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Effects of contingencies on Healthcare 4.0 technologies adoption and barriers 

in emerging economies 

 

Abstract 

Studies on the influence of contingency factors on the introduction of novel digital technologies into high-

complexity systems, such as hospitals, are still incipient. As the introduction of Healthcare 4.0 (H4.0) 

usually implies in high capital expenditures and requires a more skilled labor force, such understanding 

gains relevance when considering hospitals in emerging economies, more likely to be resource-constrained. 

This study examines the effect of five contingency factors on the adoption of H4.0 technologies and 

associated barriers to H4.0 adoption in emerging economies; they are: hospital’s ownership and age, 

number of employees, number of inpatient beds, and functionality (teaching hospital or not). The analysis 

is based on a transnational survey with 159 middle and senior managers from 16 hospitals, located in Brazil, 

India, Mexico and Argentina. Results indicate that contingencies do affect both H4.0 technologies adoption 

and associated barriers although not homogeneously in terms of effect, being more prominent on 

technologies’ adoption than on barriers to H4.0 implementation. Our study sheds light on these 

relationships, providing hospitals’ managers a means to anticipate potential issues and handle eventual 

difficulties inherent to the context in which they are inserted. 

Keywords: Healthcare 4.0, Contingency factors, Digital technologies, Barriers, Survey. 

 

1. Introduction 

Demands for improvement in healthcare systems have significantly increased over the past few decades. 

As life expectancy grows and the population becomes older (WHO, 2015) costs associated with health will 

increase, requiring new approaches to deliver care. Such issue becomes more relevant when considering 

healthcare systems in emerging economies, where financial and human resources are generally scarcer 

(Visconti et al., 2017); that may restrict access to high-quality healthcare to a small percentage of the 



population (Bedir, 2016), negatively impacting the quality of life. Although some emerging economies such 

as China, Vietnam, India, Colombia and Mexico have recently reformed their health systems to promote 

universal access and increase quality of healthcare, practical and societal implications are still unknown 

(Han, 2012), reinforcing the need for developing disruptive approaches to healthcare delivery.  

The Fourth Industrial Revolution, also known as Industry 4.0 (I4.0), has raised new opportunities and means 

for organizations to achieve superior performance levels (Liao et al., 2017). I4.0 denotes the trend of 

incorporating new digital technologies in production systems (e.g. Internet of Things – IoT, Big data and 

Cloud computing) such that the virtual space becomes integrated with the physical world (Xu et al., 2018). 

That integration allows higher modularity and customization of products, processes and services, enabling 

more assertive decisions and effective solutions whose benefits may impact a wide variety of sectors and 

contexts (Lasi et al., 2014; Dalenogare et al., 2018), from manufacturing and logistics to healthcare (Li, 

2018; Guha and Kumar, 2018). 

The adoption of I4.0 principles and technologies in healthcare systems has been referred to as Healthcare 

4.0 (H4.0) (Thuemmler and Bai, 2017; Kumari et al., 2018). H4.0 enables real-time customization of 

healthcare facilitating the transition to a patient-centered environment (Alloghani et al., 2018). Analogously 

to I4.0, H4.0 is a technology-driven approach that requires fundamental changes in organizations in terms 

of technical and sociocultural aspects (Nair and Dreyfus, 2018). Despite substantial evidence of H4.0 

implementation in the literature (e.g., Yang et al., 2015; Hopp and Wang, 2018; Wang et al., 2018), most 

studies approach it from a narrow perspective or provide findings based solely on conceptual analysis 

(Lehoux et al., 2017; Aceto et al., 2018). There is a lack of empirical studies holistically analyzing the 

implementation of H4.0 technologies (Behkami and Daim, 2012); such gap becomes more evident in the 

context of emerging economies (Ngwenyama and Morawczynski, 2009), where H4.0 adoption may be 

constrained by resource scarcity. Besides the socioeconomic context in which the healthcare organization 

is located, other organizational characteristics may affect the feasibility of H4.0 adoption. For instance, 

since the implementation of novel digital technologies usually requires high levels of capital expenditure 



and labor expertise (Furukawa et al., 2008; Avgar et al., 2012; Peng et al., 2014), organizational 

characteristics (i.e., contingencies) aligned with such requirements may be determinant of a successful H4.0 

implementation.  

Following contingency theory’s principles (Sousa and Voss, 2008), understanding the effect of contingency 

factors on the adoption of H4.0 might help to systematize the incorporation of technologies, mitigating 

associated barriers. That would allow hospitals’ managers and leaders to more assertively implement H4.0 

avoiding misguided efforts and capital expenditures, which are especially important in an emerging 

economy context. Due to the scarcity of studies that investigate the effects of contingencies on H4.0 

adoption and barriers in emerging economies (Nguyen et al., 2014), two research questions are proposed: 

i. What is the effect of contingency factors on the implementation of H4.0 technologies in 

emerging economies? and 

ii. What is the effect of those factors on the barriers to H4.0 implementation in emerging 

economies? 

To answer these questions, this study examines the effect of contingency factors on (i) the adoption of H4.0 

technologies and on (ii) the criticality level of associated barriers in emerging economies. For that, we 

conducted a transnational survey with 159 middle and senior managers from 16 hospitals located in Brazil, 

India, Mexico and Argentina. The effect of five contingency factors that characterize hospitals was analyzed 

on the level of adoption of nine H4.0 technologies and on the criticality level of eight barriers associated to 

them; contingency factors are (i) hospital’s ownership, (ii) age, (iii) number of employees, (iv) number of 

inpatient beds and (v) hospital functionality. Such factors have been pointed in the literature as influential 

in hospitals´ operations.  

 

 

 



2. Background 

Digital technologies have been playing an important role in healthcare organizations since the 1990s, when 

the term ‘e-health’ was coined (Aceto et al., 2018). More recently, with the introduction of H4.0 in hospitals, 

the level of interconnectivity and automation has notoriously increased, allowing both patient care and 

administrative processes to become more efficient (Yang et al., 2015). As digital technologies became 

affordable, smaller and capable of managing large quantities of data, H4.0 implementation has become 

more feasible (Prieto González et al., 2016; Ancarani et al., 2016). The increased level of automation and 

information exchange inherent to H4.0 not only leads to more qualified, faster and cheaper health services 

(Ayer et al., 2019; Niemelä et al., 2019), but also allows physicians, nurses and other hospital staff to benefit 

from internal and cross-hospital services more efficiently (Alloghani et al., 2018; Lolich et al., 2019). 

