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STELLINGEN 

1. De conclusie van Drumm-Herrel & Mohr en Mancinelli & Schwartz, dat één 

enkele lichtpuls geen invloed heeft op anthocyaan synthese in de 

hypocotyl van tomaat is onjuist. 

- D r u m m - R e r r e l , H., and H. M o h r ( 1 9 6 2 ) . P h o t o c h e m . P h o t o b i o l . 3 5 , 2 3 3 -

236 . 

- M a n c i n e l l i , A . L . , and O.M. S c h w a r t z ( 1 9 8 4 ) . Fiant C e l l P h y s i o l . 25, 

9 3 - 1 0 5 . 

- dit p r o e f s c h r i f t . 

2. Het feit dat mutanten met een verminderde fytochroom concentratie lang 

worden tijdens groei in het donker bewijst dat de verrood licht 

absorberende vorm van fytochroom de fysiologisch aktieve vorm is van 

deze fotoreceptor. 

- dit p r o e f s c h r i f t . 

3. De grote hoeveelheid labiel fytochroom, aanwezig in geëtioleerde 

planten, speelt, in tegenstelling tot een tot nu toe gangbare opvatting 

(Hillman, 1972), wel degelijk een rol in de regulatie van zowel 

hypocotyl strekking als anthocyaan synthese. 

- H i l l m a n , W . S . ( 1 9 7 2 ) . in: P h y t o c h r o m e , e d s : K. M i t r a k o s and W. 

S h r o p s h i r e J r . , A c a d . P r e s s L o n d o n , 5 7 4 - 5 8 4 . 

- dit p r o e f s c h r i f t . 

4. Glastuinders moeten rekening houden met het lichtregime van de buren om 

ongewenste fotomorfogenetische effekten te vermijden. 

5. Als de concentratie van een fluorescerende verbinding in cellen wordt 

bestudeerd met een 'fluorescence activated cell sorter', moet de totale 

fluorescentie van een cel worden gecorrigeerd voor het volume van die 

cel. 

6. Optimale biotechnologische produktie van waardevolle verbindingen uit 

plantecellen vereist, naast de huidige 'trial and error' methodes voor 

opbrengstverhoging, meer onderzoek naar reaktieketens en moleculaire 

regulatiemechanismen van de processen op (sub-)cellulair nivo. 



7. Bij het citeren uit wetenschappelijke publikaties moet de volledige 

redenatie worden vermeld en niet slechts een uit het verband gehaalde 

frase hieruit. 

8. Tafeltennis tijdens de lunchpauze verhoogt de slagvaardigheid gedurende 

de rest van de dag. 

9. De nederlandse versie 'Speller' van het tekstverwerkingsprogramma 

"Wordperfect' zou zakken voor het eindexamen Nederlands wegens een 

onvoldoende woordenschat. 

Stellingen behorende bij het proefschrift 'Mutants as an aid to the study of 

higher plant photomorphogenesis' van P. Adamse. 

Wageningen, 11 november 1988 
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ABSTRACT 

Study of photomorphogenesis is often complicated by the interaction of 

different photoreceptors regulating a given process or by the induction of 

multiple effects by a single photoreceptor. Mutants in which particular 

components of the morphogenetic pathways are eliminated provide the 

possibility of studying a more simplified form of photomorphogenesis. Three 

classes of photomorphogenetic mutants are proposed: photoreceptor, 

transduction chain and response mutants. In this study three mutants have 

been used: two have an elongated hypocotyl when grown in white light (the 

aurea (au) tomato mutant and the long hypocotyl (lh) cucumber mutant) and 

one with an enhanced pigment synthesis (the high pigment (hp) tomato 

mutant). The au mutant appears to be a photoreceptor mutant, lacking 

spectrophotometrically and immunochemically detectable labile phytochrome 

(IP) . The lh mutant is proposed to lack stable phytochrome (sP) or its 

function. These mutants enabled the role of sP, IP and blue light (BL)/UV-

photoreceptor(s) in several photophysiological processes to be studied. The 

results of these experiments indicate that IP plays a role in both hypocotyl 

elongation and anthocyanin synthesis in etiolated seedlings. This provides 

direct evidence that the 'bulk' IP is functional. In etiolated seedlings the 

au tomato mutant with its deficiency in IP is 'red-blind' and has a shift of 

fluence rate response curves for hypocotyl inhibition by BL and UV-A 

approximately 1 order of magnitude to higher fluence rates. In light-grown 

plants it is proposed that sP regulates the end-of-day far-red light (FR) 

response and the inhibition of hypocotyl elongation due to light perception 

by the cotyledons. Furthermore, these mutants with reduced phytochrome (P) 

content provide direct experimental evidence that the FR absorbing form of P 

(Pfr) is the active form indeed. If removal of the red light (RL) absorbing 

form of P (Pr) is the active photomorphogenetic process, instead of an 

increase of Pfr, seedlings with a reduced P content would be expected to be 

short. However, dark-grown seedlings of lh mutant and au mutant are both 

elongated. The hp mutant with its enhanced anthocyanin synthesis has enabled 

induction of anthocyanin synthesis in tomato seedlings in response to a 

single RL pulse to be observed, whereas in wild type this synthesis it too 

low to be measured. Study of anthocyanin synthesis with the aid of the hp 

mutant, the au mutant and the au/hp double mutant supports the conclusion 

that P is the terminal photoreceptor involved in tomato and that BL 

(operating through the BL/UV-photoreceptor or P) sensitizes the seedling to 



xii 

P action at a later stage. Using a computer-controlled apparatus for 

continuous growth measurement, designed and constructed for this study, it 

has been possible to show the differences in kinetics of hypocotyl 

inhibition by BL or RL in both the lh mutant and its wild type. In BL 

inhibition started almost immediately after the onset of irradiation, 

whereas in RL a lag period of several hours was observed. 



1. INTRODUCTION 

1.1 The complexity of photomorphogenesis 

Plants not only depend upon light as an energy source (photosynthesis), but 

also utilize it as a source of information, enabling growth and development 

to be tuned to the prevailing light environment (photomorphogenesis). A 

number of photoreceptor pigments have evolved enabling information to be 

sensed over the complete daylight spectrum, since it is physically 

impossible for a single photoreceptor to fulfil this task with the accuracy 

required (Mohr, 1986). These include phytochrome, operating predominantly in 

the red (RL)/far-red (FR) spectral range, blue (BL)/UV-absorbing 

photoreceptor(s) , operating in the BL spectral range and UV-B 

photoreceptor(s) . 

300 400 500 600 700 800 mi 
1 I I L L _ I 

UV-B UV-A violet blue green yellow orange red far-red infra-red 

phytochrome 

EL/UV-A photoreceptor(s) 

UV-B photoreceptor(s) 

These pigments detect parameters of the light environment, such as 

light quality, quantity, direction and duration, and enable developmental 

responses to be controlled accordingly. Many processes in plants are 

controlled by these photoreceptor systems, such as, germination, elongation 

growth, apical hook opening, enzyme activity, leaf expansion, phototropism 

and flowering. 

Phytochrome is the most extensively studied and characterized 

photomorphogenetic photoreceptor in higher plants. Its existence and 

photochromic properties were predicted by Borthwick and Hendricks on the 

basis of physiological experiments (Borthwick et al., 1952). Phytochrome 

exists in two forms: Pr, which absorbs maximally in the RL spectral range at 



around 660 im; and Pfr, which absorbs maximally in the FR spectral range at 

around 730 run. These two forms are reversibly interconvertible by light. 

RL 

-$• Synthesis > Pr Pfr > Response 

FR 

Recently the existence of multiple types of phytochrome (labile and 

stable phytochrome) has been suggested (Vierstra and Quail, 1986; Chapter 

4). In addition, there appear to be multiple working mechanisms of 

phytochrome: very low fluence response (VLFR), low fluence response (LFR) 

and high irradiance response (HIR) (Chapter 3). 

The BL/UV-photoreceptor(s) is/are hypothetical, being postulated on the 

basis of action spectra. As early as 1864 Julius Sachs demonstrated that 

phototropism is only effected by the BL region of the spectrum. Subsequently 

a wide range of physiological BL/UV effects have been studied (see Senger 

and Schmidt, 1986 for review). The predicted photoreceptor which corresponds 

to many action spectra having maxima or shoulders at (370), 420, 450 and 480 

nm (Senger and Lipson, 1987) has been called cryptochrome (Gressel, 1979; 

Schäfer, 1982; Senger and Schmidt, 1986) or BAP (= BL-Absorbing 

Photoreceptor) (Thomas, 1981), but BL- and/or UV-A-receptor is used by many 

workers. On the basis of action spectra it has been predicted that the 

BL/UV-A photoreceptor is a flavin or a carotenoid, but no final proof is yet 

available (Senger and Schmidt, 1986; Horwitz and Gressel, 1986). However, 

flavins rather than carotenoids are strongly suggested to be the 

photoreceptor pigments for BL/UV-A (Mohr et al., 1984; Drumm-Herrel and 

Mohr, 1982a; Drumm-Herrel and Mohr, 1982b). The nature of the UV-B absorbing 

pigment(s) has yet to be elucidated. 

The different photoreceptors can have several modes of (co)-action 

(e.g. independent or interdependent) (Mohr, 1987). With independent 

co-action both photoreceptors can elicit the same response, while with 

interdependent co-action there are several possibilities. Schematic it can 

be visualized as in the figure below, with A and B representing two 

hypothetical photoreceptors. 



Independent : 

; 

Response 

B 

Interdependent : 
A 
4-

B > Response 

B 

A > Response 

The mode of co-action and the relative importance of the different 

photoreceptors is still unclear; some species appear to respond only to 

phytochrome, whereas others utilize both phytochrome and BL/UV-A-

photoreceptor(s) (Gaba and Black, 1979; Holmes, 1983; Attridge et al., 1984; 

Morgan et al., 1980; Chapter 3). 

The existence of different photoreceptors, multiple photoreceptor types 

and working mechanisms means that photomorphogenesis is rather complex. The 

presence of photoreceptors, having overlapping absorption spectra, 

influencing the same response, makes it very difficult to find answers to 

several long standing questions concerning photomorphogenesis. It is 

especially difficult to distinguish the photoreceptors which play a role in 

a particular response; due to maintenance of at least some active Pfr by 

light throughout the daylight spectrum it is impossible to prove that Pfr is 

not required for a given response (Gaba and Black, 1987). It is also 

difficult to discriminate between responses controlled by multiple types of 

a photoreceptor. For example, where the labile and stable types of 

phytochrome are both present action spectra would be indistinguishable for a 

particular physiological response (Pratt and Cordonnier, 1987). 

1.2 The use of photomorphogenetic mutants 

The availability of mutants, in which certain parts of the morphogenic 

pathway are eliminated, provides a useful tool for the study of 

photomorphogenesis. Such genotypes exhibit a simplified photomorphogenesis. 



The relevance of the deletion in the mutant is directly indicated by the 

difference between the mutant and its isogenic wild type. Such mutants could 

provide the potential to ascribe a response to a particular phytochrome type 

and, where photoreceptor co-action has been established, they will enable 

the relative importance of different photoreceptors to be established. 

Mutants that lack a particular photomorphogenetic response may be 

defective in the photoreceptor, in the transduction chain or in the 

responses itself (Koornneef and Kendrick, 1986). Photomorphogenetic mutants 

can therefor be divided simplistically into three groups: 

Photoreceptor 
mutants 

hu 

Transduction chain 
mutants 

Response 
mutants 

> 
> 

-- > 
- > 

> 

Photoreceptor and transduction chain mutants would be pleiotropic for 

all responses under control of a particular photoreceptor whereas a response 

mutant would be restricted to modification of one particular response. Only 

a few photomorphogenetic mutants have been identified (Chapter 2). The 

present study utilizes examples of different mutants, assigned to one or 

other of these catagories, to study photomorphogenesis. 

1.3 Outline of the present study 

Photomorphogenetic mutants of tomato and cucumber have been used in this 

study, which exhibit reduced photo-inhibition of hypocotyl growth in white 

light, compared to their isogenic wild types. Initially a detailed 

characterization of the mutants was carried out. Subsequently experiments 

were designed in an attempt to unravel a number of photomorphogenic 

problems. 

Chapter 2 summarizes literature on photomorphogenetic mutants of higher 

plants and outlines the initial characterization of the mutants used in this 

study. 



Chapter 3 reviews of the literature on the photophysiology of seeds and 

seedlings of cucumber and tomato. Current theories are discussed in 

relationship to the photoniorphogenesis of cucumber and tomato. 

Chapter 4 describes the spectrophotometric measurement of the 

phytochrome contents of seeds, dark-grown seedlings and light-grown plants 

of both cucumber and tomato. Phytochrome measurements using immunochemical 

techniques are also described. These latter experiments were carried out in 

collaboration with Prof. M. Furuya and coworkers in Japan (cucumber) and 

Prof. P.H. Quail and coworkers in the USA (tomato). 

Chapter 5 describes the results of long-term physiological experiments 

with cucumber. 

Chapter 6 describes the results of short-term growth experiments with 

cucumber, together with a detailed description of equipment developed for 

computer-controlled, continuous growth measurement. 

Chapter 7 describes the results of long-term physiological experiments 

with tomato. 

Chapter 8 describes the results of experiments on anthocyanin synthesis 

in tomato seedlings. In these experiments a mutant which exhibits an 

enhanced anthocyanin response to light compared to the wild type has been 

used. 

Chapter 9 discusses conclusions and hypotheses proposed in the previous 

chapters and prospects for the use of the mutants in photomorphogenetic 

studies. 

Parts of the work presented in this thesis have been published or are 

accepted for publication (Adamse et al., 1987; Parks et al., 1987; Koornneef 

et al., 1987; Adamse et al., 1988a; Adamse et al., 1988b (in press); Adamse 

et al., 1988c (in press)) or are in preparation for publication. 
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2. PHOTOMORPHOGENETIC MUTANTS 

2.1 Introduction 

Genotypes (often as induced mutants) in which certain parts of the 

photomorphogenetic pathway are eliminated, provide important tools for 

physiological analysis. Such genotypes will exhibit a photomorphogenetic 

pattern different from and often simpler than that of their wild type. The 

relevance of the deleted part in the genome of the mutant is directly 

indicated by its difference in response compared to its isogenic wild type. 

Mutants with other defects, such as chlorophyll (Chi) or carotenoid 

deficiency, can also be very useful in photomorphogenetic research. 

2.2 Sources of genetic variation 

Genetic variation for photomorphogenetic responses can be obtained in a 

number of ways. Some occurs spontaneously and appears as natural variation 

within a plant species. However, in general variation is achieved most 

effectively by artificial treatments. 

Mutagenesis is normally induced either by chemical treatment or 

irradiation with ionizing radiations. Most induced mutations are recessive: 

a gene loses its function upon mutation, but the corresponding wild type 

allele provides sufficient gene product to 'mask' the mutation. For 

homozygous diploid plant species recessive mutants can be detected in the 

progeny of mutagen treated plants. This progeny, called the M2 generation, 

is obtained by selfing the plants that now are heterozygous due to the 

mutagen treatment. A complication with mutagen treatment is the occurrence 

of more than one mutated gene, especially after the application of high 

mutagen doses. In this situation backcrossing of the mutant to its wild type 

is required to eliminate these disturbances in the genetic background. 

Although mutations most often occur in the nuclear genome resulting in 

mutants that show Mendelian segregation ratios, they may also affect 

organellar DNA. Some mutations in the chloroplast DNA result in defective 

plastids and such defects show maternal inheritance. 

It has been recently recognized that tissue culture, through a variety 

of molecular mechanisms, often acts as an additional effective means of 

mutagenesis. Passage of homozygous plants through a stage of tissue culture 
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may result in monogenic variants. In general these are initially detected in 

the progeny of the tissue culture derived plants. This type of genetic 

variation is called somaclonal variation (Larkin and Scowcroft, 1981; Lee 

and Phillips, 1988). 

As a result of artificial or natural selection, genetic variants are 

available which can be exploited for the study of specific physiological 

responses. This genetic variation can be related to physiological adaptation 

e.g. in the case of differences in the sensitivity to daylength. However, it 

is also possible that differences in photomorphogenic responses hardly 

affect plant phenotype under normal cultivation conditions. Such differences 

will be detected only in specifically designed physiological experiments. 

Examples of these are genetic variations in the relative contributions of 

blue (BL) and red (RL) light in anthocyanin formation in maize (Beggs and 

Wellmann, 1985) and cabbage (Sponga et al., 1986) and in the presence or 

absence of recovery of growth rate after irradiation with a short pulse of 

BL in cucumber (Cosgrove, 1981). To draw valid conclusions about the 

physiological mechanisms underlying these differences it will be necessary 

to know the exact genetic basis. This has not been investigated in most 

cases. The extent of the variation found among wild and cultivated species 

is in practice somewhat limited, because it will not include extreme 

variants with a strongly reduced chance of survival (in nature) or with 

reduced yield (for cultivated species) . 

2.3 Types of photomorphogenic mutants 

2.3.1 Phytochrome mutants 

As described in Chapter 1, photomorphogenetic mutants can be divided 

simplistically into three groups: photoreceptor-, transduction chain- and 

response mutants. 

2.3.1.1 Photoreceptor mutants Spectrophotometric and immunological assays 

are available for the detection of phytochrome (P), therefore it is 

relatively easy to test for the presence of the bulk light-labile pool of 

the photoreceptor. However, the existence of multiple photoreceptor types 

and the presence of several structural genes for P synthesis of the 

individual P types makes the system more complex. Perhaps in practice it is 

only possible to obtain leaky mutants. Nevertheless, such mutants enable the 
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concentration of the photoreceptor to be modified without irradiation. In 

such systems it will be possible to carry out valuable physiological 

experiments which would otherwise be impossible. 

A mutant lacking P would enable the importance of cryptochrome to be 

assessed and help to understand the mode of co-action of cryptochrome and P, 

since both absorb BL. This would be particulary useful in the case of 

prolonged irradiation responses. A mutant lacking one of the P types could 

help understand the importance of light-labile (IP) and light-stable P (sP) 

in different responses. 

The long-hypocotyl mutants at the hy-1 and hy-2 loci of ArabLdopsis 

were the first recognized photoreceptor mutants of higher plants (Koornneef 

et al., 1980). These mutants have been isolated on the basis of their 

increased hypocotyl growth, relative to wild type, when grown in white light 

(WL) . Both of these mutants lack spectrophotometrically detectable P in 

seeds and etiolated seedlings. 

A study of the photocontrol of seed germination of these mutants (Cone, 

1985; Cone and Kendrick, 1986) revealed that the germination remained under 

P control despite the apparent lack of the photoreceptor as indicated by 

spectrophotometry. However, in most cases sensitivity towards RL was reduced 

when compared to wild type. It was speculated that the P involved in the 

control of seed germination was not the bulk labile pool, which is involved 

in the inhibition of hypocotyl growth during de-etiolation. Light-stable P 

is a possible candidate for the photo-induction of seed germination and is 

probably synthesized within the seed during maturation on the mother plant. 

The effect of the light conditions during the latter stages of seed 

development on the subsequent dark-germination and sensitivity to RL, was 

shown by Gettens-Hayes and Klein (1974) for Arabidopsis. 

2.3.1.2 Transduction chain mutants Mutants that contain a particular 

photoreceptor, but lack all photomorphogenetic responses associated with it, 

are most probably transduction chain mutants. Possible mutants which fit 

these criteria are those at the hy-5 locus in Arabidopsis (Koornneef et al., 

1980) . Approaches have been suggested which use mutant selection in specific 

transgenic plants. These aim specifically at the isolation of mutations in 

trans-acting factors that interact with the promotors of light regulated 

genes (Schäfer, 1987; Karlin-Neumann and Tobin, 1987; Chory and Ausubel, 

1987) . If these trans-acting factors are extremely gene specific the mutants 

isolated with these protocols will be response mutants. 
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Mutations may not only lead to the absence of a particular 

photoreceptor or response but may also result in an amplified response. Such 

high-response mutants would facilitate the study of a photoresponse. It has 

been proposed that in the regulation of many processes in plants the 

differences between cells at different stages of development are entirely 

quantitative. The reactions involved are therefore proposed to be already 

occurring in darkness (D) albeit at low rates and in the case of light-

activation only the rate of the process is enhanced (Mohr and Schäfer, 

1983) . whether this enhancement can take place in a cell depends upon its 

'competence'. Competence of a cell means that the cell is able to respond to 

a specific stimulus with a specific response. In the case of 

photomorphogenesis, P can only exert its control function once a particular 

cell or tissue has reached competence (Mohr and Schäfer, 1983). This causes 

differences in P control of a response in cells at different stages of 

development. If this is true, then the levels of activity in D may be below 

detection limits when cells have not yet reached competence. A high-response 

mutant with its amplified response could provide the level of activity to 

support this hypothesis. 

Anthocyanin synthesis, a process which is strongly light regulated and 

under control of at least three photoreceptor pigments (Beggs et al., 1986), 

provides a system to illustrate the usefulness of such mutants. While many 

of the anthocyanin deficient mutants are response mutants, a number are 

particularly interesting since in many species it appears that P plays a 

very important role. Phytochrome mutants would therefore be expected to lack 

photcoontrol of anthocyanin synthesis, but in addition would be pleiotropic 

for o cher effects. 

2.3.1.3 Response mutants By definition, a response mutant will be a mutant 

modified with respect to a specific response. Mutations in structural parts, 

as well as in regulatory parts of light-inducible genes, fall into this 

category. The latter group may lead to a constitutive expression of the gene 

in question. Especially when the latter steps in the transduction chain are 

gene specific, mutations in these factors also result in mutants that will 

be classified as response mutants. Examples are mutants concerning 

photoperiod and day-length sensitivity and flowering. As well as differences 

between species in relationship to photoperiodic induction of flowering, 

variation within species for daylength sensitivity has frequently been 

reported (Murfet, 1977). Probably with the exception of the grass Themeda 
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australis, where short-day (SD), long-day (LD) and daylength-neutral (DN) 

ecotypes have been identified, variation within a species generally ranges 

from daylength-sensitive to daylength-insensitive (SD or LD to ND). Genetic 

differences for this character are often found to be based only on a limited 

number of genes. Although the exact physiological nature of these genes is 

not known, they seem to affect only the flowering response and no other 

photomorphogenic responses except those related to flowering. Therefore 

these genes should be classified as response affecting genes. 

2.3.2 Blue-light/UV-A photoreceptor (cryptochrome) mutants 

While considerable progress has been made with the study of the 

photoreceptors absorbing in the BL region of the spectrum with lower 

organisms such as Phycomyces (Lipson, 1987), studies with higher plants have 

been surprisingly limited. The long hypocotyl Arabidopsis mutants (hy-4) 

(Koornneef et al., 1980), appear to be defective with respect to BL-

absorbing pigment(s). Such mutants provide a direct indication that a 

photoreceptor other than P, absorbing in the BL region of the spectrum, 

plays a role in the regulation of growth, since they are modified 

independently in the BL region, while response in the RL and FR spectral 

region is retained. 

One of the long standing problems in the photobiology of higher plants 

is an understanding of phototropism. At face value, selection of phototropic 

mutants is simple. Recently Poff and co-workers have isolated phototropic 

Arabidopsis mutants (Poff et al., 1987; Khurana and Poff, 1988), some of 

which in addition to reduced phototropism showed no geotropism. This is a 

situation similar to Phycomyces, where some mutants are defective in all 

curvature responses, whereas others were specifically affected in phototro­

pism. Only the latter were considered to be true photoreceptor mutants 

(Lipson, 1987). It will be interesting to see if such phototropic mutants 

also lack the specific BL effect on straight growth (Drumm-Herrel and Mohr, 

1985; Cosgrove, 1986). 

Comparing two albino mutants of Helianthus which have reduced Chi and 

carotenoid contents with their wild type, Wallace and Habermann (1959) 

observed normal phototropism. This indicates that the photoreceptor involved 

in phototropism is not a carotenoid. 

2.3.3 UV-B photoreceptor mutants 

While little work has been carried out with mutants in relationship to 
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BL/UV-A-absorbing photoreceptors, even less is known about photoreceptors 

absorbing in the UV-B region of ths spectrum. The problems of interpretation 

of long-term experiments are very similar to those in the BL/UV-A spectral 

region, since UV-B absorbed by the protein and/or chromophore of P produces 

significant amounts of Pfr under continuous irradiation conditions. This 

fact makes the study of photoreceptor co-action difficult. While ingenious 

experiments have clearly implicated a separate UV-B photoreceptor in a 

number of species (Wellmann, 1971; 1976; Drumm-Herrel and Mohr, 1981) the 

relative role played by P and UV-B photoreceptors remains largely unknown. 

For example, wheat seedlings (Triticum aestivum, cv. Schirokko) can only 

produce anthocyanin after a pretreatment with UV-B, whereas other 

wavelengths are ineffective (Mohr and Drumm-Herrel, 1983). However, 

following such a pretreatment P has been shown to play an important role. An 

analysis of different cultivars of maize has demonstrated the existence of 

genetic variability with respect to anthocyanin synthesis in response to UV-

B (Beggs and Wellmann, 1985) . This demonstrates that suitable genotypes to 

facilitate study may be found among either cultivars or biotypes in the case 

of natural populations. 

2.3.4 Other mutants useful in photomorphogenetic research 

Mutants lacking photosynthetic pigments have played an important role 

in photosynthesis research (Somerville, 1986). They can also be useful in 

the study of photomorphogenesis. For example, it is possible to test for the 

involvement of other photosystems in the absence of photosynthesis. Mutants 

deficient in photosynthetic pigments enable the role of other photoreceptors 

in a particular physiological response to be observed. An example is the 

relative roles of light absorbed by photosynthetic pigments and other 

photoreceptors in the photocontrol of stomatal movement (Zeiger, 1986). 

Isolated achlorophyllous stomata of the orchid Paphiopedilum opened in 

response to BL but not to RL, while stomata in intact leaves, surrounded by 

chlorophyllous tissue, showed a response to both BL and RL. This indicates 

that besides photosynthesis, an additional photo-process is involved in this 

response. Experiments carried out by Habermann (1973; 1974) with albino 

mutants of Helianthus indicated that photosynthesis is not involved in the 

light-dependent stomatal opening. These experiments suggested that P was 

also involved, together with a specific BL-dependent photoreaction. 

A complete lack of photosynthetic pigments would obviously be lethal. 

Genes for albinoism can be maintained in 'cultivation' either as 
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heterozygotes or as seedlings studied before the stored food reserves, 

deposited in the seed while on the mother plant, are exhausted (Somerville, 

1986). Such albino mutants seedlings of barley have been used by Borthwick 

et al., 1951), before P had been identified, to demonstrate that 

photosynthetic pigments were not involved with the photomorphogenetic 

processes associated with de-etiolation. Alternatively some albino 

phenotypes have been studied after grafting them onto normal green plants 

(Wallace and Habermann, 1959). Albino seedlings also provide a suitable 

tissue for the spectrophotometric measurement of P in de-etiolated 

seedlings. White regions of variegated leaves have also been used to 

demonstrate the existence of P in light-grown plants of a number of species 

(Spruit, 1970). 

