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1. INTRODUCTION 

Traditionally, most studies on transport of solutes in soil to a root, 

considered root uptake to be a function of concentration (Nye and 

Tinker, 1977). As is discussed elsewhere (Van Noordwijk et al.3 in 

preparation) it is also possible and justifiable to assume that uptake 

is determined by crop demand as long as the concentration in the 

immediate vicinity of the root exceeds a certain limiting value. This 

demand is virtually constant in time for closed green canopies growing 

under optimum conditions. The goal of this paper is to present some 

analytical solutions, when such a constant uptake determines the bounda

ry condition at the root surface. Transport by both diffusion and 

mass flow is considered, together with adsorption (and desorption) pro

ceeding at a finite or infinite rate. 



2. MATHEMATICAL FORMULATION 

Consider a uniformly distributed root system consisting of vertical roots, 

with root density W cm cm 3, and suppose all roots have the same length 

h cm and radius Ro cm (fig. 1). To each root thus a cylinder of soil can 

be assigned of height h and radius Rl, the latter given by: 

Rl ~7W cm (1) 

Fig. 1. Schematic representation of roots as regularly distributed, 
parallel axes. Root density (length of roots per volume of soil) may also 
be represented by the number of intersections per surface area (perpen
dicular to root axis). In the model the soil between the cylinders is 
considered to be spread out as an outer layer of each cylinder. 

If transpiration amounts to E ml/(cm2day) and a steady-state situation 

exists with respect to radial movement of water, the rate of water trans

port in the soil cylinder at any distance r from the root midpoint 

(R0 < r < Ri) is E/W ml day-1. So the flux of water at distance r is 

given by: 



v • l ï ï b 'cm day_1 (2) 

The negative sign in (2) indicates that the direction of the flux is 

in the negative direction of r. 

Neglecting tangential and vertical gradients, the flux of solute at 

distance r can be given as: 

F = -D|£ +vC or 

with 

D = combined diffusion-dispersion coefficient cm2day * 

C = concentration of the solute in the soil solution mg ml-1 

r = radial distance from the root midpoint cm 

The equation of continuity in cylindrical coordinates is given by 

(Nye and Tinker, 1977): 

6CT 1 6 , 
<5t r or 

with 

CT = the bulk density of solute mg cm-3 

t = time day 

When the soil is not too dry (pF < 3.5) the diffusivity usually is so 

high, that if root-density is not too low (W ̂ 0 . 5 ) , small gradients 

in water content suffice to transport water to the root at the required 

rate (Greacen, 1977). Hence the water-content will be taken constant in 

the following. 

Substitution of the expression for the flux into the equation of 

continuity then yields: 

ÔCT D 6 ÔC ÔC ,ON 

IT " v ôr"rôr" " V67 (3) 

The bulk density C consists of two components: 



cT = cA + ec (4) 

where C. = the bulk density of adsorbed solute mg cm 

0 = the water content ml cm 

Equation (4) substituted in (3) leads to: 

ÔCA ^ ̂  D 6 ÓC <5C ,-v 
TT - + ©ST = — T-rx VT- ^5^ 
ot ot r or or or 

If, as is assumed here, the adsorption isotherm is linear, adsorption is 

reversible, and proceeds according to a first order reaction, the follow

ing equation holds: 

6 C A 

-rr̂  = k(KC - CA) (6) 
ot A 

with 

k = adsorption rate constant day 

K = adsorption coefficient ml cm '3 

Equations (5) and (6) constitute the system of partial differential 

equations, the solution of which is sought. 

To complete the system, initial and boundary conditions have to be 

defined in conjunction with the partial differential equations. For the 

root system described earlier the appropriate condition at the outer 

boundary of the soil cylinder states the absence of transport across 

this boundary: 

r = Rj : -2TrhR!l>^ + 2-rrhRjVC = 0 (7) 

As is implied in the title of this report and was briefly discussed in 

the Introduction, the condition at the root surface was chosen to reflect 

constant plant demand. If this demand amounts to A mg cm-2day-1, then 

each root has to take up A/W mg day 1in order to satisfy the demand. The 

second boundary condition accordingly can be formulated as: 



r = R : -2irhR D 2 - + 2irhRnvC = -A/W 
o o or ° 

(8) 

In connection with the formulation of the boundary condition at the 

root surface a few things have to be said about the limiting concentra

tion. This limiting concentration is a function of root-density and the 

relation between concentration and potential uptake. The latter usually 

can be represented as a Michaelis-Menten curve, which for our purposes 

can be thought to be composed of two straight lines (fig. 2), one 

parallel to the concentration axis, and the other through the origin , 

the slope of which is the root absorbing power (Nye and Tinker, 1977). 

root uptake 
rate 

ci mci ..n concentration at 
root surface 

Fig. 2. Absorption per unit root as a function of the concentration 
at the root surface (C ). Line I represents the Michaelis-Menten 
relation found in short-term fysiological experiments. Line II shows 
that in our model absorption is taken to be independent of concentration 
as long as possible. In the case of line III the root density is twice 
as high and so the adsorption rate per root may be half the value of 
line II. This lower absorption rate may be sustained till a lower 
concentration C, is reached. In the calculations the broken line IV was 
used as the boundary instead of line I. 



The l im i t i ng concen t ra t io i i i s t h a t c oncen t r a t i on , when p o t e n t i a l up

take equals p l a n t demand, or 

2irR0hmC1= TTR2 A 

so t h a t C. can be found a s : 

C l 2R.hm 

-i where m = root absorbing power cm day" 

Initially the soil around the root is assumed to have a uniform solute 

bulk density, with equilibrium between adsorbed and solved solute: 

t = 0 : C = C-i CA • CA. » K-Ci 
l 

(9) 

To facilitate notation and to show the interrelation between the various 

variables and parameters the following dimensionless quantities were 

defined: 

dimensionless time 

" concentration 

" bulk density of adsorbed solute 

" distance 

" flow of water 

" root length 

" radius of soil cylinder 

" supply/demand parameter 

" rate constant 

" buffer capacity 

" bulk density of solute 

•E/(2lThDW) 

T = Dt/R0
2 

U = C/Ci 

V - C A / C A £ =
 CA/ K Ci 

x = r/Ro
 X 

2V = rv/D = 

ri = h/R 
o 

P = Rj/Ro 

4> = DC^AR,, 

X = kR0
2/D 

B = (K+0)/0 

T = (KV+9U)/0B 

Note that 2v = ^-r , where 4> = D/ER. 
2n4>w w « 



Then the equations (5) and (6) and the conditions (7) , (8) and (9) 

transform in to : 

VSV _6U <52U A-2V, ÔU , , 

fjr = HU-V) (11) 

« -P: - " g + F " - 0 02) 

x = , : _ ^ £ + 2 V U = ^ = Q (13) 

T = 0 U = V = 1 (14) 

The s o l u t i on of the above system (10-14) i s given by (see Appendix I 

for the d e r i v a t i o n ) : 

- { P2"1 } (V+ l)x2V
 + (15a) 

p 2 V + 2 _ , 

2V 
f 2 (v+l )x x_ + x^^-p2) + p2 ( p 2 v - x 2 v ) + p 2 (p 2V-l) (V-H)x 2 V

 + 

p 2 V + 2 - l 0B 2 ( p 2 V + 2 - l ) 2 v ( p 2 ^ + 2 - l ) 2V(p 2 V - l ) 2 

-BXT\ , x 2 V ( v + i ) ( i - p 2 v + ' ' ) , 2 ( v + i ) x ^ ( B - l ) ( l - e ~ l i A T ) -I + 

( 2 v + 4 ) ( p 2 V + 2 - l ) 2 ( p 2 V + 2 - l )9B 2A 
(15b) 

+ (Q-2V)XVTT E 2F (x , a ) G (s , s , T ) + (15c) 
n-1 V n nx n2 

2vxV °° 2JV'44^a^ 
+ ^ H * l=] J ^ o T T F V ( M n ) % . - v . T) (,5d) 

with 

, ~an WVW*»,!* {VV)WPV-VV)-Wpan)} 
F (x, a ) = 
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-(BA0+a2
n) ± /(BX0+a^n)" - 4Aaz

n 

n ' n 20 
1 2 

e S n i T ( s n +A)2 e S n 2 T ( S n 2 + X ) 2 

G(S , s , T) -i + 
n i n2 sn 0{(s +A)2 + (B-l)A2} s 0{(s +A)2 + (B-l)A2} 

ni n1 n2 n2 

and a i s the n - t h r oo t of: n 

Vi^ ) Jmw \ iW Jm (^ = 0 

J v , Yv a re Besse l func t ions of f i r s t and second k ind , r e s p e c t i v e l y , and 

o rder \). 

The bulk d en s i t y of adsorbed s o lu t e i s given by: 

V v + 2 - l (p2V+2-l) 0B 

, Q ( 1 . -AT^V+QZ™ | x 2 V ( x 2 - p 2 ) , p 2 ( p 2 V - x 2 V ) + 

(p 2 V + 2 - l )A 2 ( p 2 V + 2 - l ) 2 v ( p 2 V + 2 - l ) 

, p 2 ( p 2 V - l ) ( v + l ) x 2 V
 + x 2 V ( v + 1 ) ( 1 - p 2 V f n ) 1 + 

2V(p 2 V - l ) 2 ( 2 V + O ( p 2 V + 2 - 0 2 

^ 2Q(vH)x 2 ^(B- l ) T . _£^]_ B e " A T ] -AT 

(p 2 V + 2 - l )0B 2A L 1-B + 1-B J + e 

V f 
+ (Q-2v)x TT lm 2F ( x , a ) H(s , s , T ) 

2 

A 2 xv » 2 J v ^ a ) 
T ^ J - J., (pa) VX'an )H(sn»Sn »T) 06) 
M V +1 1 2 

with 

s n T , S T -AT 

(e ~e ) ( s „ +A)2 te 2 - e ) (sn +A): 
H

/ \ ni ' n 
( S Q T ) , , J- «L O 

n i ' V s 0 { ( s n +A)2 + (B-l)A 2} s 0{s +A)2 + (B-l)A 2} 
n i n i n2 n2 
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As is shown in Appendix I other solutions can be derived from (15) or 

(16). When transport is by diffusion only: 

U = 1 ( 17a ) 

, 2 ^ 2 

^ m+ W^TT + WÏ < > + Tgs=nr lnp -
(1+p2) 
4(p2- l) 

, 2 ( B - l ) ( l - e ~ B À T ) , 
9B2X 

+ Qrr Z . F ( x , a )G(s , s , x ) 
^ n=l o n nx n 

( 17b) 

( 1 7 c ) 

where a now is the n-th root of: n 

Y1(px)Ji(x)-Yi(x)J1(px) = 0 

2Q T 
(p2-l) 0B 

v- . +^M^l^ + 

.-AT\r "2 2 2 
(1+P2)-

. 2 Q(B-l) , e-B^ B £ ^ B £ ^ , + 

(p2-l)0B2X l (1-B) (1-B) (1-B) J 

00 
+ O* £_. F (x,a )H(s ,s ,x) (18) 

n-i o n nj n2 

The s o l u t i on when adsorp t ion i s u i n s t an teneous i s g iven by: 

U = ( ^ = 2 = , ) (V+Dx 
2V (19a) 

, 2V 

+ Q 
2(y+ l )x* v T_ ( x

2 V 2 - p 2 ) + p2(p2V-x2^) , p 2 ( p 2 ^ - l ) x 2 v ( y * l ) 

jD2v+ 2- l 0B 2 ( p 2 v + 2 - l ) 2v (p 2 V + 2 - l ) 2 * ( p 2 V + 2 - l ) 2 

, x 2 V(y+ l ) ( l -p 2 v * M ) " 

( 2v+4) (p 2 V + 2 - l ) 2 

- o ^ 
+ (Q-2v)x VTT Z=1 - 2exp(—gg-) F ^ x ^ J 

n 

(19b) 

(19c) 
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2vxv « „ r a 2
 N

Jv+i( a ) Fv( x'a n ) (19d) 
+ —rr ir Z - 2 exp( ) 

PV + n=1 °B O^J^CP«) v+] 

Finally when transport is simply by diffusion and adsorption 

ins tantaneous: 

U = 1 + (20a) 

+ Q{^_ I_ + 2S!ZP1_ + _ P L ln(£) + _ ^ i _ lnp - 1!±E!2_> + (20b) 
p2-l 8B 2(p2-l) p2-l x (p2-D2 4(p2-l) 

°° -a2x F (x,a ) 
+ QTT £ - 2 exp(——) — — (20c) 

n=l 0B a2 

n 

When adsorption is instantaneous V = U at any time and distance. 
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3. RESULTS AND DISCUSSION 

It is possible to draw some conclusions from equations (15-20) without 

actually performing any complicated calculations. 

