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. Het verdient aanbeveling de treinreiziger die alleen via een omweg zijn

bestemming kan bereiken een vergoeding voor het ongemak aan te bieden, in

plaats van de extra railkilometers in rekening te brengen.
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bij een gegeven antwoord.

Aan veel polymeeradsorptiemodellen zit kop noch staart.

Dit proefschrift, hoofdstukken 2,3,4,5, en paragraaf 6.5.

Destabilisatie van kolloiden door adsorberend polymeer is mogelijk in elk
oplosmiddel.

DPit proefschrift, hoofdstuk 5.

De grensvlakeigenschappen van een enorme diversiteit van polymeersystemen
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ABSTRACT

Scheut jens, Jan M.H.M., Laboratory for Physical and Ceolloid Chemistry,
Agricultural University, Wageningen, The Netherlands.

MACROMOLECULES AT INTERFACES; a flexible theory for hard systems.
Ph.D. Thesis, Agricultural University, Wageningen, (19853).

168 + 8 pages, 61 figures, 4 tables. English and Dutch summaries.

A statistical theory for flexible macromolecules at interfaces has been devel-’
oped. The theory 1s based on a lattice model in which the equilibrium set of
molecular conformations in a concentration profile is evaluated, using a self-
consistent procedure. In this way, the Flory-Huggins theory for polymer solu-
tions 1is extended to inhomogeneous solutions of macromolecules without any
additional assumption. Apart from the Flory-Huggins polymer-solvent interac-—
tion parameter Y%, a similar parameter Ag is used to describe the interaection
of polymer segments with a sclid interface. The average number of molecules in
each particular conformation can be computed, so that a very detaliled picture
of the interfacial structure is obtained. Thus also the traln, loop, and tail
size distributioms of adsorbed polymer canm be calculated. In prineiple, there.
are no adjustable parameters in the theory. Moreover, there are no restric-
tions on the system parameters such as polymer concentration, chain length,
number of species in a mixture or solvent quality, although in some cases
numerical problems may occur. Results are given for adsorption of homopoly-
mers, polydisperse polymer, polyelectrolytes, and star-branched polymer, for
the structure of lipid bilayers and of the amorphous phase of semicrystalline
polymer, and for the Interaction between surfaces due to the presence of
adsorbing or nonadsorbing polymer. Available experimental data on adsorption
isotherms, bound fraction, layer thickness, surface fractionation, steric
stabilization, and pelymer bridging agree very well with the theoretical

predictions.

Free descriptors: polymer adsorption theory, lattice wmodel, polymer chain
statistics, step weighted walk, adsorbed chain conformation, macromolecular
interfacial structure, segment density distribution, polymer concentration
profile, polymer adsorption isotherm, surface tension, steric stabilization,

flocculation, polymer bridging, surface fractionation.
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1 INTRODUCTION

1.1 GENERAL

The subject of this study is the behaviour of linear, flexible polymer
molecules at interfaces. A new statistical theory has been developed, which
gives a very detailed picture of the equilibrium state of the interfacial
region. The basic concept of this theory is applicable to all systems in-
volving concentrated inhomogeneous distributions of polymer molecules in
thermodynamic equilibrium.

Polymer adsorption from solution is a very universal phenomenon. Many
applications are based on the repulsive or attractive forces between two
polymer layersl-

In food technology and pharmacy the utilization of natural polymers like
polysaccharides and proteins as stabllizers for emulsions is widespread.
Other examples where the stabilization of colloids plays a major role are
pesticides, cosmetics, paints and inks.

Destabilization of dispersions occurs often at low concentrations of
polymer and is important in mineral processing and water purification. This
phenomencn 1s called flocculation, since one of the essential steps is the
forming of large floes with a loose but stable structure. The capablility of
inducing floe formation makes polymer wvery helpful for the improvement of
5011 structure.

Polymer adsorption and adhesion are operative in biological systems and
interfere with many processes used in polymer technology. It is crucial in
the production of magnetic tapes, rubber coatings for tires, and for the
operation of gum erasers.

Most applications have been developed without insight into the underly-
ing mechanisms. Some 30 years ago the knowledge about polymer adsorption was
very poor, but it has increased steadily over the last decadesz- In view of
the diversity of materials, the lack of suitable experimental techniques and
the complexity of polymer adsorption, it is not surprising that in most

cases a comparison between theoretical and experimental results show only



qualitative agreement. A detailed description of polymers at interfaces is
therefore of extreme importance for all applications mentioned above. A
quantitative prediction of the forces between two polymer covered colloidal
particles hinges on the knowledge of the exact shape of the polymer layers
in interaction. Due to the thermal motion of the flexible polymer molecules,
this shape is statistically determined and hence, a theory for polymer ad-

sorption is necessarily based on statistical methods.

1.2 POLYMER STATISTICS

1.2.1 Polymers

A flexible, linear polymer molecule consists of a chain of monomer

units. A variety of polymers exists3

« The namber of units in a c¢hain may be
as large as 105, but is usually between 10% and 10%. Molecules with less
than around 100 units are called oligomers.

For homopolywers the repeating units are all identical, whereas co-
polywers have two or more different types of monomer units in sequences that
are elther systematically (synthetic altermate and block copolymers, but :
also natural macromolecules like DNA, RNA, and proteins) or statistically
(random and blocky copolymers) arranged. Polyelectrolytes contain units that
are electrically charged. According to the nature of the charges the poly-
electrolyte is either weak or strong.

The primary structure of flexible polymers 1is not always strictly
linear. Some polymers are branched (irregular, star- or couwb-like) and a
special class is formed by the ring polymers.

In a homodisperse polymer sample all chains have the same number and
type of monomer units. Most synthetlc and many biological polymers are poly-
disperse: they have a statistically determined chain length distribution.
The term heterodisperse 1is used to refer to a distribution in monomer
sequences in random and blocky copolymers.

Solution and adsorption properties of polymers depend largely on the
characteristics of the chains and a general theory for macromolecules at
interfaces must be able to incorporate the main features of each polymer

type in order to predict its behaviour in real systems.




1.2.2 Polymers in solution

The solubility of macromolecules is low, due to their high molecular
weights. A polymer chain in solution interacts simultaneously with a very
large number of solvent molecules. Because of the rotational freedom of the
chemical bonds between the monomer units the chain can assume a large number
of different spatial arrangements and its shape is continually changing by
thermal motion. For sterical reasons each bond has a small number of prefer-
red rotational angles which determine the main permissible distributions,
called conformations, of the chain. The number of conformations is extremely
large. For example, if for a chain of X monomer units each bond has on the
average three preferred angles, the number of conformations is 3x_1, which

is approximately 10x/2.

Even for polymers with only 100 monomer units per
molecule this number is already as high as 2.1047. Since it is impossible to
consider every permissible conformation individually, a statistical approach
must be adopted.

The shape of the macromolecules is a weighted average of the shape of
their conformations. Energetically favourable conformations have a relative-
ly high probability. Specific interactions between monomer units, such as in
proteins, have a strong influence and reduce the number of significant con-
formations considerably. Therefore, proteins are relatively rigid, whereas
most homopolymers are flexible.

Much theoretical work has been done on the average shape of homo-

polymers4

. To some extent, they can be described as a sequence of identical
and rigid segments with bond angles that can assume any value. The length of
a segment and the number of segments per chain are adjusted such as to mimic
the length and flexibility of a real chain. Thus, with increasing flexibili-
ty of rthe real chain, the number of segments increase and their length de—
creases. Typlcally, each segment represents 2 to 5 monomer units.

1f the segments are infinitely thin, there is no excluded volume for the
segments and the conformations of the chain can be simulated by random
walks. The average shape of such a chain is that of a random coil. The
radius of gyration of such a coil, for a chain of r segments, is proportlion—

0.5

al to r”°”. However, a real poelymer chain has a finite thickness and it is

clear that two monomer units will never occupy the same volume. Hence, self-

5

avoiding walks are more appropriate. Computer simulations indicate” that a

chain of r spherical segments has a radius of gyration proportional to r0'6-



For finite chains the exponent depends on the ratio between length and
thickness of a segment and, for various geometries, it has a value bhetween
0.5 and 0.6. The volume of the chain acts as a repulsive force between the

segments which causes the coll to expand.

Although locally the chains are always self-avoiding, the overall con-

formation of the chain depends also on the solvent quality. There are two
cases In which a polymer coil has the dimensions of a random walk: in pure
liquid polymer and in an ideally poor or ©-solvent at low concentrations of

1:><:-lyme1:5

« In liquid polymer the repulsive force between segments of the same
chain equals that between segments of different chains. Coil expansion does
not decrease the total repulsion, but merely the number of conformations.
Only the entropy determines the average conformation. At low concentrations
in a ©@-solvent the hard core repulsion between the segments is compensated
by a mutual attraction, or equivalently, by a repulsion between segments and
solvent. Obviously, this latter repulsion decreases with decreasing solvent
concentration, hence, with increasing polymer concentration. Consequently,
in a ©-solvent, the coll expansion as a function of polymer concentration
exhibits a maximum and it 1is zero in very dilute solutions and in pure

liquid polymer.

The solvent quality is determined by the net interaction between seg- '

ments and solvent. The free energy of mixing of polymer and solvent has been

extensively examined by Flory and Huggins, who approximated the solution by !

a sgemicrystalline lattice. They introduced the parameter %, which gives the
interaction energy difference (in kT units) when a solvent molecule is
transferred from pure solvent to liquid polymerl*. For an athermal salvent
¥ = 0 and it increases with decreasing solvent quality. The entropy of
mixing was calculated by evaluating the number of distinguishable ways in
which a given number of solvent molecules and sequences of segments can be
placed in the lattice. It appeared that ¥y = 0.5 for a G-solvent. In a worse
than O-solvent (% > 0.5) the polymer is not soluble at all concentrations
leading to phase separation domains. For y < 0.5 the solution is thermo-
dynamically stable at all concentrations.

A lattice model 1is especially suitable for quantitative comparisons
between free energies under different conditions. The set of possible con-
figurations on a lattice comprises a representative sauple of the infinite

number of spatial distributions in a real system.




1.2.3 Polymer adsorption

Flexible polymer wmolecules are able to adjust their conformation in the
presence of an interface such as to maximize short ramge interactions
between polymer segments and the surface. The attraction between segment and
surface is multiplied by the large number of adsorbed segments per polymer
chain so that a strong attractive force per molecule is present, even when
the contribution per segment is only small. If enough surface area is avail-
able, each single chain in the system will be adsorbed. In this case the
adsorbed macromolecules are so far apart that they do not affect each other
{(isolated chains). The spherical shape of the polymer coils in solution
changes drastically upon adsorptioné’j.

A very elegant model for the description of the adsorption of isolated
chains is that of DiMarzio and Rubin6’7, who developed a matrix method for
the generation of all conformations, with their appropriate probabilities,
of a chain near a wall. As in the Flory-Huggins model, they represent the
conformations of the chain by random walks on a lattice. Each step in or
towards a lattice layer adjoining the wall simulates a segment in contact
with the surface and hence, is assigned a weighting factor eXp(XB), where
—Xg is the adsorption energy per segment (in kT units).

This and other models predict that most of the segments of isolated
adsorbed homopolymers form long sequences, 'trains', in contact with the
surface. The trains are interconnected by short 'loops' of segments sticking
into the solution. The chain ends are either adsorbed or form dangling
‘tails'. The average conformation of an adsorbed chain depends on the ad-

sorption energy. If %, is below a critical value ¥ the polymer does not

sc?
adsorb, whereas a value slightly above x,. causes the chain to adsorb in a
very flat conformation with long traims, short loops, and hardly any tail.
The cricical adsorption energy Yge is the energy per segment that just com—
pensates the conformational entropy loss of the chain when its shape changes
from a 3~-dimensional coll to a 2Z-dimensional conformation parallel to the
surface.

If the surface is saturated with polymer, the segments have to compete
for surface sites. With increasing polymer concentration, the fraction of

1. The first ctheories on polymer

segments in loops and tails will increase
adsorption at high concentrations calculate the number and lengths of loops

by minimizing the free energy of an adsorbed polymer layer with a predeter-



mined shape of the segment density profile in the loop region. For instance,

8

Silberberg” used a constant loop density and Hoeve9 an exponential decay.

For computational reasons, tails were not taken into account.

A few lattice models allow for the computation of segment density pro-!

10

files at high concentratlon: that of Mackotr and Van der Waals for ad-!

sorption of rigid rods, of Ash et al-l1 for adsorption of very short flex-i

ible oligomers, and that of Roel? for flexible nomopolymers. The most ad-
vanced theory is that of Ash et al., but it suffers from severe computation—
al problems. Only results for chains not longer than tetramers have been
obtained. The Roe theory applies for relatively thin adsorbed polymer
layers, with most of the segments in trains. This theary is not adaptable to
copolymers or special chain structures like branches and it gives no inform-
ation on the average conformation of the adsorbed polymer in terms of train,

loop, and tail distributions.

1.2.4 Reversibility of polymer adsorption

Theories that are based on equilibrium thermodynamics are not very use-—
ful for systems in which the establishment of equilibrium is very slow. A}
rather common opinion is that adsorption and desorption of polymer are very1
slow processes. Evidence that seems to support this view is amply avallable:
the adsorbed amount often increases slowly in time, even on a time scale of
weeks and once adsorbed, polymers are difficult to desorb by dilution. An-—|
other problem is that the amount adsorbed per surface area often increases
with increasing volume of the equilibrium solution. Because of these 'arte—.
facts' many experimental data were not very reproducible and polymer ad-
sorption was considered to be irreversible.

Fortunately, it has been shown recently that many of the apparent irre-

versibility effects are now quantitatively explainable using simple argu-
13

ments "« The most important parameter which has often been overlooked is the
polydispersity of the polymer. From dilute and semidilute solutions of a
polydisperse sample, long chains adsorb preferentially over shorter ones.
When the surface is saturated with polymer, the chains are cowpeting for
surface sites and small differences in chain length will discriminate
between 'winners' (long chains) and 'loosers' (short chains). The resulting

fractionation process may take a long time, because the diffusion of a small



fraction of very long chains towards the surface through a high concen-
tration of lower molecular weight polymer is slow. Thus, the average mole-
cular weight of the adsorbate increases slowly with time, due to the dis-
placement process. The variation in adsorbed amount reflects the molecular
weight dependence of the adsorption. If the latter is weak, displacement
still occurs, but it does not lead to a higher adsorption.

Adding more polymer, either by increasing the solution concentraticen at
constant volume or increasing the solution volume at constant concentration,
is tantamount to introducing new winners and the composition of the adsor-
bate will change again. On the other hand, removing polymer from the solu-
tion, which contains only loosers, does not affect the interface. Hence, the
hysteresis after addition and removal of the same amount of polymer is
caused by a difference in composition of these polymer fractions and conse—
quently, this hysteresis does not detract from the reversibility of polymer
adsorption.

Strong evidence that polymer adsorption is reversible is also available.
Apart from the quantitative prediction of polydispersity effects while as-
suming complete equilibrium, polymer adsorption is usually reversible with
respect to changes in solvent type, pH, and salt concentration. Hence, theo—
ries on equilibrium thermodynamics are in most cases appropriate and poly-
dispersity effects should be taken into account when the polymer is not

homodisperse.

1.2.5 Steric stabilizacion and flocculation

Polymer adsorption has a very pronocunced effect on the stability of
colloidal systemsl. A strong interaction between polymer covered particles
arises as soon as adsorbed polymer layers overlap each other. In a betcer
than O-solvent cthis interaction is repulsive and Increases the stability of
the dispersion, whereas in a worse than O-solvent the force is attractive
and flocculation ensues.

Loops and tails protuding from one particle may form bdridges by adsorb-
ing on free surface of another particle, inducing an attraction between
these surfaces. For flocculation to be effective the net interaction between
the particles must be attractive. Tf the particles are stabilized by elec-
trostatic forces, the loops and talls must protude beyond the double layer



]

8

in order to reach the opposite surface. & thick polymer layer is not con-—
sistent with free surface on the particles, hence flocculation occurs only
over a limited range of surface coverages. Bridging works most efficiently.

when fully covered particles are mixed with an equal portion of uncovered
14

particles

For a quantitative evaluation of the interaction between two adsorbed
polymer layers, the segment density profiles and the conformations of the:
polymer must be known as a function of the particle separation.

DiMarzio and Rubin15

have adopted their matrix model for one chain be-
tween two plates and showed that the interaction between the surfaces is
repulsive for non-adsorbing polymer (xs < xsc) and attractive for adsorbing
polymer (xs > %gp)» independent of the interplate distance.

For real systems one expects a repulsive force at small surface separa-
tions if the amount of polymer between the surfaces remains constant, since
polymer occupies a certain velume. Hence, a single chaln model 1s not able

to predict essential characteristics of a many chain system. A quantitative

model should give information for high surface coverages.

1.3 PURPOSE AND BASIC CONCEPTS OF THIS STUDY

The aim of the present study is to develop a theory that gives a detail—:
ed description of the behaviour of macromolecules at interfaces. For polymer
between two surfaces, the model must be able to predict steric stabilization
and flocculation quantitatively.

The lattice model of DiMarzio and Rubin]'5 1s chosen as a starting point,

since it allows to obtain all relevant informaticen about the chain conforma-

tions, is not rtestricted to homopolymers, and the generation of conforma-%
tions is much simpler than in the theory of Ash et al.ll.

The most important problem is to incorporate the volume of the E:egmem:s‘E
so that each lattice site is not occupied by more than one segment at a
time. In the model of DiMarzic and Rubin, this volume exclusion is neglect-
ed. Consequently, all steps have the same probability, except steps in or
towards a surface layer where the adsorption energy is operating. In a so—
phisticated model, all steps into a lattice site already occupied by a seg-
ment have to be prohibited. An exact solution of this problem 1is not yet

feasible. An approximate solution {is possible by using a mean field ap-




proach. Then the assumption is made that the probability that a site on
distance 1 from a surface is occupied is equal to the average wvolume frac-
tion ¢; of segments at distance i. This leads to a weighting factor 1 - by
for each step in or towards layer i. In this way a step into a region of
high segment density becomes less probable and the generation of conforma-
tions via random walks is shifted, to some extent, towards that via self-
avoiding walks. The volume fraction ¢; is to be obtained by the matrix meth-
od, where the matrix is now a function of all ¢;'s. A self-consistent solu-
tion can be found numerically.

When two surfaces approach each other and the polymer remains adsorbed,
the volume fractions ¢; increase and eventually the step probabilities de-
crease rapidly. The result 1is that the force between the surfaces is always
repulsive at short separations. At the minimum possible distance cthere is
only polymer in the gap (¢; * 1), the step probabilities are essentially
zero and the force is infinite.

Physically, the relation hetween step probability and volume fraction
simulates segments competing for surface sites. An interesting consequence
1s that adsorption of many chains on one plate can be studied using the same
model. For example, adsorption isotherms can be computed over the entire
concentration range, from zero up to liquid polymer, and for any chain
length.

The model as given above, applies to athermal solvents, i.e., when the
energy of a segment does not depend on the local concentration of other
segments. For other solvents the net interaction energy between segments
gives rise to another Boltzmann factor in the step probabilities, similar to
the factor exp(xs) for the adsorption energy. According to the theory of

Flory and Huggins4

the interaction energy of a segment at 1 equals
-x<$;> kT, where y is the polymer-solvent interaction parameter and <$;> is
the average volume fraction of segments arcund a site at i. In fact, a seg-
ment competes with a solvent molecule for a lattice site. Since a step cor-
responds to the replacement of a solvent molecule by a segment the total
energy change 1is —21<¢i> kT and hence, the Boltzmann factor becomes
exp(2x<¢i))- As discussed in section 1.2.2, in a O-solvent the interaction
energy compensates the repulsive volume forces between the segments at low
concentrations. In such a solvent ¥ = 0.5 and if the step probabilities for
steps not touching the surface are set equal to (1l-¢;)exp(2x<6;>) the expo-

nent indeed cowmpensates the decrease of the factor 1—¢i at low concentra-
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tions in a ©-solvent. In this way the salvent quality as expressed by the
x—-parameter is incorporated in the theory.

In order to give the theory a sound thermodynamie basis, a partition
function has been derived irom which the step probabilities can be found

directly, using a statistical thermodynamic procedure (see chapter 2).

1.5 COMPUTATIONAL PROBLEMS

The first computer program that solved the implicit equations was based
on a primitive iteration scheme and performed several hundreds of iterations
for polymer chains up to 40 segments long. For a chain of r segmeats, a
series of r2/2 matrix-vector multiplications was necessary for each itera-
tion. Fortunately, a considerable simplification of the DiMarzio-Rubin equa-
tions was possible (see the appendix of chapter 2) that reduced the number
of matrix-vector multiplications to r per iteration.

The number of iterations could be decreased by using the Newton-Ralphson

method, for which a good initial starting point is necessary. Such a start-

ing point can be obtained from the polymer adsorption theory of Roelz. With
increasing chain length r, a number of problems occur.
1) For adsorption on one plate the number of iteratiom varlables in-

creases, because the thickness of the adsorbed layer and hence, the

distance for which the segment density is higher than the solution
concentration inecreases proportional to Y. On the average, a total of
3¥r variables is required.

ii) A total of 3rYr quantities is to be stored during the matrix multipli-

cations. As this 1s currently impossible on most computers for

r 2 1000 an overlay structure, using a disk as backing store, or re-

peatedly recomputing of data is unavoidable.
1ii) The sequence of r wmatrix multiplications may induce floating point
overflows or underflows. A careful renormalisation of vectors solves

this problem.

iv) The Roe theory 1s not wvalid for long chains and provides in that case

a poor starting point, leading to a large number of iterations.
Calculations have been performed for r < 104, which covers almost the whole

molecular weight range of available polymers.

The exchangeablility of computer programs between different computers is
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still poor. The software crisis forces one to rediscover wmost of the compu-
tational tricks and to develop a new program for almost each desired varia-
tion of a model. A suitable programming language for the type of calcula-
tions in this study would have facilities for structured programming, dynam—
ic wmemory allocation, vector processing, on-line debugging, and access to a
mathematical library, including optimization routines. Currently, widely
used programming languages 1n science are Fortran, Basic, Algol60, and
Pascal. Of these, only Algol has the dynamic array facility which 1s wvery
suitable for this study. Unfortunately, it is impossible to write portable
Algol programs, since the input and output statements are not standardized.
The first program of this study has been written in Algol60 and all
subsequent programs in Simula6?. Simula is based on Algel60 with the addi-
tion of many facilities such as pointer structures. It 1s available on many
computers and is well standardized, but the number of users is not large.

Some simplified versions of our programs have been translated into Fortiram.

1.5 OUTLINE OF THIS STUDY

In chapter 2 the new theory 1s introduced and its derivation is given
starting from the partition function. The theory requires only 5 parameters,
all having a clear physical meaning. In principle, they are experimentally
accessible. A number of numerical results for adsorption of homopolymers is
shown and, where appropriate, compared with predictions from other theories.
It is demonstrated that the tall fraction of adsorbed polymer is much larger
than has been expected before. The assumption in other theories that end
effects can be ignored is not warranted at finite solution concentratious.

In chapter 3 the principles of the theory are explained in a more physi-
cal way and it is shown how to obtain more information about the structure
of the adsorbed polymer, such as the train, loop, and tail size distribu-
tions. In addition, the thickness of the adsorbed layer is shown to be pro-
portional to the quare root of the chain length in all solvents.

Comparison with experimental results in chapter 4 shows excellent agree—
ment for adsorption of homodisperse polymers. Preferential adsorption from a
solution aof polydisperse polymer 1is examined theoretically and a transition
from preferential adsorption of long chains to preferential adsorption of

short chains is predicted when the concentration of polymer in the solution
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increases beyond a volume fraction of the order of 10%.

In chapter 5 the interaction between adsorbed polymer layers is studied
in detall. It 1s predicted that the force is always attractive for systems
where polymer is allowed to desorb when two particles come close (full ther-
modynamic equilibrium). When the amount of polymer between the surfaces is
constant, the force is repulsive at high concentrations of polymer and at-
tractive at low concentrations, even in pgood solvents. This prediction
agrees with experimental evidence. The attraction originates from bridging
of polymer between two particles.

The principles of the new theory are applicable to many other systems
involving flexible polymers. In chapter 6 a number of examples are given:
adsorption of polydisperse polymer, of star-branched polymer, and of poly-
electrolytes; the structure of lipid bilayers and of the amorphous phase of
semi-crystalline polymer; and depletion flocculation in the presence of non-
adsorbing polymer.

The advantage of the new concept is that it can handle the entire molec—!
ular weight range, from monomers up to very long polymers, the whole concen-
tration range, all types of solvent, all sequences of different segments}
within the polywer chain, all types of branches aleng the chain and all;
mixtures of different (chain) molecules. Recent interest from technical and
industrial laboratories indicates that this study is not only of theoretiecal

importance.
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Statistical Theory of the Adsorption of Interacting Chain Molecules. 1. Partition
Function, Segment Density Distribution, and Adsorption Isotherms
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‘We present a general theory for polymer adsorption using a guasi-crystalline lattice model. The partition function
for a mixture of pelymer chains and solvent molecules near an interface is evaluated by adopting the
Bragg-Williams approximation of random mixing within each layer parallel to the surface. The interaction
between segments and solvent molecules is taken into account by use of the Flory-Huggins parameter x; that
between segments and the interface is described in terms of the differential adsorption energy parameter x,.
No approximation was made about an equal contribution of all the segments of a chain to the segment density
in each layer. By differentiating the partition function with respect to the number of chains having a particular
conformation an expression is obtained that gives the numbers of chains in each conformation in equilibrium.
Thus alse the train, loop, and tail size distribution can he computed. Calculations are carried out numerically
by a modified matrix procedure as introduced by DiMarzio and Rubin. Computations for chains containing
up to 1000 segments are passible. Data for the adsorbed amount I, the surface coverage 6, and the bound fraction
p = 0/T are given as a function of x,, the bulk solution volume fraction ¢., and the chain length r for two x
values. The results are in broad agreement with earlier theories, although typical differences occur. Close to
the sutface the segment density decays roughly exponentially with increasing distance from the surface, but
at larger distances the decay is much slower. This is related to the fact that a considerable fraction of the adsorbed
segments is present in the form of long dangling tails, even for chains as long es r = 1000. In previous theories
the effect of tails was usually neglected. Yet the occurrence of tails is important for many practical applications.
Our theory can be easily extended to polymer in a gap between two plates (relevant for colloidal stability) and

ta copolymers.

I. Introduction

The adsorption of polyiners at interfaces is an important
phenomenon, both frem a theoretical point of view and
for numerous practical applications. One of the areas
where polymer adsorption plays a role is in colloid science,
since many colloidal systems are stabilized or destabilized
by polymeric additives. In these cases, not only the ad-
sorbed amount is an important parameter, but also the way
in which the polymer segments are distributed in the
vicinity of a surface. An adsorbed polymer molecule
generally exists of trains (sequences in actual contact with
the surface), loops (stretches of segments in the solution
of which both ends are on the surface), and tails (at the
ends of the chain with only one side fixed on the surface).
If two surfaces are present at relatively short separations,
bridges (of which the ends are adsorbed on different
surfaces) may also occur. The properties of systems in
whith polymer is present depend strongly on the length
and distribution of trains, loops, tails, and bridges.

Many of the older theories!® on polymer adsorption
treat the case of an isolated chain on a surface. These
treatments neglect the interaction between the segments
and have, therefore, little relevance for practical systems,
since even in very dilute solutions the segment concen-

tration near the surface may be very high. Other theories’®
account for the interaction between chain segments but
make specific assumptions about the segment distribution
near the surface which are not completely warranted, such
as the presence of a surface phase with only adsorbed
molecules” or the neglect of tails.? For cligomers up to four
segments a sophisticated theory has been presented? but
its application to real polymer molecules is impossible due
to the tremendous computational difficulties involved.
The most comprehensive theory for polymer adsorption
as yet has been given by Roe,!? although here also a
simplifying assumption is made, namely, that each of the
segments of & chain gives the same contribution to the
segment density at any distance from the surface. Roe
arrives at the segiment density profile near the surface, but
does not calculate loop, train, and tail size distributions.
Recently, Helfand!! has shown that Roe’s theory is also
incorrect on another point, since the inversion symmetry
for chain conformations is not properly taken into account.
Helfand corrects this by introducing the so-called flux
constraint, but his calculations apply only to infinite chain
lengths.

Less work has been done on the problem of polymer
between two plates. DiMarzio and Rubin!? give an elegant
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matrix procedure for this case, but are not able to in-
corporate the polymer—solvent interaction. In two other
recent theories'®! this was done for terminally adsorbing
polymers. The paper by Levine et al.** can be considered
as a combination of the matrix method of DiMarzio and
Rubin and the self-consistent field theory.”® However, here
also the loop, train, and tail size distributions were not.
caleulated.

In this series of articles, we describe how the probability
of any chain conformation in a lattice adjoining one or two
interfaces is found from the partition function for the
mixture of polymer chains and solvent molecules in the
lattice. The crucial difference with the theories of Roe and
Helfand is that the partition function is not written in
terms of concentrations of individual segmenis, but in
terms of concentrations of chain conformations; throughout
the derivation the chains are treated as connected se-
quences of segments. The interaction between segments
and solvent molecules is taken into account by using the
Bragg-Williams approximation of random mixing within
each layer parallel to the surface, in a way similar to the
well-known Flory-Huggins theory for moderately con-
centrated polymer solutions. The segment density near
the interface is found from a modification of DiMarzio and
Rubin’s matrix formalism.'? Since the probability of each
conformation can be calculated, the distribution of trains,
loops, and tails (and for the two-plate problem also bridges)
can be found.

In this first paper we derive the adsorption isotherms
and the segment density distribution for polymer ad-
sorbing on one plate. In a second article, the loep, train,
and tail size distribution will be treated in more detail.
The general trends are in agreement with earlier theo-
ries,” 9 but an important difference occurs concerning the
segment density at relatively large distances from the
surface. In this region, the main contribution to the
segment concentration appears to be due to the presence
of long dangling tails. This outcome was not found by
former theories and may be considered as one of the most
interesting results of the present treatment. 1t is certainly
very important in the stabilization and flocculation of
colloidal particles by polymers.

In a subsequent publication we shall treat the problem
of polymer between two plates which is, among other
applications, relevant for flocculation. Our method can
eagily be extended to {block and random) copolymers, to
heterogeneous surfaces, etc. In later contributions these
aspects will be dealt with.

II. Theory

A. Formulation of the Model, We consider a mixture
of n polymer molecules, each consisting of 7 segments, and
n? solvent molecules distributed over a lattice such that
each solvent molecule occupies one lattice site. In the
present paper, we consider only homopolymers of which
each segment has the same size as a solvent molecule and
also occupies one lattice site. The lattice adjoins an ad-
sorbing surface and is divided into M layers of sites parallel
to the surface, numbered { = 1, 2, ..., M. Each layer
containsg L lattice sites. Therefore

n®+rn = ML (1)

The volutne fractions of solvent in layer i are indicated by
4" and &, respectively, and are given by

o =n/L  #=n/L (2)

where n? and »; are the numbers of solvent molecules and

polymer segments in layer i, Far from the surface these
volume fractions approach the equilibrium bulk volume
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Figure 1. Some examples of different arrangements for a chain of
10 segments (r = 10). All the indicated arrangements bekng to the
conformation (1.1%2,2)(3,2)(4,3K5,3X6,4X7.4)0,549,6)(10.6). This
example applies to a simple square iwo-dimensional lattice (z = 4, A,
= 1/4, Ay = 1/2). The rymber of different arrangements in the given
conformation is z®\h,*' = 16. Only four of them are indicated.

fractions ¢.° and ¢., respectively.

If z is the coordingtion number of the lattice, a lattice
site in laver i has 2 nearest neighbors, of which a fraction
Mjisinlayer j. Thus, b = hifj=dand A ;=2 =5,
it y =i+ 1. As there are no nearest neighbors in non-
adjacent layers, A;; = 0 if f - i| = 2, and we may write

M
A=l 1<i<M 3
=

For the two boundary Jayers (£ = 1 and / = M), a correction
has to be applied since there is only one adjacent layer,
and a segment has only z(A; + X)) = z(1 - A}) nearest
neighbors. Thus

M
Eag=l-N i=LM (4
i=1

The segments of a polymer chain are labeled s = 1, 2,
..y F. Each chain can assume a large number of possible
conformations in the lattice. We characterize a confor-
mation by defining the layer numbers in which each of the
successive chain segments find themselves. We denocte
such a conformation by

(LH2MNE ). = LD{rm)

indicating that the first segment is in ¢, the second in j,
the third in k, ete.

We have to realize that a conformation defined in this
way is actually a set of many different arrangements. If
segment & is placed in i and segment s + 1 in j, the number
of different positions of segment 5 + 1 with respect to
segment s is zxg if j = i and 2z, if j =i £ 1. A dimer with
conformation (1,/)(2,)) can assume Lz;; different posi-
tions; a trimer with conformation (1,i)(2,/)(3,k) can be
arranged in Lz%\; ), ; different ways, at least if backfolding
of the chain is allowed. For example, in a simple cubic
lattice (zA; = 1) backfolding accurs in the conformation
(1,2)(2,3)(3,2). In section ILD, we shall correct partly for
this backfolding effect. Figure 1 illustrates for a simple
case some different arrangetments in a conformation.

We label the different conformations by ¢, d, ... If
conformation ¢ for an r-mer is characterized by the se-
quence given above, the number of different arrangements
in this conformation is given by Lz"‘l,»_,-lk_j...k,,._,. More
generally, we can write for the number of arrangements
Luwz"" where w,.is given by

we= T 0 ®
=
Here (A ;+1)c = X if, in conformation c, segments s and s

+ 1 are in the same layer, and {}, 1), = A, if these two
segments are in neighboring layers. Since 2! is the
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nutnber of arrangements for a chain in bulk polymer, of
which one of the segments is fixed, . may be considered
as the ratio between the number of arrangements of
conformation ¢ and that in bulk polymer.

If the number of polymer molecules in conformation ¢
is n., we have

n=2Xn (6

where the summation extends over all possible confor-
mations ¢. Obviously, the numbet of terms in the sum-
mation of eq 6 increases sharply with r. In a few cases we
will consider all the possible arrangements of only a part
of the chain. Then, we will use the symbol w,(s,t} to in-
dicate the relative number of arrangements of the chain
part from segment s up to and including segment i,
Similarly, a summation ¥, , specifies that all the possible
conformations of that part of the chain have to be taken
into account. In this terminology, w, in (5) could be written
as w(L,r) and 3, in (6) as 2.

For the further elaboration it is expedient to introduce
the symbol r, . for the number of segments that confor-
mation ¢ has in laver i. Then the number of segments in
layer i is given by

n = E Fiolle (7)

In the following sections we need a symbol to indicate
the layer number in which segment s of conformation ¢
finds itself. For this we use k(s,c). Here, k is one of the
layer numbers 1, 2, ..., M and is completely determined if
conformation ¢ is specified.

One remark on the use of conformations as defined
above is in order. This definition corresponds to cne
particular way of grouping the possible arrangements of
individual chains in a set. Other ways of grouping are, in
principle, possible. Also, a procedure could be used in
which the individual chain arrangements are not combined
in sets but are all treated separately. It is easily proven
that, althaugh the pattition function te be detived below
iz slightly changed, the equations obtained after max-
imization of the partition function are identical. Therefore,
the grouping of chain arrangements in conformations as
defined above is only a matter of convenience.

B. Partition Function. Roe'® gives an approximate
expression for the canonical partition function Q(M,L,-
T,In0) for a given concentration profile [n9 of solvent
melecules in a lattice of M layers with L lattice sites each.
From this partition function, the equilibrium distribution
of solvent molecules and thus also the overall distribution
of polymer segments can be derived. Roe made no attempt
to calculate the distribution of trains, loops, and tails.

Roe's approach involves the assumption that the dis-
tribution of a polymer segment does not depend on its
ranking number s. The contribution of each of the r chain
segments to the segment concentration 4; in each layer is
considered to be equal to ¢;/r. This is correct in bulk but
not near an interface, because the interface imposes re-
strictions which are not necessarily the same for end and
inner segments. As Helfand'! has shown, Roe’s derivation
contains another error because the inversion symmetry is
not obeyed. This is the requirement that conformation
¢, defined as (1,i)(2,/)...(s.%)...(r,{), should have the same
probability as the inverted conformation ¢, characterized
by the sequence (L,{)...(r —s + Lk)...(r — 1,/){r,i). Helfand
maintains this symmetry by introducing an extra con-
straint, the flux constraint. His results apply ounly to
infinitely high chain lengths, The flux constraint is only
necessary if the partition function is written in terms of,
and maximized with respect to, the concentrations of
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individual segments in each layer. It may be considered
as a correction which is necessary to account fully for the
connected nature of the segments in a chain.

An alternative detivation is possible if the partition
function is maximized with respect to the numbers of
polymer chains in each conformation, i.e., with respect to
concentrations of chains in each conformation. This has
the additional advantage of giving immediately the
probability of every chain conformation in the equilibrium
situation, o that the train, loop, and tail size distribution
can be easily evaluated. Moreover, as will be shown below,
the inversion symmetry is an automatic result of this
approach. Thus, we want the canonical partition function
Q(M,L,TinJ) for an arbitrary but specified set of con-
formations {n,}. We have to realize that a given overall
segment distribution can be the result of a great number
of different combinations of trains, loops, and tails.

We now give a derivation of Q(M,L,T\inJ). Since the
nutnbers of chains in each conformation and thus the
numbers of solvent molecules in each layer are specified,
the energy 7 of the system for each of the possible ways
of arrangement is the same, at least if we adopt the
Bragg-Williams approximation. Therefore, the partition
function can be written as the product of a combinatory
factor (representing the configurational entropy) and
exp(-U/kT). In accordance with Flory'® and Roe!” we take
as the reference state disoriented bulk polymer and pure
solvent. Then

QM.LTinp = Hﬂ;e—ww @&

Here @ is the number of ways of arranging n,, ng, iy, ...
polymer molecules in specified conformations, and n,°,
.10, ..ny° solvent molecules over M distinguishable layers
of L lattice sites each. 7 is the number of ways of ar-
ranging n polymer chains over rr lattice sites in amorphous
bulk polymer.

The combinatory factor & has to be evaluated according
to the assigned distribution of conformations ). Nat-
urally, if this set of conformations {n.} is specified, the
concentration profile |r} is completely determined.

We use the Bragg-Williams approximation of random
mixing within each layer. This implies that the polymer
segments in each layer are considered to be randomly
distributed over the L lattice sites. The number of ways
of placing a chain in conformation ¢ in the empty lattice
is Lw2"" (see eq 5). If part of the lattice sites is already
occupied, a chain can only be placed if all the appropriate
sites are vacant. Then we have to apply r correction
factors, one for each of the chain segrnents. The correction
factor for each segment is the vacancy probability of the
gite 10 be occupied. According to the Bragg-Williams
approximation, we assume that all sites in layer { have the
sarne vacancy probability, equal to 1 — »;/ L, where p, is the
number of previously occupied lattice sites in layer i.
Obviously, »; = 0 for an empty layer. The number of
possibilities of placing one chain in conformation ¢ can now
be written as Low2"™ 1ﬁ,={ (1 - oo/ L) = ez /LY (L
= Ppsoohs Where vy, oy, is the number of previously occupied
sites in the laver where segment s of conformation c is
placed. For example, if conformation ¢ of a hexamer is
given by (1,)(2)(3,)) (4,/)(5,k}(6,/), w, = A,% and the number
of possibilities of placing this conformation in a lattice
where a;, a;, and g, lattice sites in the layers i, j, and % are
already occupied is (Az/LY(L - a ML — g} (L —a; - 1KL
—a;— L)(L - ay)(L - a; - 2). Generally, since r;, segmenta
are placed in layer {, this layer contributes r;, factors,
namely, (L -e)(L - o, - IML-a;-2}. (L -a,~-rj; + 1),
to the multiple product IT,."(L - vy, o). The product over
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the segment numbers can thus be replaced by a product
over the layer numbers. The number of arrangements «
of placing the first chain (in conformation c) in the empty
lattice {a; = 0 for all i) becomes

rie—1
w = wiz/Ly ﬁl @-w 9

where layers in which conformation ¢ has no segments
(thus for which 7, = 0} do not contribute to w.

Placing all the n, chains of conformation ¢ gives a factor
w2/ L)1 in (9} while the multiplication extends up
to v, = nr;o ~ 1. Similarly, the number of arrangements
for n = 3 .n, chains is

wln) = (z/L)r0n H w,™ H H (L-vy 10)

i=l =0
because r; = ¥ .r; .n. segments are placed in each layer.
Next, solvent molecules have to be arranged over the L -
n; remaining lattice sites, giving for each layer [[, ., XL
- v;} possibilities. Thus, we find for Q the simple expression

o= e men 12 1L an
¢ it =g

since IT,.,ML! = (L)™. The factorials n.! and #," in (11)

correct for the indistinguishability of the n, chains in each

conformation ¢ and of solvent molecules within each layer.

It may be noted that the order of placing chains and

solvent molecules is irrelevant for the final result. Sim-

ilarly, it does not matter which of the r chain segments of
a chain is placed first.

The combinatory factor 2* has been derived by Flory'¢
and can be written as

Q= Q(z/rn)(r-l)n 12

This combinatory factor can also be found by a procedure
similar to the derivation of our eq 11. In the bulk all the
lavers i are identical, so that the distinction in lattice layers
is irrelevant. Since rx is the total number of {equivalent)
lattice sites in bulk polymer, the factor (L)* in (11} has
to be replaced by {rn)! and the factor L¥1% by (ra)"1h,
Moreover, all possible conformations are equally probable,
and we can group them together in only one conformation.
Substitution of n. = n, w, = 1, and n? = 0 in (11) gives the
Flory exprassion (eq 12), demonstrating that our eq 11 is
in complete agreement with earlier theories.

Co:abinatiun of (11) and {12) gives for the entropy part
of ln ¢

In /0t =MLInL - Enc]nnc/wc ZnJ Inn®-
nlnr'f(rf!)nlnL (13)

if Stirling’s approximation for the factorials is applied.
The energy of the system contains a contribution due
to the adsorption energy and a mixing term originating
from the polymer—solvent interaction. We assume that in
both cases only nearest-neighbor interactions are involved.
The mixing term depends on the number of contacts
between segments and solvent molecules. Each solvent
molecule in layer i has 2z}, ; contacts in layer j, a fraction
¢; of which are with polymer segments, accurdmg to the
Bragg-Williams approxlmatlon Smce a site in { has
neighbors in the layers j = { - 1, [, { + 1 the number of
unlike contacts per solvent molecule in i is 23 ;M\ 0,
"['he total number of contacts is found by multiplying wi
n? and summing over all layera i. Thus, the total number
of contacts of solvent molecules with segments is
23 :-n2(#,) and the (equal) number of segment-solvent
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molecule contacts is z¥",-,"n{$.%), where the site volume
fractions (¢} for segments and {$,%} for solvent molecules
are defined as

M M

(¢} = Z1 Mg, (8% =,~>:1 A {14

I= =
In the bulk solution {¢.) = ¢. and (¢.%) = ¢.% Forl <
P<M (@) + (¢ =Lifori=landi =M, {¢;) + (")
=1 - &, [compare eq 4).

Using the familiar Flory-Huggins polymer solvent in-
teraction parameter,® we can write for the energy part of
In Q:

M

U=nu, + %L+ 2Ty Z nPe) (15)

=1

In this equation, u, and ., are the adsorption energies of

a segment and a solvent molecule, respectively. They

represent the energy change corresponding to the transfer

of a segment (or solvent molecule) from bulk polymer (or

solvent) to the surface. Equation 15 has also been given
by Roe.!®

It may be noted here that the energy terms in eq 15 also
contain the thermal entropy, i.e., the additive part of the
entropy proportional to the number of segments or solvent
molecules. This thermal entropy includes vibrational and
rotational contributions; the adsorption energy u, may
contain entropy terms due to otientation of solvent
molecules near the surface (hydrophobic bonding). In this
sense, the energy terms u,, 1., and kTx may be considered
as free energies. Obviously, the configurational part of the
entropy is accounted for in In /0%,

C. Conformation Probability. Equations 13 and 15 give
the logatithm of the partition function at a given distri-
bution of conformations {n .}, which in general does not
correspond to the equilibrium distribution. In order to find
this equilibrium distribution, i.e., the number of chains ry
in a particular conformmation d in the equilibrium situation,
we have to find the derivative of In Q with respect to ny.
The free energy of mixing is given by F/kT = -In Q. At
constant temperature and volume the variation in F is
given by dF = ¥, dn, + %i=/Mu® dnl. In equilibrium
the chemical potentials x, = pg = « Mehain of a chain with
respect to that in bulk polymer, and wd=pf=_ ulofa
solvent molecule with respect to that in pure sulvent are
constant throughout the system. Adding one chain in
conformation d (and removing r solvent molecules to
maintain constant volume) changes F hy an amount
(8F { 0Nglag 1, T n, ny 80 that

aln Q
-&T ( = fichain +
M ML Trmny
(] M [ on? 0
mn = penain — Fu® (16)
d J MLTomn,

Roe'® derived an analogous expression using the grand
canonical partition function. In eq 16 g - Tet is a
constant at given temperature and overall composition.
The derivative an,?/an, in (16) is obtained by realizing that
the differentiation has to be performed at constant volume.
This implies that on addition of one chain in conformation
d, r solvent molecules are removed from the system, of
which the spatial distribution is given by

Fia= ‘(6"1;0/3"1.1)141,,1’,»‘ ny (17)

because in each layer r; ; solvent molecules are displaced
by the r;4 segments that conformation d has in layer {.
DOhviously
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M
Erg=r {18)
i=t

The logarithm of the partition function is given by eq
13 and 15. The derivative of eq 13 is easily found with the
help of {17), (18), and an/ing = a(F_ .} /ans = 1. The result
18
aln (/0% ng
————— =-lh++hwy-nr+r-1+
any L

M
§ rigtn g2 (19)

For the differentiation of (15) we use also relation 17.
‘We obtain

H-U/RT)

any

M
= 2 ridbxdi + xUdd - (oD (20)

Here x, is the adsorption energy parameter, defined as
X =l - u) T (21

x, corresponds to the difference between the free energy
of the transfer of a segment from bulk polymer to the
surface and that of the transition of a solvent molecule
from pure solvent to the surface. x, is positive if a segment
is adsorbed preferentially to a solvent molecule. It is
idenﬁ‘ijcal with the x, parameter used by Silberberg” and
Roe.
Combining eq 16, 19, and 20, we obtain

M
Inng/L=lnC+lnwg+ ZrygnpP; (22)
i=1
or
M
ng/L = Cugll P @
i

where the conastant C is given by C = {1/r) exply g, —
ru%)/&T and the quantity P; is defined as

In Py =8+ x{g) — {@8) +Ing®  (24)

P; is a very important parameter determining the prob-
ability of finding a free segment (monomer) in layer ;. This
can be concluded from (23). For r = 1, this equation reads
¢ = /L = P;explu - u®)/&T. As for monomers P, is
proportional to ¢;, we may call P, the free segment
probability, According to eq 24, P, may be written as
@0 M T where A is the difference in free energy
{excluding the configurational entropy) between a free
segment and a solvent molecule in layer i. Af, contains
an adsorption energy contribution -k Ty, for the first layer
and & mixing term 2Tx{({¢°) - {&,)) arising from the
segmeni-solvent. interaction. The Boltzmann factor
exp(—Af//kT) has to be corrected by a factor ¢, the
fraction of the volume in layer ¢ not vccupied by segments.
‘This factor ¢;° = 1 - ¢; originates from the configurational
entropy term of In Q; ¢; represents the volume fraction
which is excluded due to the presence of other segments.
This effect is partly analogous to the well-known excluded
volume effect for polymer chains in solution. If ¢ ~ 1,
this “exclusion factor” is not impartant. That ¢? is an
entropy contribution may alse be seen by writing P, as
exp(-Af;/RT) where Af, = Af - BT In ¢,° now also includes
the configurational entropy term & In ¢

The starting point for further analysis is eq 23. It gives
the relation between the number of chains in each con-
formation (of which the number of segments in each layer
;415 known) and the free segment probability F; in each
of the layers. Equation 23 tells us that the probability of
a conformation d is proportional to the quantity
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wyl I, MPr, which we will call the conformation prob-
ability. From this probability, all information on the
segment density distribution and other equilibrium
properties (such as the train, loop, and tail size distri-
bution) may be obtained.

