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STELLINGEN 

1. De conclusie van Estell en medewerkers, dat subtilisine, door middel 

van plaatsgerichte mutagenese stabieler gemaakt tegen oxidatie­

middelen, bruikbaar zou zijn voor industriële toepassingen, is voor­

barig. 

- Estell, D.A., T.P. Graycar en J.A. Wells (1985) Journal of 

Biological Chemistry 260, 6518-6521. 

- Bott, R.R., E. Ferrari, J.A. Wells, D.A. Estell, D.J. Henner 

(1985) European patent application 0130756 (79 pp.). 

2. De resultaten verkregen in 26 verschillende laboratoria van een kwan­

titatieve analyse van soja-eiwit in verschillende preparaten met 

SDS-PAGE en met ELISA doen vermoeden, dat Western blotting gevolgd door 

immunologische detectie een nauwkeuriger methode is voor de bepaling 

van soja-eiwit in vleesprodukten. 

- Olsman, W.J., S. Dobbelaere en C.H.S. Hitchcock (1985) Journal of 

the Science of Food and Agriculture 36, 499-507. 

3. De methode gebruikt door Jouanneau en medewerkers is ongeschikt voor 

het bepalen van de concentratie van nitrogenase in hele cellen. 

- Jouanneau, Y., B. Wong en P.M. Vignais (1985) Biochimica et 

Biophysica Acta 808, 149-155. 

- Dit proefschrift, hoofdstuk 3. 

4. Gezien de nauwkeurigheid van de resultaten kan in veel biochemische 

publikaties een grafiek vaak beter met een viltstift dan met een pen 

getekend worden. 

5. De remming van de stikstofbinding, die wordt waargenomen in Anabaena na 

het toevoegen van NaCl kan beter verklaard worden in termen van een 

effect van NaCl op de proton motive force, dan door remming van de 

nitrogenase activiteit via een verhoogde interne Na+ concentratie. 

- Moore, D.J., R.H. Reed en W.D.P. Stewart (1985) Journal of 

General Microbiology 131,. 1267-1272. 

6. Wanneer een Coomassie Brilliant Bue eiwitbepaling wordt vergeleken met 

de biureet of de Lowry methode, kan een uitspraak gedaan worden over 

het gehalte aan basische aminozuren. 

- Tal, M., A. Silberstein en E. Nusser (1985) Journal of Biological 

Chemistry 260, 9976-9980. B I B L I O T H E E K 
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7. De referees van het betreffende artikel geven blijk van een gebrekkige 

kennis van de literatuur, wanneer zij accepteren dat Schägger en 

medewerkers een "nieuwe" SDS-PAGE methode ontwikkeld hebben om 11 

eiwitten met een molecuulmassa van 6 tot 50 kDa te scheiden. 

- Schägger, H., U. Borchart, H. Aquila, T.A. Link en G. von Jagow 

(1985) FEBS Letters 190, 89-94. 

- Burr, F.A. en B. Burr (1983) Methods in Enzymology 96, 239-244. 

8. Kennis is macht. De onmacht van gehandicapten maakt het daarom gemakke­

lijk om bezuinigingen op hen af te wentelen. 

- Eigen bijdrage regeling bijzondere ziektekosten 1983, Nederlandse 

Staatscourant, ma. 8 november 1982, nr. 215. 

9. Bij het vrijmaken van ijzer uit ferritine is de pH belangrijker dan de 

redoxpotentiaal. 

- Funk, F., J.-P. Lenders, R.R. Crichton en W. Schneider (1985) 

European Journal of Biochemistry 152, 167-172. 

10. Uit de gegevens die Ramos & Robson publiceren over de ademhaling en de 

stikstofbinding van Azotobacter chroococcum kan afgeleid worden, dat 

het electronentransport naar nitrogenase in deze bacterie vijf maal 

effectiever is dan in Azotobacter vinelandii. 

- Ramos, J.L. & R.L. Robson (1985) Journal of Bacteriology 162, 

746-751. 

- Dit proefschrift, hoofdstuk 5. 

11. De term neuron specifiek voor de iso-enzymen van enolase, die de 

y-subeenheid bevatten, is onjuist. 

- Oskam, R., Rijksen, G., Lips, C.J.M, en Staal, G.E.J. (1985) 

Cancer 55, 394-399. 

12. Kleuters zijn uitermate geschikt als adviseurs voor reclamebureaus, 

aangezien uit hun reactie gemakkelijk valt af te leiden welke 

STER reclames pakkend zijn. 

13. De meeste stellingen worden in de bouw gezet. 

Jan Klugkist 
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Wageningen, 4 december 1985 
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1. GENERAL INTRODUCTION 

1.1 The nitrogen cycle 

Nitrogen is a component element of proteins, nucleic acids and other 

biomolecules. Biological structures in plant and animal kingdoms contain 

only 1/400000 of the nitrogen present in the atmosphere [18,24], but cannot 

use the atmospheric nitrogen (N2) for their growth. The conversion of 

dinitrogen to ammonia is carried out by some bacteria and blue-green algae, 

a process called nitrogen fixation. The ammonia can be incorporated into 

plant material. Plants are consumed by animals. As a result of decay and 

putrefication of plant and animal material, ammonia returns to the soil, 

where bacteria rapidly convert it into nitrate (nitrification). Nitrate can 

either be incorporated into living material e.g. used by plants or return 

to the atmosphere after denitrification by bacteria. The last step closes 

the nitrogen cycle as shown in Fig. 1. 

Fig. 1. The nitrogen cycle. The simplest form of the nitrogen cycle is 
illustrated. The numbers beneath the various steps are orders of magnitude 
of turnover in tonnes/year. From ref. 64. 
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1.2 Biological nitrogen fixation 

Much of the N-cycling occurs at the lower part of the cycle, assimila­

tion and ammonification (Fig. 1). Input of inorganic-N by nitrogen fixation 

is about 1% of the assimilation rate. In nature ^-fixation controls the 

flux of N through the N-cycle [40]. At low levels of fixed-N nitrogen fixa­

tion is induced. When fixed-N is relatively abundant, nitrogen fixation 

stops to prevent that biomass will increase indefinitely. 

In practice productivity of agriculture is often limited by the availa­

bility of fixed-N. Therefore intensive agriculture requires the input of 

inorganic nitrogen fertilizers. Ammonia necessary for these fertilizers is 

made industrially from hydrogen gas and atmospheric nitrogen in the 

Haber-Bosch process. Industrial fixation amounts to approximately one fifth 

of the total nitrogen fixation in the world [l4]. Up till now industrial 

fixation is relatively cheap, but the fossil fuels needed for the process 

are exhaustible. Furthermore, even though nitrogenous fertilizers are 

cheap, the costs of transport makes the price of fertilizer a great 

obstacle to increase food production in many less developed countries. So 

it is pot amazing that since long there is a great interest in biological 

nitrogen fixation. During the last decade scientific interest has been 

expanding. The first international symposium on nitrogen fixation in 1974 

was attended by 200 scientists. The fifth sysmposium in 1983 by 550 scien­

tists from 60 different countries. Strange enough increase in food produc­

tion is mainly expected from increase in input of (biologically) fixed-N. 

Decreasing loss of fixed nitrogen by denitrification (see Fig. 1) could 

also be beneficial for agriculture. But relatively little attention is 

given to this point [63] . 

How biological nitrogen fixation might attribute to the worlds food 

problem is reflected by the research presented at conferences on 

N2-fixation [88]. Firstly, attention is given to the application of biolo­

gical nitrogen fixation. Often environmental stresses prevent the presently 

available, active nitrogen-fixing microorganisms from doing what laboratory 

and greenhouse studies suggest they ought to do. Identifying these stresses 
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should facilitate the development of nitrogen-fixers that can survive, 

grow, and be beneficial in agricultural environments [l]. 

Secondly, an understanding of the chemistry of dinitrogen fixation 

might lead to the development of more effective catalysts than are used at 

present in the Haber-Bosch process, needing a N2-pressure of 300 

atmospheres and a temperature of 500°C. 

Thirdly, the enzyme that actually 'fixes' N2 i.e. nitrogenase is 

studied to figure out the catalytic mechanism of biological nitrogen fixa­

tion. 

Fourthly, physiology is an important, but a broad research area. It 

deals with questions as: how is the process of nitrogen fixation incor­

porated into the metabolism of bacteria; how is the process regulated; what 

is necessary for the development of an effective symbiosis between 

nitrogen-fixing organisms and plants. 

Fifthly, genetists are isolating and manipulating the (nlf) genes, 

involved in nitrogen-fixation, from bacteria. Although it is clear that 

'nitrogen-fixing' cereals are not simply made by transferring the nif-genes 

to the plant of choice, the nif-genes might be used in transforming non-

nitrogen-fixing bacteria living in associations with crops into diazotrophs 

to the benefit of the plants. Another line of research deals with the gene­

tics of symbiotic nitrogen fixation. This includes identification of bac­

terial genes necessary for nodulation (nod-genes) as well as the many plant 

genes involved in nodulation and symbiosis. The apparent aim of this kind 

of research is to obtain the basic knowledge in order to construct new 

kinds of symbiosis between nitrogen-fixing bacteria and commercially impor­

tant crops. Developing, for example, corn plants having symbiotic nitrogen 

fixation as pea plants do. Maybe on the long term, important agricultural 

crops can be engineered to fix their own nitrogen without the involvement 

of bacteria [57j, but at this moment many genetical, biochemical, physiolo­

gical problems are unsolved. 
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1.3 Enzymology 

For all organisms studied thus far the properties of the enzyme system 

nitrogenase, which catalyzes the reduction of N2 to ammonia are remarkably 

similar [l3,32J. In nearly all diazotrophs biosynthesis of nitrogenase is 

repressed, when cells are provided with fixed nitrogen. Thus nitrogen fixa­

tion occurs only when its product (NH3) is needed. Nitrogenase is a complex 

of two proteins, neither of which has any activity by itself. The two pro­

teins can be purified separately and are called molybdenum-iron protein 

(MoFe protein or component I) and iron protein (Fe protein or component 

II). The MoFe protein is an a2#2 tetramer of relative molecular mass (Mr) 

220000 [5o]. The a subunit (Mr 50000) is coded by the so-called nif D gene. 

The ß subunit (Mr 60000) is coded by the nif K gene. The MoFe protein is 

thought to have 2 iron-molybdenum cofactors (FeMoCo) as the substrate 

binding sites [78]. One FeMoCo consists of 1 atom of Mo, 8 Fe atoms and 6 

S2~ atoms [20,75]. In addition the MoFe protein contains about 4 [4Fe-4s] 

clusters. 

The Fe protein is a dimer composed of two identical subunits, encoded 

by the so-called nif H gene. The native Fe protein, of Mr 65000, is 

generally thought to contain one [4Fe-4S] cluster and two adenine 

nucleotide binding sites [13]. Binding of MgADP and MgATP to the Fe protein 

is thought to be competative [15] . As discussed by Haaker and Veeger [32], 

EPR and Mössbauer studies indicate that only a minor part of the Fe atoms 

in the Fe protein of Azotobacter vinelandii (Av2) are present in a ferre-

doxin type of [4Fe-4s] cluster. Most of the iron atoms are part of another 

cluster which has not been detected by EPR spectroscopy. The exact number 

of Fe and S2~ atoms per molecule Fe protein is still unknown. Although 

most authors report a value of 4 [13], Braaksma et al. [12] showed that the 

number was variable between 3 and 8 dependable upon the growth conditions 

of the bacteria and upon the isolation procedure. Up to now no unambiguous 

biochemical data about the cluster content of the MoFe and the Fe protein 

can be given. This is caused by the fact that it is very difficult to 

purify these proteins without loss of activity or loss of metal clusters. 
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So one is never sure, that experiments are done with preparations similar 

to the proteins as they occur in vivo. 

The stoichiometry of the reaction catalyzed by nitrogenase under opti­

mum conditions is [79]: 

N2 + 10H+ + 8 electron donor (red) + 16 MgATP -

2 NH 4
+ + H2 + 8 electron donor (ox) + 16 MgADP + 16 Pj (eq.l) 

Under less favourable conditions the amount of ATP hydrolyzed and the 

amount of H2 produced per molecule of NH 4
+ formed is higher. The enzyme 

also reduces acetylene to ethylene, a compound which can rapidly and sen­

sitively determined by gas chromatography and is therefore used in many 

biochemical studies. Because nitrogenase is rapidly inactivated by oxygen, 

all nitrogen-fixers have provisions to keep the environment of the enzyme 

anaerobic [6]. Anaerobic, facultative anaerobic and phototrophic bacteria 

only fix nitrogen under anaerobic conditions. Aerobic bacteria protect 

nitogenase against oxygen by physical barriers, a high respiration rate and 

in the case of Azotobacter species an FeS protein which binds to nitroge­

nase and protects it against oxygen damage after a sudden increase in aera­

tion. A detailed review about the maintenance of anaerobiosis inside 

aerobic nitrogen-fixing bacteria is given by Scherings [70J. 

1.4 Electron transport to nitrogenase 

For nitrogenase activity the electron donor shown in equation 1 must 

have a redox potential of -400 mV or lower [11,21,49,71]. In vitro sodium 

dithionite is almost exclusively used as reducing agent. Iji vivo only two 

classes of electron carriers with sufficiently low redox potential are 

known, namely ferredoxins and flavodoxins. 

Ferredoxins are proteins with an FeS cluster as prosthetic group and Mr 

ranging from 5600 to 24000 [27,92,93,95]. For cyanobacteria the prosthetic 

group is a [2Fe-2S] cluster. All other low potential ferredoxins from 
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nitrogen-fixing organisms have a [4Fe-4s] cluster (Fig. 2 ) . From many bac­

teria two or more ferredoxins can be isolated. Another feature, thus far 

only observed in nitrogen-fixing bacteria, is that some ferredoxins have 

two [4Fe-4s] clusters operating at two different redox potentials. One 

cluster having an E m of ca. -400 mV, the other being +300 mV. Recently it 

has been found, that one of the clusters is easily converted into a [3Fe-3s] 

cluster and vice versa [58,59]. Ferredoxin is considered to be the imme­

diate electron carrier to nitrogenase in all nitrogen-fixing organisms, 

with the exception of Klebsiella pneumoniae and possibly Azotobacter spe­

cies. Under Fe-deficiency several microorganisms form flavodoxin instead of 

ferredoxin [8,16,19,44]. Only for Klebsiella pneumoniae [94] and 

Azotobacter vinelandii [86] synthesis of flavodoxin was shown not to be 

supressed by high concentrations of iron in the medium. 

Flavodoxins are soluble proteins having FMN as prosthetic group (Fig. 

2) and Mr ranging from 14000 to 23000 [27,92,93,95]. Flavodoxins have three 

oxidation levels: quinone (oxidized form), semiquinone (le~-reduced) and 

hydroquinone (2e~-reduced). The redox potential of the 

hydroquinone/semiquinone couple is sufficiently low to reduce nitrogenase 

[27,92,93,95]. 

The physiological flow of electrons is thought from either ferredoxin 

or flavodoxin to the Fe protein of nitrogenase. The Fe protein in turn 

reduces the MoFe protein coupled to MgATP hydrolysis. When 8 electrons are 

transferred to the MoFe protein, one molecule of N 2 can be reduced comple­

tely, a process requiring both the MoFe protein and the Fe protein. As will 

be discussed in the next sections, little is known about the way the 

electron carriers ferredoxin and flavodoxin are reduced in vivo. 
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Cys , ' X / c y s 

^ Fe Fe ̂  

(a) 

Cys Cys 

(O 

(b) 

Fig. 2. Arrangement of iron and sulphur atoms in (a) [2Fe-2s] and (b) 
[4Fe-4s] clusters. The cysteine residues are part of the polypeptide chain 
of the ferredoxin and are bound to the clusters via their S atoms, 
(c) Structure of oxidized riboflavin 5'-phosphate (FMN). 

1.4.1 Obligate anaerobic nitrogen-fixing bacteria 

This group of bacteria includes the obligate anaerobes Clostridium 

pasteurianum and Desulfovlbrio spp. but also the facultative anaerobes like 

Klebsiella pneumoniae and Bacillus polvmyxa, fixing nitrogen only under 

anaerobic conditions. Anaerobic bacteria, typified by C.pasteurianum 
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generally are considered to use the thioclastic reaction (eq. 2) as a 

source of reducing power and energy for nitrogen fixation [27,92,93,95]. 

pyruvate + CoASH + 2 fd(ox) -* 

acetylCoA + C02 + 2 fd(red) + 2 H+ (eq.2) 

In the thioclastic reaction electrons are transferred from pyruvate to 

ferredoxin (fd) by pyruvate:ferredoxin oxidoreductase. Ferredoxin in turn 

reduces the Fe protein of nitrogenase. Pyruvate:ferredoxin oxidoreductases 

are thiamin diphosphate containing iron-sulphur proteins (Mr ca. 250000) 

[43]. In addition to pyruvate other substrates like H2, formate, NADH and 

NADPH can support ferredoxin dependent nitrogenase activities in crude 

extracts from anaerobes [95]. But these reactions are thought of minor 

importance for electron transport to nitrogenase in vivo [30,92]. In 

anaerobes degradation of one molecule of pyruvate can give reduction of 2 

molecules of ferredoxin and synthesis of 1 molecule of ATP via acetylCoA 

and acetylphosphate. Since nitrogenase needs at least 16 molecules of ATP 

against 8 molecules of reduced ferredoxin (eq. 1), it will be clear that 

not the production of reductant, but synthesis of ATP is limiting for 

nitrogenase activity in anaerobes. 

Klebsiella pneumoniae is thus far the only nitrogen-fixer where the 

electron-transfer pathway to nitrogenase is genetically proven. In 

K.pneumoniae a (nif) gene cluster, comprising of 17 genes, is required for 

the jui vivo synthesis and activity of nitrogenase. The products of nif F 

and nif J have been implicated in electron transport to nitrogenase 

[35,67,80]. Nif F~ and nif J- mutant strains have no nitrogenase activity 

in vivo but have activity in vitro with dithionite. Crude extracts from 

wild type K.pneumoniae can couple the oxidation of pyruvate and formate to 

electron transport to nitrogenase [94], whereas extracts from nif F~ and 

nif J~ mutants cannot [35]. Nif J product was purified from wild type on 

the basis of its ability to restore nitrogenase activity to crude extracts 

of a nif J- mutant when supplied with pyruvate as electron donor [76] . An 

earlier report on the purification of nif J [7] turned out to be 

questionable [76]. Nif F product was purified in a similar manner [61]. The 

nif F gene product was shown to be a flavodoxin of Mr 20000 ± 2000 

[17,61,66]. The purified protein is a monomer and stable in 0 2 [61]. Nif J 



gene product was shown to be a pyruvate:flavodoxin oxidoreductase [76]. The 

enzyme catalyzes a thioclastic reaction (eq. 2) and is extremely sensitive 

to oxygen. The native protein (Mr 240,000) is an a 2 dimer and contains 8 

moles of iron and 7 moles of acid-labile sulphide per mole of protein. 

Pyruvate is the only physiological substrate and only flavodoxin, not 

ferredoxin, is effective in coupling electron flow to nitrogenase. Spectral 

changes demonstrate that pyruvate:flavodoxin oxidoreductase reduces flavo­

doxin to the hydroquinone state which gets oxidized to the semiquinone by 

transferring electrons to nitrogenase. Without giving attention to the 

stoichiometry the components involved in electron transport to nitrogenase 

in Klebsiella pneumoniae can be placed in the next order: 

^ N 2 ,N2 

pyruvate -» pyruvate: f lavodoxin -* flavodoxin -» Kp2 -» Kpj ( (eq.3) 

oxidoreductase ^*NH4 

nif J nif F 

Kpi and Kp2 are the MoFe and Fe protein of nitrogenase. 

1.4.2 Photosynthetic bacteria 

This group includes the strict anaerobic sulphur bacteria Chlorobium 

and Chromatium and the facultatively aerobic non-sulphur bacteria 

Rhodopseudomonas and Rhodospirillum. The photosynthetic bacteria fix 

dinitrogen in the light under anaerobic conditions. Oxygen concentrations 

above 1 (iM inhibit light-driven nitrogenase activity [29,37]. Only for the 

Chlorobiaceae it could be demonstrated that illuminated chromatophores 

generate reducing power for N2-fixation [22]. For the other photosynthetic 

bacteria the redox potential of the primary electron acceptor is too high 

(-50 to -150 mV) to reduce ferredoxin directly. In the past six years evi­

dence has been obtained for Rhodopseudomonas spp. [29,42,55,77], 

Rhodospirillum rubrum [54] and a member of the Chromatiaceae [41], that 

nitrogenase activity is not obligatory coupled to the activity of the pho-
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tosynthetic apparatus. These organisms could fix nitrogen in the dark by 

aerobic respiration at low oxygen tensions. Depending on the organism, 

nitrogenase activity under dark aerobic conditions was 3-50% of the activi­

ties measured anaerobically in the light. After a period of adaptation, 

Rhodospirilium rubrum can even grow anaerobically in the dark [54,72]. 

Under these special conditions ferredoxin is reduced in the thioclastic 

reaction by pyruvate:ferredoxin oxidoreductase [26]. But it is unlikely 

that this enzyme is responsible for nitrogenase activity during photo-

synthetic or microaerophilic growth [27]. 

