Direction for nutrition education determined by target group segmentation

FRANS J. KOK, ANGELINE W. MATROOS, PH.D., JOSEPH G. A. J. HAUTVAST, M.D., PH.D., and ANNE W. VAN DEN BAN, PH.D.

Results of this study suggest that education methods should include television programs as well as group counseling for face-to-face instruction directed at young families.

The usual diet in The Netherlands seems to be less than desirable for optimal health. Per capita consumption data (1,2) and dietary surveys (3,4) demonstrate that in the Dutch diet the average daily intake of fats is 130 gm.; of sugar, 140 gm.; of cholesterol, 420 mg.; and of salt, 8 to 15 gm. International studies reveal similar food intake patterns (5). In view of what is probably an important role for nutrition in the prevention of coronary heart disease (CHD) (6), nutrition education appears to be a necessity. Usually health and/or nutrition education is addressed to the public at large. However, health and/or nutrition education may be more effective when it is directed toward specific groups that particularly need nutritional guidance.

In The Netherlands to date, only two examples of nutrition counseling for such specific target groups are known: (a) in the field of secondary prevention in hospital settings for post-myocardial infarction patients and (b) in the area of primary prevention, where elevated risk of cardiovascular problems is detected via screening (7).

However, there is still a segment of the Dutch population for which nutrition education is important. The assumption is that less desirable dietary habits may lead to increased levels of low-density-lipoprotein (LDL) cholesterol (8) and therefore to a higher probability of developing coronary heart disease. More healthful dietary behavior should be recommended in preventive nutrition education.

Methods

Segmentation of the Dutch population into target groups—on the basis of behavior regarding cardiovascular risk factors like smoking, nutrition habits, obesity, and physical activity—was carried out on the data reported in a national survey. The objective of the study was to characterize the target group with less than desirable food consumption patterns and to identify approaches for nutrition education acceptable to that group. In a random sample of the Dutch adult population, nutrition knowledge, attitude, and practices were assessed, together with demographic and socioeconomic characteristics.

The data on nutrition were collected in 1978, through a national survey among the Dutch adult population. A stratified random sample of 2,562 men and women, between the ages of 18 and 64 and representative of the Dutch adult population, was drawn in three stages. First, communities within each province representing various levels of urbanization were selected. Second, addresses within each community representing the various neighborhoods were selected. Third, a member of each household who satisfied the study criterion of being between 18 and 64 years of age was chosen. The response rate was 77 percent; 14 percent refused to take part in the survey, and 9 percent could not be reached. All subjects participating in the survey were personally interviewed, according to a partially structured questionnaire, by a team of 174 trained interviewers. Of the 1,973 subjects in the survey, 889 men and 1,062 women provided complete information on relevant variables.

The study provided information about knowledge, attitude, and behavior concerning factors with a supposed relationship to coronary heart disease: nutrition habits, smoking, obesity, and physical activity. In addition, questions concerning health education were included to determine to what extent health education was needed and how individuals wished to be informed.

Food consumption patterns were quantitatively measured by a dietary history via recall, an interviewing method relying on a subject's memory to discover his/her "usual" diet. In the questionnaire, focus was on those nutrients considered important in a diet aiming at prevention of cardiovascular disease (9)—i.e., fats, polyunsaturated fats, simple carbohydrates, cholesterol, dietary fiber, and alcohol. Data were gathered on the average weekly consumption of 17 food items that are the main sources of the nutrients mentioned. Quantitative food intake data were not emphasized. The assumption was that the selection and consumption frequency of certain food items is indicative of the participant's intake of related nutrients. An example is frequency of egg and liver consumption for the cholesterol intake or of bread and fruit consumption for the dietary fiber intake.

With the criteria of a prudent diet (10) used as the standard, a "nutrition score" was computed for each individual, indicating the preventive value of his/her usual diet. The rationale for the scoring procedure was that frequent use of certain food items which, from a preventive point of view, are optimal or less optimal...
choices would lead to a higher or a lower score. All foods
included in the questionnaire were given a score between
1 and 5, depending on the individual's consumption
frequency. The scores for all food items were summarized
to give each participant a nutrition score, illustrating his/
type of diet. Since the questionnaire included 17 food
items, an individual nutrition score could range between
17 and 85 points.6

By means of quantitative data on nutrient intake,
gathered in a rural population by seven-day recording
(11), the assumption that our method could adequately
classify individuals on the basis of their dietary habits
was tested. Rough estimates of the nutrient intake
reflected by various values of the nutrition score were
calculated (9).

