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A binary mosaic is a partitioning of a planar region, A say, into 

two qualitatively different sub-regions (Pielou, 1977; Mat~rn, 1979). 

Figure (t) shows an example in which the two phases of the mosaic 

indicate presence or absence of heather, Calluna vulgaris, in a 

10m X 20m rectangular plot at Jadra~, Sweden. A different type 

of example would be one in which a continuous variable determines 

the phase according as it does or does not exceed some threshold 

value. 

Figure (t). Incidence of Calluna vulgaris over a 10m X 20m area 

(from Diggle, 1981). 
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When a mosaic is mapped as in Figure (1) it might be possible to 

fit a stochastic model to the observed map. The estimated values 

of the parameters in the model then provide summary statistics for 

the data which can be used to compare ostensibly similar data-sets 

or, more ambitiously, to relate the observed pattern to possible 

causal factors. Diggle (1981) gives such an analysis of the data 

in Figure (1). 

Inmany ecological applications, the region A is extensive and a 

complete mapping would be prohibitively expensive. In such 

circumstances, point sampling can be used to obtain data from the 

mosaic. This consists of recording the phase of the mosaic at each 

of a finite number of points located within A according to some 

suitable sampling design. The objectives of a statistical analysis 

of point sampling data are necessarily more limited than for a complete 

map, and might in the first instance consist simply of estimating the 

proportion of the total area of A occupied by each phase of the 

mosaic. 

In 92 we describe two simple models for binary mosaics. One, the 

L-mosaic, is particularly tractable because it involves a simple 

exponential correlation function, but seems unrealistic. The second, 

the C-mosaic, is slightly less tractable, but provides a more 

plausible model of naturally occuring patterns, especially in 

vegitation. In 5J we investigate the efficiency of random sampling, 

frame sampling and systematic sampling designs for the estimation of 

areal proportions, using C-mosaic models and a simple but plausible 

cost function. We also use the data in Figure 1 to illustrate how the 

results on efficiency can be used to construct an appropriate sampling 

scheme, making crude guesses for the values of the c-mosaic parameters. 

A more detailed treatment of these topics is given by ter Braak (1980). 

Finally, C4 discusses briefly how the results relate to previous 

studies of point sampling methods by Kemp & Kemp (1956) and 

Rothery ( 1974 ) • 
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2. Binary mosaic processes 

(2,1) Definitions 

A binary mosaic process is a binary-valued stochastic process 

{z(x):x E~L Any realisation {z(x)} partitions ~ into a set - ~ -
S = {x:z(x) = 1} and the complement S = {x:z(x) = o}; in order to - - ........... 
exclude point and line processes, S must be the closure of an open 

set in ~. Note that S is a random set in ~. Matheron (1975) 

has developed a very general theory of random sets: Stoyan (1979) 

gives an excellent review from an applied viewpoint. We shall 

present explicit results for binary mosaic processes without reference 

to the more general theory. 

We consider only processes which are stationary and isotropic. The 

expectation of the areal proportion of S in A can then be written 

as lJ. = E[z(:~_)], which is independent of ~· Further, the covariance 

function 

y(t) E[(Z(~)- )l)(Z(_z) -)1)] 

depends only on the distance t between x and ~· The correlation 

function is p(t) = y(t)/y(O) 

(2.2) The L-mosaic 

Following criticism by Bartlett (1964) of an analysis by Pielou (1964), 

Switzer (1965) showed that an exponential correlation function is 

admissible for a mosaic process. Consider a homogeneous Poisson 

process on the infinite cylinder, of intensity A/4, and interpret this 

as a random line process in ~ with the points of the Poisson process 

determining the intercepts and orientations of the lines with respect 

to any fixed axis. These random lines partition ~ into convex 

polygonal cells. An L-mosaic (Pielou, 1977) is obtained by 

independently colouring the cells black (Z(~) = 1) or white (Z(:;0 = O) 

with probabilities l1 and 1-11 respectively, The resulting 

correlation function is p(t) = exp(-At), Note that p(t) is 

independent of 11, and that the two phases are treated symmetrically. 
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Figure (2) shows a partial realisation on the unit square with ~ = 0.5 

and :\ = 100. 

Figure (2). Partial realisation on the unit square of an L-mosaic 

with ~ = 0.5 and :\ = 100 

(2.3) The C-mosaic 

A second model is one in which the set S is the union of countably 

many closed discs with centres determined by a Poisson process on 

~' of intensity A, and radii mutually independent and identically 

distributed according to the distribution function F(•). Expressions 

for ~ and p(t) are available, and are particularly simple for the 
2 

special case of constant radius 6. This gives ~ = 1- exp(-n;>..6 ) and 

where v
6
(t) is the area of intersection of two dis~s with common 

radius 6 and centres a distance t apart. Note that p(t) = 0 for 

t;;, 26. 