In 1980 it has been suggested by Haaker et al. [30] that the proton 

motive force is important for nitrogenase activity in photosynthetic bac­

teria. The proton motive force (AJJH+) is composed of a difference in proton 

concentration (ApH) and a difference in charge (A«J>) across the cytoplasmic 

membrane. At 25°C: 

AMH+ = Al(» - 59ApH (mV) (eq.4) 

According to the model [30] the energy present in the AMJJ+ is used to lower 

the redox potential of electrons so that ferredoxin can be reduced. This 

process is called reversed electron flow. Indeed in 1982 it has been shown, 

that electron transport to nitrogenase in Rhodopseudomonas sphaeroides 

depends on a high membrane potential [29]. Furthermore the lower nitroge­

nase activity in the dark under microaerophilic conditions compared to the 

activity in the light under anaerobic conditions can be explained in terms 

of a lower membrane potential and a lower ATP/ADP ratio [29]. Evidence for 

the proteins, that are involved in this reversed electron flow might be 

obtained from analysis of nif~ mutants defective in electron transport to 

nitrogenase, as isolated for Rhodopseudomonas capsulata [90]. 
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1.4.3 Cyanobacteria {blue-green algae) 

This group includes the unicellular Gloeothece and the filamentous 

algae like Plectonema boryanum and Anabaena cylindrica. In Anabaena species 

N2-fixation takes place in specialized cells: the heterocysts. Heterocysts 

lack the oxygen evolving photosystem II and ribulose-1,5-blsphosphate car­

boxylase. It is thought that vegetative cells provide the heterocysts with 

carbon compounds (e.g. erythrose [65]) and the heterocysts return fixed 

nitrogen in the fofm of glutamine [81,9l]. Cyanobacteria can fix nitrogen 

aerobically either in the light or in the dark. In the dark NADPH is 

thought to be the electron donor for nitrogenase, ferredoxin being directly 

reduced by ferredoxin:NADP+ oxidoreductase [2,48]. In the light this path­

way is switched-off. Electrons from NADPH first have to pass through photo-

system I for ferredoxin reduction and thus light provides the reducing 

power for nitrogenase activity [74] (Fig. 3). In addition to NADPH also 

NADH and H2 can donate electrons to the photosystem. 

Serious objections against a linear electron transport chain from NADPH 

and via ferredoxin to nitrogenase were formulated by Haaker et al. [30]. 

The main objection being that in vivo the reducing power of NADPH is -350 

mV [2], not low enough for N2-fixation [74]. In vitro nitrogenase activity 

is measured with an NADPH regenerating system, which artificially increases 

the reducing power of NADPH. Haaker et al. [30] suggested a similar system 

to that of aerobic nitrogen-fixers: a proton motive force driven reversed 

electron flow to nitrogenase (see next section). In the light the proton 

motive force can be generated by cyclic electron flow, in the dark by 

respiration. Indeed experiments with intact organisms showed that the 

membrane potential was involved in sustaining nitrogenase activity both in 

heterocystous and non-heterocystous cyanobacteria [33,34]. Other authors 

demonstrated high nitrogenase activities in isolated heterocysts and cell-

free extracts in the absence of energized membranes [38,74] and suggest 

that AT is not the driving force for electron transport to nitrogenase, but 

some kind of a regulatory compound for N2-fixation [9]. However nitrogenase 

activity without a A"F driven reversed electron flow would require a high 
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NADPH/NADP+ ratio in the cell. Whereas it is clear that the enzymes 

involved in NADPH generation viz. glucose-6-phosphate- and isocitrate-

dehydrogenase are negatively regulated by the reductant charge and ATP 

[2,62,69]. An explanation has been offered by proposing that a high 

NADPH/NADP+ ratio is generated by light-dependent transhydrogenation of 

NADH. The NADH being reduced by glycolytic carbon degradation [73]. 

Oxidative 
pentose -
phosphate 
cycle 

[Tricarboxylic 
< acid 

cycle 

NADH — 

[Ni t rogenaseJ 

' ^ N A D P H / N A D P 

'' A/ 
r ; ( F d j - — {Glycolysis} 

t 

Fig. 3. Tentative scheme for electron flow from different sources to nitro-
genase in heterocysts of Anabaena variabilis. Pathways supporting low 
nitrogenase activities are indicated by dashed arrows (involving dehydroge­
nases of the pentosephosphate pathway and triçarboxylic-acid cycle); high 
activities are indicated by solid arrows. NADH is formed by glycolytic 
degradation of glucose-6-phosphate, H 2 is formed by nitrogenase activity or 
may be supplied exogenously. Cyt, cytochrome; Fd, ferredoxln; FeS, Rieske 
iron-sulfur center; FNR, ferredoxin:NADP oxidoreductase; PC, plastocyanin; 
PQ, plastoquinone; PS I, Photosystem I. From ref. 74. 

In the unicellular Gloeothece N2-fixation and photosynthetic 0 2 evolu­

tion occur in a single cell type. In nature cultures have photosynthesis in 

light and N2-fixation in darkness [60]. But cells can also grow under 

constant illumination thereby evolving 0 2 and fixing N 2 simultaneously. 

Ca 2+ has been shown to be important in protecting nitrogenase from 0 2 
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damage under these conditions [23]. Very recently it has been shown that 

respiration is the major source of reductant and ATP for nitrogenase acti­

vity both in the dark and in the light in Gloeothece, but photosystem I can 

contribute ATP at very high levels of illumination [56]. 

1.4.4 Obligate aerobic nitrogen-fixers 

This group of bacteria includes the free living Azotobacter, 

Azospirillum species and micro-organisms like Rhizobium and Frankia spp., 

which can fix dinitrogen as free living organisms or in symbiosis with 

plants. One of the most puzzling observations for aerobic nitrogen-fixers 

is, that nitrogenase activity can be measured easily with dithionite in 

crude extracts, but no activity is observed with all kinds of physiological 

reductants. Thus far only for Azotobacter vinelandii, nitrogenase activity 

could be demonstrated in crude extracts using endogenous proteins and phy­

siological substrates [5]. An electron transport pathway from NADPH to 

nitrogenase was proposed. 

NADPH * ferredoxin • flavodoxin -» nitrogenase (eq.5) 

oxidoreductase unknown factor 

The low redox potential necessary for electron flow to nitrogenase 

should be generated by a high NADPH/NADP+ ratio [3]. As critisized by 

Haaker et al. [27,30] the proposed model (eq. 5) is thought to be too 

simplistic. Firstly, when eq. 5 is correct it must be possible to detect a 

reasonable nitrogenase activity with an NADPH generating system in crude 

extracts. For some Azotobacter strains the reaction rate was less than 5* 

of the activity with dithionite as electron donor but for other strains 

(including our strain A.vinelandii ATCC 478) no activity at all was 

observed. Secondly, the enzyme ferredoxin:NADP+ oxidoreductase has not been 

found in Azotobacter spp. Thirdly, for nitrogenase activity the ratio 

NADPH/NADP+ in A.vinelandii cells under nitrogen-fixing conditions is 
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approximately 0.4 [89] corresponding to a redox potential of -330 mV and 

therefore not low enough for nitrogenase activity. 

An important observation was made in 1974 when it was shown that an 

energized cytoplasmic membrane is obligatory for electron transport to 

nitrogenase [28]. Later this observation was extended to bacteroids of 

Rhizobium leguminosarum [45] . After the discovery of a membrane-bound 

NADH-flavodoxin oxidoreductase [31] a scheme for electron transfer to 

nitrogenase of A.vinelandii was proposed (Fig. 4 ) . 

A membrane bound flavodoxin-oxidoreductase is reduced by NADH. The 

enzyme reduces flavodoxin semiquinone to the hydroquinone form by means of 

proton transport across an energized membrane. The flavodoxin hydroquinone 

Nctse(red) Nase(ox) 

NADH NAD 
\pH9fl> 

(FdH~) Em=-495(mV) 
pH>7.0 

FdH 

. j 

Em=-380(mV) 

FdH 

aj->pH5"1é 

Em=-380(mV) 

(FdH 

NADH-FLAVODOXIN 
OXIDOREDUCTASE 

Fig. 4. Scheme for electron transfer to nitrogenase in Azotobacter vine-
landii. The boxes represent an 'energised' membrane. From Haaker & Veeger 
[31]. 

transfers the electron to nitrogenase. For such a proton motive force dri­

ven reversed electron flow especially the membrane potential (eq. 4) turned 

out to be an important factor. This was shown both for A.vinelandii and 

Rhizobium leguminosarum [46,47]. Some support for a scheme like Fig. 4 was 

given by Howard et al. [39], who showed that although nitrogenase is a 

soluble enzyme [31,68] in the cell a structural association may exist bet­

ween nitrogenase and the cytoplasmic membrane. Thus far attempts to induce 
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nitrogenase activity in vitro with NAD(P)H, flavodoxin and artificially 

energized membranes have been unsuccessful [87 and Haaker, unpublished 

results]. At the moment there is no definite proof, whether the scheme of 

Benemann (eq. 5) or Haaker (Fig. 4) or a combination of both is correct. 

1.5 Outline of this thesis 

The research reported in this thesis was focussed on the electron transport 

pathway to nitrogenase in Azotobacter vinelandii. As mentioned earlier the 

generation of reducing equivalents for nitrogenase is dependent on a high 

membrane potential. At least this was concluded from the short-term inhibi­

tory effect of ammonium chloride on nitrogen fixation by A.vinelandii [47]. 

Later it was demonstrated by others that ammonia was no short-term inhibi­

tor of nitrogenase activity in growing cultures [25]. In chapter 2 the 

discrepancies in the literature for the inhibition of electron transport to 

nitrogenase by NH4C1 will be explained. 

A detailed kinetic model for nitrogenase catalysis has been developed 

by Thorneley and Lowe [51-53, 82-85]. Their model predicts that nitrogenase 

catalysis is inhibited at high concentrations of the nitrogenase proteins, 

when the rate of reduction of oxidized Fe protein is not indefinitely fast. 

However their experiments were performed in the presence of the artificial 

electron donor dithionite. Chapter 3 deals with the catalytic activity of 

nitrogenase in intact cells. Evidence will be presented that the con­

centration of nitrogenase is high in intact cells, but that due to a very 

effective electron donating system nitrogenase activity is not inhibited. 

The enzyme activity in whole cells is even higher than ever measured in 

vitro. 

Azotobacter vinelandii contains several low potential electron 

carriers, capable of donating electrons to nitrogenase [4,96,97]. At least 

two ferredoxins [96] and one flavodoxin [36], have been described to be 

present. As reviewed by Scherings [70] flavodoxin is the more likely can­

didate to serve as ultimate reductant for nitrogenase in vivo. But others 

are reluctant to accept this view [10]. Chapter 4 describes the isolation 

of three different flavodoxins from A.vinelandii, one being involved in 
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electron transport to nitrogenase. Proteins, that might probably play a 

role in the reduction of flavodoxin are described in Chapter 5. However the 

possibility is discussed that the pathway of flavodoxin reduction is not 

specific for nitrogen fixation. Evidence will be presented, suggesting that 

a direct interaction between electron transport to nitrogenase and electron 

flow through the respiratory chain may occur. 
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In Azotobacter vinelandii cells, the short-term inhibition of nitrogenase activity by NH4CI was found to 
depend on several factors. The first factor is the dissolved oxygen concentration during the assay of 
nitrogenase. When cells are incubated with low concentrations of oxygen, nitrogenase activity is low and 
ammonia inhibits strongly. With more oxygen, nitrogenase activity increases. Cells incubated with an 
optimum amount of oxygen have maximum nitrogenase activity, and the extent of inhibition by ammonia is 
small. With higher amounts of oxygen, the nitrogenase activity of the cells is decreased and strongly 
inhibited by ammonia. The second factor found to be important for the inhibition of nitrogenase activity by 
NH4C1 was the pH of the medium. At a low pH, NH4* inhibits more strongly than at a higher pH. The third 
factor that influenced the extent of ammonia inhibition was the respiration rate of the cells. When cells are 
grown with excess oxygen, the respiration rate of the cells is high and inhibition of nitrogenase activity by 
ammonia is small. Cells grown under oxygen-limited conditions have a low respiration rate and NH4C1 
inhibition of nitrogenase activity is strong. Our results explain the contradictory reports described in the 
literature for the NH4C1 inhibition of nitrogenase in A. vinelandii. 

In all free-living nitrogen-fixing bacteria examined thus 
far, synthesis of nitrogenase is repressed after addition of 
ammonia to the culture medium (2, 4. 11. 13, 15, 17, 19, 21). 
In most of the bacteria, except some photosynthetic bacte­
ria, the nitrogenase proteins when measured in cell extracts 
remain active. Due to dilution and degradation, no nitroge­
nase activity is detected in cell extracts after several genera­
tion times (2, 4, 11, 17, 19). 

In addition to this long-term effect of ammonia, with added 
ammonia some bacteria are capable of rapidly switching off 
whole-cell nitrogenase activity. Nitrogenase activity is inhib­
ited within minutes after addition of NH 4

+ to whole cells. 
This so-called short-term effect is observed in Azotobacter 
(5), Rhodospirillum (13), Rhodopsettdomonas (8, 21) and 
Anabaena (20) species. For the phototrophic organisms, 
inhibition is dependent on the growth conditions (1, 18, 20). 
In organisms that fix nitrogen only under fermentative 
conditions, like Clostridium and Klebsiella species, no short-
term effect of ammonia is found (2, 19). For bacteroids of 
Rhizobium leguminosarum, it has been shown that ammonia 
is not taken up but excreted. Consequently, no inhibition of 
nitrogenase is found (12). 

In a review Eady (5) noted that the extent of inhibition of 
nitrogenase activity by NH4C1 in Azotobacter vinelandii is 
variable. Depending on the authors, the inhibition varied 
between 30 and 100% (4, 9, 11, 12). Later Gordon et al. (6) 
demonstrated that there is no short-term inhibition by am­
monia of nitrogenase activity in growing cultures of A. 
vinelandii. 

The results described in this paper resolve the discrepan­
cies as to the extent of inhibition of whole-cell nitrogenase 
activity in A. vinelandii by NH4CI. Conditions will be 
defined under which nitrogenase activity in A. vinelandii is 
hardly inhibited by addition of NH4CI and also those where 
whole-cell nitrogenase activity is completely inhibited by 
addition of NH4CI. 

* Corresponding author. 

MATERIALS AND METHODS 

Growth conditions of bacteria. A. vinelandii ATCC strain 
478 (AV-478) was cultured on a Burk nitrogen-free basic salt 
medium (14) and supplied with sucrose as the sole carbon 
and energy source. Cells were grown in 0.5-liter batches in 2-
liter Erlenmeyer flasks shaken at 300 rpm, in a New Bruns­
wick controlled environment incubator shaker at 30°C. After 
growth of the culture, the optical density was measured at 
660 nm. An optical density at 660 nm of 1.0 corresponded to 
0.14 mg of bacterial protein per ml. A mutant of A. vinelandii 
OP (AV-11) was provided by D. V. DerVartanian. The 
respiratory chain of AV-11 appears to be blocked between 
cytochromes c4 and cj and the oxidases o and a, (10). Cells 
were grown in the same way as was AV-478. 

Measurement of nitrogenase activity of whole cells. A. 
vinelandii cells were grown as indicated. Cells were harvest­
ed by centrifugation for 10 min at 10,000 x g, washed once 
with distilled water, and suspended in Burk medium to a 
protein concentration of 30 mg/ml. No differences were 
observed between washed cells and growing cultures with 
respect to respiration rate, nitrogenase activity, and the 
effect of NH4CI. Cells were stored at 0°C during the course 
of the experiments. Nitrogenase activity of whole cells was 
measured in the system described by Haaker et al. (7). Cells 
were incubated in 5 ml of Burk medium in a thermostated 
vessel at 30°C. A closed gas phase consisting of air with 10% 
acetylene was pumped with an adjustable air pump through 
the incubation mixture. The free oxygen concentration in the 
medium was measured with a standard oxygen electrode. 
The detection limit of the 02 electrode was 1 (iM Oi. The 
oxygen input rate was calibrated as described earlier (7). 
Nitrogenase activity was measured as acetylene reduction 
by analyzing samples taken from the gas phase at suitable 
time intervals. By varying the gas flow through the cell 
suspension, whole-cell nitrogenase activity was measured at 
different oxygen input rates. 

pH studies. Strain AV-478 was grown to a density of 0.5 

39 



mg/ml. Cells were harvested by centrifugation, washed 
once, and suspended in water to a protein concentration of 
45 mg/ml. Cells (1.3 mg of protein per ml of incubation 
mixture) were incubated in the medium containing 25 mM N-
tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid-
NaOH, 2 mM MgCk 10 mM KCl, and 50 mM sucrose, at the 
pH as indicated. Cells were equilibrated for 8 min at an 
oxygen input of 0.9 u.mol of 0 : • min ' • mg" '. The whole-
cell acetylene reduction rate was measured shortly before 
and after addition of 28 mM NH4CI. The protein concentra­
tion of a cell suspension was determined by the method of 
Sedmak and Grossberg (16) after 1 min of sonication of the 
cell suspension. Bovine serum albumin (Sigma Chemical 
Co.) was used as standard. 

Materials. Acetylene was purchased from Hoekloos (Am­
sterdam). Chemicals were of the highest analytical grade and 
were obtained from commercial sources. 

RESULTS 

Oxygen dependence of nitrogenase activity. The nitroge-
nase activity of intact A. vinelnndii cells depends on the 
amount of oxygen present during the assay (3, 7). This is 
shown in Fig. 1 for organisms harvested at an early stage of 
growth. When these cells were incubated at a low oxygen 
input rate, the nitrogenase activity, measured as acetylene 
reduction, was low (Fig. 1). Under these conditions, addition 
of NH4CI caused a strong inhibition of the nitrogenase 
activity. With more oxygen, the nitrogenase activity in­
creased to a maximum at an oxygen input rate of 1.7 (imol of 
0 2 • min"1 • mg*1, when dissolved Os was almost 10 u.M. 
Addition of NH4CI resulted in only 1% inhibition (Fig. 1). 
When the oxygen input rate was further increased, the 

oxygen input (cumules 02. min-1, mg-1) 

FIG. 1. Effect of the oxygen input rate on the inhibition of 
nitrogenase activity by NH4CI in cells grown with excess oxygen. 
Strain AV-478 was grown to a density of 0.09 mg of protein per ml 
and harvested. In an assay, cells (4 mg of protein) were preincubated 
for 5 min at an oxygen input of 1.6 u.mol of CK • min ' mg '.After 
that time nitrogenase activity was measured for 10 min at the 
indicated oxygen input. Then. 28 mM NH4C1 was added, and 
nitrogenase activity was measured for at least 10 min. Symbols: • . 
activity without NH4CI; O, activity in the presence of NH4CI; X, 
free oxygen concentration in the medium at the moment NH4CI was 
added. 
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FIG. 2. Effect of NH4CI on the free oxygen concentration in the 
medium and on the nitrogenase activity during a whole-cell nitroge­
nase activity measurement. Strain AV-478 was grown to a density of 
0.5 mg of protein per ml and harvested. At t - 0 min. cells (4.5 mg of 
protein) were added and preincubated at an oxygen input of 1.1 
u.mol of 0 2 • min ' • mg '. At t - 5 min. acetylene was added and 
the oxygen input was set at 1.3 u.mol of 0 : • min ~ ' • mg '. At t — 16 
min. 28 mM NH4C1 was added. The solid line shows the oxygen 
concentration detected in the medium. The dashed line shows the 
total amount of ethylene that was formed. 

nitrogenase activity was not inhibited until the free oxygen 
concentration exceeded 40 p.M (Fig. 1). Under these incuba­
tion conditions, the inhibition of nitrogenase activity by 
NH4CI was strong. At an oxygen input of 3.5 u-mol of 
0 2 • min"1 • mg"1 , addition of NH4CI inhibited nitrogenase 
activity by 95% (Fig. 1). From the results it is clear that the 
percentage of inhibition by NH4CI is variable. The inhibition 
is strong when whole cells are incubated at a low or a high 
oxygen input rate. At an optimum oxygen input rate for 
maximum nitrogenase activity. NH4CI is only slightly inhibi­
tory. 

When a culture was grown to a greater density and these 
cells were assayed for nitrogenase activity, a curve similar to 
that shown in Fig. 1 was obtained. However, due to a lower 
respiration rate of the cells, no nitrogenase activity could be 
detected as soon as free oxygen was detectable in the 
medium. It was also found that the inhibition of nitrogenase 
activity by NH4CI was much stronger. But under typical 
conditions it was possible to demonstrate a stimulation of the 
nitrogenase activity by the addition of NH4CI (Fig. 2). At t = 
0 min, cells were added to the incubation mixture. The 
oxygen input rate was set to a value of 1.1 u.mol of 
O; • min" ' • mg" '. The cells respired at a rate such that the 
free oxygen concentration decreased to zero. At t = 5 min no 
free oxygen was detectable in the medium, and nitrogenase 
activity was observed (data not shown). When the oxygen 
input rate was increased to a value of 1.3 u.mol of 
0 2 • min"1 • mg"1 (extra 0 2 ) , free oxygen was detectable in 
the medium and nitrogenase activity was switched off. At t = 
16 min NH4CI was added to the medium. After a temporary 
increase, the free oxygen concentration decreased to zero. 
When the free oxygen concentration was below 5 u.M. 
nitrogenase activity was observed. 

The apparent stimulation by NH4CI of nitrogenase activity 
is an indirect effect. Addition of NH4CI results in an in­
creased respiration rate of the cells, and the nitrogenase 
activity of the cells is no longer switched off by the presence 
of free oxygen. 
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Effect of NHjCI concentration. The effect of the NH4CI 
concentration on the nitrogenase activity of whole cells was 
studied. In a concentration range of 0.35 to 56 mM NH4CI, 
no difference in the extent of inhibition was observed. At an 
initial concentration up to 1 mM NH4CI. inhibition was fully 
reversible during the experiments. This can be explained by 
assuming that all added ammonia was assimilated and nitro­
genase activity returned to its original value. 