Equation 23 leads immediately to the conclusion that
any conformation has the same probability as its inverted
conforrmation (in which the segments arve ptaced in reverse
order), since all r; 4 values are the same for both confor-
mations. Thus the inversion syrnmetry discussed in section
ILB is an automatic result of our derivation and need not
be introduced as an extra constraint, as was done by
Helfand."* As discussed before, this is due to the fact that
the partition function is maximized with respect to the
number of chains in every conformation, which accounts
completely for the connected nature of the chain segments.

D. Segment Density Distribution. In this section we
calculate the equilibrium segment density distribution
from the conformation probability P(r),, which according
the the previous section can be defined as

i+
Pir)e = w, ﬁl Pfis = w, ]:11 Py (25)

Here we have used the fact that a product of P; over the
consecutive layer numbers § may be replaced by a product
over the consecutive segment ranking numbers s. In both
products the free segment probabilities corresponding to
each chain segment are taken once, and only the order in
which the P/’s occur is different. Py, is the free segment
probability for a segrment in the layer where segment s of
a chain in conformation ¢ finds itself. This layer number
is completely specified if ¢ is given.

We define the chain probability as the summation of
P(r). over all possible conformations:

P@) = X P, {26)

Pir) will be needed as a normalization factor.

Tt is useful to consider the probability P(s,i;r) that the
sth segment of any chain of r segments finds itself in i.
The probahility Pis,i;r), of a conformation ¢ of which the
sth segment is in i is equal to P{r), with the additional
condition that Py, ) = P

Plsiir), = w. ﬁ Pm,p]P-’ IL[ Pw,c) =
t=1 r=s+1
w, 5
£ 1 Pia f1 P @)

The last part of eq 27 is ebtained by including Py, = F;
in both multiple produets and is written in this way for
later convenience. Note that P(s,iy7). equals P(r), if
segment s in conformation ¢ is in layer ¢, and zero if s is
not in . Obviously, the probability of finding the sth
segment of any chain in layer ¢, Pls.f;#), is obtained by
summing over all possible conformations:

Pls,tr) = 2 Plsiir), (28)

Summation of P(s.£;r) over all layers gives just the chain
probability P(r):

M M

2 Pisizr) = L El Plsir). = L P(r), = Pir) {29)
= ¢ o= c

As mentioned above, the summation of Pis,kr), over all

layers gives only ane nonzero term P(r),.

A special case of P(s,i;7) is the probability P(ri;r) that
1he end segment of any chain of r segments is in layer i.
We use an abbreviated notation for this quantity: P{i,r)
= Pir,;;r). We can write P(i,r} as 3 P(r}, with the addi-
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tional condition that Py, = P;. According to (25}
Pl = B, E e I Pro @0
From (29) it follows:
._}J::fl PG,r) = Pir) (31)
We designate P(i,r) as the end segment probability.

The segment density in layer i is proportional to the
summation of P{s,i;r) over all the r chain segments:

& g Plsi;ry L
u L= “’ E P(s,;;r)  (32)
L rP(n) n
pIR-Y El Zl Pls i)
im] i=] g=

Thus, if we are able to evaluate the probabilities P(s.i;r)
we can calculate the segment volume fraction ¢; in each
layer. This we accomplish in two steps. First we show that
P(s,i;r) for any s can be expressed in the end segment
probabilities P{i,s} and P(i,r—s+1), and next we use a
well-known matrix procedure? to obtain the end segment
probabilities P(i,s).

‘The first step starts from eq 28 in which the summation
over all the possible conformations of the entire chain,
% et i8 replaced by a summation over all the possible
conformations of the first part of the chain, 3, ., and one
for the second part, 3. If segment s is in layer i, the
possible conformations ¢(1,s) are independent of the
conformations c{(s,r) because for any conformation of the
first s segments all conformations for the last r -5 + 1
segments are possible. Thus, we may use the relation
X ab = (La)Eb). Substituting (27) for Pis,i;r), and
splitting the multiple product w, = w (L} = [T, (A 41)e
in the factors w,(1,5) and w.(s,r) (compare eq 5}, we may
write:

Plsir)= L E Pls,ir). =

I.,x cls,r)

_( E w (1.’3) H Pi:(z,c:)( Z Wc(S r) H Pkfl CJ}
B c J'
Since Py, = P, the first factor between brackets equals
Pli,5), according to (30); the second factor is equal to
P{i,r-s+1) because the humber of conformations of the last
r - & + 1 segments should be equal to that of the first r
-5 + 1 segments. Therefore we have

Pls.iir) = P(i,s)Pli,r—s+1) /P, (33)

Thus, through eq 32 and 33 ¢; for r-mers can be expressed
as & function of end segment probabilities of shorter chains.

The second step for the calculation of ¢, is to find a
procedure to evaluate P(i,s). If the end segment of an
r-mer is in layer /, the {r-1)th segment can be in layer J
{1 2 j £ M), with a nonzero probabilityonly if j =i -1,
i,i + 1. The probability P(i,r} that the end segment of an
r-mer is in { can then be expressed in the probabilities
P(j,r-1) that the end segment of an (r-1)-mer is in layer
Jj. Using eq 30, we can again split the summation in two
parts: Toun = Leurplcr s AS the rth segment is fixed
in layer i, the summation ¥, includes only the possible
positions of the {r-1)th segment and may be replaced hy
a summation over j if w{r-1,7) is replaced by A;; and
Pip 1 by P Thus

Piir) = TA PP, lz @t rfl Prsor
e(lr-1 L

In this expression we recognize P(j,>-1), so that we can
write

J. M. H. M. Scheutjens and G. J. Fleer

Plr) = ): APPGr-1) 34)

It may be noted here that in thig derivation it was
assumed that the free segment probabilities P, for the last
segment, P, (j = i, § % 1) for the penultimate {(r—1}th}
segment and P, (k = /, j £ 1) for the antepenultimate
segment are independent of each other. P, P}, and P,
include a factor for the everage solvent volume fractwns
in the layers ¢, j, and k. This assumption implies that
backfolding of the chain (i.e., & = / in the example given}
is allowed under the constraint of the average excluded
velume in each layer. In other words, if segment r — 2 is
placed in i and segment r - 1 in i + 1, segment. r may fold
back to i with a probability P; in which the presence of the
(r-2)th segment is accounted for in the same way as the
presence of all other segments in i. Segment r - 2 is, like
all the previcusly placed segments, considered to be
“smeared out” over all the lattice sites L in i. A similar
approximation is made in the familiar Flory-Huggins
lattice theory.!®

Equation 34 can be expressed as a matrix multiplication
by defining a vector P(r) with M components P{z.r), whose
s according to (31) equals P(r), and a matrix Weof which
the elements W; are equal to A ;P Therefore

P(r) = WP(r—1) = WiP(1) (35)

where the components of the vector P(1) are the “end”
segment probabilities of a monomet and are thus simply
equal to F; as defined by (24). The matrix Wis, apart from
a different interpretation of P; (in which the polymer—
solvent interactions are included), identical with that used
by DiMarzio and Rubin.}? -

Thus we can calculate all the end segment probabilities
Pli,s) fors = 1, 2, ..., r. Substituting {33) into (32) and
realizing that 3, ™¢,; = nr/L we obtain

n_
LP P, E P(is)PUr-s+1) (36)
From these M implicit equations the M ¢,’s and the
equilibrium values for P; can be solved by an iteration
procedure {see section I11). We can arrange all the nec-
essary information in the array shown in eq 37, where the

=

POLYY LU PLS) ... Py
P=| ALY . P(EY L P 37)
PM1) .. PIMs). .. PIMr)

components of the first column are equal to P,...P,...Pyyand
the companents of the sth calumn P(i,s) are found from
the first after s - 1 matrix multiplications. The sum of the
components of the last column is equal to P(r) according
to (31}). For the calculation of ¢; we need the ith row of
array P, and we have to add the r products of the first and
the last, the second and the penultimate, the third und the
antepenultimate element, etc.

All the probabilities P(i,s;r), P(i,r}, and P{r} used in this
section depend on the lattice size M and on the average
segment concentration rn/ML. We shall need these
guantities in a following paper where we shall discuse the
case of a polymer between two plates at relatively short
separation and a constant ameunt of polymer. For the
adsorption on a single plate we relate the concentration
of polymer to the bulk volume fraction ¢.. It appears
advantageous in this case to use probabilities related to
those in the bulk schation.
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E. Adsorption Isotherms, In calculating adsorption
isotherms and related properties, the state of a chain or
a segment near the interface has to be compared to that
in the bulk of the solution. Consequently, it is useful to
define the probabilities of any configuration near the
interface with respect to those in bulk. We shall denote
bulk properties by an asterisk.

The free segment probability P. for a segment in the
bulk solution is analogously to eq 24 given by

In P. = x{dv— 6.2 + In (38)

We now define the free segment probability p; with respect
to the bulk solution as

p:= Fi/P. 39)

It is easily verified that p; can be written as (¢,%/¢.%:
exp{-Af*/kT), where Af* is the free energy difference
{excluding the configurational entropy) for the exchange
of a solvent molecule in layer [ and a free segment in the
bulk, The entropy factor ¢.°/¢.0 accounts for the dif-
ference in the “volume exclusion™ effect for a segment in
layer { and a segment, in bulk. It is obvicus that p. equals
unity.

With eq 39 we define the vectors p(r) and the matrix
was

ptr) =P /PS pG.1) = p; (40}
w=W/P wy=hap 4y
It may be noted here that the error introduced by allewing
backfolding (accounting for the average volume fraction)
is eliminated here to a large extent if this effect is equally
important in the bulk and in layer i, because probabilities
in layer i are now compared with those in bulk, Now eq
35 becomes
p(r) = wp(r-1) = w™'p(1) (42)
In a more explicit form, (42} can be given as shown in eq
43. Equation 36 can be written in a simpler way by re-

r-1

pn_.r) APy Mgty Qniee 0 »
; Mpe e, T .
p({.rl = i lom"MP‘I' 2
: : e T :
: L TP
piMr) [+ o o o2y Pu
(43)

alizing that from {34), which remains valid if F; and P( r)
are replaced by p; and p(i,r), follows that p(*,r) = p(*,r-1)
= p(*1) = p. = 1. Equaticn 36 applied for bulk soluticn
gives

e = nr/Lp(r) (44)
This can be substituted in {36), giving the result
¢ 1 .
¢ = — = L pligkplir—s+1) (45)
r pl 3=1

Also the components pli.s) can be arranged in an array p
{eq 46). The sum of the components of the last vector

p(1,1)...p(ls} ... p(L,r)
p=|pL1) ... plis) ...p(ir) (46)

p(M,1). .. p(Ms). .. piMr)

of pis indicated by p(r), analogously to eq 31,
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Figure 2. INustration of the definition of the excess adsorbed amoum
T, and the adsorbed amount I'. T, is equal to area A, whie T’
equals the sum of Aand 8. In order to show the difierence between
I' and I',,, more clearty, a rather high bulk volume traction (¢ . = 0.1)
was chosen in this example. The concentration profiles have been
calculated for r = 1000, x, = 1, x = 0.5, and Ay = 0.5 (hexagonal
lattica).

The simplest way of defining the adsorbed amount is
to consider only the exceas concentration of segments in
each layer with respect to the bulk concentration. Then
the excess adsorbed amount per surface site is

M
Te = a (¢; ~ @) “7)

This definition was used by Roe. However, another
definition is sometimes useful. If we want to know the
number of chain segments belonging to adsarbed chains,
suhtracting ¢. from ¢; for all layers is not the correct
procedure, since the volume fraction ¢; in the layers close
to the surface is predominantly {or completely, for { = 1)
due to adsorbed chains. In order to find the number of
adsorbed molecules, we have to cotrect only for the volume
fraction ¢ of free (i.e., nonadsorbed) chains that have not
a single segment in the first layer (see Figure 2}. In the
surface layer (i = 1), ¢, = ¢, = 0, for the other layers ¢
< ¢, 50 that eq 47 gives an underestimation of the ad-
sorbed amount. Therefore we define the adsorbed amount
T as

M
r= );1 (e — ¢ (48)

T thus gives the number of segments of adsorbed chains
per surface site; if I' = 1, one equivalent monclayer is
adsorbed. This definition of T' was also used by Silber-
berg.” Note that the summation of (48) contains only
nonzero terms for i < r.

The problem now is to find ¢,. A free chain has only
phe extra restriction: no segment of the chain may be in
the first layer. This is equivalent to the statement that
for the segments of feee polymer molecules the free seg-
ment probability p, in the first layer equals zero
(equivalent to x, = —=), while it the other layers the free
segment probability p; is the same for segments of ad-
sorbed and nonadsorbed chains. Naturally, the value of
p; for i > 1 is based on the total segment density ¢, We
may therefore define a vector p{1) with components pi(i,1)
=(1-4,)p{,1) and a matrix w; with elements w; = (1
- 8 )Aj b The end segment probability vector for free
chains is then given by

pir) = wpelr-1) = w/lpd1) (49)
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As before, we can write these vectors pi(+) in an array

where the sum of the components of the last vector is
denoted as pAr) (eq 50).

(50}

Comparing (50) with (46), we note that pli,s) = p(i,s)
for i > 5, pelis) < plis) for 2 <1 = 5, while p{1,s) = 0. Far
each i, the value of ¢, can now be found from {45}, sub-
stituting pAi,s) for pli,s). For the calculation of T we need
¥ i™a:f which can be derived directly from pdr}. To that
end, we realize that according to (44} nr/L = ¥ Mp, =
p(r)g.. Analogously, 3°,_ Maf = pirip., so that {(48) may
be written as

[ =|p(r) - pdr)lg. = pylrie. (61)

where p,(r) = p(r) - pdr) is the adsorbed chain probability
which we shall need as a normalization constant for the
adsorbed chains. It may be noted that, unlike P(r) as used
in the previous section, the adsorbed chain probability p.(r)
= I'/¢. is independent of M, at least for large M.

Thus, for the calculation of T at given ¢. we need the
normalization constant p(r), which is found by the iteration
procedure to be described in section III, and pdr). Once
the iteration process has given the free segment proba-
bilities p; = p(i,1), pdr) and thus py(r) are simply the result
of r — 1 matrix multiplications according to {49).

F. Interfacial Free Energy. Using the Gibbs convention
(see, e.g., ref 17), we assign to the Gibbs dividing plane a
surface excess free energy FY, a surface excess n? of polymer
molecules, and a surface excess n% of solvent molecules.
The relation between these surface excesses is given hy!?

Fo= yA + npgun + nou® (52)

where ug,, and p° are the chemical potentials of a polymer
molecule and a solvent molecule with respect to the ref-
erence state, v is the interfacial free energy, and A is the
interfacial area. The free energy & — F© of the bulk phase
is then

F-F = (n - nhugpan + (0 - n%0° (53)

Combining (52) and {53), and introducing a = 4/L as the
area per surface site, we find

S SR ey

AT L "STLRT T LRT

The term In Q is given by eq 13 and 15. Expressions for
Mchain 80d #° have been derived by Flory:"®

Kehain/RT = 1 — o —rgp® + In 0 + rxep%1 - &) (55)
WRT =1 - ¢ — dufr + In 2 + xoe(1 ~ 3.9 (56)

Equation 55 can also be derived by differentiating In Q
with respect to n, at constant T, n®, and ny (d = ¢);
similarly, eq 56 follows from the derivative of In Q with
respect to 2 at constant T, n,, and n (f > i).

Befote substituting (53) and (56) into (54), we rewrite
n.ineq 13. With the equilibrium condition (25} and the
normalizatien condition (26}, we obtain a./n =
wl[1,2:MP7) / Pir). Using P(r) = P/p(r) {eq 40) and eq
44, we find

(54)
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He et

L r

which can be substituted into (13), giving after some re-
arrangement

“nQ=alng¢+ T nnag’+ 2 ninp + UAT
(58)

Thus the n. In r, term in In Q is replaced by a term
conlaining the free segment probability p;, The energy
term of (58) is given by (15). Combining eq 54, 55, 56, and
5B, we derive the following expression for v:
va  puyt o ul M b
— =+ 01 + ¢, In p; - (3° -
kT kT R APTAS RO

I1 pyrie (57)

M
60 - (¢ - ¢.)/r} +x L 1ofUd0) - b - 02 - o)l
=1

(59)

This equation can easily be extended for systems with
more than two components. For a binary system {¢, + ¢°
=1) the term - ¥, ¥ (" — %) + (¢, - $.)/r} reduces to
[1 - (1/M]T . Apart from the ¢, In p; testn, all the terms
of eq 59 also appear in Roe’s equation (eq 36 of ref 10).
In section V we give a more detailed comparison between
Roe’s and our theories,

TiI. Method of Computation

Equation 45 comprises M implicit simultaneous
equations from which the M unknown ¢4, ¢y, ..., ¢ can
be solved by an iterative procedure. If for a given ¢. an
initial estimate for the concentration profile |¢, is used,
the vector p(1) follows from (40) in combination with (38)
and (24) and the matrix wfrom (41). Ir principle, a new
value for |¢;| could then be calculated uging (45), and the
procedure could be repeated by finding new values for the
components pli,1), for w and again }¢,i. It turned out,
however, that in this way the iteration usually does not
converge. Therefare, a slightly more complicated method
was applied, in which X; = In {¢;/{1 - ¢,)} instead of ¢; was
chosen as the iteration variable and Newton's method (see,
e.g., ref 18} was used to improve the convergence of the
iteration. This method is easier to apply if the variables
are unconstrained, and therefore the variable X; was
preferred to the variable ¢, which is constrained within
0 and 1.

The procedure was as follows. We indicate the initial
estimate by ¢J'" and the kth solution by {¢*. From |p*
the vector p(1)* and the matrix w'* were calculated using
(41), Then a new set [4,4*7 was found from (45). The (k
+ 1ith solution follows from

X1 = X0 _ [ G 1g

where X" is a vector whose ith compenent X,® = In
i '{ (1 - ¢;"™)}, g*! is a vector with components g™ = In
(6™ /¢®), and the matrix G* is the Hessian,' with
elements G; = ag®/aX . In order to avoid the complex
differentiation which is necessary to find G,* differences
where used for the derivatives: G;* ~ Ag®/AX, The
initial estimate {¢;/"" was found from Roe's approximate
expression'® and is itself the result of a short iteration.

If we want to calculate the segment density distribution
and the adsorbed amount for an 7-mer, it is in principle
necessary to use a lattice with more than r layers, i.e., M
> r, since then all the possible conformations, including
the completely perpendicular ones, can be taken into
account. This would require a latge amount of computing
time and an enormous storage capacity in the computer.
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TABLE {: Numerical Example of the Free Segment Probability p;, the Polymer ¥V olume Fraction ¢,, and the Yolume
Fraction due to Segments of Adsorbed Chains ¢; - v;=;‘, as a Function of the Layer Number #
i P ¢ b -6 o™
=0
1 1.6251 4.0815 x 107! 4.0815 % 107" 4.1979 x 107’
2 0.8343 1.7409 x 107" 1.7409 x 107* 1.8029 x 10"
3 0.9400 6.9353 x 1072 6.9342 x 1072 6.6164 x 107
4 0.9697 3.9993 x 10°* 3.9958 x 10°? 2.8415 x 10°*
5 0,9823 2.7510 x 10-* 2,7428 x 10°? 1.5078 x 1077
& 0.9888 2.1089 x 10°? 2.0931 x 10 1.0068 x 1077
7 0.9925 1.7388 % 1077 1.7117 x 107 8.3540 x 10°*
8 0.9949 1.5084 x 107* 1.4661 x 1072 8.0960 x 10°?
9 0.9964 1.3569 x 10°* 1.2950 x 10-? 8.4583 x 107?
10 0.9974 1.2531 x 10°* 1.1672 x 10°2 8.9942 x 10°?
11 0.9982 1.1798 x 10°* 1.0656 x 1077 9.4711x 10°?
12 0.9987 1.1267 x 10°* 9.8037 x 10°* 9.8014 x 103
13 0.9991 1.0878 x 10°? 9.0560 x 10°° 9.6854 x 10°*
14 0.9994 1.058% x 107 8.3785 x 107? 1.0062 x 10°*
15 0.9996 1.0374 x 10°* 7.7506 x 10°? 1.0076 x 10°*
16 0.9998 1.0214 x 1072 7.1603 x 10°° 1.0061 x 10°*
17 0.9999 1.0096 x 107 6.6009 x 10°? 1.003% x 10°*
18 1.0000 1,0010 x 10°* 6.0964 x 10! 1.002¢ x 10°*
19 1.0001 9.9499 x 10°* 5.5645 % 10°° 1.0007 x 10°?
20 1.0001 9.9087 x 10°? 5.0858 x 1077 1.0000 x 102
x = 0.5

1 1.5412 6.7976 x 1077 6.7976 x 107! 6.8544 x 107’
2 0.8982 4.2532 x 107! 4.2531 % 107" 4.3667 x 107!
3 0.9843 2.5583 x 107 2.5579 x 107" 2.4809 x 10!
4 0.9889 1.8157 x 107! 1.8146 x 107! 1.4778 x 10!
5 0.9935 1.3752 x 10! 1.3731 % 107! 9.2992 x 10-°*
6 0.9958 1.0880 x 10! 1.0845 % 107! §.1294 x 1077
7 0.9972 8.8726 x 10°? 8.8197 x 10°° 4.2082 x 10°?
8 0.9981 7.4009 x 1072 7.3261 x 1077 3.0050 x 10°*
9 0.9986 6.2835 x 107? 6.1831 x 10°? 2.2351 x 10°?
10 0.9990 5.4120 x 10°? 5.2828 x 10° 1.7363 x 10°*
11 0.9992 4,7177 % 1072 4.5569 x 10-? 1.4123 x 10°*
12 0.9994 4.1550 x 10-? 3.9603 x 10°? 1.2034 x 10°*
13 0.9995 3.6925x 1077 3.4619x 107 1.0719 % 1072
14 00,9995 3.3078 x 107 3.0400 x 10°? 90,9248 x 10°?
15 0.9997 2.9846 x 10°? 26786 x 10°* 9.4943 x 10°?
16 0.9998 27109 x 1072 2.3662 x 1077 9.2974 x 107
17 0.9998 2.4776 x 10°F 2.0840 x 1077 9.2534 x 107?
18 0.8999 2.2775% 107 1.8554 x 10°? 9.3013 x 10°*
19 0.2999 2.1053 x 10°? 1.6451 x 102 9.3978 ¥ 10°?
20 0.2999 1.9566 % 107* 1.4592 x 107? 9.5133 x 10°*

9 In the last column the volume fraction as calculated from Roe's theory,' »,® is shown. Data are given for an athertnal

solvent (x = 0) and a © solvent {x = 0.5).

Fortunately, a faster computation with much less storage
requirements is possible. With increasing ! the elements
plis), the end segment probabilities, converge to unity
since far from the surface the probability of finding an end
segment is equal to that in bulk. This convergence is
rather slow for high s. However, it turned out that the free
segment probabilities p; = p(i,1) approach unity at much
smaller i {see also Table I}. Therefore, the complete
calculations were only carried out for the first m layers,
where m is defined as the number of the last layer where
p; differs more than a predetermined value (e.g., 10™) from
unity. Then all the compenents p; for { > m may be set
equal to 1. According to eq 34:

plis) = pdAp(i-1,5-1) + Aoplis-1) + A p(i+1,s5-1H
(60}

The ith component of the sth vector follows from the
(i-1)th, ith, and (i+1)th component of the {s—1)th vector.
As p; = 1 for { > m, all the elements in the lower left corner
(i = m + 5) of the array p are equal to 1 (see Figure 3).

In order to get the complete segment density distri-
bution for the first m layers, the elements p{t,s) fori < m
are required. By inspection of eq 60 it appears that the
elements of groups I, ITA, and I1B (see Figure 3) are needed
to calculate these elements. Thus in the computation

Hexagonal lattice (A, = 0.5), x. = 1, r = 1000, o+ = 0.01.

routine for ¢ = r/2 the first m + 5 - 1 components of the
sth vector were calculated from the first m + s components
of the {s—1)th vector, after which the elements p(i,s-1) with
i > m were discarded by the computer and only the firat
m elements were stored. Similarly, for s > r/2 the first
m + r - 5 components of p(s) were calculated from the first
m + r— 5 + 1 components of p(s-1); again only the first
m components were stored.

In this way all the elements of the first m layers and thus
the complete segment distribution for these layers could
be calculated within a reasonable computing time, without
the need of excessive storage capacity.

For the calculation of the adsorbed amount we rewrite
eq 47 as Ty, = ¢*(p(r} — M) = 6*3,.,8;, where &, is
defined as p(i,) - 1. The problem now is to find the sum
S(r) of §,, for £ > m: S(r) = T ;o0 (see Figure 3).
It can be shown that this sum can be expressed as a
function of the elements of the mth and (m+1)th row only:
S = MY, Uplm,s) - pim+1,8)l. To prove this relation
we realize that §;; = 0 for/ 2 m + 3, i.e., for the elements
of group 111 in Figure 3. Next we apply (6(0) for i > m (thus

p; = 1). Since Ag + 2A; = 1 we have
Bip = M 1o T Agbipy T Mbi g {{>m) (61)

Starting with 8,01, we find 3ni1, = MBppt + Agbmar T
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Figure 3. Schamatic tion of the array g. In the layers bgyond
mthe compenents p,(i> mr) of the first vector p{1) may ba set equal
1o 1. We can distinguish four groups of elements in the array. The
elaments of group 1{/ = m7) are calculated and stored in the computer
mematy. Those of group H(m < i< m+ stor LA, m<is m+
7= gor [1B) are needed for the calculation of p{m.s), once p(m.s)
has been obtained the elements of the (5 - 1)th vector for which />
m can bae discarded. All the elements of group Il (i = m + 5} are
equal to 1. The elements of group IV{m+ r—-s< i< m+ 5 r/2
< 5 X r)are not required in the computation. The sum p{r} of the
components of the last vactor p{r) is needad for the calculation of the
adsorbed amount T It tums out that 3, 4. p{4.#) can be obtained
from the two sets of elements p{m,s}and p{m+1.s) of the mth and
{m + 1nh row of the array.

Momazs1 = Mlmps =8 pere) ¥ g+ Adomai s 1+ Admas e
Applying (61) for dpm4e, it follows that 8,4y, + Spes, =
}‘l(‘smrl - 6m+]rl) + ‘ﬁmﬁ-lr] + (;\1 + AO)'ﬁm‘v-z,i'—l + )\lﬁmi’ﬁrl'
Repeating this procedure, and using p4,,1 = 0 we find
S(r) = M0yt — S41,-1) + S(r-1). In the same way this
fast sum can be expressed in the components of the {r—2)th
vector, giving S(r) = M3y, 1~ dperr 1+ mp 2~ Omerro)
+ 8(r-2). Proceeding to the left in Figure 3 we finally end
up with the relation

-l rl
Sir) = x E Bme ~ Omara) = N gl lo(m,s) - plm+1,s)
(62)

Here we made use of the fact that S(1) = 0,

Thus an accurate value for p(r) and I, is found, using
only the elements pit,s) for i < m + 1. The same procedure
can be applied for pi(7), from which T is found according
to eq 31.

It may be noted that this procedure of seiting p; = 1 for
i > m is not the same as a step function approach. The
procedure enables us to find the sums ¥ ;... *"¢; and
Y iame "¢ over the layers beyond m to a good ap-
proximation, although the individual ¢,’s for { > m are nat
calculated. This is equivalent to the evaluation of the part
of the areas A and B (Figure 2) that is beyond m. The
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accuracy of this extrapolation was shown for r = 1000, &.
=102 x, = 1 (see also Table I). Using m = 20, caleulated
adsorbed amounts are I' = 0.51498 and T = 2.4455 for x
= 0 and x = 05, respectively. Extending m to 35 (the limit
for r = 1000 on our computer) gave I' = 0.91565 and T =
2.4442 for the same conditions. The differences are below
0.1% so that, in order to save computing time, in most
cases m = 20 was chosen.

All the calculations were carried out with a DEC sys-
tem-10 Model 1060 computer using a program written in
Algol. The iteration procedure according to Newtons
method was usually completed in five cycles with an ac-
curacy of better than 0.01% in ¢. The computing time
increases roughly quadratic with increasing . Calculations
were possible for chains up to 1000 segments, in which case
about 0.5 h of computation time is required.

On request the computer program will be made available
by the authors. ’

IV. Results and Discussion

In this section we present a selection of numerical results
which show the dependence of some characteristics of the
adsorbed layer on parameters related to the polymer-
solvent-surface system. For the latter parameters we
choose the chain length r, the polymer-solvent interaction
parameter x, the adsorption energy parameter x,, and the
equilibrium bulk volume fraction ¢.. For the adsorbed
layer characteristics we take properties which in principle
can be measured, as, e.g., described in the following ref-
erences. Thus, we give results for the adsorbed amount!®
T, the fraction 6 of the surface covered by segments® (8
= ¢,), and the fraction p of segments of adsorbed chains
which is on the surface®! (p = 8/T). Results for another
experimental variable, the layer thickness, will be discussed
in another paper.

First we have to choose the type of the lattice as ex-
pressed in the fraction Ay of neighbaors in the same layer.
As has been shown by Roe,' theoretical results are
qualitatively independent of the lattice type, while only
minor quantitative differences occur. Unless otherwise
stated, we confine ourselves to a close-packed hexagonal
lattice: Ay = 0.5, A; = 0.25. In a few cases a comparison
will be made with a simple cubic lattice: A, = 2/3, A, =
1/6. More results for a cubic lattice have been published
elsewhere. Most of the data presented are for x, = 1 ot
3. and for two values of x: x = 0, corresponding to an
athermal solvent, and y = 0.5, equivalent to a O solvent.
The value for ¢. is usuaily taken in the (semi-) dilute
solution region, since in that region mast experimental data
are available; only when a comparison with other theories
is desirable, we give results for composite adsorption
isotherms extending over the whole range of ¢.. Although
a more detailed comparison with other theories will not
be made until the next chapter, we refer occasionally to
results of other authors in the discussion of the following
figures,

Table T gives a typical example of the free segment
probability p; and the concentration profile ¢, for » = 1000,
¢, =10 x, = 1, and x = 0 and 0.5. Also the volume
fraction due to adsorbed chains, ¢; — ¢/, is shown. To
facilitate comparison with Roe's theory, the concentration
profile as calculated from his eq 29 is given. Data for x
= (.5 are plotted in Figure 4.

The dependence of p, on ¢, is given in eq 24 and 39.
Using the relation {¢;) + (&%) =1 - A8, ; (see text fol-
lowing eq 14), we can write

In p; = (x, + Axddy, + 2x((d) - ¢d + In {42/ 9.9 (63)

In the first layer the adsorption energy dominates p, and




Adsorption of Interacting Chain Molecules

;o-_o.ﬁj
1% - ¥ =05 4
Xgz1 |

r =1000
¥, =001 |
P, P ey
‘ ----Roe
10r

]

Figure 4. Segment density profile ¢;and free segment probabilty p;
as a function of the distance from the surface. Hexaganal lattice (A,
=0.8), xs =1, x = 0.5, r= 1000, and ¢ . = 0.01. The dotted line
is the concentralion profile calculated from the theory of Ros. ™

the free segment probability is higher than 1. In the other
layers the factor ¢;°/¢.% is the most important one and
causes p; to be smaller than 1 and to increase with in-
creasing £ (In other cases, e.g., at very low ¢., the in-
teraction term in (63) may be dominant, so that p; then
decreases continuously with increasing i.) A very im-
portant feature of Table I and Figure 4 is that p; ap-
proaches unity much faster than ¢; approaches the bulk
value ¢.; this is the basis for the procedure described in
section III for the evaluation of the amount of adsorbed
polymer present in the layers beyond £ = 20. In some cases
(e.g., x = 0, around 20 in Table I), ¢ is slightly lower than
¢ {and thus p; slightly higher than 1), an effect which is
related to the buildup of the adsorbed layer in terms of
loops and tails. This will be discussed more extensively
in the next paper.2

The segment density ¢; decreases continuously with
increasing distance from the surface (except when ¢;
approaches ¢. from below, as mentioned in the previous
paragraph). In the layers close to the surface ¢, is slightly
lower than predicted by Roe's approximate theory,'” while
further from the surface the latter theory gives a serious
underestimation for the segment density. As will be shown
in the next paper, the segment density at larger distances
is mainly due to the presence of long dangling tails, which
have been neglected in previous polymer adsorption
theories.®?* These theories predict an exponential decay
of ¢; with distance for homopolymers. Table T and Figure
4 show that this is approximately correct for the layers
close to the surface, but not at larger distances where tails
become important. The presence of tails and the con-
comitant occurrence of segments at relatively large dis-
tances could be very important in the application of
polymers for the stabilization or destabilization of colloidal
particles.

Figure 5a shows adsorption isotherms, Figure 5b the
occupancy of the surface layer (9), and Figure 5¢ the bound
fraction p = #/T as a function of ¢.. The adsorption
isotherms have a Langmuir character for low values of r
(for r = 1 and x = 0, our equations reduce to the Langmuir
equation}, while those for high chain length are of the high
affinity type often found in experiments. These features
show up more clearly if the adsorbed amount I is plotted
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Figure 5. The adsorbed amount T (), the swiace coverage € {b), and
the bourd fraction o = #/T" {c) as a function of the bullc volurne fraction
¢ -. The data apply 1o a hexagonal lattica thy = 0.5) and an adsorption
enargy pararneter x, = 1. The chain length ris indicated. Full lines
are for a © sclvent (x = 0.5), broken lines 1or an athermal solvent (x.
= 0). The two dotted lines in Figure 5a apply for r = 1000 in a simple
cubic lattica (Ay = 2/3) and ) = 0 and 0.5, respectively.

against a linear scale for ¢.. The overail shape of the
isotherms is similar to that of the curves given by, e.g.,
Silberberg’ and Hoeve™® and similar trends with respect
to the effects of solvent quality and molecular weight occur:
the adsorption increases with decreasing solvent power and
increasing chain length.

To illustrate the influence of the lattice type, two
(dotted) curves for A, = 2/3 (simple cubic lattice) and »
= 1000 are shown in Figure 5a. The differences are small.
For x = 0.5, T is slighly higher for the hexagonal lattice
(A, = 1/4) as compared to the cubic one (A = 1/6). For
x = 0 the adserption is slightly lower for the hexagonal
lattice for low ¢., but higher for high ¢.. The effect at x
= (t can be explained by realizing that if ), increases there
are more possibilities for a segment to “'cross over” to a
neighboring layer, giving rise to a slightly flatter con-
centration profile, a lower bound fraction, and thus to a
lower adsorption energy per chain. For low ¢, this implies
a lower adsorbed amount, while for high ¢. there are more
possibilities for loop and tail formation due to the lower
volume fraction in the outer layers. For x = 0.5, an extra
effect occurs in that the “effective” adsorption energy
parameter x, + Ax (see, e.g., (63)) increases with increasing
M; hence the adsorbed amount is higher for the hexagonal
lattice.

Figure 5b demonstrates that the fraction # of the surface
which is covered by segments increases with ¢. for short
chains but is hardly dependent on ¢. for higher chain
lengths. As expected, 6 is higher in poorer solvents, since
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Figure 8. The adsorbed amount I (full knes) and the excess adsarbed
amaunt Iy, (broken nes) as a function of the chain length -, for three
values of the buk volume fraction ¢ - and for a © sofvenl {x = 0.5
and an athermal solvent {x = C). Hexagonal lattice, x, = 1. The inset
applies 10 x, = 3 and $. = 0.01. The dotted lines give I',,. as
caiculated from the theory of Roe.™

the segments prefer other segments to solvent molecules
as immediate neighbora. The dependence of 8 on r will
be discussed further in connection with Figure 7.
Figure 5c¢ gives the dependency of the bound fraction
p {i.e., the fraction of segments of adsorbed chains in
contact with the surface) on the bulk volume fraction g..
The bound fraction decreases slightly with increasing ¢.
and decreases with increasing molecular weight. Both
these trends have been found experimentally ¥ For short
chains the effect of solvent power on p is only of minor
importance (for r = 1, p = 1 under all conditicns), for
higher chain lengths p increases with decreasing x. This
is because in good solvents the extension of the adsorbed
laver is smaller than in poor salvents (at the same ¢.).
In Figure 6 the adsorbed amount I' is plotted as a
function of chain length at ¢. = 1072 107, and 108, and
for ¥ = 0 and .5. The dashed curves give the excess
adsorbed amount T, (see eq 47 and Figure 2). At low ¢.
and low r there is hardly any difference between 1" and T,
but as ¢. and r increase, I, becomes progressively smaller
than T, as is to be expected. The most conspicuous feature
of Figure 6 is that, at ¥ = 0, T levels off at high chain
lengths, while, at ¥ = 0.5, I' (but not. I',,.) increases linearly
with log r. Both Silberberg” and Hoeve®® predict that in
athermal salvents the adsorbed amount reaches a limiting
value at high chain lengths, in accordance with our results.
For 4 solvents, Silberberg finds again a leveling off while
Hoeve predicts an increase without bounds. Although we
are as yet only able to make computations up to r = 1000,
our results seem to support Hoeve's view. However, we
find for high chain lengths an impertant contribution of
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Figure 7. The surface Coverage # = ¢, as a funclion of chain length
r, for three values of the bulk volurne fraction ¢ - and x = 0.5 and
0. Hexagonal laltice, x, = 1.

long dangling tails, and these are neglected in Hoeve's
treatment.

A more quantitative comparison is possible with Roe’s
results.’ This is shown in the inset of Figure 6 for x, =
3 and ¢. = 102 Roe presents only data for I',.. It is
ohvious that both for x = 0 and x = 0.5 Roe's theory
underestimates T,,, at high r, the difference increasing to
about 25% for » = 1000 (in © solvents) and probably much
more for higher chain lengths. Thus, the sharp leveling
off which Roe shows in his Figure 16 is too pronounced,
and is probably due to the approximations used in his
theory.

If plotted on the same scale, the curves for x, = 1 and
x. = 3 in Figure 6 run nearly parallel. Apparently the slope
of the lines depends on x, not on x,. This is related to the
fact that upon increase of the chain length the additionally
adsorbed amount is accomodated not in trains, but in loops
and tails, and is thus determined mainly by the poly-
mer-solvent interaction.

Figure 7 shows # as a function of chain length, at
constant @.. At low r the adsorbed amount and the surface
coverage are small, and there is only little effect of the
solvent quality, With increasing r the surface coverage
increases until a plateau is reached where 8 is independent
of chain length and ¢.. In that region, the adsorbed
amount [ still increases, but the extra segments are ac-
comodated in layers further from the surface. The plateau
of 8 at high r is higher in O solvents, since the segments
attract each other, and this attraction balances the un-
favorable entropic situation at a higher ¢ than in good
solvents.

From experiments, the surface coverage 6 and the bound
fraction p are often obtained not as a function of $. {see
Figure 5b and 5¢), but as a function of I'. In Figure 8a and
8h the dependence of 6 on T is given for x = 0 and x =
0.5, respectively, and in Figure 8¢ and 8d the corresponding
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Figure B. The surface coverage 0 (a, b) and the bound fraction p{c, d) as a function of the adsorbed amount T, for x = 0 (a, cyand x = 0.5
(b, d). The chain length ris indicated. Hexagonal lattice, x, = 1 (full lines) and x, = 3 (broken lines). The shaded areas are inaccessible regions
(8 > T or @ > 1). Nole that there exists & maximum adsorbed amount I'™” {when ¢ . = 1) which is independent ot x or x,. For r= 1, '™
= 1; for r = 10, ™" = 2.36; for r = 100, "™ = 6.25 (not indicated in the figwe): and for r = 1000, I"™ is greater than 18.

curves for p = /T are shown. There are several interesting
features in these graphs. For monomers, & = T {corre-
sponding te the straight lines in Figure 8a and 8b) and p
= 1. The shaded areas in Figure 8 are inaccessible regions,
since there 6 would be higher than T" or greater than 1, For
chain molecules {r > 1) only part of the segments is ad-
sarbed, and ¢ increases more slowly than I' so that p
decreases. As expected, the shape of the adsorbed mol-
ecules becomes less flat as the adsorbed amount increases.

At relatively low I' the curves for different chain lengths
nearly coincide. One has to realize, however, that greatly
different equilibrium bulk volume fractions are involved.
At high T’ (and thus high $.) the lines diverge and reach

=1 (full surface coverage) at ¢. = 1 (i.e., bulk palyimer).
At that point the adserbed amount reaches its maximum
value I'™* which depends on r (and slightly on Agl, but not
on x or x,. Clearly, ™ should lie in between 1 (com-
pletely flat chains) and ¢ (only one end segment adsorhed}.
For r = 10, '™ = 2.36; for r = 100, ™= is 6.25 (not
indicated in the figure) and for r = 1000, the maximum
adsorbed amount could not vet, be calculated precisely due
to convergence problems of the iteration, but it is around
19. That ™= is independent of x or x, is due to the fact
that in bulk polymer the configuration of the chains is only
determined by entropic factors, since the energy of all the
segments on the surface is the same, and all segments in
the other layers are in an identical environment. As is well
known,?% chain molecules assume unperturbed dimen-
sions in bulk polymer.

At intermediate values for T, the surface coverage 0 is
nearly independent of T and r. At x, = 1 this applies only
for longer chains, but for higher adsorption energies (x,
= 3) this is true for chains as short as ten segments and
up. In this region p decreases steadily with increasing T.

‘These effects are related 1o the accommodation of seg-
ments in the outer regions of the adsorbed layer, without
altering the segment concentration in the surface layer.
Again it has to be realized that for different chain lengths
this region of constant @ occurs at different ¢..

It can be seen from Figure 8 that # and p increase if x,
becomes higher. This is easily understood. Similarly, 8
and p increase with increasing x, an effect which is more
pronounced at low x, and for high molecular weights.
Naturally, the influence of the parameters x and x, is
strongest in the intermediate range of I' since, for given
¢, all 8(I") curves converge to the same starting point (at
T =0) and end point (at T' = I'™). It is interesting to note
that at a given edsorbed armount the oceupancy of the first
layer is smaller in good solvents, so that the amount in
loops and tails and the average layer thickness is greater
than in poor solvents. However, in order to get the same
T in a good solvent, much higher polymer concentrations
are needed than in a poor solvent (see Figure 5a).

Koopal et al.?® obtained experimental ¢urves of # and
p as a function of T which are similar to those of Figure
8. They found that 8 increases with T’ and then reaches
a plateau, and is independent of molecular weight. Other
experiments® gave also results corroborating the picture
given in Figure 8.

Figure 9 shows the effect of the adsorption energy
parameter x, on I' (Figure 9a) and & (Figure 9b). For
infinitely long chains, adsorption occurs only if x, exceeds
the “eritical adsorption energy™ %2y, = -In (I - ;) which
for a hexagonal lattice equals 0.288. For finite chain
lengths the critical adsorption energy is smaller. With
increasing x, the adsorbed amount and the surface cov-
erage inctease until, around x, = 3, a semiplateau is found.
The overall shape of the curves in Figure 9a strongly
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Figure 9. The adsarbed amount I" {a) and the surface coverage ¢ (b)
as a furction of the adsorption energy parameter %,. for x = 0.5 (ful
fines) and x = 0 (braken lines). Hexagonal lattice, ¢ - = 0.001. The
chain length ris indicated.

resembles that of Roe's Figure 15'° (where Tgy, not T, is
plotted), although some guantitative differences occur: at
higher chain lengths the adsorbed amount is significantly
higher than that according to Roe's results, and the
molecular weight dependence, both for x = 0 and x = 0.5,
is stronger than that predicted by Roe. As discussed above,
these differences may be due to the fact that Roe’s theory
underestimates the contribution of tails. From Figure 3b
it may be concluded that for longer chains 8 is very close
to unity if x, = 3. The effects of solvent power and chain
length on # have been considered already in connection
with Figure 7.

Other results on the structure of the adsorbed layer, such
as the root-mean-square thickness of the layer, the fraction
of segments present in tails and loops, and the train, tail,
and loop size distribution, have been obtained. These
aspects will be dealt with more extensively in a forth-
coming publication.® At the present moment we just
mention two significant results. First, the root-mean-
square thickness appears to increase proportionally to the
square root of the chain length. Secondly, the contribution
of tails is dominant over that of the loops in the outer
regions of the adsorbed layer. In dilute solutions {¢a ~
10°% up to 15% of the segments may be present in (on
average) one tail per adsorbed molecule. These effects are
very important in systems where polymer is used to
stabilize or destabilize colloidal suspensions.

V. Comparison with Other Theories

Many of the earlier theories'® on polymer adsorption
treat the case of an isolated macromolecule on a surface.
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These theories are only valid for very good solvents and
in systems so dilute that no measurements are possible.
Their relevance for practical systems is therefore small.
In these treatments the interaction between the segments
is neglected, which in our terminology is equivalent to
writing eq 63 simply as In p;, = x,8,;. Indeed our model
reduces completely to that of DiMarzio and Rubin'? if we
make this simplification {for a proof of this see Appendix
I). All “isolated chain” theotries predict that, for reasonable
adsorption energies, polymers adsorb on a surface in a very
flat conformation, such that the bound fraction p is close
to unity. However, even if the bulk volume fraction 4. is
quite small the segment density in the surface region may
be quite high. Therefore, the polymer—solvent interaction
has to be taken into account.

The first attempts to incorporate this interaction are due
to Hoeve®® and Silberberg.” Hoeve's theory involves
drastic approximations, but the general trends seem to be
predicted reasonably well as shown in the previous chapter.
An apparent drawback of his treatment is the neglect of
tails. A quantitative comparison of his results with the
present, theary is difficult. Sillberbergs starting point is the
assumption of an “adsorber phase” in which only segments
of adsorbed chains are present, and the segment con-
centration profile is considered to be a step function. In
this way no distinction hetween loops and tails can be
made. Nevertheless his results, showing the same general
trends as Hoeve's theory, are in broad agreement with ours.
Also in this case a more detailed comparison is not easy.