The solutions for U are composed of three ((17)and(20)) or four 

((15) and (19))parts. The first part (part a) gives the steady-state 

situation when no uptake occurs (Q = 0). When transport is by diffusion 

only this steady-state situation is identical to the initial situation. 

When flow of water contributes to the transport of the solute and 

Q = 0, the concentration in the steady-state situation is a decreasing 

function of the distance, as the derivative of U with respect to x: 

SU = 2v(p2-l) (v+l)x2V_1 

Ox p2V+2-l 

is negative for all x. In this situation the diffusion away from the 

root just cancels the transport by mass flow towards the root or: 

M = -2^j 
ÔX X 

When Q ft 0 the parts c and d sooner or later can be neglected, as 

time advances, since time in these components occurs solely in the 

exponent with a negative coefficient (s and s , and of course 

-a^ are negative), eventually thus only part a and b remain (the factor 

(l-e~B*T) in the last term of 15b and 17b will then equal unity). 

Where transport is by diffusion only the sum of a and b represents the 

steady-rate situation. This situation is characterized by the fact that 

the rate of decrease of U is independent of both time and distance: 

<5U 2Q 
"57 (p'-l)B0 

Once such a situation has developed the concentration profile will thus 

maintain its then established shape. When mass flow plays an important 

role in transport -?- will eventually become independent of time but 

will nevertheless stay a function of distance: 
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2V 
OU 2Q(v+l)x 
6T 7p^+z-l)0B 

The contribution of mass flow to transport is governed by the parameter 

V, the value of which both in absolute sense and in relation to the 

value of Q is important. Normally the value of v is quite close to zero 

as the next simple calculation shows: for arable crops the root density 

(W) in the plow layer of about 20 cm (h), will usually not be much lower 
- 3 

than 1 cm cm , while for not too dry conditions the diffusion coefficient 

(D) can be expected to be about 0.1 cm2day a, thus with transpiration 

(E) of the order of 0.5 cm day-1, v will assume the value: 

v = -0.5/(4 * TT * 20 * 0.1 * 1) = -0.02 

This implies that the first term of eq. (15) and (19) will deviate not 

too much (within 10%) from unity for all x. One can also expect the 

parts 15b and 19b not to differ too much from their equivalents in eq 

(17) and (20). The third component 15c and 19c will differ substantially 

from 17c and 20 if 2\* is of the same order as or greater than Q. 

From the definitions of Q and v it follows: 

Q/2v,^i ^ï.JL !h--L. 
2nc|> ' p2 E R ' D C . EC. r K O i l 

For a nutrient like phosphate the average uptake is 4-5 * 10-3 mg P 

cm-2 day-1 (based on a growth rate of 200 kg ha-1 day-1 and a P-content 

of 0.5% P 2 0 5 ), and the concentration of P in the soil solution usually 

does not exceed 10 3 mg ml *. 

Transpiration beins 0.3-0.5 cm day"1, the ratio Q/2V according will 
be of the order: 

Q/2V = 1 0 - 1 5 

In the coefficient (Q-2v) of the infinite series in eq 15c and 19c conse

quently 2V can in a first approximation be neglected with respect to Q. 

For a nutrient like nitrate on the other hand rate of uptake amounts to 

3 * 10-2 mg cm 2 day-1 based on 200 kg DM ha"1 day-1 and N content of 1.5% 
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and concentration in the soil solution, when sufficient nitrate is 

present to ensure good crop growth is about 0.8 mg ml , so Q/2v 

assumes the value: 0.075. In this case Q is of the same order or even 

smaller than 2\), and considerable difference can be expected to occur 

between 15c and 19c, or 17c and 20c. 

Calculation of values of U (and V) when the infinite series cannot be 

ignored, requires the use of a computer. In Appendix III the main 

features of the computer programs employed are explained. Calculations 

were done for two types of solute, one of which is subject to adsorption 

("phosphate") and one which is not ("nitrate"). The range of the para

meter values is given in table I. 

TABLE I. Range of values of parameters used in the calculations. 

Variable 

Transpiration 

Adsorption constant 

Water content 

Diffusion coefficient 

Root density 

Half time adsorption rate 

Initial concentration 

Uptake rate 

Root radius 

Plow layer (root length) 

Root absorbing power 

Symbol 

E 

K 

0 

D 

W 

H 
c. 

1 J. 

A 

R 
o 

h 

m 

Dimension 

cm day" 

ml cm-

ml cm 3 

cm2 day-1 

cm 2 

day 

mg ml x 

mg cm""2 day * 

cm 

cm 

cm day J 

Range 

0 - 1 

O(nitrate) 
100 (phosphate) 

0.25 

0.1 

0.5-5 

0-30 

10"3 (P) - 0.8 (N) 

4.4 x 10"\p)-3xl0~2(N) 

0.025 

20 

0.043-0.43 (nitrate) 

6.5 - 56 (phosphate) 

If not explicitly mentioned otherwise, the results exhibited pertain 

to a root density of 1 cm cm 3. 

First the influence of mass flow when adsorption is instantaneous will 

be discussed. Fig. 3 shows the development of the concentration profile 



0.5-

0i 10 20 
X 

T = 1 6 0 
=1000 

= 8000 

= 2.10^ 

U 
1.0 

0.5 

10 
_L 
20 
X 

• T = 1 6 0 

Fig. 3a. Nitrate concentration as 
function of distance and time. 
Transpiration 1 cm day 

Fig. 3b. As fig. 3a. Transpiration 
0 cm day"1. 

= 8000 

2.10' 

around the root with time for nitrate, when transpiration is high 

(E = 1 cm day , fig. 3a) and when it is absent (fig. 3b).When mass flow 

is occuring one can see that almost up to the time of total depletion of 

the soil cylinder, concentration is a decreasing function of distance 

(fig. 3a). When diffusion alone is responsible for transport almost no 

gradients develop, as - because of the relatively high diffusion coefficient 

very small gradients suffice to meet the uptake rate of the root. More

over very soon (in about 1 day) the series part of the solutions become 

negligible and concentration becomes a linear function of time, as is 

shown in fig. 4. 

In the case of phosphate at any time the lowest concentrations are 

found at the root surface, the highest concentrations, however, are not 

always situated at the outer boundary of the soil cylinder. At high 

transpiration rate a situation may develop in which the concentration 

passes through a maximum somewhere in the soil cylinder. Such a maximum, 

albeit not very pronounced, can be found in fig. 5a, in the curve for 

T = 16000 where concentration is at a maximum for x = 18. The steady-

rate situation is attained much later in the case of phosphate than 

in the case of nitrate, because the coefficient of T in the exponent in 
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— E = 0 cm day-1 

— E = 1.0cm day-1 

Nitrate 

~i Phosphate 
50 100 

time in days 

Fig. 4. Time course of concentration of nitrate and phosphate 
at root surface. 

Fig. 5a. Phosphate concentration as Fig. 5b. As fig. 5a. Transpiration 
function of distance and time. 
Transpiration 1 cm day-1. 

0 cm day -i 
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the infinite series (20c) is proportional to the reciprocal buffer 

capacity B. 

It is interesting to analyze in which way the various components of 

equation 19 contribute to the value of U. Fig. 6 shows these components 

as function of distance for two different times in the case of phosphate 

and a transpiration of 1 cm day-1. As can be seen the components contai

ning the series (c an d) play a less prominent role as time proceeds. 

(For T = 3200 part d can not be shown in fig. 6, as its maximal value 

is approximately 0.01). Ultimately only part a (which is invariable with 

time) and part b remain. An important characterization of the possibilities 

of the soil-root system with respect to uptake is given by the period 

during which the concentration at the root surface exceeds the limiting 

concentration. During this period - denoted by the symbol xc - uptake 

of the root is completely in accordance with the demand of the plant. If 

it may be assumed that when T equals Tc, the series part of (19) and 

(20) can be neglected, it is easy to make xc explicit: 

= 9B(p2V+2-l) eB(p2-l) 
Tc 2(v+l) Q 1 2Q 

9B fl-p2 p2(p2v-l) P2(P2 V-D , d-p2Vflt) , r 2 n 
2(vH) x 2 2v 2v(p2V*2_i) (2v4-'»)(p2v+2_i/ ^ " 

or when transport is by diffusion only: 

\ -SHîr11 <»!•') - ^ < ^ * P ! l n P + 4 £ ? - - ^ > (22) 

In (21) and (22) U is the dimensionless limiting concentration 

(U = Cj/C^). For nitrate steady rate is reached very soon (within a day » 

see fig. 3), so that for all root densities T can be calculated with 
c 

(21) or (22). The same is true for phosphate if the root-density is 

greater than or equal to 1 cm . If r is zero the maximum period of 

unconstrained uptake is given by: 
J v 2TTrh(K+0)Cdr 

t = h MJLl!zi»Jl (Q+K)C 
max 7TR2A R. 2A vu+MCi 

l 1 
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)U=a+b+c+d 

T = 3200 

Fig. 6. Contribution of the four terms of equation (19) to the 
concentration U. 

or in dimensionless form: 

Dt 2 , 

max 2 p 2 
(23) 

The realized fractional depletion (F,) is given by: 

T 
Fd = T (24) 

max 
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In fig. 7 Fj is given as a function of root-density for the two rates 

of transpiration, 0 and 1 cm day . In the case of nitrate the curves 
-l 

for zero transpiration and transpiration of J cm day practically 

coincide with the line of total depletion, which means that even without 

any contribution to transport by mass flow a rather sparse root system 

with root-density 0.5 cm" can take up almost all the available nitrogen 

at the required rate. For phosphate transport by mass flow can considera

bly lengthen the period of unconstrained uptake, or increase the frac-
-3 

tional depletion. Fig. 7 shows that at a root-density of 1 cm cm F<j 

(and so T C ) is increased with a factor 1.5 when transpiration is 1 cm day 

-l 

— E = 0 cm.day-1 

— E = 1 

0 1 2 3 

Fig. 7. Fractional depletion (F.) of nitrate and phosphate when U 
(1, T ) = 0 as function of root density (W). 