Effect of pH. The pH of the incubation medium is an 
important factor for the extent of NH4CI inhibition (Table 1). 
In the absence of NH4CI. the nitrogenase activity of whole 
cells did not vary significantly with the pH value of the 
medium, hut the inhibition of nitrogenase activity by NH4C1 
was found to be pH dependent. At pH 6.5. the acetylene 
reduction rate was strongly inhibited by addition of NH4CI. 
When the pH of the incubation medium was higher, inhibi­
tion by NH4CI was less (Table 1). At pH 7.5 and pH 8.0. the 
medium acidified rapidly after addition of NH4CI. and conse­
quently the inhibition of nitrogenase activity increased with 
time. 

Inhibition of nitrogenase activity by NH4CI at different 
stages of growth. A growth curve of A. vinelandii ATCC 
strain 478 is shown in Fig. 3. The cells were grown in an 
Erlenmeyer flask shaken at a constant rate. At the indicated 
times, samples were taken from the culture and the optical 
density, protein concentration, nitrogenase activity, and 
respiration rate of the cells were measured. The nitrogenase 
activity of the cells was measured at different oxygen input 
rates (Fig. 1). The maximum nitrogenase activity and the 
inhibition of the maximum nitrogenase activity by NH4CI 
were dependent upon the growth stage (Fig. 3). Up to 6.5 h 
after inoculation, little inhibition of the nitrogenase activity 
by NH4CI was observed. When the culture continued to 
grow, inhibition of nitrogenase activity by NH4C1 increased. 
After 24 h of growth, the nitrogenase activity of the culture 
was much lower, and addition of NH4CI resulted in a 709? 
inhibition of the nitrogenase reaction when measured under 
optimal conditions. From these results it is clear that the 
extent of inhibition of nitrogenase activity by NH4C1 de­
pends on the stage of growth. At the end of growth, 
nitrogenase activity is more strongly inhibited than at an 
early phase of growth. 

We also measured the respiration rate of the cells. It was 
observed that during growth the respiration rate of the cells 
(per milligram of protein) decreased with time. This is not 
surprising, since the oxygen input rate into the culture was 
constant while the protein content increased. Apparently the 
respiration rate of the cells adapted to lower amounts of 
oxygen available per cell. In samples taken from the culture 
during the first hours of growth, the cells had a high 
respiration rate. In these cells the nitrogenase reaction was 
not inhibited when free oxygen was present at detectable 
concentrations in the incubation medium (see also Fig. 1). In 
samples taken from the culture at later than 6.5 h of growth. 

TABLE 1. Effect of pH on the inhibition of nitrogenase activity 
by NH4CI 

b< 0.6 

!» 0.4 

Initial pH 

6.5 
7.0 
7.5 
8.0 

Ethyl 
(nmol 

- N H „ C ] 

78 
83 
88 
78 

:ne prod 
min ' • 

iction 
mg '): 

+ NH4C1 

17 
28 
50 
59 

Inhibition by 
NH 4CI(9f ) 

78 
67 
43 
24 

time (hours) 
FIG. 3. Growth curve of A. vinelandii 478. AV-478 was grown in 

batch culture to a concentration of 0.3 mg of protein per ml as 
described in the text and diluted with fresh medium to a concentra­
tion of 0.036 mg of protein per ml at t - 0 h. At the times indicated, 
samples were taken and assayed as described in the text. Symbols: 
A. protein concentration: • . maximum nitrogenase activity: O, 
nitrogenase activity in the presence of 28 mM NH4CI. 

nitrogenase activity was completely inhibited when free 
oxygen was detected in the medium. The inhibition of 
nitrogenase activity by NH4C1 also increased (Fig. 3). So it 
seems that in cells with a high respiration rate, nitrogenase 
activity is relatively insensitive to free oxygen and to ammo­
nia. However, in cells with a lower respiration rate, nitroge­
nase activity is sensitive to free oxygen and also to added 
NH4CI. This phenomenon was even more clearly observed 
with A. vinelandii OP mutant strain AV-11 (data not shown). 
When AV-11 was grown to a density such that free oxygen 
inhibited nitrogenase activity, inhibition by NH4C1 was 
100%. 

DISCUSSION 

Conflicting reports have appeared in the literature con­
cerning the inhibition of nitrogenase activity by added N H4 

in whole cells of Azotohacler species (4-6. 9. 11, 12). 
Reports of the extent of the short-term inhibition of nitroge­
nase activity by NH 4 ' varied between 15 and 1009?. In this 
report we show five reasons why this variation can be 
ascribed to differences in growth and test conditions. First, 
inhibition by NH4CI is dependent on the oxygen input rate 
during the test of whole-cell nitrogenase activity. Under 
conditions where nitrogenase activity is maximal, the inhibi­
tion by NH4CI is minimal (Fig. 1). Second, inhibition by 
NH4CI is dependent on the pH of the incubation mixture 
(Table 1). At a low pH, NH4* inhibits more effectively than 
at a higher pH. Third, inhibition by NH4CI is dependent on 
the growth stage of cells (Fig. 3). In a culture growing 
rapidly, cells have a high respiration rate, and the nitroge­
nase activity is high and only slightly inhibited by addition of 
NH4CI. During oxygen-limited growth, the cells have a low 
respiration rate, and NH4CI is a strong inhibitor of nitroge­
nase activity. Fourth, inhibition by NH4CI is dependent on 
the carbon source used for growth. In succinate-grown cells 
inhibition by NH4 addition is stronger than in sucrose-
grown cells (12). Fifth, inhibition by NH4CI is only found 
when nitrogenase activity is measured in intact cells. No 
short-term effect is observed when the nitrogenase activity is 
measured in cell extracts (17). Gordon et al. (6), for instance, 
found no significant inhibition of nitrogenase activity by 
NH4 ' . Their experiments were done with growing cultures 
with high nitrogenase activities. We have shown (first and 
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third reasons) that inhibition by NH4CI under these condi­
tions is minimal. 

On the contrary Laane et al. (12) found strong inhibition of 
nitrogenase activity by addition of NH4CI. In their experi­
ments the high concentrations of protein necessary for flow 
dialysis experiments were used. Under these conditions 
aeration of the cells is not optimal, and inhibition by NH4CI 
is expected to be strong (see first reason above). Further­
more, these authors harvested cells at the end of logarithmic 
growth, and we have shown that strong inhibition by NH4CI 
can be expected late in growth (see third reason above). We 
have also shown that it is possible to create conditions in 
which addition of NH4C1 results in a stimulation of nitroge­
nase activity (Fig. 2). However, this can be explained by an 
effect of NH4CI on the respiration rate of the cells, thus 
relieving oxygen inhibition. 
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The influence of the growth conditions on the concentration of nitrogenase and on the nitrogenase activity, 
was studied in intact Azotobacter vinelandii cells. It was observed that whole cell nitrogenase activity could be 
enhanced in two ways. 

An increase of the growth rate of cells was accompanied by an increase in whole cell nitrogenase activity and 
by an increase in the concentration of nitrogenase in the cells. The molar ratio of Fe protein : MoFe protein was 
1.47 + 0.17 and independent of the growth rate. Activity measurements in cell extracts showed that the catalytic 
activity of the nitrogenase proteins was independent of the growth rate of cells. 

The second way to increase whole cell nitrogenase activity was to expose cells to excess oxygen. Whole cells 
were exposed for 2.5 h to an enhanced oxygen-input rate. After this incubation nitrogenase activity was increased 
without an increase in protein concentration. It is calculated that the catalytic activity of the Fe protein in these 
cells was 6200 nmol C2H4 formed • m i n 1 • (mg Fe protein)-1. With these cells and with cells grown at a high 
growth rate, 50% of the whole cell activity is lost by preparing a cell-free extract. It will be demonstrated that 
this inactivation is partly caused by the activity measurements in vitro. When dithionite was replaced by flavodoxin 
as electron donor, a maximal catalytic activity of 4500 nmol C2H4 formed • min ~ ' • (mg Fe protein) ~ ' was 
measured in vitro for the Fe protein. 

The results are discussed in relation to the present model for nitrogenase catalysis. 

Nitrogenase is an enzyme system, that is capable of reduc­
ing atmospheric N2 to ammonia. For catalysis an anaerobic 
environment, MgATP and a low-potential electron donor are 
obligatory. Nitrogenase is composed of two dissociating pro­
tein components: a tetrameric MoFe protein carrying the 
substrate-reducing site and a dimeric Fe protein. The proper­
ties of nitrogenases from different bacterial sources have been 
reviewed by Mortenson and Thorneley [1]. Until now it has 
been generally accepted that the Fe protein of any nitrogenase 
complex has one [4Fe-4S] cluster [1, 2]. However, in contrast 
to earlier data, Braaksma et al. [3, 4] reported that Fe protein 
can be isolated from Azotobacter vinelandii (Av2) containing 
more than 4 Fe and 4S2~ atoms/molecule Av2. The iron and 
sulphide contents of the protein were dependent upon the 
specific activity of the purified protein. 

We developed a method to measure the catalytic activity 
of nitrogenase in vivo. Whole cell nitrogenase activity was 
measured with the acetylene reduction method and the 
amount of the nitrogenase proteins detected by protein blot­
ting, a relatively new immunological method [5]. With these 
data the catalytic activities of AVi and Av2 in vivo could be 
calculated. Cells were grown under different conditions with 
different whole cell nitrogenase activities. These cells were 
used to investigate whether the catalytic activity of nitrogenase 
is constant or depends upon the growth conditions of a 
culture. 

Abbreviations. The MoFe and Fe proteins of nitrogenase of 
Azotobacter vinelandii are referred to as Avx and Av2; Fid, 
flavodoxin; Fe/S II, iron-sulfur protein II [13]; SDS, sodium dodecyl 
sulfate; Tes, 2-{[2-hydroxy-l,l-bis(hydroxymethyl)ethyl]-amino}-
ethanesulfonic acid. 

Enzyme. Nitrogenase (EC 1.18.2.1). 

In addition to nitrogenase the concentration of two other 
proteins, known to play a role in the physiology of nitrogen 
fixation, were determined. Flavodoxin, which is thought to 
be the physiological electron donor to nitrogenase [6 — 8] and 
Fe/S protein II, which protects nitrogenase from being in­
activated by 0 2 [9 — 11]. The relation between growth con­
ditions, nitrogen fixation and the concentration of both pro­
teins was studied. 

A model for nitrogenase catalysis, developed by Thorneley 
and Lowe [12], predicts that nitrogenase will be inhibited at 
high protein concentrations. In this paper we show that the 
concentration of nitrogenase is high in A. vinelandii and not 
inhibited as observed with the purified proteins. The signifi­
cance of our findings in relation to the model for nitrogenase 
catalysis will be discussed. 

MATERIALS AND METHODS 

Growth of bacteria and enzyme purification 

Azotobacter vinelandii ATCC 478 was cultured on a Burk 
nitrogen-free basic salt medium [14] in a New Brunswick 
chemostat (type C30). Sucrose was supplied as the sole carbon 
and energy source. N2-fixing cells were grown 02-limited at 
an oxygen input rate of 50 mmol 0 2 • 1

_1 • h" 1 at various 
dilution rates. As a control, cells were grown in the presence 
of 28 mM NH4CI at an oxygen input rate of 50 mmol 
0 2 • 1" ' • h" 1 and a dilution rate of 0.1 h"1 . The pH of the 
growth medium was kept at 7.0 with NaOH. 

In some experiments N2-fixing cells, grown at an oxygen 
input rate of 50 mmol 0 2 • 1

_1 • h _ 1 and a dilution rate of 
0.1 h~1, were exposed 2.5 h to an increased oxygen input rate 
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of 110 mmol 0 2 • l"
1 - h - 1 ( 0 2 shock). During this O 2 shock, 

nitrogenase activity was inhibited and no growth detectable. 
To prevent dilution, the supply of fresh medium was stopped. 
During the 2.5-h period, the respiration rate of the cells adapts 
to the increased 0 2 input rate (see also [15]) and the free 
oxygen concentration in the medium decreases. After 2.5 h 
the free oxygen concentration was lowered to 25 uM and 
growth of the culture was observed. At that moment a sample 
was taken out of the growth vessel. These cells are referred to 
as 'oxygen-shocked'. 

The nitrogenase proteins Avt and Av2 were purified as 
described earlier [3]. Flavodoxin was isolated together with 
Av2. During the last purification step of Av2 (a Sephacryl 
S200 column) both proteins were separated. Flavodoxin was 
then purified by an (NH4)2S04 precipitation between 65% 
and 95% saturation. After precipitation 1 mM riboflavin 
5'-phosphate was added and the protein was dialysed against 
10 mM Hepes pH 7.5,0.1 mg/ml dithiothreitol. Purified flavo­
doxin had a ratio Ä2i2lAii0 = 5.2. The Fe/S protein II was 
purified as described by Scherings et al. [8]. 

Preparation of antisera 

Antisera against Av1; Av2, Fid and Fe/S II were raised 
separately in New Zealand white rabbits using the procedure 
described by Voordouw et al. [5]. Fid and Fe/S II were injected 
directly. Prior to use in immunization, Av! and Av2 were 
made free of final trace impurities by preparative SDS/ 
Polyacrylamide gel electrophoresis followed by extraction of 
the protein bands from the gel. 

protein) the concentration in the cell was calculated by using 
an internal volume for Azotobacter cells of 5 ul/mg total pro­
tein [19] and an M, for Av! of 220000 [20, 21], for Av2 of 
63000 [22], for Fid of 23000 [23], for Fe/S II of 26000 [11]. 

Measurement of nitrogenase activity 

The nitrogenase activity of whole cells was measured as 
acetylene reduction in samples taken out of the growth vessel 
of the chemostat as described elsewhere [24]. To prepare an 
extract, 200 ml of the culture was centrifuged at 10000 x g for 
10 min. Cells were suspended in 50 mM Tes/NaOH, 5 mM 
MgCl2 pH 7.5 to a protein concentration of 25 mg/ml. Cells 
were broken at 0 °C and under argon by sonification for four 
30-s periods in an MSE sonifier. The nitrogenase activity of 
the extract was measured as acetylene reduction at different 
protein concentrations in the presence of an ATP-regenerating 
system as described earlier [3, 8]. Either 20 mM Na2S204 or 
4 mM Na2S204 plus 130 uM flavodoxin was used as electron 
donor [25]. The maximum activity of Avj was measured after 
addition of a 10 —20-fold molar excess of purified Av2. 

In this paper nitrogenase activity is expressed either as 
specific activity or as catalytic activity. The specific activity is 
the nitrogenase activity measured per mg total protein. The 
catalytic activity of Av! (or Av2) is the nitrogenase activity 
expressed per mg Avt (or Av2) present in a preparation. 
The amount of nitrogenase present in a preparation is 
determined by protein blotting as described above. 

Protein concentrations were estimated with the Lowry 
method [26]. 

Concentration determinations 

A. vinelandii cells, grown in a chemostat, were concen­
trated by centrifugation and suspended in 50 mM Tes/NaOH 
pH 7.5,N4% (w/v) SDS, 1 mM EDTA, 10% (v/v) glycerol, 5% 
(v/v) 2-mercaptoethanol, 0.001% (w/v) bromophenol blue to 
a protein concentration of 3 mg/ml. Cells were lysed by boil­
ing, followed by 1 min sonification in an MSE sonifier. 
Polyacrylamide gel electrophoresis was carried out according 
to Laemmli [16] as described elsewhere [17]. For optimal re­
sults 10 ug protein was applied on a slab gel containing 14% 
acrylamide, 0.09% methylene-bisacrylamide. After electro­
phoresis proteins were transferred to nitrocellulose filters by 
the protein blotting method of Bowen et al. [18]. The 
nitrocellulose sheets were incubated overnight with antisera 
against Av1; Av2, Fid and Fe/S II. Bound antibodies were 
detected by incubation with 125I-labelled protein A and, after 
washing, autoradiography of the nitrocellulose sheets [5], 
By using the autoradiogram, radioactive bands on the 
nitrocellulose were cut out and counted in 7 ml Instafluor 
(Packard) in a Hewlett Packard liquid scintillation spectrom­
eter. Calibration curves were made with purified proteins, 
which were applied on the same gel as the samples. The slope 
of the calibration curve depends upon the number of antigenic 
determinants that is recognized by the antiserum. Thus the 
amount of blackening on a particular X-ray film is not always 
linearly related to the amount of protein present. For the Fe/S 
protein II, the amount of radioactivity was plotted against 
the amount of protein. For the other proteins the amount 
of radioactivity was plotted against log10 of the amount of 
protein. Linear calibration curves were obtained with 5 — 
25 pmol of pure polypeptides. The calibration curves were 
used to estimate the amount of Av1; Av2, Fid and Fe/S II in 
the cell samples. From the amount of protein (in ug/mg total 

Materials 

Nitrocellulose sheets (BA 85) were obtained from 
Schleicher & Schüll (Dassel, FRG). 125I-labelled protein A 
from Staphylococcus aureus was prepared as described earlier 
[5]. All chemicals were of the highest commercial grades. 

RESULTS 

Concentration determination 

SDS gel electrophoresis of extracts of Azotobacter 
vinelandii cells, cultured under conditions as described in Ma­
terials and Methods, followed by staining the gel with 
Coomassie brilliant blue, gave the polypeptide pattern shown 
in Fig. 1 A. The polypeptide patterns of an extract of cells 
grown with N2-fixing and of cells grown on NH4C1 are shown. 
By applying purified proteins on the same gel the positions of 
Av1; Av2, Fid and Fe/S II were identified (lane M). The 
positions of these proteins are indicated by dashes. The 
amount of protein applied in lane M was approximately equal 
to the amount of the proteins in cell extracts. In the extract 
of N2-fixing cells (—) the two subunits of Avt are visible. But 
Av2, Fid and Fe/S II are hardly distinguishable from the other 
proteins on a stained gel. Transfer of the proteins from the 
gel onto nitrocellulose (protein blotting) followed by detection 
with specific antisera and U5I-protein A gave the auto-
radiogram shown in Fig. 1 B. On the gel the same samples 
were applied as in Fig. 1 A. Avt, Av2, Fid and Fe/S II can be 
easily detected now both in the mixture of pure proteins (M) 
as well as in cell extracts. Only around Av! are some other 
protein bands visible on the blot. As will be discussed later, 
this cross-reactivity of the antiserum had no influence on the 
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Fig. 2. Calibration curve for Av]_. Different amounts of purified Avi 
were applied on an SDS gel. After electrophoresis the gel was blotted 
onto a nitrocellulose sheet. The sheet was incubated with anti-Av! 
and 125I-protein A as described in Materials and Methods. After 
autoradiography the bands originating from Avj were cut out and 
counted. The amount of radioactivity in the bands was plotted against 
the logioof the amount of Av[ applied on the gel ( • - • ) . Purified 
Avi was mixed with 10 fig protein of an extract of cells grown on 
NH4C1(0) 

stained 
gel 

protein 
blot 

Fig. 1. The presence of Avlr Av2. Fid and Fe/S II in cell extracts of 
A. vinelandii. SDS gel electrophoresis was performed as described in 
Materials and Methods. (A) Gel after staining with Coomassie 
brilliant blue: (M) a mixture of purified Avi (2.12 ug), Av2 (0.80 ug), 
Fid (0.51 ug), Fe/S II (0.13 ug); (+) 30 ug protein of an extract of 
cells grown in the presence of 28 mM NH4C1; (—) 30 ug protein of 
an extract of cells grown N2-fixing. (B) Autoradiogram of a protein 
blot of the gel after treatment with antisera and 125I-protein A: (M) 
a mixture of purified Avt (0.74 ug), Av2 (0.28 ug), Fid (0.18 ug), 
Fe/S II (0.05 ug); ( + ) 10 ug protein of an extract of cells grown in 
the presence of 28 mM NH4C1; (—) 10 ug protein of an extract of 
cells grown N2-fixing. The positions of Av1? Av2, Fid, Fe/S II after 
electrophoresis are indicated by dashes 

determination of the concentration of Av t. Furthermore the 
antiserum raised against Av( reacted more strongly with the 
a subunit compared to the reaction with the ß subunit of Av t. 
On most protein blots as well as on stained gels (Fig. 1 A) Av2 

appeared as two polypeptide chains with slightly different 
mobility. Due to over-exposure of the autoradiogram as 
shown in Fig. 1B, Av2 is only visible as one band. The phe­
nomenon of two bands for the Fe protein is also observed in 
Klebsiella pneumoniae [27] and photosynthetic bacteria [28, 
29]. But in contrast to the photosynthetic bacteria, there is no 
relation beween the presence or absence of these two bands 
and the activity of the Fe protein (not shown). Fig. 1 B shows 
that cells grown on NH4C1 (+) have no detectable amounts 
of AV( and Av2 and in comparison to N2-fixing cells (—) 
contain less flavodoxin but more Fe/S protein II. 