There are two recent treatments which can be compared
with the present theory in more detail. One is due to
Levine et al,,' the other is that of Roe!® and has already
been mentioned several times.

‘We became aware of the theory by Levine et al. while
preparing this manuscript. As discussed more extensively
elsewhere™ the basic idea of these authors is nearly the
same as ours: hoth treatments extend DiMarzio and
Rubin's'? matrix procedure by incorporating the inter-
action between segments and solvent. However, Levine
et al. apply their model only to the concentration profile
of terminally adsorbing polymer in a cubic lattice between
two plates; the authors do not atiempt to use it for ad-
sorption on a single plate or to derive the loop, teain, and
tail size distribution, and they do not consider a different
lattice type. Apart from that there is a fundamental
difference with our theory in the underlying equations.
While in the present treatment the free segment proba-
hility p; is derived from the partition function (see section
I1.C), Levine et al. adapt a method due to Whittington®
to find p; {denoted hy them as the weighting factor g(£)).
The result is eq 63, in which {¢;} is simply replaced by ¢,.
From a physical point of view this seems to be not war-
ranted, since a segment in layer i interacts not only with
segments and solvent molecules in i but also with those
in adjoining layers. In a forthcoming publication on the
two plate problem we shall make a more detailed com-
parison with the results of Levine et al.

Roe"? treats the adserption of polymers in a way similar
to our theory by setting up the partition function of the
mixture of chains and solvent molecules near an interface.
He uses the approximation that the distribution of a
segment is the same for all the r segments of a chain. In
the further elaboration he can then avoid the rather
cumbersome matrix procedure necessary in our (and
Levine's) theory. Helfand'' has shown that Roe's treat-
ment contains another error, because the inversion
symmetry is not properly taken into account. As discussed
in section IL.B, Helfand corrects this by introducing a flux
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TABLE 1I: Comparison of Numerical Results for I'g, . for Oligomers (r = 1,2, 4) around the Maximum in the Composite
Adsorption Isotherm,? as Obtained from the Theories of Ash et al. (AEF},” Roe (R), and the Present Theory (SF)

r=1 r=2 r=4
¢+ AEF R/SF AEF R 8F AEF R 8F
0.1 0.64 0.6341 0.94 0.9508 0.9553 1,27 1.3123 1.3333
0.2 0.71 0.7108 0.95 4.9591 0.9681 1.28 1.3027 1.3396
0.4 0.61 0.6119 0,76 Q.7587 4.7639 0.94 0.9166 0.9337

@ Hexagonal lattice (A, = 0.5), x, = 2.3, x = 0.92, ® Data read from Figure 138 of ref 9. ¢ Results obtained by our own

computer program.

constraint which can be expressed as the condition that
the number of bonds from layer i to layer ; should be equal
to that in opposite direction. Since Helfand formulates
this flux constraint only for infinite chain lengths, his
results apply only for r— and cannot be compared di-
rectly with ours.

Below, we describe in some detail the differences be-
tween the results of Roe (R),”® Ash, Everett, and Findenegg
(AEF),? and the present treatment (SF}. The AEF theory
is an extension to oligomers of the theory for menomer
adsorption from regular solutions?®®** and considers the
statistical mechanics of oligomers in all possible orien-
tations. Our theory differs from that of AEF in two re-
spects: (1) backfolding is allowed, enabling us to use the
matrix method; {2} any segment pair has a contact energy
described by the x parameter, gven if two neighboring
segments belong to the same molecule. The AEF theary
is thus more exact than ocurs, but due to computational
difficulties it has only been used up to r = 4.

For monomers (+ = 1), our eq 45 is identical with Roe’s
eq 29 and to the equations given by Ono and Kondo® and
Lane™ for monomer adsorption from a regular solution.
Qur numerical results are identical with those of AEF.
Roe’s own calculations are slightly but consistently higher,
but this is due to numerical errors, as Roe suspects already;
when we programmed Roe's equations (using also here
Newton's method for the iteration) we obtained identical
results. This is shown in Talle II. The data in this table
apply to x, and x values as given in Figure 13 of ref 9 (x,
= 2.3 correspands ta log K = 1, x = 092 to w = 0.92&T
in AEF’s terminology).

For dimers {r = 2), the numernical results of Roe's
equations deviate slightly from ours. This is probably due
to the lack of inversion symmetry in Roe’s theory since the
approximation that all chain segments are equally dis-
tributed should not be relevant for dimers. If this equal
distribution of segments were the only assumption in Roe’s
treatment, his equations should reduce to ours for r = 1
and r = 2. For dimers, this is nat the case.

Comparing our results for dimers and tetramers with
those of AEF (see Table II), we see that there is a small
difference. For dimers, this can only be caused by the
overestimation of the interaction energy in our treatment,
as discussed above. This effect is apparently not very
important, considering that the data of Table II apply for
a high value of x. For tetramers, the backfoiding effect
may also play a role, and differences of the order of 5%
in Iy, occur. It is possible that for high r the errors are
less.

For longer chain lengths we can compare our results only
with those of Roe. Figure 10 shows a few results. For short
chains the differences in I, are very small but for longer
chains the differences increase, especially in poor solvents.
For r = 1000, x = 0.5 and in the range ¢, = 0 to ¢. = 107},
Fexe B8 about 30% higher than according to Roe. The
higher adsorbed amount is mainly caused by the higher
segment concenteation in the outer regions of the adsorbed
layer, stemming partly from loops but mainly from long
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Figure 10. Comparison of composite adsorption isotherms. calculated
with the present theory (SF, full lings) and with the theory of Roe™
(broken lines) for x = 0.5 (a) and x = O (b}. Hexagonal lattice, x,
= 1. The chain length ris indicated.

dangling tails. This point will be worked out in our next
paper.? It is in this cuter region that Roe’s treatment
underestimates the segment density, and it is just that
region which contributes most strongly to the interaction
of polymer covered particles. Thus, although Roe's ap-
proximation works surprisingly well for the adsorbed
amount of net too long chains, it is likely to predict far too
low forces of interaction between colloidal particles in the
presence of polymers, For problems in the area of colloid
stability the action of relatively lonyg tails has to be taken
into account, even for adsorbed homopolymers.

We conclude with some final remarks on the dependence
of the results on the type of lattice. One of the obvious
drawbacks of a lattice theory is that it is not easy to relate
the results to teal continuous systems. One just hopes that
the general trends will be described with sufficient ac-
curacy. Fortunately these general features do not depend
strongly on the lattice type chosen, This was demonstrated
for a few cases in the previous section, and has been shown
more extensively by Roe, In recent years there have been
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a few attempts'3153! to derive a continuum theory for
polymer adsorption. To our knowledge, enly one paper
has been published'? in which results for polymer ad-
sorption accounting for the polymer-solvent interaction
were obtained. These results are for terminally adsorbing
polymers between two plates, and may be compared to the
work of Levine et al.'* (using essentially the same pro-
cedure as ours). It turns out that the calculated con-
centration profiles and the effect of the interaction on them
are very similar, the ditferences being of the same order
of magnitude as what is typical when different lattices are
used. Thus, it seems that the continuum and lattice
theories give, generally speaking, similar results. In a
future paper on the interaction of two plates in the
presence of polymer, we shall discuss these points in more
detail.

Acknowledgment, The authors thank Professor Dr. A
Silbherberg for useful discussions and valuable comments.

Appendix I

Relation between Qur Procedure and the Model of
DiMarzio and Bubin. In our terminology, the combination
of eq 2.5 and 2,11 of the paper of DiMarzio and Rubin!?
can be written as

R S 2o :
#{r) = rp(r)ipiu p,r-1) + >-:1 uTpls-1)plir-s+1)
(A1)

Here uT is the row vector (1, 1, ..., 1) and p,(s) = w4, with
A; a column vector with the fth component equal to 1 and
all the other components zero. According to our notation,
the symbols N + 1 and 6, of DiMarzio and Rubin have to
be replaced by r and In p; = x6,,, respectively. Equation
A.1 can be simplified by writing the matrix w as a product
of two symmetrical matrices x and y, of which the ele-
ments are x; = ;5 (only nonzero elements along the
diagonal) and y;; = A, . Then w = xyand the transpose
of wequals w! = yx. Using elementary matrix algebra

uTp(s-1} = uTw A, = (WTw1A)T = AT(yx) 'u =
ATix/pMyxr = priA (x> I xe =
A we p(1) = plis) /p;

Thus e Al can be written much more simply as

1 r
vir) = — ¥ plisplir-s+1}/p; (A.2)

rplr) o=
Since v; = i,/ 3 in; = Lo/ nr this equation is identical with
cur eq 44 and 45 combined.

Appendix I

List of Symbols. In the following list the most important
or most frequently used symbols have been collected.
A area

a A/L, area per lattice site
¢, d,.. specification number for chain conformation
F, F free energy of the systemn with respect to the

reference state, surface excess free energy
|1 . layer number
k Boltzmann’s constant

Ais,c) number of the layer in which the sth segment
of a chain in conformation ¢ finds itself

L number of lattice sites per layer

M number of lattice layers

m number of layers for which complete calcula-
tions have been performed

n, n® number of polymer malecules, number of sol-
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ir
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P, P,
Ris.c)
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P(s)
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vent molecules, in the system

number of polymer molecules in conformation
c

number of polymer segments, number of sol-
vent molecules, in laver ¢

surface excess of polymer molecules, surface
excess of solvent molecules

free segment probability in layer {, in bulk
solution, ard in the layer where the sth
segment of a chain in conformation ¢ is
present (eq 24)

end segment probability, i.e., the probability
that the end segment of an s-mer is in layer
i

column vector with M components P(i,s)

chain probability, i.e., sum of the components
of P(r) (eq 26 and 31)

array of all the r vectors P(s)

conformation probability (eq 25)

probability that the sth segment of an 7-mer is
in layer {

probability of conformation ¢ of an r-mer of
which the sth segment is in ¢

bound fraction 8/T

B,/ P., free segment probability in layer [ with
respect to the bulk sclution

Pii,s)/ P, end segment. probability of an s-mer
with respect to the bulk solution

column vector with M components plis)

chain prabability with respect to the bulk so-
lution, i.e., sum of the components of p()

array of all the r vectors p(s)

probabhility (with respect to bulk solution) that
the sth segment of an r-mer is in ¢

end segment probability {with respect to bulk)
for free, nonadsorbed s-mers

column vector with M components peli.s)

chain probability {with respect to bulk) of free
chains, i.e., sum of the components of pdr)

array of all the r vectors psr)

plr) - pdr}, chain probability (with respect to
bulk) of adsorbed chains

partition function at given distribution of
conformations

numbet of segments per chain

number of segiments that a chain in confor-
mation ¢ has in layer i

segment ranking number

absolute temperature

energy of the system with respect to the ref-
erence state

adsorption energy of a segment, and of a solvent
molecule

matrix with elements W, = A; .7

matrix with elements w; = A, ;p,

matrix with elements w;, = X, p;(1 - &, 3

coordination number of the lattice

adsorbed amount, and excess adsorbed amount
{eq 47 and 48)

surface tension

Kronecker delta; if § = J,6;; = Lif i = j, 6, =
¢

fraction of nearest neighbors in layer j around
asitein h, =0if[j-{=2

fraction of nearest neighbors in the same layer,
and in an adjacent layer

fraction of nearest neighbots that a site in the
layer, where the sth segment of conformation
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c is found, has in the layer where the {s + 1)th
segment is; thus (X, ;). equals Ay if s and 8
+ 1 are in the same layer, and A, if 5 and &
+ 1 are in adjacent layers

[ ¢, surface coverage or segment velume fraction
in the first layer

Hehains 40 chemical potential of a chain, and a solvent
malecule with respect to the reference state

# number of previcusly oecupied sites in laver ¢
{eq 9)

by, ¢ segment volume fraction in layer {, and in the

bulk solution
@ volume fraction due to nonadscrbed chains

$2 ¢  solvent volume fraction in layer ¢, and in the
bulk solution

(@), site volume fraction of segments, and solvent,

(e in layer i (defined in eq 14)

x Flory-Huggins polymer—solvent interaction
parameter

Xs differential adsorption energy parameter (eq 21)

Q2,9 combinatory factor for the mixture of polymer
and solvent, and for amorphous bulk polymer

w, w(n)  number of ways of placing the first chain, and
the first n chains, in an empty lattice (eq 9
and 10)

W, ratic between the number of arrangements of

a chain in conformation ¢ and that of a chain
in bulk polymer (eq 5)

References and Notes

(1) R. Simha, H. L. Frisch. and F. R, Erich, J. Phys. Chem.. 57, 584
(1953)% H. L. Frisch and R, Simha, J. Chem. Phys., 24, 652 (1956);
27, 702 (1957).

{2) A. Silberberg, J. Phys. Chem.. 68, 1872, 1864 (1962) J. Chem,
Phys., 46, 1105 (1967).

{3) E. A. DiMarzio, J. Chem. Phys., 42, 2101 (1965); E. A. DiMarzio
and F. L. McCrackin, bif., 43, 539 (1965}, C. A. J. Hosve, E. A,
DiMarzio, and F. Peyser, ibid., 42, 2558 (1965).

(4) R. J. Rubin, J. Chem. Phys., 43, 2392 (1965): J. Aes. Na!l. Bur,
Stand., Sec!, B, 70, 237 (1966).

(5) R. J. Roe, J. Chaem. Phys., 43, 1591 (1965); 44, 4264 (1966).

{6) K.Motomwa and R. Matuura, J. Chem. Phys., 50, 1281 (1969); K.

The Journal of Physical Chemistry, Vol. 83, No. 12, 1979

[14]
(8)
[E]

(1)
{11}

2
(13)

(14
(15
{16
an

ag
a9

1635

Motomura, K. Sekita, and R. Matuura, Bul, Cherr. Soc. Jpr., 44,

12943 {1971); K. Motumura, Y. Morol, and A. Matwura, &vd., 44, 1248

(1971},

A. Silberoerg, /. Chem. Phys., 48, 2835 (1968).

C. A. J. Hoave, J. Folym. 5ci. C, 30, 361 (1970); Did., 34, 1{1971).

G. Ash, D. H. Everett, and G. H. Findenegg, Trans. Faraday Soc.,
708 (!970)

J. Roe, J. Chem_ Phys ., 60, 4192 (1974).

Heltand, .J. Chemn. Phys , 63, 2192 (1975), Macromolecuies, 8,

(197

7
A, DiMarzio and . J. Rubin, J. Chiem. Phys., 55, 4318 (1971).
K.
7

S‘

Dg!asnands F. Edwards, Proc. R. Soc. Landon, Ser. A, 343,

(1975)

Levins, M. M. Thomlinson, and K. Rebinson, Ddiscuss. Faraday

Soc., 89, in press.

S.F. Edwan:ls Proc. Phys. Soc.. 85, 613 (1965); J. Phys. A, 2.

145 {1968). P. G. de Gennes. Rep. Prog. Phys_, 32, 187 {1969),

P. J. Flory, “Principles of Polymer Chemistry”, Comel University Press,

Ithaca, NY, 1953.

TUPAC, “Datinitions, Terminology and Symbols in Colicid and Surface

Chermistry”. prepared for publication by D. H. Evereit, Purs Appl.

Chemn., 31. 579 (1972).

D. A. H. Jacobs, “The State of the Arnt v Numerical Analysis”,

Academic Press, Landon, 1977,

For reviews see: A Siberberg, J. Phys. Chem 88, 1584 (1962):

F. Patat, E. Kilmann, and €. Schliebener. Forischr. Hochpolym.

Forsch., 3, 332 (1964); J. J. Kipling, “Adsorption from Soluticns of

Non-glectrolytes”, Academic Press, New York, 1965, Chapter 5; R.

R. Stromberg in "Treatise on Adhesion and Adhesives”, vol. I, R.

L. Patrick, Ed., Marcel Dekker, New York, 1967, Chapier 3; B. Vincent,

Adv. Coloid Interface Sci., 4, 193 [1974).

L. K. Koopal and J. Lyklerma, J. Chem. Soc., Faraday Discuss., 59,

230 {1575); J. Lyklema, Pure Appi. Chem., 46, 149 (1976); L. K.

Kmpa Commun. Agric. Univ. Wageningen, 78-12 {1978).

G. R. Joppien, Makromol. Chem., 175, 1931 (1974}, 176, 1129 (1975);

E. Dietz, ibid., 177, 2113 (1976); E. Kifmann; Croata Chin:. Acta,

48 463 (1975}, Polymer, 17, 864 (1976}, I. D. Robb and R. Smith,
1! 500 (1977).

M. Scheutiens and G. J. Fleer, Discuss. Faraday Soc., 65,

8.
&6,
R
E.
30
E.
A
42
S,

§§

H M Scheutjons and G. ). Fleer, to be published.
. Hesselnk, J. Phys. Chem., T5, 65 (1971).
. J. Hoave, J. Chem. Phys 4-‘ 1505 (19686).
enoit, J. Macromol. Sci. B, 12, 27 (1976).
DeSanﬁssndH G. Zachmenn, Cfﬂx.‘ . Sci., 265, 729 {1977).
S. G Whittington, J. Phys. A, 3, 28 (1970).
S. Ond and S. Kondo in “Handbuch der Physk”, Vol. 10, S. Fligge,
Ed.. Springer, Berlin, 1980, p 134,
J. E. Lane, Aust. ). Cherrr, 21, 827 (1968).
1. 8. Jones and P. Richmond, J. Chem. Soc., Faraday Trans. 2,
73, 1062 (1977).

IIO'I'H_;'.;
:ﬂ);‘;






Chapter 3

33

J. Phys. Chem. 1980, 84, 178-150

Statistica! Theory of the Adsorption of Interacting Chain Molecules. 2. Train, Loop,
and Tall Size Distribution

J. M. H. M. Scheutlens® and G, J. Fleer

Laboralory for Physical and Colloid Chemistry, Agriculiural Univarsity. De Draijen 6, 5703 BC Wapeningen, The Natherlands
(Received May 31, 1979)

On the basis of an improved matrix model for polymer adsorption, in which the volume of the segments and
the segment—solvent interaction is taken into account, the conformation of adsorbed chains is calculated. Results
are obtained for the distribution of individual chain segments, the concentration profile due to loops and tails,
the root-mean-square layer thickness, the numbers and average length of trains, loops, and tails, and the train,
loop, and tail size distribution. The distribution of end segments is quite different from that of middle segments.
Ignoring this difference, which is done in older theories, is equivalent to the assumption that end effects are
negligible, and is mostly incorrect. The concentration profile due to loop segments decays exponentially with
increasing distance from the surface, in agreement with previous theories. However, except for the layers close
ta the surface, the contribution of tails is dominant aver that of the loops. Also in the toot-mean-square layer
thickness the main contribution is due to tail segments; the layer thickness in all cases is proportional to the
square root of the chain length. At reasonable adsorption energies, the conformation of isclated chains is very
flat, with most segments in trains, a small fraction in loops, and a negligible fraction in tails. In even very dilute
solutions the length of tails becomes significant, while that of loops increases and that of trains decreases. At
semidilute concentrations, more than 20% of the segments may be in tails, with an avetage tail size of about
15% of the chain length. In bulk polymer, a chain in contact with the surface consists, on the average, of twa
tails of roughly 1/3 chain length each, while in the middle section short trains and longer loops alternate. As
far as possible, our results will be compared with other theoretical predictions and with experiment. Omne result
is that the spread of the train size around its average value is identical with the train size distribution as derived

by Hoeve et al.

L. Introduction

In a variety of practical applications, such as colloid
stability, adhesion, biology, polymer technology, etc., the
conformation of polymer chains in the vicinity of an in-
terface is of considerable interest. Adsorbed polymer
molecules have only part of their segments on the surface
while a substantial fraction of the segments are protruding
into the solution. The segments on the surface are present
in trains of variable length, the others are in loaps {with
both ends in contact with the surface), and in one or two
tails at the end of the adsorbed molecule. The way in
which the polymer segments are distributed over trains,
loops, and tails largely determines the physical properties
of the system.

In the first article! of this series, it was shown that a
well-known matrix formalism?? for a random walk near a
aurface can he adapted to include the competition between
the segments and the segment~solvent interaction. Each
segment of a chain can be assigned a weighting factor, the
free segment probability, which must be introduced into
the matrix. This weighting factor depends, within the
limits of the Bragg-Williams approximation for random
mixing in each layer parallel to the surface, on the local
concentration, on the local concentration gradient, and on
the energy parameters y, and x. The two latter parameters
deacribe the interaction of segments with the surface and
the solvent, respectively. From the matrix the number of
chains in any given conformation can then be found. In
this paper we calculate the fraction of the segments in
teains, loops, and tails, the average train, loop, and tail size,
and the train, loop, and tail size distribution. Moreover,
the concentration profile and the root-mean-square ex-
tension due to foops and tails are obtained.

Unlike previous theories,*® our model considers the
chains as connected sequences of segments throughout the
derivation. In this way it is possible to avoid the usual
approximation*? that any chain segment, whether it is in

the middle part of the chain or near one of the chain ends,
gives the same contribution to the segment density at any
distance from the surface. In this article it is shown that
this approximation, which is closely related to the neglect
of end effects, 13 often not valid in practical systems. On
the contrary, even at very dilute bulk concentrations tails
play a very important role and largely determine the
segment distribution in the outer regions of the adsorbed
layers. In this respect there is 8 fundamental difference
with isolated molecules near a surface® 2 where end effects
can be safely neglected.

From recent experiments on polymer stabilized free
liguid films!? it was concluded that the interaction in the
film extends over such large distances that long dangling
tails are probably present in the adsorbed polymer layer.
This article confirms that, even for homopolymers, a
considerable fraction of the segments may be present in
tails, especially if the system is relatively concentrated.
This is certainly important in the stahilization and floc-
culation of colloidal systems by polymers.

11. Theory

A. The Metrix Formaiism. In the preceding article' it
has been shown how the segment density distribution and
the adsorbed amount for polymer chains in a lattice ad-
joining an adsorbing surface can be calculated. The lattice
consists of M layers of lattice sites parallel to the surface,
labeled i = 1, 2, ..., M, where i = 1 is the layer adjacent
to the surface and { = M is a layer in the bulk solution.
A lnttice site has 2 nearest neighbors, a fraction Ay of which
are in the same layer and a fraction A; in each of the
adjoining layers. In a simple cubic lattice z = 6, Ay = 2/3,
and A, = 1/6; in a hexagonal lattice 2 = 12, Ay = 1/2, and
A = 1/4. Obviously Ao + 22, = 1.

A central quantity in the theory is the free segment
probability p;, expressing the preference of a free segment
(monomer) for a site in layer i over a site in the bulk

|Reprinied from the Journal of Physical Chernistry, 84,178 {1980).]
Copyright € 1980 by the American Chemical Society and reprinted by permission of the copyright owner.
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solution. More accurately, p; is the equilibrium constant
for the exchange of a segment in the bulk solution with
a solvent molecule in layer i, or —kT In p; is the free energy
associated with this exchange. In the case of noninter-
acting segments and a nonadsorbing surface, p; = 1 for any
layer ¢, In the first layer adjacent to an adsorbing surface
pi = p1 > Lsince the adsorption energy difference between
segments and solvent molecules favors the presence of a
segment in this layer, If the segments interact with each
other and with the solvent, p, contains (for any layer i) an
entropy factor accounting for the fact that a fraction of
sites in layer i is occupied by segments and an energy factor
originating from the segment-solvent interaction.

For polymer chains, the quantity p; has to be used as
a weighting factor for each of the chain segments that is
in layer i. [n other words, the probability that a chain of
r segments has a given confarmation (specified by indi-
cating the layer number where each of the chain segments
is situated) is proportional to the multiple product of r
weighting factors p;, p,, ps, .... the number of times that
the weighting factor p; occurs in this multiple product is
equal to the number of segments of this conformation in
layer :.

DiMarzio and Rubin®* have shown that for the calcu-
lation of the statistics of polymer chains in a lattice a
matrix method is very useful. A chain of r segments is
considered as a random walk of r - 1 steps, in which a
weighting factor may be assigned to each segment.
Through the matrix the end segment probability p(i,r),
i.e., the prebability that the end segment of a chain of 7
segments is in layer i, can be easily evaluated. Let us first
consider the end segiment probability p(i,2) of a dimer. If
the end segment, in this case the second segment, is in
layer i, the first segrnent can be in layers/ - 1, i, ori + 1.
The probability that the first segment is in i - 1 end the
end segment in { is equal to p; Ap;. Similarly, the prob-
ability that both segments of the dimer are in layer i is
DAoD;, that of the first being in { + 1 and the second in
i i8 pi AP Therefore, we find that p(i,2) = p(a e, +
AP + APisr)- In the same way, the end segment proba-
bility for an rmer can be written in terms of end segment
probabilities for an (r—1)mer:

pliy) = piapl-1,r-1) + hgplir-1) + Apli+1,r-1)) (1)

Any term pii,r) in {1) ia zero for 1 < 0 since then p; = 0.
Equation 1 applies for each of the M layers, so that we have
M simultaneous equations which can be expressed con-
veniently in a matrix formalism:

p(r) = wp{r-1) = & Ip(1} 2}

where the column vector p(r) has M components p(i,r), the
coluron vector pil) has M components pli,1) = p;, and w
is an M X M matrix with elements

Wi = Apipy ()]

with Ay =N if|f-i| =1and A, = 4, if j =i. For|j-
i| 2 2, A = 0. More explicitly, eq 2 and 3 may be written
as shown in eq 4. Equation 1 is part of one matrix mul-
tiplication and p(r) follows from p(1) through r - 1 matrix
multiplications.

Equation 4, as written, suggests that a second surface
is present just beyond laver M. If M is large enough, this
is irrelevant. As shown previously,' only a Emited number
of layets has to be taken into account in order to obtain
an accurate description of a polymer solution in equilib-
rium with one surface.

B. The Free Segment Probebility. Before we show how
the segment density distribution can be derived from the
end segment probabilities we consider the free segment
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(4)
probability p; somewhat more closely. If p; = 1 for each
i we have a purely random walk between nonadsorbing
surfaces. If the surface has a higher affinity for segments
than for solvent molecules we can define a differential
adsorption energy*® x, which is the difference in adsorption
energy (in units of T} of a segment and a solvent mole-
cule. The preference of a segment over a solvent molecule
in the surface layer can then be expressed hy a Bolizmann
factor e®. Polymer chains of which the segments do not
interact with each other or with solvent may then be de-
scribed as a random walk in which a segmental weighting
factor e* is assigned to each visit to the surface layer: p,
=¢x p, = Lfori > 1. This case has been described in
detail by DiMarzio and Rubin® for polymer chains between
two surfaces.

Far interacting chains the polymer—solvent interaction
and the occupation of part of the lattice sites in each layer
by other segments have to be incorporated in p,. Both
effects depend on the volume fractions ¢;and % =1 - ¢;
of segments and solvent molecules, respectively, in layer
i, and on the corresponding volume fractions ¢. and ¢.°
in the bulk solution. The derivation of p; from the par-
tition function of the system has been given before.! For
an adsorbing surface in equilibrium with a bulk solution
the free segment probability may be written as

o
= --Eezx“'”""'}el"ﬂ"‘u“' (5)

where y is the well-known Flory-Huggins polymer—solvent
interaction parameter," and the Kronecker delta 8,; equals
unity for i = 1 and zero for ¢ > 1.

The factor ¢.2/ ¢.° originates from the difference in the
configurational entropy of a segment in layer { and that
of a segment in the bulk solution, since the number of ways
in which an extra segment can be placed in a layer in which
a fraction ¢ of the sites is not occupied by segments is
proportional to ¢.°. For the layers close to the surface, the
factor ¢°/¢.° is smaller than unity.

The first Boltzmann factor in (5), e®!4? /ex¢* represents
the interaction between a segment and its nearest neigh-
bors. The site volume fraction {¢;) is defined as

(it = Mty + Aot + A (6}

and has 1o be used because a segment has a fraction A of
its contacts in the same laver and a fraction A, in each of
the adjoining layers. Since the bulk sclution is homoge-
neous, {¢.) = .. For athermal solvents x = 0 and this
Boltzmann factor reduces to 1. In poor solvents the ex-
ponent is positive for layers where the segment concen-
tration (averaged over the layers i - 1, /, and ¢ + 1) is higher
than in the bulk solution, expressing the net attraction
between segments.
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The last factor in (5) is due to the adsorption energy and
differs from unity only for i = 1. The term Ax in the
expoenent stems from the fact that for a segment in the first
layer X,z contacts in the solution have been exchanged
against A,z surface contacts. Even if x, = 0 (e.g., for a
liquid-air interface) there is a remaining energy contri-
bution in the first layer due to the segment-solvent in-
teraction.

C. The Overall Segment Density Distribution. For
monomers the segment density profile can be easily
evaluated. From the definition of p; it follows that in this
case p; = §if s, OF

@i = pih (M

This gives with eq 5 a set of M implicit equations in M
unknown ¢;’s. For x = 0 the Langmuir eguation' results;
for nonathermal solutions the equations are identical with
those given by Ono and Kondo'® and by Lane!” for ad-
sorption of monomers from a regular solution.

For polymers the situation is more complex because the
r chain segments are not independent of each other. The
segment density depends on the number of chains in each
conformation, and is the result of contributions of all the
r chain segments. First, we consider the volume fraction
¢,(8) due to the segments with ranking number s (s = 1,
2, ..., r}. In the bulk solution each of the r chain segments
gives the same contribution to ¢ @.(s} = ¢./r. Near the
surface not all the conformations are equaily probable,
resulting in a different spatial distribution for end and
inner segments. If we define p(s,i;r) as the probability
(with respect to the bulk solution) that the sth segment
of an rmer is in layer { we may write pls.i;r) = ¢ds) /d.{s)
or

Bis) = (o /ripls,ir} (8

The quantity p(s,i;r) can be expressed in end segment.
probabilities of shorter chaing ending in {. Any confor-
mation of an rmer with the sth segment in { can be de-
scribed as the result of two walks ending in 7, starting at
the chain ends, and having s — 1 and r - s steps, respec-
tively. The corresponding end segment probabilities are
pli,s) and p(i,r—s+1), where the appropriate weighting
factors p; {J = 1, 2, ..., M) for the first s segments are
included in p(is) and those for the last r — s + 1 segments
in p(i, r - s+1). Thus, the weighting factor p; for the sth
segment occurs in both end segment probabilities. The
probability that the sth segment of an rmer is in { is then
equal to the joint probability that both chain parts end
in i, divided by p;;

plsiir) = pli,s) pli,r-s+1)/ p; [

This is a very important relation, which we shall use several
times.

Note that in this derivation the inversion symmetry is
automatically accounted for, since a segment situated s
segments away from one chain end has the same proba-
bility of being in layer ¢ as one that is s segments away from
the other end (i.e., with ranking number r + s - 1).
Helfand® has shown that this symmetry is not always
obeyed in other theories.

Subatituting {9) into (8} we obtain

$ils) = %‘p(iﬁ) pli,r—s+1) (10}

b= 23 niis) plir-stD) (an
his=1

This procedure of deriving the segment density due to
each individual chain segment from two end segment

Schaeutjens and Flaer

probabilities, and the subsequent summation over atl the
chain segments to obtain ¢,, has been used previously, e.g.,
by Hoeve,'® Helfand and Tagami,'* and Levine et al.?®

It is easily shown that in the bulk solution p(*,s) = p.*
= 1 s0 that eq 10 reduces to ¢.(s} = ¢./r; near a surface
pli,s) differs from unity and the volume fraction ¢;(s)
depends on the ranking number 5. Equation 11 is a gen-
etalization of (7). The combination of eq 4, 5, and 11
constitutes a set of M implicit equations in the M unknown
¢:’s, from which the concentration profile and the M p;’s
may be solved numerically by an interative procedure as
described previously." Equation 11 for M layers contains
M X r end segment probabilities p(i,s), which may be
arranged in an array p:

Py-—=pll,s)———pl1, 7}
P ;

p=| P === pls s)===ply ) (12)
i 1 1

Ll 1 1
PR ,D(M.s)---,a(M,/)J

The sth column of pis the end segment probabitity vector
pls); it is found from the first vector p(1} after s — 1 matrix
multiplications, according to (4). The array p contains all
the end segment probabilities and, hence, all the infor-
mation on the distribution of polymer moleculea in the
system. For example, according to eq 11 the overall seg-
ment distribution ¢; is found from the elementa p(i,s) of
the ith row of the array by summing the products of the
firat and the last elements, of the second and penultimate
elements, etc. In order to calculate properties of adsorbed
chains (such as the distribution of segments of adsarbed
polymer molecules, the distribution of segments over
trains, loops, and tails, and the train, loop, and tail size
distribution) it is necessary to differentiate between free
and adsorbed polymer chains.

D. Free and Adsorbed Chains. Free chains do not have
a single segment in the first layer. If we assign a segmental
weighting factor pf to each segment of a free chain which
is in layer i, we have for the surface laver ' = 0, while
for the other layers (i > 1) pf = p;. The end segment
probabilities pi,r) for free chains can then be calculated
from eq 2 and 3 which now read

Pir) = wipdr-1) = w 'pd1) (13)
where the elemnents of the matrix w; are given by
weg; = Aol - 8y (14)
and the components of the vector p{1) are
pilD) = pf= p(1-5,) (15)

For i = 1, the elements of w,and p{1} are zero, whils for
i > 1 they are identical with those of wand p{1), respec-
tively.

Analogously to eq 12 the vectors pg(s) may be arranged
in an array pr. If only the first ¥ components of each vector
are indicated, p; can be represented as shown in eq 16

O-mmm = L et o
Py ==———— PRE S m = .D,(QI #
P i :

'
F - e e e N pirr)| (16)
N ~ ' '
1 Sa 1
1 plsel, s} :
H RN !
|
ﬂ.r ,,,,,,, plesteazpir r-1) ,D'E’.V]

where p(1,5) =0, pidi,s) = pli,s) if i > s (lower left corner
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of pg) and pdi,s) < p(is) for 2 =i < s. The sth vector of
the array is found from the first after s ~ 1 matrix mul-
tiplications. The segment distribution of free chains may
be found in the same way as in eq 10 and 11.

Next, we consider the erd segment probabilities p,{(i,s)
and the array p, for adsorbed chains. Since a chain is
either adsorbed or free, we may write

plis) = p(is) + pris) (17a)
pls) = (3} + pyls) (17b)
p=p+tp (17¢)

Da(i,s) is the probability that the end segment of an ad-
sorhed smer is in i. The array p, can be represented as
shown in eq 18 where p,{1,5) = p(1,s}, p.(i,s) =0if i > s

Pr==-—=—==-pl1, 8] ——=pl1.7)
~ 1 !
o, ' ;
Ev oplelptisl=—=pyter)
1 RN ' |
P Se e | (18}
! ‘\pais.sl :
: S \\\ \L
! ~
Qmmmmmmm =l 0 poles)

(end segments of adsorbed smers cannot be cutside the
first s layers) and p,{i.s) < plis) for 2 =i = 4.

The sum of the components of the last vector p,(r),
denoted as p,(r), gives the probability that the end seg-
ments of adsorbed rmers are somewhere in the system:

pulr) = ép.(i.r) (19)

Thus p,(r) gives the probability that a chain is adsorbed.
The guantity p,(r) will be needed as a normalization factor.
For example, the fraction of adsorbed chains that have
their end segment in layer ¢ is given by p,(i,r)/p.(r).

For the calculation of the properties of adsorbed chains
the array p, plays a central role, and it is necessary to have
accurate values for its elements p,(i,s). They can be cal-
culated from eq 17, but the accuracy of the numbers ob-
tained for relatively large i is low since in the outer regions
of the adsorbed layer the difference between p(i,s) and
pili,8) is very small. More accurate values for p,(i.s) may
be obtained by a different procedure, which is given in
Appendix 1.

E. The Segment Density Distribution in Trains, Loops,
and Tails, The overall volume fraction @; is the sum of
the contributions of free chains ¢;" and that of adsorbed
chains ¢2. In turn, the latter is the sum of the contribu-
tions due to trains (9,%), loops (¢, and tails (¢;!). All the
segments in the first layer belong to trains. Therefore

i=1 & =" (20)
i>1 d=¢'t o+ o (21)
As shown in section IIC, the segment density is the result

of the contributions of all individual chain segments.
Substituting (17a} into (L0) we find

¢ls) = %Ip.(i.s)p.(i.r-sﬂ) + pali.s) pdir-s+1) +
Cpulirostl) piis) + pilis) pdir-st1) (22)

Since segments in the surface layer cannot belong to free
chains, pf1,s} = 0 and p,(1,5) = p(1,5). Thus fori =1 the
last three terms of (22) vanish and the equation reduces
to (200, after summation over s.

Segments in the other layers {{ > 1) may belong to loops
or tails of adsorbed chains or to nonadsorbed free mole-
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cules. The first term of (22) gives the contribution of a
segment belonging to a loop, the two middle terms that
of a segment in one of the two tails of an adsorbed chain,
and the last term represents the contribution of a segment
of a free chain. The guantity p.[(i,s) gives the probability
that the end segment of an adsorbed smer is in #; it con-
tains all the conformations for which at least one of the
previous segments is in the first layer. Analogously to eq
9, the product p; ! 7,(£,8) p,{i,r—s+1) is the probability that
the sth segment is in layer i while at least one of the first
s - 1 segments and at least one of the last r - s segments
are adsorbed. In other words, the first term of eq 22 gives
the contribution of the segments with ranking number s
which are in a loop. The volume fraction ¢,' due to the
loops is ohiained after a summation over 5
» I
>0 o = ¢—Z Palis} polir—s+1) 23
rDjs=1
Segments for which s < [ cannot belong to loops; this is
automatically accounted for in (23) since p,{i,s} = O fori
> s
By similar reasoning the product p;"'p,(i.8) pdir-s+1)
is the probability that segment s is in £ while at least one
of the first s — 1 seginents and none of the last r — s seg-
ments is adsorbed. Thus the second term of (22) gives the
contribution of a segiment s in a tail at the end of an ad-
sorbed chain, and the third term that of a segment in a
tail at the beginning of the chain. Since the summation
over all s for these two terms gives the same result, we have
2¢. 1
& = iis—E;:v.(i,s} pir—s+1) (24)
Pis=1

Analogously, the volume fraction due to free chains is given
by

& 1
#f = J_T’.Z;:]Pr(i,s) pili,r—s+1) (25}

In this way the volume fractions ¢,”, ¢, ¢, and ¢ can
be calculated from the elements of the /th row of the arrays
p.and p;.

From the concentration profile the root-mean-square
layer thickness ¢ follows immediately:

1 M

= it (26)
=1

Here I' = 3., is the adsorbed amount expressed as
the number of segments belonging to adacrbed chains per
surface site. I' is proportional to the probsbility p,(r) that
a chain is adsorbed!

T = $pa(r) @7

This relation follows from ' = ¥,.,"Y =, ™#,"(s), where
$:2(s) is the volume fraction in layer { due to segments of
adsorbed chains with ranking number s. Analogously to
eq 8, #2(s) may be written as r 'g.py(s,i;r) in which p (s.5;r)
is the probability that the sth segment of an adsorbed rmer
is in layer {. Since ¥, Mp.s.5;r) = T, Mp, (i1} (the
probability that the sth segment is somewhere in the
system, i equal to the probability that the end segment
is somewhere in the system), eq 27 follows,

In the same way we can define the root-mean-square
thickness due to the loops t; and that due to the tails £,

M M
tf = Z:li%,‘/ ;aﬁ.' (28}

M M
th= >1i2“’“/ Zp.-‘ (29)
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{)]

Figure 1. Schematic representation of chain conformations where the
5th segment is the last of a tail {a) or a kop [b).

Obviously, the rms thickness ¢, due to trains equals 1.

F. Average Train, Loop, and Tail Size. Tail Size
Distribution. For the calculation of the average train, loop,
and tail size we need the number of trains (n,}, loops (n)),
and tails (n,) per adsorbed molecule. We can abtain these
numbers by counting the number of transitions from layers
2 to 1. At each of these transitions a loop or a tail ends
and a new train is formed. If the sth segment of a chain
is in layer 2 and the (s + 1)th in layer 1, s is the last
segment of a loop if at least one of the previous segmenta
is adsorbed (see Figure 1b), while s is the last segment of
a tail if none of the first s chain segments are adsorbed (see
Figure la). The probability of the conformations in which
the bond between two consecutive segments s and s + 1
is from the second to the first layer is equal to A;, multi-
plied by the probabilities that the first chain part of s
segments ends in the second layer and that the last chain
part of r - 5 segments starts (or ends) in the first layer.

Liet us begin with the calculation of the number of loops.
We consider a chain of which the sth segment is the last
of a loop and is in layer 2, while the (s + 1)th segment is
the first of a train and is in the surface layver (Figure 1b).
The probability that the first chain part of s segments is
adsorbed and ends in the second layer is p,(2,8), the
prebability that the bond between s and s + 1 is from the
second to the first layer is A;, and the probability that the
second chain part, of r - s segments starts (or ends) on the
surface equals p(1,r-s), which is identical with p,{1,r-s).
Thus the probability that the sth segment is the last of
a loop is p,(2,5)A0,{1,r—s). The number of loops per chain
ending at the sth chain segment is found after dividing by
D.[r). Surmmation over s gives

Mool
M= E}D.(ZS)P..(LPS) (30)

The first term in (30) gives no contribution, since p,(2,1)
= (; a loop cannot end at s = 1.

The number of trains is easily found from

ne=m+1 (31)

because a loop is always situated between two trains.
Analogously, the probability that the first s segments
of a chain form a tail of 5 segments, with the sth segment
in layer 2 and the {s + 1)th chain segment in the surface
layer, is given by p{2,s)A.p,(1,r-s). Normalization with
Pu{r) gives the number of tails per chain with length s
(5) = 2 pi2s) paily-s) (82)
mls) = — -5
t p_,(!‘)pf v$) Da
where the factor 2 accounts for the fact that a tail of s
segments may be formed at both ends of the chain.
Equation 32 represents the tail size distribution. After
summation over s we obtain the total number of tails per
chain:

25,
n = IT(:)EIPA%) pul1,r-s) (33)

Scheutjens and Flear

An equivalent expression for n, is found by realizing that
any chain has two tails, unless an end segiment is on the
surface. The latter probability is 2p,(1,r)/p,(r) per ad-
sorbed chain, so that we may write immediately

n, =2 - 2p. (1,7 /pr) (34)

Equations 33 and 34 give identical results,

Having obtained #n,, n,, and n;, we can calculate the
fraction of segments in trains (»,), tails (#}, and loops {1).
For the fraction in trains we have

v = ¢ /T = ¢1/¢-Pa(?') (35}

For the fraction of segments in tails we use the result
for ns) as given in (32}

r-i
v = %‘,Z]sn,(s) (36)

Finally, for the fraction in logps we have
n=1l-v,-n (37)

The average length of trains, tails, and loops is now
easily obtained. The average train length /.. is given by
the number of segments in trains divided by the number
of trains:

Le=ro/ng (38)

Similarly, we may write for the average tail length /, and
for the average loop length I

b = ru/n, (3%
h=ra/m 40

G. Trein and Loop Size Distribution. In eq 32 we have
obtained the tail size distribution a,(s), i.e., the number
of tails with length s. The derivation of the analogous train
and loop size distribution is slightly more complicated. We
start with the trains.

We consider an adsorbed rmer of which the tth segment
is in the second layer and the (¢ + 1)th is in the surface
layer and is the first segment of a train of 3 segments long.
Then the (¢ + s)th segment is the last segment of this train
and the (¢ + s + 1)th segment is again in the second layer.
The probability that the end segment of the first chain part
of ¢ segments is in the second layer is p(2,t), the probability
of s consecutive train segments is Ag"! p,* and the prob-
ability that the firat seginent of the last r - s — ¢ chain
segments s in layer 2 is p(2,—s—f). Including the transition
prebabilities from the first to the second layer at the bonds
t,t+landt +s,t+s+ 1 we find for the probability of
this chain conformation

PN A DA p(2,r-5-£)

This expression applies for t = 1 up to and including ¢ =
r—s— 1. A train starting at the first segment would
correspond to ¢ = 0, hut then the factor p(2,£)A; should
be equal to unity. We may include this situation in the
above expression by defining formally p(2,0) = 1/A,. (Note,
however, that p(2,0) may not be identified with the second
component of a vector p{0) for which the relation p(1) =
wp(0) holds.) Similarly, a train at the end of the chain
may be included if we allow for ¢ the (maximum) value r
- 5. The number of trains of length s per chain is now
found by summation aver ¢ and normalization with p,()
R]QRD‘-IPI""

1y,(8) i) Eﬂp(&t) pl2,r—s-t) {41)
where p(2,0) = 1/A,. Thus the train size distribution can
be calculated from the elements of the second row of the
array p, given in (12).
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For the loop size distribution we consider a chain of
which the tth segment is the last of a train and the (i +
1}th segment is the first of a loop of s segments. Thus the
{t + 1)th and the (¢ + s}th segments are hoth in the second
layer, the tth and (¢ + s + 1)th are on the surface. The
probability of this chain conformation can be written as

DLt p(2,9) 0 py(1,r-s-t) 42

where p,(2,5) is the probability that a tail of s segments
ends in the second layer. Here a loop is considered as a
special case of a tail (of which not a single segment is on
the surface), i.e., as a tail ending in the second layer. The
quantity p,(2,s) may be identified with the second com-
ponent of a tail end segment probability vector p{s). For
s = 1, the tail is only one segment long and the tail end
segment Is necessarily in the second layer: p,(2,1) = p,,
pii,1) = 0if i > 2. Hence, we have for the components
of the vector p{1)

i1} = poby; (43)

Analogously to eq 13 we find the components p,(i,s) for
longer tails after s - 1 matrix multiplications

ps) = wlp (1) (44)

where the matrix w, has to be used because no tail segment
can be in the first layer. The tail end segment probabilities
may again be arranged in an array p, as in eq 45 where

Om - - -0 --— =0
PR, sl-= = pyl2,r-1)
G . ! !
I~ gmler-Nmpdosh———pils,r-]
po=| g TR et (45)
i RSN !
s N
Q-—=-m— - == ~0 plrr-1)

pll,s) = 0 and pdi,s) = 0if £ > s + 1, since a tail of s
segments starting in the second layer can maximally extend
up to layer s + 1. Note that this array contains only r -
1 vectors; at least one segment of the chain should be on
the surface.

The factor (2,5} in (42) can now be taken from the
second row of p,. The loop size distribution ig obtained
after summation over ¢
Mip 2l
M o piren 8

Pa(r )

Since the loop is preceded by a train segment (ranking
number t} and the (¢ + s + 1)th segment should again be
on the surface, the summation extends uptof = r -5 -

niis) =

1.

From (41) and (46), the numbers of trains and loops and
the average train and loop length could be obtained in a
way similar to the derivation for tails, as given in eq 32,
33, 36, and 39. However, in the previous section an easier
method was given for these quantities. The results are
identical, as should be expected.