Screening as a consequence of high Chi content can effect light-

regulated processes in plants. Herbicides, such as Norflurazon, which result 

in bleached seedlings have been used in photomorphogenesis research to 

prevent the artifacts. However, comparing the response of two cultivars of 

cabbage differing in Chi content with such bleached seedlings it appears 

that the use of bleaching agents can produce undesirable side effects 

(Mancinelli et al., 1988). The use of genotypes with reduced Chi content 

could be a safer approach. Recently Piening and Pof f (1988) have used 

carotenoid deficient mutants of maize (Robertson, 1975) to demonstrate the 

importance of screening in establishing the light gradient within the 

coleoptile necessary for light direction detection in phototropism. 

Hormone mutants provide a means of testing the involvement of hormones 

in the transduction chain between perception by the photoreceptor and the 

ultimate physiological response. An example is the hypothesis that 

gibberellin (GA) is an integral part of the P transduction chain that 

results in the promotion of seed germination (Hilhorst and Karssen, 1988). 

The effect of P may either mimic GA action or influence the tissue 

sensitivity towards endogenous GA's. Furthermore, the P-controlled end-of 

day far-red (FR) response has been proposed to be a function of the level of 

GA since pea mutants that appeared to be blocked at this step, show a much 

reduced response (Jolly et al., 1987). Alternatively, the involvement of P 

in GA synthesis has been shown in the le pea mutant, where a Pfr-induced 

blockage of 3j8-hydroxylation of GA20 to GA^ causes a decrease in elongation 

growth of light-grown plants (Campell and Bonner, 1986; Sponsel, 1986). The 

use of such mutants clearly offers a more elegant way of controlling 

internal hormone levels than the application of inhibitors which always have 
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problems of uptake, transport and specificity of action associated with 

their use. 

Modification of GA metabolism either by inducing an over-producion of 

GA or an increase in sensitivity to GA, may give rise to tall growing 

(giant) plants. The Iv pea mutant has a similar biosynthesis and degradation 

of GA as wild type, but appears specifically to have an enhanced sensitivity 

to GAi in the light (Reid and Ross, 1988). No difference is seen in D, 

therefore these workers concluded it is a photomorphogenic mutant. J.B. Reid 

(Pers. comm.) claims a large effect in RL, but not in FR. 

The pro mutant of tomato (Stubbe, 1957) is another mutant with long 

internodes in WL, which is similar in leaf morphology to a wild type plant 

treated with GA. However, the data published argue against it being a GA 

over-producer (Jones, 1987; Jupe et al., 1988). These giant mutants, which 

clearly resemble the wild type plants that have been grown under condition 

of supplementary FR to lower the <p value, are an additional source of 

potential photoreceptor mutants. 

2.4 The isolation and preliminary characterization of three mutants used in 

this study 

2.4.1 Tomato au mutant 

During selection of GA mutants, a mutant was isolated, which had been 

induced by treating seeds of cv. Moneymaker with ethylmethanesulfonate (EMS) 

and required GA for germination. In contrast to GA-deficient mutants this 

mutant was characterized by a long hypocotyl and a marked reduction in Chi 

content when grown in WL (Koornneef et al., 1981). The P level in etiolated 

seedlings of this mutant appeared to be reduced. A genetic analysis revealed 

that this mutant was allelic with the aurea (au) locus located on chromosome 

1. 

Mutants with a phenotype similar to that of aurea, although less 

extreme, have been called yellow green (yg). Another mutant allele was later 

isolated at the yg-2 locus (called auroid) and has been mapped to chromosome 

12 (Koornneef et al., 1985). A third locus, yg-6, for which an aurea type 

mutant was described, has been demonstrated to be an au allele. The location 

of yg-6 on chromosome 11 can be explained by a translocation between 

chromosome 1 and 11 during the irradiation induction of the yg-6 mutant 

(Koornneef et al., 1986). Another mutant at the au locus, also with 
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physiological characteristics similar to those of the previously described 

au mutants, was isolated recently in the progeny of tomato plants derived 

from tissue culture by Lipucci di Paola et al. (in press). 

Perez et al. (1974) have suggested that the yg-6 mutant phenotype could 

be explained by an over-production of GA's. However, the reduced seed 

germination of this and other au mutants is an unlikely phenotype for a GA 

over-producer (Koornneef et al., 1985). Buurmeijer (1987) has examined 

photosynthesis in yg-2 and has observed a reduced Chi a/b ratio compatible 

with previous observations of the smaller photosynthetic unit in yg-6 

(Miles, 1971). Presumably, this is an expression of the reduced P action via 

gene expression on chloroplast development. That Chi and chloroplast 

defects are associated with possible P photoreceptor mutations is also shown 

by the hy-1 and hy-2 Arabidopsis mutants. Furthermore, reduced levels of P 

(40% of the level in the wild type) have been measured in a number of barley 

mutants deficient in Chi (Atkinson et al., 1980). However, most Chi 

mutations found in higher plants probably represent mutations at later 

stages in the Chi synthesis pathway. It must not be forgotten that P and Chi 

possess a common tetrapyrrole chromophore and therefore mutations in 

tetrapyrrole synthesis could lead simultaneously to deficiency in Chi and P. 

2.4.2 Cucumber lh mutant 

A mutant of cucumber was isolated in the progeny of irradiated Cucumis 

plants of complex hybrid origin (Van der Knaap and de Ruiter, 1978) which 

had very long hypocotyls when grown in WL. The leaves were lighter green 

than those of wild type, but not as different from wild type as the au 

tomato mutant. This monogenic recessive cucumber mutant was found to be 

allelic to a similar mutant (Koornneef and van der Knaap, 1983) described 

and named lh by Robinson and Shail (1981) . The original mutant was crossed 

with the cucumber cultivar Stereo (Deruiterzonen Ltd.) and the subsequent 

generations were obtained by selfing. In the experiments described in this 

thesis Fg, F7 and F 3 lines derived from this cross were used providing a 

strong genetic homogeneity within the lines. Mutant (lh/lh) and wild type 

(Lh/Lh) lines are derived from the same F4 plant, thus a reasonable amount 

of isogenicity is present between them. This is also indicated by the 

similarity between wild type and mutant in characters not associated with 

the lh gene (e.g. ratio of female and male flowers; fruit characteristics). 

Seeds were obtained by self-pollinating plants growing in a greenhouse 

during the summer. 
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2.4.3 Tomato hp mutant 

A mutant of tomato has been described by Reynard (1956), which has an 

exceptionally high pigment content, resulting in dark coloured stems and 

fruits. Subsequently the gene for this high pigmentation, hp, has been used 

by many breeders in an attempt to develop new varieties. It was noticed that 

in varieties containing this gene the level of anthocyanin synthesis was 

increased (Kerr, 1965; Ibrahim et al., 1968). Furthermore, germination was 

retarded, seedling growth less vigorous than that of wild type (Thompson et 

al., 1962; Kerr, 1960; 1965) and the carotenoid and ascorbic acid content of 

fruits was increased (Ibrahim et al., 1968). The hp mutant also shows 

pleiotropic effects that may be associated with P, such as a reduced plant 

height especially under red and yellow light (Mochizuki and Kamimura, 1985) 

and higher Chi levels particularly in fruit tissue, both characteristics 

being opposite to the au phenotype. A mutant with enhanced anthocyanin 

synthesis could be very useful in the study of P control of anthocyanin. 
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3. PHOTOPHYSIOLOGY OF SEEDS AND SEEDLINGS OF CUCUMBER AND TOMATO 

Cucumber (Cucumis sativus L.) and tomato (Lycopersicon esculentum L.) are 

known to respond to both light absorption by phytochrome (P) and blue 

(BL)/UV-A-receptor(s) (Thomas and Dickinson, 1979; Cosgrove, 1981; Drumm-

Herrel and Mohr, 1982b; Gaba and Black, 1979). Numerous processes, 

associated with growth and development of cucumber and tomato, have been 

studied. Describing and comparing these different light responses gives an 

insight into the photoregulation of growth and differentiation. In addition 

the possible co-action of different photoreceptors in these species is 

discussed. Responses of other species are discussed where relevant. 

3.1 Hypocotyl elongation 

3.1.1 Short-term irradiation 

Brief (5 min) irradiation of plants with red light (RL), establishing a 

high Pfr/P ratio (<p) [where P is the total phytochrome (Pr + Pfr) and Pr and 

Pfr are the RL- and far-red light (FR)-absorbing forms respectively)], or 

BL, establishing an intermediate <p value, inhibits hypocotyl elongation in 

both etiolated and de-etiolated seedlings of cucumber. This effect can be 

reversed when immediately followed by a brief (10 min) irradiation with FR, 

establishing a low tp value (Meyer, 1968; Black and Shuttleworth, 1974; 

Cosgrove, 1981; Gaba and Black, 1985b). 

Brief irradiation with FR at the end of a daily photoperiod (end-of-day 

treatment) stimulates the elongation rate of light-grown (de-etiolated) 

cucumber seedlings; this response can be reversed by RL (Gaba and Black, 

1985a; 1987). A similar response can be elicited by BL; the extent of this 

end-of-day BL effect is similar to the stimulation of hypocotyl growth 

produced by a RL+FR mixture establishing the same ip value as established by 

BL (Gaba and Black, 1987). This indicates that the <p value established at 

the end of the light period to a great extent determines the elongation rate 

in subsequent darkness (D). 

Apart from similarity between the responses to short-term irradiation 

with RL or BL there is also a clear difference: the time course of the 

growth responses in RL and BL differs in many species. Detailed growth 

measurements with etiolated cucumber seedlings demonstrate that 

BL-inhibition begins within 60 s and a fast recovery occurs in subsequent D, 
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whereas the RL-inhibition has a lag period of about 30 min and a slow 

recovery in D (Meyer, 1968; Cosgrove, 1981; Cosgrove and Green, 1981). Other 

species showed similar differences in lag periods after irradiation with BL 

or RL: Sinapis (Cosgrove, 1982), pea (Cosgrove, 1981). 

De-etiolated cucumber seedlings show the same differences: rapid decrease 

of growth rate after 5 min exposure to BL and a fast recovery in D, whereas 

the RL-induced inhibition starts only after an extended lag period of 5-6 h 

and recovers in D with a lag period of about 8 h (Gaba and Black, 1979; Gaba 

and Black, 1983). However, shorter lag periods have been reported for de-

etiolated seedlings of several other species. Morgan and Smith (1978) 

observed a rapid increase in stem extension rate of de-etiolated Chenopodium 

album seedlings induced by treatment of the whole plant with supplementary 

FR added to background white light (WL) (lag period of 7 min). This was also 

seen by Morgan et al. (1980) in similar experiments with de-etiolated 

Sinapis seedlings (lag period of 10-15 min). Apparently changes in P (Ü) 

during the main light period can manipulate growth rate within minutes in 

light-grown plants. The differences between these results and those of Gaba 

and Black may be a consequence of the different light treatments, species, 

tissue age, and pretreatment conditions used. 

Experiments with Sinapis seedlings have clearly shown that supplementary 

FR had no effect on the growth inhibition by BL during the first 5 min of 

the response (Cosgrove, 1982) and it was concluded that this rapid BL 

inhibition was mediated by a specific BL-photoreceptor. The slower response 

with a lag period of hours was proposed as being mediated by P. 

The complex response of de-etiolated cucumber seedlings to short-term 

irradiation with WL can be explained by assuming the involvement of two 

different photoreceptors. After onset of the WL an immediate decrease in 

hypocotyl growth rate was observed. After the 2-3 h irradiation period 

recovery in D was rapid, but 2 h later a second decrease in growth rate 

occurred followed by a slow recovery (re-etiolation) (Gaba and Black, 1979). 

It is likely that the first decrease and the first recovery are mediated by 

the BL-photoreceptor, whereas the second decrease and the second recovery 

are mediated by P. 

Growth inhibition of tomato seedlings by short-term irradiation has 

hardly been investigated; only responses to end-of-day FR pulses have been 

reported. Similar to results with cucumber seedlings brief irradiation with 

FR at the end of the daily photoperiod stimulated the elongation rate of 

light-grown tomato seedlings (Tucker, 1975; Selman and Ahmed, 1962; Decoteau 
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et al., 1988). 

3.1.2 Long-term irradiation 

Continuous irradiation with RL or BL inhibits hypocotyl elongation 

compared to plants in D for both etiolated and de-etiolated seedlings of 

cucumber and tomato (Meyer, 1958a; Meyer, 1958b; Meyer, 1968; Black and 

Shuttleworth, 1974; Thomas and Dickinson, 1979; Koornneef et al., 1985). 

However, irradiation with FR has different effects in etiolated and 

de-etiolated seedlings. Etiolated cucumber seedlings are inhibited by 

prolonged FR, however the effect becomes less apparent in older seedlings. 

De-etiolation appears to diminish the sensitivity to FR (Black and 

Shuttleworth, 1974). This phenomenon has also been observed in tomato 

seedlings (Thomas and Dickinson, 1979). 

The interpretation of such high irradiance responses (HIR's) is clearly 

not simple. This is especially true for the observation that continuous 

irradiation with FR is more effective in inhibiting hypocotyl elongation of 

dark-grown seedlings of both cucumber and tomato than continuous irradiation 

with RL (Thomas and Dickinson, 1979). Nevertheless, the dual-wavelength 

experiments of Hartmann (1966) demonstrated that P can be implicated as the 

photoreceptor responsible for the sharp response effectiveness at 716 nm in 

the case of lettuce. The FR maximum has been explained on the basis of the Ü 

ratio which results in the maintenance of the highest amount of Pfr over the 

experimental time period. It reflects a compromise between two competing 

reactions: one reaction in which Pfr inhibits growth, and a second in which 

the amount of P is reduced due to destruction of Pfr. The most effective 

light should be that which establishes a level of Pfr low enough to minimize 

the rate of Pfr destruction, yet sufficient to inhibit growth. While RL 

maintains a higher <p value than FR at equilibrium it results in a rapid 

depletion of the P pool, whereas FR maintains a lower q> value, but retains a 

higher P concentration. 

A gradual shift of the FR-HIR to a RL-HIR upon de-etiolation is 

explained by similar reasoning. After prolonged irradiation the pool of 

labile P (IP) is depleted due to destruction of Pfr. The remaining P is 

generally considered as more stable. The existence of a small pool of stable 

P (sP) has been indicated by destruction kinetics (Jabben et al., 1980; Heim 

et al., 1981; Broekman and Schäfer, 1982) as well as by immunological 

studies (Vierstra and Quail, 1986). More details are given in Chapter 4. 

Where Pfr destruction is absent or in balance with P synthesis the effect 
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will be a shift of the HIR maximum towards wavelengths establishing a high <p 

value, i.e. towards RL. 

This explanation of the FR-HIR peak of effectiveness is now generally 

accepted, but clarification of the fluence-rate dependency often observed, 

remains so far unresolved. If the HIR depended exclusively on the 

maintenance of a specific <p value, it should be independent of fluence rate. 

The equation for photoequilibrium maintained in vitro after saturating 

irradiation (Butler et al.,1964; Butler,1972), 

<p-[Pfr]/[P] - er $r/(er$r+ef r$f r) 

(where er and efr are the extinction coefficients of Pr and Pfr, $ r and $fr 

are the quantum efficiencies for photoconversion of Pr and Pfr) and data of 

others (Smith, 1975; Hayward, 1984; Kelly and Lagarias, 1985; Frankland, 

1986) indicate that q> is a function of the wavelength and independent of 

fluence rate. However, an extensive amount of data clearly indicate a 

fluence-rate dependency of the HIR (e.g. cucumber: Meyer, 1958a; Meyer, 

1959; Meyer and Engelsma, 1965; Gaba and Black, 1985b; Thomas and Dickinson, 

1979; tomato: Meyer, 1959; Thomas and Dickinson, 1979). One suggestion is 

that there are one or more dark (thermal) reactions which modify Pfr (Jabben 

et al., 1982). If these dark reactions are sufficiently rapid, then the 

photoequilibrium is never reached, because Pfr is removed by dark reactions 

nearly as fast as it is formed by photoconversion from Pr. Thus the amount 

of P in the Pfr form will depend on the rate of photoconversion of P, i.e. 

on the fluence rate. 

Several authors state, that Pfr alone can not account for all aspects 

of the HIR. It is necessary to hypothesize an additional feature, which is a 

function of the rate of photoconversion of Pr to Pfr. It might act either 

with Pfr (Schäfer, 1975; Mohr et al., 1979; Johnson and Tasker, 1979; Wall 

and Johnson, 1983) or independently of Pfr (Smith, 1970). A general 

characteristic of most models designed to explain the fluence-rate 

dependency of the HIR is the importance of the rate of photochemical 

turnover (cycling) between Pr and Pfr which is a function of the fluence 

rate. 

What is also difficult to explain on the basis of P alone is the 

effectiveness of BL in HIR's. Irradiation with BL establishes a specific <p 

value (=! 0.4), because both Pfr and Pr absorb to some extent in the BL 
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spectral region, as can be seen in the absorption spectra of Pfr and Pr. 

However, the inhibition of hypocotyl elongation of de-etiolated cucumber 

seedlings by continuous BL is not the same as measured with light of other 

wavelengths, maintaining a similar <p value (Gaba et al., 1984). If only P 

was involved, equal <p values should produce equal responses irrespective of 

the wavelengths used. However, adding BL to a background of high irradiance 

yellow light (Thomas and Dickinson, 1979) or RL (Attridge et al., 1984), 

which is predicted to have no significant effect on the <p value maintained, 

has a marked inhibitory effect on growth. In both cucumber and tomato 

seedlings the inhibition of hypocotyl elongation by supplementary BL was 

related to its fluence rate. The inevitable conclusion is that there is 

co-action in the BL region between P and a separate BL/UV-absorbing 

photoreceptor (cryptochrome). 

Growth inhibition due to the BL/UV-photoreceptor may be distinguished 

from those mediated by P by several criteria, (i) BL acts directly upon the 

hypocotyl of both etiolated and de-etiolated cucumber seedlings, whereas in 

de-etiolated seedlings the influence of RL is predominantly mediated through 

light absorption by the cotyledons, which relay the signal to the hypocotyl 

below (Black and Shuttleworth, 1974; Cosgrove, 1981). (ii) Whereas very low 

fluence rates of RL are capable of inhibiting hypocotyl elongation of 

de-etiolated cucumber seedlings, fluence rates of BL lower than 

3 fimol m"2 s"l fail to inhibit (Attridge et al., 1984). Adding FR to low 

fluence rate BL (just above this threshold) decreases the inhibitory effect 

of BL, suggesting that some Pfr is necessary for inhibition by BL (Gaba et 

al., 1984). This can be explained by the so called 'Presence Theory' (Gaba 

and Black, 1987). This theory states that the BL/UV-A-photoreceptor requires 

the presence of a particular amount of Pfr (or a particular <p value) for its 

action to be expressed; high <p values would enhance the effectiveness of BL. 

However, the alternative explanation that BL enhances the 

effectiveness of P cannot be eliminated. This would result in additional 

growth inhibition when BL is added to a background irradiation establishing 

a high <p value and also when irradiation with RL is preceded by BL, if the 

'effectiveness amplification' can be preserved after the end of the BL 

irradiation. Observations in favour of this explanation were made by Meyer 

(1958a). The increase of hypocotyl length of etiolated cucumber seedlings in 

BL (several days) after pretreatment with RL (48 h; 16 h RL/8 h D cycles) 

was similar to the increase of hypocotyl length of seedlings irradiated with 

RL alone. Seedlings pretreated with 48 h BL followed by RL were inhibited 
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more than seedlings irradiated with BL or RL alone. This indicates that the 

inhibitory effect of RL is increased by the preceding BL irradiation. This 

observation can be explained by the so called 'Responsiveness Theory' (Gaba 

and Black, 1987). This theory states that the only effect of BL is to 

establish and maintain responsiveness to P. 

Presence Theory 

Pfr 
I 

BL/UV-A-photoreceptor > Response 

Responsiveness Theory 

BL/UV-A-photoreceptor 
I 

Pfr > Response 

3.2 Germination 

Some seeds have an absolute light requirement for germination, whereas 

others germinate in complete D. Both tomato and cucumber are examples of 

species whose seeds exhibit a high dark germination over a broad temperature 

range (Mancinelli et al., 1966; Yaniv et al., 1967). This is possibly due to 

the relatively high level of residual Pfr in the dry seeds: in tomato ~ 40% 

of the spectrophotometry detectable P is Pfr (Mancinelli et al., 1967) and 

in cucumber ~ 75% (Spruit and Mancinelli, 1969). This conclusion is 

supported by the fact that when P in cucumber seeds is converted 

predominantly to the Pr form by irradiation of the ripe fruits with FR, the 

dark germination of seeds from these fruits, that have been subsequently 

dried in D, is strongly reduced (Gutterman and Porath, 1975). Both tomato 

and cucumber seed germination can be inhibited by light, intermittent or 

prolonged exposure usually being necessary. However, temperature plays an 

important role in determining the effectiveness of a light treatment. 

In many dark-germinating seeds studied Pfr has a promotive effect on 

germination (Cone and Kendrick, 1986). Irradiation with light pulses 

establishing low <p levels usually inhibit germination, whereas high <p levels 

fail to inhibit. 

At suboptimal temperatures germination of tomato seeds can be inhibited 
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by a single FR pulse (establishing a low <p level) and the effect is reversed 

by a RL, BL or WL pulse (all producing a high <p level) applied immediately 

after FR (Mancinelli et al., 1966; Mancinelli et al., 1967; Yaniv and 

Mancinelli, 1968). At temperatures about 25 °C or higher the number of FR-

inhibited seeds in a population decreases. At these high temperatures 

germination of tomato seeds can no longer be inhibited by a single FR-pulse 

(Mancinelli et al., 1967). According to Yaniv et al. (1967) germination of 

cucumber seeds can not be inhibited by a single FR pulse, but Frankland 

(1986) reported that this inhibition is possible if the FR pulse is given at 

a suboptimal temperature (15 °C) within 40 h of sowing. Suzuki and Takahashi 

(1969) even managed to inhibit germination at 25 °C, but only when the FR 

pulse was applied during the period 16-18 h after sowing. It is possible 

that Pfr action at 15 and 25 °C is complete after 40 and 18 h D, 

respectively. Therefore germination is no longer inhibited by removal of Pfr 

after these time intervals. 

During prolonged irradiation experiments germination is still controlled 

by P, but whereas the low fluence response (LFR), induced by short-term 

light treatments, appears to be controlled by Pfr levels (<p) alone, under 

prolonged irradiation the fluence-rate dependent P cycling rate (H), plays 

an additional important role. This dual action of light may be represented 

as photocontrol at two steps in the sequence of events leading to 

germination, one promoted by Pfr, the other blocked by an inhibitory 

photoreaction, dependent on the rate of P interconversion or cycling 

(Bartley and Frankland, 1982; Frankland, 1986). In addition, the latter 

reaction appears to be able to re-induce a Pfr requirement in cases where 

the Pfr promotive reaction appears to be complete, i.e. where the seeds have 

escaped FR reversibility. 

Pfr promotes H inhibits 

i 4-

-> > > > Germination 

Prolonged irradiation with FR inhibits germination of tomato and cucumber 

seeds both at high and sub-optimal temperatures. However, at temperatures 

above 20 °C only very narrow band FR (730 nm) , establishing a very low <p 

value (<0.02), can inhibit germination of cucumber seeds (Eisenstadt and 
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Mancinelli, 1974). The Pfr level required to induce a particular germination 

percentage appears to be lower at higher temperatures. 

Whereas short irradiation with RL, BL or WL promotes germination after a 

FR pulse, exposure to prolonged irradiation causes an inhibition or at least 

a delay of germination of tomato (Yaniv and Mancinelli, 1968) and cucumber 

(Eisenstadt and Mancinelli, 1974). This inhibition of germination can be 

(partially) alleviated in subsequent D, but after prolonged FR, a RL pulse 

is required for promotion of germination. Apparently, during prolonged 

irradiation with RL, BL or WL conditions are unfavourable for germination 

(the high H outweighing the stimulative effect of the relatively high <p 

level maintained), but in subsequent D germination occurs because of the 

relatively high residual q> value. After prolonged FR irradiation <p is low 

and germination can only be attained by a pulse of light establishing a 

high cp value. 

The possibility remains that photo-inhibition of germination by BL 

involves a pigment other than P. Frankland (1986) reports that in cucumber, 

BL has an inhibitory effect greater than would be predicted from the <p value 

it maintains. However, this 'extra' effect disappears when BL is mixed with 

RL to give a high <p value. 

3.3 Anthocyanin synthesis 

The biosynthesis of anthocyanins in plant tissues either requires light or 

is enhanced by it (Beggs et al., 1986). In response to short irradiations 

(minutes) with RL small amounts of anthocyanin are formed in several 

species, e.g. cabbage, rye (Mancinelli, 1984a; 1984b; Mancinelli and Rabino, 

1985) and mustard (Lange et al., 1971). The effect of a single RL pulse can 

be reversed by a FR pulse applied immediately afterwards, indicating that P 

is involved. The extent of the RL/FR reversible response is small, 

nevertheless significant (Mancinelli, 1985), when compared to the extent of 

the response brought about by prolonged irradiations. However, no inductive, 

RL/FR reversible anthocyanin production has been observed in dark-grown 

seedlings of tomato, sorghum and turnip (Drumm and Mohr, 1978; Mohr and 

Drumm-Herrel, 1981; Drumm-Herrel and Mohr, 1982a; Mancinelli and Schwartz, 

1984; Mancinelli, 1985; Drumm-Herrel, 1987). A light pretreatment is 

required, before an inductive response, working via P, can be observed in 

these seedlings. The light-dependent enhancement of the inductive RL/FR 
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reversible response is affected by: (i) the duration and spectral quality of 

the light pretreatraent, (ii) the duration of the dark interval between the 

end of the pretreatment and the application of the light pulse, and (iii) 

seedling age (Mancinelli, 1985). 

Whereas short irradiations are only capable of inducing the synthesis 

of a small amount of anthocyanin, the synthesis of large quantities requires 

prolonged exposures to high fluence rates. The general characteristics of 

this response to prolonged irradiation are those typical of the HIR: (i) 

requirement of prolonged exposures (hours to days) to high fluence rates of 

visible and near visible light, (ii) the extent of the response is a 

function of duration and fluence rate of the irradiation, and (iii) the 

response does not show RL/FR reversibility (Downs, 1964; Hartmann, 1966; 

Lange et al., 1971; Mancinelli, 1985). The full expression of the HIR 

requires prolonged exposures, but not necessarily continuous irradiation. 

Intermittent light treatments were also very effective in inducing 

anthocyanin synthesis. Irradiations given as cyclic treatments demonstrate 

RL/FR reversibility, the extent of which is a function of the duration of 

the dark interval between successive irradiations (Mancinelli et al., 1974; 

Mancinelli and Rabino, 1975; 1985). This type of treatment indicates the 

involvement of P. 