Using the autoradiogram (Fig. 1 B), the radioactive bands 
on the nitrocellulose sheets were cut out and the amount of 

radioactivity in each band was counted. On the gel different 
amounts of purified proteins were applied to construct a 
calibration curve. An example is given in Fig. 2. The amount 
of radioactivity was plotted against log10 of the amount of 
pure Avt. In a range of 0.5 —1.6 ug Avi a linear relationship 
was obtained between the radioactivity and the amount of 
pure protein applied. At higher concentrations of Avt 

(>2.0ug protein) the calibration curve flattened, possibly 
because of saturation of the nitrocellulose with protein. Also 
with extracts a linear relationship was found between the 
radioactivity at the spot of Avt and the amount of extract 
applied. When 10 ug protein of a cell extract was applied on 
a gel, the calibration curve of purified Av! could be used to 
estimate the concentration of Av! in the cell extract. When 
more protein was applied the amount of Av! present in the 
cell extract was under-estimated. With less extract the method 
was less accurate, because of a decreased binding of antibodies 
(and 125I-protein A) compared to a constant background 
radioactivity. When 10 ug protein of a cell extract was used, the 
variation between duplicate determinations was less than 10%. 
As was mentioned earlier, the antiserum against Avt was 
cross-reactive with polypeptides with an almost similar M, as 
Av! (Fig. 1 B). For quantification, Avt could be cut from the 
nitrocellulose filter without also taking the cross-reactive band 
with a slightly lower M,. This was checked by autoradiogra­
phy of the nitrocellulose filter after cutting out the Av, bands. 
In all cases the band with a slightly lower M, was still present 
on the nitrocellulose paper. There is also a cross-reacting band 
with about the same Mr as the ß subunit of Avi. A typical 
experiment is shown in Fig. 1 B. The radioactivity on the spot 
of Avj was 26400 counts • min" ' for the N2-fixing cells. The 
radioactivity of the cross-reacting material at the spot of Avt 
in cells grown on NH4C1 was ony 3500 counts • min - 1 . To 
test the influence of this cross-reactivity on the determination 
of Avt, cell extracts of cells grown in the presence of NH4C1 
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Table 1. Concentration of'Avlt Av2, Fid and FejSII in intact A. vinelandii cells. 
Cells were grown under different conditions and the concentration of the proteins was determined as described in Materials and Methods. 
The mean values are given ± standard error of the mean for 4 — 7 separate experiments in each case of cells grown on nitrogen-free medium. 
The experiment with cells grown on NH4C1 was carried out twice 

Dilution rate 

h" 1 

0.05 
0.10 
0.20 
0.25 
0.10 
0.10 

Special conditions 

O 2 shock 
growth on NH4C1 

Density of the culture 

mg protein • 

1.00 ±0.05 
0.80 ± 0.05 
0.55 ±0.05 
0.45 ± 0.05 
0.85 ±0.10 
1.20 ±0.1 

m l - 1 

Concentration of 

Av! 

uM 

40 + 10 
5 2 + 5 
6 2 + 5 
7 5 + 5 
60 + 10 
0 

Av2 

59 + 10 
74 ± 6 
8 6 + 4 

111 + 5 
90 + 10 
0 

Fid 

220 + 40 
190 ± 25 
220 ± 35 
280 ± 30 
200 ± 20 
85 ± 2 0 

Fe/S II 

60 + 40 
62 + 12 
45 + 15 
40 + 20 
50 + 20 
90 + 30 

were mixed with purified Av t. The effect on the calibration 
curve of the presence of extracts of cells grown on NH4C1 was 
small (e.g. Fig. 2). Only for the lowest concentrations can it 
not be excluded that the amount of Avt is over-estimated for 
at most 20% due to cross-reactivity of the antiserum. 

With the protein blotting method the amounts of Av!, 
Av2, Fid and Fe/S II were determined in A. vinelandii cells 
grown under different conditions (Table 1). When cells were 
growing at higher dilution rates the density of the culture 
decreased, whereas the concentrations of Avi and Av2 in the 
cell increased. At a dilution rate of 0.25 h _ 1 the amounts of 
Av! and Av2 per mass of total cell protein were nearly twice 
as much as the amounts in cells grown at a dilution rate of 
0.05 h~ '. An explanation for the increase in enzyme concen­
tration is that, in addition to 0 2 , the availability of fixed 
nitrogen became growth limiting. The concentration of flavo-
doxin was independent of the growth rate of cells while the 
concentration of Fe/S protein II decreased in cells growing at 
a higher dilution rate. However, the standard deviation in the 
determination of Fid and Fe/S II was significantly larger. 
Large differences were measured for these proteins between 
different cell preparations grown at the same dilution rate. 
The reason for this variation is unknown. 

When cells grown oxygen-limited were exposed to an in­
creased oxygen input rate for 2.5 h (0 2 shock) the respiration 
rate increased [15]. The 0 2 shock gave a small increase in the 
concentrations of Av! and Av2 compared to the situation 
before the shock. The concentration of flavodoxin remained 
constant, whereas the concentration of Fe/S protein II 
decreased somewhat (Table 1). 

In all preparations of N2-fixing cells tested the molar ratio 
Av2:Av! was 1.47 ±0.17 (« = 30). The concentration of 
Fe/S protein II was not directly related to that of nitrogenase. 
The ratio Fe/S II to AyL varied between 0.4 and 2.0. 

Growth of bacteria in the presence of NH4C1 gave denser 
cultures than cells grown N2-fixing (Table 1). In NH4-grown 
cells no Avt and Av2 could be detected, but the Fe/S protein II 
was present in high concentrations. The concentration of 
flavodoxin was less than half its concentration in N2-fixing 
cells. 

Nitrogenase activity of cells and extracts 

The nitrogenase activities of whole cells grown at different 
growth rates, as well as extracts prepared from these cells, were 
tested for nitrogenase activity (Table 2). When the growth rate 
of the cells increased (higher dilution rates), the nitrogenase 

Table 2. Nitrogenase activity of whole cells and cell extracts 
A. vinelandii was grown under different conditions in a chemostat as 
described in Materials and Methods. The doubling time of the cells 
was calculated from the dilution rate of the chemostat. After measur­
ing whole cell nitrogenase activity, an extract was prepared of each 
sample by sonication and the nitrogenase activity was measured with 
Na 2S 20 4 and an ATP-regenerating system as described in Materials 
and Methods. A 10 — 20-fold molar excess of purified Av2 was added 
to the extract to measure the maximum activity of Av^ Nitrogenase 
activity is expressed as nmol C2H4 formed • min " ' • (mg total 
protein) " *. The mean values are given ± standard error of the mean 
for 3 — 6 separate experiments in each case, except for the experiment 
with chloramphenicol which was carried out twice 

Dilution 
rate 

h - ' 

0.05 
0.10 
0.20 
0.25 
0.10 
0.10 

Special 
conditions 

-
_ 
-
oxygen-shock 
oxygen-shock in 
the presence of 
200 ug/ml 
chloramphenico 

Doub­
ling 
time 

h 

13.9 
6.9 
3.5 
2.8 

_ 

Specific nitrogenase activity of 

whole extract extract + 
cells Av2 

nmol • m in - 1 • mg - 1 

38 + 2 45 ± 4 90 ± 5 
69 + 3 4 9 + 5 9 5 + 5 

130 + 5 70 + 10 115 ±10 
158 + 4 8 5 + 5 155 ± 5 
175 + 3 9 1 + 5 130 ± 10 

8 8 15 

activity of the cells increased (Table 2). A similar phenomenon 
is described by Post et al. [30] for cells growing with excess 
oxygen. Exposing cells to an 0 2 shock led to a sharp increase 
in whole cell nitrogenase activity (Table 2). Jones et al. [15] 
showed that exposure to excess oxygen increases the respi­
ration rate of Azotobacter cells. By performing the experiment 
in the presence of chloramphenicol these authors showed this 
adaptation of the respiratory chain to be only partially depen­
dent on protein synthesis. With our culture, however, an 0 2 

shock in the presence of chloramphenicol gave a 90% loss of 
nitrogenase activity in whole cells as well as in extracts 
(Table 2). After the 0 2 shock in the presence of chlor­
amphenicol, the concentrations of the AVi and Av2 pro­
teins were reduced to 60% (not shown). Apparently in con­
trast to adaptation of respiration, protein synthesis is obliga­
tory to retain nitrogenase activity during an 0 2 shock. This 
is a remarkable observation because it is known that there is 
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no de novo synthesis of nitrogenase when cells are exposed to 
excess 0 2 [31]. 

An increase in nitrogenase activity of whole cells can be 
the result of a better supply of reducing equivalents and/or 
ATP to nitrogenase, or it can be caused by an increase in 
the activity of the enzyme nitrogenase itself. To discriminate 
between these two possibilities the whole cell activity was 
compared to the activity of Avi and Av2 in extracts (Table 2). 
Since in all preparations (whole cells and extracts) the molar 
ratio Av2:Avi was 1.5, the activity of the preparations is the 
specific activity of Av2. The specific activity of Av! in extracts 
was measured by adding excess purified Av2. When the whole 
cell activity increased from 38 to 69 nmol C2H4 formed 
• min " 1 • mg protein " ' there was no significant increase in 
the nitrogenase activity of the extracts. At higher whole cell 
activities, the extract activity was somewhat higher, but not 
proportional to the increase in whole cell activity. The same 
phenomenon was observed with cells that were exposed to an 
excess of oxygen. This means that under these growth con­
ditions whole cell nitrogenase activity is mainly determined 
by the electron transport to nitrogenase and/or ATP supply. 

A problem with the results shown in Table 2 is that the 
nitrogenase activity of extracts is lower than the activity in 
vivo. This could be caused by (a) inactivation of Av2, the most 
labile nitrogenase component, during the preparation of an 
extract; (b) the presence of an inhibitor of nitrogenase in a 
crude extract [32]; (c) Na2S204 being an inferior electron 
donor in extracts compared to the physiological donor 
flavodoxin [7, 25]. The first explanation was excluded by 
varying the sonification time of an extract. No effect was 
observed on the specific activity of nitrogenase in a cell-free 
extract. Also,- purified Av2 was added to a cell preparation 
after which the mixture was sonificated in the absence of 
Na2S204 . Only 10% of the activity of added Av2 was lost 
during sonification compared to a control experiment where 
purified Av2 was added to a similar cell extract during the 
assay of nitrogenase activity. Explanation (b) was excluded 
by adding purified Avt and Av2 in a ratio 1:1.5 to an extract. 
The measured activity was the sum of the activities of the 
extract and the pure proteins separately. Explanation (c) was 
tested by using reduced flavodoxin as electron donor for Av2 

[7, 8, 25]. It is known from the literature that flavodoxin 
increases the specific activity of purified Av2 more than 50% 
relative to its activity with Na2S204 as a reductant [25]. We 
tested flavodoxin as a reductant in several crude extracts and 
also observed an increase in nitrogenase activity of approx­
imately 50%. For instance, in an extract prepared from cells 
after an 0 2 shock the activity was 90 nmol C2H4 formed 
• min - 1 • mg - 1 when measured with Na2S204 and 138 nmol 
C2H4 formed m i n 1 mg" ' when flavodoxin was added. 
With flavodoxin as electron donor no excess of purified Av2 

was necessary to measure the maximum activity of Av t. The 
maximum activity of Av! itself was not influenced by 
flavodoxin. These results indicate that in a whole cell the 
nitrogenase activity is higher than in extracts, because 
flavodoxin is a more effective electron donor for Av2 than 
Na2S204 and due to this effect Av2 is more active in 
nitrogenase catalysis. However, such a statement should be 
taken cum grano salis, since even with flavodoxin as electron 
donor whole cell activities like 175 nmol C2H4 formed • min " ' 
• mg" ' were never measured in crude extracts. 

On the catalytic activities of Av\ and Av2 

From the results presented in Table 1 (concentrations of 
Av! and Av2) and Table 2 (the specific nitrogenase activities 

Table 3. Catalytic activities qfAv1 and Av2 
The data of Table 1 and 2 were combined to calculate the catalytic 
activities of Avi and Av2 in whole cells and in cell extracts. 
Nitrogenase activity is expressed as nmol C2H4 formed • min" ' • (mg 
protein)"1 

Dilu- Special Catalytic activity of 
tion condi-
rate tions Avi 

in vitro in vivo m vitro 

nmol • min 1 • mg Avi : nmol • min l • mg Av2
1 

0.05 
0.1 
0.2 
0.25 

900 + 200 2000 ± 400 2000 ± 400 2400 + 400 
1200 ± 100 1700 + 200 3000 ± 300 2100 ± 300 
1900±200 1700 + 200 4800 ± 300 2600 ± 400 
1900 ±150 1900 + 150 4500 ± 250 2400 ± 200 

0.1 02 shock 2600 ± 400 2000 ± 200 6200 ± 800 3200 ± 400 

of the same preparations) the catalytic activities of Avt and 
Av2 in vivo and in vitro were calculated (Table 3). The catalytic 
activity of Avt in extracts was 1900 nmol C2H4 formed 
• min - 1 • mg Avr1 independently of the growth conditions 
of cells. In vivo this activity is observed in cells grown at a 
high dilution rate. In these cells Av! is fully active. Apparently 
the amount of Av2 present in the cell is capable of reducing 
Avx at maximum rate, despite the low ratio of Av2:Av! of 
1.5. 

The catalytic activity of Av2 in extracts was 2400 nmol 
C2H4 formed • min ~ ' • mg Av2 ' independently of the growth 
rate of cells. Only after an 0 2 shock, the catalytic activity of 
Av2 increased to 3200 nmol C2H4formed • min"1 • mgAvJ1 . 
These catalytic activities of Av2 were measured in vitro with 
Na2S204 as electron donor. With reduced flavodoxin the 
activities are approximately 50% higher (see above). For cells 
grown at a low dilution rate (D = 0.05 h"1) the catalytic 
activity of Av2 in the cells is lower than the activity in vitro. 
At a high dilution rate the catalytic activity of Av2 in vivo is 
much higher than the activity in vitro (up to 6200 nmol C2H4 

formed • min" ' • mg Av^ l). 

DISCUSSION 

In this paper we have shown that protein blotting [5, 18] 
can be used to determine the amounts of single proteins in 
complex mixtures. The method has the advantage that cells 
are lysed by boiling in SDS and 2-mercaptoethanol and that 
SDS electrophoresis is carried out as the first step. This re­
duces the chance of under-estimating the amount of a certain 
protein caused by incomplete lysis of cells, proteolysis or 
denaturation of protein. Another advantage is that the 
method is quantitative without the need of having completely 
monospecific antisera (see Fig. 1 B). A third advantage is that 
the concentrations of different proteins can be measured 
simultaneously in one sample. In our case this means that the 
ratio Av,:Av2:Fe/S II could be measured accurately in all 
samples. The main disadvantages-are that the method is time-
consuming and that calibration curves are linear only in a 
narrow range of protein concentrations (Fig. 2). 

In N2-fixing cells the concentration of Avt varies between 
40 uM and 75 uM and that of Av2 between 60 uM and 
110 uM depending on the growth conditions. The faster the 
cells grow the more nitrogenase is present. The molar ratio 
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Av 2 :Av ! was 1.47 + 0.17 (n = 30) and was independent of 
the growth rate. For Azotobacter chroococcum grown under 
oxygen-limited conditions a ratio Fe protein :MoFe protein 
of 2.0 — 3.3 is reported [32]. This ratio was estimated by using 
SDS/polyacrylamide gel electrophoresis, a method which in 
our hands gives inaccurate values (see Fig. 1 A). In Klebsiella 
pneumoniae and Rhizobium leguminosarum bacteroids the con­
centration of the Fe protein is 4-fold and 2.5-fold higher, 
respectively than the concentration of the MoFe protein [33 — 
35]. So in Azotobacter vinelandii the ratio Fe p ro te in :MoFe 
protein is relatively low compared to K. pneumoniae and 
R. leguminosarum bacteroids. We think this is due to a more 
efficient electron-donating system to the Fe protein in 
A. vinelandii. Because both the concentration and the activity 
of nitrogenase were measured in the same preparations, the 
catalytic activities of Av t and Av2 could be calculated in 
whole cells (activity in vivo) and in cell extracts (activity in 
vitro, see Table 3). An increase in growth rate of cells is accom­
panied by an increase in whole cell nitrogenase activity, but 
in extracts no differences are measured for the catalytic activi­
ties of Av t and Av2 . This means that nitrogenase with the 
same catalytic activity is present in all cultures. Only in the 
case of an 0 2 shock is the catalytic activity of Av2 higher. 
This protein is probably the Fe protein with enhanced Fe/S 
content, as described by Braaksma et al. [3, 4]. 

A higher catalytic activity was calculated for Av2 in vivo 
than was measured in extracts with N a 2 S 2 0 4 . The difference 
between whole cell and extract activity was smaller when 
reduced flavodoxin instead of N a 2 S 2 0 4 was used, as electron 
donor. The results indicate that in the cell the electron-donat­
ing system to nitrogenase and the ATP supply are more effec­
tive than in an assay with N a 2 S 2 0 4 and an ATP-regenerating 
system. Another effect of the efficient electron supply to Av2 

in vivo is that, due to the enhanced activity of Av2 in intact 
cells, the maximum activity of Av! is measured although the 
molar ratio Av 2 :Avj is 1.5. With purified components, Av, 
is not fully active at a ratio Av2 : Avj of 1.5. Addition of excess 
Av2 gives at least a fivefold stimulation of the activity [36, 37]. 

We can state conclusively that despite the low ratio 
Av 2 :Av! and the high intracellular concentrations of these 
proteins, the catalytic activities of Av, and Av2 in vivo are 
remarkably high. This observation seems to be in contrast to 
the model proposed by Thorneley and Lowe [12] in which the 
rate-limiting step in nitrogenase catalysis is the dissociation 
of oxidized Fe protein from reduced MoFe protein after 
MgATP-induced electron transfer between these proteins. 
Their model predicts that nitrogenase is inhibited at high 
protein concentrations due to the association reaction of 
oxidized Fe protein with MoFe protein. However, no inhibi­
tion of nitrogenase activity in vivo is observed in A. vinelandii 
(Table 2). One explanation for this observation is that, in vivo, 
the concentration of oxidized Av2 is kept very low by an 
effective electron-donating system to nitrogenase. Another 
possibility is that in the situation in vivo dissociaton of 
oxidized Av2 from Av, is unnecessary, because flavodoxin 
could reduce oxidized Av2 that is still bound to Av, . We think 
that kinetic experiments have to be performed at high protein 
concentrations and with flavodoxin as electron donor instead 
of N a 2 S 2 0 4 to solve the problem. 

The concentrations of the other proteins, flavodoxin and 
Fe/S protein II, which are important for the nitrogenase 
activity in vivo, were measured. Flavodoxin is thought to be 
the physiological electron donor to nitrogenase in Azotobacter 
species [6 — 8], and Fe/S protein II is involved in oxygen pro­
tection [ 8 - 11 ] . 

For A. chroococcum coordinate synthesis of nitrogenase 
and flavodoxin was demonstrated [31]. However, for A. vine­
landii it has been known for a long time that flavodoxin is 
also present in cells grown on ammonia [6]. We have shown 
that the concentration of flavodoxin is small in NH 4 - g rown 
cells compared to the concentration in N2-fixing cells 
(Table 1 ). In a preliminary experiment we also observed that 
the electrophoretic behaviour of flavodoxin on two-dimen­
sional gels is different for flavodoxin present in cells grown 
on N H 4 compared to cells grown N2-fixing. Furthermore, 
synthesis of flavodoxin parallels the synthesis of AVi and Av2 

after derepression (Klugkist, unpublished). So at least part of 
the flavodoxin that is present in A. vinelandii seems to be nif-
specific. In contrast, the Fe/S protein II is not «//"-specific. The 
concentration of this protein is high in cells grown on N H 4 

(Table 1) and, as for A. chroococcum [31], synthesis of this 
protein is not related to the synthesis of nitrogenase. This 
suggests that the Fe/S protein II may have additional 
functions to that of 0 2 protection of nitrogenase. F rom ex­
periments in vitro it is known that an oxygen-stable nitro­
genase complex can be formed by mixing A v ^ A v ^ F e / S II 
in a ratio 1:1:1 or 1:2:1 [11, 38, 39]. However, it cannot be 
excluded that other ratios also give an oxygen-stable complex 
[11]. In whole cells the ratio varies between 1:1.5:0.4 and 
1:1.5:2.0. We did not find a reason for this variation but from 
our results one can deduce that there might be an inverse 
relation between Fe/S protein II concentration and the rate 
of respiration of the cells. When cells have a high respiration 
rate, nitrogen fixation is protected by the enhanced respiration 
and conformational protection by Fe/S protein II is less 
important. This explains the results of Post et al. [30] who 
report a loss of nitrogenase activity after giving a short oxygen 
pulse to A. vinelandii cells grown with excess oxygen. 

We thank Miss C. M. Verstege for typing the manuscript, M. M. 
Bouwmans for drawing the figures, J. Cordewener for providing us 
with highly active Av2 and A. Braaksma for preparing the antisera 
against the nitrogenase components. The present investigation was 
supported in part by the Netherlands Foundation for Chemical Re­
search (SON) with financial aid from the Netherlands Organization 
for the Advancement of Pure Research (ZWO). 
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4. CHARACTERIZATION OF THREE DIFFERENT FLAVODOXINS FROM 
AZOTOBACTER VINELANDII 

4.1 SUMMARY 

The flavodoxins from Azotobacter vinelandii cells grown N2-flxlng 

and from cells grown on NH4Ac have been purified and characterized. The 

purified flavodoxins from these cells are a mixture of three different 

flavodoxins (Fid I, II, III) with different primary structures. The 

three proteins are separated by fast protein liquid chromatography; Fid 

I is eluted at 0.38 M KCl, Fid II at 0.43 M KCl and Fid III at 0.45 KCl. 

The most striking difference between the three flavodoxins is the mid­

point potential (pH 7.0, 25°C) of the semiquinone/hydroquinone couple, 

which is -320 mV for Fid I and -500 mV for the other two flavodoxins 

(Fid II and Fid III). 

All three flavodoxins are present in cells grown on NH4Ac. In cells 

grown on N2 as N-source only Fid I and Fid II are found. The con­

centration of Fid II is 10-fold higher in N2-fixing cells as in cells 

grown on NH4Ac. Evidence has been obtained that Fid II is involved in 

electron transport to nitrogenase. 

As will be discussed, our observation that preparations of Azoto­

bacter flavodoxin are heterogeneous, has consequences for the published 

data. 

4.2 INTRODUCTION 

Flavodoxin from Azotobacter vinelandii was first isolated by 

Shethna et al. in 1964 [1,2]. Since then this FMN containing redox pro­

tein has been known by the names "Azotobacter free-radical flavoprotein" 

[3], "Azotoflavin" [4] and "Shethna flavoprotein" [5]. Van Lin and Bothe 

[6] classified the Shethna flavoprotein as a flavodoxin. Azotobacter 

flavodoxin differs from other flavodoxins that it is a constitutive com­

ponent of the cell, whereas flavodoxins from other organisms are 

induced by iron deficiency [7]. 
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The protein consists of a single polypeptide chain with 179 amino acid 

residues, it contains one FMN and has a relative molecular mass of 19990 

[8]. There is one single cysteine residue present which can cause 

dimerization of two flavodoxin molecules, a process which results in the 

loss of biological activity [9]. In addition to the 5'phosphate ester on 

the FMN, flavodoxin contains 2 moles of tightly bound phosphor groups [10]. 