The population for the study discussed in this article
was divided into three categories of dietary patterns. We
labeled those patterns desirable (upper 30 percent of the
nutrition score, scoring values of 58 or more, n = 568);
less desirable (lower 30 percent of the nutrition score,
scoring values of 48 or less, n = 578); and intermediate
(middle 40 percent of the nutrition score, scoring values
from 48 to 58, n = 605). The average nutrient composition
estimated on the basis of the nutrition score for desirable
and less desirable food consumption patterns is given in
Table 1. The group with less desirable consumption pat­
terns was identified as the target group, most in need of
nutrition education.

Knowledge about nutrition was assessed by questions
concerning the cholesterol content of bread, eggs, water,
liverwurst, lettuce, blood, and diet margarine and the
nutritive value of soft drinks, bacon, milk, brown beans,
potato chips, and cabbage. The answers were added up to
produce a knowledge score, a higher score reflecting an
individual’s knowledge. Each correct answer received
1 point, no answer, 0 point, and an incorrect
answer, minus 1 point. For further analysis, the range of
the score was divided into three equal classes.

Attitude items were tested in a pilot study with 150
individuals. The answers, ranging from “strongly agree”
to “strongly disagree,” were scored in a 5-point Likert-
type scale. To test unidimensionality, correlation coeffi­
cients between the separate items and the total score were
computed. Attitude items with a correlation coefficient of
r of less than 0.40 were eliminated, leading to a reduction
from 18 to 7 items. The reliability of the scale (Cronbach's
alpha) was 0.73.

Interrelationships among participants' knowledge, at­
titudes, and behavior were expressed by Pearson correla­
tion coefficients (12), calculated from the original con­
tinuous variables.

Target group segmentation on less desirable food
practices was performed by using Fisher's linear discrimi­
nant function (12) to examine which of a series of
characteristics, such as demographic and socioeconomic
determinants, discriminated between two groups. The
function compared the target group members with less
desirable eating behavior and individuals with desirable

Table 1. Average nutrient composition estimated on
the basis of the nutrition score for desirable and less
desirable food consumption patterns, in comparison
with the criteria for a prudent diet.

<table>
<thead>
<tr>
<th>nutrient</th>
<th>prudent diet</th>
<th>less desirable</th>
<th>desirable</th>
</tr>
</thead>
<tbody>
<tr>
<td>fat (energy percent)</td>
<td>30-35</td>
<td>40-46</td>
<td>35-40</td>
</tr>
<tr>
<td>polyunsaturated fat</td>
<td>10-12</td>
<td>5-8</td>
<td>8-10</td>
</tr>
<tr>
<td>carbohydrates</td>
<td>53-60</td>
<td>40-47</td>
<td>53-60</td>
</tr>
<tr>
<td>cholesterol</td>
<td>250</td>
<td>350-450</td>
<td>250-300</td>
</tr>
<tr>
<td>dietary fiber</td>
<td>11-15</td>
<td>7-8</td>
<td>9-11</td>
</tr>
<tr>
<td>alcohol (energy percent)</td>
<td>†</td>
<td>≥7</td>
<td>≤5</td>
</tr>
<tr>
<td>salt (gm. per day)</td>
<td>3-5</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*4.2 kjoules is equivalent to 1,000 kcal.
†No recommendation: four or more consumptions per day
(more than 7 percent of total energy) endangers health.
‡No information available.

food practices in an additive linear model of the various
determinants:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n \]

For the analysis the determinants \(x_1, x_2, \ldots, x_n \) were
arranged in categories. The coefficient \(\beta \) indicated
whether a variable could be used to distinguish between
the two groups. In this way the independent contribution
of a determinant could be estimated, and the effects of
interrelationships between determinants were elimi­
nated. In this form, the technique yielded results similar
to those of a binary regression analysis. By taking the
antilogarithm of a coefficient, one could also obtain a
more quantitative idea of the importance of a determi­
nant. The antilogarithm of \(\beta \), \(\exp \beta \), is an estimate of an
odds ratio (OR). This measure is the ratio of the relative
frequency of that determinant in the two groups (13).

The discriminant analysis was applied twice, with the
target group as an index group compared with the group
with desirable eating habits. In the first analysis, demo­
graphic and socioeconomic determinants were included;
in the second, intervening variables of nutritional be­
havior were used. The coding system used in the discrimi­
nant analysis (see Tables 2 and 3) can be illustrated by the
following example: For civil status, the occurrence of
unmarried, divorced, and widowed people, respectively,
is related to the occurrence of married people in both of
the two groups.

