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Abstract 

A model is constructed to simulate the popuiation dynamics of the potato cyst-nematode, 
Globodera pal/ida, and its effect on the growth of the potato. Parameters and rate variables are 
estimated from published data, and a preliminary evaluation is performed. Despite its simplici­
ty, the model can provide realistic predictions of the real system's behaviour: the predicted rela­
tion between initial nematode density and the annual multiplication rate, and the effect of 
nematode density on tuber yield, are simulated well; the effects of early harvesting are similar 
to those described in the literature; and the predicted seasonal changes in population structure 
are in reasonable agreement with field observations. The \Veaknesses and potentials of the 
model, and of the dynamic simulation approach, are discussed. 

Additional keywords: yield Joss. 

Introduction 

Attempts to control the potato-cyst-nematodes, Globodera rostochiensis 
(Wollenweber) and G. pallida (Stone) Behrens, have relied on the use of chemical 
nematicides, resistant cultivars, and crop rotation. In the Netherlands these three 
methods are used in combination, according to the following set of strict regulations 

. given in the Plant Disease Act of 1973 (Hijink, 1972). 
1) Starch- and table potatoes may be grown· once every two years, provided the soil 
is disinfected at least once every four years and at least one potato crop in four years 
is of a resistant cultivar. 
2) If either the soil is disinfected before planting or at least one crop in two uses a resis­
tant variety, potatoes may be grown once in three years. 
3) A 1:4 rotation must be used if susceptible cultivars are grown without the use of 
nematicides. 

Recently a number of authors have voiced objections to this scheme, on the grounds 
of dangers or weaknesses in the practices involved (Mulder, 1978; Van der Weijden, 
1981; Groendijk, 1983) or because it discourages the testing of new control methods 
(Groendijk, 1983). 
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These problems have stimulated demands for a more flexible set of regulations, re­
quiring the application of chemicals only If the nematode population density exceeds 
some threshold (Seinhorst, 1982, I\1ugniery, 1982; Groendijk, 1983). At densities 
below this threshold, damage could be limited by combinations of other methods, e.g. 

· resistant cultivars, tolerant cultivars (Trudgill and Cotes, 1983a), crop rotation and the 
appropriate selection of non-host crops, natural enemies (Goswamy and 
Rumpenhorst, 1978; J atala et al., 1979; Kerry, 1980; Franco et al., 1981), treatment of 
the soil with root extract (Perry et al., 1981) or tree bark (Hoestra and Harshagen, 
1981), or early harvesting (Grainger, 1962; Van den Brande and d'Herde, 1964; 
Mugniery, 1978a,b; 1982; Webley and Jones, 1981; Hoestra, 1983). 

Clearly, to optimize the use of these very diverse methods it is necessary to be able 
to predict their consequences. This requires the construction of a model of the 
nematode population and its effect on the yield of potatoes. The models proposed in 
the literature fall into three main groups. Most use empirical relations to describe the 
final density of eggs as a function of the density before sowing (e.g. Oostenbrink, 1966; 
Jones, 1966; Jones et al., 1967; Seinhorst, 1967, 1968; Raeuber and Stelter, 1970; Jones 
and Kempton, 1978; Jones et al., 1978; Jones and Perry, 1978; Mugniery, 1976). Others 
determine, empirically, the relation between yield and the initial egg density 
(Seinhorst, 1965, 1983). Two studies, however, describe the timing of certain changes 
in population structure as a function of accumulated temperature (Mugniery, 1978b; 
Jones and Perry, 1978). 

For a full understanding of the system, and optimization of management practices, 
an explanatory model is necessary. 

This paper presents a dynamic simulation model of the population dynamics of G. 
pallida which is now the most imponant pest in Dutch potato farming. It begins with 
a discussion of the dynamic simulation approach. It then describes the relations bet­
ween the components of the nematode-potato system, before using data from the 
literature to quantify these relations. Predictions of the model are compared with .ex­
perimental data and field observations. Finally, the strengths and weaknesses of the 
model and the approach are discussed. 