Thuemmler and Bai (2017) also listed customization of health and real-time care of patients as an additional 

outcome derived from H4.0 implementation. 

Similar to I4.0, there is no consensus on the set of technologies integrating the H4.0 portfolio; however, 

H4.0 literature recursively list some technologies that improve hospital’s processes and treatments. Authors 

such as Zhang et al. (2017), Pace et al. (2019) and Munzer et al. (2019) consistently acknowledge their 

individual roles as enablers of a more effective healthcare organization. From the nine H4.0 technologies 

listed in Table 1, ‘biomedical/digital sensors’ and ‘cloud computing’ stood out as they were cited in all 

investigated studies. In opposition, the application of ‘3D printing’ and ‘collaborative robots’ seems to be 

less frequently quoted in the literature.  

Table 1 also lists barriers to an extensive H4.0 implementation (Wolf and Scholze, 2017). Their incidence 

in organizations vary according to political and economic interests (Hamidi, 2019), organizational demands 

(Sannino et al., 2019), and requirements from associations (Ali et al., 2018) and partners (Garai et al., 2017). 

In general, ‘incorporated IT infrastructure’ and ‘difficulties for finding good partners’ were the most 

frequently cited in the examined works. At the same time, ‘misalignment with the hospital´s strategy’ and 

‘poor knowledge about the technologies’ appeared in only two studies. Despite the variation in citation 



frequencies, all eight barriers were properly evidenced and consistently discussed in the literature, ensuring 

their representativeness and relevance for H4.0 adoption. 

Complementarily, Thuemmler and Bai (2017) expanded indications by Herman et al. (2015) on I4.0, 

proposing the incorporation of six design principles into H4.0: (i) interoperability, (ii) virtualization, (iii) 

decentralization, (iv) real-time capability, (v) service orientation and (vi) modularity. The applicability of 

such principles has been acknowledged in both experimental/applied (e.g. Wan et al., 2018; Alhussein et 

al., 2018) and empirical (e.g. Bradley et al., 2018; Wang et al., 2018) studies, although not always explicitly.  

 

Table 1 – H4.0 technologies and barriers mentioned in the literature 

 

3. Research hypotheses 

Contingency theory states that there is no best way to organize and manage an organization; the optimal 

course of action is contingent (i.e. dependent) on factors that are internal and external to the organization 

(Donaldson, 2001). Operations Management research widely used contingency theory, with examples 

varying from lean production (Shah and Ward, 2003; Netland, 2016), quality management (Sousa and Voss, 

2001), product development (Koufteros et al., 2005) and leadership (Tortorella et al., 2018) to healthcare 

operations (Friedman and Churchill, Jr., 1987; Salge et al., 2013).  

Due to the complexity of healthcare systems, contingency analysis should encompass external (e.g. 

socioeconomic context of the region/country) and internal (e.g. hospital size and differences in processes 

and departments) factors. Regarding the former, Bedir (2016) suggested that increases in income level may 

stimulate healthcare expenditures, while Visconti et al. (2017) indicated that healthcare public-private 

partnerships significantly differ between developed and emerging countries. Albesher (2019) found that 

evidence of H4.0 technology adoption in hospitals mostly ranged from pilot projects to full-scale 

implementations in developed economies (e.g., Japan, France, and Sweden). Studies in industry sectors 

other than healthcare (e.g., Pagliosa et al., 2019; Rossini et al., 2019; Tortorella et al., 2019a) have already 



indicated that the socioeconomic context characterizing the organization’s geographic location affects the 

implementation level of disruptive digital technologies (e.g., IoT, cloud computing, collaborative robots, 

and 3D printing). 

Overall, studies suggest that contextual differences account for the diversity in H4.0 approaches and 

obtained results, highlighting the need for a better understanding of the role of contingencies in H4.0 

implementation, particularly in emerging economies. Such evidence justifies the development of research 

focusing on the socioeconomic context so that the influence of external factors could be mitigated, leading 

to more assertive results and conclusions. This fact has motivated the investigation of H4.0 adoption and 

barriers in hospitals located in emerging economies, which is addressed in our study. 

Research on internal contingency factors is also prolific. Kimberly and Evanisko (1981) examined the 

impact of number of inpatient beds, employees and total assets on hospitals’ ability to innovate. Sjetne et 

al. (2007) considered variables such as number of inpatient beds and hospital’s functionality to determine 

patients’ experiences. Theokary and Ren (2011) complemented by empirically assessing the impact of 

patient volume and hospital’s functionality on the quality of provided services, indicating that as hospitals’ 

teaching activities increase, greater patient volume is associated with decreased process quality. 

Researchers have also discussed the effect of context on H4.0 implementation, considering some isolated 

factors. Moores (2012) and Zhang et al. (2017) examined the moderating effect of demographic factors 

deemed internal contingencies (e.g. gender and age) on the adoption level of new technologies in healthcare 

systems. Pan et al. (2018) studied behavioral intentions toward smart healthcare services among medical 

technicians and clinicians, from the perspective of technology transfer.  

Studies consistently suggest five internal contingencies as potentially influential in H4.0 implementation; 

they are: (i) hospital’s ownership, (ii) age, (iii) number of employees, (iv) number of inpatient beds, and (v) 

hospital functionality. In terms of hospital’s ownership, public hospitals in emerging economies are more 

likely to lack resources (e.g., personnel, equipment and infrastructure) than private ones (Daemmrich, 2013; 

Visconti et al., 2017). Such resource scarcity may impose additional barriers to H4.0, resulting in an 



organizational context that might negatively influence the implementation level of its associated 

technologies. Concerning that, we argue that a hospital's ownership (i.e., private or public) might affect the 

implementation of H4.0 technologies and barriers. Regarding age, since H4.0 adoption may require a more 

sophisticated IT infrastructure to properly allocate its associated digital technologies (Garai et al., 2017; 

Zhang et al., 2017; Elhoseny et al., 2018), hospitals with older facilities might potentially present additional 

difficulties. In opposition, newer hospitals, whose IT infrastructure has been designed and built more 

recently, may present a more supportive environment for H4.0 technologies adoption. To the best of our 

knowledge, no empirical evidence about the effect of age on H4.0 adoption and barriers is available in the 

literature, justifying the analysis of such a factor.  