One phosphate group is covalently bound to the protein in a phospho-

diester linkage between serine and threonine residues. It has been 

suggested that the other is an acid labile phosphate in an acyl phosphate 

linkage with a protein COOH group [11]. At pH 8.0 and 25°C the redox poten­

tial of the quinone/ semiquinone couple (E2) of flavodoxin is -250 mV 

[12-14]. However an anomalous value of +50 mV was also reported for E2 

[15]. The redox potential of the semiquinone/hydroquinone couple (El) is 

-500 mV [12-16]. 

The primary function of the flavodoxin in Azotobacter species was 

suggested to be electron transport to nitrogenase. In 1969 Benemann et 

al. [4,17] showed that flavodoxin was one of the four factors native to 

A.vinelandll cells needed for electron transport from NA0PH to nitroge­

nase, however the reported rate was just a fraction of the activity 

obtained with dithionite as electron donor. It appeared that the endoge­

nous enzyme system was not capable of reducing flavodoxin effectively 

beyond the semiquinone state, whereas the hydroquinone form is necessary 

for nitrogenase activity [18,19]. In fact completely reduced flavodoxin 

turned out to be a good electron donor for nitrogenase; activities being 

50* higher than with dithionite [19-21]. Furthermore flavodoxin from 

Azotobacter chroococcum was shown to be nif specific [22]. 

What argues against flavodoxin being the unique physiological 

electron donor for nitrogenase in A.vinelandii is the observation that 

flavodoxin is also present in cells grown on ammonia [4]. Such cells do 

not fix nitrogen and have no nitrogenase. Therefore it does not seem 

logical that these cells contain flavodoxin. However, recently we have 

shown that the concentration of flavodoxin is small in NH4+-grown cells 

compared to its concentration in N2-fixing cells [21]. It also seemed 

that different species of flavodoxin were synthesized in the two modes 

of growth. In this paper we show that three different flavodoxins can be 
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isolated from Azotobacter vinelandii ATCC 478. One of the three flavodoxins 

is specific for cells grown on ammonia, and one flavodoxin seems to be nif 

specific. 

4.3 MATERIALS AND METHODS 

Growth of bacteria 

Azotobacter vinelandii ATCC 478 was cultured in a 30 1 fermentor of 

Bioengineering (type LP 30) on Burk's basic salt medium [23] with 

sucrose as the sole carbon and energy source. Cells were grown under 

N2-fixing conditions or in the presence of NH4Ac. During growth on NH4Ac 

the concentration of ammonia in the medium was measured [24] and kept at 

28 mM. Cells were harvested during the logarithmic phase and stored at 

-80°C. 

Purification of flavodoxin 

Flavodoxin from N2-fixing cells was isolated as described earlier 

[21]. Flavodoxin from NH4Ac grown cells was isolated aerobically at 4°C in 

50 mM Tris-Cl, 1 mM EDTA, 0.1 mg/ml dithiotreitol, 0.1 mM PMSF, final pH 

7.5 unless indicated otherwise. Cells ( 350 g) were disrupted with a Manton 

Gaulin homogenizer at 8000 psi. Unbroken cells were removed by centrifuga-

tion. The supernatant was applied onto a DEAE-Sephacel column (2.5 x 14 

cm). The column was washed with buffer and buffer + 0.1 M NaCl after which 

a gradient (200 ml) of 0.1-0.7 M NaCl was applied. Flavodoxin eluted at 0.3 

M NaCl. The pooled flavodoxin fractions were dialysed against buffer and 

brought to 50% saturation with (NH4)2S04 at 0°C. After 1 hour the mixture 

was centrifuged 15 min at 15,000 x g. The supernatant was applied to a 

DEAE-Sephacel column (2.5 x 5 cm) equilibrated with 50% (NH4)2S04. The 
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column was washed with 50% (NH)2S04 and a decreasing gradient (150 ml) of 

50% to 0% (NH4)2S04 in buffer was applied [25]. Flavodoxin containing frac­

tions eluted at 25% (NH4)2S04, were concentrated by ultrafiltration using 

an Amicon YM 10 filter and further purified on a Sephacryl-S200 column (1 x 

60 cm). The yellow coloured fractions were concentrated by ultrafiltration 

and stored at -80°C. The ratio A 2 7 4 / 4 g 2 was 4.85. 

Separation of flavodoxins 

The purified flavodoxins isolated from either ammonia grown or 

N2-fixing cells were separated on a mono Q HR 5/5 anion exchanger (0.5 x 

5 cm) using an FPLC apparatus of Pharmacia Fine Chemicals. The sample 

was applied in 20 mM 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)-

propane-1,3-diol pH 6.4 and eluted with a linear gradient (25 ml) of 

0.25-0.55 M KCl. The pH of the eluted fractions was adjusted to pH 7.5 

and 1 mM EDTA plus 0.1 mg/ml dithiothreitol was added. After several 

runs, flavodoxin fractions were concentrated by ultrafiltration and 

stored at -80°C. 

Spectroscopy 

31P-NMR spectra were recorded at 5°C on a Bruker CXP 300 NMR 

spectrometer operating at 121 MHz. Wilmad 10 mm precision NMR tubes were 

used. The spectrometer was locked on the deuterium resonance of the D20 

solvent (10%) in the sample. Broadband proton decoupling of 0.5 W was 

applied. All spectra were recorded with 30° pulses and a repetition time 

of l.l s. Chemical shifts were determined relative to an external stan­

dard of 85% phosphoric acid. As recommended by the International Union 

of Pure and Applied Chemistry downfield shifts were regarded as 

positive. This in contrast to earlier reports [10,11]. 
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Optical spectra were scanned on an Aminco DW2A spectrophotometer. 

Extinction coefficients were determined as described by Mayhew and 

Massey [26], except that flavodoxin was photoreduced with 5-deazaflavin 

and tricine [19]. Protein concentrations were estimated with the micro-

biuret method with bovine serum albumin as a standard [27]. The 

oxidation/reduction potential (El) for the semiquinone/hydroquinone 

couple of flavodoxin I was measured after equilibration with NADPH in 

the presence of ferredoxin-NADP+ oxidoreductase [28]. For flavodoxins II 

and III, El of the semiquinone/hydroquinone couple was determined after 

equilibration with H2 in the presence of hydrogenase [28]. 

Electrophoresis 

SDS-polyacrylamide gel electrophoresis was carried out according to 

a modified Laemmli method [29,30]. Gels contained 14% or 20% acrylamide 

with 0.09% or 0.07% bisacrylamide- respectively. Molecular mass markers 

used, were: Phosphorylase b (94 kDa), bovine serum albumin (67 kDa), 

ovalbumin (43 kDa), bovine carbonic anhydrase (30 kDa), o-chymotrypsi-

nogen (25.7 kDa), myokinase (21 kDa), soybean trypsin Inhibitor (20 

kDa), myoglobin (17.2 kDa), a-lactalbumin (14.4 kDa). Two dimensional 

gel electrophoresis was performed by the O'Farrell technique [3l] except 

that Nonidet NP40 was replaced by Triton X-100. Ampholytes (Pharmacia) 

in the pH ranges 3-10 and 4-6.5 were mixed at a ratio of 1:4. Protein 

blotting and concentration determinations of the three flavodoxins in 

intact A.vinelandii cells was done as described earlier [2l]. The proce­

dure of Cleveland [32] was used for peptide mapping by limited proteoly­

sis in solution with chymotrypsin A4 (Boehringer) and protease from 

Staphylococcus aereus V8 (Miles Laboratories). 

Cross reactivity of antisera 

Antisera against flavodoxin I, II (isolated from N2-fixing cells) 

and flavodoxin III (from cells grown on NH4Ac) were raised separately in 

New Zealand White rabbits [33]. 
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An SDS-polyacrylamide gel was run with the following samples: Fid I 

(0.2 ug), Fid II (0.25 fig), Fid III (0.2 ug), and a sample without protein. 

After electrophoresis proteins were transferred to nitrocellulose 

filters (Schleicher & Schuil) [34]. One filter was incubated overnight 

with the antiserum raised against Fid I. Bound antibodies were detected 

by incubation with 125I-labelled protein A. After washing, an autora­

diogram was made from the nitrocellulose sheet [2l] . The duplicate 

filter was incubated overnight with antiserum raised against Fid II and 

handled in the same way. Both autoradiograms were used to cut out Fid I, 

Fid II and Fid III from the nitrocellulose filters. The radioactivity 

bound to the different proteins was counted [21] . The same procedure was 

carried out for another gel, except that the filters were incubated with 

antisera raised against Fid II and Fid III. 

Immunoprecipitatlon after derepression 

A.vinelandli was grown in a batch culture on Burk's medium with 

sucrose and 28 mM NH^Ac. After washing two times with one volume of 

nitrogen-free medium, cells (10 ml) were incubated at 30°C in Burk's 

nitrogen-free medium containing 50 uM S0 4
2 ~ and sucrose [35]. The incu­

bation was aerated to a free oxygen concentration of 2 uM. After 15 min 

25 MM Na 2
3 5 S0 4 (250 uCi, New England Nuclear) was added. At t=25 min 

nitrogenase activity could be detected, which activity increased until 

t=60 min. Then 50 mM Na2S04 was added. 1 ml of the culture was centri­

fugea and the pellet was washed with 1 ml of 10 mM Tris-Cl, 10 mM EDTA, 

final pH 8.0 and boiled in 0.1 ml 50 mM Tris-Cl pH 8.0, 1 mM EDTA, 4* 

SDS. After addition of 1 ml RIA buffer (10 mM Tris-Cl pH 7.5, 0.15 M 

NaCl, 1% Triton X-100, 0.1% Na-deoxycholate, 0.5% BSA) the solution was 

centrifuged. The supernatant containing the solubilized proteins was 

incubated with 15 ul antiserum against Fid I and 15 ul anti-Fid II for 

75 min at 37°C followed by 5 hours at 4°C. Then 5 ul goat-anti rabbit 

IgG was added and the mixture incubated overnight at 4°C. 

Immunocomplexes were precipitated by centrlfugation. The pellet was 
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washed two times with RIA buffer and finally taken up in sample buffer 

for electrophoresis [30] . 

As a control the same experiment was carried out, but with 28 mM 

NH4Ac present during the incubation of whole cells. These cells remained 

repressed for N2-fixation. 

Immunoprecipitates of repressed and derepressed cells were analyzed 

on 14% SDS-polyacrylamide gels, with purified Fid I and II as reference. 

After electrophoresis the gel was stained to detect the Fid I and II 

markers. S-labelled proteins present in the immunoprecipitates were 

visualized by autoradiography. 

Materials 

DEAE-Sephacel, Sephacryl-S200; Mono Q HR 5/5 were from Pharmacia 

Fine Chemicals (Uppsala, Sweden). All other chemicals were of the 

highest commercial grades. Megasphaera elsdenii hydrogenase was a gift 

from Mrs. A. van Berkel-Arts. Spinach ferredoxin-NADP+ oxidoreductase 

was a gift from Dr. C. Laane. 

4.4 RESULTS 

Occurence of different flavodoxins in A.vinelandii 

Flavodoxin isolated from N2-fixing A.vinelandii cells appears to be 

heterogeneous by two dimensional gel electrophoresis (Fig. 1A). The 

purified flavodoxin was separated into two protein spots (indicated I 

and II). Spot I has a pi of 4.90 and a Mr of 20500. Spot II has a pi of 

4.94 and a Mp of 19500. Flavodoxin isolated from cells grown on NH4Ac 

also separates into different spots on two dimensional gels (Fig. IB). 

Spot I and spot II are identical to spot I and spot II in flavodoxin 

from N2-fixing cells as was shown on a two dimensional gel of a mixture 

of the flavodoxins from N2-fixing cells and NH4
+-grown cells (not shown). 

Spot III has a pi of 4.60 and a Mr of 20500. 
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Fig. 1. Two dimensional gels of isolated flavodoxins. 
Flavodoxin was isolated as described in Materials and Methods and analyzed 
by two dimensional gel electrophoresis [31]. The pH gradient is indicated 
at the top, the position of molecular mass markers (in kDa) at the left of 
each gel. Spots derived from flavodoxin (marked I, II, III) were verified 
later using FPLC purified flavodoxin fractions (A) 10 jig flavodoxin iso­
lated from cells grown ^-fixing. (B) 10 |ig flavodoxin isolated from cells 
grown on NH4Ac. 
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Fig. 2. 31P-NMR spectra of flavodoxins isolated from Ng-fixing and from 
NH4AC grown cells. 
121 MHz 31P-NMR spectra of Azotobacter flavodoxins were recorded in 50 mM 
Tris-HCl, 1 mM EDTA, final pH 7.5. A 3.0 Hz exponential multiplication was 
applied before Fourier transformation. (A) 1 mM flavodoxin from cells grown 
N2-fixing; 3662 acquisitions. (B) 0.2 mM flavodoxin from cells grown on 
NH4AC; 35300 acquisitions. 

The heterogeneity of the flavodoxin samples was confirmed by 

31P-NMR spectroscopy (Fig. 2 ) . The 31P-NMR spectrum of purified flavo­

doxin from Ng-fixing cells indicated that two different flavodoxins were 

present. One with a chemical shift for the phosphate of bound FMN of 

5.33 ppm. One with a chemical shift of 6.05 ppm. The 31P-NMR spectrum of 

purified flavodoxin from cells grown on NH4Ac revealed the presence of 

three different flavodoxins, with chemical shifts for the phosphate of 

the FMN moiety of 5.35, 5.48, 6.03 ppm. One of the three flavodoxins 

also contains a phosphor residue (Ô = 0.8 ppm) linked to the protein 

moiety. Signal intensities indicate that the phosphor residue is most 

likely attached to flavodoxin I and/or III. In contrast to earlier reports 

[lO.ll] no significant amount of protein bound phosphate (apart from the 

phosphate group of FMN) was detectable in flavodoxin from N2-fixing cells. 
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Fig. 3. Separation of flavodoxin I, II and III on Mono Q. 
0.5 mg flavodoxin isolated from cells grown on NH4AC was separated on Mono 
Q HR5/5 with a linear salt gradient by FPLC as described in Materials and 
Methods. Flow rate: 1.5 ml/min. The solid line represents the A280 and the 
dashed line the KCl concentration. 

The, three flavodoxins present in the mixture isolated from cells 

grown on NH4Ac can be separated by using FPLC (Fig. 3 ) . Flavodoxin I 

elutes at 0.38 M KCl, flavodoxin II at 0.43 M KCl, flavodoxin III at 

0.45 M KCl. Flavodoxin of N2-fixing cells separates in the sane way, but 

yields considerably »ore Fid II and no Fid III. The separated flavo­

doxins were pure as judged by two dimensional gel electrophoresis and 

31P-NMR spectroscopy. In fact the nomenclature used in Figs. 1 and 2 is 

based on the elution profile of the different flavodoxins from the FPLC. 

However the protein-bound phosphate group with a chemical shift of 0.8 

ppm was not found in any of the flavodoxin fractions after FPLC, for 

unknown reasons. 

Characterization of the different flavodoxins 

It turned out during this investigation that the properties of Fid 

I and Fid II were the same irrespective whether the fractions were iso­

lated from cells grown on NH4Ac or from cells grown N2-fixing. Therefore 
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in the rest of th is paper the origin of flavodoxins I and II i s not spe­

cified. 

The i so-e lect r ic points of Fid I , II and III in 9 M urea were 

determined by two dimensional gel electrophoresis [3 l ] . Their re lat ive 

Table 1. Properties of Azotobacter flavodoxins. 

Flavodoxin I Flavodoxin II Flavodoxin III 

pi in urea 

Mr (SDS-gels) 
31P chenical shift FMN 

*»ax F H N (quinone) (nm) 

Am a x FMN (semlquinone) 

(nu) 

Absorbance ratio 

c («IM-1«"1) quinone 

semiqulnone 

hydroquinone 

El (pH 7.0; 25°C) (mV) 

Concentration in 

N2-fixing cells (MM) 

NH4
+ grown cells (|iM) 

Oxidized by nitrogenase? 

formed during nlf 

derepression? 

4.95 ± 0.05 

21500 ± 1000 

5.34 

458 

599 

5.3 

11.6 

3.0 

4.8 

1.2 

5.05 ± 0 .1 

20500 t 1000 

6.05 

452 

581 

(274/458) 4.9 

(458) 

(458) 

(599) 

(458) 

-320 ± 10 

50 t 20 

36 t 15 

no 

no 

11.3 

3.0 

5.7 

1.5 

4.55 ± 0.1 

21500 t 1000 

5.50 

461 

592 

(274/452) 4.3 (274/461) 

(452) 

(452) 

(581) 

(452) 

-500 t 10 

100 ± 20 

10 ± 

yea 

yes 

5 

10.6 (461) 

3.1 (461) 

5.4 (592) 

1.5 (461) 

-500 ± 10 

0 

30 ± 10 

not tested 

no 

Wavelengths (nm) in parenthesis. 

molecular masses by SDS-polyacrylamide electrophoresis using marker pro­

teins as described in Materials and Methods. Mean values of 5 indepen­

dent determinations are given in Table 1. 

Spectra of the quinone forms of flavodoxins I, II and III are shown 

in Fig. 4. Fid I has absorption maxima at 274, 378, 458, 479 nm; Fid II 

at 274, 372, 452, 471 nm and Fid III at 274, 371, 461, 481 nm. Absorp-
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Fig. 4. Spectra of the quinone forms of flavodoxins I, II and III. 
Spectra were recorded in 50 mM Tris-Cl, 0.1 mM EDTA, final pH 7.5 and nor­
malized to the absorption maxima at 450 nm. Fid I is shown as a broken 
line. Fid II as a solid line. Fid III as a dotted line. 

tion maxima for the semiquinone form (not shown) of Fid I are 599, 635 

nm; Fid II 581, 615 nm and Fid III 592, 625 nm. During reduction of the 

quinone to the semiquinone form an isobestic pont occurs at 504 nm for 

Fid I; at 500 nm for Fid II and at 514 nm for Fid III. 

The extinction coefficients determined at the absorption maxima of 

the FMN (XB a x) around 450 nm are almost similar for the three proteins 

(Table 1). One exception is the £599 for the semiquinone form of Fid I, 

which is low compared to Fid II and Fid III. Until now the concentration of 

the quinone form of Azotobacter flavodoxin was always determined by its 

absorbance at 452 nm and for the semiquinone form at 580 nm. The ratio 

A274/A452 was used as a measure of the purity of flavodoxin. As can be seen 

in Table 1 it is better to do this at different wavelengths, depending on 

the type of flavodoxin. 

The data of Table I were used in the determination of the redox 

potentials of the three flavodoxins. For Fid II and III the redox pon-

tential of the semiquinone/hydroquinone couple (El) was determined with 

hydrogen and hydrogenase. No striking differences were found between the 

redox potentials of Fid II and Fid III. The effect of pH on El is shown 

in Fig. 5. The change in slope at pH values above 7 indicates a deproto-
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pH 

Flg. 5. Effect of pH on El of flavodoxins I, II and III. 
The redox titrations were performed at 25°C as described in Materials and 
Methods, (x); measurements for Fid I. (•); for Fid II. (o); for Fid III. 

nation in flavodoxin hydroquinone. Through the experimental data a 

theoretical curve is drawn in which the oxidation/reduction potential of 

the unprotonated flavodoxin is -520 mV and the pK of the reduced form is 

7.0 [28]. The midpoint potential at pH 7.0 calculated from this theore­

tical curve is -500 mV for both Fid II and Fid III. Between pH 6.0 and 

8.0 Fid I was always completely in the hydroquinone form when measured 

with hydrogen and hydrogenase. Therefore El of Fid I was measured with 

NADPH/NADP+ and ferredoxin-NADP* oxidoreductase (Fig. 5 ) . At pH 7.0 El 

of Fid I is -320 mV, a value much more positive than El of Fid II or Fid 

III. The pH dependence of El for Fid I is abnormal for a flavodoxin. The 

curve drawn through the experimental data equals an n = 1.7. Maybe this 

unusual behaviour is caused by Fid I having more than one ionization in 

the measured pH range that influence El. Another possibility is that 

both redox couples of Fid I are not well separated. 
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Relationship of flavodoxins 

The three flavodoxins of A.vinelandii can either be structurally 

different polypeptides or be modified forms of the sane polypeptide 

chain. The most straightforward, but also most difficult, way to study 

the relationship of flavodoxins I - III would be comparison of their 

amino acid sequences. A more easy method for peptide analysis of pro­

teins is peptide mapping [32]. Fid I, II and III were partially digested 

with either protease from Staphylococcus aereus V8 or with chymotrypsin. 

Products were analyzed on 20* SDS-polyacrylamide gels (Fig. 6). The pat-

Protease from S. aureus V8 

0 min 15 min 30 min 60 min 

M i i m i i m i i m i i E 

sf~ 

14.4 — ^ ,. * - _ «* «. «*» 

120 min 

I I H M 

-

-

- • - -

<# 

94 
67 

43 

30 

20 

14.4 

Chymotrypsin 

' i n n ' 
• " "3SF 

-

-

Ü0 

Fig. 6. Peptide mapping of Fld I, II and III. 
Flavodoxins I, II and III (1 mg/ml) were denatured in 0.4% SDS and digested 
at room temperature with 40 jig /ml protease from S .aureus V8 for 0-120 min 
as indicated in the figure or with 15 fig/ml chymotrypsin for 60 min. 10 pg 
protein was analyzed on a 20* gel according to Laemmli [29] or in the case 
of chymotrypsin with 0.07* bisacrylamide instead of 0.53*. The position of 
molecular mass markers (M) after electrophoresis is indicated in kDa. 
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tern of peptide fragments produced were sufficiently different to 

conclude that Fid I, II and III are encoded by different genes. To what 

extent there is difference between the primary structures of the three 

proteins cannot be concluded from the peptide maps shown in Fig. 6. 