Systems analysis and dynamic simulation 

The construction of dynamic simulation models proceeds through a number of steps, 
which can be summarized as follows. (For fuller treatments of the subject see De Wit 
and Goudriaan, 1978; Berryman and Piel)aar, 1974; Rabbinge, 1976;'De Wit and Rab­
binge, 1979; see also Ferris, 1976, for a nematode simulation.) 

First, the system must be defined, and described qualitatively. It is described simply 
in terms. of state variables (i.e., which can be measured at any given instant) and their 
interactions. At the (anificial) boundaries of the system are the 'driving variables', 
which influence the behaviour of the system but are not themselves influenced; they 
may include, for example, the climatic variables affecting an ecosystem. The rates of 
flow between the elements of the system are given by the 'rate variables' (e.g. hatch 
rate, mortality etc.), which are in turn determined by the values of state and driving 
variables. 

The second step is the quantification of the variables, their interrelations, and of 
their dependence on current conditions. The quantitative model is then expressed as 
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a computer programme, which proceeds by continuously up-dating the values of all 
the state variables, according to the current rate variables. 

Finally, the model is evaluated: its predictions are compared with observations of 
the real system. If, as is usually the case, the predictions differ from observations, the 
model must be altered. At this point considerable vigilance must be exercised. To avoid 
changing the process into a very cumbersome curve-fitting exercise, it is important that 
changes in the model are based on a reappraisal of experimental data (De Wit and 
Rabbinge, 1979); 'fudging' the model from an explanatory tool to an empirical 
des"cription; while still possibly a useful management tool it cannot assist in 
understanding the system. 

The nematode potato-model 

A. Description of the system 

The model combines two-sub-models: a potato growth model and a nematode popula­
tion model. 

The potato growth model has been constructed by P. Akkermans (Department of 
Theoretical Production Ecology, Agricultural University, Wageningen) (unpubl.), 
based on the summary crop growth model SUCROS (Van Keulen et al., 1982). This 
simulates the dry matter growth of leaves, roots and tubers, as a function of 
temperature and irradiation. 

The second sub-model simulates the changing numbers of individual nematodes in 
each of seven development classes: mature eggs, eggs stimulated to hatch, free larvae, 
parasitic 2nd stage larvae, 3rd and 4th stage larvae, adult females, and eggs in dormant 
cysts. 

The structure of the model is represented in a relational diagram in Fig. 1. 

B. Quantification 

The parameters and relations determining the rate variables have been estimated from 
data in the literature: \\'here data on G. pallida are not available, or when. the two 
species are not distinguished (G. pall ida was not recognized as a separate species until 
1972), work on G. rostochiensis is used. 
a) Standardizing the units of measurement. Potato growth rates are conve11;tionally ex­
pressed in kg/ha/day, whereas nematode densities are measured in numbers per weight 
of soil. 

Jones et al. (1978) state that if each gram of soil contains one nematode egg, then 
there are 2.5 x 109 eggs per hectare, in the top 30 em. Nematodes may be distributed 
throughout the top 40 em (Whitehead, 1977), so the model uses a conversion factor 
of 3.3 x 109 g soil/ha. 
b) Soil temperature. Nematode development rates are determined by soil temperature 
(Jones and Parrott, 1969; Jones, 1975), but the paucity of the available data means 
that air temperature must sometimes be used as the driving variable. The resulting er­
rors, however, are unlikely to be important, since the main difference between soil and 
air temperature is that air temperature fluctuates more widely (De Wit and Van 
Keulen, 1972; Jones, 1974a, 1983). 
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Fig. 1. Relational diagram of growth and development of the potato plant and the cyst­
nematode, Globodera pal/ida. 
Rectangles: state variables; Valve symbols: rate variables; Underlined: driving variables. 
-+: flow of material; ---+: flow of information. 