The number of employees and the number of inpatient beds are two different measures that may be used as 

proxies to indicate the size of hospitals (Kim et al., 2009; Giancotti et al., 2017). Larger hospitals are more 

likely to be resourceful in terms of personnel and equipment (Burke et al., 2002; Roh et al., 2013). Such 

hospitals may also display a higher capital expenditure capacity (Kim et al., 2002), which might favor the 

purchasing and adoption of sophisticated medical and information technologies. These arguments 

motivated our analysis of the effect of hospital size on H4.0 adoption and barriers. Regarding hospital 

functionality, most studies divide hospitals in teaching and non-teaching (Grosskopf et al., 2001; Gok and 

Sezen, 2012; Amarneh, 2017) when analyzing their management approaches. The literature reports 

contradictory evindence regarding this contingency factor: while some claim that teaching hospitals might 

benefit from a highly qualified staff (Kupersmith 2005; Harrison et al., 2010) which, up to a certain extent, 

would increase the feasibility for actually adopting H4.0, others argue that non-teaching hospitals may favor 

the establishment of a more patient-centered environment (as they do not need to worry with students), 

which is a key feature of H4.0 (Thuemmler and Bai, 2017; Alloghani et al., 2018). 

To verify the effect of the contingency factors discussed above on H4.0 adoption and barriers in hospitals 

located in emerging economies, we formulated the following hypotheses: 



H1a: Contingency factors may be used to distinguish between hospitals that are high and low adopters of 

H4.0 technologies in emerging economies. 

H1b: Contingency factors have a significant effect on the implementation of H4.0 technologies in emerging 

economies. 

H2a:  Contingency factors may be used to distinguish between hospitals that are highly and lowly 

constrained by barriers to H4.0 implementation in emerging economies. 

H2b: Contingency factors have a significant effect on barriers to H4.0 implementation in emerging 

economies. 

 

4. Research method 

We now present the method in terms of (i) sample characteristics and data collection; (ii) measures and 

instrument development, and (iii) data analysis, which are detailed in the following sections. 

4.1. Sample characteristics and data collection 

To examine the effect of contingency factors on H4.0 implementation in emerging economies, we 

conducted a transnational survey with hospitals located in Brazil, Argentina, Mexico, and India. Although 

falling in the emerging economy category, these countries differ in population, per-capita gross domestic 

product and national language, increasing the generalizability of our results. We also aimed at obtaining 

multiple responses, from middle and senior managers with different backgrounds and roles (clinician and 

non-clinician), within each hospital to avoid potential issues related to single-respondent bias (Hair et al., 

2014). Collecting information from multiple respondents per hospital also improves our study’s internal 

validity and reliability (Brewer and Crano, 2000; Tabachnik and Fidell, 2013). All respondents play key 

leadership roles in their hospitals, with backgrounds varying from Information Technology and Business 

Administration to Nursing and Medicine. To mitigate misinterpretations that could potentially lead to 

erroneous responses we provided a brief explanation on H4.0 and examples of related technologies with 



the questionnaire, as suggested by Kothari (2004). Finally, all respondents are associated to tertiary care 

hospitals, with processes and treatments that are similar in terms of complexity.  

Data collection took place between May and June 2018, and was carried out by leading researchers from 

the selected countries who have extensively published on Healthcare Operations Management. That favored 

their understanding of the research topic and facilitated access to respondents through their networks. We 

informed in the invitation that participation was voluntary, and that participants would receive a managerial 

report once the research was finished. The final sample was comprised of 159 responses from 16 hospitals, 

averaging 9.9 respondents per hospital (see Table 2). Most respondents were located in Brazil (42.1%) and 

worked in private hospitals (56.0%) with more than 150 inpatient beds (74.8%). Most of them were 

associated to teaching hospitals (69.8%) with less than 2,000 employees (74.2%), with facilities less than 

20 years-old (52.8%). 74.2% of respondents were supervisors or coordinators; 57.2% led clinician 

departments and 79.9% had more than 2 years of experience in the role. We considered the collected data 

to satisfactorily represent perceptions across several hospitals with different contextual variables. 

 

Table 2 – Sample characteristics (n = 159) 

 

4.2. Measures and instrument development 

The questionnaire was divided in three parts. The first consisted of questions to gather information on 

respondents and their hospitals. Contingency factors investigated were associated with questions presented 

at two levels to facilitate answers; they are shown in Table 2. Hospital’s ownership was categorized as 

belonging to either private or public organizations. Hospital size was divided in two contingency factors 

(number of beds and number of employees) both presented at two levels. We used 150 inpatient beds as 

threshold to categorize small (less or equal to 150) and large (more than 150 inpatient beds) hospitals, 

following Sjetne et al. (2007)’s classification, and 2,000 employees as threshold to classify hospitals as 

small (less or equal to 2,000) or large (more than 2,000 employees). Hospital’s age was categorized 



according to IW (2013), which classifies facilities with more than 20 years as old. Finally, respondents 

indicated whether their hospitals combined assistance to patients with teaching to medical students and 

nurses supported by a medical/nursing school or university, being or not a teaching hospital.     

In the second part respondents were asked about the adoption level of nine H4.0 technologies (displayed in 

upper half of Table 1) in their hospitals using a five-point scale, ranging from 1 (not used) to 5 (fully 

adopted). The concept of H4.0 cannot be considered as widespread, and we avoided referring to it explicitly. 

Instead, we assessed the adoption of technologies as a proxy for H4.0 implementation, mitigating 

misinterpretations by respondents. Such approach was also used in similar studies on the topic of I4.0 (e.g. 

Tortorella and Fettermann, 2018). 

In the third part we assessed barriers to H4.0 implementation in the respondents’ hospitals. The eight 

barriers shown in the bottom half of Table 1 were measured using a Likert scale, ranging from 1 (not 

critical) to 5 (highly critical).  

The questionnaire design was pre-tested by seven experts to verify its quality: four were experienced 

researchers in the area of Healthcare Operations Management and three were hospital managers who have 

previously collaborated with the research group. In general, experts recommended minor adjustments in 

the taxonomy and the inclusion of a glossary with examples, which was sent together with the questionnaire. 

We tested responses related to H4.0 technologies and barriers separately for reliability. Cronbach’s alpha 

values for H4.0 technologies and barriers were 0.841 and 0.853, respectively, satisfying Meyers et al.’s 

(2006) threshold of 0.6 or higher. Table 3 reports pairwise correlations for the variables associated with the 

9 technologies and 8 barriers, and their respective means and standard deviations.  

