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Preface 

The need for better water management in surface-irrigation systems is clearly shown 
by their usually low water-application efficiencies - typically less than 60 per cent. 
Nevertheless, surface systems, when properly designed and managed, can attain much 
higher application efficiencies. The purpose of surface-irrigation models is to improve 
the design and management of these systems. 

With this in mind, we wrote BASCAD (BAS = Basin, CAD = Computer-Aided 
Design), a mathematical model for basin irrigation. BASCAD is the result of many 
years of work. The nucleus was developed in 1984 in collaboration with Suzanne Gel- 
dof of IWIS/TNO in The Hague. Since then, we have added to it step by step. Various 
colleagues have made trial runs with different versions of the BASCAD program, 
which we have modified in response to their comments and suggestions. 

A copy of the compiled version of the program, written in BASIC, is included with 
this manual. It comes on a Y/,-inch floppy disc in MS-DOS format, and will run 
on any IBM-compatible microcomputer. As a service to users, a FORTRAN version 
of the program is also available. It comes on a 9-track magnetic tape in ASCII format. 
Requests for the FORTRAN version should be addressed to the International Insti- 
tute for Land Reclamation and Improvement in Wageningen, The Netherlands. 

The Authors 
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2 General description of basin irrigation 

A level basin is defined as a level field surrounded by bunds and having no surface 
runoff. The field is irrigated with a flow rate high enough to keep the difference between 
the infiltration opportunity times for the upstream and downstream end of the basin 
small in comparison with the time needed to infiltrate the required depth. The most 
infiltration occurs while there is a layer of standing water on the field. Consequently, 
infiltration in the field is fairly uniform and the application efficiency is high. 

In basin irrigation, we can differentiate three phases: 
- The advance phase. Water is let into the basin, where it flows towards the opposite 

end. Due to infiltration, part of the flow is lost as it goes along. The more infiltration 
there is in the upstream end of the basin, the longer it will take the water to reach 
the downstream end. If the flow rate is high enough compared with the infiltration 
capacity of the soil, the water will reach the downstream end of the basin and be 
stored on the surface before all of it infiltrates; 

- The ponding phase. Once the water reaches the downstream end of the basin and 
the inflow continues, surface storage will increase and a uniform water layer will 
gradually form; 

- The depletion phase. After the inflow has ceased, the ponded water will infiltrate 
until it finally disappears. Because the water layer remains even, it is commonly 
assumed that the water disappears at the same moment all over the basin. 

Note that in specific situations, for instance in large basins with high flow rates, reality 
differs from the description above. In these situations, the inflow ceases before water 
has reached the downstream end and no ponding phase occurs. 

Basin irrigation involves several parameters, i.e. the flow rate, the application time, 
the infiftration characteristics of the soil, the resistance to overland flow, and the basin 
dimensions. A specific combination of these paramems determines the pattern of the 
i&iItrated depths over the basin. 
The performance of a field application method is assessed by comparing the actual 

inftltrated depths with the required uniform depth of water. 
When a constant flow is applied to a basin with a uniform infiltration rate and uniform 

two situations can then arise: 
1. T h e " u n i n f i l  

2. The minimum infiltrated depth is less than the required depth (Figure 2). In this 
case there is over-irrigation on the upstream part of the basin and under-irrigation 
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on the downstream part. 
Because the application efficiency is now no longer a sufficient parameter, we have 
added another, i.e. the storage efficiency (Es), which is the ratio of the average 
depth of water (D,) actually stored in a soil layer that can store the required depth, 
and the required depth (DEJ itself (Israelsen and Hansen 1962; see also Hart et 
al 1979). 
When the average applied depth is less than the required depth (Dav < Dw), the 
application efficiency according to the definition E, = D, I Dav will be more than 
100 per cent. Because this is in conflict with the idea of efficiency, it is better to 
say that in such situations the application efficiency is no longer valid as a perfor- 
mance parameter. 