Results

DESCRIPTION

Knowledge and behavior. In this sample of adults,
knowledge of the cholesterol content and nutritive value
of food was satisfactory. The majority of participants knew
that there is no cholesterol in bread, water, lettuce, and
diet margarine and also recognized eggs and liverwurst as
prime sources of cholesterol. Nineteen percent of the
respondents gave correct answers to all nutrition knowl­
edge questions. Ten or more items were answered cor­
rectly by half of the study population. The knowledge
level was age independent; women rated higher than men.

*Information on the scoring system used may be obtained on request from
the senior author.
A higher level of education was accompanied by better knowledge of nutrition in both sexes. The relationship between knowledge and education was not influenced by age.

Compared to men, women had better food consumption patterns. For both sexes, a better food consumption pattern accompanied increasing age (Figure 1). In higher socioeconomic classes, we identified more desirable dietary practices. With the exception of the oldest persons, age had no influence on this finding.

Self-perception and attitude. The majority (82 percent) of the subjects believed that they had healthy food habits. On the basis of our criteria for a prudent diet, the respondents' perception of the healthfulness of their diet was not supported, especially among women in the younger age groups. Information on these young women's perception of good dietary practices was not requested in our study. The perception that their diet was healthful was correct only for those belonging to the desirable nutrition group (31 percent).

Nearly one-quarter (23 percent) of those interviewed believed that they did not have sufficient knowledge to determine what kind of diet was healthy. Individuals with scanty knowledge thought this significantly more often (32 percent) than those with a high degree of nutrition knowledge (21 percent). Men more often than women believed that they did not know enough about healthful nutrition. Women with this belief were found in the youngest age categories. In all age groups, women were more positive toward healthful nutrition than men, but this effect was strongest in the younger age groups (18 to 34 years).

Interrelationships between knowledge, attitude and behavior. The Pearson correlation coefficients (knowledge-attitude $r = 0.19$, knowledge-behavior $r = 0.12$, and attitude-behavior $r = 0.20$) pointed to a significant relationship (p of less than 0.001) within the knowledge-attitude-behavior triad. The strength of the association, however, was not impressive.

TARGET GROUP SEGMENTATION. In order to characterize those individuals with inadequate dietary habits and to seek clues for directing nutrition education toward them, a linear discriminant analysis was applied. The results of this analysis are presented in Tables 2 and 3. By means of the discriminant function coefficients, odds ratios (OR) were derived. An OR (exp β) of 1 means that the relative

| Table 2. Results of the target group segmentation on less desirable food consumption pattern by linear discriminant analysis—demographic and socioeconomic determinants |
|---|---|---|
| Determinant | Coefficient | Odds Ratio |
| **Demographic** | | |
| Sex | | |
| Female | 1.1100* | 3.0 |
| Male | | |
| Age | | |
| 55-64 years | 0.3046 | 1.4 |
| 45-54 | 0.7576* | 2.1 |
| 35-44 | 1.3145* | 3.7 |
| 25-34 | 2.2985* | 10.0 |
| 18-24 | | |
| Civil Status | | |
| Married | -0.2606 | 0.8 |
| Unmarried | 0.1236 | 1.1 |
| Divorced | -0.3007 | 0.7 |
| Widowed | | |
| Family Size | | |
| 1 | 0.3531 | 1.4 |
| 2 or 3 | 0.7905* | 2.2 |
| 4 or more | 0.8668* | 2.4 |
| Degree of Urbanization† | | |
| Low | -0.1025 | 0.9 |
| Middle | -0.3771 | 0.7 |
| High | | |
| Socioeconomic Education‡ | | |
| Low | -0.4046* | 0.7 |
| Middle | -0.7908* | 0.5 |
| High | | |
| Occupation# | | |
| Low | -1.3163* | 0.3 |
| Middle | -0.6369 | 0.5 |
| High | | |
| Familial Social Class¶ | | |
| Low | -0.0244 | 1.0 |
| Middle | -0.2287 | 0.8 |
| High | | |

*Significant at 0.05 level.
†Degree of urbanization: low, rural communities with an agricultural population of more than 20 percent; middle, urbanized rural communities with an agricultural population between 10 and 20 percent; high, communities with an agricultural population of less than 10 percent.
‡Respondent's education: low, primary school and lower vocational training; middle, secondary school and middle vocational training; high, university and high vocational training.
#Respondent's occupation: low, unskilled and skilled workers; middle, middle and lower employees; high, high employees.
¶Familial social class is determined by the occupation and education of the wage earner of the family to which the respondent belongs.