/ 
Various applications of this model are described by Matern (1960, Ch.J), 

Marchant & Dillon (1961), Roach (1968), Dupac (1980) and Diggle (1981). 

We shall call the model a C-mosaic (C for circle) although this is not 

standard terminology. Figure (J) shows a partial realisation on the 

unit square with ~ = 0.5 and 6 = 0.1. 
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Figure (J). Partial realisation on the unit square of a fixed radius 

C-mosaic with ~ = 0.5 and o = 0.1. 

3. Point sampling designs to estimate cover 

(J.1) General considerations 

We consider three classes of design for sample points x,:i=1, ••• ,n 
-1 

in a region A. In random sampling, the are independent 

realisations from the uniform distribution on A. In frame sampling, 

the x. 
-1 

are grouped into sets of m points regularly spaced along a 

line (linear frames) or of mXm points in a regular square lattice 

arrangement (square frames). In either case, frame locations are 

determined by random sampling. A single linear frame, with m large, 

is sometimes called a line transect. Finally, in systematic sampling 

the x. form a regular lattice over the whole of A, with the starting 
-1 

point ~1 determined by random sampling. 

We define the cover p to the areal proportion p = is nAI/IAI. For 
-1 n 

any of the above designs, the sample mean z = n L z(x.) is unbiased 
i=1 "'1 

for p with respect to repeated sampling of a single realisation, 

and unbiased for ~ = E[z(x)] with respect to repeated realisations -
of the mosaic process. 

The distinction between p and ~ is important in the case of 

systematic sampling when, as the lattice spacing d-o, Var(~jp) -o 
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but 

which is substantially greater than zero unless fAJ is large. 

In frame sampling or random sampling, we shall assume that observations 

from different frames or points, respectively, are uncorrelated; this 

will be approximately so if the distances between frames or points 

are large, i.e. the sampling is sparse. These designs are often 

used in vegetation surveys to estimate the cover over a relatively 

large region A. In such cases, the distinction between p and ~ is 

unimportant, and the assumption of sparse sampling is reasonable. 

In the remainder of this section we investigate the efficiency of the 

three types of sampling design for the estimation of p, in terms 

of the variance per sample point, v = In random sampling, 

we are simply conducting a sequence of Bernoulli trials with parameter 

p .!:= ll and 

v ~(1-~). 
r 

For linear framesof m points with spacing d, we need to take account 

of the correlation within frames, and obtain 

m-1 
=~(1-~J{i+2 r 

i=1 
(1- i/m) p(di)}. (J .1) 

A similar expression can be written down for square frames. Finally, 

for systematic sampling 

with side length da 1/ 2 
we consider 

_.1 
and da 2

• 

sample point as A -!R2 
is 

a lattice generated by a rectangle 

Then, the limiting variance per 

"' 
v 

s 
"' "' =~(1-~J[r r 

i:::-CCj::::-Cie 
p{dJ(i2

a+j
2
a-

1
J)- 2nJ p(rd)dr] 

0 
(J. 2) 

(c.f. Mat~rn, 1960, Ch.5). 

(J.2) Systematic sampling 

Table (1) shows the relative variance per sample point, w = v /v , 
s r 
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for fixed radius C-mosaics with various values of the mosaic parameters 

~ and 0, and one sample point per unit area, d = 1. A square lattice 

(o: = 1) is always more efficient than random sampling, with progressive 

gains in efficiency as 5 increases and the mosaic becomes more 

'Coarse-grained"; equivalently, since the unit of measurement is 

arbitrary, for a given C-mosaic the relative efficiency of systematic 

to random sampling increases with the number of sample points per 

unit area. For a rectangular lattice, systematic sampling may be less 

efficient than random sampling, a phenomenon noted also by 
/ 

Matern (1960, Ch.5) who used an exponential correlation function 
/ 

corresponding to an L-mosaic model. Matern suggests that rectangular 

lattices may be economically efficient, but does not declare an 

explicit cost function. 

Certain anomalies occur in Table (1) because of the fixed radius in 

the C-mosaic model. Generally, systematic sampling becomes less 

efficient as a increases. However, for 0 = 0.25 the efficiency 

is constant for 1 :;;;ex ~4 because over this range a disc can be touched 

by at most one sample point. Moreover, the efficiency can increase 

with a : for 6 = 0.75 a disc can be touched by four sample points 

if o: = 1 but by at most three points if 0: = 2. 

The parameter o: has an interesting alternative interpretation in 

terms of anisotropic mosaic processes (Mat~rn, 1960). For example, 

the C-mosaic can be extended to include a Poisson field of ellipses 
.1 _.1 

with axes of length o: 2 0 and a 2 0, and fixed orientation. Sampling 

this process using a square lattice aligned with the orientation of 

the ellipses is equivalent to sampling an isotropic C-mosaic using a 

rectangular lattice. For anisotropic mosaics square lattice systematic 

sampling is therefore not always more efficient than random sampling 

(Table 1). 
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Table (1): Relative variance per sample point of systematic and random 

sampling for fixed radius C-mosaics with one sample point 

per unit area. 