The spectral sensitivity of anthocyanin synthesis under prolonged 

irradiation is different in different species. Three main groups of HIR 

spectral sensitivity can be distinguished (according to Mancinelli (1983)). 

Group I: UV/BL, RL and FR are all effective in inducing anthocyanin 

synthesis, even though the relative effectiveness of the different spectral 

regions may be different in different systems. Examples are mustard and red 

cabbage (Mohr and Drumm-Herrel, 1981; 1983; Sponga et al., 1986; Mancinelli, 

1984b). Group II: UV/BL and RL are active; the effect of FR is negligible. 

Examples are apple skin sections, leaf disks of red cabbage and Spirodela 

polyrrhiza (Mancinelli, 1977, 1980; Siegelman and Hendricks, 1958). Group 

III: The UV/BL region is the only active region. Examples are sorghum and 

wheat (cv. Schirokko) seedlings (Drumm-Herrel and Mohr, 1981; Mohr and 

Drumm-Herrel, 1983). The spectral sensitivity of anthocyanin synthesis in 

some other systems appears to be intermediate between these groups. For 

example, in seedlings of tomato and rye maximum action is in the UV/BL 

region as in group III, but RL and FR are also effective, although much less 

than UV and BL (Drumm-Herrel and Mohr, 1982a; 1982b; Mancinelli and 

Schwartz, 1984). 
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Apart from enhancing the inductive, RL/FR reversible anthocyanin 

synthesis, light pretreatments also influence subsequent prolonged 

irradiations; they cause a reduction in the photosensitivity of the HIR and 

a change in spectral sensitivity (Mancinelli and Schwartz, 1984). It has 

been suggested that this difference in sensitivity between dark- and light-

grown seedlings is the consequence of changes in the relative amount of IP 

to sP, as indicated by results obtained in studies of the effectiveness of 

intermittent light treatments on HIR anthocyanin synthesis (Mancinelli and 

Rabino, 1985). P action in dark-grown seedlings might be mainly due to IP 

which is lost rather rapidly by destruction and would have only limited time 

to act. In light-grown seedlings a larger proportion of P action might be 

exercised by sP which is relatively stable and would have an extended time 

to act. This is consistent with the observation, that the differences in 

effectiveness between intermittent light treatments with short and long dark 

intervals between successive irradiations are more pronounced in dark-grown 

seedlings than in light-grown ones, where action would be expected mainly 

due to IP and sP, respectively (Mancinelli and Rabino, 1985). 

As discussed earlier in this chapter (3.1.2) it is difficult to explain 

the effectiveness of BL in HIR's on the basis of P alone. Results of 

experiments based on the 'light-equivalence principle' have indicated that 

cryptochrome is involved in the photoregulation of anthocyanin synthesis by 

BL in tomato seedlings (Sponga et al., 1986, Drumm-Herrel and Mohr, 1982a). 

There was a significantly higher anthocyanin synthesis in tomato seedlings 

after treatments with BL than after treatment with light from a RL+FR source 

producing a similar P photoequilibrium and cycling rate (<P3L ~ <PRL+FR' ̂ BL = 

^RL+FR [where k is the P cycling rate]). This indicates that cryptochrome as 

well as P play a role in this response. 

The effect of the pretreatments has been interpreted as an increase in 

responsiveness to Pfr (Drumm-Herrel and Mohr, 1982a; Oelmuller and Mohr, 

1984). This responsiveness amplification can be mediated by P, a BL/UV-

photoreceptor (cryptochrome) or a UV-B photoreceptor. Oelmuller and Mohr 

(1985) proposed a model to describe the mode of co-action between BL/UV and 

light absorbed by P in the light-mediated synthesis of anthocyanin in 

sorghum seedlings (Fig. 3.1). Pfr is suggested to be the terminal effector 

involved in the photoregulation of anthocyanin synthesis, whereas the 

cryptochrome-mediated process is required to establish responsiveness 

towards Pfr. The interaction between cryptochrome and P in the 

photoregulation of anthocyanin varies between species. In tomato it appears 



33 

that this interaction is not obligatory, since pretreatment with RL or FR, 

absorbed by P and not by cryptochrome, is also effective. When continuous 

irradiation was applied to induce anthocyanin formation in tomato seedlings 

without an inductive pulse at the end of the light treatment, BL, UV-A and 

UV-B exerted a strong response, whereas FR and RL were only slightly 

effective (Drumm-Herrel and Mohr, 1982a). It is therefore possible that in 

tomato BL/UV only functions to enhance the responsiveness to Pfr. 

Cryptochrome 

Phytochrome 

l N 

I 
I 
l 

sfast reaction 

slow reaction 

-»Terminal photoresponse 

(appearance of anthocyanin) 

very fast reaction sfast reaction 

I 
I 

UV-B photoreceptor 

Fig. 3.1 Suggested mode of co-action between blue light (BL)/UV 
and light absorbed by phytochrome in light-mediated anthocyanin 
formation in the Sorghum seedling. > : Temporal sequence of 
events set in motion by the effector Pfr and leading to the 
terminal response; >: Light-dependent reactions which determine 
the effectiveness of the effector Pfr (i.e. the responsiveness of 
the anthocyanin-producing mechanism towards Pfr). The point of 
action of UV-B, relative to the action of BL/UV-A (via 
cryptochrome), remains undecided at present. After Oelmüller and 
Mohr (1985). 
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4. PHYTOCHROME 

4.1 Introduction 

The photochromic photoreceptor pigment phytochrome (P) was postulated by 

Borthwick et al. (1952) on the basis of action spectra (i.e. the relative 

effectiveness of different wavelengths of light for the induction and 

reversion of several red (RL)/far-red light (FR) reversible responses). They 

proposed that phytochrome is synthesized in darkness (D) in the RL-

absorbing, inactive form (Pr) which can be phototransformed into the FR-

absorbing, active form (Pfr). Upon irradiation with FR, Pfr is 

photoconverted back to the inactive Pr form. The name phytochrome (meaning 

'plant colour') was introduced by W.L. Butler some time later (Borthwick, 

1972). 

RL 

-> Pr Pfr 

FR 

Attempts were made to detect phytochrome by physical means. Seedlings grown 

in D were first examined, since these lack chlorophyll which would have 

masked the postulated (blue-green) photoreceptor P. Since P displays 

photoreversible shifts in absorption, it was possible to detect P in plant 

tissue by spectrophotometry. Using the absorption maximum of Pr and Pfr (660 

and 730 run respectively) as measuring beams the absorbance differences 

between the two wavelengths were measured after actinic irradiation with RL 

and FR. The total P is proportional to the difference in absorbance 

difference (AA A) between 660 and 730 nm. Alternatively the absorbance 

differences between 730 and 800 nm can be monitored to prevent interference 

from other pigments (e.g. chlorophyll) which absorb in the RL spectral 

region. However, in this case the absorbance change will only be about half 

of that obtained with 660 and 730 nm. 

From the shape of the action spectra Borthwick et al. (1952) suggested 

that P possessed an open-chain tetrapyrrole chromophore similar to that of 

the algal photosynthetic antenna pigment C-phycocyanin. This prediction has 
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been shown to be accurate (Rüdiger, 1986). Fig. 4.1 illustrates the 

structure of the chromophore, its similarity to C-phycocyanin, the 

attachment of the tetrapyrrole to the apo-protein and the possible 

conformational changes that occur upon phototransformation. 

C- phycocyanin 

Phytochrome (Pr) 

Z-E isomers 

syn-anti conformera 

Fig.4.1 The chromophore of phytochrome and C-phycocyanin with the 
possible types of configurational change that could occur upon 
phototransformation of phytochrome. (After Kendrick and de Kok, 
1983) 

Extraction of P in its native state has proved difficult because of the high 

susceptibility of P to proteolysis by endogenous proteases. The first 

purifications of P yielded a protein with a molecular mass of 60 kDa 

('small' P) . Using more rapid techniques and sources low in endogenous 

proteases P samples with bands corresponding to molecular masses of 114, 118 

and 120 kDa were observed. This type of preparation is commonly called '120-

kDa' or 'large' P (Gardner et al., 1971; Pratt, 1982). More recently it was 

discovered that the full-length molecule ('native' P) of Avena has a 

molecular mass of 124 kDa (Vierstra and Quail, 1982, Vierstra et al, 1984). 

However, there appears to be some variability in apparent molecular mass of 

full-length P from different plant species (Vierstra and Quail, 1986). 

Biochemical studies indicate that, in the native chromoprotein, the 

polypeptide is folded into two principal domains: a globular, chromophore-

bearing, NH2-terminal domain and a more open, C00H-terminal domain. These 

two domains are linked by a proteolytically vulnerable segment (Jones and 

Quail, 1986; Lagarias and Mercurio, 1985; Vierstra et al., 1984). 
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Phototransformation-induced conformational changes of the molecule have 

been indicated by studying the differential sensitivity to proteolysis of 

the Pr and the Pfr form. A small segment of the NH2-terminal domain is 

especially susceptible to cleavage when P is in the Pr form, while a small 

region in the COOH-terminal domain is more susceptible in the Pfr form (for 

review see Vierstra and Quail, 1986). 

It has been found that at least four genes code for P in etiolated 

Avena seedlings (Hershey et al., 1985). Sequence analysis of the coding 

region of a cDNA clone from Cucurbita enabled a comparison to be made 

between the phytochromes of these two species (Sharrock et al., 1986). 

Within a short period the sequence analysis of P from a number of other 

species should be available, thus enabling identification of highly 

conserved regions of the molecule (M. Furuya and P.H. Quail, pers. comm.). 

These data will provide information on conserved structural features of the 

P molecules of monocotyledons and dicotyledons. Sequences involved in at 

least two properties of the P molecule are expected to be conserved: (i) 

those involved in interactions with the chromophore, since the spectral 

properties of the photoreceptor from diverse sources are highly conserved; 

and (ii) those involved in the biological 'active site' of the molecule, 

since it is reasonable to expect that the molecular mechanism of P action 

will be conserved between species (Quail et al., 1987). The level of 

sequence homology in the NH2-terminal two-thirds of the polypeptide is 

higher than in the COOH-terminal one-third. This suggests that the NH2-

terminal domain is more likely to be involved in critical structural and 

functional properties of the photoreceptor. 

Although spectrophotometric assays are very useful to detect and 

quantify P they have some serious limitations, e.g. spectrophotometric 

assays will not detect non-chromophore containing and non-photoreversible P, 

and the presence of chlorophyll, especially abundant in light-grown plants, 

drastically alters AA A signals by screening and fluorescence artifacts 

(Pratt, 1983). 

Since P is a protein it is an excellent antigen. Immunochemical assays 

of P offer several advantages over spectrophotometric assays, including 

their high sensitivity, their ability to detect spectrally aberrant 

molecules and their insensitivity to other pigments such as chlorophyll. 

Their disadvantage is that they generally cannot, at the present time, 

discriminate between the Pfr and Pr forms. 

The current understanding of the chemical properties of P comes mainly 
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from the study of P extracted from etiolated tissue. There are two principal 

reasons for this situation. Firstly, chlorophyll in light-grown tissues 

prevents spectrophotometry assay of P. Secondly, light-grown plants contain 

one or two orders of magnitude less P than etiolated plants (Pratt and 

Cordonnier, 1987). However, with the development of methods for purifying P 

to a high degree and the production of very specific monoclonal antibodies, 

immunochemical assays increase the possibilities of studying P, especially 

in light-grown plants. 

There have been indications of the existence of more than one type of P 

from several fields of research. At first these indications originated from 

hypotheses, attempting to explain apparent paradoxes (so called 'P 

paradoxes') between physiological and in-vivo spectrophotometric data 

(Hillman, 1967; Jabben and Holmes, 1983). They suggested that plants contain 

at least two pools of P: a bulk pool that is inactive, at least with respect 

to some photomorphogenetic responses, and a quantitatively minor pool that 

is active. On the basis of physiological (Mancinelli, 1984; Mancinelli and 

Rabino, 1985) and spectrophotometric evidence (Jabben et al., 1980; Heim et 

al., 1981; Broekman and Schäfer, 1982; Jabben and Holmes, 1983) it has been 

proposed, that the 'bulk' of the P in etiolated or re-etiolated seedlings is 

unstable, whereas the P in light-grown seedlings is relatively stable. 

Immunological (Shimazaki and Pratt, 1985; Abe et al., 1985; Tokuhisha et 

al., 1985; Vierstra and Quail, 1986; Konomi et al., 1987) studies have also 

provided evidence that phytochromes from green and etiolated seedlings are 

different from each other. 

Applying a procedure for rapid elimination of chlorophyll from P-

containing extracts to permit spectral assay, it was demonstrated that P 

from green tissue had a Pr absorption maximum at 4 to 15 nm shorter 

wavelength than Pr from etiolated tissue (Tokuhisha et al., 1985). 

Furthermore, the green-tissue molecule is not immunoprecipitated by 

polyclonal or monoclonal antibodies against etiolated-tissue P and has a 

proteolytic peptide map distinct from that of etiolated-tissue P (Tokuhisha 

et al., 1985; Shimazaki et al., 1985). However, it is not yet known whether 

the green-tissue molecule is a gene product different from that in etiolated 

tissue or the same gene product that has been subsequently modified 

(processed). 

There is as yet no agreed terminology for the different types of P. The 

bulk pool of P has been described as labile (IP) (Jabben and Holmes, 1983; 

Schäfer et al., 1984) or type I P (Smith and Whitelam, 1987; Nagatani et 
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al., 1987; Konorai et al., 1987), whereas the P from light-grown plants, 

proposed to be stable, has been described as light stable (sP) or type II P. 

In addition etiolated(-oat) P and green(-oat) P has been used by several 

workers (e.g. Pratt and Cordonnier, 1987; Tokuhisha et al., 1985). However, 

the terms etiolated- and green-P are confusing, since both etiolated and 

light-grown tissue contain both P types. For example, in embryonic axis of 

pea Konomi et al. (1987) detected P I and II after 12 h incubation in D (ca. 

0.2 and 0.05 fig/axis respectively) and also P I and II after 12 h incubation 

in the light (both ca. 0.05 ̂ g/axis). 

Although evidence has been presented that two types of P exist in both 

etiolated and light-grown seedlings, it is very difficult to discriminate 

between responses controlled by IP or sP, since both are present and their 

absorption spectra are practically indistinguishable (Pratt and Cordonnier, 

1987). Action spectra for responses controlled by both would therefore be 

similar. Photoreceptor mutants, lacking one of the P types or its function, 

could provide a useful tool to ascribe a response to one of the P types. In 

this chapter the P contents of dark- and light-grown plants of two possible 

P photoreceptor mutants and their isogenic wild types are presented. 

4.2 Materials and methods 

4.2.1 Plant material 

The long hypocotyl mutants of cucumber (Ih) and tomato (au) and their 

isogenic wild types, as well as the 'high-pigment' mutant of tomato (hp) 

used in the present experiments have been described in Chapter 2. 

4.2.2 Dual-wavelength assay of phytochrome 

For measurements of the P content of etiolated and de-etiolated tissue 

a custom-built dual-wavelength spectrophotometer was used with the measuring 

beam set at 730 and the reference beam at 806 nm (Spruit, 1970). The 

photoreversible difference in absorbance difference (AA A) following 

saturating alternate actinic RL and FR irradiation is proportional to the 

total P present. The actinic light consisted of a 250-W quartz-iodide 

projection lamp filtered through interference filters (Balzer B40 type, 

Balzer Liechtenstein) , 10 nm half band width at 50% of the transmission 

maximum. 
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4.2.3 Difference spectra of phytochrome photoconversion 

The difference spectra for P phototransformation were determined using 

an Aminco DW-2a spectrophotometer equipped with Midan analyzer. Initially 

the cuvettes were irradiated with saturating RL (660 nm). The spectrum was 

scanned and recorded into the Midan analyzer. One cuvette was then 

irradiated with saturating FR (730 nm) and the spectrum again scanned and 

recorded. The two spectral scans were then subtracted, amplified and plotted 

to reveal the difference spectrum for P phototransformation. The actinic 

light has been described in 4.2.2. 

4.2.4 Phytochrome measurement in light-grown tissues. 

Although P spectrophotometry is not feasible with green leaves, flower 

petals often have sufficiently low levels of chlorophyll to enable 

measurement (Spruit, 1971). P measurement is also possible in light-grown 

tissue bleached with the herbicide Norflurazon. Bleaching is a consequence 

of the inhibition of carotenoid biosynthesis and the resultant 

photobleaching of chlorophylls (Rombach et al., 1982). This technique is 

therefore usually restricted to young seedlings that have sufficient food 

reserves to sustain growth. The strategy adapted in this study was to grow 

plants until they had several mature photosynthetic leaves and then 

selectively treat the apex with Norflurazon. 

4.2.5 Sample preparation 

For determination of difference spectra seeds were spread out on 

moistened filter paper in Petri dishes in D at 25 °C. After a specific D 

interval either seeds or seedlings were packed into 2 cuvettes (path length 

5 mm) and cooled to 0 °C. 

The P content of etiolated tissue was measured in intact dark-grown 

hypocotyls and roots (tomato) or 5 mm segments of hypocotyls (cucumber) 

packed into cuvettes with path length 6 mm for tomato and 2.3 mm for 

cucumber. For the assay of P in flower petals, the petals were removed from 

plants (both cucumber and tomato) growing in a greenhouse during the summer 

and immediately packed into the cuvettes (path length 2 mm). For measurement 

in bleached leaves, plants (both cucumber and tomato) were initially grown 

in the phytotron under a WL/D regime of 16 h WL (8 W m"^ [PAR, 36 /jmol 

m"2 s~l])/ 8 h D at 20 °C. After the plants were about 6 weeks old the tips 

of the plants were dipped into a solution of 10"5 M Norflurazon (Sandoz AG, 

Basel) twice a week, until the new leaves were devoid of chlorophyll. A 
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uniform sample of leaves was selected for wild type and mutant, cut into 

small pieces and packed into the cuvettes (path length 2 mm). 

4.3 Results and discussion 

4.3.1 Phytochrome in dark-grown cucumber lh mutant and wild type. 

The wild type and the lh mutant have equal amounts of 

spectrophotometrically detectable P in seeds (Fig. 4.2). The increase in P 

o o o o o o o 
o • • • • • o • 

10 15 ?0 25 30 

Period of imbibition (h) 

Fig.4.2 The phytochrome (P) content of seeds during imbibition at 
25 °C expressed as AA A73Q.8QQ mB of wild type (o) and lh mutant 
(•) . Demonstrates similar P content and apparent P synthesis in 
the lh mutant and its wild type. 

level after 15 h D incubation and preceding germination indicates that 

apparent synthesis of P in wild type and the lh mutant is similar. In a few 

experiments hypocotyls of dark-grown seedlings of the wild type and the lh 

mutant were measured. The results showed similar high levels of P (Table 

4.1). Difference spectra for P phototransformation are also identical (Fig. 

4.3). Apparently there is no difference in bulk IP between wild type and lh 

mutant. 
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Table 4.1. Photochrome content of etiolated and de-etiolated 
tissue of cucumber. Note that, since the samples have different 
scattering properties, comparison should only be made between wild 
type and mutant for each particular tissue. 

Phytochrome 

Etiolated 
seedlings 

Bleached 
leaves 

Flower 
petals 

content (10 AA A73Q 

Wild type 

3.92 

1.30 ± 0.07 

0.78 ± 0.06 

800 nm ± S.E.) 

lh mutant 

4.10 ± 0.10 

0.42 ± 0.06 

0.37 ± 0.04 

700 

Wavelength (nm) 

Fig.4.3 Difference spectrum for phytochrome photoconversion (far-
red irradiated minus red irradiated) in dark-grown seedlings of 
the cucumber lh mutant and its wild type. No difference is 
observed between wild type and mutant. 

4.3.2 Phytochrome in light-grown cucumber lh mutant and wild type. 

Figure 4.4 and Table 4.1 demonstrate that the P content of both flower 

petals and bleached leaves in the lh mutant is about 35-50% of that in the 

wild type. The difference between lh mutant and wild type could be 
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Flower petals 

wild type 

Bleached leaves 

Relative phytochrome content 

Fig.4.4 Phytochrome measurements in flower petals and Norflurazon-
bleached leaves of light-grown cucumber plants. Demonstrates that 
the level of phytochrome is reduced in the lh mutant compared to 
the wild type in light-grown tissues. The actual AA A730-8OO nm *-n 

wild type flower petals and bleached leaves were 0.78 ± 0.06 x 
1 0 " 3 and 1.30 ± 0.07 x 10"3 respectively. 

attributed to sP being absent in the lh mutant. The detectable P in the lh 

mutant is proposed to be the steady state level of IP. Only a minor pool of 

sP is thought to be present in etiolated seedling. The proposed absence of 

sP would therefore be impossible to detect in the presence of the large 

background pool of IP. The reported spectral differences between IP and sP 

lie in the red region of the spectrum (Tokuhisha et al., 1985). Since P 

level is so low and the traces of chlorophyll and their reactions preclude 

measurement in the red spectral region, measurements were restricted to 730 

v 800 nm. The conclusion about the absence of sP in the lh mutant is 

therefore only tentative and confirmation will await the availability of 

specific antibodies against sP and IP for cucumber. 

4.3.3 Phytochrome in tomato au mutant and wild type. 

Previous measurements of Koornneef et al. (1985) and those presented 

in Table 4.2 using dual-wavelength spectroscopy indicated that the au mutant 

is deficient in photoreversible absorbance changes attributable to P or 

possesses a pigment with an altered spectrum. Dual-wavelength analysis 

cannot discriminate between these two possibilities. The in vivo difference 

spectra presented in Figure 4.5 demonstrate that etiolated seedlings of the 

au mutant contain less than 5% (which is the detection limit) of the P level 
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found in the wild type. This is in agreement with immunochemical data of 

Parks et al. (1987), which indicate that etiolated seedlings of the au 

mutant are deficient in a major immunodetectable protein (116 kDa) normally 

present in the wild type. It has been demonstrated that this protein has the 

properties of phytochrome. 

Table 4.2. Phytochrome content of etiolated and de-etiolated 
tissue of tomato. Note that since the samples have different 
scattering properties comparison should only be made between wild 
type and mutant for each particular tissue. 

Phytochrome content (10^ AA AyßQ.gpo run - S.E.) 

Wild type au mutant hp mutant 

Etiolated 7.98 ± 0.17 0.00 6.56 ± 0.50 

seedlings 

Bleached 0.95 ± 0.10 0.56 ± 0.03 0.87 ± 0.12 
leaves 

Flower 0.50 ± 0.04 0.28 ± 0.03 nd 
petals 

nd = not determined 

A mutation affecting the production of mRNA coding for P could result in the 

observed low P level. However, Sharrock et al. (1988) found no evidence for 

abnormal transcription of the P gene and they found that fully functional P 

mRNA is present in the au mutant. Another explanation of the P deficiency 

could be an abnormal instability of the synthesized protein. This 

instability could be the result of (i) an alteration of a critical site or 

region in the polypeptide chain so that it is degraded by the protein 

turnover system of the cell, (ii) an abberation in the chromophore 

biosynthetic pathway resulting in the synthesis and attachment of an altered 

chromophore could induce instability of the molecule, (iii) due to an 

aberration in the chromophore, protein, or chromophore attachment step the 

chromophore has not been attached and the incomplete molecule is unstable. 

Evidence for pea and oat in which gabaculine, an inhibitor of chromophore 

synthesis, was employed, argues against (iii) and indicates that the 

chromophoreless polypeptide is stable (Jones et al., 1986; Konomi and 

Furuya, 1986; Elich and Lagarias, 1986). Finally, a specific degradation 

pathway for P could have been altered so that the pigment is always degraded 



49 

within the cell. However, this explanation seems unlikely, since an altered 

degradation pathway would undoubtedly lead to degradation of other proteins 

and cause several other lesions in the mutant. In tomato there also appear 

l ^ ^ f l ^ ^ ! ^ 

au mutant 

500 600 700 800 

Wavelength (nm) 

Fig.4.5 Difference spectrum for phytochrome photoconversion (far-
red irradiated minus red irradiated) in dark-grown seedlings of 
the tomato au mutant and its wild type. No phytochrome is 
detectable in the mutant. 

to be multiple genes coding for P. One has been mapped to chromosome 10, 

whereas the au locus is situated on chromosome 1 (Koornneef et al., 1986; 

Sharrock et al., 1988). While the other genes have yet to be mapped it seems 

unlikely that the au lesion is the result of a single amino acid mutation of 

the protein. 

The spectrophotometrically determined P content of both flower petals 

and bleached leaves in the au mutant is about 40-50% of that in the wild 

type (Table 4.2 and Fig. 4.6). The difference between au mutant and wild 

type could be attributed to IP being absent in the au mutant. The detectable 

P in the au mutant is proposed to be the level of sP. However, as with the 

lh mutant of cucumber described above, the conclusion is only tentative and 

confirmation will await the availability of specific antibodies against s? 

and IP. Attempts using antibodies raised against other species have so far 

failed to detect P in light-grown tomato (B.M. Parks and P.H. Quail, pers. 

comm.). 
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Flower petals 

wild type 

Bleached leaves 

Relative phytochrome content 

Fig.4.6 Phytochrome measurements in flower petals and Norflurazon-

bleached leaves of light-grown tomato plants. Demonstrates that 

the level of phytochrome is reduced in the au mutant compared to 

the wild type in light-grown tissues. The actual AA A730-8OO nm ^ n 

wild type flower petals and bleached leaves were 0.50 ± 0.04 x 

1 0 " 3 and 0.91 ± 0.12 x 1 0 " 3 respectively. 

4.3.4 Phytochrome in the tomato hp mutant. 

Etiolated seedlings as well as light-grown, and Norflurazon bleached, 

leaves of tomato wild type and the hp mutant appear to have equal amounts of 

spectrophotometrically detectable P (Table 4 . 2 ) . The consequences of these 

results will be discussed in Chapter 8 in relationship to anthocyanin 

synthesis. 
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5. LONG TERM GROWTH EXPERIMENTS WITH CUCUMBER 

5.1 Introduction 

Cucumber seedlings have been used extensively in the study of plant 

photomorphogenesis (Chapter 3) . Both phytochrome (P) and a specific blue 

light (BL)-absorbing photoreceptor (cryptochrome) are involved in the 

regulation of development (Thomas and Dickinson, 1979; Cosgrove, 1981; 

Drumm-Herrel and Mohr, 1982; Gaba and Black, 1985b). There appears to be 

interaction between these photoreceptor systems, but the nature of this 

interaction has not yet been fully elucidated. Experiments to date have been 

equivocal, making it impossible to quantify the relative importance of the 

two photoreceptors. Mutants which lack one photoreceptor or its action would 

provide a useful means of estimating the nature of the photoreceptor 

interaction. Photomorphogenetic mutants have been described for both 

Arabidopsis (Koornneef et al., 1980) and tomato (Koornneef et al., 1985; 

Chapter 2) . These mutants are characterized by their long hypocotyls and 

pale green leaves when grown in white light (WL). Some have reduced 

germination, reduced photo-induction of anthocyanin synthesis, and no 

spectrophotometrically detectable P in etiolated seedlings. The phenotype of 

some of the Arabidopsis and tomato mutants is consistent with them being 

deficient in P and/or its action. 

