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STELLINGEN 
I Totipotentie ondervangt niet de verschillende oorsprongs- en herinnerings-

effecten bij verschillende Tagetes-soorten. 

Dit proefschrift (Hoofdstuk I). 

II Voor de biosynthese van secundaire metabolieten is celdifferentiatie vereist. 

Dit proefschrift (Hoofdstuk VII). 

III Het gevaar dreigt, dat men de produktie van secundaire metabolieten in calli 
en celcultures gaat bestuderen zonder zich voldoende te realiseren wanneer 
en waartoe deze secundaire metabolieten in intacte planten worden gesyn-
thetiseerd. 

Dit proefschrift (Hoofdstuk IV). 

IV Om de biosynthese van secundaire plantmetabolieten te kunnen reguleren is 
onderzoek naar de relatie tussen minerale huishouding en biosynthese van 
fytohormonen in planten en plantecelcultures onontbeerlijk. 

Dit proefschrift (Hoofdstukken II en VI). 

V De verklaring, die Wink geeft voor de afwezigheid van secundaire metabo­
lieten in celcultures, n.l. de uitscheiding van (proteo-)lytische enzymen, 
is zeker niet zoals hij suggereert voor alle soorten cultures van toepassing. 
Bovendien is bedoelde verklaring in tegenspraak met recent door Banthorpe 
en medewerkers gepubliceerde resultaten betreffende de produktie en uit­
scheiding van enzymen door ongedifferentieerde calli en celcultures. 

Wink, M. Naturwissenschaften 71: 635-636 (1984). 
Banthorpe, D. V. et al. Phytochemistry 25: 629-636 (1986). 

VI Een artikel, waarin men op grond van een enkele getalswaarde aangeeft wat 
de secundaire metabolietproduktie is in intacte planten om daarmee aan te 
geven dat celsuspensies meer of minder van dezelfde metabolieten produce-
ren, zou geweigerd moeten worden. 

Anderson, L. A. et al. Planta Medica 46: 25-27 (1982). 
Scragg, A. H. and Fowler, M. W In: Cell Culture and Somatic Cell Gene­
tics of Plants (Ed. I. K. Vasil). Academic Press Inc. (London) Ltd. Vol. 2, 
p. 106(1985). ISBN: 0-12-715002. 

VII Men kan de produktiviteit van secundaire metabolieten van verschillende 
plantecelcultures op basis van droge-stofpercentages niet onderling vergelij-
ken, zolang niet bekend is waarop deze percentages betrekking hebben. 

Plantecelbiotechnologie inNederland. Studierapport 14g. Nationale Raad 
voor Landbouwkundig Onderzoek. 's Gravenhage. Dec. 1985. 
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VIII Aangezien alleen al het weglaten van 2,4-D uit het groeimedium van vrije 
cellen van Catharanthus roseus een significante produktieverhoging van 
ajmalicine en serpentine veroorzaakte, kan aan de conclusie van Majerus en 
Pareilleux, dat immobilisatie van dergelijke cellen de produktie van ajmali­
cine verhoogt, geen betekenis worden toegekend. 

Majerus, F. and Pareilleux, A. Plant Cell Reports 5: 302-305 (1986). 

IX De door Yisraeli et al. opgestelde verklaring voor de reactivatie van de 
genexpressie bij gedemethyleerde genen in verschillende soorten spiercellen 
van Vertebraten draagt in belangrijke mate bij tot het antwoord op de vraag, 
hoe de verbinding 5-azacytidine als switch-punt functioneert bij de demethy-
lering van genen in een crowngall bij planten, en draagt daarmee tevens in 
belangrijke mate bij tot een verklaring van de door Amasino et al. gevonden 
fenotypische variaties van crowngall regeneranten. 

Yisraeli, J. et al. Cell 46: 409-416 (1986). 
Amasino, R. M. et al. Mol. Gen. Genet. 197: 437-446 (1984). 

X Milieugroepen, die terecht of onterecht voorzien zijn van een negatief ima­
go, hebben nu nog een unieke kans dit imago om te buigen door constructief 
mee te werken aan de maatschappelijke voorbereiding op toekomstige, 
moderne biotechnologische toepassingen. 

Samenvattend hoofdrapport: Maatschappelijke aspecten van de biotechnolo-
gie i.o.v. HoofddirectieWetenschapsbeleid, Ministerie van Onderwijs en 
Wetenschappen. Zoetermeer, 1985. 

XI Bij de bepaling van de Km-waarde van de opname van ionen door intacte 
planten wordt de noodzaak om de activiteit en de concentratie van de ionen 
in het wortelmilieu gelijktijdig te bepalen vaak onderschat. 

Ketel, D. H. and De Ruyter, A. W. Proc. Ninth Intern. Plant Nutr. Colloq. 
Vol. I, 288-293 (1982); CAB, UK (Ed. A. Scaife). 

XII Het frequent doen verschijnen van slechts marginaal veranderde studieboe-
ken bestemd voor LBO- en MBO-opleidingen en voor middelbare scholen 
heeft bij veel vakken niets te maken met nieuwe ontwikkelingen op kennis-
gebied, maar alles met het voor ouders en verzorgers onnodig duur maken 
van deze opleidingen. 

XIII De manier waarop in het Noordwest-Overijsselse natuurgebied het toerisme 
wordt gestimuleerd staat haaks op de maatregelen, die men neemt om de 
flora en fauna aldaar te beschermen. 

Stellingen, behorende bij het proefschrift: "Callus and Cell Culture o/Tage-
tes species in Relation to Production ofThiophenes" door David Ketel. 

Wageningen, 8 april 1987 



Hoe lieflijk straaltZijn schoonheid van omhoog. 
Hier weidt mijn ziel met een verwonderd oog, 

aanschouwende hoe schoon en zuiver is 
Zijn licht, verlichtende de duisternis. 

(psalm 27:2b, berijmd) 



VOORWOORD 

Bij het verschijnen van dit proefschrift wil ik allereerst naar voren brengen dat de 
daarin vermelde, en door mij als onderzoeker te verdedigen resultaten boven tafel 
zijn gekomen door de inspanning van een team van mensen. Elk persoon van dit 
team heeft dus binnen de zijn of haar toegemeten taak aan dit proefschrift bijgedra-
gen. Ik wil daarom in dit voorwoord beginnen met deze teamgenoten te noemen. 

Omdat met name Marinus Jansen en Pieter Pikaar van meet af aan werkzaam zijn 
geweest in het project plantebiotechnologie, en juist zij in belangrijke mate hebben 
bijgedragen tot de ontwikkeling en uitvoering van een aantal methodieken en expe-
rimenten, bedank ik hen in de eerste plaats voor hun medewerking en collegialiteit. 
Hans Breteler, en daarna Dinie Lutke Willink zijn in een wat later stadium in de 
A2-groep gekomen, maar hebben, respectievelijk, onmisbare leiding gegeven aan 
en assistentie verleend bij de uitvoering van het onderzoek. Michel van Duren was 
slechts een korte periode bij ons, maar heeft in die korte tijd veel voor mij gedaan. 
Dit proefschrift mag er dan ook, naar ik hoop, toe hebben bijgedragen, dat aange-
toond is dat we er met elkaar de afgelopen jaren in zijn geslaagd een team te zijn, 
dat het hoofd kan bieden aan met name grote organisatorische problemen. Deze 
problemen hingen vaak samen met het levende materiaal waarmee we in ons onder­
zoek bezig zijn. 

Mijn bijzondere waardering wil ik graag uitspreken voor mijn directe collega 
Dr. H. Breteler, die niet alleen in zijn functie als projectleider van ons team zich 
mijn persoonlijk lot en ook dat van mijn manuscripten heeft aangetrokken, maar 
daarnaast veel van mijn aanvankelijke beslommeringen uit handen heeft genomen. 
Daardoor kwam tijd vrij om me te kunnen concentreren op studie en schrijfwerk. 
Beste Hans, ik hoop dat we het onderzoek op het gebied van plantebiotechnologie 
binnen en buiten NOVAPLANT gezamenlijk kunnen blijven stimuleren. Het 
bedoelde vakgebied is een blijvend enthousiasme waard, omdat we weten we Ike 
perspectieven er in liggen opgesloten. 

Aan mijn promotoren, Dr. J. Bruinsma en Dr. B. de Groot, ben ik veel dank ver-
schuldigd. Uw beider betrokkenheid bij de voorbereiding van dit proefschrift, die 
op mij overigens zo verschillend overkwam (n.l. enerzijds de hoogleraar planten-
fysiologie aan de Landbouwuniversiteit, en anderzijds de hoogleraar celgenetica en 
themaleider bij het ITAL), heeft er substantieel aan bijgedragen, dat het proefschrift 
zijn huidige inhoud heeft gekregen. 



' Dr. A. Ringoet, oud-directeur van het ITAL en mijn vroegere directe chef, heeft mij 
. in het verleden sterk gestimuleerd en bovendien de gelegenheid geboden mij op het 
ITAL wetenschappelijk te ontplooien. Daarbij heeft hij niet nagelaten mij in staat 
te stellen de resultaten van het onderzoek te bewerken voor een proefschrift, tegelij-
kertijd echter de voorwaarde daaraan verbindend dat ik een aantal nevenactiviteiten 
diende af te stoten om mij te behoeden voor een te grote afmattingsslag. Waarde 
Ringoet, dank voor deze zorg, en die voor het welzijn van mijn gezin, dat, zo weet 
ik, vanwege bepaalde omstandigheden steeds veel aandacht bij U had. 

Rie 't Hart-Versteeg heb ik met enige opzet nooit bij de afzonderlijke publikaties 
bedankt voor het typewerk. De totaliteit van het werk aan dit proefschrift geeft veel 
reden om dat nu hier te doen. Ook Wim van Lienden en Menno Drost wil ik graag 
bedanken voor de goede kwaliteit van het tekenwerk en het nemen van foto's. 

Wanneer ik er andere proefschriften op nalees, blijk ik tot nog toe niet de enige 
gehuwde promovendus te zijn geweest, die de spanningen van het schrijven voor 
een proefschrift en alles wat daarbij komt, in mindere of meerdere mate wist af te 
wentelen op de hoof den en schouders van zijn of haar gezinsleden. Deze schrale 
troost heeft er echter allerminst toe geleid, dat de last van mijn soms verstrooide 
hersenen voor Ans in het bijzonder, maar ook in niet onbelangrijke mate voor onze 
kinderen, daar minder door is geworden. Dank zij jullie inventiviteit en begrip is 
het jullie goed gelukt om mij van tijd tot tijd ook weer tot de dagelijkse realiteit 
terug te voeren. Dat met name in het gezinsleven van alle dag plantebiotechnologie 
en afrikaantjes niet de belangrijkste rol spelen, is mij wel duidelijk geworden. 
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General Introduction 

Plant cell biotechnology 

Plant cell biotechnology developed since It was demonstrated that 

somatic plant cells are totipotent In vitro (Muir et al., 1954) and nutrient 

media were improved according to Insights about the need of carbon, salts, 

vitamins, and growth regulators (Murashige and Skoog, 1962; Gamborg et al., 

1968; Schenk and Hildebrandt, 1972; Nitsch, 1972). One of the outcomes was 

the successful production of secondary metabolites in callus cultures and 

cell suspensions reported by many Investigators since about 1965 (e.g. 

Dalton et al., 1983; Scragg and Fowler, 1985). Others, however, mentioned 

disappointing results (e.g. Cashyap et al., 1978; Misawa and Suziki, 1982; 

Ellis, 1982; Tyler et al., 1986; Banthorpe et al., 1986). 

In particular, when non- or low- producing cell cultures are considered, 

the failure of such production may be attributed to three different pheno­

mena: 

1) the positive correlation between differentiation and secondary-metabolite 

production (Yeoman et al., 1979; Wiermann, 1981; Lindsey and Yeoman, 

1983; Banthorpe et al., 1986); 

2) the negative correlation between the growth rate of cell cultures and the 

production of secondary metabolites (Brodelius and Mosbach, 1982; Lindsey 

and Yeoman, 1983 and 1985; Banthorpe et al., 1986); 

3) problems involving genetic instability, called habituation (Meins et al., 

1980; Fuller, 1984; Lindsey and Yeoman, 1985), selection (Singh et al., 

1975; Vanzulli et al., 1980), and cell heterogeneity (Hall and Yeoman, 

1986). 

These problems indicate that, although insights into structure and 

function of DNA and genetic principles of plant cells increased rapidly, the 

poor progress in the adoption of plant cell biotechnology by the industry is 

mainly due to the deficiency of insights into the biochemistry and regu­

lation of secondary metabolism. 

11 



A recent scope of plant cell biotechnology is the production of second­

ary metabolites with a high economic value on an industrial scale (Fowler, 

1981), although most plant species apparently deliver non- or only low-

-producing cell cultures as yet (Ellis, 1982). This scope implicates aspects 

of molecular genetics, plant physiology, biochemistry, processtechnology, 

and down-stream processing. It is very difficult to study the problems met 

in each of these fields simultaneously with one type of cell culture. It 

requires the use of a diversified system of cell cultures of which the 

different parent plants contain the potency to produce similar secondary 

metabolites. Only such a system can adequately be used as an appropriate 

model-system. 

Tagetes and a number of related species (Heleniae: Gommers, 1973) 

produce thiophene-biocides. Some reports dealing with callus cultures of T. 

erecta L. (Kothari and Chandra, 1986), T. patula L. (Norton et al., 1985), 

and T. minuta L. (Jain, 1977) indicated, that the plants of these species 

form a suitable diversified 'Tagetes-system' to study simultaneously the 

background of the failure or continuation of the production of secondary 

metabolites in calli and cell suspensions under mutually comparable con­

ditions. The principles of the experimental methods for In vitro cultures 

are apparently simple and implicate the sterilization of suitable explants 

and the culture of calli and free cells and/or cell aggregates under axenic 

conditions (Street, 1977). 

Thiophenes, and thiophene-related analytical aspects. 

Probably because of the presence of thiophenes and thiophene derivatives 

(Atkinson et al., 1964), polyacetylenes (S^rensen, 1977), flavone glycosides 

(Ickes et al., 1973), terpenes (Bohrmann and Youngkan, 1968), and perhaps 

still other secondary metabolites, already the precolumbian Maya's in 

Southern America used Tagetes plants for religious and pharmaceutical pur­

poses and to poisen animal (e.g. insects) and human ennemies (Neher, 1968). 

Today, it is known that thiophenes are wide-spectrum biocides (Arnason 

et al., 1981; Champagne et al, 1984; Philogene et al., 1985) also tested as 

nematicides (Gommers, 1981). Under the influence of photodynamic processes, 

thiophenes produce singlet oxygen. This product causes the death for nema­

todes. There is good hope that thiophene-biocides eventually produced in 

liquid cultures can be applied in crops (Gommers et al., 1980; Gommers et 

al., 1982; Cooper and Nitsche, 1985). Because the reactions involved in the 

production of singlet oxygen in root cells in the darkness of soil is not 

12 
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Fig. 1. Hypothesis for the biosynthesis of thiophenes, mainly based on the 

results from Bohlmann's group (e.g. Jente et al., 1981). See p. 14« 
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completely understood, it is not yet clear how to apply the thiophene-bio-

cides in soils or crops. Therefore, thiophenes are not commercially produced 

until now. 

Thiophene-biocides are secondary metabolites, which commonly occur in 

Tagetes species and other Compositae (Bohlmann and Zdero, 1973). However, 

the details of the way and the site of the biosynthesis of thiophenes in the 

plant systems are not understood. On the one hand, according to Jente et al. 

(1981), oleic acid and polyacetylenes are the precursors of thiophenes, such 

as a-T (2,2',5'2"-terthienyl) and BBTOAc [5-(4-acetoxy-l-butiny)-2,2'-bi-

thiophene] (Fig. 1). On the other hand, according to Dr. R. Siitfeld 

(personal communication), it cannot be excluded that another way can pro­

bably be realized by the plant systems. For instance, the synthesis of the 

butinyl side-chain may be performed by condensation reactions of probably 

activated short-chain precursors. As yet unknown, sulphur-containing amino 

acids may then be involved in the synthesis of the thiophenic ring system. 

In this case the first products of the thiophene biosynthesis would rather 

be polar compounds such as BBTOH [5-(4-hydroxy-l-butinyl)-2,2'-bithiophene] 

than the non-polar compounds such as BBTOAc and a-T (Fig. 2., unpublished 

results provided by Dr. SUtfeld). Originally, Zechmeister and Sease (1947), 

a. Unknown, low molecular, not UV-A absorbing compounds 

(S-amino acids, carbonic acids) 

O activation 

O desaturation 

O condensation 

b. Polar thiophenic intermediates, short living, poorly 

accumulating, only enzymatically detectable 

4 dehydration steps involved 

c. Non-polar thiophenic end products, strongly accumulating 

(e.g. BBTOAc and a-T). 

Fig. 2. Hypothetical scheme for the biosynthesis of thiophenic compounds 

based on physiological/biochemical investigations of Dr. R. SUtfeld 

(personal communication). 

14 



and Uhlenbroek and Bijloo (1958 and 1959) suggested that thiophenes mainly 

accumulate in the roots of intact plants. Later, SUtfeld (1982) reported 

that thiophenes are also distributed in stems and cotyledons of intact 

seedlings. These results indicate that thiophenes may occur in all organs of 

fully grown Tagetes plants, but the pattern of distribution may drastically 

differ between the several species. Although the concentration of secondary 

metabolites may vary impredictably with the age of the plants (Wiermann, 

1981; Fuller, 1984), the non-polar characteristic of thiophenes gives rise 

to suppose that redistribution of these compounds in plants is of little 

importance. This aspect may be of particular importance for the selection of 

suitable explants. 

Thiophene molecules differently absorb UV-light between 220 and 400 nm 

(Bohlmann and Zdero, 1985). Therefore, the presence of these compounds in 

solution can be readily determined spectrophotometrically. However, as long 

as purified thiophenes are not available the absolute amounts of accumulated 

thiophenes can not be determined. Under this condition the use of a high-

-speed spectrophotometer, which elucidates on-line the shapes of the dif­

ferent UV-spectra of thiophenes and also measures the amount of absorbed UV 

simultaneously is required. In particular, the combination with HPLC 

(Hostettman, 1984; Sutfeld, 1987) provides a sophisticated analytical method 

to analyse the complex picture of thiophene composition. It is supported by 

the analysis of a great number of other known as wel as unidentified 

naturally occurring thiophenes (Bohlmann and Zdero, 1985), not presented in 

Fig. 1. Standard samples and MS-spectra of thiophenes (e.g. a-T, BBT, and 

BBTOAc) became available only in the course of the present work. 

15 



The results presented in this thesis are related to the following 

topics: 

a: the characterization of the growth and morphology of calli of different 

Tagetes species in the consecutive phases of their culture (chapter I); 

b: the relationship between differentiation and thiophene production in 

calli of Tagetes species in combination with the nature of the medium 

(chapters II and III); 

c: the selection of explants with respect to the age of the plants and the 

occurrence of thiophenes in intact plants and calli (chapter IV); 

d: the influence of immobilization and environmental stress-conditions on 

the growth and secondary-metabolite production in cell suspensions of 

Tagetes species (chapter V ) ; 

e: the use of Agrobacteria to modify and control thiophene production in 

differentiated and undifferentiated neoplastic tissues of Tagetes species 

(chapter VI); 

f: the production of thiophenes in liquid cultures with cell aggregates of 

T. patula (chapter VII). 
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Chapter I 

Effect of Explant Origin on 
Growth and Differentiation of Calli 

from Tagetes species 

David H. Ketel, Hans Breteler and Bram de Groot 
(J. Plant. Physiol. Vol. 118. pp 327 - 333, 1985) 

SUMMARY 

Tertiary leaf callus from 13-week old Tagetes mlnuta showed 5 to 6 

fold higher fresh weight increment than callus from 3 to 7 week - old 

plants. No such differences were observed in the primary and secondary 

calli. Similarly, tertiary leaf callus of T. ii pa tula showed morpho­

logical differentiation that varied with the mineral nutrition to 

which intact plants had been exposed and that did not appear in the 

primary and secondary calli. No such effects were observed in T. 

minuta. These "origin" effects are discussed in relation to "memory" 

effects and to their application to plant biotechnical procedures. 

Key words: Callus culture, differentiation, memory effect, mineral 

nutrition, origin effect, plant age, Tagetes minuta, Tagetes patula. 

ABBREVIATIONS 

BM = basal medium; C , C_, C. » primary, secondary, and tertiary 

callus, respectively; DM « dry matter; MS = according to Murashige and 

Skoog (1962). 
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INTRODUCTION 

A predictable and reproducible relationship between biochemical 

traits of Intact plants, calli, and suspended cells of the same 

species or cultivar is an obvious prerequisite for the practical use 

of plant biotechnology. The potential for this relationship is 

anchored in the totipotency of each cell, the genome of which is the 

genetic memory (cf. Thorpe, 1978) for all types of morphological and 

chemical differentiation that may occur during the development of the 

intact organism. 

Sometimes impredictable traits become suddenly apparent in calli 

or suspended cells (Yeoman et al., 1980) and they might, on the one 

hand, be the consequence of genetic instability (Ikeda et al., 1981). 

On the other hand, it is possible that such traits are repressed in 

intact plants and expressed in only certain stages of their culture or 

under certain culture conditions (Aitchison et al., 1977). 

Sometimes the term "memory process" (Thellier, et al., 1982) is 

used for this phenomena, because the underlying mechanism is not 

known. Presumably, some masked genetic regulation mechanism is 

responsible for the effects. 

We herewith report two such effects, one of plant age and one 

of mineral nutrition, that were encountered during investigations into 

chemodifferentiation of cells and tissues of Tagetes species. They 

illustrate that "memory" phenomena may possess practical value in 

plant biotechnology and may act as new incentives. 

MATERIALS AND METHODS 

Plant cultivation. Seeds of Tagetes mlnuta L. (harvest 1982, kind­

ly provided by the Botanic Garden of the University of Nijmegen) and 

of Tagetes patula L. cv. Nana furia (purchased from Tubergen Co., 
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Llsse) were germinated in the dark at 22 C on paper moistened with 

demineralized water. After one week the seedlings were transferred to 

well-aerated nutrient solutions, the composition of which is given in 

Table 1. Plants were grown in 16 h light (22 + 1 °C, 30 W m~ ) / 8 h 

dark (19 + 1 °C) cycles at 75 + 5% RH. 

Effect of age. T. minuta was grown in BM with Ca(N0,)2 (Table 1). 