ITI. Results and Discussion

In the previcus paper! several examples were given of
the dependence of the adsorbed amount T, the surface
nccupancy 8 {=¢,), and the hound fraction p (=) on the
bulk solution volume fraction ¢. and the chain length r,
for different values of the interaction parameters x and
+,. Here we concentrate on the structural aspects of the
adsorbed layer, such as the distribution of individual
segments and the buildup of the layer in terms of trains,
loops, and tails. All of the results apply to a hexagonal
lattice {A; = 0.5) and an adsorption energy parametet x,
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Figure 2. The relative contribution of segments with ranking aumber
510 the volume fraction ¢, in layer i, np,($)/¢,, a5 a function of layer
number /{from front to back) and ranking numbar s (from left to right).
One locks from the swrface {front plane) toward the solution. Eighty
layers are indicated, corresponding to 80 lines paralied to the surface.
The relative contribution of every 10th segment is plotted {s = 1, 11,
21, ... 501, 510, 520, ... 1000} so that 101 ines run perpendicular
to the surface. See also Figura 3.

= 1. For the polymer-solvent interaction parameter x we
use the values 0.5 (0 solvent) and 0 (athermal solvent).
While the previously reported calculations were for max-
itnally 35 lattice layers, most of the present data are for
80 layers. This high number is necessary if accurate values
for the root-mean-square layer thickness are to be ob-
tained.

A. Distribution of Individual Segments. We begin with
the distribution of individual chain segments. In Roe's
theory* the approximation was made that any chain seg-
ment (ranking number s = 1, 2, ..., 7) would give the same
contribution ¢;(s) to the volume fraction ¢; in any layer
i. This is equivalent to the assumption ¢;(s) = ¢;/r for any
5. The extent to which the ratio re;(s)/¢; deviates from
unity gives a measure of the validity of this assumption.
Figure 2 shows a computer drawing of the dependence of
rois)/¢; on § and {, in perspective view, for r = 1000, ¢.
=10%, and x = 0.5. The segment ranking number s is
plotted from left to right, and the layer number i from
front to back. Thus one looks from the surface toward the
bulk solution. Eighty lavers (i = 1, 2, ..., 80} are indicated,
corresponding to B0 lines parallel to the surface. Every
10th segment is taken {s = 1, 11, 21, ..., 501, 510, 520, ...,
1000) so that 101 lines run in the direction perpendicular
1o the surface.

This figure shows that, for i = 1, r¢,(s)/ ¢, is smaller than
1 for end segments (left and right in the figure) and higher
for middle segments. Further away from the surface the
relative contribution of end segments increases and that
of middle segments decreases; around i = 20 the relative
probability of finding end segments is maximal and that
for middle segments minimal. At still greater distances
$,15) becomes more weakly dependent on s, until about {
= 60, when all of the segments contribute equally to the
overall volume fraction ¢, This last result is to be expected
tor polymer chains in bulk solution.

Mare quantitative detail is seen in a projection of Figure
2 in the r¢;(s) /¢« plane. This is shown in Figure 3 for
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Figure 3. Projection of Figure 2 for the first 21 layers in a plane paraliel
to the surface. In this case the rekative contribution rd,(1)/¢, for end
segments has its maximom vakie 2.42 in layer 21. Hexagonal lattice,
X = t.x = 0.5, r= 1000, ¢ . = 0.001.
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Flgwe 4. Maximum values for =h,(1)/¢; (see Figure 2) as a function
of chain length r for fowr bulk volume fractions ¢ .. For several volume
fractions the layer //, where the maximum occurs, is indicated.
Hexagonal lattice, x, = 1, x = 0.5.

the first 21 layers. In this example i = 21 is the layer where
the ratio ré;(1)/¢; for end segments has its maximum value
2.42; for the layers further away this ratio decreases again.
In the first layer the ratio of volume fractions due to end
and middle segments, ¢;(1)/#;(500), is 0.600; for layer 21
it is 5.01.

We have obtained graphs like Figure 3 for other chain
lengths and other bulk velume fractions. They all look
similar, exhibiting a minimum value for r¢;(1)/¢; in the
first layer and a maximum value in a layer i = i’ some
distance away from the surface. In order to give an idea
of the trends, we have plotted in Figure 4 the maximum
value 7¢,(1)/ ¢ as a function of r for some values of ¢..
The layer i’ where the maximum occurs is indicated For
various combinations of r and ¢..

The above results allow an evaluation of the validity of
the assumption of an equal distribution of all chain seg-
ments, as made by Roe. Roe* states that (1) the confor-
mational consiraint imposed by the presence of a surface
is less severe to end than to inner segments, and (2) the
agsumption of an equal contribution ¢;/r for all segments,
independent of the segment ranking number, is better for
smaller chain lengths. The first point seems to be incor-
rect, as shown in the Figures 2-4; except for very high ¢.,
the probability of finding end segments close to the surface
is lower than that for middle segments, implying that the
conformational restrictions are higher for end segments.
(However, we found for ¢» — 1 a small preference for end
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segments in the surface layer, of the order of 18% for r
= 1000.} The second point is correct for chains up to r ~
100, as indicated by the rising portions of r¢;(1)/¢ in
Figure 4, For longer chains the maximum deviation from
a uniform segment distribution becomes nearly inde-
pendent of chain length (although the layer number i’
where this maximum occurs increases with r).

The fact that end segments occur more frequently than
middle segments, at some distance from the surface, points
clearly to the importance of tails, since only segments that
are close to the chain ends can be in tails. Thus end effects
may probably not be neglected, as was done in previous
theories*3. This conclusion will be corroborated by the
results discussed below.

One special feature of Figure 3 deserves attention.
Segments with ranking number around s = 0.18r (or 0.82r)
have a distribution which is in all layers nearly equal to
the average value ¢;/r, as indicated by the fact that all the
lines for different / intersect around this ranking number.
This (approximately) comimon intersection paint at § =
0.18r is also found for other chain lengths and concen-
trations, Thus it seems that, regardless of chain length,
about 36% of the segments (at both chain ends) show an
“end segment behavior”. We have no indication that this
fraction decreases drastically for chains longer than r =
1000. Also, from the nearly constant value of r¢:(1)/¢;
for r > 100 (see Figute 4) it seems that end segments in
the layers further away from the surface are dominant,
independent of r. Therefore, even for long chains {r >
11000) tails probably play an important role in the adsorbed

ayer.

Figure 4 shows that the plateau value of r¢;(1)/¢; at
high chain lengths increases if the bulk solution becomes
mote dilute. This may nof be interpreted as an increase
of the tail fraction, but says merely that at i = [’ the
contribution ¢{1) due to end segments is much higher
than the average segment contribution ¢;/r, but ¢ can
be quite low in dilute solutions. Actually, it wilt be shown
below that for isolated chains the effect of tails becomes
negligible, in accordance with previous theories.®!? A high
ratio r¢,. /¢, means only that the {few) segments occurring
in layer i are nearly exclusively tail segients. Similarly,
the effect that the layer i* (where end segments have their
maximum relative contribution to ¢;) shifts further away
from the surface for lower bulk concentrations may not
be interpreted as an increase of the layer thickness with
decreasing ¢.. The high values for i’ at low ¢. are related
to the fact that the (few) segments at distance i’ belong
predominantiy to adsorbed chains. For higher ¢. the free,
nonadsorbed chains contribute significantly to the segment
concentration at large distance, thereby decreasing the
value for rg,.(1)/ ¢ since this ratio is an average over ad-
sorbed and free chains.

B. Coneentration Profile and Layer Thickness. Figure
5 shows the overall concentration profile and those due to
loop and tail segments, for r = 1000, ¢. = 10, and x =
0.5. The volume fractions, ¢;, ¢! and ¢ are plotted on a
logarithmic scale. In this example, 38% of the segments
are in trains, 55.5% in loops, and 6.5% in tails (see Figures
10 and 11). Previous thecries” predict an exponential
concentration profile. Figure 5 shows that this is not true
for the adsorbed layer as a whole (i.e., ¢;), but very nearly
so for the loop segment. contribution: log ¢! vs. / is
practically a straight line. Thus, Hoeve's theory” would
describe the concentration profile correctly if end effects
were to be negligible. From Figure 5 it is clear that this
is not the case, even if the tail fraction is as low as 6.5%;
in the region from i = 20 to i = 40, ¢, is nearly completely
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Figure 5. The volune fractian ¢, {full line) and its companents ¢;' due
to koops (broken kne) and é,! due to tails {dotted line} on a iogarithmic
scale as a function of the distance from the surface. The loop con-
tribution ¢, decreases essentially exponentially with 7.
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Figwre B. The root-mean-square layer thickness ?as a function of the
square roat of the chain length r, for four values of the bulk volume

fraction ¢ .. Hexagonal lattice, y, = 1. Full lines, x = 0.5; broken
lines, x = C; dotted line, buk polymer.

determined by the tails. Only at very small distances
{below i = 5) do the loops dominate over the tails. In the
outer regions of the adsorbed layer {bevond i = 50) the
contribution ¢, due to free chains (not indicated in the
figure) is the most important; beyond § = 60 ¢; = ¢..

The tail contribution ¢ shows a maximum around layer
5. Around the 10th laver the concentration due to tail
segments is equal to that due to loop segments. These
features are approximately the same under conditions that
the tail fraction is considerably higher {e.g., if ¢. = 107).

The fact that loops are not found at some distance from
the surface is of considerable practical importance. It
implies that the interaction between colloidal particles in
the presence of polymers (e.g., in flocculation or protection
experiments) i3 to a large extent determined by long
dangling tails.

Hoeve’ calculated that for 8 solvents the root-mean-
square laver thickness should be proportional to the square
root of molecular weight. In Figure 6 the rms layer
thickness ¢ is plotted as a function of r'/* for isolated chains
(¢ — 0), for a dilute and a semidilute concentration (¢.
=10 and 10°2), and for (practically) pure bulk polymer
{p» = 1). In the case of isolated chains ¢ is small and nearly
independent of chain length. However, for finite concen-
trations and x = 0.5, t increases linearly with r'/? (apart
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TABLEI: Root-Mean-Square Layer Thickness Due to
Loops ¢ and Tails ¢,, and the Overall rms Thickness ¢
Due to All Segments of Adsorbed Chaing for r = 1000:
Hexagonal Lattice, x, = 1

x-0 x =05
= I3 I i f) iy !

-0 4.36 6.38 1.24  4.25 582 1.2¢
107" 3.37 9.92 294 4.18 9.58 401
1077 464 1844 8.27 656 16.64 8.68
-1 822 1970 1643 822 1070 16.43

feom sorne irregularities for very short chains, r 5 20); the
slope of the ling increases with increasing ¢.. Forx = 0,
the line for ¢. = 10°2 is not completely straight and lies
somewhat below that for x = 0.5. In bulk polymer {¢. —
1} the conformation of the adsorbed chains is independent
of x and x,, as discussed previously.'

The similarity between our results and Hoeve's pre-
diction for x = 0.5 is at first sight surprising, since Hoeve's
theory considers only loops and, as we have seen above,
tail segments are dominant in the outer regions of the
adsorbed layer. However, if we calculate the rms thick-
nesses due to loop and tail segments separately, we find
that botk £, and t, are practically proportional to ri/2
Values of ¢, t,, and ¢, for r = 1000 are given in Table I. The
cverall thickness ¢ is some average of {,, {,, and the con-
tribution t,, due to trains (¢, = 1), weighted according to
the fraction of segments in loops, tails, and trains. For ¢.
— 0 ¢ is only slightly above t,,, in dilute solutions ¢t = ¢,
while for higher ¢. ¢ is mainly determined by the tails, The
linear relationship between ¢, and r'/? is in agreement with
Haoeve's theory for x = 0.5, but that between ¢, and r'/2
has not been found before, at least for interacting chains.
In this context. it is worthwhile noting that, Roe!'? derived,
for isclated chaing with x, close to the critical adsorption
energy, also a proportionelity of ¢, with r'/2,

It is interesting to compare the adsorbed layer thickness
with the dimensions of a chain in solution. For chains in
a z-choice lattice it has been found® that the radius of
gyration R, expressed in the length of a step in the lattice,
can be written as

Rg? = (r/6)(1 + 27"){1 - 27} (47)

If this relation holds for a hexagonal lattice where back-
folding is allowed (z = 12) we obtain, for r = 1000, R =
14.03. From Table I we see that in bulk polymer the rins
thickness ¢ is somewhat higher than Rg, while in dilute
solutions it is a factor 2-3 Jower. Naturally, these numbers
depend on x and x, (except if ¢« — 1). Laver thicknesses
of the order of magnitude of Ry have often been reported
in the literature, but in most cases the measured layer
thickness is not easily converted to the rms thicknesa.
Recent ellipsometric data of Killmann et al.” and Smith
et al.?? for polystyrene adsorbed on metal surfaces from
different solvents show that in all cases the square root
dependency holds; for a concentration of 5 % 10~ (w/w)
these authors find that ¢/Rg =~ 0.6-1 {depending on the
metal used as substrate) for a © solvent and ¢/Rg =~ 0.3-0.6
for a better solvent. These trends are in satisfactory
agreement with our theoretical results, considering that
the conversion of ellipsometric thicknesses to rms thick-
nesses was based on an exponential concentration profile,
which is not valid if tails are present. Moreover, the x,
values that apply to the metal surfaces used in the ex-
periments are not known.

A conspicuous feature of the results shown in Figure 6
is that with increasing ¢. the tms thickness increases much
more strongly than the adsorbed amount T, as a conse-
quence of the increasing tail fraction at high ¢. (see also
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Figure 7. The raot-mean-square lkayer thickness tas a function of the
amount adsorbed T, for two valuas af the chain length r, at x = 0

and 0.5. Hexagenal lattice, x, = 1. The knes are dotted for ¢. >
0.01.

Figures 10 and 11). For example, for r = 1000 and x = 0.5,
T increases by 37% and ¢ by 120% in the range ¢. =
1075-10"% for x = 0 these differences are even more pro-
nounced, namely, 32 and 182%. Similar trends have been
found experimentaily.#* It is clear that the explanation
is found in the progressively increasing fraction of segments
in tails with increasing bulk concentration, at least for
homodisperse polymers. For heterodisperse samples, often
used in experiments, the preferential adsorption of long
chains over shorter ones should also be taken into account.
We have reported recently on the consequences of poly-
dispersity in practical systems.”

In the preceding article,’ we have shown that, at given
x and x,, the conformation parameters p (=w,) and 8 {=¢,)
are a function of only the adsorbed amount T, at least in
the usual measuring range for ¢. and I'. In other words,
in this range p and & depend on T, but not on the chain
length r provided the concentration is adapted such that
T remains constant. If the adsorbed amount is the same,
short chains, at high ¢., have the same conformation as
longer chains at lower ¢. (if the conformation is charac-
terized by p and #). Another measure for the conformation
is the layer thickness ¢, and one may wonder if also in this
respect the conformation is a function of T only. Figure
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7 gives a plot of ¢ against T for x = 0 and 0.5, and r = 100
and 1000. In order to show the usual experimental range
more clearly, the curves are dotted for bulk volume frac-
tions ¢. > 102

We can distinguish three regions in each curve: at low
I the layer thickness is small and nearly constant (flat
conformation), at intermediate values of T' the layer
thickness increases with increasing I' (formation of longer
loops and tails), while at high [ the layer thickness levels
off, slowly approaching the thickness corresponding to bulk
polymer (compare Table I). In this latter region the
molecules penetrate each other (thereby increasing T)
without changing their conformation drastically. The in-
teresting part of Figure 7 is in the region below ¢. = 1072
where the layer thickness is indeed a function of T only,
and does not depend on chain length. Thus it is reasonable
to conclude that, at given x and x,, the conformaticn is
only determined by I, independent of ¢, and r.

For intermediate values of T', the layer thickness in-
creases more strongly with T' (and is higher} in good sol-
vents than in poor solvents. Naturally, in good solvents
a much higher . is necessary to attain the same I as in
poor solvents. This higher thickness and steeper rise of
4T in good solvents are due to the stronger mutual re-
pulsion of the segments, as compared to the situation in
poorer solvents,

C. Number and Length of Traing, Leops, and Tails.
In Figures 8~11 we consider the contributions of trains,
loops, and tails to the composition of the adsorbed tayer,
as a function of chain length. Inallcases x, =1 and x =
0.5 (s0lid lines} or O (broken lines). As in Figure 6, four
bulk volume fractions are chosen: ¢. — 0, corresponding
to a purely random walk as treated in the model of Di-
Marzio and Rubin,?? two (semi)dilute concentrations ¢.
=10¢ and 102, and (nearly) pure bulk polymer near a
surface (¢, — 1). Figure 8 gives the average number of
loops n, and tails n, pér chain {(note that n, = n, + 1),
Figure 9 the average length of trains i, of loops [, and of
tails {,, and Figure 10 the fraction of segments in trains
Vo in 100PS vy, and in tails »,. In all these figures a linear
scale for r is used. In order to show some interesting details
for short chains, Figure 11 gives v, and v, against r on a
logarithmic scale.

For isolated chains of not too short a length, the number
of loops {and trains) is proportional to chain length, and
the number of tails is independent of r. The loop size is

Figure 8. The average number of (a) loops per chain a, and (b) tails per ¢hain r,, as a fyaction of chain length 7. The buk solution volume
fraction ¢ . is indicated. Hexagonal lattice, x, = 1. Full lines, x = 0.5; broken lines, x = 0; dotted Ing, bulk polymer.
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Flgnro 9. The avarage length of (a) trains /,, (b} loops |, and (c) tails /, as a function of the chain length r. The butk solution volume {raction

¢ - is indicated. Hexagonal lattice, x, =

1. Full lines, x = 0.5; broken lines, x = 0: dotted line, buk polymer.
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Figure 10. The fraction of segments in (a) trains w, (cften denoted as p), (b} loops », and {c) tails v, as a funclion of the chain length r. The
bulk solution valume fraction ¢ . is indicaled. Hexagonal lattice, x, = 1. Full lines, x = 0.5; broken lines, x = 0; datted fine, bulk polymer. The

fraction of segments in tails ¥, for bubk polymer is shown in Figure 11b.

-]
T T

Figwre 11, The fraction of segments in (a) trains v, (= p). and (b} in
tails », aganst the chain kength ron a scale. The buk solution
volume fraction ¢ . is indicated. Hexagonal lattice, x, = 1. Full lines,
x = 0.5; hroken lings, x = 0; dottod ine, buls polymer. See alsc Figure
10, where the same data are plotted against » on a %inear scale.

small (only 1.50 for x = 0.5), the train size is relatively large
{about 10 for x = 0.5) and the tails are very short (i, = 2).
Train, loop, and tail sizes are practically independent of
chain length for r 2 50. Thus the adsorbed molecules
assume a very flat conflormation. More than 85% of the
segments are in trains and less than 15% in loops; tails play
hardly any role. The only effect of an increase in chain
length is an increase in the numbers of trains and loops
of constant size. All these trends have been predicted by
previous theories;* '? unless the difference between x, and

the critical ndsorption energy is quite small, isolated
polymer chains lay practically flat on the surface.

The sitvation changes drastically if only a very small
equilibrium concentration (e.g., ¢. = 10°%) is present in the
solution. Then competition between the adsorbed mole-
cules takes place and the adsorbed layer becomes more
extended. Let us first consider the effects at relatively high
chain lengths (7 Z 50} and compare, for a § sclvent, 9. =
107 with extremely dilute solutions (¢. — 0).

The nutnhets of trains and loops are shighity higher than
for isolated molecules, but the increase with r is less (the
line for ¢. = 107 in Figure 8a comes below that for ¢. —
¢ above r = 1000). The number of tails per chain increases
up to about 1.5. The trein size is about 4.3 and inde-
pendent of r, the loop length exceeds the train length and
increases with r, and the tail size is nearly (but not com-
pletely) proportional to r and reaches a value of 43 for 7
= 1000, The fraction of segments in trains decreases with
r and is only 0.38 for r = 1000, that in loops increases up
0 0.55, and the tail fraction is about 0.07 for any r. The
shape of adsorbed molecules is dramatically changed,
compared to isolated coils at a surface, even for ¢. = 107,

For higher bulk volume fractions these trends are more
pronounced: there are fewer trains (of about the same
length as for ¢. = 1079), longer loops, and more tails of
considerably greater size. For example, for a chain of 7 =
1000 at ¢ = 102 and x = 0.5 the average tail length is 131,
and 21% of the segments are in the tails. In athermal
solvents adsorbed chains are flatter than in © solvents, at
the same bulk volume fraction. However, the contribution
of tails is only slightly smaller.

In pure bulk polymer (¢ — 1) the average shape of
chains in contact with the surface is only determined by
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entropic factors, since the transfer of a chain segment. from
one lattice site to ancther does not change the energy; the
results do not depend on x or x,. The conformation of the
adsorbed chains is very extended; the number of trains and
loops is small, the trains are short (about 3.4 segments)
and the loops long (21 segments for r = 1000), and there
are nearly two tails per molecule of a length which in-
creases (practically) proportionalfly to chain length; for r
= 1000 the average tail size is 344. For a chain of 1000
segments only 5% of the segments are present in the
trains, 30% are in loops, and 65% in tails. This confor-
mation resembles closely that described by Roe!? for iso-
lated molecules with x, equal to the critical adsorption
energy. For this case Boe concluded that on average an
adsorbed chain is divided up into three roughly equal
sections, i.e., two long tails and a middle part in which
trains of length 3 (hexagonal lattice} and loops of length
{r/3)1/2 {18.3 for r = 1000} alternate. The reason for this
similarity is probably that both in bulk polymer and in a
random walk near a surface at the critical adscrption en-
ergy the conformation is only determined by the entropy.

It is interesting to note one other pecutiar feature of the
results for . — 1. In Figure G it was shown that ¢ increases
linearly with the square root of chain length, for all ¢.. We
find that for bulk polymer T, the number of monolayers
that can be filled with segments belonging to adsorbed
chains, also shows this dependency on r'/% forr = 5 we
obtain F{g.—~1} = 0.64 + (.562¢Y2, while the tail contri-
bution can be written as T ,(¢.—~1} = 0.374r/2, This
I'-rY2 dependence is surprising in view of the fact that,
at low ¢, I is linear in log r, which implies a much weaker
dependency on chain length. We can only give a quali-
tative explanation. At ¢ = 1 all the lattice sites are oc-
cupied by polymer. The volume fraction ¢, due to cheins
with undisturbed bulk conformations increases from zero
at the surface to [ at a distance from the surface that is
proportional to r'/2. The remaining lattice sites, the
number of which is proportional to /2, are occupied by
segments of disturbed (i.e., adsorbed) chains, so that I' is
expected Lo increase linearly with the square root of the
chain length,

So far we have restricted the discussion about train, loop,
and tail sizes to relatively long chains. For oligomers (v
< 20) a few typical effects occur as may be seen in the
Figures 9a and 11. Figure 9a exhibits a maximum in the
train size (around r = 20) for low concentrations (¢. = 10°%).
For chains shorter than about 15 segments the train size
is the same as for isolated chains {¢. — 0); for chains longer
than 30 segments the train size decreases and becomes
independent of chain length for high r. 'The maximum in
1. corresponds to the point where the surface cccupancy
# is about 0.1; below that value trains can be easily formed
and have about the same size as in isolated chains, but as
the surface becomes more oceupied it is increasingly dif-
ficult to form long trains so that i, decreases. In principle,
this effect cccurs alse at higher ¢. {e.z., 107%) but since then
a surface occupancy of 0.1 is attained at lower r the
maximum is suppressed.

Figure 11a shows an S-shaped curve for v, a5 a function
of r at low ¢.. The minimum of »,, at r = 5 is due to the
fact that around this chain length loop formation has
become possible so that more than one train can be formed
and hence »,, can increase again. The maximum arcund
r = 20 is due to the difficulty of forming long trains on a
surface which becomes more occupied, as discussed above.

Figure 11b shows that a maximum in v, occurs areund
r = £ at low concentrations (¢, = 10°6). For shorter chains
only tails may be formed and no lbops; for longer chains
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Figure 12. (a) The rain size distribution ry(s) n,, (b) loop size distribution
n{s)/ n, and (c) tail size distribution ns)/n,. On the right-hand side

the fraction of (d} rain segments sry{SH i,n, In trains of lengths
s, that of (e} loop segmenis sas)/4n, and of (i} tail segments sasi/im,
are given. Mexagonal latiice, x, = 1, x = 0.5, r = 1000, ¢. = 0.00%.
The braken fing in Figure 120 gives the loop size distribution according
1¢ Hoeve's theory (soe text).
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the increasing numbet of loops makes the tail fraction
decrease. At higher r (~ 20} the surface becomes more
crowded and the tail fraction again increazes, For higher
volume fractions (¢. = 107%) a relatively high surface oc-
cupancy is already attained for r = 5, so that the maximum
is not pronounced (x = 0) or disappears altogether (x =
0.5).

D. Train, Loop, and Tail Distribution. In the previous
section we have considered the average values for the train,
loop, and tail sizes. In this section we discuss the way in
which the train, loop, and tail sizes are distributed around
their averages. Figure 12a gives the fraction of trains of
length s, n,{s}/n,, Figure 12b the analogous fraction
ry(s)/n, for loops, and Figure 12¢ n,(s)/n, for trains. In
parts d-f of Figure 12 the fraction of segients sn,(s)/l,n,,
in trains of length s, the corresponding fraction sny(s)/
for loops, and sny(s)//;n, for tails are given. The data of
Figure 12 apply to r = 1000, ¢. = 107, and x = 0.5. The
average values for the train, loop, and tail sizes are [, =
4.315, § = 7.531, and {, = 89.001.

Short trains are the most abundant, and the number of
traing decreases strongly with increasing train length
(Figure 12a). The train segment distribution curve dis-
plays a maximum at s = 4, which is close to the average
train length 4.3 (Figure 12d). Trains longer than 25 seg-
ments hardly contribute to the number of trains or to the
number of segments in trains.

The loop size distribution {Figure 12b) is, for small loop
sizes, steeper than the train size distribution, so that no
maximum occurs in the loop segment distribution (Figure
12e) and only a faint shoulder is observed. Howevey, for
larger Joop sizes the decay is much slower; long loops {s
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= 50 or more) contribute significantly to the number of
loop segments.

Also in the tail size distribution (Figure 12¢) the smaller
tails oceur mast frequently, and the initial decay is slow
enough to give a maximum in the segment distribution
curve (Figure 12f) around s = 80 (close to the average tail
length 89). For long tail sizes, the number of tails decays
very slowly with increasing s, and tails up to 800 segments
still give a significant contribution to the number of tail
segments. Note the truncation of the tail segment dis-
tribution curve just below 5 = 1000; obviously tail sizes
above the chain length are impossible. Parts ¢ and f of
Figure 12 show that the tail size distribution is very broad.

E. Comparison with the Hoeve Theory. Hoeve™® has
given approximate expressions for the average train and
loop size, and for the train and loop size distribution. His
expressions apply to long chains in which the loops have
Gaussian distribution and where end effects are negligible.
Although our theory does not use these approximations,
it is instructive to compare a few results. As discussed in
section IIL.B, both models predict an exponential loop
segment concentration profile and a layer thickness which
is linearly dependent on the square root of chain length.

Hoeve's results are expressed in terms of a parameter
X\ defined such that Ar is the difference in free energy (in
units of #T) between an adsorbed chain and a chain in the
bulk solution. The parametet A, which has negative value
for adsorbing chains, ocours in the final equations through
the Truesdell functions™ f_;,,(A)} and f 3,5(A), where £,,(3)
= ¥ o n™e™ . For A approaching zero, these functions
approach the limits £, = (x/-N)172 and f,,, = 2612
According to Hoeve’s theary, the average train and loop
sizes are given by

L™ = 14 1/ef 500 (48)
LW = F N 2 g0 (49

where c is a flexibility parameter which for flexible chains
in a five-choice cubic lattice is equal to 16/(75x"/%) =
(.120.% In a recent paper,” Hoeve gives for an exact model
(in which the Gaussian approximation for loops is avoided)
a value ¢ = 0.102 for the same system,

From eq 48 and 49 it follows that for long chains (A —
0 I, is pearly insensitive to A, in contradistinction to
i} Since - decreases with increasing chain length and
solution concentration, the loops become longer when r and
. increase, whiie the train size is practically independent
of r and ¢.. OQur theory predicts the same trends (see
Figure 9), showing qualitative agreement between both
models.

The absolute numbers for the loop and train size are
more difficult to compare. Since the precise value to be
used for A is unknown, a direct comparison between !, and
11! ig impossihle to make. For the train size we can use
its liit for long chains. For A - 0, [,'® depends only on
the flexibility parameter ¢ (thus on the lattice type). For
the two ¢ values given above, [,'" equals 4.2 and 4.8, re-
spectively. We find [, = 4.3 for a hexagonal lattice and
7.5 for a six-choice cubic lattice. Considering the different
approaches in both models, the agreement is satisfactory.

Another comparison is possible for the train size and
loop size distribution. In this case we do not consider the
average train and loop size, but the spread around the
average values. By rearranging Hoeve’s equations™® we
obtain for the train size distribution

agls) 1 fl.-1Y"
Ny v'!u( Iy 50)

showing that n,.{s) can be given as a function of s and its
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average value (s) = [, only. For the loop size distribution
Hoewve obtains

m(s) /= 8 2N/ 000 (51)

where A follows from { through eq 49.

It turns out that, if we use the value obtained with our
model for I, eq 50 gives results for r = 100 that are nu-
merically identical with the train size distribution as
calculated by our method, both for a hexagonal and a
simple cubic lattice, This surprising result, which is ap-
parently independent of the lattice type, is prabably re-
lated to the fact that a train may be considered as a
two-dimensional random walk in which each step has the
same weighting factor p,. Factors like the surface occu-
pancy, the adsorption energy, the segment-solvent inter-
action, and the lattice type obviously affect the average
train length I,,, but not. the distribution of chain lengths
around this average value.

Far the loop size distribution we have calculated A, using
(49, from our value for [, and substituted this in (51); the
results are plotted in Figure 12b {dashed line). The
agreemnent is less good than that for trains, but the dif-
ferences are still not very great. Complete agreement
cannot be expected since in the derivation of (51) even the
small loops are supposed to have Gaussian distribution.
Moreover, in our model each step in or toward layer i is
weighted with a weighting factor p; which is not the same
for different layers, in contradistinction to Hoeve's random
walk treatment. Nevertheless, it is gratifying that similar
results are obtained.

IV. Conclusions

We have obtained a detailed picture for the structure
of the adsorbed layer for interacting polymers.

In the limit of extremely dilute salutions, our theory
reduces to earlier models for isolated chains near an ad-
sorbing surface. In this case, the conformation is very flat,
at least if x, is not too low; most of the segments are in
trains, loops ate shoet, and tails are negligible.

Even for very small equilibrium concentrations the
competition between the adsorbed molecules becomes so
strong that only a small fraction of the segments can find
a place on the surface and a substantial part has to he
accommodated in loops and tails. As a consequence, the
train size decreases, the loops become longer, and, most
importantly, the length of the tails is considerable. Even
in dilute solutions around 20% of the segmenis may be
present in one or two dangling tails. The segment con-
centration in the outer regions of the adsorbed layer is
iargely due to these tails. Thus the tails determine to a
large extent the average layer thickness and the interaction
between polymer covered colloidal particles. It was found
that the root-mean-square layer thickness is proportional
to the square root of the chain length, also if tails are
present.

In bulk polymer near a surface the tails become so long
that they contain about two thirds of the segments be-
longing to adsorbed chains. Molecules in contact with the
surface consist of three parts of roughly equal size: two
long tails and a middle part in which very short trains and
longer loops alternate. This type of conformation was also
found by Roe,'? not for bulk polymer, but. for isolated
molecules with an adsorption energy which is close to the
critical value. In hoth cases the chain conformation is only
determined by entropic factors.

In our model computations for chain lengths up to
slightly more than 1000 segments are possible. One may
wonder whether long tails occur also for longer chains, We
cannot rule out the possibility that for infinite chain length
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the (relative) contribution of tails is small, as assumed in
previous theories. However, our results give no indications
that for chains up to, e.gz., 10" segments tails may be ne-
glected. This con¢lusion is based on the nearly linear
relationship between tail size and chain length, and on the
fact that the fraction of segments in tails hardly decreases
with increasing molecular weight, Moreover, the similarity
of our results for bulk polymer with those for isolated
chains under conditions close to the critical adsorption
energy suggests strongly that tails should also be taken into
account for very long chains. Also the essentially linear
relationship between the root-mean-square layer thickness
due to tail segments and the sguare root of the chain length
points in the same direction. Hence, we are led to believe
that in all systems of practical importance tails da play
an important role. This conclusion seems to be in agree-
ment with recent experimental data.’?

Appendix I. Accurate Calculation of the End
Segment Probabilities for Adsorbed Chains
From eq 17 follows
Pals) = pls) - pels) = wpls-1) - wpils-1)  {Al)
Since wdiffers from w only in that the elements of the
first row of w are zero, the components of the vectors
wp{s—1) and wp(s-1) are identical, except for { = 1:
wps—1} = wpls-1) + p(l,5)A, (A2}
where A, is a column vector of which the first component
is 1 and all the other components zero. Substituting this
into (Al}, we have
Pals) = wip,(s-1) + pils)A, (A3)
‘The value for p(1,s) is taken from the array p and the first
vector p,(1) equals p,A,, with components:
Palt1) = piéy, (A4)

From eq A3 and A4 the elements p,(i,s) can be calcu-
lated with much greater accuracy than from eq 17.
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Chapter 4

SCME IMPLICATIONS OF RECENT
POLYMER ADSORFTION THEORY

J.M.H.M. Scheutjens and G.J. Fleer

Laboratory for Physical and Colloid Chemistry,
Agricultural University, De Dreijen 6, 6703 BC Wageningen,
The Netherlands

SUMMARY

The basic ideas of a recently developed polymer adsorpticn
theory are briefly outlined and some implications of this
theory are discussed.

For chains in a theta-solvent which are not too short, the
amount adsorbed from dilute solutions, as expressed by the
total surface coverage 8, increases linearly with the logar-
ithm of the chain length r, whereas in a better solvent the
chain length dependence is smaller. Both these trends are in
excellent quantitative agreement with recent experimental re-—
sults for homodisperse polymers. Alsc bound fraction data,
previously published, agree very well with the theoretical
predictions.

The total surface coverage, 0, is the sum of an excess
contribution B,y and a depletion part £3. Whereas 0gy inc-
reases approxXimately linearly with log r, 93 is proporticnal
to vr. For infinitely long chains or in highly concentrated
systems, 05 is larger than 8,4, so that under these condit-
ions a sguare root dependence of the adsorbed amount con chain
length is expected.

Results are given for the concentration dependence of 0,
over a very wide range of concentrations, from extremely dil-
ute solutions where the adsorbed molecules behave as isolated
chains {¢_ 0} up to bulk polymer (¢ +1). From such 8-¢, plots
a transition concentration ¢$ can be derived, which charact-
erises the transition from the linear initial part of the
isotherm to the pseudoplateau region.¢f is a quantitative
measure for the high affinity character of the adsorptien.

Tails, which have been neglected in previous theories,
play an important role for all chain lengths encountered in
practice. The results for the r.m.s. layer thickness, and the
contribution of talls to it, are presented as a function of

(Reprinted with permission from "The Effect of Polymers on Dispersion
Properties”, Tadros, T.F., Ed., Academic Press, London, (1982).]
Copyright: Academic Press Inc, (London) Ltd.
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the solution concentration and compared with recent experi-
mental data.

Finally, some consequences of the theory for the adsorp-
tion of a mixture of polymer chains having different chain
lengths are peinted cut. In dilute solutions long chains ad-—
sorb preferentially over short ones, whereas in concentrated
systems the reverse is true. A simple equation is derived
which allows the computation of the relative contribution of
each component in the adsorbed layer from the total adsorbed
amount and the solution concentration.

INTRODGCTION

During the last few decades, considerable progress has been
made in the development of thecories for polymer adsorption at
an interface. The first theories (Silberberg, 1962, 1967; Di-
Marzio, 1965; DiMarzio and McCrackin, 1965, Hoeve et al,.,
1965; Rubin, 1965, 1966; Motomura and Matuura, 1969; Motomura
et al., 1971a, 1971b) treat the relatively simple case of an
isolated chain on a surface. Although these theories provide
a suitable starting point for more realistic models, they
have little relevance for practical systems since the inter-
action between the segments is neglected. Even in very dilute
solutions the segment volume fraction near the interface is
usually of the order of 0.5, s¢o that the interaction between
the segments plays a very important rcle. Later theories
(Hoeve, 1966, 1970, 1971; Silberberg, 1968; Roe, 1974} acc-
cunt for this segment-solvent interaction but use serious ap-
proximations in order to obtain manageable equations: Hoeve
(1966, 1970, 1971) and Silberberg {1968) neglect the occur-
rence of tails and make an a priori assumption about the seg-
ment concentration profile in the loop region (Silberberg
{1968) uses a step function and Hoeve {1966, 1970, 1971} an
exponential decay), whereas Roe (1974) assumes that the spat-
ial distribution of each of the chain segments, whether in
the middle part of the chain or near one of the chain ends,
is the same. In effect, as we have shown before (Scheutjens
and Fleer, 1980), this latter assumption is more or less
equivalent to the neglect of tails.

Recently, we have presented a new thecry which avoids
these approximations (Scheutjens and Fleer, 1979, 1980). In
our model all the pessible chain conformations, including
those encompassing tails, are completely taken into account
with their proper statistical weight, and no a priori assump-
tionsg are made about the segment concentration profile. Chain
conformations are described as step-weighted random walks in
a lattice. The lattice is divided into layers parallel to the
surface which are numbered i = 1,2,3 ... , where 1 = 1 corr-
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esponds to the layer adjacent to the surface. The weighting
factor pi for each step in or into layer i depends on the
solvent volume fraction ¢? in this layer and on that in the
two neighbouring lavyers, ¢g_1 and ¢?+1. For all layers except

the first we may write:

iz 2) p, - = & (1)

where ¢2 is the solvent volume fraction in the equilibrium

solution, ¥ is the well-known Flory-Huggins pclymer-solvent
interaction parameter, and <¢$> is the weighted average of

the volume fractions in the layers i-1, i and i+1:

o]

i+1 (2

<¢2> = A,9; + A0¢z + 2,8

-1
The parameters A and A; are determined by the geometry of
the lattice: A is the fraction of neighbouring sites which
are in the samg layer, and Aj that for each of the twe neigh-
bouring layers (2 + Ay, = 1). In a hexagonal lattice A, = 3
and Ay = &.

The two factors in equation (1} are both due to the inter-
action of segments with each other and with the solvent. The
entropy factor ¢§/¢§ accounts for the lower probability of a
step in or towards layer i as compared to a step in the bulk

Q

solution if ¢2<¢2. The facter e_2X<¢i>/e_2X¢* originates from
the segment-solvent interaction: in a solvent which is poorer
than athermal (x>0) the repulsicn between segments and sol-
vent molecules favours a step into a laver with low ¢?.

These twe factors play also a role in the surface layer
(i = 1) but, in addition, the adsorption energy difference
between a segment and a sclvent molecule (expressed by the
adsorption energy parameter xs) makes a step in or towards
this layer more probable:

(i = 1) p1=—e—o—e (3)

With the help of equations (1) and (3) the statistical weight
for any chain conformation can be easily evaluated: the con-
formation probability for a chain of r segments is proport-
ional to the product of r weighting factors Pij/PyeDr oov In
this product the weighting factor p;j for layer i occurs as
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many times as the number of segments that the given conforma-
tion has in layer 1i.

In this way the statistical weight for any chain conforma-
tion can be calculated for a given sclvent concentration pro-
file ¢4, ¢8, ¢% v+ 4+ $%. Using a matrix formalism first in-
troduced by Rubin and DiMarzio (Rubin, 1965; DiMarzio and Ru-
bin, 1971), thes=2 statistical weights can be used to calcu-
late the overall segment concentration profile ¢3, ¢p.
$3 ... + ¢x in the adsorbed layer (which is the result of the
contribution of all possikle chain conformations). With the
bhoundary constraints ¢$+¢i =1 (for any i}, a set of implicit
equations in all ¢$'s is thus obtained which can be solved
numerically. A derivation of equations {1} and (3} from maxi-
mizing the partition function and a full account of the mat-
rix formalism and the numerical evaluation has been given be-
fore (Scheutjens and Fleer, 1979, 1980). In this paper we
show a few typical results and discuss scme implications
which are relevant from a theoretical as well as an experi-
mental point of view. All the numerical results in this paper
are for a hexagconal lattice (AO = Q0.5).

MOLAR MASS DEPENDENCE OF THE ADSORBED AMOUNT
AND THE BOUND FRACTTION

All the available theories for the adsorpticn of the inter-
acting polymer chains predict that the adsorbed amount is an
increasing function of the chain length, at least for not too’
long chains. In poor solvents this dependence is stronger
than in good sclvents. Although in this respect there is
qualitative agreement between the various theories, the guan-
titative aspects are fairly different. Silberberg's thecry
{(1968) predicts that at very high chain length the amount ad-
sorbed from a @-solvent levels off, whereas Hoeve's theory
{1966) gives a square root dependence on molar mass, even for
very long chains. According to our theory (Scheutjens and
Fleer, 1979), for a 9-solvent, the adsorbed amount increases
linearly with log r, at least for not too short chains. Until
recently, there was hardly accurate experimental data on
well-defined systems for which a comparison with theory was
feasible. Fortunately, in the last few years two experiment-
al studies (vander Linden and Van Leemput, 1978a, 1978b;
Kawaguchi et al., 1980) became availakle which enabkle such a
comparison. They deal with the adsorption of nearly homodis-
perse polystyrene [(PS) samples from a ©@-solvent (cyclohexane
at 35°C) cnto silica, covering a very wide range of relative
molar mass (M = 600 up to 2 x 105;corresponding to r = 6 -
20,000). Figure 1 gives the experimental points (filled sym-
bols) for the adsorbed amount T' (in mg-m_z) as a function of
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Fig. 1. Comparison of experimental data for the adsorbed
amount T (in mg'm'Z; left hand scale) as a function of chain
length with our theoretical predictions for the total surf-
ace coverage 9 (in numbers of equivalent monolayers, right
hand scale}. The experimental points are for nearly homodis-
perse polystyrene from cyclohexane (8-solvent} and carbon
tetrachloride on silica as reported by Vander Linden and Van
Leemput (1978a) (circles), and Kawaguchi et al. (1980)
(triangles}, at a solution concentration around 1 g-dm‘s. The
theoretical curves are for a hexagonal lattice (M, = 0.5},

by = 10~? and for X and x_. values as indicated.

log r. The curves in this figure represent theoretical re-
sults according to our theory, adopting the specified values
of x5 and assuming that a theoretical segment corresponds to
a monomer unit, the amount of polymer is expressed as the
total surface coverage 8 (i.e., the number of equivalent mon-
olayers, or 6 = I'/TMCN), The open circles in Fig. 1 are ex-
perimental adsorption results (Vander Linden and Van Leem-
put, 1978a) from CC%, at 35°C. For this system x = 0.396 at
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25°C (Bristow and Watson, 1958). We used 0.4 at 35°C.
Qualitatively, the agreement between the results of Van-
der Linden and Van Leemput (1978a) and our theory is excell-
ent. The data of Kawaguchi et al. (1980) show more scatter,
but still the trend is the same. The T' - log r dependency for
x = 0.5 is strongly corroborated by these experiments. Quant-—
itative agreement between theory and experiment would be ob-
tained if the monolayer capacity of polystyrene on silica
would be 1 mg-m_z, if the adscorption energy parameter Xg would
be 0.6 (both for cyclochexane and CCly), and if one monomer
unit of PS would correspond to one theoretical segment in the
lattice. Although Vander Linden and vVan Leemput assumed a
monolayer capacity of 0.52 mg-m™2, a value of 1 mg-m~2 agrees
very well with calculations from molecular medels. The same
value for Xs in both solvents would be fortuitous, since the
energy associated with the exchange ¢f one segment of PS with
one solvent molecule depends, in general, on the solvent
uged. As to the third peint, one would expect that one theor-
etical segment would comprise more than one monomer unit.
Despite these uncertainties and the incomplete agreement for
very short chains in Fig.1l, the overall agreement between
theory and experiment is gratifying. Moreover, a different

10 Y T T T

4 & PS5 /cyclohenane

08~ L] _4
Theoretical curve
H . . { X205, Xg=06)
b s ]
06 v ~

0l ;\\\\ R 4

]
‘\\ . s
s I A .
l— N .\A *
A
02 .‘ :. -1
a
| & 1 4
o 1 i 1 L J
¥ L] 0o 1000 r 10.000

Fig.2. Comparison of experimental bound fraction data as a
function of chain length with theoretical predictions. The
experimental points are from the same references as in Fig.1,
and the symbols have the same meaning.




33

POLYMER ADSORPTION THEORY

choice for the number of monomer units per segment would not
affect the linear dependency on log r;, the theoretical curve
could be easily made to fit the experimental points by simul-
taneously adjusting the value of Xs-

Figure 2 gives experimental results for the bound fraction
p: i.e., the fraction of segments in contact with the sur-
face, as a function of log r, for PS from cyclohexane as
measured by the same authors using IR-spectroscopy. Although
considerable scatter is present in the experimental points,
there is again a very good agreement hetween theory (solid
curve) and experiment for r z 50. For very short chains some
discrepancy occurs, as in Fig.l. This might be related to a
pocrer degree of monodispersity for short chains (leading to
some adsorption fractionation), to the presence of end groups
in the polymer (that are relatively important in short
chains), or to the heterogeneity of the silica surface (which
would tend to increase the adsorption, especially at low ads-
orbed amounts).

Vander Linden and Van Leemput {1978a) alsc gave a few re-—
sults for p as measured in CCl, as the solvent. We have not
included these in Fig. 2, since these few data show more
scatter than those for cyclohexane., Contrary to the predic-
tions of all theories (assuming not too different Xs—values).
the bound fraction in this better solvent seems to be lower
than in cyclohexane.

LIMITING BEHAVIOUR OF THE ADSORBED AMOUNT FOR
VERY LONG CHAINS

As stated in the previous sectien, for long chains adsorbed
from a O-solivent the theories of Hoeve (1966, 1970, 1971) and
Silberberg (1968) contradict each other as to the chain
length dependence of TI'. Silberberg finds a plateau for T at
high r (6 ® 3.9 monolayers for high Xg and r 2 10%), whereas
Hoeve predicts that T Yr. It is interesting to note that
for solvents only slightly better than O-solvents, Boeve's
treatment also leads tc a levelling-off for long chain
lengths (e.g., for x = 0.495 Hoeve's theory gives 8 R 4.4
monolayers for high Xg and r % 105).

One might wonder whether there is any physical background
from which the limiting behaviour of long chains can be pre-
dicted. From polymer solution theory it is known that, for
infinitely long chains, ©-conditions lead to phase separa-
tion. It seems reasonable that this phase separation is pro-
moted near a surface because the extra free energy gained up-
on adsorption increases the tendency of the polymer to accum-—
ulate near the surface; this would be the first step in the

phase separation process. On this basis a limit for 8 at x =
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0.5 is not to be expected. In a later publication, Silberberg
{1972) discussed the pessibility of multilayer formation
around ¥ = 0.5.

Due to computational problems, we cannct apply our theory
to very long chains. As yet, calculations for r 2 50Q0 have
been made. Nevertheless, the results obtained so far suggest
that an extrapolation to longer chains is possible.