Figure 1.  The minimum infiltrated depth is more than the required depth, resulting in over-irrigation over 
the whole basin 

. . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . .  . . . . . . . .  . . . . . . . . .  . . . . . . . . . . . . . .  d m i n  

-Dm 
-Dav 

D c s  

D m e  

Ea=Dr@,, 
[-]mid 

mover- i r r igat ion E,= DS/Draq 

WTfiundar-inigation 

Figure 2. The minimum infiltrated depth is tess than the required depth, resulting in over-irrigation in 
the upstream part of the basin and under-irrigation in the downstream part 

Finally, one must be careful with the concept 'infiltrated depths'. Infdtration refers 
to volumes of water, which can also be expressed as depths of imaginary, uniform 
water layers. These depths should not be regarded as the actual depths to which the 
water penetrates the soil, as the actual depths depend on the initial soil moisture con- 
tent before irrigation and the soil's moisture holding properties. 
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3 Program features 

The partial differential equations that govern surface flow are known as the Saint- 
Venant equations. They consist of an equation of continuity (mass conservation) and 
an equation of motion. Katopodes and Strelkoff (1 977) showed for border irrigation 
that when Froude numbers are sufficiently low, they can be assumed to be zero with 
essentially no loss of accuracy. This has the same effect as the assumption that accelera- 
tions are negligible, which Strelkoff and Katopodes (1977) postulated in their zero- 
inertia approach to border irrigation. 

BASCAD is based on this zero-inertia approach to solving the Saint-Venant equa- 
tions. Analysis of the flow in the surface stream begins by dividing the basin length 
into a number of equal sections. The profile of depth and discharge in the surface 
stream is computed by satisfying the conservation of mass and equilibrium of forces 
in each section. The conservation of mass includes both the water stored at the surface 
and the water absorbed into the soil. 

During the advance of water across the basin length, the sections are filled, one 
after another, in increasing time steps. Except for the lead section, each profile in 
a section is based on the results of the preceding time step in that section. The partial 
differential equations are therefore discretized in space and time with an implicit finite 
difference scheme. This procedure yields sets of algebraic non-linear equations, which 
are solved in BASCAD by the Newton-Raphson iterative method. 

In this way, the profie in the surface stream gradually lengthens until the stream 
front reaches the downstream end of the basin. Two situations can now occur: 
1. If the infiltration at the downstream end of the basin is specified, BASCAD will 

calculate the time required for it to occur. Based on this time and the infiltrated 
depths at the end of the advance, the required application time and final iditration 
profile are determined. 

2. If the application time is specified, BASCAD will calculate the additional infiltra- 
tion that will take place after the advance has ceased. The final infiltration profile 
is then determined. 

In both situations, it is assumed that during the recession the ponded water layer re- 
mains horizontal and the water disappears at the same moment all over the basin. 

BASCAD operates under the following assumptions: 
- the inflow is constant during the application time; 
- the water is applied evenly to the upstream end of the basin; 
- the basin is bounded by bunds so that no surface runoff occurs; 
- the slope of the basin is zero in all directions (level basin); 
- the flow resistance and infiltration characteristics are constant over the basin; 
- the program cannot handle situations where the application time is considerably 

With regard to the last restriction, the algorithm used in the BASCAD program cannot 
analyze situations where flow continues under its own g ” t  after inflow has 
stopped. This means that BASCAD cannot calculate h a t i o n s  where the application 

less than the advance time. 
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Mode 1 
The user enters the inflow rate (Q) and the required depth (D-). The program will 
calculate the basin dimensions (L and B) and the required application time (TJ. These 
output parameters are determined in such a way that the corresponding application 
efftciency (Ea) will exceed 60 per cent. 

Mode 2 
The user enters the basin dimensions and the required depth. The program will calcu- 
late the required inflow rate and the application time, yielding application efficiencies 
similar to those in Mode I. 

Mode 3 
The user enters the inflow rate and the required depth for a basin of known size. 
The program will calculate the required application time and the resulting application 
efficiency. 

Mode 4 
The user enters the inflow rate and the application time for a basin of known size. 
The program will calculate the minimum infiltrated depth at the basin’s downstream 
end. Depending on the specified required depth, the amount of over-irrigation and/or 
under-irrigation, the application efficiency (E& and the storage efficiency (Es) are cal- 
culated. 

