloragaceae

1398. Non-resiniferous herbs or shrubs, hispid (often stinging). Flowersbisexual, in spikes, or in racemes, or in capitules, 4 - or 5 -merous.Petals narrow, imbricate or apert. Fruit a capsule or dry and in-dehiscent. Endosperm absent. America. (Gronovioideae). Loasaceae

- Plants different. 1399

1399. Resiniferous (very poisonous!) lofty trees, not hispid. Flowers poly- gamous, in panicles. Petals valvate or imbricate. Fruit a drupe. En- dosperm absent. Himalaya to Thailand. (Drimycarpus, Holigarna).
Anacardiaceae

- Plants different. Endosperm present 1400

1400. Non-ericoid shrubs or trees. Ovary inferior. Fruit a drupe or a berry. 1401

- Ericoid shrubs. Ovary hemi-inferior. Fruit dry and indehiscent.- Flowers in spikes or in capitules, bisexual. S. Africa. (Berzelia, Mniothamnea). Bruniaceae

1401. Corolla imbricate or apert 1402

- Corolla valvate 1403

1402. Bracteoles present at the base of the flower. Style undivided. Fruit a drupe. Nyssaceae

- Bracteoles absent. Styles 3, or style 1, short, and stigmas 3, re-curved. Fruit a berry.-New Zealand, S. America. (Griseliniaceae).
Cornaceae

1403. Leaves alternate, rarely opposite. Flowers bisexual 1404

- Leaves opposite. Flowers unisexual.-Himalaya to Japan. (Aucubaceae) Cornaceae

1404. Leaves linear-spathulate, tomentose underneath. Pedicels not articu- lated. Petals with a small scale at base.-W. Pacific to New Zea- land. (Corokia, also in Cornaceae, Escalloniaceae). ... Saxifragaceae

- Leaves otherwise. Pedicels articulated. Petals without a scale at base. 1405

1405. Flowers in terminal panicles. Petals 4 , or 5 , or 8 , ovate. Filaments glabrous.-Leaves opposite or alternate. Indomalesia. (Mas- tixiaceae) Cornaceae

- Flowers in axillary cymes. Petals 4-10, narrowly lanceolate to linear. Filaments usually hairy.-Leaves alternate Alangiaceae

1406. (1385). Flowers bisexual or polygamous 1407

- Flowers unisexual.-Usually climbing or prostrate herbs with ten-drils, rarely erect or shrubby. Leaves alternate. Calyx imbricate orapert. Corolla valvate. Stamens 1-5. Anthers usually extrorse.Placentas usually several, parietal. Endosperm absent. Cucurbitaceae

1407. Stipules present 1408

- Stipules absent 1410

1408. Petals imbricate 1409

- Petals valvate.-Woody plants. Sepals and petals 5-8. Stamens 10- 16. (Carallia, Ceriops) Rhizophoraceae

1409. Herbs. Leaves alternate. Sepals 2. Petals 4-6. Stamens 6-10. Placenta central. (Portulaca). Portulacaceae

- Woody plants. Leaves alternate or opposite. Sepals, petals, and stamens 4 or 5 . Ovules basal Celastraceae

1410. Stamens as many as the petals or more. 1411

- Stamens less than the petals, 3.--Leaves alternate. Petals 6, valvate.

Placenta central. Ovules 3, pendulous. Endosperm copious.
Olacaceae
1411. Placentas 2 -several, parietal. 1412

- Placenta 1, parietal, or basal, or central, or apical.--Trees, shrubs,climbers, or rarely undershrubs. Stigma 1, sometimes 2-lobed or 2-or 4-partite.-Calyx valvate, rarely imbricate.1415

1412. Stamens 4 or 5 1413

- Stamens 8-10. 1414

1413. Trees. Leaves \pm opposite, nigrescent, pinninerved. Flowers 4- merous. Petals much longer than the sepals, valvate, linear. (Escal- loniaceae: Polyosma). Saxifragaceae

- Shrubs. Leaves alternate, not nigrescent, palmatinerved. Petals usually shorter than the sepals, apert, small and scale-like. (Grossu- lariaceae: Ribes) Saxifragaceae

1414. Herbs, rarely woody, usually hispid and stinging. Inflorescence cymose. Sepals imbricate. Ovary strictly 1-locular.-America, rarely in Africa, Arabia. (Kissenia). Loasaceae

- Shrubs or trees, non-hispid. Inflorescence usually racemose. Sepals valvate or apert, persistent. Ovary several-locular at base. Tropics and subtropics. Styracaceae

1415. Ovules apical.--Stigma undivided, sometimes 2-lobed or -partite. 1416

- Ovules basal, or central, or parietal.-Stigma either 4-partite, or simple. 1417

1416. Ericoid shrublets. Ovules 4-8, pendulous from a central columella. Endosperm copious.--Leaves not translucent-glandular-punctate. Stamens 5. S. Africa. Bruniaceae

- Non-ericoid woody plants or climbers. Ovules 2-12, pendulousfrom the apex of the locule. Endosperm absent. Combretaceae

1417. Herbs or undershrubs. Stamens 6-8. Stigma 4-partite.-Ovules 3 or more. Endosperm present Onagraceae

- Shrubs or trees. Stamens 8 or more. Stigma simple 1418 1418

1418. Non-ericoid woody plants. Leaves exceptionally translucent- glandular-punctate, broad and usually thick. Staminodes absent. Ovules basal to central. Fruit a berry. (Memecylaceae: Memecylon, Mouriri) Melastomataceae

- Ericoid shrubs. Leaves translucent-glandular-punctate, narrow. Staminodes present. Ovules more or less parietal. Fruit dry, indehis- cent.-Australia. (Chamaelaucieae) Myrtaceae

1419. (1384). Ovule 1 per locule 1420

- Ovules 2-more per locule. 1439

1420. Calyx imbricate or apert 1421

- Calyx valvate.-Endosperm absent 1430

1421. Corolla imbricate or apert, sometimes adnate to the ovary 1422

- Corolla valvate or induplicative-valvate. 1432

1422. Stem woody, rarely herbaceous. Flowers usually bisexual or polyga- mous, rarely dioecious. 1423

- Stem herbaceous, at most woody at base, climbing or prostrate. Flowers unisexual, rarely bisexual, then stamens less than the petals.
Cucurbitaceae

1423. Leaves simple, undivided. 1424

- Leaves pinnately compound.-Flowers in umbels or in racemes. Stigmas 5-8. Araliaceae

1424. Stigma 1. 1425

- Stigmas 2 or 3 1428

1425. Perianth differentiated into two whorls (calyx and corolla). Stamens in a whorl. Anthers with longitudinal slits. 1426

- Perianth simple, segments 7-10, in a spiral. Stamens 2-10, in a spiral.Anthers with 2 introrse valves.-Flowers in racemes or panicles.Ovary inferior. Chile. Gomortegaceae

1426. Leaves not translucent-glandular-dotted. Ovary apparently hemi- inferior, immersed in a disk.-Flowers solitary or in cymes..... 1427

- Leaves translucent-glandular-dotted. Ovary inferior.-Flowers soli- tary or in fascicles. Myrtaceae

1427. Ovary irregularily 20 -locular, apex with a hollow tubule, inside with 5 stigmatic lines and a central free column, which simulates a style.-Leaves alternate. S.E. Asia to N.E. Australia. (Siphonodon- taceae). Celastraceae

- Ovary and style different Celastraceae

1428. Flowers in racemes or in panicles. Stigmas 3. 1429

- Flowers in a capitate inflorescence. Stigmas 2.-Ericoid shrublets. S. Africa. Bruniaceae

1429. Bracteoles absent. Flowers unisexual. Anthers dorsifix. New Zea- land, S. America. Cornaceae

- Bracteoles 2. Flowers bisexual. Anthers basifix. Madagascar. (Melanophyllaceae) Cornaceae

1430. (1420). Trees. Corolla valvate. Ovule basal. S.E. Asia. (Axinandra, also in Melastomaceae) Crypteroniaceae

- Herbs, undershrubs, or aquatics. Corolla imbricate or apert. Ovule axillary or apical. N. Hemisphere. 1431

1431. Herbs or undershrubs, terrestrial or marshy, but not free-floating. (Circaea, Gaureae). Onagraceae

- Floating aquatics.-Leaves rhomboid, basal half entire, upper half dentate. Petioles swollen. (Trapaceae).................. Onagraceae

1432. (1421). Stem woody, rarely herbaceous, then leaves opposite.Stamens 3-10, as many as the petals or more. Anthers introrse. En-dosperm present.1433

> - Stem herbaceous, sometimes woody at base, climbing or prostrate. Leaves alternate. Flowers unisexual, rarely bisexual (Schizopepon), then stamens less than the petals. Stamens 1-5. Anthers extrorse. Endosperm absent
> Cucurbitaceae
> 1433. Stigma simple, clavate or 2- or 3-lobed. 1434
> - Stigma undivided, peltate. Saxifragaceae
> $\begin{aligned} & \text { 1434. Ovary } 1-3 \text {-locular.-Ovules with a dorsal, or a lateral, or a ventral } \\ & \text { raphe. } 435\end{aligned}$
> - Ovary 4-locular.-Innovations with stellate hairs. Ovules with a ventral raphe. S. Africa. (Curtisiaceae). Cornaceae
1436. Leaves alternate. Ovules with a lateral or a ventral raphe, the micropyle lateral or external. 1438

- Leaves usually opposite, rarely alternate but then ovules with a dor- sal raphe and internal micropyle. 1437

1437. Stipules absent. Stamens 4 or 5.-Ovules usually with a dorsal rapheand internal micropyle, rarely with a ventral raphe and micropyleexternal but then flowers in cymose panicles.Cornaceae

- Stipules present. Stamens 4.-Petals pilose to papillate inside.Moluccas to Fiji. (Mastixiodendron).Rubiaceae

1438. Stipules absent. Flowers in cymes. Stigma 1, undivided or lobed.Ovules with a lateral raphe and micropyle.-Petals very narrow, re-curved. Anthers narrow, longer than the filaments. Ovary 2- or 3-locular.Alangiaceae

- Stipules either adnate to and scarcely distinct from the base of thepetiole, or intrapetiolar, or (rarely) absent. Flowers in umbels, or incapitules, or in racemes, or in spikes. Stigmas 2-20. Ovules with anexternal micropyleAraliaceae

1439. (1419). Ovules 2 per locule, pendulous. 1440

- Ovules 2 per locule, ascending or patent, or more 1446

1440. Leaves alternate. Stipules absent. 1441

- Leaves alternate or opposite. Stipules present 1443

1441. Leaves simple, undivided 1442

- Leaves trifoliolate.-Trees or shrubs. Stamens 10. Stigma 4- or 5- lobed. Mauritius, Indo-Malesia (Sandoricum) Meliaceae

1442. Ericoid shrubs or undershrubs. Stamens 5. Stigmas 2 or 3.-S. Africa Bruniaceae- Herbs or non-ericoid undershrubs. Stamens 6-8. Stigmas 3 or 4.
Onagraceae
1443. Leaves alternate. Fruit a drupe, or dry and indehiscent. Endosperm
absent.-Sepals imbricate. Ovary 2- or 3-locular 1444

- Leaves opposite. Fruit a capsule or a berry. Endosperm present.- Disk present. Ovary 2-6-locular. 1445

1444. Petals valvate or imbricate. Stamens 5. Nectaries 5, epipetalous. Fruit a drupe. (Dichapetalum). Dichapetalaceae

- Petals contort. Stamens 10. Nectaries absent. Fruit dry, indehiscent. (Vatica). Dipterocarpaceae

1445. Sepals and petals valvate. Stamens 8 -10. Fruit a capsule or a berry. Rhizophoraceae

- Sepals and petals imbricate. Stamens 4 or 5. Fruit a capsule. (Euo- nymus) Celastraceae

1446. Flowers unisexual 1447

- Flowers bisexual or polygamous 1449

1447. Leaves opposite. Corolla imbricate or contort. Ovules 4 -many per locule. Fruit a capsule, or dry and indehiscent.-Erect, woody plants. Ovary 2 -locular. 1448

- Leaves alternate. Corolla usually valvate. Ovules 2 or 3 per locule.Fruit a berry or a nut.-Plants usually climbing with tendrils, orprostrate.Cucurbitaceae

1448. Stamens 3-5. Anthers extrorse. Stigma 2-lobed. Ovules 4 or 5 per locule, on the sept. Fruit dry, indehiscent. E. Africa, Madagascar. (Montiniaceae: Grevea). Saxifragaceae

- Stamens 10. Anthers introrse. Stigma punctiform. Ovules many perlocule, sub-basal-parietal. Fruit a capsule. S.E. Asia, Pacific.(Astronia).
Melastomataceae

1449. Herbs. Corolla valvate. Endosperm present.-Leaves alternate. Stipules absent. Stamens 5. 1450

- Corolla imbricate or apert, rarely valvate, then stem woody. Plants either woody, or herbs and endosperm absent 1451

1450. Leaves strongly asymmetric. Flowers in cincinni.-S.E. Asia to Malesia. (also in Campanulaceae). Pentaphragmataceae

- Leaves usually symmetric. Inflorescences various, usually capitules, or panicles, or flowers solitary Campanulaceae

1451. Stipules present, sometimes early fugacious.-Stem woody. 1452

- Stipules absent, rarely present, then calyx valvate and corolla imbri- cate or apert and either plants herbaceous, or stamens 8 ; sometimes with an interpetiolary ridge between opposite leaves 1460

1452. Calyx usually valvate or apert at base only, rarely apert, then leaves alternate and corolla valvate. 1453

- Calyx imbricate or apert.-Leaves usually opposite. Corolla imbri- cate. Stamens 4 or 5 . Endosperm usually present. Celastraceae

1453. Leaves alternate 1454

- Leaves opposite.-Stamens 4-10, free. 1456

1454. Fertile stamens 5, free 1455

- Fertile stamens 10, filaments nearly completely connate.-Corollaimbricate. Endosperm sparse to absent. Bombacaceae

1455. Petals valvate. Disk annular. Stamens 5, staminodes absent. Ovary2-locular. Endosperm present. (Iteaceae, also Escalloniaceae).
Saxifragaceae

- Petals imbricate. Disk absent. Stamens 5, staminodes 5. Ovary 5-locular.Endospermabsent.-Mexico. (Pterostemonaceae) Saxifragaceae

1456. Stamens 8-10. 1457

- Stamens 4-6 1458

1457. Petals straight in bud, incised or fimbriate, valvate. Ovary 4-10- locular. Ovules axillary, patent, 2 or more per locule. Endosperm present. (Gynotroches, Pellacalyx). Rhizophoraceae

- Petals in bud curved over the stamens, imbricate. Ovary 4-6-locular. Ovules basal, 1 or 2 per locule. Endosperm absent. S.E.Asia. (Axinandra, also in Melastomataceae). Crypteroniaceae

1458. Ovary 2 -locular. Ovules numerous, on the septs 1459

- Ovary 3-5-locular. Ovules 3 per locule, basal.-Borneo. (Dactylo-cladus, also in Crypteroniaceae)Melastomataceae

1459. Midrib of the leaves prominent above. Flowers about 5 mm in dia- meter. Seeds in 4 rows per ovary. Tropical America. (Alzatea, also in Oliniaceae or Crypteroniaceae) Lythraceae

- Midrib of leaves flat or slightly immersed above. Flowers about 1mm in diameter. Seeds in 2 vertical rows per ovary. S. Africa.(Rhynchocalyx, also in Crypteroniaceae).Lythraceae

1460. Anthers with longitudinal slits. 1461

- Anthers with 1 or 2 terminal pores.-Leaves usually opposite or in whorls, usually with several subequal basal nerves. Calyx imbricate, or apert, or calyptrate, rarely valvate. Filaments incurved in bud. Anthers basifix. Stigma 1. Melastomataceae

1461. Leaves not translucent-grandular-punctate, without marginal nerves.1462

- Leaves translucent-glandular-punctate, with marginal nerves.-Stem woody. Calyx imbricate or apert. Stigma 1. Myrtaceae

1462. Woody plants without stipules. 1463

- Woody plants with stipules, or plants herbaceous.-Calyx valvate.Anthers dorsifixOnagraceae

1463. Plants not ericoid. Ovules usually many per locule. Fruit a capsule or a berry 1464

- Ericoid shrublets. Ovules 4 per locule. Fruit dry and indehiscent.- Stamens 4 or 5. Stigmas 2. Seed 1. S. Africa. Bruniaceae

1464. Disk absent 1465

- Disk present.-Petals 4 or 5 , imbricate or valvate. Stamens 4 or 5 .
(Escalloniaceae) Saxifragaceae

1465. Indument absent or of simple hairs. Inflorescences often with sterile marginal flowers with enlarged, showy sepals. Petals usually valvate.1466

- Indument usually of stellate hairs. Sterile marginal flowers absent.Petals usually contort. (Philadelphaceae)Saxifragaceae

1466. Inflorescences often with sterile marginal flowers with enlarged showy sepals. Stamens 8-10. Endosperm present. (Hydrangeaceae).
Saxifragaceae

- All flowers fertile and similar. Stamens 5. Endosperm absent.-Especially the petals with red dots and lines. Anthers apicallyappendiculate. Seeds minute, flat. New Caledonia. (Platysperma-tion, not a Myrtacea or Rutacea)Saxifragaceae

1467. (1383). Ovary 1-locular. 1468

- Ovary 2-20-locular. 1487

1468. Ovules 1-4 1469

- Ovules 5 or more. 1479

1469. Plants woody, trees or shrubs or less frequently epiphytes or climbers 1470

- Plants herbaceous or woody at base only, herbs or undershrubs, lessfrequently climbers or prostrate herbs or aquatic plants........ . 1476

1470. Flowers bisexual or polygamous 1471

- Flowers unisexual 1473

1471. Flowers bisexual. Ovules 2.-Stamens 8-10, styles 2-6.
Flacourtiaceae

- Flowers polygamous. Ovule 1 1472

1472. Non-resiniferous trees. Flowers in panicles or in globose capitules.Stamens 10. Style 2 -fid. Fruit samara-like. Endosperm present.China, Tibet. (Camptotheca, also in Cornaceae). Nyssaceae

- Resiniferous (very poisonous!) trees. Flowers in panicles. Stamens5. Style 1 or 3-5. Fruit a drupe. Endosperm absent. Himalaya toThailand. (Drimycarpus, Holigarna)Anacardiaceae

1473. Trees or shrubs without tendrils, stem not inflated. 1474- Woody climbers with tendrils, or shrubs usually with tendrils, orstem inflated and tendrils absent.Cucurbitaceae
1474. Flowers in racemes or panicles. Stamens 5. Styles 1 or 3-5. Ovule 1. 1475

- Flowers in catkins. Stamens 4. Styles 2. Ovules 2. Warm America.(also in Cornaceae).Garryaceae

1475. Resiniferous (very poisonous!) lofty trees. Flowers polygamous.Fruit a drupe. Endosperm absent. Himalaya to Thailand. (Drimy-carpus, Holigarna)Anacardiaceae

- Non-resiniferous trees or shrubs. Flowers dioecious. Fruit a drupe or
a berry. Endosperm present. Indo-China, W. Malesia (Aralidiaceae,also in Araliaceae), or New Zealand, S. America (Griseliniacea).
Cornaceae

1476. Ovule 1. 1477

- Ovules 2-5. 1478

1477. Climbing or prostrate herbs, usually with tendrils. Endosperm absent. Cucurbitaceae

- Herbs or undershrubs without tendrils. Endosperm present.-Petals 5. Stamens 5. Styles 2. Umbelliferae

1478. Plants usually climbing with tendrils or prostrate, rarely shrubs orerect herbs. Flowers unisexual, 3- or 5 -merous. Fruit a berry or anut. Endosperm absent.-Styles 3................... Cucurbitaceae

- Erect herbs, or undershrubs, or prostrate, or aquatic. Flowers 2- or4-merous, unisexual or bisexual. Fruit a drupe or a nut. Endospermpresent.1479. Placenta central.-Herbs. Flowers bisexual. Sepals 2. Petals 4-6.Stamens 6-10. Style 3-8-fid. (Portulaca)............ . Portulacaceae
- Placenta parietal or apical. 1480

1480. Flowers bisexual, rarely unisexual but then endosperm copious.- Woody plants. Sepals and petals 4 or 5 1481

- Flowers unisexual. Endosperm absent. 1486

1481. Stamens 8-10. Anthers extrorse.-Styles 2-6. Placentas several, parietal. Flacourtiaceae

- Stamens 4 or 5. Anthers introrse or latrorse. 1482

1482. Herbs 1483

- Shrubs or trees 1484

1483. Leaves opposite. Inflorescence cymose, flowers paired. Ovulesapical, pendulous. (Vahliaceae)..................... Saxifragaceae

- Leaves radical or alternate, rarely subopposite. Flowers solitary.Ovules parietal.-Perennials or rarely annuals (Lepuropetalon) andthen leaves succulent. (Parnassiaceae, Lepuropetalaceae).
Saxifragaceae

1484. Flowers epiphyllous, from the midrib of a leaf. (Dulongiaceae).

Saxifragaceae

- Flowers not epiphyllous. 1485

1485. Shrubs. Leaves lobed. Fruit a berry. (Grossulariaceae).Saxifragaceae

- Trees, rarely shrubs. Leaves entire or slightly serrate. Fruit a capsule.. Saxifragaceae

1486. Plants usually climbing or prostrate, herbaceous, with tendrils, rarely erect or shrubby. Petals 3-6. Stamens 1-5. Styles usually 3. Fruit a berry or dry and indehiscent. Cucurbitaceae

- Trees. Petals in the male flowers 6-8, absent in the female flowers. Stamens or styles 6-8. Fruit a capsule.
Datiscaceae

1487. (1467). Ovule 1 per locule 1488

- Ovules 2 or more per locule. 1505

1488. Ovule ascending or patent. 1489

- Ovule pendulous. 1491

1489. Flowers unisexual. Stamens 3 or 5. Styles 3.-Climbing or prostrate herbaceous plants, rarely undershrubs. Petals 5. Anthers extrorse. Ovule ascending. Endosperm absent Cucurbitaceae

- Flowers bisexual. Stamens 10, rarely less. Styles 2-10. 1490

1490. Shrubs or trees. Ovule ascending. Fruit berry-like. (Pomoideae).
Rosaceae

- Herbs, usually prostrate. Ovule patent. Fruit dry, composed of fol-licles, covered by the calyx.-Mediterranean, India, S. Africa(Rosaceae-Neuradoideae).............................. Neuradaceae

1491. Woody plants. Sepals and petals 4, valvate. Endosperm absent.- Ovary completely inferior. Styles 4. (Anisophylleaceae).
Rhizophoraceae

- Plants, if woody not with both sepals and petals valvate. Endosperm present. 1492

1492. Ovary irregularily 20 -locular, apex with a hollow tubule, inside with5 stigmatic lines and a central free column, which simulates astyle.-Trees or woody climbers. Leaves simple. Stipules minute.Flowers 5-merous. Petals imbricate. Stamens 5. S.E. Asia to N.E.Australia. (Siphonodontaceae)Celastraceae

- Ovary and style different. 1493

1493. Ovary hemi-inferior. Undershrubs or shrublets. 1494

- Ovary inferior, rarely hemi-inferior but then trees or tall shrubs andthe corolla valvate or apert.1495

1494. Stamens 12. Styles (3 or) 4 (or 5). (Philadelphaceae). Saxifragaceae

- Stamens 5. Styles 2.-Leaves small, undivided. Stipules absent.Flowers bisexual, in capitules, or in spikes, or in racemes, or inpanicles. Fruit a nut. S. Africa. (Berzelia, Mniothamnea).
Bruniaceae

1495. Flowers 2-4-merous. Herbs or undershrubs.-Leaves simple. Ovule with a ventral raphe. Haloragaceae

- Flowers 5 -merous, rarely 3 - or 4 - or 6 -merous or polymerous, butthen shrubs or trees.-Leaves simple or compound1496

1496. Shrubs or trees. Stipules present, free. Petals 4 or 5 . Anthers withlateral valves, rarely with longitudinal slits, but then 4 stamens fer-tile and 4 stamens sterile.-Flowers in spikes, or in racemes, or incapitules. Ovule with a ventral raphe. Hamamelidaceae

- Stipules absent, or the sheath with stipular appendages, rarelystipules present and free, but then plants herbaceous.1497

1497. Woody plants. Leaves simple. Petals imbricate, 4 or 5.-Inflores-
cence a raceme or a panicle. Styles 2 or 3 . Ovule with a dorsal raphe. 1498

- Petals valvate, when imbricate plants either herbaceous or woody with pinnately compound leaves, rarely simple and then deeply lobed or orbicular and then the pedicels distinctly jointed below the flowers. 1499

1498. Flowers dioecious. Anthers dorsifix.-Indo-China, W. Malesia. (Aralidiaceae, also in Araliaceae)........................ Cornaceae

- Flowers bisexual. Anthers basifix.-Bracteoles 2, not early fugacious. Madagascar. (Melanophyllaceae). Cornaceae

1499. Plants usually herbaceous.-Leaves alternate, usually pinnately compound, rarely entire or palmately nerved to -compound. Stipules absent, leaf-sheaths often well-developed. Flowers 5 -merous, usually in compound umbels, rarely in capitules or racemes. Petals usually with an incurved apex. Style-cushions usually 2 or bilobed. Styles 2, free. Ovule apical, pendulous, epitropous. Fruit a schizocarp, rarely a nut.. . 1500

- Plants woody, rarely herbaceous, then either stipular sheath distinct (Stilbocarpa, Araliaceae), or leaves in whorls of 3 or 4 (Panax, Araliaceae).. 1501

1500. Fruits with a membranous endocarp, mesocarp with parallel resinous canals. .. Umbelliferae

- Fruits with a woody endocarp, mesocarp without resinous canals, or only in the primary ribs.-Central axis of the fruit not becoming free. (Hydrocotylaceae). Umbelliferae

1501. Stipules or stipular structures absent, but an inter-petiolar ridge sometimes present.-Flowers usually in a raceme or in a panicle.
1502

- Stipules or an inter-petiolar stipular sheath present.-Flowers usually in racemose umbels, or in capitules, or in spikes. Style-cushions usually undivided. Fruit a drupe, rarely a berry, or a nut, or a schizocarp, endocarp usually indurated. Ovule epitropous. Araliaceae

1502. Flowers unisexual. 1503

- Flowers bisexual. 1504

1503. Flowers 5-merous. Ovary 4-locular. Himalaya, China. (Tori- celliaceae). Cornaceae

- Flowers 4-merous. Ovary 2-locular. Madagascar. (Kaliphora).
Cornaceae

1504. Ovary 4-locular. Ovules with a ventral raphe.-Young parts with stellate hairs. S. Africa. (Curtisiaceae). Cornaceae

- Ovary 1-3(-5)-locular. Ovules with a dorsal raphe...... Cornaceae

1505. (1487). Ovules 2 per locule. Woody plants. 1506

- Ovules 2 or more per locule, rarely 2 , then plants herbaceous and
climbing with tendrils and anthers extrorse 1511

1506. Ovules ascending.-Leaves alternate. Stamens 10. Rosaceae

- Ovules pendulous. 1507

1507. Stamens 6-10. 1508

- Stamens 5.-Leaves undivided. Anthers introrse 1510

1508. Leaves opposite.-Stamens 8-10. Cunoniaceae

- Leaves alternate. 1509

1509. Stamens 6-8. W. Malesia. (Anisophylleaceae: Combretocarpus).
Rhizophoraceae

- Stamens 10. S. China, Indochina. (Mytilaria) Hamamelidaceae

1510. Shrubs or trees. Stipules present. Flowers bisexual, rarely unisexual, in cymes. Fruit a drupe. Endosperm absent. Dichapetalaceae

- Ericoid shrublets. Stipules absent. Flowers bisexual, in capitules, orin spikes, or in racemes. Fruit a capsule or a nut. Endosperm co-pious.-S. Africa.Bruniaceae

1511. Flowers unisexual.-Endosperm absent 1512

- Flowers bisexual or polygamous. 1513

1512. Plants usually climbing with tendrils or prostrate. Corolla usually valvate. Ovules 2 or 3 per locule. Fruit a berry or a nut.
Cucurbitaceae

- Erect shrubs. Corolla imbricate. Ovules 10-12 per locule. Fruit acapsule.-S. Africa. (Montiniaceae: Montinia)........ Saxifragaceae

1513. Trees. Stipules present.- Flowers bisexual and in spikes, or polyga- mous and in capitules. Calyx undivided. Stamens 5 or 10. Anthers with valves.-Queensland. (Neostrearia) Hamamelidaceae

- Erect herbs or woody plants, rarely prostrate or climbing. Stipules absent, if present scale-like and plant grass-like. 1514

1514. Stamens 2 or 3. Fruit dry, indehiscent.-Herbs, forming tussocks. Sepals 5-7. Petals 5-10. Disk extra-staminal. Temperate and (sub)antarctic S. Hemisphere. (Donatia, also in Saxifragaceae or in Donatiaceae). Stylidiaceae

- Stamens 4-10. Fruit a capsule. Anthers introrse or latrorse 1515

1515. Herbs. Saxifragaceae

- Shrubs, or trees, or woody climbers. 1516 1516

1516. Flowers not epiphyllous. 1517- Flowers fasciculate on the midrib of a leaf.-S. America. (Dulon-giaceae).Saxifragaceae
1517. Disk absent. 1518

- Disk present.-Flowers 5-merous. Petals valvate. Styles 2. (Itea, inIteaceae or Escalloniaceae).Saxifragaceae

1518. Indument absent, or hairs simple. Inflorescence sometimes withsterile marginal flowers with enlarged sepals. (Hydrangeaceae:Hydrangea).Saxifragaceae

- Indument usually of stellate hairs. Sterile marginal flowers absent. (Philadelphaceae). Saxifragaceae

1519. (1371). Style 1, undivided, stigma 1 or 2 -more, adjacent at base, or stigma 1 , sessile. 1520

- Styles 2-more, free, or connate, but stigmas free, or stigmas 2- more, sessile 1554

1520. Stigma 1, undivided or lobed. 1521

- Stigmas 2 -more, or 1, then deeply divided. 1544

1521. Ovary 1 -locular. 1522

- Ovary 2-more-locular. 1531

1522. Plants non-parasitic, autotrophous, green. 1523

- Parasite, consisting of a rhizome and a single flower of which the bracts resemble a calyx. Rafflesiaceae

1523. Ovule 1. 1524

- Ovules 2-more 1525

1524. Flowers bisexual, in cymes. Petals valvate or more or less contort, linear-lanceolate. Stigma lobed. Alangiaceae

- Flowers polygamous-dioecious. Petals imbricate, ovate to oblong. Style bifid. Nyssaceae

1525. Ovules 2 or 3 1526

- Ovules many.-Calyx imbricate or apert. 1529

1526. Stipules absent 1527

- Stipules present. (Rhizophoreae) Rhizophoraceae

1527. Ovules basal, or parietal, or central. 1528

- Ovules apical. Combretaceae

1528. Leaves translucent-glandular-punctate. Ovules basal, or parietal, orcentral. Myrtaceae- Leaves not translucent-glandular-punctate. Ovules basal. . Rosaceae1529. Plants usually herbaceous, rarely shrublets or trees.-Leaves entire,or dentate, or lobed, or pinnatifid.1530

- Woody plants. Leaves alternate.-Leaves undivided. Inflorescencecymose. Stamens 12-16, connate at base. Ovary inferior, locular atbase. Ovules partly ascending, partly descending. Stigma indistinct.