FIG. 1. Prevalence of desirable and less desirable food consumption patterns in the Dutch adult population by sex and age.
occurrence (odds) of a determinant is similar in the two groups. An odds ratio greater than 1 indicates that the determinant proportionally occurs more often in the index group (target group with less desirable food habits). Determinants with an OR value between 0 and 1 are relatively more frequent in the reference group.

The complete demographic and socioeconomic profile of the target group is shown in Table 2. For example, the OR for men was 3.0, and for higher education it was 0.5. This means that the man-woman ratio of the target group was three times as high as that of the group with desirable nutrition, and the high to low level of education ratio was half as high. Thus characteristics of the target group were: male sex, age 18 to 44 years, belonging to families with three or more members, with low level of education, and working in the lowest occupational categories. Civil status, degree of urbanization, and familial socioeconomic position did not discriminate.

IMPLICATIONS FOR NUTRITION EDUCATION. The results of the second analysis (Table 3), in which intervening determinants of nutritional behavior were included, led to guidelines for content and choice of method for nutrition education.

To reach the target group described, we should take into account:

- **The existing attitude toward nutrition.** This attitude was demonstrated in respondents' indifferent to negative opinion concerning the desirability of reducing one's fat, cholesterol, and sugar consumption and of increasing polyunsaturated fat intake. Also, taste prevailed over health-related aspects of nutrition as the reason for the food choices of one-third of those who were members of the target group (Table 4).

- **Self-perception of knowledge regarding nutrition and dietary habits.** The target group members thought twice as often that they were insufficiently informed about healthy nutrition, even though their level of nutrition knowledge did not differ from that of the group with desirable dietary habits. (Odds ratios for knowledge items are 1.0 and 1.1, respectively.) Although the odds for expressing the opinion that one had poor dietary habits was higher in the target group than in the reference group, the actual frequency of this opinion was very low (6 and 3 percent, respectively) in both groups. Only 13 percent of the target group members reported that they made an effort to become informed about nutrition. Articles in magazines were the most important source of information for them.

Also important for nutrition education, but not different in the two groups (see Table 3), were the following:

- **The existing knowledge about the relationship between the degree of fat intake and the risk of coronary heart disease (CHD).** About half of the study population (46 percent) mentioned a diet rich in fat as one of the 3 most important causes of myocardial infarction, out of a list of 10 possible risk indicators. Stress (70 percent) was regarded as the most important risk factor; hypertension (40 percent) was in third position.

- **The problems involved in modifying nutritional patterns.** Nearly one-third (30 percent) of the respondents mentioned that it would be difficult to change their dietary behavior. Both sexes struggled with this problem. Among men there was no age difference, while young women were said to have more difficulty in changing their habits than older women.
Table 4. Distribution of opinions concerning attitude toward nutrition in the
target group and the desirable dietary pattern group

Talking about eating, everyone has his own views. What is your opinion on the following
statements?

<table>
<thead>
<tr>
<th>statement</th>
<th>group* agree†</th>
<th>no opinion</th>
<th>disagree‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>We should consume substantially less fat</td>
<td>T 72</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>less cholesterol</td>
<td>D 87</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>more polyunsaturated fats</td>
<td>T 76</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>less sugar</td>
<td>D 39</td>
<td>44</td>
<td>17</td>
</tr>
<tr>
<td>If you wish to stay healthy you have to</td>
<td>T 53</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>pay special attention to your diet.</td>
<td>D 80</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>The taste of a meal is of more importance</td>
<td>T 33</td>
<td>13</td>
<td>54</td>
</tr>
<tr>
<td>to me than health-related aspects.</td>
<td>D 17</td>
<td>11</td>
<td>72</td>
</tr>
<tr>
<td>Well-balanced meals are often too expensive.</td>
<td>T 21</td>
<td>11</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>D 14</td>
<td>15</td>
<td>71</td>
</tr>
</tbody>
</table>

*T = target group; D = desirable dietary pattern group.
†Strongly agree and agree combined.
‡Strongly disagree and disagree combined.