If Ut is greater than zero it would seem obvious to define x as: 

o 

T = 0BTl(-e-̂ -)(<t)-(J)l) 
max 2 

P 

(25) 

D C 1 
W l t h *1 * ÄS! 

But this definition bears the disadvantage that for some 

values of U , F, would be greater than 1. If for example U = 0.75 it 

follows from fig. 3a that T is approximately 8000 while T calculated 
° c max 

according to (25) amounts to 5300. To overcome this difficulty T was 

defined as in (24) even when U > 0 . 
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As was explained earlier (section 2) C and so U is in fact a 

function of root-density: 

2 mC. 

ui • c i / c i • ife » w h e r e * • -r 

Nye and Tinker ( 1 977) give values of m (a in their notation) ranging from 
- 2 - 1 - 1 

2.5 * 10 - 2 cm day (for nitrate) and from 6.5-56 cm day (for 

phosphate). In fig. 8a and b the fractional depletion is given as function 

of root density and root absorbing power. Again it is shown that mass 

flow can considerably increase depletion in case of phosphate, while 

for nitrate except for very low root-densities and root absorbing power, 

the increase in depletion due to mass flow amounts to a few per cent. 

Fd 
1.0 

0.5 . E=0cm.day-
• E=1 

0 0.5 1 5 
W.cm-2 

111 = 0 
m=56cm.day-

= 65 cm. day-1 

Fig. 8a. Fractional depletion (F,) of 
nitrate as function of root-density 
and root absorbing power. 

Fig. 8b. As fig. 8a for 
phosphate. 
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U 
1.0 

0.5 — T = 160 

— T = 8 0 0 0 

10 20 
X 

Fig. 9a. Concentration as function of 
distance and time for different half-
life values of the adsorption reaction 
(the numbers at the curves).Transpir
ation 1cm day~J. 

Fig. 9b. As fig. 9a. Transpir
ation 0 cm day-1. 

Comparison of the effects of finite rate of adsorption with instanta

neous adsorption is of course only relevant in the case of phosphate. 

Fig. 9a and 9b show the concentration as a function of the distance at 

some points of time for various half-life values of the adsorption 

reaction. The profiles for t, = 0 and t, = 1 day coincide except for 
* 5 

short times. For half-life values of the order of a month the concentration of 

course decreases much faster. In fig. 10 both U and V are plotted for 

the high half-life periods (t, = 30 days). In the beginning (t = 1 , 
2 

or T = 160) the rate of desorption is small which leads to a sharp 

decrease in concentration in the vicinity of the root. This low concen

tration enhances the desorption rate (cf.eq.(6)) and the concentration 

in the soil solution is replenished by the adsorbed phase. In fig. 1 I 

the time course of the concentration at the root surface is given for 

transport by diffusion only, and for transport by diffusion and mass 

flow. Once more the rapid initial reduction in concentration is manifest, 

followed by a much slower decrease. For reference, the curve for 

instantaneous adsorption is included in fig. Jl. To analyze the curves 

for transport by diffusion the development in time of the components 

a, b, and c is shown in fig. 12. The immediate decrease of part c 
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Fig. 10. Concentration in soil solution (U) and in the adsorbed phase 
(V) as function of distance and time. Half-life adsorption reaction 
30 days. Transpiration 1 cm day- . 

100 
t days 

Fig. 11. Time course of the concentration at the root surface for finite 
and infinite rate of adsorption, and two transpiration rates. 

is greater when the adsorption half time is 30 days (the value at T = 0 

is 0.83 both for finite and infinite rate of adsorption), but later on 

(after 25 days) the situation is reversed. In case of instantaneous 

adsorption part b is a linear function of T, for finite adsorption rate 
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1.0 

0.5 

-0.5 

-1.0L 

100 
t in days 

— tv2= 0 
ti/2 = 30 

" - - b 

Fig. 12. Contribution of the three terms of equation(17) to the 
concentration U. 

—BAT 

initially the term with factor (l-e ) (see eq. 17b) is of some impor

tance, very soon this factor approximates unity. Thus from t = 1 

(T = 160) a constant difference is maintained with part b in case of 

instantaneous adsorption. In fig. 13 the concentration in the adsorbed 

phase V is plotted. In a way, this figure is a reflection of fig. 9b. 

It shows the smaller decrease of V when the adsorption rate constant is 

lower. Fig. 14 shows a plot of Tx (see section 2 for definition of T) 

versus x for finite and infinite adsorption rate. The depletion is 

proportional to the difference between the area under the line y = x, 

and the curve y = Tx, as T initially is unity for all x . It is evident 

from this figure that depletion at a given time is the same for both 

values of the adsorption rate constant, as it should be. 

Analogous to eq. (21) and (22) the period of unconstrained uptake T 

can be given as explicit function of p and the other parameters, if 

at least the parts c and d of equation (15) and (17) can be neglected: 

-2V+2 T - -(B-Q + 9 B(pzv~-1) QR(pz-J) ^ 
BA 2(\>H)Q 2Q 

0B 
2(V+1) 

{ l-p2 , p2(p2v-l) , p2(p2V-l) 1-p 2-V-f1» 

2V 2v(p2\H2_]) + (2V+4)(piv+2_1) (26> 
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1.0 

0.5 

tV2 = 0 

tV2=0 ^*r 

, I T = 1 6 0 

3 0 / — T = 8 0 0 0 

/ E = 1cm.day-1 

/ 
/ 
O 

10 
i 

20 

Fig. 13. Concentration of adsorbed solute (V) as function of time and 
distance, for finite and infinite adsorption rate. 

Fig. 14. Plot of the product of distance (x) and bulk density of 
solute (T) versus distance for finite and infinite adsorption rate. 

or when V = 0 

Compared with (21) and (22), (26) and (27) show that, since B » 1, 

T is shortened by a period 1/X when adsorption is non-instantaneous. 
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But this is only the case if (quasi) steady-rate is reached before the 

concentration at the root surface attains Ux« As shown in fig. 11 and 12 

this is for instance not the case when the adsorption half-life is 30 

days, and root-density is 1 cm 2, as part c contributes significantly 

to U, up to the time U ( ], x) becomes zero, rendering a calculation of 

T with equation (27) incorrect. In fig. 15 the fractional depletion 

F, is plotted as function of root density and root absorbing power 

for t, = 30 days. This figure of course bears a close resemblance 
2 

to fig. 5, be it that the effect of mass flow is smaller for high and 

greater for low root absorbing power. If calculation of x (and so of 

F,) with eq. (26) or (27) is justified the difference in F, between 

instantaneous and non instantaneous adsorption is given by l/(Xx ) or 
v J max 

with the parameter values employed here, F, should be 0.096 greater 

when adsorption is instantaneous. Comparison of fig. 15 with fig. 7 shows 

that this is only the case for higher root densities. 

Summarizing, the most important conclusions seem to be that normally 

transport by mass flow of nitrate to the plant root does not significant

ly enhance the possibilities of a root system to deplete the soil of 

the available nitrogen (fig. 7 and 8a). The diffusion mechanism alone 

is sufficient to bring nitrate to the root at the required rate. A 

similar conclusion, but for the root to behave as a zero sink , was 

formulated by Van Keulen et al. (1975). On the other hand, for a nutrient 

like phosphate which is strongly buffered and the concentration of which 

in the soil solution is (very) low,transport by mass flow can, depending 

on root density, considerably increase the depletion. Another conclusion 

is that when the adsorption/desorption reaction is completed within a 

few days, as is usually the case with phosphate (Beek, 1979; Barrow, 1975), 

it is fully justified to consider adsorption instantaneous, as far 

as transport to and uptake by a root is concerned, as was done a.o. by 

Van Noordwijk et al.(in preparation). When realistic values are attached 

to the parameters, as was done as much as possible here, the absolute 

value of the mass flow parameter 2vwill not exceed 0.1, so choosing 

- for computational convenience - a value of -0.5 for 2v as was done 

by Cushman (1979b)would imply either an unrealistic high value of the 

transpiration, or an equally unrealistic low value of the root density. 
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m = 56cm.day-1 

.5 cm.day-

Fig. 15. Fractional depletion as function of root-density and root 
absorbing power. Half-life adsorption reaction is 30 days. 

Another difference of Cushman's treatment with the approach employed 

here lies in the choice of the boundary condition at the root surface. 

Following Nye and Marriot (1969), Cushman (1979a) assumes uptake to be 

proportional to solute concentration at the root wall. This can lead to 

very high uptake rates, when high root densities are taken into consid

eration, because doubling the root density would mean, at least initially, 

doubling the uptake rate of the crop per cm2 soil. 

Whether one chooses one boundary condition or the other, generally, a 

formidable number of assumptions, idealizations, and simplifications 

have to be used in order to arrive at an analytical solution at all. A 

good deal can be learnt from (the derivation of) analytical solutions, 

even though these can only be found for biologically or agronomically 

rather unrealistic or trivial situations (linear adsorption, zero or 
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first order rate kinetics, simple uptake mechanisms etc.). Even for such 

oversimplified conditions, the solutions derived are often complex, and 

the complete calculation requires the use of a computer. In those cases 

where one is interested in a specific situation, it would seem advisable 

to use numerical methods even when theoretically an analytical solution 

is possible.On the other hand the approach followed in this paper, in 

particular the use of dimensionless variables, allows a larger degree 

of generalization of the results. 
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4. SUMMARY 

An analytical solution concerning diffusion and mass flow of a solute 

to a root, when uptake is constant and when adsorption or desorption of 

the solute by the soil proceeds at finite rate, is presented. From this 

solution, solutions could be derived for instantaneous adsorption and/or 

transport by diffusion only. The concept of a limiting concentration 

above which root uptake is independent of concentration and proceeds 

conform to the demand of the plant is discussed. Results of calculations 

are presented, pertaining to two types of solute, one which is subject 

to adsorption (phosphate) and one which is not (nitrate). It is shown 

that the period of uptake, in accordance with plant demand, is not 

significantly increased when in addition to diffusion mass flow contri

butes to transport of the solute, as far as nitrate is concerned. In case 

of phosphate mass flow can, at not too high root-densities, considerably 

lengthen the period of uptake according to plant demand. When the half-

life value of the adsorption reaction is of the order of a few days ,it 

is shown that the development of the concentration profile is virtually 

identical to that developed when adsorption is instantaneous. 
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APPENDIX I 

The solution of equations (10) and (11) subject to conditions (12),(13) 

and (14) is obtained by the Laplace transformation denoted by L { } 

If 

L{U} = u 

L{V> = v 

and transformation is taken with respect to x, the Laplace parameter 

being denoted by s, then (10)-(13) with initial condition (14) transform 

into: 

K(sv-l) + 0(su-l) = ± 4 + i (l-2v)^i (A-l) 
dx2 x dx 

sv-1 = X(u-v) - (A-2) 

for x = p: - g _ + ̂ u = 0 (A-3) 

f or x = 1 : - -£i + 2vu = 5. (A-4) 

ox s 
From (A-2): v = —rr" + s+X s+X 

Substituting the result in the lefthand side of (A-l) one gets: 

n ß d u 2 1 / , - v d u / A p\ 
Su - - = -j—r + -(l-2v)-3- (A-5) s dx2 x dx 

•A.1. O K * S ^ n 0s(s+BX) , _ K+9 
with ß = —-v- + 9s = — * - * where B = —xr-

s+X s+X 0 

The solution of the homogeneous part of (A-5) is given by Ahramowitz and 

Stegun (197Q), (page 362, 9.1.52): 
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u, = c,xVI (x/ß) + c„xVK (x/ß) 
h 1 V) 2 vv 

where I and K are modified Besselfunctions of first 
V V 

resp. second kind and order v. 