Styracaceae
1530. Flowers umbellate, outer flowers sterile with enlarged sepals. Stamens many.-Perennial herbs or undershrubs. Leaves with a bifidly lobed apex. Ovary hemi-inferior, incompletely 5 -locular. Ovules patent. Stigma lobed. China, Japan. (Deinanthe, Hydrangeaceae). Saxifragaceae

- Inflorescence without an outer whorl of sterile flowers. Stamens up to 20 , usually in epipetalous groups alternating with usually scalelike staminodes.-Herbs, usually hispid and stinging, rarely woody (Mentzelia). Stipules rarely present. Placentas 3-5, parietal. Ovules
many. Mainly American, rarely S.W. Africa or Arabia (Kissenia).
Loasaceae

1531. Corolla valvate 1532

- Corolla imbricate or apert 1535

1532. Stipules absent. Calyx apert. 1533

- Stipules present. Calyx valvate.--Shrubs or trees. Endosperm present. (Rhizophoreae) Rhizophoraceae

1533. Leaves alternate. 1534

- Leaves opposite.-Ovules many. China, S.E. N. America. (Hydrangeaceae: Decumaria). Saxifragaceae

1534. Ovule 1 per locule Alangiaceae

- Ovules 2-6(-many) per locule Scytopetalaceae

1535. Stipules present.-Flowers solitary. 1536

- Stipules absent 1539

1536. Herbs 1537

- Trees.-Stellately hairy. Sepals and petals 4 or 5. Stamens many. C. America (Dicraspidia) or Peru (Neotessmannia). Tiliaceae

1537. Herbs. Flowers solitary 1538

- Trees. Flowers in a thyrse.-Sepals and petals 4. Stamens 16-25. Ovary 2 -locular. E. Brazil. Dialypetalanthaceae

1538. Sepals 4. Petals, stamens, and locules of the ovary many.Nymphaeaceae- Sepals, petals, and locules of the ovary 6. Stamens 12. (Ludwigia).
Onagraceae
1539. Leaves not translucent-glandular-punctate 1540

- Leaves translucent-glandular-punctate.-Shrubs or trees. Leavesusually with a marginal nerve. Calyx imbricate, or apert, or closedand calyptrate. Endosperm absent.Myrtaceae

1540. Anthers with longitudinal slits, connective inappendiculate.-Woody plants. Stamens numerous 1541

- Anthers usually with terminal pores, connective usually appendicu-late at base.-Leaves opposite or in whorls, usually 3-more-plinerved. Petals usually imbricate or contort, rarely valvate. Endo-sperm absent.Melastomataceae

1541. Bracteoles present. Petals imbricate. Fruit a berry or a capsule witha lid. Endosperm absent.1542

- Bracteoles absent. Petals contort. Fruit a longitudinally dehiscentcapsule. Endosperm present.-Leaves opposite. Filaments free.Anthers latrorse. (Philadelphaceae: Philadelphus)..... Saxifragaceae

1542. Leaves usually opposite. Flowers solitary or in fascicles. Stamensfree. Anthers introrse, dorsifix. Placentas initially basal, later atleast parietal and superimposed.

- Leaves alternate. Flowers in racemes. Stamens more or less dis-
tinctly connate at base. Anthers latrorse, basifix. Ovules axillary, or apical, or basal. 1543

1543. Flowers usually zygomorphic. Sepals valvate. Petals 4 , or 6 , or 8 .Filaments connate at base into an often very unilaterally developedandrophore. Fruit with a lid, either berry-like, or dry. TropicalAmericaLecythidaceae

- Flowers actinomorphic. Sepals \pm imbricate, or calyx tearing irregu-larily at anthesis. Petals 4 . Filaments connate at base to nearly free,not on a unilateral androphore. Fruit a berry without a lid, or 4-winged, dry and indehiscent (Combretodendron). Old World trop-ics. (Barringtoniaceae).Lecythidaceae

1544. (1520). Ovary 1-locular. 1545

- Ovary 2-20-locular. 1546

1545. Sepals 2. Petals 4-6. Ovules basal or central. Fruit a capsule.- Herbs. Leaves well-developed. Stipules present. (Portulaca).Portulacaceae- Sepals and petals 4 -more, usually many. Ovules parietal. Fruit aberry.-Succulents, often spiny. Leaves usually scale-like or absent.
Cactaceae
1546. Ovules 2-more per locule. 1547

- Ovule 1 per locule.-Fruit a berry or a drupe. 1553

1547. Ovules many per locule. 1548

- Ovules 2-4 per locule.-Trees. Stipules present. Anthers withpores. Fruit dry. Endosperm absent.Dipterocarpaceae

1548. Petals many. 1549

- Petals usually 6 or less. 1550

1549. Terrestrial herbs or undershrubs. Fruit a capsule. Embryo curved. (Mesembryanthemum). Aizoaceae

- Aquatic herbs. Fruit a berry. Embryo straight.-Ovules on the septs. Nymphaeaceae

1550. Leaves alternate. 1551

- Leaves opposite.-Shrubs. Stipules absent. Corolla imbricate orcontort. Stamens 3-6. Anthers with longitudinal slits. Stigmas 3-7.Fruit a capsule. Endosperm present. (Philadelphaceae).
Saxifragaceae

1551. Herbs or undershrubs 1552- Trees.-Stipules absent. Corolla valvate. Anthers with pores. Fruita drupe. Endosperm present..................... Scytopetalaceae
1552. Stipules absent. Fruit follicular.-Petals 3, minute. Stamens 12. W.China. (Saruma)Aristolochiaceae- Stipules present. Fruit capsular.-Petals 3-6, imbricate. Stamenswith longitudinal slits. Stigmas 6. Endosperm absent. ... Onagraceae
1553. Leaves opposite, simple. Stipules absent. Perianth simple, segments
$7-10$, imbricate, in a spiral. Stamens 11 , in a spiral. Anthers with 2 introrse valves. Stigma 2- or 3-partite. Ovary 2- or 3-locular.-Chile.
Gomortegaceae

- Leaves alternate, incised to compound. Stipules present, sometimes intra-petiolar or adnate to the petiole and inconspicuous. Perianth differentiated into a calyx and corolla. Petals valvate, in a whorl. Stamens in a whorl. Anthers with longitudinal slits. Stigmas 5more. Ovary 5 -more-locular. Araliaceae 1554. (1519). Ovary 1-locular. 1555
- Ovary 2-more-locular. 1560

1555. Flowers bisexual. 1556

- Flowers unisexual.-Herbs. Stipules present. Sepals and petals (4 or) 5. Placenta parietal. Endosperm absent. Embryo straight. Hawaii. (Hillebrandia).................................. Begoniaceae 1556. Placentas parietal, sometimes protruding into the locule. 1557
- Placenta central.-Herbs. Stipules present. Sepals 2. Petals 4-6. Endosperm present. Embryo curved. (Portulaca). Portulacaceae

1557. Petals imbricate. 1558

1558. Woody plants without stinging hairs. Endosperm copious. 1559

- Usually herbs, rarely shrublets (Mentzelia) or woody climbers (Fuertesia), usually hispid and stinging. Endosperm scanty to ab-sent.-Leaves usually divided. Anthers introrse. Mainly American, rarely from S.W. Africa or Arabia (Kissenia)............. Loasaceae

1559. Parietal placentas slightly protruding into the locule.-Leaves undivided. Anthers extrorse. Flacourtiaceae

- Parietal placentas protruding far into the locule.-Undershrubs.
Saxifragaceae

1560. Ovule 1 per locule.. 1561

- Ovules 2-more per locule. 1563

1561. Ovule pendulous.-Endosperm present. 1562

- Ovule ascending.-Corolla imbricate. Endosperm absent. . Rosaceae

1562. Trees, or shrubs, or undershrubs. Leaves alternate, usually compound or divided. Fruit a berry or a drupe.-Corolla valvate. Styles 5-more
Araliaceae

- Undershrubs. Leaves opposite, divided. Fruit a capsule.-Stamens 12. W. N. America. (Philadelphaceae: Whipplea). Saxifragaceae

1563. Flowers bisexual, rarely polygamous........................... 1564

- Flowers unisexual.-Herbs. Stipules present. Ovules many. Fruit a capsule. Endosperm absent............................ Begoniaceae

1564. Trees, shrubs, rarely undershrubs. Petals $2-10 \ldots \ldots \ldots \ldots .$.

- Herbs or undershrubs. Petals numerous.-Ovules many. Endosperm
present 1571

1565. Leaves opposite or alternate. Stipules absent. Ovules 1 or 2 or many. 1566

- Leaves alternate. Stipules present. Ovules usually 2 per locule,rarely 1 ascending, then corolla imbricate and endosperm absent(Rosaceae).-Petals 51569

1566. Leaves usually opposite. Stamens not in epipetalous groups. Ovules usually many. Fruit a capsule. Endosperm copious. 1567

- Leaves alternate. Stamens in epipetalous groups. Ovules 1 or 2 perlocule. Fruit dry, indehiscent. Endosperm absent.-Shrubs or under-shrubs. Leaves lobed. Stamens many. Styles 2- or 3-fid. America.(Mentzelia)Loasaceae

1567. Leaves simple, sometimes deeply lobed. Disk absent 1568

- Leaves 3-foliolate, apparently in whorls of 6 leaflets. Disk present.- Leaves opposite, apparently 6 in whorl. Australia. (Baueraceae).
Saxifragaceae

1568. Indument absent or of simple hairs. Inflorescence sometimes with sterile marginal flowers with enlarged sepals.-Rhizomatous herbs, or shrubs, or trees. (Hydrangeaceae). Saxifragaceae

- Indument generally of stellate hairs. Sterile marginal flowers never present.-Shrubs, sometimes prostrate. (Philadelphaceae).
Saxifragaceae

1569. Petals apert, ligulate, fleshy. Fruit a capsule.-China, Indo-China. (Mytilaria). Hamamelidaceae

- Petals imbricate or apert. Fruit indehiscent 1570

1570. Corolla contort. Connective usually with distinct apical appendages.Anthers basifix. Style-branches either shorter than the connate partof the style or stigmas 3, subsessile. Fruit dry, indehiscent, with 2 or3 enlarged sepals.-S.E. Asia. (Anisoptera). Dipterocarpaceae

- Corolla usually imbricate, rarely contort. Connective without ap-pendages. Anthers dorsoversatile. Style-branches usually longerthan the connate part of the style. Fruit a berry or a drupe.(Pomoideae)Rosaceae

1571. Aquatics. Ovules parietal. Fruit composed of berries. Embryo straight.-Leaves all radical. (incl. Euryaliaceae: Euryale).Nymphaeaceae

- Terrestrials. Ovules basal, or parietal, or axillary. Fruit a capsule.Embryo curved. (Mesembryanthemum, Orygia).Aizoaceae
SYMPETALAE

1572. (159). Ovary superior or nearly so. 1573

- Ovary inferior or hemi-inferior. 2003

1573. Corolla actinomorphic (especially when contort lobes somewhat un- equal-sided, but equal to each other) 1574

- Corolla more or less zygomorphic. (See glossary) 1896

1574. Stamens free from the corolla, sometimes adherent, but then bases of the filaments free. 1575

- Stamens adnate to the corolla. 1654

1575. Herbs. Corolla-lobes and stamens many. Styles 5. Ovary 5-locular. Ovules many per locule. (Orygia). Aizoaceae

- Plants otherwise 1576

1576. Outer petals connate, inner petals smaller and free from each other. (Exospermum, Bubbia, Zygogynum). Winteraceae

- All petals connate and in one whorl. 1577

1577. Fertile stamens as many as the corolla-segments or less. 1578

- Fertile stamens more than the corolla-segments. 1610

1578. Ovary 1, 1-locular 1579

- Ovary 1,2-more-locular, or ovaries 2 -more, free 1593

1579. Ovule 1. 1580

- Ovules 2-more. 1585

1580. Ovule basal. 1581

- Ovule apical or parietal. 1584

1581. Stigma 1. 1582

- Stigmas 5.-Flowers bisexual, 5-merous. Disk absent. Stamensepipetalous. (Plumbagineae)......................... . . Plumbaginaceae

1582. Filaments free. 1583

- Filaments connate at base.-Leaves opposite. Fruit dry, indehiscent.
Nyctaginaceae

1583. Leaves alternate. Flowers bisexual or polygamous, 5 -merous. Disk present.-Stamens alternipetalous. Fruit a drupe. Plants resiniferous (often poisonous!) Anacardiaceae

- Leaves radical. Flowers unisexual, 4-merous.-Herbs, non- resiniferous. Disk absent. (Littorella)

1584. Leaves in whorls. Flowers bisexual. Anthers with longitudinal slitsor apical pores. Disk more or less distinct. Fruit a capsule or a nut.Embryo straight.-Flowers 4-merous. Stigma 1. Ericaceae

- Leaves alternate. Flowers unisexual. Anthers with transverse slits. Disk absent. Fruit a drupe. Embryo curved. Menispermaceae

1585. Ovules either 2 -more on 1 parietal placenta or 4 -more on a cen-tral or basal placenta.1586

- Ovules many on 2-5 parietal placentas. 1588

1586. Placenta central or basal.-Woody plants. Leaves undivided. 1587

- Placenta parietal. 1591

1587. Leaves opposite. Flowers 5 -merous, in fascicles or in cymes.
Anthers introrse. Style 1. Stigmas 2-4.-Ovules 4, central.
Celastraceae

- Leaves alternate. Flowers 4- or 5-merous, in racemes. Anthers ex- trorse. Styles 2-5, free or connate at base. (Tamariceae).
Tamaricaceae

1588. Leaves alternate. 1589

- Leaves opposite.-Herbs or undershrubs. Petals often connate inthe middle. Flowers polygamous. Stigmas 3 or 4. Frankeniaceae

1589. Stipules absent. 1590

- Stipules present.-Flowers bisexual or polygamous, 5-merous. Fila- ments connate. .. Violaceae

1590. Trees or shrubs, often climbing. Leaves leathery, undivided.Flowers bisexual or polygamous. Stigma 1
Pittosporaceae

- Herbaceous liana. Leaves membranous, lobed. Flowers monoecious.Stigmas 3-10, as many as the placentas. S. Africa. (Ceratiosicyos).
Achariaceae

1591. Leaves compound or reduced to a broadened petiole 1592

- Leaves simple, undivided or lobed.-Stem woody. Stipules absent.Flowers usually unisexual. Sepals connate. Ovules 2, pendulous.Fruit a drupe, or dry and indehiscent. Icacinaceae

1592. Stipules usually present. Corolla-lobes valvate. Ovules ascending, anatropous.-Stigma 1. Leguminosae

- Stipules absent. Corolla-lobes imbricate. Ovules 2, ascending, atropous.-Stem woody Connaraceae

1593. (1578). Ovary 1. 1594

- Ovaries and styles 2-more, free. 1599

1594. Style 1. Stigmas 1 or 2-5, adjacent at base. 1595

- Styles 3-8, free or connate at base but not up to the free stigmas.1596

1595. Leaves simple, undivided or lobed. Filaments free or connate at base only 1600

- Leaves usually pinnately compound. Filaments nearly completely connate. Meliaceae

1596. Stem woody. 1597

- Stem herbaceous, if woody leaves simple and staminodes absent.- Flowers bisexual. (Linum). Linaceae

1597. Flowers unisexual or polygamous. Leaves simple. 1598

- Leaves pinnately compound or unifoliolate. Flowers bisexual.-Fer-tile stamens alternating with alternipetalous staminodes. (Aver-rhoaceae)Oxalidaceae

1598. Flowers unisexual or polygamous. Stamens alternipetalous.- Flowers unisexual. Stamens epipetalous.
Ebenaceae
Euphorbiaceae
1599. Leaves alternate, compound.-Stem woody. Flowers 5-merous. Disk absent. Ovules 2, collateral, atropous. Connaraceae

- Leaves opposite, undivided. Ovules usually many. Crassulaceae

1600. Stigmas 2-5. 1601

- Stigma 1, undivided or lobed. 1603

1601. Ovules 2-more per locule. 1602

- Ovule 1 per locule.-Flowers 5 -merous. Herbs. Petals usually free at base, connate above. Disk present. Malesia to New Zealand.
Stackhousiaceae

1602. Woody plants. Leaves opposite. Corolla imbricate. Ovules 2 per locule. Celastraceae

- Herbs. Leaves alternate, rarely opposite. Corolla valvate. Ovules many per locule. Campanulaceae

1603. Disk present, rarely indistinct. 1604

- Disk absent.-Flowers 5-merous. Anthers with 2 longitudinal slits or with terminal pores. Ovary $2(-5)$-locular 1606

1604. Anthers with 1 or 2 terminal pores or 2 longitudinal slits. 1605

- Anthers with 1 longitudinal slit.-Stem woody. Leaves alternate.Flowers 5-merous. Sepals free. Anthers inappendiculate. Ovulesnumerous.1605. Corolla imbricate1609
- Corolla valvate.-Climbing shrubs. Leaves opposite or in whorls.Calyx valvate. Anthers extrorse. Ovary 5-7-locular. Fruit a berry.Mauritius. (Roussea, also in Brexiaceae or Escalloniaceae).
Saxifragaceae

1606. Bark inside without tough, silky fibres. Ovules 2 -many per locule.1607

- Bark inside with tough, silky fibres. Ovule 1 per locule.-Woody plants. Flowers in umbels. Corolla annular. (incl. Aquilariaceae: Gyrinops, Octolepis, the latter sometimes in Flacourtiaceae).

Thymelaeaceae

1607. Woody, autotrophous plants. Petals imbricate. 1608- Insectivorous herbs.-Leaves circinnate when young, glandular.Petals contort. Ovules many per locule. Australia. Byblidaceae
1608. Ovules 2 per locule, collateral. Endosperm scanty. Sumatra to S.China.

- Ovules many per locule. Endosperm copious. Pittosporaceae

1609. Anthers usually with terminal pores, rarely with longitudinal slits,then flowers usually 4 -merous, if 5 -merous leaves opposite.-Anthers often appendiculate.Ericaceae

- Anthers with 2 longitudinal slits.-Leaves alternate. Flowers 5-merous. Anthers inappendiculate. Tasmania, Fuegia, Patagonia.(Prionotaceae).Epacridaceae

1610. (1577). Stamens twice as many as the corolla-lobes or less. 1611

- Stamens more than twice as many as the corolla-lobes 1612

1611. Stamens 4-10. 1613

- Stamens many.-Herbs. Petals many. Styles 5. Ovary 5-locular. Ovules many per locule. (Corbichonia) Aizoaceae

1612. Stamens 12 -more 1634

- Stamens 9.-Calyx- and corolla-lobes 3. Anthers with valves. Ovary with 1 ovule. Lauraceae

1613. Style 1 per flower, stigma 1, or 2 -more, then adjacent at base. Ovary 1, if more, more or less connate at least at the apex. 1614

- Styles 2-more per flower, free or connate at base but not up to the stigmas, sometimes ovaries free or connate at base only. 1629

1614. Ovary 1 -locular, or incompletely so. 1615

- Ovary 2-more-locular, or nearly so, or ovaries 2-more, more or less connate at least at the apex 1622

1615. Ovule 1. 1616

- Ovules 2-more 1619

1616. Ovule apical or parietal. 1617

- Ovule basal.-Leaves usually opposite. Filaments connate at base. Endosperm present. Nyctaginaceae

1617. Flowers bisexual. Anthers dehiscing longitudinally or apically. En- dosperm present or not.-Leaves alternate or in whorls, rarely opposite 1618

- Flowers unisexual. Anthers with transverse slits. Endosperm present.-Leaves alternate. Filaments completely connate.
Menispermaceae

1618. Bark inside without tough, silky fibres. Leaves in whorls. Flowers 4-merous. Stamens 6-8. Anthers longitudinally or apically dehis- cent. Endosperm present. Ericaceae

- Bark inside with tough, silky fibres. Leaves alternate, rarely op- posite. Flowers 5-merous. Stamens 10. Anthers longitudinally dehis- cent. Endosperm absent. Thymelaeaceae

1619. Leaves alternate. 1620

- Leaves opposite.-Sepals valvate. Petals usually free at base, con- nate above. Stamens usually 6 . Anthers extrorse. Stigmas 2-6.Ovules several - many, on several parietal placentas. . Frankeniaceae

1620. Stipules absent. Calyx and corolla imbricate.-Stamens 10 1621

- Stipules usually present. Corolla- and usually calyx-lobes valvate.Leaves pinnately compound or simple, or reduced to the petiole.Placenta 1, parietal.Leguminosae

1621. Leaves simple, undivided. Ovules 4-6, initially parietal, later cen- tral.-S.W. U.S., Mexico. Fouquieriaceae

- Leaves pinnately compound. Ovules 2, basal or parietal. Connaraceae

1622. Autotrophic, woody plants. Leaves well-developed. 1623

- Saprophytic herbs. Leaves scale-like, not green.-Ovary 4- or 5- locular. Ovules many per locule. Monotropaceae

1623. Bark inside without tough, silky fibres. Ovary usually $3-20$-locular, rarely 2 -locular, then leaves small and endosperm present, orovaries 2 -more, free at base but not at the apex, then leaves trans-lucent-glandular-punctate and ovules 2 per locule. 1624

- Bark inside with tough, silky fibres. Ovary 2-locular--Leaves ratherlarge to large. Flowers in umbels or in capitules. Anthers with 2longitudinal slits. Ovule 1 per locule. Endosperm absent. (incl.Aquilariaceae).Thymelaeaceae

1624. Leaves simple, undivided.-Filaments free, rarely connate, then leaves small, narrow and usually in whorls. 1625

- Leaves pinnately compound, rarely simple and undivided, thenrather large and filaments nearly completely connate, leaves al-ternate, rarely opposite.1628

1625. Flowers bisexual. 1626

- Flowers unisexual or polygamous.-Flowers in racemes, 5-merous. Sepals free. Ovary stipitate. Ovules many per locule. . Capparaceae

1626. Sepals usually connate. 1627

- Sepals free.-Flowers in racemes. Corolla imbricate. Anthers with terminal pores. Ovule 1 per locule. Cyrillaceae

1627. Leaves not translucent-glandular-punctate. Corolla imbricate, rarely valvate, then ovules 3 -more per locule. Ovary 1 .-Ovules 2 -more per locule, rarely only 1 , then flowers 4 -merous. Endosperm copious. Ericaceae

- Leaves translucent-glandular-punctate. Corolla valvate. Ovaries 2- more, free at base, but not at the apex.-Flowers solitary or infascicles. Ovules 2 per ovary.............................. Rutaceae1628. Twigs and petioles with a pale, wavy, sclerenchymatous ring aroundresinous ducts in transverse section. Filaments free. Ovules 2 perlocule.Burseraceae
- Twigs and petioles without such a ring and ducts. Filaments nearly completely connate, rarely free, then ovules many per locule.- Anthers with 2 longitudinal slits. Meliaceae

1629. (1613). Ovary 1-locular. Ovules numerous.-Placenta parietal or basal-parietal. 1630

- Ovary 1, 2-more-locular, or ovaries 2-5. Ovules either few or axil- lary 1631

1630. Leaves opposite. Sepals connate, valvate. Stamens 6. Ovules parietal. Endosperm present. Frankeniaceae-- Leaves alternate. Sepals free, imbricate. Stamens 8-10. Ovules
basal-parietal. Endosperm absent. (Tamariceae). Tamaricaceae
1631. Ovary 1, undivided or lobed. Endosperm present. 1632

- Ovaries 2-5, free, or connate at base only. Endosperm absent.-Woody plants. Leaves compound. Flowers in racemes or in panicles.Stamens 10 . Ovules 2 per ovary, collateral.Connaraceae

1632. Leaves simple.-Sepals connate 1633

- Leaves compound, rarely unifoliolate.-Usually herbs. Stamens 10 , connate at base. Styles 5. (incl. Averrhoaceae) Oxalidaceae

1633. Stipules present. Flowers in panicles. Disk present.-Flowers uni- sexual. Ovule 1 per locule. Euphorbiaceae

- Stipules absent. Flowers in fascicles, or in cymes, or solitary. Diskabsent.-Woody plants. Leaves simple. Ovules 1 or 2 per locule.
Ebenaceae

1634. (1612). Style 1 per flower, simple, stigma 1, or 2 -more, then ad- jacent at base. Ovary 1. 1635

- Styles 2-more per flower, free, or connate at base but not up to the stigmas, or ovaries free, 3 -more 1646

1635. Ovary 1 -locular. 1636

- Ovary at least in the older flowers 2-12-locular.-Woody plants. Leaves simple, undivided. 1641

1636. Ovule or seed 1.-Filaments in bundles. 1637

- Ovules 2-more 1638

1637. Calyx indistinct, at best consisting of tubercles. Anthers inserted on a usually glandular hypanthium.-Corolla (in fact the single perianth) well-developed. (Pisonia). Nyctaginaceae

- Calyx larger than the corolla, accrescent in fruit. Anthers apparently basally attached. (Pentaplaris, ? misplaced in:). Tiliaceae

1638. Leaves simple, undivided. 1639

- Leaves pinnately compound or reduced to a broadened petiole.-Stipules usually present. Corolla valvate. Stigma 1. Ovules parietal.Endosperm scanty or absent.Leguminosae

1639. Sepals 3. Stigma 1 1640

- Sepals 5. Stigmas 3 or 4.-Anthers with longitudinal slits. Ovules many. Placentas several, initially parietal, later apparently axillary. Subtropical N. America. Fouquieriaceae

1640. Filaments connate. Anthers with 1 slit. Stigma small. Ovules 6-8. Placentas several, parietal.-Madagascar. (Cinnamosma).
Canellaceae

- Filaments free. Anthers with 2 longitudinal slits. Stigma broad. Ovules many, irregularily placed on the wall. Annonaceae

1641. Petals connate at base only.-Petals imbricate or scale-like. 1642

- Petals completely connate.-Ovary 3-12-locular, initially incom- pletely so 16441642. Stipules present.--Sepals 5. Ovary 3-locular. Ovules 2 per locule.Dipterocarpaceae
- Stipules absent 1643

1643. Ovary (8-)10-12-locular. Ovules solitary, pendulous.-Petals scale-like. Stamens free or connate in bundles. New Caledonia, Queens-land, ?New Hebrides. (Aquilariaceae: Lethedon)..... Thymelaeaceae

- Ovary either 5 -locular with 2 ovules per locule, or 2-5-locular with many ovules per locule. Theaceae

1644. All flowers fertile, bracts not both coloured and saccate. Sepals con- nate, at least in bud. 1645

- Sterile flowers with coloured, saccate bracts. Sepals 4, free.-Stipules absent. Anthers with longitudinal slits. Tropical America.Marcgraviaceae

1645. Stipules absent. Calyx persistent. Corolla-lobes entire. Anthers with terminal pores. Tropical Africa. Scytopetalaceae

- Stipules present. Sepal-lobes connate in bud, ultimately becomingfree and deciduous. Corolla-lobes fimbriate. Anthers with lateralslits. New Guinea, New Caledonia. (Antholoma). .. Elaeocarpaceae

1646. (1634). Leaves simple 1647

- Leaves pinnately compound.-Stipules present. Corolla-lobes 4 or 5, valvate. Ovules many per carpel. Leguminosae

1647. Stipules absent 1648

- Stipules present.-Flowers unisexual. Corolla-lobes 5 or 6. Disk present. Ovary 2-4-locular. Ovule 1 per locule. Euphorbiaceae

1648. Ovary 1, undivided or lobed 1650

- Ovaries 3 or more, free.-Leaves simple. Stipules absent. 1649

1649. Sepals 2 or 3 . Corolla-lobes 3-6. Annonaceae

- Calyx and corolla both calyptrate, irregularily dehiscent at thebase.-Vegetative parts covered with peltate scales. E. Malesia, N.Australia, W. PacificHimantandraceae

1650. Ovary 2-16-locular 1652

- Ovary 1-locular.-Ovules many. Placentas initially parietal, laterapparently axillary1651

1651. Leaves alternate or in fascicles. Sepals 5, free. Stamens 10-15.-Flowers in racemes or in panicles. Disk present. Endosperm scanty.Subtropical N. America.Fouquieriaceae

- Leaves opposite. Calyx tubular, 5- or 6-dentate. Stamens 20-more.-Inflorescence cymose. Halophylous plants.... Frankeniaceae

1652. Ovules either 2 per locule or many 1653

- Ovules 1 or 2 per locule.-Flowers solitary, or in fascicles, or incymes. Sepals connate. Disk absent. Ovules pendulous. Endospermcopious.Ebenaceae

1653. Corolla imbricate Theaceae

- Corolla contort. (Bonnetiaceae) Theaceae

1654. (1574). Fertile stamens less than the corolla-lobes 1655

- Fertile stamens as many as the corolla-lobes or more 1680

1655. Stamens 2-more 1656

- Stamen 1. 1658

1656. Stamens 5-16.-Corolla-lobes 10 or 15-24. 1657

- Stamens 2-4.-Corolla-lobes 3-12. 1660

1657. Corolla-lobes 10. Stamens 5. Ovary 1 -locular. Ovules many.-Trop- ical America, West Indies. Theophrastaceae

- Corolla-lobes 15-24. Stamens 5-16. Ovary 5-12-locular. Ovule 1 per locule. Sapotaceae

1658. Leaves opposite. Corolla-lobes 4. Ovules many 1659

- Leaves alternate. Corolla-lobes 5. Ovule 1 per locule.-Ovary 2- 4-locular, lobed. Boraginaceae

1659. Herbs. Corolla imbricate. Ovary 1 -locular. Gentianaceae
— Lianas. Corolla valvate. Ovary 2-locular.-Tropical W. Africa.(Antoniaceae: Usteria).1660. Fertile stamens 2 (rarely 3), alternating with the locules of theovary.1661

- Fertile stamens 2 (rarely up to 4), not distinctly alternating with the locules of the ovary.-Disk usually present. 1662

1661. Leaves usually opposite. Disk absent. Anthers with 2 longitudinal slits.-Trees, shrubs, or undershrubs. Ovary 2- (rarely 3-) locular.Oleaceae

- Leaves alternate. Disk present. Anthers with 1 longitudinal slit.- Undershrubs. Disk 4-partite. Epacridaceae

1662. Leaves opposite or in whorls. 1663

- Leaves alternate. 1672

1663. Ovule 1 per complete or incomplete locule. 1664

- Ovules 2-more per locule. 1666

1664. Plants usually woody. Ovary completely or incompletely 2 -, or 4 -, rarely 8 -locular. Fruit usually a drupe 1665

- Plants usually herbaceous, occasionally undershrubs. Ovary 4-locular. Fruit usually dehiscing into 4 drupelets. Labiatae

1665. Endosperm present.-Ericoid undershrubs. Leaves narrow, in whorls. Spikes racemose. Ovules basal, apotropous. S. Africa. (Stil- baceae) Verbenaceae

- Endosperm absent, if present flowers solitary or in cymose inflor-escences and ovule either axillary and campylotropous, or apical andatropous.Verbenaceae

1666. Ovary 2-, rarely 1-locular. 1667

- Ovary 5-locular.-Leaves translucent-glandular-punctate. Ovules 2 per locule. Rutaceae1667. Seeds on enlarged, indurated, more or less hook-shaped funicles(retinacula), rarely without these, then either sepals connate at baseonly, or ovules (and seeds) 1 or 2 per locule.-Leaves simple. Fruita loculicid capsule, placentas persisting on the valves, rarely a 1 - or
2 -seeded drupe 1668
- Seeds without retinacula. 1670

1668. Fruit a 2 -many-seeded capsule. Ovary 2 -locular 1669

- Fruit a 1 - or 2 -seeded drupe. Ovary 1 -, rarely 2 -locular. (Mendon- ciaceae). Acanthaceae

1669. Retinacula well-developed. Ovules 1 -many per locule. Acanthaceae

- Retinacula absent or papillate. Ovules 2 per locule. (Thunberg- iaceae). Acanthaceae

1670. Leaves simple, in aquatic herbs the submerged ones dissected. 1671

- Leaves usually compound.-Sepals nearly completely connate, ifonly at base then leaves compound. Stigmas 2 . Fruit a septifragousor loculicide capsule, placentas persisting on the enlarged sept. Seeds2-many per locule, usually winged. Endosperm absent.
Bignoniaceae

1671. Stamens 4. Fruit a capsule. Endosperm present. (Bacopa, Frey- linia) Scrophulariaceae

- Stamens 2. Fruit a berry, usually white. Endosperm absent.-Ma- lesia to Polynesia. (Cyrtandra) Gesneriaceae

1672. (1662). Ovary 1 -locular. Ovules 3-7.-Stamens 3. 1673

- Ovary 2-10-locular, rarely 1-locular, then ovule 1. 1674

1673. Trees, shrubs, or undershrubs. Calyx cupuliform, 3-6-dentate. Ovules 3. Olacaceae

- Cushion-forming perennials. Sepals 2, free. Ovules 4-7. New Zea- land. (Hectorella). Hectorellaceae

1674. Ovary $2-10$-locular. Ovules 1 or 2 per locule 1675

- Ovary 2-locular, ovules many per locule, rarely 1-locular and ovule 1. 1678

1675. Corolla-lobes 4.-Herbs, sometimes woody at base. Flowers in spikes or in capitules, rarely solitary. Stamens 2. Ovary 2-4-locular. Fruit a capsule with a lid. Plantaginaceae

- Corolla-lobes 5
- Corolla-lobes 5 1676 1676

1676. Stem woody. Ovules pendulous.-Leaves often translucent- glandular-punctate 1677

- Herbs. Ovules ascending.-Leaves not translucent-glandular-punctate. Ovary $2-4$-locular, lobed. Ovule 1 per locule. Fruit aschizocarp or a capsuleBoraginaceae

1677. Fertile stamens 4. Fruit a drupe or a nut.-Leaves undivided, oftentranslucent-glandular-punctate. Anthers confluent at the apex. Diskobscure to absentMyoporaceae

- Fertile stamens 2 or 3 . Fruit a loculicide and septicide capsule.
Leaves translucent-glandular-punctate. Ovary 5-locular. Ovules 2
per locule.