We adopted some countermeasures to mitigate common method bias. First, we used different scale anchors 

to avoid covariation (Podsakoff et al., 2003). A statement emphasizing that there were no right or wrong 

answers, and that responses would be treated anonymously was added in the first part of the questionnaire 

to prevent respondent bias. We also performed Harman’s single-factor test to check for common method 



bias (Malhotra et al., 2006). All variables loaded in a first factor that explained 30.5% of the variance, which 

was similar to results from previous studies that applied this test (Marodin et al., 2016).  

 

Table 3 – Pairwise correlations’ matrix, means and standard deviations 

 

4.3. Data analysis 

Data analysis was carried out in two main steps. First, we performed cluster analyses for H4.0 technologies 

and barriers. In both analyses Ward’s hierarchical method was initially applied to identify the adequate 

number (k) of clusters (Rencher, 2002). Next, observations were assigned to one of the k clusters using the 

k-means method (Gordon, 1999), and an ANOVA was carried out to check for significant differences (p-

value < 0.05) in the means of the clustering variables in each cluster, validating them. Clustering of 

observations was a step necessary to test hypotheses H1a and H2a. Once clusters for H4.0 technologies and 

barriers were available, we used Pearson’s Chi-Squared test (Tabachnick and Fidell, 2013) to check for 

differences in individuals in clusters regarding the five contingency factors.  

Second, we ran a MANOVA (Multivariate Analysis of Variance) using Wilks’ lambda test to 

check for differences in levels of each contingency factor when considering the degree of H4.0 

technologies and barriers. That allowed us to test hypotheses H3 and H4. It is important to mention 

that to verify whether countries’ differences affected H4.0 adoption and barriers, we performed a 

pre-test on our sample. We ran a MANOVA (Multivariate Analysis of Variance) using Wilks’ 

lambda test to check for differences among countries when considering the degree of H4.0 

technology implementation and the presence of barriers to H4.0. Results were not statistically 

significant, i.e., there was no effect of country on responses regarding H4.0 implementation. We 

thus grouped all responses and treated our sample as representative of the emerging economy 

socioeconomic context. Ten MANOVA models were then tested, each considering a contingency 



factor as independent variable and perceptions on H4.0 technologies’ adoption and barriers as 

dependent variables. Box’s test for equality of covariance matrices for all MANOVA tests resulted 

not significant, satisfying the MANOVA model’s assumption. That implies in the null hypothesis 

of equal (dependent variables’) covariance matrices across groups not being rejected (Hair et al., 

2014). Whenever a MANOVA model displayed a significant F-value we ran individual ANOVA 

tests to better examine differences in the dependent variables. 

 

5. Results 

The hierarchical cluster analysis on adoption level of H4.0 technologies pointed to two clusters of 

respondents. We thus set k = 2 in the k-means cluster analysis and assigned respondents to clusters, as 

shown in the upper half of Table 4. The first cluster, labeled “high adopters”, comprised 53 respondents 

displaying higher adoption levels of H4.0 technologies. The second cluster, labeled “low adopters”, 

comprised 106 respondents displaying lower adoption levels of H4.0 technologies. The ANOVA indicated 

significant differences (p-values < 0.01) in means of adoption levels of all nine H4.0 technologies between 

the two clusters. These results validate hypothesis H1a that states that contingency factors may be used to 

distinguish between hospitals that are high and low adopters of H4.0 technologies in emerging economies. 

Similarly, the hierarchical cluster analysis on the criticality of H4.0 barriers pointed to two clusters of 

respondents; parameter k was set to 2 in the k-means analysis which assigned respondents to clusters, 

leading to results in the bottom half of Table 4. Respondents with lower mean criticality values were 

assigned to the first cluster (n1 = 80), which was labeled “lowly constrained”. In opposition, the second 

cluster (n2 = 79) was comprised of respondents with higher mean criticality values, being labeled “highly 

constrained”. The ANOVA showed that means of all eight barriers differed significantly (p-value < 0.01) 

between clusters. These results validate hypothesis H2a that states that contingency factors may be used to 



distinguish between hospitals that are highly and lowly constrained by barriers to H4.0 implementation in 

emerging economies. 

 

Table 4 – Cluster analysis results for H4.0 technologies (upper half) and barriers (lower half) 

 

We now report results from Pearson’s Chi-Squared tests for the contingency factors shown in Table 5. Our 

findings indicate that three factors are significantly associated with the adoption level of H4.0 technologies. 

The first one is hospital’s age (χ2 = 5.56; p-value < 0.05). The frequency of high adopters with newer 

facilities (< 20 years-old) is higher than with older facilities (> 20 years-old); in opposition, the frequency 

of low adopters with older hospitals is higher than those with newer facilities. Overall, results for this 

contingency factor suggest that respondents from older hospitals are less likely to adopt H4.0 technologies 

than those from newer hospital. The second significant contingency factor is number of inpatient beds (χ2 

= 4.83; p-value < 0.05). The frequency of low adopters in large hospitals and high adopters in small 

hospitals is significantly larger than other combinations of adoption level and hospital size. The third 

significant contingency factor is teaching hospital (χ2 = 30.22; p-value < 0.01). There are larger frequencies 

of high adopters in non-teaching hospitals and of low adopters in teaching hospitals; i.e. hospitals that are 

exclusively focused on patient care (i.e. non-teaching hospitals) are more likely to be extensively adopting 

H4.0 technologies while the frequency of teaching hospitals categorized as low adopters is significantly 

higher than that of high adopters. 

As reported in Table 5, a single contingency factor (hospitals’ functionality; χ2 = 7.35; p-value < 0.01) 

appeared as significantly associated with H4.0 barriers. Leaders in teaching hospitals perceive barriers to 

H4.0 implementation more intensely (highly constrained); in opposition, barriers are perceived as less 

important (lowly constrained) by leaders from hospitals that do not combine assistance to people with 

teaching.  

 



Table 5 – Composition characteristics of clustering according to H4.0 technologies and barriers 

 

We now report results from the MANOVA analyses shown in Table 6. Two tests were run for each 

contingency factor. Models 1 and 6, for example, were run using contingency factor “hospital’s ownership” 

as independent variable and nine H4.0 technologies (Model 1) and eight H4.0 barriers (Model 6) as 

dependent variables. All models that used H4.0 technologies as dependent variables were statistically 

significant, with p-values < 0.01, supporting hypothesis H1b; in opposition, only Models 8 (number of 

employees) and 10 (teaching hospital) were significant among those using H4.0 barriers as dependent 

variables, partially supporting hypothesis H2b. To better discriminate the effect of contingencies on H4.0 

technologies and barriers, whenever a MANOVA test yielded significant result, univariate ANOVA 

(Analysis of Variance) tests were run for each independent variable. Levene’s test did not indicate 

differences in dependent variables’ error variances enabling the use of ANOVA tests. 