BASCAD will give the user an acceptable result in Modes 1 or 2 and will indicate the 
consequences of changing one or more of the design parameters in Modes 3 and/or 4. 
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4 Running the program 

Load the micro-computer with the appropriate operating system and initialize the 
program by typing BASCAD and pressing the carriage return key. This key will be 
marked with either an angle arrow, the word ENTER, or the word RETURN. From 
here on, this key will be referred to as the ENTER key. 

Use the keyboard to enter input. During the interactive session, the program will 
ask two different types of questions: 
1. Questions that require a yes or no answer. These are followed by (Y/N)? or (N/Y)?. 

If the question ends with (Y/N)? and the answer is yes, type Y (or y) and press 
the ENTER key, or simply press the ENTER key. If the question ends with (N/Y)? 
and the answer is no, type N (or n) and press the ENTER key, or simply press 
the ENTER key; 

2. Questions about the displayed values of the input data. These are followed by a 
question mark only. If the value displayed is correct, simply press the ENTER 
key. If not, type in the correct value after the question mark and then press the 
ENTER key. 

The above conventions keep to a minimum the steps that you must complete. 
When BASCAD is run for the first time in a session, it will display a set of standard 

input parameters whose values can be changed from the keybord. If it is rerun, either 
in the same or another mode, it will always display the most recent set of input para- 
meters. These parameters can be changed again if so desired. 

BASCAD always displays the results of any calculations. While BASCAD gives 
you the option of printing out the input and output parameters, you do not need 
a line printer to run the program. 

To exit from the program, type N and press the ENTER key when the question 
‘WOULD YOU LIKE TO MAKE ANOTHER ANALYSIS (Y/N)?’ is displayed on 
the screen. This is the regular way to exit from BASCAD. To stop the program at 
any time during the calculations, press the CTRL (control) and BREAK keys simul- 
taneously. Do this only if you have made a mistake in entering the input data and 
are running Modes 1 or 2. 
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5 Input parameters 

BASCAD accepts values for input parameters within certain ranges (Table 2). These 
input parameters are discussed below. 

Number of sections 
To simulate the propagation of water over the basin surface, the basin length is split 
up into a number of sections in all of the program modes. In general, the more sections 
that are chosen, the more accurate the results of the computations will be, but the 
more time those computations will take. For the sake of practicality, there is a trade-off 
between accuracy and computation time. 
A value of ten sections has been found to work satisfactorily in most cases. In Modes 
1 and 2, the program makes the calculations with this value. In Modes 3 and 4, the 
user has the option of changing the number of sections. In Mode 4, a value of 20 
or more sections will occasionally be required. 

Constant inflow rate (Q) 
The inflow rate is the available flow size; in Modes 1, 3, and 4, it must be specified 
(litres per second). Although BASCAD assumes that the inflow is evenly applied over 
the upstream width of the basin, it will give acceptable results for basins with a point 
inlet as well. 

Table 2. Overview of input parameters and ranges 

Input parameters Modes Range of accepted values 
1 2 3 4 

Number of sections 
Constant inflow rate 
Application time 
Required depth 
Maximum length-width ratio 
Basin length 
Basin width 
Flow resistance 
Infiltration parameter A 
Infiltration parameter k 

o 
o 
o 

o 

5-30 
5-6001/~ 

10-800 min 
40-500" 

1-5 
5-800m 
5-MOm 

.01- .so 
0.2-1.0 

0.05-2.50 mm/sA 

Application time ("3 
The application time is the period during which a certain constant inflow rate is applied 
to the basin. In Mode 4, the application time must be specified (minutes). 

Required depth (D,) 
The required depth is the depth of water to be applied to the soil, expressed in milli- 
metres of an imaginary water layer. It is usually determined on the basis of the root 





Infiltration parameters (k and A). 
The infiltration characteristics of a soil are described by the Kostiakov equation: 
D = k TA, where D = the cumulative infiltration after an infiltration opportunity 
time (T), k = a constant, and A = an exponent. 

In BASCAD, the Kostiakov equation is used to characterize the soil. When plotted 
on log-log paper, the equation produces a straight line (Figure 3). The k value in this 
equation corresponds with the value of D at T = 1, and the A value represents the 
tangent of the straight line. 

