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Centrally acting oxytocin (OT) is known to terminate food consumption in response
to excessive stomach distension, increase in salt loading, and presence of toxins.
Hypothalamic-hindbrain OT pathways facilitate these aspects of OT-induced hypophagia.
However, recent discoveries have implicated OT in modifications of feeding via reward
circuits: OT has been found to differentially affect consumption of individual macronutri-
ents in choice and no-choice paradigms. In this mini-review, we focus on presenting and
interpreting evidence that defines OT as a key component of mechanisms that reduce
eating for pleasure and shape macronutrient preferences. We also provide remarks on
challenges in integrating the knowledge on physiological and pathophysiological states
in which both OT activity and macronutrient preferences are affected.
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Introduction

Macronutrient composition of ingested food affects functioning of the organism during various
physiological and pathophysiological challenges, such as pregnancy, lactation, and aging. A dynamic
endocrine balance facilitates the coupling of mechanisms that link appetite regulation, metabolism,
and cellular/tissue-specific responses, and one of the key hormonal regulators is oxytocin (OT) (1, 2).
OT affects peripheral tissues directly by binding its G protein-coupled receptor localized in, to name
a few, the mammary gland, ovary, uterus and bone. OT’s action at peripheral OT receptors, interplay
between OT and other hormones, as well as functional relationships with metabolic regulators, have
been thoroughly studied in relation to mechanisms essential for health (1, 3). However, OT affects
organism’s functioning also by regulating intake of specific macronutrients. Those mechanisms
are predominantly mediated via the OT receptor localized in the brain, and our knowledge of
them has expanded rapidly in the past several years. We dedicate this mini review to synthesizing
currently available information on the role of central OT circuits in eating behavior, with particular
emphasis on shaping food preferences. Our final remarks pertain to delineating perspectives
and challenges of linking seemingly unrelated outcomes of OT’s action in the brain and in the
periphery.

Central OT and Food Intake

Early Discoveries: OT Decreases Consummatory Behavior
From the very early stages of experimental work, it became apparent that OT promotes termination
of feeding associated with generalized satiation as well as stemming from consumption-related
adverse phenomena that jeopardize homeostasis (4–7).
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Neuroanatomical studies have shown that most OT neurons
are localized in the hypothalamus, and its paraventricular nucleus
(PVN) is the main source of OT fibers innervating central targets,
most prominently, the dorsal vagal complex in the brain stem
(8–12). Aside from the parvocellular PVN neurons, OT is also
released centrally via somatodendritic projections of magnocel-
lular OT subpopulations in the supraoptic nucleus (SON) and
PVN (13, 14). Lesioning of the PVN and disruption of the PVN-
hindbrain pathways lead to increased food intake and bodyweight
in rats (15–17). Release of OT and increased activity of OT neu-
rons coincide with satiation-associated termination of feeding in
laboratory animals (6, 18–20). Arletti et al. were first to report that
intracerebroventricular (ICV) injection of OT causes a marked
reduction in deprivation-induced food intake in rats (18). Many
authors have confirmed the finding and, by using intraparenchy-
mal OT receptor ligand injections or employing OT receptor-
specific cytotoxins, they identified the hindbrain (particularly
the dorsal vagal complex) as the area through which OT-driven
feeding inhibitory mechanisms are executed (21).

A number of satiety inducing neuropeptides have been shown
to affect appetite, at least partially, by acting via OT containing
pathways. Those peptides include – among others – alpha
melanocyte-stimulating hormone (alpha-MSH) and glucagon-
like peptide-1 (GLP-1), key components of the brainstem-
hypothalamic appetite circuit (22, 23). Furthermore, hyperphagia
and obesity occur in mutations that lead to insufficiencies in OT
PVN neuronal population development, such as that observed
in the single-minded-1 (sim-1) mouse model, and these negative
symptoms can be reversed by OT treatment (24). A reduction in
the number of OT neurons has been reported for Prader–Willi
syndrome patients exhibiting extreme overeating (25, 26).
Recently, the ventromedial hypothalamic (VMH) nucleus has
been identified as a hypothalamic site through which OT causes
early meal termination in free feeding and fasted rats (27).

