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STELLINGEN 

1. De bij even oude, sferlsche varkensblastocysten gevonden 

variatie 1n diameter levert slechts beperkte Informatie op 

over variatie In ontwikkeling. 

Kronnle, G. te, Boerjan, M.L. en Leen, T., 1988. J. Reprod. 

Fert., Abstract Series 1: 59. 

2. Bij het varken wordt de aard van de verdeling van geboorte­

gewichten In het merendeel van de tomen gedurende de eerste 

35 dagen van de dracht bepaald. 

D1t proefschrift. 

3. Zeugen die opnieuw berlgheldsverschljnselen vertonen rond dag 

28 na Inseminatie zijn ten minste 12 dagen drachtig geweest. 

Meulen, J.v.d., Helmond, F.A. en Oudenaarden, C.P.J., 1988. 

J. Reprod. Fert., 84:157-162. 

4. De door Murray et al. 1n twee onafhankelijke experimenten 

gevonden positieve Invloed van uterlene presensibH 1 satie 

tegen sperma-antigenen op de worpgrootte bij het varken, 

rechtvaardigt nader onderzoek onder nederlandse praktijk­

omstandigheden. 

Murray, F.A., Grlfo, A.P. en Parker, C.F., 1983. J. Anlm. 

Sei., 56: 895-900. 

Murray, F.A. en Grlfo, A.P., 1986. J . Anlm. Sc1., 62: 187-
190. 

5. Bij het analyseren van onderzoeksresultaten gaat Informatie 

verloren omdat veelal onvoldoende 1n gedachte wordt gehouden 

dat een meting die sterk afwijkt van de overigen In een reeks 

pas als ultbljter mag worden aangeduid als Is komen vast te 

staan dat er geen aanwijsbare oorzaak voor deze afwijking Is. 



6. Oe ontwikkel ing van nieuwe voortplant ingstechnieken 

gecombineerd met een verruiming van de wetgeving ten aanzien 

van ouderschap za l o n h e r r o e p e l i j k l e iden to t een 

verzakelijking van de humane procreatie. 

7. Het gebruik van de kreet "de aal paraslet" in plaats van de 
term "zwemblaasnematode van aal" 1s meer een reflexie van de 
stand van zaken bij het parasltologisch onderzoek van aal dan 
van het belang van deze nematode voor de aal productie. 

8. De stell ing dat een proefdier dat in het laboratorium wordt 
onderworpen aan het ergste, meest vervelende experiment nog 
a l t i j d beter af is dan een soortgenoot in de natuur, getuigt 
van een gebrek aan kennis van de experimenten die worden 
uitgevoerd of van een vertekend beeld van de natuur. 
Rörsch, A.,1988. Advances In animal breed1ng:proceed1ngs of 
the world symposium in honour of professor R.D. Polit iek. 

9. In het l icht van de achtergrond en betekenis van de schaap-
geit chimaera ("schelt" of "gaap") Is het verwijzen naar deze 
chimaera teneinde daarmee de d i e r l i j ke biotechnologie In 
diskrediet te brengen, onterecht. 

10. Struisvogelpolitiek ten aanzien van bodemvervuiling kan ons 
de kop kosten. 

11. In t e g e n s t e l l i n g t o t schar re lk1ppen s c h a r r e l e n 
scharrelvarkens niet. 

T. van der Lende. 

Impact of early pregnancy on prenatal development In the pig. 

11 januari 1989. 
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CHAPTER 1 

INTRODUCTION 

In the pig on average 20-40% of all embryos dies before day 35 of pregnancy 

(for a review, see Pope and First, 1985). Embryonic loss reduces sow 

productivity through its effect on pregnancy rate and litter size, and thus 

on number of piglets born per sow per year. This has been recognized for many 

decades and has initiated numerous studies to determine the factors which 

influence the extent of embryonic mortality and the mechanism(s) underlying 

this loss. As far as our knowledge about the latter is concerned little 

progress has been made. However, these studies have largely contributed to our 

knowledge concerning the regulation and mechanism of early pregnancy in the 

Pig-

There is some evidence that the development of day 28 conceptuses (embryos 

and their extra-embryonic membranes) is related to the extent of embryonic 

loss during the first four weeks of pregnancy (Lutter et al., 1981). This 

indicates that factors which are associated with embryonic mortality might 

also be associated with embryonic development. The uterus and its secretion 

products might have this role since embryos depend on uterine secretion 

products for their development and they can only survive if the uterine 

environment develops synchronous with their own development (Dziuk, 1987; 

Roberts and Bazer, 1988). Whether the development of conceptuses during the 

foetal stage is also related to the embryonic mortality rate has not been 

investigated. 

Apart from the reproductive losses during pregnancy, considerable losses 

are due to preweaning piglet mortality. The variation in birthweight within 

litters is an important determinant of the preweaning death risk, especially 

in litters with a relatively low average birthweight (English and Smith, 

1975) . One component of the variation in birthweight within a litter might be 

the within-litter weight distribution. Although it is generally assumed that 

the within-litter weight distribution is normal (Gaussian), Royston et al. 

(1982) have provided evidence, later confirmed by Wootton et al. (1983), that 

a discrete subpopulation of one or more intrauterine growth retarded piglets 
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can be found in approximately one-third of all litters. There is also evidence 

that the within-litter variation in developmental stage of embryos already 

exists during the preimplantation stage of pregnancy (Anderson, 1978; Wright 

and Grammer, 1980; Wright et al., 1983; Richter and Elze, 1986; Elze et al., 

1987; Papaioannou and Ebert, 1988; Te Kronnie et al., 1988). This variation 

can probably be reduced through a mechanism of selective mortality of the less 

developed embryos which operates in the uterus at the time of maternal 

recognition of pregnancy (Pope et al., 1982a; Pope et al., 1986a, 1986b; 

Morgan et al., 1987a, 1987b). These results elicit the question whether the 

within-litter weight distribution at birth is determined during early 

pregnancy. If so, it might be associated with embryonic mortality. 

The aims of the present study were to investigate: 

1. the possibility to create a model in order to study the role of the uterus 

and its secretion products as determinants of embryonic mortality and 

embryonic development and to use this model to study the relationship 

between embryonic mortality and prenatal development, 

2. the relationship between the embryonic mortality rate and development of 

the surviving conceptuses at the end of the embryonic stage of pregnancy 

(day 35) and during the subsequent foetal stage of pregnancy, and 

3. the relationship between the within-litter weight distribution and the 

embryonic mortality rate as well as the consequences of the within-litter 

weight distribution for post-natal piglet survival and growth until 

weaning. 

A brief review of the literature concerning early pregnancy in the pig is 

given in chapter 2. In chapter 3 an experiment is described in which it was 

attempted to create a model to study the role of the uterus and its secretion 

products as determinants of embryonic mortality and embryonic development. In 

chapter 4 the relationship between conceptus development and uterine 

development on day 35 of pregnancy and embryonic mortality during the first 

35 days of pregnancy is described. A comparable study concerning the foetal 

and placental development in relation to prenatal mortality is described in 

chapter 5. Chapter 6 contains the results of a study concerning the within-
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litter weight distribution at the early foetal stage of pregnancy and at birth 

as well as its relationship with prenatal mortality. The consequences of the 

within-litter weight distribution for the death risk and growth rate of 

piglets during the suckling period are described in chapter 7. Chapter 8 is 

a general discussion of the results and contains the conclusions. 
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CHAPTER 2 

EARLY PREGNANCY IN THE PIG: A REVIEW OF THE LITERATURE 

2.1 Chronological description of the early pregnancy In the pig 

Porcine ova are fertilized in the ampulla of the oviduct, near the 

ampullary-isthmic junction (Hunter, 1977). The embryos enter the uterus 

within 2 or 3 days after fertilization, which is relatively rapid in 

comparison to other species (Pomeroy, 1955; Perry and Rowlands, 1962; 

Oxenreider and Day, 1965). By this time they have reached the 3 or 4 cell-

stage, but they might even be in the 8 cell-stage (Perry and Rowlands, 

1962; Oxenreider and Day, 1965). On day 6 of pregnancy the embryos, which 

are by this time in the early blastocyst stage, hatch from the zona 

pellucida (Perry and Rowlands, 1962; Hunter 1977). The latter is a complex 

extracellular glycoprotein matrix that is formed around each oocyte during 

follicular development (Dunbar and Bundman, 1987). 

Between day 7 and day 12 after fertilization the embryos migrate from 

the oviductal to the cervical end of the uterine horns to redistribute 

themselves subsequently over the full length of both horns (Dhindsa et al. , 

1967; Dziuk, 1985). This process of spacing is often accompanied by trans-

uterine migration, even if the distribution of ovulations over both ovaries 

has been equal (Dziuk et al., 1964). According to Pope et al. (1982b) both 

oestradiol-17ß and histamine are involved in intrauterine migration of 

embryos. 

Until day 11 or 12 the embryos are spherical. Their diameter increases 

during this period up to 10 mm (Stroband et al., 1984). Subsequently the 

embryos start to elongate (Perry and Rowlands, 1962; Anderson, 1978). This 

elongation is mainly due to cell reorganization and not to hyperplasia 

(Geisert et al., 1982b). Almost simultaneously with the elongation the 

embryos start to synthesize and secrete oestrogens (Heap et al., 1979; 

Gadsby et al., 1980; Bazer et al., 1982; Geisert et al., 1982a). These 

oestrogens are thought to be important for the maintenance of the corpora 

lutea and thus the continuation of progesterone secretion (Bazer and 
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Thatcher, 1977; Flint, 1981; Flint et al., 1983). Because luteal 

progesterone Is essential during the whole period of pregnancy, this embryo 

mediated prolongation of the lifespan of the corpora lutea, also called 

maternal recognition of pregnancy, is essential for continuation of 

pregnancy. Besides this, embryonic oestrogens are also important because 

they stimulate the secretion of proteins from the endometrium (Geisert et 

al., 1982a). 

During or shortly after elongation the embryos start to attach to the 

luminal epithelium of the endometrium. The blastocysts, each with a length 

of up to 100 cm by the end of elongation (day 14), follow the endometrial 

folds. Each blastocyst occupies only a relatively short length of the 

uterus (Perry and Rowlands, 1962). 

The allantois first appears at about day 14 of pregnancy and grows 

rapidly in size, ultimately filling the majority of space within the 

chorion (trophoblastic ectoderm and mesoderm). The amnion is formed from 

dorsal folds of the somatopleure (ectoderm and mesoderm). Its formation is 

complete by day 18 of pregnancy when these folds have fused over the dorsal 

surface of the embryonic disc (Steven, 1975). By this time the embryo 

contains five to six pairs of somites (Perry and Rowlands, 1962). After the 

first contact between the vascular mesoderm covering of the allantois and 

the chorion at approximately day 19 of pregnancy, the chorion becomes 

extensively vascularised by allantoic blood vessels. The vascularization 

is maximal by day 30 of pregnancy (Steven, 1975). During the time of 

vascularization of the chorion the areolae start to develop on the chorion 

opposite the orifices of uterine glands, but only after intimate contact 

between allantois and chorion has been established. The areolae are fully 

differentiated by day 35 of pregnancy (Brambel, 1933). 

2.2 Embryonic mortality 

2.2.1 Incidence 

In the pig the loss of fertilized oocytes during the first 30 to 40 days 

of pregnancy is referred to as embryonic mortality. It is well documented 

that on average approximately 30% of the potential embryos are lost during 

this period (Hanly, 1961; Hughes and Varley, 1980; Flint et al., 1982; Pope 
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and First, 1985; Bolet, 1986). This is almost similar to the embryonic 

mortality rate found for sheep (Bolet, 1986) and cattle (Sreenan and 

Diskin, 1986). 

Several genetic and environmental factors have been associated with the 

incidence of embryonic mortality. It has long been assumed that embryonic 

mortality is mainly due to embryonic genetic abberations. This was promoted 

by a publication by Bishop (1964) in which it was hypothesized that 

embryonic mortality must be due to chromosomal mutations during 

gametogenesis, fertilization or the first cleavage divisions of the 

fertilized oocyte. Recent cytogenetic analyses of day 3 and day 4 morulae 

(Van der Hoeven et al., 1985) and day 10 embryos (McFeely, 1967; Dolch and 

Chrisman, 1981; Long and Williams, 1982) have shown that lethal chromosomal 

mutations like polyploidy (e.g. 3N) and aneuploidy (e.g. 2N-1 or 2N+1) 

hardly occur in the pig. According to Bolet (1986) identifiable genetic 

factors (chromosonal abnormalities and genes with a major effect or playing 

a role as markers) do not fundamentally account for the basal loss, 

although they may lead to a considerable increase in embryonic mortality 

in some cases. 

Breed differences in embryonic mortality rate have been reported (Young 

et al., 1976; Bolet, 1986; Bolet et al., 1986). Within a breed the 

embryonic mortality rate can be influenced by the boar (Swierstra and Dyck, 

1976; Martin and Dziuk, 1977), the length of the period between parturition 

and insemination (Svajgr et al., 1974; Varley and Cole, 1976), the time of 

insemination relative to the time of ovulation (Hunter, 1967; Helmond et 

al. , 1986), the feeding level during early pregnancy (Gossett and Sorensen, 

1959; Haines et al., 1959; Goode et al., 1965; Tasseil, 1967; den Hartog 

and van Kempen, 1980; Cole, 1982) and the occurrence of stress during early 

pregnancy (Schnurrbusch and Elze, 1981). 