Recently, mutants of cucumber were identified which also have long 

hypocotyls in WL (Robinson and Shail, 1981; Koornneef and van der Knaap, 

1983). Although less extreme than the Arabidopsis and tomato mutants under 

glasshouse conditions, this long hypocotyl (lh) mutant of cucumber exhibits 

an apparent reduced chlorophyll content compared to the wild type. 

In Chapter 4 it was shown that wild type and Ih mutant seeds have equal 

amounts of spectrophotometrically detectable P. The increase in P level 

after 15 h dark (D) incubation, yet preceding germination, indicates that 

apparent D synthesis of P in wild type and the lh mutant is similar. 

Spectrophotometric measurements of P in flower petals and Norflurazon-

bleached leaves indicated that light-grown tissues contain 35-50% of the P 

level in the wild type (Chapter 4) . The P detectable in light-grown plants 

of the lh mutant was proposed to be labile P (IP) and the difference between 

mutant and wild type P levels represents the level of light-stable P (sP) in 

WL. The difference between responses of lh mutant and wild type will 
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therefore reflect the quantitative role of the P deficient in the lh mutant. 

In this chapter the results of experiments concerning elongation growth of 

the lh mutant and its isogenic wild type are presented and the possible role 

of the different P types in several elongation growth responses is 

discussed. 

5.2 Materials and methods 

5.2.1 Plant material 

The long hypocotyl (lh) mutant of cucumber used in the present 

experiments has been described in chapter 2. 

5.2.2 Light sources. 

A description of the light sources used in these experiments can be 

found in appendix 'Light sources'. The fluence rates used are given in the 

figure legends. 

5.2.3 Screening under broad spectral band light sources 

Seeds of wild type and lh mutant were sown in transparent plastic boxes 

(10x10x8 cm) on 5 layers of filter paper saturated with distilled water, and 

placed in D for 3 d for germination at 25 °C. After this time 10 seedlings 

were selected per box with approximately the same hypocotyl length, 2 boxes 

being used for each treatment. Seedlings were transferred to continuous UV-

A, BL, RL, and FR. The D controls were kept in wooden boxes covered with 

black polythene and were placed in each of the light cabinets. In a second 

series of experiments seedlings were de-etiolated by a period of 8 h WL 

before transfer to the broad-band cabinets. The hypocotyls were measured 

daily under a dim green safelight, using a ruler. 

5.2.4 Seedling growth in continuous light 

Seeds of wild type and lh mutant were sown in 10 cm diameter plastic 

flower pots filled with potting compost and incubated in D for 3 d at 25 °C. 

Seedlings of approximately the same hypocotyl length of both wild type and 

lh mutant were selected prior to the onset of irradiation. At least 20 

seedlings were used for each treatment. The length of each hypocotyl was 

measured daily with a ruler over a period of several days. In addition, 

epidermal cell lengths of plants grown in continuous D, WL or RL were 
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estimated as described in 5.2.5. At the end of the experiments the following 

parameters were determined: the area of cotyledons and leaves; the fresh and 

dry weights of the hypocotyls, cotyledons and leaves; and chlorophyll a and 

b content of leaves, cotyledons and hypocotyls by the method of MacKinney 

(1941). 

5.2.5 Estimation of cell length 

A small amount of quick-hardening resin (Xanthopren) was spread daily 

on the hypocotyls and peeled off after hardening. The resin contained an 

impression of the epidermal cells from which an accurate copy was made with 

polystyrene toluene which could be examined under the microscope. Mean 

epidermal cell length was estimated by measuring representative cells of 5 

to 10 impressions from independent hypocotyls. Wild-type cell lengths were 

measured in the middle of the hypocotyl. Cell lengths of the lh mutant were 

measured in the lower and upper part of the hypocotyl and then averaged to 

estimate the mean lengths of the epidermal cells, since cell length appeared 

to increase linearly between the upper and lower part of the hypocotyl. The 

estimated number of cells per hypocotyl was obtained by dividing the 

hypocotyl length by the mean epidermal cell length and is not the actual 

total number of cells composing the epidermis of the hypocotyl. 

5.2.6 Red/far-red reversibility experiments 

Seeds of wild type and lh mutant were imbibed for 4 h in distilled 

water, rinsed 3 times in tap water and sown in moistened vermiculite. After 

90 h at 25 °C in D etiolated seedlings were selected for approximately the 

same hypocotyl length (7-9 cm). De-etiolated seedlings were obtained 

similarly, but 90 h after sowing they were transferred to WL for 30 h at 

25 °C, before selection for approximately the same hypocotyl length (wild 

type: 6-7 cm; lh mutant: 8-9 cm). At the time of selection the seedlings 

were transferred to fresh vermiculite. The following daily irradiation 

schedules were given: D; 5 min RL; 15 min FR; 5 min RL followed immediately 

by 15 min FR. After 4 cycles the hypocotyl lengths and fresh weights of the 

cotyledons were measured. These results were then expressed as mean 

percentage change with respect to the D controls. 

5.2.7 Simulated phototropism 

De-etiolated seedlings were grown in the same way as described in 

5.2.6., except that the WL treatment was extended to 54 h in the case of the 
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lh mutant. This was necessary to achieve the same developmental stage of the 

cotyledons as in the wild type. After de-etiolation the seedlings were 

selected for approximately the same hypocotyl length (wild type: 5-6.5 cm 

and lh mutant: 7.5-9 cm) and transferred to fresh vermiculite. One cotyledon 

of each seedling was covered with aluminium foil. The seedlings were 

maintained in D or irradiated with WL, RL or BL from above. After 24 h each 

seedling was removed from the vermiculite and photocopied. From the 

photocopies the angle of curvature of each hypocotyl was estimated using a 

protractor. 

5.2.8 Treatments with gibberellin 

Seeds of cucumber were imbibed in distilled water for 24 h in D at 

25 °C and then transferred for 24 h to a gibberellin (GA4+7> solution (a 

commercial gibberellin (GA) solution [Berelex, 27 /iM GA4+7] diluted to 

concentrations in the range 10"-5 to 10" , as described in the figure 

legends). This treatment is referred to as a 'seed soak'. The seeds were 

then sown in plastic boxes (10x10x8 cm) on 5 layers of filter paper 

saturated with distilled water and placed in D for 2 d for germination at 

25 °C. Seedlings used for irradiation with broad band light sources were 

treated with 10"* GA4+7 and irradiated as described under 5.2.3. Seedlings 

used for the GA dose-response curve were treated as described under 5.2.3, 

but with a daily irradiation schedule of 8 h WL (8 W m"^ [PAR, 

36 jtmol m s" ] and 16 h D. 

5.2.9 Presentation of results 

Results are expressed as mean ± S.E. of representative experiments and 

have all been repeated at least once with qualitatively similar results. 

5.3 Results and discussion 

Both the wild type and the lh mutant of cucumber showed similar high dark 

germination. The reduction in germination observed in some experiments was 

not related to the genotype but to the seed harvests from individual fruits. 

Allowing fruits to ripen longer on the mother plant before harvest resulted 

in consistent high dark germination. 

When D-grown seedlings of cucumber were transferred to continuous WL, 

the difference in hypocotyl growth of the wild type and the lh mutant 
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becomes obvious (Fig. 5.1). Preliminary examination of the cell lengths of 

the epidermal cells (Fig. 5.1) indicated that the difference in length of 

the hypocotyls appears to be due to increased cell elongation rather than an 

increase in cell number. 

7/ / 
i 

I 

Fig. 5.1 Seedlings of cucumber wild type and lh mutant germinated 
in darkness for 4 d and transferred, when the hypocotyls were in 
both cases about 4 cm long, to continuous white light 
(45 /umol m"2 s"1) for 7 d at 25 °C. The bar indicates 5 cm. 
Demonstrates the delayed de-etiolation of the lh mutant and its 
longer hypocotyl compared to its wild type. Below are 
representative impressions of the hypocotyl epidermal cells, which 
suggest that the difference in length of the hypocotyls lies 
predominantly in cell elongation. The bar indicates 0.1 mm. 

When germinated in D and transferred, either directly or after de-etiolation 

by 8 h WL, to continuous UV-A, BL, or FR, hypocotyl growth of the wild type 

and of the lh mutant was very similar (Fig. 5.2). However, in RL, compared 



to the wild type, the lh mutant shows a significant reduction in hypocotyl 

inhibition. In continuous D (end-point determination, no safelight used) no 

difference was observed in hypocotyl growth rates between the wild type and 

the lh mutant. Only the wild type showed a slight inhibition when exposed to 

green safelight compared to the 'absolute' D control. 
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Fig. 5.2 The increase in hypocotyl length ± S.E. in 7 d of 
etiolated and de-etiolated [pretreated with 8 h white light (WL) 
of 45 jjmol m"2 s"-*-] wild type and lh mutant in broad band light 
sources (3.6 /«nol m"2 s"1 ± 5%); UV-A, blue (BL) , red (RL) , 
far-red (FR) , or darkness (D) . Seedlings were grown for 4 d in 
darkness before transfer to the light. Demonstrates reduced 
responsiveness of the lh mutant to RL compared to its wild type. 

The lh mutant showed clear biphasic growth kinetics in WL (Fig. 5.3): an 

initial rapid growth (about 3 d) followed by an extended linear growth 

phase. In WL and RL there was only slight inhibition in the case of the lh 

mutant compared to D. The wild type was strongly inhibited in both WL and 

RL. The epidermal cells of the lh mutant were distinctly longer than those 

of the wild type. The mean cell lengths of epidermal cells of the lh mutant 
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Days 

Fig. 5.3 Hypocotyl length ± S.E. in darkness ( A,A ) and light 
(o,»), and estimated number of epidermal cell lengths per 
hypocotyl (D,M) during growth in white light (WL [45 /imol 
m"2 s"1]) jr red light (RL [14 /anol m~2 s"1]) at 25 °C of cucumber 
wild type (open symbols) and lh mutant (closed symbols). The 
actual mean cell lengths of the hypocotyl epidermal cells over the 
time period 8 - 18 d in wild type and lh mutant were 6 ± 0.3 and 
32 ± 0.1 /un respectively in WL and 11 ± 1 and 32 ± 1 /un 
respectively in RL. The arrow indicates the onset of continuous 
irradiation. Demonstrates the initial rapid growth during which 
cell division occurs and a second growth phase, dominant in the lh 
mutant, which is predominantly a consequence of cell elongation. 

and of the wild type were 32 ± 0.1 and 6 ± 0.3 /im respectively in WL and 

32 ± 1 and 11 ± 1 /im respectively in RL over the time period 8-18 d. Knowing 

the mean epidermal cell- and hypocotyl-lengths, an estimate was made of the 

number of cells per hypocotyl which indicated that the lh mutant and the 

wild type have comparable numbers of cells per hypocotyl (Fig. 5.3). From 
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these results it is clear that cell division in the lh mutant is more or 

less restricted to the first growth phase whereas the second linear growth 

phase observed in WL is predominantly cell extension. 

The reason for the 10-20 fold difference in hypocotyl length between 

the wild type and the lh mutant that ultimately results in WL does not 

appear to be a consequence of differences in cell division. The estimation 

of the number of cells per hypocotyl, although only an approximation, 

revealed that in all cases during the second phase of growth, irrespective 

of hypocotyl length, the estimated number of cells per hypocotyl was 

remarkably constant, falling in the range 500-700 cells. The differences in 

hypocotyl length between the wild type and the lh mutant must therefore be 

predominantly a consequence of cell elongation. This can be thought of as a 

prevention or retardation of cell maturation. The Thompson hypothesis (1954; 

1959) proposes that RL accelerates all phases of development of plant cell 

division, enlargement and maturation, resulting in reduced cell numbers and 

size. It is therefore possible to postulate that it is the last phase of 

cell maturation which is retarded in the lh mutant. 

Examination of the chlorophyll content of the cotyledon (on a mg 

chlorophyll per g fresh weight basis) revealed no difference between the 

wild type and the lh mutant in WL and RL. There was also no difference in 

chlorophyll a/b ratio. In WL a small reduction of chlorophyll content of the 

leaves of the lh mutant compared to the wild type was observed. 

Seedlings germinated in D or de-etiolated by 8 h WL were exposed to 

daily irradiation of a pulse of RL, FR, or RL followed immediately by FR to 

test for the involvement of P in elongation growth. The results (Fig. 5.4) 

demonstrate that in the case of the wild type both etiolated and 

de-etiolated seedlings exhibit P control of hypocotyl elongation and 

cotyledon expansion. The lh mutant, although exhibiting reduced response, 

clearly has hypocotyl elongation growth and cotyledon expansion controlled 

by P, although not in de-etiolated seedlings. 

The wild type and the lh mutant are similar with respect to: (i) rate 

and percentage of seed germination, (ii) P content of seeds (Chapter 4), 

(iii) apparent P synthesis in D which precedes germination (Chapter 4), (iv) 

the hypocotyl growth rate in D and their epidermal cell lengths (Fig. 5.3), 

(v) hypocotyl inhibition by UV-A and BL (Fig. 5.2), (vi) RL/FR reversibility 

of hypocotyl growth of etiolated seedlings (Fig. 5.4). The process of 

de-etiolation appears to be retarded in the lh mutant compared to the wild 

type (compare cotyledon expansion and hypocotyl inhibition in Fig. 5.1). 
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After de-etiolation the RL response of the lh mutant decreases dramatically 

compared to the wild type. 

ETIOLATED DE-ETIOLATED 
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Fig. 5.4 Investigation of red (RL)/far-red light (FR) 
reversibility of hypocotyl growth inhibition and cotyledon 
expansion (cotyledon weight) of etiolated and de-etiolated 
(pretreated with 8 h white light [45 /imol m"^ s"1]) wild type and 
lh mutant. The irradiation schedules consisted of 5 min RL and 
15 min FR, sufficient to saturate phytochrome phototransformation, 
and were given every 24 h for 4 d. The seedlings were otherwise 
maintained in darkness at 25 °C. Results are expressed as % of the 
dark control ± S.E. Demonstrates significant RL/FR reversibility 
of hypocotyl growth and cotyledon expansion in both wild type and 
lh mutant in etiolated seedlings, but only in the case of wild 
type in de-etiolated seedlings. 

On the basis of physiological (Mancinelli, 1984; Mancinelli and Rabino, 

1985), spectrophotometric (Heim et al., 1981; Brockmann and Schäfer, 1982; 
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Jabben and Holmes, 1983) and immunological (Shimazaki et al., 1983; 

Shimazaki and Pratt, 1985; Tokuhisha et al., 1985) evidence, the existence 

of two pools of P have been proposed: IP, predominant in D-grown seedlings, 

and sP, predominant in light-grown seedlings. The observation of reduced 

growth of hypocotyls upon re-etiolation of the de-etiolated wild type 

compared to the lh mutant (the D-controls in Fig. 5.2) is consistent with 

the idea of sP functioning in the wild type but not in the lh mutant. 

Determination of the P content of both flower petals and Norflurazon-

bleached leaves indicated that the P content of light-grown tissue of the lh 

mutant is about 35-50% of that in the wild type (Chapter 4). If this 

hypothesis is correct, the difference between mutant and wild type can be 

attributed to sP absent in the lh mutant. The detectable P in the lh mutant 

is proposed to be the steady state level of IP. An analysis of the mutant 

using antibodies which recognize sP would be desirable to verify the 

hypothesis. However, even if sP is present but fails to function, this lh 

mutant could provide an invaluable tool to answer the question, what the 

relative importance is of the IP and sP pools, and the BL-photoreceptor in 

light-grown plants. 

Two experiments were designed in an attempt to ascribe a function of 

the P, deficient in the lh mutant, to a particular physiological response in 

WL-grown plants. Many species (Downs et al., 1957), including cucumber (Gaba 

and Black, 1985a), respond by increased elongation growth to a short 

irradiation with FR at the end of the photoperiod in a WL/D cycle. This end-

of-day FR effect was studied for hypocotyl elongation. Seedlings germinated 

in D were transferred to regimes consisting of 12 h WL/12 h D or 12 h WL/5 

min FR/11 h 55 min D. Figure 5.5 demonstrates that the wild-type hypocotyls 

exhibit a significant stimulation of growth in length as a result of end-of-

day FR. In contrast the lh mutant fails to respond. The lack of an end-of-

day FR response is therefore ascribed to the P deficient in the lh mutant. 

If the hypothesis proposed here is correct this response of the hypocotyl to 

light is mediated by sP. 

When one cotyledon is covered with aluminium foil and the plant is 

irradiated from above curvature towards the uncovered cotyledon occurs in WL 

and RL, but not in BL or D (Fig. 5.6). This response of de-etiolated 

seedlings due to RL absorption, presumably by P in the cotyledons, described 

earlier by Shuttleworth and Black (1977), is clearly absent in the case of 

the lh mutant. This suggests that this response in light-grown seedlings is 

an additional response regulated by sP. 
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While the precise nature of sP remains unknown, it may be a product of 

a gene different from that for IP or be a type of P resulting from post-

translational modification of the IP in a particular cell compartment. The 
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Fig. 5.5 End-of-day far-red (FR) response of hypocotyl growth of 
cucumber wild type (open symbols) and lh mutant (closed symbols) 
at 25 °C. Light treatment: 3 d darkness (D) followed by 15 d with 
12 h white light (WL)/12 h D or 12 h WL/5 min FR/11 h 55 min D. 
Fluence rates: WL: 11.7 W m"2 [PAR, 54 /imol m~2 s"1] ; FR: 13.4 
/jmol m~2 s . Demonstrates an end-of-day FR response in wild type 
which is absent in the lh mutant. For clarity only the S.E.' for 
the last data points are shown, others were all < 5% of the mean. 

lh mutant is not defective with respect to the iP and its action in 

etiolated plants, only with respect to the action of P in light-grown 

plants. However, these uncertainties do not limit the use of this mutant for 

understanding the function of these different phytochrome types. A mutant, 

the de-etiolated plants of which fail to respond to the RL region of the 

spectrum, will enable the relative roles played by BL in physiological 

processes to be studied unequivocally. As yet this has been impossible in 

long-term irradiation experiments. 

The growth of the lh mutant and wild type under continuous BL of 

relatively low irradiance (Fig. 5.2; « 4 /xmol m"2 s"1) suggested that they 
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are both inhibited by BL. A question therefore arises: why does the lh 

mutant grow long in WL containing a considerable BL component? In an attempt 

to answer this further long-term growth experiments have been carried out. 

0 10 20 30 40 50 

Hypocotyl curvature (degrees) 

Fig. 5.6 Hypocotyl curvature of de-etiolated seedlings of wild 
type (pretreated with 30 h white light (WL [45 /jmol nT^s"1]) and 
lh mutant (pretreated with 54 h white light (WL [45 >jmol 
m s ]), induced by wrapping one cotyledon with aluminium foil, 
in darkness (D) ; WL, 45 /imol m~2 s , blue light (BL) , 3.6 lanol 
m s or red light (RL) , 3.6 /jmol m"'' s"-*- given from above for 
24 h at 25 °C. Curvatures are expressed as degrees ± S.E. towards 
the uncovered cotyledon. Demonstrates curvature induced by WL and 
RL in the wild type and no response in the lh mutant. 

Examination of the seedlings in growth experiments where inhibition in 

continuous BL has been observed (Fig. 5.2) reveals that at the end of the 

experiments the plants had only cotyledons (no 'true' leaves had developed). 

It is therefore possible to put forward the working hypothesis that the 

inhibition of growth by BL is temporal and occurs while the food reserves in 

the cotyledons are being utilized for growth and that the plants failed to 

develop long hypocotyls in these long-term growth experiments because the 

low BL fluence rates used could not sustain sufficient photosynthesis for 

growth. Penny et al. (1976) demonstrated that for cucumber, photosynthesis 

by the cotyledons was an absolute prerequisite for growth and development of 

true leaves. In the case of Sinapis (Beggs et al., 1980) evidence for a loss 

of BL effectiveness for inhibition of hypocotyl growth during de-etiolation 

has been published. While little is known about the temporal pattern of 

activity of the different photoreceptors responsible for inhibition of 

hypocotyl growth in cucumber (Chapter 3), the evidence for the operation of 

a BL-photoreceptor, as well as phytochrome, is overwhelming (Attridge et 

al., 1984; Cosgrove, 1981; Gaba and Black, 1984; Mohr, 1986). 
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To test this hypothesis 3-d old D-grown seedlings were first 

transferred to continuous BL. After 5 d, half of the plants were transferred 

to continuous WL containing the same fluence rate in the BL spectral region 

as in the continuous BL. Examination of Fig. 5.7 reveals that the lh mutant 
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Fig. 5.7 Hypocotyl elongation in continuous blue light (BL; 0.8 W 
m"z [3.0 jumol m"^ s ]) and upon transfer from BL to white light 
(WL; 7.0 W m"2 [ PAR, 32 /imol m"2 s"1] ; containing 3 /imol m"2 s"1 

BL) of cucumber wild type (open symbols) and lh mutant (closed 
symbols) at 25 °C. The arrow indicates the transfer to WL. 
Suggests that the growth of the hypocotyl of the lh mutant in 
continuous BL is restricted by photosynthesis. For clarity, only 
the S.E. for the last data points are shown, others were all <5% 
of the mean. 

plants transferred from BL to WL grew longer than those maintained in BL. In 

addition, the wild type remained inhibited upon transfer to WL. This 

increase in growth of the lh mutant upon transfer to the WL is attributed to 

increased photosynthesis, enabling the growth of the hypocotyl where 

inhibition via phytochrome is absent. An indication of this is that at the 

end of the experiment the wild type and lh mutant had developed true leaves 

when transferred from BL to WL, whereas in continuous BL they had not. 

To quantitatively confirm this result a more precise experiment was 
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designed in which two identical cabinets, enabling simultaneous irradiation 

of the plants with BL and RL, were used. Fig. 5.8 demonstrates that after 

the 

BL 
BL+RL 

wild type 
o 
D 

lh mutant 
• 
• 

4 B B 10 12 14 IB 

Period of irradiation (d) 

Fig. 5.8 Hypocotyl elongation in continuous blue light (BL; 2.3 
/xmol m s"-1-) with or without supplementary red light (RL; 13.2 
jimol m s ) of cucumber wild type (open symbols) and lh mutant 
(closed symbols) at 25 °C. The arrow indicates the onset of the 
RL. Confirms that photosynthesis limits the growth of the 
hypocotyl in continuous BL. For clarity only the SE for the last 
data points are shown, others were all <5% of the mean. 

start of simultaneous irradiation with RL a significant increase in 

hypocotyl length results in the case of the lh mutant, but not in the wild 

type. At the end of the experiment both the wild type and lh mutant plants 

had significantly higher dry weights in simultaneous BL and RL than those 

maintained in continuous BL alone (Fig. 5.9). In addition, the wild type and 

lh mutant had a marked stimulation of the surface area of the true leaves. 

However, the expansion of cotyledon and true leaf surface area in the 

presence of RL in the wild type is very much greater than the lh mutant. The 

expansion of the cotyledons was previously demonstrated to be under P 

control (Fig. 5.4). Since expansion of the cotyledons is a prerequisite for 



67 

development of photosynthetic capacity, and photosynthesis is a prerequisite 

for further development of the seedling (Penny et al, 1976) it can be 

concluded that P action, if not directly, indirectly results in the 
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Fig. 5.9 The dry weights of plants and the area of cotyledons and 
true leaves ± S.E. at the termination of the experiment outlined 
in Fig. 5.8. Demonstrates that stimulation of leaf development 
occurs in the presence of supplementary red light (RL) and that 
the plants have a significantly higher dry weight than those 
maintained continuously in blue light (BL). 

development of the leaves.. In other words, the enhanced growth of leaves in 

the wild type is determined by two components: a strong P effect and a 

photosynthetic effect, whereas that of the lh mutant is predominantly 

determined by the photosynthetic effect. The paradoxical question why the lh 

mutant grows long in WL, is answered: the inhibition by the BL component in 

WL either stops or can be compensated by enhanced photosynthesis, resulting 

in enhanced elongation growth since inhibition by RL or WL working via P 

fails to function. The difference in growth of the hypocotyls in continuous 

BL between wild type and mutant observed in Figs. 5.7 and 5.8 can be 

accounted for on the basis of the BL fluence rate used. What is important 

here is the response to additional RL relative to the continuous BL control. 

The long hypocotyl of the lh mutant is very similar to that of a wild 
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type plant treated with GA. A 'seed soak' of the wild type with 10"5 M GA4+7 

resulted in wild-type seedlings after 6 d WL treatment with the same 

hypocotyl length as the untreated lh mutant of the same age (Fig. 5.10). 

-log [GA„] 

Fig. 5.10 Gibberellin (GA4+7) dose-response curves of hypocotyl 
elongation of cucumber wild type (o) and lh mutant (•) after 5 d 
with a daily irradiation schedule of 8 h WL (8 W m"L [PAR, 
36 jxmol m-2 s"1] and 16 h darkness at 25 'C. Controls of wild type 
and lh mutant without GA4+7 were 32.5 and 56.2 mm, respectively. 
Demonstrates that the proportional response was similar in wild 
type and lh mutant. 

There is also striking similarity of the behaviour of the lh mutant to the 

'giant' lv pea mutant (Reid and Ross, 1988). Two possible ways in which a 

giant plant could arise by modification of GA metabolism are: an over­

production of GA or an increase in sensitivity to GA. The levels of GA's 

have not yet been measured for the lh mutant. The proportional response for 

a given dose of GA4+7 was the same in wild type and lh mutant (Fig. 5.10). 

This indicates that the lh mutant was not saturated by endogenous GA. 

Furthermore, whereas the lh mutant, compared to the wild type, has long 

hypocotyls in WL and RL (Fig. 5.3), hypocotyl lengths of the lh mutant and 

the wild type are similar in BL or UV-A (Fig. 5.2). Differences in GA levels 

alone could not explain this observation. Inhibition of hypocotyl elongation 

due to irradiation decreased in wild type seedlings treated with exogenous 

GA (Fig. 5.11). However, this decrease was similar in RL and BL treated 

seedlings, indicating that the influence of GA was independent from the 
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effect of the light treatments. It therefore appears likely that the lh 

mutant is not a GA over-producer. 

wild type lh mutant 

Fig. 5.11 Inhibition of hypocotyl elongation of cucumber wild type 
and lh mutant seedlings with and without treatment with 10"* M 
gibberellin (GA4+7; 'seed soak') in red (RL), green (GL), far-red 
(FR) , blue (BL) or UV-A light (3.6 fimol m"2 s"1) , given as % of 
the apropriate dark-control. Demonstrates that the influence of 
GA4+7 is independent of the effect of the light treatments. 