 

Table 6 – MANOVAs using Wilks’ lambda test 

 

Table 7 gives ANOVA results that enable verifying the effects of significant contingencies on individual 

H4.0 technologies. Considering the contingency factor “hospital’s ownership” as independent variable only 

the adoption level of Cloud computing is significantly different, being predominant in public hospitals. 

Contingency factor “hospital’s age” significantly discriminates the adoption level of four H4.0 technologies 

(Biomedical/Digital sensors, IoT, Big data, and Machine/Deep learning), such that all of them are more 

predominant in hospitals with newer facilities (< 20 years-old). Contingency factor “number of employees” 

significantly discriminates the adoption level of three H4.0 technologies (Collaborative robots, IoT and 

Augmented reality/simulation), such that two of them are more predominant in larger hospitals (more than 

2,000 employees. Results are different for contingency factor “number of inpatient beds”, another proxy 

for hospitals size; two H4.0 technologies are significant related to this factor (Biomedical/Digital sensors 



and IoT) and are more predominant in smaller hospitals (< 150 inpatient beds). Finally, “teaching hospital” 

appeared as the most influential contingency factor for implementing H4.0 technologies, displaying a 

significant effect in eight of them, all of which were more predominant in non-teaching hospitals. The only 

exception was 3D printing with adoption levels not significantly different between teaching and non-

teaching hospitals.  

Table 8 gives ANOVA results for MANOVA models 8 and 10 in Table 6, related to H4.0 barriers. 

Contingency factor “number of employees” is significantly related to only one barrier (Regulatory 

changes); leaders from larger hospitals (> 2,000 employees) perceive this barrier as less critical than leaders 

from smaller hospitals (< 2,000 employees). Findings for “teaching hospitals” indicate that this contingency 

factor is significantly associated with six barriers for H4.0 implementation (Regulatory changes, 

Misalignment with hospital´s strategy, Information security risks, Implementing costs, Absence of a 

qualified team and Difficulties for finding good partners), such that all of them appear as more critical in 

teaching hospitals.  

 

Table 7 – Univariate ANOVAs for H4.0 technologies 

Table 8 – Univariate ANOVAs for H4.0 barriers 

 

6. Discussion 

Table 9 summarizes our research findings. Results for hospital’s ownership indicate that this contingency 

factor may be used to distinguish between hospitals that are high and low adopters of H4.0 technologies, 

but cannot be used to distinguish between those that are highly and lowly constrained by barriers to H4.0 

implementation in emerging economies. When analyzing ownership effects on the adoption of specific 

H4.0 technologies in Table 7 new information arise. The level of adoption of cloud computing in public 

hospitals is larger than in private hospitals. Public hospitals play a prominent social role in emerging 



economies. According to the Brazilian Health Ministry (2015), 71.1% of the population seek care in public 

hospitals. They are also representative in Mexico, accounting for 71% of the healthcare capacity (Mexican 

Health Secretary, 2016), and India, where only 5% of visits to health practitioners are in private clinics or 

hospitals (Hammer et al., 2017). The use of cloud computing enables generating healthcare statistics that 

are usually required by controlling agents auditing public healthcare systems; it also allows information 

from patients to be available in different stages of the healthcare process, some of which take place outside 

the hospital. That justifies the predominant adoption of cloud computing in public hospitals. 

 

Table 9 – Summary of results 

 

Regarding age, our findings indicate that newer hospitals provide a more suitable environment for 

implementing H4.0 technologies. Older facilities are often associated with higher difficulty to learn and 

change (Tortorella et al., 2015), either in technical or sociocultural aspects. The age of a facility is claimed 

to inversely impact the rate of innovative improvements, since its organizational routines, standards and 

infrastructure are usually designed and determined in the very early years (Stinchcombe, 1965; Aldrich, 

1979; Nelson and Winter, 1982, Shah and Ward, 2003). In this sense, older organizations might find more 

difficult to incorporate new approaches that significantly modify their current processes, products, structure 

and services. Since disruptive digital technologies encompassed by H4.0 demand specific information and 

communication infrastructure (Wolf and Scholze, 2017) and entail relevant rearrangements in the way 

processes and services are organized in a hospital (Thuemmler and Bai, 2017), it is reasonable to expect 

that older hospitals present lower H4.0 implementation levels. Our results support this assumption and agree 

with findings in Lefebvre (2010), who claims that older hospitals struggle to remain competitive. We thus 

argue that newer hospitals may provide an environment for addressing organizational and structural issues 

that contribute to the implementation of H4.0 technologies.   



Regarding hospital size, different insights are available depending on the proxy used. With respect to 

number of employees, larger hospitals seem to more extensively adopting H4.0 technologies (e.g. 

collaborative robots and augmented reality/simulation) and are less constrained by regulatory changes. 

When considering number of beds as proxy for hospital size, smaller hospitals present a higher adoption 

level of H4.0 technologies. Previous research suggests that organization size may affect innovation and 

improvement initiatives both ways. On one hand, larger organizations may benefit from more structured 

processes and higher levels of resources, both capital and human (Dewar and Dutton, 1986; Schminke et 

al., 2002; Shah and Ward, 2003; Marodin et al., 2016); on the other hand, they display high complexity and 

bureaucracy, which may undermine new management approaches (Kalleberg et al., 1996; Amato and 

Amato, 2007; Laforet, 2013). Our results add to this discussion and suggest that, while hospitals with a 

larger number of employees may generally benefit from H4.0 implementation due to higher availability of 

capital and human resources, hospitals with lower number of beds may display a more appropriate 

environment to H4.0 adoption, with lower complexity and less barriers to innovation in their processes. 

Such conclusions are aligned with those by Watcharasriroj and Tang (2004), who showed that both large 

and small hospitals in Thailand appear to be positively affected by information technologies.  