c) Parameters and temperature relations. 
1) Spontaneous hatching in the absence of potatoes. In the absence of host plants, 
the annual hatch in temperature regions varies between 17 and 53 OJo (Den Ouden, 
1960a; Von Schick and Stelter, 1963; Evans, 1969; Stelter, 1970; Stone et ~1., 1973). This 
may depend on temperature (Hague, 1978) and soil moisture (Clarke and Perry, 1977), 
but is independent of the type of crop grown (Stone et al., 1973). The model assumes 
an annual hatch of 35% (Hague, 1978), since no quantitative data are available on 
these relations. 
2) Stimulation to hatch. Eggs of both G. pal/ida and G. rostochiensis are stimulated 
to hatch by very brief exposure to potato root diffusate (Forrest and Perry, 1980; Perry 
and Beane, 1982). The rate at which eggs are stimulated is proportional to the number 
of eggs present, and to the rate of growth of the roots; it may also vary among potato 
cultivars (Evans, 1982a, 1983; but see also Turner and Stone, 1981). While, on average, 
about 800Jo of the eggs hatch during the potato growth season (J .W. Seinhorst, pers. 
comm.), the proportionality constant (relating relative stimulation rate to growth rate) 
must be estimated from the final root weight of an undamaged crop and the hatch of 
eggs at very low densities. The model uses a final dry weight of roots, excluding tubers, 
of 670 kg/ha (model output, P. Akkermans, unpubl.) and a 90% hatch (data of Von 
Neye et al., 1964). 
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3) Emergence of larvae from stimulated eggs. This depends on soil temperature, oc­
curring only between 7 oc (Foot, 1978) and 3ioc (Mai, 1952 cited in Franco, 1979); 
the optimum temperature range is 21-25 oc (Fenwick, 1951). At 15 oc the mean time 
to emergence is 14 days (Den Ouden, 1963). 
4) Rate of invasion. The invasion of roots by larvae is assumed to take, on average, 
one day, provided the soil temperature is between 7 oc (Foot, 1978) and 30 oc (Ferris, 
1957). No quantitative data yet available on the effects of temperature and soil 
moisture on this rate. 
5) Juvenile sex ratio. Although the proportion of adult females declines with increas­
ing density in the root (Ellenby, 1954; Den Ouden, 196Gb; Trudgill, 1967; Ross and 
Trudgill, 1969; Thornley and Hesling, 1972; Mugniery and Fayet, 1981), this may be 
caused by selective mortality or recovery (Bridgeman and Kerry, 1980). The model 
assumes that 500Jo of the invading juveniles are female. 
6) Rate of occupation of sites in the root. This is calculated as the product of the 
number of larvae seeking sites and the proportion of sites unoccupied (distribution 
of larvae within the young root tissue is assumed to be random (Ross and Trudgill, 
1969)). Sites are produced at a rate proportional to the rate of growth of the roots, and 
mature such that giant cell formation becomes impossible (Seinhorst and Den Ouden, 
1971). Sites are currently assumed to be available for one day. The number of sites per 
kg of new roots is estimated as follows. The maximum number of cysts produced per 
em of root may vary between cultivars (Seinhorst and Den Ouden, 1971). The figure 
used in the model is 25 per em: between 22 (Trudgill, 1968, cited in Jones and Parrott, 
1969) and 30 (H. den ·ouden unpubl. data). With a mean root diameter of approx­
imately 0.5 mm (Mugniery and Fayet, 1981; H. van Heemst, pers.comm.; although this 
vades between cultivars - Evans et al., 1977) this gives 1.25 x 107 cysts/kg of roots. 
7) Development of parasitic larvae. The optimum temperature for development is 24 
oc (Ferris, 1957). Here, the time required for a parasitic larva to become an adult is 
16-20 days (Chitwood and Buhrer, 1946; J.\V. Seinhorst, pers. comm.). The model uses 
the data of Mugniery (1978a) (Table 1). 
8) Maturation of eggs in adult females. Females are assumed to mate immediately 
after reaching maturity. The time taken for adults to become cysts, and for fertilized 

Table 1. Development time of juvenile G. pal/ida at different temperatures. 

Temperature 
(o C) 

4 
9.5 

11.5 
15 
18 
19 
24 
32 

Development time 
(days) 

no development 
52 
34.6 
24.5 
19.0 
18.6 
16.5 
no development 
(Mai and Harrison 1959, 
cited in Franco, 1979) 
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eggs to develop into motile larvae, depends on temperature (Langeslag et al., 1982) 
(Table 2). · 

Table 2. Time required for fertilized eggs to develop into motile larvae. 