This solution was circulated through a pH - stat , that kept the pH at 

5.5 + 0.2 with diluted KOH or H SO,. Plants varying in age between 3 

and 13 weeks were available simultaneously. Explants were prepared 

K+ 

Ca2 + 

Mg2 + 

Cl" 

NO" 

H 2 P 0 4 

so2 -

4 

otal ions 

BM + NO" 

11 

10.5 

1 

1.5 

10 

1 

10 

45 

Hoagland 

& Snyder 

6 

10 

4 

0 

15 

1 

4 

40 

Steiner 

6.7 

10 

4 

1 

11.9 

1 

6.9 

41.4 

-3 
Table 1. Composition of nutrient solutions (mmol of charge.dm ) used 

to grow Tagetes species. The media were slightly modified basal medium 

(Breteler et al., 1979) with Ca(NO-) , Hoagland and Snyder (1933) 

solution, and Steiner solution (Steiner, 1968). Trace elements 

[( mol.dnf3): 40 Fe 3 + , 22 B(0H)_, 6 Mn2 +, 1 Zn2 +, 0.16 Cu2 +, 0.04 

Mo-,0., 1 did not differ between solutions. 

7 24 
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from leaves sampled at random from each of at least 6 plants per age. 

No leaves were taken from the top and bottom segments of the main 

stem. 

Effect of mineral nutrition. T. mlnuta and T. patula were grown for 7 

weeks on various media (Table 1) prior to leaf sampling for 

explantation. Media were refreshed at 2-week Intervals during which 

the pH rose from 5.0 + 0 . 1 to 7.2 + 0.2. 

Callus culture. Excised leaves were submerged for 2 sec In 70% 

(v/v) ethanol and 13 mln In 5% (w/v) CaOCl. and subsequently washed 

for 3, 10, and 30 mln In fresh allquots of sterile, demlnerallzed 

water. Apical leaf sections of approximately similar size (1.5 cm 

long) were excised and placed upright in a tube (16 cm x 0 2.5 cm) 

3 -3 
with 15 cm MS medium, supplemented with 2% (w/v) sucrose, 0.5 mg.dm 

-3 
naphthylacetate, and 5 mg.dm benzyladenine, and solidified with 0.2% 

(w/v) Gelrite (Costar Ltd, Badhoevedorp, The Netherlands). The pH was 

adjusted to 5.9 with KOH prior to autoclaving (20 min, 120 °C). At least 40 

leaf explants were used per treatment. 

Axenic calli developed at 24 + 1 C and a 16 h photoperiod (5 

Wrn"2). After 3 weeks the Cx was cut into 3 pieces and partly 

subcultured. After 2 weeks the resulting C, was halved and subcultured 

to yield C,, which was harvested after 2 weeks and partly suspended in 

liquid MS medium. After the various subcultures fresh calli were 

washed, weighed, lyophilized, and weighed again. 

RESULTS 

Effect of the age of the plant 

Between days 5 and 7, callus growth on leaf explants of T. minuta 

became visible. After three weeks C. and C7 calli were un-
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4 6 
plant age (weeks! 

Figure 1. Growth rate of calli of Tagetes minuta from leaf explants 

of various ages (abscissa). C. , C. and C, refer to the primary, 

secondary, and tertiary callus phases, respectively. Data are given as 

fresh weight + SD (n = 15 for C., 5 for C„ and 4 for C - ) . 

3 
differentiated, firm, green tissues of 1 to 1.5 cm . At the end of the 

C. phase calli were green-yellow. Callus weight in C and C„ was not 

related to the age of the plant (Fig. 1 ) . However, structure, volume, fresh 

and dry weight of C. calli depended on the age of the original plants 

(fresh weight data in Fig. 1 ) . The tissue volume and fresh weight of 

C, calli from the younger plants increased slowly. These calli turned 

brown-green with firm apices resembling shoot initiation. Calli from 

the older plants were friable, pale green, and increased rapidly in 

weight and volume. On average, the fresh weight of C, calli from the 

oldest plants was 4 to 5 times that of the youngest plants. 

The dry matter content of the calli increased with time in the 

callus of the younger plants, but decreased in the callus of the 

older plants (Fig. 2 ) . The C, calli had a low dry matter content which 

was correlated with a good suspensibility of their cells. 
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Effect of mineral nutrition 

Nutritional treatments of whole plants of T. patula (see Materials 

and methods) did not cause visual differences in C. and C. calli. 

Tertiary callus, however, showed various degrees of browning and 

growth retardation related to the nutrition of the original plant 

(Figure 3). Calli with a Hoagland and Snyder history turned dark brown 

to black. Those with a (BM + NO,) history became brown, and those with 

a Steiner history kept growing and were grey to green. The Steiner 

calli were friable and easily suspensible in liquid MS medium. 

The appearance of callus (C. , C, and C-) of T. minuta did not 

respond differentially to the nutritional history of the original 

plants. 

Figure 2. Dry matter content of calli of Tagetes minuta in various 

phases (C. , C„ and C,). The calli were made of leaf explants of 

various ages, indicated (in weeks) in the figure. 
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Figure 3. Tertiary callus of Tagetes patula originating from plants 

exposed to various nutrient solutions: left = Hoagland and Snyder 

solution, middle = basal medium + Ca(NO,) , right = Steiner solution. 

DISCUSSION 

Callus weight of J_. minuta varied considerably within treatments, 

presumably as a consequence of differences in initial weight, 

structure, and cross section of leaf explants (Yeoman and Mcleod, 

1977). Variation in weight due to plant age, however, significantly 

exceeded the variation within treatments (Fig. 1). In C. and C. fresh 

weight increase was not systematically influenced by plant age, but 

significant differences in DM content were already noticeable at the 

first callus passage (Fig. 2). The DM content of the C. calli was 

positively correlated with the DM content of the original leaves, 

which was highest in the older plants and lowest in the younger plants 

(data not shown). The differential growth rate in C, is not a simple 

amplification of differences found in C. , since the trend of higher DM 

production (data not shown) coincides with a decreasing DM content. 

The simultaneous increase of fresh weight and dry matter production in 

the C, calli from older plants might reflect a coordinated expression 

of plant age effects. In general, a low DM content is associated with 

a friable and readily suspensible callus (Aitchison et al., 1977). 
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Indeed, C, calli of the oldest plants could be excellently suspended, 

whereas calll of the youngest plants did not dissociate at all upon 

shaking in liquid medium. The effect of the nutrition of the intact 

plant in T_. patula was also only conspicuous in C-, not in C. and C 

and this was highly reproducible. Main effects were on colour, texture 

(Fig. 3) and suspensibility. 

For both phenomena reported here constituents originally present 

at different concentrations in the explants may have become diluted to 

critical levels that might have influenced growth rate and appearance 

of the calli. It should be noted, however, that the calli were kept on 

MS medium and grew well, implying that Indispensable substances were 

readily available. The initial explant tissue had increased 100 to 400 

fold in weight and volume by the end of the C« phase, indicating that 

the endogeneous supply of essential growth factors became progressive­

ly less important than the supply from the medium. Moreover, of the 

macronutrients present in the nutrient solutions, only the content of 

2+ 2+ 
Ca and Mg differed (by about 20%) among the original leaves of 

plants from the different solutions, and this difference held for T. 

minuta as well (data not shown). Trace element supply was identical in 

all treatments (Table 1). 

It is thus more likely that an age-related or nutrition-related 

property of the original plant, which was hidden for at least 5 weeks, 

became apparent (so-called memorized) after several callus passages. 

This aspect may affect the expression of parts of the genome of 

Tagetes species. However, this putative effect on genome expression 

seems to vary from one Tagetes species to another. A qualitative 

memory effect resembling the ones reported here was recently described 

by Margara and Piollat (1983) in begonia. They noted that explants of 
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callus, leaves, or roots were able to produce petal-like structures 

and colours, but only if the original explants had developed in vitro 

from petals. These authors suggest that vegetative tissues can pre­

serve the memory of their floral origin. Other examples of the per­

sistence of whole plant characteristics through cell and tissue 

culture have been provided by SSnchez de Jimenez and FernSndez (1983), 

who found that call! from leaves and roots differed in glutamate 

synthase activity when exposed to glutamine as sole N source, but not 

in MS medium. However, Van Slogteren et al. (1983) found unstable 

expression of a T-DNA gene in a tobacco cell line transformed by 

Agrobacterium tumefaciens. It was shown that shoots from this line 

when transferred to media free of growth regulators and containing 

5-azacytidine, showed constitutive expression of the unstable T-DNA 

gene and expression of two silent T-DNA genes as well. According to 

these authors hypomethylation of DNA may be the cause of switch-on of 

certain gene activities. It seems that the maintenance of a certain 

degree of methylation of the cytosine residues in the DNA of the 

original explant is a candidate for the exertion of memory effects 

under the altered conditions in vitro. It is difficult to trace the 

observed increase of moisture content and dry matter production in C-

calli of T. minuta back to a particular property in the leaves of the 

older plants. The same holds for the observed effect of the mineral 

nutrition of the original J_. patula plants. We suggest, therefore, 

that such reproducible effects be called "origin effects". The term 

"memory effect" might be reserved for the reappearance of particular 

differentiations present in the history of the callus or the original 

structure of the explant. 
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Apart from the significance of memory and origin effects in 

cultured plant cells and tissues for understanding genetic regulation, 

the phenomena may have an impact on large-scale production of certain 

plant cell compounds ̂ n vitro for commercial purposes, because they 

may interfere with stabile production. A better understanding of the 

phenomena, however, might lead to their directional application in 

practice. 
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Chapter II 

Morphological Differentiation and Occurrence 
of Thiophenes in Leaf Callus Cultures 

from Tagetes species: 
Relation to the Growth Medium of the Plants 

David H. Ketel 
(Physiol. Plant. Vol. 66. pp 392 - 396, 1986) 

The morphology and the number and concentration of thiophene-

-like compounds were studied in leaves, roots and calli of 

Tagetes species grown with different nutrient solutions. The 

type of nutrient solution exerted no effect on the number of 

thiophene-like compounds, but altered the type of morpho-

-logical differentiation and thiophene content of calli. Calli 

of J_. minuta L. showed little differentiation and resulted in 

suspensible callus after two passages. Calli of T. erecta L. 

cv. Rose d'Inde differentiated rapidly and turned dark brown 

after one passage. The morphology of calli from T. patula L. 

cv. Nana furia was intermediate. Tertiary callus of T. patula 

contained more thiophene-like compounds and higher con­

centrations of them than did the corresponding calli of T. 

minuta. The content of thiophene-like compounds decreased 

after various callus passages, but the relative decrease 

varied between species. 

Additional key words - Biocides, HPLC-UV detection, Tagetes 

erecta, Tagetes minuta, Tagetes patula, thiophenes. 
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INTRODUCTION 

Tagetes species (marigolds) contain biocidal compounds of the thiophene 

group (Bohlmann et al. 1973, Gommers 1981) as non-polar products of 

secondary metabolism. Our group has been investigating the production of 

these biocides by Tagetes cell suspensions as a biotechnological model 

system. In general the use of plant cell cultures for the production of 

fine chemicals is hampered by the positive relationship between morpho­

logical differentiation and secondary metabolism (Wiermann 1981, Yeoman et 

al. 1980). At first sight the processes of gradual morphological dedif-

ferentiation to obtain suspensible callus, on the one hand, and of se­

condary metabolite production, on the other hand, thus seem to be incom­

patible (Knoop and Beiderbeck 1983). 

Preliminary observations (Ketel et al. 1985) showed that appearance and 

differentiation of Tagetes calli from leaf explants differ between species 

and are affected by the composition of the nutrient medium in which the 

original plants were grown. 

The purpose of the present study was to examine the morphological 

differentiation and variation in the occurrence of thiophenes in callus 

from leaf explants from three Tagetes species grown in three nutrient 

solutions, in order to assess the validity of the correlation between 

morphological and chemical differentiation for our model system. 

Abbreviations - BMN, basal medium supplemented with Ca(N0,) • HPLC, high 

performance liquid chromatography; MS, Murashige and Skoog (1962) medium. 

MATERIALS AND METHODS 

Ei5D.t_cul.£ivgtion_and_callus culture 

Seeds of Tagetes erecta L. cv. Rose d'Inde (purchased from Wouda Co., 

Steenwijk, The Netherlands), Tagetes patula L. cv. Nana furia (purchased 

from Tubergen Co., Lisse, The Netherlands) and Tagetes minuta L. (provided 

by the Botanic Garden of the University of Nijmegen) were germinated in 

demineralized water, and grown for 10 weeks in complete nutrient solutions. 

The solutions were Steiner (1968) solution, Hoagland and Snyder (1933) 

solution and BMN (Breteler et al. 1979). Plant cultivation is detailed in a 

previous paper (Ketel et al. 1985). 

Each treatment comprised 20 tubes with one leaf explant each. Sterili­

zation of the leaves and culture of primary, secondary and tertiary callus 
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(grown for 3, 2 and 2 weeks, respectively) proceeded under axenic con­

ditions at 24 + 1 C and a 16 h photoperiod (5 W m ) on MS medium as de­

tailed by Ketel et al. (1985). Nine primary calli and halves of the re­

maining secondary calli were sectioned and subcultured per treatment. Or­

ganoid structures were removed before subculturing. 

Regenerated roots and shoots were discarded and calli were washed with de-

mineralized water. Roots, leaves and calli were frozen in liquid N_ and 

freeze-dried (Durar Dry FTS, Stone Ridge, NY, USA). 

One hundred mg of the dried and ground materials were extracted in the 

dark with cyclohexane for 12 h at 2 0 + 3 c. The crude extracts were fil­

tered through cyclohexane-washed quartz wool and a 0.22 urn filter. The fil­

trate was evaporated to dryness under a stream of N„ and the residue dis­

solved in 2.5 ml cyclohexane. The purified extracts were stored at 4 C and 

analysed within 2 days. 

HPLC was done by isocratic elution with hexane-dioxane (95:5 v/v) at a 

flow of 2.5 ml min (Waters model 6000A pump, 10.3 Mpa, Waters yporasil-

C18, PIN 27477 column, injection volume 100 Ul). The eluate was scanned 

(190-400 nm) on-line with a Hewlett Packard 1040 high speed spectrophoto­

meter and extinction values at the peak wavelength (330-380 nm) were used 

to quantify thiophene-like compounds (cf. Tab. 2). All organic solvents 

were of p.a. quality (Merck). Thiophenes were identified by retention time, 

UV spectrum (Bohlmann et al. 1973) and mass spectrum (M.A. Posthumus and 

D.H. Ketel, unpublished results). A standard curve for a-terthienyl (0.3 nM 

- 3 uM) prepared with our HPLC-UV equipment yielded good linearity at 351 

nm. The molar extinction coefficients of natural thiophenes are comparable 

to those of a-terthienyl (Bohlmann et al. 1973). The HPLC-UV extinction 

values could thus be used to estimate the contents of thiophenes in the 

different samples. Nitrogen and inorganic compounds were analysed after 
+ + 2+ 2+ - - - 2-

digestion (N, K , Na , Ca , Mg , H PO.) or extraction (NO,, CI , SO, ) of 
dried leaf samples as described by Breteler and HSnisch ten Cate (1978). 

RESULTS 

Plants 

Plants grew well on the three nutrient solutions. Only minor differences in 

yield were observed between nutrient treatments. T. erecta and T. patula 

grew best on the Hoagland and Snyder solution, whereas T. minuta grew best 
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on the BMN solution. Nitrogen and inorganic components of the leaves showed 

no differences between nutrient treatments of more than 10%, except for 
2+ 2+ 

Ca and Mg , which differed by ca 20%. Magnesium was lowest in the leaves 

of BMN plants and highest in the leaves from Hoagland and Snyder plants. 

Calcium was lowest in the leaves of Steiner plants and highest in the BMN 

leaves (data not shown). 

Callus 

Callus induction was visible between 5 to 7 days after explantation in ex-

plants of all types. After three weeks the primary calli of T. erecta were 

highly differentiated, whereas those of T. minuta were not differentiated 

at all (Tab. 1). Differentiation in calli from T. erecta grown on BMN or 

T. minuta 

BMN 

Steiner 

Hoagland 

T. patula 

BMN 

Steiner 

Hoagland 

T. erecta 

BMN 

Steiner 

Hoagland 

Root 

0/20 

0/20 

0/20 

0/20 

0/18 

1/19 

10/19 

11/18 

4/19 

Cl 

( 0) 

( 0) 

( 0) 

( 0) 

( 0) 

( 5) 

(53) 

(61) 

(21) 

Tab. 1. Differentiation c 

Differen 

Shoot 

0/20 

0/20 

0/20 

2/20 

0/18 

0/19 

2/ 9 

0/18 

12/19 

( 0) 

( 0) 

( 0) 

(10) 

( 0) 

( 0) 

(11) 

( 0) 

(63) 

f roots or 

tiatec 

Root 

0/9 

0/9 

0/9 

2/9 

2/9 

1/9 

1/9 

3/9 

2/9 

shoots 

calli/Total calli 

( 0) 

( 0) 

( 0) 

(22) 

(22) 

(11) 

(11) 

(33) 

(22) 

C2 

Shoot 

0/9 

2/9 

2/9 

1/9 

1/9 

1/9 

0/9 

1/9 

1/9 

( 0) 

(22) 

(22) 

(11) 

( 0) 

(11) 

( 0) 

(U) 

(11) 

! from primary 

Root 

0/6 

0/6 

0/6 

2/9 

6/9 

5/9 

(C.), 

C3 

Shoot 

( 0) 0/6 ( 0) 

( 0) 0/6 ( 0) 

( 0) 0/6 ( 0) 

(22) 0/9 ( 0) 

(67) 0/9 ( 0) 

(56) 1/9 (11) 

secondary 

(C2), and tertiary (C,) calli from leaf explants of Tagetes spp. The plants 

were grown in different nutrient solutions. Differentiation as percentage of 

total calli is given in parenthesis. Some calli produced both roots and 

shoots. Evaluation after 21 (C.), 35 (C„), and 49 (C,) days incubation at 

24°C in the light. 
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Steiner solution was mainly root-like, whereas calli from plants grown with 

Hoagland and Snyder solution formed mainly shoots. Only a few primary calli 

of 1\ patula differentiated roots or shoots. Most calli of T. patula, how­

ever, had a cauliflower-like structure without clear differentiation. After 

three weeks, primary calli of J_. erecta were brown, those of T. patula re­

mained yellow, and calli of T. minuta were green. 

During the second callus phase, the calli of T. erecta turned dark brown 

and stopped growing. Of 27 calli, the calli of T. erecta had formed 21 

organoid structures, whereas these numbers were 9 and 4 in T. patula and T. 

minuta, respectively. At the end of the tertiary callus phase, nine 

differentiated organs (mainly roots) were observed in T. patula and no 

differentiation occurred in the calli of J_. minuta. 

Non-golar_ confounds 

In the extracts of roots, leaves and calli, at least 16 different compounds 

were detected with HPLC retention times and UV-spectra similar to those of 

thiophenes (Fig. 1, Tab. 2). Roots of all Tagetes species contained 2 to 3 

thiophenes, while leaves contained 3 to 4 other thiophenes in T. minuta, 

and only one other thiophene in T. erecta. Although no qualitative effects 

of the nutrient solutions could be detected the quantitative differences in 

the amounts of thiophenes can only be ascribed to nutritional differences. 

In general, the number of thiophenes in primary calli of T_. minuta de­

creased when compared with the leaves. In contrast, primary calli of T. 

patula and T. erecta contained a higher number of thiophene-like compounds 

than the corresponding leaves. 

The number of thiophenes in primary and secondary calli from T_. minuta 

plants grown on BMN or Steiner solution did not differ. However, in 

secondary calli from plants grown in Hoagland and Snyder solution no thio­

phenes could be detected. The number of thiophenes in secondary callus from 

BMN-grown T_. patula was lower than in primary callus. Secondary callus of 

J_. patula from plants grown on Steiner solution or Hoagland and Snyder 

solution, however, contained the same number of thiophenes as primary 

callus. Secondary calli of T. erecta were not extracted. 

No thiophenes were detected in the tertiary callus of T. minuta and two 

thiophenes were detected in tertiary callus from Steiner-grown and BMN-

grown T. patula. 
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Fig. 1. Extinction spectra of four thiophene-like compounds detected in the 

cyclohexane extract of leaves of Tagetes minuta with a diode array high 

speed spectrophotometer. In this example the plant was grown in nutrient 

solution according to Steiner (1968). Mass spectral analysis of some 

extracts (M.A. Posthumus and D.H. Ketel, unpublished results) of leaves of 

Tagetes minuta indicated the apparent agreement of spectra D, G and I with 

compounds containing sulfur, and molecular masses of 262, 288 and 244, 

respectively. The molecular mass of the compound with spectrum J was 

unknown. Extinction values are represented in arbitrary units with the 

maximum extinctions for each compound equalized. 

Roots 

T. minuta 
BMN A153 B 51 C3 
Steiner A199 B 96C3 
Hoagland A106 B 96C3 

T. palula 
BMN A 95 B178C6 
Steiner A145 B248 C6 
Hoagland A159 B163 C6 

7". erecta 
BMN A 82 B 87 C2 
Steiner A 22 B 72 
Hoagland A 91 B103C3 

Leaves 

D160 G 72 
DUO G100 
D114 G 75 

E 66 H 18 
E 56 H 25 
E 62 H 12 

F 10 
F 21 
F 31 

124 
116 
123 

J 7 
J14 

B 9 

B103 
B 71 
B 10 

B 6 
B 16 

C2 

C2 

Primar) 

K 2 
K 3 
K 7 

K19 
K 8 

K 3 
K 3 
K 2 

callu 

L 8 
L13 

L 4 

N3 

M3 B37 
M2 
M2 

Secondary callus 

K4 
K2 

K4 
K6 

L 3 
L12 

L46 04 
L 5 P39 

Tertiary 
callus 

-

B14 CI 
B53 C5 

Tab. 2. Occurrence of thiophene-like compounds in roots, leaves and calli of Tagetes species, grown in different nutrient solutions. 
The 16 different compounds are indicated by letters with retention time (min) and peak wavelength (X max in nm) in brackets: A 
(1.9, 343); B (3.6, 333); C (6.6, 331); D (1.8, 353); E (1.8, 349); F (1.8, 334); G (3.0, 345); H (3.3, 329); I (3.9, 377); J (14.0, 331); 
K (2.0, 340); L (3.8, 325); M (2.6, 325); N (4.5, 373); O (6.9, 323); P (4.4, 333). The level of the compounds is indicated by the 
number of milli-extinction units at X max per 4 g of dry matter. A horizontal bar means that no thiophene-liks compounds were 
detected. An example of 4 spectra is given in Fig. 1. 

DISCUSSION 

The morphogenic potency of the calli differed significantly among the three 

Tagetes species and so did the occurrence of thiophenes. The incidence of or­

ganoid structures (Tab. 1) indicates that the calli of T_. erecta had the 

highest morphogenic potency, independent of the nutritional history of the 

plants. However, the type of morphological differentiation apparently depended 
2+ 2+ 

to a large extent on the type of nutrition. The contents of Ca and Mg in 
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the explants differed by about 20% and this difference may have affected mor-

phogenic expression in the call!. However, the original plant mass was 100 to 

400 times diluted in the tertiary calli of T_. patula (Ketel et al. 1985) and 

this renders any direct effect of macronutrients on morphogenesis unlikely. 