Hospital functionality is the most prominent contingency factor in our analysis, significantly impacting 

both H4.0 technologies and barriers and allowing a clear distinction between hospitals. Teaching hospitals 

usually demand a more qualified medical staff and openness to learning (Ayanian and Weissman, 2002; 

Kupersmith 2005). That should increase the level of innovation, while attracting highly skilled employees 

(physicians, nurses, technicians, etc.). However, according to Theokary and Ren (2011), as teaching 

intensity increases a larger number of inexperienced students will be inserted into the hospital, resulting in 

lack of continuity and a seasonal reduction in the expertise level of the workforce [that may explain Sjetne 

et al.’s (2007) finding that patients from large-sized teaching hospitals are less satisfied in terms of the 

service provided than patients from large-sized non-teaching hospitals]. Our findings corroborate to 

Theokary and Ren’s (2011) assumption, since they indicate that teaching hospitals present a less favorable 



environment for H4.0 implementation. In other words, not only the adoption level of technologies is higher 

in non-teaching hospitals, but also leaders from these hospitals feel less constrained by barriers to H4.0 

implementation. Thus, we conclude that this contingency factor highly affects the chances of a successful 

H4.0 implementation. 

Finally, an additional insight derived from our study is worth mentioning. Although we have not aimed to 

perform any comparative analysis among H4.0 technologies, results displayed in Table 3 suggest that 3D 

printing, collaborative robots, machine/deep learning and augmented reality/simulation might present lower 

mean adoption levels (with means varying from 1.408 to 1.704) than the remaining technologies (with 

means varying from 2.144 to 2.968) in hospitals located in emerging economies. This trend was also 

observed in Tortorella et al. (2019b), who noted that these digital technologies were less frequently cited in 

the literature. This fact may indicate that, depending on the set of digital technologies considered, there are 

different levels of maturity within hospitals in emerging economies. In this sense, the extent of the effect 

of contingencies on the adoption level of H4.0 technologies might be affected by their readiness level. In 

other words, H4.0 technologies with lower readiness levels (represented by their mean adoption level as 

proxy) may be less sensitive to the effect of contingencies. However, our study does not provide enough 

data to fully support this claim, which may be viewed as a possible extension of the current research.     

 

7. Conclusions 

7.1. Implications to theory 

Our study contributes to theory related to healthcare operations management in different ways. H4.0 is a 

recent concept and the body of knowledge on its implementation is still incipient. Our findings shed light 

on the effect of contingencies in H4.0 implementation, both in terms of related technologies’ adoption level 

and barriers to their implementation in emerging economies. Aligned with the contingency theory, we found 

that different environments require different managerial actions to enable H4.0 adoption. Moreover, despite 



economic and social constraints in emerging economies, our findings point to several levels of H4.0 

technology adoption in hospitals from those countries. That somewhat demystifies the assumption that the 

integration of new digital technologies arising from I4.0 into healthcare organizations may be impaired by 

socioeconomic constraints. In fact, our research shows that the effect of contingencies on barriers to H4.0 

implementation is less pervasive than expected, with only two of the investigated contingency factors being 

significantly associated with those barriers. In opposition, when exclusively considering the adoption level 

of H4.0 technologies, contingencies play a more relevant and intriguing role, with some associations 

appearing as counterintuitive in light of previous literature (e.g. the effect of hospital’s ownership). That 

may be justified by specificities of the socioeconomic context in which this study was carried out, adding 

insightful implications to theory. As far as our knowledge goes, we are not aware of any similar study in 

the literature.  

 

7.2. Implications to practice 

With respect to practical contributions, this research provides healthcare practitioners and leaders statistical 

evidence on contingencies that may impact their initiatives towards H4.0 implementation; as hospitals are 

complex sociotechnical systems with different contextual characteristics, our findings support managers to 

take more assertive actions. The identification of H4.0 technologies that are more likely to be extensively 

adopted in each context allows the prioritization of managerial efforts, enabling the achievement of 

expected benefits in the short term. Further, by comprehending the context in which their hospitals are 

inserted practitioners may be able anticipate potential issues and address countermeasures to mitigate 

barriers to H4.0 implementation. That is particularly relevant to leaders aiming at implementing H4.0 in 

teaching hospitals, which are more susceptible to present significant barriers. Finally, this investigation 

provides governments and health institutions/associations from emerging economies arguments to aid the 

development of strategic initiatives and foster the improvement of their healthcare systems, increasing 



productivity and quality levels. This is a key practical implication not only to hospitals but also to society, 

since it enhances healthcare systems by truly inserting them into the Fourth Industrial revolution era.  

 

7.3. Limitations and future research 

A few limitations of this research are worth mentioning. First, we assessed the individual effect of each 

contingency factor on H4.0 technologies and barriers. Although we followed a methodological approach 

applied in studies with similar objectives (e.g. Netland, 2016; Marodin et al., 2016), we understand that 

interaction effects between contingencies may raise additional insights. The relevance of such interaction 

effects was pointed out by Damanpour (1992) and Theokary and Ren (2011), and is a limitation of our 

study and an opportunity for future research. Second, our findings are restricted to the context of emerging 

economies. Further research could expand the dataset to include respondents in developed economies, 

allowing further comparisons.  

Due to our study’s purpose, we did not assess the existence of relationships between H4.0 technologies and 

barriers or examined their effects on hospitals' operational performance. Additional studies could be 

designed to provide empirical evidence on such relationships. Our results brought attention to sets of 

technologies with different readiness levels within hospitals located in emerging economies. In this sense, 

future research could accurately identify these sets of technologies and verify how their readiness levels 

influence the effects of contingencies on H4.0 adoption and barriers.  
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Tables 

 
Table 1 –H4.0 technologies and barriers mentioned in the literature 

  
Garai et 

al. (2017) 
Zhang et 
al. (2017) 

Elhoseny 

et al. 