2.2.2 Within-litter variation in early embryonic development as a cause 

of embryonic mortality 

In the pig within-litter variation in developmental stage of embryos is 

already evident during the preimplantation period (Anderson, 1978; Wright 

and Grammer, 1980; Wright et al., 1983; Richter and Elze, 1986; Elze et al. 

1987; Papaioannou and Ebert, 1988; Te Kronnie et al., 1988). During this 
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period and the subsequent period of implantation the histomorphology of the 

endometrium and the amount and composition of the uterine secretion 

products change almost continuously (Knight et al., 1973; Johnson et al., 

1988; Van der Lende et al., 1988). As early pregnancy progresses the 

embryos become more dependent on the uterine environment (Heap et al. , 

1979), each embryonic developmental stage allowing only a relatively small 

deviation from the required uterine stage (Wilmut et al., 1985; Dziuk, 

1987). If the within-litter variation in developmental stage exceeds a 

certain limit, the asynchrony of some embryos with the prevailing uterine 

stage will be too large to allow a normal development, resulting in 

embryonic death (Wilmut et al., 1985; Pope et al., 1986a, 1986b; Richter 

and Elze, 1986). Although this mechanism might operate throughout early 

pregnancy, the tolerable asynchrony might vary during early pregnancy. 

Evidence for this comes from the work of Pope et al. (1982a) in which day 

5 and day 7 embryos were transferred together into day 6 non-pregnant 

recipients. The recipients were slaughtered on day 11 or between day 60 and 

70 of pregnancy. No difference in survival rate was found on day 11, but 

between day 60 and 70 more foetuses from day 7 embryos than from day 5 

embryos were found. These results were substantiated by Pope et al. (1986b) 

in an experiment in which day 6 embryos were transferred into day 7 

recipients and day 7 embryos into day 6 recipients. The recipients were 

slaughtered either on day 12 or 13 or on day 30. No difference in survival 

rate was found on day 12 or 13, but the variation in development was much 

higher in the day 7 recipients with day 6 embryos than in the other group. 

This increased variation resulted in an increased embryonic mortality 

between day 12/13 and day 30. Pope et al. (1982a) suggested that the more 

developed embryos start to synthesize oestrogens earlier than less 

developed embryos, thus inducing a uterine environment which might be 

embryocidic for the retarded embryos. Evidence to substantiate this 

hypothesis has been presented by Pope et al. (1986a) and Morgan et al. 

(1987a, 1987b). The results of the latter authors indicate that the 

mortality of the retarded embryos most probably occur between day 12 and 

day 16 of pregnancy, i.e. at the onset of implantation. 
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CHAFFER 3 

EFFECT OF GROWTH RETARDATION EARLY IN LIFE ON THE EMBRYONIC DEVELOPMENT AND 

EMBRYONIC MORTALITY RATE DURING FIRST PREGNANCY 

3.1 Introduction 

The role of the uterus and its secretions as determinants of embryonic 

development and embryonic mortality are poorly understood. If the 

development of the uterus of gilts could be influenced in such a way that 

these gilts subsequently have increased embryonic mortality rates and/or 

embryos which develop abnormal, then a model will be available to study 

this role. The same model can also be used to study the impact of early 

pregnancy on subsequent prenatal development. 

The porcine uterus is largely undifferentiated at birth. The differen­

tiation, which is accompanied by various well described histomorphological 

changes, takes place during the first 12 weeks after birth (Hadek and 

Getty, 1959; Bal and Getty, 1970; Erices and Schnurrbusch, 1979; 

Schnurrbusch et al., 1980; Dyck and Swierstra, 1983). The uterine glands, 

which are absent at birth, appear within two weeks after birth (Hadek and 

Getty, 1959; Bal and Getty, 1970; Erices and Schnurrbusch, 1979; 

Schnurrbusch et al., 1980) and are fully developed by 12 weeks after birth 

(Bal and Getty, 1970). 

The purpose of the present experiment is to investigate the possibility 

to influence the uterine development in gilts in order to create a model 

as mentioned before. The effect of a severe growth retardation early in 

life on the early post-natal uterine development and its consequences for 

the embryonic mortality rate and embryonic development are described. 

3.2 Materials and methods 

The experiment was conducted with three experimental groups, which 

differed as far as treatment during the first 80 days after birth are 
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concerned. The piglets of two groups were weaned early and fed either 

unrestricted or restricted. The piglets of the third group remained with 

the sow together with their male littermates until they were weaned on day 

35 after birth. These groups will be refered to as unrestricted fed group, 

restricted fed group and control group, respectively. 

3.2.1 Animals 

For the unrestricted fed group and restricted fed group 69 female 

piglets from 13 Dutch Landrace litters were weaned between 15 and 40 hours 

after birth. Before weaning the piglets were allowed to Ingest colostrum. 

Littermate piglets were randomly allotted to an unrestricted or restricted 

feeding scheme. The number of piglets In these two groups was 35 and 34, 

respectively. The control group consisted of 38 female piglets from 9 Dutch 

Landrace litters. 

At an age of 80 days 8 piglets from the unrestricted fed group, 8 

piglets from the restricted fed group and 10 piglets from the control group 

were slaughtered. The piglets from the unrestricted fed and the restricted 

fed group were pairwise littermates. The remaining animals were checked for 

oestrus daily from day 180 onwards, using a vasectomized boar. Gilts which 

had not shown oestrus spontaneously by the time they were approximately 390 

days old, were intramuscularly injected with 400 I.U. pregnant mare serum 

gonadotrophin and 200 I.U. human chorionic gonadotrophin (PG600R, Intervet 

B.V., Boxmeer, the Netherlands) In order to induce oestrus. 

All gilts showing oestrus were artificially Inseminated once on the 

first day of their second or third oestrus. Gilts returning to oestrus were 

reinseminated once. For all Inseminations semen of Dutch Landrace A.I. 

boars was used. Gilts not responding to oestrus induction and gilts falling 

to conceive after two inseminations were slaughtered in order to examine 

their reproductive tracts. Pregnant gilts were slaughtered either on day 

34, 35 or 36 after insemination. 

3.2.2 Housing 

The early weaned piglets were housed individually in battery cages for 

16 days after weaning. The ambient temperature was kept at 35°C for the 

22 



first few days after weaning and thereafter gradually lowered to 

approximately 20°C. Between day 16 and day 35 early weaned llttermates from 

the same experimental group were housed together in battery cages. The 

piglets from the control group stayed in the farrowing house with the sow 

until weaning on day 35. From day 35 onwards all piglets were kept under 

the same conditions and housed in pens with a concrete floor. Littermates 

from the same experimental group were housed together. The gilts were 

housed individually on partially slatted concrete floors after 

insemination. 

3.2.3 Feeding 

The early weaned piglets were fed four times on the first day after 

weaning, three times a day until day 8 and thereafter two times a day. The 

unrestricted fed piglets were fed semi-ad libitum from weaning until day 

35 and ad libitum thereafter until day 80. During this period the 

restricted fed piglets were fed at a level which was expected to allow 

50-60% of the bodyweight gain of their unrestricted fed littermates. 

From weaning until day 8 the early weaned piglets received condensed 

milk. Between day 9 and 13 milk was gradually replaced by a pre-starter 

diet which was fed thereafter until day 27. Between day 28 and 34 after 

weaning the pre-starter diet was gradually replaced by a starter diet. All 

piglets, including the weaned control piglets, received this starter diet 

until day 80. All gilts received a sow diet from day 80 onwards. The 

starter diet was gradually replaced by this ration. Between day 80 and day 

180 they were fed ad libitum, thereafter they received approximately 2.0 

kg per gilt per day until the experiment was terminated. 

The gross energy, dry matter content and crude protein content of the 

condensed milk, pre-starter diet, starter diet and sow diet are shown in 

table 3.1. 
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Table 3.4 shows the correlation coefficients between the uterine para­

meters for each of the experimental groups. Within the unrestricted fed and 

control group all correlation coefficients were significant (p<0.05) and 

higher than 0.70. In the restricted fed group all correlation coefficients 

were lower than the comparable coefficients in both other groups. Except 

for the correlation coefficients between uterine weight and thickness of 

myometrium and endometrium, they were not significant (p>0.05). 

3.3.3 Development and fertility of the remaining gilts 

From the group of 66 gilts which were still in the experiment after day 

80, ultimately 50 (75.8%) were slaughtered while pregnant. The remaining 

16 gilts were culled for various reasons, as shown in table 3.5. In the 

unrestricted fed, restricted fed and control group 21, 18 and 23 gilts, 

respectively, had no obvious abnormalities. From these 15 , 12 and 23, 

respectively, became pregnant with an average of 1.29, 1.08 and 1.09 

inseminations, respectively. Although the pregnancy rate in the 

unrestricted fed and restricted fed group (71.4% and 66.7%, respectively) 

was lower than in the control group (100%), these values did not differ 

significantly from the overall average (80.6%; _X"2=l-73, p>0.05). 

Table 3.5 Overview of the fate of the gilts which remained in the 

experiment after day 80. 

Unrestricted Restricted Control 
fed group fed group group 

Number of gilts 22 
Culled -cripple 

-intersex 
Normal pregnant 13 
Induced -no response 5 

-not pregnant 1 
-pregnant 2 

Abnormal genital tract (not pregnant) 1 

All results presented hereafter are based on the data collected for the 
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50 gilts which were pregnant at slaughter. At an age of 220 days still 9 

to 23% of the corrected sum of squares for body measurements could be 

attributed to differences between experimental groups. The mean bodyweight 

and body measurements are shown in table 3.6. The mean bodyweight in the 

restricted fed group was still significantly lower than that in both other 

groups. The average values for the body measurements of these gilts were 

also always lower than those in both other groups, but the differences were 

not always significant. Neither the bodyweight nor the body measurements 

differed significantly between the unrestricted fed and control group. 

Table 3.6 Bodyweight and body measurements at an age of 220 days. 

Unrestricted 

fed group 

Restricted 

fed group 

Control 

group 

mean s.e.m 

Body weight (kg) 

Body length (cm) 

Height at shoulders (cm) 61.0 

Height at croup (cm) 

Width at shoulders (cm) 

Width at croup (cm) 

Heart girth (cm) 

Backfat thickness (mm) 

90. 3a 

9 2 5ab 

61 .0 a 

7 1 . 3 a b 

2 8 . 8 a b 

29 .5 a b 

96. 3a 

9 .7 a 

3.8 

1.5 

0 .8 

1.0 

0 .6 

0 .5 

1.5 

0 .6 

75 . 7b 

8 9 . 0 b 

57 . 7b 

6 8 . 4 b 

27. 3b 

28. 3b 

90. 3b 

7 . 9 b 

4 . 3 

1.7 

0 .9 

1 .1 

0 .7 

0 .6 

1.7 

0 .7 

9 4 . 4 a 

93. 6a 

6 1 . 8a 

7 2 . 0 a 

29. 3a 

30 .4 a 

9 8 . 0 a 

10. 7a 

3 . 1 

1.2 

0 .7 

0 .8 

0 . 5 

0 . 4 

1.2 

0 .5 

a,b: means with a different superscript differ significantly (p<0.05). 

The average age at first oestrus (table 3.7) was extraordinary high in 

each of the three experimental groups. The difference between the 

unrestricted fed and control group was significant (p<0.05). The average 

age at first oestrus in the restricted fed group was intermediate and not 

significantly different from that in both other groups. The weight and 

backfat thickness at first oestrus, also shown in table 3.7, did differ 

significantly (p<0.05) between the restricted fed group and both other 
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groups. Between the unrestricted fed and control group these differences 

were not significant. Correction for differences in age at first oestrus 

did not affect the differences in backfat thickness, but did affect the 

differences in weight as can be seen from table 3.7. The difference between 

the unrestricted fed and control group was largely reduced. The differences 

between the restricted fed group and both other groups remained significant 

(p<0.05). 

Table 3.7 Average age, weight and backfat thickness of the gilts at their 

first oestrus. 

Unrestricted Restricted Control 

fed group fed group group 

mean s.e.m mean s.e.m mean s.e.m 

Age (days) 

Weight (kg) 

Backfat thickness (mm) 

332.la 9.1 

136.7a 3.8 

14.3a 0.7 

318.5ab 10.2 

116.8b 4.3 

11. 3E 0.8 

301.7 7.4 

129.0a 3.1 

14.7a 0.6 

Age corrected weight 

Age corrected backfat 

thickness 

132.2a 3.5 115.6b 3.7 

14.3a 0.7 11.2D 0.8 

132.5a 2.8 

14.8a 0.6 

a,b: means with a different superscript differ significantly (p<0.05). 

As for the age at first oestrus, average age at slaughter in the 

unrestricted fed group (401 + 8 days) differed significantly (p<0.01) from 

that in the control group (365 + 8 days). The average age at slaughter in 

the restricted fed group (383 + 11 days) was intermediate and did not 

differ significantly from that in both other groups. The least square mean 

estimates and their standard errors for the data collected after slaughter 

are shown in table 3.8. There were no significant two-way interactions 

between the main effects taken into consideration (see 3.2.7, model 4 ) . As 

far as the main effects are concerned, oestrus number at which a gilt was 
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inseminated did not explain a significant part of the corrected total sum 

of squares for any of the parameters studied. 