Rutaceae

1679. Seeds few, peltate, minutely pubescent.-Prostrate herbs. Leaves alternate, pinnatifid. Flowers solitary. Disk large, cupular. Capsule stipitate. India to New Guinea. (Ellisiophyllaceae, sometimes in Hydrophyllaceae)

Scrophulariaceae

- Seeds many, not peltate, glabrous. Plants otherwise.

Scrophulariaceae
1680. (1654). Fertile stamens as many as the corolla-lobes. 1681

- Fertile stamens more than the corolla-lobes. 1859

1681. Stamens alternipetalous. 1682

- Stamens epipetalous. 1839

1682. Style either 1 , or 1 per ovary when ovaries free, simple with 1 or 2 -more stigmas adjacent at base, or absent and stigma 1, sessile. 1683

- Styles 2-more, free or connate at base but not up to the stigmas, or connate at the apex only, or stigmas 2 -more, sessile. Ovaries when apparently free with common styles or stigmas. 1812

1683. Ovary 1, 1-locular, sometimes incompletely so... 1684

- Ovary 1,2-more-locular or nearly so, or ovaries 2-more, free 1711

1684. Ovule 1. 1685

- Ovules 2-more 1688

1685. Ovule basal. 1686

- Ovule apical.-Stipules absent. Flowers 5-merous. 1687

1686. Woody plants. Leaves opposite. Stipules minute. Flowers 4-merous.Corolla imbricateSalvadoraceae

- Herbs. Leaves radical. Stipules absent. Flowers 5-merous. Corolla valvate.-Flowers in a capitule, almost actinomorphic..Anthers connate. Stigma with a cup-shaped involucre. Australia. . . Brunoniaceae

1687. Ericoid shrubs. Leaves fan-nerved, white underneath, less than 2.5 cm long. Anthers with 1 longitudinal slit.-Leaves alternate. Australia. (Monotoca) Epacridaceae

- Shrubs, sometimes climbing with tendrils. Leaves pinninerved, not conspicuously white underneath and larger. Anthers with 2 longi-tudinal slits. N.W. S. America. (Metteniusa, also in Icacinaceae, inOpiliaceae as Aveledoa)Alangiaceae

1688. Ovules 2 or 3 1689

- Ovules 4-more 1696

1689. Ovules 3.-Woody plants. Leaves alternate. Corolla 5-partite, valvate 1690

- Ovules 2. 1691

1690. Flowers in racemes. Filaments connate at base. Fruit a drupe.
Styracaceae

- Flowers solitary, also from the axils of fallen leaves. Filaments in-serted on the corolla. Fruit a berry.-Mexico. (Goetzeaceae:Lithophytum)Solanaceae

1691. Leaves simple, undivided, or lobed.-Stipules absent. Calyx apert or imbricate. 1692

- Leaves pinnately compound, rarely reduced to the petiole or absent, then stipules present 1695

1692. Woody plants or twining herbs. Corolla valvate or imbricate. Ovules pendulous.-Fruit indehiscent. 1693

- Herbs, usually climbing with tendrils or prostrate. Corolla plicate. Ovules erect. Convolvulaceae

1693. Erect plants, rarely climbing. Bark without white juice. 1694

- Herbaceous climbers with abundant white juice.-Stipules absent. Inflorescence cymose, cincinnoid. Calyx and corolla imbricate.Ovules apical, pendulous. Fruit dry, indehiscent, winged. S.E. Asiato Australia...................................... . Cardiopteridaceae

1694. Ovules pendulous.-Erect plants, rarely climbing. Icacinaceae

- Ovules basal.-Erect shrubs. Mexico. (Goetzeaceae: Lithophytum).
Solanaceae

1695. Stipules usually present. Flowers in spikes or in capitules. Calyx andcorolla valvate. Ovules serial. Placenta 1, parietal. Fruit a dehiscentpod.--Leaves rarely reduced to the petiole or absent. . Leguminosae

- Stipules absent. Flowers in a panicle. Aestivation various. Ovules not serial on 1 placenta. Fruit a berry.-Petals connate at base only. Filaments nearly completely connate Meliaceae

1696. Ovules 4. 1697

- Ovules 5-more 1701

1697. Leaves alternate.-Ovules basal. 1698

- Leaves opposite or in whorls.-Corolla imbricate. 1700

1698. Plants not cushion-forming. Leaves well-developed, distant. Sepals5. Disk present.1699- Cushion-forming perennials with densely imbricate, small leaves.Sepals 2. Corolla valvate. Disk absent. New Zealand. (Hectorella).
1699. Plants usually climbing with tendrils. Corolla induplicative-plicate.

Convolvulaceae

- Plants erect. Corolla valvate.-Mexico. (Goetzeaceae: Lithophytum).. Solanaceae

1700. Sepals connate. Endosperm absent. (incl. Avicenniaceae, Symphoremataceae). Verbenaceae

- Sepals free. Endosperm usually present.-Woody plants. Flowers 5merous. Fruit a capsule

Celastraceae
1701. Ovules basal or central.. 1702

- Ovules parietal.. . . . 1705

1702. Corolla valvate.. 1703

- Corolla imbricate... . . . 1704

1703. Woody plants. Leaves well-developed, distant, opposite. Calyx 4- or
5-merous. Fruit a berry. (Strychnaceae: Strychnos). Loganiaceae

- Cushion-forming perennials with densely imbricate, small leaves. Sepals 2. Fruit a capsule. New Zealand. (Hectorella). Hectorellaceae

1704. Woody plants. Stipules absent. Fruit a drupe. Verbenaceae

- Herbs. Stipules present. Fruit a capsule.-Sepals free. Endosperm present. Embryo curved............................ Caryophyllaceae

1705. Placentas 2-more. 1706

- Placenta 1.-Leaves alternate, pinnately compound, rarely reduced to a broadened petiole or absent. Stipules usually present. Corolla valvate. (Mimosoideae).

Leguminosae
1706. Leaves simple, rarely digitately compound. 1707

- Leaves pinnately compound.-Woody plants. Leaves usually al- ternate. Stipules absent. Corolla valvate. Filaments nearly com- pletely connate. Ovary initially 4 - or 5 -locular.

Meliaceae
1707. Apex of the style stigmatic on the lower or outer side of a thickened part, summit glabrous.-Woody plants. Latex present. Flowers 5- merous.

Apocynaceae

- Stigma apical on the style, or up to it, or between its lobes. Latex absent. 1708

1708. Corolla valvate.-Endosperm present. 1709

- Corolla imbricate or contort. 1710

1709. Shrubs or trees. Leaves opposite. (Strychnaceae: Strychnos).
Loganiaceae

- Herbs. Leaves radical or alternate. (Menyanthaceae). . Gentianaceae

1710. Corolla contort, rarely imbricate. Fruit a septicide capsule or a ber- ry. Endosperm present.-Sap bitter. Gentianaceae

- Corolla imbricate. Fruit a loculicide capsule. Endosperm absent.- Herbs or shrublets. Leaves usually radical. Gesneriaceae

1711. (1683). Ovary 2-locular, or ovaries 2 , free 1712

- Ovary 3-more-locular, or ovaries 3-more, free. 1759

1712. Ovule 1 per locule or free ovary. 1713

- Ovules 2-more per locule or free ovary. 1725

1713. Leaves simple, sometimes dissected. 1714

- Leaves pinnately compound.-Woody plants. Filaments nearly completely connate.1714. Leaves all, or only the upper opposite.-Style apically stigmatic.1715
- Leaves all, or only the upper alternate, or all radical. 1719

1715. Stipules absent or reduced to an interpetiolary line. 1716

- Stipules present.-Stem woody. Leaves undivided. Calyx shallowly lobed. Corolla valvate. Disk absent. Stigmas 2. Ovules erect. Fruit a drupe. Endosperm present.1716. Corolla imbricate. Ovule basal, or apical, or axillary, then plant her-baceous or ovule campylotropous. Fruit a drupe, or a schizocarp, ora capsule.1717
- Corolla valvate. Ovule axillary, hemitropous. Fruit a berry.-Woody plants. Flowers in cymose panicles. Endosperm present.(incl. Strychnaceae).................................. Loganiaceae

1717. Fruit a 2 -valved capsule, or a drupe, or a schizocarp. Endospermabsent.-Corolla coloured.1718

- Fruit a capsule with a lid. Endosperm present.-Herbs. Flowers inspikes or capitules. Corolla membranous. Stigma undivided. Ovuleaxillary, hemitropous. (Plantago).
Plantaginaceae

1718. Ovule apical or axillary, anatropous or campylotropous. Fruit a drupe or a schizocarp. Verbenaceae- Ovule apical, atropous. Fruit a 2 -valved capsule.-Woody mangroveplants with pneumatophores (adventitious roots sticking up out ofthe mud). Flowers in dense, leafy, cymose spikes, 4-merous.(Avicenniaceae). ... Verbenaceae
1719. Flowers 5-merous. 1720- Flowers 4-merous.-Herbs or undershrubs, rarely shrubs. Flowers inspikes or in capitules, rarely solitary. Sepals connate at base. Diskabsent. Anthers with 2 longitudinal slits. Fruit dehiscing with a lid.
Plantaginaceae
1720. Sepals connate. Anthers with 2 longitudinal slits. 1721

- Sepals free or nearly so. Anthers with 1 longitudinal slit.-Shrubs ortrees, rarely undershrubs. Fruit a berry or a drupe. ... Epacridaceae

1721. Corolla imbricate. 1722

- Corolla plicate. 1724

1722. Herbs. Corolla-tube about as long as the limb. Fruit a capsule or a schizocarp. Embryo straight. 1723

- Large trees. Corolla-tube much longer than the limb. Fruit a drupe.Embryo horse-shoe-shaped.-Flowers in cymes. Style apical. Stigma

1. Amazonia. (sometimes included in Apocynaceae or Boraginaceae).................................. Duckeodendraceae
2. Style apical. Stigmas 2. Fruit a capsule.-Flowers usually in capitules, very small. Temperate America. (Collomia) Polemoniaceae

- Style gynobasic. Stigma 1. Fruit a schizocarp.-Flowers in cincinni.Temperate Old World and Australia. (Rochelia)...... Boraginaceae

1724. Calyx dentate Solanaceae

- Calyx divided more deeply. Convolvulaceae

1725. (1712). Ovules 2 per locule or free ovary 1726

- Ovules 3-more per locule or free ovary 1741

1726. Style stigmatic on the apex, or up to it, or between its lobes. Ovary 1, undivided or shallowly lobed. 1727

- Apex of the style stigmatic on the lower or the outer side of athickened part, summit glabrous.-Stem woody. Latex present.Leaves undivided, usually opposite. Stipules absent. ... Apocynaceae

1727. Leaves all or only the upper opposite or in whorls. 1728

- Leaves all or only the upper alternate, or all radical, or absent. 1731

1728. Disk absent.-Woody plants. 1729

- Disk usually present.-Sepals connate. Micropyle and radicle point- ing down 1737

1729. Sepals connate. Corolla with a distinct tube. Fruit a drupe. 1730

- Sepals free. Petals connate at base only. Fruit dehiscent.-Sepals 5.
CelastraceaeFruit 1-locular, 1 -seeded. Endosperm present

1730. Climbing shrubs. Flowers in involucrate capitules; bracts 6 . Stamens 5-16. Ovules anatropous. (Symphoremataceae). Verbenaceae

- Erect shrubs or trees. Flowers in racemes. Stamens 4. Ovules an- atropous. Oleaceae

1731. Ovules either basal, or ascending, or patent, or axillary and hemi- tropous. 1732

- Ovules pendulous, anatropous, raphe ventral. 1739

1732. Ovules basal 1733

- Ovules axillary.-Sepals connate. Corolla imbricate. Endosperm present. Embryo straight. 1735

1733. Trees or shrubs. Corolla valvate. Endosperm absent. Embryo straight or slightly curved.-Calyx 4-6-lobed, lobes valvate. West Indies. (Goetzeaceae: Coeloneurum, Goetzea). Solanaceae

- Climbers or twiners, rarely erect plants. Corolla plicate, or induplicate, or imbricate. Endosperm present. Embryo curved or folded. 1734

1734. Twining parasites. Flowers 4 -merous. Calyx connate. Corolla imbri- cate. (Cuscutaceae). Convolvulaceae

- Climbers, rarely erect plants, not parasiting. Flowers 5-merous. Sepals usually nearly free. Corollaplicate or induplicate. Convolvulaceae

1735. Flowers 5 -merous, rarely 4 -merous, then stigmas 2. Disk more or
less developed, hypogynous. Fruit a capsule or a drupe. 1736

- Flowers 4-merous. Fruit dehiscing with a lid.--Leaves undivided orlobed. Flowers in spikes, or in capitules, rarely solitary and ter-minal. Stigma 1. Ovules axillary, campylotropous. .. Plantaginaceae

1736. Herbs. Fruit a capsule. Ovules apotropous. Polemoniaceae

- Shrubs. Fruit a drupe. Ovules epitropous.-Pantropical, restrictedto riverbeds. (Ehretiaceae: Rotula).1737. Ovary completely 2 -locular. Fruit a septicide capsule.-Diskpresent.1738
- Ovary more or less incompletely loculed. Fruit a schizocarp or adrupe.-Funicles inconspicuous, seeds (sub-)sessile. Endosperm ab-sent... Verbenaceae

1738. Ascending herb. Leaves opposite. Calyx deeply 3-fid. Funicles large, indurated, hook-shaped. Endosperm absent. Brazil. (Pentstemona- canthus) Acanthaceae

- Virgate undershrubs. Leaves in whorls. Colyx 5-dentate. Funicles inconspicuous, seeds (sub-)sessile. Endosperm present. S. Africa. (Retziaceae, also in Scrophulariaceae, Solanaceae). Loganiaceae

1739. Styles 2. Stigma 1 per style.-Ericoid shrublets. Stipules absent.Sepals connate. Corolla imbricate, not plicate. Fruit a capsule or anut. Endosperm present. Embryo minuscule. S. Africa. . Bruniaceae

- Style 1. Stigmas 1 or 2. 1740

1740. Leaves undivided. Stipules present, though often inconspicuous. Flowers in cymes. Stigmas 2.-Flowers 5 -merous. Ovules pendulous.
Dichapetalaceae- Leaves usually pinnately compound. Stipules absent. Flowers inpanicles. Stigma 1, undivided or lobed.-Filaments nearly com-pletely connate.. Meliaceae
1741. (1725). Stigma apical on the style or immediately below it, or be-tween its apical lobes.-Ovary 1, undivided or shallowly lobed. 1742

- Apex of the style stigmatic on the lower or outer side of a thickenedpart, summit glabrous.-Latex present. Leaves undivided, usuallyopposite. Stipules absent. Flowers 5 -merous. Ovary 1, 2-locular.
Apocynaceae

1742. Leaves all, or only the upper, alternate, or all radical. 1743

- Leaves all, or only the upper, opposite or in whorls 1746

1743. Bracts, if any, not transformed. 1744

- Bracts of sterile flowers saccate, pitcher-like, or spathulate, brightlycoloured.--Woody plants. Leaves simple. Flowers 5-merous. Sepalsfree. Corolla imbricate, 5-partite. Tropical America. Marcgraviaceae

1744. Sepals connate 1745- Sepals free.-Trees. Corolla unilaterally induplicate. Flowers soli-tary, axillary. Madagascar. (Humbertiaceae).......... Convolvulaceae
1745. Leaves simple 1753

- Leaves 1- or 3-foliolate.-Woody plants. Corolla nearly actino- morphic, 5 -lobed, imbricate. Endosperm absent. Bignoniaceae

1746. Fruit either septicide, or both septicide and loculicide, or indehis- cent. Funicles not indurated, seeds (sub-)sessile. Endosperm pre- sent. 1747

- Fruit loculicide. Funicles indurated, more or less hook-shaped. En-dosperm absent.-Stipules absent. Corolla imbricate, often contort.
Acanthaceae

1747. Leaves pinnately compound.-Trees (Oroxylum) or lianas (Nycto- calos). Corolla imbricate. S.E. Asia. Bignoniaceae

- Leaves simple 1748

1748. Sap bitter. Corolla contort, segments overlapping to the right (later-ally seen).-Herbs or undershrubs, rarely shrubs. Stipules absent,sometimes an interpetiolary line present.Gentianaceae

- Sap not bitter. Corolla either valvate, or imbricate but not contort,or contort and segments overlapping to the left, rarely to the right,then plants woody and leaves either with a sheath at base, orauriculate.1749

1749. Corolla valvate 1750

- Corolla imbricate or contort 1752

1750. Woody plants. Corolla valvate or induplicative-valvate. 1751

- Herbs. Corolla exduplicative-valvate.-Style articulated. (Spigelia-ceae: Spigelia).
Loganiaceae

1751. Virgate shrub, glandular-hairy. Leaves in whorls. Stipules ab- sent. Corolla induplicative-valvate.-S. Africa. (Retziaceae, also in Scrophulariaceae or Solanaceae) Loganiaceae

- Shrubs or trees, not glandular-hairy. Leaves opposite. Stipules con-nate into a sheath, or reduced to an interpetiolary line. Corollavalvate. (Antoniaceae, Strychnaceae).Loganiaceae

1752. Corolla imbricate, rarely contorted to the left. Fruit a capsule.
Loganiaceae

- Corolla contorted to the right. Fruit a berry. (Potaliaceae). Loganiaceae

1753. Calyx 5-merous 1754

- Calyx 4-partite.-Herbs or undershrubs. Flowers in spikes, or incapitules, rarely solitary, terminal. Corolla 4-lobed, imbricate, notplicate. Disk absent. Stigma undivided. Capsule dehiscing with a lid.(Plantago).. Plantaginaceae

1754. Corolla-lobes 5, imbricate, not plicate. Fruit a capsule, dehiscing longitudinally.-Plants usually herbaceous 1756

- Corolla valvate or plicate, then sometimes imbricate, rarely imbri-cate and not plicate, then plants either herbaceous with undivided orlobed leaves, flowers solitary and axillary, calyx actinomorphic, 5-
fid, corolla 5-lobed, and stigma undivided or lobed, or plants woody and flowers solitary and axillary, or flowers in fascicles or cymose racemes and corolla 5 -, rarely 4 -lobed or -partite. Fruit a berry or a capsule dehiscing with a lid. 1755

1755. Ovules 4. Endosperm absent.-West Indies. (Goetzeaceae: Goet- zea). Solanaceae

- Ovules usually numerous, rarely 4. Endosperm present. (incl. Sal- piglossidaceae). Solanaceae

1756. Leaves not both filiform and circinnate in bud. Corolla-lobes imbri- cate, distinctly connate. 1757

- Leaves filiform, circinnate in bud. Corolla-lobes contort, nearly free to base.-Herbs, sometimes slightly shrubby with glandular hairs (insectivorous). Flowers solitary, axillary. Capsule 2-4-valved. Aus- tralia Byblidaceae

1757. Leaves pinninerved, entire to pinnate. Flowers not in secund cin- cinni. Stigmas 1 or 2. 1758

- Leaves palmately lobed. Flowers in secund cincinni. Stigma 2-, rare- ly 3 -lobed.-Ovules many per locule. (Romanzoffia).'
Hydrophyllaceae

1758. Flowers minute, in capitules. Stigmas 2. Ovules rather few per locule. Fruit 3-valved. Testa mucilaginous. (Collomia).
Polemoniaceae

- Flowers relatively large, not in capitules. Stigma 1. Ovules many per locule. Fruit 2 -valved, valves sometimes bifid. Testa not muci- laginous. (Verbascum). Scrophulariaceae

1759. (1711). Ovary 3 -locular, or ovaries 3 , free 1760

- Ovary 4-more-locular, or ovaries 4-more, free. 1784

1760. Stigma 1, undivided or lobed. 1761

- Stigmas 3 1764

1761. Leaves opposite 1762

- Leaves alternate. 1772

1762. Stipules absent. 1763

- Stipules present.- Disk absent. Ovary undivided. Fruit a capsule.(Geniostoma)Loganiaceae

1763. Flowers in cymes. Disk absent. Ovary bipartite. Fruit a berry.
Apocynaceae

- Flowers in umbels. Disk present. Ovary undivided. Fruit a capsule.
Ericaceae

1764. Corolla contort, not plicate.-Flowers 5-merous. Sepals connate. Disk present. Stigmas linear. Fruit dry 1765

- Corolla valvately plicate or imbricate, not contort. 1766

1765. Woody climbers. Leaves paripinnate, the terminal pair of leafletstransformed into tendrils. Stipules usually resembling the lower
leaflets. Capsule septicide. (Cobaeaceae) Polemoniaceae

- Plants rarely woody, never climbing. Leaves, if compound, impari-pinnate, without tendrils. Stipules absent. Fruit a loculicide capsuleor indehiscentPolemoniaceae

1766. Leaves alternate or in pairs but not opposite. 1767

- Leaves opposite.-Woody plants. Disk absent. Endosperm present.1771

1767. Stipules absent. Endosperm present 1768

- Stipules present. Endosperm absent Dichapetalaceae

1768. Ovules many per locule 1769

- Ovules 2 per locule.-Sepals free. Corolla plicate. Disk present.
Convolvulaceae

1769. Corolla imbricate. Disk absent 1770

- Corolla valvate or plicate. Disk present.-Leaves alternate or in pairs, but not opposite. Fruit a berry. Solanaceae

1770. Woody plants Theaceae

- Herbs Diapensiaceae

1771. Stipules absent. Sepals free. Corolla imbricate. Ovules 2 per locule. Fruit a capsule.-Flowers 5 -merous. S.E. Asia to China, Mexico, C. America. (Microtropis). Celastraceae

- Stipules present. Sepals connate. Corolla valvate. Ovule 1 per
locule. Fruit a drupe Rubiaceae

1772. Flowers 4-merous. 1773

- Flowers 5-merous 1776

1773. Corolla imbricate 1774

- Corolla valvate or plicate. 1775

1774. Flowers in spikes or in capitules. Filaments free. Endosperm present.-Herbs or undershrubs. Calyx deeply divided. Disk absent. Fruit a capsule Plantaginaceae

- Flowers in panicles. Filaments nearly completely connate. Endo- sperm absent.-Ovules 1 or 2 per locule Meliaceae

1775. Ovules 1 or 2 per locule. Endosperm absent.-Corolla valvate. Fila- ments nearly completely connate. Anthers with longitudinal slits.
Meliaceae

- Ovules many per locule. Endosperm present.-Disk present. Fruit a berry. Solanaceae

1776. Corolla plicate. 1777

- Corolla valvate or imbricate, not plicate 1779

1777. Sepals connate. Embryo curved. 1778

- Sepals free. Embryo plicate.-Herbs or undershrubs. Disk present.Anthers with 2 longitudinal slits. Ovary undivided. Ovules 2 perlocule. Fruit a capsule.Convolvulaceae

1778. Ovary either undivided, ovules 3-6 per locule, or ovary deeply di-
vided, ovules 1 or 2 per locule. Fruit a schizocarp. Nolanaceae

- Ovary undivided. Ovules many per locule. Fruit a berry. Solanaceae

1779. Corolla valvate 1780

- Corolla imbricate.-Anthers with 1 transverse or 2 longitudinal slits.1783

1780. Filaments free. 1781

- Filaments connate.-Anthers with 2 longitudinal slits 1782

1781. Anthers with 1 longitudinal slit. Ovule 1 per locule.-Shrubs or trees. Disk present. Fruit a drupe. Epacridaceae

- Anthers with 2 longitudinal slits or pores. Ovules many per locule.-Endosperm present. Solanaceae

1782. Flowers in panicles. Ovules 1 or 2 per locule. Endosperm absent.
Meliaceae

- Flowers in racemes. Ovule 1 per locule. Endosperm present.Styracaceae

1783. Herbs or undershrubs. Ovules many per locule.-Disk absent. Fruit a capsule. Diapensiaceae

- Woody plants. Ovules 1 or 2 per locule. Meliaceae

1784. (1759). Ovary 4-locular, or ovaries 4, free 1785

- Ovary 5-more-locular, or ovaries 5-more, free 1786

1785. Style stigmatic at the apex or between the apical lobes. 1788

- Styles stigmatic below the apex, usually free at base.-Tropical Africa. (Pleiocarpa) Apocynaceae

1786. Leaves compound 1787

- Leaves simple 1802

1787. Leaves digitately 3 -foliolate, translucent-glandular-punctate. Fila- ments free Rutaceae

- Leaves pinnately compound, not translucent-glandular-punctate. Filaments nearly completely connate Meliaceae

1788. Ovules 1 or 2 per locule, rarely more, then corolla imbricate, not plicate. 1789

- Ovules many per locule. Corolla plicate or valvate.-Leaves alter- nate or in pairs but not opposite. Sepals connate. Anthers with 2longitudinal slits or apical poresSolanaceae

1789. Anthers with 2 longitudinal slits; thecae rarely apically confluent.1790

- Anthers with 1 longitudinal slit.-Woody plants. Sepals free.
Epacridaceae

1790. Leaves opposite or in whorls, exceptionally alternate, then leaves simple, flowers solitary, axillary, corolla with a distinct tube, 4- merous, stigmas 2 , fruit a drupe 1791

- Leaves alternate, at least the upper, or all radical. 1795

1791. Ovary undivided or shallowly lobed. 1792

- Ovary deeply divided.-Ovule 1 per locule 1793

1792. Ovule 1 per locule. (Endosperm present: Dicrastylidaceae- Physopsideae). (incl. Avicenniaceae).................... Verbenaceae

- Ovules many per locule. (Potaliaceae: Anthocleista, Potalia; Buddle- jaceae: Buddleja). Loganiaceae

1793. Flowers 5-merous, in cincinni.-Calyx divided. Stigma 1.
Boraginaceae

- Flowers 4-merous, solitary or in false whorls or in panicles 1794

1794. Flowers solitary. Ovule erect, atropous.-Creeping herbs, rooting at the nodes. New Zealand, Patagonia. (Tetrachondraceae, also in Labiatae, Scrophuilariaceae) Boraginaceae

- Flowers in false whorls or in panicles. Ovule anatropous, erect, apotropous. Labiatae

1795. Leaves simple. 1796

- Leaves pinnately compound.-Woody plants. Filaments nearly completely connate Meliaceae

1796. Petals connate into a distinct tube, which is rarely very short, then either stem herbaceous, or anthers connate, or ovules many. 1797

- Petals only slightly connate at base.-Stem woody. Anthers free. Corolla imbricate. Disk absent. Ovary undivided. Ovules 1 or 2 per locule. Fruit a drupe or a berry. Aquifoliaceae

1797. Flowers 5 -merous, very rarely 4 -merous, then stem woody, disk present, and fruit a drupe. 1798

- Flowers 4-merous.-Stem herbaceous or woody at base only. Flowers inspikes or in capitules, rarely solitary, terminal. Calyx divided. Corollaimbricate. Disk absent. Stigma 1. Fruit dehiscing with a lid. Embryostraight or nearly so, radicle pointing down.Plantaginaceae

1798. Ovules 1-3 per locule. 1799

- Ovules many per locule. 1801

1799. Corolla imbricate or contort, not plicate. 1800

- Corolla valvate or plicate.-Ovules 1 or 2 per locule. Micropyle andradicle pointing down. Embryo curved or plicate. Convolvulaceae

1800. Style terminal. Ovules 2 or 3 per locule, apotropous. Fruit a berryor a capsule.Solanaceae

- Style usually gynobasic, rarely terminal, then plants woody, tropical,ovule 1 per locule, and fruit a drupe (Ehretiaceae: Lepidocordia,Rotula). Ovules 1 or 2 per locule, epitropous. Fruit a drupe or aschizocarpBoraginaceae

1801. Flowers in terminal racemes. Bracts saccate, brightly coloured.- Tropical America Marcgraviaceae

- Flowers solitary or in axillary racemes. Bracts not so Theaceae

1802. (1786). Corolla with a distinct tube 1803- Petals only slightly connate at base.-Shrubs or trees. Sepals con-
nate. Corolla imbricate. Anthers with 2 longitudinal slits. Disk absent. Ovary undivided. Ovules 1 or 2 per locule. Fruit a drupe or a berry. Embryo straight
Aquifoliaceae
1803. Corolla valvate or imbricate, not plicate. 1804

- Corolla plicate.-Flowers solitary. Sepals connate. Anthers with 2longitudinal slits. Fruit a schizocarp. Embryo curved. W. S. Amer-ica.Nolanaceae

1804. Plants autotrophic with green leaves. Ovary $5-10$-locular 1805

- Parasitic herbs. Leaves scale-like, brown. Ovary 12-28-locular.-Flowers in spikes, or in capitules, or in panicles. Sepals free. Co-rolla imbricate. Disk absent. Anthers with 2 longitudinal slits. Ovule1 per locule. S.W. U.S., Mexico.Lennoaceae

1805. Anthers with 1 transverse or 2 longitudinal slits. 1806

- Anthers with 1 longitudinal slit.-Leaves alternate, rarely opposite,then ovule 1 per locule. Sepals free or nearly so. Disk usuallypresentEpacridaceae

1806. Anthers with 2 longitudinal not confluent slits. 1807

- Anthers with 1 transverse or 2 confluent slits.-Woody plants. Leaves alternate. Sepals connate. Ovary simple. Ovule 1 per locule.
Myoporaceae

1807. Leaves alternate. 1808

- Leaves opposite.-Woody plants. Sepals connate. 1810

1808. Sepals connate. Ovules 1 or 2 per locule. 1809

- Sepals free. Ovules many per locule.-Bracts saccate, brightly coloured. Ovary undivided, 5- or 6-locular. Tropical America.Marcgraviaceae

1809. Herbs. Leaves not translucent-glandular-punctate. Ovary 10-locular. Ovule 1 per locule. Boraginaceae

- Woody plants. Leaves translucent-glandular-punctate. Ovary 5- partite. Ovules 2 per locule Rutaceae

1810. Ovules 1 or 2 per locule or free ovary 1811

- Ovules many per locule.-Leaves spinous. Ovary undivided, 5-locular at base, 1-locular at the apex. Andes. (Potaliaceae: Desfon-tainia)1811. Ovary undivided. .. Verbenaceae
- Ovaries 5, free.-Tropical Africa. (Pleiocarpa) Apocynaceae

1812. (1682). Styles free at base, connate at the more or less thickened apex.-Leaves usually opposite. Styles $2(-5)$ 1813

- Styles entirely free, or connate at base only 1816

1813. Flowers 5 -merous. Style with a thickened apex stigmatic on its sides or base. 1814

- Flowers 4-merous. Style apically stigmatic.-Herbs. Leaves at basewith an interpetiolary ridge or sheath. Ovary 2 -locular.
(Spigeliaceae: Mitrasacme) Loganiaceae

1814. Stamens free. Pollen free 1815

- Stamens connate and adnate to the style apex into a \pm capitatebody. Pollen coherent into pollinia.-Leaves above with or withouta tuft of short, cylindric, hair-like appendages ('colleters') at the baseof the midrib. Corolla often more or less urceolate, the tube usuallyshorter than the lobesAsclepiadaceae

1815. Anthers coherent and appressed against the apex of the style, alter- nating with spathulate appendages of the latter on which the pollen is discharged and which conceal the stigmatic areas of it. (Periplo- сасеае) Asclepiadaceae

- Anthers free from the style or not, the latter without such appen-dages.-Leaves above without colleters. Corolla rotate, or cam-panulate, or funnel-, or salver-shaped, the tube usually longer thanthe lobesApocynaceae

1816. Styles or style-branches 2 , simple 1817

- Styles or style brances 3-more 1829

1817. Ovary either strictly 1-locular or (in-)completely 2-or 3-locular. 1818

- Ovary (in-)completely 4-locular, or ovaries 4, free.-Ovules 4 perflower. 1828

1818. Stipules present, sometimes early fugacious 1819

- Stipules absent 1821

1819. Leaves opposite 1820

- Leaves alternate.-Woody plants. Flowers 5-merous. Ovary 2- locular. Ovules 2 per locule, pendulous, anatropous. Fruit a drupe. Endosperm absent Dichapetalaceae

1820. Woody plants. Style 1, bipartite. Ovule 1 per locule. Fruit a drupe.Rubiaceae

- Herbs. Styles 2, free. Ovules many per locule. Fruit a capsule. (Spigeliaceae: Mitrasacme) Loganiaceae

1821. Micropyle and radicle pointing up or to the centre. Embryo straight.1822

- Micropyle and radicle pointing down. Embryo curved or plicate.Leaves alternate. Ovary either 1 -locular and ovules $2-4$, or 2 -locular, ovules 1 or 2 per locule.................... . . Convolvulaceae

1822. Ovary 1-locular.-Herbs, rarely undershrubs or shrubs, then flowers in compound cincinni 1823

- Ovary 2- or 3-locular. 1826

1823. Ovules 2.-Leaves alternate. Flowers (4- or) 5-merous 1824

- Ovules many 1825

1824. Erect plants, rarely twining. Bark without white juice. . . Icacinaceae

- Herbaceous climbers with abundant white juice.-Stipules absent

Inflorescence cymose, cincinnoid. Calyx and corolla imbricate. Ovules apical, pendulous. Fruit dry, indehiscent, winged. S.E. Asia to Australia. Cardiopteridaceae
1825. Leaves radical or alternate, rarely opposite. Corolla imbricate. Fruit loculicide, rarely septicide and loculicide, or dehiscing irregularily. -Herbs, rarely shrubs or undershrubs, then, as usual, flowers in compound cincinni. Hydrophyllaceae

- Leaves opposite. Corolla contort, rarely imbricate. Fruit septi-cide.-Herbs. Style apically slightly bifid. Gentianaceae

1826. Ovules 2 -more per locule 1827

- Ovule 1 per locule.-Shrublets or woody herbs. Flowers solitary or in dense lateral cincinni. Flowers 4 -merous. Ovary 2 -locular. Ovule pendulous, anatropous. Africa. (Wellstediaceae). Boraginaceae

1827. Plants usually herbaceous. Flowers in cincinni. Ovary 2. or 3- locular. Ovules 2 -more per locule. Hydrophyllaceae

- Ericoid shrubs or undershrubs. Flowers in spikes or capitules. Ovary
2-locular. Ovules 2 per locule.-Leaves alternate, entire. Flowers 5
merous. Ovary slightly immersed in the receptacle. S. Africa.