Another way to obtain information about the relationship of pro­

teins is comparison of their immunological properties. Antisera were 

raised separately against the three flavodoxins. The reaction of these 

antisera with the three flavodoxins was compared (Table 2). The cross-

Table 2. Cross reactivity of anti-Fid I, II and III with Fid I, II and III. 

The reactivity of the antisera was measured as described In Materials and 

Methods and Is expressed as 125I-counts per minute bound to the purified pro­

teins. 

Sample 

Control 

Flavodoxln I 

Flavodoxin II 

Flavodoxln III 

Amount of 

Protein 

Mg 

0 

0.2 

0.25 

0.2 

Reactivity with antisera 

Fid I Fid II 

125I-counts.i«in"'1 

72 59 

7326 146 

379 14998 

65 61 

aeai nst 

Fid III 

63 

61 

107 

1390 

reactivity of an antiserum raised against one type of flavodoxin with 

another type of flavodoxin was always less than 5%. Such small cross-

reactivity could easily be caused by the presence of trace amounts of 

the other flavodoxins in the "pure" flavodoxin preparations used to 

raise antibodies. Anyhow Table 2 strongly suggests that flavodoxins I, 

II and III are completely different immunological structures. 
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Flavodoxins I, II and III in whole cells 

The loss of covalently bound phosphate for one of the "ammonia" 

flavodoxins after FPLC raised questions about the physiological rele­

vance of the purified flavodoxins. The antisera raised against the three 

flavodoxins were used to investigate whether Fid I, II, III were present 

in a modified form in the intact cells. Proteins from fermentor grown 

cells were separated by two dimensional gel electrophoresis. Protein 

blots were made form these gels and the positions of Fid I, II and III 

detected with their own specific antisera [21]. The position of the fla­

vodoxins in the extracts could then be compared with the position of 

pure flavodoxins on two dimensional gels. The positions of Fid I and Fid 

II after electrophoresis turned out to be exactly the same compared to 

the positions of purified Fid I and Fid II (not shown). So the purified 

Fid I and Fid II seem to be identical to the native proteins. On two 

dimensional gels the apparent Mr of purified Fid III was higher than the 

Mr observed for Fid III present in cell extracts (Fig. 7). Obviously 

during purification the structure of this protein is altered. 
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Fig. 7. Immunoautoradiogram of purified Fid III and Fid III present in 
intact A.vinelandii cells. 
Two dimensional gel electrophoresis was done with a mixture of purified 
Fid III (0.05 ug) and an extract from cells (18 pg protein) grown on 
NH4AC. The pH gradient is indicated at the top, the position of molecu­
lar mass markers (in kDa) at the left side of the gel. After 
electrophoresis a protein blot was made and the blot incubated with 
antiserum against Fid III [21]. Bound antibodies were detected with 
125I-protein A and autoradiography. The positions of purified Fid III 
(pure) and Fid III as it occurs in the cells (cell) are indicated. 
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In a previous paper [21] we estimated the concentration of flavo-

doxin in intact A.vinelandii cells. At that time no discrimination was 

made between different types of flavodoxins. Furthermore the antiserum 

used, reacted predominantly with flavodoxin II. Therefore the con­

centration of flavodoxin in intact cells was reinvestigated using speci­

fic antisera against flavodoxins I, II and III. Instead of growing cells 

in a chemostat, cells were grown logarithmically in a fermentor. The 

concentration of flavodoxin was calculated as described earlier [21] 

using a Mr for flavodoxin of 20000 and an internal volume for Azotobacter 

cells of 5 (il/mg total protein (Table 1). The concentration of flavo­

doxin I is almost equal for cells grown N2-fixing compared to growth on 

NH4Ac. Whereas the concentration of Fid II is ten times higher in 

N2-fixing cells. Fid III is only detectable during growth on NH4Ac. 

As mentioned earlier [21] synthesis of flavodoxin parallels synthe­

sis of the nitrogenase proteins after derepression (transfer to N 2 

dependent growth). So at least part of the flavodoxin present in 

N2-fixing A.vinelandii cells seem to be nif-specific. This is most 

likely flavodoxin II. To prove this, cells were derepressed in the pre­

sence of S04 . Flavodoxin present in extracts from these cells was 

precipitated with anti-Fid I and anti-Fid II, followed by SDS-gel 

electrophoresis and autoradiography. The autoradiogram showed, that 

during derepression only Fid II was synthesized. No 35S-labelled Fid I 

was detectable (not shown). In a similar experiment, using an antiserum 

against ferredoxin I, it appeared that no significant amount of ferre-

doxin I was synthesized during derepression (not shown). 

4.5 DISCUSSION 

In the introduction of this paper the properties of Azotobacter fla­

vodoxin are described as if it concerns only one protein. In this 

report it has been shown, that A.vinelandii is able to synthesize at 

least three different flavodoxins. All three flavodoxins are present in 

cells grown on NH4Ac. In cells grown N2-fixing only Fid I and Fid II are 
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found. The derepression experiments followed by immunoprecipitation and 

also the high concentration in N2-fixing cells, indicate that Fid II is 

involved in nitrogen fixation. Since Fid II, when properly reduced, can 

donate efficiently electrons to nitrogenase (J. Cordewener, 

unpublished), it is most likely that Fid II can act as a physiological 

electron donor for nitrogenase. Fid II is also present to a small extent 

in NH4
+-grown cells (10%). This might be caused by the presence of a 

constitutive promotor for the same protein in addition to a nif promo-

tor. Such a phenomenon has been described for glutamine synthetase in 

Anabaena 7120 [36]. 

One could wonder why the heterogeneity of flavodoxin has not been 

reported earlier. Firstly, it is important to notice that flavodoxins I, 

II and III are difficult to separate by conventional methods. For this 

reason the mixture is easily regarded as one single protein. For 

instance Dickerson et al. [37] used a preparation that gave two bands on 

a SDS-polyacrylamide gel. It might be possible that these two bands 

represent Fid I and Fid II, but the authors have interpreted the 

splitting of the flavodoxin band as being due to the formation of an 

internal oross-link [37]. Secondly, it is possible that there are dif­

ferences between A.vinelandii strains with respect to the production of 

the three different flavodoxins. Maybe some strains only produce one 

type of flavodoxin under N2-flxing conditions. While from A.vinelandii 

ATCC 478 always a mixture of Fid I and II has been isolated, it is 

possible to purify flavodoxin II from A.vinelandii OP by conventional 

methods (W.J.H. van Berkel, unpublished). This flavodoxin gives one FMN 

peak in the 31P-NMR spectrum. The 31P-NMR spectrum published for flavo­

doxin isolated from A.vinelandii OP (Berkeley) also shows that the pre­

paration used contains one type of flavodoxin [lO.ll]. 31P-NMR 

spectroscopy reveals another difference. Apart from the FMN, Fid II iso­

lated from A .vinelandii ATCC 478 had no protein bound phosphate, but in 

flavodoxin isolated from A.vinelandii OP one bound phosphate was 

detected. (J. Vervoort, personal communication). For A.vinelandii OP 

(Berkeley) two phosphate groups, bound to Fid II in addition to the FMN 

phosphate were observed [lO.ll]. That Azotobacter flavodoxin might be 

different depending on the strain used to isolate the protein was 

already suggested by Yoch [9] in 1975. He isolated a flavodoxin from 
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Azotobacter that differed from the known Azotobacter flavodoxins and 

proposed to call his particular strain A.vinelandll strain OP 

(Berkeley). The difference between the primary structure of this strange 

flavodoxin [8] and for instance the "normal" flavodoxln from 

A.vinelandii strain 0 [38] however is very small, being a substitution 

of glutamate for aspartate at positions 104, 134, 136, 139. 

Most results until now have been obtained with flavodoxin from 

A.vinelandii OP (Berkeley) [4,8-13,17]; strain OP [l-3,14,2o]; strain 0 

[5,15,38]. We think that flavodoxin II is similar in all A.vinelandii 

strains used, but that differences arise depending upon the degree of 

phosphorylation of flavodoxin II and upon the contamination of purified 

Fid II with Fid I. For instance it is possible that the anomalous redox 

potential for E2 [l5] of +50 mV was measured with a mixture of two fla­

vodoxins and one flavodoxin had anomalous redox properties. In this 

respect it is interesting to note a recent report on the isolation of 

flavodoxin from A.vinelandii mutant TZN 200 [39]. This flavodoxin had a 

higher redox potential (EjJ than the wild-type flavodoxin and a modified 

structure of the FMN. Although the properties are somewhat different, 

the mutant flavodoxin might well be similar to our Fid I. In that case a 

different explanation for the results of Hofstetter and DerVartanian 

[39] is that synthesis of Fid II is repressed in the mutant strain 

A.vinelandii TZN 200 leading to the isolation of pure Fid I, whereas 

isolation from the wild-type gives predominantly Fid II. 

Earlier experiments reported from our laboratory with flavodoxin 

from A.vinelandii ATCC 478 [l6,19,21,40-42] were performed with a mix­

ture of 35% Fid I and 65% Fid II. Since Fid I is not oxidized by nitro-

genase (Ej is too positive), the published value of -495 mV for the 

midpoint of the redox potential at which flavodoxin transfers electrons 

to nitrogenase [l9,40] is too negative. When the redox dependency of 

flavodoxin oxidation by nitrogenase is measured with pure flavodoxin II, 

this potential shifts to a more positive value of -475 mV (J. 

Cordewener, unpublished). Another experiment that can be explained dif­

ferently now is the reduction of flavodoxin to the hydroquinone form by 

NADPH with purified NAD(P)H-flavodoxin oxidoreductase [42]. The hydro­

quinone that is formed, originates most likely from Fid I (El = -320 

mV), while Fid II is not reduced beyond the semiquinone state (Ej = -500 
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mV, E2 = -250 mV). So the presence of an enzyme system capable of 

reducing flavodoxin II to the hydroquinone form and consequently 

electron transport to nitrogenase, is again an open question. Because 

both Fid II and Fid III have a low redoxpotential, it may well be that 

the enzymes necessary to reduce Fid II or III are identical for 

N2-fixing and NH4
+-grown cells. In that case part of the electron 

transport to nitrogenase viz. the flavodoxin II reducing system is not 

nif specific. 
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5. STUDIES ON THE MECHANISM OF ELECTRON TRANSPORT TO 
NITROGENASE IN AZOTOBACTER VINELANDII 

5.1 SUMMARY 

The involvement of the cytoplasmic membrane in electron transport to 

nitrogenase has been studied. Evidence is shown that nitrogenase activity 

in Azotobacter vinelandii is coupled to the flux of electrons through the 

respiratory chain. 

To obtain information about proteins involved, the changes occurring in 

A.vinelandii cells transferred to nitrogen-free medium after growth on 

NH4CI (derepression of nitrogenase activity) were studied. Synthesis of the 

nitrogenase polypeptides was detectable 5 min after transfer to nitrogen-

free medium. No nitrogenase activity could be detected until t=20 min, 

whereupon a linear increase of nitrogenase activity with time was observed. 

Synthesis of nitrogenase was accompanied by synthesis of flavodoxin II and 

two membrane bound polypeptides of Mr 29000 and 30000. Analysis with 

respect to changes in membrane-bound NAD(P)H dehydrogenase activities 

revealed the induction of an NADPH dehydrogenase activity, which was not 

detectable in membranes isolated from cells grown in the presence of NH4Ac. 

This induced activity was associated with the appearance of a polypeptide 

of Mr 29000 in the NADPH dehydrogenase complex. 

5.2 INTRODUCTION 

The enzyme nitrogenase is capable of reducing atmospheric N 2 to 

ammonia. For activity the enzyme needs an anaerobic environment, MgATP and 

a strong reductant. How this reductant is generated in the aerobic 

nitrogen-fixing bacterium Azotobacter vinelandii is not well understood. In 

1971 Benemann et al̂ . [l] proposed a linear electron transfer pathway from 

NADPH to nitrogenase, including both ferredoxin and flavodoxin. However the 

nitrogenase activity measured with endogenous proteins was less than 5* of 

the activity with dithionite as electron donor. Haaker et al. [2,3] criti-
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sized, that the proposed model is too simplistic with respect to the redox 

potentials of the different components of the electron transfer chain. It 

has been shown by the same authors [4J that a high proton motive force 

across the cytoplasmic membrane is required for nitrogenase activity. Espe­

cially the membrane potential turned out to be an important factor [5J. 

Recently it has been shown that A.vinelandii is able to make at least three 

different flavodoxins [e]. Flavodoxin II is most likely the reductant for 

nitrogenase [&]. Whether ferredoxin is involved in electron transport to 

nitrogenase in vivo is uncertain [6,7]. An enzyme system capable of 

reducing flavodoxin II has still to be found. 

This paper describes the changes observed in A.vinelandii cells trans­

ferred to nitrogen-free medium after growth in the presence of NH4CI. For 

Azotobacter species it is known that, when sufficient NH 4
+ is supplied to 

cells, synthesis of the nitrogenase proteins [8] and possibly also 13 other 

nif specific polypeptides [9] is repressed. It has been investigated 

whether during derepression, the (membrane) proteins necessary for electron 

transport to nitrogenase are synthesized simultaneously with the nitroge­

nase proteins. In addition, a comparison has been made between the membrane 

bound NAD(P)H dehydrogenases from cells grown in the presence of NH4Ac and 

N2-fixing cells. 

The involvement of the cytoplasmic membrane in nitrogen fixation has 

been studied on the analogy of work of Elferink et al. [lO.ll]. These 

authors proved, that active solute transport in certain bacteria was not 

only dependent on the membrane potential, but also on the flux of electrons 

through a cyclic or a linear electron transport chain. In the present 

report a relationship between nitrogenase activity of A.vinelandii and the 

rate of electron transport through the respiratory chain will be 

demonstrated. 

5.3 MATERIALS AND METHODS 

Derepression of nitrogenase activity 

Azotobacter vinelandii ATCC 478 was grown in a chemostat at a dilution 

rate of 0.15 h_ 1, with sucrose as carbon source and 28 mM NH4C1 as N-source 

[12]. Cells (100 ml) were harvested and washed two times with 250 ml 
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nitrogen-free Medium. Cells (10 Ml) were incubated at the original density 

(0.7 Mg protein.M1_1) at 30°C in Burk's nitrogen-free medium in the system 

described by Haaker et al_. [4]. Nitrogenase activity was measured as acety­

lene reduction. Newly synthesized proteins were labelled by incubating 

cells for a certain time interval, in a medium containing 25 fiCi 

[35S]methionine or 100 uCi Na 2
3 5 S0 4 (New England Nuclear). After the addi­

tion of 1 mg/ml methionine or 50 mM Na2S04, the cells were centrifugated, 

washed with 10 ml 10 mM Tris-Cl, 10 mM EDTA, final pH 8.0 and boiled in 

either 1 ml sample buffer for electrophoresis or suspended in 10 ml 50 mM 

Tes-NaOH, 5 mM MgS04, final pH 7.5 for the isolation of membranes. As a 

control, the same experiments were performed with 28 mM NH4Ac present in 

the incubation mixture. 

Isolation of membranes 

Cells, suspended in 50 mM Tes-NaOH, 5 mM MgS04, final pH 7.5 were bro­

ken at 0°C by sonication for four 30-s periods in a MSE sonifier. The 

membranes were sedimented by centrifugation between 30 min 20000 x g and 60 

min 200000 x g. The pellet was suspended in 50 mM Tes-NaOH, 5 mM MgS04 

final pH 7.5 to the original volume, sonicated for two 10-s periods and 

centrifugea as before. Washed membranes were either boiled in sample buffer 

for electrophoresis at a protein concentration of 5 mg/ml or suspended in 

50 mM Tes-NaOH, 5 mM MgS04, final pH 7.5 at a protein concentration of 40 

mg/ml and stored at -80°C. 

Analytical methods 

Protein concentrations were estimated with the Lowry method [l3]. SDS-

polyacrylamide gel electrophoresis was carried out according to Laemmli 

[14]. Gels contained 14% or 17.5* acrylamide with 0.09% or 0.07% bisacryla-

mide respectively. For molecular Mass markers see [6]. Nitrogenase activity 

of whole cells was measured at different oxygen input rates as described 

earlier [15]. The maximum activity is given in the text. Nitrogenase acti­

vity in vitro was measured with dithionite and an ATP regenerating 

system after making cells permeable for small molecules with hexadecyltri-
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methyiammonium bromide [lô]. Maximum activities were obtained at 0.8 mg/ml 

protein and 0.14 mg/ml hexadecyltrimethylammonium bromide. 

The membrane potential was measured with an ion-selective electrode as 

described [lO.ll]. 

Rates of respiration were measured at 30°C in a Gilson oxygraph 

equiped with a Clark-type 0 2 electrode at 15 ug/ml protein in 50 mM Tes-

NaOH, 10 mM MgAc2. 20 jig/ml catalase, final pH 7.4. 

Nitrobluetetrazolium (Sigma Chemical Co.) reduction was measured 

spectrophotometrically at 560 nm. Activities were measured at 30°C at 20 fig 

protein/ml in 50 mM Tes-NaOH, 5 mM MgS04, 20 ug/ml catalase, 0.5 mM 

nitrobluetetrazolium, final pH 7.5. 

For non-denaturing gel electrophoresis, membranes (8 mg protein/ml) 

were solubilized in 8* triton X-100, 50 mM Tris-Cl pH 8.8, 2 mM MgCl2, 10* 

glycerol. Solubilized proteins (50 pg/well) were separated on 7.5* 

Polyacrylamide gels containing 0.17* bisacrylamide [l4], in which SDS was 

replaced by triton X-100. After electrophoresis, gels were stained with 0.2 

mM NAD(P)H, 0.5 mM nitrobluetetrazolium in 50 mM Tes-NaOH, 5 mM MgS04, 

final pH 7.5. 

5.4 RESULTS 

Nitrogen fixation and respiration 

It is known that the energized cytoplasmic membrane is involved in the 

generation of reducing power for nitrogen fixation. The proton motive force 

in A.vinelandii is generated by respiration and it has been shown that 

whole cell nitrogenase activity is dependent on a high membrane potential 

[5]. To obtain »ore information about the influence of the membrane poten­

tial on whole cell nitrogenase activity, both were measured simultaneously 

at different oxygen input rates. At an oxygen input rate of zero no nitro­

genase activity was detectable. When the oxygen input rate was increased 

both the membrane potential and the nitrogenase activity increased to a 

maximum. When the oxygen input rate was further increased the membrane 

potential remained at the maximum, but the nitrogenase activity declined. 
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To measure the membrane potential of A.vinelandli c e l l s the outer c e l l wall 

has to be removed by a Trls-EDTA treatment [ l l ] . I t was s tr ik ing that th i s 

treatment caused a 90* l oss of both the nitrogenase a c t i v i t y and the 

respiration rate of c e l l s . For t h i s reason no absolute data on the magni­

tude of the membrane potential are presented here. The observed simulta­

neous l o s s of nitrogenase a c t i v i t y and the rate of respirat ion led us to 

study a poss ible re lat ionship between the two processes. The rate of 

respirat ion of A.vinelandli c e l l s depends on the oxygen input during growth 

and a l so on the carbon source used during the experiment (Table 1 ) . The 

Table 1. Respirat ion ra te s and n i trogenase a c t i v i t i e s of A .v ine landl i 

c e l l s . 

A .v ine landl i c e l l s were cul tured with sucrose as carbon source in a che-

• o s t a t at a d i l u t i o n rate of 0 .19 h"1 and harvested. Nitrogenase a c t i v i t i e s 

and r e sp ira t ion ra te s of whole c e l l s were measured with d i f f e ren t carbon 

sources as described In Materials and Methods. 

Substrate Respirat ion ra te Nitrogenase a c t i v i t y 

(pinoles o 2 consumed (nmoles C2H4 formed. 

min - 1 .mg prote in" 1 ) min - 1 .mg prote in" 1 ) 

Pyruvate(20 mM) 0 .40 52 

Glucose (60 mM) 0 .63 69 

Acetate (20 mM) + g lucose(20 mM) 1.17 127 

Sucrose (60 mM) 1.16 127 

Fructose(60 mM) 1.63 155 

respiration rate of sucrose grown cells was low with pyruvate and high with 

fructose; a similar relationship was found with the nitrogenase activity. 

As can be deduced from Table 1 the nitrogenase activity seems to be related 

with the respiration rate. A similar relationship was found when the nitro­

genase activity and the rate of respiration were followed during growth of 

cells in batch culture (Fig. 1). At an early stage of growth, the respira­

tion rate of cells was high as was the nitrogenase activity. At higher den­

sities, growth became oxygen limited and the respiration rate of the cells 

decreased. The nitrogenase activity decreased proportionally (Fig. 1). 
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Pig. 1. Relationship between the respiration rate of cells and the nitroge-
nase activity. 
Cells were grown in batch cultures on nitrogen-free medium. During growth, 
samples were taken to measure the respiration rate of the cells and whole 
cell nitrogenase activity as described in Materials and Methods. The line 
drawn through the data points is a least squares fit. 