Although the number of corpora lutea and the number of embryos were 

somewhat lower and the embryonic mortality rate somewhat higher in the 

restricted fed group than in both other groups, the differences were not 

significant. Within groups the number of embryos, but not the embryonic 

mortality rate, was significantly related to the number of corpora lutea. 

The least square mean estimates for the number of embryos at an equal 

number of corpora lutea was for the unrestricted fed, restricted fed and 

control group 11.4 + 0.6, 11.1 ± 0 . 7 and 11.6 + 0.5, respectively. The 

differences between groups remained non-significant (p>0.05). 

Within groups the embryonic mortality rate increased with 0.127 + 0.062% 

(p<0.05) per day increase in age of the gilt at slaughter. If the 

differences between groups for the age of the gilts at slaughter were not 

taken into account, the least square mean estimates for embryonic mortality 

rate in the unrestricted fed, restricted fed and control group were 21.5 

+ 4.2, 23.3 + 4.7 and 18.6 + 3.4, respectively. The differences between 

these estimates were also not significant (p>0.05). 

The average weight as well as the average length of the empty uteri of 

the gilts from the restricted fed group were less than that in both other 

groups, but the differences were not significant (p>0.05). Within groups 

the length of the uterus increased with 0.83 + 0.25 cm (p<0.01) per day 

increase in age at slaughter. Without correction for differences in age at 

slaughter, the length of the uterus (cm) in the unrestricted fed, 

restricted fed and control group was 423 + 18, 397 + 20 and 405 + 14, 

respectively. 

Except for the protein content of the allantoic fluid, there were no 

significant differences between experimental groups for any of the 

conceptus parameters. The average protein content of the allantoic fluid 

was significantly lower in the unrestricted fed group than in the 

restricted fed group. The relatively high protein content in the restricted 

fed group was mainly due to one gilt with an extreme high protein content 

of the allantoic fluid. If the data for this gilt were omitted from the 

analysis, the difference between the unrestricted fed and restricted fed 

group was no longer significant. The difference in embryonic weight between 

the restricted fed and control group tended to be significant (p<0.10). 
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CHAPTER 4 

EMBRYONIC DEVELOPMENT IN RELATION TO EMBRYONIC MORTALITY IN THE PIG 

4.1 Introduction 

Embryonic development as well as embryonic mortality are influenced by 

several genetic and environmental factors (Hafez, 1969; Scofield, 1971; 

Edey, 1976; Den Hartog and Van Kempen, 1980; Ayalon, 1981). Although little 

is known about the variation in embryonic development between sows, 

variation in embryonic mortality is known to be high (Hanly, 1961). Since 

embryonic death can be the ultimate consequence of"a disturbed development, 

factors which are associated with embryonic mortality might also be 

associated with embryonic development. Little is known about the 

relationship between embryonic mortality and the development of the 

surviving embryos. Lutter et al. (1981) briefly mentioned the fact that in 

the fourth week of pregnancy embryos in sows with more than 40% embryonic 

mortality were weighing less than embryos in sows with less than 40% 

embryonic mortality. 

The objective of this study is to determine whether the development of 

the 35 days old conceptus (embryo and extra-embryonic membranes) is related 

to embryonic mortality in the pig. For purposes of interpretation of the 

results, especially concerning the development of the placenta, relevant 

uterine parameters are also considered. 

4.2 Materials and methods 

4.2.1 Animals and data collection procedures 

A total of 71 sexually mature Dutch Landrace gilts were artificially 

inseminated with semen of Dutch Landrace boars and slaughtered on day 35 

of pregnancy. Of these gilts, 40 were bought in two batches of 23 and 17, 

respectively. At arrival they had an age of approximately 180 days. The 
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dissection) were calculated. 

For each conceptus or uterine parameter the data were fitted to model 

1 and 2 to study their relationships with the embryonic mortality rate. 

Model 1 : Y,-j - p. + GR( + ̂ (EMR,^-) + b2(EMRjj)2 + ê -

Model 2 : Y,j - p + GR( + b^EMRjj) + ê -

where Y,-j — a conceptus or uterine parameter, measured or calculated per 

gilt, 

p = fitted mean, 

GR,- = the effect of the ith group (i-1,5), 

EMRjj = the embryonic mortality rate for the j t h gilt in the ith group, 

bi, b2 = regression coefficients, 

and e,-j = random error. 

The data for each parameter were also fitted to model 3 and 4. 

Model 3 : Y,j - p + GR; + b^Xjj) + b2(EMR,J) + b3(EMR,j)2 + ejj 

Model 4 : Yjj - p + GR,- + b^Xjj) + b2(EMRij) + e,-j 

where Y,-j, p, GR^, b1-b3, EMR,-j and e,-j are as described for model 1 and 2 and 

Xfj = the value of a covariable for the j t h gilt in the ith group. 

For embryonic weight and length, X,-j was either number of corpora lutea, 

number of embryos, placental weight, placental length, length of the 

implantation site per embryo, uterine length per embryo before dissection 

or uterine length per embryo after dissection. For placental weight and 

length, X,-j was either number of corpora lutea, number of embryos, length 

of the implantation site per embryo, uterine length per embryo before 

dissection or uterine length per embryo after dissection. For all other 

parameters X,-j was either number of corpora lutea or number of embryos. In 

all these analyses either number of corpora lutea or number of embryos was 

used as a covariable in order to examine the relationship of the embryonic 

mortality rate with each of the conceptus and uterine parameters at a 

constant number of corpora lutea or constant number of embryos, 

46 



respectively. The other covariables were included separately in some 

analyses (as indicated) to facilitate interpretation of the results 

obtained with model 1 and 2. 

All analyses were repeated using the absolute embryonic mortality 

instead of the embryonic mortality rate as a covariable in models 1 to 4. 

For each model fitted the percentage reduction of variance due to 

regression within groups (% red.) was calculated as: 

SSEa - SSEb 

% red. - x 100 

SSE8 

where SSÊ  - residual sum of squares for a model with only the fixed 

effect group (Yjj = u + GR,- + e,-j) 

and SSE b = residual sum of squares for the model of interest, including 

the fixed effect group and 1, 2 or 3 covariables (models 1 

to 4). 

All these analyses were performed after preliminary analyses had shown 

that: 

1. the variance of averages per gilt were independent of number of 

embryos on which the averages were based and 

2. the regression coefficients within groups were not significantly 

different from each other. 

4.3 Results 

The averages, standard deviations and extreme values for number of 

corpora lutea, number of embryos, absolute embryonic mortality and 

embryonic mortality rate are shown in table 4.1. The absolute embryonic 

mortality increased with 0.36 (p=0.0062) for each additional corpus luteum. 

Of the total variance in absolute embryonic mortality 10.4% could be 

attributed to variation in number of corpora lutea. In contrast, the 

embryonic mortality rate was not related to the number of corpora lutea. 
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Only 1.7% of the variance in the former could be attributed to the latter 

(p-0.28). The correlation between the absolute embryonic mortality and the 

embryonic mortality rate was 0.97 (p<0.0001). 

Table 4.1 Averages (x), standard deviations (s.d.) and extreme values 

(min., max.) for number of corpora lutea, number of embryos, 

absolute embryonic mortality and embryonic mortality rate 

(11-71) . 

s.d. min. 

Number of corpora lutea 

Number of embryos 

Absolute embryonic mortality 

Embryonic mortality rate 

4.48 

1.53 

3.00 

0 .20 

2 .42 

3 .01 

2 .67 

0 .18 

9 

4 

0 

0 

20 

18 

9 

0 .67 

The number of embryos (NE) increased significantly with an increasing 

number of corpora lutea (NCL) and decreased significantly with an 

increasing embryonic mortality (both absolute embryonic mortality (AEM) and 

embryonic mortality rate (EMR)). The relationships were NE=2.43+0.63 NCL 

(R2=0.26; p=0.0001), NE=13.73-0.73 AEM (R2=0.42; p=0.001) and NE=14.15-12.86 

EMR (R2=0.60; p=0.0001), respectively. 

Average values, standard deviations and extreme values for conceptus and 

uterine parameters are shown in table 4.2. The relationships of these 

parameters with absolute embryonic mortality were essentially the same as 

the relationships with embryonic mortality rate. Therefore only the latter 

will be presented. Unless stated otherwise all relationships were linear. 
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Table 4.2 Averages (x), standard deviations (s.d.) and extreme values 

(min., max.) for conceptus and uterine parameters. 

?1> s.d. 

Embryonic weight, g 

Embryonic length, cm 

Placental weight, g 

Placental length, cm 

Amniotic fluid weight, g 

Allantoic fluid weight, g 

Number of areolae 

Uterine length before dissection, cm 

Uterine length after dissection, cm 

Uterine length/embryo before dissection, cm 

Uterine length/embryo after dissection, cm 

Length of implantation site/embryo, cm 

Length of uterus occupied by embryos, cm 

Length of uterus unoccupied, cm 

Percentage of uterus occupied 

4.35 

3.84 

44.2 

52.4 

5.31 

103.2 

2079 

379 

424 

35.2 

39.8 

22.8 

257 

169 

59.3 

0.51 

0.25 

9.4 

7.3 

0.68 

46.1 

570 

75 

73 

11.5 

13.7 

5.2 

79 

45 

11.1 

3.11 

3.27 

24.3 

35.0 

3.50 

35.0 

878 

217 

257 

18.8 

21.7 

9.4 

99 

101 

32.4 

5.60 

4.30 

72.8 

73.0 

7.00 

256.0 

3181 

620 

703 

77.3 

86.0 

36.3 

545 

301 

77.5 

1) For conceptus parameters: average of the litter averages. 

Conceptus parameters 

Embryonic weight and length decreased significantly with an increasing 

embryonic mortality rate (table 4.3). This decrease was even more obvious 

after correction for the effect of either number of corpora lutea, 

placental weight, placental length or length of the implantation site per 

embryo on embryonic weight and length. In contrast, the decrease was no 

longer significant if the effect of either number of embryos or uterine 

length per embryo was taken into account. 
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Table 4.3 Linear regression coefficients and their significances for 

relationships of embryonic weight (EW) and embryonic length (EL) 

with embryonic mortality rate (EMR). 

Regression on EMR 

Held constant 

-

Number of corpora lutea 

Number of embryos 

Placental weight 

Placental length 

Length of implantation site 
per embryo 

Uterine length/embryo 
(before dissection) 

Uterine length/embryo 
(after dissection) 

Y 

EW 
EL 

EW 
EL 

EW 
EL 

EW 
EL 

EW 
EL 

EW 
EL 

EW 
EL 

EW 
EL 

b 

-0.64 
-0.23 

-0.69 
-0.24 

-0.15 
-0.11 

-0.89 
-0.27 

-0.77 
-0.26 

-0.80 
-0.27 

-0.41 
-0.16 

-0.65 
-0.27 

P 

0.053 
0.039 

0.039 
0.033 

0.77 
0.53 

0.0079 
0.018 

0.024 
0.024 

0.025 
0.021 

0.40 
0.31 

0.21 
0.12 

% red. 

5.6 
6.4 

7.7 
7.3 

7.7 
7.5 

15.4 
9.1 

9.3 
8.2 

7.8 
8.2 

6.3 
6.8 

6.4 
7.0 

Placental weight and length were significantly related to embryonic 

mortality rate, but the type of relationship for placental length differed 

from that for placental weight to some extent. In contrast to embryonic 

weight and length, placental weight significantly increased with an 

increasing embryonic mortality rate (table 4.4). This remained the case if 

the effect of number of corpora lutea on placental weight was taken into 

account. Placental weight was no longer related to embryonic mortality rate 

after correction for the effect of number of embryos, length of the 

implantation site per embryo or uterine length per embryo on placental 

weight. Although the results shown in table 4.4 for placental length highly 
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PW 
PL 

PW 
PL 

PW 
PL 

PW 
PL 

PW 
PL 

PW 
PL 

14.2 
8.5 

15.6 
9.8 

2.1 
-2.2 

3.6 
0.7 

-4.3 
-8.5 

-5.6 
-11.1 

0.022 
0.048 

0.012 
0.019 

0.83 
0.73 

0.51 
0.85 

0.62 
0.13 

0.53 
0.059 

7.8 
5.9 

12.4 
14.4 

11.5 
11.9 

37.4 
39.5 

18.8 
25.7 

21.2 
28.3 

Table 4.4 Linear regression coefficients and their significances for the 

relationships of placental weight (PW) and placental length (PL) 

with the embryonic mortality rate (EMR). 

Regression on EMR 

Held constant Y b p % red. 

Number of corpora lutea 

Number of embryos 

Length of implantation site 
per embryo 

Uterine length/embryo 
(before dissection) 

Uterine length/embryo 
(after dissection) 

resemble those shown for placental weight, the relationship between 

placental length and embryonic mortality rate before and after correction 

for either number of embryos and length of the implantation site per embryo 

was better described by a function of the type y=ax +bx+c, as shown in table 

4.5. From these equations it can be calculated that placental length first 

decreased with an increasing embryonic mortality rate until the latter was 

0.21, to increase thereafter. After correction for either number of embryos 

or length of the implantation site per embryo, the lowest placental length 

was found at an embryonic mortality rate of 0.26. 

The amniotic fluid weight, allantoic fluid weight and number of areolae 

per placenta were not significantly related to embryonic mortality rate 

(table 4.6). It should nevertheless be noted that the amniotic fluid weight 

showed a tendency to decrease while the allantoic fluid weight and number 

of areolae per placenta showed a tendency to increase with an increasing 

embryonic mortality rate. 
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Table 4.5 Regression coefficients and the significances of the quadratic 

regression coefficients for the relationship of placental length 

with the embryonic mortality rate (EMR), both linear and qua­

dratic. 