Calli of T_. minuta had the lowest morphogenic potency and the friable struc­

ture of tertiary calli allowed a good suspensibility (Ketel et al. 1985). The 

morphogenic vigour of J_. erecta has so far prevented the formation of stable 

cell suspensions of this species. The rapid differentiation of young primary 

calli of T_. erecta could not be suppressed by varying the levels of naphthyl-

acetate (1.3 ~ 21 M M ) and indoleacetate (0.6 - 2.8 iM) in solid or liquid 

media (data not shown). 

The morphogenic potency of calli of T. patula lies in between that of the 

other two species examined. However, a low frequency of organoid structures 

(Tab. 1) coincided with a cauliflower-like structure of the calli, indicating 

some degree of tissue organization. When shaken in liquid media calli of T. 

patula only dissociated into large aggregates. 

Tertiary calli of J_. minuta did not contain HPLC-UV-detectable levels of 

thiophenes. The decrease of the content of secondary metabolites (thiophenes) 

in calli and cell suspensions (Groneman et al. 1984) relative to intact plants 

is in agreement with a number of investigations in other plant species (Knoop 

and Beiderbeck 1983). This impoverishment of the secondary metabolite pattern 

may be due to the dedifferentiated state of the cells in calli and fine sus­

pensions (Lindsey and Yeoman 1983, Misawa and Suzuki 1982). The behaviour of 

thiophenes (Tabs 1 and 2) in Tagetes agrees with this explanation. 

Typical spectra of some of the 16 thiophene-like compounds that were found 

in the present experiments are given in Fig. 1. Mass spectrometry of some of 

the putative thiophenes indicated that their mass and number of S atoms per 

molecule corresponded with some known di- and trithiophenes (cf. Groneman et 

al. 1984). 

Although the calli were obtained from leaf explants, the thiophene pattern 

of primary calli resembled that of roots rather than that of leaves (Tab. 2 ) . 

The biochemical relationship between explants and their calli thus seems to be 

loosened by the dedifferentiation of the latter. This finding is in line with 

the observation that calli sometimes contain other secondary metabolites than 

do explant tissues (Wiermann 1981, Mulder-Krieger et al. 1982). The thiophene 

pattern in plants and calli, in contrast to morphological differentiation, was 

qualitatively unaffected by the nutritional history of the plants. 
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The occurrence of many different and in part yet unidentified thiophene-

-like compounds and the absence of authentic standards hindered a precise 

quantification of the thiophenes. However, based on the extinction coefficient 

of thiophenes (see Materials and Methods) we calculated the relative contents 

of thiophenes in the dry matter of the different samples (leaf value = 100%). 

Primary calli of T_. minuta had only 4 to 11% of the thiophene content of 

leaves and this value was 0 to 3% in secondary callus and 0% in tertiary 

callus. The rapid decrease in thiophene content upon subculturing of callus 

explains the absence of thiophenes in cell suspensions (Groneman et al. 1984). 

A large variation occurred in the relative thiophene content of primary calli 

of T. patula (16 - 156%) and T. erecta (19 - 100%). This variation was related 

to the nutritional history of the plants, but even the lowest relative con­

tents, found in calli from plants grown on Hoagland and Snyder solution, were 

significantly higher than in 7_. minuta. Relative thiophene contents of second­

ary and tertiary calli of T. patula were 13 to 69%, and 7 to 65%, respective­

ly, and these figures were reproducible. 

Alhough secondary calli of T, erecta were not analysed, it was noticed that 

they turned dark brown, due to the formation of phenols. The compounds were 

excreted into the solid medium. Phenols are also secondary metabolites and 

their presence seems to be related to a certain degree of morphological dif­

ferentiation (Wiermann 1981). The high morphogenetic potency of T_. erecta may 

thus cause toxic levels of phenols in secondary calli. 

Notwithstanding variation in morphology and in thiophene patterns within 

the different combinations of species and nutritional history, the results 

show that a high degree of morphological dedifferentiation is apparently in­

compatible with the accumulation of thiophenes. However, in T. erecta and T. 

patula, morphological dedifferentiation only caused a quantitative decrease of 

the thiophene content and seemed not to suppress totally the presence of spe­

cific enzymes and substrates of the thiophene pathway. The induction of spe­

cific stress conditions, may thus intensify the synthesis and accumulation of 

thiophenes in suspended Tagetes cells. Moreover, new methods that yield stable 

suspensions of T_. patula or J_. erecta cells may also lead to thiophene pro­

duction in suspension cultures. Both aspects are currently under investigation. 
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Chapter III 

Inorganic Nutrition of Callus Tissues 
of Tagetes species: 

The Effects on Morphogenesis and 
Accumulation of Thiophenes and other 

Non-polar Secondary Metabolites 

David H. Ketel 
(J. Plant. Physiol. Vol. 125. pp 69 - 77, 1986) 

SUMMARY 

The formation and morphology of callus were studied on leaf explants of 

Tagetes patula and Tagetes minuta, inserted into three different solid media 

with the inorganic composition of media used for soilless culture of intact 

plants, or into MS-medium. Callus formation responded differently to medium 

type and plant species. On all "plant media" callus formation occurred in 

only one of the two species. Which species died and which species proli­

ferated depended on the type of plant medium. Growth of calli was curtailed 

on plant media as compared with MS-medium. However, transfer of secondary 

calli from plant media to fresh MS-medium restored a high growth rate. 

Calli of T. patula had a higher level of non-polar metabolites and thio­

phenes (natural biocides from Tagetes plants) than calli of T. minuta. In T. 

patula calli the content of non-polar metabolites increased from primary to 

secondary callus and was highest when MS-medium was used. In contrast, T. 

minuta calli showed a decrease in non-polar metabolite content upon subcul-

turing and this content was lowest on MS-medium. These trends of the con­

tents of non-polar secondary metabolites parallelled the trends in morpho­

logical differentiation, that were observed when calli were cultured conti­

nuously on MS-medium (Ketel, Physiol. Plant. 66 (1986), 392) and confirm the 

positive correlation between morphological and biochemical differentiation. 

It is concluded that the inorganic medium composition affected secondary 

metabolism only to a quantitative extent and that a proper inorganic compo­

sition of a medium together with the choice of the most suitable species are 

essential in the production of desired secondary metabolites in vitro. 
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Key words: Callus culture, growth, HPLC-UV detection, inorganic nutrition, 

morphogenesis, non-polar compounds, secondary metabolites, Tagetes minuta 

L., Tagetes patula L., thiophenes. 

Abbreviations: BMN = basal medium with Ca(NO,)_; C., C„, C. = primary, se­

condary, and tertiary callus, respectively; DM = dry matter; MS = according 

to Murashige and Skoog (1962). 

INTRODUCTION 

Nutrient media for plant growth differ in inorganic composition from those 

used in axenic cultures in vitro. In the latter cultures, the production of 

secondary metabolites, characteristic for the intact plant, is generally 

decreased or absent (Prenosil and Pedersen, 1983; Fuller, 1984). This pheno­

menon has been ascribed to the mutually excluding processes of growth and 

differentiation of the cells in vitro (Yeoman et al., 1980; Lindsey and 

Yeoman, 1983; Fuller, 1984). In Tagetes species, the accumulation of thio­

phenes (natural biocides) is very much reduced ̂ n vitro, particularly in T_. 

minuta (Groneman et al., 1984; Ketel, 1986). The present research addresses 

the question whether the difference in inorganic nutrition between intact 

plants and callus tissues contributes to the difference in thiophene accumu­

lation. The morphological differentiation and thiophene accumulation on 

three media designed for plant nutrition were compared with those on a 

medium with the inorganic composition as described by Murashige and Skoog 

(1962), the standard medium for many cultures in vitro. 

MATERIALS AND METHODS 

Cultivation of plants and callus. 

Plants of Tagetes minuta L. (seeds provided by the Botanic Garden of the 

University of Nijmegen, The Netherlands) and Tagetes patula L. cv. Nana 

furia (seeds purchased from Tubergen Co., Lisse, The Netherlands) were grown 

during 9 weeks on BMN (Breteler et al., 1979). According to the inorganic 

composition of nutrient solutions used for the growth of intact plants (BMN, 

Hoagland & Snyder (1933) and Steiner (1968), Table 1), media were prepared 

for the growth of primary calli. A medium, containing macro elements similar 

to the MS-medium, was used as a control, and to restore the growth of C 

calli (see Results). All media were supplemented with sucrose (2% w/v), 
-3 -3 

naphthylacetate (0.5 mg.dm ) , and benzyladenine (5 mg.dm ) , solidified 
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K+ 

NH,+ 

r ^ Ca 

Mg 2 + 

Cl~ 
NO" 

so; 
4 

total ions 

BMN 

11.0 

0 

10.5 

1.0 

1.5 

10.0 

1.0 

10.0 

45.0 

Hoagland 
& Snyder 

6.0 

0 

10.0 

4.0 

0 

15.0 

1.0 

4.0 

40.0 

Steiner 

6.7 

0 

10.0 

4.0 

1.0 

11.9 

1.0 

6.9 

41.4 

MS 

20.0 

20.6 

6.0 

3.0 

6.0 

39.4 

1.2 

3.0 

99.2 

_3 
Table 1: Macro-nutrients (mmol of charge, dm ) In media used to grow calli 

-3 3+ 2+ 
of Tagetes species. Trace elements ( mol.dm : 40 Fe , 22 B(0H)_, 6 Mn , 1 
Zn , 0.16 Cu , 0.04 Mo-,0„. ) did not differ between the media. > 7 24 

with Gelrite (0.2% w/v; Costar Ltd., Badhoevedorp, The Netherlands) 

autoclaved during 20 mln at 120 C. The pH was adjusted to 5.9 with K0H prior 

to autoclaving. 

Excised leaves were sterilized 2 sec in ethanol (70% v/v) and 13 min in 

CaOCl (5% w/v), subsequently washed for 3, 10, and 30 min in fresh aliquots 

of sterile, demineralized water, and inserted into solidified media as des­

cribed previously (Ketel et al., 1985). Of each species 30 C^ calli per 

treatment were grown from leaf explants. After three weeks fifteen C^ calli 

per treatment were cut into 3 pieces and subcultured on 40 cm of the diffe­

rent media in 250 cm erlenmeyer flasks. After 2 weeks 8 C2 calli per treat­

ment were halved and subcultered on MS-medium under similar conditions to 

obtain C- calli. Callus growth was done under axenic conditions at 24 C. 

Detailed growth conditions are given by Ketel et al. (1985). 

Samgling_and_chemical_anal2sis 

Samples of callus were washed with demineralized water, pooled per treat­

ment, frozen in liquid N„, and freeze-dried (Durar Dry, FTS; Stone Ridge, 

New York, USA). One hundred mg of the dried and ground samples were 
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3 
extracted in the dark with 2.5 cm hexane during 12 h at room temperature. 

The crude extracts were filtered through hexane-washed quartz wool and a 

0.22 urn filter. The filtrates were evaporated to dryness under a stream of 
3 

gaseous N. and the residue dissolved in 2.5 cm hexane. The purified ex­
tracts were stored at A C in the dark and analysed within 2 days. 

HPLC of the extracts was done by isocratic elution with hexane-dioxane 
3 -1 

(95:5 v/v) at a flow of 1.5 cm min (Waters model 6000 A pump, 10.3 MPa; 
3 

Serva 42360 column, Heidelberg, FRG; injection volume 0.1 cm ) . The eluate 

was scanned (230-400 nm) on-line with a Hewlett Packard 1040 A high speed 

spectrophotometer. Concentrations were estimated in terms of absorbance 

units at peak wavelengths (see Table 3 ) . The hexane used was HPLC-grade 

(Fisons, Loughborough, UK). Sampling, extraction, and analysis yielded 

variation in the concentrations of analysed compounds between 2 and 6%. 

RESULTS 

On BMN the explants of T_. patula coloured brown and died, whereas the ex-

plants of J_. minuta remained green and formed callus. On the Steiner and 

Hoagland & Snyder media, callus growth on leaf explants of T_. patula became 

visible between 5 and 7 days. At T. minuta explants only roots without cal­

lus appeared when a Steiner or a Hoagland & Snyder medium was used. More and 

better developed roots were formed on Steiner medium than on a Hoagland & 

Snyder medium (Fig. 1). 

I * k 1 J 
d * * !. 
w L % * ? 

n n 
Tagetes minuta 

Fig 1: Morphological development of 3-week-old leaf explants of Tagetes 

patula and T. minuta on BMN (i), Hoagland and Snyder medium (il) and 

Steiner medium (ill). 
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The growth of C^ and C. calli of T. patula on the Steiner and Hoagland & 

Snyder media, and of the C. calli of T. minuta on BMN, fell considerably 

behind that of the corresponding calli on MS-medium (Table 2). The texture 

of the C, calli that were grown on the "plant media" was less friable than 

of those grown on MS-medium. The dry matter content of the calli was highest 

on the plant media. 

Time 
(weeks) 

1-3 

4-5 

6-7 

1-3 

4-5 

6-7 

Species and 
callus phase 

T. pat 

C^n-15) 

C2(n=7) 

C3(n=7) 

ula 

FW 

%DM 

FW 

%DM 

FW 

%DM 

T. minuta 

C1(n=15) 

C2(n=7) 

C3(n=7) 

FW 

%DM 

FW 

%DM 

FW 

%DM 

BMN 

-

-

-

-

-

0.52+0 

18.0 

0.81+0 

14.2 

MS 

34 

30 

1.54+0.52 

13.6 

Hoagland 

& 

0 

0 

3 

Snyder 

.45+0.32 

13.4 

81+0.33 

13.7 

MS 

54+2.76 

9.8 

-

-
-

-

-

Steiner 

0.40+0.23 

14.8 

1.18+0.73 

14.4 

MS 

2.82+2.60 

10.7 

-

-
-

-

-

MS 

1.63+0.90 

6.0 

6.10+1.63 

5.2 

MS 

11.8+5.24 

4.7 

0.59+0.26 

11.4 

3.80+1.74 

10.4 

MS 

6.33+1.60 

9.4 

Table 2: Fresh weight (FW, g per callus) and dry matter content (% DM) of 

primary (C.), secondary (C~) and tertiary (C„) calli of Tagetes patula and 

T. minuta. 

The C. and C„ calli were grown on a BMN, Hoagland & Snyder, Steiner or 

MS-medium (Table 1). All C- calli were grown on MS-medium. No callus growth 

was obtained on leaf explants of T. patula on BMN and on leaf explants of T. 

minuta on Steiner and Hoagland & Snyder media. Total duration of the experi­

ment was 7 weeks. FW data are given +SD. 
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Upon subculturing, the fresh weight of C. calli on MS-medium increased 4 

to 6-fold in two weeks. In contrast, the fresh weight of the C» calli grown 

on plant media was about doubled in this period. The latter calli turned 

brown, and green areas were only maintained in C_ calli of T_. minuta. 

However, when C„ calli from plant media were transferred to MS-medium, the 

resulting C- calli grew prosperously again, although at very high varia­

bility (see SD in Table 2). 

Non-j>olar_comgounds 

C. calli of T.minuta grown on BMN contained one thiophene-like compound (K) 

and 5 other non-polar compounds (Fig. 2 and Table 3 ) . The same 

thiophene-like compound also occurred in the C„ and C, calli of T.minuta. 

The C, calli of this species grown on MS-medium, however, contained 2 

thiophene-like compounds (E and M ^ that were different from the compound K. 

The mass-spectrum (M.A. Posthumus and D.H. Ketel, unpublished results) and 

UV-spectrum of the thiophene E corresponds with the methyl derivative of 

5-(3-buten-l-enyl)-2,2'-bithienyl (cf. compound XVI in Bohlmann and Zdero, 

1985). The thiophene K most likely corresponds with a-terthienyl, but its 

UV-spectrum was impure owing to the presence of compound 1 (Fig. 2 ) . In 

addition, the different UV-spectra showed that different compounds sometimes 

had a similar HPLC retention time, e.g. K and 1 in Fig. 2. The transfer of 

C„ calli from BMN to MS did not change the pattern of the non-polar 

metabolites (data not shown). 

T. minuta C,-callus 

BMN 

Time(min) 

J 

T. minuta C,-callus 
MS 

4/ W, \ 

— 1 1 1 1 1 1 [ 

0 Time(min) 10 

230 315 400 
Wavelengthlnm) 

Fig. 2: HPLC chromatograms of hexane-extracts of primary (Ci) calli of Tagetes minuta grown 
on BMN (Table 1) or MS. In addition, the UV-spectra (230-400 nm) of the different com­
pounds are presented to show the occurrence of different compounds in apparently similar 
chromatograms. Thiophene-like compounds are indicated by letters and indices according to 
the classification by Ketel (1986). 
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Independent of the type of mineral nutrition, the number of HPLC-UV 

detectable non-polar compounds occurring in the C. call! of T.patula 

amounted to 12 (Table 3). Whereas in the C. calli of T.patula grown on 

MS-medium 4 different thiophene-like compounds were found, the C. and C. 

calli of this species, when grown on Steiner or Hoagland & Snyder medium, 

contained only 2 or 3 of such compounds. Only the C calli of T.patula with 

a previous Steiner nutrition contained 4 thiophene-like compounds, 3 of them 

having UV-spectra similar to those present in the C. calli grown on an 

MS-medium. The mass-spectrum (M.A. Posthumus and D.H. Ketel, unpublished 

results) of one of the thiophene-like compounds in the calli of T.patula 

corresponded with 5-(4-hydroxy-l-butenyl)-2,2'-bithienyl (data not shown; 

cf. compound XIV in Bohlmann and Zdero, 1985) 

Tagetes minuta Tagetes patula 

BMN and MS MS Steiner and MS Hoagland and MS 
Snyder and MS 

I 
II 

III 
IV 

c, 
6 
1 

305 
19 

c2 
6 
1 

265 
24 

C, 

7 
1 

221 
31 

c, 
6 
2 

183 
49 

c, 
12 
3 

237 
60 

c2 
12 
2 

282 
17 

c3 
11 
4 

399 
191 

c, 
12 
2 

435 
27 

c2 
13 
3 

486 
34 

c3 
9 
3 

553 
197 

c, 
12 
4 

802 
512 

Table 3: Total number of non-polar compounds (I), total number of thiophene-like compounds 
(II), sum of milli-absorbance units of the non-polar compounds (III), and sum of milli-absorban-
ce-units of the thiophene-like compounds (IV) of primary (Ci), secondary (C2), and tertiary 
(C3) calli of Tagetes minuta and T. patula. C\ and C2 calli were grown on three different media 
with macro-element composition according to Steiner, Hoagland and Snyder and BMN (Ta­
ble 1). N o calli of T. minuta were obtained on Steiner and Hoagland and Snyder media and also 
no calli of T. patula when BMN was used. MS-medium was used as a control for Ci calli, while 
all C3 calli were grown on this medium. 

Upon subculturing on the same medium, the concentration of some 

compounds decreased and sometimes fell below the limit of detection, while 

the concentration of others increased. Also new compounds appeared after 

subculturing. These trends differed between media and species. C. calli of 

T. patula grown on Steiner and Hoagland & Snyder media contained approxi­

mately a quarter and a half, respectively, of the concentration of non-polar 

compounds in similar callus grown on MS-medium(Table 3 ) . In contrast, the 

concentration of these compounds in C^ calli of T. minuta grown on BMN was 

about 70% higher than that in those grown on MS-medium. The total thiophene 
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content in the C. calli of T.patula was even more affected by growth on the 

plant media relative to MS, than the total content of non-polar metabolites. 

The thiophene content in T_. minuta calli was very low and the data therefore 

do not permit any conclusion on the effect of medium composition. The trend 

in total non-polar and thiophene-like compounds, given for T. patula, was 

also manifest upon transfer of C„ calli from plant media to MS-medium. 

DISCUSSION 

It is generally accepted that the poor production of secondary metabolites 

in cell cultures in vitro is connected with the non-differentiated state of 

dividing cells (Yeoman et al., 1980; Lindsey and Yeoman, 1983; Ketel, 1986). 

However, taking into account the differences in inorganic composition 

between media used for cultures in vitro (usually MS-medium) and for intact 

plants, the inorganic composition of the culture medium may also contribute 

to the decreased production of secondary metabolites, which occurs especial­

ly in T. minuta (Ketel, 1986). 

The absence of callus and the formation of roots on leaf explants of T. 

minuta when grown on a Steiner or Hoagland & Snyder medium are the ex­

pression of a high potency to differentiate. The inorganic composition of 

BMN obviously suppressed root and allowed callus formation. In contrast, the 

leaf explants of T_. minuta on BMN clearly formed calli without organoid 

structures, even after subculturing of the C calli. Proliferation of cells 

was suppressed when the leaf explants of J_. patula were grown on BMN. 

Both the predomination of root production over shoot production in 

explants of J_. minuta, and the very solid texture of the C. and C„ calli 

(cf. high DM contents, Table 2) of both species may be the result of a 

so-called auxin effect that can also be the consequence of a relatively low 

cytokinin activity (Street, 1977; Ahuja et al., 1982). Although little is 

known about the direct relationship between the inorganic nutrition of 

callus and the regulation of the activity and the synthesis of auxins and 

cytokinins, it can be concluded that both the moderate differences between 

the plant media on the one hand, and the great differences between the plant 

media and MS-medium, on the other, considerably affected the regulatory 

mechanism of growth and morphogenesis of the different calli. The reported 

effects of different nitrogen sources on organ formation of calli (Sanchez 

de Jimenez and Fernandez, 1983), the requirement of relatively high nitrate 

concentrations to obtain well-growing and friable calli (Murashige and 
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Skoog, 1962; Knobloch and Berlin, 1983), and the Influence of calcium trans­

port on the activity of indoleacetate in embryogenesis (De Guzman and Dela 

Fuente, 1984), indicate that particularly the nitrogen source and the con-
2+ 

centrations of Ca and NO, in the plant media (cf. Table 1) may have 

affected the morphogenesis and growth of the C. and C„ calli. It is unknown 

whether differences in the concentrations of K and CI also affected the 

growth and development of the calli. 

A higher number of non-polar compounds, in the calli of T. patula, than 

in the calli of T. minuta, including some thiophenes, has repeatedly been 

observed (Table 3; Ketel, 1986 and D.H. Ketel, unpublished results). This 

difference also held when plant media were used instead of MS-medium. 