A particular solution of (A—5) is: 

Up = constant 

The general solution is given by: 

u = u p + u.h 

By substitution of u in (A-5) it is found that: u = — 

The solution of (A-5) is thus given by: 

u = - + c.xVI (x/ß) + c xVK (x/ß) 
S t V 2 V 

(A-6) 

The constants c and c2 are found from the boundary conditions. 
*) The derivative of u with respect to x is: (App. II pli and pl2 ) 

5£ = ClxVßIv_a(x/ß) - c ^ V ß K ^ x / ß ) (A-7) 

Substituting (A-7) and (A-6) in (A-3) and (A-4) and using properties 

p6 and p7 leads to 

C 2 / ß K
V + l ( / ß ) - C / ß I V + l ( / ß ) = " ^ ( A _ 8 ) 

c„pVßK (p/ß) - c pV ßi (p/ß) = ^ i (A-9) 
2 V+ 1 V+J PS 

Solving for c and c r e su l t s in: 

*) 

In Appendix II some properties of Besselfunctions are given relevant 

for the derivation treated here. These properties will from here on 

be referred to as pi, p2, etc. 
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(2v-Q)pVKv+](p/ß) - 2VKV+J C/Bl/p 
Cl = s/ßpV{Kv+1(p/g)Iv+i(p/a)- Kv+J(/ß)Iv+](p^)> 

c = 
2 

(2v-Q)pVIvf,(p/ß) - 2vlv+](/ß)/p 

s/ßP
V{Kv+1(p/ß)Iv+1(/ß) - Kv+1(/ß)Iv+1(p/ß)} 

So that eventually the solution for u is given by: 

1 
u = — + 

s 

(2v-Q)xv{Ku+1 (p/ß)Iv(x/ß) + Iv+](p/ß)Kv(x/ß)} 
+ s/ßlKv+1(p/ß)Iv+1(/B) - Kv+](/ß)Iv+I(p/ß)} * 

2vxV{Kv+,(/ß)Iv(x/ß) + Iv+1 ß)Kv(x/ß)} 

s/ßpV+1{Kv+1(p/ß)Iv+](/ß) - Kv+1(/ß)Iv+](p/ß)} 
(A-9) 

The concentration U can thus be found as the inverse Laplace transform 

of u given by (A-9). 

Let the three terms of the RHS of (A-9) be denoted by u , u , and u 

respectively. 

The inverse of u is found straight forwardly: 

•D = L~1{uI} = 1 (A-10) 

The i nve r se t ransform of u and u can be found by i n t e r p r e t i n g the 

Laplace parameters as a complex v a r i a b l e , and us ing t he complex 

i nve r s ion i n t e g r a l (Church i l l ( 1972) ) : 

U I I = L " 1 { u l I > = 2 ? I ( 2 ^ ) x V 

Y+ioo 

K v + J (P /ß) i v (x/ß) + i v + 1 ( p7B^(x /B2 

J i o o { I W p / ß ) W / ß l - Kv+J(^)iv+](P/ß)>s/ß e d s Y-i°° 



34 

The value of the integral can be found as the sum of the residues at the 

poles of the integrand. It can be seen easily that s = 0 is a singular 

point of the integrand. 

To investigate the order of the pole s = 0 the numerator of the integrand 
ST 

is written as (omitting the factor e )_ 

Iv(x/3)Kv+](p/ß) + Kv(x/3)Iv+](p/ß) = 

2 3 ^ {I-V(^)IV+1(P/B) - Iv<x/ß)I_(v+1)lp/ß)> (A-ll) 

In deriving (A-ll) use is made of the definition of K (p5). 

If next the Besselfunctions I are written as infinite series (p4) and the 

terms are rearranged (A-ll) becomes 

i ~ v ~ v + 1 o o v - ( V + l ) V+2 - ( V + l ) . 
TT 1 { X p ß 2x p X p 7ß 

2sinV7T 7ß 2r(v-l)T(v+2) r(v+l)T(-v) " r(v+l)T(-v)(2+2v) 

i l 

+ 
XP ß . r u ß 2 ^ 

2vr(v+i)r(-v) u l P n 

Where 0 (ß 2 ) s t ands fo r a l l terms i n ß of o rder two and h i ghe r . 

Likewise the denominator can be w r i t t e n : 

V , ( p / ß ) W / e ) - K V + I ^ ) I V + 1 ( P / 3 ) = 

r v+l - ( v+ l ) v+3 - ( v+ l ) v+l 1-v -, 
- / p T r p - p r p - p P +P 1 o . nfo2)l 
s p2sinvTT L r(v+2)T(-v) r(v+2)T(-v)(2v+4)2 4vr(v+2)T(-v) s p U ^ P ' J 

The i n tegrand accordingly can be w r i t t e n i n the form: 

ST a^ajß+OXß2) 

7 F { b a + b 2 ß + Q ( 0 2 ) } 

-2xV^+ 1> 
W h e r e a i = r(v+J)J(-v)_ 

. v+l -v l-v v v+2 -(v+l) 
a = P x . P x x p 
2 2r(i-v)r(v+2) 2vr(v+i)r(-v) r (v+or(-v)(2+2v) 
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h, - i L - ^ 
v+l -(v+l) 

i r(v+2)r(-v) 

v+3 -(v+Jl v+J (J-vl 
V. = P -P P +P 

2 r(v+2)r(-v)2(2v+4X 4vr(v+2îi(-vi 

or using the definition of ß given earlier: 

eST(s+X) , »i-a2B^0(ß2) 

0S2(s+BX) l b1+b2ß+0(ß2) (A-12) 

From (A-12) it can be seen that s = 0 is a double pole. 

Let (A-12) be symbolized by F(s) then, using 

dßi = 9B en ß| _ = 0, the residue at the pole s = 0 
ds's=0 s u 

is given by (Churchill(1970)): 

a, a, , a a a,b 
lim d_ 2 p / N = _ i _ I + _ L _ i _ + _i i ! 2 

s+0 ds S n s ; 0bi B + 0bx BX bj O b ^ X " b^"2" 

Also (A-12) shows s = -BX to be a single pole which residue is given by: 

e"BXT(l-B) ai 
lim (s+BX)F(s) = -rr?r • ̂ 7 
s -+ -BX 0 B X Dl 

Finally the integrand has poles for the zeros of 

K ,(p/ß)I ,(/ß) - K ,(/ß)I ,(p/ß) = 0 v+l v+l v+l v+l 

This expression can be written using the properties p4 and p6 as: 

Y v+l ( i p / ß ) J v+l ( i / ß ) - Y v+l ( i / ß ) J v+l ( i p / ß ) = ° 

The zeros of Y v + ] (px) Jv+] (xl ̂  Y^+] d U ^ j (pxl 

are all real and simple (Abramowitz & Stegun, 197Q.I.. 

Let them be denoted by a (n = 1, 2, 3,....), then the integrand 

has simple poles for ß = -a2 , -a2 , , 
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or when s assumes the values: 

s n i = 

«2 

-(B,A0+an
2l +V(BAe+ctn

2l2 - 4Aa2
n 

_ _ 

-(BAe+an
2) -V(B^e+a2

nl2 - 4Aa2
n 

_ 

(A-13) 

(A-14) 

The residues for these poles can be found as (Churchill) 

re"ST {Kv+1(p/ß)Iv(x/ß) + Iv+](p/ß)Kv(x/ß)} "I 
L"i7ß~ d_ iKv+I(p/3)iv+1(/ß) - Kv+](/ß)iv+](p/ß)}J 

ds 
ß = -a" 

n 

(A-15) 

Using the properties p9 and plO and the fact that for 

S = -< : W p / ß ) W / ß ) - Kv+l
(/ß)Iv+l

(p/ß) = ° 

the residue for ß = -a becomes 
n 

2FIi:(x,p,a) 

s n T 

(s +A)' n 
i 

S T 

e 2 (sn +A): 

2 

08,, l(s_ +A)Z + (0-1)A'} + s i(s +A)Z +(É-1)A2} 
iij i n 2

 n 2 

with Fi;[(x,p,a) = 
Kv+](pia)Iv(xia) + Iv+J(pia)Kv(xia) 

Iv(ia)Kv+](ipa)+Kv(ia)Iv+1(ipa)-p{Iv+](ia)Kv(pia)-lv(pia)Kv+1(ia)> 

Using the properties p4, p6, and pl3 and repeatedly 

Y , (pa)J . (a) - Y . (a)J , (pa) = 0 
v+1 v+1 v+1 v+1 

the denominator of F (x,p,a) eventually becomes: 

i J v + l f a ) ~ J v + l ( p a ) 

a ' J v + l ( a ) • J v + J ( p a ) 

and the numerator can be likewise transformed into 



li { Yv+i(pa)Jv(c£x) - Yv(ax)Jv+i(pa)} 
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F (x,p,a) can thus be given as. 

FlI(x,p,a) =^Jv+i(a)Jv+1(pa) 
{J (ax)Y (pa) - Y (ax)J (pa)} 

^V^-^w 
Thus the inverse of u is : 

- l U n = L { U l I ) = (Q-2V) 
2 (v+ l )x 2 V __! _ p 2 { ( v + l ) x 2 V - p 2 v > 

_ p 2 V + 1 - l 0B 2 v ( p 2 v + 2 - l ) 

r2V+2 , x2V(v+l) { l-p2V+1* , p2(p2v-l) } , 

2 ( p 2 v + 2 - l ) ( p 2 V + 2 - D 

2 (v+l )x 2 V ( B - l ) ( l - e~ B X T ) 

2V+4 2v 

(p 2 V + 2 - l )0B 2X 

+ £ 2F ( x ,p , a ; 
n-1 

1 1 1 / i -, ' e (s +X)' n 
l 

S T 

e n 2 (an +X): 

n2 

0 s n ( ( s n +X)2 + (B-DA 2} 9 s n { ( s n +X)2+(3-DX2} _ 

In anlogy wi th t he above d e r i v a t i o n of UT i t can be shown t h a t the 

s g iven by: 

2 (v+l )x 2 v x ( v+ l ) x 2 v - l 

i nve r se t ransform of u i s g iven by 

U I I I = L " { U I I I } » 2V 
,2V+2 

( p 2 v + 2 - l ) 0 B 2 v ( p 2 v + 2 - l ) 2 ( p 2 v + 2 - l ) 

+ x2V(v+l) { l - p 2 v + " + P 2 ( P 2 V -D } + 2 (v+l )x 2 V ( B - l ) ( l - e " B X T ) 

( p 2 v + 2 - l ) 2 2v+4 2v ( p 2 v + 2 - D 0B2X 

e n 2 T ( s +X)2 • e S n i T ( s + X) : 

n i n 2 
+ £ 2F T T T ( x , p , a ) . 