• The influence of "significant others" in the direct environment. In both groups, 12 percent of the interviewed reported that significant others (predominantly members of the family) made remarks to stimulate a more prudent dietary pattern. These comments, however, were perceived as having little influence on subjects' food behavior.

In addition to these objective parameters, the subjective need for information was also probed. Thirty-six percent of the target group believed that in health education too little attention was paid to healthy diets.

EDUCATION METHODS. Data on the target group's preference for the various methods of receiving health education are given in Table 5. For their personal education, the respondents were interested mainly in audiovisual mass media. In contrast, the subjects believed that health education policy in general should focus, on the one hand, on school education and, on the other, on face-to-face instruction from public health workers and, in particular, audiovisual programs.

Discussion

In this project we studied the profile of a target group which, because of its less desirable food consumption patterns, especially required nutrition education for the primary prevention of coronary heart disease. Preferences for content of and methods for nutrition education of this target group were also assessed. Our main conclusion was that nutrition education should be directed through audiovisual mass media, and, above all, to young men with a low level of education, employed in the lower occupational categories, and belonging to families consisting of three or more members.

Target group segmentation is based on the concept of market segmentation for nonprofit organizations (14). In health education, segmentation has the objective of identifying, out of an heterogeneous population, one or more subgroups that are more or less homogeneous in one or more characteristics. Possible points of similarity can be the same type of help, obtainable through the same communication channels, or the same health education message (15,16). The aim of this type of segmentation is to arrive at a more favorable cost-effective type of educational effort. Here the well-being and the interest of the subjects come first. Segmentation does not necessarily lead to selection—education can be transmitted to the entire population—but it can promote a more target group-directed approach in health education.

In this study, segmentation was achieved on the basis of the characteristic of less desirable food consumption pattern. It would perhaps have been more self-evident from a health education point of view to carry out segmentation on the basis of insufficient knowledge. However, a topic of discussion in health education is whether health education should impart knowledge only where it is lacking or should aim at behavior modification (17). We favored the latter point of view.

The findings of the target group segmentation were important for two reasons:

• The category of men between the ages of 18 and 44 constituted the group in which primary prevention might have much impact in preventing future cardiovascular risk.

• Through this group we would cover at the same time young families with children whose dietary habits are still being formed. Thus, health education of men in the younger age group would result in a double effect, contributing to primary prevention of CHD risk for both young men and their children (18).

Our results regarding the demographic and socioeco-
Table 5. Preference for educational methods and outlook on health education policy of the target group

What way do you prefer to learn about a healthy way of life?
(open-ended question)

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>no preference</td>
<td>17</td>
</tr>
<tr>
<td>school education</td>
<td>3</td>
</tr>
<tr>
<td>other ways</td>
<td>11</td>
</tr>
<tr>
<td>health education</td>
<td>69 : individually by a general practitioner 11</td>
</tr>
<tr>
<td></td>
<td>group counseling 6</td>
</tr>
<tr>
<td></td>
<td>mass communication 52 : audiovisual media 34</td>
</tr>
<tr>
<td></td>
<td>television 33</td>
</tr>
<tr>
<td></td>
<td>radio 1</td>
</tr>
<tr>
<td></td>
<td>printed media 18</td>
</tr>
<tr>
<td></td>
<td>leaflets 7</td>
</tr>
<tr>
<td></td>
<td>newspapers 6</td>
</tr>
<tr>
<td></td>
<td>magazines 5</td>
</tr>
</tbody>
</table>

There are different ways to deliver health education. Which three of the methods on this list do you prefer, i.e., do you think are most important?
(pre-structured question)

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>school education</td>
<td>50</td>
</tr>
<tr>
<td>health education</td>
<td>49 : individually by a general practitioner</td>
</tr>
<tr>
<td></td>
<td>group counseling 24</td>
</tr>
<tr>
<td></td>
<td>mass communication : audiovisual media : television 77</td>
</tr>
<tr>
<td></td>
<td>radio 14</td>
</tr>
<tr>
<td></td>
<td>printed media : newspapers 34</td>
</tr>
<tr>
<td></td>
<td>magazines 33</td>
</tr>
<tr>
<td></td>
<td>leaflets 16</td>
</tr>
</tbody>
</table>

Economic determinants of a less desirable food consumption pattern are partially consistent with those in other studies. Poor nutritional behavior in young Dutch male adults has already been reported (4). A recent paper on diets in the United States (5) showed that the category of men between the ages of 18 and 44 had the highest mean intakes of saturated fat, cholesterol, and sodium.