Derepression of nitrogenase activity 

To obtain information about the proteins involved in electron transport 

derepression experiments were performed. When A.vinelandil cells, grown on 

NH4CI, are transferred to nitrogen-free medium, the enzymes necessary for 

nitrogenase activity are synthesized during the first hour(s) of incuba­

tion. Nitrogenase activity (C2H2 reduction) is detectable after 20 min at 

earliest, whereupon a linear increase in activity with the incubation time 

is measured (Fig. 2). The observed increase in activity may reflect the 

synthesis of active nitrogenase enzyme; however it is also possible that 

active nitrogenase is already present in the cells at an earlier stage of 

the incubation, and that this relationship reflects the synthesis of the 

electron transport pathway to nitrogenase. To discriminate between both 
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Fig. 2. Derepression of nitrogenase activity in A.vinelandli. 
A.vinelandii cells were cultured in a chemostat with 28 mM NH4C1 in the 
medium. After washing, cells were transferred to nitrogen-free medium as 
described in Materials and Methods. Cells were incubated at a free oxygen 
concentration of 2 iM. During the incubation, nitrogenase activity (C2H2 
reduction) was measured with intact cells (x, in vivo) and with cells made 
permeable for dithionite and ATP (•, in vitro). 

possibilities, the nitrogenase activity in vivo has been compared to the 

nitrogenase activity measured in vitro with dithionite and an ATP rege­

nerating system as described earlier [l6] (Fig. 2 ) . By using this method 

nitrogenase activity in vitro can be measured immediately after taking a 

sample out of the incubation mixture. Although activities are low, the 

experiment shown in Fig. 2 indicates, that the nitrogenase activity in vivo 

and in vitro increase synchronously. Consequently, during derepression, 

electron transport to nitrogenase is either not rate-limiting for the acti­

vity in vivo or it is made exactly at the same rate as active nitrogenase 

is synthesized. 

Protein synthesis during derepression is shown in Fig. 3. Synthesis of 

the Fe-protein of nitrogenase (Av2) is observed already during the first 5 

min after transfer of cells from a NH4C1 containing medium to nitrogen-free 

medium. The first detectable synthesis of the two polypeptides of Mo-Fe 

protein (Avj) occurs between 5-10 min. As reported earlier [6] the only 
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Fig. 3. Protein synthesis during derepression. 
A.vinelandii cells were cultured in a chemostat with 28 mM NH4CI in the 
medium. After washing, cells were transferred to nitrogen-free medium (N2) 
or medium containing 28 mM NH4AC (c). At different times samples were 
assayed for protein synthesis by addition of [35S]methionine to the 
incubation. Labelled proteins (100 (jig/well) were analyzed on 14% gels as 
described in Materials and Methods. The positions of molecular mass markers 
after electrophoresis are indicated in kDa. (Ml) Mixture of molecular mass 
markers, Fid II and Fe/S II; (M2) mixture of the nitrogenase proteins Av^ 
and Av2, Fid II and Fe/S II. (A) Whole cells, 35S-labelled as indicated. 
(B) Membrane proteins, 35S-labelled between 0-50 min. The dashed lines 
indicate the positions of the 29 kDa and 30 kDa proteins. 

derepressible protein synthesized in significant amounts simultaneously 

with the nitrogenase proteins is flavodoxin II, one of the three different 

flavodoxins present in A.vinelandii (Fig. 3A). The rates of synthesis of 

all other polypeptides, particularly that of Fe/S protein II and also those 

possible involved in electron transport, are equal to the rate of synthesis 

in a control experiment (Fig. 3A). However analysis of membrane proteins 

revealed two derepressible polypeptides of Mr 29000 and 30000 (Fig. 3B). 

Because membranes constitute only a small portion of the whole cell, these 

protein bands are hardly visible in Fig. 3A. 
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Membrane bound NAD(P)H dehydrogenases 

Because of the observed relationship between whole cell nitrogenase 

activity and the rate of respiration and because of the induction of 

membrane bound proteins during derepression, the cytoplasmic membrane bound 

pyridine nucleotide dehydrogenases have been studied. The properties of 

NAD(P)H dehydrogenases in membranes from N2-fixing cells were compared with 

those in membranes isolated from cells grown in the presence of NH4Ac. 

Since transhydrogenase is a soluble enzyme in A.vinelandii [l7] and 

thoroughly washed membranes have been used, the activities cannot be due to 

transhydrogenase activity. No differences are observed with respect to 

electron transfer rate from NAD(P)H to oxygen between both types of membra­

nes (Table 2). The activities are comparable to published values for 

membranes from N2-fixing cells [l8,19]. In addition to measurement of the 

Table 2. NAD(P)H dehydrogenase activities of Azotobacter membranes. 

Membranes were Isolated and the oxygen uptake rates as well as the tetrazo-

Hum reduction rates were Measured with different substrates as described 

in Materials and Methods. NH4
+ - membranes isolated from cells grown in 

the presence of 28 mM NH^Ac. Ng = membranes isolated form N2~fixing cells. 

Substrate Addition Oxygen consumption Tetrazoliun reduction 

rates 

NH„ 

(moles 02 consumed. 

min_1.mg protein"1 

umoles tetrazoliun re­

duced, min .mg protein"1 

1 mM NADH 

1 mM NADH 

2 mM NADPH 

2 mM NADPH 

none 

1 mM NAD+ 

none 

1 mM NAD* 

2.40 

1.80 

2.30 

0.40 

2.75 

1.90 

2.20 

0.40 

0.63 

0.60 

0.25 

0.24 

0.53 

0.55 

0.20 

0.22 

rate of electron transport to oxygen through the respiratory chain, NAD(P)H 

tetrazolium reductase rates were measured [20]. The differences between 

membranes isolated from N2-fixing cells and membranes from cells grown in 
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Fig. 4. Gel electrophoresis of membrane bound NAD(P)H dehydrogenases. 
Membrane proteins were solubilized in triton X-100 and separated on 
Polyacrylamide gels in the absence of SDS. After electrophoresis the gels 
were either stained for NADH (A) or NADPH (B) tetrazolium reductase acti­
vity as described in Materials and Methods. (1,3) Membranes isolated from 
cells grown in the presence of NH4AC; (2,4) membranes isolated from cells 
grown ^-fixing. The arrow in part B indicates a NADPH tetrazolium reduc­
tase predominantly observed in membranes after derepression of nitrogenase 
activity. Proteins present in this band were extracted, separated on a 
17.5% SDS-polyacrylamide gel and silver stained [21] (C). The positions of 
molecular mass markers after electrophoresis are indicated in kDa. (N2) 
polypeptides extracted from lane 4; (c) control i.e. polypeptides extracted 
from lane 3 at the position of the arrow in part B. The arrrow in part C 
points to a 29 kDa polypeptide solely observed in the dehydrogenase 
complex originating from ^-fixing cells. 
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the presence of NH 4
+ are marginal (Table 2). Note that although NAD+ Is a 

strong Inhibitor of electron transfer from NADPH to 02. the rate of tetra-

zolium reduction by NADPH is not inhibited by NAD+ (Table 2). 

When membranes are incubated with triton X-100, 90% of the NADH tetra-

zolium reductase activity and 50* of the NADPH tetrazolium reductase acti­

vity is extracted. The solubilized protein-detergent complexes are 

separated on a Polyacrylamide gel under non-denaturing conditions. Remnant 

membrane fragments do not penetrate the gel. After electrophoresis, gels 

have been stained for NAD(P)H dehydrogenase activity (Fig. 4A,B). It was 

observed that staining with NADH was faster compared to staining with NADPH. 

Furthermore membrane proteins from N2-fixing cells stained more intensively 

than membrane proteins from NH4Ac-grown cells. The position on the gel of 

the NADH tetrazolium reductase complexes originating from Ng-fixing cells 

and complexes originating from NH4Ac-grown cells are identical (Fig. 4A). 

For the NADPH tetrazolium reductase, one band in membranes from Ng-fixing 

cells stains at least ten times faster than the same band in membrane iso­

lated from NH4Ac grown cells (arrow, Fig. 4B). The difference in activity 

is obvious already 1 hour after derepression of nitrogenase activity. This 

band with induced NADPH tetrazolium reductase was extracted from the gel 

and also the band of the control lane with membrane proteins from cells 

grown in the presence of NH4Ac. The polypeptides present in both gel 

extracts were analyzed on SDS-polyacrylamide gels (Fig. 4C). As observed by 

others [22] the dehydrogenase complexes contain many polypeptides. The pat­

tern is identical for the two modes of growth, except for a polypeptide of 

Mr 29000, that is only detectable in the NADPH dehydrogenase complex 

extracted from membranes isolated from cells grown Ng-fixing (see the arrow 

in Fig. 4C). The presence of the 29 kDa polypeptide has been shown to be 

reproducible in four separate experiments. 

5.5 DISCUSSION 

In this paper a relationship has been demonstrated between the rate of 

electron transfer through the respiratory chain and the whole cell nitroge­

nase activity. Replotting data obtained by others [23,24] also shows a 

similar linear relationship between these activities in Azotobacter cells. 
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This phenomenon can be explained by the following possibilities: (a) an 

increase in the rate of respiration of cells results in an increased proton 

motive force, giving an increase in the membrane potential and/or the 

ATP/ADP ratio; (b) the concentrations of the enzymes needed for whole cell 

N2-fixation (electron transport and nitrogenase) are higher in cells with a 

higher respiration rate; (c) when cells have a higher rate of respiration 

the catalytic activity of the electron transport chain to nitrogenase is 

enhanced. Explanation (a) is probably only true for cells grown under a 

severe oxygen limitation. At higher oxygen input rates, it is known that 

respiration in A.vinelandii is uncoupled [25]. The proton motive force is 

kept at a constant level by varying the degree of uncoupling. It has been 

shown that the ATP/ADP ratio in A.vinelandii cells is fairly independent of 

the growth conditions [4,5,16]. For these reasons we do not expect the 

maximal membrane potential to be significantly different in different types 

of cells. Under our experimental conditions, at maximal nitrogenase activi­

ties the membrane potential had a maximum value and did not increase at 

higher oxygen input rates. Explanation (b) is excluded by the experiment 

shown in Table 1, where the same cells were incubated with different carbon 

sources and give higher activities without any adaptation. Additional evi­

dence can be found in the literature [4], where it has been shown for one 

batch of cells that inhibition of the rate of respiration caused inhibition 

of nitrogenase activity, without an effect on the ATP/ADP ratio. In our 

opinion explanation (c) is most likely. In a previous paper we showed, that 

the catalytic activity of nitrogenase in vivo is determined by the rate of 

electron transport to nitrogenase [12]. In addition, we propose that the 

rate of electron transport to nitrogenase in A.vinelandii is determined by 

the rate of electron transfer to oxygen in the respiratory chain. The 

nature of the interaction between both processes is still unknown, but 

there may be further analogy with solute transport systems as studied by 

the group of Konings [10,11]. 

From the derepression experiments no clear answer was obtained for the 

induction of an electron transport chain as observed in Klebsiella pneumo­

niae [26]. In contrast to K.pneumoniae induction of nitrogenase activity in 

A.vinelandii is much faster. 5 min after transfer to nitrogen-free medium, 

synthesis of the nitrogenase polypeptides is detectable and nitrogenase 

activity after 20 min. Apparently the period between 5 and 20 min is 

84 



necessary for processing the nitrogenase proteins and/or incorporation of 

(Mo)FeS clusters. With respect to proteins possibly involved in electron 

transport to nitrogenase, only the synthesis of a limited number of proteins 

were detected: flavodoxin II, most likely the physiological reductant for 

nitrogenase under the derepression conditions used and two polypeptides of 

Mr 29000 and 30000, present in the cytoplasmic membrane. It should be 

noted, that our experiments do not definitely prove, that the 29 kDa and 30 

kDa membrane proteins are involved in the process of nitrogen fixation. 

They also may arise from the N-starved situation that occurs during 

derepression. Besides synthesis of two membrane polypeptides, a 

NADPH-nitrobluetetrazolium reductase activity becomes detectable during 

derepression. This induced activity was associated with the presence of a 

polypeptide of Mr 29000 in a solubilized NADPH dehydrogenase complex. 

Whether this 29 kDa polypeptide is identical to the 29 kDa polypeptide that 

was radioactively labelled during the derepression remains to be eluci­

dated. It is remarkable, that the NADPH dehydrogenase activity induced 

during derepression has not been detected by measurements with intact 

membranes, but only after electrophoresis. However from Fig. 1 it can be 

deduced, that the rate of electron transfer to nitrogenase is only 7% of 

the rate of electron transfer to oxygen. It is therefore difficult, with a 

general dehydrogenase assay, to detect the induction of a specific NADPH 

dehydrogenase involved in electron transport to nitrogenase in the presence 

of other more active NADPH dehydrogenases. But solubilization of membranes 

with triton X-100 followed by electrophoresis at pH 8.8, might have 

separated the NADPH dehydrogenase complex involved in reduction of flavo­

doxin II from the other membrane-bound NADPH dehydrogenases and made the 

detection of this activity possible. 
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6. GENERAL DISCUSSION 

6.1 The activity of nitrogenase in vivo 

Nitrogenase needs ATP and a strong reductant for activity (En<-460 mV). 

How ATP is generated in living cells is sufficiently known. Less is known 

about the generation of the strong reductant for nitrogenase. In fer­

menting bacteria reducing power is mainly provided by the thioclastic reac­

tion (eq. 2 in Chapter 1). In extracts from these bacteria nitrogenase 

activity can be measured with pyruvate or dithionite as electron donor. 

This activity is equal to the whole cell activity. In all other nitrogen-

fixing organisms the activity of the thioclastic reaction is too low to be 

significant for the generation of reductant for nitrogenase [9]. In aerobic 

bacteria pyruvate: ferredoxin oxidoreductase activity (the thioclastic 

reaction) is absent [12]. These bacteria have a pyruvate dehydrogenase 

complex reducing NAD+ (Effl = -320 mV) instead of ferredoxin. How reducing 

equivalents for nitrogenase are generated in obligate aerobes is virtually 

unknown even after ca. 20 years of research. The reason is that after 

breakage of cells the physiological electron transport system is totally 

inactive or at most 5* of the dithionite activity [3]. All information 

about the electron transport chain to nitrogenase is derived from experi­

ments with whole cells. 

The research reported in this thesis focussed on the electron transport 

to nitrogenase in the obligate aerobic free-living bacterium Azotobacter 

vinelandli as did three earlier thesises from this laboratory [7,14,25]. A 

relatively new immunological method was used to measure the catalytic acti­

vity of the enzyme nitrogenase in intact cells (Chapter 3). It appeared 

that the nitrogenase activity in vivo was very high. Sometimes even twice 

the activity measured in vitro with an ATP regenerating system and 

dithionite as electron donor. It is unlikely that in vivo the ATP supply is 

more active than the ATP regenerating system used in vitro. Apparently the 

electron transport system to nitrogenase in vivo is more effective than the 

in vitro donor dithionite. It was also observed that the catalytic activity 

of nitrogenase in intact cells increased when the growth rate of cells 

increased. This increase was not due to alterations in the enzyme nitroge-
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nase itself but due to an increase in electron transport and/or ATP supply. 

The ATP supply being the limiting factor for whole cell nitrogenase acti­

vity can be excluded by the observation that at conditions where nitroge­

nase activity is maximal, the internal ATP/ADP ratio in Azotobacter cells 

is fairly constant and independent of the growth conditions [7,13]. 

Therefore it can be concluded, that nitrogenase activity in intact 

A.vinelandii cells is mainly determined by the rate of electron transport 

to nitrogenase. 

Also in in vitro experiments, the generation of reductant for nitroge­

nase is important for the overall activity. Using purified nitrogenase from 

Klebsiella pneumoniae and the artificial electron donor ^28204 a detailed 

kinetic mechanism of nitrogenase action was developed [l6,27j. An important 

feature of the model is, that the rate-limiting step in nitrogenase cataly­

sis is the dissociation of oxidized Fe protein from reduced MoFe protein 

after MgATP-induced electron transfer has occurred between these proteins. 

The oxidized Fe protein cannot be reduced when bound to MoFe protein. After 

dissociation, oxidized Fe protein must be reduced rapidly, because of an 

association of oxidized Fe protein with MoFe protein will cause inhibition 

of nitrogenase [27-29]. In Chapter 3 it has been shown, that the con­

centration of the nitrogenase proteins is high in A. vinelandii • But no 

indications were found that nitrogenase was inhibited, since the catalytic 

activity of nitrogenase in vivo was higher than in vitro. This observation 

might mean that iji vivo the concentration of oxidized Fe protein is kept 

very low, because of a very efficient electron donating system to the Fe 

protein. It is also possible that in vivo the association and dissociation 

constants of Fe protein and MoFe protein are altered [29]. A third possibi­

lity is, that the physiological electron donor reduces Fe protein without 

the need of dissociation from MoFe protein. In my opinion the third expla­

nation is not unlikely. The electron donor required for nitrogenase acti­

vity must have a low redox potential and is therefore very reactive. It is 

known for example that flavodoxin hydroquinone in solution gives rise to 

spontaneous H2 evolution. Generation of reducing equivalents for nitroge­

nase in a tight enzyme complex would have the advantage of preventing reac­

tions of the reduced low potential electron carriers with proteins involved 

in other metabolic pathways as for instance respiration. 
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6.2 Electron transport and the membrane potential 

As reviewed in Chapter 1 the proton motive force, especially the 

membrane potential is involved in electron transport to nitrogenase in 

aerobic nitrogen-fixers. For Azotobacter vinelandii it was shown that NH4
+ 

rapidly inhibited nitrogenase activity by specifically switching off the 

flow of reducing equivalents to nitrogenase by lowering the AY [l3]. This 

observation was questioned by others, since they found that there was no 

short-term inhibition of nitrogenase activity in logarithmic growing 

cultures [6]. In chapter 2 the discrepancies in the literature are resolved 

by showing that the extent of inhibition of nitrogenase activity by NH4C1 

is variable and depends on the growth and test conditions. How to explain 

the short-term effect of NH 4
+ on a molecular level? Why causes NH 4

+ under 

certain conditions a strong inhibition of nitrogenase activity and under 

other conditions hardly any? To understand this, experiments have been per­

formed with a tetraphenylphosphonium specific electrode to measure the 

membrane potential [l5]. What happened, when NH4C1 was added to cells can 

be summarized as follows: (a) For cells incubated under energy limiting 

conditions, addition of NH 4
+ caused a decrease in AY and therefore inhi­

bited electron transport to nitrogenase. Under these conditions the experi­

ments of Laane et ad. [l3] were performed, (b) For cells with a high 

respiration rate and incubated under optimal conditions for N2-fixation, 

addition of NH 4
+ had no effect, neither on the membrane potential nor on 

the nitrogenase activity. This is also observed by Barnes and Zimniak [2]. 

(c) When cells were incubated at oxygen concentrations, inhibitory for 

N2-fixation, NH 4
+ inhibited nitrogenase activity strongly, whereas the AY 

remained constant. How to explain the inhibition of nitrogenase under con­

ditions where NH 4
+ has no effect on AY? For A.vinelandii no experiments 

about this phenomenon are reported, but for Rhodopseudomonas sphaeroides 

there is more clarity. When this organism was incubated under conditions of 

excess energy, NH 4
+ caused a strong inhibition of nitrogenase activity, 

but had no effect on AY [8]. When glutamine synthetase was inhibited with 

methionine sulfoximine (MSX), added NH 4
+ was taken up by cells, but was not 

assimilated. It was observed that NH 4
+ did not inhibit nitrogenase under 

these conditions [s]. Measurements of intracellular glutamine pools and 
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experiments with inhibitors of glutamate synthase indicated, that the assi­

milation product of NH4
+, that inhibits nitrogenase activity, is most 

likely glutamine [l,17,18,26,3l]. Because glutamine is not an inhibitor of 

the enzyme nitrogenase, the most likely mechanism of inhibiting nitrogenase 

is inhibition of electron transport to nitrogenase. Although conditions are 

not specified, a relief of NH4
+ inhibition by addition of MSX has been 

described for Azotobacter chroococcum [4], suggesting regulation of nitro­

genase activity by the glutamine pool in Azotobacter species too. 

Conclusively the short-term inhibition of nitrogenase activity by NH4
+ 

shows, that electron transport to nitrogenase in Azotobacter is regulated 

by the membrane potential (Aï) and possibly by the intracellular con­

centration of glutamine. 

6.3 Electron transport and respiration 

In obligate aerobic nitrogen-fixers the respiratory chain is involved 

in the process of N2-fixation in at least three ways: (a) to protect the 

oxygen-sensitive nitrogenase the interior of cells is kept at a low free 

oxygen concentration by a high respiration rate, (b) ATP is generated by 

oxidative phosphorylation, (c) the generation of reducing equivalents for 

nitrogenase requires a high membrane potential. This membrane potential is 

generated by electron transfer through the respiratory chain. 

In Chapter 5, experiments indicate a more direct interaction between 

electron transport through the respiratory chain and electron transport to 

nitrogenase. The important observation was that a change in the rate of 

respiration of cells always caused a similar change in nitrogenase activity 

even under conditions where the ATP/ADP ratio and Af were assumed to be 

constant. Such a relationship would also clarify the oxygen shock experi­

ments shown in Chapter 3. When cells are exposed to excess oxygen nitroge­

nase activity is immediately switched-off. The reason for this immediate 

switch-off is not known. A possible explanation is given by Scherings [25], 

who states that the electron donor flavodoxin is oxidized. In the next 

hours the cells respond by increasing the respiration rate, and after some 
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time growth restarts. To prevent inhibition of the respiration rate by the 

proton motive force respiration must be partly uncoupled. It is unlikely to 

expect significant increases in the ATP/ADP ratio by increased respiration. 

Still a more than twofold increase in nitrogenase activity was measured 

after an 02-shock. In the experiments shown in Chapter 3 after an 02-shock 

the respiration rate of cells was increased by a factor 2.2 and the nitro­

genase activity by a factor 2.5. This observation is in accordance with a 

proposed relationship between electron transport to nitrogenase and 

electron transfer activity in the respiratory chain. This interaction is 

possibly not restricted to A.vinelandii. From the literature such a rela­

tionship can be proposed for soybean bacteroids [23,24] and Anabaena spe­

cies, when fixing nitrogen in the dark [ll,22]. 