n-1 ] 0s {s +X)2+(B-1)X2} 0s {( s +X)2+(B-1)X2}I 
n i n i n2 n0 

where F (x, p , a ) = — 
j2v+1 (

a){ Vax>Y
v+1 W - V <»> J

v+1 (Pa) > 
{ j W a ) - j 2v+1

(Pa)} 
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Combining UT, U and U T finally gives the solution for U 

sought for: 

U = [ ^ l(v+l)x2V + 
L p 2 V + 2 _ , J 

Q l~2 (v+ l )x 2 V , T , x 2V(x 2 -p 2 ) , p 2 (p 2 V -x 2V) , p 2 ( p 2 V - l ) x 2 ^ ( v + l ) , 

Lp2V+2_! 0B 2 ( p 2 v * 2 - l ) 2 v ( p 2 V + 2 - l ) 2 v ( p 2 v - l ) 2 

, x 2 V ( v + l ) ( l - p 2 ^ ) + 2 ( v + J ) x 2 V ( B ^ I ( J - e ^ A T ) 1 + 

(2v+4) (p 2 V + 2 - l ) 2 (p 2 v + 2-J10B 2A "J 

00 Y) 00 

V „ „„ , s . 2Vx + {(Q-2v)x TT E 2 F I I ( x , p , c t n l + ^ ~ i r £ 2 F n i ( x , p , a n ) } * 
n=l p n=l 

n^ n2 

s n 0{ (s +A)2+(B-UA2} s 0{(a +^12+(B-1>A2} 
i n i n , n ^ 

(A-16) 

W i t \ , , " V v + i <an> J v + i ( p V { V a n * > Y v + I <P«n>-YV (anX) J v» i ( p a n } } 

F I I ( x , p , a n ) = 

^ W V ^ ' v - H ^ n » 
J v + i ( a ) 

F l I I ( x , p , a n ) = j ^ - ( ^ J * F I I ( x ' p ' a n } 

a n i s t he n - t h r oo t of Y v + 1 ( p x ) J v + 1 ( x ) - Y v + i ( x ) J y + 1 ( p x ) = 0 

-(BA0+a2 ) ±V(BA0+a2 ) 2 - 4Aa2 

_j n n n 
and s = -yr 

n i , 2 20 

Other solutions can be derived from (A-16) by taking the appropriate 

limits. The solution for instantaneous adsorption is found by taking 

the limit as À -»-00 

From (A-13) it can be seen that 

lim s = -BA 

A -*•« 
n 2 

e V ( 8 +A)* 
and so: l m s 01 (s +A) *+JFm*T = O 

A -> eo. n 2 n 2 
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A an ""n 
As S » S = —pr it follOWS that lim S = --ars 

ni n2 9 X - oo n i ï 0 

S T 
e ni (s +X) 2

 2_ 
1 1 1 

and from this lim = = exp ( ) 
X-*<? s 0{(s +X)2+(B-i)X2} s B9 a2 B0 

n, n,' n n 

AI -i. • i 1- 2 (v+Jlz ( B - J ) q ^ e AT) _ n Also qu i t e s imply: lim o • " = 0 

x+œ (P2V-1XGB2A 

The s o l u t i on for i ns tan taneous adsorp t ion i s thusr: 

u =(.£!zi V(V+j)x2V 

» 2V+2 . ' C-J 

n f 2 (v -H)x 2 V T ^ ( x 2 ^ 2 ! + p2(p2^Vx2V) + p 2 (p 2V-nx 2 V (v-H) 
+ O 4 ' • — + ——————— + — — — — — — -t . f p2V+2_j 0 B 2 t f V + 2 - U 2 v ( p 2 V + 2 - U 2 v ( p 2 V + 2 - l ) 2 

( X 2 V ( V * - l ) ( l - p 2 V + l t ) \ 

(2v+4) (p 2 V + 2 - l ) 2 J 

, °° , -a2x. J ,,(a )J ,. (pet) {J (a x)Y , (pa )-Y (a x)j , (pa ) 
+ (Q-2V)XVTT E exp ( - A - ) V + 1 n V + 1 n V n v + 1 n v n ^ " ^ 

n-1 B0 ^ A ^ n ^ v + i ^ n » 

, 2wxV ; r<^ J2y+1
 (an){JV(V)Yv+i ̂ W V . (pan} } (A-17) 

Likewise the solution for transport by diffusion only can be derived by 

substituting V = 0, or where necessary taking the limit as V -*• 0 

The latter has to be done for those terms where V is a factor in the 

denominator : 

p 2 ( 2V_X2V) 2 e2vlnp_e2Vlnx 
lim • = — — lim -

V •*• 0 2v(2v+2-l) p2-l v •*• 0 2v 

p2 l+2vlnp + (2vlnp)2 /2; + - l -2vlnx -
, lim 

p 2 - l V -> 0 2v 

- p2 Hm ing + 0(v) = - ^ l i £ 
p2 - l v -> 0 x p2 - l x 
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and 

lim 
p2(p2V-l)x2V(v+l) m p2 lim 2vlnp+(2vlnp)2/2!+. 

2v(p2V+2-l)2 (P2-1)2 V ^ 2v 

2_i\2 
lnp 

(Pz-1) 

The solution for transport by diffusion only is thus given by: 

2T 
U = 1 + Q 

2 2 2 

(p z - l )0B 2 ( p z - l ) p M x ( p 2 - l ) 
Pl_ l n p _OV)_ 

2_,x2 4 ( p 2 - l ) 

2 , ( g - l ) ( l - e " B A T ) 

P2-1 GB2A 

*» a J ( a n ) J j ( pa ){J Cx x)Y, (pa )-Y (a x ) J (pa ) 
- riTT v x n o n i n o n i n 

n=l 2 { j 2 ( a ) - J 2 (pa ) } 
i n i n 

r S T 
e n i ( s +X)2 

n , 

S T 

e n2 (s +A)2 

n 2 

s„ 0{(s +A)2 + (É- l )À 2} s G{(s +X)2 + (B-1)X2} 
nx n i n„ n„ 

(A-18) 

Finally the solution for the case where transport is by diffusion only and 

adsorption is instantaneous can be derived either taking the limit of (A-17) 

when V -*• 0 or of (A-18) when \ -*• <*> leading to: 

(1+P2) 
U = 1 + Q 

2T 2 2 2 2 

+ -3LIP_ + - S - In £ + - 2 — lnp -
2 _ , N 2 (p'-l)QB 2<p"-l) p2-l x (p2-l) 4(p2-D 

+ QTT Z exp 
n=l BG 

(-anT)Ji(an)J
1
(pan) I W ! 1 ^ " ^ ^ ^ ^ 1 (A-19) 

a {J2.(a )-J2(pa )} 
n i n i n 

If adsorption is instantaneous the adsorbed solute is at any distance 

and time proportional to the dissolved solute or in dimensionless form: 

V(X,T) = U(x,T>. 

In case of non-instantaneous adsorption one could solve for v from (A-2) 

and (A-9) and find V as L-1 {v}in a similar way as U was found as L {u}. 

It is easier however to write V as: 

v - ̂  {^}+ '"AT 



41 

and find L |—-ru | with the convolution theorem: 

(A-201 

The various terms of U, as given by A-16, fall into different categories 

as far as the convolution integral of the RHS of A-20 is concerned: 

1 .Terms not being a function of T, and represented by f(x). The convolution 

integral for these terms is: 

J f(x)Xe dz = f(x)(l-e"XT) 

2. Terms linear in T, denoted by q(x)x, leads to 

-XT 
f -v / \ -X(T-Z) q(x)e f Xz,, . N"| , N , . , -XT ,S J Xq(x)Te = -2-^ [e (Xz-l)J = q(x)x+q(x) (e -1) 

o o X 

3.For the term with the factor (1-e B A l ) 
-BXT represented by p(x)(l-e ) the convolution integral becomes: 

T 
f\ t \/i ~~BXz,. ~ X ( T - Z ) , JXp(x)(l-e )e 'dz = 

p(x)e 
•XT Xz 0(l-B)Xz 

-e 
1-B 

-BXT , XT 

= P(X)0 - ^ B - + | 5 r - } 

Finally, terms of the series remain. Assuming uniform convergence 

of the series, summation and integration can be interchanged, and for 

the n-th term the convolution integral is of the form: 

S. S T , 

ƒ r(x,sn ) Xe e dz = r(x,sn >X ( s + n 

o a i n 
i 

Combination of all the above derived components of V yields the 

solution as given in (16) in the main text. 
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APPENDIX I I . D e f i n i t i on s and some p r o p e r t i e s of Besse l func t ions 

The d e f i n i t i o n s and p r o p e r t i e s g iven below a r e employed i n t he d e r i v a t i o n s 

in Appendix I and s e l e c t ed from Abramowitz & Stegun (1970) . 

, T . s _ ,z.V ( - z 2 / 4 ) K 

p i . J..(Z) = hÔ i 
k=0 k! r (v+k+l) 

J (Z)COSVTT - J _ A ) ( z ) 
p2. Y (z) = V 

v s i n \nr 

n , T (7, _ r z . v ; ( z 2 M ) k 

p3 . I v ( z ) - (T) Z ^ k : r ( v + k + 1 ) 

-VTTJ Tri 
P 4 . I v ( z ) = e 2 j ^ ( z e 2) 

PS- Kv(z) - _ * { i (z) - i ( z )} 

ÏÏ1 T VTT1 

P 6 . K (ze~ 2)= ± | e 2 { - J v ( z ) ± i Y
v ( z )> 

P 7 . 2 I v ( z ) = z ^ j (z) - z I v + X ( z ) 

p8 . 2vK (z) = z K , ( z ) - z K (z) 
r V V + l V - 1 

e 9 -£V z ) = Iv-i(z) - iV z ) 

p10-izVz) - r V 8 ) - W z i 

Pn' £*%<*> = z \ - a ( z i 

pi 2 . 4- zVK (z) = -zVK (z) v dz V V-i 

p l 3 . J ( Z ) Y ' ( Z ) - Y ( z ) j ' (z) = — v V V V V TTZ 
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APPENDIX III. The computer program 

The program shown pertains to the calculation of equation J5 and 16 in 

the main text. Though the program should for a great deal be self-

explanatory a few remarks about its set-up and design seem, warranted. 

In constructing the program emphasis was put on readability and ease 

of use rather than on efficiency of computation. Principally the 

program calculates the complete solution for various root densities 

(the variable W in line 7) and times (TIM line 8). The program is 

meant to be used via a terminal from which some parameter values have 

to be entered (line 11 through 30). During computation some subroutines 

are called which are not shown as they are part of a mathematical 

subroutine library. The subroutine ZEJNU (line 44) calculates the zeros 

of Y (x)J (px) - Y (px)J ,(x). The subroutines BESFRJ and BESFRY 

(line 84-100) compute Besselfunctions of first, resp. second kind 

and fractional order. In calculating the series in line 83-130 (parts 

c and d of equation 15 and 16) it was assumed that a maximum of 50 terms 

would suffice to approximate the infinite summation. This number of terms 

was found in prelminary calculations by trial and error. If a term 
-8 

of the series is less than 10 of the partial sum (line 126), the 

summation is halted and the outcome of the series is approximated by the 

partial sum. 