Temperature 
(° C) 

5 
25 
30 

Development time 
(days) 

no development 
14 
no development 

9) Cyst dormancy. Larvae can be stimulated to hatch from very young cysts (Ellenby 
and Smith, 1967). This initial sensitivity is assumed to last f0r 100Jo of the total cyst 
maturation time (H. den Ouden, unpubl. data). The duration of cyst dormancy is 
temperature-dependent (Ellenby, 1955) (Table 3). 

Table 3. Duration of dormancy of G. pal/ida cysts, in relation to temperature. 

Temperature 
(° C) 

10. 

10 

23 
32 

Maturation time 
(months) 

no development 
18 (from data of Ellen­
by (1955)) 
4 

development 

10) The number of eggs per cyst. This is virtually independant of the density of 
juveniles in the root (Hesling, 1961; Seinhorst, 1968). It is, however, strongly influenc­
ed by temperature (Fenwick, 1951; Foot, 1978; Stone and Parrott, 1980). The model 
uses a growth rate calculated from the temperature-dependent development rate (see 
Section 7) and the experimental data of Foot (1978) and A. van der Wal. (unpubl.) 
(Table 4). 

Table 4. Relation between temperature and the fecundity of G. pal/ida f.emales. 

Temperature 
(° C) 

8 
16 
20 
24 
30 

Number of eggs 
per cyst 

225 
250 
250 

50 
50 

11) Mortality. a) Cysts. This is assumed to occur only through spontaneous hatching 
in the absence of hosts (Section 1). b) Free larvae. No data are available on the effect 
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of temperature on mortality of juveniles in the soil. The model currently assumes 500Jo 
mortality per week (1.\V. Seinhorst, pers. comm.). c) Parasitic larvae. Mortality 
through failure to occupy sites in the root (Section 6). d) Adult females. 1v1ortality due 
to death of parts of the root system. 
12) The effect of invasion on the potato. The model currently assumes that a section 
of root dies if it is invaded by twice as many nematodes as it can support. No data 
are yet available on this aspect, or on the mechanisms resulting in the observed dif­
ferences in tolerance among potato varieties. The plant then reallocates resources to 
maintain a (development stage-specific) ratio of shoot weight to living root weight. 
The ratio of shoot weight to total (living plus necrotic) root weight is thus reduced by 
invasion injury (Seinhorst and Den Ouden, 1971; Evans, 1982c). 

C The programme 

The numerical integration uses the rectilinear method (see De Wit and Goudriaan, 
1978), with a time-step integration of 0.1 day. The language used in the computer pro­
gramme is CSMP, Continuous System J\1odelling Program. A listing of the pro­
gramme is on request available from the authors. 

D. Preliminary evaluation 

Since the parameters of the model do not all relate to a 'single set of conditions (i.e., 
with particular pathotypes and crop variety) precise, statistical comparison of. the 
model with a real system is meaningless. Preliminary comparisons with the system's 
overall behaviour must, therefore, be couched in rather general therms. 

The section considers four aspects of the model's predictions: the relation between 
initial and final density of eggs in the soil; the effect of harvest date; the effect of initial 
egg density on the yield of tubers; and the changes in nematode density during the 
potato growth season. 

a) The annual rate of increase. The predicted relation between initial and final den­
sities of eggs is shown in Fig. 2, with, for comparison, the data of Huijsm·an et al. 
(1969) and the relation given by Seinhorst (1968). Clearly, the form of the predicted 
relation is similar to that of the observed relation: there is good qualitative agreement 
between the model and the real system. Furthermore, the predicted maximum final egg 
density (170 eggs/g soil), equilibrium density (50 eggs/g soil), and maximum annual 
multiplication (50x) lie well within th~ range of values observed in the field (Jones and 
,Perry, 1978; Perry and Jones, 1981). 

b) The effect of early harvesting. As described by Mugniery (1978b) and Webley and 
Jones (1981), harvesting early (90 days after planting) results in a considerable decrease 
in multiplication rate and equilibrium density, provided the initial density is below 100 
eggslg soil. 

c) The effect of nematode density on tuber yield. The predicted relation is presented 
in Fig. 3. The form of relation derived by Seinhorst (1965) and shown experimentally 
by Den Ouden (1969) closely resembles that predicted by the model. The density above 
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Fig. 2. Relation between initial and final (at time of harvest) densities of G. pal/ida eggs in soil. 
a) Simulation results. b) Relation observed by Huijsman et al. (1969). 
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Fig. 3. Effect of initial density of G. pal/ida eggs on final tuber yield. 
a) Simulated. b) Observed by Den Ouden (1969) . 