It cannot be excluded that the hy-3 mutants of Arabidopsis, which contain IP 

(Koornneef et al., 1980), show reduced levels of P in mature seeds (Cone, 

1985) and physiological characteristics resembling P defiency, are of a 

similar type as the cucumber lh mutant. 
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6. SHORT TERM GROWTH EXPERIMENTS 

6.1 Introduction 

Plants are capable of responding rapidly (within seconds or minutes) to 

changes in the light environment. In order to detect rapid responses In 

elongation growth, sensitive measuring methods have to be applied, since 

growth rate changes will be at most a few ̂ m per second. While conventional 

growth studies using a ruler provide valuable information over longer 

periods, short-term changes will provide additional information. To obtain 

high-resolution measurements of elongation changes in seedlings of Cucumis, 

Meyer (1968) used a displacement transducer (linear variable displacement 

transducer), which enabled accurate continuous measurement of growth. Since 

that time displacement transducers have frequently been used to study rapid 

growth responses to light (e.g. Penny et al., 1974; Gaba and Black, 1979; 

Loveys, 1979; Pike et al., 1979; Morgan et al., 1980; Cosgrove, 1981; Bleiss 

and Smith, 1985; Kristie and Jolliffe, 1986; Garcia-Martinez et al., 1987; 

Shinkle and Jones, 1988). Other, less frequently used techniques are 

capacitance auxanometry (Gordon and Dobra, 1972), time-lapse photography 

(Hart et al., 1982; Baskin et al., 1985) and video registration (Jaffe et 

al., 1985; Yahalom et al., 1987). 

Time-lapse photography and video registration have a great advantage 

over other techniques: there is no direct contact with the plant. Infra-red 

light, which has no effect on growth, can be used for these observations. 

These techniques have often been used to study phototropic responses. The 

use of computer-assisted image analysis as described by Jaffe et al. (1985) 

enables fully automated data analysis. This is an improvement compared to 

the 'hand-controlled' tracing of pictures or video images, as it provides a 

much higher resolution. 

The high-resolution growth measurements have disadvantages compared to 

conventional ruler measurements: only a small number of plants can be 

measured. Due to the variability in plant growth between individual 

seedlings and possible variations in experimental conditions during the 

individual measurements there is variability in the magnitude of the 

measured responses. This can be avoided by normalizing the growth in each 

experiment to growth under particular standard conditions, e.g. the growth 

rate in darkness (D), and by the use of computer-aided averaging of multiple 
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measurements of individual seedlings. 

Several short-term growth studies have concerned so called 'transient' 

phenomena. Such transients, while not making any significant contribution to 

the total elongation, can provide information about existing differences in 

kinetics of several growth responses (Cosgrove, 1981; Gaba and Black, 

1983b) . The transients appear during the transition of one steady-state 

growth rate to another. They have been observed after transition from D to 

light or vice versa and after changing the fluence rate or light quality 

(e.g. Meyer, 1968; Cosgrove and Green, 1981; Cosgrove, 1982; Gaba and Black, 

1983a; Child and Smith, 1987; Bleiss et al., 1987). Transients in growth 

rate have also been observed after application of growth regulating 

substances, e.g. auxin (Green and Cummins, 1974; Pearce and Penny, 1986). 

Inhibition mediated by the blue light (BL) photoreceptor may be 

distinguished from that via phytochrome (P) on the basis of the kinetics of 

growth inhibition (Chapter 3) . This has been shown in experiments using 

short-term growth measurements. BL inhibits growth within 60 s, whereas the 

RL responses begin 15 to 90 min after the onset of irradiation, depending 

upon the species (Meyer, 1968; Cosgrove, 1981; 1982). 

In the present study, high-resolution growth measurements have been 

used to compare the growth responses of the long-hypocotyl (lh) mutant of 

cucumber and its wild type. Preliminary studies were carried out manually 

using a horizontal microscope and a computer controlled growth meter was 

subsequently designed and constructed. 

6.2 Material and methods 

6.2.1 Plant material 

The long hypocotyl (lh) cucumber mutant and its wild type (described in 

chapter 2) were used in the experiments. 

6.2.2 Light sources 

A description of the light sources used in these experiments can be 

found in appendix 'Light sources' and in 6.2.5. The fluence rates used in 

particular experiments are described in the figure legends. 

6.2.3 Preliminary 'manual' growth measurements 

Seeds of wild type and lh mutant were sown in Petri dishes on filter 



75 

paper moistened with distilled water and allowed to germinate in D at 25 °C. 

Seedlings were selected for study after 4 or 5 d. The hypocotyl growth of 

individual seedlings was monitored at 15 min intervals using a horizontal 

microscope with the seedling silhouetted against a green safelight during 

measurement. The D growth rate (periodic exposure to green safelight during 

measurement) was followed until stable. The seedlings were then irradiated 

from above with either narrow-band BL or RL. The growth was monitored over a 

2.5 h period and the mean growth rate was calculated. 

6.2.4 Continuous growth measurements 

Seeds of wild type and lh mutant were sown in earthenware flower pots 

(dia. 12 cm) filled with a mixture of 50% vermiculite and 50% perlite (v/v) 

and saturated with water. After 4 d incubation in D at 25 °C 3 seedlings of 

similar height (= 4 cm) were selected and each individual seedling was 

carefully attached to the growth-measuring apparatus, manipulating the 

seedlings for ca. 1 min under a dim green safelight. The growth rate in D at 

25 ± 0.3 °C was monitored for at least 4 h before the start of irradiation. 

6.2.5 The apparatus for continuous growth measurement 

A schematic diagram of the custom designed growth-measuring apparatus, 

constructed in the Laboratory for Plant Physiological Research, is shown in 

Fig. 6.1 and 6.2. The apparatus was designed by W.J.M. Tonk and R.M. Bouma 

and constructed from commercial and custom built components by J. v. Kreel 

in collaboration with other members of the technical staff of the 

laboratory. The measuring-device is mounted on a vibration-free table, 

consisting of i heavy steel plate which rests on air cushions (« 132 kPa) 

and from which a heavy (=* 300 kg) base filled with grit is suspended. 

Three separate devices are mounted on one table, each enclosed in an 

air- and light-tight, thermally isolated chamber. These chambers are 

mechanically isolated from the table and measuring-devices. Humidified air 

circulates through the three interconnected chambers and a climate-control 

unit controls the air temperature, humidity and flow rate. To avoid 

undesirable light reflections (and corrosion) all aluminum components are 

anodized or painted black. The complete apparatus is enclosed in a 

temperature-controlled room maintained at 25 ± 1 °C in D. A second set of 

three measuring units is under construction. 



76 

Fig. 6.1. A schematic diagram of the growth-measuring apparatus 
and the temperature-, humidity- and air flow control unit: front 
view without the vibration free table and with one chamber opened 
showing one measuring-device with a seedling attached to it 
(above); side view showing the vibration free table underneath the 
chambers and the air flow in and out of the chambers (below). (1) 
climate control unit; (2) chamber; (3) measuring device; (4) 
flower pot with seedling; (5) shelves for irradiation equipment 
and input and output devices; (6) hollow lid with special filter 
for a uniform air flow; (7) air flow chamber; (8) vibration free 
table. 
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Fig. 6.2 A measuring device with a seedling (fibres for 
irradiation not shown). Detail (3) from Fig. 6.1. 
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A single board microprocessor (ARCOM, based on a ARC41, Z8 Basic/DEBUG 

computer with realtime clock/calendar for control, measurement and data 

logging, Tekelec Airtronic, Zoetermeer; Fig. 6.3) controls the whole system. 
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Fig. 6.3. A flow diagram of the translation unit of the growth-
measuring apparatus. Measurement: (E) encoder; (C) counter. 
Steering: (G) tacho generator; (DC) motor; (MAR) adjusting 
amplifier; (F) function generator; (M) membrane; (PU) pick-up 
element; (DI/0) digital input/output; (ADA16) analog/digital 
converter; (>) amplifier. For more detailed explanation see text. 

A special program has been written for the microprocessor to enable 

selection of different parameters, e.g. cycle time and irradiation schedule. 

The cycle time is the time interval between two consecutive adjustments of 

the translation unit, i.e. the time between two growth measurements. The 

minimum cycle time is I s . The microprocessor is connected to a personal 

computer (PC) where further data-acquisition takes place. 

A 'measuring-unit' (-translation unit) is mounted on a column with a 

motorized spindle (M12x3) and can be raised or lowered to position it at the 

actual height of the plant (range = 70 cm) . It is possible to place two 

translation units on one column to enable differential measurement. The pot 

containing the seedling is clamped to the base of the column. The seedling 

is attached to the translation unit by ligature thread impregnated with 

silicon rubber to avoid abrasive damage to the stem. In the experiments 

described here the thread was looped around the hypocotyl hook. 
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Fig. 6.4. The translation unit of the growth-measuring apparatus. 
(1) DC motor with tacho generator and amplifier; (2) satellite 
reduction gear; (3) optic incremental encoder; (4) sledge mounted 
on the spindle; (5) floating zero. For more detailed explanation 
see text. 

The translation unit (Fig. 6.4) consists of an aluminium base plate with the 

following devices attached to it: 

1. A cylindrical coil DC motor (Faulhaber) with tacho generator (Mattke 

ARIB) combined with a four quadrant, linear adjusting amplifier MAR 

9/03. 

2. A satellite reduction gear (1:10), type UE 30 CC (Faulhaber). 

3. Incremental encoder (type UT 100 CC of Micro Control). This encoder 

counts the number of rotations of a selected angle of the motor. For 

the experiments presented a setting of 500 points per complete 

revolution has been used. However, it is possible to use 1000 points 

per revolution to improve resolution. 

4. A sledge, mounted by high quality roller bearings (Föhrenback, type RS 

040-130-050) on a precision spindle (M5x0.5). 

5. The 'floating zero' is mounted on the sledge (Fig. 6.4). This component 

of the translation unit enables repeated indication of a preselected 



80 

electrical signal (equivalent to a position within a few nm) each time 

a measurement is completed. 

Fig. 6.5. Detailed diagram of the 'floating zero'. (1) microphone; 
(2) pick-up element with arm; (3) measuring-arm block; (4) 
calibrated pull spring; (5) measuring arm. For more detailed 
explanation see text. 

The floating zero, in Fig. 6.4 (5), is illustrated in detail in Fig. 6.5 and 

consists of the following components: 

1. A microphone (A.K.G. , type D58E) modified with a Melinex I.C.I. 75 /im 

membrane and iron assembly cap. 

2. A pick-up element (B&O, type MMC-4) with a part of the tangential arm 

(3152378) and a heavy-duty clock balance shaft mounted in sapphire 

bearings. 

3. Measuring-arm block (aluminium 52 ST) coupled to the pick-up arm with 

an adjustable gas-reduction spring from a gaslighter (BIC-B3). The 

shaded block with the measuring arm is held in position by means of the 

balance shaft/ sapphire combination (2). 
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4. A calibrated stainless steel pull spring (Tevema-Barnes, type T-41030, 

50-300 g linear adjustable), used to adjust the upward tension on the 

plant. 

5. The measuring arm with a loop of thread. 

The measuring arm from the floating zero is connected to the plant, via the 

hollow tip, with an adjustable loop of thread. A constant upward tension is 

maintained on the plant. Within the floating zero, this tension can be 

regulated with an adjustable spring (4) from 1 to 20 g. For the experiments 

described the upward tension was 1.2 g. A very small upward tension is 

possible when bearings, transmissions and the pick-up signal amplifier of 

the floating zero are tuned optimally. Each translation unit can be tuned 

separately. This is necessary because of differences in the individual 

components. 

The sledge with the floating zero is mounted on a precision spindle 

with an adjustment range of 10 cm. A DC motor raises or lowers the sledge. 

The measuring arm is coupled, via a transmission, to the pick-up element. 

The function generator induces a 1 KHz vibration of the membrane. The pick­

up needle touches the membrane and converts the vibration into an electrical 

signal between 0 and 1 mV (Fig. 6.3). This AC signal is amplified and 

converted to 0 - 5 V DC and then converted to a digital signal. The ARCOM 

microprocessor follows each translation unit in sequence, activating the 

function generator and checking the level of the signal from the floating 

zero. When the pre-set cycle time is reached and the signal is above a 

certain pre-selected threshold value, the microprocessor 'orders' the motor 

to move upwards. The measuring arm is then raised with the sledge. Due to 

the loop of thread attached to the plant and the spring that adjusts the 

upward tension, the measuring arm tilts. The sapphire bearings, the balance 

shaft and a friction-free transmission ensures that when the measuring arm 

moves upwards the pick-up needle moves backwards. The tension of the needle 

on the membrane reduces and the induced signal decreases. When this signal 

decreases beneath a threshold value the motor stops. In the experiments 

presented a threshold value of 30 mV was used. Simultaneously the encoder 

counts the number of rotation angles of the motor on the spindle (Fig. 6.4 

[3]). Inside the encoder are two metal discs with 500 equally spaced 

apertures: one is stationary and one rotates simultaneously with the motor. 

Two LED's are positioned on one side of the discs and two photodiodes on the 

other. The light from the LED's is transmitted only when the apertures in 
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both discs are lined up; during a complete revolution there will be 500 

alternating light and D periods. The apertures of the two photodiodes are 

positioned so that a light period on one detector corresponds to a dark 

period on the other. Both photodiodes produce a signal each time a light 

period has been detected. This results in two square wave signals from the 

encoder to the counter, which are 90° out of phase. Direction of rotation, 

and as a consequence the direction of the motor-movement, is determined by 

observing which of the signals is the leading waveform. The information 

concerning the extent and direction of the movement is relayed to the 

microprocessor, where it is stored in a special memory. If the adjustment 

can not be completed within one cycle time a special code is stored, 

indicating this event, and the adjustment continues in the next cycle. The 

total value, corresponding to the growth over the number of cycle times, is 

subsequently stored at the cycle time at which the adjustment is completed. 

Depending upon the desired precision, a threshold value of 20 to 100 mV 

is set at which the motor stops. The pick-up signal determines {via the 

adjusting amplifier and the reduction gear) the velocity of the motor 

following growth of the plant. Decrease of the signal causes the motor to 

slow down. When this velocity is too low the motor 'sticks'. This causes the 

processor to keep 'trying' to adjust the measuring unit involved. When the 

end velocity is too high an 'overshoot' occurs; the motor does not stop in 

time. These effects result in a precision which is out of the required îm 

range. These problems are caused by the satellite reduction gear of 1:10. 

This value was estimated as appropriate during the development of the 

apparatus, but appears to be too low. With a reduction gear of 1:20 a higher 

precision will be possible. 

In the experiment described the hypocotyl was irradiated just beneath 

the hypocotyl hook. For this purpose, a two-armed optical fibre (1600 mm 

long, 4 mm dia; Schott Nederland B.V.) in association with a projector 

assembly fitted with a 250 W quartz-iodide projection lamp was used. The 

projector was equipped with a heat-filter and an interference filter (Balzer 

B40 type, Balzer Liechtenstein), 658 nm or 459 nm, 10 nm half-band width at 

50% of the transmission maximum. The fibres were held in position by 

adjustable clamps attached to special arms on the translation unit (not 

shown in the figures). In this way the fibres follow the growing plant. It 

is also possible to irradiate from 4 directions with additional fibres. 

Furthermore, facilities for irradiation from above with white light (WL) for 

photosynthesis are under construction. The irradiation schedule is 
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programmed in the microprocessor, which automatically switches the lights on 

and off after a preselected number of cycle times and registers this 

together with the other data gathered at that specific cycle time. 

The data stored in the buffer memory of the microprocessor are 

collected, decoded and analyzed with a PC situated in a separate room. Using 

a data-acquisition program written for the apparatus, it is possible to 

normalize and smooth each individual measurement, average a large number of 

measurements, calculate growth rates and lag periods with a resolution of 

1 s and 1 jim. Calculation of the growth rate of a part of the plant is also 

possible using differential measurement with two translation units on one 

column. The results can be stored and displayed on terminal, printer or 

plotter. The data are stored in a way that enables the use of several 

commercially available data processing programs (e.g. Lotus 1-2-3). 

6.2.6 Data manipulation and presentation of results 

The increase in length was measured every 30 s in D, RL and WL, and 

every 10 s in BL (-cycle time). The mean growth rates (c.f. Table 6.2) are 

calculated using the individual growth rates from 1 h before onset of 

irradiation, and the first and third (BL) or fourth (RL and WL) hour after 

onset of irradiation. The lag period was determined as follows. At first the 

approximate time at which the inhibition started was estimated from the 

figure. The mean growth rate in the hour before this point, usually equal to 

the growth rate in D, was determined. The lag period was calculated by 

determining the time between the onset of the irradiation and the last point 

(=cycle time) at which the growth rate was higher than or equal to the mean 

growth rate. The mean lag period has been calculated as suggested by Rich 

and Smith (1986): the time between induction and first expression of the 

response is determined for each individual replicate, and then averaged to 

give a mean lag period for the population. 

To enable detection of growth patterns below the noise level the data 

were smoothed where necessary. This was done by repeated application of a so 

called '3-point running mean'. This treatment of the data reduces the noise, 

but also the time-resolution. However, in experiments with a cycle time of 

1 s the resolution after applying 10 times a 3-point running mean is still = 

10 s. To prevent of loss of time resolution, smoothing was not performed on 

the data from which the lag periods were calculated. 
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6.3 Results and discussion 

The growth of the lh mutant and wild type under continuous BL irradiation 

(Chapter 5) suggested that they are both inhibited by BL, whereas the 

response to RL was severely reduced in the lh mutant compared to wild type. 

The growth rates of plants both in D and upon transfer to continuous BL and 

RL was monitored at 15 min intervals with the aid of a horizontal microscope 

(Table 6.1). In contrast to plants removed from absolute D, which showed no 

difference in absolute hypocotyl growth (Chapter 5), wild-type dark-controls 

in this preliminary experiment exhibited a small, but significantly lower 

growth rate than the lh mutant. It is proposed that this is a response of 

the wild type, via. light-stable P (sP) , to the repetitive exposures to green 

safelight. Despite the limitations of this technique it is clear from the 

results that the growth rate of hypocotyls is significantly reduced during 

the 2.5 h BL irradiation period in both the wild type and lh mutant. In 

contrast, RL is considerably more effective in wild type than in the mutant 

in bringing about a reduction in growth rate. These results provide 

additional evidence to that already presented in Chapter 5 that BL can 

inhibit hypocotyl growth in the lh mutant as well as in the wild type. 

Table 6.1. Measurements of the mean hypocotyl growth rates ± S.E. 
(number of plants measured) of 4-5 d old dark-grown lh mutant and 
wild-type cucumber seedlings maintained in darkness (D) and over a 
2.5 h period after transfer to continuous blue (BL) or red (RL) 
light (both = 15 Mmol m"2 s"1) at 25 °C, measured with a 
horizontal microscope under green safelight. 

Treatment 

D 
BL 
RL 

Wild type 

Growth rate 
(mm h"^) 

1.38 ± 0.08(26) 
0.73 ± 0.07(8) 
0.65 ± 0.09(10) 

% D 

100 
53 
47 

lh mutant 

Growth rate 
(mm h"1) 

1.60 ± 0.09(28) 
1.04 ± 0.12(10) 
1.34 ± 0.13(11) 

% D 

100 
65 
84 

To enable a comparison of short-term growth kinetics of wild type and lh 

mutant their growth responses were monitored using an apparatus for 

continuous growth measurement. Fig. 6.6 and 6.7 show the growth kinetics of 

an individual seedling of wild type and lh mutant in D and during BL 

irradiation, respectively. Growth curves of other individual seedlings were 



85 

qualitatively similar. Mean values are given in Table 6.2. These results 

confirm the preliminary observations that both wild type and lh mutant are 

inhibited by BL. The first inhibition appears to be temporary and occurs 

with a mean lag period < 2 min (Table 6.3). The individual lag periods 

measured were from a few seconds to a few minutes. After the initial 

inhibition there is some recovery, but the growth rate in BL remains lower 

than in D, indicating again that BL inhibits hypocotyl growth in both wild 

type and lh mutant. 

Table 6.2. Measurements of the mean hypocotyl growth rates ± S.E. 
(number of plants measured) of 4-5 d old dark-grown lh mutant and 
wild-type cucumber seedlings maintained in darkness (D) and over 
the first and the third (in blue light (BL) ) or fourth (in red 
light (RL) and in white light (WL)) hour after onset of 
irradiation. Measured with the growth-measuring apparatus. 
Examples of individual growth curves and fluence rates used are 
given in Fig. 6.6 to 6.11. 

Wild type 

Treatment 

D 
BL 
RL 
WL 

First hour 

Growth rate 
(mm h"-*-) 

1.41 ± 0.05(55) 
0.68 ± 0.04(16) 
1.73 ± 0.09(18) 
0.41 ± 0.03(12) 

% D 

100 
58 
129 
27 

+ 
+ 
+ 
+ 

4 
4 
7 
2 

Third or fourth hour 

Growth rate 
(mm h"1) 

0.88 ± 0.03 
1.19 ± 0.06 
0.42 ± 0.04 

% D 

11 ±1 
89 ± 7 
29 ± 4 

lh mutant 

First hour 

Growth rate 
Treatment (mm h'*-) 

% D 

Third or fourth hour 

Growth rate % D 
(mm h_1) 

D 1.28 ± 0.05(51) 100 ± 4 
BL 0.66 ± 0.05(17) 54 ± 4 0.96 ± 0.06 82 ± 6 
RL 1.50 ± 0.06(18) 128 ± 8 1.22 ± 0.04 104 ± 5 
WL 0.47 ± 0.08(12) 34 ± 4 0.44 ± 0.06 32 ± 4 

Growth of etiolated seedlings of wild type and lh mutant in RL is shown 

in Fig. 6.8 and 6.9, respectively. Hypocotyl elongation was inhibited by RL 

in wild type, but not significantly in the lh mutant. However, the first 
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hour in RL a growth promotion was observed in both wild type and lh mutant. 

This promotion has not been observed in the experiment with the horizontal 

microscope. An important difference between the experiments was the geometry 

of irradiation. In the experiment with the microscope the seedlings were 

irradiated from above, directly on the cotyledons, while in the growth-

measuring apparatus only a small part of the hypocotyl was irradiated. This 

could explain the different responses observed and it could explain why 

growth promotion by RL has not previously been reported. In addition, in the 

growth-measuring apparatus the transition was from a period of several hours 

absolute D to RL, whereas in the microscope experiments the plants received 

repetitive exposures to green safelight while the dark-growth rate was being 

determined. 

The mean lag periods of wild type and lh mutant observed with the 

growth-measuring apparatus are longer than those observed with the 

horizontal microscope and those observed by Meyer (1968) and Cosgrove 

(1981). This could also be a result of the different location of 

irradiation. The influence of RL is predominantly mediated through light 

absorption by the cotyledons (Black and Shuttleworth, 1974; Cosgrove, 1981). 

When only the hypocotyl is irradiated the cotyledons possibly receive light 

transmitted through the hypocotyl. This could cause a delay and a decrease 

of the response. 

In WL (Fig. 6.10 and 6.11) an initial inhibition occurs within minutes 

after the onset of the irradiation and a second inhibition a few hours 

later. This is likely to be due to a temporal separation of the effects due 

to the BL-photoreceptor and P as described by Gaba and Black (1979; Chapter 

3). 

Table 6.3 Mean lag periods (min) between the onset of the 
irradiation and the first detectable response of cucumber wild 
type and lh mutant seedlings. Measured with the growth-measuring 
apparatus. 

Treatment 

BL 
RL 
WL 

Wild type 

1.5 ± 0.5 
147.6 ± 10.3 

1.2 ± 0.6 

lh mutant 

1.4 ± 0.5 
162.8 ± 13.3 

0.6 ± 0.6 

In etiolated seedlings no large differences are observed in growth responses 
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Fig. 6.6. The effect of blue light (BL; 34 fimol m"2 s"1 incident 
at both sides of the hypocotyl) on the hypocotyl elongation of an 
etiolated seedling of cucumber wild type. The arrow indicates the 
onset of BL. Attachment of the seedling to the apparatus at time 
0; cycle time 10 s. 

Time (h) 

Fig. 6.7. The effect of blue light (BL; 34 pmol m"2 s"1 incident 
at both sides of the hypocotyl) on the hypocotyl elongation of an 
etiolated seedling of cucumber lh mutant. Otherwise as Fig. 6.6. 
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Fig. 6.8. The effect of red light (RL; 17 /jmol m"2 s"1 incident at 
both sides of the hypocotyl) on the hypocotyl elongation of an 
etiolated seedling of cucumber wild type. The arrow indicates the 
onset of RL. Attachment of the seedling to the apparatus at time 
0; cycle time 30 s. 

o 
a. 

Time (h) 

Fig. 6.9. The effect of red light (RL; 17 /imol m~2 s"1 incident at 
both sides of the hypocotyl) on the hypocotyl elongation of an 
etiolated seedling of cucumber Ih mutant. Otherwise as Fig. 6.8. 
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Fig. 6.10. The effect of white incandescent light (WL; 15 mW m"^ 
incident at both sides of the hypocotyl) on the hypocotyl 
elongation of an etiolated seedling of cucumber wild type. The 
arrow indicates the onset of WL. Attachment of the seedling to the 
apparatus at time 0; cycle time 30 s. 

Time (h) 

Fig. 6.11. The effect of white incandescent light (WL; 15 mW m"' 
incident at both sides of the hypocotyl) on the hypocotyl 
elongation of an etiolated seedling of cucumber lb. mutant. 
Otherwise as Fig. 6.10. 
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of wild type and lh mutant. This is consistent with the results from long-

term growth experiments (Chapter 5). In chapter 4 it was proposed that the 

lh mutant lacks sP. In etiolated seedlings the bulk P pool consists of 

labile P (IP) and no differences were observed between P levels in etiolated 

seedlings of wild type and lh mutant. This could explain why there is only a 

small difference between the responses of etiolated seedlings. It is 

expected that short-term growth responses of de-etiolated seedlings of the 

wild type and the lh mutant will show larger differences, since there the sP 

present in the wild type is expected to play an important role in the 

control of elongation growth. Larger differences have indeed been observed 

in long-term growth experiments (Chapter 5). 

The present experiments are the first carried out with this growth measuring 

apparatus. After further improvement of the equipment, e.g. with respect to 

resolution, it will be possible to study responses within a few seconds, 

such as transient growth rate overshoots (Cosgrove, 1982; Gaba and Black, 

1983a; 1983b; Morgan and Smith, 1978) and growth oscillations (Kristie and 

Jolliffe, 1986). Fig. 6.12 shows the preliminary results from an experiment 

OCOO CCQOOg O O n OO O O O O O Ü O COD O O O O OCO O O OO O! 
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Fig. 6.12. High-resolution growth measurements of a cucumber wild 
type seedling in darkness at 25 °C. The growth was determined with 
a cycle time of 1 s. 
a. Raw data. 
b. Smoothed data (10 x smoothed with a 3-point running mean). 
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using a cycle time of 1 s. Smoothing of the curve certainly is required for 

conclusions about the occurrence of oscillations in growth rate. Although 

this procedure reduces the time-resolution it is still possible to measure 

these oscillations with a time resolution of 10 s and a growth rate 

resolution of 1 fim s . 