Table A III-l shows for a specific value of x(l) and T(160) the values 

of a , s , s , and the corresponding terms from the series in 15c and 
n n zn 

15d . It can be seen that with increasing a the value of s tends to 
6 n m 

an
2/0, and that of s to A(l.44406 E-04) as follows from (A-13) and 

(A-14) in appendix I. 
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TABLE A III-l. The first 50 values of an (ALPH),sn (s,), sn (s2). and the corresponding terms of the series 

of eq. 15c (TERM 1) and 15d (TERM 2) 

I 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

ALPH 

1.68582E-01 

3.11883E-01 

4.55043E-01 

5.98569E-01 

7.42463E-01 

8.86663E-01 

1.03111E+00 

1.17575E+00 

1.32043E+00 

1.46546E+00 

1.61048E+00 

1.75558E+00 

1.90075E+00 

2.04598E+00 

2.19121E+00 

2.33656E+00 

2.48191E+00 

2.62729E+00 

2.77270E+00 

2.91813E+00 

3.06358E+00 

3.20904E+00 

3.35452E+00 

3.50002E+00 

3.64553E+00 

3.79105E+00 

3.93658E+00 

4.08211E+00 

4.22766E+00 

4.37321E+00 

4.51877E+00 

4.66434E+00 

4.80991E+00 

4.95549E+00 

5.10107E+00 

5.24666E+00 

5.39211E+00 

5.53783E+00 

5.68343E+00 

5.82903E+00 

5.97463E+00 

6.12024E+00 

6.26585E+00 

6.41146E+00 

6.55707E+00 

6.70268E+00 

6.84830E+00 

6.99392E+00 

7.13954E+00 

7.28516E+00 

SI 

-9.57252E-05 

-1.25734E-04 

-1.34990E-04 

-1.38810E-04 

-1.40719E-04 

-1.41801E-04 

-1.42471E-04 

-1.42913E-04 

-1.43220E-04 

-1.43441E-04 

-1.43606E-04 

-1.43732E-04 

-1.43831E-04 

-1.43909E-04 

-1.43973E-04 

-1.44025E-04 

-1.44068E-04 

-1.44104E-04 

-1.44135E-04 

-1.44161E-04 

-1.44184E-04 

-1.44203E-04 

-1.44221E-04 

-1.44236E-04 

-1.44249E-04 

-1.44261E-04 

-1.44271E-04 

-1.44281E-04 

-1.44289E-04 

-1.44297E-04 

-1.44304E-04 

-1.44310E-04 

-1.44316E-04 

-1.44321E-04 

-1.44326E-04 

-1.44330E-04 

-1.44334E-04 

-1.44338E-04 

-1.44341E-04 

-1.44344E-04 

-1.44347E-04 

-1.44350E-04 

• -1.44353E-04 

-1.44355E-04 

-1.44357E-04 

-1.44359E-04 

-1.44361E-04 

-1.44363E-04 

-1.44365E-05 

-1.44355E-04 

S2 

-1.71490E-01 

-4.46866E-01 

-8.86027E-01 

-1.49091E+00 

-2.26277E+00 

-3.20245E+00 

-4.31049E+00 

-5.58728E+00 

-7.03306E+00 

-8.64802E+00 

-1.04323E+Q1 

-1.23860E+01 

-1.45091E+01 

-1.68019E+01 

-1.92634E+01 

-2.18958E+01 

-2.46973E+01 

-2.76684E+01 

-3.08092E+01 

-3.41196E+01 

-3.75998E+01 

-4.12496E+01 

-4.50691E+01 

-4.90583E+01 

-5.32172E+01 

-5.75459E+01 

-6.20443E+01 

-6.67123E+01 

-7.15502E+01 

-7.65577E+01 

-8.17349E+01 

-8.70819E+01 

-9.25987E+01 

-9.82851E+01 

-1.04141E+02 

-1.10167E+02 

-1.16357E+02 

-1.22728E+02 

-1.29263E+02 

-1.35968E+02 

-1.42843E+02 

-1.49887E+02 

-1.57101E+02 

-1.64485E+02 

-1.72038E+02 

-1.79762E+02 

-1.87655E+02 

-1.95717E+02 

-2.03950E+02 

-2.12352E+02 

TERM 1 

-3.06775E-01 

-5.4O375E-02 

-1.62495E-02 

-6.45582E-03 

-3.04358E-03 

-1.61219E-03 

-9.29548E-04 

-5.71782E-04 

-3.70148E-04 

-2.49750E-04 

-1.74377E-04 

-1.253Q5E-04 

-9.22910E-05 

-6.94237E-05 

-5.32157E-05 

-4.14413E-05 

-3.27444E-05 

-2.62070E-05 

-2.12215E-05 

-1.73607E-05 

-1.43366E-Q5 

-1.19445E-05 

-1.00286E-05 

-8.48161E-06 

-7.22158E-06 

-6.18518E-06 

-5.32868E-06 

-4.61567E-06 

-4.01748E-06 

-3.51385E-06 

-3.08533E-06 

-2.72108E-06 

-2.40798E-06 

-2.13909E-06 

-1.90663E-06 

-1.70489E-06 

-1.52954E-06 

-1.37573E-06 

-1.24084E-06 

-1.12238E-06 

-1.01683E-06 

-9.24198E-07 

-8.41451E-07 

-7.67808E-07 

-7.02070E-07 

-6.43376E-07 

-5.90639E-07 

-5.43081E-07 

-5.00249E-07 

-4.61668E-07 

TERM 2 

2.69541E+00 

-3.79160E-01 

1.01394E-01 

-3.75163E-02 

1.68791E-02 

-8.65581E-03 

4.87540E-03 

-2.94724E-03 

1.88277E-03 

-1.25729E-03 

8.70670E-04 

-6.21521E-04 

4.55300E-04 

-3.40960E-04 

2.60380E-04 

-2.02134E-04 

1.59287E-04 

-1.27192E-04 

1.02791E-04 

-8.39457E-05 

6.92185E-05 

-5.75930E-05 

4.82982E-05 

-4.08056E-05 

3.47Q96E-05 

-2.97093E-05 

2.55724E-Q5 

-2.21357E-05 

1.92549E-05 

-1.68320E-05 

1.47718E-05 

-1.30218E-05 

1.15184E-05 

-1.02284E-05 

9.11351E-06 

-8.14665E-06 

7.30630E-06 

-6.56986E-06 

5.92421E-06 

-5.35739E-06 

4.85264E-06 

-4.40961E-06 

4.01397E-06 

-3.66198E-06 

3.34801E-06 

-3.06739E-06 

2.81545E-06 

-2.58841E-06 

2.38430E-06 

-2.2Q001E-Q6 
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H A S r M Ä S - M Ä S . R E D 

0001. REAL L K 1 0 ) » W ( 4 ) » T E R M 2 < 5 0 ) F B J < 2 ) » B Y ( 2 ) » T I M < 1 0 ) » D I S T < 1 0 ) 

...0.0QZ R£AL...ALPHi50J..̂ M̂Sßl.<.5.0J.6J..̂ ß̂2.<.5.û.2..̂ .T.ERMl..C5.Û.i..̂ .S.(.5.0.*.2) 
0003 REAL J N A » A R G 1 2 ( 5 0 » 6 ) » V < 6 ) » J N 1 A » J N 1 R A » J N X A 

• 0.0.04 COttM.ON..../F\AR/...RH.O.f.IlEN.QM.f.B.f.U.C.f.ALA.B.r.a.Rri.j.T.N.UT.0RD.l..f.F:.i.6.J 
C 
C....*.*.*.*.*.*.*.*.*.*.**.*.**.̂  
C 

...0.005 JQATA...P.I/.3...1.4.1.5.926.54./ 
• C R0 R A D I U S ROOT CM» AK ADSORPTION CONSTANT 

C....W.C....WATERC.O.N.TEN.T ......nA.CC...UXEF.U.S.IDAI....C.QEEE.I.CI£NI....CM2/.DAY.jf 
C HSC = LENGTH OF ROOT CM r AAA UPTAKE RATE M G / C C M 2 < P A Y ) 

...0.0.0.6. MTA...JRO;*MrJMC.jf.MCC.TWS£7..AAA/.*.O25.j.lO.O.».T.^.25.Ä..fc.l;j!.2.0!.i.* 
*4.4E-3/ 

JC....W....RDD.T-D.ENS.IIY....C.M/C.M3. 
0 0 0 7 D A T A W / . 5 » l « > 3 * » 5 < / 
.0.00.8. DAIA....TJJM/l.,.7..5....f.l.0..t..*.20....F..50..t..r7.5....f.luO.*..»125.*.7.1.5fi.>..*.20.0..*./: 
0009 DATA N/50/ 
. C. 

0010 • 0 P E N ( U N I T = 1 J N A M E = , D X 1 : A L P * D A T ' > T Y P E = ' N E W ' ) 

c 
C **************** INPUT OF' PARAMETERS ******************** 

c 
0011 TYPE 701 

..0.0.12 701 EDRttèI.llX.,.lGlUE...Ek>.fyR.L). 
0013 ACCEPT 300»EMAP 

...Q.0..1.4 IYP.E....3.0.1 , 
0015 301 FORMAT(IX»'GIVE IIW EN NIW') 

...0.0.1.6. AC.CE£.T.....3.0.0.*.JB.J..W.r£IW. 

0017 IIW=BIW 
...0.0.1.8. NIW=EIW 
0019 TYPE 202 

...00.2ft 202 F.OR.MAI.(.lXr.̂ .Giy.E....C.Î .) 
0 0 2 1 A C C E P T 3 0 0 » C I 

...0022. TYPE . 203 
0023 203 FORMAT< .1. X » ' GIUE IT»NT') 

...0.024 A.C.C.EEI....3..Q.0.»..BII.*.EII "... 
0025 IT=BIT 

...0026 NII=EII : 
0027 2 TYPE 201 

..0028 201 F.D.RMH.lHO.v:G.iy.E...H.ALEi:.;> 
0029 ACCEPT 300»HALFT 

..0030 300 E.QRKà.UElQ..,.Q..). 
C 
C.....EyAE....= ...EyAPQR.AIIf;)N....RAIE....C.M/D.AY » CI lJÜl.T.IjOL....C.D.W.CE.NIRAII.QNl...Mß/«lL 
C H A L F T H A L F T I M E A D S O R P T I O N R E A C T I O N D A Y 

..003.1 JD.Q....7.0.ft....I.W=I.IW.jf.NI.W 
0032 RDENS=W(IW) 

C. 
C ******************* CALCULATION DIMENSIONLESS GROUPS ************ 
C. 

0033 ETA=HSC/RO 
..Ö.Q.3.4. £.=.AK/MC.£1.S 

0035 •TNU=-ËVAP/<2.*pi*ETA*R0*RnENS*DACC) 
...0.0.3.6 QRl[~im/2., 
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..F.DRT.RM...I.V. W0.2.*.5 T.HU....25.-J.IM-B.i ;l.2;.40..,..4.J 
MAS»MAS=MAS,RED 

0037 0RDl=0RP+lc 
..Ö.0.38 Rl=l.*./.SQR.Ii£I*Rl!E.NS.> 
0039 RH0=R1/R0 

.0.0.40 ALA.B.T.AL.0.S.C.2..f..)./H.A|_FT*R0*R0/DACC 
0041 PHI=DACC*CI/(AAA*RO> 

..Q.04.2 Q=-RHQMHa^.2..t.*EIM.F:HJ.l 

c 
C...M******.*.******* CALCULATION ZERO'S OF CROSSPROPUOT OF BESSEL-
C FUNCTIONS» ÄND COEFFICIENTS OF TAU TN EXPONENT" 
Ç 