Upon subculturing, the total content of non-polar metabolites (estimated 

as sum of peak absorbances; Table 3) increased in T. patula, but decreased 

in T. minuta. This trend prevailed both with subculturing on plant media and 

when C. calli from plant media were transferred to MS-medium. It is unclear 

whether the relatively high and low contents of non-polar compounds in C, of 

T. patula and T. minuta, respectively, can be attributed to callus age or to 

the change in medium. The opposite trends in total non-polar metabolite 

content in the two species coincide with similar trends in morphological 

differentiation (see Results and Ketel, 1986). The present observations thus 

confirm the general positive relationship between biochemical and morpho­

logical differentiation. This relationship also holds for thiophenes in 

particular. The inorganic nutrition of the calli apparently is not a factor 

that switches thiophene accumulation on or off. The only effect of the 

difference in inorganic composition between the media tested here seems to 

be in the quantitative aspects. 

In conclusion, the present results show that both the selection of a 

suitable plant species and an adequate callus medium contribute to the 

production of desired secondary metabolites in vitro. 
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Chapter IV 

Distribution and Accumulation of 
Thiophenes in Plants and Calli 

of Different Tagetes species 
David H. Ketel 

(J. of Exp. Bot. Vol. 38, pp 0 - 0, February 1987) 

ABSTRACT 

The diversity of thiophenes (natural biocides) and the differences 

between the concentrations of these compounds in the leaves and roots of 

Tagetes erecta L., T_. patula L. cv. Nana furia, and T_. mi nut a L. 

(marigolds) indicated at least the presence of two different sites of 

accumulation: leaves and roots. Leaf explants of Tagetes, however, are used 

by preference to obtain callus cultures. Once subcultured, secondary (C») 

calli of T. patula obtained from leaves of 4 to 7 weeks old plants, 

contained higher amounts of accumulated thiophenes (up to 80% of the 

amounts in the leaves) than original (C ) or twice subcultured calli (C,). 

The concentrations of thiophenes in C 2
 c a l 1 1 o f T. minuta were about half 

those of C. calli, while the concentrations of thiophenes of C. calli 

amounted to 1 to 2% of the leaf values. Most of the C, calli of T. minuta 

did not contain thiophenes at all. Although C. calli of T_. erecta also 

contained considerable amounts of thiophenes, the C„ calli died, most 

likely owing to high levels of accumulated polyphenolic compounds. The 

combination of species effects and the physiological state of plants and 

calli provides adequate information to decide whether Tagetes calli are 

able to produce thiophenes or not. It is concluded that the ability to 

produce thiophenes does not depend on the organ used, but on the genetic 

information present in the species, and on the physiological state of 

plants and calli, particularly their age. 

Keywords: callus, explant selection, Tagetes erecta, Tagetes minuta, 

Tagetes patula, thiophenes. 

Abbreviations: C1, C„, C. = primary, secondary, and tertiary callus, 

respectively; DM = dry matter; HPLC = high performance liquid chromato­

graphy; MS = according to Murashige and Skoog (1962). 
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INTRODUCTION 

The capability of the original explant to accumulate secondary meta­

bolites may not provide clear indications as to the production of the same 

metabolites by in vitro cultures (Speake et al., 1964; Zenk et al., 1977; 

Zieg et al., 1983). This problem was considered with respect to the 

potential production of thiophenes in call! and cell cultures. Thiophenes 

had been characterized as natural nematicides (Gommers, 1981), or as wide-

spectrum biocides (Arnason et al., 1981; Champagne et al., 1984; PhilogSne 

et al., 1985), and frequently occur in the leaves and the roots of 

different Tagetes (marigolds) species (Bohlmann, et al. 1973). 

With respect to the selection of explants to induce the formation of 

callus, roots are less suitable than leaves; in addition, there is evidence 

that the stage of development and the physiological state of intact plants 

also may determine the yield of thiophenes in the different organs and 

calli (Siitfeld, 1982; Norton et al., 1985). These aspects, and the ob­

servation that the selection of the appropriate explants is limited by 

their ability to survive rigid sterilization procedures and to form friable 

and dedifferentiated callus (Yeoman and Macleod, 1977; Ketel et al., 1985), 

prompted research into the relation between the accumulation of thiophenes 

in roots and leaves of different Tagetes species, and thiophene accu­

mulation in callus from these organs. The ultimate aim of the study was to 

select criteria for the choice of explants for thiophene-producing calli. 

MATERIALS AND METHODS 

?ISn£_SSl£iYS£i2n_S2^_call!i8_cSl£!iIe- See<Js of Tagetes erecta L. and T_. 

minuta L. (both wild types) and of T_. pa tula L. cv. Nana furia were 

germinated in the dark and seedlings grown (24 + 1 °C, RH 75 + 5%, 16 h 
-2 

photoperiod at 30 Wm ) in a liquid basal medium (Breteler et al. 1979), 

supplemented with 5 mM Ca(N0,)~. The species were cultivated in succession. 

Thirty leaves from at least 6 plants at a range of times from 2 to 14 

weeks, were used to perform explants. The excised leaves were surface-

sterilized in ethanol (70% v/v) and CaOCl- (5% w/v) and the upper third 

part of each leaf section was individually inserted with the cut base into 
3 

15 cm MS-medium (Murashige and Skoog, 1962) in glass tubes. The MS-medium 
_3 

was supplemented with sucrose (2% w/v), naphthylacetate (0.5 mg.dm ), and 
_3 

benzyladenine (5 mg.dm ), and solidified with Gelrite (0.2% w/v; Costar 

Ltd., Badhoevedorp, The Netherlands). Incubation conditions were 2 4 + 1 C, 
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-2 
RH 75 + 5%, and continuous light (5 Wm )• From 30 primary calli (C.), 

obtained 3 weeks after explantation, 15 calli were harvested and 15 calli 

subcultured on fresh MS-medium during 2 weeks to yield secondary calli 

(C_). Five C„ calli were also harvested and also the remainings subcultured 

on fresh MS-medium during 2 weeks to yield 10 tertiary calli (C-). At each 

subculturing the organoid structures were removed from the calli. 

§§S2iiSS_5S^_£!3£Si£5l_2D§iX5i5* Simultaneously with sampling for explants, 

washed and blotted roots, and leaves of intact plants were weighed, pooled 

and cut coarsely. Accurately weighed samples of up to 20 g, varying from 

ca. 10 to 100% of the total weight of the different organs of the various 

groups of plants, were frozen in liquid nitrogen and freeze-dried (Durar 

Dry FTS, Stone Ridge, NY, USA) during 48 h. In addition, harvested calli 

stripped of organoid structures, were washed with demineralized water, and 

treated as described above. 

Accurately weighed samples (ca 0.1 g) of dried material were dispersed 
3 

into 5 cm hexane (Fisons, Loughborough, UK) and extracted during 12 h at 

2 0 + 3 C in the dark. The crude extracts were quantitatively filtered 

through hexane-washed quartz wool and a 0.22 pi filter, successively. The 

filtrates were evaporated to dryness under a current of N„ and the residues 

dissolved in 2.5 cm hexane. The purified extracts were stored at 4 C in 

the dark and analysed within 2 weeks. All organic solvents used were of 

HPLC-grade. 

HPLC was done by isocratic elution with hexane-dloxane (95 : 5 v/v) at a 

flow of 2.5 cm min (Waters model 6000A pump, 10.3 MPa; Waters 

pporasil-C.0 PIN 27477 column; injection volume 100 yl). The eluate was 
lo 

scanned (190 to 400 nm) on-line with a Hewlett Packard 1040 high speed 

spectrophotometer. The UV-spectra of the extracted compounds were compared 

with those of previously (GC/MS-) identified thiophenes (M.A. Posthuraus and 

D.H. Ketel, unpublished results). Spectra of putative thiophenes were 

compared with spectra of other thiophenes and polyacetylenes (Bohlmann and 

Zdero, 1985). Extinction values were actively recorded in the milliabsor-

bance range, and assumed to be similar for different natural thiophenes 

(Norton et al., 1985). The peak wavelengths of the different spectra (ca 

320-380 nm) were used to quantify the different thiophenes. A standard of 

ce-terthienyl was used as a reference. 

Sampling, extraction and analysis as described here yielded a variation 

in the concentration of individual thiophenes of 2 to 6%. 
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RESULTS 

Plants. Fresh and dry weight increments of the different Tagetes plants 

indicated an exponential phase between 4 and 7 weeks followed by linear 

growth for several weeks (data not shown). The oldest plants of T. erecta 

(10 weeks) and J?, patula (14 weeks) were just flowering, whereas the oldest 

plants of J_. minuta (13 weeks) were still in the vegetative phase at the 

end of the experiment. The first samples were taken at a seedling stage of 

ca 0.5 g. per plant (week 0), the final ones at a plant fresh weight of 50 

to 70 g. During this period the dry matter content of the leaves increased 

from 10 to 15%, that of the roots from 5 to 7%. 

<u 
c 
a. 
o 

1 1 

Roots 

A / 

|W / / \T.er. 

V I i 

i 

y.pat-. /-

Amin. 

• 

4 8 12 

m. plant age (weeks) 

Fig. 1. Total amounts of thiophenes extracted from leaves and roots of 

Tagetes erecta ( ), T_. patula (o), and T̂ . minuta ( ) plants. The absorbance 

values of the individual thiophenes are given in Table 1. See p. 61, 
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The occurrence of thiophenes in the leaves and roots was found to vary 

drastically between the different Tagetes species. Also some thiophenes 

appeared only incidentally (Table 1). As presented in Figure 1, the total 

amount of thiophenes in the leaves and in the roots varied considerably and 

inconsistently. Table 1 further shows that a number of thiophenes only 

occurs in the leaves or in the roots. In general, the diversity and the 

content of thiophenes were highest in the leaves of T. minuta and lowest in 

the leaves of T_. erecta. Young plants of T_. erecta mainly contained thio­

phenes in the leaves, whereas in older plants the thiophenes mainly 

accumulated in the roots. In the roots the diversity and the content of 

thiophenes were highest in T\ patula, whereas for the leaves this was the 

case with T_. minuta. 

Callus. Because roots turned out to be unsuitable for callus growth, their 

analysis had to be abandoned and in the further study only leaf explants 

were used. Primary leaves of 1 and 1 and 2 weeks old seedlings of T. patula 

and T̂ . minuta, respectively, did not survive the sterilization procedure. 

Most of the explants of 4 weeks old plants of T. patula were lost owing to 

microbial contamination. The remaining C. call! were only used to grown C. 

and C, calli; therefore, C, and C„ call! of T. patula were not available to 

perform analysis of thiophenes. After three weeks incubation of the ex-

plants, most of the C, calli of T. erecta showed organoid structures, main­

ly roots. The C. calli of J_. patula were cauliflower-like, green-yellowish 

and friable, whereas the dark-green C. calli of T. minuta were firm and 

only a few of them showed some small, shoot-like organs. A few days after 

the C. calli of T. erecta were subcultured, the C„ calli turned dark-brown 

and stopped growth. C» calli of T. patula and T. minuta maintained their 

typical Cx structure. 

The results of the analyses of thiophenes in the different calli, 

presented in Table 2, show that only two different thiophenes occurred in 

the C calli of J_. erecta. However, their thiophene content in general 

surpassed that of the CL calli of the other Tagetes species examined. 

C. and C, calli of T_. patula maintained relatively high concentrations 

of thiophenes if compared with C. and C, calli of T. minuta. Moreover, in 

general, the concentrations of the thiophenes in C_ and C- calli of T. 

patula were higher than those in the C. calli. 
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Only one or two different thiophenes occurred frequently in the C, and 

C2 calli of J_. minuta. Conspicuously, compounds B and B, in T% mi nut a calli 

did not occur in leaves and roots of the original plants. The HPLC 

retention time and UV-spectra of both substances clearly matched with those 

of leaf and root thiophenes of Jj^ erecta. 

Table 3 shows that the concentration of the thiophenes in the C- and C, 

calli of T. patula was high with respect to the concentration of these 

compounds in the leaves, especially when the age of the original plants 

amounted to 3 to 7 weeks, when the plants were in their phase of 

exponential growth, and the thiophene production in the plants was low 

(Figure 1). In contrast, the concentration of the thiophenes in the C 

calli of T* minuta was generally lower than that in the C. calli, while 

only two different thiophenes with low absorbance values were detected in 

the C, calli, which were obtained from the oldest plants. 

DISCUSSION 

The results, presented in Table 1, indicate the presence of at least two 

different sites of thiophene accumulation in plants of Tagetes species with 

a normal pattern of development. The differences of the thiophene pattern 

between leaves and roots of young and older plants, and the variation of 

the thiophene concentrations suggest that the accumulation of individual 

and total thiophenes are not related in the two organs. This may be due to 

a restriction of the transport of the non-polar thiophenes via the aqueous 

phloem and xylem flows. Apparently, roots and leaves have their own 

thiophene biosynthesis. The roots turned out not to be able to produce 

suitable calli in our medium. They might be useful sources for callus 

growth in other media, but this was not tested by us. 

Moreover, comparison of the tables 1 and 2 shows that the thiophene 

pattern in callus from leaves is not an exact copy of the thiophene pattern 

in these leaves, but expresses the potency of the whole thiophene-related 

part of the genome of the entire plant (see also Ketel, 1986). This ex­

pression coincides with a lower state of functional and anatomical dif­

ferentiation of callus (Aitchison et al. 1977) and explains the occurrence 

of compounds which are not typically accumulated in the original organs 

(Mulder-Krieger et al. 1982). Therefore, in Tagetes the nature of the 

origin of the organ from which the explants are derived is not a criterion 

for the production of the thiophenes in the callus. 
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T. erecta 

Plant age thlophene concentration in callus 
(weeks) thlophene concentration in leaves (%) 

9 

17 

3 

10 53 

T. patula 

T. minuta 

2 

3 

4 

5 

7 

9 

12 

14 

3 

4 

5 

7 

8 

10 

13 

16 

7 

-
10 

2 

1 

1 

2 

1 

1 

1 

2 

2 

2 

3 

0 

8 

-
76 

9 

1 

3 

0 

0 

1 

1 

3 

1 

1 

1 

9 

17 

32 

22 

8 

10 

2 

0 

0 

0 

0 

0 

0 

0 

0 

Table 3. Thlophene concentrations in primary (C., secondary (C-). and 

tertiary (C-) calli of Tagetes erecta L., Tagetes patula L. and Tagetes 

minuta L. as percentages of the total thlophene content in the original 

leaves. Leaf explants were taken from different Tagetes plants which were 

grown 14 (T. patula and T_. minuta) and 10 weeks (T. erecta) on basal medium 

(Breteler et al., 1979) with 5 mM Ca(N0_)2).See p. 66. 
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The pattern of levels of secondary metabolites, in particular thio-

phenes, in plants (Figure 1) most likely reflects unpredictable periods of 

variable activity in the synthesis and breakdown of these substances 

(Schulte et al. 1968, Wiermann 1981, Sutfeld 1982). However, no reflection 

of the resulting fluctuations of thiophene contents were recovered in the 

C, calli. The sum of the concentrations of the thiophenes in the C. calli 

of J_. minuta amounted to 1 to 3% of the sum of the concentrations of the 

thiophenes in the leaves (Table 3). In addition, the gradual decrease of 

thiophenes in the C_ and C- calli of T. minuta agrees with the general 

pattern of the occurrence of secondary metabolites in calli and cell sus­

pensions of dicotyledonous plants (Lindsey and Yeoman, 1985). In the C. 

calli of T. patula the sum of the concentrations of the thiophenes de­

creased from 16 to 1% of the leaf values with respect to the age of the 

plants. Whereas leaves of T_. erecta did not contain thiophenes after four 

weeks of culture, the calli from the older leaves continued to produce 

thiophenes. In conclusion, there is no relationship between the thiophene 

production of calli and that of the original organ of which explants were 

obtained. 

Nevertheless, the leaf, as the most suitable organ for callus formation, 

offers good prospects for metabolite production. 

The second conclusion, drawn form Table 3, is that the potency of callus 

to synthesize thiophenes depends on the species (see also Ketel et al., 

1985), as well as on the physiological state of the original plants, parti­

cularly their age. This includes that, in general, an accurate analysis of 

secondary metabolites in different callus generations will be necessary to 

select plant species and explants as suitable candidates for the production 

of desired compounds with a cell culture system. On the basis of the pre­

sent results, a cell culture from ca 5-weeks old T. patula plants appears 

to be a good material for thiophene production. 
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Chapter V 

Effects of Immobilization and 
Environmental Stress on Growth and 

Production of Non-polar Metabolites of 
Tagetes minuta Cells 

David H. Ketel, Anne C. Hulst, Harry Gruppen, Hans Breteler and Johannes Tramper 
NOVAPLANT cell biotechnology group 

(Enzyme and Microbial Technology. Vol. XX. pp 0 - 0, 1987) 

ABSTRACT 

Tagetes minuta (marigold) cells were entrapped under 

sterile conditions in agarose, K-carrageenan, agar and 

alginate. The effects of different supports on the growth 

rate of the entrapped cells during incubation for one 

week under standard conditions [i] were studied. In the 

second part (week 2 and 3) of the experiment the effects 

of low temperature (10°C) III], intermittent N2 gassing 

[ill], and omission of carbohydrates from the medium [iv] 

- superimposed on that of entrapment - on growth rate and 

the production of non-polar secondary metabolites were 

investigated. Compared to free cells, the impact of 

agarose on growth during the first week was nil, while 

the inhibition of growth increased in the order K-

carrageenan, agar, alginate, probably as a result of 

increasing rigidity of the support. 

In the second period the plant cells clearly had 

reached the stationary phase of the growth cycle in all 

cases. Again the pattern of growth on agarose closely 

followed that of free cells, i.e. small increase in case 

I and III, and a small decrease under the other two con­

ditions. Low temperature [il] had the greatest effect on 
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cell growth and cell release, probably as a result on gel 

structure at this temperature. Similar to the effects on 

growth, the impact on secondary metabolite production was 

most pronounced in the case of alginate combined with low 

temperature. Both the omission of carbohydrates, and N 2 

gassing resulted in low concentrations of non-polar com­

pounds in the media. The major trend observed was shift 

away from mainly intracellular compounds in the case of 

free cells to mainly extracellular compounds in the case 

of entrapped cells at 10°C. 

Keywords: agar, agarose, alginate, K-carrageenan, entrap­

ment, environmental conditions, immobilization, plant 

cell suspension, secondary metabolites, Taqetes minuta. 

INTRODUCTION 

Tagetes species (marigolds) contain a wide variety of 

organic compounds, including aromatics, for which the 

plants were already used as a source in the 1 6 t n century 

by the Mayas . Other secondary metabolites, e.g. natural 
2 

biocides, such as thiophenes , also render cell suspen­
sions of this genus potentially attractive for biotech-
nologlcal production purposes. However, cell suspensions 

3 
of Taqetes minuta grown on MS-medium , do not produce 

4 
detectable concentrations of non-polar thiophenes. This 

negative result may be due to the low extent of cytologi-
5 

cal differentiation and/or the high growth rate of 
6 

suspended T.minuta cells. Stress conditions, that affect 

the growth rate of the cells, have been reported to sti-
7 

mulate the synthesis of secondary metabolites. 

Therefore we examined the influence of stress conditions, 

in particular immobilization, on growth and synthesis of 

non-polar secondary metabolites in cells of T.minuta. 

Systematic studies with plant cells immobilized in solid 
7,8 

supports are scarce and no data on the immobilization 
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of cells from Taqetes or other biocide-containing species 

are available. In this report the results of the effects 

of stress, induced by entrapment in different supports 

(alginate, K-carrageenan, agarose and agar) and environ­

mental conditions (10°C, periodical N 2 gassing and the 

omission of carbohydrates from the medium), and interac­

tions thereof on T.minuta cells are presented. 

MATERIALS AND METHODS 

Cell suspensions 

A stock cell suspension of Taqetes minuta L. was grown 

for almost two years in our laboratory through regular 
3 _o 

subculturing on MS-medium (4.72 g dm ° ) , supplemented 

with myo-inositol (0.1 g d m - 3 ) , sucrose (20 g d m - 3 ) , N-

benzyladenine (5 mg d m - 3 ) , naphthylacetate (0.5 mg dm- 3) 

and polyvinylpyrrolidone (MW 40,000; 1 g d m - 3 ) . The pH of 

the medium was brought to 5.8 with KOH solution before 

autoclaving (20 min, 120°C). The stock cell suspension 

was cultivated in a 1 dm3 Erlenmeyer flask, containing 

500 cm3 medium, and subcultured at 2-weekly intervals. 

The flask was shaken continuously (Gallenkamp Orbital 

Shaker, 120 rpm, amplitude 2.5 cm) at 24 + 1 °C, in con­

tinuous light (5 W m - 2 ) , at a relative humidity of 75±5 

%. "Standard conditions" in the text refer to these con­

ditions. Preparation of suspensible callus from leaves 
9 

has been described in an earlier paper. 

Immobilization procedures 

All manipulations with plant cells were performed under 

axenic conditions. Prior to entrapment, the cell suspen­

sion was sieved (grid diameters 5.0, 2.8 and 1.4 mm) 

using an NaCl solution (9 g d m - 3 ) . Only the fraction 

smaller than 1.4 mm was used. 
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A sodium alginate solution (type Kelmar, Kelco 

Division of Merck, USA; 36 g dm - 3 ), autoclaved at 115°C 

for 20 minutes, was mixed with the cell suspension to a 

final alginate concentration of 24 g dm-3. The mixture 

was extruded dropwise into a stirred 0.2 M CaCl2 solu­

tion. The beads were left for 2 h in the aerated CaCl2 

solution before transfer to fresh MS-medium. The same 

procedure was used with a solution of sodium-K-carra-

geenan (Genugel X-0828, Copenhagen Pectin Factory, 

Denmark; 30 g dm - 3 ), autoclaved at 121°C for 20 minutes, 

whereby the final K-carrageenan concentration, after 

mixing with the cells, was 20 g dm-3. These beads were 

hardened in a 0.2 M KC1 solution. For entrapment in agar 

(Difco Laboratories, Detroit, USA) and in agarose (type 

VII, Sigma, St. Louis, USA), solutions containing 75 

g dm-3 of each of these supports were autoclaved at 

121°C for 20 minutes. Solutions were mixed with the cells 

at 44°C and 33°C, respectively, until final support con­

centrations of 50 g dm-3 w e r e obtained. Agar and agarose, 

were extruded dropwise into a continuously shaken flask 

which contained refined and cooled (5°C) soy oil. The 

beads were separated from the oil and washed with an NaCl 

solution (9 g dm-3) before transfer to MS-medium. The 

fresh weight of the cells with respect to fresh weight of 

the beads of the different supports varied between 14 an 

27%. 