Bruniaceae

1828. (1817). Micropyle and radicle pointing down. 1993

- Micropyle and radicle pointing up or to the centre.-Leaves undivided, alternate. (incl. Ehretiaceae). Boraginaceae

1829. (1816). Ovary 1, rarely 4, then connate at base. 1830

- Ovaries 3-30, free.-Flowers bisexual. Styles 3-30. Ovules usually many per ovary. Fruit a capsule.......................Crassulaceae

1830. Ovary 1- or 2-locular.-Fruit a capsule. 1831

- Ovary 3-16-locular, or ovaries 4, free........................... 1833

1831. Woody plants. Leaves opposite or sub-verticillate. Flowers bisexual.
Ovary 2-locular, if 1 -locular ovules 3 or 4 .-Style 4 -fid. Ovules 2 -
more. .. 1832

- Herbs or undershrubs. Leaves alternate. Flowers unisexual. Ovary 1-locular.-Disk present. Ovules 6-more. S. Africa..... Achariaceae

1832. Nodes with an interpetiolary ridge or connate stipules. Glandular hairs absent. Ovary 2 -locular. Ovules 2 or many per locule. Seeds without an apical tuft of hairs. (Gelsemieae).

Loganiaceae

- Stipules absent. Glandular hairs present. Ovary 1-locular. Ovules 3 or 4. Seed with an apical tuft of hairs.-Mexico, C. America. (Plocospermataceae).

Loganiaceae
1833. Stipules absent. Endosperm present, rarely absent, then style with 4 branches.

1834

- Stipules present, sometimes soon fugacious. Endosperm absent.Shrubs or trees. Leaves undivided, alternate. Flowers in cymes. Styles or style-branches 3. Ovary 3-locular. Ovules 2 per locule,
pendulous. Fruit a drupe Dichapetalaceae

1834. Flowers unisexual or polygamous.-Woody plants. 1835

- Flowers bisexual, rarely polygamous, then ovules ascending 1836

1835. Ovules 1 or 2 per locule.-Leaves undivided. Disk absent. Ovules pendulous. Ebenaceae

- Ovules many per locule.-Petals connate at base only. Fruit a berry. Theaceae

1836. Styles free, 3 or 5 1837

- Styles connate at least at base, 2-4. 1838

1837. Herbs. Styles 3. Hydrophyllaceae

- Shrub or small tree. Styles 5.-Fruit a drupe. New Caledonia. (also in Aquifoliaceae or Ebenaceae) Oncothecaceae

1838. Style-branches and locules of the ovary or free ovaries 4. Fruit a drupe or drupelets 4.-Shrubs or trees. (Ehretiaceae). Boraginaceae

- Style-branches and locules of the ovary (2 or) 3. Fruit a capsule or a nut.-Plants usually herbaceous. Polemoniaceae

1839. (1681). Ovary 1-locular. 1840

- Ovary 2-more-locular 1852

1840. Inflorescence not surrounded by a calycoid involucre 1841

- Inflorescence usually surrounded by a calycoid involucre.-Stemwoody. Perianth-segments 4, valvate. Stamens free. Ovules basal, orapical, or parietal. Endosperm absent.Proteaceae

1841. Ovule 1. 1842

- Ovules 2-more, sometimes completely immersed in the central placenta, which then resembles a large, atropous, basal ovule. 1843

1842. Calyx-segments 2 or 5. Corolla-lobes 5, imbricate. Ovule basal. Fruit a capsule or a nut. 1844

- Calyx 4-dentate. Corolla-lobes 4, valvate. Ovule apical or sub- parietal. Fruit a drupe.-Endosperm copious. S.E. Asia. (Can- sjera, Lepionurus) Opiliaceae

1843. Calyx-segments 4-7. 1846

- Sepals 2.-Stem herbaceous. Ovules basal. Embryo curved.
Portulacaceae

1844. Calyx-segments 5. Stigmas 5. Embryo straight. 1845

- Calyx-segments 2. Stigmas 1 or 3. Embryo curved.-Herbs.
Basellaceae

1845. Large shrubs. Endosperm absent. (Aegialitidaceae). Plumbaginaceae- Herbs, undershrubs, or climbers. Endosperm present. (Limo-niaceae).Plumbaginaceae
1846. Corolla sometimes with alternipetalous appendages or a confluentrim, lobes usually imbricate. Disk absent. Ovules ascending. ... 1847

- Corolla-lobes usually valvate. Disk present. Ovules pendulous, 2 or3.-Shrubs or trees. Fruit a drupe.Olacaceae

1847. Ovules central or basal. 1848

- Ovules parietal.-Stipules present. Calyx valvate. Filaments con-nate. Ovules 2.Sterculiaceae

1848. Ovules central, if basal immersed in a swollen, central placenta. 1849

- Ovules basal.-Shrubs. Stamens 5, staminodes 5, filiform. Anthersintrorse. Ovules 5-7. Fruit a 2 -seeded drupe. Arabia to N.W. In-dia. (Reptonia)... Sapotaceae

1849. Anthers dehiscing introrse, or latrorse, or apically. Staminodes rarely present. 1850

- Anthers extrorse. Staminodes alternating with the stamens, or dis- coidally confluent (Theophrasta).-Trees or shrubs. Filaments free, rarely connate (Clavija). Fruit a berry or a drupe. Tropical Amer- ica. Theophrastaceae

1850. Shrubs or trees, rarely herbs or undershrubs. Fruit a berry or a drupe or a viviparous follicle. 1851

- Herbs or undershrubs. Fruit a capsule. Endosperm present.-Flowers bisexual.Primulaceae

1851. Mangrove treelets. Anthers with a transverse sept. Fruit a vivi-parous follicle. Endosperm absent. (Aegicerataceae). . . . Myrsinaceae

- Plants not from the mangrove. Anthers without transverse septs. Fruit a berry or a drupe. Endosperm present. Myrsinaceae

1852. (1839). Ovule 1 per locule 1853

- Ovules 2 -more per locule.-Ovary 5-locular 1855

1853. Style divided. Fruit a capsule or a schizocarp-Calyx valvate. Corolla imbricate. 1854

- Style 1, undivided. Fruit a berry.-Shrubs or trees. 1856

1854. Herbs. Calyx 5-lobed. Anthers 1-locular. Malvaceae

- Trees. Calyx 3-lobed. Anthers many-locular Bombacaceae

1855. Ovules 3 or more per locule. Style undivided.-Trees. Leaves digi- tately nerved Bombacaceae

- Ovules 2. Style 5-partite.-Calyx valvate. Filaments connate. Diskabsent. Ovules ascending.Sterculiaceae

1856. Leaves undivided. Calyx and corolla imbricate 1857

- Leaves usually 3-foliolate, or 1-4 times pinnate, rarely 1 -foliolate.Calyx apert. Corolla valvate.-Stipules large, connate with thepetiole. Free apical part of the filaments arising outside their tube,arching over it and bearing the anther within. (Leea, also includedin Vitaceae).Leeaceae

1857. Calyx and corolla imbricate. 1858

- Calyx apert. Corolla valvate.-Flowers in sessile cauliflorous fas-cicles. Ovary 5-locular. N. Brazil. (Brachynema)Olacaceae

1858. Flowers in fascicles, rarely solitary, fascicles sometimes on shortbranchlets. Ovary (2- or 3-) 4-more-locular. Pantropical. Sapotaceae

- Flowers in elongated racemes or in panicles. Ovary 2-locular. S.E.Asia. (Sarcospermataceae).Sapotaceae

1859. (1680). Stamens up to twice as many as the corolla-lobes. 1860

- Stamens more than twice as many as the corolla-lobes 1878

1860. Style 1, undivided, stigma 1, undivided or lobed, or sessile. 1861

- Styles 2-more, free or connate, but rarely as far as the stigmas, or stigmas 2-more, sessile 1874

1861. Leaves undivided, or digitately or once-pinnately compound. Ovary completely, rarely incompletely 2 -more-locular, if 1 -locular corolla imbricate, rarely valvate.-Stipules absent. 1862

- Leaves twice-pinnately compound, rarely reduced to the petiole, or absent. Corolla valvate. Ovary 1-locular. (Mimosoideae).
Leguminosae

1862. Filaments almost completely connate. Anthers with longitudinal slits. Disk usually present.-Leaves when simple not translucent- glandular-punctate. Ovules 1 or 2 per locule. 1863

- Filaments free or connate at base, if nearly completely so either leaves translucent-glandular-punctate or anthers with terminal pores. 1864

1863. Leaves usually pinnately compound, rarely simple. Flowers hypo- gynous. Ovules 1 or 2 per locule. Meliaceae

- Leaves simple. Flowers epi- or perigynous. Ovule 1 per locule. (Di- clidanthera, Eriandra). Polygalaceae

1864. Leaves undivided, rarely translucent-glandular-punctate, then disk absent and ovules many. 1865

- Leaves undivided, or unifoliolate, or digitately compound, trans- lucent-glandular-punctate. Disk present. Ovules 1 or 2 per locule.
Rutaceae

1865. Disk absent, rarely present but then ovule 1 per locule. 1866

- Disk present.-Leaves usually small and narrow. Stamens 6-10.Anthers usually appendiculate, with 2 more or less apical pores,rarely with 2 longitudinal slits........................... Ericaceae

1866. Anthers with 1 pore or transversal slit. 1867

- Anthers with 2 longitudinal slits, if poriform ovules 2 per locule.1868

1867. Leaves alternate. Anthers with a transversal slit. Ovule 1 per locule. (Diclidanthera, Eriandra).- Leaves opposite. Anthers with 1 apical pore. Ovules numerous perlocule.1868. Sepals free or connate at base only. 1869

- Sepals almost completely connate.-Anthers introrse. 1872

1869. Floral bracts, if present, not strongly transformed. Corolla imbri- cate. Ovules 1 or 2 per locule, axillary. 1870

- Floral bracts pitcher-like, saccate, or spurred, brightly coloured.
Corolla calyptrate. Ovules many per locule, parietal.-Flowers in spikes, or in racemes, or in umbels. Fruit a tardily dehiscent capsule. Tropical America, West Indies. (Norantea).... Marcgraviaceae

1870. Latex present. Flowers solitary, or in fascicles, or in racemes, or in panicles. Anthers usually with extrorse slits. Ovule either 1 per locule, or 2 in an incompletely loculed ovary. Fruit a berry or a drupe. 1871

- Latex absent. Flowers in a small dichasial panicle. Anthers de-hiscing from the base upward with pore-shaped introrse slits.Ovules 2 per locule, pendulous. Fruit dry, more or less indehiscent.Burma to Yunnan. (Sladeniaceae).1871. Flowers in fascicles, rarely solitary, fascicles sometimes on shortbranchlets. Ovary (1-3-) 4- or more-locular. Pantropical. Sapotaceae
- Flowers in elongated racemes or in panicles. Ovary 2-locular (rarely3-locular) or incompletely 2-locular. S.E. Asia. (Sarcosperma-taceae).Sapotaceae

1872. Ovules 1 or 2 per locule, pendulous. 1873

- Ovules several-many per locule, rarely 1 or 2 , then erect and co-rolla valvate.-Latex absent. Stipules absent. Flowers in simple orcompound racemes. Ovary initially 3 -5-locular, later incompletelyso.1873. Calyx 5 -dentate. Ovary 4 - or 5 -locular.-Ovule 1 per locule.
Olacaceae
- Calyx 3- or 4-lobed. Ovary 10-18-locular. Aquifoliaceae

1874. (1860). Ovary 1. 1875

- Ovaries 4-30, free, or connate at base only.-Plants usually her-baceous. Flowers bisexual. Ovules many per carpel. ... Crassulaceae

1875. Ovary 2-16-locular. Ovules 1 or 2 per locule. 1876

- Ovary 1- or 5 -locular. Ovules many per locule.-Trees. Stipules ab-sent. Flowers unisexual or polygamous, in panicles. Stamens 10.
Fruit a berry. Caricaceae

1876. Anthers with 2 slits or pores. Ovules pendulous. 1877

- Anthers with 1 slit. Ovules erect.-Trees. Stipules present. Flowersin terminal panicles. Stamens 10. Filaments connate. Style 2-partite.Ovules 2 per locule.
Malvaceae

1877. Stipules present. Flowers in racemes or in panicles.-Flowers uni-sexual, 5 -merous. Ovary 2-4-locular. Ovule 1 per locule.
Euphorbiaceae

- Stipules absent. Flowers solitary or in cymes.-Shrubs or trees. Leaves undivided.1878. (1859). Style 1, undivided; stigma 1 or several adjacent at base, or
1, sessile. 1879
- Styles 2-more, free, or more or less completely connate, but not up
to the stigmas, or stigmas 2 -more, sessile 1888

1879. Ovary 1-locular 1880

- Ovary 2 -more-locular.-Leaves simple, rarely digitately compound.1882

1880. Calyx and corolla imbricate. 1881

- Calyx and corolla valvate.-Leaves pinnately compound, or reducedto the petiole. Stipules usually presentLeguminosae

1881. Leaves undivided Theaceae

- Leaves pinnately compound.-Trees. Flowers in panicles. Filamentsconnate. Ovary 5-locular. Ovule 1 per locule. Meliaceae

1882. Ovary 3-25-locular. Ovule 1 per locule.-Woody plants. Anthers with 2 longitudinal slits. Embryo straight 1883

- Ovary 2-5(-more)-locular. Ovules 2 -more per locule, rarely 1 , then anthers with 1 slit and embryo curved 1884

1883. Flowers solitary, or in glomerules, or in fascicles. Sepals free ornearly so, imbricate. Ovary 4-25-locular. Fruit a berry.-LatexpresentSapotaceae

- Flowers in spikes or racemes. Sepals connate, imbricate or apert. Ovary 3-locular.-Stipules absent. Olacaceae

1884. Stipules absent.-Woody non-resiniferous plants. Leaves undivided. Anthers with 2 longitudinal slits 1885

- Stipules present.-Calyx valvate, rarely imbricate, then plantsresiniferous and calyx enlarged in fruit. Corolla contort. 1886

1885. Floral bracts pitcher-like, saccate, or spurred, brightly coloured,Flowers in terminal racemes, or in spikes, or in umbels.-Calyx im-bricate. Corolla calyptrate. Ovules many per locule, parietal. Trop-ical America, West Indies. (Norantea)Marcgraviaceae

- Floral bracts, if any, not so transformed. Flowers axillary and solitary,or in glomerules, or in panicles. (incl. Sladeniaceae).Theaceae

1886. Calyx valvate, rarely apert or closed. Filaments nearly completely connate. Anthers with 1 slit, rarely with 2 -more, then either ovules more than 2 per locule, or ascending. 1887

- Calyx, at least initially, more or less imbricate. Filaments free, orconnate at base only. Anthers with 2 slits or pores. Ovules 2per locule, pendulous or descending.-Woody resiniferous plants.Leaves undivided. Flowers in spikes, or in racemes, or in panicles.Calyx usually enlarged in fruit. Ovary 3 -locular. ... Dipterocarpaceae

1887. Filaments connate into 1 bundle.-Leaves simple. Anthers with 1slit. Pollen spinose.Malvaceae

- Filaments free or usually connate into 2 -more bundles.-Woodyplants.Bombacaceae

1888. (1878). Ovary 2 -more-locular, rarely 1 -locular, then either ovaries2 -more, free, or ovule 1 .1889

> - Ovary 1, 1-locular. Ovules many.-Trees. Leaves undivided. Stipules absent. Flowers in panicles. Calyx-lobes 3-5, valvate. Corollalobes 11-14, imbricate. Style 2-partite. Tropical W. Africa.

Hoplestigmataceae

1889. Ovary 1, 2-more-locular, rarely 1 -locular, then ovule 1. Corolla-
lobes 3-8, rarely more, then calyx imbricate. 1890

- Ovaries 2 -several, free, 1-locular. Ovules several per ovary. Calyx and corolla (4- or) 5-lobed, valvate.-Woody plants. Leaves alternate, pinnately compound. Stipules present. (Affonsea, Archidendron).

Leguminosae
1890. Anthers with 2 slits or pores.-Woody plan 1891

- Anthers with 1 slit.-Stipules present. Fowers 5-merous, bisexua or polygamous. Calyx valvate. Corolla contort. Filaments connate.

Malvaceae
1891. Calyx imbricate, rarely valvate, then stipules absent. 1892

- Calyx valvate.-Stipules present. Flowers bisexual. Calyx 3-lobed.Corolla contort, 5-partite. Filaments fonnate. Ovary 2 -locular.Ovule 1 per locule, ascending. (? Scleronema from tropical S.America)Bombacaceae

1892. Leaves undivided 1893

- Leaves digitately divided or compound.-Flowers in racemes, bi-sexual. Calyx and corolla deeply partite, imbricate. Ovary 4-6-locular. Ovule 1 per locule, ascending. Endosperm absent or nearlyso. Tropical America. Caryocaraceae

1893. Leaves opposite or in whorls. 1894

- Leaves usually alternate.-Ovule 1 per locule, pendulous, or 2- more 1895

1894. Stipules present. Flowers in racemes or in panicles. Ovules ascend- ing. Endosperm absent. Tropical S. America. Quinaceae

- Stipules absent. Flowers solitary or in cymes. Ovules pendulous. Endosperm present. Ebenaceae

1895. Ovules 1 or 2 per locule. Endosperm copious.-Flowers unisexual or polygamous, solitary or in cymes. Ebenaceae

- Ovules 2-more per locule. Endosperm scanty or absent.-Calyxand corolla deeply divided, imbricate. Theaceae

1896. (1573). Fertile stamens less than the corolla-lobes, 1-4, rarely as many, then 2. 1897

- Fertile stamens either as many as the corolla-lobes and more than 2, or more. 1944

1897. Ovary 1, 1-locular or nearly so 1898

- Ovary 1, 2-more-locular or nearly so, or ovaries 4 or 5 , free, or connate at base only. 1917

1898. Ovule 1. 1899

- Ovules 2-more. 1904

1899. Flowers bisexual 1900

- Flowers unisexual.-Male flowers with a 2-4-lobed corolla and 2 or3 stamens. Female flowers with an undivided or 2-lobed corolla and3 stigmas.Menispermaceae

1900. Stamens 4. 1901

- Stamens 1 or 2.--Leaves radical. Flowers polygamous, in a spike-like capitule. Corolla 3-5-dentate. Stigmas 1 or 2.... Plantaginaceae

1901. Leaves alternate. Endosperm fleshy. Embryo straight. 1902

- Leaves opposite. Endosperm absent. Embryo plicate.-Anthers with 2 longitudinal slits. 1903

1902. Flowers in capitules, rarely in spikes. Anther with 1 transversal slit. Stigma capitate or 2-lobed. Fruit dry, indehiscent.-Ovule pendu- lous. (incl. Poskea, sometimes included in Ehretiaceae, Bora- ginaceae). Globulariaceae

- Flowers in spikes. Anthers with longitudinal slits. Stigma undivided, not thickened. Fruit usually a capsule............ Scrophulariaceae

1903. Herbs. Flowers in spikes. Stigma 2-lobed. Ovule sub-basal, atropous. Fruit a nut. Temperate E. Asia and N. America. Phrymaceae

- Shrubs or climbing undershrubs. Flowers solitary or in fascicles. Stigma 2-partite. Ovule anatropous. Fruit a drupe. Tropical Africa and America. (Mendonciaceae). Acanthaceae

1904. Ovules 2-4 1905

- Ovules 8 -more. 1911

1905. Terrestrial prostrate or erect herbs, or shrubs, or climbers. 1906

- Aquatics.-Flowers solitary. Stamens 2. Ovules 2. (Utricularia).
Lentibulariaceae

1906. Woody plants or prostrate herbs. Stamens 4 1907

- Erect herbs. Stamens 2 or 3. 1910

1907. Ovules 2. 1908

- Ovules 3 or 4.-Leaves opposite or in whorls. Ovary incompletelylocular. (incl. Symphoremataceae: Congea). Verbenaceae

1908. Shrubs or climbers. Stamens inserted above the base of the corolla-tube.1909- Prostrate herbs. Stamens adnate to the base of the corolla-tube.-Flowers solitary. Calyx deeply divided. W. equatorial and S.W.tropical Africa. (Linariopsis).Pedaliaceae
1909. Flowers in racemes. Calyx deeply lobed. Stamens adnate to themiddle of the corolla-tube.-Shrubs.Verbenaceae

- Flowers solitary or in fascicles. Calyx slightly lobed. Stamens adnateto the upper part of the corolla-tube.-Shrubs or climbers. Fruit adrupe. (Mendonciaceae).Acanthaceae

1910. Flowers in racemes. Stamens 2. Ovules 4. Mexico. (Martynia).
Martyniaceae

- Flowers in cymes. Stamens 3. Ovules 3 Portulacaceae

1911. Fertile stamens 2 or 4 and either corolla-lobes 5, or staminodes not well-developed. 1912

- Fertile stamen 1, rarely 2, then with 2 smaller staminodes. Corolla- lobes 4.

1912. Placenta 1, central. 1913

- Placentas 2-4, parietal. 1914

1913. Calyx deeply divided. Stamens 2, adnate to the base of the corolla- tube. Endosperm absent.-Herbs. Leaves radical or alternate. Anthers with 1 transversal slit. Lentibulariaceae

- Calyx shortly lobed. Stamens 2 or 4, inserted on the corolla-tube. Endosperm present. Scrophulariaceae

1914. Plants not parasitic. Leaves well-developed, green. 1915

- Parasitic herbs. Leaves scale-like.-Flowers solitary, terminal, or in spikes, or in racemes. Stamens 4. Fruit a capsule. . Orobanchaceae

1915. Fruit a capsule, or a nut, or a berry, endocarp not indurated 1916

- Fruit a horned 4-locular capsule, endocarp indurated.-Erect orprostrate herbs. Leaves simple. Flowers in racemes. Corolla-lobes 5,short, slightly unequal, imbricate. Stamens 4 , inserted on the corol-la-tube. Pollen large, reticulate, without pores. Disk regular.Placentas 2-partite. Stigma 2-partite. Tropical and subtropicalAmerica
Martyniaceae

1916. Leaves usually pinnately compound, rarely simple. Corolla-lobes de-scendingly imbricate. Seeds rather large, flat, usually winged or witha prominent margin, immersed in the enlarged, usually fleshyplacentas.-Woody plants. Stamens 4. Disk present. Stigma 2-partite. Fruit usually an elongated berry, or dry and indehiscent, ora capsule. Endosperm absent. Bignoniaceae

- Leaves simple, undivided. Corolla-lobes usually ascendingly imbri-cate. Seeds small, not immersed in the placentas...... Gesneriaceae

1917. (1897). Ovary 2 -, rarely 3 -locular. 1918

- Ovary 4-10-locular, or ovaries 4 or 5 , free 1933

1918. Stipules absent, nodes rarely with interpetiolary lines.-Leaves opposite or alternate. Stamens 2-4. 1919

- Stipules present or nodes with thin interpetiolary lines.-Woody plants. 1920

1919. Corolla imbricate, not plicate, rarely valvate or plicate, then leavesopposite. Sept of the ovary usually transverse to the plane of sym-metry of the flower. 1921

- Corolla valvate or plicate, then sometimes also imbricate. Sept ofthe ovary usually oblique to the plane of symmetry of the flower.-

Leaves alternate, sometimes in pairs, but not opposite. Flowers solitary or in cymes. Ovules several-many per locule. Fruit a septicide capsule or a berry. (incl. Salpiglossidaceae).............. Solanaceae 1920. Leaves opposite. Nodes with thin interpetiolary lines. Stamen 1. Ovules many per locule.-Corolla-lobes 4, valvate. Tropical W. Africa. (Antoniaceae: Usteria)

Loganiaceae

- Leaves alternate. Stipules present, often early fugacious. Stamens 2 or 3. Ovules 2 per locule.

Dichapetalaceae
1921. Leaves usually alternate. Ovule 1 per locule, pendulous or descending, or 2 -more, rarely 1 and erect or ascending, or 2 and separated by a sept, then fruit a loculicide capsule with hook-shaped funicles or with the micropyle and radicle pointing upwards.-Thecae usually confluent. 1924

- Leaves usually opposite or in whorls. Ovule 1 per locule, erect or ascending, or ovary incompletely locular and ovules 2 . Micropyle and radicle pointing downwards. Fruit a drupe, or a schizocarp, or a septicide capsule. Seeds sessile.-Thecae usually separate...... 1922

1922. Endosperm present. 1923- Endosperm absent.-Not with the combination of characters of nextlead.. Verbenaceae
1923. Ericoid undershrubs. Leaves in whorls. Flowers in racemose spikes. Anthers inappendiculate. Ovule basal.-S. Africa. (Stilbaceae).

Verbenaceae

- Herbs. Leaves opposite. Flowers solitary, axillary, or in fewflowered cymes. At least some anthers appendiculate at base. Ovule axillary. (Dicrastylidaceae-Achariteae). Verbenaceae

1924. Fruit a capsule or a berry, rarely dry, indehiscent, or a drupe, then either calyx undivided; or flowers in capitules, or in spikes, or in panicles, or thecae separate and disk well-developed.

1925

- Fruit a drupe or a nut.-Shrubs or trees, rarely undershrubs. Leaves usually alternate, undivided or lobed. Flowers solitary or in fascicles. Calyx 5 -partite. Disk absent or indistinct. Stamens 4. Thecae confluent at the apex. Ovules 1-8 per locule, pendulous, anatropous. Seeds few. Endosperm scanty.

Myoporaceae
1925. Endosperm usually copious, rarely absent or scanty, then stigma undivided and fruit a septicide or both septicide and loculicide capsule, or dry and indehiscent. Cotyledons usually narrow.-Leaves simple, sometimes deeply incised. Fruit a schizocarp, or dry and indehiscent, or a berry, or a capsule, then when loculicide either sepals connate up to halfway or more, or corolla nearly actinomorphic and 4 -fid, or anthers with 1 slit, or stigma simple. Seeds usually minute. 1926

- Endosperm very scanty and almost membranous, or absent, rarely
well-developed (Acanthaceae) but then copious and sepals connate at base only, corolla bilabiate or nearly actinomorphic, 5 -lobed, anthers with 2 longitudinal slits or pores, stigma 2~4-lobed, and fruit a loculicide capsule. Cotyledons usually broad.-Stigma lobed or partite, rarely simple, then fruit either a loculicide or irregularily dehiscing capsule, or a berry, or a drupe. 1927

1926. Ericoid herbs or undershrubs. At least the lower leaves opposite. Corolla 4- or 5 -lobed, upper lobes covering the 2 lateral or basal ones in bud. Stamens 2 or 4 , if 5 the dorsal staminodial. Ovule 1 per locule, apical, pendulous. Fruit a 1 -seeded drupe, or a schizocarp with 2 nutlets. S. Africa, Madagascar. (Selaginaceae).

Scrophulariaceae

- Plants otherwise.................................... . Scrophulariaceae

1927. Fruit not a schizocarp.. 1928

- Fruit a schizocarp of 4 nutlets.-Herbs. Leaves alternate. Style gynobasic. Ovule 1 per locule, epitropous, basal, erect. Endosperm absent. Radicle pointing upwards. Boraginaceae

1928. Endosperm absent, rarely scanty, then fruit a capsule without wings or spines and disk indistinct. 1929

- Endosperm scanty, almost membranous.-Plants usually herbaceous, with capitate glandular hairs. Leaves dentate or deeply incised. Flowers solitary or in fascicles. Stamens 4. Disk distinct. Stigma partite. Fruit a winged or spiny nut or a capsule. Embryo straight.