Regression on EMR and EMRZ 

Held constant J1 P(b2) % red. 

Number of embryos 

Length of implantation site 
per embryo 

-27.6 65.7 

-29.6 56.5 

-24.6 47.1 

0.0044 17.2 

0.017 19.6 

0.014 45.1 

Table 4.6 Linear regression coefficients and their significances for the 

relationships of amniotic fluid weight (AMN), allantoic fluid 

weight (ALL) and number of areolae (AREO) with the embryonic 

mortality rate (EMR). 

Regression on EMR 

Held constant % red. 

Number of corpora lutea 

Number of embryos 

AMN 
ALL 
AREO 

AMN 
ALL 
AREO 

AMN 
ALL 
AREO 

-0.6 
40.0 

434.1 

-0.6 
40.9 

441.1 

-0.8 
38.4 

451.5 

0.16 
0.20 
0.12 

0.17 
0.20 
0.11 

0.28 
0.44 
0.30 

3.1 
2.5 
4.2 

3.2 
2.6 
4.5 

3.2 
2.5 
4.2 
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Uterine parameters 

Uterine length as well as the absolute and relative part of uterus 

occupied by embryos decreased significantly with an increasing embryonic 

mortality rate. In contrast, the length of uterus unoccupied increased 

significantly with an increasing embryonic mortality rate (table 4.7). 

After correction for the effect of number of corpora lutea on these uterine 

parameters the relationships with embryonic mortality rate remained 

significant and became somewhat more pronounced. After correction for the 

effect of number of embryos on the uterine parameters the relationships 

with embryonic mortality rate were no longer significant. 

The length of the implantation site and the uterine length per embryo 

increased significantly with an increasing embryonic mortality rate (table 

4.8). This was still the case after correction for the effect of the number 

of corpora lutea on these parameters. After correction for the effect of 

number of embryos on the length of the implantation site, the latter was 

no longer significantly related to embryonic mortality rate. In contrast, 

the uterine length per embryo was still significantly related to embryonic 

mortality rate. It could now be best described by a function of the type 

y=ax+bx+c. From the equations from table 4.9 it can be calculated that 

the uterine length per embryo first decreased with an increasing embryonic 

mortality rate until the latter was approximately 0.15, to increase 

thereafter. 
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Table 4.7 Linear regression coefficients and their significances for the 

relationships of uterine length before dissection (ULb), uterine 

length after dissection (ULa), uterine length occupied by 

embryos (ULO), uterine length unoccupied (ULU) and percentage of 

uterus occupied by embryos (PUO) with the embryonic mortality 

rate (EMR). 

Regression on EMR 

Held constant % red. 

Number of corpora lutea 

Number of embryos 

ULb 
ULa 
ULO 
ULU 
PUO 

ULb 
ULa 
ULO 
ULU 
PUO 

ULb 
ULa 
ULO 
ULU 
PUO 

-121.7 
-91.5 

-230.7 
130.6 
-39.7 

-135.3 
-104.5 
-251.4 
138.5 
-42.8 

24.6 
58.2 

-105.6 
61.5 

-10.6 

0.0060 
0.051 
0.0001 
0.0001 
0.0001 

0.0017 
0.023 
0.0001 
0.0001 
0.0001 

0.71 
0.41 
0.86 
0.11 
0.16 

11.0 
5.8 

30.8 
30.3 
44.9 

19.8 
13.1 
46.4 
37.1 
61.9 

20.3 
16.0 
48.8 
35.8 
60.7 
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Table 4.8 Linear regression coefficients and their significances for the 

relationships of length of the implantation site per embryo 

(IMP), uterine length per embryo before dissection (UPEb) and 

uterine length per embryo after dissection (UPEa) with the 

embryonic mortality rate (EMR). 

Regression on EMR 

Held constant % red. 

Number of corpora lutea 

Number of embryos 

IMP 
UPEb 
UPEa 

IMP 
UPEb 
UPEa 

IMP 
UPEb 
UPEa 

9.4 
44.2 
56.0 

10.2 
47.4 
60.3 

2.0 
14.5 
20.1 

0.0029 
0.0001 
0.0001 

0.0009 
0.0001 
0.0001 

0.68 
0.029 
0.010 

12.9 
54.5 
58.0 

20.1 
73.7 
78.5 

18.0 
70.3 
73.6 

Table 4.9 Regression coefficients and the significances of the quadratic 

regression coefficients for the relationships of uterine length 

per embryo before dissection (UPEb) and uterine length per 

embryo after dissection (UPEa) with the embryonic mortality 

rate, both linear and quadratic. 

Held constant 

Number of embryos 

Y 

UPEb 
UPEa 

Regression on 

bi 

-25.2 
-31.2 

b2 

82.0 
105.4 

EMR and EMR2 

P(b2) 

0.0004 
0.0001 

% red. 

75.8 
79.6 
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4.4 Discussion 

From the presented results it can be concluded that the development of 

conceptuses at the end of the embryonic stage (day 35 of pregnancy) is 

related to the incidence of embryonic mortality. The same can be concluded 

for all the uterine parameters that have been included in the present 

study. Except for placental length, these relationships were no longer 

significant if the effect of the number of viable embryos on these 

parameters was taken into account. Since differences in number of embryos 

between gilts are mainly due to differences in embryonic mortality (Johnson 

et al., 1985; Leymaster et al., 1986; Neal and Johnson, 1986; this study) 

this result is not surprising. 

For all parameters studied, except placental length, the values either 

linearly increased or linearly decreased with an increasing embryonic 

mortality. In the case of placental length the relationship seems more 

complex. However, two remarks should be made. At first, if a linear 

function was fitted to the data for placental length, the increase with an 

increasing embryonic mortality was significant. Secondly, if the effect of 

number of corpora lutea on placental length was taken into account, this 

relationship was comparable to that between placental weight and embryonic 

mortality. 

The results indicate that the growth of embryos in gilts with a high 

embryonic mortality is retarded in comparison with the growth of embryos 

in gilts with a low embryonic mortality. These results are in agreement 

with the results of Lutter et al. (1981). In their work the weight of 4 

week old embryos in gilts with more than 40% embryonic mortality was 10.5% 

lower than that of the embryos in gilts with less than 40% embryonic 

mortality (0.94 + 0.014 g and 1.05 + 0.017 g, respectively). In the present 

study embryos in gilts with more than 40% embryonic mortality weighed 8.4% 

less than embryos in gilts with less than 40% embryonic mortality (4.04 + 

0.59 g and 4.41 + 0.07 g, respectively). The average mortality rate in the 

material of Lutter et al. (1981) was approximately 40%, which is almost 

twice as high as the average embryonic mortality rate in the present study. 

In contrast to the decrease in embryonic weight and length, the 

placental weight and length increased with an increasing embryonic 

mortality. If the decrease in embryonic growth with an increasing embryonic 
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mortality is a consequence of the concomitant increase in placental growth, 

than correction for the effect of placental weight or length on embryonic 

weight or length should abolish the relationship between embryonic weight 

and length on the one hand and embryonic mortality on the other. In 

contrast, these latter relationships became more pronounced after this 

correction. This indicates that the embryos from gilts with high embryonic 

mortality were already benefitting from their more developed placentae. (In 

the present study the relationships of embryonic weight or length with 

placental weight or length were all positive if the embryonic mortality was 

held constant.) The accelerated development of the placentae with an 

increasing embryonic mortality might be due to compensatory growth in order 

to counteract for the relative shortage of a component (or components) 

which is (are) essential for a normal embryonic development. If this is 

true, compensatory uptake of nutrients might already be the case by day 35 

of pregnancy. Therefore, the relationships of embryonic weight and length 

with embryonic mortality in an earlier part of gestation might have been 

more pronounced than the presented relationship in the sense that an 

increase in embryonic mortality would have been associated with a larger 

relative decrease in embryonic weight and length. The comparison of the 

results of Lutter et al. (1981) with the present results, given above, 

supports this assumption. 

The present results do not allow a decisive conclusion as to the 

mechanism underlying the altered conceptus development in gilts with a high 

embryonic mortality in comparison to gilts with a low embryonic mortality. 

The altered embryonic development might be directly associated with the 

factors which caused (a part of) the embryonic mortality. The altered 

placental development might be a secondary effect, mediated through the 

effect that embryos which died had on the uterine length before their 

death. Despite the decrease in uterine length with an increasing embryonic 

mortality, the length of uterus unoccupied increased. Due to this, the 

uterine length per embryo significantly increased with an increasing 

embryonic mortality, even after correction for the number of embryos. This 

might benefit the placental growth. 

An interesting question is whether the accelerated growth of the 

placentae in gilts with a high embryonic mortality will be beneficial 

during the fetal stage of pregnancy, especially after day 70 of pregnancy. 
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2, 3 and 4 the gilts received 1.50M, 1.80M and 2.70M, respectively, until 

an age of 5 months and 2.70M, 2.70M and 1.65M, respectively, thereafter. 

The maintenance requirement was calculated as 0.45 MJ ME/kg ' * 

(weight) ' . From week 37 after birth onwards all gilts were fed 2.4 kg 

of a normal ration for sows. 

Of the 195 gilts, 38 were inseminated during first oestrus which had 

been induced with an intramuscular injection of 400 I.U. pregnant mare 

serum gonadotrophin and 200 I.U. human chorionic gonadotrophin (PG600R, 

Intervet B.V., Boxmeer, the Netherlands). 

For each gilt the stage of pregnancy at slaughter was chosen in such a 

way that confounding of batch, experimental group and time of insemination 

relative to the first insemination in the concerning group on the one hand 

and stage of pregnancy on the other hand was avoided. At the slaughter­

house the ovaries and complete reproductive tract were removed immediately 

after stunning and exsanguination. During transport to the laboratory the 

collected material was kept on ice. Within 3 to 4 hours after slaughter the 

data collection procedures started. The number of corpora lutea on each 

ovary was counted. The uterus and cervix were separated from the ovaries, 

oviducts and mesometrium. The wall of the uterine horns was cut 

longitudinally along the antimesometrial side, starting at the utero-

cervical junction. Each apparently normal and healthy foetus was removed 

from the uterus and immediately thereafter its weight and crown-rump length 

were determined. Subsequently each placenta was carefully detached from the 

endometrium and weighed. The length of the placenta, excluding the necrotic 

tips of the chorion, was measured under minimal stretch. 

Before as well as after dissection the length of both uterine horns was 

measured. After removal of all conceptuses, the length of the individual 

implantation sites was measured. 

5.2.2 Statistical analyses 

For all statistical analyses the procedure GLM of Statistical Analysis 

System (SAS, 1985) was used. 

The absolute prenatal mortality was calculated as the difference between 

the number of corpora lutea and the number of foetuses. The prenatal 

mortality rate was calculated as the ratio between absolute prenatal 
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mortality and number of corpora lutea. The parameters analysed were the 

conceptus parameters foetal weight, foetal length, placental weight and 

placental length and the uterine parameters length of the implantation site 

per foetus and uterine length per foetus before and after dissection of the 

uterus. The latter were calculated by dividing the total uterine length 

before or after dissection through the number of foetuses. 

All statistical analyses on parameters for conceptus development were 

performed with the natural logarithms of the average values per gilt. The 

logarithmic transformation was necessary to correct for heterogeneity of 

variance caused by variation in stage of pregnancy. Within the group of 

non-induced gilts three sub-groups were created on the basis of either 

their absolute prenatal mortality or prenatal mortality rate (low: ± 20% 

of the gilts; intermediate: ± 60% of the gilts; high: ± 20% of the gilts). 

Because the group of induced gilts was small, within this group only 2 

subgroups were created (prenatal mortality either lower than or higher than 

the average). 

The data for each conceptus or uterine parameter were fitted to model 

1 and 2. Data for non-induced gilts were analysed separately from data for 

induced gilts. 

Model 1: Yjjkl = n + EXGj + BATj + SGk 

+ M S T ^ i ) + b2(ST,-jkl)
2 + b3(STjjkl)3 

+ b1k(STjjkl:k) + b2k(STjjkl:k) 

+ b3k(STjjkl:k) + eijkl 

Model 2: Yijkl = \i + EXG,- + BATj + SGk 

+ b^STiju) + b2(ST1jkl)2 + b3(STijkl)3 

+ b1k(ST1-jkl:k) + b2k(STjjkl:k) 

+ b3k(ST1jkl:k)3 + b4(NFijkt) 

+ b5((NFjjkl)*(STijkl)) + b6((NF,jkl)*(ST1jkl)
2) 

+ b7((NF1jkl)*(STijkl)
3) + e,Jkl 

where Yjjki = a conceptus or uterine parameter, measured or calculated 

per gilt, 

ft — fitted mean, 

EXG,- - effect of the i experimental group (i-1,4), 
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BATj = effect of the j batch (j-1,4), 

SG^ = effect of the k prenatal mortality subgroup (k=l,3 for 

non-Induced gilts or k=l,2 for induced gilts), 

STjjid - stage of pregnancy at slaughter (days) for the 1 gilt 

in the i experimental group, j batch and k 

subgroup, 

NFjjid = number of foetuses for the 1 gilt in the i 

experimental group, j batch and k subgroup, 

bi-b7 = pooled partial regression coefficients, 

blk~t>3k = regression coefficients within prenatal mortality 

subgroups as deviation from the pooled partial regression 

coefficients, 

and ejjkl = random error. 