The Soil conservation Service, in its handbook for designing border irrigation 
(USDA 1974), classifies soils in terms of infiltration characteristics. It differentiates 
eight ‘intake families’, which are assigned numbers ranging from 0.1 to 4.0. These 
numbers represent the nearly constant intake rate, in inches per hour, that develops 
after a sufficiently long opportunity time. The S.C.S. intake families produce curved 
lines when plotted on log-log paper (Figure 3). 

To describe identical soils with the Kostiakov equation, these curved lines should be 
linearized. Fangmeier and Strelkoff (1979) made such a linearization based on infitra- 
tions of 50 and 100 mm. The resulting values for k and A are given in Table 3. 

Although other linearizations (for instance between 60 and 120 mm) will yield differ- 
ent values for k and A, it is our experience that the influence of different linearizations 
is not substantial in the range of 30 to 200 mm. This is shown in Figure 3, where 
the S.C.S intake family of 1 inch per hour has been plotted along with its linearized 
equivalent based on the Kostiakov equation. 

Figure 3. Graph ofdifferent infiltration cquations 
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Table 3. Transformation of SCS intake families into Kostiakov parameters (using depth limits of 50 and 
100 mm) and corresponding soil classes 

Intake families Kostiakov equation Soil classes 
S.C.S. 

k A 
(inches/h) ("/SA) (-1 

o. 1 
0.3 
0.5 
1 .o 
1.5 
2.0 
3.0 
4.0 

0.096 
0.111 
0.117 
0.158 
O. 188 
0.216 
0.267 
0.314 

0.595 
0.650 
0.684 
0.706 
0.718 

0.735 
0.740 

0.726 

clay, silty clay 
silty clay, clay loam 
clay loam, loam 
loam, silt loam 
silt, sandy loam 
sandy loam, fine sand 
fine to medium sand 
medium to coarse sand 

For various reasons, it is difficult to base soil classifications solely on the S.C.S. 
infiltration families. The soil classes given in the last column of Table 3 are averages 
of data found throughout the literature and can be used as guidelines. We recommend, 
however, determining the soil constants (k and A) in the field, e.g. with a ring infiltro- 
meter. 

The soil constant (k) should be prescribed in millimetres per secondA (k= D/TA); 
the soil constant (A) is dimensionless. 
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6 Output parameters 

After the input data have been entered, the results of the calculations will appear on 
the screen. Table 4 gives an overview of the output parameters for all four modes. 
These parameters and their interpretations will be discussed below in more detail. 

Infiltration 
In Modes 1,2, and 3, the program will automatically make the minimum infiltrated 
depth at the end of the basin equal to the required depth. Because irrigation water 
can never infiltrate uniformly over the whole basin, more water will infiltrate over 
the length of the basin than is required. To indicate the magnitude of this phenomenon, 
the program also shows the maximum infiltrated depth and the average applied depth 
(both in mm) and the application efficiency ( O h ) .  

Over/under-irrigation 
In Mode 4, the application time is specified. This results in a certain minimum infiltrat- 
ed depth at the end of the basin. Usually this minimum depth differs from the required 
depth. Figure 2 shows a situation where the required depth is somewhere between 
the maximum and minimum infiltrated depths. 

Table 4. Overview of output parameters 

Output parameters Modes 

1 2 3 4 

Basin length 
Basin width 
Constant inflow rate 
Minimum infiltration 
Maximum infiltration 
Average applied depth 
Over-irrigation 
Under-imgation 
Application efficiency 
Storage efficiency 
Application time 
Advance time 
Recession time 

o 
o 

o 
o 

o 

Over-irrigation is expressed as the average depth (mm) in that part of the basin (m) 
where excess infiltration occurs. In the rest of the basin, the infiltrated depth is less 
then the required depth. This shortage is expressed as the average depth (mm) in that 
part of the basin (m) where insufficient infiltration occu~s, and is called under-irriga- 
tion. It must be noted that the over and under-imgation, although expressed in milli- 
metres, Cannot be compared with the average applied depth because different lengths 
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within the basin are used to convert volumes into depths. 
The storage efficiency is given as a measurement of under-irrigation. If the average 

applied depth is less than the required depth, a message will appear on the screen. 
The application efficiency is then no longer given (see Chapter 2). 