Budget studies of the Dutch Central Bureau of Statistics (2) indicated that, with increased family income, there was a gradual shift to a more favorable selection of food products. In a Dutch national survey on meal planning (3), a similar trend was found with regard to families' socioeconomic status (SES). In our study, a relationship between the social class of families and the quality of the diet was established through univariate analysis. In the multivariate analysis, however, the individual respondent's own education and occupation level were both independent discriminators, while the family's social class was not. We did not introduce family income to establish SES because there were missing data—24 percent of participants did not tell their income level, and those who did may not have given correct information. So there is still a possibility that family income affected dietary practices. But the predictive value of the respondent's own education suggests that money did not play such a critical role in the determination of dietary patterns in The Netherlands.

The inverse relationship of family size and quality of the diet is in agreement with other findings (3).

As opposed to other reports (19), our study hardly confirmed an association among the knowledge-attitude-behavior triad. Some further comments are called for.

First, self-reported behavior can be expected to be closer to knowledge and attitude. This means that the relationship would have been even weaker had data on actual behavior been available.

Second, in our study, measurement of participants' knowledge was restricted to general facts and concepts about nutrition. One may doubt whether such general knowledge enabled the subject to choose well-balanced meals. In addition, the items mainly concerned knowledge about the cholesterol and nutrient content of food, while for the food consumption pattern we inquired primarily about the intake of fat and carbohydrate.

Third, with respect to attitude toward nutrition, one may doubt whether this was truly measured (20). "Attitude" refers to a frame of mind that is hard to capture in objective terms. Therefore, the validity and reliability of any attitude scale remain a problem.

In health education, the knowledge-attitude-practices triad, or KAP model, is often applied to explain and to modify health behavior (21). A criticism of this approach is the predisposition to overemphasize the influence of personal characteristics on health behavior. Determinants from the social environment and broader influences—e.g., from legislation, advertising, and price policy—are not discussed (22). So the model leads to an "individual-blame" approach to health problems (23, 24). The design of our study exhibited this shortcoming; also, structural determinants were not included, e.g., availability of good food in markets, places where food is eaten, and who prepares it.

[Volume 80, June 1982] Research 571
To modify nutritional behavior, a strategy in which education and policy are combined seems to be more effective (25). This concept of health promotion was formulated by Green (26) as "any combination of health education and related organizational, political and economic interventions designed to facilitate behavioral and environmental adaptations that will improve or protect health." This view points more to a "system-blame" approach to health problems (23,24).

In developing nutrition education programs, one should first of all be guided by the need of the target group members for more information about the nutrient composition of food products so that they can plan healthful diets. There is a need for legislation for adequate food labeling, complemented by a comprehensive education program to teach consumers to use those labels (27). Equally important is information on how to prepare, in an economical way, wholesome meals that are appetizing (28,29).

Nutrition education requires translation of scientific findings into practical dietary advice. To induce gradual shifts in food selection and consumption frequency, a "more-less" line of approach would be appropriate: Eat more complex carbohydrates, vegetable oils, and dietary fiber, together with less animal fat and cholesterol. Moreover, individuals need help in identifying sources of these nutrients in the diet.

It is also essential that the message should fit in with the receiver's attitude and self-perception. (See Tables 3 and 4.) In our study, personal preference, as expressed in taste, seemed to be an important indicator of attitude toward nutrition (Table 4). Much can be learned from the findings of Schafer (30) and Reaburn (31) concerning the effects of family influences, cost of food, and convenience on food selection.

In our study, respondents had mistaken beliefs about the healthfulness of their own dietary habits. Together with the perceived difficulty of modifying eating behavior, this should be kept in mind in program planning. Communication that does not deviate from existing attitudes is better able to achieve attitude change (15,16).

With regard to educational methods, target group members preferred mass media, especially television programs, and face-to-face instruction (Table 5). However, the effectiveness of mass media in changing behavior is limited. A combination of mass media and other educational methods seems to be most effective (32).

Nutrition education by special television programs directed at young families in the lower social classes could be combined with primary prevention programs in occupational settings, for instance, face-to-face instruction and/or group counseling. Intervention programs in communities and industries have demonstrated that a multimedia strategy for primary prevention of coronary heart disease can give good results (33).

Summary
This study identified those individuals in the Dutch population with food consumption patterns that were thought to increase risk of coronary heart disease. Target

References
(13) Mantel, N., and Haenszel, W.: Statistical aspects of the analysis of