All these analyses were performed after preliminary analyses had shown 

that: 

1. the variance of average values per gilt (or logarithmic transformed 

average values per gilt) was independent of number of foetuses on 

which the averages were based, 

2. the interaction between experimental group and batch was not 

significant and 

3. the regression coefficients within the interaction classes of 

experimental group and batch were not significantly different from 

each other. 

As can be seen from model 1 and 2 the effect of experimental group 

and batch were taken into account. However, in view of the objectives of 

the present study these effects were not of interest and will therefore not 

be discussed further. 

5.3 Results 

The averages, standard deviations and extreme values for number of 

corpora lutea, number of foetuses, absolute prenatal mortality and prenatal 
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mortality rate are shown in table 5.1. The number of corpora lutea was 

independent of stage of pregnancy. Although the absolute prenatal mortality 

and the prenatal mortality rate both increased and the number of foetuses 

decreased with an increasing stage of pregnancy, these changes were for 

both the non-induced and induced group small and not significant. This is 

illustrated for the prenatal mortality rate in figure 5.1. 

Table 5.1 Averages (X) , standard deviations (s.d.) and extreme values 

(min., max.) for number of corpora lutea, number of foetuses, 

absolute prenatal mortality and prenatal mortality rate. 

s.d. 

13.75 

10.17 

3.60 

0.26 

23.71 

10.50 

13.21 

0.51 

2.21 

2.80 

2.73 

0.18 

9.46 

3.93 

9.48 

0.22 

7 

2 

0 

0 

9 

2 

0 

0 

20 

17 

12 

0.86 

53 

17 

46 

0.88 

Non-induced gilts (n=157) 

Number of corpora lutea 

Number of foetuses 

Absolute prenatal mortality 

Prenatal mortality rate 

Induced gilts (n=38) 

Number of corpora lutea 

Number of foetuses 

Absolute prenatal mortality 

Prenatal mortality rate 

After correction for experimental group and batch, the correlation 

coefficients between number of foetuses on the one hand and number of 

corpora lutea, absolute prenatal mortality and prenatal mortality rate on 

the other hand were for the non-induced gilts 0.41 (p<0.001), 0.71 

(p<0.001) and 0.84 (p<0.001), respectively, and for the induced gilts 0.22 

(p>0.10), 0.23 (p>0.10) and 0.59 (p<0.001), respectively. The correlation 

coefficient between absolute prenatal mortality and prenatal mortality rate 

was 0.96 (p<0.0001) in the non-induced group and 0.79 (p<0.001) in the 

induced group. Since the relationships of the parameters of interest with 

the absolute prenatal mortality were essentially the same as the 
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25 35 45 55 65 75 85 95 105 115 125 

Stage of pregnancy (days) 

Figure 5.1 The change in prenatal mortality rate during the foetal stage 

of pregnancy, (non-induced gilts: A A ; induced gilts: A A ) 
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relationships with the prenatal mortality rate, only the latter will be 

presented. 

Non-induced gilts 

The relative frequency distribution for prenatal mortality rate is shown 

in figure 5.2a. The changes in conceptus and uterine parameters with stage 

of pregnancy were compared for gilts with a prenatal mortality rate of less 

than 0.10, between 0.10 and 0.40 (including 0.10) and equal to or greater 

than 0.40 (n = 31, n = 91 and n = 35, respectively). The relative frequency 

distribution for each of these three subgroups is shown in figure 5.2b for 

the period before day 60, between day 60 and 85 and after day 85 of 

pregnancy. These three distributions did not differ significantly from the 

overall relative frequency distribution, also shown in figure 5.2b. 

The changes in foetal weight, placental weight and placental length 

between day 35 and 115 of pregnancy differed significantly between the 

gilts with a low, intermediate and high prenatal mortality rate (figure 

5.3a, c, d). This was not the case for foetal length (figure 5.3b). The 

length of the implantation site per foetus increased in each of the three 

prenatal mortality subgroups with 0.13 cm per day of pregnancy (p<0.0001). 

At a given stage of pregnancy it was significantly different between the 

three prenatal mortality subgroups. Within the groups of gilts with a low, 

intermediate and high prenatal mortality rate it was 19.7, 20.4 and 21.8 

cm, respectively, on day 35 of pregnancy and 29.3, 30.0 and 31.4 cm, 

respectively, on day 110 of pregnancy. 

The uterine length per foetus, before as well as after dissection, was 

significantly affected by prenatal mortality rate, but it did not 

significantly change with stage of pregnancy (b = -0.019 cm/day and b = 

-0.016 cm/day, respectively). Within the groups of gilts with a low, 

intermediate and high prenatal mortality rate the uterine length per foetus 

before dissection was 30.9, 34.9 and 51.0 cm, respectively. After 

dissection it was slightly higher (34.8, 39.3 and 57.6 cm, respectively). 
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After correction for the effect of number of foetuses on the conceptus 

and uterine parameters, prenatal mortality rate was not related to any of 

these parameters, except placental length. For this parameter the 

relationships as shown in figure 5.3d remained essentially the same and the 

differences between the gilts with a low, intermediate and high prenatal 

mortality rate remained significant. 

Induced gilts 

The relative frequency distribution for prenatal mortality rate is shown 

in figure 5.4a. The changes in conceptus and uterine parameters with stage 

of pregnancy were compared between gilts with a prenatal mortality rate 

less than the average (0.51) and the remaining gilts (n - 17 and n = 21, 

respectively). The relative frequency distribution for both groups is shown 

in figure 5.4b for the period before day 60, between day 60 and 85 and 

after day 85 of pregnancy. These three distributions did not differ 

significantly from the overall relative frequency distribution, also shown 

in figure 5.4b. 

The changes in conceptus and uterine parameters with stage of pregnancy 

were for none of the parameters studied significantly different between 

gilts with a relatively low and relatively high prenatal mortality rate. 

The overall changes in foetal weight and length and placental weight and 

length with stage of pregnancy are shown in figure 5.5. For each parameter 

the change with stage of pregnancy as found within the group of non-induced 

gilts with a high prenatal mortality rate (equal to or more than 0.40, 

figure 5.3) is also shown in figure 5.5 to serve as reference. 

The length of the implantation site per foetus increased overall with 

0.141 cm per day of pregnancy (p<0.01). At day 35 and day 110 of pregnancy 

it was 15.9 and 26.5 cm, respectively. The uterine length per foetus before 

as well as after dissection did not significantly change with stage of 

pregnancy (b = -0.209 cm/day and b = -0.298 cm/day, respectively). Although 

not significant, the uterine length per foetus before dissection decreased 

from 45.2 cm on day 35 of pregnancy to 29.5 cm on day 110 of pregnancy. For 

the uterine length per foetus after dissection this was 54.0 and 31.7 cm, 

respectively. 
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Prenatal mortality rate 

L H 
< Oay 60 

L H 
Day 60-85 

Figure 5.4 The relative frequency distribution for prenatal mortality rate 

in induced gilts (A) and the relative frequency distribution for 

induced gilts with a low (L<0.51) and a high (H > 0.51) prenatal 

mortality rate, shown for the period before day 60, between day 

60 and day 85 and after day 85 of pregnancy (B). 
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Stage of pregnancy (days) 
35 45 55 65 75 85 95 105 115 

Stage of pregnancy (days) 

35 45 55 65 75 85 95 105 115 

Stage of pregnancy (days) 
35 45 55 65 75 85 95 105 115 

Stage of pregnancy (days) 

Figure 5.5 The change in foetal weight (A), foetal length (B), placental 

weight (C) and placental length (D) with stage of pregnancy for 

induced gilts ( * A ), and non-induced gilts with a high 

prenatal mortality rate ( A & ) . 
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5.4 Discussion 

At the end of the embryonic stage of pregnancy (day 35) differences in 

the extent of development of embryos and their extra-embryonic membranes 

were observed between gilts with a low and gilts with a high embryonic 

mortality rate (see chapter 4). This observation was the direct motive to 

start the present study. For a correct interpretation of the results it is 

important to consider at first some aspects of the relationship between 

prenatal mortality and embryonic mortality. In the present study the 

prenatal mortality rate increased with stage of pregnancy in both the non-

induced and induced group of gilts. Although these increases were not 

significant, their absolute magnitude (7-8%) is in good agreement with the 

foetal mortality rate of at most 10% as given by Wrathall (1971) , but 

somewhat lower than the estimate of 10-20% given by Pope and First (1985). 

As a consequence of these increases, the reliability of the prenatal 

mortality rate as an estimator for the embryonic mortality rate will 

decrease as pregnancy progresses. Since the difference in prenatal 

mortality rate between the non-induced group and induced group remains 

almost constant throughout the period studied (day 35 - day 112), it is 

justifiable to conclude that the two groups differ only as far as their 

embryonic mortality rate is concerned. From the day 35 estimates for the 

prenatal mortality rate it can be concluded that the embryonic mortality 

rate in the induced group was somewhat more than twice as high than that 

in the non-induced group (47% and 22%, respectively). 

Within the group of non-induced gilts the rate of foetal weight gain 

was significantly different between gilts with a low and gilts with a high 

prenatal mortality rate. In contrast, no differences were observed for the 

increase in foetal length. Especially between day 75 and day 100 of 

pregnancy, the growth rate of foetuses from gilts with a high prenatal 

mortality rate is clearly higher than that of foetuses from gilts with a 

low prenatal mortality rate. However, after day 100 of pregnancy this is 

reversed with the consequence that the differences in foetal weight by day 

110 of pregnancy are small. These changes in growth rate are consistent 

with the changes in placental weight and length. Within the group of gilts 

with a low and intermediate prenatal mortality rate the change in placental 

weight is in good agreement with the results of Pomeroy (1960). 
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Critical values for Lk have been given by Hawkins (1980) . Low Lk values 

indicate the presence of outliers. Once the number of outliers was 

determined, individual foetuses or piglets were classified as shown in 

figure 6.1. Foetuses and piglets from normal distributed litters are called 

normal. One or two outliers to the left are called runts, while one or two 

outliers to the right are called giants. More than two outliers to the 

left or to the right are called left-hand individuals or right-hand 

individuals, respectively. Based on the classification of the individual 

foetuses or piglets within a litter, the litters were classified as litters 

with a normal distribution, litters with one or two runts, litters with 

left-hand individuals, litters with right-hand individuals or litters with 

one or two giants. 

For the statistical analyses of the data, analysis of variance 

(procedure GLM of SAS, 1985) and Chi-square analysis for 2x2 contingency 

tables were used. The embryonic mortality rate was calculated as the 

percentage of corpora lutea not represented by apparantly normal and 

healthy foetuses. Data for induced gilts and their foetuses or piglets were 

analysed separately from those for non-induced gilts. A litter with 3 

foetuses can only be classified as a litter with a normal distribution, a 

litter with runts or a litter with giants. The smallest litter which could 

be classified as one of the five distinguished classification classes is 

a litter with 7 foetuses. The statistical analysis was therefore conducted 

within the data for all litters with 3 or more foetuses and within the data 
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2<KmaxsV2n X ^ ^ V 

X^cv 

PIGLETTYPE 

1 NORMAL 

2 RUNTS 

3 LITTERMATES OF RUNTS 

4 LEFT-HAND INDIVIDUALS 

5 LITTERMATES OF LEFT-HAND IND. 

6 RIGHT-HAND INDIVIDUALS 

7 LITTERMATES OF RIGHT-HAND IND. 

8 GIANTS 

9 LITTERMATES OF GIANTS 

LITTERTYPE 

NORMAL 

1 OR 2 RUNTS 

LEFT-HAND INDIVIDUALS 

RIGHT-HAND INDIVIDUALS 

1 OR 2 GIANTS 

Figure 6.1 Classification of individual foetuses or piglets (piglettype) 

and foetal litters or litters at term (llttertype) on the basis 

of the within-litter weight distribution. 
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for all litters with 7 or more foetuses. In the first case only data for 

litters classified as normal, litters with 1 or 2 runts and litters with 

1 or 2 giants were included in the dataset. 

To establish whether differences between littertypes exist as far as 

number of foetuses and embryonic mortality rate are concerned, the data 

were analysed according to model 1. 

Model 1: Yjjk = p + DS,- + LTj + b.|Xjjk + e,-jk 

where Yjjiç = number of foetuses or embryonic mortality rate, 

fi = fitted mean, 

DS,- - fixed effect of dataset (i=l,4), 

LTj = fixed effect of littertype (depending on data used either j—1,3 

or j-1.5), 

Xjjk — covariable number of corpora lutea, 

bi — pooled regression coefficient, 

and ejjfc — random error. 

Data on the number of corpora lutea were analysed according to model 1 

without the covariable Xjjk. Statistical analyses of the data on foetal 

weight (model 2) were performed with the natural logarithms of the average 

values per subpopulation (piglettype) per litter. The logarithmic 

transformation was necessary to correct for heterogeneity of variance 

caused by variation in stage of pregnancy. To adjust for heterogeneity of 

variance due to different numbers of foetuses per subpopulation within a 

litter, a weighted analysis of variance was performed. Each observation 

was weighted with the reciprocal value of the within-piglettype variance 

as obtained from separate analyses per piglettype, using model 2 without 

LTj and PTk:j. 