Pedaliaceae
1929. Plants usually herbaceous. Leaves simple, incised or not. Calyx usually deeply incised, or sepals free............................. . 1930

- Plants usually woody. Leaves usually compound. Sepals nearly completely connate, rarely at base only.-Calyx apert, or closed, or valvate. Stigma 2-partite. Fruit a more or less juicy berry, or a septicide or loculicide capsule. Placentas in fruit usually separated by an elongated sept. Seeds several-many, laterally attached, sessile or nearly so, winged, rarely not, then either fruit a berry or leaves compound and seeds in 1 row. Endosperm absent..... Bignoniaceae

1930. Nodes usually swollen. Leaves usually with cystoliths. Fruits usually with indurated, hook-shaped, rarely wart-shaped funicles, or sessile, then either ovules 1 or 2 per locule, or endosperm present, or sepals connate at base only.-Leaves simple, sometimes partite. Fruit a loculicide capsule, rarely a drupe. Placentas in fruit approximate to fused. Seeds not winged, usually $2-10$ per locule in 2 rows, rarely solitary 1931

- Nodes usually not swollen. Leaves without cystoliths. Funicles not indurated.-Herbs, sometimes woody at base. Leaves undivided. Calyx imbricate, 5 -partite. Stigma undivided. Fruit irregularily de-
hiscent or a berry. Gesneriaceae

1931. Ovary 2-locular. Fruit a 2 -many-seeded capsule 1932

- Ovary 1- (or 2-)locular. Fruit a 1- or 2 -seeded drupe. (Mendon- ciaceae) Acanthaceae

1932. Ovules 1 -many per locule. Hardened funicles well-developed.
Acanthaceae

- Ovules 2 per locule. Hardened funicles absent to papillate. (Thun-bergiaceae). Acanthaceae

1933. (1917). Ovule 1 per locule 1934

- Ovules 2 -more per locule. 1940

1934. Leaves alternate, rarely opposite, then ovules pendulous andmicropyle and radicle directed upwards1935

- Leaves opposite or in whorls, exceptionally alternate.-Ovules either basal, or micropyle and radicle directed downwards. 1936

1935. Flowers in cymes, or in racemes, or in panicles. Fertile stamen 1. Ovary deeply 4-partite. Fruit dry, indehiscent. Boraginaceae

- Flowers solitary or in fascicles. Fertile stamens 4. Ovary undividedor nearly so. Fruit a drupe or a nut.-Shrubs or trees, rarely under-shrubs. Leaves alternate, rarely opposite. Corolla-lobes 5. Antherswith 1 slit. Disk indistinct or absent. Stigma 1. Ovules pendulous,micropyle and radicle directed upwards. Endosperm scanty.
Myoporaceae

1936. Fertile stamens 2 or 4.-Micropyle and radicle directed downwards. 1937

- Fertile stamens 4.-Flowers solitary. Ovary undivided, 4-8-locular. Ovules basal. Fruit spinose, dry, indehiscent. Endosperm scanty.

Pedaliaceae
1937. Ovary undivided or nearly so, rarely distinctly lobed, then initially incompletely locular, ovules inserted in the middle and mericarps more or less drupaceous. Ovules pendulous or inserted in the middle, rarely basal, then flowers in spikes, or in racemes, or in capitules. 1938

- Ovary deeply 4-partite, usually to the base, rarely less, completely 4-locular, then, as usual, mericarps dry, rarely drupaceous. Ovules basal, rarely inserted somewhat higher or halfway.-Flowers usually in false whorls.

Labiatae
1938. Ovule either axillary, campylotropous, or basal, anatropous 1939- Ovule apical, atropous.-Climbing shrubs. Flowers in involucratecapitules. Endosperm absent. S.E. Asia. (Symphoremataceae: Con-gea)... Verbenaceae
1939. Herbs, undershrubs, or shrubs. Flowers 1-3 together, in axillary cymes. Flowers \pm bilabiate. Anthers inappendiculate. Ovule axillary, campylotropous. Fruit a drupe or a schizocarp. Endosperm
present. Australia. (Dicrastylidaceae-Chloantheae) Verbenaceae

- These characters not combined. Verbenaceae

1940. Leaves simple, translucent-glandular-punctate or not. Stamens 4. Ovary undivided or obscurely lobed. 1941

- Leaves usually compound, translucent-glandular-punctate. Stamens 2 or 3. Ovary deeply divided.-Ovules 2 per locule. Rutaceae

1941. Leaves entire, or lobed, or incised. Tendrils absent. 1942

- Leaves deeply incised. Tendrils present.-Herbs. Flowers inracemes. Anthers with 2 slits. Disk saucer-shaped. Stigma 4-lobed.Ovules 3 per locule. Fruit a spiny capsule. Endosperm absent. C.America to Peru. (Tourrettia).Bignoniaceae

1942. Leaves not translucent-glandular-punctate. Anthers with 2 slits.
1943

- Leaves translucent-glandular-punctate. Anthers with 1 slit or 2apically confluent ones.-Shrubs or trees, rarely undershrubs.Leaves undivided. Flowers solitary or in fascicles. Disk indistinct orabsent. Stigma 1, undivided or lobed. Fruit a drupe or a nut. Endo-sperm scanty... Myoporaceae

1943. Stigma undivided or 2-lobed. Ovary incompletely locular.-Herbs.Leaves undivided. Disk distinct. Ovules numerous. Fruit a capsuleor a berry. Endosperm absent.Gesneriaceae

- Stigmas 2-4, or stigma 1, 2-4-partite. Ovary 2-4-locular.-Herbsor undershrubs, rarely shrubs, with glandular hairs. Leaves undi-vided, or lobed, or divided. Disk present. Fruit a capsule or a nut.Endosperm scantyPedaliaceae

1944. (1896). Fertile stamens as many as the corolla-lobes, rarely more, then stamens 3 or 4 1945

- Fertile stamens more than the corolla-lobes, 5-more. 1994

1945. Ovary apically completely closed. 1946

- Ovary apically open.-Herbs. Petals 2, fimbriate. Stamens 3, excen-tric. Ovary 1 -locular. Stigmas 4, sessile. Ovules numerous. (Oli-gomeris, Resedella).Resedaceae

1946. Stamens as many as the corolla-lobes, epipetalous 1947

- Stamens as many as the corolla-lobes, alternipetalous, or more, then stamens 3 or 4. 1950

1947. Flowers usually bisexual. 1948

- Flowers unisexual.-Woody plants. Male flowers with a $2-8$-lobedcorolla and connate filaments. Female flowers with 1 or 2 petals or 2corolla-lobes and 3 stigmas. Ovule 1, pendulous. Fruit a drupe. En-dosperm scanty.Menispermaceae

1948. Inflorescence-axis without a calycoid involucre. Corolla imbricate. Fruit a capsule.-Herbs or undershrubs. 1949

- Inflorescence-axis often with a calycoid involucre. Perianth-segments
4, valvate. Fruit a nut or a drupe, or a follicle, or a capsule.-Plant usually woody. Stigma 1. Endosperm absent............ Proteaceae

1949. Stigma 1. Ovules 2-more.-Small, ericoid undershrubs. Mediterra- nean, N.E. Africa. (Coridaceae). Primulaceae

- Stigmas 5. Ovule 1.--Sepals with long glandular hairs. (Plumbago).
Plumbaginaceae

1950. Ovary 1-locular or nearly so. 1951

- Ovary completely 2 -more-locular or nearly so, or ovaries 2 -more, free. 1962

1951. Ovule 1. 1952

- Ovules 2-more.-Corolla-lobes 3-8, imbricate. 1954

1952. Corolla-lobes 3 or 4 , imbricate. Stamens 4 . Stigmas 1 or 2, without a cupular involucre. N. temperate zone. 1953

- Corolla-lobes 5, valvate. Stamens 5. Stigma 1, surrounded by a cupular involucre.--Herbs. Leaves radical. Flowers in capitules. Ovule basal. Anthers with 2 longitudinal slits. Australia.
Brunoniaceae

1953. Leaves opposite. Flowers in spikes. Anthers with 2 longitudinal slits. Stigmas 2. Ovule erect, atropous. Phrymaceae

- Leaves alternate. Flowers in capitules. Anthers with 1 transversalslit. Ovule pendulous, anatropous. Globulariaceae

1954. Ovules 5 -more 1955

- Ovules 2-4 1956

1955. Leaves individed. Style 1, stigmas 1 or 2. 1958

- Leaves usually divided. Style 2-fid.-Herbs. Corolla nearly actino-morphic. Stamens 5.Hydrophyllaceae

1956. Anthers with longitudinal slits. 1957

- Anthers with 1 terminal pore.-Perennial herbs or shrubs. Leaves usually densely pubescent. Sepals 4 or 5 , unequal, free, imbricate.Ovules 2, collateral, parietal, pendulous. Fruit indehiscent with bris-tles or spines. Endosperm absent. America............ Krameriaceae

1957. Leaves opposite or in whorls. Ovary incompletely 1-locular.
Verbenaceae

- Leaves alternate. Ovary completely 1 -locular.-Flowers in fascicles. Cuba. (Goetzeaceae: Henoonia) Solanaceae

1958. Plants autotrophic. Leaves green. 1959

- Plants parasitic, non-green.-Herbs. Leaves scale-like. Flowers soli-tary, or in spikes, or in racemes. Stamens 4. Endosperm copious.Embryo indistinctOrobanchaceae

1959. Woody plants. Stipules or a stipular sheath present. 1960

- Plants usually herbaceous. Stipules absent. 1961

1960. Leaves alternate. Flowers in spikes, or in racemes. Stamens 5, con- nate at base. Fruit a capsule Violaceae

- Leaves opposite. Flowers in cymes. Stamens 5-8(-16), adnate to the corolla-tube. Fruit a berry. (Potaliaceae). Loganiaceae

1961. Leaves opposite, entire. Corolla nearly actinomorphic, usually contort. Stigma 2-lobed. Endosperm copious.

Gentianaceae

- Leaves various. Corolla usually zygomorphic, often bilabiate, imbricate. Style 1, stigma capitate or 2-lobed. Endosperm scanty or absent

Gesneriaceae
1962. (1950). Ovary 2- or 3-locular, or ovaries 2, free at base but connate
by the styles. ... 1963

- Ovary 4-20-locular, or ovaries 4 or 5, free...................... . 1967

1963. Ovary 2- or 3-locular. 1964

- Ovaries 2, free at base but connate by the styles.-Herbs. Leaves opposite. Corolla valvate. Stamens connate into a ring and adnate to the style-apex. Pollen united into pollinia. (Ceropegia).

Asclepiadaceae
1964. Ovary 3-locular. 1965

- Ovary 2-locular. 1968

1965. Anthers with 2 longitudinal slits. Stigmas 3...................... . 1966

- Anthers with 1 pore. Stigma 1.-Woody plants. Stipules absent.

Polygalaceae
1966. Woody plants. Stipules present, often minute....... Dichapetalaceae

- Herbs. Stipules absent. Polemoniaceae

1967. Leaves simple or ovary divided. Embryo usually straight....... 1989

- Leaves compound, 1-7-foliolate, translucent-glandular-punctate. Ovary 2-4-partite. Ovules 2 per locule. Embryo usually curved.

Rutaceae
1968. Leaves alternate, at least the upper, sometimes in pairs but not
opposite, or all radical. 1969
— Leaves opposite or in whorls. 1975
1969. Style undivided, if 2-partite plants woody and endosperm absent.

1970

- Style 2-partite.-Herbs. Leaves usually undivided. Flowers 5-

1970. Ovules 2 per locule.-Woody plants. Leaves undivided. 1971

- Ovules 4-more, rarely 1 per locule. 1973

1971. Stipules absent. Flowers solitary or in terminal few-flowered racemes.-Corolla 5-lobed. 1972

- Stipules present, often inconspicuous. Flowers in fascicles.-Stigmas 2.

Dichapetalaceae
1972. Plants usually climbing with tendrils. Flowers solitary. Corolla plicate. Stigma 1. Convolvulaceae

- Erect woody plants. Flowers solitary or in terminal few-flowered racemes. Corolla valvate. Stigmas 2.-Cuba. (Goetzeaceae: Espa-
daea). Solanaceae

1973. Stigmas 2. 1974

- Stigma 1. 1976

1974. Leaves simple. Endosperm present Scrophulariaceae

- Leaves 1-3-foliolate. Endosperm absent.-Woody plants. Filamentsfree. Seeds winged.Bignoniaceae

1975. Stamens adnate to the corolla. 1982

- Stamens free from the corolla.-Shrublets. Leaves in whorls. Stamens 4. Ericaceae

1976. All anthers or filaments connate or nearly so 1977

- Anthers all free, or connate in pairs and stamens adnate to the corolla 1978

1977. Anthers 5, all connate, with 2 introrse slits. Ovules numerous.- Corolla usually valvate. Embryo straight. (Lobeliaceae).Campanulaceae

- Filaments usually completely connate, anthers free, erect, with 1pore. Ovule 1 per locule.-Stigma 1Polygalaceae

1978. Ovule 1 per locule 1979

- Ovules numerous per locule 1980

1979. Filaments free from the corolla. Endosperm absent.-Leaves undivided or lobed. Anthers with 2 longitudinal slits. Stigma 1. .. Verbenaceae

- Filaments adnate to the corolla. Endosperm present.
Scrophulariaceae

1980. Corolla imbricate, not plicate. Sept of the ovary at a right angle to the plane of symmetry of the flower. Fruit dehiscing longitudinally or with pores, rarely indehiscent, then seeds 1 or 2 . Embryo straight or slightly curved. 1981

- Corolla usually valvate or plicate, then sometimes also imbricate,rarely imbricate but not plicate, then fruit with a lid or indehiscentand seeds many and embryo usually strongly curved. Sept of theovary usually oblique to the plane of symmetry of theflower.-Endosperm presentSolanaceae

1981. Seeds winged. Endosperm absent.-Shrubs. Leaves usually 1- or 3-foliolate. Fruit a capsule with 2 valves. Tropical Africa to S. Africa,Madagascar. (Catophractes, Rhigozum).Bignoniaceae- Seeds not winged. Endosperm present.-Fruit dehiscing longitudi-nally or with pores, rarely indehiscent.Scrophulariaceae
1982. Stipules or a stipular sheath absent 1983

- Stipules or a stipular sheath present.-Leaves undivided or lobed.Flowers nearly actinomorphic. Ovules numerous per locule. Endo-sperm presentLoganiaceae

1983. Corolla imbricate 1984

- Corolla valvate.-Leaves in whorls. Corolla 5-lobed. Filaments and
anthers connate.
Campanulaceae

1984. Seeds sessile or on a short hardly indurated funicle. 1985

- Seeds on elongated, indurated, more or less hook-shaped funicles.Fruit a loculicid capsule. Endosperm absent. (Acantheae).

Acanthaceae

1985. Ovules either 1 per locule, or 2 and collateral. Micropyle and rad-
icle directed downwards.................................... 1986

- Ovules either 1 per locule, or 2 and serial, or more. Micropyle and radicle directed upwards.-Endosperm copious. 1988

1986. Flowers in capitules with an involucre of 5 , or 6 , or 2 deeply 3 -lobed bracts.-Lianas. Endosperm absent. S.E. Asia. (Symphoremataceae: Sphenodesme)... Verbenaceae

- Flowers rarely in capitules, then without such an involucre..... 1987

1987. Erect shrubs. Flowers in axillary, spike-like cincinni. Endosperm present.-Madagascar. (Dicrastylidaceae: Acharitea). .. Verbenaceae

- Plants otherwise. Endosperm absent. Verbenaceae

1988. Style undivided. Scrophulariaceae

- Style 2-partite.-Flowers 5-merous, nearly actinomorphic.

Hydrophyllaceae
1989. (1967). Ovary 4-locular, or ovaries 4, free....................... 1990

- Ovary 5-20-locular.-Woody plants. Leaves alternate, undivided. Stamens 5-10, free from the corolla. Anthers with apical pores. Ovules many per locule. Ericaceae

1990. Ovules many per locule. 1991

- Ovule 1 per locule.. . . 1992

1991. Leaves alternate, undivided or lobed. Tendrils absent. Flowers solitary. Corolla nearly actinomorphic. Stamens 5. Seeds not winged. Endosperm present.

Solanaceae

- Leaves opposite, deeply incised. Tendrils present. Flowers in spikes. Corolla bilabiate. Stamens 4. Seeds usually winged. Endosperm absent

Bignoniaceae
1992. Leaves opposite or in whorls, very rarely alternate, then ovary undivided. Ovules atropous or apotropous, micropyle and radicle pointing downwards. 1993

- Leaves alternate. Ovules epitropous, micropyle and radicle pointing upwards or to the axis, rarely downwards.-Leaves undivided, usually hispid. Flowers usually in secund cincinni. Ovary deeply partite.

Boraginaceae
1993. Flowers usually in false whorls. Ovary deeply divided, usually to the base, rarely less, but still distinctly lobed, completely locular and then, as usual, mericarps dry. Ovule basal, rarely inserted somewhat higher up or in the middle. Labiatae

- Flowers in spikes, or in racemes, or in capitules. Ovary undividedor nearly so, rarely distinctly lobed, then initially incompletely locu-lar. Ovule pendulous or laterally attached, inserted in the middle orabove, rarely basal. Mericarps drupaceous.Verbenaceae

1994. (1944). Ovary 1-locular. 1995

- Ovary 2-20-locular.-Leaves usually undivided. 1999

1995. Leaves usually undivided. Stipules absent or nodes with an annular gland. 1996

- Leaves usually compound. Stipules present.-Stamens 10. Filamentsfree. Anthers with 2 longitudinal slits. Ovules 2-8.... Leguminosae

1996. Bark inside with tough silky fibres. Corolla slightly developed, more or less annular.-Ovule 1. Thymelaeaceae

- Bark inside without such fibres. Corolla well-developed.
- Bark inside without such fibres. Corolla well-developed. 1997 1997

1997. Stamens free or connate, not on an androgynophore, all fertile. 1998

- Stamens on an androgynophore, 4 fertile and 4 or 5 staminodial.- Ovule 1, basal. Australia. (Emblingiaceae) Capparaceae

1998. Woody plants. Leaves simple. Sepals and corolla-lobes 5. Stamens usually 8 , never 6 , at base adnate to the corolla. Tropics (Xantho- phyllaceae) Polygalaceae

- Herbs. Leaves compound. Sepals 2. Corolla-lobes 4. Stamens 6, free from the corolla. Temperate regions. (Fumariaceae). Papaveraceae

1999. Ovule 1 per locule. 2000

- Ovules 2 -more per locule.-Stem woody 2002

2000. Filaments connate.-Stamens 7 or 8 . Anthers with 1 pore or with longitudinal slits. Style 1. Polygalaceae

- Filaments free.-Leaves undivided. Stamens 6-10. Anthers with 2 longitudinal slits 2001

2001. Bark of twigs inside with tough silky fibres. Stem woody. Style 1.- Stipules absent. Stamens 8-10 Thymelaeaceae

- Bark of twigs without such fibres. Herbs. Styles 3.-Flowers uni- sexual. Stamens 6-10. Euphorbiaceae

2002. Leaves usually digitately compound. Stipules present.-Flowers 5- merous. Bombacaceae

- Leaves simple. Stipules absent.-Stamens 6-18. Anthers with 2apical pores, exceptionally with 2 longitudinal slits. Ovules 2 -moreper locule.
Ericaceae

2003. (1572). Fertile stamens less than the corolla-lobes, 1-4. 2004

- Fertile stamens as many as the corolla-lobes or more (some Lecy-thidaceae, e.g. Asteranthaceae, Napoleonaeaceae have a $20-40$-rayedcorolla (? = connate staminodes) and 10 -many fertile stamens). 2018

2004. Ovules 2 or more per ovary. 2005

- Ovules 1 per ovary, sometimes also a few abortive ones present, or some locules empty 2009

2005. Ovary 1. 2006

- Ovaries 2-more, free.-Ovules usually numerous. 2014

2006. Ovules 2 per ovary. 2007

- Ovules numerous per ovary.-Leaves opposite. Flowers bisexual.Corolla actinomorphic, valvate or slightly imbricate. Stamens 2 ,adnate to the corolla. Anthers straight, introrse or latrorse. Diskpresent. Stigmas 1 or 2 . Ovary completely 2 -locular. Rubiaceae

2007. Leaves opposite. Flowers bisexual. Corolla imbricate. Anthers in- trorse.-E. Asia 2008

- Leaves alternate. Flowers unisexual. Corolla valvate. Anthers ex- trorse.-Climbing or prostrate herbs or undershrubs. Stamens 2 or

3. Ovary 1-locular. Cucurbitaceae
4. Aquatic herbs. Stamens 2 . Staminodes 2 . Ovary with 1 fertile and 1 sterile locule. (Trapellaceae). Pedaliaceae

- Shrubs. Stamens 4. Ovary with 2 fertile and 2 sterile locules. (Dipelta) Caprifoliaceae

2009. Ovary 1-locular, or 3-locular with 1 fertile and 2 empty locules. 2010

- Ovary 3-locular with 1 locule with 1 fertile ovule and 2 with severalabortive ones.-Shrubs. Leaves opposite or in whorls, undivided.Stipules absent. Flowers bisexual, solitary or in cymes. Corollaslightly zygomorphic, imbricate. Stamens 4. Anthers introrse. Stig-ma 1. Endosperm present. (Linnaea)................ Caprifoliaceae

2010. Leaves opposite, or in whorls, or all radical. Flowers bisexual or polygamous. Corolla imbricate. Anthers introrse.-Stipules absent. Fruit dry, indehiscent. 2011

- Leaves alternate. Flowers unisexual. Corolla valvate. Anthers ex- trorse.-Ovary 1-locular. Cucurbitaceae

2011. Flowers in capitules, rarely in axillary whorls, or in dichasia. Epi- calyx present. Ovary 1-locular. 2012

- Flowers in cymes or in dichasia. Epicalyx absent. Ovary 3-locular, with 1 fertile and 2 sterile locules. Valerianaceae

2012. Flowers not in dichasia. Epicalyx simple. 2013

- Flowers in dichasia. Epicalyx double.-Inflorescence glandular. S.E. Asia to New Guinea. (Triplostegiaceae, also in Valerianaceae).
Dipsacaceae

2013. Flowers in axillary whorls. (Morinaceae). Dipsacaceae

- Flowers in capitules. Dipsacaceae

2014. Flowers nearly always bisexual. Corolla imbricate or induplicate-valvate, zygomorphic or actinomorphic. Endosperm present.-Ovary1- or 2-locular. Stigmas 1 or 2, or 4. Ovules many per locule. .. 2015

- Flowers unisexual, very rarely bisexual, then stigmas 3 or 6 andovary 3 -locular with 1 or 2 ovules per locule. Endosperm absent.-Plants climbing or prostrate. Tendrils present. Anthers extrorse,
rarely latrorse.
Cucurbitaceae

2015. Stamens 2 or 4, adnate to the corolla, free from the style. Anthers
introrse or latrorse.-Flowers bisexual. 2016

- Stamens 2, free from the corolla, adnate to the style. Anthers ex-trorse.--Herbs or undershrubs. Leaves alternate. Anthers with 1 slit.
. Stylidiaceae

2016. Corolla nearly actinomorphic. Stamens 2.-Leaves opposite.... 2017

- Corolla usually distinctly zygomorphic. Stamens 4.-Disk usually present. Ovary 1 -locular or incompletely 2 -locular..... Gesneriaceae

2017. Stamens not cohering around the style. Anthers with 1 twisted theca. Disk absent. Stigma 2-4-lobed.-Flowers in cymes. Ovary incompletely to nearly completely 2-locular. N. Andes.

Columelliaceae

- Stamens cohering around the style. Thecae not twisted. Disk present. Stigma clavate to fusiform, or bifid.-Leaves dentate. Corolla valvate with a hairy ridge inside. S.E. Asia. (Carlemanniaceae).

Caprifoliaceae
2018. (2003). Fertile stamens more than the corolla-segments. 2019

- Fertile stamens as many as the corolla-segments. 2022

2019. Flowers unisexual. 2020

- Flowers bisexual. 2071

2020. Leaves alternate. 2021

- Leaves opposite.-Flowers solitary or in fascicles. Style 6-10-fid.
Ovules many per ovary. Rubiaceae

2021. Leaves usually pinnately compound. Male flowers in catkins, female flowers in a cupule. Bracts often sepaloid. Stigmas 2-4. Ovary 1locular. Ovule 1.

Juglandaceae

- Leaves simple. Flowers differently arranged. Bracts not sepaloid.
Stigma 1. Ovary 2- or 3-locular. Ovules 2-4 per locule.

Symplocaceae
2022. Stamens alternipetalous. 2023
— Stamens epipetalous. 2066
2023. Ovule 1 per ovary. 2024

- Ovules 2-more per ovary.. . . . 2037

2024. Ovule erect.. 2025

- Ovule pendulous. 2029

2025. Stigmas 3.-Tendrils or watch-spring hooks present. 2026

- Stigmas 1 or 2.-Corolla valvate. Anthers introrse. 2027

2026. Herbs. Tendrils present. Flowers unisexual. Corolla valvate. Anthers extrorse. Endosperm absent. Cucurbitaceae

- Woody plants. Watch-spring hooks present. Flowers bisexual. Corolla imbricate. Anthers introrse. Endosperm present.

Ancistrocladaceae
2027. Flowers usually in capitules. Stigma not surrounded by aninvolucre.2028

- Flowers solitary, or in cymes, or in spikes, or in panicles, rarely incapitules. Stigma surrounded by a cup-shaped or 2 -lobed in-volucre.-Corolla 5 -lobed, more or less zygomorphic. EndospermpresentGoodeniaceae

2028. Anthers free. Style deeply divided. Endosperm present.-Leavesopposite or in whorls. Stipules present.Rubiaceae

- Anthers connate, rarely free, then female flowers without a distinct corolla. Style occasionally undivided, usually bifid. Endosperm ab-sentCompositae

2029. Flowers unisexual.-Leaves alternate, rarely opposite. Endosperm absent. 2030

- Flowers bisexual or polygamous.-Anthers introrse. 2031

2030. Non-resiniferous herbs. Tendrils present. Anthers extrorse. Style simple, at least at base. Embryo straight. Cucurbitaceae

- Resiniferous (poisonous!) trees. Tendrils absent. Anthers introrse.
AnacardiaceaeStyles 3, free to base. Embryo curved.

2031. Style 1. Stigma 1.-Flowers more or less actinomorphic. Endosperm present 2034

- Style 1 or 3. Stigmas 3 2032

2032. Herbs, undershrubs, or shrubs. Leaves opposite, or in whorls, or all radical. Corolla imbricate. Style 1, or 3-partite. Embryo straight.2033

- Resiniferous (poisonous!) trees. Leaves alternate. Corolla valvate.Styles 3, free. Embryo curved.-Flowers in panicles. Endosperm ab-sent... Anacardiaceae

2033. Corolla 3-lobed. Style 1. Endosperm absent.-Herbs, or under- shrubs, or shrubs. Leaves opposite or all radical. Valerianaceae

- Corolla 4- or 5 -lobed. Style 3-partite. Endosperm fleshy.-Usuallyshrubs. Leaves opposite or in whorls, undivided or lobed. (Vibur-num).Caprifoliaceae

2034. Leaves alternate or all radical. Epicalyx absent. 2035

- Leaves opposite or in whorls. Epicalyx present.-Herbs, rarely non-ericoid undershrubs. Flowers in capitules. Corolla lobed, imbricate.Dipsacaceae

2035. Herbs or ericoid shrubs. Flowers in capitules. Disk absent. 2036

- Non-ericoid undershrubs or trees. Flowers in axillary cymes. Disk usually conspicuous.-Corolla deeply divided, valvate. Tropics.

2036. Herbs. Corolla lobed, valvate. S. America. Calyceraceae- Ericoid shrubs. Corolla deeply 5-partite, imbricate. S. Africa. (Ber-zelia).Bruniaceae
2037. (2023). Corolla imbricate 2038

- Corolla valvate, rarely apert. 2048

2038. Ovary 2 -more-locular, rarely 1 -locular, then corolla actinomorphic and stipules present 2039

- Ovary 1 -locular.-Leaves undivided. Stipules absent. Corolla usu- ally zygomorphic. Style 1 . Ovules many Gesneriaceae

2039. Ovary hemi-inferior--Leaves simple. Stipules absent. Calyx 5- partite. Corolla actinomorphic, contort. Style-apex thickened, gla- brous above, outer or lower side stigmatic. Ovary 2-partite or 2- locular. Ovules 2 -more per locule. 2040

- Ovary inferior, rarely hemi-inferior, then either stipules present, or corolla imbricate. Style-apex stigmatic at the summit or between the lobes 2041

2040. Stamens connate and adnate to the style-apex into a more or lesscapitate body. Pollen coherent into paired pollinia, each pair unitedby a thread-like structure ('caudicle').-Leaves above with or with-out a tuft of short cylindric, hair-like appendages ('colleters') at thebase of the midrib. Corolla often more or less urceolate, the tubeusually shorter than the lobes. Asclepiadaceae

- Stamens free, adnate to the style apex or not. Pollen free, withoutcaudicles.-Leaves without colleters. Corolla usually rotate, or cam-panulate, or funnel-, or salver-shaped, the tube usually longer than
the lobes. Apocynaceae

2041. Leaves alternate. 2042

- Leaves opposite or in whorls. 2046

2042. Flowers solitary, or in fascicles, or in spikes, or in racemes. Style undivided. 2043

- Flowers in capitules. Style 2-partite.-Ovules 2 per locule. S. Afri- ca. Bruniaceae

2043. Anthers with longitudinal slits. 2044

- Anthers with apical pores.-Woody plants. Flowers solitary, or infascicles, or in racemes. Ovules many per locule. Ericaceae

2044. Woody plants. 2045

- Herbs.-Flowers in spikes. Ovules many per locule. (also in Campa- nulaceae) Sphenocleaceae

2045. Flowers solitary, or in fascicles, or in spikes, or in racemes. Ovules 2-4 per locule. Symplocaceae

- Flowers solitary, axillary. Ovules numerous.-Ericoid shrubs. S.Australia. (Prionotaceae: Wittsteinia, also in Ericaceae).Epacridaceae

2046. Stipules present. Disk present, rarely absent, then ovary 2-locular.- Leaves always undivided and entire. 2047

- Stipules absent, rarely present, then ovary 3-5-locular and eitherdisk absent or leaves dentate to divided.-Woody plants, rarely her-
baceous. Ovary 2-6-locular. Endosperm copious. ... Caprifoliaceae

2047. Flowers more or less zygomorphic. Stamens unequally inserted on the corolla-tube. Ovary hemi-inferior. Ovules 2-4 per locule. Endosperm absent.-Flowers large, showy, in terminal thyrses. Fruit a loculicid capsule. Seeds not winged. N. tropical. S. America. (probably erroneously included in Rubiaceae). Henriqueziaceae

- Flowers usually actinomorphic. Stamens inserted at the same level. Ovary inferior. Ovules usually numerous per locule. Endosperm present. (incl. Naucleaceae)

Rubiaceae
2048. (2037). Flowers unisexual. Endosperm absent.-Leaves alternate.

2049

- Flowers bisexual or polygamous, rarely unisexual, then either leaves opposite or in whorls, or flowers zygomorphic and anthers introrsely or apically dehiscent. Endosperm present, rarely absent, then leaves opposite or in whorls.

2050
2049. Stipules absent. Flowers actinomorphic, rarely slightly zygomorphic, 5 -, rarely 3 - or 6 -merous. Anthers extrorse, thecae usually tor-tuous.-Plants usually climbing or prostrate, usually with tendrils.

Cucurbitaceae

- Stipules present. Flowers zygomorphic, 4-merous. Anthers la-trorse.-Leaves undivided. Corolla shortly lobed. Style 3-partite, stigmas partite again. Colombia. (Begoniella).......... Begoniaceae

2050. Stigma without an involucre, but often surrounded by a ring of hairs. 2051

- Stigma with a cup-shaped or 2-lobed involucre.-Latex absent. Leaves simple. Stipules absent. Flowers 5 -merous, bisexual, usually zygomorphic.

Goodeniaceae
2051. Stipules absent.-Leaves simple. Style undivided. Ovules 2 -more per locule. 2052

- Stipules present, rarely absent, then either style 2-partite or ovule 1 per locule. . .. 2062

2052. Ovary inferior, rarely hemi-inferior, then either flowers zygomorphic, or stamens free from the corolla and ovary 2 -morelocular. 2053

- Ovary hemi-inferior.-Ovary 1-locular, or $2-5$-locular, then either flowers actinomorphic and stamens free, or stamens adnate to the corolla. Ovules many per locule. Fruit a capsule, rarely a berry. 2059

2053. Stigma, at least after anthesis, partite, or when lobed, stem herbaceous or woody at base only, rarely undivided and more or less clavate, then either stem herbaceous and flowers zygomorphic, or flowers zygomorphic.-Latex usually present. Ovary rarely hemiinferior, then flowers zygomorphic and stamens free from the corolla. 2054

- Stigma capitate.-Stem woody. Flowers actinomorphic. Ovary in
ferior.