(2018) 

Ali et al. 
(2018) 

Pace et al. 
(2019) 

Munzer et 
al. (2019) 

Hamidi 
(2019) 

Sannino et 
al. (2019) 

Frequency 
(%) 

H
4

.0
 t

ec
h

n
o
lo

g
ie

s 

Biomedical/Digital sensors √ √ √ √ √ √ √ √ 100.0% 
3D printing  √       12.5% 

Collaborative robots  √       12.5% 

IoT √ √ √  √ √ √ √ 87.5% 
Big data  √ √  √  √ √ 62.5% 

Cloud computing √ √ √ √ √ √ √ √ 100.0% 

Machine/Deep learning  √ √    √  37.5% 
Augmented reality/simulation  √    √   25.0% 

Remote control or monitoring  √   √ √ √  50.0% 

H
4

.0
 b

ar
ri

er
s 

Regulatory changes  √  √   √  37.5% 
Incorporated IT infrastructure √ √ √ √ √ √ √  87.5% 

Misalignment with hospital´s strategy       √ √ 25.0% 

Information security risks √ √  √ √   √ 62.5% 
Implementing costs  √  √ √ √ √  62.5% 

Poor knowledge about the technologies  √  √     25.0% 

Absence of a qualified team  √   √ √   37.5% 
Difficulties for finding good partners √ √  √ √ √ √ √ 87.5% 

 

Table 2 – Sample characteristics (n = 159) 
Country Number of inpatient beds Respondent’s experience 

Brazil 67 42.1% Less than 150 40 25.2% Less than 2 years 32 20.1% 

India 36 22.6% More than 150 119 74.8% More than 2 years 127 79.9% 

Mexico 34 21.4% Hospital’s age Respondent’s role 

Argentina 22 13.8% Less than 20 years-old 84 52.8% Supervisor or Coordinator 118 74.2% 

Number of employees More than 20 years-old 75 47.2% Manager or Director 41 25.8% 

Less than 2,000 118 74.2% Hospital’s ownership Respondent’s department 

More than 2,000 41 25.8% Public 70 44.0% Non-clinician 68 42.8% 

Teaching Hospital Private 89 56.0% Clinician  91 57.2% 

No 48 30.2%       

Yes 111 69.8%       

 



Table 3 – Pairwise correlations’ matrix, means and standard deviations 

Variables Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1-Biomedical/Digital sensors 2.968 1.366 - 0.156** 0.129 0.438*** 0.379*** 0.374*** 0.293*** 0.196** 0.201** 0.086 0.163** 0.093 0.115 0.083 0.021 -0.019 -0.094 

2-3D printing 1.559 1.034  - 0.313*** 0.084 0.114 0.139 0.268*** 0.340*** 0.094 0.029 -0.037 -0.007 -0.080 0.035 -0.065 -0.011 -0.043 

3-Collaborative robots 1.408 1.007   - 0.250*** 0.333*** 0.231*** 0.559*** 0.609*** 0.455*** 0.174** 0.114 0.209*** 0.198** 0.153 0.110 0.138 0.081 

4-IoT 2.673 1.536    - 0.404*** 0.320*** 0.337*** 0.250*** 0.396*** 0.059 0.108 0.063 0.092 0.093 0.135 0.093 0.059 

5-Big data 2.125 1.390     - 0.448*** 0.480*** 0.320*** 0.506*** 0.294*** 0.175** 0.306*** 0.351*** 0.247*** 0.100 0.209*** 0.232*** 

6-Cloud computing 2.647 1.463      - 0.407*** 0.200** 0.378*** 0.160** 0.152 0.194** 0.155 0.135 -0.001 0.047 0.025 

7-Machine/Deep learning 1.704 1.193       - 0.430*** 0.527*** 0.221*** -0.033 0.097 0.068 0.208*** -0.015 -0.016 -0.013 

8-Augmented reality/simulation 1.635 1.069        - 0.369*** 0.174** 0.090 0.198** 0.264*** 0.151 0.178** 0.169** 0.125 

9-Remote control or monitoring 2.144 1.306         - 0.191** 0.081 0.252*** 0.237*** 0.247*** 0.080 0.096 0.166** 

10-Regulatory changes 2.911 1.218          - 0.380*** 0.376*** 0.434*** 0.223*** 0.265*** 0.316*** 0.328*** 

11-Incorporated IT infrastructure 2.842 1.172           - 0.431*** 0.425*** 0.380*** 0.324*** 0.393*** 0.322*** 

12-Misalignment with hospital´s strategy 2.880 1.165            - 0.562*** 0.236*** 0.571*** 0.474*** 0.508*** 

13-Information security risks 2.911 1.229             - 0.370*** 0.449*** 0.450*** 0.465*** 

14-Implementing costs 2.540 1.385              - 0.356*** 0.429*** 0.253*** 

15-Poor knowledge about the technologies 2.924 1.250               - 0.678*** 0.564*** 

16-Absence of a qualified team 2.767 1.278                - 0.608*** 

17-Difficulties for finding good partners 2.981 1.182                 - 

Notes: **p-value < 0.05; ***p-value < 0.01. 

 

Table 4 – Cluster analysis results for H4.0 technologies (upper half) and barriers (lower half) 

H4.0 technologies 
Clusters means 

F-value 
High adopters (n1 = 53) Low adopters (n2 = 106) 

Biomedical/Digital sensors 3.89 2.51 46.20*** 

3D printing 1.94 1.37 11.67*** 
Collaborative robots 1.98 1.12 30.42*** 

IoT 3.85 2.08 65.64*** 

Big data 3.32 1.53 92.85*** 
Cloud computing 3.91 2.02 92.94*** 

Machine/Deep learning 2.79 1.16 112.80*** 

Augmented reality/simulation 2.21 1.35 26.41*** 
Remote control or monitoring 3.15 1.64 66.81*** 

H4.0 barriers 
Clusters means 

F-value 
Lowly constrained (n1 = 80) Highly constrained (n1 = 79) 

Regulatory changes 3.40 2.42 30.66*** 
Incorporated IT infrastructure 3.46 2.22 62.54*** 

Misalignment with hospital´s strategy 3.50 2.25 63.43*** 

Information security risks 3.64 2.18 86.41*** 
Implementing costs 3.16 1.91 40.49*** 

Poor knowledge about the technologies 3.70 2.14 101.16*** 

Absence of a qualified team 3.59 1.94 113.32*** 
Difficulties for finding good partners 3.66 2.29 80.28*** 

Notes: *p-value < 0.10; **p-value < 0.05; ***p-value < 0.01. 