Model 2: Yijkl = \i + DS,- + LTj + PTk:j + b^Xjj^) + b2(X,-jkl)
2 

+ b3(X,jkl)3 + e,jkt 

where /*, DS,- and LTj are as described for model 1 and 

Y,-jki - the logarithm of the average foetal weight per 

subpopulation per litter, 
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PT|<:j = the fixed effect of piglettype nested within 

littertype, 

X,-j|cl - covariable stage of pregnancy, 

t>1, b2, bj — pooled partial regression coefficients, 

and eijkl ~ random error. 

6.3 Results 

The frequency for each classification class within each of the datasets 

is shown for non-induced and induced litters in table 6.1 and table 6.2, 

respectively. Within the group of non-induced gilts the frequencies for the 

classification classes in dataset 1, 2, 3 and 4 (foetal litters) did not 

differ significantly from that in dataset 5 (litters at term), neither were 

any of the differences between the datasets 1 to 4 significant. Within the 

group of induced gilts the frequencies for litters with a normal 

distribution and for litters with left-hand individuals in dataset 3 

differed significantly from those in dataset 5. The frequencies for the 

classification classes in dataset 4 did not differ from those in dataset 

3 and 5. 

Within dataset 3 and 4 the frequencies for the classification classes 

did not differ significantly between the non-induced and induced litters. 

Within dataset 5 there were significantly (p<0.05) more litters with a 

normal distribution in the group of induced litters (78.7%) than in the 

group of non-induced litters (67.7%), but none of the other frequencies 

differed significantly between these two groups. 

The average number of foetuses or piglets per litter for each of the 

relevant classification classes as well as the average number of foetuses 

or piglets per subpopulation within litters are shown in table 6.3 for all 

litters with more than 2 individuals and in table 6.4 for all litters with 

more than 6 individuals. The average litter size of the foetal litters was 

always higher than that of the litters at term, except for the litters with 

giants. This exception was especially evident for the induced litters. 

The least squares mean estimates for the number of corpora lutea, number 

of foetuses and embryonic mortality rate are shown in table 6.5 for litters 

with a normal distribution, litters with runts and litters with giants. All 
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Table 6.2 Classification of litters from induced gilts on the basis of 

the within-litter weight distribution. 

Stage of pregnancy 

Number of litters (total) 

Littertype 

Normal 

1 or 2 runts 

Left-hand individuals 

Right-hand individuals 

1 or 2 giants 

DATASET 3 

Day 35-115 

37 

No. of % of 

litters total 

22 59.5 

7 18.9 

8 21.6 

0 0.0 

0 0.0 

DATASET 4 

Day 27-72 

56 

No. of % of 

litters total 

38 67.9 

7 12.5 

6 10.7 

0 0.0 

5 8.9 

DATASET 5 

At term 

89 

No. of % of 

litters total 

70 78.7 

12 13.5 

4 4.5 

1 1.1 

2 2.2 

foetal litters with more than two foetuses and belonging to one of the 

three mentioned classification classes were included in the statistical 

analysis. The number of corpora lutea did not differ significantly between 

classification classes for both groups of gilts. The number of corpora 

lutea seemed somewhat lower for litters with giants than for litters with 

a normal distribution or for litters with runts. Within the group of 

non-induced litters the number of foetuses as well as the embryonic 

mortality rate for the litters with a normal distribution and the litters 

with runts differed significantly from that for the litters with giants, 

independent of the stage of pregnancy at slaughter. The differences in 

number of foetuses and embryonic mortality rate between litters with a 

normal distribution and litters with runts were independent of gestational 

age and significant if all data were included in the analysis (gestational 

age less than 114 days). An embryonic mortality rate of more than 50% 

occurred in less than 16% of the litters with a normal distribution and in 

less than 7% of the litters with runts, but for the litters with giants 
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Table 6.4 The average number of foetuses or piglets per litter and per subpopulation within 

litters, shown for litters with more than 6 individuals. 

Littertype 

Normal 

1 or 2 runts 

Left-hand 

individuals 

Right-hand 

individuals 

1 or 2 giants 

T1> 

T 

L 

R 

T 

L 

R 

T 

L 

R 

T 

L 

R 

Non-induced eilts 

Foetal 

litters 

X 

10.96 

11.21 

1.43 

9.78 

11.84 

3.78 

8.06 

12.16 

8.33 

3.83 

8.80 

7.40 

1.40 

s.d. 

2.25 

2.25 

0.50 

2.36 

2.21 

1.02 

2.08 

2.32 

1.86 

0.75 

0.84 

0.89 

0.55 

Litters 

at 

X 

9.69 

10.13 

1.40 

8.73 

11.01 

3.73 

7.28 

9.84 

6.46 

3.38 

9.69 

8.13 

1.56 

term 

s.d. 

1.89 

1.72 

0.49 

1.67 

1.61 

0.93 

1.64 

1.91 

1.90 

0.51 

1.35 

1.20 

0.51 

Foe 

Induced 

tal 

litters 

X 

11.32 

9.42 

1.67 

7.75 

13.29 

4.50 

8.79 

-

-
-

9.50 

8.25 

1.25 

s.d. 

3.07 

2.11 

0.49 

2.05 

2.84 

1.29 

2.15 

-

-
-

1.29 

1.71 

0.50 

Eilts 

Litters 

at term 

5 

10.05 

9.19 

1.55 

7.64 

9.75 

3.25 

6.50 

10.00 

6.00 

4.00 

12.50 

10.50 

2.00 

s.d. 

2.04 

1.78 

0.52 

1.50 

2.22 

0.50 

2.38 

-

-
-

2.12 

2.12 

0.00 

T: total litter size; L: size of left distribution; R: size of right distribution 

87 



term, the difference was not significant. The close resemblance of the 

frequency for each of the classification classes between litters with a 

gestational age of 27 to 35 days and litters at term provides strong 

evidence that for the majority of litters the type of distribution at term 

is already established at the early foetal stage. Definitive proof can only 

be obtained by accurate longitudinal studies, but as Dawes (1976) stated, 

we are still limited in our ability to measure the same foetus in utero 

sequentially. 

In agreement with the present results the early occurrence of porcine 

runts has been reported by Perry and Rowell (1969) and Cooper et al. 

(1978) . They studied litters with a gestational age of 31 to 113 days 

(n=90) and 28 to 112 days (n=17), respectively. Perry and Rowell (1969) 

defined a runt as a foetus with a weight less than two-thirds of the 

average for the uterine horn in which the foetus was found. They identified 

runts in litters of gestational age 31 to 49 days. Cooper et al. (1978) 

assessed "runting" on the clinical appearance of the foetus and tested 

whether the foetuses were runts by application of Dixons' test (Dixon, 

1951). They concluded that runts are already detectable by day 44 of 

gestation. 

The present results show that there is a relationship between the type 

of weight distribution within a litter and the embryonic mortality rate. 

Within the group of non-induced litters the embryonic mortality rate was 

lower in the litters with two discrete subpopulations than in the litters 

with a normal distribution, except for the litters with giants. The litters 

with giants distinguished themselves from the other classification classes 

in that they had an average embryonic mortality rate which was much higher 

than that for the other classification classes. 

The embryonic mortality rate in the induced gilts was higher than in 

the non-induced gilts. Within the induced litters only the embryonic 

mortality rate for the litters with left-hand individuals appears to be 

lower than that for the other classification classes. It should be kept in 

mind that there were no litters with right-hand individuals within the 

group of induced litters. 

The within-litter weight distribution might be a consequence of the very 

early existence of variation in embryonic development and the functioning 

of an intrauterine mechanism of selective mortality to reduce developmental 
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variation before implantation. Within-litter variation In preimplantation 

development of porcine embryos have been described by Anderson (1978) for 

10 and 11 day old embryos, by Richter and Elze (1986) for 1 to 12 day old 

embryos and by Wright and Grammer (1980) and Wright et al. (1983) for 6 to 

9 day old embryos. As far as the protein content of the embryos is 

concerned, Wright et al. (1983) found in each of the five sows that had 

been slaughtered on day 9 of pregnancy two or three embryos which contained 

clearly less protein than the littermate embryos. Although less evident, 

the same observation was made on day 6, 7 and 8 of pregnancy. If these 

results are substantiated they imply that in almost every litter some 

embryos are already retarded in their development before day 10 of 

pregnancy. Work of Pope et al. (1982a), Pope and First (1985), Wilmut et 

al. (1985, 1986) and Morgan et al. (1987a, 1987b) strongly suggest that a 

mechanism exists through which variation in embryonic development within 

a porcine litter is reduced around day 11 of pregnancy through selective 

mortality of the less developed embryos. If a certain minimum number of 

well developed embryos can change the uterine environment to accommodate 

their own development, they will create an asynchrony between the uterine 

environment and the less developed embryos. This asynchrony can be 

detrimental if it exceeds a certain limit. It is also possible that the 

well developed embryos induce the release of uterine factors which are 

embryocidic for the less developed embryos or inhibit the release of 

uterine factors which are still essential for the undisturbed development 

of the less developed embryos. A study of the changes in the uterine 

protein secretion around day 11 of pregnancy in comparison with these 

changes in cyclic sows has shown that the embryos influence the protein 

secretion through the release of oestrogens (Geisert et al., 1982c). There 

is reason to believe that the morphologically further developed embryos 

within a litter start to secrete oestrogens before their littermates (Ford 

et al., 1982). The effectiveness of this postulated developmental variation 

reducing mechanism, combined with the existing variation in embryonic 

development by day 11 of pregnancy, might determine the within-litter 

weight distribution which will be found by the end of the embryonic stage 

(day 30-35 of pregnancy) and at term. Further research is needed to 

substantiate this. 
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CHAPTER 7 

DEATH RISK ÂND PREWEANING GROWTH RATE OF PIGLETS IN RELATION TO THE WITHIN-

LITTER WEIGHT DISTRIBUTION AT BIRTH 

7.1 Introduction 

From a pig producers point of view a liveborn piglet should have a low 

death risk and a high growth rate. The death risk of a newborn piglet is 

dependent on several factors, including the incidence of congenital and 

genetic abnormalities, susceptibility to diseases, the chance of overlying 

by the sow and the thermal environment (English and Wilkinson, 1982; 

English and Morrison, 1984). Two important determinants of the death risk 

are the birthweight of the piglet and the variation in birthweight within 

the litter (English and Smith, 1975). According to Hafez (1963) the growth 

rate before weaning is dependent on birthweight, age at weaning and 

genotype of the piglet and furthermore the milkproduction, mothering 

ability and age of the sow. Cöp (1971) added to this the uptake of 

additional nutrients next to milk, the climate in the farrowing house and 

the occurrence of diseases. 

Although it is generally assumed that the birthweight distribution 

within a litter is normal (Gaussian), Royston et al. (1982) have shown that 

in some litters a discrete subpopulation of one or more growth retarded 

piglets occurs. This was substantiated by Wootton et al. (1983) for 5 

polytocous species, including the pig. Of the 64 porcine litters studied 

by them, 19 had an abnormal (non-Gaussian) birthweight distribution. Until 

now this aspect has not been considered in studies concerning preweaning 

death risk and preweaning growth rate of piglets. The purpose of the 

analyses described in this chapter is to investigate whether the death risk 

of piglets and the preweaning growth rate of the surviving piglets depends 

on the within-litter weight distribution. 
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7.2 Materials and methods 

7.2.1 Data 

Data for the present study, 819 litters with piglets, were obtained from 

the Research Institute for Animal Production, Zeist, the Netherlands. The 

litters were either produced by sows from one of six commercial breeds 

(n=363) or by Dutch Landrace sows (n=456). The Dutch Landrace sows either 

belonged to a selection line for short intervals between weaning and first 

oestrus (n=215) or to a contemporary control line (n=241). Crossfostering 

was not applied in any of these litters. 

The birthweight and sex were known for each liveborn piglet. Furthermore 

age and weight at weaning were known for each piglet that survived the 

suckling period, thus allowing computation of the average preweaning growth 

rate. Commercial breed litters were weaned at an age of 41.4 + 2.7 days 

(mean + s.d.), Dutch Landrace litters at an age of 34.9 + 2.2 days. 

7.2.2 Statistical procedures 

In the present study it was assumed that there are at most two 

discrete subpopulations within a litter. For each litter the observations 

on birthweight of the piglets were ordered according to increasing 

magnitude. The 1th largest is denoted as Yf. The maximum number of possible 

outliers was first determined, using the method described by Hawkins 

(1980). For q — 1, 2, ... n-1, with n being the number of piglets per 

litter, the value of B_ was computed as: 

The largest value of Bq determined the maximum number of possible 

outliers (k^x) • If k^x < n/2, then there could be a maximum of k^x 
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outliers to the left. If k̂ ,, > n/2, then there could be a maximum of 

n - kmax outliers to the right. The Lk test of Tietjen and Moore (1972) was 

used thereafter to determine the actual number of outliers. If < k̂ ,, n/2, 

for each k = 1 k^x the LK(left) was computed as: 

n _ n 
2 (Y, - Y( n.k ))2 2 Yf 

i=k+l _ i=k+l 
Lk(left) with Y(n.k) 

n n-k 
2 

i=l 
2 (Y, - Y ) 2 

!f ̂ max > n / 2 , for each k = k^x, . . . , n-1 the Lk(right) was computed as: 

k k 
2 (Y, - Y k ) 2 S Y, 

i-1 _ i-1 
Lk(right) with Yk = 

n _ k 
2 (Y,- - Y ) 2 

i-1 

Critical values for Lk have been given by Hawkins (1980) . Low Lk values 

indicate the presence of outliers. Once the number of outliers was 

determined, individual piglets were classified as shown in figure 7.1. 