According to our definition, the adsorbed amount § is made
up from two contributiong, the excess adsorbed amount eex and
the depletion adsorbed amount 04 (see Fig. 2 of Scheutjens
and Fleer (1979) and the inset of Fig. 3). For not toco long
chains in dilute solutions, Gd is negligible with respect to
Box- The excess adsorbed amount increases strongly at low a.
passes through a maximum at intermediate ¢4, and decreases at
still higher ¢, until at ¢, = 1 (bulk polymer) 8., = C. We
find the following approximate equaticns for the chain length
dependence of Bgy and 63

Box ¥ (1 - ¢,) (@ +Dblogx) (x=0.5 (4)

0y N ¢,(0.64 + 0.562 Vr) (5)

These equations are valid for not too short chains. The para-
meter b in equation (4) depends essentially only on X, where-
as a is a function of ¢, and x_. The numerical coefficients
in equation (5) are nearly indépendent of ¢,, ¥y and Xg- For
¢x + 1| (where 8 = 63), the adsorbed amount for long chains is
proporticnal to V¥. This suggests that under these conditions
polymers also have a Gaussian distributicn near the inter-
face, in accordance with published data (Benoit, 1976; De
Santis and Zachmann, 1977) which show that chains in bulk
pelymer behave as undisturbed Gaussian coils. This is to be
expected since under these conditicons only entropy factors
play a role; for ¢4 + 1 the adsorption energy parameter Yg
loses its significance.

The fact that equations (4) and (5) are very accurately
obeyed, in the whole accessible range of chain lengths above
r A 50, suggests that an extrapolation to longer chain
lengths is allowed. Results for ¢, = 10”3 and ¢+ = 1 are giv-
en in Fig. 3. BAs discussed above, 8oy = 0 and 8 Bq for o«
= 1 (note that a 6-vr dependence becomes an exponential curve
if @ is plotted as a function of log r). For ¢, = 1073, By
ig the dominating term up to r % 105, while for longer chains
the relative weight of 94 is increasing rapidly. For ¢*2>10_%
B3 is already important for shorter chains; for lower volume
fractions the curve for 804 shifts to higher chain lengths.

If this extrapolation procedure is valid, the conclusion
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Fig. 3. The total surface coverage 0§ and its components Doy
and 84 as a function of chain length, for ¢x = 1 (bulk poly-
mer) and ¢, = 10-3, Hexagonal lattice (Ao = 0.5}, xg = 1.

X = 0.5. The inset gives a qualitative picture of the segment
concentration profile in the adsorbed layer. The hatched
areas correspond to the excess surface coverage 8., and the
depletion surface coverage Eas respectively.

is that for very high chain lengths there is no limit for the
adsorbed amount. The higher the polymer solution concentra-
tion, the more 9 will tend to become proportional to Ve
Note, however, that the apparent agreement with Hoeve's model
is not real, since his theory applies only to dilute soclu-
tions, in which the contribution of Bd is negligible.

CONCENTRATION DEPENDENCE OF THE ADSORBED AMOUNT

Experimental adsorption isotherms for homodisperse polymers
are usually of the so-called high-affinity type, i.e., for
very low concentraticns (¢§, < 1078) the isotherm coincides
with the ordinate axis whereas the adscorbed amount levels off
rapidly once the concentration in solution becomes measurable.
At very high concentrations experimental determination of the
adsorbed amount is very difficult, since then the relative
difference between the initial and the equilibrium concentra-
tion is small. Therefore, the accessible experimental concen-
tration range is rather limited.

Our theory is, in principle, applicable to the whole con-
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entration range, from extremely dilute sclutions (where the
adsorbed molecules behave as isolated chains) up to ¢ = 1
(bulk polymer). It is illustrative to show some typical res-
ults over a very wide range of concentrations. Figure 4 gives
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Fig. 4. Adsorption isotherms over a very wide range of con-
centrations, for chains of 100 segments from an athermal and
a 9-solvent. Both the total surface coverage 8 and the solu-
tion volume fraction ¢, are plotted on a logarithmic scale.
The values 6% and ¢f at the intersection of the two straight
lines are a measure for the transition between the isolated
chain region (left below) and the region where the surface
becomes covered to a considerable extent. Hexagonal lattice
(Ao = 0.5), x5 = 1.

the total surface coverage 9 as a function of ¢, with both
quantities plotted on a logarithmic scale, for a relatively
short polymer (r = 100} adsorbing from an athermal and from a
g-solvent.

In extremely dilute solutions the curves are linear with a
slope equal to 1 : in that region 6 is just proporticnal to
¢, This is the domain where theories for isolated chains
(Silberberg, 1962, 1967; DiMarzio, 1965; DiMarzio and Mc-
Crackin, 1965; Hoeve et al., 1965; Rubin, 1965, 1966; Roe,
1965; Motomura and Matuura, 1969; Motomura et al., 1971a,1971b)
are valid, but which is not interesting from an experimental
point of view. As soon as the surface becomes covered to an
extent of more than a few per cent, excluded volume effects
start to play a role and the increase in 8 with increasing ¢,
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becomes much smaller. In the intermediate region the curves
are again approximately linear with an increase in 8 of a few
per cent per decade of ¢, (for r = 100, =1 and ¥ = 0.5, ©
is proportional to ¢ <03 in the range 10~ ?5 Sex 2 10'5; for
longer chains cr hlgher ¥ . this range is much wider towards
more dilute solutions). At still higher veolume fractions 8
gradually increases mcre strongly with ¢, until at ¢, = 1 the
value given by equation (5) is reached. For volume fractions
higher than a few tenths the adsorbed amount is found to inc-
rease linearly with ¢..

In the regicn applying to isolated chains the molecules
lie rather flat, with p values typically around 0.8. The 4dif-
ference between the curves for x = 0 and ¥ = 0.5, in this
region, is due to the term i;x in the exponent of equaticn
(3). If the chains would lie completely flat, the segmental
weighting factors pj; (with respect to the bulk of the solu-
ticn) for all segments of adsorbed chains are the same, so
that 6 = ¢, ¢*pf In extremely dilute SOluElOnS 49 Nt
¢T % 1 and <¢1> ¥ 1-X]. Therefore, P, % e *s and
B v e (Xs+llx), showing c¢learly that the differences in
Fig. 5 between ¥ = 0 and ¥ = 0.5 are due to a difference in
the "effective™ adscrption energy parameter g )1X.

An indication for the transition region between isolated
adsorbed mclecules and chains that are competing for adsorp-
tion sites is obtained by extrapolating the two linear reg-
ions in Fig. 4 and determining the cocordinates ¢S and 8% of
the intersection point. The magnitudes of 0% and ¢¢ have some
relevance for experimentalists. For & > g%, b, > ¢E the ad-
sorbed amount depends only siightly on the solution concent-
ration. If one tries to measure desorption, one has to dilute
the sclution to concentrations of the order of ¢i, which cor-
responds to an extremely low concentration even for relative-
ly short chains. This is probably the reason for the widely
held belief that polymer adsorption is an irreversible pheno-
menon: only if the solution is diluted to an extremely large
extent, appreciable desorption may be expected. This analysis
shows that such an experimental finding is not contradictory
to the criterium for a real thermcdynamic equilibrium; it
merely demonstrates that in dilute polymer solutions the ads-
orption equilibrium is situated nearly completely on the side
of the surface, on account of the high number of segments per
chain. Some consequences of this idea for the adsorption of
heterodisperse polymers have been pointed out in a previous
paper (Cohen Stuart et al., 1980)

In Fig. 5 the dependence of ¢* on chain length is shown
for two values of ¥ and )X . The value of ¢ decreases expon-
entially with increasing chain length and depends strongly on
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Fig. 5. Dependence of the transition concentration ¢f on the
chain length, for Xg = 1, % = 0 and 0.5, and for g = 2,

¥ = 0.5. The nearly horizontal curves correspond to the low
concentrations 1 molecule/dm® and I molecule/km’ . Hexagonal
lattice (Ao = 0.5).

Xg+ In order to emphasize how low the values of ¢f usually
are, the concentraticns corresponding to "1 molecule per m3"
and "1 molecule per xm?" are indicated in Fig. 5 as (on this
scale) nearly herizental lines.

LAYER THICKNESS AND TAILS

In a previous contribution (Scheutjens and Fleer, 1980) we
have reported some results for the root-mean-square layer
thickness t as a function of chain length, for a constant
solution concentration. The most conspicucus feature turned
out to be the linear dependence of t on the square root of
chain length, even if a considerable fraction of the segments
are present in long dangling tails. This square roct depend-
ence has also been found experimentally several times, most
recently by Takahashi et al. (1980), for a very wide range of
chain lengths of polystyrene adsorbed from cyclohexane onto
chrome. In this section we consider the layer thickness as a
function of the solution concentration and the contribution
of tails and loops to this thickness,

The root-mean-sguare (r.m.s.} layer thicknesses due to
tail segments t., due to loop segments t,, and due to all
segments of adsorbed chains (including t¥ains) t, are calcul-
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ated from the following equations:

g 2.t g 2.2 r .2,a
A T I I e
TR YT ra C T i ‘6’

9 T 1%

where ¢E and ¢§ are the contributions of tails and loops,

to the segment volume fraction ¢? due to adscrbed chains in
layer i. According to these definitions, the thicknesses are
expressed with the length of a step in the lattice as the
unit.

201 4L0Inm 418
[ '. o/
t . texp t
5 . |
l’.
r=6500 X=05 /
L« texp(Takahashi et al.) / i
—1, theory {Xg=1) I’
0 1 . =, Jio
04 1070 g 107 /
/
/ 4
/
416
Xg=D ]
g r=1000
e X =05
i - X=0 12
a4 1 ) L ) 0
10°° 107 07 e

Fig.6. The root-mean-square layer thickness t as a function
of the solution concentration, for chains of 1000 segments
with Xg = 0.5 and 5, and ¥ = 0 (dashed curves) and 0.5 (solid
curves). Hexagonal lattice (hA_ = 0.5). In the inset a compar-
ison is given between experimental and theoretical layer
thicknesses as a function of concentration for chains of 6500
segments. The values for tg,p, (in nm, right hand scale) were
reported by Takahashi et al., (1980), and apply to polystyrene
from cyclohexane (©-solvent) on chrome, the theoretical curve
for t (in units of a lattice step length, left hand scale)
was computed for a hexagonal lattice (Ay = 0.5), with xg = 1
and x = 0.5+
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Figure © shows the overall r.m.s. layer thickness t as a
function of ¢, {on a logarithmic scale) for a low (xs = 0.5)
and high (Xg = 5) value of the adsorption energy parameter
and for y = 0 and 0.5. In dilute solutions t is rather low
(approaching t ¥ 1 for b, ¥ $$): it increases rather steeply
in the region 1073g ¢, < 10“1, whereas above ¢, = 0.1 it
flattens to attain finally the value for bulk pclymer which
is independent of y and Xg*

A very interesting aspect of Fig. 6 is that the layer
thickness depends only weakly on x or Agr despite the fact
that the adsorbed amount is a rather strongly varying funct-
ion of these parameters. Moreover, the trends in t and 9 do
not run in parallel. With a change of yg from 0.5 tc 5 the
adsorbed amount increases (for ¢, = 1073 and x = 0.5 by a
factor cf 2, for ¢, = 1073 and ¥y = QO by a factor of 3), but
the layer thickness decreases. Apparently the increasing num-
ber of segments of adsorbed chains is accommodated in the
layers close to the surface, without extending the adsorbed
layer. Similarly, for xg = 0.5 the adsorbed amcunt from a @-
solvent is higher than from an athermal solvent by a factor
of about 6 (around ¢, = 10'3)r vet the layer thickness is
hardly different from the twe solvents. Only for Xg = 3¢ at
not too high concentrations, the trends in t and 6 coincide.

Very little experimental data are available for the con-
centraticn dependence of t. Only in a very recent article
{Takahashi, 1980) did we find some measurements over a wide
concentration range. The inset of Fig. 6 shows that there is
quite reasonable agreement between theory and experiment as
to the general trend, for polystyrene consisting of 6500 mon-
omer units. The theoretical curve for this chain length was
obtained by extrapolating the calculated results for lower r
according to the sguare root dependence menticned above.

It is very difficult to compare the absolute values of the
measured thickness with the calculated ones: guantitative ag-
reement would exist if the thickness of a lattice layer would
correspond to 2 nm, but we have, as yet, no sclid arguments
for such a conversion factor. Apart from that, there is con-
siderable doubt whether the ellipsometric r.m.s. thickness,
cbtained by assuming an exponential segment distribution,
gives the correct results if tails are present, in which case
the concentration profile is more diffuse.

In Fig. 7 we have plotted the r.m.s. thickness due to
tails and loops separately. The general trends are the same
as in Fig. 6, with t, considerably higher than t,, as expect-
ed. A theory neglecting tails underestimates the layer thick-
ness seriously. Comparison of the effect of tails on the lay-
er thickness with the fraction of segments in tails (see in-
set in Fig. 7) demonstrates that in all cases, even if vy is
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Fig. 7. The contribution of loops (tg) and tails (tt) to the
overall layer thickness t, for the same conditions as in Fig.
& (where t was given}). The inset shows the variation in the
fraction v, of segments of adsorbed chains that belong to
tails, as a function of ¢,.

low, tails give the dominant contribution to the extension of
an adsorbed layer. Moreover, also here the thickness is rath-
er invariant for a change in y or Yg, whereas the fraction
{ve) and even more strongly the number of tail segments (v 8)
are considerably influenced by these parameters.

PREFERENTIAI. ADSORPTION

It is generally accepted that high molar mass polymer adsorbs
preferentially over lower molar mass material. Several stud-
ies have given experimental evidence for such a preference
(Felter et al., 1969; Felter and Ray, 1970; Howard and Woods,
1972; sadakne and white, 1973; Vander Linden and Van Leemput,
1978b; Cohen Stuart et al., 1980). In a paper about the ef-
fect of polydispersity on polymer adsorption (Cohen Stuart et
al., 1980) we did already present a few calculations based
upon the theory of Roe (1974). In a recent article, Roe (1980)
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gave some mere results of this type.

Here we shall discuss the physical background and the und-
erlying principles in a semiguantitative way. The equilibrium
for polymers adsorbing from solution is governed by the bal-
ance between energy and entropy. The energy terms arise from
the adsorption energy (XskT per adscrbing segment) and the
mixing energy (as expressed by the y-parameter). For the sake
of simplicity, we will neglect this latter term (i.e., we
consider an athermal solvent). Including the mixing energy in
the equations below is straightforward, but not necessary for
the illustraticon of the principal points.

Entropy contributicns stem from the entropy of mixing and
from the loss of conformational entropy upon adsorption. The
entropy of mixing is just the configurational part of the
Flory-Huggins expression. If ¢, is the polymer volume frac-
tion in the first layver, this term can be approximated as
kln{¢1/¢*} per molecule, regardless of the chain length, be-
cause only the possiblie positicns of the centre of gravity of
the chain have to be considered. Therefore, the entropy of
mixing is relatively important for short chains. For solvent
molecules desorbing from the surface the entropy of mixing is
-k £n {¢?/¢2) per molecule.

For polymer chains adsorbing at the interface, the entropy
less of the first segment is accounted for in the entropy of
mixing. All the other chain segments attaching to the surface
lose a fraction Ay of their possible positions. Hence the ra-
tio between the number of possible positions in the free and
adsorbed state is 1/(1-3;)}, corresponding to a conformation-
al entropy loss of -k 1n (1-}4) per adsorbed segmernt.

If a monomer is exchanged against a solvent molecule on
the surface, the resulting free energy change per monomer can
be written as-:

_ _ 0,0
Afm/kT = -xg * 1n(¢1,m/¢*,m) 1n (¢1/¢*) (7)

where the second and third terms represent the entropy of
mixing of the monomer and the solvent molecule, respectively.
Putting Afp = 0 leads immediately to a Langmuir type equat-
ion,

For the adscrption of a polymer molecule of which pr seg-
ments are in contact with the surface, the analogous free en-
ergy change per chain is

_ _ _ _ _ 0,,0
Afp/kT = Prx_ (pr-1) 1n {1 Al)+1n(¢1'P/¢*’p) pr]J1(¢1/¢*)

(8)
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Note that the factor pr occurs in the entropy of mixing for
the solvent, but not in that for the polymer. From this egua-
tion it follows directly that long polymer chains will only
adsorb if x, exceeds a critical value xg.. In dilute solu-
tions of weakly adsorbing polymer the last term of equation
(8) vanishes, the ratio ¢1,p/¢*,p is of order unity, and Afp
can only become zero if the adsorption energy compensates the
loss of conformaticnal entropy. This occurs if x5 > xge =
-2n{1-2y) - At equilibrium;, ¢1,'p/¢,,,p= 1/1-2,) at X = Xge, in
agreement with previous results (DiMarzio and Rubin, 1971).

For a discussion of preferential adscrption we have to
consider the adsorpticn free energy difference between a pol-
ymer chain and pr monomers. From eguations (7) and (8) we ob-
tain;

(ﬂfp—prAfm)/kT= ~(pr=1) in (1-3))

+ ln(¢1,p/¢*'p) - pr 1ln (d»l’m/rb ) {9)

*'m

Since the adsorption energy is the same for a monomer and cne
polymer segment, only the conformatiocnal and mixing entropies
determine whether the polymer adsorbs preferentially. Prefer-
ential adsorption of polymer occurs when at equilibrium

(pr ='prAfm) ¢1,p/¢*,p > ¢1'm/¢*,m' We will now analyse this
situation.

The first term of equation (9) represents the conforma-
ticnal entropy and is always positive. For Xs > Xscr both
$1,p/¢%,p and ¢y p/d, ; are greater than unity, so that the
second term is positive and the last one negative. The con-
figurational entropy loss for the monomers (last term) is
larger than the conformational e&tropy loss for the polymer
{first term)} because ¢1'm/¢*,m>e SC€ = 1/(1-1q). The sum of the
first and last terms of equation (9), which is negative, has
to be compensated by a positive second term. As this term
does not contain the large factor pr, ¢1' /¢*’ >>¢1,m/¢*,m‘
Hence, in dilute sclutions polymers adsorg preferentially
with respect to shorter ones, the reason being that the con-
figurational (or translational} entropy loss of the short
chainsg is the largest contribution to the free energy.

With increasing bulk concentrations of moncmer and poly-
mer, the ratios ¢1,p/¢* p and ¢1,m/¢*;m both decrease. Then
the first term in equation (9) becomes relatively important,
even though p decreases slightly. This term has to be compen-
sated by the sum of the second and last terms. As the logar-
ithm in the last term is multiplied by pr. 1, /% ,p must de-
crease much more strongly than ?l,m/¢*,mv indicating a less
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proncunced preference for polymer. As soon as ¢1,m/¢*,m be-
comes smaller than 1/{(1-X%y), the second term beccmes even
negative (¢1,p < ¢%,p). Hence, in concentrated solutions
monomers adsorb preferentially with respect to pelymers, and
short chains with respect to longer ones. In this concentra-
tion region the conformational entropy dominates the free en-
ergy, disfavouring the adscorption of long c¢hains.

At some intermediate concentration both species must have
the same affinity for the surface. If we take the same bulk
solution concentration for polymer and monomer (¢* W= ¢*-P =
%¢ ) we find from (9) that, at the transition pOLnt here
$1,m = ¢1,p, the ratio ¢1’p/%¢ equals 1/(1-4;) = e"SC, As
$1,p + ¢;,y is only slightly below 1 (for not too low xs) we
conclude that the transition point is situated around g# 0.7,

A more guantitative relation between the adsorbed amounts
65 and 8y of two pelymers a and b, adsorbing from a scluticn
with concentrations ¢, 5 and ¢, b, can be found in the foll-
owing way. As a simple model, we consider the mixed adsorbate
layer as a region where the average weighting factor per seg-
ment is p times as high as in the bulk of the solution. Obvi-
ously, 5 is an average over the layers close tc the surface
of the factors pj as given in equations (1) and (3). It de-
pends on the solvent profile in the adsorbed layer which is
determined by the parameters x and Xg and on the total solu-
tion concentration ¢ = ¢*,a + ¢* b but is independent of
the individual volume fractlgns ¢* a @nd ¢* - The ratio
Ba/¢* a 15 proportional to p a 5o that

r _Th

=74
6, = Aty P 8, = Do, pP (10)

where A is a proportionality constant. A mathematical proof
by means of the matrix formalism shows that equation (10) is
rigorously valid provided that rz and r,, are high enough (see
Appendix I). By elimination of p from the two eguations above
we find a relation between 85/9,,, and 6/¢, 1 ,

ra/rb—l

6 &) 6
a b b )
[A (11)

¢*,a ¢*,b ¢*,bl

Experimentally, one usually measures the total adsorbed
amount T' which is proportional to the total surface coverage
6 = 65 + 6n. The contribution of component a to the total ad-
sorbed amount can be found by substituting Oy = 8 - 0, so
that an implicit equation in 6, is obtained. We tested this
equation for previcusly published data (Cohen Stuart et al.,
1980) based upon the thecry of multicomponent systems by Roe
(1974) . (Our own theory can also be extended to more than two
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components, but as yet we have not made computations). Figure
8 shows the relative contribution 85/6 of compcnent a as a
function of the chain length ratio ra/ry,, both for ¥y, = 100

1+ "______.——m——

Bq © Roe theory f/
'8 | __eq.(M){A=5) /

-4
osk / o= %ape 10
/’ X =05

A Xg =1
/ My = 100,1000

o

-
22 1 [l |

raltp

Fig. 8. The fractionation effect occurring upon adsorption of
a mixture of two polymer chains a and b, with different chain
lengths r, and ry. The figure gives the fraction 03/8 of com-
ponent a in the adsorbed layer as a function of the chain
length ratio r,/ry., at an egual volume fraction (10'”) In the
solution for both components. The points were calculated with
the theory of Roe (1274), the solid line with our equation
(11) using A = 5. In both theories the values for aa/e as a
function of r,/ry are independent of ryp. Hexagonal lattice

(ho = 0.5}, xg = 1, X = 0.5.

and rp = 1000, at an equal solution concentration for each
pelymer. For ry, = 100, the total surface coverage 0 varied
from 1.151 monclayers at rz = 50 to 1.338 at r, = 200; for ry
= 1000 the values for 8 ranged from 1.636 at ry 500 to
1.725 at r, = 2000. Although the total surface coverage de-
pends on chain length, the relative contribution of each com-
ponent to 6 turns out to be independent of this parameter:
ocne single curve applies to both values of ry. The points in
Fig. 8 were computed using Roe's theory, the solid line was
calculated from 6 according to equaticn (11) after substitut-
ing Bb = 6 - By, using A = 5. The results are rather insensi-
tive to the value taken for the adjustable parameter A: vari-
ation of A in the range 4-6 hardly affects the results.

FProm the excellent agreement between the peints and the
solid line in Fig. 8 we may conclude that equation (11) gives
a very good description of the adsorption fractionation. It
allcws the evaluation of the contribution of each component
in the mixture if the total adsorbed amount is known. We note
that equations (1C) and (11) apply to the total surface cov- -
erage € = 05y + 64- In the comparison with Roe's theory (Fig.
8) only 0Ogy could be used since €3 (and 9) cannot be obtained

[}
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from this model. For dilute solutions and neot too low 8. the
differences between 8., and 8 are small but for low B, or 6y
(left and right in Fig. 8} 03 is not completely negligible
with respect to 8. For relatively high ¢,, equation (11) can
only be applied if the contribution of 94 is taken into
account.

equation (11) has one other interesting consequence. Cons-
ider a system at low ¢, where ryp/r, > 2, so that the adsorbed
layer consists mainly of long chains (cemponent b). If one
adds to this system some of the short chain component a,
ab/¢*,b will remain essentially constant. Then also ea/¢*'a
is constant, or 65 Vv ¢*,a' as for isolated chains (see Fig-
ure 4). Thus the mincr ccmponent on the surface behaves as
isolated chain "islands" in the “sea" of long chains, exhibi-
ting low affinity for the surface.

~oncluding this section on preferential adsorption, we ob-
curve that a clear picture is emerging as to the physical
packground of this phenomenon, with long chains predominantly
on the surface at low and moderate solution concentrations,
whereas in very concentrated soluticns the short chains have
a preference for the surface. In the first case, the driving
force is the translational entropy of the short chains in
solution, in the latter situation the conformational entropy
loss for the long chains is the main factor. A simple formula
{equation (11)) gives an accurate guantitative description of
the relative adsorption in mixtures of not too short polymer
chains.

APPENDIX I

According to the matrix formalism, the step-weighted random
walk can be mathematically described as:

_ . _ r=1
p,(x) = gaga(r D o=w, BN (A1)

The end segment probability vector p,{r) contains the unnorm-
alized statistical weights for adsorbed chains (see equation
(8) of Scheutjens and Fleer (1980)) and the operator w_ is
defined in equation (A3) of the same paper. For long chains
(Al) can be written as

pa(r] =A p (a2)

o~ ~e

where Pe is the eigenvector belonging to the largest eigen-
value A of y3. The total surface coverage is found from a

summation of Pa(r) over all layers (Scheutjens and Fleer,
1979) :




67

POLYMER ADSORPTION THEQRY

8 = ¢, § p {i.r) = ¢*Ar_1§ pg (i) (A3)

This equation is identical to equation (10), with p = A and
L
i
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DISCUSSION

Killmann: We found a square root dependence of the ellipso-
metric thickness on molecular weight at the chromium - geld
and platinum surfaces out of different solvents. The values
of the thicknesses are lower with lower net adsorption
energy. Have you an explanation from your theory?

Scheutjens and Fleer: Qur results show that the root-mean-
square thickness of adsorbed polymer increases linearly with
the square root of the chain length, both for 8-seclvents and
for athermal solvents. The effect of the adsorption energy
is, except for yxg4 X 0.5, rather small (see also our Fig. 6).
However, in all cases studied as yet we find that the r.m.s.
thickness increases with decreasing net adsorption energy, in
contradistinction to your experimental results for the
ellipsometric thickness. A possible reason for this discrep-
ancy could be that the proportionality constant between the
ellipsometric. thickness, which is a functicn of the excess
concentration profile, and the r.m.s. thickness, calculated
from the segment density profile due to adsorbed chains
{compare the difference between the excess coverage 8oy and
the total coverage €), depends on the adsorption energy Yg.
We intend to check this conjecture in future work by including
the ellipscmetric thickness, which is easily computed from a
given concentration profile, in our numerical results.

Silberberg: In defense of earlier theories I would like to
point ocut that they are lattice theories much as your calcula-
tions are. In fact what was done in those earlier theories was
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to approximate the surface layer by zones not however by a
large number, as in your case, but by three zones. The layer
of contacting segments, a layer defined by the loops and the
bulk solution. The contribution moreover of taills was written
into the equations but finally ignored for computaticnal
reasons. This made the results of intrinsic validity only in
the case of extreme molecular weight, molecular weights much
in excess of the ones used in ycur computations. Yet most of
the features which you point out are (rather unsurprisingly)
also predicted by the earlier work. Of course, it cannot be
expected that the detailed effects of chain tails can be
compared since these were not considered. I think the most
important input of your beautiful work is the discussion of
finite bulk concentrations. This was (again for reasons of
computational ceonvenience} ignored in earlier work, but the
contribution of the unadsorbed polymer ccils becomes very
significant as soon as there is mean coil overlap in
soclution.

For practical separations by adscrption, kinetic effects
are important. Some of the earliest results on polymer/
surface interactions erroneously suggested that low meclecular
waight fractions are preferably adsorbed simply because over
a limited period of contact the faster diffusing species gets
there first.

Scheutijens and Fleer: It is definitely not our intention to
blame those earlier theories that take into account the
interaction between polymer molecules. We consider them still
very useful, especially for their computational convenience.
We only warn against extrapolation of results obtained with
isolated chain theories to real systems where high concentra-
tions at the surface occur. For instance, a very persistent
but incorrect idea is that strong adsorption implies a flat
conformation, even in the (semi)plateau of the :adsorption
igsotherm. This idea is refuted not only by our theory, but
also by earlier many-chain theories.

We agree that many of the features predicted by our theory
are also found by previous theories for mutually interacting
polymer chains. For many purposes those earlier theories are
appropriate. However, for the calculation of the segment
density profile and the layer thickness they break down if
end effects are ignored.

Your statement that in the case of extremely high molecular
weight the tails can be neglected is, for finite solution
concentrations, not yet proven. Our computations indicate
that tails are still very important for any chain length
encountered in practice. Therefore, your point is only of
theoretical interest: even if for extremely long chains tails
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were to be negligible, this cannot be measured experimentally
since such extreme molecular weights do not exist.

We agree with your comment con the kinetic effects of
adscrption fracticnation. A commercial fractionation methed
based on adsorption is hard to imagine. However, if one needs
a small very homodisperse fraction of a particular polymer
for experimental work, fractionation by adsorption might be
worthwhile to consider. After equilibrium (= 24 hours?) the
polymer in soluticn is free of high molecular weight species.
Adsorbed polymer of high M may be desorbed by adding a suit-
able low molecular weight compound with a high affinity for
the surface.

Cohen-Stuart: Foam fractionation (R. Lemlich (ed.) (1972}.
"Adsorptive Bubble Separaticon Techniquesg", Academic Press,
New York.) is a technique where preferential adscrption at a
gas/liguid interface is the fractionating mechanism. Since
the gas/liquid interface is very mobile, exchange rates are
in this case probably fast enough to establish the expected
preferential adscrption of the larger molecules over the
smaller ones.
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5 TINTERACTION BETWEEN TWO ADSORBED POLYMER LAYERS*

SUMMARY

The effect of adsorbing homopolymer on the interaction between two par-
allel surfaces 1is examined in some detail. The results are relevant for the
stabilization and flocculation of colloids by adsorbed polymer. The free
energy of interaction is derived directly from the partition function using
a previously developed lattice model for adsorption of polymers from solu-
tion. Comparison with other theories shows partial agreement as well as
remarkable discrepancies. Results are presented for a system in full equi-
librium with a polymer solutfon of constant concentration and for a system
with a constant amount of polymer between the surfaces. At full equilibrium
the force between the surfaces is always attractive due to bridging polymer.
With decreasing surface separation a part of the polymer molecules leaves
the gap, an increasing fraction of the remaining polymer adsorbs om both
surfaces simultaneously, and eventually a wmonolayer of polymer segments
sticks the surfaces together. When the polymer 13 unable to leave the gap, a
strong repulsion between the surfaces appears at small separations and the
ianteraction free energy is mainly determined by the adsorbed amount of poly-
mer, Irrespective of chain length. With a large amount of polymer between
the surfaces the force 1s always repulsive, except In a very poor solvent.
At smaller surface coverages a minimum in the free energy of interaction
develops as a function of surface separation. Recent experimental data con-—
firm our prediction that bridging attraction can also occur in good sol-
vents. As the adsorption of polymer iIncreases with increasing chain length,
high molecular weight polymer 1s a better stabilizer than low molecular
weight polymer.

* Submitted for publication in Macromolecules

in ceauthorship with G.J. Fleer



72

5.1 INTRODUCTION

Polymer adsorption is a very effective tool for controlling the stabili=-
ty of colloidal suspensionsl-B. For instance, high molecular weight floc-
culants rapidly remove the last submicroscopic particles in one of the last
stages of water treatment. In this case uncovered particles are caught by
tails and loops extending from covered ones, so that polymer bridges are
formed. The same mechanism is operating in particle separation by flota-

tiouk’s-

Bridging can occur only when the adsorbed amount of peolymer is
below saturation. At high polymer concentrations all particles are fully
covered and the dangling tails and loops form a steric barrier agalnst floe-
culation. Steric stabilisation has important applications in paint industry
and food technology. In all these phenomena, steric and/or bridging interac-—
tions constitute an ilmportant contribution, but in most cases it is not the
only one. In addition, Van der Waals forces and electrostatic interactions
may play a role.

A variety of polymers, including copolymers, polyelectrolytes, and pro—
teins, are applied to obtain the desired effects. In most instances the
compexity of these materials, usually commercial products, is such that even
the trends cannot be predicted. For monodisperse homopolymers, however, a
detailed picture becomes feasible. The interaction between two polymer lay-
ers of this type is the result of a subtle balance between entropic repul—
sion, free energy of mixing, and bridging attraction. To quantify this in-
teraction the segment density distribution of the polymer between two ap-
proaching particles, especially in the overlap region, is required. It can
be obtained from a suitable polymer adsorption theory. In such a theory
several factors have to be taken into account: the interaction of segments
and solvent molecules with the surface, that between segments and solvent in
the concentrated surface region, and the loss of configurational entropy of
the adsorbed polymer chains.

The first theories that incorporate all these affects to a reasonable
approximation divide the adsorbed layer into a train layer in contact with
the gurface and an adjacent loop layer with a predetermined shape of the

6 oT an exponential decay7. For

segment profile, for instance a step function
computational convenience the taill fraction was neglected in these theories.
A complete multilayer theory for adsorption of chain molecules from high

solution concentrations was developed by Ash at al.8 and also used for the
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caleulation of interaction forces between parallel platesgn Unfortunately,

the numerical computations were limited to chalns of oanly four segments per
chain. Although currently for most computers a chain length of 10 segments
seems tractable with this model, it will be long before the polymer range is
reached. Therefore some modifications are necessary in order tc obtain re-
sults for long chains.

A considerably simpler multilayer theory for all chain lengths was de-

veloped by Roel?

+ A crucial step in its derivation is the assumption that
the ranking number of a segment in the chain is irrelevant for its spatial
distribution. This boils down to density distributions for "loops” and
“tails" that are of identical shape, which is more or less equivalent to the
neglect of end effects. Therefore, a correct predition of the segment densi-
ty beyond the loap region can not be expected when talls are present.

The self-consistent multilayer theory of Scheutjens and Fleer11 is more
accurate, because this simplifying assumption is avoided. This theory ac-
counts fully for all possible polymer conformations, including those with
tails. The generation of the extremely high number of different conforma-—
tions was possible by adopting the elegant matrix procedure developed by
DiMarzio and Rubin12’13- Results for almest the whole range of relevant
molecular weights can be obtained with this theory. For short molecules the
results of Ash et al. are vecovered, whereas the densities in the train and
loop region agree with the results of Roe. For longer chains, a substantial
fraction of the segments are found in tails, which extend far into the solu-
tion.

14,15

The development of scaling analyses might give additional informa-

tion about adsorbed polymer layers. This technique was first introduced in

16 and employs the analogies between magnetic

polymer statistics by De Gennes
systems and polymers.
Monte Carle approaches are still in the state of the single chain prob-

17,18

lem For a system of many competing polymer molecules, the introduction

of a Flory-Huggins type of mixing energy seems promising for more realistic
resultsl?,

The structure of an adsorbed polymer layer at finlte solution concentra~-
tions is now well established6’7’10’11’20_2& and quite different from the
properties of single chains. Below, we glve a summary of the most important

results.

In dilute and semidilute solutions, the adsorbed amount depends only
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very weakly on the concentration in the bulk solution, i.e., the adsorption
isotherms are of the high affinity type with a nearly horizontal pseudopla-
teau. Adsorption from good solvents is low and hardly dependent on molecular
weight. In poor solvents, the adsorbed amount increases with increasing
chain length. The extension of the polymer layer depends on such parameters
as the segmental adsorption energy, the solvent quality, the solution con—
centration, and the chain length, but it is found that, for a given adsorp-
tion energy and solvent quality, the layer thickness is a function of the
adsorbed amount only. In other words, the layer thickness is the same for
relatively short chains at high concentrations and for longer chains at
(much) lower concentrations, provided the adsorbed amount 1s the samezz-
Similarly, for a given chain length and solution concentration, the layer
thickness is rather insensitive to both adsorption energy and solvent quali-
ty. In this case the adsorbed amount increases with Increasing adsorption
energy or decreasing solvent quality, without affecting the extension of the
adsorbed layer, because only the segment densities close to the surface
change22’23.

When the adsorbed amount is below the pseudoplateau wvalue the polymer
lies flat on the surface, forming long trains and short loops. Tails are
absent in this case and the solution concentration is extremely low {below
an experimentally detectable level). In the pseudoplateau region the frac-—
tlon of occupled surface sites is essentially independent of the solution
concentration and the molecular weight; its wmagnitude 1s determined by the
adsorption energy and solvent quality. Already at semidilute concentrations
the tails protude far into the Solut10n22’25’26, determining completely the
layer thickness, whereas the loops rvemain tather small. The train size and
the fraction of segments in trains decrease steadily with increasing bulk
solution concentration.

For heterodisperse polymers many of the properties given above are dif-
ferent27. The reason is that the chains with the highest affinity for the
surface (high molecular weight, high adsorption energy) will ultimately
displace all other polymer from the surface. Thus, the composition of the
adsorbed layer is a function of the available area and the total amount of
polymer in the system. Therefore, in order to check theoretical predictions,
it is essential to have experimental data for monodisperse polymers. Unfor-
tunately, the availability of such polymer is wvery poor, and only very few

experimental studies are amenable to comparison with theory.
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The statistical mechanical treatment of the interaction between two
particles covered with polymer was Initially restricted to the case of a

single chain between parallel platesl3’28’29.

The neglect of lateral inter-
actions led to results which are of very limited validity for the many chain
problem. Mackor and Van der waals3® fintroduced separate surface and bulk
phases to overcome this problem. They studied the interaction due to termi-
nally adsorbing rigid rods (dimers and tetramers) in equilibrium with a bulk
solution and found a repulsive force. The application of self-consistent

9

field thecories has improved the models considerably’. Most of the results

are obtained for grafted polymer, i.e., chains with one or both eunds bound

to the surfac931_36.

Unfortunately, in some cases incorrect free energy
equations were used, wainly because these theories did not lead to the com-
plete partition funetion.

34

Dolan and Edwards obtained the excluded volume parameter which deter-

mines the self-consistent field strength, by comparing their free emnergy
equation with the Flory-Huggins equation for the free energy of mixing37-
They supposed that the free energy is only determined by the change in con-—
figurational entropy of the chains. As we will show in the theoretical sec—
tion, their excluded volume parameter is too small. Apart from that, they
neglect higher order terms which become dominant at wvery high segment densi-
ties.

36 used a similar wodel as ours to calculate the force

Levine et al.
between two plates due to grafted polymer. For adsorbing polymer they found
qualitatively the same trends as we find. They came to the correct confor-
mational entropy, but missed the accompanying correction to the free energy
equation of Dolan and Edwards.

For the important case of (mnon~anchored) homopolymers we must distin-
guish between full thermodynamic equilibrium, when the chains can leave the
gap, and restricted equilibrium, when for instance during the Brownian col-
lision of two particles the adsorbed polymer is trapped between them. In the
latter case the individual segments might still adjust themselves to a local
thermodynamic equilibrium, i.e., may adsorb or desorb, whereas the total
amount of polymer in the gap remains constant. In such a restricted equilib-
rium, an exchange between trains, loops, tails, and bridges occurs within
the requirewent of minimwm free energy of the (constant) amount of polymer
and the (changing) amount of solvent in the gap, but the chemical potential

of the chalins in the gap is no longer the same as In the solution.
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For adsorbing tetramers in full equilibrium, Ash and Fim:lenegg9 f ound
attraction between the plates when all segments are of an adsorbing type. If

some of the segments are non—adsorbing, repulsion is predicted.

De Gennes 38

39

elaborated an equation for the surface free energy from
Cahn to study the interaction due to adsorbed homopolymer. He arrived af
the conclusion that the net force is always attractive when the polymer may
leave the space between the plates. The chains will escape when the plates
are approaching each other, so that the segment density in the gap will
never increase. The attractive force originates from the bridging eifect,
When the polymer is not able to escape, the density between the plates will
Increase with decreasing plate distance and an extra repulsive force re-
sults. Using a mean field approximation De Gennes found a cancellation be-
tween volume repulsion and bridging attraction in good solvents. Applyin
scaling concepts, however, led to the conclusion that the net force ij
always repulsive.
Using the same (mean field) Cahn-De Gennes analysis, Klein and Pincusm
found the interaction force in poor solvents to be attractive im a distance
region comparable with the radius of gyration of the chain in solution, and
repulsive at shorter plate separations. The attractive force occurs 1If the
concentration between the plates passes the biphasic region of the bull

41,42

phase diagram. Experimental work by Klein has shown a similar shape of

the interaction curve for polystyrene adsorbed on mica sheets.

In this paper we apply our adsorptiocn mode1lls22 ¢4 compute the interac-
tion force between parallel plates under different conditions. In the full
equilibrium case we find always attractiom, in agreement with other theo-
u543, which

« At restricted equilibrium a minimum in the free

rie39’38. This result differs from that in an earlier paper by
contains a serious error“
energy Is found at low solution concentrations in all selvents. This contra-

dicts De Gennes' mean field result and even more his scaling approach for

good solvent538

45,46

, but it 1Is consistent with recent results of Klein and co~
workers The attractive force 1is attributed te an increase of the
entropy by bridging. We feel that the Cahn-De Gennes approach underestimates
the restrictions imposed by the walls on the conformational entropy of the
chains, at least in the one wall problem. In this analysis, even the sign of
the force becomes malnly determined by the solution properties of the poly-
mer.

At high concentrations we find always repulsion in good solvents. We
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10

will also apply the theory of Roe and show interaction curves obtained

from this model.

5.2 THEORY

5.2.1 Model

In deriving the relevant equations, we follow roughly refs. (10) and
{ll). Comsider a lattice between two parallel plates, see figure 5.1. Each

lattice site has z neighbors,

a fraction KO of which is in

the same layer and a fraction

Al in each of the adjacent

[y

layers. In a simple cubic lat-
tice z =6, iy=4/6, and
A o= 1/6. The latticg layers,

surface 1
surface 2

being parallel to the surface,

are numbered i = 1,2,...,M and

3 4

have L lattice sites each. For

Figure 5.1. A chaln of 20 segments in a the sake of generalization, we
lattice between two surfaces. This par- define a parameter hi—j such
ticular conformation has 4 segments ad- that zki_j gives the number of
sorbed on surface 1 and 3 on surface 2. immediate mneighbors that a
According to egs. (5.12) and {(5.17) the site in layer 1 has in layer
total number of chains in this conforma- I It is obvious that
tion 1s Ai_j = kG if i =3, Ki—j - ll
RS AR TR S T Yoy S if i=3+1l, and Ajy=0

otherwise. For a site in lay-
ers 1 and M the total number of neighbors 1s zhy+ zh) = z(l-A;). Hore
formally, we can write

M

S T TN T Ml (1<1<M)  (5.1)

where the Kronecker delta 5i,j is 1 when i = j and zero otherwise. A lattice

site is occupied either by a solvent molecule or a polymer segment. A poly-
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mer molecule 1s represented by a chain of connected segments numbered
8 = 1,2,+0+,r. Segments and solvent molecules in the layers 1 and M are
considered to be adsorbed.

The polymer chalns and solvent molecules are distributed over the lat-
tice in such a way that the free energy is at its minimum. Since in equilib-|
rium the various conformations of the chains are not equally probable, we
must at least distinguish all conformations which differ in energy. The
energy of a particular conformation is determined by the number of its ad-
sorbed segments and the interaction with neighboring segments and solvent
molecules, which depends on the local concentration. As yet, it is not pos—
sible to account for all local fluctuations which may occur. Obviously, the
most important fluctuations are expected in the direction normal to the
plates. We neglect the variations within each lattice layer and use an aver-—
age volume fraction ¢; of polymer and a fraction ¢g =1 - ¢; of solvent in
layer i. Let the total number of segments and solvent molecules in layer i

be ny and ng, respectively, and the total number of chains between the

plates n:
b; = 0/L 3 7 = n/L (5.2
H o
nr +Z n, =ML (5.3)
i=1 *

Using eq. {(5.2) for the local concentration in each layer 1s equivalent to
the well-known mean field or Bragg—Williams approximation, i{.e., the distri-
bution within a layer is not affected by mutual Interactions. Thus, for the
energy of a conformation ¢ 1t is sufficient to specify the number of seg-

ments e that this conformation has in each of the lattice layers. Obvi-

ously,

Ir n_ =n (5.4)

M
Ir =r {5.5)

where n, is the number of chains in conformation c.
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5.2.1. Partition function
The grand partition function E of the system in equilibrium with a bulk
solution is given by a summation of canonical partition functions @, weight-

ed with the appropriate Boltzmann factors:

- e, 0
2= T Q({nc},V,A,T) exp(p L 0 /kT) exp(ut n /KT) (5.6)
all an 's i e
¢

where uo and p are the chemical potentials of the solvent molecules and the
polymer chains with respect to the reference state, respectively, V is the
volume between the plates, A the area per plate, and T the temperature. We
replace the sum by the maximum term, which is obtained by differentiating In
E with respect to ng:

[a ln Q (5.7)

o ng ] {ncid},V,A,T

+ (p - p®)/kT = 0

The second term of eq. {5.7) follows from the substitution
of Zn: =ML - rEnc. The physical process corresponding to the differentia-
tion of In Z is transporting one chain from the bulk solution to the gap
between the surfaces, placing ry 4 segments in each layer i, while the same
number of solvent molecules from each layer i is brought to the bulk solu-
tion.

For Q({n.},V,A,T) we may write

Q = qja,[e{a }r/,] exp(x_n +x np) exp(-xi 0 <6,>) (5.8)

where @, is the partition function of n polymer chains in pure polymer lig-
uld and Qg the same for n° solvent molecules between Lwo plates of area A
each. The first exponential factor accounts for the surface interactions of
n; and ny adsorbed segments, displacing 1y and Ty adsorbed solvent mole-
cules. The adsorption energy of solvent on the plates is included in Qgc The
difference in adsorption enmergy is - y, kT per segment-solvent exchange. The
second Boltzmann factor contains the energy of mixing the solvent and poly-
wmer chains in accordance with the concentration profile. The total number of
segment-solvent contacts is En;<¢i>z, where <¢i> is the fraction of con-
tacts with segments for a seolvent molecule in layer i. With the Bragg--

Williams approximation within each layer, <¢;> is given by
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M
= = 5.9
W2 = Al TRy M0y jfl"i—j“’j (5.9)
The Flory-Huggins parameter y enters because for each solvent molecule which
is transferred from pure solvent to a site surrounded by segments (<$;> = 1)
the energy of mixing is y KkT.
The combinateory factor Q({nc}) in eq. {(5.8) gives the number of ways of

% golvent molecules in accordance with

arranging n polymer molecules and n
the conformation profile {“c}' It replaces Q,, the configurational part of
Q,, representing the number of ways of placing n polymer wmolecules on rn

lattice sites in liquid polymer. @ _has been derived by Flory37:

(r=1)n
_ (2 {rn)!
e, = (rn n! (3.10)

The factorial (rn)! accounts for the number of ways of placing rn distin-
guishable monomers; z/(rn)} is a correction factor for the r - 1 monomers of
a chain that are linked to a previously placed monomer and, hence, have only
z instead of rm a priori possible locations. Strictly speaking, z represents
the effective number of bond directions for each additional segment and
decreases somewhat with the number of bonds per chain if a correction is
made for the exclusion of conformations with internal overlapping segments.
The factorial n! corrects for the indistinguishability of the n chains.

o]

Applying a similar equation for the m~ solvent molecules (r = 1) would give

Qg = l. Hence, a correction for Qi in eq. (5.8) is not necessaty.