0043 DO ÏÖ Ï = Ï»N 
..00.4.4 CA.L.L....2..EJ.YNU.(;.A.r.I.J R H O , O R B , 2 0 . » i , E - 5 1 7 ) 
0045 ALPH(Ï)=A 

..Q.Q.46. A2=B*ÛLAI*WC...+....A!,,p.H.(I.).*.*Z 

0047 DISC=A2**2-4>*WC*ALAB*ALPHCI>**2 

..QMS. &iX*Zl!r±zA2rmRlLM$rüA/S2.i.MC.i : 
0049 S< I ? 1 >=-24*ALA£*ALPH< I ) * * ? / ( A2+SQRT ( DISC > ) 

...0.Q5.O ...1.0. C.Q.NTIN.U.E. 
c 

0051 WRITE(1 f 400) (I ? ALPH <I)»S<I»1>»S'.I»2)»I = 1»N) 
0052 400 FORMAT(IHÖrïX?'I'JIIX.'ALPH'»Ï3Xr'BÏ'r 

* 13X , ' S2 ' / < 1X? 12. 1P3E15 • 5 ) ) 
C 

.0.053 WRIJF..1; 1 > 500 > AK T WC t DACC » RO » RPFNS r ALAB , RHO f TNU ?. PHI.».Q 
0054 5ÖÖ FORMAT(ÏHÖ/'PARAMETERS' 

1.Z1X.?..'.AK îlPE.1.5.t.5.j.l.X.?./.ML./CM3.;' r 

2/1X >'WC = ' ï P E 1 5 * 5 f 1X f'ML/CM3' 
.3ZlX.r..'.MCG. =.'..lP.E15..,.5.rl.X..?..:C.M2/l!A.Ŷ  
4 / l X » ' R 0 = ' 1 P E 1 5 » 5 » i X f ' C M ' 
J5/lXz..:RCE)*S....=..:.l.E£Jl.5.*.5.j.lX.j!..r..CjM-2.: 
6 / l X f ' A L A B = ' 1 P E 1 5 . 5 / 1 X » ' R H O = ' 1 P E 1 5 . 5 
2/lXr.:iNW ~1LF.E.15.,.5 
8 / 1 X » ' P H I =--M.PE15,5/lXy'Q = ' 1.PE:! 5 < 5> 

0056 

0058 

0061 
0062 
0063 

0064 
0065 
0066 

0068 
0069 

C 

C ** 
p 

80 

*************** HA' HULATTON TAUC ********************* 

DELX=(RH0-3«>/5. 
SUMR = STRAU.»0*) 

P1=P1/(B*WC) 

*.' ( R H O * * ( T N U + 2 • > -1 « > *(.'F:P:l * 1 : **TNU 

DO 80 J=l»6 
X=1.+PELX*(J-1.) 
FST=(RHO*RHO-.l. , ) 

*/<RH0**(TNU+2. )-l. )*QF:D1*X**TNU 
U < J)=STRA(X ? TAUC)*Q+F9T 
CONTINUE 
WRITE«1»800> 

WRITE <1 » 600)TAUC»(J » DIST(J)fU(J)» J=l» 6) 
0TAU=-1. 

. 
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MASFMAS=MAS*RED 

C 
C.....*.*.***.*..*.*A*.*J^^^^ 
C 

...,00.70 D.Q....7.0.....I.T.I.M=.IX*.N.II. 
0071 TAU=DACC*TTM<ITIM>/<R0*R0) 

...0.072 EXP.L.=.EXR.<.-.ALAB.*T.A.U>. 
C 

....0.073 D.Q. .3.0 ...J=.1.T.6. 
0074 X=1.+DELX*<J~1) 

...0075 LX.;?* _ 
0076 X=IX 

...0.0.7.7. X™U=X*.*.INU 
0078 DIST(J)=X 

C. . 
0079 0TERM1=1. 

....00.80. S.UM1.5..0... 
0081 SUM2-0. 

....O0S2 y.SUM.l.=0.. 
0083 VSUM2=0. 
: .....e 

C ****************** CALCULATION OF SERIES *************** 
C ; : 

0084 DO 40 1=1,N 
...0.0.8.5. lE.CÜIÜilJ!.«.£Q.t..T.aU.2.e.Q:...I.Q....4.1 

0087 A=ALPH<I) 
...0.0.8.8. RA=RH.Q.*.A 

0089 AX=A*X 
...00.90. QaLl....BESER.J..iÉ.f.mm.t.2.f..BJ). 

0091 JN1A=BJ<2> 
...0092 CALL...BE.SER.w!lAX.*.ÜRJO.*.Z.rB.J.) 

0093 JNXA=BJ<1> 
...0.0.94 Ç.È.LL..MSEEJ..Œa.f.D.Bm..r..7.r..BJ} 
0095 JN1RA=BJ<1> 

...Q,Q?6 G.ALL....BE.S.FRYC.AX?0RRr7rM.) 
0097 YNXA=BY<Ï) 

...0.Q.9.S QûLL....BEBEEl.Œa.tDmi..i7lB.ll. 
0099 YN1RA=BY<1> 

...0.1..0.Q ARßl.U.*.Ji=r£I*A*jmMJM 
*(JN1A*JN1A-JN1RA*JN1RA> 

...Q101 jftRßl2L.<.Ijr.J.).=JNlA*ARßl.<.l.*J..)./.J.NlRA 
0102 41 CONTINUE 

...0.1Q.3 El-S.Ll.r.l.WJM). 
0104 E2=S<I,2)*TAU 

...Q.10.5. EÊC.X.~.i3.LU.n±M,M.)..m2Z 
1 ( WC*S (I»1>*<(S<I,1> +ALAB ) **2+ ( B- .1. « ) *ALA»**2 ) ) 

.01.0$ F AC2=. (S( % f 2) + ALAÇ)**2./ 
2<WC*S(I»2>*<<S<Ï,2)+ALAB>**2+<B-1<>*ALAP**2>) 

0107 EX1=EXP(E1)*FAC1 
'ÖÏÖ8 Ï F Œ 2 . L É . - 8 7 . 4 ) 60 TO 25 

..011.0 EX2=EXFJ.E2.).*FAC2 
Olli GO TD 26 

..Ö.112 2.5 EX2=.Q.fc 
0113 26 ARG2(I>=EX1+EX2 

..0.114 IER3Allll-rARGl.U..iJX*.ÈRS.ZLLl 
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...EÛRIRAN....IW «0.2,5. IHU....25.-J.U.N.-ß.;t iZ.iAQ.LAS 
MAS,MAS=MAS.RED 

Ö'ï 15 ~ ~ £ .™—™._ 

: ^..J£X2/IM2zEXPLlMAQ2/15JJ.x21±Mnmi)M,L^. 
0116 TERM2(I)=ARG12(I>J)*ARG2(I) 

...Ü.L1.7 yiERW2=IERM.2.!:.I.)./I.ERMl.«.IJ».*yiERMl 
0118 IF<ABS<TERM1(I))*LE.0,29E-28>G0 TO 50 

.....Q12Q. ..IE.<.JAB.S..(.I.ERM.1.!;.I.)./.D.IE.RWJ.J..*.LE.,..1.*£-.SJ..GD.....IÜ....5.U 
0122 0TERM1=TERM1(I) 

....012.3. SUM.l=.SUMl.tIERIil.iI.Ä 
0124 SUM2=SUM2+TERM2(I) 

...«125 .v.s.utti=y.sutti.mERM 
0126 VSUM2=ySUM2+VTERM2 

...0.1.2.? ... . IF(ABS(TERM1(I)/SUM1) .LE.l.E-8) GO TO 50 
0129 40 CONTINUÉ 
0130 50 CONTINUE 

C 
C ******************* STEADY-STATE PART **************** 
C ' 

...0131 F.S.I=.lR.HO*RHO-i.!..) 
'*/(RHO**(TNU+2« )-i. )'*ÖRP 1 * X * * T N Ü 

C 
C ******************* STEADY-RATE PART ****************** 

,...£ 
0 1 3 2 USTR=STRA(X>TAU)*Q 

...Q.l.3.3. ; .US.IBA=.Q..». ., 
0134 P < 1 ) =P ( 1 ) + P < ï ) / ( ALAB*TAÜ ) * ( EXP ( -AI. AB*T AU ) - j < ) 
0135 EXPLO= 1. -EXP ( -B*ALAB*TAU > / < 1 . -fc ) +B*FXPI. / ( .1. < -B ) 
ÖÏ36 P(6)=2.*ÖRDi*XTNU*( B-ï.)*ÉXPL07 

t.Ü!ENOM*WC*B*B*ALAB) 
0137 DÓ' 89 ï = 2>5 

....Ó.13..S. E..a.l~E.ai*Xl.t.-EXPU 
0139 89 CONTINUE 

...Q.14.Q. D„Q....?.Q...I=.1.,.6. 
0141 VSTRA=VSTRA+P(I> 

...Ö.I.4.2. 9..Q CQNT.INUE 
0143 VSTR=0STRÄ*(3 

...Ql.4.4.ySUM.l=ySUM.l*i.n-TNU).*X**ÜR.D 
0145 ' VSÜM2~MSUM2*TNÜ 

...Q.1.46. SUHlrSU« 1* (Q-TNU.) *X**.ORI' 
Ö l 4 7 S Ü M 2 = S Ü M 2 * f H U * X * * Ö R b / ( R H Ö * * Ö R D 1 > 

Ç. .. 
c"************** 
c 

0148 Ü(J)=ÜSTR + SÜMÏ + SÜM2 + FST 
0149 y(J)=VSTR+MSUMl+USUH?+FST*(l,-EyPL) + EXPL 
ÖÏ 50 WRITE < Ï f 402 ) X r SÜMÏ r SUM? , USTR > FST 
0151 WRITE(1»402) XrVSUM1rUSUM2»USTR»FST 
ÖÏ52 '402 FORMÂT (ÏHÖ. 'X=='.iPEÏ5.5j2Xr ' SÜMÏ= ' ÏPE15 , 5? 

12X» 'SUM2='1PE15.5»2X» 'USTR='1PE15.5>2X» 'FST = /.1PE1.5.«5).. 
ÖÏ53 30 CONTINUE 
0154 OTAU=TAU 
ÖÏ55 WRÏtË<ï?6Öl>TAÜ,(JJDIST(J),Ü(J)»V<J)»J=ï»6) 
0156 600 FORMATdHO» 'TAU ='1PE15.5/ 

ÏÏX» 'J'».ÏÏX» 'DI ST' ,Ï4Xr 'Ü'/( IX , 12» ÏP2E15• 5) ) 
0157 601 FORMATCIHO,'TAU ='1PE15.5/ 

http://iZ.iAQ.LAS


•.EQM.RjfitML.IW W.0.2.*.5. THU....25.-J.UN.-8.1 12140:145....; RASE.. 51 
MAS>MAS=MAS.REr.i 

11X »• ' J ' » 11X » 'DIST ' 114X > ' U ' > 14X » ' U ' / < 1X'", ™£"—~—™ " 
01.58 » IEX.U..<.l.)..».LI.*.0.*..t.OR.*.IAU..,..G.T....AES.(.TAU.C.)..)..GD.....T.O....ZU.O. 
0160 70 CONTINUE 

C. : ; 
0161 700 CONTINUE 
0.1.6.2 1... .CLD.SE.C.UKIIs.i.f.niSP.-5/..RJRI.N.T..fJ .: . 
0 163 STOF' 
.Q.16.4 END : 
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JTJ t tRJJ toM. . . jy .^ f.MM.t.. 