. which yield is reduced (5 eggs/g soil) is within the range observed in real systems (A. 
van der Wal) pers. comm.) although this varies considerably among potato cultivars. 

d) Seasonal changes in the population. Fig. 4 compares the results of the simulation 
with the data of Evans (1969) for G. rostochiensis. The times of appearance of the 
various development classes are described fairly well by the model in its present form, 
although the different temperature responses of the two species make direct com­
parison difficult. 

The results obtained so far suggest that the model is capable of making fairly 
realistic predictions of the main features of the system. 
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Discussion 

The approach used in the control of potato cyst-nematodes must differ in two fun­
damental respects from that used against, for example, fungal or insect pests. 

First, dispersal of cyst-nematod~s is severely limited, so long-term consequences of 
treatments in a particular part of a field are not masked by immigration from other 
patches: This means that long-term control measures can be planned, in place of the 
short-term management used against many other pests. 

Secondly, cyst-nematode populations cannot easily be continuously monitored. In­
stead, estimates must be based on the effect of measurable climatic variables on an 
initial, measured population. 

Efficient, flexible control thus requires the development of simple sampling techni­
ques yielding accurate data on the overall density and the spatial distribution of the 
population. In addition, the model used in a flexible scheme must accurately simulate 
the development oflocal populations over an extended period. They must be 'strategic' 
models, in contrast to shorter-term 'tactical' models such as the EPIPRE system used 
in wheat pest management (Onstad et al., 1983). 

Despite the simplicity of the model presented above, it has already shown good 
agreement with several features of the real system. The predicted curves relating initial 
egg density to "final density apd tube_r yield resemble those in the literature; and the 
seasonal changes in population structure are simulated fairly well. 

The effects of the nematodes' patchy distribution on the damage relation 
(Seinhorst, 1973) can be modelled simply by simulating each patch separately (Perry 
and Jones, 1981) . 
. In addition, several other features of the system can be incorporated without struc­

tural changes. First, simple parameter changes will allow the model to be used to 
simulate the population dynamics of G. rostochiensis, or of the various pathotypes 
of the two species (Kort et al., 1977; Stone et al., 1979); and combinations of similar 
models can simulate competition between the species. Cultivar differences in hatching 
stimulus (Evans, 1982a, 1983), resistance, or tolerance due to root vigour (Evans, 
1982c; Trudgill and Cotes, 1983b) can be included by the alteration of only a few 
parameters, as can the differences in temperature thresholds between local popula­
tions ·(Ellen by and Smith, 1975; Mugniery, 1978a; Hominick, 1979; Langeslag et al., 
1982). Only slightly greater modifications are required to simulate selection for 
viruhince against host resistance (Stone and Turner, 1981). Here, assuming the gene­
for-gene relation (Jones, 1974b; Parrott, 1979, 1981), simple Mendelian genetics 
(Jones and Parrott, 1969; Jones et al., 1981) can be incorporated in a sub-model. 

There are, however, two important aspects of the system which are not simulated 
l;>y the model. First, it currently assumes that the growth of the potato is not limited 
by its .water balance. In many cases, however, this assumption is violated (Gandar and 
Tanner, 1976; Steckel and Gray, 1979; Asfary et al., 1983). Two mechanisms operate 
here: photosynthesis is closely related to transpiration (De Wit, 1978; Allen and Scott, 
1980); and water uptake determines the allocation of dry matter to the various parts 
of the plant (Brouwer, 1962; El Nadi et al., 1969; Davidson, 1969a,b; De Wit et al., 
1978; De Wit, 1978). 

Nematode damage has considerable effects on root activity (Evans et al., 1975; 
Evans et al., 1977; Evans and Franco, 1979; Evans, 1982b), and thus possibly on the 
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functional balance between shoot and root activity (Evans, 1982c). The second impor­
tant effect of invasion is that it alters the timing of various events in crop development: 
it stimulates senescence (Evans, 1982c), perhaps through its effect on the abscisic acid 

.levels in the plant (Evans et al., 1981; Evans, 1982b); and, perhaps more costly, it may 
postpone tuber induction (Seinhorst, 1979). The model is to be extended to include 
tl;lese effects when they can be reliably quantified. 