0.25 0.50 0.75 1.00 2.00 

0.1 0.809 0.2.37 0.185 0.157 0.085 

1 0.5 8.39 .356 252 206 107 

0.9 905 620 lo54 .360 187 

o. 1 0.809 o. 585 0.165 0.161 0. 1.31o 

2 0.5 8.39 621o 277 229 154 

0.9 905 7.35 528 lo24 2lo1 

0.1 0.809 0.99lo o. 845 o . .327 o. 17lo 

lo 0.5 8.39 978 876 lo72 2lo1 

0.9 905 9lolo 920 7lo6 loJ8 

0.1 1.566 2.617 .3-.31.3 .3.6.35 1.128 

0.5 1.lo62 2.1o04 .3. 067 J.lo19 1. 6.32 

o. 9 1. 2.30 1.886 2.loJio 2.81.3 2.1o86 

(J.J) Frame sampling 

Figure (4) shows w = v~vr as a function of m, the number of points 

in a linear frame, for fixed radius C-mosaics with ~ = 0.5 and various 

values of 6. In Figure (4a), the spacing between successive points 

in the frame is d = 1, f!Jr' all m. After an initially rapid increase 

in w, the curves flatten out as the longer frames dilute the effect 

of the correlation within frames. If the frame is a physical 

instrument such as the point frame sometimes used in vegetation 

analysis (Goodall, 1952), it might be more natural to keep the total 

frame length 1= (m- t)d fixed. Figure (lob) shows that in this case 

w increases more sharply with m, which is to be expected because d 

decreases. The values of 6 illustrated in Figure (loa) and (lob) are 

chosen so that corresponding pairs represent the same mosaic process 

if the recording instrument is a ten-point frame. 
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Figure (4). Relative variance per sampling point of frame and random 

sampling for fixed radius C-mosaics. 

(a) fixed spacing d = 1, a = 1, 2, 3, 4, 8. 

w 

• 10 

~ 4 
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2 

" 1 

0 ----' 
10 20 30 40 50 m 

(b) fixed frame length l 1, a 1/9, 2/9, 3/9, 4/9, 8/9. 

w 
8/9 

30 

If recording is cheap, but travelling between random locations is 

expensive, an appealing measure of efficiency is w' = w/m, which 

measures the variance using n frames.containing m points each, 

relative to the variance using n single points. Figure (Sa) shows 

how, for a fixed spacing d = 1 of points within a frame, w' 

decreases steadily with m. In the case of fixed frame length, 

Figure (5b) shows how w' initially decreases sharply, but is 

thereafter fairly constant. One surprising feature in the case of 
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fixed frame length is that w/m does not always decrease monotonically, 

Figure (5). Relative variance per frame for fixed radius C-mosaics. 

(a) fixed spacing, d = 1, 6 1, 2, 3, 4, 8, 

w' 
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(b) fixed length, 1 1, 6 1/9, 2/9, 3/9, 4/9, 8/9. 
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which implies that taking additional observations actually increases 
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the variance of the estimator. The explanation for this is that the 

sample mean is not a fully efficient estimator because it discards 

information provided by the spatial arrangement of points within 

each frame. Rothery (1974) observes a similar phenomenon for the 

exponential correlation function associated with an L-mosaic. 

Alternative estimators, for example the maximum likelihood estimator 

for ~' use the spatial information but are impractical for routine 

use. 

(J.~) Optimum frame size for a particular cost function 

In practical terms, any assessment of the relative efficiency of frame 

sampling and random sampling must involve cost considerations. For n 

points in f linear frames of m points each, Rothery (1974) uses 

the cost function 

c an + bf 
-1 

n(a+bm ), (J. J) 

where a represents the cost of analysing a single point and b the 

cost of locating a point or frame at random within A. Note that this 

ignores the cost of moving from point to point within a frame. With 

this cost function and b = 1, the relative variance of frame sampling 

to random sampling for fixed total cost is w* = vf(a+m-1 )/{vr(a+1)}, 

where is given by (J.1) and depends on both m and d, the 

spacing of successive points within a frame. The optimal value of m 

depends on a, d and on the C-mosaic parameters ~ and 6. 

We consider first a frame of fixed length with spacing d = (m-1)-
1 

between successive points. Figure 6 sketches the regions in the 

( O,a) -space corresponding to different optimal values of m when 

~ = 0.5; different values of ~ give similar pictures. The exact 

boundaries between the different values of m show minor irregularities 

which may again be attributable to the cut-off in the correlation 

function of the fixed radius C-mosaic. 