2056
2054. Leaves usually symmetric. Inflorescences various, usually capitate, or panicles, or flowers solitary 2055

- Leaves strongly asymmetric. Flowers in curved cincinni.-S.E. Asiato Malesia. (also in Campanulaceae)........... Pentaphragmataceae

2055. Flowers zygomorphic. Anthers connate. (Lobeliaceae).
Campanulaceae

- Flowers usually actinomorphic. Anthers free. Campanulaceae

2056. Corolla-segments either dentate to fimbriate, or tube inside with a transverse ring. New Caledonia, New Zealand. Alseuosmiaceae

- Corolla different. 2057

2057. Flowers in a terminal panicle. Stamens free from the corolla. Fruit a capsule. Réunion. (Berenice) Campanulaceae

- Flowers axillary, usually solitary. Stamens adnate to the base of thecorolla. Fruit a berry.2058

2058. Anthers with longitudinal slits. S. Australia. (Prionotaceae: Witt- steinia, also in Ericaceae)............................. Epacridaceae

- Anthers with apical_pores. Mexico to tropical S. America. (Sphyro-spermum).Ericaceae

2059. Plants not twining. Latex absent. Leaves radical or alternate. Apexof stigma stigmatic. Anthers not caudate and not adnate to the stig-ma.2060

- Plants usually twining. Latex present. Leaves opposite. Stigma en-larged.-Plants woody, at least at base. Flowers in cymes or inpanicles', actinomorphic. Ovary 2-locular, easily separating into 2parts.2040

2060. Woody plants. Sepals valvate. Stamens free from the corolla. Ovary 2-5-locular.-Leaves alternate. Flowers in panicles or in umbelloid panicles. Corolla partite. Stigma capitate, 2-5-lobed. Australia; New Caledonia... . . 2061

- Erect herbs. Sepals imbricate. Stamens adnate to the corolla-tube.Ovary 1-locular.-Leaves radical or alternate. Flowers in cymes orin panicles. Stigma simple or 2-lobed. Gentianaceae

2061. Leaves glabrous beneath. Corolla lobed, with a transverse ring inthe throat. Fruit a berry. (Periomphale). Alseuosmiaceae

- Leaves velvety underneath. Corolla deeply fid, throat without sucha ring. Fruit a capsule. (Escalloniaceae: Argophyllum). Saxifragaceae

2062. (2051). Leaves alternate.-Ovule 1 per locule. Fruit a drupe or a 2063berry.

- Leaves opposite or in whorls, rarely alternate, then ovules many perlocule.-Flowers usually cymose. Stamens adnate to the corolla. 2064

2063. Leaves usually compound. Stipules present, often intra-petiolar.
Flowers in umbels, or in capitules, or in spikes, or in panicles.Stamens free from the corolla. Stigmas 2-more. Ovary 5-more-,rarely 2-locular.-Petals usually calyptrate. Araliaceae

- Leaves undivided or lobed. Stipules absent. Flowers in cymes.Stamens adnate to the corolla. Stigma 1. Ovary 1-3-locular.-Tro-pics.2064. Plants usually woody. Ovary inferior, rarely hemi-inferior, theneither style apically bifid, or ovule 1 per locule. 2065
- Herbs. Ovary hemi-inferior.-Leaves undivided. Anthers extrorse or introrse, rarely latrorse. Styles free at base, connate above. Ovary 2-locular. Ovules many per locule. (Spigeliaceae: Mitrasacme, Mitreola).2065. Leaves undivided or lobed. Anthers extrorse or latrorse. Stigmacapitate or branched. Ovary usually 2 -locular. (incl. Naucleaceae).
Rubiaceae
- Leaves deeply incised to pinnately compound. Anthers extrorse.Stigma 3-5-partite. Ovary 3-5-locular. (Sambucaceae).
Caprifoliaceae

2066. (2022). Corolla imbricate. Ovules many per locule. 2067

- Corolla valvate. Ovules 1-3 per locule.-Leaves undivided or ab- sent. Fruit a drupe, or a berry, or a nut. 2070

2067. Leaves undivided. Ovary 1-locular. 2068

- Leaves digitately compound. Ovary 5 -locular.-Trees. Stipules present. Flowers solitary or in fascicles. Calyx undivided or 3-5- lobed, valvate. Style undivided. Fruit a capsule, often hairy inside.
Bombacaceae

2068. Stipules absent. Calyx 5-merous. Style undivided. Flowers in racemes or panicles. 2069

- Stipules present. Flowers solitary or in cymes. Calyx 2-partite. Style 3-8-fid.-Herbs. Fruit a capsule. Portulacaceae

2069. Herbs or undershrubs. Calyx 5 -fid. Staminodes 5. Fruit a capsule.
Primulaceae

- Woody plants. Calyx 5-lobed. Staminodes absent. Fruit a drupe or a nut. (Maesa). Myrsinaceap

2070. Plants parasitic, usually epiphytic. Leaves opposite or in whorls, sometimes absent. Ovary 1-, rarely 2-, or 3 -locular. Ovule not dis- tinct from the ovary tissue Loranthaceae

- Plants autotrophic. Leaves alternate. Ovary 3-locular nearly to the apex. Ovule distinct. (incl. Erythropalaceae)2071. (2019). Stamens 4-10. 2072
- Stamens 11 -more 2086

2072. Anthers 6-10. 2073

- Anthers 4.-Shrubs. Leaves opposite or in whorls, undivided.
Flowers solitary or in cymes. Style undivided. Stigma 1. Ovary 3-locular, 1 locule with 1 fertile ovule, 2 with several sterile ovules.
Caprifoliaceae

2073. Style 1, undivided. Stigma 1, undivided or lobed. 2074

- Style 1, undivided with 2-more stigmas, or partite, or styles 2- more, free 2081

2074. Ovary 1 -locular.-Leaves alternate, rarely in whorls, simple. Stamens free from the corolla or nearly so. 2075

- Ovary 2-more-locular, sometimes apically 1-locular.-Woody plants. 2076

2075. Erect woody plants. Sepals connate. Disk present. Anthers with apical pores. Ovules few, axillary. Fruits indehiscent. Ericaceae

- Plants usually herbaceous, frequently twining. Sepals free. Disk ab- sent. Anthers with longitudinal slits. Ovules numerous, parietal.Fruit a capsule.Loasaceae

2076. Stamens free from the corolla, or, when adnate to it, staminodes ab- sent; staminodes, when present, free. 2077

- Fertile stamens adnate to the middle of the corolla-tube. Stami-nodes connate into a tube.-Leaves alternate, undivided. Flowers 4-merous. Disk absent. Ovary 4-locular, ovules 8. Fruit dry, in-dehiscent. Tropical S. America. (Lissocarpa). Ebenaceae

2077. Leaves alternate, rarely in whorls. 2078

- Leaves opposite.-Leaves undivided. Anthers with 2 slits or pores. Ovary inferior, 5-15-locular. Endosperm absent... Melastomataceae

2078. Leaves digitately compound. Anthers with 1 longitudinal slit.-Calyx valvate, epicalyx often present. Ovary hemi-inferior, 5-locular. Ovules many. Fruit a capsule................ . Bombacaceae

- Leaves undivided. Anthers dehiscing otherwise. 2079

2079. Anthers dehiscing longitudinally. 2080

- Anthers with terminal pores.-Stamens usually free from the corol-la, or nearly so. Disk present. Ovary $2-10$-locular. Fruit in-dehiscent.
Ericaceae

2080. Calyx-segments 4 or 5, valvate or apert. Disk absent. Ovary at base3-5-locular, apically 1-locular. Ovules many. Fruit dry, indehiscent.
Styracaceae

- Calyx 5 -fid, imbricate. Disk present. Ovary completely 2-5-locular. Ovules 2-4 per locule. Fruit a drupe. Symplocaceae

2081. Ovary 1-locular.-Leaves alternate, undivided. Corolla imbricate.2082

- Ovary 2-more-locular 2084

2082. Calyx-lobes 4 or 5 . Ovules not central. 2083

- Sepals 2. Ovules central.-Herbs. Stipules present. Ovary hemi-inferior. Ovules numerous. (Portulaca).Portulacaceae

2083. Plants usually herbaceous, erect or climbing, then without hooks.Ovules many, parietal.-Calyx-lobes 4 or 5 . Ovary inferior. S.W.U.S., Mexico. (Petalonyx). Loasaceae

- Woody climbers with watch-spring hooks. Ovule 1 per locule, basal,erect.-Flowers in racemes or in panicles. Calyx and corolla 5 -fid.Anthers with longitudinal slits. Style 1, undivided. Stigmas 3. Fruitdry, indehiscent with accrescent calyx-lobes. Tropical Africa to W.Malesia. .. . Ancistrocladaceae

2084. Stem woody at least at base. Corolla valvate. 2085

- Herbs. Corolla imbricate.-Leaves radical and opposite, pinnately divided. Stipules absent. Flowers in glomerules. Anthers with 1longitudinal slit. Styles 3-5, free. Ovary $3-5$-locular. Ovule 1 perlocule, pendulous. Fruit a drupe.Adoxaceae

2085. Leaves alternate, divided or compound. Stipules absent or intra-petiolar.-Ovary $2-25$-locular. Ovule 1 per locule. Araliaceae

- Leaves opposite, undivided. Stipules present, often inter-petiolar.-Ovary 4-10-locular, inferior. Ovules many per locule and flowersunisexual, or ovule 1 per locule and flowers bisexual and ovary 4 -locular. (Lasianthus).Rubiaceae

2086. (2071). Corolla calyptrate.-Plants woody, at least at base. 2087

- Corolla connate at base only, or connate, then saucer-shaped or campanulate 2089

2087. Fruit a drupe. Endosperm present.--Leaves alternate. 2088

- Fruit a capsule. Endosperm absent.-Leaves translucent-glandular-punctate, undivided. Style undivided. Stigma 1. Ovary inferior, 2-4-locular. Ovules many per locule.Myrtaceae

2088. Leaves undivided. Flowers solitary or in fascicles. Anthers withpores. Style undivided. Stigma 1. Ovary hemi-inferior. Ovules manyper locule. Seeds long-hairy.-Stipules absent. Tropical Africa.
(Rhaptopetaleae). Scytopetalaceae

- Leaves divided or compound. Flowers in umbels, or in capitules, orin racemes, or in panicles. Anthers with slits. Stigmas 2-25. Ovaryinferior. Ovule 1 per locule. Seeds not long-hairy.-Stipules absentor intra-petiolarAraliaceae

2089. Ovary 1 -locular, rarely 3-5-locular at base.-Leaves simple or ab-sent. 2090

- Ovary 2-more-locular. 2094

2090. Leaves well-developed. Fruit either a capsule, or dry and in-dehiscent, or a schizocarp and then sepals distinct and style 1. . 2091

- Leaves scale-like or absent, rarely well-developed, then, as usualcorolla-segments and stigmas many. Fruit a berry.-Usually verysucculent plants. Sepals 4 -more, not clearly distinct from the
petals. Placentas 4 -more, parietal. Style 1. Stigmas several.

Cactaceae

2091. Herbs. Ovary strictly 1 -locular................................. 2092

- Woody plants. Ovary 3-5-locular at base, apically 1-locular.-
Stipules absent. Sepals 4 or 5. Style 1. Stigma 1. Disk absent. Fruit
dry, indehiscent. Placentas axillary. Styracaceae

2092. Stipules usually absent. Sepals 4-7. Ovary usually inferior..... 2093

- Stipules present. Sepals 2. Ovary hemi-inferior.-Style 3-8-partite. Placenta central. Ovules many. Fruit a capsule, or dry and indehiscent. (Portulaca).

Portulacaceae
2093. Corolla-segments 4 or 5 . Stigmas 1 or 4. Placentas several, parietal.

Loasaceae

- Corolla-segments many. Stigmas 4-12. Placenta central.--Plants

2094. Anthers with pores.-Woody plants. Stamens twice as many as the corolla-segments, free from these. Style 1. Stigma 1. 2095

- Anthers with longitudinal slits. 2096

2095. Leaves opposite. Corolia-segments imbricate. Melastomataceae

- Leaves alternate. Corolla-segments valvate.-Flowers in corymbs.

Ericaceae
2096. Style 1, undivided. Stigma 1, or capitate and/or 3-8-lobed.-Woody plants. Leaves alternate, undivided. Corolla imbricate or plicate. Fruit indehiscent, rarely a capsule. 2097

- Style 1, partite or divided, stigmas several, or styles many. 2100 2097. Calyx valvate or apert. Endosperm absent (unrecorded for Napoleonaeaceae). .. 2098
- Calyx imbricate. Endosperm copious.-Ovules 2-4 per locule. Fruit a drupe. .. Symplocaceae

2098. Corolla plicate, 20 -40-rayed, margin dentate.-Fruit a berry or a non-operculate capsule. 2099

- Corolla imbricate, segments 4-6, connate at base only.-Stamens many. Fruit a berry or a woody operculate capsule... Lecythidaceae

2099. Flower perigynous. Sepals connate, apert, many. Stamens many. Style filiform, stigma simple. Fruit a capsule. Brazil. (Asteranthaceae) Lecythidaceae

- Flower epigynous. Sepals free, 5, valvate. Stamens $10-20$, staminodes many. Fruit a berry. W. Africa. (Napoleonaeaceae).

Lecythidaceae

2100. Leaves simple, when divided leaves submerged. Flowers solitary. Ovules 2-many per locule.-Corolla imbricate. 2101

- Leaves partite to compound. Flowers in umbels, or in capitules. Ovule 1 per locule.-Terrestrials. Corolla often valvate. Stigmas several.

Araliaceae
2101 Herbs, usually aquatic. Leaves radical. Corolla-segments and styles 2102many

- Woody, terrestrial plants. Leaves alternate. Corolla-segments 5. Style either 1, 3-partite (Ternstroemiaceae: Anneslea, E. Asia), orstyles 3. (Visnea, Canary Isl.).-Endosperm scanty to absent.
Theaceae

2102. Sepals hypogynous. Corolla epigynous. Stamens adnate to the corol-la. S.E. Asia. (Barclayaceae). Nymphaeaceae

- Sepals and petals epigynous. Stamens free from the corolla, at least the outer ones. Tropical E. Asia and S. America. (Euryalaceae).

Nymphaeaceae

PARASITES AND SAPROPHYTES

2103. (158). Plants herbaceous, terrestrial or twining. Stems with scales, distinct leaves absent 2104

- Plants woody, or thick-fleshy, or herbaceous, in the latter caseeither green leaves present, or plants epiphytic, hemi-parasitic anderect2108

2104. Stems twining. Parasites with haustorial organs on the stems 2105

- Stem erect. Saprophytes. 2106

2105. Petals connate. Filaments adnate to the corolla-tube, alterni-petalous. Anthers longitudinally dehiscing with slits. Fruit a capsule.Seeds 1-4. (Cuscutaceae). Convolvulaceae- Petals free. Filaments free from the corolla, in 3 whorls of three andepipetalous, or more. Anthers dehiscing with an apical valve. Fruit1 -seeded, surrounded by a fleshy receptacle.-Sepals 3 . (Cassytha).
Lauraceae
2106. Scales on the stem opposite.-Corolla-lobes contort or 4-lobed (2inner and 2 outer lobes). Filaments adnate to the corolla-tube.
Gentianaceae

- Scales on the stem alternate.-Petals or corolla-lobes imbricate, notcontort. Filaments free from the corolla2107

2107. Sepals 2-6. Petals absent or 3-6, free or connate. Ovary 1-6-locular. Ovules many, axillary or parietal.
Monotropaceae

- Sepals 5. Petals 3. Ovary 2-locular. Ovule 1 per locule, pendu-lous.-Indomalesia, Australia. (Salomonia). Polygalaceae

2108. Plants with chlorophyll, rarely without, then flowers either onbranched stems, or in compound inflorescences. Usually epiphytichemi-parasites. Fruit 1 -seeded.2109

- Plants without chlorophyll, usually parasiting on roots, if epiphytic,then flowers emerging solitary from the host's branches. Fruit many-
seeded.

2109. Flowers unisexual, the male flowers consisting of a group of up to 3 stamens. Fruit dry, with 3 feather-like bristles.-Epiphytic, shrubby, green parasites on Nothofagus. Temperate S. America.

Myzodendraceae

- Flowers bisexual or unisexual, in the latter case the male flowers either with a perianth, or (Antidaphne) consisting of a group of 4 stamens. Fruit usually fleshy, without feather-like bristles. 2110

2110. At least the bisexual or female flowers with a rim-like calyx (calyculus) below the corolla.-Flowers usually brightly coloured and usually bisexual, if flowers unisexual then plants dioecious.

Loranthaceae

- Calyx or calyculus absent.-Plants monoecious or dioecious. Flowers usually inconspicuous, greenish

2111
2111. Leaves usually decussate. Flowers in cymes or produced from the stem, not the leaf-axils (Tropical America, West Indies: Dendroph- thora, Phoradendron). Anthers usually sessile or cohering. Viscaceae

- Leaves usually alternate. Flowers in axillary or terminal racemose inflorescences. Anthers neither sessile, nor cohering 2112

2112. Plants attached by means of large, distinct primary haustoria, some- times also with secondary haustoria on creeping roots. Fruitwall without conspicuous longitudinal fibres. S. America, Mexico, Carib- bean. Eremolepidaceae- Plants without a distinct primary haustorium. Branches either leafyor with scales and then originating from endophytic parts. Fruitwallwith conspicuous longitudinal fibres. S.E. Asia, New Guinea.
Santalaceae
2113. Flowers distinctly zygomorphic 2114

- Flowers actinomorphic. 21152114. Ovary 2-locular.-Primary haustorium present or absent. Subter-ranean stem often branched. Old World. Scrophulariaceae
- Ovary 1 -locular, rarely incompletely divided into locules.-Primaryhaustorium present. Subterranean stem usually simple. World wide.

Orobanchaceae
2115. Ovule 1, or indistinct and fused with the ovary wall.-Flowers unisexual, in club-shaped or disk-shaped inflorescence. Balanophoraceae

- Ovules more than 10 and distinct.-Flowers unisexual or bisexual. 2116

2116. Flowers either in inflorescences, or solitary and emerging apparently directly from the host, then rhizome-like subterranean parts absent. 2117

- Flowers solitary, emerging from a coarse, rhizome-like, subterra-
nean part of the parasite.-Madagascar, S. Africa, S. America.
Hydnoraceae

2117. Flowers in branched inflorescences. Stamens adnate to the corolla, with distinct filaments. Ovules less than 16.-Dry habitats in America.

Lennoaceae

- Flowers either solitary or in simple spikes. Anthers sessile on a central column, without distinct filaments. Ovules numerous.

Rafflesiaceae

GLOSSARY

Abaxial Facing away from the axis.
Achene A one-seeded, dry, indehiscent fruit with the seed free from the pericarp.
Actinomorphic Regular: a flower with radially arranged (sub-)equal perianth-segments.
Adaxial Facing the axis.
Adnate Of organs: fusion of non-homologous ones (petals with stamens, etc., see connate); of anthers: more or less fused with the filament and not movable freely and independently from the latter (see versatile).
Aestivation The way in which the floral parts are placed in bud.
Alternate Of leaves: attached solitary and spaced along the axis.
Alterni- a prefix: alternating with, as in alternipetalous stamens: stamens alternating with the petals.
Anatropous Ovules with the raphe so adnate to the straight nucellus that the micropyle is next to the funicle.-Plate 3.
Androgynophore A stalk supporting both the stamens and the pistil(s).
Androphore A stalk supporting the stamens.
Annual Of herbs: completing the full cycle of germination to fruiting within the year and then dying.
Anther The part of the stamen containing the pollen, usually bilocular and the locules ('thecae') connected by the connective.
Antidromous Of stipules: connate on one side, but not over the petiole (then intra-petiolar, q.v.), leaving a ring-like scar around the twig, as in Ficus; Platanus.
Apert Margins of the perianth-segments not touching each other in bud, except perhaps at the very base.
Apocarpous Composed of 2 or more mutually free carpels.
Apotropous An anatropous ovule with the funicle facing away from the placenta when pendulous, to next to it when erect. (cf. epitropous).Plate 2: 2, 4.
Aril A usually fleshy or membranous cover of the seed originating from the hilum, or funicle, or placenta, or micropylar area.
Articulated Provided with a joint or pre-formed breakage-point (in pedicels, petioles, or fruits).

Ascending In stems: prostrate at base, becoming erect upwards; of ovules: with the funicle pointing upwards.-Plate 2: 3, 4.
Asymmetric Not divisable by any plane into two (sub-)equal parts.
Atropous Of ovules: funicle, nucellus, and micropyle in one line; a straight (orthotropous) ovule.-Plate 3.
Auricle A lateral (usually rounded) appendage (in a leaf at the base of the blade or petiole itself, not to be confused with the stipules, q.v.).
Autotrophous A green, non-parasitic, non-saprophytic plant.
Awn A strong bristle or bristle-like structure.
Axillary Standing in an axil; of ovules: attached along the central axis in a loculed ovary.

Basifix Of anthers: filament attached at or near the base of the anther.
Berry A fleshy or juicy fruit, indehiscent, endocarp not indurated, seeds not in distinct locules.
Bi- A prefix: two, as in bilabiate: with two lips.
Biennial Of herbs: completing the full cycle of germination to fruiting in more than one, but not more than two years and then dying.
Bisexual Having both fertile stamens and pistils in one tlower.
Bract Any modified, usually reduced leaf, usually the ones subtending a flower or (part of) an inflorescence.
Bracteole One or more bracts on a pedicel. (Note: to be present on the pedicels of all flowers, otherwise to be regarded as bracts).
Bulb A short, usually subterranean part of the plant composed of thickened scales.

Calycoid Resembling a calyx.
Calyptra Cap-shaped, see closed.
${ }^{2}$ Calyx The outermost floral envelope (but cf. epicalyx), usually smaller and drier than the next inner one (corolla), and more or less green.
Campanulate Bell-shaped: tube about as long as wide, gradually enlarged into the limb.
Campylotropous A form of anatropous, q.v.-Plate 3.
Capitate Head-shaped, as the knob of a pin; of flowers: in capitules.
Capitule An inflorescence with more or less sessile flowers on a common receptacle, surrounded by an involucre (if not, see glomerule).
Capsule A dry fruit, dehiscing in various ways, derived from 2 or more carpels.
Carpel A leaf-derived organ bearing ovules. (An ovary is considered to be composed of 1 -more carpels).
Caruncle A wart or protuberance on the seed, see also obturator.
Caryops A one-seeded, dry, indehiscent fruit with the pericarp adnate to the testa.

Catkin A dense raceme or spike, usually pendulous, with minute unisexual flowers, falling as a whole.
Cf. Compare, see.
Chalaza Of ovules or seeds: the place where the nucellus meets the integuments; opposite the cotyledons.-Plate 2: 5.
Cincinnus A cymose, dichotomous inflorescence resembling a raceme, in which the apparent main axis is in fact composed of secondary ones, i.e. an actually lateral branch forms the internode. Note the presence of a bract or leaf opposite to the flower and not subtending it, as in truly racemose inflorescences.
Clavate Club-shaped.
Closed In aestivation: all parts connate, either separating at anthesis, or deciduous together because of a transverse suture as a calyptra.
Coherent, cohering Of organs: glued, but not fused together, and to be separated with caution without tearing.
Collateral Placed side by side, as in ovules.
Columella In fruits: the persistent central axis after dehiscence.
Compound Consisting of free parts: leaflets in leaves, partial inflorescences in inflorescences, etc.
Cone A spike-like inflorescence with large, indurating bracts; the ultimate pseudocarp; a flower, inflorescence, or fruit resembling this.
Connate Of organs: fusion of homologous ones, e.g. petals among themselves, etc.; see adnate.
Connective The tissue between the locules ('thecae') of the anther (usually very inconspicuous).
Contort Margins of the perianth-segments overlapping each other so that one part is inside, the other outside, and none is completely inner- or outermost. (Note: this state, unless expressly stated is usually included in imbricate, q.v.).
Cordate At base with an acute incision between two rounded lobes, generally also with a more or less acute apex.
Corniculate With horn-shaped appendages.
hoo Corolla The inner-most floral envelope (but cf. corona), usually larger, more flaccid than the outermost one (calyx), and usually coloured (not green).
Corolloid Resembling a corolla.
Corona One, rarely two whorls of petaloid, or thread- or horn-like, etc. appendages between the corolla and the stamens, of corolloid or staminodial origin, as in Narcissus, Passiflora (not to be confused with the lobes of a disk).
Corymb An inflorescence, usually a raceme, in which the flowers through unequal pedicels are in one (horizontal) plane.

Cotyledon The first leaf or leaves of the embryo, usually present in the seed.
Crenate Of a margin with small, sharp incisions and rounded intermediate teeth.
Cupule Connate, indurated bracts subtending or enveloping a flower or an inflorescence, as in Fagaceae.
Cyme A cymose inflorescence, especially one with equally developed lateral branches.
Cymose Of an inflorescence: branched with flowers terminating each axis; determinate.

Decussate In pairs that alternate at right angles, organs thus in four rows.
Dehiscent or dehiscing Opening at maturity to release the contents (pollen, seeds).
Dentate Of a margin: with small, blunt incisions and sharp teeth.
Descending Of ovules: with the funicle pointing downwards.-Plate 2: 1, 2.

Dichasial Of an inflorescence: cymose with opposite branches.
Dichotomous Divided into two equal parts.
Didynamous Of stamens: consisting of two unequally long pairs.
Dioecious Male and female flowers on different plants.
Disk A more or less pronounced outgrowth of the receptacle without vascular traces, ring-, cushion-, cup-shaped, etc., sometimes divided into lobes or separate bodies, or a unilateral one; generally with a nectarsecreting function.
Divaricate Divergent with an obtuse angle, usually approaching 180°.
Dorsal Generally: abaxial; of a raphe: on the side of the ovule facing away from the placenta.-Plate 2: 2, 3.
Dorsifix Of anthers: attached about halfway the length to the filament.
Drupe An indehiscent fruit with a membranous to leathery exocarp, a more or less fleshy mesocarp and a strongly indurated, woody to stony endocarp.
E.g. For example.

Ellipsoid Elliptic, but tri-dimensional.
Elliptic A two-dimensional shape, in which the length is between one and two times the width with the greatest width about the middle.
Emarginate Notched.
Embryo The rudimentary plant present in a mature seed.
Endo- A prefix: the inner . . ., as in endocarp, the inner layer of the pericarp, and in endotesta, the inner layer of the testa.

Endosperm The nutritive tissue within the seed (not of the embryo proper), usually surrounding the embryo or to one side of it (here inclusive of perisperm).
Entire An even margin; without any incisions or teeth.
Epi- A prefix: 1) before, as in epipetalous stamens: stamens inserted before the petals (not necessarily adnate to them!); 2) upon, as in epiphyte; 3) on, or above, as in epigynous; 4) next to, as in epitropous.
Epicalyx An involucre of a single flower resembling an outer calyx next to the actual one.
Epigynous Sepals, petals or tepals and stamens inserted on or above the plane through the apex of the ovary (which may be superior to in-ferior).-Plate 1: 5, 6 .
Epimatium The ovule-bearing scale in Coniferales.
Epiphyte A plant growing upon an other and not rooting in the soil, usually non-parasitic.
Epitropous An anatropous ovule with the funicle next to the placenta, when pendulous, or facing away from it, when ascending (cf. apotro-pous).-Plate 2: 1, 3.
Equitant Of leaves: distichous and with overlapping leaf-bases, as in Iris, Zingiber.
Exduplicative In aestivation: valvate with the margins folded outwards.
Exo- A prefix: the outer . . ., as in exocarp, the outer layer of the pericarp, and in exotesta, the outer layer of the testa.
Extra- A prefix: outside, as in extra-staminal: outside the stamens.
Extrorse Of anthers: dehiscing abaxially (check in bud!).
Fascicle A group of leaves or pedicelled flowers (cf. glomerule), apparently originating from the same point or area of a branch (cf. umbel).
Fertile Provided with functional sexual parts (pollen or ovules welldeveloped and capable of producing seeds).
-fid A suffix: divided to about half-way the midrib.
Filament The stalk of the anther.
Follicle A dry fruit, derived from a single carpel and dehiscing along one suture.
Funicle The stalk of the ovule.-Plate 2: 5.
Fusiform A tri-dimensional shape, terete and tapering at both ends.
Globose Ball-shaped.
Glomerule A cluster of sessile, usually minute flowers, not surrounded by an involucre (cf. capitule).
Glume A more or less scarious bract subtending a specialized inflorescence, as in the spikelet of a grass.

Gynobasic Of styles: attached near or to the base of the ovary.
Gynophore A stalk supporting the pistil(s).
Hastate A shape with at base two divergent, acute lobes.
Haustorium A sucker of parasitic plants.
Hemi- A prefix: partly, as in ovary hemi-inferior: ovary partly adnate to the hypanthium and partly free from it.-Plate 1: 3.
Hemitropous An anatropous ovule with a medially attached funicle and a terminal micropyle at a right angle to the latter.-Plate 3.
Herb Plant, non-woody, or woody at base only, above-ground stems usually ephimerical.
Hilum The place where the ovule or seed is or was attached to the funicle or placenta.
Hispid Provided with stiff, rigid hairs or bristles.
Hypanthium An enlarged receptacle with a more or less well-developed part between the ovary and the insertion of the perianth-segments; from the outside of the flower the difference between the hypanthium and the calyx is often obscure.
Hypogynous The sepals, petals or tepals and usually also the stamens inserted below or at the plane of insertion of the ovary. (Note: there may be a more or less developed receptacle with or without a disk; the ovary is always superior; the stamens may be inserted on the petals, whereby the flowers appear to be epi- or perigynous.-Plate 1: 1,2.

Imbricate Overlapping each other by their margins, especially used for the aestivation. (Note: unless stated incl. contort, then specifically: one or two parts outermost, one or two innermost, the other(s) partly covered, partly covering).
Imparipinnate Pinnately compound with an odd number of leaflets, usually with a terminal one.
Indument The hair-like covering of an object.
Induplicative In aestivation: valvate with the margins folded inwards.
Inferior Of the ovary: completely fused with the hypanthium, at most with a free summit, if less adnate, see hemi-.-Plate 1: 5 .
Integument Of an ovule: its envelope(s).-Plate 2: 5.
Inter- A prefix: between, as in inter-petiolary: between the petioles.
Intra- A prefix: within, as in intra-petiolary: within the axil, but abaxial to the axillary bud or branch; intra-staminal: within the whorl of the stamens.
Introrse Of anthers: dehiscing adaxially (check in bud!).
Involucre A usually bract-like structure surrounding a flower or an inflorescence (as in Compositae), or another organ (as the stigma in Goodeniaceae).

Irregular Of a flower: not to be divided into any (sub-)equal parts; asymmetric. (Usually only the perianth-segments are considered of importance).

Lanceolate A two-dimensional shape, in which the length is between three and five times the width with the greatest width about the middle.
Latex A milky juice exudated when cut, as in Euphorbia, Hevea.
Latrorse Of anthers: dehiscing laterally (check in bud!).
Lepidote Covered by a more or less stellate, scurfy indument.
Liana A usually woody climber without specialized climbing-organs (as in vines).
Ligulate Tongue-shaped; provided with a ligule.
Ligule A variously shaped appendage internal to the base of leaf-blades, or petioles, or perianth-segments.
Limb The free parts of a connate calyx or corolla, distinct from the tube.
Linear A two-dimensional shape, in which the length is more than ten times the width with the greatest width about the middle.
Linear-lanceolate A two-dimensional shape, in which the length is between five and ten times the width with the greatest width about the middle.
Lip One or more exceptionally well-developed perianth-segments, in clear contrast to the other ones of the same envelope, as in most orchids.
Lobed Divided to less than half-way the midrib (e.g. of leaves), or shallowly incised (e.g. of stigmas).
-locular A suffix: the number of locules. (Note: minute and obviously reduced ones devoid of ovules or seeds are not to be counted).
Locule A more or less closed cavity, containing the pollen in anthers and the ovules in ovaries. An incomplete locule of an ovary is one, where the septs are not completely developed and/or fused (incomplete septs) and one may pass from one locule to another. Locules which are incomplete at their very top have been considered as complete by Thonner.
Loculicide Of capsules: dehiscing between the septs or placentas into the locule.
Lomentaceous A fruit: at maturity transversely dehiscent into parts (cf. schizocarp).