The combinatory factor @ has been derived beforell:
n
c
L!
z,(r-1)n Ye
a{n,h) = T I (5.11)
c 1 ni.

There is a close analogy between egs. {5.10) and (5.11). The M factori-
als L! give the pumber of ways of placing rEnc distinguishable monomers
and En: solvent molecules. The correction factoer for the (r — 1) linking
segments of a chain in conformation ¢ Iis mc(z/L)r—l, where wczr_l is the
number of arrangements within conformation ¢ when the first segment (or the
centre of gravity) of the chain is fixed. For instance, when step reversals
are allowed, each bond parallel to the surface can polnt into hoz directions
and each bond crossing to an adjacent layer has hlz choices. Then, 1if q is

the number of bonds in conformation c¢ that are parallel to the surface, we
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have (koz)q{hlz)r'l"q arrangements within this conformation and w_. is glven
by

r-1-q (5.12)

=13 4
“o = hoM
Note that many arrangements exist with the same segment distribution
{ri ¢}, but with a different order of bond directions. According to the
3
current definition, they are grouped into different conformations, because

we define a conformation by a specific order of ky's and A ’s.

5.2.3 Conformation probability

The equilibrium disteibution of conformations is given by the value of
{nc} corresponding to the maximum term in the grand partitien function Z and
is obtained from eq. (5.7) after substitution of eqs. (5.8), (5.10) and
(5.11). The logarithm of Q({nc})/9+ can be approximated using Stirling's
formula by

o 0
ln(Q/9+) =ML In L - i n. ln(nc/wc) - f n, In n,

-nlnr-{r-1)n In L {5.13)

While performing the diffentiation Indicated in eq. (5.7) it must be realiz-
ed that nf =L =S r, n  andX ng<¢i> =z ni<¢g> . The result is

¢ i,ce
M

ln(nd/L) = In C+ 1n wy + 151 Tid In P, {5.14)
where

InC=r~1-1nr+ (p~ rp’)/kT (5.15)
and

- .0 o
ln By = g (8 4 + &y )+ x(<o> = 43> + 1n o] (5.16)

From eq. (5.14) it follows that the number of chains in conformation ¢ is
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given by
p, 1»c (5.17)

Hence, n, 1s proportional to a multiple product of welghting factors. Ac-

cording to eq. (5.12), the factor w, is a product of r - 1 bond weighting!'
factors LO {for each “parallel”™ bond) or 11 {for each “perpendicular™ bond)
and accounts for the relative number of arrangements in conformation ¢. Each
segment in layer 1 contributes a segmental weighting factor Pis which is a
Boltzmann factor accounting for the free energy change when a solvent mole—
cule in layer i is replaced by a single segment. This Boltzmann factor com—
prises a contribution for the adsorption energy ~Xg KT when f = 1 or 1 = M,
a factor for the interaction energy between segments and solvent (—x<¢4> kT
for removing the solvent molecule and x<¢?> kT for inserting the segment)
and a factor for the local entropy - k In ¢g of the solvent molecule (see

eqs {5.16).

5.2.4 Normalization constant

The value for the normalization constant C is given in eq. (5.15) and
can eagily be found 1if p and uo are constant. This is the case when the
polymer between the plates 1is in full equilibrium with an infinitely large
bulk solution of constant composition. The chemical potentials p and p° have

been derived by Flory37:

W/KT = 1 - ¢, — 1oy + ln ¢, + rxdy(1-,) (5.18)
RO/KT = 1 = 6y = 0,/T + 1n ¢y + xd,(1=6%) (5.19)

where ¢, and ¢: are the bulk solution volume fractions of polymer and sol-
vent, respectlively. Substitution of eqs. (5.18) and (5.19) into (5.15) gives

L

xr
*

(5.20)
rP

The quantity Py is the segmental weighting factor in the bulk solution, and
is given by P, = ¢g exp{x(¢* - ¢:)} {compare eq. 5.16).
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In practical situations, it may be Iimpossible for the polymer chains to
diffuse out of the gap when the plates are brought closer. It 1is useful to
define a restricted equilibrium by the conditfon that the total amount of
polymer between the plates is constant. Then the chemical potential of the
polymer changes with varying plate separation. The normalization constant
may now be found from the boundary condition n = E nc- Summation of

eqs {3.17) over all confeormations gives

et

n
C =5y = ()

(5.21)

where Bt = 2¢i is the total amount of polymer between the plates, expressed

in equivalent monolayers, and P(r) is the chaln weighting factor :

M ri c
P(r) =3 w_ T P : (5.22)
c i
< i=1

In restricted equilibrium, the value for C as calculated from eq. (5.21)
may be substituted in eq. (5.20) to obtain an implicit equation for the
pseudo-equilibrium concentration ¢y, i.e., the bulk sclution concentration
that would be in full equilibrium with the polymer between the plates.
Clearly, this pseudo—equilibrium concentration Is now a function of the

plate separation M.

5.2.5 Free energy of interaction

In full equilibrium the free energy of Interaction between the plates is
determined by the change in the surface free energy 7.2A30. From standard
thermodynamics we have 2yA = = kT 1ln E. For our system it is more ceonvenient
to derive y from dF = 2yadlL + uOEbng + pZbn_, where a = A/L is the area

of a surface site, glving (6F/6L) a } = 2ya + pOM because

¢ WM,T

n° =L ~-Z7Tr, 1n .Taking the derivative of F - kT In Q with respect to L

i ¢ i,c¢c
gives, after substitution of eq. (5.13) into eq. (5.8) and using eq. (5.19)
for p%:

20 = ¥2)a/kT = (1 = D% + £ In (4/69) + 1 T (0,<0,> = 0,7) (5.23)
i i

Here, ¥® is the surface tension of pure solvent and p°%C= Z(¢i - ¢,) the
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excess amount of polymer between the plates. Egq. (5.23) has been derived be-:
forell in terms of ln(Pi/P*) for adsorption on a single surface, hence,
without the factor 2.

The largest term of eq. (5.23) 1is the second, which is negative if
by > b4+ Upon expansion of the logarithm, the linear term cancels exactly
against the term gexC, Hence, for % < 0 the right-hand-side of eq. (5.23) is
negative, as 1s to be expected for adsorbing polymer. For ¥ > 0 the last
term of eq. {(5.23) gives a positive coantribution to the quadratic term of
the logarithmic expansion, but the same conclusion as to the sign of y =~ yo
applies. (Mote: for pure bulk polymer, ¢; + 1 and ¢g +0, T 1In (¢z/¢:) is
not zero).

In restricted equilibrium the system is oper with respect to
solvent but not with respect to polymer. In this case the free energy
of imteraction is given by F = - kT 1ln ¥, where W({nc},po,V,A,T) =

Q({nc},V,A,T) exp(uoznszT) is the semi-grand partition function.

The characteristic function F at constant amount of polymer En, is found
from the characteristic functiom 2yA at constant chemical potential p
(eq. 5.23) via the relation F = 2yA + uln_ = 2yA + (b - et /e + plLet.
From eq. (5.15) we have (p =~ rpo)/kT = lnC-(r=-1)+ 1n r, hence, substi-
tion of eqs. (5.21) and (5.23) gives

o gt o* o o t

(F-F)/LkT=r—1nW;)—+fln¢i+xf¢i<¢i>—p(M-'B) (5.24)
Here, FU is the free energy of pure solvent between the plates. The term
- p°(M - Ot) is a wvery small attractive term accounting for the osmotie
pressure of the solution outside the plates and will be neglected in the
caleulations in order to avold the parameter ¢+ When necessary, it can be
evaluated from eq. (5.19).

5.3 COMPARISON WITH OTHER THEORIES
53+3.1 Full equilibrium

Mackor and Van der Waals30 formulated a theory for stiff rods that may be
compared with the present model for dimers. Ash et a1.8+? developed the
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statistics for flexible oligomers (up to r = 4). They excluded conformations
with bond angles less than 90°. Both theories account for the fact that one
or two of the z contacts per segment are chemical bonds with other segments
rather than physical contacts. Their equations reduce to ours for z » «. In
our model the above mentioned refinements are not taken into account. It has
been shown that these extensions hardly affect the adsorbed amount of oligo-
mersll, whereas the complexity of the equations increases considerably.

The theory of Roe10 has, in principle, only one more simplification than
ours: it assumes that all segments have the same density distribution, inde~
pendent of their ranking number in the chain. This assumption is wvalid for
monomers, dimers, and two—dimensional chains parallel to the surface. It
appears that Roe's equations are identical to ours for r = 1, Ag =1, or
M =1, but not for r = 2. This discrepancy is due to the lack of inversion

symmetry in Roe's model, and has been discussed beforell

. However, his equa-
tion for the surface tension (eq. (36) of ref. (10)) for one surface .is
identical to eq. (5.23) (without the factor 2) after some substitution and
rearrangement. For instance, shift all terms of his eq. (29) to the left
hand side and call the sum of these terms zero(i), which is zero. Then
add ¥ ¢izero(i) to his eq. (36) for the surface tension and after some rear-
rangement our eq. (3.23) appears. In doing so, one wust realize
that L ¢1<¢i/<¢i>> =3I <¢i>¢i/<¢i> =z ¢y The numerical results for the
surface tension depend on the segment density profile and are not the same
for both thearies.

A similar rearrangement is possible for Roe's eq. (36'), representing
the surface tension of a multicomponent mixture. For such a system
the last two terms of eq. {3.13) are to be replaced
by - §{nx In X - (2 - 10" In L} and the interaction energy
is - E xz(nT + n;) + % % % xxyn: <¢§>, where x and y are the component
indices. The doudble summation over x and y extends over all components,
including scolvent. By definition xxx = 0. Differentiation of - kT In @ with
respect to L and addition of u%M gives

20v = ¥a/kt = (1 - D 4 2 1 (o3/69)
X r i
+5 2D+ - ) B> - 0y 6D (5.25)
Xy i

Eqe. ¢{5.25) (without the factor 2) follows from Roe's eq. (36') after addi-
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tion of ; % ¢§ (Wz - Wf) where W? is given by Roe's eq. (41). Hence, Roe's
equations for the surface tension in terms of o¢; are identical to our equa-
tions, although the segment density profiles and, hence, the numerical

values are different.

543.2 Restricted equilibrium

Many theories have been developed for interactions in restricted equi-
1ibrium. For a single chain between two plates {mn = 1) eq. (5.24) reduces to
F - F® + kT 1n {(L/r) = - kT In P{r) which is the free energy equation used
by DiMarzio and Rubinl3. For a single chain (¢i + 0 and ¢g + 1) and athermal
conditions (x = 0) ocur weighting factors P; are identical to their factors
exp(ei).

Meier3l

and Hesselink et al-32’33

expressed the free energy of interac-
tion for a system of nonadsorbing, terminally attached chains (or loops,
tails) between two surfaces as a sum of a volume restriction term
- kT(n/L) 1n(% wc) and an osmotic term kT (5 - )% ¢12- We will show that
this approximation is consistent with eq. (5.24) when all weighting factors
P; are equal, hence, at low concentrations of nonadsorbing chains (xs = 0).

For that case, we may approkimate (n/L) 1lm P(r) = (/L) 1n Ewc + £ ¢iln P

i!
see eq. (5.22).
Substitution into eq. (3.24) gives
o Gt Gt [*]
(F - F~)/LkT = — In (m:] - }i: ¢,1n P, + i lo ¢; + x*f 8,<9,> (5.26)

A Taylor expansion of - z¢11n Pi = xet -z {2x¢ 2 + ¢iln(1 - ¢i)}, retaining
terms up to order ¢12, gives xet + 2(% - x)2¢i . Bimilarly, the last two
terms of eq. (5.26) can be approximated by - Gt - (% - 9) E¢12 when <¢,>
is replaced by by Since 8% 1s constant we may conclude that the sum of the
lagt three terms represents Hesselink's osmotic term and that his approach
is correct for low concentrations. A similar conclusion has been drawn by
Gaylord47.

For a comparison with the model of Dolan and Edwards we rewrite the last
two terms of eq. (5.26) as (%yx - l)6t+ % L¢,1n P, Addition of the second

term (- E@iln Pi) and combination with the first term gives (F - FO)/kT
Ar
i
= = n In(Z w, 11 Pi ’C) + constants, which is essentially the free energy
c i
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function used by these authors>?

. Hence, also their free energy function is
correct for low concentrations, but their welghting
factor Pi% = exp{(% - x)¢i} 1s just the square root of our weighting factor

P i.e., thelr distributicn functions are wrong.

i’

Levine et al.36 derived nearly the same welghting factor as we found
(using by for <¢i>, except for i = 1 and i = M). However, they adopted the
analogous free energy function - kTn 1ln P(r), probably taken from DiMarzio

and Rubin13 or Dolan and Edwards34

, and thus missed the middle two terms of
eqs {5.24) which are approximately zero im the latter theories. Note that
- Zln ¢: is infinite for pure polymer between the plates (¢g +» 0), where-
as the free energy must remain finite (compare eq. 5.26 for ¢g > 0). In
fact, for pure polymer P; = 0 and therefore - n 1n P(r) is infinite as well,
compensating the sum I ln ¢: in eg. (5.24). Since this compensation is
absent in Levine's equation, his free energy function is qualitatively
wrong.
It is interesting to observe that the term - (n/L) ln P(r) contains twice
the osmotic term (% - y) E ¢12 of Hesselink. The last two terms of
eq. (5.24) constitute a correction for one of them. Neglecting this correc—~
tion (as Levine did) overestimates the osmotic term by a factor of about 2.

In the term -(nfL) 1ln P{r) as used by Dolan and Fdwards, P; is replaced
by Pi%; hence the osmotic term occurs only once In their expression and
correction terms are not necessary in thelr free energy function.

A detailed comparison with the theory of De Gennes38 is more difficult
because of the differences in the underlying assumptions. In this theory,
the free energy is written as a sum of local energies which are a function
of the local concentration and concentration gradient only. There are three
contributions: 1) a term for the adsorption energy, il) a term for the ener-
gy of a homogeneous system of concentration ¢4, 111} a positive gradient
term x (a¢i/61)2 which accounts for the spatial variatiens of the concentra-
tion.

A crucial assumption 1s that k does not depend on the chain length. It
can be shown that the choice ¥k = (24 c]:i)"1 as used by De Gennes is consis~
tent with the theory of Helfand for infinite chain length, because in this
theory each segment of a chain has the same spatial distributionhs. In our
notation this would apply when P{i,s) = P(i,s-1) for most of the segments
(see eq. 5.29 below). However, we have shown that end effects are usually

not negligible, except 1in special caseszz- Clearly, end effects decrease
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with decreasing plate distance, so we expect that the gradient method works

best when M < R where R, 1s the radius of gyration of the polymer male-

g’ g
cules in solution.

The most important result of De Gennes' method is that in full equilib-
rium the interaction force dy/dM follows the free energy of a homogeneous
solution of concentration ¢M/2 (the concentration midway the plates where
the gradient 1is zerco), and is always attractive. In restricted equilibrium,
the interaction force follows nearly the osmotlc pressure of a solution of
concentration ¢M/2’ and hence, is always repulsive in good solvents. In bad
solvents an attractive region occurs when ¢M/2 passes the region of biphasic
concentrations’C.

In section 5.6.3 we will compare the predictions of several theories

mentioned above with the outcome of our model.

5+4. SEGMENT DENSLITY DISTRIBUTIONS

The conformation profile {n,} is a function of the weighting factors P;
via eq. (5.14) and the welghting factors are a function of the segment den—
sity profile {¢i} = {1—¢i} via eq. (5.16). In turn, the segment density
profile is given by ¢i = g ri,cnc/L , see eg. (5.4). Thus, the M welghting
factors or volume fractions are implicitly given by M simultaneous egua-
tions. In a following section we will discuss these equations in more de-
tail.

Alternatively, one may lock for a conformation profile {“c} which gives
a segment denmsity profile {¢i} that 1is consistent with eq. (5.17) for each
conformation. In this way, the number of implicit equations is equal to the
number of different conformations and hence, of order 3t1 . 10’:/2 per lat—
tice layer. This method has been used by Mackor and Van der Waals>® and Ash
et al.e, who reduced the number of conformations by forbldding bond angles
lower than 90°. It will be clear that this method breaks down for chains
longer than a few segments. It is much more economical to have only one
equation per lattice layer.

In this section we will show how to compute the segment density profile
from a given set of weighting factors via the generation of all conforma-—
tions, {.e., via egqs. (5.17) and (5.4).

For monomers (r = 1) there is only one “conformation™ per layer and the
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segment density is just ¢; = C P;, where C is given by either egs. {5.20) or
(5.21). From eq. {5.27) it follows that P{(l) =2 Pi in this case. As the
monomer distribution is proportional to {Pi} we may call P; the free segment
probability.

For symmetric dimers (r = 2) the distribution of the first segment is
equal to that of the second, 1l.e., ¢i =2 GCP(i,2). We define P{i,r) as the

end segment probability of an r-mer in layer i. For monomers we have
P(i,l) = Py {5.27)

The quantity P(i,r) 1s a subset of the chain probability P(r)}, since the
numbetr of end segments 1s equal to the number of chains (for convenience we

distinguish the first segment from the last segment of a chain):
P(r) = Z P(i,r) {5.28)
i

For dimers there are three different conformations with the second seg-
ment in layer i. From eq. (5.17) it follows that their relative probabili-
ties are Pi—lklPi’ PiAOPi, and Pi+1klpi’ respectively. Summation gives

P(i,2) = Pi<Pi> = Pi<P(i’1)>’ where the notation with angular brackets de-
notes a welghted average over three lattice layers, compare eq. (5.9).

For chains longer than dimers the spatial distribution of the segments
is a function of their ranking number in the chain. The distribution of the
last segment (and that of the first segment) is given by C P(i,r). To avoid
a considerable amount of computing time and complexity, we approximate
P(i,r) by assuming that the position of the last segment of a chain is de-
termined by its predecessor and not by the position of other segments, il.e.,
we pgenerate the chain conformations by a step weighted random walk adding
one segment {s8) per step. Thus, P{i,s) follows from the end segment proba-

bilities {P(i,s—l)} of a chain of 8 - 1 segments by the recurrent relation
P{(i,5) = Pi <P(i,s-1)> (5.29)

where P; accounts for the weighting factor of segment s and the angular
brackets for the bond weighting factor of the bond between segement s and
s = 1. We note that eq. (5.29) 1s an alternative representation of the

matrix notation developed by DiMarzio and Rubin13. Starting from a monomer,
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for which P(i,l) = P;, the end segment probabilities of longer chains ard
calculated by applying eq. (5.29) for each additional segment.

With a step weighted random walk it is easy to compute the distribution
of segment s in a chain of r segments, because the confermations of th
first subchain of s — 1 segments are independent of the positions of thj
last ¢ - s segments of the chain. Consequently, the total weight of
all conformations with segment s in layer i is given by
{P(i,s=-1)> Pi {P(i,r-s)> = P(i,s) P(i,r-s-i-l)/Pi- The contribution to the
segment density distribution due to all segments s is obtained after normal-

ization:
¢i(s) = ¢ P(i,s) P(i,r—s+l)/Pi {5.30)

Note that segment $ has indeed the same distribution as segment v - s + 1,
l.e., ¢i(s) = ¢1(r—s+l) : the inverslon symmetry 1is obeyed. Summation over

all segments gives the overall segment density distribution.

9. =¢C

; P(1,5) P(i,r-s+1)/P, (5.31)
S

1

LI

5+4.1 Adsorbing, bridging, and free polymer

Once the weighting factors {Pi} are known for a given system, it is
possible to obtaln a very detailed picture of the structure of the polymer:
between the plates, because the number of chains in each conformation is
given by eq. (5.17}. We will subdivide the amount of polymer 8" between the
plates into five groups of chains: 1) nonadsorbed chains, Elf, ii)} chaips
adsorbed on the first plate only, 93', i.e., with segments in layer 1 and
", iv)
bridging chains with the last chain end leaving from the first plate, Bb'

none in layer M, iii) chains adsorbed on the second plate only, 62
s
and v) bridging chains with the last chain end leaving from the second
plate, Ob“- Bridging chains have segments in layer 1 as well as in layer M.

If the plates are identical the segment distribution will be symmetric
and hence, Ba' = Ga“ and Bb' =00, Obviously,

Lo =48 (5.32)
G
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where G denotes f, a', a", b', or b". For each group defined above we can
define a chain probability PG(r) which represents the sum of the weights of

all conformations belonging to group G, so that
L P (r) = P(r) {5.33)

Normalization of PG(r) glves the number of chains in group G. Hence, similar
to eq. (5.21) :

¢ = ¢ r %) (5.34)

The chain probabilities PG(r) can be expressed as a sum of end segment prob-

abilities PG(i,r), compare eq. (5.28):
PG(r) =z PG(i,r) (5.35)
i

The generation of end segment probabilities PG(i,s) of chains of s
segments 1is straightforward. From eq. (5.29) and the condition that
G
P(i,s} = £ P (i,s) it follows that
G

T
P(i,s) = P1<Pf(i,s—1)> +r e, s-1)
an bf bu 36
+ PCPT (1,5-1)> + P.<P (1,8-1)> + Pu<P (1,8-1))> {5.36)
The quantity Pf(i,s) is the end segment probability of all chains, s seg-
ments long, ending in layer i and never touching one of the surfaces. From

this definition it is easy to see that the term Py <Pf(i,s—1)> in eq. (5.36)
gives Pf(i,s), except for i = 1 and i = M:

pl(1,5) =0
pf(i,e) = By <ef(e,s-1)> (1<) (5.37)
pEM,s) = 0

For i = 1 we have Pl <Pf(1,s—1)> =P hl Pf(z,s-l) which is the probahili-

1
ty of a chain part ending in layer 1 and with the first s - 1 segments in
the layers 1 < i { M, i.e., the chain part is adsorbed, with its last seg-

L]
ment only, on plate 1 and belonmgs te P? (1,s). Similarly, Py <Pf(M.S‘1)>
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contributes to Pa"(M,s}.

The term P; <P?'(i,s-1)> in eq. (5.36) represents the s-mers of which a
least ome of the first s - ! segments is adscrbed on plate 1 and none o
them on the second plate. This is only possible when M > 1. The chain be
longs to Pa’(i,s) when i < M. When i = M, the chain forms a bridge with th
last segment of the bridge ({segment s) on the second plate, 1i.e.,
Py <p?’ (M,5-1)> contributes to Pb"(M,s)- Thus, we can write

P (1,8) = Py <P (1,s-1) + BE(1,8-1)> >1)
P2 (i,5) = By <P?'(1,s-1)> (1d<M)  (5.38)
22 ' (M,8) = 0

and a similar reasoning applies for the end segment probabilities of s—mers

adsorbed on the second plate only:

P27(1,8) = 0
P (1,8) = P; <P% (1,5-1)> (1<1a1)  (5.39)
ra"(M,s) = Py <p? (M,s-1) + pL(M,s-1)> (M>1)

The last two terms in eq. (5.36) belong to bridging chains. As defined
above, such a chain belongs to Pb'(i,s) when the last adsorbed segment
(i.e., the adsorbed segment with the highest ranking number) is in layer 1
and to Pb“(i,s) otherwlise. Obviously, Pb'(M,s) = Pb“(l,s) = 0, except when
M = 1. When the last segment (s} is in layer 1 the chain contributes to

Pb'(l,s), when it is in layer M it contributes to Pb“(M,s). The result is

PP (1,8) = | PP (1,8-1) + PPT(1,5-1) + B2 (1,8-1)> (1)
PP'(i,8) = P; <PP (1,s-1)> (1K1Y (5.40)
PP (u,8) = 0 0D1)

and
PP (1,8) = 0 (M>1)
e (1,8) = 2y <@P (1,5-1> (1<i<M)  (5.41)
PP (M,8) = By <PPT(M,s-1) + PPI(M,s-1) + PRI (M,s-1)>  (M31)

For M = 1 all chains belong to either Pb'(l,s) or Pb"(l,s).
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PP (1,8) = PP(1,8) = B, <B®'(1,8) M=1) (5.42)

Most of the starting values PG(i,l) are zero. The nonzerc values are

P2’ (1,1) = By (M>1)
pf(i,1) = py (1IQM)  (5.43)
22 (M,1) = By 1)
PP (1,1) = PP(1,1) = %, (M=1)

since a monomer in layer 1 is adsorbed on plate 1, a monomer in layer M is
adsorbed on plate 2, and it forms a bridge when M = 1. A moncmer in one of
the layers 1 ¢ i { M is not adsorbed and hence contributes to pf(i,1).

The ahove equations can be used to calculate the end segment probabili-
ties PG(i,s) of the various types of chains by repeatedly extending the
chain with one segment, starting from a monomer. The 5M values of PG(i,Z)
are calculated from the various wvalues of PG(i,l) as glven in eq. (5.43) by
applying once each of the eqs. (5.37-42). From P®(1,2) we obtain P%(i,3),
etc. The sum of PG(i,r) over the 5 values of G equals P(i,r) as defined in
eqe (5+28).

5.4.2 Segment distributions of loops, tails and bridges

In the previous section we have subdivided the polymer between the
plates in adsorbing, bridging, and free chains. The same subdivision was

made for the end segment probabilities P(i,s) of s-mers, giving
| a' .. a” .. bt b"
P(i,s) = P (i,s) + P* (i,s) + P° (i,s) + B~ (i,s) + P* (i,s) (5.44)

where f denotes free chains; a' and a" chains adsorbed on plate 1 and plate
2, respectively; and b' and b" bridging chains with the last chain end
leaving from plate 1 and plate 2, respectively. Here, we will show a very
simple proacedure to obtain segment distributions of trains, loops, tails,
and bridges from these end segment probabilities.

Substitution of P(i,s) and P(i,r-s+1) from eg. (5.44) into eq. (5.30)
and performing the multiplication {E PG(i,s)}{é PG(i,r—s+l)} gives 25 terms
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which are listed in the second column of table 5.1, where we have dropped
the Indices 1 and s. After multiplication by C/Pi, these terms gilve the
distribution of segment s in a free chain, or in a loop, etc. In the third
column of table 5.1 we have indicated for each term to which volume fraction
segment & contributes, and the corresponding polywer fraction is shown in
the fourth column.

For instance, the first line in table 5.1 represents Pf(i,s) Pf(i,r—s+1)
and gives the distribution of segment s when both of the chain parts meeting
at segment s are not adsorbed, i.e., when segment s belongs to a free chain.
Summation over all segments and normalization gives ¢i , the volume fraction
of free chains in layer 1.

£ ot £

¢i =CZI P(i,s) P (1,r—s+1)/Pi (5.45)

s=1

Similarly, the second line in table 5.1 refers to conformations in which
the first part of s segments of the chain as well as the second part of r -

s + 1 segments are adsorbed on plate 1 only, i.e., segment s 1s part of a
loop in a chain adsorbed on plate 1 (when 1 > 1), or part of a train in such
a chain (when 1 = 1). For 1 = M both Pa'(i,s) and Par(i,r—s+l) are zero {see
eq. 5.38).

The third line in the table corresponds to the distribution of segment s
when it belongs to a tall of a chain adsorbed on plate 1, because segment s
forms a link between a chain part which is not adsorbed and one which is ad-
sorbed on plate 1. The first term of line 3 accounts for a tail at the be-
ginning of the chain and the second term for a tail at the end.

Lines 4 and 5 account for the chains adsorbed on the second plate and are
analogous to lines 2 and 3.
The wvolume fractions of tralins, loops, and tails of chains adsorbed on

one surface are found after summation over all segments

a',tr rooa a'

) =C5I. P"(l,s) P (l,r—s-l-l)fPl (5.46)
s=1

a",tr _ r o av a"

o =CL P° (M,5) P° (M,r-s+1)/P, (5.47)
s=1

a',l I oar a'

¢y T =CE P (i,8) P° (1,T-s+1)/P; (i>1) (5.48)

s=1
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Table 5.1. Contribution ¢of segments in trains, loops, talls, bridges, and

free chains to the segment density. For explanation see text.

line term s contributes to chain belongs to
1 PfPf free chains Gf
2 Pa'Pa‘ tralns (i=1) or loops (i>l) eat
3 pipa'ypa’pf tails
& papd trains {isM) or loops (L€M) a"
v g
5  pipa 4pa’pf tails
6 Pb'Pa' trains {i=1) or loops (i>l)
7 pb'ef talls gb’
g pa pa'yphTpa’ bridges
9 pbp2 trains (1=M) or loops (i<M)
10 ¢bpf tails gb
11 pa'pd 4pb'pa” bridges
a',b'. h',b' .
12 P PY 4PY P trains (i=1) or loops (i>l)
13 p2 pb 4ph pb trains (i=M) or loops {(i<M)
16 pfpb’ tails attached to plate 1 b’ + b
15 Pbe" tails attached to plate 2
16 pb'pP 4pb pl ypa'pb ypapd! bridges
:;J rp b ot
a1 T . a”
97 °7 = ¢z B% (1,8) P* (4,r-stl)/P, (1<) (5.49)
s=1
a',t Loar f
¢i =20 El P (i,s) P (i,r-—s-i-l)fPi : (1>1) (5.50)
g=
a",t Iooa- £
90  =2¢C3 P¥ (1,8) P (1,r-s+1)/P; (1) (5.51)
=1

where the indices tr, 1, and t indicate trains, locops, and talls, respec—

tively.
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Lines 6-16 in table 5.1 contain 18 terms corresponding to bridging
chains. Eight of them (lines 8, 11 and 16) contain two chain probabilities
P? or pb referring to the two different plates, and give the volume frac-
tion ¢?r of bridges. Because of the chain symmetry, these can be combined iIn

four terms:

br _ L a' b’ a" _ b" _
oy =2C2 {B° (i,8) + 2 (i,8)}{E" ({,r-s+1) + P~ (i,r-s+l)}/P

s=1 i

(5.52)

The sum between the first palr of paventheses in eq. (5.52) represents the
first part of the chain connecting segment s with plate 1, the second sum
the other chain part which somewhere meets the second plate.

Of the remaining ten terms in table 3.1, six contain a product of P? and
pP referring to the same plate; they represent trains {(for 1 =1 or M) or
loops (for 1 < i < M) of bridging chains (lines 6, 9, 12, 13). The last four
terms (lines 7, 10, 14, 15) are of the type pbpf and correspond to tails
belonging to bridging chains. Following a similar reasoning as applied
above, the volume fractions of trains, loops, and tails of bridgiang chalms

can be written as

¢2"tr - ngl PP (1,8)(2p% (1, r-s+1) + pb'(l,r—s+1)}/Pl (5.53)
¢:"'tr - csél Pb"(m,s){ZPa"(M,r~s+1) + Pb“(M,r-s+1)}/PM (5.54)
¢?"1 = ngl Pb'(i,s){zPa'(i,r—s+1) + Pb'(i,r-sﬂ)}/ri (1>1)  (5.55)
¢:"’1 - ngl Pb"(i,s){ZPa"(i,r—s+1) + Pb"(i,r-s+1)}/Pi (i<M) (5.56)
¢:"t -2 Cs§1 PP (1,8) Pf(i,r—s+1)fPi (5.57)
¢:“’t —2c1 P2 (4,5) P (1,r-s+1)/2, (5.58)

s=1
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In this way, the segment distributions of trains, loops, tails, and
bridges are obtalined from the end segment probabilities derived in the pre-

vious section.

5+4.3 Train, loop, tall, and bridge size distributions

The end segment probabilities PG(i,s) contain much more information than
we have used above. Of special Interest are the numbers and lengths of
trains, loops, tails, and bridges in a given system. These quantities can be
obtained from PG(i,s) in different ways, but we will give only the simplest
expressions here.

Let us start with the non-bridging chains. Obviously, the expressions
for these chains will not differ from those of the one plate node122, Hence,
the average number of loops, na"l, per chain adsorbed om plate 1, is ob-
tained by following the chain from the first adsorbed segment and counting
the number of bonds from layer 2 to layer l. The total number of such bonds
between segment s and segment s + 1 1s C Pa'(z,s) A Pa'(l,r—s). Since the

number of adsorbed chains on the first plate is C P? (r), we have

8 r-1
1 t 1
S A O R (559
P2 (r) s=2

and similarly,

1S r-1 an "
n =—w— L P°(Ml,s) P (M,r-s) {5.60)
P (r} s=2

The summation starts from s = 2, because the smallest possible loop 1s one
segment long, and ends at s = r - 1, since the longest possible loop has
r — 2 segments. As each end of a loop is comnected to a train, the number of

tr

trains, n-" per adsorbed chaln 1s given by

' . ”n "
R o D A (5-61)

Finally, the number of tails, nt, equals the number of chain ends

(s = r) not ending on the plate.

p® 0 w2 -2k (/PR () s of T =2 - 2% M,r)/PY (r) (5-62)
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We now examine bridging chains. Their number is C {Pb'(r) + Pb"(r)} and '
they form not only bridges, but also trains on both of the plates, and, if
the chains are long enough, loops and talls as well.

Following the backbone of each chain, we obtain just half the total
number of bridges by counting each entry of layer 1 of a chain part that has
a previous segment in layer M. That chain part, consisting of s segments,
belongs either to the group Pa" (no previous segment in layer 1) or Pb“
(having a previous bridge). The other chalin part of r — s segments is either
adsorbed on plate 1l only (Pa‘) or forms another bridge (Pb‘). Analogously to

b

eq. {(5.59) we obtain the average number n" of bridges per chain after summa-

tion and normalization :

2k r-1
b 1 " bu + b'
0 = == £ {p? (2,8) + P° (2,5)}{P? (1,r-s) + B® (1,r-s)}
P (r) + P {r) s=M-1
(5.63)
The number of loops on the first plate, nb"l, of bridging chains con-

sists of three contributions. The first bond in such a loop connects twe
subchains, each coming from the first plate, of which either i) only the
first subchain is a bridging chain, or ii) only the second subchain is a
bridging chain, or iii) both subchains are bridging chains. The correspond-
ing npumber of loops ending at s 1is C Pb'(z,s) Rl Pa'(l,r—s),

c P (2,8) A P? (1,r-s), and ¢ P%'(2,5) A, PP (1,r-s), respectively. From
symmetry it follows that the sum of contributions i) and ii) are equal.

Hence, the result is

1y r-1
t 1 L} T
nP el o o 1 e £ p° (2,5){2?a (l,r=s) + pP (l,r-s)} (5.64)
P (r) + P (r) s=Mtl
and equivalently,
" A r-1 - - .
SLACEIS L T g PP (M—1,s){2Pa (M,r-s) + PP (M,r-s}}

Pb'(r) + P (r) s=M+l (5.65)

1
The number of trains on plate 1, nb ,tr’ per bridging chain {is wmost

easily found by counting the number of train ends. This number is determined




by the number of loops (two train ends per loop} and the number of bridges
(one train end on each surface per bridge). In addition, each chain end
corresponds to one train end. The number of chain ends with the last ad-
sorbed segment on plate 1 and belonging to bridging chains is 2 C Pb'(r).
Since the number of train ends 1s twice the number of trains, we find for

the last number

bl
1 t
gbtser _ b',1 y 2+ = P (rg" (5.66)
P (r) + P (r)
and
b",tx b",1 b Pb“(r)
n ’ =n T +%n + B B (5.67)

P’ (r) + P (r)

The number of tails equals the number of chain ends minus those which
are adsorbed (see also eq. 5.62). The number of chain ends on plate 1 of
T L]
bridging chains is 2 C pb {(r), of which 2 C PP (l,r) are adsorbed. Conse~

quently, the number of tails on plate 1, nb"t, per bridging chain is
b' b'
L] -
nb st _ 2 Pb‘(r) Pb"(l,r) (5.68)
P” (xr) + P (r)
and, similarly,
" h" b
APt iR (r) - P (M) (5.69)

22 (ry + PP ()

The average fraction of segments, v, in trains, 1loops, talils, and

bridges can be found from

M
NLCFL S ¢§’S /0 (5.70)

i=]

where G (= a', a", b) refers to one of the chain fractions: adsorbed on
plate 1, adsorbed on plate 2, or bridging chains, and 8 (= tr, 1, t, b) de-

notes either trains, loops, tails, or bridges. For exawple, the fraction

T
va o1 of segmeuts in loops of chalns adsorbed on plate 1 is the ratia

L
between the sum of all volume fractions ¢? 1 of loops in these chains and

the amount of polymer adsorbed on plate 1.

is the ratio between the num—
a',1
3

1
The average length of such a loop, 12 ’l,

ber of segments per chain in these loops, r v and the number of loops
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a',l

per chain, n « Generally, the length lG’S

of a chain part S of the chain

fraction G is given by

lG’S =r vG’S/nG’S {5.71)

It is also possible to obtain the size distributions of trains, loops,
tails, and bridges, i.e., the number of chain parts of length s. For exam—
ple, the number of tails of length s per chain adsorbed on plate 1 is glven
by22

2N

2?0ty w —2 pf2.5) P2 (1, ms) (5.72)
P (r)

whereas the train size distribution of the same polymer fraction is

2?t s-lP s .

-8 ] [
L0 L et o, et 0 e (2, rms—)+et (2, st )}

na-,tr(s) - 3
P () t=0

(5.73)

For loop and bridge size distributions, the generation of other end
segment probabilities are necessary. The procedures are equivalent to those
given In ref. (22) and the reader is referred to that paper for more de-
tails. An obvious check for the correctness of these equations 1s the

(numerical) check of L z nG’S(S)-

5.2 METHOD OF COMPUTATION

The M segmental weighting factors {Pi} are abtalned by solving numeri-
cally a set of M simultaneous equations. The values for Pi must be positive.

It 1s therefore convenlent to use the unconstrained variables {Xi} defined

by
Xy = In By (1<4<M)  (5.74)

Starting with X; =0 (1 <1 < M) we solve iteratively the following set of

equations:
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X,
P(i,1) =Py =e* {1<i<M)  (5.27a)
P(i,8) = Py <P(i,s-1)> (1<i<M; 2<s€r)  (5.29)
r
¢, = C I P(1,5) P(L,r-s+1)/P, (1<i<M)  (5.31)
5=1
. M
where C = ¢,/(r P*r) {full equilibrium) or C = © /{r £ P(i,r)} (restricted
. . i=1
equilibrium)
-x (8, ,+8 )=x<2¢,-1>
=P e 1,1 M1 1 (1<1<M)  (5.16a)

until ¢i + ¢i =1 {or 1n(d>i + ¢z) = 0). In principle, several standard rou-
tines solving f({xi}) = 0 are available. For example, a Fortran listing of a
powerful routine is given in ref. (49).

An important reduction of computer time is possible by further exploit-—
ing the symmetry of the equations. For instance, segment s and segment
r -s +1 have the same distribution, so whenever G = G' we may replace
pS(i,s) PC'(1,r-s+1) by B® (i,s) PC(i,r-s+l), or
r-s

P(i,s) PO(i,r-s+1) = 6(r) + 2 % PO(4,r-s+1) (5.75)
1 s=1

oo

s

where &(r) = {PG(i,iﬁﬂ'/Z)}2 if r is odd and 8(r) = 0 otherwise. This reduces
the number of terms by 50%.

In many cases the two surfaces are of the same type, giving a symmetric
segment density profile. Then, many of the wvariables are mirror images of
each' oth%r, for example Pa'(i,s) = Pa"(“‘i+1,5). Pb'(ivs) = Pb“(M‘i+l:5)’

0" = e Pi T Puegs
equations and the number of variables {Xi} is thus reduced to M/2.

and X; = Xy-i+1* The number of simltanecus
Results given in the following section are obtained by a special program

written in Simula67 using a DECl0 computer.

5.6 RESULTS AND DISCUSSLON

In this section a typical collection of the results for a hexagonal

lattice (A, = 6/12) will be shown. Occasionally, data for other lattice
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types will be mentioned. The effect of molecular weight, adsorption energy,;
solvent quality, solution concentration, and adsorbed amount on the interac-
tion free energy will be examined in some detail.

The adsorbed amount of polymer iIs a function of molecular weight, ad-
sorption energy, solvent guality, and solution concentration. The same ad-
sorbed amount can be obtained for different combinations of these quanti-
ties. The properties of adsorbed layers at constant sclution concentration
are qualitatively different from those at constant amount of adsorbed poly-
mer. For instance, at constant solution concentration the root-mean—square
thickness of the adsorbed polymer layer on a single surface is nearly inde-
pendent of both the adsorption energy and the solvent quality, and propor-
tional to the square root of the molecular weight of the polymer. On the
other hand, at constant adsorbed amount the thickness of the polymer layver
decreases with increasing adsorption energy and decreasing solvent power,
and is independent of the chain length?Z.

For the two plate problem, the two cases of constant solution concentra-
tion and constant amount of polymer represent important extremes. At full
equilibrium, the amount of polymer between the plates adapts itself to a
constant solution concentration, whereas at restricted equilibrium the poly-
mer cannot escape from the gap between the plates and the amount of polymer
is constant. The former situation is relevant for non-adsorbing polymer or,
possibly, when the surfaces are flexihle (allowing for lateral compression
or diffusion) as is the case for liquid films and liquid-liquid interfaces.
A constant amount of polymer is more probable when two polymer covered solid
surfaces approach each other. Obviously, 1in all cases the interaction will
be zero at large distances. Also, in restricted equilibrium the free energy
of the system will never be lower than that at full equilibrium. Hence, at a
given plate separation, the free energy of Interaction between two surfaces
with a constant amount of polymer between them will be higher than that at
full equilibrium, whenever this amount deviates {positively or negatively)
from its equilibrium wvalue. However, as we will show below, this deviation
is only substantial at small distances. At plate separatlioms cotrresponding
to the minimuim in the interaction free energy in restricted equilibrium, the
interaction is almost identical with that in full equilibrium. Therefore, we

first discuss the equilibrium forces.
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5.6.1 Full equilibrium

When the polymer is in equilibrium with a constant bulk sclution concen-
tration the interaction between the plates is always found to be attractive.
This result supports the analysis of De GennesBS. At full equilibrium the
interaction free energy is equal to the difference Ay between the sum of the
two surface free energies y' + y” of the two surfaces at plate separation M
and that at infinite separation (M » =). In figure 5.2 the total amount of
polymer between the plates 9t (in equivalent monolayers) and Ay in units of
kT per surface site of one plate) are plotted as a function of the plate
separation M (in units of lattice layers) under various conditions. Unless
indicated otherwise, the parameters are Ag = 0.5, x = 0.5, x4 = 1, r = 1000,
and ¢, = 1076,

All interaction curves in figure 5.2 are indeed monoteonically decreasing

o' ¢=10,000 Xs=5 X ¢,=107 ®
4 1 107844
0.5 10
R ] 107,
©
0
Ava 05
T
-0.01 s
=
-0.02 ® @
10 20 py 30 10 204 10 20 4y 20

Figure 5.2. Adsorption and interaction curves at full equilibrium. The top
figures show the total amount of polymer between the plates (in egquivalent
monolayers), the bottom figures the free energy of interaction (in units of
kT per surface site), both as a function of the plate separation M (in lat-
tice layers). In each graph the curve for hg =05, x = 0.5, xg=1,
r = 1000, and ¢, = 10-6 is given together with two. curves for which one
parameter has either a lower or a higher value, respectively. The effect of
chain length is shown in a and b, that of the adsorption energy in ¢ and d,
that of the solvent quality in e and £, and the influence of the solution

concentration in g and h.
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with decreasing M, whereas the adsorbed amount of polymer in most cases:
passes through a {sometimes weak) maximum and decreases at smaller M until
all the chains are squeezed out. We discuss the origin of the maximum in ot
in connection with figure 5.4 below. However, the volume fraction of adsor-
bed segments (trains, not shown in figure 5.2} is nearly constant up to very
small M and even increases slightly going from M = 2 to ¥ = 1. Therefore, it
is wunlikely that the last monolayer of polymer will leave the gap. The
ultimate equilibrium situation, having the lowest free energy, will be a
sandwich structure of two plates with one layer of polymer segments in
between, the concentration of which depends mainly on yg and Y.

In figures 5.2a and 5.2b the effect of the chain length r is shown. The
onset of interactiom occurs at a separation comparable to the diameter of a
free coil in solution (= r%) and is determined by the extension of the
tailszz- Consequently, at large distances the free energy of interaction 1is
more negative for longer chains. When the plates come closer, the tails form
bridges and the segment density distribution becomes of the loop-bridge type
which is, for small separations, independent of r. The free energy of inter-
action does not become independent of the chain length, since the free ener-
gy of the reference state (v at M + =) depends on chain length. Because y(=)
decreases with increasing r, Ay at small M becomes more negative for short
chains.

The adsorption energy ), affects the adsorbed amount of polymer (and

hence Gt, see figure 5.2¢), without changing the thickness of the adsorbed
polymer layer very much23- Consequently, the only effect of Xg On the inter-
action curves is a small change in magnitude (see figure 5.2d). At Xg = 5
the surfaces are almost fully covered by polymer segments
(¢1 = ¢M =~ 0.995}. |
In figures 5.2e and 5.2f the effect of the solvent quality is illus-—
trated. In a good solvent (e.g., ¥ = 0) the adsorptiom is low, resulting in
a relatively short range interaction and the maximum in the adsorbed amount
is either weak or absent. In worse than 9-salvents (% > 0.3) the adsorption
and the range of interaction increase very rapidly with ¥ and the adsorption
maximum is more pronounced. We will return to this point below.
A last parameter which may be iwmportant is the solution concentration
(figures 5.2g,h). Polymer adsorption isotherms, having a nearly horizontal
pseudo— plateau, are of the high affinity type, implying only a weak depen-—

dence of the adsorbed amount on the solution concentration. With increasing
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¢4 the change in the number of train segments is much smaller than that in
loops and tails. Hence, at large plate separations the interaction is
stronger in more concentrated solutions due to more and longer loops and
talls. At smaller plate separations the opposite effect occurs because of a
different reference state: y(«) is smaller in more concentrated solutions.
The main conclusion from figure 5.2 1s that at full equilibrium both the
adsorption energy and the solution concentration do not affect the interac-
tion substantially. The range of interaction is mainly determined by the

chain length and the solvent quality.

We now examine in mwmore 0.8
detail the forces in bad X
solvents. In figure 5.3 bino- 08 i
dal curves, glving the bounda- 07 i
ry between stable and meta-
stable (bulk) solutions are 06 4
shown for three different
chain length537- The miaimum 05 7
of each curve is the critical 04 ' . éome.
point, corresponding to 108 w04 1072 10°
Xep = & (1 + 1//r)? and ’
Por = (1 + #’r)_l. At any x Figure 5.3. Binodals (full curves) for
above the critical point, different chain lengths and the spinodal
there is an unstable region for r = 100 (dotted curve). A binodal
between the two critical com gives the boundary between stable and
positions of the solution, metastable regions, whereas a spinodal
given by the spinodal (dotted indicates the transition between meta-
curve for r = 100), and two stable and instable regions. Binodal and
metastable regions between the spinodals touch at their minimum (ecrit-
spinodal and the binodal. The ical point). After phase separation, the
chemical potentials of polymer concentrations of polymer in the two co-
and solvent (eqs. 5.18 and existing phases are given by the bino-
5.19) at the 1lower binodal dal, e.g. ¢, and ¢B.

concentration ¢, are equal to

those at the higher binodal concentration ¢3’ ices, u(¢a) = p.(¢|3) and
p°(¢g) = p0(¢g)- These two equations in two unknowns (¢a =1 - ¢g and
¢>E =1 - ¢"é) are implicit, but can be solved numerically. The spinodal is
given by the condition &u/d9 = 0. The free energy of a solution of meta-
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stable composion is lower after phase separation in two phases with concen—
trations ¢m and ¢B, respectively.