..IN....L.INE...,.Q.Q.4.3..r......WABMIjN.6..î. ,P.O.S.S.IB.LE..MDl!J£I.C.O.II.QWl....QE...I^ßEX '..U 
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NA.ME 
A 
AX 
PIW 
DELX 
EVAP 
EX.1 
E2 

:....E.II: 
H A L F T 
I..IW. 
ÏW 
Mû 
JN1RA 

NI.W 
PHI 

:...: Q 
RO 
SIMU 
TAUC 
.V.S.IRÄ... 
V T E R M 1 

.COMMON 

NAME 
RHO 

wc: 
TNU 

LOCAL 

NAME 
ALPH 
ARG1 
ARG12 
ARG2 
»J...-. 
BY 
D.IÄI 
p 
S 
TERM1 
T.E.RjM.2 
TIM 
H 
u 

..VARIABLES* ».RSECT. 

.....TYPE.... 
R*4 
R.*.4 
R*4 
R*4 
R*4 

.„.RM 
R*4 

...R*.4. 
R*4 

....1*2 
1*2 

....B.*4 
R*4 

....X.x.iCf 

R*4 
...RM 

R*4 
...JR.*.4 

R*4 
....RM 

R*4 

....B.L.O.ÇK. 

....I.Y.RE 
R*4 

...R.*.4 
R*4 

....OFFSET. 
007524 

...00.76.4.6 
007434 
007540 
007430 

...0.0.7702 
007666 

...0.07.4.6.0. 
007470 

...0.0.7.4,44 
007474 

...0.0.7.41.0 
007420 

...0.0.7.44.6 
007512 

....00.751.6 
007304 

....0.0.76.22 
007560 

....0.0.77.2.6. 
007712 

.../EAR /..t. 

...QEF.SET 
000000 

...0.0.0.0.1.4 
000030 

AND COMMON ARRAYS 

TYPE SECTION 
R*4 . *DATA 
R*4 Vec »DATA 
R*4 Vec «DATA 
R*4 

...RM 
R*4 

...R*.4. 
R*4 

• DATA 
... f.DATA .... 

«DATA 

.1DA.T.A 
PAR 

...R.*.4.....Ws.c M'.A.IA. 
R*4 

...R.*..4. 
R*4 

R*4 

• DATA 
SD.AT.A 
• DATA 
• DATA 
• DATA 

••DATA?.. 

....NAME 
AAA 

...A2 
CI 
P I S r 

EXPL 

FAC1 
...FI.W. 

HSC 
....IT. 

IX 
...JN.X.A 

K' 
. .Q.T.A.U 

PI 
...RA 

Rl 
...S.U.M2 

UBTR 
....V.S.UM.1 

k > f E R M 2 

SIZE....-....« 

....NAM*".; 
DENOM 

..AL.AB. 
0RD1 

* * 

OFFSET 
000540 
001050 
004770 
003330 

....0.0.0.40.0... 
000410 

....0.0.0.4.7.0... 
000040 
AAJM =;A 

003640 
...0.00.070... 

000420 
AAQOOO 
007250 

SIZE a. .01.004.2 C 

...TYPE OFFSET 
R * 4 007324 

...R.*.4. Q.0.753.0. 
R*4 0074S0 
R#4 0075"*^ 
R*4 007604 

...R.*.4 0.07.7.0.6 
R*4 007672 

...R.*4 0.0.7.4.4.0 
R*4 007320 

...1*2 00.74.6.4 
1*2 007610 

..R*4. 0.074.24 
1*2 007330 
R*4. 0.02522 
R*4 007300 
R*d A<rl7A4'> 

R*4 007506 
...R*4 0.0.7626 

R*4 007722 
...R*..4 0.0.7.632 

R*4 007716 

10.0.0.7.0 i .23... W.QJ 

..XY.RP' OFFSET. 
R*4 000004 

..R*4. 0.Ö0.Q2Ö 
R*4 000034 

sm: 
000310 ( 100f>. 
002260 ( 600*) 
002260 < 600,).. 
000310 ( 100,) 
.00.0.0.1.0. C 4.*..L 
000010 ( 4 : ) 
0.0.00.5.0 L 20.*..)... 
000030 ( 12 *) 
A A A/, ?A ! 2'''''"'' > ) 

0 0 C 3 1 0 '•-. 1 0 0 . > 
0.0.0.3.10 .( 1Q.0..,..L. 
000050 20 -. ) 
A A A A K : A i 2r' • 

000030 ( 12./ 

2 0 6 5 , WORDS-)--

.. ..NAME 

AK 
...BIT 

DACC 
ETA 
FXPLO 

...El 
FAC2 
F °< T 
J 

J 
...JW1.A..: 
NIT 
.QT.ERM.1. 
PI 

F'HP'NS 
SUMP 

...TAU 
us TR 

....V.S.UW2 
X 

;'DS"> 

...NAME 
B 

...ORB.... 
P 

...TYPE... 
R*4 

...R.*.4. 
R*4 
Ft A 
R*4 

...E.*4 
R*4 

...RM 
1*2 

1*2 
...E*.4. 

1*2 
...R.*4. 

R*4 
...R*.4 
R*4 

...E.*4 
R*4 

...R*..4 
R*4 

...T.YRE... 
R*4 

..R.*4. 
R*4 

DIMENSIONS 
...Ü5.0.J 

(50>6) 
....(.5.Ô7..6..).. 
(50) 

..122 
(2) 

...(.1.0..). 
(6) 
(tr-r}"2"' 
< 5 0 ) 

(10) 
(IC) ... 
( A 'i 

GFF.SP'.T... 
007310 
AA74»=-lA 

007314 
A A 7 SO"'' 
007732 
00.7.66.2 
007676 
r , ( r >" 7 554 
007522 

007564 
.....0.024.1.4 

007466 
AA7AIA 
007550 
Q.0.2426 
007544 
0.0.26.0.0 
007736 
007636 
007566 

...ÜFF.S.E.1 
000010 

....0.0.0.02.4. 
000040 ' 

• 
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..r.DBIR^M..Jy.....SIDJRA.6!&...MP...£.QR....RRD.eEA.M....!J.NJ!I ^ A I N . 

. . . B Ü B R D . U I I . N E S . Ä . . . . £ U N . C I I . D M S . Ä SIMEIlEilI...AND....EED£ES.ao.R-D£EINEl!....E:.Ui:AC.IIQJhlSJ.. 

N.A.ME TYPE NAME TYPE NAME TYPE... NAME TYPE. .NAME. . ..TYPE.. 
ABS R#4 ÄLÖ6 R#4 BESFRJ R¥4 BES^RY R*4 EX F R*4 

...SQ.RT. R*4. ST.RA R*.4 ZEJYNU R*4 



.£.DRT.BM...iy....:. .W.0.2.*.5 IH.U...2.3.:.-,J.U.N~B.l 12.1.4Ü.Q.5 PAGE. 55 
MASfMAS=MAS.RED 

0001 FUNCTION STRA<X»TAU) 
C....FUliC.TID.N....S.T.RA.....CAi.C.U.LATES.. 

0002 COMMON /PAR/ RHO» DENQMr B , WC t ALAB.ORD, TNUfOWDl t P(é) 
C: ; ; 

0003 RH02=RH0**(TNU+2, ) 
..0.0.0.4 DEN.QM=:.l..t-RH.Q2 
0005 DENOM=-DENOM 

...Q.Ö.0.6 X.T.N.U.=X.*.*TNU 
0007 P<l)=2.*0RDl*XTNU*TAU/(WC*B*DENQM) 
.0.0.0.8 P:.(.2.).=.X.T.N.U.*..tX*.X.-FiH.0.*.RHD.J.Z.C2>..*Ii.E.N0.M.) 
0009 P(3)=RHQ*RHÛ*<RHQ**TNU~XTNU)/aNU*DEN0M> 

...fi.0.10. P.L4J.=RHMR.H.Q.*..ŒHM̂  
*XTNU*ORM 

..0.0.1.1 EX5>=XTjNU*.QB.D.l*..Cl.fc-RH.Q.*.*..<.INU*.4.«.i.}./ .... 
*<DEN0M*DEN0M*(TNU+4.)) 

..0.Q.12 IF..(.ALA.B.*.LE.*.Q..«.1G.0.....T.Q....2 , 
0014 IF(ABS<B*ALAB*TAU>*GT.87.)GG TD 3 

..00.16 EXP.L=.EXE.C.-B.*A.LAB.*.IAU..) 
0017 GO TO 4 

..Q.QJL8 3 EXP.L=Q., ... 
0019 4 CONTINUE 

..Q.Q2Q .P.i.4).=.2.*.*.QRDl*XIN.U*.(.B-l...J.*.l.l.̂ -EXEU.Z 
* < DENGM*WC*B*B*AL,AB ) 

..0.0.21 2 .C.Q.N.T.I.N.U.E.... 

..0..Q22 .W.RIJ.E..Q.jf..5.Q.O..). P„ 
0023 500 F O R M A T U H O T 'TERMEN UIT STEADY-RATE 

l.C.lP..4£15.*.5.i.) 
0024 STRA=0. 
.0.0.2.5. D.Q....1 I=.l.f.S 
0026 STRA=STRA+P<I) 

..Ö.Q.2.7. X CONTINUE 
0028 RETURN 

...Q.Q.2.9 Em 
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..!ElOEIRM..JV...ÄIQBA.ßE....WAP...F.QR...£RQ.6R.AM....UWl.l....SIRA 

..LQ.GâL...y.ARI.A£.LES..r ,.P.S.E.C.I....fI'.A.IÄ.f S.IZE...=....Q.O.Û.O.dQ C 2.4., W.QPJ3: 

..NAME I.XPE QEEBEl NAME IYEE QF.ESEI KÄME I.Y.P.E DEESEI... 
fiXPL R*4 000022 I 1*2 00002-6 RH02 R*4 000012 

...SIM R.*.4 ^ 0 O Ô 0 . 4 . . . . E S Y . . . I A U R*4...f....QO0.0û2 X'. R.*.A....8....fi.ftfi.Q.ftô.. 

XTNU R*4 000016 

'eÖMM0N'''BLÖCK''7pAR 7', gjZE ̂ ''o000?o'''< 28™ WORDS) 

NAME TYPE OFFSET NAME TYPE OFFSET NAME TYPE OFFSET 
..R.H.Q. EM Ö.Q..Q.Q.QO. fl.ENQ.M R*4 0.Q.0.0.Q.4 B RM .0.0.0.0.10... 
WC R*4 000014 ALAB' R*4 000020 ORE' R*4 000024 
JM) KM Q.Q.Q.0.3.Q QRUX RM .O.Q.Q.Q.M p EM .0.0.0.0.4.0... LOCAL AND COMMON ARRAYS? 

P R*4 PAR 000040 000030 ( 12%) (6) 

SUBROUTINES, FUNCTIONS» STATEMENT AND PROCESSOR-DEFINED FUNCTl! 

NAME TYPE NAME TYPE NAME TYPE NAMF TYPE NAME 
ABS R*4 EXP R*4 

LJNSt 

TYPE 

• 