Other experimental procedures 

After one week of storage in a 1 dm3 flask (containing 

500 cm3 medium) under standard conditions, entrapped and 

free cells, and cell-free beads were divided over eighty 

250 cm3 flasks, each containing 45 cm3 of fresh MS-medium 

and an accurately weighed amount of beads (10-15 g) or 

free cells (4-5 g fresh weight). From the remaining 

cultures samples were taken to determine fresh and dry 

weight. The flasks were divided over twenty treatments of 

4 flasks each, and kept for 2 weeks under standard con-
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ditions, 10°C, 6 h of N2 gassing per day, and no car­

bohydrates. One flask of each treatment was retained as a 

spare in case of microbial contamination. The experiment 

was finished 2 weeks after the cells and the beads were 

exposed to the different environmental conditions. At 

that moment the beads, the free cells or, in the case of 

cell release, a mixture of beads and released cells were 

separated from the media by filtration, and washed with 

demineralized water. Beads were separated from released 

cells by sieving. Fresh and dry weight (freeze-drying for 

48 h) were determined so that the dry weight increment of 

the cells in the beads could be calculated. 

The loading factor (volume of cells/total bead volume) 

was determined after 0, 1, and 3 weeks. The difference in 

weight between loaded and non-loaded beads yielded the 

cell fresh weight, and on the assumption that the speci­

fic density of fresh cells is 1 g cm-3, the cell volume 

was calculated. In addition, the mean diameters of the 

beads were measured and used to calculate the total bead 

volume. 

Analytical procedures 

Filtered media were shaken for 12 h at 20±3°C in the dark 

with double the volume of hexane (HPLC-grade, Fisons, 

Loughborough, UK). Samples (100 mg) from the various 

dried and ground cells and beads were extracted with ali-

quots of 2.5 cm3 hexane, and the crude extracts were 

filtered through hexane-washed quartz wool. The filtered 

hexane extracts of cells, beads, and media were eva­

porated to dryness under a flow of N2 gas and the resi­

dues were dissolved in 1 cm3 of hexane. 

HPLC was performed by isocratic elution with 

hexane :dioxane (95:5, v/v) at a flow of 1.5 cm3 min-1 

(Waters Model 6000A pump, 10.3 MPa, Serva Silica column 
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42360, Heidelberg, FRG). The injection volume was 0.1 

cm3. The eluate was scanned (215-400 nm) on-line with a 

Hewlett Packard 1040A high-speed spectrophotometer. The 

signal wavelengths of the detector were routinely set at 

225, 270 and 350 nm, so that essentially all non-polar 

compounds that were present in the extracts could be 

detected simultaneously. Eluted peaks were classified on 

the basis of their UV-spectra and retention times. If a 

peak with a characteristic spectrum occurred at least 

twice in the three replicates of similarly treated 

material, and the light absorbance was ten times higher 

than that of the background (cell-free control beads), 

the signal in question was listed as a compound. 

RESULTS AND DISCUSSION 

The process of entrapment 

Entrapment of the cells took about 3 h for each support 

to yield 350 g of homogeneous beads. The beads had an 

initial diameter of 2.8 mm and a fresh weight of about 11 

mg. The dry weight of cells in the loaded beads was in 

the range 0.1 mg (in agar) to 0.2 mg (in K-carrageenan) 

per bead at the start of the experiment. Under the axenic 

conditions employed for the preparation of beads no 

infection occurred during the first week of the experi­

ment and from the 80 subcultures used in the second and 

third week, only 5 had to be discarded because of micro­

bial infection. 

Growth 

During the first week of incubation dry weight of the 

free cells increased 15-fold (Table 1 ) , corresponding 

with an average doubling time of 1.8 days. Entrapment in 

agarose did not affect the dry weight increment of the 

cells. Entrapment in the other supports inhibited cell 

growth and the dry weight increment decreased in the 
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Table 1 Dry weight increment (DW) of cells of Taget«s minuta and loading factor (*100, IF = volume of cells/total bead volume) of the 
calls and beads of different supports at the start, after 1 week and after 3 weeks under different conditions as given in the Table. DW at 
week 1 is given relative to that at f = 0, and DW ± standard deviation (n =* 3) at week 3 is given relative to that at week 1. LF is given in 
absolute values. In treatments with entrapped cells DW data refer to entrapped cells only. Released cells were discarded 

Free cells 
Agarose 

K-Carrageenan 

Agar 

Alginate 

DW 
DW 
LF 
DW 
LF 
DW 
LF 
DW 
LF 

0 

1.0 
1.0 

16 
1.0 

20 
1.0 

14 
1.0 

27 

1 

Standard 

1 5 . 0 * 2 . 0 
15.0 
74 

9.2 
68 

5.4 
48 

2.3 
46 

Incubation time (weeks) 

Standard 

2.0 ±0 .3 
1.7 ± 0 . 4 

79 
0.6 ± 0 . 0 * 

57 
0.7 ± 0 . 0 

41 
0.9 ± 0.1 

43 

3 
Environmental conditions 

10-C 

0.7 ±0 .3 
0.6 ± 0 . 1 * 

55 
1.5 ±0 .1 

70 
0.8 ±0 .1 

32 
1.5 ±0 .1 

46 

N 2 gas 

2.7 ±0 .3 
1.3 ±0 .1 

79 
0.8 ± 0 . 1 * 

67 
0.3 ±0.1 

20 
0.8 ±0 .1 

41 

No carbohydrates 

0.8 ± 0 . 2 
0.5 ±0 .1 

68 
0.6 ± 0.0* 

68 
0.4 ± 0.0 

37 
0.4 ± 0.0 

35 

Considerable amounts of cells were released from the beads. The weight of released cells was not taken into account for the calculation 
presented here (see Results and discussion) 

order K-carrageenan, agar, alginate. The increment of the 

loading factor of the beads decreased in the same order, 

but not proportionally as result of increasing bead 

diameters. The ratio between the increase of the loading 

factor and the increase of the dry weight was highest in 

alginate and lowest in agarose (Figure 1), indicating 
10 

that the rigidity of the alginate is highest. This 

rigidity of alginate may very well result in a certain 

strain on the plant cells leading to the stimulation and 

excretion of secondary metabolites, a phenomenon espe­

cially observed with alginate-entrapped plant cells, e.g. 

L-DOPA by cells of Mucuna pruriens. It seems unlikely 

that the diffusion limitation of oxygen is a factor that 

caused the difference in increment of the dry weight of 

cells in the different supports, as it has been 

reported . It is likely that transport of oxygen in all 

the supports that we examined is of comparable magnitude. 

Recent experiments with T.patula cell aggregates of 

various sizes also point to another diffusional limita­

tion than that of oxygen, in the production of thiophe-

nes. 

In the second experimental phase (weeks 2 and 3) the 

cell growth rate was much lower than in the first phase. 

In free cells the dry matter increment during weeks 2 and 

3 varied between 0.7 and 2.7 (Table 1 ) , on the average 

corresponding with a doubling time of 18 days. As 
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expected, these cells had reached their stationary growth 

phase. This was also the case for the entrapped plant 

cells which mostly showed a decreased rate of increase in 

dry cell weight. Accordingly, in most treatments the 

*° 3 

" 

AI gi n o t e / 

, - / "K - tomigeenan 

Agarose 

' 

-

DMw,/DMw0 

Figure 1. Relationship between the relative increase of 

dry matter (DMwl/DMw0) of cells of Tagetes 

minuta and of the loading factor (LFwl/LFw0) of 

beads with these cells during the first week of 

the experiment. The cells were entrapped in 

different supports as indicated in the figure. 

Suffixes wl and wO refer to the values measured 

after 1 week, and at the beginning of the 

experiment, respectively. The line of best fit 

was calculated with a second degree polynome. 

cells turned yellowish at the end of the experiment, 

indicating chlorophyll breakdown and cell aging, the ini­

tial cell suspension being dark green. 

During weeks 2 and 3, "growth" in agarose most closely 

followed that of the free cells for all 4 conditions. 

Cell release from this support was observed at 10°C. For 

K-carrageenan, on the other hand, only at 10°C was no 

cell release observed. Also with respect to growth the 

treatment at 10°C had the greatest impact. At 10°C growth 

was only observed in cells entrapped in alginate and K-
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carrageenan. This all indicates a different gel structure 

at 10°C, which can be expected with these types of gels. 

In the treatments indicated with an asterisk in Table 

1, cells were released from the beads, and survived as 

single cells and small cell aggregates. This has been 

13 

used by Morris and Fowler to produce fine cell suspen­

sions, and invalidates an absolute comparison of cell 

growth rates between all treatments. The fresh weight of 

cells released from agarose beads at 10°C was 2.1 times 

that of the entrapped cells after 3 weeks. This ratio was 

3.8, 2.0, and 1.5 in K-carrageenan under standard con­

ditions, N2 gassing and omission of carbohydates, 

respectively (data not shown). 

Secondary metabolites 

At the end of the experiment cells grew slowly, if at 

all. Accumulation of secondary metabolites, which has 

been postulated to occur especially during the last part 
14 

of the growth cylcle, thus could be studied with little 

interference of differences in cell growth. At the end of 

the experiment, cells and media were analyzed for non-

-polar compounds. Twenty-two presumptive compounds with a 

retention time varying between 1.6 and 13.8 minutes, and 

absorption peaks between 215 and 400 nm were consistently 

found in cells and media (data not shown). Compounds 

released into the medium were more polar (high retention 

time) than intracellular compounds (low retention time). 

Cells entrapped in agarose, agar and alginate contained 

no compounds with a high polarity (retention time 

exceeding 5 min). None of the compounds showed a 
6, 15 

UV-spectrum corresponding with that of thiophenes. 

When the number of non-polar compounds in entrapped 

cells is compared with that in free cells, it is clear 

that a shift occurs from intracellular compounds in case 

of free cells, to extracellular compounds for the 
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entrapped cells (Table 2). In agreement with the findings 

for growth, entrapment in agarose has the least impact on 

the number of compounds released into the medium. On the 

average, the concentration of non-polar compounds in the 

medium increases in the order of K-carrageenan, agar, 

alginate. The stimulation of the number and the con­

centration of non-polar compounds in the medium by algi­

nate entrapment may be related to the rigidity of this 

support, which has been suggested to stimulate the accu­

mulation of other secondary metabolites as well . When 

the effect of different conditions is considered, the 

10°C treatment caused the most pronounced increase of the 

number and concentration of the non-polar compounds in 

the medium. Not mentioned in Table 2 are the following 

more specific details. Entrapment in K-carrageenan and 

alginate led to the accumulation of a cellular compound 

that was not detected in free cells. In addition, entrap­

ment led to at least 3 (in agarose) and at most 7 (in 

alginate) compounds in the medium that did not occur in 

the medium of free cells. Free cells produced a lower 

total (cells + medium) concentration of non-polar com­

pounds than entrapped cells, when both were grown at 

10°C. In a medium without carbohydrates the total con­

tent of non-polar compounds was low to zero, except for 

entrapment in alginate. The concentration of non-polar 

compounds was also low in the N2~gassed media. The simi­

larity in the effect of N2 gassing and omission of car­

bohydrates on the concentration of non-polar compounds in 

the medium suggests a relation between cell respiration 

and the release of non-polar metabolites to the medium. 

The content of non-polar compounds in the medium was 

drastically increased by entrapment. The total content of 

non-polar compounds in the medium was highest in alginate 

entrapment at 10°C. In this treatment and in K-carra­

geenan at 10"C the highest number of non-polar compounds 

was found in the medium. 
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Table 2 Number and concentration of non-polar compounds in cells and media of free and entrapped cells of Tagetes minuta under 
conditions indicated in the table at the end of the experiment (3 weeks after entrapment). The total concentration of the compounds is 
tentatively given in absorbance units (at peak wave lengths) per g dry cell mass or per dm 3 medium 

Agarose 

K-Carrageenan 

Agar 

Alginate 

A* 
B 
C 
0 

A 
8 
C 
D 

A 
B 
C 
0 

A 
B 
C 
D 

A 
B 
C 
0 

Cells 

7 
6 

10 
8 

3 
6 
5 
5 

7 
6 
5 
7 

4 
5 
4 
5 

4 
4 
3 
4 

Number of 
non-polar compounds 

Medium 

1 
2 
0 
0 

2 
3 
0 
0 

1 
6 
1 
0 

1 
3 
1 
1 

4 
6 
4 
2 

Cells 

8 
177 

9 
95 

513 
62 
17 
93 

2562 
23 
68 
76 

373 
42 

388 
1220 

167 
16 
15 
24 

Concentration of 
non-polar compounds 

Medium 

2 
3 
0 
0 

10 
396 

0 
0 

3 
356 

47 
0 

2 
643 

7 
1 

22 
713 

23 
29 

* A, B, C and 0 refer to the standard conditions, low temperature (10°C), N 2 gassing and the omission of carbohydrates in the medium, 
respectively 

CONCLUSION 

Evidence from the literature supports the hypothesis that 

a negative relationship exists between the growth rate of 

cell suspensions and the production of secondary 
, ,. 6,16,17 

metabolites. Combining the data on growth and on 

secondary metabolites presented here, it is clear that in 

T.minuta cells not all compounds are affected to the same 

degree or in the same direction by the retardation of 

growth. Obviously none of the conditions used in the 

described experiments could replace the natural stimuli 

for cytological and biochemical differentiation of 

T.minuta cells, which result in the synthesis of 

thiophene-biocides. Further systematic investigations on 

the effect of entrapment and environmental conditions are 

needed for a specific stimulation of synthesis and/or 

release of these compounds. 

Recent experiments with another Tagetes species 
18 

(T.patula ) showed that natural cell immobilization due 
19 

to aggregation may be an alternative for artificial 

entrapments. 
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Chapter VI 

Accumulation of Thiophenes in Tissues 
of Tagetes species 

Genetically Transformed with 
Agrobacterium species 

David H. Ketel and Mark Gibbels 

SUMMARY 

Agrobacterium tumefaciens en A. rhizogenes strains (wild-type and mutant 

strains with respect to the biosynthesis of auxin and cytokinin) were used 

to inoculate the stem of in vitro grown axenic plants of Tagetes erecta, T. 

patula and T_. minuta to study the accumulation of thiophenes in neoplastic 

tissues. Untransformed cells of primary and secondary explants of axenic 

stems, grown on MS-medium with and without appropriate amounts of exo-

genously supplied growth regulators were used as controls. In addition, a 

plasmidless strain of A. tumefaciens was used as a control. 

The formation of crown galls and tumours with or without rhizoid 

differentiations ('roots') was in agreement with general differentiation 

patterns of calli of these plants, but also implied contrasts with respect 

to the growth of neoplastic tissues on the stem of other dicotyledonous 

plants. Although oncogenes clearly stimulated the growth of tumours and 

roots, no nopaline or octopine dehydrogenase activity could be detected in 

such tissues. 

Thiophene-biocides accumulated mainly in 'roots', indicating that the 

coherence between morphogenesis and secondary metabolism also occurred in 

transformed tissues. After one passage the thiophene content in 'roots' 

showed a greater decrease than that in tumours or calli. This trend was 

pronounced significantly in tissues infected with wild-type A. tumefaciens. 

In this material the thiophene concentration was higher in unorganized 

tissues than in organized tissues. Our results show that genetic trans­

formation opens perspectives to study growth and morphogenesis of un­

organized tissues with an intact mechanism to synthesize thiophenes, and 

may be used to obtain 'root' cultures in vitro with a high degree of 

stability. 
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INTRODUCTION 

The occurrence of thiophene-biocides in different calli of Tagetes erecta, 

T. patula, and J_. minuta (Marigolds) makes the use of phylogenetically 

related tissues attractive to study the production of secondary metabolites 

in solid and liquid culture systems. Under standard conditions (MS-medium 

supplemented with appropriate amounts of growth regulators; Ketel et al., 

1985) calli of T. erecta show a strong potency to differentiate, in con­

trast to calli of T. patula and T. minuta. On the one hand, the observed 

difference can be used to study the relation between tissue morphogenesis 

and the biosynthesis of thiophenes in calli, but, on the other hand, from 

the calli of T_. erecta it is difficult to initiate a liquid culture system. 

Friable and undifferentiated tissues of T\ erecta can be obtained from 

crown galls appearing after infection of intact plants with Agrobacteria 

(Riker and Hildebrandt, 1951). Therefore, genetic transformation with this 

type of bacteria may yield tissues of T. erecta suitable for liquid 

cultures. Although unorganized tissues often do not accumulate secondary 

metabolites (Yeoman et al., 1979; Ketel, 1986 ), the capacity for secondary 

metabolism, particularly the biosynthesis of thiophenes, is still present 

in tumours of J_. patula (Norton et al., 1985). This contrast prompted us to 

investigate: (1) the interaction of Agrobacteria with Tagetes species; (2) 

the effect of genetic transformation on the occurrence and accumulation of 

different thiophenes in neoplastic tissues. 

Key words: Agrobacterium rhizogenes, Agrobacterium tumefaciens, calli, 

crown galls, differentiation, DNA-transformation, growth regulators, stem 

explants, Tagetes erecta, Tagetes minuta, Tagetes patula, thiophenes, 

tumours. 

Abbreviations: BA: benzyladenine; DM: dry matter; MS-medium: according to 

Murashige and Skoog (1962); NAA: naphthylacetic acid. 
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MATERIALS AND METHODS 

Culture of axenic plants. 

Axenic plants were cultured from sterilized seeds of Tagetes erecta L. cv 

Rose d'Inde (purchased from Wouda Co., Steenwijk, The Netherlands) and 

Tagetes patula L. cv nana furia (purchased from Tubergen Co., Lisse, The 

Netherlands) of which the corolla was removed, and from sterilized seeds of 

Tagetes minuta L. (wild type, and originally provided by the botanic garden 

of the University of Nijmegen, The Netherlands). The seeds were sterilized 

with ethanol (70% v/v; ca 30 sec) and CaOCl. (1% w/v; ca 30 min) and sub­

sequently washed with sterile demineralized water for 10, 20 and 30 min. 

Only sunken seeds were used, and four plants per tube (16 x 0 2.5 cm, 15 
3 

cm MS-medium) were grown. The MS-medium was supplemented with sucrose (2% 

w/v), and Gelrite (0.2% w/v; Costar Ltd., Badhoevedorp, The Netherlands), 

and autoclaved for 20 min at 120 C (pH adjusted to 5.9 with K0H prior to 

autoclaving). During germination the seeds were kept in the dark for 5 days 

at 24 + 1 °C. The seedlings were grown at 24 + 1 °C, 80 + 5% RH, and a 16 h 
-2 

photoperiod (10 Wm ) for 4 weeks. At that time the thickness of the stem 

of the plants allowed pricking with a needle without severe damage. In 

order to avoid root damage, pricking with needles was performed while the 

plants remained in situ in the tubes. Sixteen plants of each Tagetes 

species were used per treatment. The treated plants were kept for 8 days 

under the same conditions as before. 

In the text the terms 'root', crown gall, tumour and callus are used to 

indicate a transformed tissue with a rhizoid structure, a transformed 

tissue with an undifferentiated neoplastic structure on the stem of an 

intact plant, a transformed tissue with an undifferentiated neoplastic 

structure grown on MS-medium, and an untransformed undifferentiated tissue 

also grown on MS-medium, respectively. 

Bacterial strains. 

Plants were infected with wild-type and mutant strains of Agrobacterium 

species listed in Table 1. Plants treated with the avirulent strain of A. 

tumefaciens LBA 288, and axenic plants were used to control bacterial 

virulence and genetic transformation, respectively. 
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Strain Plasmid Opine Neoplastic tissue 

A. tumefaciens: 

LBA 288 

LBA 4001 

LBA 4060 

LBA 8370 

A. rhizogenes: 

LBA 9402 

plasmidless 

pTi Ach5 

pTi AL108 

pTi T37 

octopine 

octopine 

nopaline 

mannopine 

crown gall, rough 

crown gall + shoots 

crown gall + teratomata 

hairy roots 

Table 1. Characteristics of wild-type and mutated Agrobacterium strains 

(Hooykaas, 1979) and morphology of tumours on Kalanchoe daigremontiana. The 

selected strains were used to examine the production of thiophenes in 

genetically transformed tissues obtained from infected plants of different 

Tagetes species. 

The culture of explants. 

Smooth stems and stems with calli and neoplastic structures as 'roots' or 

crown galls at the infection site were cut in 3 to 4 cm segments, con­

taining the infection sites. The explants of each tube were transferred to 
3 

one petri-dish (0 9.4 x 1.6 cm), which contained 25 cm solid MS-medium. 

All explants with bacterial infection were transferred to MS-medium, sup-
_3 

plemented with sucrose, Gelrite, and carbenicillin (0.1 mg cm : Sigma, St. 

Louis, U.S.A.). Axenic explants were divided into 2 similar groups and were 
-3 -3 

transferred to MS-medium supplemented with 0.5 mg.dm NAA and 5 mg.dm 

BA, or to MS-medium without exogenous growth regulators. Before transfer 

the control explants were incised over their total length to improve the 

condition for a wound reaction. 

The explants were cultivated during 3 weeks under the same condition as 

before (phase I). Before transfer to MS-medium all the neoplastic struc­

tures, and half of each tumour were removed from the plants. Where only 

clusters of roots had appeared at the infection site, the remainders of the 

stems were removed and the root masses were cut into two approximately 

equal parts. To obtain two approximately equal parts of the tumours and 

'roots' the attached parts of the stem were removed and a transversal cut 

was made through the gall tissue. One part of the tumours and 'root' masses 

was used for analysis and the other part was subcultured during 2 weeks 

(phase II) under similar conditions as in phase I. To compare the amounts 
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of neoplastic tissues and calli in phase I and II (Table 3) the fresh 

weights of the different tissues obtained in phase II were multiplied by 2. 

All treatments with plants and explants were executed with sterilized tools 

and under sterile conditions. 

Sampling and analysis. 

At the end of phase I and phase II the harvested 'roots' and tumours were 

washed with demineralized water, and blotted. After these treatments the 

fresh weight of the different tissues per explant was determined. Per 

treatment small samples of the different tissues from each explant were 

pooled, weighed and dried (80 C, 48 h) to determine the DM content. The 

remaining parts of the tissues were also weighed, frozen with liquid 
3 

nitrogen and minced. Thiophenes were extracted with acetone (ca 5 cm per g 

fresh weight) in the dark during 24 h at 20 + 3 C in continuously shaken 

vials. After extraction, the acetone phase was quantitatively decanted, 

filtered through hexane-washed quartz wool, and evaporated with a current 
3 3 

of N_ up to a final volume of approximately 0.5 cm . Hexane (5 cm , HPLC 

grade) was added to the residues and the biphasic solutions were shaken 

again during 1 h. Subsequently, the non-polar (hexane) and polar (aqueous 

acetone) phases of the solutions were separated with a pipette and the 

hexane fractions (which contained the thiophenes) were filtered quantita­

tively through a 0.22 m filter. The filtrates were evaporated to dryness 
3 

under N„ gas, and the residues were dissolved in 0.25 cm hexane. 

Thiophenes were separated and characterized with HPLC (injection volume of 
3 

the samples 0.1 cm ) in association with a diode array detector (200 - 400 

nm) as described by Ketel (1986 ). The concentrations of the different 

thiophenes were calculated in terms of absorbance-units per g DM at the 

peak-wavelengths between 320 - 380 nm. 