For solution concentratlions corresponding to the lower stable region
(¢* < ¢a) the adsorbed polymer layers are of finite size, although they
become thicker when the solution concentration is increased or the solvent
quality is decreased (higher y). Here, we will examine the region near the
binodal by changing ¢, at constant Y, since ¢4 Is less critical than y. We
choose r = 100 and ¥ = 0.7, giving binodal concentrations of by = 0.0015014
and ¢ﬁ 0.37136, respectively. In figure 5.4 the adsorption and interaction
curves are given for several concentrations of polymer in the bulk solution.

At low concentrations the shapes of the curves are as shown before (conm—
pare ¥ = 0.56 1in figures 5.2e¢,f and ¢4 = 10'4 in figures 5.4a,b). At
be = 1074 the amount 6% of polymer between the plates consists almost com—
pletely of bridging (6P) and adsorbing (6% + 62") chalns, see the dashed
curves in figure 5.4a. The amount of free chains (Bf) is negligible. The
onset of interaction (figure 5.4b) is just at the distance (M = 15) where
bridges start to appear. The increase of bridging chains pushes the concen-—
tration of segments midway between the plates beyond the critical volume
fraction of polymer, but the composition between the plates is not unstable,
since the conformational entropy of the chains between the plates is less
than that 1in the bulk solution. The spinodal and binodal curves given in
figure 5.3 apply only for solutlions which are homogeneous over distances of

several molecular diameters. However, the higher concentration midway

between the plates 1n combination with a high y-value increases the seg—
mental weighting factors Py (eq. 5.16) 1n the loop reglons of the adsorbed
chains, s¢ that the adsorbed amounts 9 and 6 increase as well. This
effect is smaller at lower solution concentrations, where the bridges appear
at shorter distances.

In good sclvents (y = 0) Ga' and Ba" decrease when bridges appear, but
not always enough to compensate the increase in Bb, e.g., at low concentra-
tions. Hence, also in good solvents a maximum in the adsorption curves due
to bridging chains may occur (not shown}.

At concentrations close to the binodal, a linear part in the adsorption
curve appears with a slope which is equal to the volume fraction ¢M/2 mldway
between the plates. This wolume fraction is im the metastable reglon between
the higher spinodal and binodal concentrations, in this case between 0.266

and 0.371. For instance in figure 3.4a, the adsorption for ¢4 = 1073 in-
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Figure 5.4. Adsorption (a) and
interaction (b} curves at full
equilibrium in a bad solvent
for different volume fractioms
of polymer in the solution
(Ag = 0.3, x=0.7, g = 1y
r = 100}). The binodal concen-
trations are by = 0.0015014
and ¢ﬁ = 0.37136, respective—

ly. The curves for ¢4 = ¢, and

bp = ¢B are essentially iden-—

tical. For concentrations

slightly belaw ¢, a hysteresis
effect occurs. For ¢, = 1074 ®

the amount of bridging poly-

mer, eb, and the rest of ad-

sarbing polymer, Ga' + ea", is M

indicated (dashed curves). For

bk = 1073 the total amount of adsorbed polymer, 8P + ea' + ea", is shown
{dotted curve); the hatched area corresponds to the amount of nonadsorbed

polyumer, ef, at ¢g = 1073,

creases linearly from M = 8 with a slope 0.36. This increase of ot is mainly
due to the fractioen Bf (indicated by the shaded area in figure 5.4a) of non-
adsorbed polymer which fills up the segment density of loops and tails mid-
way the plates to a nearly constant value of 0.36. The interaction curve is
also linear beyond M = 8 with a slope that is a measure for the energy of
transfer of solvent and polymer from the bulk solution to the space between
the surfaces, where the composition is different.

At large plate separations the overlap of adsorbed polymer layers is too
small to attract much free polymer and Of may suddenly drop to a lower
level, so that the concentration ¢M/2 becomes equal to ¢ and the Interac-
tion between the plates jumps to zero. Thus, beyond M = 24, there are two
equilibrium states, of which the one with the highest free energy is meta-
stable, and a hysteresis between these states occurs when the interplate
distance is successively increased and decreased. This process is very simi-

lar to condensation and evaporation in pores.
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Very close to the binodal concentration, at 4% = 0.0015, the linear part
of the 8% curve has a slope of 0.37 (¢M/2 = (.37, the upper binodal concen-
tration) and the interaction curve is nearly horizontal. In this case there
is essentially no difference between the two co—existing phases in a bi-
phasic system and the solutions inside and outside the gap, respectively.

Obviously, the distance at which the jump occurs goes to Infinity for a
concentration on the binodal, because that concentration would be in full
equilibrium with the higher concentration (also on the binodal) between the’
plates. Also, there would be no difference in the chemical potentials and
hence, in the segment density between the plates, if also the solution con-
centration were at the higher binodal concentration. The only difference
would be a shift in the free energy reference point, y at M » ». Thus, the
adsorption curves for ¢ = 0.0015 and ¢4 = 0.37 in figure 5.4a colncide,
while the two corresponding interaction curves in figure 5.4b are identical
except for a vertical shift. When ¢« » 0.37 and M 2 15 the volume fraction
of polymer midway between the plates is close to ¢, and the interaction free

energy is essentially zero.

5.6.2 Restricted equilibrium

When the polymer is unable to escape from the space between the plates
during the approach of the surfaces (6" - constant), the chemical potential
of the polymer will depend on the interplate distance, i.e., the polymer
would be in equilibrium with a bulk solution of contlnuously changing com—
position. Hence, the resulting interaction curve is a cowplicated cross-over
between many equilibrium curves which, in addition, are to be shifted to the
same reference point. However, it is easy to predict some trends. At large
distances the interaction between the surfaces will be zero, whereas at a
distance M = at, i.e., no solvent between the plates, the repulsion becomes
infinite. As stated before, the free energy of interaction of approaching
surfaces will be higher whenever the adsorbed amount deviates from its equi-
1ibrium value. This is illustrated in figure 5.5.

In figure 5.5b the interaction curves Ay (equilibrium) and AF (constant
8%) are plotted, using the curve for ¢, = 1074 from figure 5.4 for Ay. At
large separations the equilibrium adsorption is such that 8t = 4 (see

figure 5.5a), s50 we used ot = 4 for the restricted equilibrium curve to
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Figure 5.5. Comparison between T T T

adsorption and interaction

curves at full equilibrium

(dashed curves) and those at
constant amount of polymer
between the surfaces {(full

curves). The amount of polymer

between the plates at large 0-05
separation is the same in both {kT)
cases (6t = 4 monolayers), 0
corresponding to ¢x = 1074,
lo = 0.5, ¢y = 0.7, ¥Xg = 1, and
r = 100. ~0.05F 7
/
_010 /I L 1

obtain the same reference free energy. Since the full equilibrium curve
shows a wmaximum in et, there is another point (at M = 7) where 8% 1s the
same for full and restricted equilibrium. At that polnt restricted equilib-
rium gives necessarily the same results as full equilibrium. In figure 5.5b
we see that this point is very close to the position of the free energy
minimuw at constant 6%. At all other distances the non—-equilibrium curve is
above the equilibrium curve.

As we have seen in the discussion of figure 5.4, the adsorption of poly-
mer from a bulk concentration approaching the binodal has essentially no
limit, since the surface acts as a nucleus for phase separation. Moreover,
under these conditions there is a region of plate separations at which the
free energy of interaction 1s independent of the plate distance, but non-—
zero. This applies only when full equilibrium with an infinite bulk solution
can be maintained. In reality, the bulk concentration will decrease when
adsorption sets in, limiting the adsorptionm at a certain level. The shape of
the interaction curves in restricted equilibrium at other levels than ot = 4
is shown in figure 5.6. In order to reach high adsorbed amounts, the equi-
librium bulk concentration at large distances has to approach the binodal.
At a constant amount of polymer between the surfaces, the segment density

midway between the plates must necessarily decrease with increasing plate



separation, because there 1is]|

010 [ g no supply of polymer from the

AFS LkT bulk solution to keep the
0.05}F E volume fraction constant

e'=3| 4| sl 6 8 around the higher critical

0 concentration. As a result,:

with increasing et the minimum

_o.osk J free energy shifts to larger
separations, closely following

_osok 1 the lowest possible equilib-

é 16 E ﬁ) » rium value from figure 5.4 at

each distance, but without the

Figure 5.6. Interaction curves at dif- linear regions or jumps in the
ferent (constant) amounts of polymer be- curves as in full equilibrium.
tween the surfaces (compare figure 5.5). In practice the conditions
lo = 0.5, x = 0.7, Ag = 1, and r = 100. which probably apply most of-

ten are a full equilibrium ad-
sorption at large plate separation and a constant amount of polymer between
the plates during the interaction. In figure 5.7 a series of interaction
curves 1s given for such a case. The equilibrium concentration for each
curve is the same as that for the corresponding full equilibrium curve in
figure 5.2, i.e., ¢z = 1076 except for two graphs with ¢g = 10710 gng
by = 1072 in each of the figures 5.7g and 5.7h. As in figure 5.2, the para-
meters are lo =05, , x=0.5, x;=1, and r = 1000, unless indicated
otherwise.

Nearly all interaction curves in figure 5.7 show a distinct minimum.
This minimum is deeper and is situated at a shorter separation if the mole-
cular weight of the polymer is lower (see figure 5.7b), mainly because of
the lower adsorbed amount (figure 5.7a). At thils concentration (1l ppm) in a
®-solvent the minimum occurs at 0.27 /r which is about 60% of the radius of
gyration of a free coil in solution.

As discussed in connection with figure 5.2d, a change of the adsorption
energy ¥y affects the equilibrium adsorption at large plate separation (com—
pare figures 5.2¢ and 5.7c¢)} without changing the extemnsion of the adsorbed
layer very uwmuch. The result 1is that the Iinteraction curves given in
figure 5.7d are nearly independent of P

In figures 5.7e and 5.7f the effect of the solvent quality is shown. In
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Figure 5.7. "Adsorption” and interaction curves at constant amounts of poly-

mer under various conditions. The top figures show the (constant) amount of
the bottom figures the free energy of interac—

polymer between the plates,
y = 0.5,

tion per surface site. In each graph the curve for )y = 0.5,
Xg =1, T = 1000, and 6t = 3.5 is given. As In figure 5.2, the effect of
chain length is shown in a and b, that of the adsorptlon energy in c and d,
and that of the solvent quality in e and f, whereas curves for different
amounts of polymer are given in g and h. The amount of polymer between the
plates equals the equilibrium adsorption at large surface separation and
9% = 1070, except for two curves for Gy = 10710 and ¢y = 10-2, respectively,

in graphs g and h. The minimum surface separation occurs at M = et, i.e.,

when the gap is filled with pure polymer.

athermal solvents (¥ = 0) the amount of polymer between the plates is low
and hence the interaction minimum is deep and occurs at a short separation.
With decreasing solvent quality this minimum shifts te larger distances

while its magnitude decreases. At phase separation conditions (y = 0.39 at r

= 1000 and ¢4 = 10_6) the equilibrium adsorbed amount can increase without

bounds, but the magnitude of the interaction minimum is constant (compare

figure 5.6 for high 6%).

WLOLAGI 1% Present up To larger amounts O polymer. wnem ¥ = U.D, VBTy CLOSe
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The adsorbed amount at large interplate distance (where full equilibrium

applies) is a slowly increasing function of the solution concentration.
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to the critical value

0 1 2 3 4 [3 Xep = 0.605 for r = 100, AFmin

decreases asymptotically to
zero with Increasing at., For

¥ = 0.7 the minimum never dis-—

AF /LT

-02 appears, see also figure 5.6.

For comparison some curves are

given for r = 10000. The mole-

0.4 cular weight dependence is in-
r=100

-———r=10,000

deed very low provided that a
comparison is made at the same
Bt, hence, at widely different

solution concentrations. For

athermal solvents, the curves
Figure 5.9. Free energy uninimum as a for v = 100 and v = 10000 vir-
function of the total amount of polymer tually coincide. For yx = Q.5
between the surfaces for different sol- there 13 some chain length de-
vent qualities. If the minimum is zero pendence at  high adsorbed
(e.g., for 8% > 1.45 at x = 0) there 1is amounts, mainly because the
only repulsion between the plates. critical ¥ value decreases
A= 0.3, %g =1, r =100 (full curves, with Increasing chain length.
for 4 jy~values), and r = 10,000 (dashed For instance, for r = 10,000
curves, for x = 0 and 0.5). the attraction minimum will

not disappear when y > 0.51.
5.6.3 Comparison with results of other theories
Results for the interaction between two adsorbed layers in full equilib-

30 and Ash

and Findeneggg. These authors found repulsion for adsorption of asymmetric

rium with a bulk solution are given by Mackor and Van der Waals

dimers and tetramers. For oligomers with every segment of the same type, Ash
and Findenegg found an attractive force between the plates. A quantitative
comparison with this latter result is possible, because their model reduces
to ours for z + = and a previous comparison of the adsorption isotherms
showed quantitative agreementZB. We have recalculated figure 2 of ref. (9)

using our model and found nearly the same shape of the interaction curves,
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both for dimers and tetramers in different solvents, but with the free ener-
gy a factor of two lower. We expect a mistake in their free energy axis,
because a transition from z = 12 to z + = cannot explain such a large dif-
ference. Especially for dimers in athermal solvents the same result should
have been found.

We concluded already in section 5.6.1 that the prediction of De Gennes
that in full equilibrium always attraction occurs agrees with our results.

For restricted equilibrium a quantitative comparison is possible with

36 10, rpe

the free energy equation of Levine et al. and with that of Roe
latter theory has been developed for adsorption on one plate, but the appli-
cation to two plates is straightforward. Figure 5.10 shows adsorption (top)
and Interaction curves {(bottom), both for ¥ =0 (left) and y =0.5 (right).
The adsorption curves {figures 5.l0a,c) give also the amount of bridging
polymer. The interaction curves (figures 5.10b,d) are given according to the
theories of Levine et al. (1), Roe (R), and Scheut jens-Fleer {SF).

As discussed in section 5.3.2, Levine et al. used ¢; instead of <¢i> for
the fraction of polymer segments around a site in layer i and used a free
energy expression in which, implicitly, the osmotic term

- Z{ln ¢i + 1¢1<¢i>) occurs twice. For y = 0 the osmotic force is always
repulsive {note that - % 1ln ¢1 = 9 +Zk ¢ + +ee. and 0% is constant).
A comparison of the dotted curve and the full curve in figure 5.10b makes it
poessible to split up the total free energy of interaction in the osmotic
term and the free energy due to bridging. The difference between dotted and
full curve is just the term - E In ¢: + constants. This difference is much
larger than the total Iinteraction energy according to the full curve, which
is the sum of the positive osmotic term and the negative bridging term.
Hence, the oswotic repulsion and the attraction due to bridging largely
compensate each other. In this case the (small) difference results in an
interaction curve with a minimum at M » 2. We have shown in figure 5.8 that
this miniomum disappears at a higher adsorbed amount. The onset of the
osmotic repulsion and the bridging attraction at M ~ 30 in figure 5.10b
corresponds with the appearance of bridges at that plate separation in
figure 5.10a.

The dashed curve in figure 5.10b represents the interaction curve as
predicted by the Roe theory. Due to the neglect of tails in this theory, the
segment density profile 1is much steeper. The result 1is that the onset of

bridging occurs at a smaller plate separation than the onset of the osmotic
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Figure 5.10. Comparison between interaction curves (bottom figures, b and d)
according to various theories. Full curves correspond to the present theory
(SF), dashed curves to that of Roe (R} and dotted curves to that of Levine
(L). The top figures (a and c¢) give the total amount of polymer 6% and in
addition the contribution of bridging polymer eb as derived from the present
theory. All curves have been calculated by the present authors. In order to
show more clearly the effect of the osmotic term, we have used <$;» instead
of ¢i in Levine's equations where appropriate. Thus, the SF and L curves are
based on the same segment density profiles. LO = 0.5, Xg = 1, r = 1000; a
and b: ¥ = 0, 8% = 1.4; c and d : x = 0.5, 6F = 3.

repulsion between the loop layers, giving rise to a free energy barrier. We
have shown in section 5.3.1 that no difference exists between Roe's theory
and ours fer M = 1. In figure 5.10b we see that the curves deviate strongly
at M > 1. This difference in AF arises from the fact that the free energy is
very sensitive to small variations in the profile. A consequence 1s that
also the free energy of the reference state (at large plate separations) 1s

different. Despite this problem the existence of a minimum in the interac—




tion free energy in good solvents is fully corroborated, also in Roe's
model.

Figures 5.10c and 5.10d give the results for y = 0.5. The adsorption is
wuch higher and the position of the free energy minimum is shifted to larger
plate separations. For the curve form Levine's equations we have used the
more correct form x¢i<¢i> instead of xq:iz,i-e., we have used the same seg-
ment density profile for the Levine (L} and Scheutjens-Fleer (SF)-curves.
The approximate osmotic term - I{ln ¢§+ X¢12) is always repulsive for
% < 0.5, but the more correct form - %(ln ¢‘1’ + x6;<8,>), which is the dif-
ference between the dotted curve and the full curve In figure 5.10d (apart
from a constant), gives a strong attractive contribution in the region
between M = 10 and M = 30. However, this contribution 1s compensated by a
bridging term which is in this case repulsive unlike at y = 0. For the
region between M = 5 and M = 10 the (correct) osmotic term Is repulsive and
the bridging term strongly attractive. The dashed curve in figure 3.10d
shows that in this case the Roe theory predicts a small winimue without a
free energy barrier. The absence of the barrier is probably related ta the
decreasing steepness of the segment density profile with increasing yx.

A qualitative comparison with results from the Cahn-De Gennes approach
shows that there are some discrepanciles. At constant amount of polymer, De
Gennes38 found only repulsive forces in good solvents. Klein en ?incuaho,
using the same type of amalysis, found attraction in bad solvents when the
segment density between the surfaces is in the instable reglon given by the
binodal. We find a minimum in the free energy whenever the adsorbed amount
1s lower than a critical value, and in bad solvents there 1s always a free
energy minimum. As discussed before, the model of De Gennes neglects end
effects. However, this cannot be the reason for the discrepancy at low
surface coverage, since for a given adsorbed amount we find the attraction
to be independent of the chain length, showing that end effects are not

dominant in this respect.

5.6.4 Comparison with experimental data

Currently, the only suitable experimental data for testing the theory

are those of Klein and coworkers41’42’45’46’50- Their results show

reversible interaction curves which all exhibit repulsive forces at very
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short plate separation. Hence the amount of polymer between the plates does
probably not change during compression. We will assume a restricted equilib-
rium. Qualitatively, all data support the results given In figures 5.7 and
5.8, i.e., there is a minimum in the free energy at a distance comparable to
the radius of gyration of a free coil in sclution and this minimum is deeper
for poorer solvents and lower adsorbed amounts. The minimum disappears for

high adsorbed amount in good Solvent345’46-

For a quantitative comparison,
the knowledge of the adsorbed amount of polymer would be necessary. However,
the reported values are rather uncertain and sometimes contradicting. For
instance, in one case the average volume fraction of polystyrene between the
mica surfaces was 25% at a distance of 20 nm and 100% at 12 nmso, i.e., an
increase in adsorbed amount of 140% upon compression by less than a factor
2. These uncertainties make a quantitative couwparison, as yvet, impossible.

In our analysis of the theoretical data, we found, with varying Gt, a
and M 72, such that (AF; - A2,
A 1s a positive constant for good solvents, zero for O-solvents and negative

linear relation between AF;; = B, where

n
for bad solvents. The value of B does not depend on x and y., varies slight-
ly with r and nearly proportional to the lattice constant Aps For %y = 0.25
(AO = 0.5) B is around -1.8 kT for r = 100 and B ~ =1.4 kT for r = 1000. The
advantage of using B is that it is independent of the scaling of a lattice
layer, surface site, or segment lenth. Some experimental data of Kleln et
al. indicate a B-value between =20 kT and -50 kT, so that posssibly our free
energy minima are one order of magnitude too low. The mumber of available
experimental interaction curves for wvarious amounts of polymer is too small

for a test on the linearity between AFy;, and Mmzi.

5.7 CONCLUSIONS

On the basis of a previously developed lattice model for polymer adsorp-
tion, the interaction free energy between two adsorbed polymer layers is
derived.

At full equilibrium, when the polymer can freely enter and leave the gap
between the surfaces, the interaction Is always attractive. The minimum free
energy occurs whem a monolayer of polymer chains in strictly two—-dimensional
conformatlions is sandwiched between the surfaces. A practical consequence

might be that stabilization of 1liquid films by adsorbing homopolymers is
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impossible.

If the polymer cannot enter or leave the gap during the time of interac-
tion, the interaction force is attractive at large distances and repulsive
at short distances. The attraction is due to bridging of the chains between
the opposing walls. In bad solvents an additional osmotic contribution to
the attraction exists up to very large distances. The minimum free energy is
only slightly above the free energy at full equilibrium at the same plate
separation. The attraction Is strong for low adsorbances, i.e., for low
molecular weight polymer or at low concentrations. This effect explains the
bridging flocculation, which is often observed experimentally.

The interaction is determined by the adsorbed amount, rather than by the
solution concentration or wmolecular weight. The range of adsorbed amounts,
in which flocculation may occur, decreases with solvent quality. The strong-
est attraction occurs when the adsorbance on each surface 1s slightly below
0.5 segments per surface site. However, this strong minlmum occurs at a
short distance. For a given system, the minimum free energy is nearly in-
vergsely proportional to the square of the distance at which it occurs.

At high adsorbed amount the free energy minimum is absent (except in bad
solvents) and a strong repulsion occurs. However, in order to obtainm a high
adsorbed amount, a wmuch higher socolution concentration of low molecular
welght polymer is required than for longer chains. Hence, at the same solu-
tion concentration, high molecular weight polymer is a much better stabi-
lizer.

Comparison with available exXperimental data of Kleln et al. learns that
all predictions agree qualitatively, whereas quantitatively the position of
the minimwm free energy 1s correct, but its wvalue is possibly one order of
magnitude too low. Nevertheless, we have presented the first prediction that
both bridging attraction and steric stabilization are possible im goed sol-

vents as well.
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MACROMOLECULES IN VARIOUS INTERFACTIAL SYSTEMS

INTRODUCTION

In the previous chapters the adsorption of homopolymers on a single

surface and the interaction between two adsorbed homopolymer layers have

been examined in some detail. Although adsorption of homopolymers is already

a complex phenomenon, the principles of the theory developed in chapter 2

can be succesfully applied to even more complicated systems. In this chapter

the following examples will be discussed. Full account of the details has

been or will be given elsewhere.

8

b.

Ce

Adsorption of polydisperse polymer. Most polymers used in practice are

polydisperse. This fact has been ignored in many polymer adsorption
studies. Only recently, the profound effects of the molecular weight
distribution on adsorption phenomena have been realized. In (semi-~)dilute
solutions long chains adsorb preferentially over shorter ones. This leads
to apparent irreversibilities, such as adsorption-desorption hysteresis
and sol concentration dependence of the adsorbed amount. The adsorption
behaviour of polydisperse polymer 1is quite different from that of homo-
disperse polymer. Results from the first theory for adsorption of polymer
having an arbitrary molecular weight distribution will be given below.

Adsorption of star-branched polymer. Branching is an important chain

variable influencing the properties of polymers and of polymer sclutions.
The effect of branches on the adsorption propertles of polymers has not
been examined before. The capability of the new theory to account for a
nonlinear structure of the chains makes it possible to compute the ad-
sorption of branched polymer. As an example, the adsorption of star-
branched polymer will be compared with that of linear polymer of the same
molecular welght.

Adsorption of polyelectrolytes. The adsorption of this important class of

polymers 1is dominated by electrostatic Interactions, even at very high
salt concentrations. A detailed pilcture in which the electrostatic inter-

actions and the configuratiomal properties are combined in a proper way
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is now emanating.

d. The structure of lipid bilayers. An extension of the theory te account-

for adsorption of copolymers will be discussed briefly. A special case of
a copolymer system 1s a lipid bilayer. The possibility of examining co-
polymers under phase separation conditions is exploited to study the
association of amphiphatic molecules inte bilayer structures. Especially
the distribution of polar head groups across the bilayer and the water
content of the membrane have been neglected in previous theories for
bilayer structures.

e. The amorphous phase of semicrystalline polymer. The mechanical and physi-

cal properties of semicrystalline polymer depend largely on the structure
of the amorphous polymer regions which interconnect lamellae of crystal-
line polymer. Segment density profiles as a function of strain have been
obtained.

f. Depletion flocculation and restabilization. Non-adsorbing polymer at high

concentrations affect the stability of c¢olloidal systems by osmotic
forces. Using results from the present theory, a better quantitative
prediction of flocculation conditions is gained and a thermodynamic re-
stabilisation mechanism could be proposed.
This list is only a small fraction of the diversity of systems that can be
tackled by the present theory. As will be shown below, the Iincorporation of
special properties of the system hardly affect the basic equations. The
flexibility and clearness of the model and the detalledness of the results
are comparable with those of Monte Carle studies, whereas the required com—
puting times are very much shorter.

In order to facilitate the explanation of the changes that are to be
made in the equations for each of the examples listed above, a summary of
the basic equations which have been treated extensively in chapters 2 and 5
will be given first.

The chain conformations are enumerated using a lattice model in which
each walk along a series of r lattice sites corresponds to a particular
spatial arrangement of the polymer chain. The lattice layers parallel to the
surface are numbered i = 1,2,...,M. Each step represents a segment-segment
bond and has a probability A, for crossing between adjacent lattice layers
and Ay for moving within the same layer, hence Ag + Zh) = 1. In addition,
for each visit in a layer 1, the walk is weighted by a factor P; to account

for external filelds and mutual interactions between polymer segments. Conse-—
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quently, Fy 1s a function of the local concentrations. A conformation is
defined as the order of lattice layers that are visited during the walk. For
a convenlent representation of the equations the naotation i(s,c} will be
used for the layer number where segment s of conformation ¢ finds itself.
For each specified conformation i(s,c) is fully known. Then, the probability
P, of conformation ¢ is given by
-1- r
po=axrta Pl (s,e) (6.1)
s=1
In this equation, A is a normalization constant that depends on the total
number of chains in the system or on the equilibrium concentration of poly-
mer in the bulk solution, g the number of bonds between segments in the same
layer, and Pi(s,c) the weighting factor of segments being in layer i(s,c).
A conformation ¢ has ri,c segments in layer i, hence he volume ﬁraction

of segments in layer i is given by

¢i = E ri,c Pc {6.2)
In eq. (6.2) 2 normalization constant is omitted, since it can be included
in A. The evaluation of the segment density distribution {¢i} from the
weighting factors {Pi} via eqs. (6.1) and (6.2) is most conveniently carried
out by using the matrix method (see chapters 2 and 3).
The weighting factor Py, also called the free segment probability, gives
the unnormalized probability of a 'chain' of one segment in layer i. Such a
monomer differs from a solvent molecule by its interactions only and hence,
the preference factor for a monomer over a solvent molecule for a site in 1,
Pi/¢g, is given by the Boltzmann factor exp(—AUi/kT) that accounts for the
energy difference AUy when a solvent molecule in I {s replaced by a monomer.

=AU, /KT
[+] i
Pi ¢i e (6.3)

Again, any normalization constant is accounted for in A.

The exchange energy comprises contrlbutions from external fields such as
the differential adsorption energy —xskT in layer 1 adjoinlng the surface or
the mutual Iinteractions between segments and solvent. This latter contribu—
tion 1s conveniently expressed in the Flory-Huggins parameter y. The net

interaction energy of a solvent molecule In i surrounded by an average vol-
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ume fraction <$;> of segments is ¥<¢;> kT and that of a monomer i{m a volume:
fraction <¢§> of solvent equals x<¢g> kT. Consequently, In the absence of

other interactions,
[
an/kT = X 61,1 + x(<¢1> <¢1>) (6.4)

Eqs. (6.1-4) form a set of M simultaneous nonlinear equations in M un-
knowns b5 (=l—¢g) that can be solved numerically. Ounce the concentration
profile is known, the equilibrium probability of each individual conforma-

tion is avallable from eq. (6.1).

6.2 ADSORPTION OF POLYDISPERSE POLIMER

Most polymer samples used in practice comprise a mixture of polymer
chalns having different chain lengths. In chapter 4 it was pointed out that
from (semi-)dilute solutions long chains adsorb preferentially over shorter
ones and a simple equation was derived for the relative adsorption from

1 can be used for adsorption

polymer wmixtures. In principle, the Roe theory
of polydisperse polymer. However, the total number of simultaneous equations
that are to be solved 1s proportional with M (the number of lattice layers)
and with the number of components present in the polydisperse sample. In
this way, the computational effort Increases dramatically with Iincreasing
number of species. Recently, some calculations have been done for a mixture
of eight monodisperse fractions®.

The present theory is very suitable for adsorption of polydisperse poly-
mers. Eqs. (6.3) and (6.4) remain valid, because they describe the interac-—
tions of a free monomer in a concentration profile. The chain length affects
only eqs. {6.1) and (6.2). In a polymer sample with chain length distribu-
tion {v(r)} a fraction v(r) of the chains are r segments long. For each of

these fractions eqs. {6.1) and (6.2) can be applied after a minor modifica-

tion:
q, r-l-q
P ) = Av(r) Ag" 2y Sgl Fits,0) (6.1a)
$,(x) = E Tic P.(r); 6, = i 4,(r) (6.2a)
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With the help of the matrix method, the effort for the evaluation of
{¢i} is only slightly larger than that for homodisperse polymer4. Hence, a
general theory for adsorption of polydisperse polymer is now available.

A few results are collected in figures 6.l-4. The degree of polydis-
persity is expressed as the ratio rw/rn, where r,

r, the number average chain length. The polydispersity effects on the ad-
5

is the weight average and
sorption isotherms as predicted earlier” on the basis of a very simple model
are fully corroborated.

Surface fractionation is 1illustrated in figure 6.1l. The chain length
distribution of a polymer sample according to a {truncated) Flory distribu-
tion before adsorption (full curve, r,/r, = 2.06) is wider than that of the
adsorbate (dashed curve, rw/rn = 1.48) and of the polymer in the solution
(dotted curve, rw/rn = 1.65),» The number average chain length r, of the
adsorbed polymer is five times as high as that of the nonadsorbed fraction.
The overlap of solution and adsorbate distributions occurs over ounly half a
decade in chain length. This result agrees with experimental data of Vander

Linden and Van Leemput6-

5 r T T T T T T
AT
&-x107? fn Falt A 7]
X =05
v 80 206 Xg=!
........... 24 165 A5=0.5 _
3 ————124 1.4B /adsorbed

o .
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13% 7
/

Figure 6.1. Adsorption fractionation for a polydisperse sample with a Flory
distribution. The weight distributlons, rv(r), of the polymer before adsorp-
tion (full curve, Mw/Mn = 2.06), 1in the adsorbate (dashed curve,
Mw/Mn = 1.43), and in the solution (dotted curve, Mw/Mn = 1.65) are given.
In this case 87% of the total amount of polymer is adsorbed. Ag = g.5,
x = 0.5, Ag ™ 1, V/A = 120 lattice layers.
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With increasing total amount of polymer (or with decreasing surface area .
at constant polymer dosage), a smaller fraction of the total molecularf
weight distribut{ion can find a place on the surface. Consequently, the aver-
age molecular weight on the surface shifts to higher values and since long
molecules adsorb with longer loops and tails, the adsorbed amount increases
as well. This is shown in figure 6.2 where adsorption isotherms are given |
for two average chain lengths and different polydispersity ratios of polymer
samples having a Schulz-Flory molecular weight distribution. For nearly
homodisperse polymer (rw/rn < 1.01) the adsorbed amount depends only very
weakly on the concentration (high affinity isotherms), but the slope of the
isotherm increases with increasing polydispersity ratio. Experimental obser—
vations confirm this prediction. The adsorption isotherm of a fracticmated
polymer sample shows a sharp bend between the very steep initial rise and
the nearly horizontal plateau, whereas the adsorption of a polydispers sam-

ple increases more gradually with inecreasing solution concentration7-

’l fpe 200
———Tn= 100
V/A=50006
X =05

oLt = Xe=1 -
Ao=0.5
1 1 1 1 I L
o 200 400 600 800 1000 . 1200 ppm

*

Figure 6.2, Effect of polydispersity on the shape of the adsorption iso-
therm. ILsotherms with r;, = 100 (dashed curves) and r, = 200 are given for
different degrees of polydispersity, rw/rn (Schultz-Flory distributions). A
higher degree of polydispersity leads to a more rounded shape of the iso-
therm and a less horizontal (psevdo-)plateau. iy = 0.5, y = 0.5, g = 1,
V/A = 5000 lattice layers.
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Figure 6.3. Adsorption isotherms for a bimodal mixture of short (r = L0) and
long (r = 200Q) chains, at two V/A ratios. The weight fraction of long chains
in the mixture is 0.25. For comparison, the isotherms for the homodisperse

samples are also shown. Ag = 0.5, x = 0.5, x5 = 1.

In figure 6.3 theoretical isotherms of a bimodal mixture of two homodis—
perse polymer samples are given and compared with the isotherms of the un-
mixed samples. From the binary mixture, the long chains (r = 200) adsorb
preferentially over the short chains (r = 10). This results in a linearly
increasing isotherm section: in this linear region an increasing amount of
long chains displaces the short chains from the surface, until virtually the
entire adsorbate consists of long molecules and the short ones are all in
the solution. A further increase of the concentration does not change the
adsorbate compositlon and, hence, the adsorption levels off. The concentra—
tion of the displaced amount of polymer is proportiomal to the surface area
to solution volume ratio A/V. Consequently, the slope of the middle region
of the isotherm is proportional to V/A. Tn this model this ratio is M5, the
number of lattice layers times the thickness of a lattice layer. The general
shape of the curves is the same as found experimentally5’7'8.
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In figure 6.4 adsorption 1sotherms are compared with a desorption iso-
therm. The lower adsorption isotherm applies to a V/A of 50005, correspond-
ing to a 1% (w/v) solution of an adsorbent of 20 mzfg if § = 1 nm, and has a
rounded shape: the adsorption increases with increasing amount of polymer.
At 1200 ppm the total amount of polymer, Bt, in the system 1s 7.7 equivalent
monolayers, the adsorbed amocunt, O, is 1.6 monolayers. Desorption by dilu-
tion 1s simulated by Increasing M (=V/A8) while keeping 6t constant. When
V/A = 5.10%6 the low molecular weight polymer in the solution is diluted hy
a factor of 100, but the high molecular weight fraction on the surface is
hardly affected. Hence, the desorption isotherm of polydisperse polymer does

not coincide with the adsorption isotherm, even if the system is always in

- %: 510%5

————g'=77

1.0 fn= 200 7]

Fpffn= 136
x =05
Xg=)
No= 05

1 | 1 1 1 1
0 200 400 600 800 1000 ¢ 1200 ppm
*

Figure 6.4. Two adsorption isotherms and one desorption isotherm for a poly-
disperse polymer sample with a Schultz-Flory distribution (Mw/MTl = 1.36).
Although for each case the system is in full equilibrium, the isotherms do
not colncide because of surface fractionation effects. The adsorption iso-
therms (arrows pointing to the right) are given for V/A = 5000 lattice
layers {(full curve) and V/A = 500,000 lattice layers (dashed curve). The
desorption isotherm (arrow pointing to the left) simulates desorption by |
dilution and is given for a constant amount of polymer in the system (7.7
equivalent monolayers) with from right to left increasing V/A. Ag = 0.5,
¥ = 0.5, xg = 1o
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full equilibrium. The dashed curve shows the increase In adsorption when the
amount of polymer 1s increased again at V/A = 5.1075.

The results show that fractionation effects dominate the adsorption of
polydisperse polywer. A detailed examination of these effects has become
possible by a simple modification of the preseat theory. Experimentally
observed trends for the adsorption of polydisperse polymer are accurately

predicted by this model.

6.3 ADSORPTION OF STAR-BRANCHED POLYMER

Branches in a polymer chain may have wvarious effects on the surface activity
of the polymer. For instance, their frequency and length distribution may
vary from molecule to molecule so that the branches breoaden the molecular
weight distribution of the polymer. In addition, the branch points may have
a different affinity for the surface than other monomer units. ¥Finally,
branch points decrease the local flexibility of the chain.

These effects can be eliminated by choosing an ideally flexible star-
branched model chain of which all arms are equal in length and the single
branch point has the properties of one segment. A linear chain can be con-
sidered as a molecule with two arms. Thus, a first description of the influ-
ence of branching on the adsorption behaviour of polymer can be presented by
changing the degree of branching of an adsorbing homodisperse polymer sam-
ple, while keeping the total number of segments per chaim coastant.

The basic equations (6.1-4) need no modification for branched polymer,

but the set of possible conformations depends on the structure of the

chain9

» Since each arm of a star molecule is identical, the segment distri-
bution of only one arm is to be computed (compare the inversion symmetry for
linear chains).

In figure 6.5 the adsorbed amount & 1is given as function of the number
of arms per molecule. The total number of segments per molecule is kept
constant (about 1000 segments). The effect of branching on the surface ac-—
tivity is very low. At x, = 1 and ¢4 = 10_5, a weak optimum can be abserved
around 6 arms per molecule. The strongest effect can be expected when the
adsorptlon energy %g; is Jjust beyond the criticel value for adsorption
(xsc = 0.29 {if ho = 0.5). Therefore, two curves are given for Xg ™ 0.3 as

well. They show a slight increase of 6 with increasing degree of branching
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Figure 6.5. The adsorbed amount as a function of the number of arms per
chain for a star-branched polymer sample. The total number of segments per
molecule is about 1000. The adsorption energy and the concentration in the

solution are indicated. hg = 0.3, x = 0.5.

at low concentrations (4 = 10-6) and a weak minimum at high concentrations
(s = 10-3), respectively.

The influence of branching on the structure of the adsorbed polymer
layer 1is illustrated in figure 6.6. The segment density distributions of
linear molecules and of chains with 50 arms are plotted on a logarithmie
scale. Clearly, branching hardly affects the segment density at very small
distances from the surface and decreases the segment density at larger dis-
tences, so that the overall shape of the molecules becomes more compact
(full curves). This is caused by a decreasing possibility of forming long
loops and tails. As tbe number of chain ends increases with increasing num-
ber of arms, the region over which the segment density of tails (dotted
curves) dominates 1s larger for branched molecules than for linear chains.
The distribution of loop segments (dashed curves) which is an exponential
function for linear chains, 1s no longer exponential but decreases more
strongly for branched molecules.

Density profiles of hbranch points (or middle segments) for different
degrees of branching are shown in figure 6.7. For linear chains the density

of middle segments decays gradually with increasing distance from the sur
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Figure 6.6. Segment density profiles for adsorbed linear (2 arms) and star
branched (50 arms) polymer. The total volume fractiom (full curves), that
due to loops (dashed curves), and that due to talls (dotted curves) are
plotted on a logarithmic scale as a function of the distance from the sur-
face. Ag = 0.5, x = 0.5, xg = 1, r = 10001, ¢, = 107°,

face. With increasing number of arms per chain the average position of the
branch points shifts towards the surface, until virtually all of them are in
the first two lattice layers. A further increase In number of arms causes
the branch points to prefer the second layer.

Obviously, a model chain in which one segment forms flexible joints for
10 or even more chain branches is not very realistic. However, from the
above results it follows that branching in itself does hardly affect the
surface activity of the polymer. Through 'its influence omn, e.g., the degree
of polydispersity a much greater effect can be expected. For instance,

Kawaguchi and Takahaahim found that the amount adsorbed onto metal surfaces
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Figure 6.7. Segment density profiles for branch points of adsorbed star
molecules of 1001 segments. The number of arms per molecule 1is indicated.
g = 045, ¥ = 0.5, xg = 1, ¢4 = 1070,

was twice as high when comb—branched polystyrene was used as compared to the
adsorbance of linear polystyrene of nearly the same average molecular
weight. The establishment of equilibrium was very slow (about two days) and
the isotherms show a rounded shape. These observations strongly suggest
that, contrary to their conclusion, the increase In adsorption Is not due to

branching as such, but 1is caused by surface fracticnation.

6.4 ADSORPTION OF POLYELECTROLYTE

Despite the widespread use of polyelectrolytes as adsorbates in many
industrial processes, such as 1in food technology, pharmacy, and paint pro—
duction, a sultable theory for polyelectrolyte adsorption was lacking until

recently. Since electrostatic interactions extend over large distances, 1t




135

is not easy to assess the shape of the equilibrium segment density profile
of adsorbed polyelectrolyte. Predetermined profiles, such as used by
Hesselinkll'12 and Silberberg13, restrict the validity of a theory severely.
In the present theory the segment density profile is found as the result of
the minimization of the free energy of the system and can assume any form.
Hence, after incorporation of electrostatic interactions, a promising ap-
proach for adsorption of polyelectrolytes becomes avallable. Such an ap-
proach has been worked out for strong polyelectrolytes by Van der Schee2
extending the model described in the previous chapters. He found that a
similar extension of the Roe theory gives nearly the same results at low
salt concentrations. At higher ionlc strength, the predictions of the two
theorles diverge, due to the neglect of end effects in the Roe theory which
became more important when the polyelectrolyte charges are screened by the
counterions. A brief description of the theory and some preliminary results
will be presented here. The case of weak charged groups on the polyelectro-
lyte is includedl®.

The main difference between polyelectrolytes and non—~ionic polymer is
the presence of charges on the chains. In principle, the set of conforma-
tions is not different, hence eqs. (6.1) and (6.2) are not affected. The
only change to be made is in eq. {(6.4), containing the energy difference AUi
between that of a segment and of a solvent molecule in layer i. For a
charged segment with valency z {(sign included) and average degree of lonlza-
tion ay (that may vary with Increasing distance from the surface), and an
uncharged solvent molecule, eq. (6.4) becomes a function of the local poten-
tial ¢y:

o
-AUi/kT =X 4] i + x(<¢i>-(¢i>) - aize¢i/kT (6.4a)

1
In eq. (6.4a), e is the elementary charge. For strong polyelectrolytes
@y = 1, whereas for weak polyelectrolytes the degree of 1lonization is a
function of the local concentration ey and valency z, of potential-
determining (p.d.) ions and, hence, of the local potential. For example, the
dissociation constant K; for monovalent segments and ome type of monovalent
p-d. ions {usually Ht or OH™) is given by

K, = ——-¢, (z =z, = +1) (6.5)
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Then,

1 Cx

1 T T+ ci/Kd = a, + (l—a*)ci/c*

a (z =z, = +1) (6.6)

where a4 and ¢y are the degree of dissociation of segments and the concen—
tration of p.d. ions, respectively, in the bulk solution. For other cases or
higher valencies, egqs. (6.5) and (6.6) may be more complex but their deriva—
tion 1s straightforward. The local concentration of p.d. ions of valency z

[
is related to the local potential by

-~z _e(d.~¢, )/ /KT
cileg=e & 7 * (6.7)

Thus, the weighting factors {Pi} are now a function of both the concentra-—
tion profile {¢i} and the potentfal profile {¢;}, through eqs. (6.3) and
(6.4a-7).

Obviously, a relation between {¢i} and {¢i} is necessary to obtain a

unique relation between {Pi} and {¢i} such as in the case for uncharged
polymers. To accomplish this for strong polyelectrolytes, Van der Schee has
used a model of parallel charged planes, see figure 6.8. The charges of the
segments within each layer are smeared out over a plane through the centres

of the lattice sites. All other ions are thought as polnt charges that are

Figure 6.8. Schematic potential profile for a positive surface potential L)
and an adsorbing positively charged polyelectrolyte. At each plate the plane

charge causes the field strength to change discontinuously.
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distributed between the fixed planes according to the Poisson—Boltzmann (PB)
distribution. A few modifications of the model have been tested, in which
the plane charges of the segments are replaced by space charges or wherein
the small ions are of finite size. These modifications hardly affect the
results and complicate the caleculations significantly.

If the plane charges are only due to the segmental charges, the plane
charge density a; of plate i is proportional to the segment concentration
¢i, or

o, =ua, ze ¢i/a0 (6.8)
where ag is the cross sectional area of a lattice site. Across plate 1 the
field strength E(x) = 3¢(x)/dx in the direction x, perpendicular to the

surface, changes discontinuously by an amount -ai/s:

By = Eqy 7 By =

g
i
-— 6.9
- (6.9)
where ¢ is the dielectric permittivity and the notations E;, and E;_ stand
for Lim5+0 Ei+6 and Lim6+0 Ei-é’ respectively.
In the bulk solution the same (artificial) plane charges are used in
order to avoid any irregularities between the surface phase and the solu-
tion. Across each plate in the bulk soclution, the field strength changes

sign, hence E4 = - E4_ = % AE4, or
E, =-~E, =-— (6.10)

The calculation of the potential profile for the layers i1 = 1,2,...,M
involves the following iteratlon, starting with an initial guess for ¢y 4.
Since bybw will be low, the Debije-Hiickel (DH) approximation is applicable
for the field stremgth Ey, at the solution side of plate M. Obviously,
EM+ = E*+ when Gy = Ggo Hence,

T
Eyy = = <lhy~y) ~ 5 (6.11}

The reciprocal Debije length k is given by the ionic strength in the solu-—

tion:
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2

2 2 )
K = Lz nj(*) (6.12) !

e
E¥T L% !

where Z3 and nj(*) are the valency and concentration in the bulk solution of

ion type j, respectively, and e is the dielectric constant. The summation
includes the p.d. ions, originating from the polymer, but not the polymer
segments since their presence is accounted for in {Ui}‘

The field strength Ey_ follows from egqs. (6.6-9). Starting with ¢4
and Ey_, numerical integration of the PB~equation

ag —zje(¢(x)ﬂb*)/kT

2 a
20 .. 0y a0 e (6.13)
? x j 19

from x = M down to x = M1 gives ¢y _;=fx and Fy_ ;. at plate M-1. Here, x is
the dimensionless distance from the surface, expressed as the number of
lattice layers. Repeatedly applying eqs. (6.6-9) and (6.13) gives eventually
¢1=¢x and E;_ in the first layer. This completes one cycle of the iteratiom.

At the surface a boundary condition applies. For instance El— = -0'0/3,
if the surface charge demsity oy is constant. Altermatively, the potential
at the surface must be equal to a conmstant potential ¢y, see figure 6.8. The
iterations are continued with new values for Py until this boundary condi-
tion is obeyed. The potential profile {¢;} found in this way is substituted
into eq. (6.4a).

The same procedure may be followed for the incorporation of electro-
static interactions in the Roe theory, since the energy terms in eq. (6.4a)
can replace the energy terms in eq. (29) of Ref. (1).