Advance/recession time 
In all the modes, the advance time (min) is given. The advance time is how long it 
takes the water to travel to the downstream end of the basin from the start of the 
irrigation. When the water reaches the end of the basin, ponding will begin. After 
cut-off of the inflow, the water stored on the surface will decline. The time it takes 
the water to disappear from the surface after the start of the irrigation is called the 
recession time (min). 

The other output parameters listed in Table 4 are input parameters in one or more 
modes. They were discussed in Chapter 5 .  

21 



7 Program diagnostics 

BASCAD will usually produce an output as a result of the calculations. Yet, in a 
number of cases, the user will be confronted with the following screen message: 

Change one or more input parameters 

To aid the user in such a situation, that message is followed by suggestions as to how 
he can still get a result. There are basically two problems that will lead to such a 
program break: one of scaling and one of application time. 

Scaling problem 
According to the calculation algorithm used in BASCAD, the parameters must be 
scaled, which can never be done so that all the possible combinations of all the input 
parameters can always be solved. A problem will occur if there is an imbalance between 
the input parameters. For instance, if there is a very small inflow rate, a very large 
basin, or a combination of the two. Because in Modes 1 and 2 only one of the two 
parameters can be specified, the user will have no problem. Difficulties due to an imba- 
lance can arise, however, in Modes 3 and 4. 

When running the program in Mode 3, the user should either increase the constant 
inflow rate or decrease the basin dimensions. The user can also try increasing the 
number of sections. Nevertheless, it is our experience that if this yields any output 
parameters at all, the application efficiency of the irrigation will be poor. 

In Mode 4, the user will have to increase the number of sections to evaluate the 
design of an existing basin. Note that increasing the number of sections to over twenty 
will drastically lengthen the required computation time. For that reason, we have limit- 
ed the number of sections to a maximum of thirty. 

Application time problem 
BASCAD cannot handle situations where the calculated or specified application time 
is substantially less than the calculated advance time (see Chapter 3). This shorter 
application time can be due to several factors. For instance, a high inflow rate or 
a short basin will give a low advance time, but to achieve a certain minimum depth, 
these parameters can give an even lower application time. The same phenomenon 
occurs if the specified application time is too short. To make it very short can mean 
that the water will not even reach the downstream end of the basin. Consequently, 
no one single cause or remedy can be generally indicated. The following suggestions 
have been incorporated into the program and will appear on the screen if a program 
break occurs: 
- In Mode 1, the constant inflow rate should be decreased. This will cause a relatively 

greater increase in the application time than in the advance time. The basin length 
cannot be changed because in this Mode it is an output parameter; 

- In Mode 2, the basin length should be decreased. This will cause a relatively geater 
decrease in the advance time than in the application time. The inflow rate cannot 



be changed because in t h s  Mode it is an output parameter; 
- In Mode 3, the inflow rate and/or the basin length should be decreased. This will 

have the same effects described above for Modes 1 and 2; 
- In Mode 4, the suggestions made for Mode 3 still apply. A quite different situation 

can occur, however, i.e. a too-short specified application time. In such a case, the 
user should either increase (instead of decrease, as in Modes 1 and 3)) the inflow 
rate, increase the application time, or decrease the basin length. 
An increase in the inflow rate will cause a decrease in the advance time, while not 
affecting the application time. A decrease in the basin length will cause a greater 
decrease in the advance time than in the application time. 

The suggestions displayed on the screen are based on the problems met in the calcuia- 
tions and on the particular mode in which the program is running. After they have 
been displayed, the last set of input parameters will be displayed. The user is then 
free to follow any of the suggestions and change one or more of the input parameters. 

23 



8 Guidelines 

In level basin irrigation, there are two basic types of problems: 
- A certain minimum infiltrated depth must be achieved and a certain minimum appli- 

cation efficiency realized. If the basin dimensions are known, the required flow size 
must be determined. If the flow size is known, the basin dimensions must be deter- 
mined. In both cases, the application time must be determined; 

- If the application time, flow size, and basin dimensions are all known, the minimum 
infiltrated depth must be determined along with the resulting performance in terms 
of under-irrigation and/or over-irrigation. 