6.4 Proteins involved in electron transport to nitrogenase 

As reviewed by Scherings [25] biochemical data point to flavodoxin as 

the ultimate reductant for nitrogenase in Azotobacter species. For instance 

in Chapter 3, we showed that flavodoxin is a better electron donor for 

nitrogenase in extracts than dithionite. Flavodoxin makes Fe protein func­

tion more efficiently, since less Fe protein is necessary to saturate MoFe 

protein. With flavodoxin, nitrogenase activities in extracts approximate 

whole cell activities. In Chapter 4, the hypothesis of flavodoxin being the 

electron donor for nitrogenase was supported by physiological experiments. 

But it was also shown that at least three different flavodoxins can be iso­

lated from A.vinelandii. Complete separation of the three flavodoxins was 

achieved by Fast Protein Liquid Chromatography. Since the presence of dif­

ferent flavodoxins in Azotobacter has not been reported before it is 

possible that a lot of earlier data on Azotobacter flavodoxin have been 

obtained with mixtures of flavodoxins I and II. We have shown, that only 

flavodoxin II is involved in N2-fixation. Its synthesis after derepression 

parallels synthesis of the nitrogenase proteins (Chapters 4 and 5) and its 

concentration is tenfold higher in N2-fixing cells compared to cells grown 

on NH4Ac (Chapter 4). Photochemically reduced flavodoxin I is not oxidized 

by nitrogenase, while flavodoxin II is. No significant synthesis of ferre-
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doxin or flavodoxin I have been detected during derepression. However one 

should be careful in drawing the conclusion that only flavodoxin II and not 

ferredoxin I is involved in electron transport to nitrogenase. The Burk's 

medium [21] used to grow A.vinelandii is always turbid. Recent analysis in 

our laboratory showed that most of the iron in the medium is precipitated. 

Consequently, although enough iron is added to the medium most of it is not 

readily available to the cells. Especially at high growth rates there can 

be a shortage of iron. This makes the statement of flavodoxin being a 

constitutive protein in Azotobacter species less firm [30j. Maybe as in 

other organisms flavodoxin replaces ferredoxin as electron donor during 

iron-deficient growth. This would at least explain why in our cultures 

large differences were found in the cellular concentration of flavodoxin 

(Chapters 3 and 4 ) . The amount of soluble iron in the medium would have 

determined to what extent ferredoxin and flavodoxin were synthesized. 

Especially in chemostat cultures the amount of iron in the culture vessel 

might have been low. A way to prevent precipitation of the iron is additon 

of citrate to Burk's medium. Strikingly two years ago people working on 

ferredoxin I from A.vinelandii switched over from growth of cells on Burk's 

medium to growth on medium containing citrate [l9,20j. The reason might 

have been, that such cells give higher yields of ferredoxin. 

As described in Chapter 5, except for flavodoxin, no soluble proteins 

involved in electron transport to nitrogenase could be detected during 

derepression. Proteins that might play a role in this process are two 

membrane bound polypeptides of Mr 29000 and 30000 and a membrane bound 

NADPH dehydrogenase. However it might well be that the electron transport 

system to nitrogenase is not at all nif specific. In cells grown on NH4
+, 

flavodoxin II is present and in addition to that, NH4
+-grown cells contain 

flavodoxin III which has a similar redox potential as flavodoxin II. It is 

very well possible that cells grown on NH4
+ and N2-fixing cells make use 

of the same flavodoxin reducing system. In that case genetic identification 

of the flavodoxin reducing system will be difficult, because a mutation in 

the electron transport pathway to nitrogenase might also be lethal for 

cells grown on NH4
+, making it impossible to grow up such mutants. 
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6.5 Proposal for electron transport to nitrogenase 

Schemes for electron transport to nitrogenase have been proposed by 

Benemann, Haaker (Chapter 1), Scherings [25] and Laane [14]. As long as 

none of the schemes can be proven by in vitro experiments there is no need 

for proposing again another model. The next figure must therefore be con­

sidered as a summary of some new ideas on the electron transfer chain to 

nitrogenase. It is not my intention to present it as the only correct pro­

posal . 

out 
07 

,cytoplasmj 

.-membrane 

in 

NADPH 
-330mV) 

In the scheme an NADPH dehydrogenase in the cytoplasmic membrane is 

reduced by 2 electrons from NADPH (En= -330 mV). The idea is that the NADPH 

dehydrogenase is specifically oxidized. One electron (En—160 mV) is 

donated to a respiratory chain component at the redox level of ubiquinone, 

oxygen being the ultimate acceptor. The other electron can be transferred 

to a redox center with a low potential (En—500 mV) and this center can 

reduce flavodoxin III in cells grown on NH 4
+ or flavodoxin II (and ultima­

tely N2) in N2-fixing cells. It is postulated that the 29-kDa polypeptide 

plays a role in the latter process. 

As was made credible for cyanobacteria (Chapter 1) in this scheme the 

membrane potential is no longer the driving force for reversed electron 

flow to nitrogenase. As proposed by Davis and Kotake [5] Af might have a 

function in the regulation of the Mg 2 + concentration in the cytoplasm. 

Another possibility is that the membrane potential plays a role in the for­

mation of an enzyme complex on the cytoplasmic membrane from the soluble 

flavodoxin and nitrogenase proteins. This agrees with the observation that 
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in vivo nitrogenase is bound to the membrane [10]. An enzyme complex has 

the advantage that electrons with a low redox potential are not wasted by 

unwanted side reactions. 

The proposed model also explains oxygen inhibition of nitrogenase. At 

high concentrations of oxygen the components of the respiratory chain and 

all redox centers in the NADPH dehydrogenase are oxidized. All electrons 

are Chanelled away from flavodoxin II to oxygen. 

In Chapter 5 it was demonstrated that electron transport to oxygen 

mediated by the membrane bound NADPH dehydrogenase was inhibited by NAD*. 

The NAPDH dehydrogenase activity measured with nitroblue tetrazolium as 

electron acceptor was not inhibited by NAD+. Since the concentration of 

NAD+ is high in A.vinelandii cells, it is unlikely that the membrane bound 

NADPH dehydrogenase has a physiological role as electron donor to the 

respiratory chain, although it can function as electron donor in vitro. The 

scheme summarizes the mechanism of action of the NADPH dehydrogenase. It 

reduces flavodoxin, and for this activity electron transport to oxygen is 

obligatory. This last aspect would explain why until now no satisfactory 

rates for nitrogenase activity with physiological substrates have been 

measured ill vitro even in the presence of an artificially generated AT. In 

vitro nitrogenase activity is always measured anaerobically. While the 

NADPH:flavodoxin oxidoreductase can only function in the presence of an 

active respiratory chain. In my opinion, it is therefore impossible to 

mimic the in vivo situation in vitro, because in vivo oxygen is present at 

the outside of the cell and the anaerobic environment needed for nitroge­

nase is inside the cell. Aerobic experiments in vitro make no sense, 

because even if flavodoxin is reduced it will be immediately oxidized by 

oxygen. Probably the only way to detect the enzyme activity is making use 

of an irreversible reduction reaction like tetrazolium reduction described 

in Chapter 5. 

The last aspect of the model is, that it gives a very simple explana­

tion for the tight coupling between electron transfer activity in the 

respiratory chain and nitrogenase activity (Chapter 5). Since for each 

electron used in N2-fixation at least one electron has to be oxidized by 

the respiratory chain. 
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SUMMARY 

The enzyme nitrogenase requires MgATP, an anaerobic environment and an 

electron donor with a low redox potential for activity. The experiments 

described in this thesis deal with the electron transport to nitrogenase in 

Azotobacter vinelandii. It has been shown previously that the flow of 

reducing equivalents to nitrogenase is regulated by the AT component of the 

proton motive force. Short-term inhibition of nitrogenase activity by 

externally added NH4
+ would be caused by lowering the AY [l]. In Chapter 2 

it has been shown that the extent of inhibition by NH4C1 is variable and 

depends upon the incubation conditions of the cells. Conditions are 

described, where nitrogenase activity is hardly inhibited by addition of 

NH4C1 and also conditions, where uptake of NH4C1 results in complete inhi­

bition of nitrogenase activity. These results are discussed in Chapter 6. 

In addition to the membrane potential glutamine is proposed as another 

regulator of electron transport to nitrogenase. 

In Chapter 3 it has been shown, that whole cell nitrogenase activity 

is determined by the generation of reducing equivalents for nitrogenase. 

The physiological electron transport system to nitrogenase is very effec­

tive compared to the electron donor dlthionite often used in in vitro 

experiments. It has been shown that whole cell nitrogenase activity in vivo 

can be twice the activity measured in vitro. The consequences of this 

finding are discussed with respect to the mechanism for nitrogenase cataly­

sis in vitro and in vivo. 

In Chapter 4 it has been shown, that three different flavodoxins can 

be isolated from A.vinelandii cells. Experimental evidence indicates that 

only flavodoxin II is involved in N2-fixation. The concentration of flavo-

doxin II is tenfold higher in N2-fixing cells compared to cells grown on 

NH4Ac. And its synthesis seems to be under the same regulatory control as 

the nitrogenase proteins. 

In Chapter 5 evidence is presented that a membrane bound NADPH 

dehydrogenase and two membrane bound polypeptides of relative molecular 

mass 29000 and 30000 probably play a role in electron transport to nitroge­

nase. Furthermore in Chapter 5 it has been demonstrated that there is a 

linear relationship between nitrogenase activity and the rate of respira-
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tion of A.vinelandii cells. It Is proposed that the generation of reducing 

equivalents for nitrogenase is directly controlled by electron transfer 

activity in the respiratory chain. 

In Chapter 6 the new findings on the electron transport to nitrogenase 

are summarized in a scheme. In the scheme the electron carrier flavodoxin 

II is reduced by a membrane bound NADPH dehydrogenase only when the 

respiratory chain is functioning. 

[l] Laane, N.C.M. (1980) Energy supply for dinitrogen fixation by 

Azotobacter vinelandil and by bacterolds of Rhibozium legumlnosarum. 

Ph.D. Thesis Landbouwhogeschool, Pudoc, Wageningen. 
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SAMENVATTING 

Naast water, zonlicht, fosfaat en kalium-zouten, is stikstof één van de 

stoffen, die planten nodig hebben voor de groei. Heel vaak is de kleine 

hoeveelheid bruikbare stikstof in de bodem de beperkende factor voor de 

groei van gewassen. Hoewel 80* van de aardse atmosfeer uit stikstof 

bestaat, kan het in deze vorm (N2) niet benut worden door planten. Eerst 

moet stikstof uit de lucht omgezet worden in ammonium (NH4
+). Dit proces 

(stikstof binding) wordt alleen uitgevoerd door een beperkt aantal 

bacteriën. Bacteriën zijn eencellige organismen met een lengte van 0,001 mm 

of minder. In de natuur zijn stikstofbindende bacteriën essentieel bij het 

in stand houden van de vruchtbaarheid van de bodem. Het meest bekend zijn 

de bacteriën die zich bevinden in de wortelknolletjes van vlinderbloemige 

planten zoals erwten, bonen, soja, klBver, wikke en lupine. Naast de biolo­

gische stikstofbinding wordt sedert 1930 ammonium op grote schaal bereid 

uit aardgas in de stikstofmeststoffen industrie. De industriële stikstof­

binding bedraagt ongeveer 15* van de totale stikstofbinding op aarde. 

Intensieve landbouw is welhaast ondenkbaar geworden zonder het gebruik van 

(stikstof(kunstmest. 

Uitbreiding van de wereldvoedselproductie kan in principe door het op 

grotere schaal toepassen van kunstmest. Een oplossing die echter voor veel 

landen te duur is. Bovendien is het aardgas, dat nodig is voor het maken 

van de ammonium geen onuitputtelijke grondstof. Geen wonder dat juist na de 

energiecrisis van 1973 de belangstelling voor de biologische stikstof­

binding is toegenomen. Op dit moment doen meer dan 1000 wetenschappers uit 

60 verschillende landen onderzoek aan de biologische stikstofbinding. Een 

vanuit wetenschappelijk oogpunt interessante vraag daarbij is: hoe komt het 

toch dat alleen bacteriën stikstof uit de lucht kunnen binden tot ammonium? 

Waarom doen planten dit niet zelf? En zou het misschien mogelijk zijn om 

een plant zo te veranderen, dat zij in staat is om haar eigen stikstof te 

binden? Dit laatste zou dan de stikstofbemesting overbodig maken. 

Moleculair-biologen hebben inmiddels de erfelijke eigenschap opgespoord 

die zorgt voor de stikstofbinding in bacteriën. Ook is het al mogelijk 

gebleken deze erfelijke eigenschap over te brengen in planten. Maar het 
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stikstofbindende systeem blijkt dan niet te werken. Waarom het systeem dan 

niet werkt en wat er voor nodig is om het systeem wel te laten werken, zijn 

vragen waar de biochemie zich mee bezig houdt. Uit biochemisch onderzoek is 

20 jaar geleden gebleken, dat het stikstofbindende systeem in wezen 

bestaat uit twee eiwitten. Deze twee eiwitten vormen samen een enzym: het 

nitrogenase. Wanneer het nitrogenase enzym in een reageerbuis gestopt wordt 

met twee chemische stoffen (dithioniet en MgATP) wordt stikstof uit de 

lucht omgezet in ammonium. Dithioniet levert de electronen voor deze reac­

tie en MgATP de energie. De reactie verloopt alleen, wanneer zuurstof niet 

aanwezig is (of zoals dat heet onder anaerobe omstandigheden). Uit de 

biochemische eigenschappen blijkt dat voor stikstofbinding in een levende 

bacterie-cel in ieder geval 4 dingen nodig zijn: 

1) de erfelijke eigenschap voor het enzym nitrogenase, 

2) een systeem dat dezelfde functie heeft als dithioniet, 

3) een systeem dat MgATP maakt, 

4) een zuurstof vrije omgeving voor het enzym. 

Zoals gezegd, is over punt 1 voldoende bekend om de stikstofbindings-
« 

eigenschap over te kunnen brengen van het ene levende wezen naar het 

andere. Echter wil nitrogenase werken dan is het nodig, dat ook aan voor­

waarden 2,3,4 voldaan wordt. 

Het maken van MgATP (punt 3) zal niet het grootste probleem zijn, omdat 

dit proces in alle levende dieren en planten gebeurt en dus niet iets spe­

ciaals is voor stikstofbinding. Wel kan hierbij opgemerkt worden, dat 

biochemisch onderzoek heeft aangetoond, dat nitrogenase voor de omzetting 

van stikstof in ammonium veel MgATP nodig heeft. Het maken van MgATP kost 

energie. Mocht het ooit lukken een plant haar eigen stikstof te laten bin­

den, zal dit dus energie kosten voor de plant. Deze energie kan dan niet 

gebruikt worden voor groei. Bovendien moet bedacht worden dat nitrogenase 

een eiwit is en iedereen weet dat eiwit "rijk is aan energie". Voor het 

maken van het enzym nitrogenase is energie nodig. Aangezien in dit 

proefschrift gebleken is, dat 10% van het eiwit van een stikstofbindende 

bacterie uit nitrogenase bestaat, gaat het om een niet te verwaarlozen 

hoeveelheid. Behalve voor het maken van MgATP zal een plant dus ook nog 

eens energie moeten stoppen in het maken van het enzym nitrogenase. Een 
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stikstofbindende plant is Misschien wel ideaal vanuit het oogpunt van 

bemesting, naar niet vanuit het oogpunt van groeisnelheid en opbrengst. 

Zeer waarschijnlijk zullen stikstofbindende planten langzamer groeien, dan 

hun soortgenoten die kunstmatig bemest worden. 

Het verschijnsel dat nitrogenase alleen werkzaam is in een zuurstof vrije 

omgeving (punt 4) vraagt om speciale voorzieningen. Voor sommige bacteriën 

is dit geen probleem, omdat ze leven in een zuurstofvrij milieu 

(bijvoorbeeld slootmodder). De bacterie Azotobacter vinelandii, waar ik 

onderzoek aan gedaan heb, leeft echter gewoon in lucht (20% zuurstof). De 

Azotobacter bacterie heeft in zijn celwand een mechanisme zitten dat voor 

de ademhaling zorgt (ademhalingsketen). Oeze ademhalingsketen ademt alle 

zuurstof uit de oplossing, waarin de bacterie groeit (^groeimedium) weg. 

Hierdoor is binnen in de bacterie-cel, waar het nitrogenase zit, geen 

zuurstof aanwezig. Wil stikstofbinding in planten plaatsvinden, dan zal dat 

op een plaats moeten gebeuren waar geen zuurstof aanwezig is of waar alle 

zuurstof verademt wordt. De groene delen van een plant lijken hierdoor al 

een minder geschikte plaats voor stikstofbinding, omdat in de groene delen 

onder invloed van zonlicht meer zuurstof vrijkomt dan dat er wordt 

verbruikt. 

Het onderzoek, beschreven in dit proefschrift, heeft zich voornamelijk 

gericht op punt 2: welk systeem in de bacterie-cel heeft dezelfde functie 

als dithioniet? Dithioniet is namelijk een chemische stof, die niet in de 

bacterie voorkomt. Een van de dingen, die ik gevonden heb, is dat het 

"dithioniet" systeem (punt 2) heel nauw gekoppeld is aan de ademhaling van 

de bacterie (punt 4). Om nitrogenase te kunnen laten werken verademt de 

bacterie alle zuurstof uit het groeimedium (punt 4). Bij ademhaling komt 

energie vrij en deze energie wordt gebruikt door het systeem, wat in de 

bacterie de rol van dithioniet vervult (punt 2). Hoe sneller de ademhaling 

door de bacterie, hoe beter het "dithioniet" systeem (punt 2) en hoe hoger 

de snelheid waarmee stikstof gebonden wordt. Als hulpmiddel om uit te 

zoeken, hoe het "dithioniet" systeem in elkaar zit, is gekeken naar het 

effect wat ammonium heeft op de stikstofbinding. Uit de literatuur was 

bekend, dat na toevoegen van ammonium aan groeimedium, de bacterie stopt 

met stikstof te binden. Dit is een van de voordelen van biologische 

stikstofbinding. Doordat het proces stopt als er voldoende ammonium aan-
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wezig is in de boden, wordt overbemesting voorkomen. Er bestond echter 

verschil van mening over de vraag of de stikstofbinding al na enkele Minu­

ten na toevoegen van ammonium stopt, of dat het proces nog enkele uren 

doorgaat. In hoofdstuk 2 van dit proefschrift laat ik zien dat beide 

gevallen mogelijk zijn. Als de bacterie kaapt met een tekort aan energie 

stopt de stikstofbinding onmiddellijk na toevoegen van ammonium. Is er 

voldoende energie aanwezig, dan gaat de stikstof binding nog enige tijd 

door. Na een dag groeien op ammonium is er totaal geen stikstofbinding 

meer. De nitrogenase eiwitten blijken dan niet meer aanwezig te zijn in de 

bacterie (hoofdstuk 3). Zeer waarschijnlijk is ook het "dithioniet" systeem 

afwezig, omdat het voor de bacterie geen zin heeft om dit systeem te maken 

als nitrogenase niet werkt. Door de stikstof bindende bacterie te verge­

lijken met dezelfde bacterie, maar dan gegroeid op ammonium zodat deze geen 

stikstof bindt, heb ik één eiwit kunnen vinden, die in de levende bacterie 

dezelfde rol speelt als dithioniet in een reageerbuis (hoofdstuk 4). Ook 

heb ik bij bacteriën die op ammonium groeiden, ineens het groeimedium ver­

vangen door een medium zonder ammonium. Het eerste wat de bacteriën dan 

gaan doen, is alle dingen maken die nodig zijn voor stikstofbinding. Al na 

20 minuten is er stikstofbinding meetbaar. Door nu te kijken, wat er in die 

20 minuten allemaal verandert in de bacterie, heb ik een ander eiwit kunnen 

aantonen, die mogelijk ook een onderdeel vormt van het "dithioniet" systeem 

(hoofdstuk 5). Het maken van beide eiwitten, waarvan ik gevonden heb dat ze 

onderdeel zijn van het "dithioniet" systeem wordt bepaald door twee of meer 

erfelijke eigenschappen. Deze erfelijke eigenschappen zullen eerst 

opgespoord moeten worden. Samen met de erfelijke eigenschap voor het nitro­

genase (punt 1) kunnen ze dan overgebracht worden in een andere bacterie of 

een plant, in de hoop dat een werkzaam stikstofbindend systeem ontstaat. 

Een andere vraag, die in het proefschrift beantwoord is, heeft 

betrekking op hoe goed nitrogenase in een levende bacterie werkt. De 

laatste jaren is een gedetailleerd model ontwikkeld over de werking van 

nitrogenase in een reageerbuis. Dit model voorspelt echter dat hoe hoger de 

concentratie van het enzym wordt, hoe langzamer nitrogenase stikstof gaat 

omzetten in ammonium. In hoofdstuk 3 laat ik zien, dat de concentratie 

nitrogenase in een levende bacterie wel lOOx hoger is, dan de concentratie 
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die gebruikt wordt in reageerbuis experimenten. Volgens het model zou 

nitrogenase dus zeer slecht moeten werken. Het blijkt echter (hoofdstuk 3) 

dat het enzym in een levende bacterie 2x zo snel stikstof bindt, dan in een 

reageerbuis. Een en ander betekent dat het model, dat beschrijft hoe nitro­

genase werkt in een reageerbuis, nog niet goed weergeeft hoe het enzym in 

een levende cel werkt. De oorzaak zit hem in het feit, dat in een reageer­

buis altijd gewerkt wordt met de chemische stof dithioniet; terwijl een 

levende bacterie hier een ander systeem voor heeft wat kennelijk veel beter 

werkt. 
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