Mericarp Part of a schizocarp.
-merous A suffix: divisable by the same basic number, e.g. 5 -merous: sepals 5, petals 10 , stamens 15 (the number of carpels and their style(s) or stigma(s) is usually of no importance).
Mesocarp Of fruits: the middle layer of the pericarp.

Micropyle The opening between the integuments of an ovule. A microscope is usually needed to observe this and/or some dose of fantasy. In the seed the radicle apparently always points towards the micropyle!Plate 2: 5.
Monoecious Male and female flowers on the same plant.
Mucro A sharp, usually suddenly constricted terminal point.
Mucronate Having a mucro.
Naked Devoid of an envelope.
Nigrescent Becoming black or dark in drying.
Nucellus The kernel of an ovule, usually surrounded by integuments, from which the embryo (and the endosperm) is formed.-Plate 2: 5.
Nut A dry indehiscent fruit with a more or less indurated pericarp and a single seed.

Ob- A prefix: the other way around, as in obovate: ovate but widest above the middle.
Oblong A two-dimensional shape, in which the length is between two and three times the width with the greatest width about the middle.
Obturator A wart-like protuberance of the placenta, covering the micropyle, as in many Euphorbiaceae.
Orthotropous See atropous.
Ovary The lower part of the pistil containing the ovule(s).
Ovate A two-dimensional shape, in which the length is between one and two times the width, with the greatest width below the middle.
Ovoid Ovate, but tri-dimensional.
Palea A usually scarious bract of a common receptacle (as in Compositae) or the adaxial involucral bract in the spikelets of Gramineae.
Palmate With parts or ramifications in one plane which originate more or less from one place. (Usually incl. pedate).
Palmati- A prefix: palmately so.
Panicle A compound inflorescence with a main axis and at least secondary branches (usually incl. thyrse, specifically: main and lateral axes branched in the same way, either racemose, or cymose).
Papilionaceous Of flowers: zygomorphic and imbricate with one wide, upper segment, two narrower lateral ones and two narrower lower ones, the latter usually coherent or connate by their margins; as in the Papilionaceae.
Parasite A plant growing and feeding upon another, usually lacking chlorophyll. A hemi-parasite is partly parasitic, partly autotrophous, and has chlorophyll.

Parietal Of ovules: attached to the outer wall of the ovary; placenta sometimes excurrent or ridge-shaped.
Paripinnate Pinnately compound with an even number of leaflets, usually without a terminal one.
-partite A suffix: divided to more than half-way the midrib, but not yet compound.
Pedate With parts or ramifications in one plane, where the larger ones originate from the basal side-nerves, the next larger from the basal sidenerves of these, and so on, superficially resembling palmate and usually included there.
Pedati- A prefix: pedately so.
Pedicel The flower-stalk without bracts, sometimes with bracteoles.
Peduncle The stalk of the inflorescence: the axis between the last true leaf and the first branch (and bract) of the inflorescence.
Peltate Round and with a stalk or attachment somewhere on its surface, usually about the middle.
Perennial Of herbs: not dying after flowering and fruiting (here used incl. biennial).
Perianth The floral envelopes, calyx and corolla, or the floral envelope, when these cannot be distinguished.
Pericarp The fruit-wall.
Perigynous Sepals, petals or tepals and usually also the stamens inserted between the plane of insertion of the ovary and its apex, i.e. more or less around the ovary on a more or less well-developed hypanthium. (The ovary may be superior to hemi-inferior).-Plate 1: 3, 4.

Perisperm See endosperm.

Petal Free segment of the corolla.
Petaloid Resembling a petal.
Petiole The leaf-stalk.
Petiolule The stalk of a leaflet.
Phylloclade A widened, flattened and green axis, resembling a leaf.
Pinnate With parts or ramifications in one plane, which are placed along a central axis, as in a feather.
Pinnati- A prefix: pinnately so.
Pistil The female organ of a flower, composed of one or more carpels.
Pistillode A reduced pistil, without developed ovules.
Pitcher A flask-shaped to tubular modified leaf, as in Nepenthes, Sarracenia.
Placenta The part of the carpel which bears the ovule(s).-Plate 2: 5 .
Plicate Folded lengthwise with pleats.
-plinerved A suffix: number of (sub-)equal nerves, as in triplinerved: with three (sub-)equal main nerves originating from the base of the blade.

Pod A dry fruit derived from a single carpel, dehiscing along the dorsal and ventral sutures; seeds attached dorsally.
Pollinium A body composed of all the pollen of an anther-locule, as in Asclepiadaceae, Orchidaceae.
Polygamous Some flowers unisexual, others bisexual on the same or different plants.
Pseudo- A prefix: resembling, as in pseudocarp: apparently a fruit, but composed of carpels and other parts of the flower or inflorescence, as in Ficus, Fragaria.

Raceme An inflorescence with a simple, elongated rachis and pedicelled flowers. (A raceme is not necessarily racemose!).
Racemose Of an inflorescence: branched without terminal flowers; indeterminate. (A racemose inflorescence is not necessarily a raceme!).
Rachis The main axis of a compound leaf or inflorescence.
Radiating Patent to all sides; in inflorescences: the outer flowers with a larger perianth than the inner.
Radicle The first root of the embryo, usually present in the seed. N.B.: The radicle apparently always points towards the micropyle!
Raphe In ovules and seeds: the vascular bundle between the nucellus and the funicle; the general area around it.-Plate 2:5.
Receptacle The shortened axis of the flower, often punctiform or disk-like (cf. hypanthium); the common receptacle is the shortened axis of an inflorescence (as in Compositae).
Resinous Containing resin, a kind of latex usually becoming sticky or solid after contact with air, as in Anacardiaceae (poisonous!), Pinus.
Reticulate Net-shaped, e.g. of venation: veins in an irregular network shaped by the numerous interconnecting branches.
Rhizome Rootstock, part of the stem resembling a root, not covered by scales, more or less elongated and horizontal, producing shoots at one end.
Rotate Of the corolla: the parts spreading out in one plane from the axis; wheel-shaped.
Ruminate Of endosperm: intrusion of the testa into the endosperm, which then in transection resembles the pattern of a cow's tooth, as in a nutmeg.

Sagittate A shape with at base two retrorse, acute lobes.
Salver-shaped A shape: with a narrow tubular tube and a small, spreading limb.
Saprophyte A plant without chlorophyll living exclusively upon dead organic material (actually through a fungus in its basal tissues). Many plants are hemi-saprophytic, but then have chlorophyll.

Scale Any thin scarious organ, either a reduced leaf, or a much flattened hair.
Scape A peduncle, usually originating from the base of the plant, without leaves, at most with some bracts.
Scarious Thin, dry, translucent and pale.
Schizocarp A usually dry fruit, which splits up longitudinally into non- or tardily dehiscent parts (mericarps). (cf. lomentaceous).
Sclerenchyma Tissue composed of thick-walled cells.
-sect A suffix: divided to about the midrib.
Secund Of branches: oriented to one side, often curving down.
Segment Part of a structure, e.g. the lobe of a connate corolla, but also a free petal.
Sepal Free segment of the calyx.
Sepaloid Resembling a sepal.
Sept The partition dividing an ovary or fruit into locules. True septs originate from the margins of carpels, false septs do not. (cf. locule).
Septicide Of capsules: dehiscing through the septs or placentas.
Septifragous Of capsules: when the valves break away from the persistently connate septs or placentas.
Serial Placed on above the other, as in ovules.
Serrate Of a margin: with small, sharp incisions and teeth.
Sessile Without a stalk; in anthers: without filaments; in stigmas: without styles.
Sheath Of leaves: the broadened base of a blade or petiole, usually enveloping the internode for some length.
Shrub Woody plant without a distinct main stem, therefore usually not very high and much-branched.
Silique A bi-locular fruit composed of two carpels, usually dehiscing with two valves, as in Cruciferae.
Simple Of a leaf: entire to divided, but not compound; of a perianth: parts (sub-)equal, not differentiated into calyx and corolla.
Spadix A spike-like inflorescence with an unbranched, usually thick rachis and more or less minute flowers imbedded in it, the whole generally subtended by a spathe.
Spathaceous A structure resembling a spathe.
Spathe An enlarged bract enclosing a (partial) inflorescence or single flower.
Spathulate A two-dimensional shape with a broadened part (blade) and a stalk-like one (claw), as in a ping-pong-bat.
Spike An inflorescence of a single rachis with more or less sessile flowers.
Spikelet A small specialized spike (as in Gramineae).
Spine An indurated, sharp object not derived from an organ, and therefore usually irregularily distributed (cf. thorn).

Spur A tubular appendage of one or more perianth-segments (usually the corolla).
med dstámen The male organ of a flower.
Staminode A reduced stamen without pollen.
-stichous A suffix: in rows or ranks (usually of leaves).
Stigma The usually papillose or glandular part of the style for the receival of the pollen.
Stigmatic Having or resembling a stigma.
Stipel Stipule-like appendage at the base of a leaflet (in unifoliolate leaves inserted on the petiole, not on the stem!).
Stipitate Having a stalk or stipe, usually of an ovary or fruit.
Stipule A paired leaf-like, scale-like, spiny, glandular, bristle-shaped, etc. structure on both sides of the leaf-base or petiole, inserted on the axis; sometimes very early fugacious and then leaving a more or less distinct scar (check young shoots!).
Style The usually narrowed part of the pistil between the ovary and the stigma.
Sub- A prefix: more or less, nearly, as in sub-equal.
Subulate Awl-shaped: narrow, terete, and acute.
Succulent Juicy, fleshy, as the stem of Cactaceae.
Superior Of the ovary: inserted only by its base on the receptacle, but otherwise free from it.-Plate 1: 1, 2, 4, 6.
Symmetric Divisable by one or more planes into two or more (sub-)equal parts.
Syncarp A compound fruit originating from several, originally free carpels, as in Magnolia, Morus.
Syncarpous Ovary composed of several connate carpels. (A syncarpous ovary does not produce a syncarp!).

Tendril A long, slender, usually watch-spring-like, coiled organ derived from an axis, or leaf, or parts of these.
Tepal Free segment of a perianth not differentiated into a calyx and a corolla.
Terete Cylindric and elongated.
Ternate In threes.
Testa The more or less indurated skin of the seed enclosing the endosperm and embryo; the seed-coat.
Theca The locule of an anther.
Thorn An indurated, sharp object derived from an organ, e.g. a branch, a stipule, a leaf, and therefore more or less regularily distributed. (Cf. spine).
Throat The general area between tube and limb.

Thyrse A compound inflorescence with mixed types of branching: the main ones racemose, at least the ultimate ones cymose.
Tree Woody plant with a single distinct stem, generally fairly high.
Tri- A prefix: three, as in tri-foliolate: with three leaflets.
Tube The fused, usually elongated part of connate sepals, petals, tepals, or filaments.
Tuber A short, thickened part of the root or stem without scales.
Umbel An inflorescence in which the pedicels or secondary axes originate from one point on the top of the peduncle.
Unarmed Without spines or thorns.
Undershrub A small shrub, often partially herbaceous, the ends of the branches often dying during winter or dry season.
Unguiculate Claw-like, or having such appendages; cf. spathulate.
Unifoliolate A compound leaf reduced to a single leaflet, usually recognizable by the articulated 'petiole', actually a petiolule and a petiole.
Unisexual Of flowers: with one sex only, either the anthers with pollen, or the ovary with ovules. (Pistillodes or staminodes may be present!).
Urceolate A shape: inflated and contracted at the mouth like an urn or pitcher.
Utricle An irregularily or non-dehiscent fruit or seed enclosed in a loose, membranous pericarp or bract.

Valvate Touching each other with the margins but not overlapping; dehiscing by valves. In aestivation usually inclusive of induplicative (q.v.).
Valve A lid or segments of an anther or capsule after dehiscence.
Ventral Adaxial; of a raphe: on the side of the ovule facing to the placenta.-Plate 2: 1, 4.
Versatile Of anthers: attached with a usually small joint to the filament and freely and independently movable. (Cf. adnate).
Verticillate In a whorl.
Vine A usually woody climber with specialized climbing-organs, e.g. tendrils, hooks, adventitious roots, etc.
Virgate A broom-like habit, more or less densely branched with stiff, \pm erect branches, leaves usually small.
Viviparous Seed germinating while still attached to the plant, as in Rhizophoraceae. (Proliferous: reproducing vegetatively with the plantlets, not derived from the seed, developing on the mother-plant before falling off).

Zygomorphic A flower which can be divided into two (sub-)equal parts by one plane only, as in an orchid; bilateral symmetric. (Usually only the perianth-segments are considered of importance).

FLOWER: POSITION OVARY VERSUS RECEPTACLE

1. FLOWER HYPOGYNOUS OVARY SUPERIOR
2. FLOWER PERIGYNOUS
OVARY HEMI-INFERIOR
3. FLOWER PERIGYNOUS
OVARY HEMI-INFERIOR

4. FLOWER EPIGYNOUS OVARY INFERIOR

late 1

5. FLOWER HYPOGYNOUS STAMENS INSERTED ON THE COROLLA OVARY SUPERIOR

6. FLOWER PERIGYNOUS OVARY SUPERIOR

7. FLOWER EPIGYNOUS
OVARY SUPERIOR

OVULES: POSITION VERSUS PLACENTA

1 \& 4: RAPHE VENTRAL
2 \& 3: RAPHE DORSAL

Plate 2

OVULES: SHAPE

ATROPOUS (orthotropous)

HEMITROPOUS

ANATROPOUS

In the key both types generally not distinguished from anatropous

OVULE
\longrightarrow
SEED
Plate 3

INDEX

Taxa below the rank of family mentioned in a lead may well key out elsewhere also, without being enumerated there, e.g. because too many taxa to be noted are represented in that particular lead.

The numbers cited refer to the number of the couplet, not page.

Aboldaceae (= Xyridaceae) 142
Abrophyllum 703
Acanthaceae $1668,1669,1738$, 1746, 1903, 1909, 1925, 1931, 1932, 1984
Acantheae 1984
Acanthochiton 204
Aceraceae 372, 391, 743, 1019, 1025, 1053, 1221, 1233, 1292, 1317, 1341
Achariaceae 1590, 1831
Acharitea 1987
Achariteae 1923
Achatocarpaceae
(=Phytolaccaceae) 263
Acnida 204
Acrosanthes 290
Actinidiaceae 718,904
Actinotus 485
Adenia 620
Adenogramma 259
Adoxaceae 531, 2084
Aegialitidaceae
(=Plumbaginaceae) 1845
Aegicerataceae
(=Myrsinaceae) 1851
Aëtoxylon 1337
Aextoxicaceae
(= Euphorbiaceae) 948
Affonsea 1889
Afrostyrax 597
Agavaceae ($=$ Liliaceae p.p.,
Amaryllidaceae p.p.) 98,130
Agdestiaceae
(=Phytolaccaceae) 514
Aglaia 951
Aitoniaceae (=Meliaceae) 1014

Aizoaceae 259, 282, 290, 308, 315, $345,361,367,395,403,413,422$, $428,484,523,749,764,1549$, 1571, 1575, 1611, 2093
Akaniaceae 1243
Alangiaceae 1405, 1438, 1524, 1534, 1687, 2035, 2063
Aletris 128
Aletroideae 79
Alismataceae 69, 149, 150
Alliaceae (= Liliaceae) 95
Allotropa 415
Alseuosmiaceae 2056, 2061
Alstroemeria 133
Alstroemeriaceae (= Amaryllidaceae) 124, 133, 157
Altingiaceae (=Hamamelidaceae) 188,546
Alvaradoa 374
Alzatea 336, 1459
Amaranthaceae 172, 204, 265, 297, 306, 309, 314
Amaranthus 172
Amaryllidaceae $124,130,133,157$
Amborellaceae 437, 1366
Anacardiaceae 195, 246, 560, 564, 940, 982, 994, 1007, 1102, 1116, 1131, 1164, 1266, 1285, 1399, 1472, 1475, 1583, 2030, 2032
Anarthriaceae (=Restionaceae) 67
Ancistrocladaceae 1387, 2026, 2083
Androstachydaceae (=Euphorbiaceae) 387
Anisadenia 752

Anisophyllaceae
(=Rhizophoraceae) 547, 1491, 1509
Anisoptera 1570
Anneslea 2101
Annonaceae 584a, 604, 777, 795, $799,801,817,849,924,1112$, 1640, 1649
Anomochloaceae (=Gramineae) 35
Anopterus 618
Anopyxis 667, 1030, 1128
Anthocleista 1792
Antholoma 1645
Antidaphne 463, 2109
Antidesma 287
Antonia 421
Antoniaceae (= Loganiaceae) 421, 1659, 1751, 1920
Aphanopetalum 362
Aphyllanthaceae ($=$ Liliaceae) 96
Apocynaceae 1707, 1722, 1726, 1741, 1763, 1785, 1811, 1815, 2040
Aponogetonaceae 29, 40, 57, 103
Aporosa 378
Apostasiaceae
(= Orchidaceae) 109
Aptandra 943, 979, 990
Aptandraceae (=Olacaceae) 932, 943, 953, 979, 990
Aquifoliaceae 352, 356, 358, 640, 653, 751, 755, 1796, 1802, 1837, 1873
Aquilariaceae (=Thymelaeaceae) 350, 1606, 1623, 1643
Araceae 16, 23, 40
Araliaceae 518, 528, 532, 533, 1210, 1285, 1395, 1423, 1438, 1475, 1498, 1499, 1501, 1553, 1562, 2063, 2085, 2088, 2100
Aralidiaceae (=Cornaceae) 1475, 1498
Araucariaceae 14
Archidendron 1889
Argophyllum 2061

Aristolochia 507
Aristolochiaceae 423, 507, 536, 1552
Aristotelia 1022
Asarum 423
Asclepiadaceae 1814, 1815, 1963, 2040
Asteranthaceae
(= Lecythidaceae) 2003, 2099
Asterolasia 369
Asteropeiaceae (=Theaceae) 685, 719, 759, 769, 911
Astragalus 691
Astronia 1448
Atherospermataceae
(= Monimiaceae) 439
Aucubaceae (=Cornaceae) 1403
Augea 1031
Austrobaileyaceae 918
Aveledoa 1687
Averrhoaceae
(=Oxalidaceae) 756, 764, 1597, 1632
Avicenniaceae
(= Verbenaceae) 1700, 1718, 1792
Axinandra 1430, 1457
Bacopa 1671
Balanitaceae (=Zygophyllaceae) 1005
Balanopaceae 166, 190, 373
Balanophoraceae 184, 193, 197, 207, 209, 462, 2115
Balbisia 766
Balsaminaceae 634, 695, 704
Bambusaceae (See also Gramineae) 35
Banara 841
Barbeuiaceae (= Phytolaccaceae) 347
Barbeyaceae (= Ulmaceae) 277
Barclayaceae (= Nymphaeaceae) 2102
Barnhartia 1208
Barringtoniaceae (= Lecythidaceae) 1543

Basellaceae 1844
Batidaceae 206
Bauera 1069
Baueraceae
(=Saxifragaceae) 1069, 1147,
1277, 1302, 1567
Beesia 317
Begoniaceae 504, 538, 1555, 1563, 2049
Begoniella 2049
Bellendena 300
Belliolum 604
Bembicia 506
Berberidaceae 222,557,563,564, 579, 593, 605, 819, 955
Berberis 557, 564
Berenice 2057
Berzelia 1400, 1494, 2036
Betulaceae 211, 212, 490, 522
Biebersteiniaceae
(=Geraniaceae) 380, 656
Bignoniaceae 1670, 1745, 1747, 1916, 1929, 1941, 1974, 1981, 1991
Bishofiaceae
(=Euphorbiaceae) 386
Bixaceae 829
Blepharocaryaceae (=Anacardiaceae) 940
Bocconia 247
Boerlagellaceae ${ }^{1}$
Bomarea 133, 157
Bombacaceae 370, 699, 745, 852, 864, 871, 882, 1247, 1316, 1344, 1374, 1454, 1854, 1855, 1887, 1891, 2002, 2067, 2078
Bonnetiaceae ($=$ Theaceae) 886, 911, 1653
Boraginaceae 1658, 1676, 1722, 1723, 1736, 1793, 1794, 1800, 1809, 1826, 1828, 1838, 1902, 1927, 1935, 1992
Bouea 560, 940
Brachynema 1857
Brasenia 921
Bretschneideraceae 1243
Brexia 1065

Brexiaceae
(=Saxifragaceae) 1065, 1207, 1253, 1605
Bromeliaceae 90, 148, 157
Bromelioideae 157
Brunelliaceae 452
Bruniaceae 1289, 1294, 1400, 1416, 1428, 1442, 1463, 1494, 1510, 1739, 1827, 2036, 2042
Brunoniaceae 1686, 1952
Bubbia 604, 1576
Buddleja 1792
Buddlejaceae (=Loganiaceae) 1792
Burmanniaceae 16, 112, 121
Burmannieae 112
Burnatia 69
Burseraceae 684, 1039, 1049, 1057, 1230, 1239, 1628
Butomaceae 103, 149
Butomus 103
Buxaceae 352, 392
Byblidaceae 1607, 1756
Cabomba 788
Cabombaceae (= Nymphaeaceae) 447, 454, 788, 921
Cactaceae 1545, 2090
Cadellia 804
Caesalpiniaceae, see Leguminosae
Calectasiaceae (=Xanthorrhoeaceae) 99
Callianthemum 449
Callitrichaceae 189
Calostemma 124
Caltha 454

1 Boerlagellaceae are not included in the key, as the family is based upon incomplete material;
Boerlagella $=$ Planchonella (Sapotaceae) and Dubardella $=$ Pyrenaria
(Theaceae).

Calycanthaceae 16, 1308, 1323, $1364,1365,1367$
Calyceraceae 2036
Camelliaceae, see Theaceae
Campanulaceae 538, 1460, 1602, 1977, 1983, 2044, 2054, 2055, 2057
Camptotheca 1472
Canacomyrica 221, -
Canarium 1049
Canella 610
Canellaceae 610, 830, 1640
Cannabidaceae 271
Cannaceae 108
Canotia 1259
Canotiaceae 700
Cansjera 256, 1842
Capparaceae $322,400,566,615$, 671, 692, 711, 719, 838, 841, 862, 878, 893, 900, 933, 961, 1036, 1064, 1092, 1096, 1116, 1120, $1122,1140,1329,1333,1625$, 1997
Caprifoliaceae 2008, 2009, 2017, 2046, 2065, 2072
Carallia 1408
Cardiopteridaceae 1693, 1824
Caricaceae 723, 762, 1875
Carlemanniaceae
(= Caprifoliaceae) 2017
Carpinaceae (= Betulaceae) 522
Cartonemataceae
(=Commelinaceae) 145
Carya 171, 202
Caryocar 855
Caryocaraceae 855, 1892
Caryophyllaceae 248, 264, 290, 315, 473, 595, 726, 731, 954, $1155,1169,1182,1270,1704$
Casearia 295
Casuarinaceae 200
Cassipourea 1228, 1346
Cassytha 282, 2105
Castela 1111
Catophractes 1981
Cadrelopsis 748, 754

Celastraceae $310,632,663,973$, 1015, 1022, 1028, 1029, 1044, 1054, 1071, 1082, 1092, 1140, $1162,1169,1175,1182,1200$, 1206, 1207, 1215, 1218, 1227, 1236, 1238, 1258, 1259, 1286, 1296, 1409, 1427, 1445, 1452, 1587, 1602, 1700, 1729, 1771
Celosia 297
Celosieae 306, 314
Centrolepidaceae 33, 34
Centroplacus 1042
Cephalotaceae 434
Cephalotaxaceae 10
Ceratiosicyos 1590
Ceratopetalum 543
Ceratophyllaceae 274
Cercidiphyllaceae 178, 207, 456
Ceriops 1408
Ceropegia 1963
Chamaelaucieae 1418
Chenopodiaceae 204, 266, 473
Chimonanthus 1308
Chlaenaceae, see Sarcolaenaceae
Chloantheae 1939
Chloranthaceae 170, 219, 476
Chrysobalanaceae 294, 297, 1162, $1170,1199,1324,1339$
Chunia 188
Cinnamodendron 830
Cinnamosma 1640
Circaea 1431
Circaesteraceae (= Ranunculaceae) 276, 432
Cistaceae 600, 610, 837, 844, 875, $885,907,1118,1123,1148$
Clavija 1849
Claytonia 16
Clematis 428
Clematoclethra 718
Cleomaceae (= Capparaceae) 566, 671, 838, 961, 1120
Clethraceae 708, 769
Cneoraceae 1051
Cobaeaceae (= Polemoniaceae) 1765
Coccolobeae 728

Cochlospermaceae 829, 884, 886
Codia 543
Coelanthum 395
Coeloneurum 1733
Coicineae 21
Collomia 1723, 1758
Columelliaceae 2017
Combretaceae 494, 499, 1174, 1416, 1527
Combretocarpus 547, 1509
Combretodendron 1543
Commelinaceae 91, 145
Compositae 205, 474, 2028
Comptonia 173
Condalia 293, 489
Congea 1907, 1938
Coniferales 9
Connaraceae 574, 603, 793, 951, 1105, 1176, 1309, 1592, 1599, 1621, 1631
Convolvulaceae 1692, 1699, 1724, 1734, 1744, 1768, 1777, 1799, 1821, 1972, 2105
Corbichonia 1611
Corchoropsis 712
Corchorus 712
Corema 342
Coriariaceae 785
Coridaceae (= Primulaceae) 1949
Cornaceae 486, 528, 529, 530, 533, 1402, 1403, 1404, 1405, 1429, 1434, 1435, 1437, 1472, 1474, 1475, 1498, 1503, 1504
Corokia 1404, 1435
Corsiaceae 16, 121
Corydalis 16
Corylaceae (=Betulaceae) 490, 522
Corynocarpaceae 1163, 1266, 1289
Costaceae (=Zingiberaceae) 154
Crassulaceae $424,767,773,785$, $788,803,917,1072,1100,1103$, 1112, 1311, 1370, 1599, 1829, 1874
Cristatella 1120
Croomiaceae ($=$ Stemonaceae) 49, 80

Crossosomataceae 1369
Crossostylis 1128
Cruciferae 16, 356, 379, 396, 566, 586, 615, 635, 645, 678, 692, 853, 938, 940, 961, 969, 999, 1016, 1044, 1050, 1065, 1136, 1203, 1249
Crypteronia 399
Crypteroniaceae 336, 399, 1430, 1457, 1458, 1459
Ctenolophon 966, 1055
Ctenolophonaceae (=Linaceae) 966, 1055
Cucurbitaceae 1393, 1406, 1422, 1432, 1447, 1473, 1477, 1478, 1486, 1489, 1512, 2007, 2010, 2014, 2026, 2030, 2049
Cullenia 370
Cunoniaceae 362, 405, 408, 409, 421, 440, 445, 451, 543, 1070, 1288, 1292, 1299, 1508
Cupressaceae 15
Curculigo 126
Curtisiaceae (= Cornaceae) 1434, 1504
Cuscutaceae
(=Convolvulaceae) 1734, 2105
Cuttsia 703
Cyanastraceae
(= Haemodoraceae) 127
Cyanastrum 127
Cycadaceae 6
Cycadales 5
Cyclamen 16
Cyclanthaceae 22, 39
Cymodoceaceae
(=Zannichelliaceae) 26
Cynomoriaceae 475
Cyperaceae 16, 35
Cypripedieae 109
Cypselea 315
Cyrillaceae 755, 1003, 1059, 1063, 1626
Cyrillopsis 683
Cyrtandra 1671
Cyrtocarpa 1007

Dactylocladus 1458
Dactylopetalum 1346
Dampiera 511
Daphniphyllaceae 191, 385
Dasypogon 50
Datiscaceae 504, 1486
Davidiaceae 176,216
Davidsoniaceae
(=Cunoniaceae) 405
Decumaria 1533
Deeringia 309
Degeneriaceae 1, 16, 833
Deinanthe 1530
Delissea 538
Deltaria 350
Dendrophtora 465, 2111
Dentaria 16
Desfontainia 1810
Dialypetalanthaceae 1537
Diapensiaceae 1770, 1783
Dichapetalaceae $1040,1234,1295$, 1444, 1510, 1740, 1767, 1819, 1833, 1920, 1966, 1971
Dichapetalum 1444
Diclidanthera 1863, 1867
Dicraspidia 1536
Dicrastylidaceae (= Verbenaceae) 1792, 1923, 1939, 1987
Didesmandra 777
Didieraceae 975
Didymelaceae 170
Diegodendraceae 915
Dilleniaceae 777, 795, 800, 812, 823, 824, 877, 910, 919
Dioncophyllaceae 734, 843
Dioncophyllum 843
Dioscoreaceae 16, 81, 131
Dipelta 2008
Dipentodontaceae 1179
Diplarrhena 111
Diplolaena 450
Dipsacaceae 2012, 2013, 2034
Dipterocarpaceae 666, 676, 844, 867, 887, 1234, 1241, 1350, 1444, 1547, 1570, 1642, 1886
Dipterocarpoideae 887

Dirachmaceae
(=Geraniaceae) 1197
Disanthus 1298
Distyliopsis 230
Dobera 937
Dodonaeoideae 1012
Dombeya 870
Donatia 1514
Donatiaceae (=Stylidiaceae) 1514
Doryalis 287, 351, 389, 395
Drimycarpus 1399, 1472, 1475
Droseraceae 617, 739, 809, 1271
Drymis 604, 801, 912
Drypetes 287, 378
Duckeodendraceae 1722
Dulongiaceae
(=Saxifragaceae) 1484, 1516
Dysphaniaceae 266
Ebenaceae 1598, 1633, 1652, 1835, 1837, 1877, 1894, 1895, 2076
Ecdeiocoleaceae (= Restionaceae) 67
Ehretiaceae (=Boraginaceae) 1736, 1800, 1828, 1838, 1902
Eichleria 803
Elaeagnaceae 255
Elaeocarpaceae 337, 407, 866, 1022, 1024, 1031, 1042, 1087, 1128, 1143, 1347, 1348, 1354, 1645
Elatinaceae 765
Ellisiophyllaceae (=Scrophulariaceae) 1679
Emblingiaceae (= Capparaceae) 1997
Empetraceae 342, 746
Empleurum 300
Endonemeae 417
Endospermum 357
Epacridaceae 1075, 1604, 1609, 1661, 1687, 1720, 1781, 1789, 1805, 2045, 2058
Ephedraceae 4
Epimedium 605
Eremolepidaceae 466, 2112

Eremosynaceae
(=Saxifragaceae) 1282
Eriandra 1863, 1867
Ericaceae $898,1075,1091,1584$, 1609, 1618, 1627, 1763, 1865, 1975, 1989, 2002, 2043, 2045, 2058, 2075, 2079, 2095
Eriocaulaceae 34, 60, 144
Eriocaulon 34, 60
Erisma 1396
Erythropalaceae (=Olacaceae) 2070
Erythroxylaceae 729,757
Escalloniaceae (=Saxifragaceae) 618, 703, $1190,1254,1404,1413,1435$, 1455, 1464, 1517, 1605, 2061
Eschscholzia 1192, 1334
Espadaea 1972
Euceraea 295
Eucommiaceae 184
Eucryphiaceae 888
Euonymus 1445
Euphorbiaceae 176, 191, 197, 213, 268, 287, 350, 357, 378, 386, 387, 388, 640, 751, 847, 948, 981, 983 , 1042, 1125, 1295, 1598, 1633, 1647, 1877, 2001
Eupomatiaceae 226, 444
Eupteleaceae (=Trochodendraceae) 228
Euryalaceae (=Nymphaeaceae) 1571, 2102
Euryale 1571
Eurycoma 782
Exbucklandia 537, 546
Exospermum 1576
Fabaceae, see Leguminosae
Fagaceae 541, 545
Fagonia 671, 674, 1024
Ficaria 16
Flacourtiaceae 223, 287, 295, 298, $311,318,319,324,333,334,337$, $351,371,389,395,410,419,506$, $624,627,728,733,827,836,841$, $842,866,869,963,966,1123$,