The equipment is highly suitable for further experiments with seedlings 

and full-grown plants. In these experiments the full potential of the 

equipment will be utilized. This will enable the measurement of growth 

responses within a few seconds or the monitoring of growth for several days 

under temperature-, humidity- and air flow-controlled conditions, with fully 

automated irradiation schedules and data-acquisition. 
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7. LONG TERM GROWTH EXPERIMENTS WITH TOMATO 

7.1 Introduction 

In search for non-germinating, gibberellin (GA) responsive mutants, Van der 

Veen and Bosma (Koornneef et al., 1981) isolated a non-germinating, GA-

responsive tomato mutant, W616, characterized by an elongated hypocotyl and 

yellow-green leaves. Complementation tests with earlier described long 

hypocotyl mutants of tomato and linkage tests revealed that W616 was allelic 

with aurea (au) mutants. The au mutant resembled previously described 

Arabidopsis mutants characterized by an elongated hypocotyl when grown in 

white light (WL), pale green leaves, reduced germination, increased apical 

dominance and the absence of spectrophotometrically detectable phytochrome 

(P) (Koornneef et al., 1980; Spruit et al., 1980; Cone and Kendrick, 1985). 

Koornneef et al. (1985) showed that this au mutant of tomato, in contrast to 

its wild type, showed little or no effect of light on seed germination, 

anthocyanin synthesis and hypocotyl elongation. In addition the chlorophyll 

content is reduced, the chlorophyll a/b ratio is increased and the stacking 

of the thylakoids in the chloroplast is greatly reduced, 

Spectrophotometrically detectable P is absent or strongly reduced in its 

seeds, dark-grown hypocotyls, light-grown leaves, and roots. 

Spectrophotometric (Chapter 4) and immunochemical (Parks et al., 1987) 

measurements have shown that etiolated tissue of the au mutant has a P 

content < 5% of the wild type. Spectrophotometric measurements of P in 

flower petals and Norflurazon-bleached leaves indicate that light-grown 

tissues contain ,0-50% of the P level in the wild type (Chapter 4). The P 

detectable in light-grown plants of the au mutant is proposed to be light-

stable P (sP) and the difference between P levels in mutant and wild type 

represents the steady state level of labile P (IP) in WL. The difference 

between responses of au mutant and wild type must therefore reflect the 

quantitative role of the P deficient in the au mutant. In this chapter the 

results of experiments concerning elongation growth of the au mutant and its 

isogenic wild type are presented and the possible role of the different P 

types in several elongation growth responses is discussed. 
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7.2 Mate r ia l s and methods 

7.2.1 Plant material 

The long hypocotyl (au mutant of the tomato cv. Moneymaker and its 

isogenic wild type used in the present experiments have been described in 

Chapter 2. Apart from its long hypocotyls, the au phenotype is characterized 

by reduced seed germination, reduced chlorophyll content and reduced 

anthocyanin levels (Koornneef et al., 1985). 

7.2.2 Light sources. 

A description of the light sources used in these experiments can be 

found in appendix 'Light Sources'. The fluence rates used are indicated in 

the figure legends. 

7.2.3 Germination and dark incubation 

Dark germination of the au mutant was low and retarded compared to the 

wild type (Koornneef et al., 1985). However, pricking each seed with a 

sterile needle considerably increased the percentage of dark-germination of 

the au mutant. This technique was used for both the au mutant and the wild-

type seeds. To compensate for the retardation of germination of the au 

mutant, seeds were sown 24 h before those of the wild type. Seeds of wild 

type and au mutant were surface sterilised for 5 min in a 1% (v/v) dilution 

of a Na-hypochlorite solution (commercial bleach), washed for 30 min in 

running tap water, pricked, sown in transparent plastic boxes (10x10x8 cm) 

on 11 layers of filter paper saturated with distilled water, and placed in 

darkness (D) for germination at 25 °C. 

7.2.4 Screening under broad spectral band light sources 

After 3 d (wild type) or 4 d (au mutant) incubation in D 10 seedlings 

were selected per box with uniform hypocotyl length, 4 boxes being used for 

each treatment. The seedlings were transferred to continuous UV-A, blue 

(BL), green (GL), red (RL), and far-red (FR) light of 2.1 jrniol m"2 s"1 ± 5%. 

The dark controls were kept in wooden boxes covered with black polythene and 

placed in each of the light cabinets. The hypocotyls were measured daily 

under a dim green safelight, using a ruler. 

7.2.5 Fluence-rate response to BL and UV-A 

After 5 d (wild type) or 6 d (au mutant) incubation in D, 12 seedlings 
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were selected per box with uniform hypocotyl length, 4 boxes being used for 

each treatment. The seedlings were transferred to continuous UV-A or BL of 

different fluence rates. The dark controls were kept in wooden boxes covered 

with black polythene and placed in each of the light cabinets. Hypocotyl 

lengths were measured before (under a dim green safelight) and after the 

24 h irradiation period, using a ruler. The results are presented as % 

inhibition compared to the dark control. 

7.2.6 End-of-day far-red experiments 

Seeds of wild type and au mutant were sown in earthenware seed pans and 

after 14 d were transplanted into 10 cm diameter plastic flower pots filled 

with potting compost. After a further 14 d at 23 °C in daily irradiation 

schedules of 14 h WL (35 W m"2 [PAR, 160 A*mol m"2 s"1]) and 10 h D plants 

were selected for uniform height and submitted to daily supplementary light 

treatments. After the daily WL period the following irradiation schedules 

were given: D; 20 min FR (20 ftmol m"2 s"1); 20 min FR followed immediately 

by 10 min WL. After 5 cycles the plants were returned to 14 h WL/ 10 h D for 

two cycles and then the total length of the internodes was measured. The 

increase in height of the plants ± S.E. is expressed as a percentage of the 

initial height of the plants on the day they received the first end-of-day 

FR treatment. 

7.2.7 Simulated phototropism 

Seedlings were grown in daily irradiation schedules of 16 h WL and 8 h 

D at 20 °C in earthenware seed pans (25x25x6 cm) filled with potting 

compost. After 8 d the seedlings were selected for uniform hypocotyl length 

and one cotyledon c 2 each seedling was covered with aluminium foil. The 

seedlings were placed in continuous WL (11.7 W m [PAR, 53 ftmol m"^ s ) at 

23 °C and irradiated from above. After 24 h each seedling was removed from 

the compost and photocopied. The angle of curvature of each hypocotyl was 

estimated from the photocopies using a protractor. 

7.2.8 Presentation of results 

Results are expressed as mean ± S.E. of representative experiments and 

have all been repeated at least once with qualitatively similar results. In 

some experiments the least significant difference (LSD) at the 5% level of 

probability is given, calculated according to the method of Tukey (1977). 
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7.3 Results and discussion 

7.3.1 Screening under broad spectral band light sources 

When germinated in D and transferred to continuous irradiation with 

broad band light sources of equal photon fluence rate for 4 d, both the wild 

type and the au mutant showed similar hypocotyl growth in D and FR (Fig. 

7.1). In RL and GL, in contrast to the wild type, no significant inhibition 

FR 

RL 

GL 

BL 

UV-A 

|au mutant| 

wild type 

^LSD 

2 3 4 

Increase in hypocotyl length (cm) 

Fig. 7.1 The increase in hypocotyl length of the au mutant of 
tomato and its isogenic wild type grown for 4 d in broad band 
light (2.1 Mmol m ' ^ s - 1 ± 5%) at 25 °C; far-red light (FR), red 
light (RL), green light (GL), blue light (BL), UV-A or darkness 
(D) . Seedlings were grown for 3 d (wild type) or 4 d (au mutant) 
in D before transfer to the light. The bar indicates the least 
significant difference (LSD) at the 5% level between the dark 
control and the light treatments. 

was observed in seedlings of the au mutant. In Chapter 4 it was demonstrated 

that etiolated seedlings of the au mutant have no spectrophotometrically or 

immunochemically detectable IP. This deficiency of IP results in a loss of P 

control of hypocotyl elongation in etiolated seedlings of the au mutant. In 

BL and UV-A both wild type and au mutant were significantly inhibited 

compared to the dark controls, but a smaller response was exhibited in the 

case of the au mutant. Apparently inhibition of hypocotyl elongation due to 



97 

a BL/UV-A photoreceptor is retained in the au mutant, despite the lack of 

IP. This suggests that BL inhibition of elongation growth does not require 

the presence of Pfr or it is dependent on an extremely sensitive process 

regulated by the low level of Pfr present. To futher evaluate the role of 

the P deficiency in the au mutant on the inhibition of hypocotyl elongation 

growth by BL and UV-A, fluence-rate response curves were determined. 

7.3.2 Fluence-rate response to BL and UV-A 

Fluence-rate response curves for growth inhibition of etiolated 

hypocotyls occurring during a 24 h period in BL and UV-A show a clear 

difference in response range for wild type and au mutant (Fig. 7.2). The au 

mutant requires a higher fluence rate to be inhibited to the same extent as 

the wild type. The fluence rate of light sources used were probably not high 

enough for the au mutant to reach the maximum inhibition as measured in the 

wild type. In both BL and UV-A the curve for the au mutant is shifted 

approximately one order of magnitude to higher fluence rates. This 

difference in inhibition by BL and UV-A between the au mutant and its wild 

type represents a quantitative estimate of the role played by BL and UV-A 

absorption by 2P in the photo-inhibition of hypocotyl growth. The inhibition 

at higher fluence rates in the au mutant could represent the BL/UV-A 

photoreceptor working alone, or in co-action with any 'residual' P, either 

IP or sP below detection limits. 

7.3.3 End-of-day far-red experiments 

Elongation growth of many species (Downs et al., 1957), including 

tomato (Selman and Ahmed, 1962; Tucker, 1975; Decoteau et al., 1988) 

increases as a result of a short irradiation with FR at the end of the 

photoperiod in a WL/D cycle. This effect is reversed by a subsequent WL 

pulse, indicating that P functions as the photoreceptor. A pronounced end-

of-day FR response was observed in both wild type and the au mutant (Fig. 

7.3). Therefore P must be present and functional in light grown plants of 

the au mutant. Since the deficiency in the au mutant lies in its ability to 

accumulate IP it is proposed that sP, quantitatively similar in au mutant 

and wild type, is responsible for the end-of-day FR effect. 
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Fig. 7.2. Fluence-rate response curves for inhibition of hypocotyl 
growth of the au mutant (•) of tomato and its isogenic wild type 
(o) grown for 24 h in (above) blue light (BL) and (below) UV-A of 
different photon fluence rates at 25 °C. Seedlings were grown for 
5 d (wild type) or 6 d (au mutant) in darkness before transfer to 
the light. Results are presented as % inhibition 
(1 - [Li - Li / Ld - LjJ) *100, where L± = length prior to the 
light treatments, L<j = length after another 24 h D and L^ - length 
after 24 h irradiation. The actual growth of the dark controls 
over the 24 h period (L^ - L^) for BL was 8.9 ± 0.7 mm for the 
wild type and 9.3 ± 0.7 mm for the au mutant and for UV-A 9.9 ± 
0.5 mm for the wild type and 9.7 ± 0.9 mm for the au mutant. 
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Fig. 7.3 End-of-day far-red light (FR) response of stem elongation 
in au mutant of tomato and its isogenic wild type at 23 °C. Plants 
grown for 28 d in daily white light (WL; 35 W m~2 [PAR, 160 /zmol 
m~2 s"1] ; 14 h) / dark (D- 10 h) cycles were treated for 5 d with 
20 min FR (20 /jmol m"2 s " 1 ); 20 min FR immediately followed by 10 
min WL; or D at the end of the daily light period. Results are 
presented as % increase in height of the plants during the 
end-of-day FR treatment. The actual increases in height were: wild 
type: D, 43 mm; FR, 76.3 mm; FR/WL, 45.2 mm; au mutant: D, 21.5 
mm; FR, 46.5 mm; FR/WL, 22.7 mm. 

7.3.4 Simulated phototropism 

When one cotyledon is covered with aluminium foil and the plants are 

irradiated with WL from above, both wild type and au mutant curve towards 

the uncovered cotyledon (37 ± 5 and 46 ± 7 degrees respectively) . This 

response of de-etiolated seedlings due to RL absorption, presumably by P in 

the cotyledon, described earlier by Shuttleworth and Black (1977) for 

cucumber seedlings, is exhibited by both the au mutant and wild type. In 

view of the aforementioned end-of-day FR effect it is likely that this 

response in light-grown seedlings is an additional response regulated by sP. 
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8. PHOTOCONTROL OF ANTHOCYANIN SYNTHESIS 

8.1 Introduction 

The biosynthesis of anthocyanins in plant tissues either requires light or 

is enhanced by it (Chapter 3). Interaction between two photoreceptors in the 

photoregulation of anthocyanin production in sorghum seedlings was reported 

by Downs (1964). Two photoreactions were observed: the first showed typical 

properties of a high irradiance response (HIR): high irradiances and 

exposure times of several hours were required. It had a maximum sensitivity 

in the blue light (BL) spectral region at about 470 nm. The second 

photoreaction controlled the first one and showed a typical phytochrome (P) 

response, requiring short exposure times and exhibiting red light 

(RL)/far-red light (FR) reversibility. Recent studies have confirmed and 

extended these findings (e.g. Vince and Grill, 1966; Mancinelli, 1983; 1985; 

Mohr et al., 1984; Mohr, 1980; 1986; Sponga et al., 1986). The nature of the 

interaction between the two photoreactions is still unknown, but a possible 

mode of co-action has been suggested by Oelmüller and Mohr (1985) . Their 

scheme describing this suggested mode of co-action has been presented in 

Chapter 3 (Fig. 3.1). Pfr is suggested as the terminal effector involved in 

the photoregulation of anthocyanin synthesis, whereas the light-dependent 

establishment of responsiveness towards Pfr is mediated by P itself, a 

BL/UV-photoreceptor (cryptochrome) or a UV-B photoreceptor. The interaction 

between cryptochrome and P in the photoregulation of anthocyanin varies 

between species. Several species have an absolute requirement for a 

pretreatment with BL or UV, whereas in other species FR pretreatments are 

equally effective as BL or UV (Chapter 3) . In tomato it appears that this 

interaction is not obligatory, since pretreatment with RL or FR, absorbed by 

P and not by cryptochrome, is also effective. However, RL and FR are less 

effective than BL or UV. When continuous irradiation was applied to induce 

anthocyanin formation in tomato seedlings without an inductive pulse at the 

end of the light treatment, BL, UV-A and UV-B exerted a strong response, 

whereas FR and RL were only slightly effective (Drumm-Herrel and Mohr, 

1982). 

The experiments described in this chapter were designed to achieve a 

better understanding of this interaction in tomato by utilizing mutants with 

either an enhanced capacity for anthocyanin synthesis (the high pigment, hp 

mutant) or a deficiency in labile (2) P (the aurea, au mutant). 
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8.2 Materials and methods 

8.2.1 Plant material 

The isolation of the long-hypocotyl au mutant from wild-type tomato 

(Lycopers icon esculentum Mill.) cv. Moneymaker has been described by 

Koornneef et al. (1981; 1985). The mutant has been identified as a 

photoreceptor mutant (Chapter 4): the amount of P in etiolated seedlings of 

the au mutant is < 5% of that detected in etiolated wild type. 

The Moneymaker hp mutant used in these experiments was not completely 

isogenic with the wild type and was derived from a cross between Moneymaker 

wild type and Webb Special (= hp mutant, LA 279), described by several 

authors (Kerr, 1960; Thomson et al., 1962) as a spontaneous mutant with an 

exceptionally high anthocyanin content. The au/hp double mutant has been 

isolated from crossings between these au and hp mutants. The overall 

morphology of the au/hp recombinant resembled the au phenotype (Fig. 8.1.). 

In addition seeds produced by selfing mutants, au and hp, and their isogenic 

wild type of the cv. Ailsa Craig (obtained from the Glasshouse Crops 

Research Institute, Littlehampton, U.K.) were used. 

8.2.2 Anthocyanin assay 

Seeds were surface sterilized for 5 min in a 1% (v/v) Na-hypochlorite 

solution (commercial bleach), washed for 30 min in running tap water and 

sown in transparent plastic boxes (10x10x8 cm) on 10 layers of filter paper 

saturated with distilled water. After incubation for 84 h in darkness (D) at 

25 "C the irradiation schedule was started. Each treatment was terminated 

with a 24 h D period, after which anthocyanin extraction and assay was 

started. Samples of 10 seedlings of uniform height were taken from each box 

and extracted with 1.2 ml acidified (1 % HCl, w/v) methanol for 48 h in D 

with shaking. A Folch partitioning was performed after adding 0.9 ml H2O and 

2.4 ml chloroform to the extracts and centrifugation for 30 min at 4800 rpm. 

The absorbance of the top phase was determined with an Aminco DW-2a 

spectrophotometer at 535 nm. In most experiments the results represent the 

mean ± S.E. of 4 replicates for each treatment and usually are the means of 

two or more independent duplicate experiments. 



103 

auauHpHp 
(au) 

AuAuhphp 
(hp) 

Fl 

F2 

AuauHphp 
(wt) 

AuAuHpHp 
(wt) 

AuauHpHp 
(wt) 

AuAuhphp Auauhphp auauHphp 
(hp) (hp) (au) 

auauhphp 
(?) 

AuAuHphp AuauHphp 
(wt) (wt) 

F3 

F4 

auauHpHp 
(au) 

(hp) (hp) (au) 

I 
auauhphp 

Fig.8.1. Scheme describing the isolation of the double mutant 
(au/hp) of tomato without an a priori prediction of its phenotype. 
Between brackets description of the phenotype and conditions used 
for selection (wt = wild-type seedlings with almost white 
hypocotyls after 24 h low irradiance red light (RL), short 
hypocotyls in white light (WL); au - no visible anthocyanin after 
24 h low-irradiance RL, long hypocotyls in WL and reduced 
chlorophyll content; hp- etiolated seedlings with red hypocotyls 
after 24 h low-irradiance RL, short hypocotyls in WL. (x = 
crossed; ® = selfed) 

8.2.3 Light sources 

The broad-band light sources for BL, RL and FR are described in 

appendix 'Light Sources'. The fluence rate of the BL, used as pretreatment, 

and of the RL and FR pulses was 3.6 /jmol m"'' s_J- ± 5%. 

8.3 Results and discussion 

After a 12 h BL pretreatment, anthocyanin was produced in both the hp mutant 

and the wild type (Fig. 8.2a). A pulse of RL terminating the BL pretreatment 
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resulted in a stimulation of anthocyanin synthesis and a pulse of FR or RL 

followed by FR reduced anthocyanin synthesis below the dark-control level 

(BL pretreatment only). However, the response of the hp mutant was much 

larger. The au mutant exhibited no significant anthocyanin synthesis under 

these conditions (Fig. 8.2.a). 
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Fig. 8 .2 . Anthocyanin content of tomato seedl ings of cv. 
Moneymaker au, hp, au/hp and wild type a f t e r t rea tment with a 
pu l se of red l i g h t (RL; 5 min, 3.6 //mol m"2 s " 1 ) , f a r - r ed l i g h t 
(FR; 15 min, 3.6 /jmol m"2 s "1) or RL followed by FR: 
a. with 12 h b lue l i g h t (BL) p re t rea tment (3.6 /imol m"2 s " 1 ) ; 
b . wi thout BL p re t rea tment . Note the d i f f e r en t absorbance s c a l e s . 

L 
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Without BL pretreatment no significant P control of anthocyanin synthesis 

could be detected in seedlings of the cv. Moneymaker wild type and au 

mutant. However, the hp showed a small, but significant, induction of 

anthocyanin synthesis after a single RL pulse. This response to RL was 

reversed by a subsequent FR pulse (Fig. 8.2.b). Similar results were 

obtained with the wild type and hp mutant of the cv. Ailsa Craig (Fig. 8.3.a 

and b ) . These results indicate that the conclusion of Drumm-Herrel and Mohr 

(1982) and Mancinelli and Schwartz (1984), that single light pulses have no 

effect on anthocyanin synthesis in the tomato hypocotyl, should be 

reformulated to state that single light pulses have no measurable effect. In 

a. wild type hp mutant 
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RL/FRr 

I 
+ 
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Fig. 8.3. Anthocyanin content of tomato seedlings of cv. Ailsa 
Craig hp and isogenic wild type after treatment with a pulse of 
red light (RL; 5 min, 3.6 /rniol m"2 s " 1 ) , far-red light (FR; 
15 min, 3.6 /jmol m"2 s'^) or RL followed by FR: 
a. with 12 h blue light (BL) pretreatment (3.6 /irnol m~2 s"1) ; 
b. without BL pretreatment. Note the different absorbance scales. 

the hp mutant this effect was clearly detectable due to its enhanced 

capacity for anthocyanin synthesis. The cause of this enhanced synthesis is 

still unclear. Preliminary measurements of P in D-grown seedlings indicated 

no differences in P content between wild type and hp mutant (Table 4.2 in 

Chapter 4) and therefore the difference does not appear to be due to a 

higher [Pfr] in the hp mutant. On this basis the hp mutant was provisionally 
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designated as a photoresponse mutant (Chapter 2). However, another possible 

explanation of the increased anthocyanin synthesis is that the sensitivity 

of the hp mutant to Pfr is increased. A comparison of the photo-inhibition 

of hypocotyl elongation of wild type and hp mutant could provide useful 

information about possible differences in general sensitivity to Pfr. An 

indication of this has been observed by von Wettstein-Knowles (1968). The hp 

mutant used in their research had a lower hypocotyl dry weight than the wild 

type when grown in the light. Similar results have been shown by Mochizuki 

and Kamimura (1984). This points to increased inhibition by light and could 

indicate that the hp mutant has a higher sensitivity to Pfr than wild type. 

Perhaps more likely is that the increase in anthocyanin synthesis is due to 

a mutation which influences a step much further along the transduction chain 

between photoreceptor and response, possibly the absence of an inhibitor (or 

a 'substrate-competitor') of a crucial reaction in anthocyanin synthesis. 

Whatever the final explanation, the hp mutant is a useful tool to study 

anthocyanin synthesis because of its 'amplified' response. 

Moneymaker 
wild type au mutant 

au/hp mutant 

50 75 100 0 

RL/FR reversible response (X) 

Ailsa Craig 
wild type 

D I 
BL • 

hp mutant 

D I 
BL 

au mutant 

"BO 0 25 50 75 100 0 

RL/FR reversible response (X) 
Fig. 8.4. The red (RL)/far-red light (FR) reversible anthocyanin 
synthesis after 24 h darkness (response to a RL pulse - response 
to a FR pulse) of tomato seedlings of au, hp, au/hp and wild type 
(cv. Moneymaker) and au, hp and isogenic wild type (cv. Ailsa 
Craig) expressed as percentage of the response in the hp mutant 
after a 12 h blue light (BL) pretreatment. All inductive 
treatments 
FR: 15 min, 3. 6 /*mol 

its given at 84 h from sowing. RL: 5 min, 3.6 /xmol m 
lin, 3.6 fimol m"2 s"1; BL: 12 h, 3.6 jjmol m"2 s"1. 

•2 s - l . 
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Without pretreatment with BL no anthocyanin could be detected in the 

double mutant (au/hp). However, after a BL pretreatment this mutant showed a 

small (less than wild type), yet significant, RL/FR reversible response 

(Fig. 8.2.a). Apparently a low level of P below detection limits (either IP 

or stable P (sP)) that is present in the au mutant is now sufficient to 

induce a little anthocyanin due to the increased sensitivity as a result of 

the hp gene. 

To enable comparison of the differences between the wild type and the 

three mutant genotypes a figure was constructed with the inductive RL 

response (response to RL pulse - response to FR pulse {= A R (Drumm-Herrel 

and Mohr, 1982)}) expressed as percentage of the response of the hp mutant 

after BL pretreatment (Fig. 8.4.). It appears that the amount of anthocyanin 

in the hp, produced in 24 h D after a BL pretreatment, has been amplified 

about 10 fold as compared to the wild type. By extrapolation the inductive 

RL response after one RL pulse in the case of the wild type is about 0.1%. 

This would correspond to a difference in absorbance of =* 2.10" , which is 

below detection limits. This explains why so far no effect of a single RL 

pulse on anthocyanin synthesis in tomato hypocotyls has been observed. 

46 60 72 84 

Incubation time (h) 

Fig. 8.5. Anthocyanin content of seedlings of tomato (cv. 
Moneymaker) wild type (o) and hp mutant (•) as a function of the 
dark (D)-incubation period preceding a 12 h irradiation with blue 
light (3.6 /imol m"^ s"^) and terminated by 24 h D. 
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The anthocyanin synthesis in the au/hp mutant after a BL pretreatment 

is about 3% of the maximum response. The P level in the au mutant is < 5% of 

that in the wild type or the hp mutant (Chapter 4 ) , i.e. the absence of at 

least 95% of the IP results in only 3% of the anthocyanin synthesis under 

P-control in the hp mutant after BL pretreatment. This clearly suggests that 

it is the 'bulk' IP pool in etiolated seedlings which is primarily involved 

in anthocyanin synthesis at this stage. Provisional observations indicate a 

little anthocyanin in older plants of the au mutant. It is possible that 

this is a response to the sP that accumulates in the light. 

The 'timing' of the RL pulse appeared to be very important. In the case 

of the hp mutant the maximum inductive response to a single RL pulse with BL 

pretreatment was observed after 84 h D incubation (Fig. 8.5). Apparently at 

this time the seedlings have acquired maximum competence to respond to Pfr. 

Two pulses of RL, the first after 72 h D and the second 

Moneymaker 
wild type hp mutant 

Alisa Craig 
wild type 

D Ö 
RL I 
RL-RLI 

Fig. 8.6. Anthocyanin content of tomato (cv. Moneymaker and cv. 
Ailsa Craig) seedlings of wild type and hp mutant following one or 
two inductive lieht pulses. The first pulse of red light (RL; 5 
min, 3.6 jjmol m s ) was given after 72 h incubation in darkness 
(D) and the second at 84 h. Between and after the pulses the 
seedlings were kept in D until the anthocyanin determination at 
96 h after sowing. 

after a further 12 h D, were much more effective than one RL pulse in 
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induction of anthocyanin synthesis during a 24 h D period in the case of the 

hp mutant (Fig. 8.6). Wild type under the same conditions showed no 

significant anthocyanin accumulation. Using the model proposed by OelmÀller 

and Mohr (1985) (Fig. 3.1, Chapter 3) this can be explained as follows: P 

controls the anthocyanin synthesis via two different routes. Firstly, as the 

effector of the terminal response it sets in motion the signal-transduction 

chain which eventually leads to the appearance of anthocyanin. Secondly, it 

determines the effectiveness of Pfr in mediating anthocyanin synthesis, in 

other words in determining the responsiveness of the anthocyanin synthesis 

towards Pfr. This responsiveness can also be established by a pretreatment 

with BL or UV. The first RL pulse is proposed to increase the sensitivity to 

Pfr, after which the inductive response of 
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Fig. 8.7. Anthocyanin content of tomato (cv. Moneymaker and cv. 
Ailsa Craig) seedlings of hp mutant following one or two inductive 
light pulses. The first pulse was given after 60 h incubation in 
darkness (D) (with 24 h D between two pulses) or after 84 h 
incubation in D (with 6 h D between two pulses) and the second at 
90 h: one or two pulses of red light (RL; 5 min, 3.6 ^mol 
m"2 s"-*-) ; one or two pulses of far-red light (FR; 15 min, 
3.6 jumol m"2 s ); two pulses of RL followed immediately by FR 
(RL/FR) . All treatments were terminated with a 24 h D period 
before anthocyanin determination. 

the second pulse is enhanced. A treatment of two pulses of RL separated by a 
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D period of 24 h was less effective than pulses with a 6 h D interval (Fig. 