It should be emphasized that the intake of a sufficient amount
of energy does not appear to be the main or the necessary fac-
tor that induces OT neuronal activity underlying termination of
ingestive behavior. In fact, OT neuronal activity and release coin-
ciding with termination of feeding occur upon changes in calorie-
independent parameters associated with consumption. Those
parameters include excessive stomach distension and elevated
plasma osmolality (28–30). In addition, central OT inhibits con-
sumption of toxin-tainted foods and supports long-term avoid-
ance of those by acting through not only the brain stem but also
the amygdala (31).

Though the protection of internal milieu during consumption
appears to be the key neuroregulatory function of OT within the
CNS, its importance for facilitating important competing behav-
iors, particularly with regard to reproductive and social behav-
iors, should not be disregarded. Sexual intercourse, lactation, and
bonding within family and non-family groups are well-known
stimuli to cause OT secretion in various species (32–38). Inter-
ruption of these processes by the drive to consume food, under
certain conditions, might not be evolutionarily advantageous.
Therefore, the anorexigenic function of OT should be seen from a
broader point of adjusting/balancing physiological and behavioral
responses to both internal and external challenges.

Oxytocin and Reward: Protecting against
Overeating Carbohydrates?
While the involvement of OT in the “homeostatic” regulation
of food intake has been a widely recognized phenomenon, the
past several years have brought exciting discoveries that strongly
suggest an implication of central OT in another aspect of con-
sumption: macronutrient preferences and feeding reward. These
discoveries have capitalized on linking evidence pertaining to
neuroanatomy and functional significance of the OT system out-
side the realm of classical satiety/feeding termination mecha-
nisms, and they have refined our understanding of OT as not
just a “homeostasis rescue molecule,” but also as a neuroregula-
tor of intricate and complex dietary choice processes. Numerous
reports have shown widespread distribution of the OT receptor
throughout the brain and, importantly, specific sites involved
in reward processing, such as the nucleus accumbens and the
ventral tegmental area, appear to be prominent central targets
of OT signaling (39, 40). PVN OT neuronal projections form
somatic and axodendritic synapses with mesolimbic neurons (41,
42). Data from human and laboratory animal studies link OT
receptor activation/availability with modifications in non-feeding
rewards (from natural rewards, such as social and reproductive
behaviors to administration of drugs of abuse). For example,
Jarrett and colleagues found that cocaine treatment changes OT
receptor binding density in the bed nucleus of the stria terminalis
in female rats (43). Baracz et al. reported that direct intraparenchy-
mal administration of OT in the core of the nucleus accumbens
dose-dependently decreases methamphetamine-seeking behavior
(44). The same group of investigators found also that intra-
accumbens core OT attenuates methamphetamine-induced con-
ditioned place preference in rats (45). In a recently published
set of experiments employing OT receptor ligand injections in
the nucleus accumbens and lentiviral-mediated overexpression of
the OT receptor in this site, Bahi showed that OT attenuates the
development, maintenance, and primed reinstatement of ethanol-
induced conditioned place preference (46). Intracranial infusions
of OT in female mice promote the development of a conditioned
social preference (47). Damiano et al. showed by using functional
magnetic resonance imaging (fMRI) that certain single nucleotide
polymorphisms in the OT receptor gene are associated with a
differential response of themesolimbic systemduring anticipation
of monetary rewards in healthy human subjects (48). Neuro-
chemical studies have pointed to a relationship between OT and
dopamine in modification of perceived rewards; for example, in
mice central administration of OT has been found to reduce
methamphetamine-elicited dopamine release in the striatum and
nucleus accumbens (39) and promote a concomitant decrease
in glutamate release and increase in extracellular presence of
γ-aminobutyric acid (GABA) in the medial prefrontal cortex (49).