The first type of problem is a typical design question: how to achieve a certain result? 
This question can be answered with Mode 3 of the program. It might, however, be 
dificult for less experienced users to find an appropriate combination of input para- 
meters with this Mode, and a repetition of messages could result. To facilitate the 
work, the user can run Mode 1 to get a first estimate of the basin dimensions or Mode 
2 to get a first estimate of the flow size. Mode 3 can be used subsequently to make 
further refinements. 

The second type of problem concerns the analysis of an existing situation. This 
problem can be solved with Mode 4. 

The flow diagram in Figure 4 shows how the Modes can be run in different se- 
quences. Note that because BASCAD has no fixed running sequence, the diagram 
is meant only as a guideline. 
The following were considered when developing the flow diagram: 
- In Modes I ,  2, and 3, the calculated minimum infiltrated depth at the end of the 

basin will always be equal to the required depth. This implies that the storage e a -  
ciency will always be 100 per cent. For design purposes, therefore, we advise starting 
BASCAD in either Mode 1,2, or 3; 

- The main advantage of Modes 1 and 2 is that when either the inflow rate (Mode 
1) or the basin dimensions (Mode 2) is specified, the program will present an accept- 
able solution with respect to the irrigation performance. A secondary advantage 
is that the user is seldom confronted with program diagnostics. Nevertheless, these 
Modes take more time to run than Modes 3 and 4. Therefore we advise running 
them only once and then continuing with Modes 3 or 4, repeatedly if necessary; 

- Mode 3 is very suitable for establishing the consequences of changing one or more 
of the input parameters. A disadvantage of starting BASCAD in Mode 3 is that 
the user might select values of inflow rate and basin dimensions that either will 
lead to inacceptable irrigation performances or repeated program diagnostics; 

- Mode 4 has the same advantages and disadvantages as Mode 3. Mode 4 is very 
suitable for analyzing the irrigation performance in an existing situation. For eva- 
luation purposes, therefore, we advise starting the program in this Mode. 

Whether the results of a certain run are acceptable or not can be decided from two 
types of criteria. The first has to do with the irrigation performance as indicated by 
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Figure 4. Suggested running sequences for BASCAD (the input parameters n, k, A, and D, are not shown) 

the infiltrated depths and the related over and/or under-irrigation. The second has 
to do with the imgation system design and management in a broader sense. Here, 
one also has to include the lay-out of the tertiary unit (related to farm dimensions), 
the topography (basin dimensions that are possible with respect to levelling), water 
distribution in the tertiary unit (available flow size and application time for individual 
farms), acceptable flow sizes to be handled by a farmer, and so on. 
Thus it is possible that the total set of results from a certain run will meet the first 

type of criteria, but not the second, or vice versa. Making further changes in one or 
more of the parameters and rerunning BASCAD in the same or another mode will 
finally yield a solution that will meet both types of criteria. 
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9 Sample problems 

As mentioned in Chapter 8, there is no set procedure for using BASCAD. We have 
therefore included two sample problems. Note that no fixed design procedures can 
be derived from these examples. The sequence in which the Modes are run is hypotheti- 
cal. 

Problem 1 

Given: 
The infiltration capacity of a soil is characterized by k = 0.14 and A = 0.72, and 
the flow resistance of the basin is n = 0.20. 

The required depth of infiltration is D, = 100 mm and the available flow rate 
is Q = 30 11s. 

Question: 
What should be the basin dimensions (L and B) if the maximum ratio of length over 
widthL/B 5 2? 

Solution: 
Start in Mode 1. The input and output parameters of this run are presented in Column 
2 of Table 5. 

Suppose that the calculated basin length and width (L = 57 m and B = 28 m) 
are not satisfactory. Continue by running Mode 3 and specify, for instance, L = 60 
m and B = 40 m. The input and output parameters of this run are presented in Column 
3 of Table 5. 

Suppose we want to increase the application efficiency (E, = 74%). One remedy 
is to make the basin shorter. Rerun Mode 3, taking L = 50 m and B = 40 m. The 
input and output parameters of this run are presented in Column 4 of Table 5. 

Suppose that these results are acceptable, but that for practical reasons the applica- 
tion time (T, = 138 min) has to be in full hours. 
Run Mode 4 with T, = 120 min. The input and output parameters of this run are 
presented in Column 5 of Table 5. The final result can be summarized as follows. 