 

 



Table 5 – Composition characteristics of clustering according to H4.0 technologies and barriers 

Contingency factors 
                     Technologies 

High adopters Low adopters Test 

Hospital’s ownership 
Public or Mixed 24 34.3% 46 65.7% 

Pearson’s χ2 = 0.05 
Private 29 32.6% 60 67.4% 

Hospital’s age 
< 20 years-old 35 41.7% 49 58.3% 

Pearson’s χ2 = 5.56* 
> 20 years-old 18 24.0% 57 76.0% 

Number of employees 
< 2,000 employees 40 33.9% 78 66.1% 

Pearson’s χ2 = 0.07 
> 2,000 employees 13 31.7% 28 68.3% 

Number of inpatient beds 
< 150 beds 19 47.5% 21 52.5% 

Pearson’s χ2 = 4.83* 
> 150 beds 34 28.6% 85 71.4% 

Teaching Hospital 
No 31 64.6% 17 35.4% 

Pearson’s χ2 = 30.22** 
Yes 22 19.8% 89 80.2% 

Contingency factors 
                         Barriers 

Lowly constrained Highly constrained Test 

Hospital’s ownership 
Public or Mixed 33 47.1% 37 52.9% 

Pearson’s χ2 = 0.50 
Private 47 52.8% 42 47.2% 

Hospital’s age 
< 20 years-old 44 52.4% 40 47.6% 

Pearson’s χ2 = 0.30 
> 20 years-old 36 48.0% 39 52.0% 

Number of employees 
< 2,000 employees 61 51.7% 57 48.3% 

Pearson’s χ2 = 0.35 
> 2,000 employees 19 46.3% 22 53.7% 

Number of inpatient beds 
< 150 beds 21 52.5% 19 47.5% 

Pearson’s χ2 = 0.10 
> 150 beds 59 49.6% 60 50.4% 

Teaching Hospital 
No 32 66.7% 16 33.3% 

Pearson’s χ2 = 7.35** 
Yes 48 43.2% 63 56.8% 

Notes:  *p-value < 0.05; **p-value < 0.01 

 

 

Table 6 – MANOVAs using Wilks’ lambda test 

Effect 
H4.0 technologies 

Effect 
H4.0 barriers 

Value F Value F 

Model 1 – Hospital’s ownership 0.863 2.64** Model 6 – Hospital’s ownership 0.961 0.75 

Model 2 – Hospital’s age 0.734 5.99** Model 7 – Hospital’s age 0.963 0.72 
Model 3 – Number of employees 0.824 3.55** Model 8 – Number of employees 0.903 2.00* 

Model 4 – Number of beds 0.840 3.16** Model 9 – Number of beds 0.933 1.35 

Model 5 – Teaching hospital 0.601 10.99** Model 10 – Teaching hospital 0.877 2.64** 

 Notes: *p-value < 0.05; **p-value < 0.01 

 

 

 

 



Table 7 – Univariate ANOVAs for H4.0 technologies 

H4.0 technologies 
Ownership F-value Hospital’s age F-value Nº of employees F-value Nº of beds F-value Teaching hospital F-value 

Public Private  < 20 years-old > 20 years-old  < 2,000 > 2,000   < 150 > 150  No Yes  

Biomedical/Digital sensors 3.17 2.81 2.79 3.38 2.51 17.97** 3.07 2.68 2.44 3.63 2.75 13.30** 3.67 2.67 20.13** 

3D printing 1.51 1.60 0.24 1.67 1.44 1.91 1.47 1.83 3.82 1.80 1.48 2.92 1.71 1.50 1.42 
Collaborative robots 1.34 1.46 0.53 1.31 1.52 1.73 1.24 1.90 14.38*** 1.45 1.39 0.09 1.83 1.23 13.14** 

IoT 2.81 2.56 1.06 3.02 2.28 9.80** 2.81 2.29 3.44* 3.53 2.39 18.23** 3.37 2.37 15.69** 

Big data 1.94 2.27 2.18 2.48 1.73 12.10** 2.07 2.29 0.80 2.27 2.08 0.61 3.19 1.67 53.37** 
Cloud computing 2.96 2.40 5.76* 2.67 2.63 0.03 2.61 2.76 0.30 2.95 2.55 2.30 3.10 2.45 6.94** 

Machine/Deep learning 1.69 1.72 0.03 1.88 1.51 3.97* 1.69 1.76 0.10 1.92 1.63 1.84 2.56 1.33 45.55** 

Augmented reality/simulation 1.60 1.66 0.14 1.77 1.48 3.03 1.53 1.95 4.94** 1.77 1.59 0.91 2.10 1.43 14.32** 
Remote control or monitoring 1.94 2.30 3.02 2.25 2.03 1.16 2.09 2.29 0.71 2.20 2.13 0.10 3.10 1.73 48.16** 

Notes: *p-value < 0.05; **p-value < 0.01 

 

Table 8 – Univariate ANOVAs for H4.0 barriers 

H4.0 barriers 
Nº of employees F-value Teaching hospital F-value 

< 2,000 > 2,000   No Yes  

Regulatory changes 2.76 3.34 7.12** 3.23 2.77 4.77* 

Incorporated IT infrastructure 2.86 2.78 0.16 3.02 2.77 1.59 
Misalignment with hospital´s strategy 2.83 3.02 0.84 3.17 2.76 4.23* 

Information security risks 2.90 2.95 0.06 3.42 2.69 12.43** 

Implementing costs 2.61 2.34 1.15 3.10 2.30 12.16** 
Poor knowledge about the technologies 2.92 2.95 0.03 3.15 2.83 2.17 

Absence of a qualified team 2.73 2.88 0.41 3.10 2.62 4.89* 

Difficulties for finding good partners 3.02 2.88 0.42 3.31 2.84 5.55* 

Notes: *p-value 0.05; **p-value < 0.01 
 

 

Table 9 – Summary of results 
 Contingency factor 

Hospital’s ownership Age Nº of employees Nº of inpatient beds Hospital functionality 

Adoption 

level of 
H4.0 

technologies 

Biomedical/Digital sensors 

- 

Newer > Older 
- 

Smaller > Larger Non-teaching > Teaching 

3D printing 
- - 

- 

Collaborative robots Smaller < Larger 

Non-teaching > Teaching 

IoT 
Newer > Older 

Smaller > Larger Smaller > Larger 

Big data 

- 

- 

Cloud computing Public > Private - 

Machine/Deep learning 

- 

Newer > Older 

Augmented reality/simulation 
- 

Smaller < Larger 

Remote control or monitoring - 

Criticality 

level of 
H4.0 

barriers 

Regulatory changes 

- - 

Smaller > Larger 

- 

Non-teaching < Teaching 

Incorporated IT infrastructure 

- 

- 

Misalignment with hospital´s strategy 

Non-teaching < Teaching Information security risks 

Implementing costs 

Poor knowledge about the technologies - 



Absence of a qualified team 
Non-teaching < Teaching 

Difficulties for finding good partners 

Note: Empty cells indicate differences that were not statistically significant and, hence, disregarded. 