Neuroendocrine and behavioral processes governing food
intake and addiction show a partial overlap. For example, an
appetite stimulating hormone, ghrelin (50), activates the VTA
dopamine circuit and promotes consumption of palatable food
over “bland” diets (51), increases ethanol intake (52) and facilitates
cocaine-induced conditioned place preference in rodents (53).
Injections of anorexogenic leptin decrease self-administration of
drugs of abuse (54), whereas food restriction has an opposite
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effect (55). Finally, sugar preference is associated with increased
ethanol responsiveness (56), self-administration of cocaine (57),
and amphetamine (58) in rats. Therefore, considering the link
between central OT and addictive-like behaviors, an intuitive
question arose as to whether this relationship might expand onto
feeding reward.

Pioneering studies were performed on OT knockout (KO)
mice. Amico and colleagues found that genetic deletion of OT
leads to the enhanced initial and sustained intake of palatable
sucrose solutions in the KOmice compared to the wild-type (WT)
counterparts (59). The effect of the OT-null genotype on sucrose
consumption could be observed in both dark and light phase of the
24-h cycle, and it persisted even in animals subjected to periods
of stress induced in the platform shaker stress model (60). OT
KO mice and their background strain tested in a progressive ratio
operant licking paradigm display a similar motivational drive to
consume sucrose (61). Sclafani et al. found that OT KOs given
a choice between two tastants (water served as a control inges-
tant), exhibit a heightened preference not just for sucrose, but
for palatable isocaloric carbohydrate solutions regardless of their
sweetness (e.g., Polycose and cornstarch). Interestingly, a non-
caloric non-carbohydrate sweetener, saccharin, was also overcon-
sumed by the KOs (60), which is in line with the notion that OT
affects feeding reward. Interestingly, the propensity to overcon-
sume palatable tastants in OT KO mice does not generalize to fat.
Two-bottle preference tests in which mice could choose between
water and a palatable lipid emulsion, Intralipid, showed a similar
fat preference profile between KO and WT cohorts (61). In order
to further examine the issue of preference to fat, Miedlar et al. (62)
employed a similar paradigm as the one used by Amico et al. in
the initial study on sucrose intake in OT Kos; however, instead
of the sugar water, the animals were given Intralipid. While OT
KO mice drank more Intralipid during the first day of having
access to the tastant (which may be related to altered neophobic
or stress-related processing), on subsequent days they were found
to consume the same amount of Intralipid as WT controls.

The OT KO model findings are largely in agreement with
the results of experiments on laboratory animals without genetic
modifications in the OT system. Gene expression analysis with
real-time PCR showed upregulation of OT mRNA levels in the
hypothalami of rats eating scheduled, volume-unrestricted, high-
sugar diet compared to standard food (63). An increase in OT
transcript content has been also found in mice given 48-h ad libi-
tum access to a 10% sucrose solution versus animals consum-
ing isocaloric Intralipid during that time (64). Herisson et al.
studied hypothalamic OT gene expression in mice given short-
term access to sucrose, cornstarch, or saccharin (on top of the
standard diet) and determined that exposure to carbohydrates
but not to saccharin elevated OT mRNA above control values;
notably, a higher level of significance was detected after sucrose
intake (65). Furthermore, the comparison of hypothalamic OT
neuronal activity levels induced by consumption of sucrose or
Intralipid (equivalent volumes) shows a much greater number of
Fos-positive OT cells in the sucrose group. It should be noted,
however, that even in the case of mice ingesting fat, OT neuronal
activity is higher at the end than at the beginning of a meal, which
reflects the role of central OT as a general satiety mediator and the

phenomenon of elevated OT neuronal activation and OT release
coinciding with feeding termination is seen regardless of a diet
type and palatability (66). Diet composition does, however, affect
the magnitude of the OT system’s response at the end of a meal
(66–68).

Injection studies utilizing a blood–brain barrier (BBB) pen-
etrant OT receptor antagonist, L-368,899, in both choice and
no-choice feeding paradigms (68), have consistently produced
elevation of carbohydrate intake in laboratory animals, whereas
consumption of Intralipid has not been affected (64, 65). When
a choice between carbohydrates is given in a two-bottle test,
OT receptor blockade by systemic administration of L-368,899
appears to have a preferential stimulatory effect on sucrose con-
sumption, which can either reflect a special functional relation-
ship between central OT and appetite for this particular carbo-
hydrate, or – in the light of recent studies showing the presence of
theOT receptor in taste buds – can at least partially (via peripheral
interactions of the systemically injected agent) stem from altered
taste perception (64, 65, 69).