8.7). Apparently the increased responsiveness to a second pulse is gradually 

lost if the D period is too long. This is in similar to the observation of 

Mohr and Drurara-Herrel (1983), who showed that the 'sensitivity 

amplification' to Pfr induced by UV-B for anthocyanin synthesis of wheat 

coleoptiles was completely lost if 12 h D separated the UV-B treatment and 

the inductive RL pulse. 
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9. GENERAL DISCUSSION 

Physiological mutants offer a wide range of new possibilities in assisting 

the study of higher plant photomorphogenesis. In the experiments described 

in this thesis three such mutants have been used. In this chapter general 

conclusions are presented, together with additional discussion, speculations 

and suggestions for future research. 

The mutants concerned are the long hypocotyl (lh) mutant of cucumber 

and the aurea (au) and high pigment (hp) mutants of tomato. 

Spectrophotometric as well as immunological evidence indicate that the au 

mutant lacks labile phytochrome (IP) , whereas the lh mutant has been 

proposed to lack stable phytochrome (sP). While the au mutant appears to be 

a IP receptor mutant, the lh mutant could be a sP receptor mutant. However, 

confirmation awaits the availability of species-specific antibodies which 

can discriminate between IP and sP. In Figure 9.1 the possible complementary 

nature of the mutants is visualized. Since the level of sP in etiolated 

sP sP 

JP JP 

SP 

JP 

sP 

JP 

wt au lh wt au lh 

Dark-grown seedlings Light-grown seedlings 

Fig. 9.1. Schematic illustration of the proposed phytochrome (P) 

content (labile: IP and stable: s?) of dark-grown and light-grown 

seedlings of wild type, tomato au mutant and cucumber lh mutant. 

Note that the total P level in light-grown seedlings is 

approximately 2% of the level in dark-grown seedlings. 

tissue is too low to measure spectrophotometrically, the phytochrome (P) 

level in dark-grown seedlings of the lh mutant appears similar to that in 

the wild type, whereas in the au mutant no P can be detected. Despite the 

low level of P in light-grown tissue, both mutants were demonstrated by 

spectrophotometry to contain about 50% of the P present in the wild type. 

The P detected is proposed to represent sP in the the au mutant and IP in 
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the lh mutant. 

One of the first problems that can be addressed with these mutants is: 

which of the two forms of P is physiological active? Formation of the far-

red light (FR)-absorbing form of P (Pfr) has been proposed to be the 

physiologically active process in P action. Alternatively it has been 

postulated that it is the loss of the red light (RL)-absorbing form (Pr) 

which is the active process (Smith, 1983). Circumstantial evidence has 

implicated the Pfr form of P as the physiologically active form (Borthwick 

et al., 1952), but mutants lacking P provide, for the first time, direct 

evidence to support this hypothesis. Mutants such as au mutant of tomato 

clearly have a reduced level of Pr in dark-grown seedlings, but are 

elongated in darkness (D) , like the wild type. If removal of Pr was the 

active process in P action the mutant would be expected to be short. Mutants 

possessing different levels of P, would also be very useful in determining 

whether a response is due to the [Pfr] or Pfr/Ptotal ratio (<p) . Until now 

different P levels were only attainable by various pre-irradiation 

schedules, which may selectively influence subsequent response sensitivity. 

Why do plants posses a bulk IP pool in dark-grown plants? Hillman 

(1972) attempted to attribute function to this pool, but concluded: "As to 

what the function might be, there is simply no evidence". Paradoxes which 

remain unexplained are the Zea and Pisum paradoxes. In Zea, a fluence of RL 

sufficient to saturate a particular physiological response is insufficient 

to cause a detectable conversion of P to Pfr. This response is apparently 

saturated by a very small amount of Pfr. However, the effect of the RL is 

reversible by a saturating FR pulse, even though the FR establishes a 

measurable conversion of Pr to Pfr, in fact more than the RL which effect it 

reverses. This apparent paradox has been explained in terms of a limited 

number of localized receptor sites to which Pfr migrates (Raven and Spruit, 

1973; Hendricks and VanDerWoude, 1983; Kraak, 1986). The P molecules bound 

at these sites therefore consist of 100 % Pfr. This is higher than is 

possible on photochemical grounds alone. It was further proposed that low 

fluence FR, as well as RL, produced sufficient Pfr to saturate the receptors 

and initiate a response. Assuming that the bound P molecules reside at the 

receptor sites, even if photoconverted back to Pr, the explanation of the 

VLFR by longer irradiation periods is possible. FR causes the 

photoconversion of most Pfr at the receptors to Pr, resulting in a low 

photoequilibrium of the P at the receptors (cp < 0.05) and reversion of the 

response. 
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In Pisum a paradox is observed when tissues from plants, pre-irradiated 

with RL and then kept in D, are later briefly irradiated with sources 

establishing various photostationary states (cp) and then returned to D. 

Those given a low <p value grow more than the corresponding dark controls 

(pre-irradiated only), while those given high <p values grow less. A response 

similar to the dark controls is obtained by brief irradiation establishing a 

<p value of about 0.20. Thus, on this physiological basis, the pre-irradiated 

tissue responds as though 20% of its P was Pfr. However, no Pfr could be 

detected spectrophotometrically. Here again, as in Zea, the existence of a 

small active fraction of P with properties different from the bulk pool 

could explain this paradox. In this case there has to be a difference 

between the pools in the rate(s) of Pfr reversion and/or destruction after 

RL irradiation. The active fraction could either revert more slowly or 

undergo a slower rate of destruction than the bulk P. 

It is possible to speculate that the small active pool is sP. However, 

this implies that the bulk P pool, IP, is non-functional. It seems 'highly 

inefficient' for the plant to expend energy, while living heterotrophically 

on a limited food reserve, to make a large pool of a photoreceptor which is 

non-functional. Kendrick and Spruit (1973) concluded: ".... all P can be 

proposed to be potentially active and to trigger specific responses by 

virtue of its localization in a particular environment" . 

Experiments with the au mutant, lacking IP, have now provided direct 

proof that the bulk pool of IP is indeed functional in dark-grown plants. At 

the fluence rates tested the au mutant is more or less 'RL blind'. Fluence 

rate response curves for BL demonstrate that the au mutant requires higher 

fluence rates to obtain the same inhibition of growth as the wild type. 

Since this mutant contains at most 5% of the P present in wild type it was 

concluded that it was the absence of 95% IP that causes this difference. 

This provides evidence that the bulk pool of IP is active in the control of 

hypocotyl elongation. It has to be kept in mind that it still remains 

possible that sP is also reduced in the au mutant in the same proportions as 

IP, causing the difference in fluence rate requirement described above. 

However, the evolutionary argument that IP is functional at a time that 

energy is at premium seems overwhelming. Precise determinations of the exact 

sP concentrations of dark- and light-grown tissues are clearly needed. 

However, this is impossible using spectrophotometric methods. The 

development of new antibodies, which are capable of discriminating between 

sP and IP, is required. These would enable accurate determination of sP and 
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IP levels. 

Considering the selective pressures for the evolution of light 

perception in dark- and light-grown plants the existence of a large pool of 

IP can be explained. The dark/light transition (de-etiolation) of a seedling 

takes place as the seedling approaches the soil surface. Until light is 

perceived the strategy of the seedling is to grow as rapidly as possible to 

reach the surface using the stored reserves as energy source. This has been 

called the strategy of dark-growth or scotomorphogenesis (Mohr and Schäfer, 

1983). When the seedling perceives light a new strategy is adopted: 

photomorphogenesis. The process of de-etiolation takes place and the 

seedling starts using light as an energy source. To enable switching as 

quickly as possible from scotomorphogenesis to photomorphogenesis after 

emerging from the soil (or more precisely after anticipating the soil 

surface a few mm below it) higher plants have evolved a very sensitive 

photoperception system. High sensitivity could be accomplished in several 

ways : 

(i) The presence of a high concentration of P in the seedling. This 

would increase the chance that the first few photons penetrating the soil 

would convert some Pr molecules to Pfr which could then move to a limited 

number of receptors and lead to de-etiolation. 

(ii) A more sensitive P system. In this case a few Pfr molecules would 

suffice to induce a response. This could be accomplished by the presence of 

a small number of receptors for Pfr. This type of response is consistent 

with the very low fluence response (VLFR). In such responses the 

photoequilibrium established by a pulse of FR results in sufficient Pfr 

molecules to saturate the response. Such responses lack RL/FR reversibility: 

the character by which P involvement in a response is implicated. In these 

cases only the action peak in the RL region of the spectrum implicates Pr as 

photoreceptor in the VLFR (e.g. Blaauw-Jansen and Blaauw, 1976; Cone and 

Kendrick, 1985). 

After emerging from the soil this high sensitivity is no longer 

necessary and the primary function of P is the detection of canopy shade. 

The seedling now requires a system able to accurately monitor changes in 

light quality, e.g. the RL/FR ratio (Smith, 1986). A small pool of a RL/FR-

reversible photoreceptor could fulfil this function. It is interesting to 

note that from an evolutionary standpoint, P probably evolved for this 

function and that its utilization to detect the dark/light transition is a 

more recent adaptation. In other words, IP is a later evolutionary 



117 

development associated with land plants. What the relationship between IP to 

sP is remains an open question, but at this time it is uncertain as to 

wether IP is a separate gene product or a processed form of sP. 

The availability of the au mutant of tomato, with less than 5% of the P 

present in wild type, enables the the involvement of P in a VLFR to be 

further studied. The amount of P in this mutant could be so low that a FR 

pulse fails to convert enough Pr molecules to Pfr to induce a VLFR and thus 

bring the VLFR within the range of RL/FR reversibility. Indeed such 

reversibility of a VLFR could explain the observations of Sharrock et al. 

(1988) in the au mutant. The induction of the Chi a/b binding protein (cab) 

has been demonstrated, at least in part, to be under the control of a VLFR 

in a number of species (Kaufman et al., 1984). In the au mutant it appears 

that the low level of induction of cab by RL is reversible by FR, while in 

the wild type cab is strongly induced by FR. This result provides the first 

indication that IP is the functional photoreceptor in VLFR's. 

It is interesting to note that the adult plants of the au mutant have a 

reduced chlorophyll content compared to the wild type and that this remains 

the most striking feature of the au phenotype (Koornneef et al., 1985). One 

can speculate that the low level of IP present in light-grown plants of a 

tomato wild type retains the function of regulating chlorophyll 

biosynthesis, just as it does at the dark/light transition of a seedling at 

the time of de-etiolation (Koornneef et al., 1985; Sharrock et al., 1988). 

Whereas P control of hypocotyl elongation in etiolated seedlings of the 

au mutant is reduced by lack of IP, elongation growth of light-grown 

seedlings appears still to be under P control. The classic end-of-day FR 

response is clearly present in the au mutant, indicating that P is present 

and functional. The sP type of P is probably involved in this response. 

Additional evidence in support of this hypothesis comes from studies with 

the Ih cucumber mutant. This mutant, which is proposed to lack sP or its 

function, shows no end-of-day FR response. Furthermore, whereas elongation 

of the internodes of the tomato au mutant is similar to that in its wild 

type when grown under greenhouse conditions, pointing to (s)P control, the 

cucumber lh mutant has internodes much longer than its wild type, indicating 

absence of P control in light-grown plants. 

Apart from offering the possibility of ascribing functions to the 

different P types, mutants also enable the study of the relative importance 

of photoreceptors, for instance in the coaction between P and BL/UV-

photoreceptor. Fluence-rate response curves for inhibition of hypocotyl 
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growth by BL clearly show that inhibition is, at least in part, mediated by 

IP. However, a significant inhibition by BL is still observed in the au 

mutant. Mohr and Drumm-Herrel (1983) have proposed that the function of the 

BL/UV-photoreceptor is to enhance sensitivity to P. On this basis, the 

higher BL fluence rate required in case of the au mutant to obtain the same 

inhibition as wild type could be required to increase the sensitivity 

sufficiently to compensate for the reduced P content (Fig. 9.2). Irradiation 

of the wild type with 0.38 ftmol m~2 s"1 BL causes 50% inhibition. Assuming 

the au mutant contains 5% of the P present in wild type, the same inhibition 
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Fig. 9.2. Schematic illustration of the fluence rate dependency of 
inhibition of hypocotyl elongation by blue light (BL) in etiolated 
seedlings of tomato au mutant and wild type (wt). The fluence 
rates at which inhibition of au mutant and wild type is 50% are 
indicated by au^Q and wt5Q, respectively. Based on the data of 
Fig. 7.2. 

would occur in the mutant when irradiated with 7.8 /jrnol m~2 s BL (= 20 x 

0.38). In fact 50% inhibition of the au mutant occurs after irradiation with 

13.2 /imol m"2 s"1 BL (= 35 x 0.38). This calculation would indicate a P 

content in the au mutant = 3% of that in wild type. 
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Theoretically it could be predicted that seedlings of the au mutant at 

higher BL fluence rates would respond to P control to the same extent as the 

wild type. To verify this hypothesis a study of P responses after a BL pre-

irradiation or by manipulation of <p by supplementary irradiation during a BL 

irradiation is necessary. Comparable experiments were conducted by Drumm-

Herrel and Mohr (1984) with seedlings of Sesamum indicum, indicating that 

the growth rate after the end of a BL period can be fully attributed to the 

action of Pfr, as long as the responsiveness amplification by BL persists in 

the subsequent D period. They observed that the responsiveness decreases 

during the D period. To detect P-controlled growth responses before 

sensitivity is lost very sensitive measuring techniques are required. The 

apparatus for continuous measuring of growth, described in Chapter 6, will 

enable such experiments to be conducted. 

One observation does not appear to be consistent with this hypothesis. 

Continuous irradiation with white light (WL) should enhance the sensitivity 

to P due to the BL component present and thus enhance the P response. 

However, the hypocotyl of the au mutant grows long in WL. Drumm-Herrel and 

Mohr (1984) have argued that the BL component in the WL used in such 

experiments is possibly below the threshold necessary to obtain a detectable 

response. When WL is given at a fluence rate of 32 jumol m s , this 

contains approximately 3 /imol m s BL (as described in Chapter 5, Fig. 

5.7). This fluence rate would only cause a small growth inhibition in the au 

mutant as can been seen in Figure 9.2 (see also Chapter 7, Fig. 7.2). 

Furthermore, the higher ip value in WL (= 0.72) as compared to the <p value in 

BL (= 0.45) would increase the response, i.e. the threshold in WL should be 

lower than the threshold in BL. It is thus unlikely that the fluence rate of 

the BL component of the WL in these experiments was below the threshold. 

Coaction between P and a BL/UV-photoreceptor also plays a role in 

anthocyanin synthesis. As with hypocotyl elongation it has been proposed 

that the function of both P and the BL/UV-photoreceptor in this response is 

to enhance the sensitivity of the system to Pfr (Oelmüller and Mohr, 1985). 

Without enhanced sensitivity induced by a pre-irradiation no P controlled 

anthocyanin synthesis could be detected in tomato wild type seedlings after 

an inductive light treatment. However, in the tomato hp mutant P control of 

anthocyanin synthesis could be detected without a pre-irradiation. This hp 

mutant appears to have an enhanced capacity for anthocyanin synthesis. It 

was proposed, that this mutant has an increased sensitivity to Pfr. 

Experiments are in progress to test this hypothesis. In the au/hp double 
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mutant anthocyanin synthesis could only be detected after a BL pretreatment. 

The sensitivity amplification induced by the hp mutation was not sufficient 

to induce a measurable amount of anthocyanin synthesis in seedlings 

containing a very low P level. Furthermore, anthocyanin synthesis in the hp 

mutant after a BL pretreatment followed by a RL pulse was four times higher 

than without a BL pretreatment. This indicates that the effects of the BL 

pretreatment and the hp mutation were, at least partially, additive. 

It appears that anthocyanin synthesis in etiolated tomato seedlings, 

similar to P control of hypocotyl elongation, is also controlled by IP. The 

most likely explanation of the small response in the au/hp double mutant is 

a response to a low level of IP present. The existence of a low level of IP 

in the au mutant is probably the reason why it can survive. A mutant lacking 

all IP would probably be lethal since it could not undergo the process of 

de-etiolation. This hypothesis can be enforced with the following 

observations. The hp mutant contains a P level similar to the wild type, 

whereas the au mutant and the au/hp double mutant contain at most 5% of the 

P level in wild type. Anthocyanin synthesis, induced by pre-irradiation with 

BL and an inductive RL pulse, increases 10 fold due to the hp mutation. If 

the RL/FR-reversible response of the the hp mutant after a BL pretreatment 

is taken as 100%, then it is predicted that the responses of wild type, 

au/hp double mutant and au mutant will be 10%, 5% and 0.5%, respectively. 

These values were indeed measured in the experiments described in Chapter 8. 

The RL/FR-reversible response of the au/hp double mutant was even less: 3%, 

which could indicate that the P level was ~ 3% of that in wild type. Such a 

prediction is compatible with the results of hypocotyl inhibition in 

continuous BL. 

The hp mutant with its enhanced anthocyanin synthesis offers an 

excellent possibility to study P control of anthocyanin in tomato seedlings. 

This will be done in a forthcoming programme of the research group. The 

distribution of anthocyanin in the seedlings then will be studied in detail. 

Preliminary results indicate that this differs with different light 

treatments. It is possible that the study of the location of several 

anthocyanin 'areas' (e.g. in the hypocotyl base or in the hypocotyl hook) in 

a seedling, depending upon age or light treatment, will reveal information 

about the capability of the different tissues to synthesize anthocyanin. At 

present it remains a mystery as to how or why one cell is capable of 

anthocyanin synthesis whereas another is not. 

The function of P during de-etiolation includes the regulation of gene 
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expression. A number of enzymes have been shown to appear or be dramatically 

increased as a result of de-novo synthesis following photoconversion of P. 

The au mutant has been utilized to attribute function, for the first time, 

to IP in the control of gene expression. Modulation of the Chi a/b binding 

protein (cab) is severely reduced in the au mutant (Sharrock et al., 1988). 

Using the mutants described in this thesis it should be possible to study 

the P control of expression of other genes. 

Using genetic engineering techniques new possibilities of 

photomorphogenetic mutants arise: transgenic plants. With the use of a gene 

transfer (transformation) system a foreign gene can be inserted into the 

plant genome and be functional in its new location. Effective transformation 

procedures have been developed that use Agrobacterium tumefaciens as a 

vector (Horsch et al., 1985) or that introduce DNA directly into protoplasts 

(Paszkowski et al., 1984). There are several ways in which transgenic plants 

have already added and will continue to add to the understanding of 

photomorphogenesis in higher plants: 

(i) The study of light regulation at the gene level. A number of light 

regulated genes have been studied in detail (Jenkins et al., 1983; Quail et 

al., 1987; Tobin, 1987; Aoyagi et al., in press; Kuhlemeier et al., in 

press; and references therein) including the P gene (Vierstra and Quail, 

1986). A number of these genes have up-stream sequences which are important 

in controlling photoregulation of the transcription process. Mutants in 

which such sequences have been modified are providing useful tools in 

identifying the functional DNA sequences (Hanley-Bowdoin and Chua, 1987). 

These up-stream sequences have been isolated and introduced into reporter 

genes which are not normally light-regulated (Kuhlemeier et al., 1987; 

Strittmatter and Chua, 1987; Nagy et al., 1988). In this way photo-

inducibility has been conferred upon these genes. 

(ii) The construction of mutants with anti-sense RNA. Once a given 

plant gene has been cloned it is possible to introduce a specifically 

modified form of that gene into a plant, where it is transcribed into a RNA 

strand complementary to the RNA produced by the normal functional gene 

(Weintraub et al., 1985; Lichtenstein, 1988; Krol et al., 1988). Binding of 

this anti-sense RNA to the natural RNA renders the latter non-functional. In 

this way it should be possible to 'titrate out' the mRNA from the P gene(s) 

and thus produce transgenic plants lacking P(s). Such techniques should 

provide a direct method for producing photoreceptor deficient plants without 

involving mutagenesis and mutant selection. Such genotypes would be 
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pleiotropic for the P action. If there are indeed two P types encoded by 

different genes without much sequence homology, this may be a way of 

producing plants deficient in one P type. This would permit the purification 

of the other type without contamination. 

(iii) The design of specific selection schemes for P response mutants. 

Assuming that it is not P itself, but a so called 'trans-acting factor' that 

is part of the transduction chain of P, which interacts directly with light 

inducible promotors, it might be possible to select directly for mutations 

in these trans-acting factors. Schäfer (1987) and Karlin-Neumann and Tobin 

(1987) suggested constructing fusions of light-inducible promotors with a 

suicide gene and then after insertion of the fusion into the plant genome 

and a mutagenic treatment, selecting for mutants that survive. A possible 

candidate for such a suicide gene is the tms2 gene from A. tumefaciens that, 

when active, makes a plant sensitive to oc-naphaleneacetamide ; a plant 

(mutant) with a non-functional tms2 gene will be resistant (Karlin-Neumann 

and Tobin, 1987; Klee et al., 1987). In addition one would expect in 

resistent plants alterations in (some) photomorphogenic responses. 

Nagy et al. (1988) have suggested several other uses of plants 

transformed with specific constructs, that will help to understand the 

relevant molecular structure of P itself. 

This thesis has provided proof of the usefulness of mutants in the 

study of photomorphogenesis at the whole plant level. Such mutants will also 

be of great benefit for scientists studying at the molecular level. Although 

recently emphasis has been on the use of molecular techniques, the study of 

whole plant physiology will remain indispensable. 
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SUMMARY 

Plants not only depend upon light as an energy source (photosynthesis) , but 

also utilize it as a source of information, enabling growth and development 

to be tuned to the prevailing light environment (photomorphogenesis). A 

number of photoreceptor pigments have evolved enabling information to be 

sensed over the complete daylight spectrum. These include phytochrome (P), 

operating predominantly in the red (RL)/far-red (FR) spectral range, blue 

(BL)/UV-absorbing photoreceptor(s), operating in the BL spectral range and 

UV-B photoreceptor(s). These pigments detect parameters of the light 

environment, such as light quality, quantity, direction and duration, and 

enable developmental responses to be controlled accordingly. Many processes 

in plants are controlled by these photoreceptor systems, such as, 

germination, elongation growth, apical hook opening, enzyme activity, leaf 

expansion, phototropism and flowering. 

The most extensively studied and characterized photomorphogenetic 

photoreceptor in higher plants is phytochrome. Recently the existence of 

multiple types of P has been suggested: labile P (iP) and stable P (sP) . 

Where in darkness IP is predominant, whereas both IP and sP are present in 

similar quantities in the light. In addition to different P types there are 

also multiple working mechanisms of P: very low fluence response (VLFR), low 

fluence response (LFR) and high irradiance response (HIR). The BL/UV-

photoreceptor(s) is/are hypothetical, being postulated on the basis of 

action spectra. The chemical composition is still unknown. The nature of the 

UV-B absorbing pigment(s) has also yet to be elucidated. The photoreceptors 

co-act in several processes. However, the mode of this co-action and the 

relative importance of the different photoreceptors is still unclear. 

The existence of different photoreceptors, multiple photoreceptor types 

and working mechanisms means that photomorphogenesis is rather complex, 

especially because their absorption spectra often overlap. In this thesis it 

has been shown how mutants, lacking a particular component of their 

photomorphogenesis, can be used. The relevance of the deletion in the mutant 

is indicated by the difference between the mutant and its isogenic wild 

type. These mutants can be divided simplistically into three groups: 

photoreceptor-, transduction chain-, and response mutants (Chapter 1). Only 

a few photomorphogenetic mutants are known at the present, some of these are 

described in chapter 2. The mutants used in the present experiments were: 

the long-hypocotyl cucumber mutant (lh), and the aurea (au) and high pigment 
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(hp) tomato mutants. Both the lh mutant and the au mutant are characterized 

by an extremely elongated ('etiolated') hypocotyl when grown in white light 

(WL). The hp mutant shows an enhanced pigment synthesis, especially 

anthocyanin. 

Spectrophotometric measurements indicated that the P content of 

etiolated seedlings of the au mutant was < 5% (= detection limit) of that in 

wild type (Chapter 4 ) . Using immunochemical techniques, carried out in 

collaboration with Prof. P.H. Quail and coworkers (Plant Gene Expression 

Center, USDA, Albany, USA), this observation has been confirmed. It appeared 

that the P molecule was synthesized but not accumulated. Apparently it is 

unstable, but the reason why is not yet clear. In light-grown tissue of the 

au mutant with very low levels of chlorophyll (flower petals) or tissue 

bleached as a result of treatment with a herbicide (Norflurazon-treated 

leaves) the amount of spectrophotometrically detectable P was 50% of that in 

similar tissue of the wild type. It was proposed that the au mutant is a 

receptor mutant and that it lacks IP. However, detailed immunochemical 

determination using specific antibodies against IP and sP are required to 

confirm this conclusion. These antibodies are not yet available. 

The P content of seeds and etiolated seedlings of the lh mutant 

appeared to be similar to that of the wild type. In light-grown tissue 

(flower petals and bleached leaves) of the lh mutant the P content was about 

50% of that in the wild type. It is proposed that this mutant lacks sP or 

its function. Again, immunological determination is necessary to enable 

conformation of this conclusion. This research is in progress in 

collaboration with Prof. M. Furuya (Plant Biological Regulation, Frontier 

Research Programs (RIKEN), Saitama, Japan). 

Using these mutants several photomorphogenetic processes have been 

studied. In chapter 3 a review is given of photomorphogenetic 

characteristics of tomato and cucumber as described in the literature. 

Furthermore, current theories are discussed in relationship to the 

photomorphogenesis of both species. The remaining chapters describe 

experiments comparing the characteristics of the mutants and their wild 

types. 

In chapter 5 the effect of irradiation on long-term growth of cucumber 

seedlings is described. It appeared that the responses to different 

irradiations of etiolated seedlings of the lh mutant and its wild type are 

similar. After de-etiolation differences appear: the P control of elongation 

is reduced in the mutant and de-etiolation is retarded. In continuous WL or 
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RL the hypocotyl of the lh mutant is much more elongated than that of the 

wild type. The (epidermal) cells are also much longer, being increased in 

the same proportion as the hypocotyls. These results suggests that the 

difference between wild type and mutant lies in the presence or absence of 

sP. 