Piglets from normal distributed litters are called normal. One or two 

outliers to the left are called runts, while one or two outliers to the 

right are called giants. More than two outliers to the left or to the right 

are called left-hand individuals or right-hand individuals, respectively. 

Based on the classification of the individual piglets within a litter, the 

litters were classified as litters with a normal distribution, litters with 

one or two runts, litters with left-hand individuals, litters with 

right-hand individuals or litters with one or two giants. 

For the statistical analysis of the data, analysis of variance 

(procedure GLM of Statistical Analysis System (SAS), 1985) and Chi-square 

analysis for 2 x 2 contingency tables were used. Data on litter size at 

birth, within-litter standard deviation of birthweight, within-litter 

coefficient of variation of birthweight and the number of piglets weaned 

per litter were analysed according to model 1. 

101 



k max - O 

O < k m a > s 2 

2 < k m a x « , / 2 n y Q < ^ V 

4 5 

' / 2 n < k ma> * n " 2 

n - 2 s k m a x < n y~\^\ 

PIGLETTYPE 

1 NORMAL 

2 RUNTS 

3 UTTERMATES OF RUNTS 

4 LEFT-HAND INDIVIDUALS 

5 LITTERMATES OF LEFT-HAND IND. 

6 RIGHT-HAND INDIVIDUALS 

7 LITTERMATES OF RIGHT-HAND IND. 

8 GIANTS 

9 LITTERMATES OF GIANTS 

LITTERTYPE 

NORMAL 

1 OR 2 RUNTS 

LEFT-HAND INDIVIDUALS 

RIGHT-HAND INDIVIDUALS 

1 OR 2 GIANTS 

Figure 7.1 Classification of individual piglets (piglettype) and litters 

at terra (littertype) on the basis of the within-litter weight 

distribution. 
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Model 1: Yljkl - n + LTj + GGj + PARk + e,-jkl 

where Y,-jki — the dependent variable, 

fi = fitted mean, 

LTj = the fixed effect of littertype (1-1,5), 

GG: = the fixed effect of genetic group (j-1,8), 

PARk = the fixed effect of sows parity (k-1,2), 

and eijkl ~ random error. 

Data on average blrthweight per litter were analysed according to model 1 

and model 2. 

Model 2: Y,-jkl - M + LTi + GGj + PARk + b1i(LSijkl) + b2i(LSijkl)2 + eijkl 

where Y,-jki, n, LTj, GG.-, PARk and e,-jki are as described for model 1 and 
b1i» b2i = partial, within-littertype regression coefficients 

and LSijki = covarlable litter size. 

The within-litter death risk of piglets was calculated for each litter 

separately as the ratio between the number of live-born piglets which died 

before weaning and the total number of liveborn piglets. It was analysed 

according to model 1 and 3. 

Model 3: Y,-jkl = y. + LT,- + GGj + PARk + b1f (LS,-jkl) + b2j(LSjjkl)
2 

+ b3,(BW,jkl) + b4i(Bwijkl)2 + b5,(X,m) + b6i(Xijkl)2 + eijkl 

where Y,-jkl, u, LTj, GGj, PARk, b^, b2l-, LS,-jkL and ef jkl are as described for 

model 1 and/or model 2 and 
b3i > b4i = partial, within-littertype regression coefficients, 

BWjjki = covariable birthweight, 
b5i > b6i = partial, within-littertype regression coefficients, 

and Xjjkl= either covariable within-litter standard deviation (s.d.) 

for birthweight or within-litter coefficient of variation (c.v.) for 

birthweight. 
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Table 7.7 The preweaning growth rate of piglets after correction for 

genetic group, parity and litter size at birth (linear and 

quadratic) (A) or genetic group, parity, litter size at birth 

(linear and quadratic) and birthweight (linear) (B) for each 

of the classification classes for individual piglets. 

Littertype Growth 

rate 

(g/day) 

Sign. 

L-R 

Growth 

rate 

(g/day) 

Sign. 

L-R 

Normal 223 218 

1 or 2 runts 

Left-hand individuals 

Right-hand individuals 

1 or 2 giants 

L 

R 

L 

R 

L 

R 

L 

R 

180c 

225 

197c 

233b 

217 

249a 

221 

247b 

0.0001 

0.0001 

0.0344 

0.0142 

197c 

218 

206b 

221 

214 

230 

221 

228 

0.0001 

0.0042 

0.3277 

0.4964 

a, b, c: significantly different from the normal distribution 

(a: p<0.05 ; b: p<0.01 ; c: p<0.001). 

Piglets with a birthweight below 1 kg have a high death risk, 

independent of their status within the litter. This justifies the 

conclusion that the intrinsic viability of a runt or left-hand individual 

with a birthweight below 1 kg is not less than that of a comparable piglet 

from a litter with a normal within-litter weight distribution. The observed 

tendency towards higher death risks for runts and left-hand individuals 

with birthweights between 1.0 and 1.8 kg in comparison to piglets with 

comparable birthweights from litters with a normal within-litter weight 
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distribution, is due to the fact that the former have by definition the 

lowest birthweights within their litters, whereas the latter will mainly 

represent average piglets. Even a runt or left-hand individual with a 

birthweight of 1.8 kg will still have to compete with its heavier 

littermates, especially if the litter is large. Based on the results of a 

study in which the increase in body weight after birth was registered, Dyck 

and Swierstra (1987) concluded that the failure of a piglet to obtain an 

adequate milk supply within a few days of birth is the primary factor 

contributing to piglet death. 

The effect of littertype on the average preweaning growth rate within 

a litter is merely a consequence of the relationship between littertype 

and litter size. In each of the four littertypes with two discrete 

subpopulations the average preweaning growth rate differed significantly 

between the subpopulations if only the effect of litter size on preweaning 

growth rate was taken into account. Within litters with right-hand 

individuals and litters with giants this difference was completely due to 

the difference in average weight of the two subpopulations. Within litters 

with runts and litters with left-hand individuals this difference (45 g/day 

and 36 g/day, respectively) decreased due to correction for birthweight, 

but remained significant (21 g/day and 15 g/day, respectively). This 

indicates that the growth of runts and left-hand individuals is less than 

expected on the basis of their birthweight. 

It has been shown that newborn porcine runts have low protein/DNA ratios 

in quadriceps muscles, kidneys and heart (Widdowson, 1971), anatomically 

and chemically less mature bones (Adams, 1971) and a lower respiratory 

enzyme activity in the longissimus dorsi but not in diaphragm and heart 

muscle (Hayashi et al. , 1987). According to Hegarty and Allen (1978), runts 

have a reduced muscle growth potential. As a consequence of this they 

needed 23 days more to reach a weight of approximately 105 kg in comparison 

with littermates. Unfortunately, in all mentioned studies the runts were 

compared with littermates with a birthweight which was approximately equal 

to or clearly higher than the within-litter average. Only a comparison 

between runts and piglets with corresponding weights from litters with a 

normal within-litter weight distribution will give decisive information 

concerning possible physiological differences which are not merely weight 

dependent. 
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CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSIONS 

In the present study aspects of the impact of early pregnancy on the 

within-litter average prenatal development and the within-litter weight 

distribution at birth have been investigated. Before discussing the results 

some general remarks must be made concerning the calculation of the 

prenatal mortality rate, the observed variation in prenatal mortality and 

the relationship between embryonic mortality and foetal mortality. 

General remarks 

In this study the difference between the number of corpora lutea and the 

number of apparently normal and healthy embryos or foetuses with no signs 

of degeneration was assumed to be a consequence of prenatal mortality and 

not due to fertilization failure. This assumption is supported by the work 

of Haines et al. (1959) and Perry and Rowlands (1962). Both research groups 

found that more than 95% of all ovulated oocytes are fertilized after a 

single insemination. According to Perry and Rowlands (1962) the fact that 

this is not 100% is mainly due to a small proportion of animals in which 

fertilization does not occur at all. However, Van der Hoeven et al. (1985) 

found on average 6.8% unfertilized oocytes in 10 gilts which were all 

pregnant at slaughter on day 5 or 6 after insemination on the first day of 

standing heat, indicating that fertilization is not necessarily an all or 

nothing phenomenon. Although in a small proportion of gilts some oocytes 

might not be fertilized, it seems justifiable to conclude that variation 

in the calculated prenatal mortality rate gives reliable information about 

the actual variation in prenatal mortality. Whether this is also true for 

induced gilts is not clear. According to Polge (1982) fertilization in 

superovulated gilts is generally normal except when the ovulation rate is 

excessively high and a number of follicles with immature oocytes may 

ovulate. However, the superovulated gilts mentioned by Polge were cycling 

gilts which were given gonadotrophic hormones at an appropriate time of the 
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cycle (day 15 or 16 of the oestrous cycle). In contrast, the induced gilts 

in the present study were treated with gonadotrophic hormones because they 

did not start to cycle spontaneously. The number of corpora lutea in the 

induced gilts varied between 5 and 53 (coefficient of variation 45%) 

whereas in the non-induced gilts it varied between 6 and 20 (coefficient 

of variation 17%). Especially in gilts which responded with superovulation, 

the fertilization rate might not be as high as in non-induced gilts, thus 

influencing the reliability of the calculated embryonic or prenatal 

mortality rate. 

Despite numerous studies concerning embryonic mortality in the pig, 

hardly any attention has been given to the fact that considerable variation 

in embryonic mortality exists between gilts, even if they are kept under 

the same conditions. In the present study the embryonic mortality rate for 

non-induced gilts which were slaughtered on day 35 of pregnancy varied 

between 0% and 67%. The prenatal mortality rate for non-induced gilts which 

were slaughtered during the foetal stage of pregnancy varied between 0% and 

86%. The latter is in good agreement with the results reported by Perry 

(1960). Based on corpora lutea counts during pregnancy and the actual 

litter size at birth he found a total mortality rate that varied between 

0% and 85%. Unpublished own results revealed that the distribution of 

embryonic mortality rates in a group of gilts which had been kept under the 

same conditions, is not binomial. There were more gilts with a very low or 

a high embryonic mortality rate than expected on the basis of a binomial 

distribution. These results indicate that embryonic mortality is not a 

random phenomenon. Because of this and because of its large variation 

between gilts, the embryonic mortality rate was considered to be an 

interesting parameter to characterize the course of early pregnancy. 

In the pig the majority of prenatal mortality is embryonic mortality 

(Wrathall, 1971; Pope and First, 1985; this study). In the present study 

it was assumed that the variation in total prenatal mortality as determined 

after day 35 of pregnancy is largely due to variation in embryonic 

mortality. However, the ranking of gilts on the basis of their prenatal 

mortality rate does not necessarily resemble the ranking on the basis of 

their embryonic mortality rate. Especially in gilts with a high ovulation 

rate and a low embryonic mortality rate, foetal mortality might be more 

important than in other gilts, mainly due to intrauterine crowding. 
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Experiments in which intrauterine crowding was induced have shown that it 

increases the extent of foetal death, mainly due to placental insufficiency 

(Dziuk, 1968; Fenton et al., 1970; Webel and Dziuk, 1974; Knight et al., 

1977; Leymaster et al., 1986). 

The point of time of foetal mortality is not well established. Knight 

et al. (1977) found in unilaterally hysterectomized-ovariectomized gilts, 

in comparison to intact gilts, increased prenatal mortality rates from day 

40 onwards. The mortality occurred mainly between day 40 and day 70 of 

pregnancy. Leymaster et al. (1986) also compared unilaterally 

hysterectomized-ovarlectomized gilts with intact control gilts and found, 

in contrast to Knight et al. (1977), the occurrence of significant foetal 

loss due to overcrowding after day 86 of pregnancy. On the basis of these 

results no general conclusion about the point of time of foetal mortality 

can be drawn. In the present study the prenatal mortality increased 

linearly with stage of pregnancy (see chapter 5, figure 5.1). The average 

number of dead foetuses found per gilt was also independent of stage of 

pregnancy (results not shown). From these results it seems that the foetal 

mortality occurred evenly distributed between day 35 and day 114 of 

pregnancy. Whether this is also true for foetal mortality due to 

overcrowding is not clear, but as has been discussed in chapter 5, the 

results of the present study concerning the relationship between prenatal 

mortality and prenatal development indicate that this might have occurred 

mainly during late pregnancy. 

Prenatal development and embryonic mortality 

Given the fact that the fertilization rate in the pig is almost 100%, 

variation in litter size is due to variation in ovulation rate and 

variation in prenatal mortality rate. According to Leymaster et al. (1986) 

prenatal mortality is 1.7 times as important as ovulation rate in 

determining litter size at birth in normal intact gilts. In the present 

study the correlations of ovulation rate and embryonic mortality rate with 

number of embryos on day 35 of pregnancy were 0.51 and -0.77, respectively 

(chapter 4; square roots of R values given in section 4.3). The 

corresponding correlations during the foetal stage of pregnancy were 0.41 

and -0.84, respectively (chapter 5). These results are in good agreement 
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with those of Johnson et al. (1985) who found phenotypic correlations of 

ovulation rate and prenatal mortality rate with litter size of 0.31 and 

-0.73, respectively. If this high correlation between number of conceptuses 

and embryonic or prenatal mortality rate is taken into consideration, it 

is not surprising that almost all relationships between conceptus 

parameters and embryonic or prenatal mortality seem to be due to the effect 

of embryonic or prenatal mortality on the number of embryos or foetuses 

present. 