Mullis and colleagues have recently reported an important piece
of evidence linking OT to feeding reward (70). They equipped
rats with a cannula aimed at the ventral tegmental area and found
that OT infusion in this site decreases deprivation-induced chow
intake as well as palatability-driven sucrose consumption. These
effects are abolished by a pretreatment with anOT receptor antag-
onist, L-368,899. Importantly, when L-368,899 or another OT
receptor antagonist, (d(CH2)5(1),Tyr(Me)(2),Orn(8))-OT, were
injected alone in the ventral tegmental area, they stimulated sugar
intake, but they failed to induce chow consumption (70). This is
consistent with the earlier findings showing that when animals
are given a choice between sucrose and fat diets, systemic admin-
istration of a BBB-penetrant OT receptor blocker shifts prefer-
ence toward sugar without affecting total energy consumption
(64). Human research on the effects of OT on eating for reward
is still very much in its infancy. It is known that in pregnant
women, food cravings diminish as OT levels increase gradually
during gestation (71). Over the course of the menstrual cycle,
food intake (including sugar) is low during ovulation (high OT
levels) and it increases during the luteal phase (low OT levels)
(72, 73). The 2013 paper by Ott and colleagues (74) outlined
the effects of intranasally administered OT on ingestive behavior,
with special emphasis on rewarding aspects of consumption. OT
was found to markedly decrease snack consumption (chocolate
cookies, rice waffles, and salt crackers were offered to the sub-
jects) during the postprandial snack test administered shortly
after a full buffet-style breakfast. Noteworthy, the reduction in
total snack intake was driven primarily by restraining by 25%
the consumption of high-sugar chocolate cookies; hence, the ini-
tial human data support the notion coined through laboratory
animal experiments that there is a functional link between OT
and sugary food-driven reward. Obviously, one of the key issues
that warrants caution in how we interpret the currently available
body of evidence (especially related to human observations) is that
while both dendtritic and hypophyseal relaease of OT can occur
simultaneously, peripheral levels of OT do not always correlate
with central secretion (75–78). Furthermore, McCullough and
colleagues have recently provided a comprehensive analysis of
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pitfalls associated with typically used research techniques and
strategies aimed at determining concentration of peripheral OT,
and urged a particularly careful approach to construing peripheral
OT data (79).

Intriguingly, while central OT suppresses certain types of feed-
ing reward (especially those related to carbohydrate consumption)
and contributes to a reduction of intake and a transient shift in
dietary choices, it appears that orexigenic opioid receptor ligands
(and possibly also other neuromediators of feeding for pleasure)
diminish meal-end activity of hypothalamic OT neurons thereby
likely promoting continuation of ingestive behavior. For exam-
ple, butorphanol tartrate at a dose that promotes overeating of
sugary foods dampens OT PVN neuronal activity in rats that
have consumed the amount of high-sucrose powder diet that is
satiating for saline-treated controls (80). In rats, opioid receptor
agonists have also been shown to decrease OT neuronal activity
in response to noxious stimuli, whereas an antagonist, naloxone,
potentiates anorexigenic effects of emetic agents (81, 82). Finally,
Mitra et al. showed that daily habitual intake of high-sucrose
diets in rats reduces c-Fos expression in OT neurons after a high-
sucrose or low-sucrose meal compared to rats receiving daily low-
sugar food (83). This suggests that regular sugar consumption
might reduce the meal-end activity of OT neurons in response
to any food regardless of its composition. Hence, the balance of
evidence suggests that while endogenous OT appears to reduce
the consumption of palatable sugary foods, habitual ingestion
of such foods – typically associated with enhanced activity in
reward circuits – may dampen responsiveness of OT neurons to
physiological parameters that would otherwise be conducive to
termination of food intake.