For a frame with fixed spacing d = 1 between successive points, we 

conjecture that the optimal value of m is either 1 (random sampling) 

or ~ (line transect sampling). The boundary between the two cases 
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is included in Figure (6), again with ~ = 0.5. The basis of our 

conjecture is that for given values of a,~ and 6 the problem can 

be solved by finite enumeration, and we have not found any combination 

of parameter values which gives an optimal result other than m = 1 or oo. 

Figure (6). Optimal number m of points per frame for C-mosaics with 

~ = o. 5. 
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The relative variance of line transect to random sampling can be 

deduced from Figure (6). For given o, let a
0 

denote the value of 

a for which m = 1 and co are equally efficient for fixed total 

cost. Then, 

total cost is 

for any other value of 
-1 -1 

w* = ( 1+a
0 

)/h+a ) • 

a the relative variance for fixed 

The optimal spacing between successive points can be found when a 

cost c for moving from point to point per unit distance within a 

frame is incorporated in the cost function to give 
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C ~ an+ bf + cd(m-1)f ~ n{(a+cd) + (b-cd)/ml. (J. 4) 

Because the cost function (J,4) is of the same form as (J,J), the 

optimal value of m for fixed d is either 1 or ~. The optimal 

spacing d
0 

depends only on the ratio a/c. For d < 2, hl(d
0

) is 

approximately linearly related to fn(a/c) as sketched in Figure (7) 

for 5 = b = 1 and 1J. = 0.5; as in Figure (6) mi·nor irregularities 

occur but are not shown in the sketch. Because different points 

within a frame generate independent observations whenever d:? 2, 

d>2 can never be optimal. If the cost of moving from point to point 

within a frame is high, random sampling is more efficient than line 

transect sampling as indicated in Figure (7), 

Figure (7), Contours of !n (d0 ) for line transect sampling 

of a C-mosaic with j.L ~ 0, 5 and 6 ~ 1. 

(J.5) An example 

As an illustration, we used random sampling and frame sampling to 

estimate the cover of heather in Figure (1). As a first approximation, 

a fixed radius C-mosaic is a plausible model (Gimingham, 1972), 

Rough~ priori guesses for the mosaic parameters were IJ. = 0.5, 6 = 40c~ 

Each dot in Figure (1) represents an area 10cm X 10cm, so a convenient 

spacing of points within a frame is 10cm, In the cost function (J,J) 

with b ~ 1, a reasonable value for a was 0,05. Using Figure (6) 

with ln(6) ~ ln(40/10) ~ 1.4 and ln(a) ~ -3 we deduce that line 
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transect sampling would be much more cost-effective than single points. 

A sample of 17 line transects with 50 points each gave an estimated 

cover of 0,5035, with an empirical standard error of o.o490, compared 

with the true cover value 0,4974, A sample of 50 single points took 

approximately the same length of time and gave an estimate 0.4912 

with empirical standard error 0,0663, No.te that the estimates and 

standard errors make no assumptions about the underlying mosaic 

process, which is needed only to deduce the optimal sampling design. 

One advantage of using a qualitatively plausible process such as the 

C-mosaic is that guessing appropriate parameter values becomes a 

reasonable proposition. 

4. Discussion 

The results in this paper are based on an assumed stationary, isotropic 

process. Rothery (1974) adopts a similar viewpoint, whereby 

observations within a frame are correlated, but the cover ~ is 

constant between frames, In contrast, Kemp & Kemp (1956) propose 

a mixed binomial model for frame sampling, which assumes that 

observations within a frame are independent but that ~ varies 

randomly between frames. 

Properties of stationarity and isotropy can always be induced into 

the statistical problem by random location and orientation of frames, 

but this results in an unnecessary loss of information. If the 

sampling region is thought to be heterogeneous, stratification can be 

used to give a more precise estimate of the overall cover together 

with information about both large-scale (between strata) and small-scale 

(within frames) spatial variation(Goodall, 1952; Mat~rn, 1960), An 

alternative to stratification, which achieves the same aims, is to 

locate frames systematically. Using square frames with a fixed 

orientation allows also for the analY.sis of possible directional 

effects, 

The cost analysis in §(J,4) assumes that the only objective is to 

estimate cover. However, in many cases the sampling design should 
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also cater for estimation of the standard error and, with future 

sampling in mind, for an assessment of factors which influence 

efficiency. Such an assessment requires checks on stationarity, 

on isotropy, on the goodness-of-fit of the assumed mosaic model 

and on the cost function. Moreover, a second objective may be to 

model the mosaic pattern. As the emphasis switches from estimation of 

cover to description of spatial pattern, so the optimum sampling design 

switches from random points or linear frames to square frames or, with 

a reduction in the target region, to systematic sampling or complete 

mapping. 
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