Many species respond by increased elongation growth to a short 

irradiation with FR at the end of the photoperiod. Cucumber also shows this 

response. However, the lh mutants lacks this so called end-of-day FR 

response. This suggests that this response in light-grown seedlings is 

mediated by sP. An additional response possibly regulated by sP is 

'simulated' phototropism. When one cotyledon is covered with aluminium foil 

and the plant is irradiated from above curvature towards the uncovered 

cotyledon occurs. This response of de-etiolated seedlings due to RL 

absorption, presumably by P in the cotyledons, is absent in the lh mutant. 

Hypocotyl elongation of both wild type and lh mutant is inhibited by 

BL. However, the mutant is elongated in WL which contains a considerable BL 

component. Experiments suggest that the low BL fluence rates used could not 

sustain sufficient photosynthesis for growth. Furthermore, inhibition of 

growth by BL is possibly only temporary. In WL photosynthesis is sufficient 

to sustain growth and the lh mutant elongates. However, under these 

conditions the wild type is inhibited via P. 

The long hypocotyl of the lh mutant is very similar to that of a wild 

type plant treated with gibberellin (GA). However, the proportional response 

for a given dose of GA44.7 is the same in wild type and lh mutant. 

Furthermore, whereas the lh mutant, compared to the wild type, has long 

hypocotyls in WL and RL, hypocotyl lengths of the lh mutant and the wild 

type are similar in BL or UV-A. However, the GA-mediated decrease of 

inhibition is similar in RL- and BL-treated seedlings, indicating that the 

influence of GA is independent from the effect of the light treatments. It 

therefore appears likely that the lh mutant is not a GA over-producer. 

However, at the present GA concentrations in lh mutant and wild type are 

unknown. 

In the literature a clear difference between the kinetics of hypocotyl 

inhibition by BL and RL has been described. In order to detect such 

differences very sensitive measuring equipment is required, since growth 

rate changes can occur within minutes. Preliminary studies carried out with 

a horizontal microscope revealed that inhibition by BL occurred much more 

rapidly than inhibition by RL (Chapter 6). To enable very accurate growth 
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measurements under controlled environmental conditions an computer-

controlled apparatus for continuous growth measurement was designed and 

constructed in the Laboratory for Plant Physiological Research. A detailed 

description of this apparatus is given in Chapter 6. Data-acquisition and 

analysis with a computer enables the comparison of many individual plants. 

Experiments with the growth measuring apparatus showed that inhibition of 

elongation of etiolated seedlings of both lh mutant and wild type by BL was 

observed after a few minutes, whereas the inhibition by RL was only observed 

after several hours. No significant differences occurred between etiolated 

seedlings of wild type and lh mutant. However, the results of long-term 

growth experiments suggest that there are clear differences between light-

grown seedlings. At the present time no de-etiolated seedlings have been 

measured with the growth measuring apparatus. 

The au tomato mutant, like the lh cucumber mutant, has an elongated 

hypocotyl when grown in WL. Furthermore, germination is delayed, the 

chlorophyll content reduced and only 5% of the P level present in wild type 

can be detected in the au mutant. It is proposed that this mutant contains 

no (or very little) IP (Chapter 4 ) . In chapter 7 the results are described 

of experiments designed to study the role of IP in photomorphogenesis. The 

response of wild type and au mutant are compared for several 

photomorphogenetic processes. 

Etiolated seedlings of the au mutant are more or less 'RL-blind'. This 

indicates a lack of P control in the mutant, apparently caused by the 

absence of IP. However, inhibition of hypocotyl elongation is still present 

in the au mutant, although a higher fluence rate is required. It appears 

that the 95% decrease of P content in the au mutant causes this difference. 

It is proposed that this IP, absent in the au mutant, plays an important 

role in hypocotyl elongation of etiolated seedlings. This provides direct 

evidence that IP is functional. Previously it was impossible to ascribe any 

function to IP, despite the fact that IP is present in 'bulk' amounts in 

etiolated seedlings. Two further experiments with the au mutant confirm 

conclusions drawn from experiments with the lh cucumber mutant. Both the 

end-of-day FR response, as well as the simulated phototropism were observed 

in the au mutant, suggesting that both processes are regulated by sP. 

Anthocyanin synthesis is one of the processes controlled by P. Previous 

work suggested that one RL pulse is not sufficient to induce anthocyanin 

synthesis in tomato seedlings. Pre-treatment with BL or UV-A increases the 

sensitivity of the system towards P. However, experiments with the hp tomato 
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mutant, with its enhanced anthocyanin synthesis, indicate P control of 

anthocyanin synthesis after one RL pulse (Chapter 8) . In the au mutant no 

anthocyanin could be detected, even after a pretreatment with BL. In the 

au/hp double mutant a significant amount of anthocyanin could be detected 

(about 3% of the amount synthesized in the hp mutant) . This indicates that 

the 95% P absent due to the au mutation plays an important role in 

anthocyanin synthesis. 

In the last chapter several general conclusions and points of 

discussion are presented. One of these conclusions is that Pfr is the active 

form of P. Until now no direct evidence was available concerning the 

physiological active process in P action: the increase of Pfr or the 

decrease of Pr. However, mutants with a reduced P content (and consequently 

less Pr) elongate in darkness to an extent similar to the wild type. If 

decrease of Pr was the active process they would be expected to be short. An 

additional conclusion is that IP, present in etiolated seedlings in 'bulk' 

amounts, is indeed functional. From an evolutionary standpoint this is 

understandable, since it would be very 'uneconomic' if a plant synthesized a 

large amount of a non-functional protein at a time when it is dependent upon 

limited food reserves. 

The mutants described in this thesis appear to be very useful in the 

study of whole plant photophysiology. However, these mutants can also play 

an important role in the study of gene regulation. This has already been 

shown for the photoregulation of the gene for the chlorophyll a/b -binding 

protein {cab) in the au mutant. This study has demonstrated the usefulness 

of photomorphogenetic mutants and indicates their potential for future 

research. 
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SAMENVATTING 

Planten gebruiken licht niet alleen als energie bron (fotosynthese), maar 

ook als informatie bron, waarbij groei en ontwikkeling afgestemd worden op 

het voor de plant beschikbare licht (fotomorfogenese). Er zijn een aantal 

fotoreceptoren, die het mogelijk maken informatie te verzamelen over het 

daglicht spectrum. Dit zijn: fytochroom (P), vnl. werkzaam in het rood 

(RL)/ver-rood (FR) spectrale gebied, blauw licht (BL)/UV-absorberende 

fotoreceptor(en) en praktisch uitsluitend in het UV absorberende UV-B 

fotoreceptor(en). Deze pigmenten kunnen kwaliteit, kwantiteit, richting en 

duur van het licht waarnemen en ontwikkelings processen hierop afstemmen. 

Veel processen in planten worden gereguleerd door deze fotoreceptoren, zoals 

kieming, lengte groei, enzym aktiviteit, fototropie en bloei. 

Van deze fotoreceptoren is fytochroom het meest uitvoerig bestudeerd. 

Sinds kort is het bekend dat er meerdere types P bestaan: labiel (2P) en 

stabiel (sP) P. In het donker is voornamelijk IP aanwezig, terwijl in het 

licht 2P en sP in vergelijkbare hoeveelheden voorkomen. Behalve dat er 

verschillende P types bestaan, zijn er ook nog verschillende 

werkingsmechanismen van P: de zeer lage intensiteit respons (very low 

fluence response: VLFR), lage intensiteit respons (low fluence response: 

LFR) en de hoge intensiteit respons (high irradiance response: HIR). De 

BL/UV-fotoreceptor(en) is/zijn nog hypothetisch. De aanwezigheid er van 

wordt afgeleid uit aktiespectra, maar de chemische samenstelling is nog 

onbekend. Ook de aard van de UV-B fotoreceptor(en) is nog niet opgehelderd. 

De fotoreceptoren werken in diverse processen samen. Het is echter nog niet 

duidelijk hoe deze samenwerking verloopt en wat de relatieve rol is van de 

verschillende fotoreceptoren. 

De aanwezigheid van diverse fotoreceptoren met meerdere types en 

werkingsmechanismen maakt fotomorfogenese tot een zeer complex proces, 

vooral ook omdat vaak de absorptie spectra elkaar overlappen. In dit 

proefschrift wordt beschreven hoe mutanten, waarvan een deel van de 

fotomorfogenese ontbreekt, gebruikt kunnen worden in het fotomorfogenese 

onderzoek. Het belang van het ontbrekende deel wordt duidelijk door de 

mutant te vergelijken met het wild type. Deze mutanten kunnen, sterk 

vereenvoudigd, worden onderverdeeld in drie groepen: receptor-, transductie 

keten-, en respons mutanten (hoofdstuk 1) . Er zijn nog slechts weinig 

fotomorfogenese mutanten bekend, enkele daarvan worden beschreven in 

hoofdstuk 2. De mutanten die voor het in dit proefschrift beschreven 
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onderzoek werden gebruikt zijn: de lange hypocotyl mutant (.lh) van 

komkommer, en de aurea (au) en 'high pigment' (hp) mutanten van tomaat. 

Zowel de lh mutant als de au mutant worden gekenmerkt door een extra lange 

('ge-etioleerde') hypocotyl als ze in wit licht (WL) worden opgekweekt. De 

hp mutant vertoont daarentegen een versterkte pigment synthese, vooral van 

anthocyaan. 

Uit spectrofotometrische bepalingen bleek dat ge-etioleerde kiemplanten 

van de au mutant ten hoogste 5% (-detectiegrens) bevat van de hoeveelheid P 

aanwezig in het wild type (hoofdstuk 4). M.b.v. immunochemische technieken 

(uitgevoerd in samenwerking met de onderzoeksgroep van Prof. P.H. Quail 

(Plant Gene Expression Center, USDA, Albany, USA) werd dit bevestigd. Het 

bleek dat het P molecuul wel gevormd wordt, maar niet geaccumuleerd. 

Waarschijnlijk is het instabiel, maar het is echter nog niet duidelijk 

waarom. In in het licht opgegroeid weefsel waarin geen chlorofyl voorkomt 

(bloemblaadjes) of waarin dit is gebleekt (Norflurazon-behandelde bladeren) 

van de au mutant bleek de hoeveelheid spectrofotometrisch bepaalde P slechts 

50% te zijn van dat in vergelijkbaar weefsel in het wild type. Hieruit werd 

geconcludeerd dat de au mutant een receptor mutant is en (bijna) geen IP 

bevat. Er zijn echter nauwkeurige immunochemische bepalingen nodig, waarbij 

m.b.v. antilichamen, specifiek tegen sP en IP, bovenstaande conclusie wordt 

geverifieerd. Deze antibodies zijn helaas nog niet geïsoleerd. 

Het P gehalte van zaden en van ge-etioleerde kiemplanten van de lh 

mutant bleek gelijk te zijn aan dat van het wild type. In licht-gegroeid 

weefsel (bloemblaadjes en gebleekte bladeren) van de lh mutant werd 

spectrofotometrisch een P gehalte waargenomen dat ongeveer 50% is van de 

hoeveelheid in het wild type. Het is waarschijnlijk dat deze mutant geen sP 

bezit of anders een onwerkzame, spectrofotometrisch niet te detecteren, vorm 

ervan. Immunochemische technieken zullen ook in dit geval moeten uitwijzen 

of sP inderdaad afwezig is. Dit onderzoek wordt op het ogenblik uitgevoerd 

in samenwerking met de onderzoeksgroep van Prof. M. Furuya (Plant Biological 

Regulation, Frontier Research Programs (RIKEN), Saitama, Japan). 

Met behulp van deze mutanten zijn verscheidene fotomorfogenetische 

processen bestudeerd. In hoofdstuk 3 wordt een beschrijving gegeven van in 

de literatuur beschreven fotofysiologische kenmerken van tomaat en 

komkommer. Bovendien worden enkele theorieën besproken in relatie tot de 

fotomorfogenese van deze beide soorten. In de daarop volgende hoofdstukken 

worden experimenten beschreven waarin deze kenmerken worden vergeleken bij 

de mutanten en hun wild types. 
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Onderzoek naar de invloed van licht op lange termijn groei van 

komkommer kiemplanten wordt beschreven in hoofdstuk 5. Hieruit blijkt dat 

ge-etioleerde kiemplanten van de lh mutant en het wild type bijna identiek 

reageren op de verschillende belichtingen. Na de-etiolatie treden er echter 

duidelijke verschillen op: de P controle van strekkingsgroei is sterk 

gereduceerd in de lh mutant. Bovendien is de de-etiolatie sterk vertraagd. 

In continu WL of RL wordt de hypocotyl van de lh mutant veel langer dan die 

van het wild type. Ook de (epidermis) cellen van de mutant zijn veel langer, 

vergelijkbaar met het verschil in hypocotyl lengte. Deze resultaten maken 

het aannemelijk dat het verschil tussen wild type en mutant ligt in de aan-

respectievelijk afwezigheid van (funktioneel) sP. 

Veel planten reageren op een FR puls aan het einde van de dag door 

extra lang te groeien. Ook komkommer vertoont deze respons. In de lh mutant 

is deze z.g. 'end-of-day FR' respons echter afwezig. Hieruit wordt 

geconcludeerd dat sP, dat ontbreekt of niet werkzaam is in de mutant, deze 

respons reguleert. Een andere respons, die waarschijnlijk ook door sP wordt 

gereguleerd, is de 'gesimuleerde' fototropie. Als één van de cotylen met 

aluminiumfolie wordt ingepakt en de plant vervolgens van boven wordt belicht 

met WL of RL, gaat de kiemplant krommen. Deze respons van ge-de-etioleerde 

kiemplanten wordt waarschijnlijk veroorzaakt door RL absorptie van P in de 

cotylen. Deze respons is echter afwezig in de lh mutant. 

Zowel de hypocotyl strekking van het wild type als van de lh mutant 

worden door BL geremd. WL bevat echter ook BL en toch wordt de mutant lang 

in WL. Uit experimenten bleek dat de remming door BL werd veroorzaakt door 

een te lage fotosynthese als gevolg van de vrij lage, voor fotosynthese niet 

effectieve, lichtintensiteit. Bovendien is het mogelijk dat de remming 

o.i.v. een BL/UV-fotoreceptor slechts tijdelijk is. In WL is de fotosynthese 

hoog genoeg om te kunnen groeien. In tegenstelling tot de lh mutant wordt 

het wild type echter ook nog geremd door het deel van het licht dat door P 

wordt geabsorbeerd. 

De lange hypocotyl van de lh mutant lijkt erg op die van een wild type 

behandeld met glbberelline (GA). Wild type en lh mutant reageerden echter in 

gelijke mate op een behandeling met GA. Bovendien treed het verschil in 

lengte alleen op in WL of RL en niet in BL of UV-A. Het effect van GA was 

echter vergelijkbaar in kiemplanten belicht met RL of BL. Dit wijst er op 

dat het effect van GA onafhankelijk was van de licht behandeling en geeft 

aan dat de lh mutant waarschijnlijk geen 'GA-overproducer ' is. Er zijn 

echter op het ogenblik nog geen GA concentraties bepaald in de lh mutant of 
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het wild type. 

Uit de literatuur blijkt dat er een duidelijk verschil is in de 

kinetiek van de hypocotyl remming door BL en RL. Om dit ner schil 

nauwkeurig(er) te kunnen meten is echter zeer gevoelige apparatuur nodig. 

Het gaat om veranderingen in groeisnelheden die binnen een minuut kunnen 

optreden. In eerste instantie is er een oriënterend onderzoek uitgevoerd 

m.b.v. een horizontale microscoop (hoofdstuk 6). Hieruit bleek al dat de 

remming door BL veel sneller optrad dan de remming door RL. Om het mogelijk 

te maken deze metingen zeer nauwkeurig en onder gecontroleerde 

omstandigheden uit te voeren aan zo veel mogelijk planten is er op het 

Laboratorium voor Plantenfysiologisch Onderzoek een apparaat ontwikkeld 

waarmee het mogelijk is groeiveranderingen waar te nemen binnen enkele 

seconden. Dit computer gestuurde apparaat wordt uitgebreid beschreven in 

hoofdstuk 6. De meetgegevens worden eveneens m.b.v. een computer verwerkt. 

Dit maakt het mogelijk grote hoeveelheden individuele planten met elkaar te 

vergelijken. Uit experimenten met deze continu-registrerende groeimeter 

bleek dat zowel ge-etioleerde kiemplanten van de lh mutant als van het wild 

type al na één minuut door BL werden geremd. De groeiremming door RL kon pas 

na enkele uren worden waargenomen. Er werden geen signifikante verschillen 

waargenomen tussen ge-etioleerde kiemplanten van de lh mutant en het wild 

type. Op grond van de resultaten van lange-termijn groeiproeven wordt echter 

verwacht dat er wel duidelijke verschillen zullen zijn bij ge-de-etioleerde 

kiemplanten. Hieraan zijn echter nog geen metingen met de groeimeter 

verricht. 

Evenals de lh mutant van komkommer heeft ook de au mutant van tomaat 

een extra lange hypocotyl in WL. Bovendien is de kieming vertraagd, het 

chlorofylgehalte sterk verlaagd en kan er in ge-etioleerde planten niet meer 

dan 5% van de hoeveel P aanwezig in het wild type worden aangetoond. In 

hoofdstuk 4 wordt beschreven dat deze mutant waarschijnlijk geen IP bevat of 

in elk geval zeer weinig. In hoofdstuk 7 worden de resultaten beschreven van 

experimenten, opgezet om meer inzicht te krijgen in de rol die IP speelt in 

de fotomorfogenese. Hiertoe werd de respons van de au mutant in verscheidene 

fotomorfogenetische processen vergeleken met die van het wild type. 

Ge-etioleerde kiemplanten van de au mutant bleken min of meer RL-blind 

te zijn. Dit wijst op een gebrek aan P controle in de mutant, kennelijk 

veroorzaakt door het gebrek aan IP. De hypocotyl strekking van de au mutant 

werd echter wel geremd door BL en UV-A. De au mutant bleek echter een hogere 

lichtintensiteit nodig te hebben om in dezelfde mate te worden geremd als 
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het wild type. Het wijst er op dat de 95% vermindering van de P concentratie 

in de au mutant dit verschil veroorzaakt. Hieruit wordt geconcludeerd dat 

dit in de au mutant afwezige 2P een belangrijke rol speelt in de hypocotyl 

strekking van ge-etioleerde kiemplanten. Dit is de eerste keer dat er een 

duidelijke funktie is gevonden voor 2P. Tot nu toe is het nooit gelukt een 

funktie te vinden van deze vorm van P, ondanks het feit dat 2P in grote 

hoeveelheden aanwezig is in ge-etioleerde planten. 

Twee andere experimenten met de au mutant versterken conclusies die 

werden getrokken naar aanleiding van experimenten met de lh mutant van 

komkommer. Zowel de 'end-of-day FR' respons als de 'gesimuleerde' fototropie 

werden in de au mutant waargenomen. Dit duidt op een regulatie van beide 

processen door sP. 

Anthocyaan synthese is één van de processen die duidelijk door P worden 

gereguleerd. Er wordt verondersteld dat het niet mogelijk is om anthocyaan 

synthese te induceren in kiemplanten van tomaat met één enkele RL puls. 

Voordat deze inductieve P respons kan optreden moet het systeem eerst 

gevoelig gemaakt worden voor P door voorbelichting met BL of UV-A. 

Experimenten met de hp mutant van tomaat wijzen er echter op dat er wel 

anthocyaan wordt gevormd na één RL puls, maar dat dit te weinig is om te 

kunnen worden waargenomen (hoofdstuk 8) . De hp mutant heeft een sterk 

verhoogde anthocyaan synthese, waardoor de respons op een RL puls wel kon 

worden waargenomen. De au mutant bevatte ook na een voorbelichting geen 

anthocyaan. Een dubbel mutant, geïsoleerd uit een kruising tussen hp en au, 

was echter wel in staat een meetbare hoeveelheid anthocyaan te 

synthetiseren. Deze hoeveelheid was ongeveer 3% van de hóeveelheid 

geproduceerd door de hp mutant. Dit wijst er op dat de 95% P die afwezig is 

o.i.v. de au mutatie een belangrijke rol speelt in de anthocyaan synthese. 

Naast de regulatie van hypocotyl strekking in ge-etioleerde kiemplanten is 

dit waarschijnlijk weer een funktie van 2P. 

In het laatste hoofdstuk worden enkele algemene conclusies en 

discussiepunten uiteengezet. Eén van die conclusies is dat Pfr de aktieve 

vorm van P is. Tot nu toe was nog niet echt bewezen wat het primaire aktieve 

fysiologische proces is in de P reaktie: de toename van de hoeveelheid Pfr 

of de afname van Pr. Het feit echter, dat mutanten met een gereduceerde 

hoeveelheid P (en dus ook minder Pr) in het donker even lang worden als het 

wild type, i.p.v. korter als gevolg van vermindering van Pr, wijst er echter 

op dat Pfr de aktieve vorm is. 

Een andere conclusie is dat IP, in grote hoeveelheden voorkomend in ge-
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etioleeerde planten, wel degelijk funktioneel is. Dit kon tot nu toe niet 

worden aangetoond. Uit een evolutionair oogpunt is dit ook wel 

waarschijnlijk. Het zou zeer 'oneconomisch' zijn voor een plant om een grote 

hoeveelheid niet funktioneel eiwit te maken in een ontwikkelingsstadium 

waarin alle energie nog uit reservevoorraden moet worden gehaald. 

De mutanten die in dit proefschrift zijn beschreven blijken zeer 

geschikt om de fotofysiologie van hele planten te bestuderen. Echter, ook in 

de bestudering van gen regulatie kunnen deze mutanten een belangrijke rol 

spelen. Dit is gebleken uit het onderzoek naar de fotoregulatie van het gen 

voor het chlorofyl a/b -bindend eiwit (cab) in de au mutant. Dit onderzoek 

heeft de vele gebruiksmogelijkheden van fotomorfogenetische mutanten 

aangetoond en potentiële mogelijkheden aangegeven voor toekomstig onderzoek. 
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APPENDIX 

Light sources 

The light cabinets with broad-band light sources used in long-term growth 

experiments were qualitatively the same as those described by De Lint (1960) 

and Joustra (1970). The cabinets were situated in a dark rooms, kept at a 

temperature of 25 ± 0.5 °C and a relative humidity of about 65%. 

Cabinet 'De Lint model': 

The internal dimensions of these cabinets are: 60 cm wide, 100 cm high 

and 120 cm deep. They were equiped with fluorescent tubes or incandescent 

lamps and with glass plates and appropriate Plexiglas filters. The shelves 

were adjustable to enable variation of fluence rate. Separate cabinets were 

used for each light quality. The fluence rates used in particular 

experiments are described in the figure legends. 

Cabinet 'Joustra model': 

The internal dimensions of these cabinets are: 70 cm wide, 70 cm high 

and 110 cm deep. The walls of the cabinets are made of aluminium to optimize 

the light distribution. Light sources are mounted in a compartment on top of 

the cabinet. The lamp compartment provides space for 12 fluorescent tubes. 

These cabinets were used for irradiation with white (WL), red (RL) or blue 

(BL) light using the tubes and filters described below. The fluence rates 

used in particular experiments are described in the figure legends. 

The fluence rate was measured with a photodiode meter (Optometer type 

80X, United Detector Technology Inc., Santa Maria, CA, USA). The calibration 

of the Optometer was checked by comparison with a calibrated thermopile 

(Kipp en Zonen, Delft, The Netherlands). The spectral quality of the light 

sources was monitored with a Rofin-Sinar Spectralysor (Rofin-Sinar Laser UK 

Ltd. , Weybridge) coupled with a microcomputer. The relative energy 

distributions are shown in Fig. 1. The values for [Pfr]/[Ptotal] (<p) were 

calculated on the basis of the molar absorption coefficients for Pfr and Pr 

from rye (kindly supplied by J.C. Lagarias) and quantum yield values as 

reported by Lagarias et al. (1987). A special computer program was developed 

for these calculations, utilizing the relative spectral energy distribution 

obtained with the light sources as monitored by the Rofin-Sinar Spectralysor 

and energy fluence rate measurements. The program also enabled determination 
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of (i) the minimum time necessary to obtain equilibrium of the P under a 

particular light source, (ii) the total photon fluence rate of a light 

source, (iii) the photon fluence rate of a particular part of the whole 

spectrum of a light source, and (iv) the cycling rate of the P 

photoconversion under a light source. 

Specifications of the particular light qualities: 

White light: fluorescent tubes type Philips TL40/33 with a transparent glass 

plate as a neutral filter. 

UV-A light: Philips TL 40/08 with a transparent glass plate. Maximum 

emission (*max) a t 359 nm; spectral half band width (HW) 38 run. 

Contributions from individual mercury (Hg) lines to the total emitted 

energy were: 365 nm 0.8%; 404.7 + 407.7 nm 2.2%; 435.8 nm 0.35%. 

Fluence rate was modified using perforated aluminium sheets on top of 

the wooden boxes which contained the plastic boxes with seedlings. 

Blue light: Philips TL40/18 with 3 mm Plexiglas blue 0248 (Röhm u. Haas). 

Am a x at 442 nm; HW 75 nm. Contribution from Hg lines were: 365 nm 

0.07%; 404.7 + 407.7 nm 3.8%; 435.8 nm 17.7%; 546.1 nm 0.34%. Fluence 

rate was modified using additional 3 mm Plexiglas blue 0248 plates on 

top of the wooden boxes containing the plastic boxes which contained 

the seedlings. 

Green light (GL): Philips TL40/17 with a sheet of yellow glass. Amax at 527 

nm; HW 42 nm. Contributions of the Hg lines were: 435.8 nm 0.09%; 546.1 

nm 4.9%; 577 + 579 nm 1.02%. 

Red light: Philips TL40/103339 with 3 mm Plexiglas red 501. Amax at 658 nm. 

HW = 18 nm, main peak 13 nm. 

Far-red light (FR): Bank of 60 W 240 V incandescent lamps operated at 220 V 

with a layer of 10 cm running tap water and 3 mm Plexiglas red 501 and 

3 mm blue 627. The energy of this light regime was calculated by 

subtracting from the total energy the fraction transmitted by 3 mm RG 

780 (Schott u. Gen.) The resulting effective energy distribution is 

given in Fig. 1 as a broken line. 

In short-term growth experiments, narrow-band BL (459 nm) and RL (658 

nm) were obtained from a quartz-iodide projection lamp using interference 

filters (Balzer B40 type, Balzer Liechtenstein), 10 nm half-band width at 

50% of the transmission maximum. The fluence rates used in particular 
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experiments are described in the figure legends. 

Green safelight (fluence rate 40 nmol m s"1) was obtained by wrapping 

a Philips TL/33 fluorescent tube with 3 layers of No 39 Cinemoid (Rank 

Strand Electric, London). 

800 nm 

Fig. 1. Relative spectral energy distributions per nanometer of 
the broad band light sources used in this study. Mercury lines are 
not shown. (From Koornneef et al., 1980). 
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