Sampling, extraction, and analysis of thiophenes yielded a variation 

between 2 and 6%. 

Octopine and nopaline in roots and calli were determined according to the 

method described by Otten and Schilperoort (1978). 
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RESULTS 

Growth of plants and explants. 

Responses to infection on the intact plants were different for the three 

Tagetes species. Plants of T. minuta and T_. pa tula showed a higher 

frequency of response at the site of infection than plants of T_. erecta 

(Table 2 ) . Apparently, similar effects occurred when the different Tagetes 

Strains of 

Agrobacterium 

Control 

LBA 288 

LBA 4001 

LBA 4060 

LBA 8370 

LBA 9402 

T. 

a 

12 

12 

12 

12 

12 

12 

erecta 

b 

0 

3 

7 

6 

0 

7 

c 

-

r* 

Plant 

cg+r 

r 

-

r 

speci 

T. 

a 

16 

16 

15 

14 

13 

14 

es: 

minuta 

b 

0 

0 

12 

11 

9 

11 

c 

-

-

eg 

eg 

eg 

r 

T. 

a 

12 

9 

12 

• 

• 

• 

patula 

b 

0 

0 

10 

• 

• 

• 

c 

-

-

eg 

• 

• 

• 

Table 2. Number (b), and type (c) of neoplastic tissues formed on the site 

of infection of a number of plants (a) of different Tagetes species and 

caused by wild type and mutant strains of Agrobacterium tumefaciens and A. 

rhizogenes. Parent plants were cultured from sterilized seeds and kept 

under axenic conditions for 4 weeks. The neoplastic tissues formed were 

crown galls (eg), roots (r), or roots with a terminal swelling (r*). The 

points (.) in the table refer to not executed treatments. 

species were treated with A. tumefaciens LBA 4001 and A. rhizogenes LBA 

9402. However, fewer crown galls and more 'roots' were formed on T_. erecta 

plants. In contrast to the results with other species (Table 1), only roots 

were formed when T_. erecta plants were treated with LBA 4060 (Fig. 1) and 

LBA 288 (control), and no neoplastic outgrowth appeared after treatment 

with LBA 8370. In agreement with expectation crown galls appeared on T[. 

minuta plants in the cases of LBA 4060 (Fig. 1) and LBA 8370 infection, 

and, apparently, no response was observed after treatment with LBA 288. 

Pricking with sterile needles did not result in newly formed tissues in 

each of the Tagetes species. 



Fig. 1. Neoplastic outgrowth of cells on stem explants of Tagetes erecta 

(Te) and T_. minuta (Tm) due to infection with Agrobacterium tumefaciens LBA 

4060. 

At the end of phase I the formation of 'roots' on the explants of T_. erecta 

exceeded the formation of 'roots' on the explants of 7. minuta (Table 3 ) . 

The magnitude of this difference varied between the bacterial treatments. 

A. rhizogenes LBA 9402 induced only 'roots', and continuous growth of 

'roots' was observed in the successive phases of the experiment as was 

expected. The fresh weight of 'roots' per explant of T\ erecta and T_. 

patula infected with LBA 4001 surpassed the fresh weight of the 'roots' of 

similarly treated J_. minuta explants approximately 10 times. The predomi­

nant crown gall formation upon LBA 4001 treatment, observed on intact 

plants of T_. patula and T_. minuta, continued during phase I and phase II. 

After treatment with LBA 4060 and LBA 8370 the trend of tumour formation of 

the explants of T. erecta and T. minuta in phase I was the same as on the 

intact plants. The amounts of calli formed during phase I and II on the 

control explants which were provided with exogenously supplied growth 

regulators, was in agreement with the growth of Tagetes calli under 

standard conditions. 

Owing to an abundant growth of initially released bacteria of the strain 

LBA 9402, all explants infected with this strain had to be discarded. 



Treat­
ment: 

Control 

+ horm. 

Control 

- horm. 

Control 

LBA 288 

Tagetes erecta Tagetes mlnuta 

phase: I II I II 

a b c a b c a b c a b c 

6 0.52 0 6 1.23 0.12 6 0.28 0 6 0.74 0 

6 0 0.24 6 0 0.37 6 0 0.01 6 0 0 

9 0 0.11 6 0 0.79 16 0 0.04 11 0 0.02 

Tagetes patula 

I II 

a b c a b c 

6 0.94 0 4 3.49 0.02 

6 0 0.02 5 0.64 0.54 

9 0 0.05 8 1.65 0 

LBA4001 7 0.16 0.11 6 0.84 0.03 12 0.22 0.01 12 1.07 0 10 0.48 0.09 7 4.59 0.23 

LBA4060 6 0 0.29 6 0 2.50 11 0.12 0.04 9 1.81 0.02 

LBA8370 12 0 0.03 9 0 0.03 9 0.16 0.03 9 1.58 0 

LBA9402 7 0 0.45 . . . 11 0 0.26 

Table 3. Fresh weight of tumours and 'roots' obtained from stem explants of 

Tagetes erecta, T_. minuta and 7. patula at the end of two passages (phase I 

and phase II). The duration of phase I and phase II was 2 and 3 weeks, 

respectively. Before explantation the stems of the different plants were 

inoculated with different wild-type and mutant strains of Agrobacterium 

tumefaciens and A. rhizogenes (see Table 1). Axenlc explants and explants 

treated with plasmldless cells (LBA 288) were used as controls. The letters 

a, b, and c represent: number of explants (a), the fresh weight (in g) per 

tumour, (b); the fresh weight (In g) of roots per explant, (c). 

Neoplastic tissues In phase I and II showed particular differentiations; 

conspicuous 'root' formation occurred in all treatments of T. erecta with 

the exception of LBA 4001 and LBA 8370 (Table 3). After treatment with LBA 

4001, LBA 4060, and LBA 8370 and with hormones, the formation of calli and 

tumours on explants of T. mlnuta increased during phase II, while root 

formation decreased like in the control with LBA 288. The development of 

calli, tumours and 'roots' in T. mlnuta from phase I to phase II deviated 

from the two other species for as far as the incomplete comparison with T. 

patula allows the conclusion. In general, callus and tumour development was 

stronger after both of the treatments as well as in the two controls of T_. 

patula during the whole experiment. In addition, 'root' formation at T̂ . 
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patula did not follow the pattern of 'root' formation at T. erecta and T. 

minuta; in the control without hormones there is similarity between T. 

patula and T. erecta, whereas in the treatment LBA 288 there is similarity 

between T. patula and T. minuta. Finally, 'root' formation in T. patula 

treated with LBA 4001 was stronger than in the same treatment in T. erecta 

and T. minuta. 

Nopaline, octopine, and thiophene analyses. 

No evidence was found for the presence of nopaline or lysopine dehydro­

genase activity in extracts of calli, tumours, and roots at the end of 

phase II. 

The number of presumptive thiophenes found in calli, tumours, and 'roots' 

of the different explants at the end of phase I varied from 4 to 15 (Table 

4 ) . The on-line spectroscopy with the diode array detector showed repro­

ducible shapes of the UV-spectrum of the thiophenes in calli within the 

tretaments (Fig. 2 A , B ) . A low reproducibility of the shape of the UV-spec-

90% 90% 

400 250 

90% 

/ ' . , •••••--'•N.„ 

D (retention time:2.2min) 

^^ 

250 

wavelength (nm) 

300 350 400 

Fig. 2. UV-spectra of four thiophenes which occurred in calli (compounds A 

and B) and tumours (compounds C and D) of Tagetes erecta. The figures give 

an example of the difference between the reproducibility (n=4) of the UV-

spectra of compounds which occurred in both genetically untransformed (A 

and B) and genetically transformed (C and D) tissues. 
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Treatment 

Control 

+ horm. 

Control 

- horm. 

Control 

+ LBA 288 

LBA 4001 

LBA 4060 

LBA 8370 

LBA 9402 

Tagetes 

species 

T.e. 

T.m. 

T.p. 

T.e. 

T.m. 

T.p. 

T.e. 

T.m. 

T.p. 

T.e. 

T.m. 

T.p. 

T.e. 

T.m. 

T.p. 

T.e. 

T.m. 

T.p. 

T.e. 

T.m. ' 

T.p. 

Number 

Phase: 

Tumour 

5 

4 

11 

-
-
-

-
-
-

4 

7 

9 

-
9 

-
6 

-

of putative 

I 

Roots 

-
-
-

9 

5 

9 

9 

8 

10 

8 

5 

10 

12 

10 

8 

8 

• 

15 

10 

Tumour 

7 

1 

8 

-
-

14 

-
-

14 

3 

2 

7 

-
4 

• 

-
5 

• 

thlophenes 

II 

Roots 

8 

-
3 

6 

-
11 

9 

1 

-

1 

-
6 

5 

1 

1 

-

• 

• 

Sum of 

units 

Tumour 

13 

12 

37 

-
-
-

-
-
-

3 

8 

11 

-
6 

• 

-
9 

-

absorbance 

per g 

I 

Roots 

-
-
-

41 

149 

112 

53 

61 

102 

77 

87 

56 

45 

118 

• 

82 

116 

44 

17 

DM 

Tumour 

21 

2 

15 

-
-

94 

-
-

51 

16 

13 

13 

-
3 

• 

-
1 

• 

II 

Roots 

67 

-
37 

26 

-
121 

48 

2 

-

6 

-
7 

16 

7 

• 

1 

-

R/T 

I II 

- 3.2 

- -
- 2.5 

- -
- -
- 1.3 

- -
- -
- -

25.8 0.4 

10.9 -

5.1 0.5 

-
19.6 2.3 

• 

- -
12.9 -

• 

• 

Table 4. Number and concentration of thlophenes in absorbance units at peak-

wavelength of the different compounds in 'roots' (R), and tumours and call! (T) 

obtained from stem explants of Tagetes erecta (Te), T_. mi nut a (Tm), and J_. pa tula 

(Tp). Stems of axenic plants were inoculated with wild-type and mutants of 

Agrobacteria (see Materials and methods). Axenic explants and explants treated with 

plasmidless bacteria (LBA 288) were used as controls. Phase I and phase II refer to 

two consecutive periods of growth (2 and 3 weeks, respectively) of the explants after 

subculturing. 
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tra of compounds with identical retention time, was observed in tumours 
C D 

within the treatments (Fig. 2 ' ). Thiophenes accumulated in the tissues of 

the different controls were not consistently found in the tissues from the 

explants of the transformation treatments. 'Roots' derived from LBA 9402 

and LBA 4060 infected plants contained a higher number of thiophenes than 

axenic tissues (Table 4 ) . In phase I, both the number, and the total con­

centration of thiophenes in 'roots' exceeded these in the corresponding 

tumours and calli. At the end of phase II the tissues contained thiophenes 

which generally showed the same retention-time and UV-spectrum as those in 

the corresponding tissues harvested at the end of phase I. However, 

especially in 'roots' both the number and the total concentration of thio­

phenes were drastically lower at the end of phase II, and thiophene con­

centrations in calli and tumours at the end of phase II tended to be higher 

than in the corresponding 'root' tissues, in particular in tumours that 

resulted for LBA 4001 transformation. However, for a part the results with 

T_. minuta show an opposite tendency. 

DISCUSSION 

Axenic plants of Tagetes erecta, T. minuta, and T\ patula infected with 

wild-type and mutant strains of Agrobacterium tumefaciens and A. rhizogenes 

responded differently at the site of infection (Table 2). In particular, on 

T. minuta the induction of crown galls and 'roots' was in agreement with 

infection response reported for many dicotyledonous species, e.g. Kalanchoe 

daigremontiana (Hooykaas, 1979) and Nicotiana tabacum (Van Slogteren, 

1983). It is well known that LBA 4060 and LBA 8370 bacteria induce tumours 

on which shoots and teratomata appear, respectively. These differentiations 

depend on species and culture conditions (Joos et al., 1983). Therefore, 

the absence of shoots and teratomata on Tagetes plants infected with the 

strains used is no indication of a deviating response. However, the 

formation of 'roots' upon treatment with LBA 4060, observed on T_. erecta 

explants (Fig. 1), has not been reported previously, to our knowledge. The 

potency of T. erecta to form 'roots' upon wounding is shown in the control 

treatments. This potency makes particularly conceivable why the negative 

response to the LBA 8370 treatment in our material is due to suppressed 

'root' formation. Obviously, 'root' formation is the only developmental 

pathway as a response to hormonal stimulation. A similar effect of LBA 8370 

has been observed on potato tuber discs treated with NAA; it was the only 

A. tumefaciens strain that suppressed 'root' induction upon infection of 

the discs (Ch.H. Hanisch ten Cate, unpublished results). 
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Besides the typical effects of the bacterial strains on Tagetes plants, 

spontaneous root formation of T. erecta plants and, in contrast, the 

formation of unfriable crown galls on T_. minuta plants, reflect variation 

of differentiation tendencies between species. Also tissue cultures on 

various media show strongly different reactions of T_. erecta as compared to 

T_. minuta, and T. patula (Ketel, 1986 ). In genetically-transformed tissues 

the acitivity of oncogenes as well as that of residing genes may contribute 

simultaneously to growth and morphogenesis of neoplastic tissues. In 

addition, because nopaline and lysopine dehydrogenase activity was not 

detected in the neoplastic tissues, it seems that the capability of such 

tissues to grow in the absence of added growth regulators in the medium is 

the only evidence of transformation. However, even this property may be 

exhibited by untransformed tissues, a phenomenon known as habituation. It 

is most unlikely, however, that no T-DNA is present anymore in the final 

cultures in our experiments. The use of DNA-probes as a conclusive method 

to establish the integration of T-DNA in the eukaryotic genome should 

provide final evidence of genetic transformation. 

The consistency of the response to infection in the consecutive phases of 

the experiment (Table 3) indicates that the ratio cytokinin/auxin was not 

drastically changed during the phases I and II. This phenomenon is of bio-

technological relevance with respect to the improvement of the stability of 

plant cell cultures, in general. In addition, in treatments where 'roots' 

were formed rather than shoots - particularly in the controls LBA 288, MS-

medium without growth regulators, and LBA 4060 treatments - the synthesis 

of cytokinin would be low with respect to the synthesis of auxin (Reinert 

et al., 1977; Weiler and Spanier, 1981). The relationship, however, between 

the amount of synthesized phytohormones in cells and the activity of genes 

coding the synthesis of these substances, is not clear. Moreover, the 

formation of untransformed roots on leaf explants of T. minuta inserted on 

media with relatively low nitrate and high calcium concentrations (Ketel, 

1986 ) apparently caused a similar balance between cytokinin and auxin as 

transformation did, e.g. with LBA 4060 bacteria. The conclusion is drawn 

that, in contrast to regulation under environmental conditions which mostly 

coincides with unsuitable growth conditions, genetic transformation may 

give similar effects under suitable growth conditions. 
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Table 4 shows that in phase I the 'roots', i.e. the differentiated tissues, 

contained the highest amounts of thiophenes if compared with tumours, i.e. 

the undifferentiated tissues. When 'roots' and tumours were present simulta­

neously, it was calculated that the concentration of accumulated thiophenes 

in differentiated tissues surpassed the concentration of accumulated thio­

phenes in undifferentiated tissues 5 to 25 times. This pattern of thiophene 

accumulation occurred before and after transfer of the explants. This pheno­

menon indicates that the coherence between morphogenesis and secondary meta­

bolism, recently emphasized in particular for T. erecta by A.F. Croes (un­

published results), apparently occurs also in transformed tissues. Phytohor-

mones are then suitable candidates for a regulatory role in differentiation 

patterns. 

After one passage of the various explants the difference between thiophene 

accumulation in differentiated and undifferentiated tissues became approxi­

mately 5 to 8 times smaller (Table 4 ) . However, after infection with LBA 4001 

thiophene accumulation mainly occurred in undifferentiated tissues. This 

trend was never observed in calli of Tagetes before and is also in disagree­

ment with numerous observations in many other species (Yeoman et al., 1979; 

Kothari and Chandra, 1986). Our finding opens the possibility that genetic 

transformation of DNA may also be used as a simple method to change radically 

the original relationship between morphogenesis and secondary metabolism. 

Acknowledgements. The authors are grateful to Prof. B. de Groot for his 

useful suggestions during the preparation of the manuscript. 
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Chapter VII 

Accumulation of Thiophenes by 
Cell Cultures of Tagetes patula 

and the Release of 
5-(4-Hydroxy-l-butinyl)-2,2' -
bithiophene into the Medium 

David H. Ketel 

ABSTRACT 

Secondary and tertiary calli of Tagetes patula were used to start liquid 

cultures. Both types of calli contained thiophene-biocides, mainly BBT and 

BBTOAc, but secondary calli contained about 3 times higher concentrations of 

thiophenes than tertiary calli. 

Batch-wise cultured cells formed coarse cell aggregates (3-8 mm), the 

volume of which was doubled each 15 days (y ca 5% d ). 

In contrast to callus cultures grown on solid medium, cell aggregates 

grown in liquid medium released thiophenes. The release into the medium was 
_3 

at least 2.3 mg.dm in 90 days by an average amount of 100 g of fresh cell 

aggregates. Release of thiophenes was mainly as BBTOH. In the liquid medium 

the ratio between the amount of water-soluble BBTOH and the sum of the 

amounts of non-polar thiophenes (BBT and BBTOAc) varied between 2 and 4, 

whereas this ratio was less than unity in the cell aggregates. The amount of 

thiophenes recovered in the medium corresponded to 0.02% of the cell dry 

weight. 

The productivity of the liquid cultures was not related to the producti­

vity of the original calli; neither did the thiophene production correspond 

with the growth rate of the biomass of the liquid cultures. The results 

indicate that not the selection of calli for thiophene content, but rather 

the selection of calli with the ability to form cellaggregates is of rele­

vance for the production of thiophenes in liquid cultures. 
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INTRODUCTION 

Thiophenes, secondary metabolites occurring in composites like Tagetes 

(marigolds) species (1), are wide-spectrum biocides (2). Their identifi­

cation as the nematicidal principle in a number of species (3,4,5) opened 

perspectives, on the one hand, to employ thiophenes to suppress nematode 

populations in soils and crops and, on the other hand, to use callus and 

cell cultures for the production of thiophenes. Analysis of calli of three 

Tagetes species (T. erecta, J_. minuta and 7_. patula) indicated that only 

secondary and tertiary calli of T. patula yield suitable material for 

thiophene-producing cell cultures (6). I here report on the accumulation of 

thiophenes in the calli of T. patula when grown on solid medium, and present 

the first results of a liquid-culture system that releases relatively high 

amounts of thiophenes into the medium. 

Abbreviations: BBT: 5-(but-3-en-l-inyl)-2,2'-bithiophene; BBTOAc: 5-(4-ace-

-toxy-l-butinyl)-2,2'-bithiophene; BBTOH: 5-(4-hydroxy-l-butinyl)-2,2'-bi-

-thiophene; C. , C_, C,: primary, secondary and tertiary calli, respectively; 

DM: dry matter; MS-medium: according to Murashige and Skoog, (8); FW: fresh 

weight; PCV: packed cell volume; PCV%: PCV as % of total volume; u: relative 

growth rate. 

MATERIALS AND METHODS 

Explants. 

Plants of Tagetes patula L. cv Nana furia (seeds from Tubergen Co., Lisse, 

The Netherlands) were grown during 5 weeks in basal medium (7) supplemented 

with 5 mM Ca(N03)2> in 16 h light (30 wnT2) at 24 + 1°C and 75 + 5% RH. 

Forty fully-expanded leaves were randomly collected from ten plants, steri­

lized for 2 sec in ethanol (70% v/v) and 5 min in CaOCl. (5% w/v), and sub­

sequently washed for 3, 10, and 30 min in fresh aliquots of sterile, de-

mineralized water. The top third parts of the leaves were inserted upright 

into autoclaved (20 min, 120 °C) MS-medium (8), containing sucrose (2 % 
—3 —3 

w/v), naphthylacetate (0.5 mg.dm ) , benzyladenine (5 mg.dm ) and myo-
-3 

-inositol (100 mg.dm ), and solidified with Gelrite (0.2 % w/v; Costar 
Ltd., Badhoevedorp, The Netherlands), and adjusted to pH 5.9 with KOH prior 

to autoclaving, as previously described (9). 
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Callus culture and experimental design. 

Callus culture proceeded under axenic conditions at 24 + 1 C and a 16 h 
-2 3 ~~ 3 

photoperiod (5 Wm ) In Erlenmeyer flasks (250 cm ), each containing 30 cm 

solidified medium. Three successive series were grown for 3, 2, and 2 weeks, 

hereafter designated as C. , C9, and C. calli, respectively. 

Out of 36 C calli that developed axenically on the 40 explants, 5 were 

taken at random to determine fresh and dry weights. The remaining calli were 

cut into three equal parts; two parts were transferred to fresh solid medium 

to produce C. calli, while the third part (approximately 30 mg DM) was used 

for the assay of thiophenes (see Table 1; n=31). The 2 pieces of callus were 

put in one Erlenmeyer flask. One of the 2 pieces of the 16 C_ callus lines 

was used for thiophene assay (see Table 1; n=16). Both pieces of callus of 5 

and 10 lines were used to determine fresh and dry weights, and for starting 

two liquid C. cultures, respectively. With respect to both liquid cultures 

the C9 calli of five Erlenmeyer flasks with the lowest thiophene content 

found in the parental C callus were combined to start one culture (C - L ) . 

Similarly, the C. calli of five Erlenmeyer flasks with the highest content 

found in the parental C. callus were combined to start the other culture 

(C2-H). 

The remaining parts of the 16 C. callus lines were cut into three equal 

parts to produce C, calli and also transferred (3 per Erlenmeyer flask) to 

fresh solid medium. Pools of C, callus lines were made from five callus 

lines with the lowest thiophene contents in the C-, and C2 calli and from 

five callus lines with the highest contents to start two new liquid 

cultures: C.-L and C--H, respectively. Of each callus line 2 pieces of 

callus were selected as starting material for these two cultures, while the 

remaining parts were used for thiophene determination (see Table 1; n=ll). 

Four C, callus lines containing 3 pieces of callus, and one C, callus line 

containing 2 pieces of callus were used to determine fresh and dry weights. 

Liquid cultures. 