Perspectives: Central OT, Food Intake, and
Aging

Evidence indicates that, aside from facilitating generalized feeding
termination, central OT under certain circumstances plays a role
of a carbohydrate (especially, sugar)-specific satiety mediator and,
therefore, it may influence the composition characteristics of a
freely selected daily diet (a schematic overview of key anatomical
components of OT-dependent feeding mechanism are depicted
in Figure 1). Thus, changes in OT system’s activity that modify
selection of foods due to their macronutrient content may affect
health status of the organism.

Aging is associated with disturbances in food intake, notably
with a decrease in energy consumption and anhedonia (90),
and those have been attributed to psychosocial and pathophys-
iological causes. Data generated through human observations
and laboratory animal models reflect the age-related decline in
food intake and the dysregulation of energy balance (91–94).
Importantly, it has been shown that in human beings (95) and
in rodents (96), fat preference is greatly diminished, whereas
the percentage intake of carbohydrate-derived calories is ele-
vated (97, 98). While the shift in macronutrient preferences
likely reflects changed metabolic needs, it may simultaneously
contribute to susceptibility to the development of age-related
pathologies: potential consequences of alterations in macronutri-
ent intake are extremely broad and may be conducive to energy
imbalance (99), fat mass changes (100–103), and osteoporosis
(104–106).

One of the greatest challenges is to identify in which of the
many physiological and pathophysiological states associated both

FIGURE 1 | A schematic representation of key mechanisms
through which OT affects appetite. OT neuronal activity has been
associated with termination of food intake (84–87). The magnitude of this
response is modified by the integrated peripheral signals (mediated
largely via the vagus and the brainstem relay circuit) and by the rewarding
value of a meal (74, 84, 88, 89). Release of OT in the CNS promotes
termination of consumption when internal milieu is jeopardized (energy

imbalance, abnormal GI and/or osmotic parameters) as well as part of
intricate reward processing. Neurohypophyseal OT participates in the
regulation of mechanisms related to metabolism, adiposity and bone
tissue status. Nacc, nucleus accumbens; VTA, ventral tegmental area;
PVN, paraventricular nucleus; SON, supraoptic nucleus; VMH,
ventromedial hypothalamus; NTS, nucleus of the solitary tract; DMNV,
dorsal motor nucleus of the vagus.
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with shifts in dietary preferences and changes in OT system’s
activity, the modified OT tone serves as the causative factor of
undesirable modifications in a consumption profile. Unfortu-
nately, our knowledge of changes in the OT system in aging,
especially those within the central nervous system, is far from
being systematized. The relatively few studies published thus far
have presented conflicting evidence in regard to the density of the
OT receptor, number of OT neurons, and functional outcomes
of exogenous and endogenous OT during the aging process. For
example, Fliers and Swaab (107) reported an age-related increase
in OT secretion in the PVN, but not in the SON, whereas OT
plasma levels were similar in young versus old male rats (107).
Keck et al (90) found a decrease in stress-induced intra-PVN
OT secretion in male rats, while Zbuzek et al (108) and Melis
et al (109) did not detect differences in hypothalamic OT lev-
els (90, 108, 109). An age-related decrease in OT concentration
was shown in the septum and hippocampus, and a decrease in
OT receptor binding, in the caudate putamen, olfactory tubercle,
and ventromedial hypothalamic nucleus in male rats (109). In
Rhesus monkeys, CSF OT levels were positively correlated with
adult female age (110). Several authors did not find correlation

between age and changes in theOT system and those reportsmen-
tioned comparable social memory and anti-depressant effect of
OT injections and similar OT fiber density in the rat and a similar
number of OT cells in the PVN in the human being (111–113).
Considering a growing interest in elucidating neuroendocrine
bases of behavioral modifications that occur during aging that are
detrimental to the general health status, a thorough investigation
of age-related neural changes – including those pertaining to the
OT system – are of critical importance. We therefore stress the
need to accelerate research on in-depth identification of age-
related changes of central OT pathways as well as the functional
link between central OT and alterations in macronutrient-driven
reward in the aging process in order to aid in conceptualizing new
diagnostic markers of pathophysiology of aging and in devising
novel treatment strategies that integrate multiple functional facets
of OT.
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