If water at a fixed flow rate of 30 l/s is applied for two hours, a basin of 50 m 
long and 40 m wide can be irrigated with an application efficiency of 93%. In approxi- 
mately the last quarter of the basin (1 3 m), the required depth of I O0 mm is not reached, 
causing an average under-irrigation of about 8 mm. The storage efficiency over the 
whole basin is 98%. 
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Table 5. Overview of input and output parameters in Problem 1 

~~ 

Input parameters Mode 1 Mode 3 Mode 3 Mode 4 

1 2 3 4 5 

Number o f  sections 
Constant inflow rate 
App 1 icat ion time 
Required depth 
Maxi" length-width ratio 
Basin length 
Basin width 
Flow resistance 
Infiltration parameter A 
Infiltration parameter k 

Output parameters 

- 
30 

100 
2 

- 

- 
- 
.20 
.72 
.14 

Mode 1 

10 
30 

1 O0 
- 

- 

.72 

.14 

I Mode 3 

10 
30 

100 
- 
- 

--+El 
40 
.20 
.72 
.14 

Mode 3 

Basin length 
Basin width 

Mini" infiltration depth 
Maxi" infiltration depth 
Average applied depth 
Over-irrigation (37 m) 
Under-irrigation (13 m) 
Application efficiency 
Storage efficiency 

Application time 
Advance time 
Recession time 

- 
130 
119 
- 
- 
84 - 

105 
67 
220 

- 
- 

- 
153 
135 
- 

6 - 

180 
124 
277 

- 
- 

- 
137 
124 - 

- 

85 
238 

10 
30 

100 

50 
40 
.20 
.72 
.14 

- 

Mode 4 

- 
- 

82 
122 
108 
14 
8 
93 
98 

- 
85 
202 

Problem 2 

Given: 
The infiltration capacity of a soil is characterized by k = 0.1 1 and A = 0.65, and 
the flow resistance of the basin is n = 0.15. 

The required depth of infiltration is D, = 100 mm and the basin dimensions are 
L = l00mandB = 80m. 

Question: 
What should be the required flow rate (Q)? 
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Table 6. Overview of input and output parameters in Problem 2 

- 
100 
100 
80 
.15 
.65 
11 

Input parameters Mode 2 Mode 3 Mode 4 

- 
100 
100 
80 
.15 
.65 
.ll 

1 2 3 4 

Number of sections 
Constant inflow rate 
Application time 
Required depth 
Basin length 
Basin width 
Flow resistance 
Infiltration parameter (A) 
Infiltration parameter (k) 

Output parameters 

[+i$ 10 

.15 

.65 

.ll 

I Mode 4 

Constant inflow rate 

Mini" infiltrated depth 
Maximum infiltrated depth 
Average applied depth 
Over-irrigation (O m) 
Under-irrigation (100 m) 
Application efficiency 
Storage efficiency 

Application time 
Advance time 
Recession time 

- 
122 
114 - 
- 
88 
- 

(379) 
209 
803 

112 
107 

112 
706 

87 
100 
95 
0 
5 

-1) 

95 

- 
112 
590 

The value of the application efficiency is not given because the 
average applied depth is less than the required depth 

Solution: 
Start in Mode 2. The input and output parameters of this run are presented in Column 
2 of Table 6. 

The required flow rate is Q = 40 l/s, the application time is T, = 379 min. Let 
us suppose that this application time is too long. Continue in Mode 3 and specify, 
for instance, a higher flow rate Q = 70 l/s. The input and output parameters of this 
run are presented in Column 3 of Table 6. 

Let us suppose that these results are acceptable, but that for practical reasons the 
application time (T, = 204 min) must be in full hours. Run Mode 4 with T, = 180 min. 
The input and output parameters of this run are presented in Column 4 of Table 6. 
The final result can be s m -  as follows. 
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A basin with fixed dimensions of 100 x 80 m2 can be irrigated in three hours at a 
flow rate of 70 l/s. Over the whole length of the basin, the required depth of 100 mm 
is not reached, resulting in an average under-irrigation of about 5 mm and yielding 
a storage efficiency of 95%. 
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