Pools of 'low' and 'high'-producing C, (ca. 15 g FW) and C, (ca. 20 g FW) 

callus lines as described above were minced with a scalpel. The minced calli 

were suspended in about two volumes of liquid medium, with the composition 

given under 'Explants', but without Gelrite. The 4 cultures were continuous­

ly agitated (Gallenkamp Orbital Shaker, 120 rpm, 2.5 cm amplitude) and kept 

at 24 + 1 °C under continuous light (5 Wm ) . During the first 9 days, the 

medium was refreshed daily to cope with an intense browning. From day 9 on, 
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the refreshment was every two days and the packed cell volume, PCV (10), was 

determined simultaneously. 
3 3 

C„-cultures (ca 50 cm initial total volume) were started in 250 cm 
1 3 

Erlenmeyer flasks (a), and subsequently grown in 0.5 (b) and 1 dm (c) 
Erlenmeyer flasks. Under the conditions a, b, and c, the final total volume 

* 3 
of the cultures was ca 125, 250 and 500 cm , respectively, and the cell 
volume was kept at 30, 50 and 50% (v/v), respectively. The C,-cultures were 

3 3 

initiated in 0.5 dm flasks and next transferred to 1 dm flasks in which 

they were treated as the C„-cultures. In each size of Erlenmeyer flask the 

cultures were grown for 15 days. 
3 

When the total volume of the cell cultures in 1 dm flasks had attained 
3 3 

0.5 dm , 60 cm of the cells were transferred to a new flask and replenished 
3 

with fresh liquid medium, up to a total volume of 0.5 dm (ca 14 PCV%). 
Twice a week the agitation of the cultures was stopped to determine the PCV 

3 
of the cell mass, and to refresh 250 cm liquid medium. When the PCV in such 

3 3 

a flask was 250 cm , about 60 cm of cells were again transferred to a new 

flask, thus maintaining growth cycles between 14 and 50 PCV%. Parts of 

decanted liquid medium and cells were used for thiophene analysis. 

Extraction of thiophenes. 

All extraction procedures were performed at room temperature, and dim light 

was used only during sample manipulation. When the up-scaling procedures 
3 

were finished, and growth cycles from 14 to 50 PCV% in 1 dm flasks were 
3 

started, samples of 100 cm of decanted and paper-filtered liquid medium 

were taken upon refreshment of that medium (usually twice a week). These 

samples were extracted overnight at 22+2 °c by shaking with 30 cm hexane. 

The hexane fractions, containing the released thiophenes, were evaporated to 
3 

dryness under a current of N„ and the residues dissolved in 0.25 cm hexane. 

Washed, blotted, and weighed samples of harvested calli and cell aggre­

gates were used to determine the DM content after freeze drying. Simultane­

ously, other samples (1-2 g FW) of the calli and cell aggregates, treated 

similarly, were frozen with liquid nitrogen and dispersed in acetone (ca 5 
3 

cm per g fresh weight). The frozen tissues were crushed with a pestle and 

shaken overnight. The extracts were quantitatively filtered through hexane-

-washed quartz wool and the water-acetone mixtures evaporated under a 
3 -. 

current of N2 to a final volume of ca 0.5 cm . Five cm hexane were added to 

the residues and the vials were shaken again for 1 h. The water-acetone 

phase in the vials was removed with a pipette and the hexane fraction con-
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taining 50 + 5% of the total amount of thiophenes, was filtered (0.22 ym) 

and evaporated under a current N„ to dryness. Each residue was dissolved in 
3 

0.25 cm hexane. The various compounds showed small differences of recovery 

which did not affect the final results. 

Analysis of thiophenes. 

HPLC was done by isocratic elution with hexane:dioxane (95:5 v/v) as pre­

viously described (11). The eluate was scanned (220-400 nm) on-line with a 

high-speed spectrophotometer (Hewlett Packard 1040 A detection system). 

The computed UV-spectra and HPLC retention times of the different 

substances as well as the GC/MS analysis of a number of naturally occurring 

and purified thiophenes (M.A. Posthumus and D.H. Ketel, unpublished results) 

were used to characterize thiophenes in calli, cell aggregates and liquid 

media. 

In addition, based on the only small differences between the molar 

extinction coefficients of the prepondering thiophenes (12; R. Jente, 

personal communication), a standard curve of a-terthienyl was used to calcu­

late the concentrations of thiophenes, both in calli and cell aggregates and 

released into the liquid medium. Sampling, extraction and analysis as 

described here yielded a variation in the concentration of individual 

thiophenes of 2-6%. 
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RESULTS 

Callus cultures. 

Leaf explants formed cauliflower-like calli, with low DM content (on the 

average 7.2, 6.0, and 5.8% In C., C„ and C- calli, respectively). In parti­

cular, the friability of the C„ and C, calli allowed easy mincing of these 

tissues to initiate liquid cultures. 

Mainly 4 different thiophenes (Fig.l) occurred in the various callus 

phases, BBT and BBTOAc being the prepondering compounds (Table 1). The high 

content of BBT in C2 calli caused a higher total thiophene content in these 

calli than in C^ and C3 calli. The increase was ca 2 and 3 times, 

respectively. Table 1 further shows the great variation of the contents of 

the thiophenes. This variation in the C. and C. calli (Table 2) was used to 

select 'high' (H) and 'low' (L) callus-lines as described under 'Materials 

and Methods", and eventually to obtain 4 different liquid cultures, 

indicated as C2~H, C.-L, C.-H, and C,-L. Variation in the total content of 

thiophenes between the individual calli within each group was less than 10 

percent. 
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Fig. 1. Normalized absorption spectra of BBT, BBTOAc, BBTOH and L. (an un­

identified thiophene, provisionally listed according to a system used by 

Ketel (11) to compare putative thiophenes) extracted from calli and liquid 

cultures of Tagetes patula (see also Tables 1 and 2 ) . Rt and A max, in the 

figure indicate the HPLC retention times (min) and peak wavelengths (nm), 

respectively. The absorbance is given in arbitrary units. 
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Thiophenes (yg per gDM + SD): 

Callus 
phase BBT BBTOAc BBTOH 1^ Total 

C (n = 31) 4.5 + 4.5 29.5+18.5 3 + 1 . 5 1 + 0 . 5 38 

C, (n = 16) 44 + 24.6 27.5 + 14.5 1.2 + 0.5 1.5 + 1 74 

C3 (n = 11) 6.5+ 2 19 + 8.5 1.5+0.5 1 + 0 . 5 28 

Table 1. Thlophene accumulation In primary (C ), secondary (C„), and terti­

ary (C.) call! of Tagetes patula grown on solid MS-medlum under standard 

conditions (see Materials and methods) for 3, 2, and 2 weeks, respectively. 

Ultimate 

liquid 

C2-H 

C2-L 

C3-H 

C3-L 

Table 2 

Tagetes 

culture 

Preceding 

callus 

Cl 

C2 

Cl 
C2 

Cl 

C2 

C3 

Cl 

C2 
C3 

. Thiophene contents 

patula used to 

BBT 

3 

66 

1.5 

20 

7.5 

51 

5 

1.5 

31.5 

5.5 

in secondary 

obtain two 'tin gh' 

Thiophenes 

BBTOAc 

46 

40 
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47 

45 

38 

6. 

8 

11. 

(C?) 

(H) 

5 

5 

and 

and 

(ug pe 

BBTOH 

4.5 

1.5 

3 

1.5 

1.5 

1.5 

2 

3 

1 

1 

tertiary 
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r g 

(C, 

(L) 

DM): 

Ll 

1 

2 

0.5 

1.5 

1 

2.5 

3 

0.5 

0.5 

1 

) calli 

produc] 

of 

ng 

Total 

54.5 

109.5 

17 

40 

57 

100 

48 

11.5 

41 

19 

liquid cultures. C. and C, liquid cultures were initiated from 5 minced 

calli each. The calli used were selected according to the results presented 

in Table 1. 

Liquid cultures. 

Initially, rapid browning of the growth medium urged daily washing of the 

submerged callus fragments and refreshment of the medium during the first 

weeks of liquid culture. After 3 weeks the frequency of medium refreshment 

could be gradually decreased to 3 times a week. The removal of dark-brown 
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cell aggregates and the loss of small cell aggregates during these refresh­

ments impeded reliable measurements of the real volume Increment of the bio-
3 

mass during the preliminary phases of the cell cultures in 0,25 and 0,50 dm 

Erlenmeyer flasks. 

Although the loss of cell aggregates during medium refreshment was con-
3 

siderably reduced when the cultures were grown in 1 dm Erlenmeyer flasks, 

the volume of the sedimented cell aggregates (Fig. 2) could not be assessed 

with high accuracy. The calculated doubling time of the biomass was ca 15 

days (u: 5%d ) during at least 3 consecutive growth phases (Fig. 3). The DM 

content of the cell aggregates gradually increased by 40 to 45% and the 

growth of cell aggregates of the C„ and C, liquid cultures declined suddenly 

after 4 and 3 cycles (ca 100 and 70 d ) , respectively. No significant dif­

ferences in structure, appearance and growth rate were observed between 

cultures derived from C2
 a n d c 3 c a l 1 1 . 

ilL's 

A » 

•v*»fv: 'ifri &k<- • r 

Fig. 2. Cell aggregates (3-8 mm) of Tagetes patula formed in batch cultures 

with liquid MS-medium (see Materials and methods). The aggregates accumu­

lated and released thlophenes during different growth cycles according to 

the data presented In Tables 3 and 4. 

The concentrations of glucose and nitrate, the osmolarlty and the pH of 

the media did not change drastically in the 3.5 days intervals of medium 

refreshment (data not shown). 
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Fig. 3. Growth of the four liquid cultures of Tagetes patula in 1 dm 

Erlenmeyers. Two liquid cultures (C.-H and C2~L) were obtained from second­

ary callus and two liquid cultures (Cj-H and C3-L) from tertiary calli. The 

calli originally differed in thiophene content (H = 'high1; L = 'low'). 

Dilution of cell aggregates in the Erlenmeyer flasks to ca 14 PCV% was done 
3 

when the volume of the cell aggregates was ca 0.25 dm (= 50% of the total 

volume of the liquid culture). Measurements of the PCV were done twice a 

week. DM content of the cell aggregates, in % of fresh weight (between 

brackets) was determined at the end of each growth cycle. 
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Thiophenes. 
3 

During consecutive growth cycles in 1 dm flasks cell aggregates from liquid 

cultures and the remaining cellfree liquid media contained thiophenes within 

the same spectrum and HPLC retention time. The amount of non-polar 

thiophenes (BBT, BBTOAc, and the presumptive thiophene L. ) and the amount of 

the more water-soluble BBTOH gradually decreased throughout the experiment 

(Table 3). The thiophene production of the L-cultures was not always lower 

than that of the H-cultures and generally, the productivities did not differ 

to a large extent. The ratio (BBT + BBTOAc)/ BBTOH in the cell aggregates 

increased with culture age from ca 3 to more than 10 because the content of 

BBTOH decreased more rapidly than the content of non-polar thiophenes. 

In the cell-free media from all types of liquid cultures BBTOH was the 
3 

preponderant thiophene during all growth cycles in 1 dm flasks (Table 4 ) . 

Calculated per culture, and averaged over all growth cycles, the total 

amount of BBTOH excreted into the liquid medium surpassed the average amount 

of BBTOH accumulated in the cell aggregates 125 to 2000-fold. 

-3 
Over various growth cycles with an average cell density of 90 g FW dm 

-3 
(5-8 g DM dm ) at least 2.2 (C.) and 2.4 mg (C,) thiophenes, corresponding 

-3 
with 10 to 15 pig dm per day, were recovered from the growth medium. In 

addition, the quantity of BBTOH in the media of both types of liquid 

cultures amounted to about 75% of the total amount of thiophenes in the 

media-

Growth 
Thiophenes in cell aggregates (yg per g DM) 

cycle 

C« H C« L C«—H C<, L 

1 220 (157 ) 176 (88 ) 58 (15) 49 (12) 

2 122 ( 19 ) 31 ( 3 ) 11 (10) 31 (13) 

3 61 ( 3 ) 44 ( 5 ) 18 ( 1) 4 ( 3 ) 

4 30 ( 0.1) 1 ( 0.2) 

Table 3. The sum of three non-polar thiophenes (BBT, BBTOAc and L.) and the 

content of BBTOH (between brackets) in cultured cell aggregates at the end 

of three or four growth cycles in liquid medium. The duration of each growth 

cycle varied between 18 and 24 days. Cell aggregates were obtained from 

'high' (H) and 'low' (L) thiophene producing secondary (C-) and tertiary 

(C.) calli (see Table 2). 
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Growth 

cycle 

1 

2 

3 

4 

Culture 

age (d) 

2 
4 
7 

11 
14 
18 

21 
25 
28 
32 
35 
39 
42 

46 
49 
53 
56 
60 
63 

67 
70 
73 
77 
80 
84 
87 

C2-H 

0 
0 
1 

15 
67 

133 
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86 
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32 

7 
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1 
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1 ( 
0 
1 ( 
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: « ) 
( 12) 
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: 5) 

6) 

: u) 
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: i ) 
0) 

C2" 
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0 
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95 
54 
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6 
4 

9 
1 
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0 
1 
0 

0 < 
0 
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0 
0 < 
1 
0 
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I 30) 
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(323) 
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, 71) 
: 5) 
: 3) 
: i ) 

: 26) 
( 12) 
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: 3) 
: 3) 
: o) 

3) 
: 2) 

2) 
: «) 

4 
I 1 ) 

0) 

3 (Vg 

c3" 

3 
4 

14 
21 
27 
39 

130 
110 
53 
20 
13 
1 
0 

1 
0 
0 
0 
0 
0 

-
-
-
-
-
-
-

dm-3) 

-H 

( 55) 
( 20) 
( 51) 
( 82) 
( 90) 
(151) 

(510) 
(441) 
(277) 
(157) 
( 63) 
( 14) 
( 1) 

( 29) 
( 16) 
( 6) 
( 2) 
( 5) 
( 2) 

-
-
-
-
-
-
-

V 
2 
2 

37 
39 
45 
48 

100 
146 
61 
44 
33 
8 

14 

21 
23 
8 
3 
0 
0 

-
-
-
-
-
-
— 

L 

( 63) 
( 76) 
( 71) 
( 79) 
(120) 
(172) 

(405) 
(401) 
(337) 
(183) 
(116) 
( 35) 
( 37) 

(207) 
(166) 
( 57) 
( 32) 
( 8) 
( ID 

-
-
-
-
-
-
— 

Table 4. Non-polar thiophenes (BBT, BBTOAc) and BBTOH (between brackets) in 

the growth medium of different liquid cultures of Tagetes patula. The liquid 

cultures were obtained from selected secondary (C„) and tertiary (C,) calli 

that originally contained 'high' (H) or 'low' (L) concentrations of thio­

phenes. Samples were taken twice a week at the refreshments of part of the 
3 

total volume (0.5 dm ) of the cultures for three or four growth cycles. Each 

growth cycle started with fresh medium. - = not determined. 
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DISCUSSION 

Callus cultures. 

The growth of C., C„ and C, call! of Tagetes patula, their structure, DM 

content, and thiophene concentration were in agreement with earlier observa­

tions (6,9,13). In contrast to other Tagetes species examined (11,13), the 

callus culture of J_. patula resulted in suspendable callus with a 

significant thiophene content. The concentrations of the preponderant 

thiophenes, BBT and BBTOAc, in C2 calli (Table 1) was not much different 

from the concentrations in intact leaves (data not shown). However, release 

of thiophenes by the calli into the solid medium was never observed. Jente 

et al. (14) suggested that BBTOAc and BBT in intact plants of J_. patula are 

end-products of different routes of thiophene synthesis, whereas BBTOH might 

be a precursor of BBTOAc. The high concentration of BBT and BBTOAc in all 

calli, on the one hand, and the low concentration of BBTOH and the pre­

sumptive thiophenic compound L,, on the other, do not conflict with this 

hypothesis. In addition, the concentration of BBTOH in intact leaves was 

frequently below the level of detection, while the concentration of BBTOH 

amounted to only 0.005% of the DM of calli. 

Liquid cultures. 

Pale-yellowish coloured fragments of calli of T. patula gradually formed 

coarse cell aggregates (3-8 mm) when shaken in liquid medium (Fig. 2 ) . Cell 

aggregation occurred throughout the experimental period (ca 6 months). By 

comparison, minced calli of T. minuta consistently formed liquid cultures 

with free cells and small aggregates (ca 5-20 cells, data not shown). The 

start of liquid cultures with minced calli was accompanied by rapid and 

intense browning of the medium, probably owing to the release of phenolic 

compounds by wounded cells (15,16). Preliminary experiments proved that 

frequent removal of brown medium and washing of the cell aggregates was 

urgent to prevent death of these aggregates during the initial phase of 

liquid culture. The new cell aggregates, which developed in the course of 

the culture, did not release brownish substances, and showed increasing 

viability. Therefore, the frequency of washing was also gradually decreased 

until a rate required for refreshment of the medium and replenishment of 

nutrients. 

When half of the total volume of the liquid cultures was replaced by 

fresh medium twice a week in the later phase of the experiment, the culture 
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conditions enabled a continuous growth of the biomass. Longer intervals 

between refreshments were not examined. Because the density of the cultures 

was reduced before the stationary phase was reached (Fig. 3 ) , and apparently 

before the liquid medium changed to inviable conditions, the successive 

batch cultures provided a system for continuous growth. Probably due to the 

assay of the cell mass by volume the typical phases of a normal growth cycle 

of cells could not be discerned. The mean relative growth rate of the cul­

tures was constant for ca 20 days (Fig. 3) and did neither differ between 

cultures from C„ or C, calli, nor between cultures derived from calli with 

low or high thiophene contents. Nevertheless, the DM content of the cell 

aggregates increased gradually upon ageing. This phenomenon was probably 

related to the secretion of mucilaginous substances around the cells as 

could be observed under the microscope, and to an increase of the cell 

density (17). Therefore, the formation of cell aggregates was similar to a 

natural method of entrapment (18). However, after 3 or 4 cycles the cultures 

suddenly stopped growth, which may be caused by hardening of the secreted 

substances. 

Production of thiophenes in liquid cultures. 

The production of alkaloids in fine cell suspensions of Catharanthus roseus 

(19) illustrates that the selection of calli with high contents of secondary 

metabolites can be an appropriate method to obtain cell cultures in liquid 

medium, which continue the production of the compounds in question. In 

cultures of T. patula, however, both type and content of thiophenes in calli 

and the corresponding liquid cultures were poorly related (Tables 2, 3, and 

A ) . This poor relationship may be explained by the heterogeneity of the 

calli (20), which can be observed clearly with the microscope. The results, 

presented in this paper, clearly indicate that in such a case the selection 

of calli does not result in high or low producing cell cultures. Experiments 

with fine cell suspensions of T_. minuta (21), with calli of J_. erecta (6), 

and with selected sizes of cell aggregates of J_. patula (22) clearly 

illustrate that for Tagetes systems only aggregation may be a key to a 

certain degree of cellular differentiation as a prerequisite for the 

synthesis of secondary metabolites (23,24). For callus cultures like T_. 

patula it may be important that the capacity to form cell aggregates is the 

determinant for high levels of thiophenes in liquid cultures. 

Cell aggregates of T. patula were able to accumulate and release thio­

phenes during at least 150 days. However, the kinetics of release during 
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consecutive growth was not related to the increase of the biomass in the 

different liquid cultures. It rather seems, that the release of thiophenes, 

particularly that of the BBTOH, was stopped immediately after a short period 

Of stimulation (Table 4 ) . The stimulation of the production and release of 

thiophenes, mainly BBTOH, was apparently due to complete refreshment of the 

liquid medium. During subsequent partial medium refreshments the thiophene 

level in the media reflected dilution only. So it may be, that the release 

of thiophenes is sensitive to inhibition by external BBTOH. The same pheno­

menon probably explains the pattern of the release of conyferyl aldehyde 

into the liquid medium as studied with liquid cultures of Matricaria 

chamomilla (25). In conclusion frequent washing of cell aggregates may be a 

prerequisite to reinduce the release of BBTOH and other secondary meta­

bolites into the liquid medium. Especially the stimulation of the release of 

secondary metabolites is attractive from a biotechnological point of view 

(18,26). Therefore the study of the kinetics of the release of BBTOH and 

other thiophenes opens perspectives to develop adequate production systems. 

Although the amount of released BBTOH corresponded to at least 0.02% of 

the DM of the cell aggregates and thus was low with respect to the formation 

of other secondary metabolites in cell culture systems of other species 

(27) this amount surpassed considerably the amount of this compound in 

intact leaves and calli. In addition, owing to the presence of light and 

oxygen, essential factors for the growth of many liquid cultures, consider­

able amounts of thiophenes might have been broken down. Therefore, separate 

production conditions and other measures to protect thiophenes from break­

down may enhance the yield of released thiophenes. 

It is remarkable that cell aggregates in liquid cultures as well as roots 

from J_. patula seedlings have high levels of BBTOH (28), whereas callus 

cultures and upper parts of plants do hardly contain this compound. The 

presence of an aqueous environment may stimulate the accumulation and possi­

bly the release of this compound, which may act as a defensive chemical of 

the plant under natural conditions (2). F.H. Gommers (personal communi­

cation) found that the nematicidal activity of BBTOH is comparable with that 

of other natural nematicides, such as a-terthienyl. 

After an increase of the level of released thiophenes during the initial 

phase of the liquid cultures (2-20 days), both accumulation and disconti­

nuous release of BBTOH decreased drastically. These decreases are generally 
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observed in producing cell suspensions (18,29). In our experiments the in­

crease of the DM content of the cell aggregates (Fig. 3) parallelled the 

decreased production of thiophenes. Both phenomena indicate the gradual 

approach of the final stage. Selection of friable cell aggregates during the 

liquid culture as recently performed in fresh cultures of T. patula yielded 

a continuation of the accumulation and release of thiophenes for at least 9 

months. 

In conclusion, the liquid culture of naturally-formed cell aggregates of 

T. patula presents an attractive system for biotechnological studies because 

the requirements for product synthesis, product accumulation, and product 

release are met under standard growth conditions. 

Experiments under controlled conditions in different types of fermentors 

and with different aggregate sizes are now in progress. 
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Conclusions and Prospects 

The research in this thesis demonstrated large variations in secondary-

-metabolite production in the plants as sources of explantation as well as 

in tissues J_n vitro. The factors underlying such variations are poorly 

understood, at present. Therefore, to achieve at reproducible biotechno-

logical production systems of valuable secondary metabolites, empirical 

approaches with some taxanomically related plant species are recommendable. 

This approach may be elaborated along the following lines: 

a. the analysis of the different organs of taxanomically related plant 

species in relation to the age of the plants grown under standard 

conditions; 

b. the selection of suitable explants (roots, stems, leaves) to obtain 

callus and cell cultures under conditions commonly used for methods in 

vitro; 

c. emphasis should be laid on a low potential of differentiation and a high 

friability of the callus to obtain granular liquid cultures. These 

characteristics of calli have to be examined in various passages of 

callus cultures to observe systematically origin, memory and species 

effects; 

d. the effect of plant age and callus phase on the content of desired 

secondary metabolites should be analysed in order to select high-

-yielding explant tissues and suspendable calli with a high metabolite 

content, respectively. 