Curiously, these weaknesses in this particular model illustrate one of the main 
strengths of the approach: its structured, mechanistic nature means that even at an ear­
ly stage in its development questions are raised which demand precise, quantitative 
answers, e.g., how. many free larvae can invade a section of root without causing 
necrosis? By how much does each parasitic larva reduce the water uptake efficiency? 
The construction of such a model is thus also the construction of a precise framework 
for future research. The suggestion of research priorities becomes even more specific 
during the later stage of the process, when the model is simplified using the results of 
a sensitivity analysis. This examines the effect of each variable on the behaviour of 
the system, thus showing which variables are the most important and which others can 
be ignored. 

The second great strength of the dynamic simulation approach becomes apparent 
only after the model is able accurately to describe the system. At this point it becomes 
possible to perform experiments on the model, thus saving the considerable efforts in­
volved in preliminary experiments on the real system. Such imaginary experiments can 
rule out suggested control methods without the time and expense of field trials, thus 
allowing the field workers to concentrate their efforts on testing. the most promising 
methods. Throughout the process of construction, quantification, validations and use 
of the model, however, it is essential to remember that the model is only a simplified 
abstraction of the real system. Imaginary experiments, while an extremely powerful 

· tool for orienting research, can nev~r be a substitute for true empiricism. The two pro­
cesses, modelling and experimentation, must move in tandem, each stimulating and 
redirecting the other. · 
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Samenvatting 

Constructie en voorlopige evaluatie van een simulatiemodel van de populatie­
dynamica van het aardappelcysteaaltje, Globodera pal/ida 

Op dit moment vindt bestrijding van het aardappelcysteaaltje, Globodera rostochien­
sis en G. pal/ida voornamelijk plaats m.b.v. nematiciden, resistente rassen en 
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vruchtwisseling. In Nederland worden deze drie bestrijdingswijzen gecombineerd in 
cen stelsel van strakke voorschriften die wettelijk zijn vastgelegd. Problemen met 
resistentie en teruglopende effectiviteit in de bestrijding maken de ontwikkeling van 
een flexibele aanpak noodzakelijk. Teneinde deze regeling te· ontwikkelen is het nodig 
te beschikken over een inzicht in de populatiedynamica van het aardappelcysteaaltje 
en de gevolgen van hoge dichtheden voor de opbrengst. Op grond van 
literatu·urgegevens en niet gepubliceerde experimentele gegevens van diverse onder­
zoekers is een model geconstrueerd waarmee het populatieverloop kan worden 
berekend en waarmee de schade aan het gewas kan worden geschat. 

Vele relaties in dit model berusten op voorlopige schattingen, omdat nadere kwan­
titatieve gegevens ontbreken. Niettemin zijn de uitkomsten van het eenvoudige model 
zodanig, dat voorspellingen met het model mogelijk Iijken. Zowel de relatie tussen in­
itiele nematodendichtheid en de jaarlijkse vermenigvuldigingssnelheid, als het effect 
van de nematodendichtheid op de knolopbrengst worden goed gesimuleerd. Ook het 
effect van vroeg oogsten en de veranderingen in aantallen gedurende het seizoen 
worden goed gesimuleerd. 

Hoewel het model redelijke uitkomsten geeft en daarmee bruikbaar lijkt voor 
voorspelling en gevoeligheidsanalyse zijn er nog een aantal punten die verbetering 
behoeven. Zo ~ient het groeimodel voor de aardappel te worden aangevuld met een 
waterbalans, opdat situatie~., waarin watertekort optreedt goed kunnen worden 
behandeld. Voorts dient nauwkeuriger informatie over de fysiologische effecten van 
de nematoden op wortelactiviteit te worden ge1ntroduceerd. Deze verbeteringen 
vergen een goede synthese tussen voortgaande modelbouw en experimepteel werk. De 
resultaten van het nu geconstrueerde model tonen reeds aan hoe vruchtbaar deze 
samenwerking kan zijn. 
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