1193, 1265, 1277, 1325, 1328, 1332, 1355, 1376, 1471, 1481, 1559, 1606
Flacourtieae 410, 419, 1355
Flagellaria 64, 86
Flagellariaceae 64, 65, 86
Flindersiaceae (= Rutaceae) 1081, 1093
Foetidiaceae
(= Lecythidaceae) 547
Fouquieriaceae 1621, 1639, 1651
Francoa 1249
Francoaceae (=Saxifragaceae) 1248
Frankeniaceae 612, 618, 738, 837, 1588, 1619, 1630, 1651
Freylinia 1671
Fuertesia 1558
Fumariaceae
($=$ Papaveraceae) $262,331,565$, 577, 608, 1998

Galenia 282, 361
Gamblea 1210
Ganophyllum 383
Garryaceae 211, 491, 1474
Garuga 1039
Gaureae 1431
Geissolomataceae 390
Gelsemieae 1832
Geniostoma 1762
Gentianaceae $1659,1709,1710$, $1748,1825,1911,1961,2060$, 2106
Geosiridaceae 16, 111
Geraniaceae 380, 656, 658, 668, 682, 758, 766, 875, 887, 1012, $1027,1034,1138,1197,1223$
Geranieae 656, 1034
Gerrardina 627
Gesneriaceae 16, 1671, 1710, 1916, 1930, 1943, 1961, 2016, 2038
Gillenia 1160
Ginkgoaceae 8
Ginkgoales 8
Gisekia 428

Gjellerupia 242
Glaucidiaceae
(=Ranunculaceae) 321, 332, 455
Glaux 308
Globulariaceae 1902, 1953
Gnetaceae 4
Gnetales 1, 2
Goetzea 1733, 1755
Goetzeaceae (= Solanaceae) 1690, 1694, 1699, 1733, 1755, 1957, 1972
Gomortegaceae $520,1425,1553$
Gonystylaceae 1211, 1338
Goodeniaceae 474, 489, 511, 2027, 2050
Goupiaceae (= Celastraceae) 1071
Gramineae 21, 35
Grevea 1448
Grewia 371
Greyiaceae (=Melianthaceae) 1091
Griseliniaceae (= Cornaceae) 486, 530, 1402, 1475
Gronovioideae 1398
Grossulariaceae (=Saxifragaceae) 1485
Grubbiaceae 493
Guilfoylia 585
Gumillea 409
Gunneraceae (= Haloragaceae) 480, 1397
Guttiferae 254, 631, 743, 761, 812, $824,835,860,886,908,1069$, $1115,1118,1130,1146,1339$, 1344, 1358
Gynotroches 1087, 1457
Gyrinops 1606
Gyrocarpaceae
($=$ Hernandiaceae) 483, 1391
Gyrostemonaceae (=Phytolaccaceae) 346

Haemodoraceae 93, 113, 114, 126, 127, 135
Halophytaceae
(? = Chenopodiaceae) 204

Haloragaceae 213, 480, 496, 526, 1397, 1478, 1495
Haloragis 496
Hamamelidaceae 188, 230, 359, 362, 528, 537, 546, 1267, 1287, 1298, 1301, 1496, 1509, 1513, 1569
Hamameliodeae 362
Hamamelis 1287
Hanguanaceae (= Flagellariaceae) 65
Harmandia 932
Harrisonia 995, 1007
Hectorella 1673, 1698, 1703
Hectorellaceae 314, 1674, 1698, 1703
Hederopsis 1210
Heliamphora 414
Heliconiaceae (= Musaceae) 117
Heliocarpus 384
Helleboraceae
(= Ranunculaceae) 321, 413, $449,455,767,792,820,895,933$
Helwingiaceae (= Cornaceae) 528, 533
Henoonia 1957
Henriqueziaceae 2047
Heritiera 429
Hernandiaceae 483, 1391, 1392
Heteropyxidaceae
(=Myrtaceae) 1256
Hibbertia 777, 800, 823
Hillebrandia 1555
Himantandraceae 1649
Hippocastaneaceae 1019
Hippocrateaceae 1015, 1029, 1044, 1082, 1215, 1236, 1258
Hippuridaceae 222, 479
Hirtella 1162
Holigarna 1399, 1472, 1475
Homalium 624
Hoplestigmataceae 1888
Houmiriaceae 991, 1138
Hua 557, 1160
Huaceae 557, 597, 1160
Hudsonia 610

Humbertiaceae
(=Convolvulaceae) 1744
Humeriaceae, see Houmiriaceae
Hydatellaceae
(=Centrolepidaceae) 34
Hydnoraceae 505, 2116
Hydrangea 1518
Hydrangeaceae
(=Saxifragaceae) 1466, 1518, 1530, 1533, 1568
Hydrastidaceae
(=Ranunculaceae) 449
Hydrocera 634
Hydrocharitaceae 42, 119, 156
Hydrocotylaceae
(=Umbelliferae) 485, 1500
Hydrogaster 847
Hydrophyllaceae 1679, 1757, 1825, 1827, 1837, 1955, 1969, 1988
Hydrostachydaceae 185
Hylocarpa 991
Hymenanthera 1173
Hymenocallis 124
Hymenocardiaceae
(=Euphorbiaceae) 388
Hypecoaceae
(= Papaveraceae) 609
Hypericaceae, see Guttiferae
Hypodaphnis 482
Hypopitys 600
Hypoxidaceae 114, 126, 134
Hypseocharitaceae
(=Oxalidaceae) 895
Icacinaceae 286, 299, 589, 943, 1002, 1061, 1591, 1687, 1694, 1824
Idiospermaceae
(=Calycanthaceae) 1323, 1364
Idiospermum 16
Illecebraceae
(=Caryophyllaceae) 248, 264, 290
Illiciaceae 776, 925
Illicium 925
Illigeraceae
(= Hernandiaceae) 1392

Iodeae 1061
Iridaceae 95, 111
Irvingiaceae 1003
Isophysis 95
Itea 1517
Iteaceae (= Saxifragaceae) 1455, 1517
Itoa 337
Ixerba 1207
Ixonanthaceae (=Linaceae) 676, 683, 1208, 1229

Joinvilleaceae (= Flagellariaceae) 65
Juglandaceae 171, 202, 470, 2021
Julianiaceae 205
Juncaceae 16, 51, 76, 90
Juncaginaceae 30, 63,69
Juniperus 11
Kaliphora 1503
Kelleronia 1038
Kingdoniaceae (= Ranunculaceae) 432
Kirkiaceae
(=Simaroubaceae) 984, 996, 1104
Kissenia 1414, 1530, 1558
Koeberlinia 719
Koeberliniaceae
(=Canotiaceae) 700, 1259;
(=Capparaceae) 719
Komaroffia 413
Krameriaceae 584, 1956
Labiatae 1664, 1794, 1937, 1993
Lachnocaulon 60
Lacistema 324
Lacistemataceae
(= Flacourtiaceae) 223, 298, 324
Lactoridaceae 459
Lagoecia 1395
Lanaria 126
Lardizabalaceae 458, 797, 1103
Lasianthus 2085
Lasiopetaleae 368, 419

Lauraceae 198, 282, 482, 1612, 2105
Laurembergia 496
Lechea 600
Lecythidaceae 517, 547, 1543, 2003, 2098, 2099
Ledocarpaceae (=Geraniaceae) 380, 758, 766
Leea 1856
Leeaceae 1856
Leguminosae 224, 320, 556, 569, 584a, 589, 602, 691, 815, 935, 950, 956, 1157, 1172, 1176, 1184, 1320, 1327, 1592, 1620, 1638, 1646, 1695, 1705, 1861, 1880, 1889, 1995
Leitneriaceae 272
Lemnaceae 16, 24
Lennoaceae 1804, 2117
Lentibulariaceae 1905, 1913
Leonticaceae ($=$ Berberidaceae) 593, 955
Leontochir 124
Lepidobotryaceae 1041
Lepidocordia 1800
Lepionurus 256, 1842
Leptolaena 1035
Lepuropetalaceae (=Saxifragaceae) 508, 1483
Lepuropetalon 1483
Lethodon 1643
Licania 294
Lilaeaceae (= Juncaginaceae) 30
Liliaceae $16,51,56,62,70,73$, $75,79,84,95,96,97,98,101$, $125,126,128,140,147,148$
Limeum 749
Limnanthaceae 774
Limnocharitaceae
(=Butomaceae) 149
Limoniaceae (= Plumbaginaceae) 1845
Linaceae 676, 683, 759, 877, 966, $1003,1055,1208,1229,1338$, 1347, 1350, 1596
Linariopsis 1908
Linnaea 2009

Linum 1596
Lissocarpa 2076
Lithophytum 1690, 1694, 1699
Littorella 1583
Loasaceae 1335, 1390, 1398, 1414 , 1530, 1558, 1566, 2075, 2083, 2093
Lobeliaceae
(= Campanulaceae) 1977, 2055
Loganiaceae 421, 1659, 1703, $1709,1716,1738,1750,1751$, $1752,1762,1792,1810,1813$, $1820,1832,1920,1960,1982$, 2064
Lomandra 148
Lophophytoideae 184
Lophopyxidaceae 1061
Loranthaceae 464, 929, 1378, 2070, 2110
Lowiaceae 155
Lozanella 270
Ludwigia 1538
Lyallia 314
Lyginia 66
Lythraceae 307, 336, 418, 1168, $1181,1185,1221,1247,1335$, $1343,1360,1459$

Macarisia 1228, 1238
Macarthuria 395, 749, 764
Macleaya 332
Maesa 2069
Magnoliaceae 457, 776, 792, 925
Mahurea 886
Malacocarpus 1142
Malesherbiaceae 1273
Malpighiaceae $650,651,658,752$, $784,860,1283$
Malvaceae $745,817,851,871,882$, 914, 1854, 1876, 1887, 1890
Marantaceae 108
Marcgraviaceae 694, 717, 905, 1644, 1743, 1801, 1808, 1869, 1885
Marquesia 844, 887
Martynia 1910
Martyniaceae 1910, 1915

Maschalocephalus 88
Mastixiaceae (= Cornaceae) 1405
Mastixiodendron 1212, 1437
Maundia 63
Mayacaceae 141
Maytenus 1022
Medusagynaceae 908, 1325
Medusandraceae 730
Megacarpaea 1136
Melanophyllaceae (=Cornaceae) 1429, 1498
Melastomataceae 1244, 1361, $1418,1430,1448,1457,1458$, 1460, 1540, 1867, 2077, 2095
Meliaceae 570, 587, 613, 636, 657, $685,715,748,754,855,894,909$, 951, 974, 975, 990, 1014, 1038, 1049, 1060, 1081, 1096, 1137, 1148, 1230, 1441, 1595, 1628, 1695, 1706, 1713, 1740, 1774, $1775,1782,1783,1787,1795$, 1863, 1881
Melianthaceae 976, 1077, 1091, 1255
Melioideae 657, 990, 1049
Meliosma 1047
Meliosmaceae (= Sabiaceae) 689, 1047
Memecylaceae (=Melastomataceae) 1418
Memecylon 1418
Mendonciaceae ($=$ Acanthaceae) 1668,1903 , 1909, 1931
Menispermaceae 279, 433, 562, 568, 729, 780, 783, 923, 1584, $1617,1899,1947$
Mentzelia 1530, 1558, 1566
Menyanthaceae (=Gentianaceae) 1709
Mesembryanthemum 1549, 1571, 2093
Metasequoia 15
Metteniusa 1687
Microstrobos 12
Microtropis 1771
Miltianthus 415

Milula 95
Mimosaceae, see Leguminosae
Mimosoideae 1705, 1861
Mitrasacme 1813, 1820, 2064
Mitreola 2064
Mniothamnea 1400, 1494
Monimiaceae $180,281,437,438$, $439,513,525,1308,1323,1366$
Monophyllaea 16
Monotes 887
Monotoca 1687
Monotropaceae 415, 600, 623, 1090, 1622, 2107
Monsonia 875, 887, 1138
Montinia 1512
Montiniaceae (=Saxifragaceae) 1448, 1512
Moraceae 169, 198, 201, 243, 271, 477
Morinaceae (= Dipsacaceae) 2013
Moringaceae 1186
Mouriri 1418
Muntingia 1143
Musaceae 16, 116, 117
Myoporaceae 1677, 1806, 1924, 1935, 1942
Myrica 173
Myricaceae 173, 221, 240
Myristicaceae 253
Myrothamnaceae 187
Myrsinaceae 596, 1851, 2069
Myrtaceae 542, 1256, 1257, 1301, 1356, 1361, 1382, 1387, 1418, 1426, 1461, 1466, 1528, 1539, 2087
Mytilaria 1509, 1569
Myzodendraceae 174, 463, 500, 2109

Najadaceae 32,46
Nandinaceae
(=Berberidaceae) 563, 579
Napoleonaeaceae
(= Lecythidaceae) 517, 2003, 2097, 2099
Naucleaceae (= Rubiaceae) 2047, 2065

Nelumbo 1
Nelumbonaceae
(= Nymphaeaceae) 1362
Nemopanthus 358
Neoluederitzia 980
Neopringlea 311
Neostrearia 1513
Neotessmannia 1536
Nepenthaceae 400
Nesogordonia 868
Nestegis 216
Nettoa 840, 1122
Neumanniaceae
(=Flacourtiaceae) 333
Neuradaceae 1490
Neuradoideae 1490
Nigella 413
Nigelleae 895
Nitraria 859, 1136
Nolanaceae 1778, 1803
Norantea 1869, 1885
Nyctaginaceae 254, 257, 1582, 1616, 1637
Nyctocalos 1747
Nymphaeaceae 447, 454, 788, 896, 921, 1109, 1352, 1362, 1538, 1549, 1571, 2102
Nypaceae (= Palmae) 37
Nyssaceae 486, 1402, 1472, 1524
Oceanopapaver 841, 1122
Ochnaceae $625,637,643,672$, $707,828,859,884,915,1110$
Ochradenus 323
Octoknemataceae
(= Olacaceae) $498,519,1381$
Octolepis 1606
Octolobus 429
Olacaceae $175,498,519,573,591$, $646,813,858,932,943,953,966$, $979,990,1002,1055,1129,1175$, $1178,1212,1381,1410,1673$, 1846, 1857, 1873, 1883, 2070
Oldfieldia 386
Oleaceae $175,216,380,385,682$, 1661, 1730
Oligomeris 1945

Oliniaceae 1382, 1459
Onagraceae 540, 1203, 1390, 1417, $1431,1442,1462,1538,1552$
Oncothecaceae 1837
Ongokea 953
Ophiocaryon 689, 1047
Ophiopogon 128
Ophiopogonoideae 79
Opiliaceae 16, 242, 252, 256, 279, 939, 1687, 1842
Orchidaceae 16,77, 109, 152
Oresitrophe 330
Orobanchaceae 1914, 1958, 2114
Oroxylum 1747
Orygia 1571, 1575
Oxalidaceae 756, 764, 803, 895, 1597, 1632
Oxygyne 112
Oxystylidaceae 671
Paeonia 1369
Paeoniaceae 1369
Pakaraimaea 887
Palmae 37
Panax 1499
Panda 981
Pandaceae s.s. (only Panda) 981; (rest see Euphorbiaceae) 1042
Pandanaceae 20, 53
Papaveraceae 16, 247, 262, 331, $332,565,577,608,609,735,832$, 890, 1192, 1334, 1998
Papilionaceae, see Legumiṇosae
Parabaena 783
Paracryphiaceae 227,410
Parinari 1199, 1339
Parnassiaceae (=Saxifragaceae) 1190, 1276, 1483
Paronychioideae 473
Passiflora 327
Passifloraceae 327, 333, 620, 734, 963, 965, 1188, 1274, 1325
Pauridia 114
Pedaliaceae 1908, 1928, 1936, 1943, 2008
Peganum 881, 1142

Pelargonium 1223
Peliosanthes 128
Pellacalyx 1457
Pelliceriaceae (=Theaceae) 653
Penaeae 367, 398
Penaeaceae 367, 398, 417
Pentadiplandraceae
(= Capparaceae) 1092, 1140
Pentaphragmataceae 1450, 2054
Pentaphylacaceae 689, 1608
Pentaplaris 1637
Penthoraceae
(=Crassulaceae) 424, 1311
Pentstemonacanthus 1738
Ieperomiaceae (=Piperaceae) 221
Peraceae (=Euphorbiaceae) 176, 191
Peridiscaceae 319, 334
Peridiscus 319, 334
Periomphale 2061
Periplocaceae (=Asclepiadaceae) 1815
Petalonyx 2083
Petermanniaceae ($=$ Liliaceae) 125
Petiveriaceae (=Phytolaccaceae) 253, 263
Petrosaviaceae (=Liliaceae) 56, 79
Phellinaceae 751
Phelline 751
Philadelphaceae (=Saxifragaceae) 1254, 1358, 1465, 1494, 1518, 1541, 1550, 1557, 1562, 1568
Philadelphus 1541
Philesia 140
Philesiaceae (=Liliaceae) 101, 140
Philydraceae 85
Phlebocarya 126
Phoradendron 465, 2111
Phrymaceae 1903, 1953
Phyllanthoideae 1042
Phyllocladaceae (= Podocarpaceae) 12
Physena 333
Physopsideae 1792
Phytolaccaceae 253, 263, 346, 347, 430, 436, 514, 749

Phytolacceae 347
Picramnia 1046
Picrodendraceae 383
Picrolemma 639,779
Pinaceae 13
Pineda 841
Piperaceae 173, 182, 220, 221, 230
Piranhea 386
Piscaria 197
Pisonia 1637
Pistaciaceae
(=Anacardiaceae) 246
Pitcairnioideae 157
Pittosporaceae 627, 701, 1590, 1608
Placospermum 318
Plagiopteraceae 371, 902
Plantaginaceae 1583,1675, 1717, $1719,1735,1753,1774,1797,1900$
Plantago 1717, 1753
Platanaceae 179, 441, 780, 1161, 1305
Platanus 1161
Platycarya 171, 202
Platyspermation 1466
Plectocarpa 671
Pleiocarpa 1785, 1811
Pleodendron 830
Plinthus 361
Plocospermataceae (=Loganiaceae) 1832
Plumbaginaceae 727, 1581, 1845, 1949
Plumbagineae 727, 1581
Plumbago 1949
Podoaceae (=Anacardiaceae) 195
Podocarpaceae 12
Podophyllaceae
(=Berberidaceae) 222, 605, 819
Podophyllum 819
Podostemaceae 231, 303, 312, 411
Poga 998
Polemoniaceae 1723, 1736, 1758, 1765, 1838, 1966
Polygalaceae $568,654,935,945$, 962, 986, 1208, 1863, 1867, 1965, 1977, 1998, 2000, 2107

Polygonaceae 240, 261, 728, 810, 1269
Polyosma 1413
Pomoideae 1490, 1570
Pontederiaceae 88
Portulaca 1377, 1409, 1479, 1545, 1556, 2082, 2092
Portulacaceae 16, 560, 576, 594, 811, 1377, 1409, 1479, 1545, 1556, 1843, 1910, 2068, 2082, 2092
Portulacaria 560
Posidoniaceae (=Potamogetonaceae) 27
Poskea 1902
Potalia 1792
Potaliaceae (=Loganiaceae) 1752, 1792, 1810, 1960
Potamogetonaceae 19, 26, 27, 28, 29
Primulaceae 16, 308, 1850, 1949, 2069
Prionotaceae (=Epacridaceae) 1609, 2045, 2058
Prockieae 1123, 1328
Proteaceae 256, 278, 289, 300, 306, 318, 327, 1840, 1948
Prunoideae 1324
Pseudoscolopia 836
Pseudowintera 604, 801, 822, 912
Psiloxylaceae (=Myrtaceae) 1257, 1301, 1356
Ptaeroxylaceae (=Meliaceae) 748, 754, 974
Ptaeroxylon 974
Pteridophyllaceae (= Papaveraceae) 577, 609
Pterostemonaceae (=Saxifragaceae) 1455
Punicaceae 1542
Pyrenacantha 299
Pyrolaceae 623, 708, 1090
Quassia 1111
Quiinaceae 888, 1894

Rafflesiaceae 328, 503, 534, 1522, 2117
Rajania 80
Ranunculaceae 16, 276, 321, 332, 413, 431, 432, 449, 455, 767, 774, $783,792,820,895,919,922,1369$
Ranunculoideae 431, 774,783, 820, 922
Rapateaceae 88, 137, 146, 150
Reaumurieae 810
Recchia 597, 804
Reptonia 1848
Resedaceae 1, 323, 724, 959, 1108, 1119, 1333, 1945
Resedella 1945
Restionaceae 16, 47, 66, 67
Retziaceae (=Loganiaceae) 1738, 1751
Rhabdodendraceae 1321
Rhamnaceae 248, 293, 311, 342, 489, 513, 1156, 1173, 1181, 1193, 1197, 1217, 1269, 1280, 1380
Rhaptopetaleae 2088
Rhigozum 1981
Rhizophoraceae 543, 547, 667, 998, 1030, 1087, 1128, 1228, $1238,1346,1408,1445,1457$, 1491, 1509, 1526, 1532
Rhizophoreae 1526, 1532
Rhodoleiaceae (=Hamamelidaceae) 1267, 1301
Rhoipteleaceae 343
Rhynchocalyx 1459
Rhynchotheca 380
Ribes 1413
Ripogonum 101
Rivineae 253, 263
Rochelia 1723
Romanzoffia 1757
Roridulaceae 644, 687, 702
Rosaceae 250, 269, 294, 295, 297, 441, 451, 1160, 1185, 1306, 1324, 1328, 1368, 1490, 1506, 1528, 1561, 1565, 1570
Rotula 1736, 1800
Roucheria 877
Roussea 1605

Roxburghiaceae, see Stemonaceae
Rubiaceae 514, 1212, 1437, 1715, 1771, 1820, 2006, 2020, 2028, 2047, 2065, 2085
Ruppiaceae
(= Potamogetonaceae) 28
Ruscaceae (=Liliaceae) 97
Rutaceae 300, 369, 450, 561, 581, 588, 621, 647, 677, 716, 791, 893, 948, 971, 987, 998, 1004, 1013, 1025, 1056, 1081, 1093, 1095, $1098,1105,1133,1146,1219$, 1225, 1466, 1627, 1666, 1677, 1787, 1809, 1864, 1940, 1967

Sabia 1047
Sabiaceae 689, 992, 1047
Sacoglottis 991
Salicaceae 174, 185, 285, 325
Salomonia 2107
Salpiglossidaceae
(=Solanaceae) 1755, 1919
Salvadora 937
Salvadoraceae $570,585,631,663$, 937, 949, 1686
Sambucaceae
(=Caprifoliaceae) 2065
Sandoricum 1230, 1441
Sansevieria 98
Santalaceae 242, 466, 493, 494, 500, 2112
Sapindaceae $260,343,344,374$, 383, 937, 947, 958, 976, 979, 1006, 1012, 1018, 1060, 1088, 1099, 1111, 1135, 1198, 1220, 1242, 1281, 1315
Sapotaceae 1657, 1848, 1858, 1871, 1883
Sararanga 53
Sarcocaulon 875, 887, 1138
Sarcolaenaceae 1035, 1135, 1144
Sarcospermataceae
(=Sapotaceae) 1858, 1871
Sargentodoxaceae 433
Sarraceniaceae 414, 889
Saruma 1552

Saurauiaceae
(=Actinidiaceae) 904
Saururaceae 231
Saxifragaceae 330, 424, 508, 540, $548,618,703,800,1065,1069$, 1072, 1147, 1190, 1192, 1227, 1248, 1253, 1254, 1276, 1277, 1282, 1302, 1306, 1310, 1311, 1317, 1358, 1377, 1404, 1413, 1433, 1448, 1455, 1464, 1465, 1466, 1483, 1484, 1485, 1494, 1512, 1514, 1515, 1516, 1517, 1518, 1530, 1533, 1541, 1550, 1557, 1559, 1562, 1567, 1568, 1605, 2061
Saxifragoideae 424,508
Scaevola 489, 511
Scheuchzeriaceae 57
Schickendantzia 124
Schisandraceae
(=Magnoliaceae) 792
Schizopepon 1432
Schoepfia 498, 519
Sciadopitys 8,14, 15
Scleronema 1891
Scrophulariaceae 1671, 1679, 1738, 1751, 1758, 1794, 1902, 1913, 1926, 1974, 1979, 1981, 1988, 2114
Scutinanthe 1049
Scybalioideae 209
Scyphostegiaceae 305
Scytopetalaceae 899, 1349, 1351, 1534, 1551, 1645, 2088
Seetzenia 354
Selaginaceae (=Scrophulariaceae) 1926
Sericolea 1031
Simaroubaceae 374, 585, 597, 639, 652, 779, 782, 791, 794, 804, 933, 984, 995, 996, 1003, 1007, 1046, 1099, 1102, 1104, 1111
Simmondsiaceae (= Buxaceae) 352
Sinocalycanthus 1365
Siparunaceae
(= Monimiaceae) 180, 439, 513

Siphonodontaceae
($=$ Celastraceae) 1206, 1286, 1427, 1492
Sladeniaceae (= Theaceae) 688, 903, 1870, 1885
Sloanea 337, 407
Smilacaceae (=Liliaceae) 62, 73, 101, 125
Solanaceae 1678, 1690, 1694, 1699, 1724, 1733, 1738, 1751, $1755,1769,1775,1778,1781$, 1788, 1800, 1919, 1957, 1972, 1980, 1991
Solmsia 350
Sonneratia 336
Sonneratiaceae 336, 399, 1331, 1360
Soulamea 984, 996
Soyauxiaceae 1325
Sparganiaceae 47,54
Spatanthus 150
Sphaerosepalaceae
(=Cochlospermaceae) 886
Sphenocleaceae 2044
Sphenodesme 1986
Sphenostemonaceae $352,356,640$, 653
Sphyrospermum 2058
Spigelia 1750
Spigeliaceae
($=$ Loganiaceae) 1750, 1813, 1820, 2064
Spiraeanthemum 440, 445, 451
Stachyuraceae 614, 714
Stackhousia 1200
Stackhousiaceae 1200, 1282, 1601
Stangeriaceae 7
Stapfiella 728, 1265
Staphyleaceae 1070, 1080, 1156, 1296, 1298, 1304
Stegnospermataceae (= Phytolaccaceae) 749
Stemonaceae 49, 80, 92
Stenomeridaceae (= Dioscoreaceae) 81

Sterculiaceae $368,404,419,429$, 452, 459, 557, 580, 637, 667, 679, 699, 710, 712, 747, 768, 804, 852, 868, 870, 916, 1160, 1226, 1232, 1248, 1847, 1855
Sterculieae 452
Stichoneuron 80
Stilaginaceae
(=Euphorbiaceae) 287
Stilbaceae (=Verbenaceae) 1665, 1923
Stilbocarpa 1499
Strasburgeriaceae 675, 1037
Strelitziaceae (= Musaceae) 117
Streptochaetaceae
(=Gramineae) 35
Strychnaceae
(=Loganiaceae) 1703, 1709, 1716, 1751
Strychnos 1703, 1709
Stylidiaceae 1514, 2015
Stylobasiaceae 294, 297
Stylocerataceae 392
Styracaceae 557, 597, 1160, 1414, 1529, 1690, 1782, 1872, 2080, 2091
Surianaceae 791, 794
Symmeria 810
Symphoremataceae
(= Verbenaceae) 1700, 1730, 1907, 1938, 1986
Symplocaceae 2021, 2045, 2080, 2097

Taccaceae 16, 123
Takhtajania 826, 831
Tamaricaceae $624,737,810,955$, 964, 1121, 1268, 1587, 1630
Tamariceae 624, 1587, 1630
Taxaceae 10
Taxales 9
Taxodiaceae 15
Tecophilaea 113
Tecophilaeaceae
(=Haemodoraceae) 113, 126, 127, 135

Ternstroemiaceae
(=Theaceae) 858, 2101
Tetracarpaeaceae
(=Saxifragaceae) 800
Tetracentraceae 457
Tetrachondraceae
(=Boraginaceae) 1794
Tetradiclis 1080
Tetragoniaceae (= Aizoaceae) 484, 523
Tetramelaceae
(= Datiscaceae) 504
Tetrameristaceae (=Theaceae) 633
Tetratelia 838
Theaceae $633,653,685,688,719$, $759,769,823,858,886,903,911$, 1356, 1643, 1653, 1770, 1801, 1835, 1870, 1881, 1885, 1895, 2101
Theligoniaceae 472
Theophrasta 1849
Theophrastaceae 1657, 1849
Thismiaceae
(=Burmanniaceae) 121
Thunbergiaceae
(= Acanthaceae) 1669,1932
Thurniaceae 71, 76
Thymelaeaceae 239, 280, 350, 360, 1164, 1211, 1338, 1606, 1618, 1623, 1643, 1996, 2001
Tiliaceae $371,379,384,648,666$, $712,840,841,847,868,1035$, 1122, 1123, 1127, 1143, 1328, 1536, 1637
Tiliacora 783
Toricelliaceae (= Cornaceae) 530, 1503
Tourrettia 1941
Tovariaceae 697
Trapaceae (= Onagraceae) 1431
Trapellaceae (= Pedaliaceae) 2008
Tremandraceae 644, 687, 706, 1055
Trianthema 290, 308
Tribelaceae (=Saxifragaceae) 703
Tribulus 1080

Trichocladus 1287
Trichopodaceae (= Dioscoreaceae) 131
Trichostephanus 333
Trigoniaceae 1077, 1095, 1241, 1260
Trigonobalanus 541
Trilliaceae (=Liliaceae) 75, 140, 147
Trimeniaceae 274
Triplostegiaceae (= Dipsacaceae) 2012
Tripterococcus 1200
Triumfetta 379
Triuridaceae 16,102
Trochodendraceae 228
Tropaeolaceae 1202
Tryphostemma 327
Turneraceae 728, 737, 739, 1265, 1272
Typhaceae 23
Uapacaceae
(=Euphorbiaceae) 191, 213, 388
Ulmaceae 270, 277, 359
Ulmus 359
Umbelliferae 485, 532, 1395, 1477, 1500
Urticaceae 195, 243, 470
Usteria 1659,1920
Utricularia 1905
Vahliaceae (=Saxifragaceae) 1483
Valerianaceae 480, 520, 2011, 2012, 2033
Vancouveria 605
Vasivaea 847
Vatica 1444
Velloziaceae 130
Verbascum 1758
Verbenaceae $1665,1700,1704$, 1718, 1730, 1737, 1792, 1811, 1907, 1909, 1922, 1923, 1938, 1939, 1957, 1979, 1986, 1987, 1993
Viburnum 2033

Violaceae $583,626,1173,1189$, 1589, 1960
Viscaceae 465, 2111
Viscainoa 674
Visnea 2101
Vitaceae 662, 670, 673, 1020, 1217, 1856
Vivianiaceae (= Geraniaceae) 380, 658, 682, 1012
Vochysiaceae 696, 1235, 1260, 1373, 1396

Warburgia 610
Wellstediaceae (= Boraginaceae) 1826
Welwitschiaceae 3
Wendtia 758
Whipplea 1562
Whittonia 319, 334
Wiesneria 69
Winteraceae $604,801,822,826$, 831, 897, 912, 1576

Winteranaceae, see Canellaceae
Wittsteinia 2045, 2058
Xanthophyllaceae
(= Polygalaceae) 962, 1998
Xanthorrhiza 449, 792
Xanthorrhoea 74
Xanthorrhoeaceae 50, 71, 74, 99, 148
Xyridaceae 142
Zamiaceae 7
Zannichelliaceae 26, 46, 60
Zeeae 21
Zingiberaceae 107, 154
Zosteraceae 19
Zygogynum 897, 1576
Zygophyllaceae 354, 415, 650, $671,674,714,859,881,980$, 1005, 1024, 1031, 1038, 1080, 1093, 1136, 1142