The absence or presence of secondary metabolites in a plant organ does not 

always predict the absence or presence of similar compounds in calli. In 

general, when smooth calli are obtained and desired compounds remain absent 

after some passages of callus culture, there is little perspective that 

cell suspensions reinitiate the synthesis of desired compounds in growth 
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media. As long as reliable methods are not available to improve the struc­

ture and the potential of such calli to produce desired metabolites, only 

trial and error may open some perspectives, until the underlying mechanisms 

(morphological and cheao-differentiation, growth, etc.) are fully under­

stood. 

The results obtained provide the possibilities to start the following 

projects: 

a) The development of continuous cultures with genetically transformed 

roots to obtain rapidly liquid cultures which produce stable amounts of 

thiophenes. Emphasis has to be laid on the selection of roots which 

differ in habitus to investigate the relationship between the morphology 

of the roots and the release of thiophenes into the medium. 

b) The use of thiophene-producing liquid cultures of ]T. patula and non-

-thiophene-producing cell suspensions of T\ minuta to investigate the 

stimuli which influence the production of thiophenes in plants, calli, 

and cell suspensions and the release of these compounds into the medium. 

In particular, the nature of cell aggregates has to be studied accurate­

ly with respect to the effect of the entrapment of the cells and to the 

production of thiophenes. In addition, embedding of cells has to be 

studied in comparison with other conditions which elicitate thiophene 

biosynthesis. The results from these studies may be used to know the 

appropriate conditions for thiophene production in fermentors. 

c) Treatment of nematodes which occur in the infected vegetative organs of 

plants (tubers, bulbs, etc.) with water-soluble thiophenes (a.o. BBTOH) 

released into the medium of liquid cultures to examine the nematicidal 

activity and the molecular stability of these compounds. 

d) The types of research mentioned above may stimulate further investi­

gations into appropriate conditions for down-stream processes. 
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Abstract 

The production of thiophene-biocides by cell cultures ill vitro was 

simultaneously investigated with Tagetes erecta, T_. patula and T^ minuta. 

The calli from which the liquid cultures had to be derived differed between 

species in the appearance of organoid structure, texture, and colour, in­

dependently of the nutrition of the plants and explants. In particular, the 

difference between the friability of calli of different species is obviously 

related to the expression of the activity of silent genes in only a late 

phase of the callus and/or the cell suspension culture. Therefore 'origin 

effects' may eventually determine the suitability of calli to initiate 

liquid cultures (Chapter I ) . The differences between calli, however, showed 

that the production of thiophenes in the calli was positively related with 

the measure of differentiation. Rapidly growing and fine granular cell sus­

pensions, for instance obtained from smooth calli of T\ minuta, did not 

produce thiophenes (Chapters II and III). 

Differentiated calli of T. erecta did not provide suitable material to 

initiate cell cultures in liquid medium. However, minced cauliflower-like 

calli of T. patula with irregularly occurring small root- or shoot-like 

differentiations, formed large cell aggregates (3-8 mm) in liquid media. 

These cell aggregates accumulated non-polar thiophenes and released spon­

taneously relatively high amounts of a water-soluble thiophene (BBTOH) into 

the medium (Chapter VII). Apparently, the increased morphological de-

differentation of calli runs parallel with a decreased production of thio­

phenes in the cell suspensions derived from them. The long-term accumulation 

of thiophenes in cell aggregates and the release of such compounds into the 

mediom open perspectives for the commercial production of such compounds 

under fermentor conditions. 
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Embedding of the fine granular suspension cells of T_. minuta in alginate 

resulted in the release of secondary metabolites into the liquid medium, but 

did not provide adequate conditions to reinitiate the production of thio-

phenes (Chapter V ) . In contrast, naturally formed cell aggregates which can 

be considered as a natural system of entrapment, as formed by J_. patula 

cells, obviously provide suitable conditions for the production of thio-

phenes. 

Genetic transformation of intact Tagetes by means of infection with 

wild-type and mutant strains of Agrobacterium tumefaciens and A. rhizogenes, 

induced neoplastic outgrowth of various organized and unorganized tissues 

without added growth regulators(Chapter Vl). The change in this potential 

may be related to an altered synthesis of endogenously formed phytohormones. 

The species-dependent relationship between morphological differentiation and 

thiophene production persisted in all transformed tissues examined. 

In conclusion, the results of the present experiments on thiophene pro­

duction in cell cultures of Tagetes species support the view that, despite 

the totipotency of plant cells (Chapter IV), major differences exist between 

closely related species in the ability to serve as a biotechnological unit 

in vitro. Consequently, extensive research to adapt a certain recalcitrant 

plant species for plant cell biotechnology should be avoided by looking for 

a better producing species. 
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Samenvatting en plaats 
binnen het onderzoek 

Tagetes planten (afrikaantjes) zijn algemeen bekende tuinplanten, behorend 

tot de familie der Composleten, en komen oorspronkelijk uit Zuid- en Midden-

-Amerika. Bovendien is bekend, dat al vroeg in de geschiedenis bepaalde 

Tagetes-soorten met name door de Maya's voor allerlei rituele en praktische 

doeleinden werden gebruikt. Kennelijk bezaten deze planten dus stoffen op 

grond waarvan ze voor vele doeleinden, zoals genezing, vergiftiging en 

insektenbestrijding konden worden gebruikt. In West-Europa worden al sinds 

lang bepaalde soorten, zoals Tagetes erecta en Tagetes patula, veredeld en 

gekweekt als sierplant. 

Alhoewel er enkele voor-oorlogse publikaties zijn, die al suggereerden 

dat afrikaantjes een dodelijke werking hadden op nematoden (aaltjes: dier-

lijke parasieten, die o.a. verantwoordelijk zijn voor een aantal ziekten bij 

planten, b.v. de aardappelmoeheid), werd pas na de Tweede Wereldoorlog op 

grond van praktijkvoorbeelden duidelijk, dat er inderdaad in afrikaantjes 

stoffen voorkomen, die deze bijzondere aaltjesdodende eigenschap hebben. In 

het begin van de jaren 60 werden deze stoffen door Nederlandse onderzoekers 

uit de wortels van afrikaantjes geTsoleerd en als thiofeenverbindingen ge-

identificeerd. Het afrikaantje als zodanig kreeg echter nooit di§ bekendheid 

als ziekte-onderdrukker welke op grond van die1 eigenschappen zou mogen 

worden verwacht, en bleef niet meer dan een gewaardeerde tuinplant. Daar-

naast is ook de gebruikswaarde van de groep van thiofeenverbindingen tegen-

gevallen. Pogingen om de stoffen synthetisch te maken en als nematicide door 

de grond te mengen bleken niet te slagen. 

Slechts aan een gering aantal onderzoekers, zowel in Nederland als daar-

buiten, is de werking van thiofenen niet ontgaan. Met name aan de Technische 

Hogeschool in West-Berlijn is in de jaren 1970-1980 veel onderzoek gedaan 

omtrent de vraag hoe de plant deze secundaire metabolieten maakt. Aanzien-

lijke vooruitgang werd geboekt toen enkele jaren geleden aan de Universiteit 
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te Milnster de enzymen werden gevonden die van invloed zijn op de eindfase 

van de syntheseroutes. Slechts gedeeltelljk is de biochemische syntheseketen 

nu bekend. 

De synthese van thiofenen start waarschijnlijk vanuit de vetzuuropbouw 

(zie Fig. 1, pag. 13), waarna een aantal polyacetylenen (koolstofketens met 

3-voudige bindingen) worden gevormd. Ten slotte ontstaan er verbindingen met 

e'e'n of meer moleculaire ringstructuren waarin het zwavelatoom. 

Omtrent de vraag waarom thiofenen, wanneer ze zonder meer door de grond 

worden gemengd, geen nematoden doden, is onderzoek gedaan in Nederland. 

Daaruit bleek dat het licht op een bepaald moment in een keten van enkele 

chemische reacties een belangrijke rol speelt. De ingewikkeldheid van dit 

proces maakt het tot dusver moeilijk om natuurlijke en synthetische thio­

fenen als bestrijdingsmiddel toe te passen als biocide. Een groep onder-

zoekers in Canada toonde inmiddels aan, dat thiofenen niet alleen aaltjes 

maar ook bepaalde soorten bacterign en schimmels kunnen doden, m.a.w. thio­

fenen kunnen worden opgevat als potentigle biociden met een vrij breed 

werkings-spectrum. 

Behalve problemen, die nog vastzitten aan de toepassing van thiofenen in 

de land- en tuinbouw, zijn er een aantal wetenschappelijke aspecten, die het 

gewenst maken om juist de produktie van deze stoffen met behulp van biotech-

nologische methoden te onderzoeken. Deze aspecten zijn in te delen in een 

drietal biotechnologische aandachtsgebieden waarbinnen nog veel onderzoek 

gedaan zal moeten worden. De bedoelde aandachtsgebieden zijn: 

- de problematiek, die bestaat rondom het in stand houden en vermeerderen 

van het levende materiaal dat de gewenste secundaire metabolieten moet 

produceren onder biotechnologische omstandigheden; 

- het uitzoeken van de omstandigheden waaronder en de raanier waarop dat 

levende materiaal de bedoelde secundaire metabolieten optimaal produceert; 

- de manier waarop de secundaire metabolieten kunnen worden gewonnen, 

opgewerkt en gezuiverd. 

Gaandeweg is duidelijk geworden, dat de Tagetes-soorten met hun thio­

fenen een goed onderzoeksysteem vormen dat als een model kan worden ingezet 

voor het oplossen van een aantal fundamentele problemen, die de plantecel-

biotechnologie in het algemeen thans nog kent. 

Plantecelbiotechnologische produktie vereist, dat er onder steriele 

omstandigheden over een systeem van delende cellen wordt beschikt. Dit 

systeem moet in staat zijn om beter gereguleerd, en meer van bepaalde 
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stoffen te produceren dan de intakte plant. De cellen moeten daarbij continu 

in beweging gehouden worden in een vloeibaar voedingsmedium. Door een aantal 

omstandigheden te optimal!seren kan de produktie van de gewenste stof(fen) 

door de cellen worden verhoogd en uiteindelijk stijgen boven die van de 

cellen in een intakte plant. Het systeem toegepast op commerciSle schaal, 

zou dus de mogelijkheid bieden om beter in te spelen op o.a. marktontwikke-

lingen en veranderende economische en politieke situaties. In commercie"le 

opstellingen van het systeem spreekt men over fermentoren of bioreactoren 

met een inhoud van 50 liter of meer; op laboratoriumschaal werkt men met 

kleine bioreactoren (2-5 liter inhoud) of met erlenmeyers (0.1-3 liter 

inhoud). 

Voordat echter over losse cellen van een plant kan worden beschikt, is 

er een tussenstap nodig, de zgn. callusfase. Callus is te omschrijven als 

een ongeorganiseerd delingsweefsel. Callus wordt verkregen door stukjes van 

een bepaald orgaan van de plant af te snijden, te steriliseren en dan over 

te brengen naar een vast voedingsmedium. Door de aktiviteit van bepaalde 

groeiregulatoren (auxine en cytokinine) wordt de deling van de cellen aan 

het wondvlak gestimuleerd en ontstaat er binnen enige tijd (meestal 1 tot 2 
3 

weken) een uitgroeisel dat enkele cm groot kan worden. Vaak is het nodig 

het callus te vermeerderen, indien er over voldoende cellen voor een cel-

suspensie moet worden beschikt. Dit kan door het enkele weken oude callus in 

stukjes te snijden en deze stukjes over te zetten op vers groeimedium. Een 

aantal produktieproblemen, die optreden in de celsuspensiecultures hangen 

samen met een aantal fundamentele problemen, die voortkomen uit eigenschap-

pen van de plant en het callus. 

In Hoofdstuk I worden resultaten gepresenteerd, die aangeven dat callus-

cellen duidelijk andere eigenschappen vertonen dan de plant. Dit betekent, 

dat deze calluseigenschappen niet van eigenschappen van de plant zijn af te 

leiden, maar wel erfelijk aanwezig zijn. Dergelijke eigenschappen kan men 

aanduiden met sluimerende eigenschappen. In Hoofdstuk II wordt bediscussi-

eerd, dat het tot expressie komen van deze eigenschappen in calli biotechno-

logisch gezien gunstige en ongunstige kanten kan hebben. Zo is voor Tagetes 

minuta het tot expressie komen van de zachtheid van het weefsel gunstig te 

noemen, terwijl voor Tagetes patula bleek, dat onder overeenkomstige omstan­

digheden de calli donkerbruin worden en afsterven als gevolg van een plotse-

linge stijging van het polyfenolgehalte. Deze eigenschappen van het callus 

werden niet direct na de overenting van het plantmateriaal waargenomen maar 

123 



na 2x overenten en werden "oorsprongeffecten" genoemd. Ze zijn niet te ver-

eenzelvigen met "soortspecifieke effecten" en "herlnneringseffecten". Van 

een oorsprongeffeet moet gebruik gemaakt worden wanneer van Tagetes minuta 

celsuspensies moeten worden verkregen. 

In Hoofdstuk II is mede nagegaan of bepaalde verschillen tussen ver-

schillende media voor de plantekweek nog van invloed zijn op de groei en de 

ontwikkeling van calli en de produktie van thiofenen. Inderdaad bleek dat 

voedingsverschillen van de intakte planten opvallende morfologische effecten 

bij de calli kunnen veroorzaken. Ook deze effecten waren afhankelijk van de 

hiervoor beschreven soorteigenschappen. De gevonden verschillen konden in 

verband worden gebracht met veranderingen in de interne hormoonconcentraties 

in de verschillende explantaten. Omdat ook de thiofeenproduktie zich bleek 

te hebben aangepast aan de veranderingen in differentiatie van de calli, kon 

het verschil tussen plante- en callusvoeding niet verantwoordelijk worden 

gesteld voor het lage thiofeengehalte in de calli van T_. minuta. 

Op de ontwikkeling en groei van callus en de produktie van thiofenen 

wordt in het bijzonder ingegaan in Hoofdstuk III. Op een veel gebruikt 

groeimedium (MS-medium), waaraan een voedingssuiker, vitaminen, auxine en 

cytokinine zijn toegevoegd, blijkt dat calli van 7_. erecta na enige tijd 

spontaan en vrij massaal gaan differentieTen, terwijl calli van T_. patula 

dat veel minder doen en die van T_. minuta deze neiging nauwelijks of niet 

vertonen. Mede in overeenstemming met gegevens uit recente literatuur over 

andere systemen kon worden vastgesteld, dat, kennelijk in samenhang met ge-

noemde verschillen in neiging tot differentiatie, het thiofeengehalte in 

calli van T_. erecta en T_. patula in de regel vele malen hoger was dan in 

calli van T. minuta. 

Hierdoor kon tevens worden verklaard waarom snel groeiende en zeer fijne 

celsuspensies van T_. minuta geen thiofenen produceren. Wij stelden daarbij 

tevens vast, dat deze eigenschap zeer stabiel is. Voor de hypothese, dat de 

afwezigheid van thiofenen rechtstreeks en alleen maar een gevolg is van de 

ongedifferentieerde toestand in de celsuspensiecultures, is evenwel nog geen 

bewijs geleverd. Immers ook andere factoren dan morfogenetische processen 

kunnen een rol spelen bij de tijdelijke uitschakeling van metabolische pro­

cessen in de plant. 

Wanneer de voeding, die normaliter gebruikt wordt voor planten, ook 

gebruikt wordt voor de voeding van calli bleek, met behoud van de typische 

soort-eigenschappen, deze 'vreemde' callusvoeding de groei en morfologie van 
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de call! zeer sterk te bepalen. In samenhang met morfogenetische effecten 

werden eveneens veranderingen van de thiofeengehalten aangetroffen. Boven-

dien kon worden vastgesteld, dat naast deze verschuivingen van de thiofeen­

gehalten een aantal andere secundaire metabolieten zich dienovereenkomstig 

gedroegen. E§n van de conclusies was, dat met name het gebruik van MS-medium 

ook dit maal niet verantwoordelijk is voor het lage thiofeengehalte in de 

calli van T. minuta. 

In Hoofdstuk IV zijn resultaten gegeven van experimenten, die te maken 

hebben met de vraag naar het meest geschikte uitgangsstadium van de intakte 

plant oni bepaalde organen te gebruiken als explantaat. Zowel groeistadium 

van de plant als type orgaan staan in verband met de vraag waar en het tijd-

stip waarop de gewenste secundaire metabolieten worden gevormd. Ogenschijn-

11jk gaat daarbij de voorkeur uit naar die organen waar de desbetreffende 

metabolieten in de plant worden gesynthetiseerd, terwijl de tijd van explan-

teren ook ogenschijnlijk het gunstigst is op het moment dat deze verbin-

dingen in hoge mate worden aangemaakt. De meest gunstige situatie zou daarom 

zijn een hoge syntheseaktiviteit in die jonge organen, die als explantaat de 

beste eigenschappen hebben. 

Thiofenen blijken voor te kunnen komen in bladeren en in wortels van de 

drie onderzochte soorten. Omdat het niet waarschijnlijk is dat deze relatief 

weinig in water oplosbare verbindingen via het waterige sap in het floeem 

(zeefvaten) en xyleem (houtvaten) in de Stengels kunnen worden getranspor-

teerd, lijkt het aannemelijk dat er sprake is van op z'n minst twee afzon-

derlijke syntheseplaatsen in de plant. Deze gedachte werd onderkend door het 

feit, dat de thiofeensamenstellingen in het blad en in de wortel niet gelijk 

zijn. Bovendien was er geen verband tussen het stijgen en dalen van het 

thiofeengehalte in beide organen wanneer dit gedurende 10 tot 15 weken wordt 

gevolgd. Daarom kan er in dit opzicht geen echte voorkeur worden uitgespro-

ken voor de keus van SSn van beide organen, zij het, dat er over het alge-

meen van bladexplantaten gemakkelijker callus valt te verkrijgen dan van 

wortelexplantaten. Bovendien blijken er in callus zowel typische blad- als 

wortelthiofenen voor te komen. Een verklaring daarvoor kan zijn een meer 

algeheel tot expressle komen van de erfelijke eigenschappen (het "geheugen" 

van de plant) in weinig gespecialiseerde weefsels. Dit verschijnsel illu-

streert een duidelijk herinneringseffect, dat zich op grond van herkenbare 

continuering van genexpressie onderscheidt van de hiervoor genoemde oor-

sprongeffecten. 
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De resultaten kunnen als volgt worden samengevat: de hoogste thiofeen-

gehalten komen voor in secundaire calli van T. patula, die aanvankelijk af-

komstig zijn van bladexplantaten van 4 tot 7 weken oude planten. Dergelijke 

twee weken oude secundaire calli zijn over het algemeen zacht en het best te 

omschrijven als kleine, meestal geelgroen tot lichtbruin gekleurde, bloem-

koolachtige weefsels, die weinig wortel- en spruitdifferentiaties vertonen. 

Gelet op de kwaliteit van deze secundaire calli en hun synthesecapaci-

teit van thiofenen lijkt vooral een dergelijk type callus een goede kandi-

daat te zijn om producerende suspensiesystemen te ontwikkelen. 

In Hoofdstuk V is nagegaan of niet-thiofeen producerende fijne celsus-

pensies wederom tot thiofeenproduktie zijn aan te zetten door het aanbrengen 

van zgn. stress-condities. Over het algemeen zijn deze condities er op ge-

richt de snelheid van aanwas van nieuwe cellen te beperken. In dit experi­

ment werd gewerkt met enkele fysische en chemische factoren die deze stress 

kunnen induceren. In de meeste behandelingen kon wel een duidelijke groei-

remming worden vastgesteld, maar dit had geen nieuwe start van de thiofeen-

synthese tot gevolg. Ofschoon met name immobilisatie van losse cellen van 

andere plantesoorten soms wel tot positieve resultaten aanleiding heeft 

gegeven, moet de conclusie zijn dat de toepassing van stress niet altijd het 

gewenste resultaat oplevert. 

Gelet op de resultaten die met name uit de Hoofdstukken IV en V naar 

voren zijn gekomen moet de vraag onder ogen gezien worden of er andere 

methoden te vinden zijn om de positieve correlatie tussen differentiatie en 

secundalr metabolisme te ontkoppelen. Deze vraag wordt in Hoofdstuk VI aan 

de orde gesteld. Verandering van de erfelijke eigenschappen van plantecellen 

door bacterign (Agrobacterium tumefaciens) blijkt misschien zelfs op een-

voudige wijze een dergelijk gewenst effect te kunnen veroorzaken. De infec-

tie met een wild-type en met mutant-stammen van Agrobacterie'n bij Tagetes 

species blijkt daarnaast in sommige gevallen getransformeerde uitgroeisels 

te veroorzaken, die opmerkelijk zijn gezien het feit, dat dezelfde bacterie-

stamnmen bij andere dicotyle planten (o.a. Kalanchoe en tabak) andere typen 

uitgroeisels opleveren. Wanneer echter de uitgroeisels bij alle onderzochte 

staminen onderling worden vergeleken blijken de opmerkelijke uitgroeisels bij 

Tagetes in morfologische zin sterk te worden bepaald door de verschillende 

eigenschapen van de gebruikte Tagetes species. Op deze wijze kan worden aan-

getoond dat met name T. erecta een goede kandidaat is voor de produktie van 

opmerkelijke, genetisch getransformeerde wortelweefsels. Dergelijke wortel-

weefsels kunnen eventueel worden gebruikt voor de produktie van stabiele 

wortelcultures in vloeibaar medium. 
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In tegenstelling tot celsuspensies van T. minuta bleken vloeistofcul-

tures van T. patula, die niet-getransformeerd materiaal bevatten, spontaan 

thiofeen te produceren (Hoofdstuk VII). Tegelijk met de produktie van thio-

fenen viel in de bedoelde cultures de vorming van grote celaggregaten op. 

Dergelijke aggregaten komen niet voor in de fijne celsuspensies van T. 

minuta. Bovendien bleek een goed in water oplosbaar thiofeen (BBTOH), dat in 

planten en callus niet of slechts in geringe mate voorkomt, in veel grotere 

mate in het vloeibare medium te worden uitgescheiden. Dit thiofeen kan 

worden beschouwd als een voorlaatste stap in de synthese van het slecht in 

water oplosbare BBTOAc, dat e'Sn van de eindprodukten is van de thiofeen-

synthese. Van het goed in water oplosbare BBTOH-molekuul werd de aaltjes-

dodende werking iji vitro vastgesteld. Juist deze verbinding blijkt dus 

unieke eigenschappen te hebben en aan alle in het begin genoemde voorwaarden 

te voldoen. Inmiddels kon worden vastgesteld, dat voor de spontane produktie 

van thiofenen de aanwezigheid van vrij grote celaggregaten een vereiste is. 

Dank zij de in dit proefschrift beschreven resultaten zal gericht onder-

zoek verder mogelijk zijn om de regulatie van de produktie van secundaire 

metabolieten en in het bijzonder van thiofenen te beheersen en om nieuwe 

openingen te vinden voor de verdere ontwikkeling van de plantebiotechnologie 

in het algemeen. 
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