For strong polyelectrolytes (and polyelectrolytes with a constant degree
of ionlzation «, independent of the local potential) a number of results
have been given by Van der Schee et 31_2,15-18_ At low salt concentration
the adsorbed chains lay essentlally flat on the surface. The adsorbed amount
increases with increasing salt concentration, up te wvery high ioniec
strength. Comparison with experimental data learns that for well-defined
systems a semi-quantitiative agreement is found?» 13719,

The dielectric permittivity ¢ depends on the local concentration of
polymer. As a first approximation we may estimate £ in layer i by

g = e + (Ep - 50) o (6.14)

where eP is the permittivity of pure polymer and £° that of water. Except
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for the first layer (i = 1), it is clear that for strong polyelectrolytes

£, = eo, since ¢; is very low. The variation of ¢ in the first layer can be

czmpensated by a small change in the adsorption energy, which gives also a
contribution per adsorbed segment. For weak polyelectrolytes the wvariatiom
of £ in the first few layers is often significant.

Figures 6.9-11 show some preliminary resultsl& for weak polyelectrolytes
as predicted by the modified Roe theory. It can be expected that this theory
underestimates the adsorbance at high ionic stremgth, where the adsorbed
amount 1is relatively large. The data are calculated for ¢P/e® = 3/80, so

that £; is mainly determined by the dielectric permittivity e?

and volume
fraction ¢g of water.

In figure 6.9 adsorption isotherms are given for polyacids with differ-
ent Intrinsic dissociation constants K of the segments, adsorbing on an
uncharged surface. The curves for pK =« and pK = —= correspond to adsorp—
tion isotherms for non-ionic polymers and strong polyelectrolytes, respec—

tively. No external acid or base is assumed to be present, so that the pH

J

1 —l i
0 100 200 300 400 ppm 500
@,

Figure 6.9. Adsorption isotherms of a polyacid adsorbing on an uncharged
surface. The pH depends on the concentration of pelyacid (no other acid or
base 1s present). The intrinsic pK values of the segments are iIndicated.
Ao = 0s5, x =05, xg =1, r=500, z=-1, eP/®=23/80, ay=1 m?,

og = 0, salt concentration: 1 M (monovalent).
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Figure 6.10. Adsorption of polyacid as a function of pH on an uncharged
surface for different (nonionic) solvent qualities. ig = 0.5, y is in-
dicated, 1y, = 0.5, T =500, ¢4=10"% z=-1, pK =4, <P/e® = 3/80,

ag =1 nmz, op = 0, salt concentration: 1 M {monovalent). !

depends on the pK and concentration of the polyacid. A fixed pH would give
nearly horizontal adsorption plateaus, whereas in figure 6.9 the adserptien
increases with Increasing concentration due to a decreasing pH and, hence,
decreasing dissociation of the polymer. Especially for a pK around 4 the
isotherm has a very rounded shape in this concentration vegion. The pH at
equilibrium determines the adsorbed amount at a given pK. Actually, the
adsorption is a function of the difference between pH and pK.

The adsorption of a polyaeid (pK = 4} from a solution in which the pH is
externally controlled is given in figure 6.10 as a functlion of the pH. Below
pH = 3 the polymer is virtually uncharged, whereas beyond pH = 5 the polymer
behaves like a strong polyelectrolyte. Since the surface 1s uncharged, the
adsorption at high pH is low due to mutual repulsion between the charged
segments. At low pH the adsorption increases strongly with decreasing
(nonionic) solvent quality (increasing y). For uncharged chains of 500 seg~
ments phase separation occurs at ¢4 = 1074 when x > 0.345. Polyelectrolyte
solutions are stable in a wider range of y values, because the charges on
the chain lead to an extra repulsion between the segments. From figure 6.10

it follows that for polyelectrolytes under the given conditions at y = 0.7
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Figure 6.1l. Adsorption of polyacid as a function of pH for different values
of the surface charge ag. Ag = 0.5, x = 0.5, x = 0.5, r = 500, ¢, = 10'4,
z ==1, pK =4, £F/e? = 3/80, ag =1 nmz, dy 1s indicated, salt concen-

tration: 1 M (monovaleut).

phase separation occurs bhelow pH = 3.4, At pH = 3.4 the degree of ionization
ax is around 0.2.

Figure 6.11 gives the adsorption as a functlon of pH for different val-
ues of the surface charge oge The curve for op = 0 is the same as that in
figure 6.10. Obviously, the adsorption Is only affected at relatively high
pH, 1l.e., when the polymer is charged. When polymer and surface are oppo—
sitely charged, adsorption is favoured and may even pass through a maximum.
At the pH corresponding to the maximum the electrostatic attraction between
surface and polymer is stronger than the mutual repulsion between the poly-
mer charges. For a high degree of ionlzation (at high pH) the adsorption is
propertional to the surface charge.

We conclude that a clear theoretical picture is emerging for the adsorp-
tion behaviour of polyelectrolytes. Experlmental tests on well-defined sys-
tems and new applications of polyelectrolyte adsorption can now be developed
more systematically. Unfortunately, so far, experimental work in which all
the relevant variables (icnic strength, pH, surface charge, etc.) are com-

pletely controlled is very scarce.
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6.5 STRUCTURE OF LIPID BILAYERS

The selective permeabllity of bicloglcal wembranes for water, ions,
proteins, and other molecules is of vital importance for biological orga-
nisms, but the underlylng mechanisms are not well understood. Much attention
has been paid on the capability of membrane proteins to act as carriers or
gates across the apolair centre of the 1lipid bilayer. However, a lipid bi-
layer is not a semlcrystalline phase. Its structure is of a statistiecal
nature, such as that of wmicels and 1lipid monolayers. The apolar centre 1s
saturated with water and the distribution of other substances in the bilayer
depends on the local interactions between the molecules. On the other hand,
the amphiphatic lipid molecules are free to leave and re-enter the bilayer,
so that a finite equilibrium concentration of lipid molecules in the water
phase is present. For many molecules, the permeability of the membrane de-
pends on the structure of the bilayer. The driving force for the stability
of the membrane is the net repulsion between the apolar lipid tails and
water. The polar head groups form a boundary between the apolar and hydro-
philic phases. In a thin bilayer, the number of amphiphatic molecules, and
hence the number of head groups, per unit area is small and a significant
fraction of the apolar 1lipid tails 1s still in contact with water. With
increasing bilayer thickness, the boundaries become saturated with head
groups, so that some head groups are forced to enter the apolar phase. The
equllibrium thickness of the bilayer is a compromise between these two un—
favourable effects.

Since lipid melecules are simple copolymers, only theories that distin-—
guish between individual conformations and betwesen different types of seg-
ments are able to predict equilibrium distributions of tail segments and
head groups in a membrane. In this case none of the previous theories, not

20 yould be a

even the Roe theory, 1s applicable. The theory of Ash et al.
candidate if the computational problems for molecules longer than a few
segments could be overcome. However, 1t 1s stralightforward to adapt
eqs. (6.1-4) to obtain a theory for copolymerSZI.

The set of possible conformations does not depend on the types of the
segments within a polymer chain, but the probability P, that a chaln is in a
certain conformation ¢ is a function of the local interactioms, i.e., of the
welghting factor of each segment. The segmental weighting factors depend now

on both the layer number (i) and the type of segment (x}. Hence, for copoly-

\W




143

mers eq. (6.1} becomes

r
- q, r-l-g X .
Poo= AN A sgl Pi(s,c) (6.1b)

and the volume fraction of segments of type x in layer i is

o) = E ri,c P, (6.2b)

If the matrix method is used for the evaluation of ¢§ there is one matrix
for each type of segment and the order inm which the different matrix-vector
multiplications are to be performed is given by the order in which the types
of segments are distributed along the chain.

The welghting factors Pﬁ follow from the competition between a monomer
of type % and a solvent molecule for a site in layer 1i:
o —AU§°/kT
Pl = ¢1 e (6.3b)
where AUT® 1is the exchange energy, depending on the local composition of
solvent and segments of any type around a site in layer i. The interaction
energy with segments y of a solvent molecule in a layer i surrounded by an
average volume fraction <¢z> of these segments y is xy°<¢¥> kT. Similarly,
the interaction energy with other segments y of a segment x In this volunme
fraction <¢{> equals xyx<¢¥> kT. In order to cover all types of interactionm,
we have to sum over y where y stands for segments of any type or solvent.
Replacing a solvent molecule in layer i by a2 monomer x in a mixture of dif-
ferent volume fractions §<¢{> is accompanied by an energy change AUF® given
by

ST = 2%, e 0O )e)> (6.4b)
] ’ i

¥

i

In eq. (6.4b) xgo kT is the adsorption energy difference between a solvent
molecule and a monomer x and xY¥ kT i{s the energy change when a monomer x is
transferred from pure x towards pure y (or, equivalently, a monomer y from
pure ¥ into pure x: xxy = xyx). It is assumed that all monomers are of the
same size and occupy one lattice site. The summation over y includes solvent
molecules (y = o) and monomers of type x (y = x), so that for a binary mix—

ture eq. (6.4) is recovered. Obviously, xyy is zero.
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Figure 6.12. Distribution of head Figure 6.13. Distribution of tail
groups in a 1lipid billayer of aghy gegments of different ramk s in a
molecules. kg = 0.5, 130 = xab = 2.5, lipid bilayer of agb, wmolecules.
¥P° = 0.5, ¢, = 1074, Only chains with their head group at
the right-hand side are counted. The
rank s is counted from the tail end.

Parameters as in figure 6.12.

The set of simmltanecus equations {6.lb—4b) comprises per type of segment M
equations and M unknowns ¢T-

For bilayers, a real surface {is absent, hence x;m = (), Nevertheless it
is necessary to fix spatially the position of the membrane, without affect-
ing 1ts composition, in order to allow the computation of a segment density
profile. This can bhe done by locating the lattice on the membrane by placing |
a reflecting boundary at the centre of the bilayer, i.e., by setting explic-
itly pX; = P}, ¢%; = ¢, etc., so that 1 is counted upward or downward from
the centre of the membrane. In this way, a shift of the bilayer in a direc—
tion perpendicular to the reflecting boundary is transformed into a thinning
or thickening of the bilayer and thus the equilibrium thickness is attain-
able with a fixed position of the membrane.

A typlcal example of a distribution profile of head groups in a membrane
is given in figure 6.12. In this example, the 1ipid molecules have a tail of
9 segments (a) and a head group (b) of two segments occupying two adjacent
lattice sites in the same layer (i.e., for the bond between the two head
segments Ay = 1 and ky = 0}. The net interaction between a tail segment with

water or head groups 1Is repulsive (3?0 = xab = 2.5), whereas that between
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head groups and water is slightly

r T attractive (xP° = -0.5). A volume

1.0 Y 7
° E concentration oy = 10_4 in the bulk
¢i - : i solution and a hexagonal lattice
06} i . were chosen.
: The maximum density of head
" i T groups in figure 6.12 is only 25%
0.2l : _ and their distribution 1is very
I broad. A nonzero head group density
0 _% _% é : g is found 1in the apolair region,
which points to a high transition
Figure 6.14., Distribution of water (flip-flop) rate of head groups
in a lipid bilayer of aghp, mole- between both sides of the membrane.
cules. Parameters as in figure 6.12. Figure 6.13 gives distributions

of tail segments of various rank s.
With lncreasing distance from the head group, the distribution of tail seg-
ments becomes wider and shifts towards the centre of the bilayer. Also this
figure Indicates the strongly statistical nature of a membrane: the end
segment of the apolar tail (s = 1) shows a very broad spatial distribution.
The distribution of water in the membrane is shown in figure 6.l4. The
water content of the bilayer is rather high. Therefore, it might be expected
that transport of water through a membrane, and also of many other polar
molecules, is possible without the need for special gates. This observation
is very relevant for the interpretation of biological processes that depend
on transport through membranes. Further work on the detailed structure of

membranes is in progress.

6.6 AMORPHOUS PHASE OF SEMICRYSTALLINE POLYMER

A melt crystallized, semicrystalline polymer 1is believed to consist of
alternating amorphous regions and lamellar crystalline domains. In the crys—
talline regions the parallel polymer stretches are oriented perpendicular to
the lamellar surfaces. A polymer chain may traverse various crystalline and
amorphous zones. Most of the polymer stems that emerge from the crystalline
phase fold back into the crystal with a sharp fold or tight loop to give

other chain portions in the amorphous region free orientationmal possibili-
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ties. The portions of a chain in the amorphous phase are sither loops
(subchains grafted with both ends in the same lamella), bridges (subchains
grafeed in different lamellae), cilia (subchains grafted at ome end only),
or part of a floating (unattached) chain. Here, the terms 'loops' and
'bridges' have a neaning that is slightly different from that used in the
previous chapters, where they represent subchains with adsorbed end seg-
ments.

The mechanical properties of semicrystalline polymer depend on the mole-—
cular structure of the lamellar regions. Most theoretical work has been done
on the crystalline lamellae. The structure of the amorphous region has re-
ceived much theoretical attention in the last few yearszz‘zs. However, in
this work the contributions of cilia and floating chalns were neglected.
This approximation may be valid when the molecular welght of the polymer is
extremely high, but with decreasing chain length end effects become more
important.

The use of eqs. (6.1-4) for the amorphous phase provides unprecedented
possibilities. Not only the effect of cilia and floating chains, i.e., mole-
cular weight effects, but also the deformation of the amorphous phase can be
studied. Although 1in amorphous polymer the concentration of solvent is
usually zero, these equations need no modification since the use of a finite
concentration profile of solvent in egs. (6.3) and (6.4) has no effect on
the results when this concentration is very low. Only the shape of the sol-
vent profile is important, as it determines the distribution of weighting
factors for the segments. Instead of solvent, it 1s more appropriate to
consider vacant lattice sites ("holes™). A change of volume upon deformation
is then accompanied by a change in the number of holes in the amorphous
phase. As long as the volume fraction of polymer is nearly 1, the conforma=-
tions of the chains are completely determined by entropic factors (volume
filling). However, a significant fraction of solvent or holes gives more
freedom for the segment density distribution, so that the y—parameter
becomes important.

A siample model for the study of deformation is obtailned as Eollowszs.
Consider the polymer just before crystallization and assume that instanta-
neous crystallization of the melt will take place in the layers 1 < 1 and
i > M with no wmovement of the chains. Since the melt has a constant density,
all arrangements of the chains are equally probable (all P;'s are the same,

independent of ¥) and 1t is easy to calculate the potential numbers and
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length distributions26

of loops, cilia, bridges, and floating chains in the
melt that occupy the layers I to M. For simplicity, these numbers are com-
puted by placing reflecting boundaries between layers O and 1 as well as
between M and M + 1.

Thus, during a walk of r steps, each step into layer 0 terminates either
a loop, or a cilium, or a bridge and the walk is continued from layer 1,
starting a new loop, cilium, or bridge. Similarly, each step during the walk
entering layer M + 1 terminates a subchain and is continued from layer M. In
this way, the correct distributions are obtalned, since in the melt the
number of chains having e.g., segment s in layer 1 and segment s + 1 in

layer 0, 1is equal to that having segment s In layer 0 and segment s + 1 in

layer 1.
A few results are summa-
tor rized 1in figures 6.15 and
6.16. Figure 6.15 gives the
08 fraction of 1loops, cilia,
2 ob bridges, and floating chains
§ as a function of the chain
i 04 length when M = 20. Other
02 values for M give qualitative-
ly the same picture. With
"o 2000 3000 increasing chain length the
f nugber of floating chains de-
Figure 6.15. Fractlon of segments 1In creases and 1s essentially
floating chains (F), cilia {C), 1loops zero bheyond r = M. The
(L), and bridges (B} 1in the amorphous amorphous phase can accommo—
phase of a semicrystalline polymer as a date floating chains with a
function of the chain length 1in the length proportional to MZ,
original melt. The thickness of the since their radius of gyratien
amorphous phase 1is 20 lattice layers. is proportional to vr. The
Mg = 2/3 {cubic lattice). fraction of cilia has a maxi-

2

mum at r = M and decays very

slowly for long chains (~ szr). The number of loops and bridges increase to
the limiting values predicted by Guttman et al.23,24,

Figure 6.16 shows the corresponding segment density profiles for
r = 400. The bridges and floating chains are concentrated in the middle

section of the amorphous phase, the loops are close to the walls and the
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cilia are found mainly between
each interface and the middle
section.

After crystallization, the

o
=

numbers of loops, cilia,
bridges, and floating chains
are filxed and given by the

Segment Density
o]
D

distributions obtained by the

Q
o

method described above. Their

(@]
<

segment distributions can be 5

calculated by using absorbing i

instead of reflecting bounda- Figure 6.16. Segment density profiles
ries and normalization with for floating chains (F), ecilia (C),
the given number distribu- loops (L) and bridges (B). iy = 2/3,
tionSZG. For instance, for a r = 400, M = 20.

loop of t segments starting in

layer 0, a generation of all walks starting in layer 0 and never visiting
layer 0 or M + 1 during the walk, and ending with step t + 1 in layer O,
will give the segment density distribution of these loops after normaliza-
tion. Obviously, all segment distributions remain the same before and after
crystallization, as long as all the segmental welghting factors do not
change. However, a deformation will affect all segment distributions and
weighting factors in the amorphous phase.

Deformation is simulated by increasing the separation between the walls
while keepipg the number distributions constant, except that taut bridges
break randomly into cilia or increase their length by pulling segments out
of the crystalline regions. The increase in volume 1s filled up either by
floating chains moving from polymer regions under simultaneous compression
or by holes. In the latter case, which we will counsider here, the fraction
of holes will increase substantially and hence, the 7y parameter becomes
important. In principle, this parameter can be estimated from vapour pres-—
sure data of oligomers. Since polymers are not volatile, x is certainly
greater than 0.5.

Segments density distributions at different stages of deformation are
given in figure 6.17. The initial value of M is 10 and it is assumed that
taut bridges break randomly into cilia. The curves for y = 0 are relevant

when a good solvent may enter the amorphous phase. In this case the segment
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|

[

-~ ] 1 Figure 6.17. Effect of defor-

mation on the segment density

profiles of the amorphous

o
r
T

Segment Density
Q
2]
T

phase of a semicrystalline
@ polymer. The initial value of

0.2+
M, the thickness of the amor-
00 ) 1 L ! ' 1 L ]
phous phase, is 10 and the
10 initial volume fraction of
polymer 1is 0.95. The final
08
= value of M is indicated by the
§ 06+ vertical barsg. Ap = 2/3,
= r=100. a)y =0 (athermal
£ 04k
E‘ ’ solution); B yx=1 (the
opL dashed curves way have an
error of a few %).
Qo

density decreases homogeneously with increasing M, indicating that the poly-—
mer is soft and flexible. The curves for y = 1 show what happens when no
solvent or a very poor solvent is present. At high deformations a '"necking'
process takes place so that the segments retract towards the walls: the
amorphous phase breaks up. Clearly, the deformation is energetically con-—
trolled, rather than entropically: the yx-parameter plays a major role.
Hence, an extension of this simple model by incorporation of chain stiffness
will give essentially the same deformation results.

The examples given in this section are only illustrations of the capa-
bility of the theory when applied to concentrated systems. It is possible to
obtain much more detailed information, such as bond directions and distribu-
tions of individual segments.

Other systems of bulk polymer with inhomogeneous distributions of seg-—
ments are block copolymers and bleads of immiscible polymers. The absence of
solvent in these systems does not prevent the application of the present
theory, which was developed for adsorption of macromolecules from solution.
In the contrary, the method looks very promising for these systems, since
the theory remains valid for any concentration of macromolecules, including
bulk polymer.



150

6.7 DEPLETION FLOCCULATION AND RESTARILIZATION

The presence of nonadsorbing polymer has a destabilizing effect on dis-
persions. This effect is much weaker than that of adsorbing polymer and has

a different origin. In principle, the mechanism is simple27

« The conforma-
tional entropy of a polymer coil in solution decreases as soon as the chain
approaches a solid surface. For adsorbing polymer this entropy leoss is
(over)compensated by the attraction between surface and polymer segments,
but for nonadsorbing polymer there 1Is no such cowmpensation. Therefore, the
centres of gravity of nonadsorbing molecules will aveld the surface reglon.
Consequently, the chains are depleted from the surface, and we may define a
depletion zone where only solvent 15 present. At low concentrations of poly-
mer the thickness A of the depletion layer is approximately equal to the
radius of gyration R, of the polymer colls. A more precise definition of A
exc/¢*’

where § is the length of a segment,
gexe

g
is given by the ratio -6

the (negative) excess adsorbed
amount, and ¢, the concentration of
the polymer in the bulk sclution.
When two depletion zones overlap

each other, the total depletion

volume is decreased (see
figure 6.18).

An  equivalent description 1is Figure 6.18. Change of depletion
that an amount of solvent, corre- volume (hatched region) when two
sponding to the overlap volume, is spheres of radius a and depletion
transferred from a depletion zone of thickness A come into close contact.

virtually pure solvent to the bulk

solution of concentration ¢3. Each solvent molecule contributes a free ener—
gy which is equal to the chemical potential p® of the solvent in the solu-
tion with respect to the reference state (pure solvent). This chemical po-

tential is given by28

WOIKT = 9, (1-1/x) + In(l-p,) + x¢, (6-15)

where x 1s the volume ratio vP/v® between polymer chain and solvent mole—

cule. Hence, the osmotlc pressure between depletion zone and solution is
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-u9/v®. This osmotic pressure is the origin of an attractive force between
two overlapping depletion zones. In other words, the osmotic pressure of the
homogeneous polymer solution pushes the particles together 1f these parti-
tles are surrounded by a depletion layer where only solvent is present.

The decrease in depletion volume when two particles of radius a come
into close contact 1s 2naA2(1+2A/3a), so that the depletion free energy of
interaction Afd, due to nonadsorbing polymer, per particle in a floc with

co—ordination number z can be written as
0, 0,2
Afd = (zma/v Ju AT (1+2A/3a) (6.16)
This expression is valid for A/a g 0.5, which 1s mostly the case. For higher

values of A/a, multiple overlap of depletiom volumes may occur and a correc=-

tion is necessary.

With increasing polymer concen— 2 I I
tration, -p°® increases and A de- Al
creases until in pure bulk polymer r=1000
-u® iz infinite and A is zero (since 5 7
8%%XC becomes zero). For a quantita-
tlve prediction of Afd, the effect 500
of the polymer conceantration on the 104 N
depletion thickness A must be known.
The new theory, developed in this 200
study, can give this information for
all «conditions. For nonadsorbing 1 ’
polymer the adsorption energy j, is
smaller than the critical adsorption
energy XYg.- If the number of ad- 0153 110-2 1IG' o 0
sorbed segments 1is very low, the *
exact value of ¥, is irrelevant, and Figure 6.19. Depletion thickness A
may be set equal to zero. The pro- for different chain lengths as a
gram for adsorption between two function of polymer concentration.
plates can be wused to obtain The arrows indicate the concentra-
8%%5C /h e tions where the polymer coils in

In figure 6.19 the dependence of solution begin to overlap. Ag = 0.5,
A on the volume fraction ¢, for a % = 0.5, the chain length r 1is

O-solvent is pgiven for different indicated.
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chain lengths r. At low concentrations A is independent of ¢, and propor-

tional to vr, whereas at high concentrations A decreases to zero at ¢ = l.

The concentration where A starts to decrease is close to the volume fraction

where the coils in the solutlon begin to overlap (¢ov = 1//r, indicated by

the arrows In figure 6.19}.
Combining the results from
figure 6.19 with eq. (6.16)
gives the attraction energy
Afy as a function of the
solution concentration. This
is illustrated in figure 6.20
for r = 160 and r = 1000. At
low solution concentrations
—Af; increases linearly with
$x and slightly with r. The
attraction pagses through a
maximum at ¢x % 0.6 and de-
creases again at higher con-
centrations. The reason for
the wmaximum is the fact that

2 is stronger

the decrease of A
than the lncrease of —-p® when
¢4 approaches unity. The exact
value of Af, for ¢, + 1 is not
reliable, since at very high
concentrations the valume

fraction of segments in the

depletion zone 1s not negligible.

0 025 05 075 Ys 10
0k
af
“ o A
30 dsgfk=-20
.30 -
~40bKT .

Figure 6.20. Osmotic interaction energy
Afd per particle and the entropy loss
-AS, per particle, when a particle is
transferred from the dispersion towards
the floc phase, as a function of the
concentration of nonadsorbing polymer.
Flocculation occurs when ¢1 £ by S ¢ﬁ-
Ao = 0.5, yx = 0.5, r is indicated,

zna/d = 500.

The free energy of attraction due to nonadsorbing polymer must be com—

pared with other interactions between the particles in order to predict the

flocculation conditions. Ome of these is the decrease in entropy AS; of the

particles upon flocculation which acts as a repulsion. In the solution the

entropy of the particles is limearly increasing with 1n dq» where ¢4 1ls the

volume fraction of particles in the dispersion. In the floc phase the

entropy 1is only a function of the floc structure. In absence of other inter-

actions, such as the Van der Waals forces, flocculation occurs whenever

ASST > Afy-
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The horizontal line in figure 6.20 corresponds to ASs/k = =20 and cros-
ses each attraction curve Afd at two concentrations, ¢I and ¢ﬁ, respective—
ly. The dispersion is unstable in the range ¢i < g < ¢ﬁ and stable for
other concentrations. Comsequently, not only a critical flocculation concen-
tration ¢t, but also a critical restabilization concentratien ¢i is pre-~
dicted by this theory. This latter concentration Is extremely high, at least
for hard spheres. For particles with grafted polymer chains ('soft
particles’) it has been found experimentally that ¢i exists and 1is much
1ower29'30. Calculations for soft particles are, in principle, possible with
the present theory, since incorporation of grafted chains is straight-

forward.

Figure 6.21. <Critical flocculation
concentrations ¢I as a function of
the radius of gyration of the
polymer. The experimental values

(points) are for silicas $6 and SBl
coeL and polystyrene in cyclohexane at
34.5°C (0-conditions), taken from

ref. (31). The silica concentrations

004~ are indicated. The theoretical
curves are obtained by adjusting
ASST/z {= -2 kT). The dashed curve
002~ gives the theoretical flocculation
concentration when A is replaced by
R_.
0 , , . . B
1 2 [} 10 20 50 nm
Ry

A comparison with experimental values of ¢I is possible using data of De
Hek and Vrij31. In figure 6.21 their results for hard silica spheres and
polysterene in cyclohexane under O-conditions (34.5°C) are indicated by the
points. The theoretical values are shown by full curves. The only adjustable
parameter is the entropy of the particles in the floc, for which a constant
value has been chosen. The dependence of ¢I on the chain length, expressed
by Rg'
particle concentration (1% or 5%) agrees quantitatively.

on the particle radius a (21 nm for 56 and 46 nm for SBl), and on the
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De Hek and Vrij used a theoretical model in which A was set equal to Rg,
independent of the solution concentration. The dashed curve in figure 6.21
shows the prediction for ¢I if A is assumed to be independent of the polymer
concentration: the chain length dependence of ¢i becomes qualitatively
wrong, especlally for low molecular weight polymer. Moreover, when A is
constant the increase of —Afd with increasing solution concentration per-
sists at all concentrations. Hence, a restabilization concentration ¢i is
not predicted in this case. For a quantitative prediction of the phase sepa-
ration conditions, the exact value of A under each condition is essential,

and the new theory can provide this wvalue.

6.8 CONCLUSIONS

The examples given in this chapter illustrate the flexibility of the new
theory of polymers at interfaces. Results are shown for adsorption of poly-
disperse polymer, star-branched polymer, and polyelectrolytes. The predic-
tions for the structure of lipid bilayers demonstrate. the capability of the
theory for systems with copolymers or liquid-liquid interfaces. Amorphous
bulk polymer can be treated as well as low concentrations of polymer, and
adsorption as well as depletion. A particular useful feature of the theory
is that it takes into account the chain length (from monomers up to very
long chains), the solvent quality (including mixtures), and the polymer

concentration over the whole experimental range.

A quantitative comparison between theoretical and experimental results
is only possible in a few cases, due to the lack of experimental data on

well-defined systems. The examples given in this study, and a few

others?+19719:32-35 5 45cate that the agreement is excellent in most cases.

A considerable step forward is a new method for the determination of the

36,37

segmental adsorption energy Ag which allows for more accurate tests of

the theory in the near future.
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SUMMARY

The aim of this study was the development of a thecry for a quantitative
description of the behaviour of macromolecules at interfaces with special
attention to steric stabilization and flocculation of colleids. This has
been accomplished by extending the Flory-Huggins theory for homogenecus
poelymer solutions towards inhomogeneous systems Iin which also the presence
of a surface is accounted for.

In chapter 1 the general background of this study is given. The impor—
tance of polymer adsorption for technological applications is shown by sev-
eral examples and the need for a statistical approach is emphasized. The
structure of polymers and their properties, both in solution and at inter-
faces, are discussed from a theoretical point of view and the limits of
applicability of the most important models are polnted out. Thereafter, a
short introduction to the basic concepts of the new theory is given and the
computational difficulties that may occur are summarized.

Chapter 2 gives a full statistical thermodynamical account of the
theory, starting with the derivation of the partition function. A& novel
feature is that the partition function 1is expressed as a function of the
distribution of molecular conformatlons. By maximizing this partition func-
tion with respect to the numbers of chains in each particularlconformation,
the equilibrium distribution of conformations is found. In this way a very
detailed picture of the system is obtained. The statistical weight of each
conformation in a concentration profile comprises a multiple product of
segmental weighting factors, one for each segment, accounting for the local
interactions of that segment with its surroundings. The actual calculations
involve the numerical solution of a set of simultaneous nonlinear equations.
Same details of the computational method are described.

A selection of results, including segment density profiles, adsorption
isotherms, and bound fractioms, iIs given and compared with results from
other theories where appropriate. It turns ocut that the tails, which are
neglected in previous theories, are very important, determining nearly com-
pletely the segment density in the outer regions of the adsorbed layer.

In chapter 3 the potentialities of the theory are further elaborated.
The average conformation of adsorbed polymer is examined in some detail. In
the case of isolated chains, the conformation is nearly flat, with essen-

tially all segments in (long) trains and (short) loops. Interacting adsorbed
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polymers occur already in very dilute solutioms. In that case a significant
fraction of segments form long dangling tails. With increasing solution
concentratlion cthe length of trains decreases, whereas loops and tails become
longer. For surfaces adjolning pure liquid polymer, the tails represent even
2/3 of the adsorbed amount. The density of segments in loops decreases expo—
nentially with increasing distance from the surface, whereas that of tail
segments shows a maximum and dominates at larger distances. In all solvents
the root-mean-square layer thickness of adsorbed polymer is proportional to
the square root of the chain length.

Comparison of theoretical predictions with experimental data is made in
chapter 4. In a 9-solvent, the adsorption increases linearly with the loga-
rithm of the chain length, whercas 1in better solvents the chain length de-
pendence is weaker. Semiquantitative agreement between theory and experiment
is found. Also the fraction of adsorbed segments agrees with theoretical
.predictions. The correspondence between theoretical data for the r.m.s.
layer thickness, in which the contribution of tails dominates, and experi-
mental observations is another indication for the correctness of the analy-
sis.

Simple equations are derived for the relative adsorption from a soluticn
of polydisperse polymer. At low concentrations, long chains adsorb preferen-—
tially over shorter ones, in agreement with experimental data. At very high
concentrations preferential adsorption of short chains is predicted.

The interaction between two adsorbed pelymer layers is examined in chap-
ter 5. As the partition function of the system is known, the calculation of
the free energy of interaction is straightforward. Similarities and differ-
ences with other theories are discussed. When the polymer is free to leave
or eater the gap between the surfaces (full equilibrium) the interaction is
always attractive. This attraction is due to polymer chains that adsorb on
both surfaces simultaneously (bridging). When the polymer is unable to leave
the gap (restricted equilibriuvm) the force 1s attractive in (very) dilute
solutions and, except in very poor solvents, repulsive in concentrated sys—
tems. These predictions are compared with those of other theories and agree
with experimental data.

Some applications of the theory for other systems are illustrated in
chapter 6.

It is shown that branches in the chain do not drastically affect the
surface activity of the molecules, provided that the molecular weight re-—

mains the same.
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Preferential adsorption from solutions of polydisperse polymer has im-
portant practical congequences, since polymer samples are always polydis-
perse. It is now possible to calculate adsorption properties of polymers
having any wmolecular weight distribution.

By incorporaticn of electrostatic terms in the segmental weighting fac-
tors, a theory for the adsorption of polyelectrolytes becomes avallable. At
low ionic strength the charged molecules adsorb In very flat conformatioms.
Only at very high salt concentrations or when the degree of ionization is
low, polyelectrolytes behave more like neutral polymers. Generally, poly-
electrolyte adsorption is similar to adsorption of polymers in very good
solvents.

As an example of copolymers at liquid-liquid interfaces, the structure
of a lipid bilayer is studied. It is shown that a considerable concentration
of water is present Iin the centre of the bilayer and that the fluctuations
in the position of, e-.g., the head groups are substantial.

Calculations on the structure of the amorphous phase of semicrystalline
polymer show that polymer systems without solvent can also be handled by the
developed theory. Even some deformation properties of the polymer can be
predicted.

Finally, predictions of the theory can be used for studying the stabili-
ty of colloids in the presence of non-adsorbing polymer {depletion floccula-
tion and restabilization).

Generally, the agreement with experimental observations is very good and
it shows that the theory is essentially correct. Due to the lack of reliable
experimental data quantitative comparison 1s possible in only a few cases.
However, the capability and flexibility of the theory is c¢learly demon-
strated and it is only a matter of time to elaborate the many applications

that are awaliting a closer examination.
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MACROMOLECULEN AAN GRENSVLAKKEN

Een soepele theorie voor moelzame systemen

SAMENVATTING

In dit proefschrift wordt een theoretisch onderzoek beschreven naar het
gedrag van flexibele wmacromoleculen aan grensvlakken met bijzondere aandacht
voor sterische stabilisatie en vlokking wvan kolloiden door polymeren.
KolloTden =zijn submicroscopische deeltjes die in een vloelstof zweven en
(synthetische) polymeren zijn het meest bekend in droge vorm onder de ver-
zamelnamen plastic en kunststof. Het resultaat van dit onderzoek 1s een
theorie voor inhomogene (ongelijkmatige) systemen van polymeren (zoals In de
buurt van grensvlakken). Deze theorie vormt een uitbreiding van het rooster—
model dat Flory en Huggins in de veertiger jaren hebben ontwikkeld voor
homogene pelymeeroplossingen.

Hoofdstuk 1 is een inleiding in de achtergronden van dit onderzoek en
begint met het noemen van enkele belangrijke toepassingen van macromoleculen
(polymeren) aan grensvlakken. Natuurlijke of synthetische polymeren kunnen
schifting of uitzakken van kolloidale systemen tegengaan, zoals in voedings-
middelen, geneesmiddelen, bestrijdingsmiddelen, cosmetica, wverf en inkt,
maar ook bevorderen, zoals dat bijvoorbeeld in de ni jnbouw en waterzuivering
wordt toegepast. Adsorptie (hechting aan grensvlakken) van polymeren komt
veelvulding veoor in de natuur en 1s een bekend verschijnsel in de polymeer-
verwerkende industrie. Verder wordt gebruik gemaakt wvan polymeeradsorptie
bij de fabricage van magneetbanden en autobandenrubber en bij het gummen.

Dertig jaar geleden was er nog nauwelljks iets bekend over het gedrag
van polymeren aan grensvlakken: alle toepassingen waren min of meer bij
toeval gevonden. Later zijn er theorie&n ontwikkeld die wverschillende eigen-—
schappen kunnen verklaren, maar om een nauwkeurige voorspelling te kunnen
geven moet precies bekend zijn hoe de polymeermoleculen in een grensvlak
zitten.

Polymeren zijn in de regel lange draadvormige moleculen die zijn opge-—
bouwd uit een aaneenschakeling van 100 tot 10.000 kleine eenheden (segmenten
of monomeremn). Er bestaat een groot aantal verschillende soorten. Als de
segmenten allemaal gelijk zijn spreken we van homopolymeren. Copolymeren

zljn opgebouwd uit een mengsel van verschillende segmenten, in een volgorde
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die voor elk molecuul weer anders kan zijn. Verder zijn er wvertakte poly-
meren en soorten die in oplossing electrostatisch geladen zijn (polyelectro-—
lyten). Als alle moleculen even lang zijn spreken we van homodispers poly-
meer. In de praktijk zijn ze echter meestal van ongelijke lengte: ze zijn
polydispers. Een complete theorie moet met al deze variaties rekening kunnen
houden.

Een opgelost polymeermolecuul gedraagt zich als een zwevend draadvormig
kluwen dat steeds van vorm verandert. Het aantal mogelijke vormen (conforma-
ties) is vrijwel onbeperkt, maar men kan statistisch de gemiddelde grootte
van het kluwen wulttekenen. Deze blijkt o.a. af te hangen wvan het socort
oplosmiddel. Hoe slechter het oplosmiddel, des te kleiner is het kluwen. In
een z.g. O-oplosmiddel lost het polymeer nog julst in elke concentratie op
en is de gemiddelde diameter van een kluwen evenredig met de wortel uit het
aantal segmenten van het molecuul.

De meeste polymeren hechten erg goed aan oppervlakken, vooral doordat
elk molecuul via zijn segmenten vele aanhechtingsplaatsen kan hebben. De
polymeerketen krijgt daarbij de vorm van een liggend kluwen, met in de op-
lossing zwevende lussen en staarten die worden vastgehouden door tegen het
oppervlak liggende delen van het melecuul, de zogenaamde treinen. Vergeleken
met de situatie voor opgeloste polymeren is het nu veel moeili jker om sta-
tistisch de gemiddelde vorm uit te rekenen, want de waarschijnlijkheid wvan
alke conformatle wordt nu mede beInvloed door de neiging tot hechting aan
het oppervlak: er is een wvoorkeur voor conformatles met veel contacten tus~
sen oppervlak en molecuunl. Een kluwen probeert zich zoveel mogelijk over het
opperviak uilt te spreiden, met lange treinen en korte lussen en staarten. De
geadsorbeerde laag polymeer wordt dan erg dun. Met uitzondering van het, in
de praktijk weinig voorkomende, geval van adsorptie uit zeer verdunde oplos—
singen, wordt het uitspreiden echter tegengewerkt doordat de kluwens elkaar
in de weg zitten. Hoe meer kluwens, des te dikker wordt de geadsorbeerde
laag. De theorie die in dit onderzoek ontwikkeld is houdt hier rekening mee.

Hoofdstuk 2 geeft de wvolledige statistisch-thermodynamische aflelding
van de theorie, vanaf het opstellen van de toestandssom. Een ongewone stap
is dat in de toestandssom alle conformaties wvan de polymeerketens worden
onderscheiden. Daardoor kan de evenwichtstoestand verkregen worden door het
aantal moleculen in elke afzonderlijke conformatle zodanig te kiezen dat de
toestandssom zo groot mogelijk is. Omdat de evenwichtsverdeling van alle

conformaties zodoende bekend is, ontstaat een gedetailleerd beeld wvan het
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systeem. Het blijkt dat het aantal moleculen in een gegeven conformatie
evenredig is met een meetvoudig produkt van weegfaktoren, 8&n voor elk seg-
ment. Zo'n weegfactor brengt de lokale wisselwerkingenm van dat segment met
zijn omgeving in rekening.

Een reeks resultaten, zoals concentratieprofielen, adsorptie-isothermen
en gebonden frakties wordt gegeven en waar mogelijk vergeleken met resul-
taten van andere theorie#in. De staarten, die in voorgaande theorie&n niet in
rekening gebracht zijm, blijken erg belangrijk te zijn: ze bepalen vrijwel
geheel de segmentdichtheid in het buitenste deel wan de geadsorbeerde laag.

In hoofdstuk 3 worden de mogelijkheden van de theorie verder uitgewerkt.
De pemiddelde conformatie van geadsorbeerde polymeerketens wordt nauwkeurig
onderzocht. Geisoleerde geadsorbeerde ketens hebben een vlakke counformatie
met vrijwel alle segmenten in (lange) treinen en (korte) lussen. In verdunde
oplossingen zijn de lussen langer, de treinen korter en zit een aanmerkeli jk
deel wvan de segmenten In lange staarten. In vlceibaar polymeer vertegenwoor-—
digt de staartfractie zelfs 2/3 van de geadsorbeerde hoeveelheid. De seg-—
mentdichtheid wvan de lussen neemt exponentieel af met toenemende afstand tot
het oppervlak, terwijl dat van de staarten een maximum vertoont en op gro—
tere afstand domineert. In alle oplosmiddelen neemt de middelbare laagdikte
evenredig toe met de wortel uit de ketenlengte.

In hoofdstuk 4 wordenm theoretische voorspellingen vergeleken met experi-
mentele resultaten. In een ©-oplosmiddel neemt de adsorptie evenredig toe
met de logaritme van de ketenlengte, terwljl in een beter oplosmiddel de
afhankeli jkheid wvan de ketenlengte kleiner is. De overeenstemming tussen
theorie en experiment is semi-kwantitatief. Ook de fractie gebonden segmen—
ten komt overeen met theoretische wvoorspellingen. De goede overeenkomst
tussen theoretlsche gegevens over de middelbare laagdikte, waarin de bij-
drage van de staarten domineert, met experimentele waarnemingen is een aan-
wijzing voor de juilstheld van de analyse.

Eenvoudige vergelijkingen worden afgeleid voor de relatieve adsorptie in
een oplossing van polydispers polymeer. In verdunde oplossingen adsorberen
lange ketens preferent boven korte, in overeenstemming met experimentele
gegevens. In zeer hoge concentraties wordt echter voorspeld dat bij voorkeur
juist korte moleculen adsorberen.

De wisselwerking tussen twee polymeerlagen wordt onderzocht in hoofd-
stuk 3. Omdat de toestandssom van het systeem bekend is, is de vrije energie

van Iinteractie gemakkelijk uit te rekenen. Overeenkomsten en verschillen met
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andere theorieén worden aangegeven. De berekeningen geven informatie over
het effect van geadsorbeerd polymeer op de stabiliteit van kolloTden. Als
het polymeer de ruimte tussen de beide oppervlakken vrij kan binnenkomen of
verlaten (volledig evenwicht) dan trekken de lagen elkaar altijd aan. Deze
aantrekking wordt veroorzaakt door polymeerketens die tegelijkertijd op
belde oppervlakken adsorberen (brugvorming). Als het polymeer niet weg kan
(beperkt evenwicht) i3 er aantrekking in (zeer) verdunde polymeeroplossingen
en, behalve in zeer slechte oplosmiddelen, afstoting in geconcentreerde
systemen. Deze voarspellingen worden vergeleken met die van andere theorieén
en komen overeen met experimentele waarnemingen.

Enkele toepassingen van de theorle op andere systemen worden gelllus-
treerd in hoofdstuk 6.

Er wordt gevonden dat vertakkingen in de keten geen grote invloed hebben
op de oppervlakteactiviteit van de moleculen, wmits het molecuulgewicht ge-—
1ijk plijfe.

Preferente adsorptie in oplossingen van polydispers polymeer heeft be-
langrijke practische consequenties, want polymeer is alti jd polydispers. Het
is nu mogeliijk de adsorptie—eigenschappen van polymeer met een willekeurige
molecuulgewichtsverdeling te berekenen.

Door het inbouwen van electrostatische termen in de weegfactoren van de
segmenten ontstaat een adsorptietheorie wvoor polyelectrolyten. Bij lage
ionsterkte adsorberen de geladen meleculen in een erg vlakke conformatie.
Alleen bij zeer hoge zoutconcentraties of als de ionisatiegraad laag is
gedraagt een polyelectrolyt zich als een neutraal polymeer. In het algemeen
1li jkt de adsorptie van polyelectrolyt op die van polymeer in goede oplos-
middelen.

Als voorbeeld van copolymeren aan een vloelstof-vloeistof grensvlak
wordt de structuur van een vetzuurdubbellaag bestudeerd. Er wordt aangetoond
dat een hoge concentratie water in het centrum van de dubbellaag aanwezig is
en dat de fluctuaties in de posities wvan bijvoorbeeld de kopgroepen erg hoog
zi jn.

Berekeningen aan de structuur van de amorfe fase van half-kristallljn
polymeer laten zien dat ook polymeersystemen zonder oplosmiddel met de
theorie bestudeerd kunnen worden. Zelfs enkele deformatie—eigenschappen van
het polymeer kunnen voorspeld worden.

Tenslotte wordt aangegeven hoe de voorspellingen van de theorie gebruikt
kunnen worden voor de stabiliteit van kollolden in aanwezigheid van niet

adsorberend polymeer (depletievlokking en -restabiligatie).
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In het algemeen is de overeenstemming met experimentele waarnemingen erg
goed. Dit toont aan dat de theorie in wezen correct is. Vanwege het gebrek
aan betrouwbare experimentele gegevens is een kwantitatieve vergeli jking
slechts in enkele gevallen mogelijk. De capaclteit en de flexibiliteit wvan
de theorie zijun echter duidelijk aangetoond en het is slechts een kwestie
van tijd om de vele toepassingsmogelijkheden die op een nadere uitwerking

liggen te wachten, met de huidige theorie aan te pakken.
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NAWOORD

Nu U dit proefschrift geheel hebt doorgenomen wilt U natuurlijk graag weten
wie tot de totstandkoming ervan hebben bijgedragen. Dit geeft mij tevens de
gelegenheid iedereen te bedanken die wmij op een of andere manier behulpzaaq
is geweest. Enkele mensen wil ik persoonlijk noemen.

Mijun promotoren Gerard Fleer en Hans Lyklema hebben mij alle vrijheid en
begeleiding gegeven die ik bij het onderzoek nodig dacht te hebben. Aan Hans
heb ik o.a. mijn 1interesse voor de moleculaire thermodynamica te danken.
Zijn manier van leiding geven stimuleert een hoge produktie In een onge-
dwongen sfeer. Gerard heeft mij enthousiast de weg gewezen iIn het
wetenschappelijke wereldje. Zijn kritische instelling, overmoeibare inzet en
scherp uitdrukkingsvermogen zijn wvan onschatbare waarde geweest wvoor het
uiteindeli jke resultaat.

Mijn interesse voor het grensgebied tussen theorie en praktijk werd
vruchtbaar aangevuld door Martien Cohen Stuart, die door zijn experimenteer—
kunst en theoretische kennis menipg verband wist aan te tonen.

Met Henk wvan der Schee heb 1k vele stimulerende idee¥n uitgewisseld.
Zijn manier van gebruik en misbruik van programmatuur vormt de strengste
test die men zich kan voorstellen. De betrouwbaarheid van mijn computerpro-
gramma's voor (niet-) bedoelde toepassingen is daardoor aanzienlijk ver-
beterd.

Het merendeel van de resultaten uit hoofdstuk 6 is berekend door Bas
Roefs, Jan Bouwstra, Olaf Evers en Frans Leermakers in het kader van hun
doctoraalstudie.

Het nauwkeurige tekenwerk 1s wverzorgd door Gert Buurman en de (niet
eenvoudige) tekstverwerking was in handen wvan Clara van Dijk en Yvonne
Toussaint.

Dezen en vele anderen van de vakgroep Fysische en Kolloidchemie dank 1k
voor de plezierige samenwerking en de goede sfeer. Ik verheug me op een

prettige voortzetting in de komende jaren.