At birth piglets from small litters are on average heavier than piglets 

from large litters. The correlation between birthweight and litter size 

varies between -0.20 and -0.48 (reviewed by Cöp, 1971). At the end of the 

embryonic stage of pregnancy the embryos from litters with a low embryonic 

mortality rate, i.e. the larger litters, were heavier than embryos from 

litters with a high embryonic mortality rate, i.e. the smaller litters 

(Lutter et al., 1981; this study, chapter 4). The faster growth of foetuses 

from litters with a higher embryonic mortality rate (the smaller litters) 

finds its roots in the relationship which was found between embryonic 

mortality and placental development of the day 35 embryos. In comparison 

with the embryos from gilts with a low embryonic mortality rate the embryos 

from gilts with a high embryonic mortality rate had better developed 

placentae by day 35 of pregnancy and will benefit from this during the 

foetal stage. The fact that the present study (chapter 5) indicates a low 

birthweight in litters with a high prenatal mortality rate might be due to 

the inadequacy of the fitted model to describe the extreme values of the 

growth curves accurately. It is also possible that in some litters with a 

low embryonic mortality rate (probably the largest litters) foetal 

mortality occurred late during pregnancy. These litters are then classified 

as litters with a high prenatal mortality rate while the development of the 

surviving foetuses resembles that of foetuses from large litters. In this 

respect it is of interest that Leymaster et al. (1986) have established the 

occurrence of significant foetal loss between day 86 of pregnancy and 

farrowing. 

The negative relationship of embryonic weight and length with embryonic 

mortality rate as established in the present study (chapter 4) strongly 

suggests that favourable conditions for embryonic survival are also 

favourable for embryonic development. There are two possible explanations 
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which are of interest in this respect. At first, variation between gilts 

In average oocyte quality might exist. Qualitative good oocytes might give 

qualitative good embryos, i.e. embryos which have a good growth potential 

and therefore (or also) a good viability. Secondly, the variation between 

gilts in the quantitative, qualitative and temporal characteristics of the 

uterine environment might be of importance. The functions of uterine 

secretion products have recently been reviewed by Roberts and Bazer (1988). 

This review emphasizes the complexity of the changes in the uterine 

environment during early pregnancy and simultaneously confirms that our 

knowledge about the role of specific components of uterine secretion 

products as far as embryonic development is concerned, is still limited. 

The experiment which has been described in chapter 3 was implemented to 

enable studies aimed at a better understanding of the role of the uterus 

and its secretion products as determinants of embryonic development and 

embryonic mortality, but also to enable studies concerning the impact of 

aspects of early pregnancy on subsequent prenatal development and even 

postnatal performance. The results shown in chapter 3 clearly indicate that 

it is impossible to affect the functional integrity of the uterus of gilts 

adversely by means of a severe, long lasting growth retardation during the 

first 80 days of life. This period was chosen because the endometrial 

glands which produce relatively large amounts of uterine secretion products 

during early pregnancy, differentiate during early life (Bal and Getty, 

1970). 

In comparison to day 35 embryos in gilts with a low embryonic mortality 

rate, the embryos in gilts with a high embryonic mortality rate not only 

had longer placentae but also more uterine space available per embryo, even 

at a same number of embryos present. Although the most plausible inference 

seems to be that more uterine space available allows an increase in 

placental length, the results concerning the length of the implantation 

site per embryo, i.e. the length of endometrium in contact with the 

placenta, are not in agreement with this conclusion. After correction for 

the number of embryos, the length of the implantation site per embryo 

hardly changed with an increasing embryonic mortality. This indicates that 

the placental length can increase while the length of the implantation site 

remains constant. This is only possible if the degree of folding of the 

uterine wall adjacent to the placenta increases. The present results do not 
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litter weight distribution, but right-hand individuals and giants were 

somewhat heavier. 

It has been postulated that within-litter variation in developmental 

stage of preimplantation embryos is reduced shortly after day 11 of 

pregnancy by a mechanism of selective mortality of the less developed 

embryos (Pope et al., 1982a; Pope et al., 1986a, 1986b; Morgan et al., 

1987a, 1987b; see also chapter 2, section 2.2.2.). The relationship between 

littertype and embryonic mortality rate therefore indicates that a 

relationship between the within-litter weight distribution at day 35 of 

pregnancy and at day 11 of pregnancy might exist. In order to be compatible 

with the results as summarized in figure 8.1 the alternatives which can be 

expected by day 11 of pregnancy must be as shown in figure 8.2. Although 

the within-litter distribution of developmental stage of embryos might be 

normal (Gaussian) by day 11 of pregnancy, in figure 8.2 only alternatives 

for litters with two discrete subpopulations are shown. There is some 

evidence to support the hypothesis that a group of retarded embryos exists 

in the majority of preimplantation litters. As far as protein content of 

blastocysts is concerned, Wright et al. (1983) found in each of five sows 

which had been slaughtered on day 9 of pregnancy, two or three embryos 

which contained clearly less protein than their littermate embryos. 

Although less evident, the same observation was made on day 6, 7 and 8 of 

pregnancy (n = 5 on each day). 

According to the hypothesis visualized in figure 8.2, the majority of 

gilts with a normal within-litter weight distribution by day 35 of 

pregnancy had by day 11 of pregnancy a relatively large group of fully 

developed embryos and a relatively small group of highly growth retarded 

embryos. Because of the extent of their retardation all retarded embryos 

will die shortly after day 11. From figure 8.1 it is clear that the average 

retardation of runts is larger than that of left-hand individuals. Thus it 

was assumed that the average degree of retardation by day 11 of pregnancy 

depends on the size of the group of retarded embryos: the larger the group, 

the smaller the average degree of retardation. If this is the case, the 

average chance of retarded embryos to die will decrease with an increasing 

size of the retarded group. For litters with 1 or 2 runts and litters with 

left-hand individuals this seems to be the case. The results for the 

litters with right-hand individuals and litters with giants, however, are 
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WITHIN-LITTER WEIGHT DISTRIBUTION ON DAY 11 OF PREGNANCY 

DD 

CHANCE TO 

SURVIVE LOW 
CHANCE TO 

SURVIVE HIGH 

LÄJ 

Figure 8.2 Hypothetical alternatives for the within-litter weight 

distribution by day 11 of pregnancy based on the results 

summarized in figure 8.1 and the postulated mechanism for the 

reduction of within-litter variation in preimplantation 

development through selective mortality of retarded embryos. 

Going from the top to the bottom, these alternatives represent 

the day 11 version of litters with a normal within-litter 

weight distribution, litters with 1 or 2 runts, litters with 

left-hand individuals, litters with right-hand individuals and 

litters with 1 or 2 giants. (R = retarded development; N -

normal day 11 development; A = accelerated development) 
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not compatible with this concept. Especially the high average embryonic 

mortality rate in litters with giants and, to a lesser extent, the fact 

that the right-hand individuals and giants seem to be slightly enhanced in 

development (see figure 8.1), lead to the assumption that an increasing 

difference in embryonic developmental stage between the two subpopulations 

exists if the group of retarded embryos becomes relatively large or if the 

well developed group shows an enhanced development. The difference in 

weight between the giants or right-hand individuals and their respective 

littermates as found by day 35 of pregnancy (see figure 8.1) is not in 

agreement with the last assumption, but it should be kept in mind that the 

average weights for giants, right-hand individuals and their respective 

littermates were based on very low numbers of observations. 

The cause (or causes) of within-litter variation in preimplantation 

development is (are) not clear. A possible cause is the length of the 

ovulation interval, i.e. the length of the period between the first and the 

last ovulation. According to Wilde et al., (1987) the majority (73 + 2%) 

of follicles ovulates almost simultaneously while the remaining follicles 

ovulate during the next 4 hours. They also demonstrated experimentally that 

the variation in developmental stage among littermate embryos by day 11 of 

pregnancy is at least for a part due to this ovulation pattern. Apart from 

extrinsic factors like this, intrinsic factors, like oocyte quality and 

genotype of the embryos, might also be important. In this respect it is of 

interest that a gene has been described in mice which influences the time 

of onset of the first cleavage division and the subsequent rate of 

embryonic cleavage (Goldbard et al., 1982; Warner et al., 1988). This gene, 

called nreimplantation-embryo-development (Ped) gene, is linked to the 

mouse major histocompatibility complex (MHC), the H-2 complex (Warner et 

al., 1987a). Two functional Ped gene phenotypes, fast and slow, have been 

defined (Goldbard et al., 1982). Recently it has been shown that only 

embryos expressing the fast Ped allele show the presence of Qa-2 antigen 

(Warner et al., 1987b). The latter is a Class I antigen encoded in the Q 

region of the mouse MHC. These results suggest that the Ped gene is located 

in the Q region of the H-2 complex. The Qa-2 antigen might be the Ped gene 

product (Warner et al., 1987b). Although there is still no evidence for a 

Ped gene in pigs, there is increasing evidence that reproduction in the 

pig, including litter size, is associated with the swine MHC complex, the 
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SLA complex (Renard and Bolet, 1983; Rothschild et al., 1984; Grob, 1987; 

Mallard et al., 1987; Conley et al., 1988). 

The results of the present study have Indicated that the preweanlng 

death risk and average preweanlng growth rate within a litter are 

independent of the type of within-litter weight distribution if this 

comparison is made at a constant litter size. It has also been shown that 

the litters with an abnormal within-litter weight distribution (mainly 

litters with 1 or 2 runts and litters with left-hand individuals) were on 

average approximately 0.7 piglet larger than the litters with a normal 

within-litter weight distribution. From an economic point of view the 

occurrence of litters with two discrete subpopulations of piglets is 

therefore positive rather than negative. Since approximately 33% of all 

litters have an abnormal within-litter weight distribution, the average 

litter would have been 0.23 piglet smaller if all litters resembled normal 

litters. It can be concluded from these results that a reduction of 

embryonic mortality will be profitable, even if it increases the occurrence 

of litters with an abnormal within-litter weight distribution. 

Impact of early pregnancy on prenatal development 

From a pig producers point of view, the number of piglets weaned per 

litter should be high. To achieve this, the number of livebom piglets per 

litter and the survival rate of these piglets during lactation should be 

high. Since the preweaning survival rate of livebom piglets depends at 

least to some extent on the average birthweight per litter and the within-

litter variation in birthweight, it is important to know the determinants 

of prenatal development. Based on the available information about pregnancy 

in the pig, there are several reasons to assume that the important 

determinants of differences in prenatal development, between and within 

litters, are associated with the course of early pregnancy. The results of 

the present study provide some evidence for this assumption. There are, 

however, more results to support it. These results refer to spacing, 

transuterine migration, embryo-induced growth of the uterus and placental 

development. Spacing and trans-uterine migration occur between day 7 and 

day 12 of pregnancy (Dziuk et al., 1964; Dhindsa et al., 1967) and optimize 

the chance of each individual foetus to survive and develop normally until 
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term (Dziuk, 1985). Since each foetus requires at least 30 cm of uterine 

space to survive and requires 35 cm to develop fully (Wu et al., 1988a), 

it is of interest to know that the increase in length of the uterine horns 

of pregnant sows between day 15 and day 27 of pregnancy is dependent on the 

presence of embryos (Wu et al., 1988b). The latter was concluded from the 

fact that the non-gravid uterine horns of unilaterally pregnant sows did 

not show the increase in length that was observed for the gravid uterine 

horns. A better understanding of the mechanism of this growth, the nature 

of the embryonic signal involved and the factors which limit this growth, 

is important. If this growth can be enhanced through exogenous stimuli, the 

capacity of the uterus to maintain more foetuses might be increased. 

Uterine space available per embryo is of importance, at least as far as 

placental development is concerned. This has been demonstrated by Knight 

et al. (1977). They concluded from their studies with unilaterally 

hysterectomized-ovariectomized sows that the extent of placental 

development between day 20 and day 30 of pregnancy influences the 

subsequent foetal growth. 

If the whole period of pregnancy is considered, the developmental 

processes during the embryonic stage of pregnancy seem to be more complex 

than those during the foetal stage of pregnancy. The impact of early 

pregnancy on litter size, i.e. the importance of variation in embryonic 

mortality as a cause of variation in litter size, has been recognized and 

efforts have been, and still are, undertaken to reduce embryonic loss. The 

impact of early pregnancy on prenatal development has been recognized to 

some extent, but has not been investigated in depth. A better understanding 

of the regulation and mechanism of early pregnancy might contribute to a 

better understanding of the sources of variation in embryonic and fetal 

development within and between litters. Whether it will be possible to 

manipulate early pregnancy in order to optimize birthweight and minimize 

variation in birthweight is not clear, but should not be precluded. Taking 

into consideration the results of the present study together with the large 

volume of information about variation in early embryonic development and 

embryonic mortality, priority should be given to research aimed at a better 

understanding of the causes of variation in early embryonic development. 

A reduction of this variation might not only reduce the extent of embryonic 

mortality, but also the variation in prenatal development and thus 
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birthweight, between as well as within litters. This will be to the benefit 

of the pig producer, because the increase in litter size at birth and the 

decrease of the death risk of piglets during lactation will have additive 

positive effects on the number of piglets weaned per litter. If the 

reduction of embryonic mortality increases the occurrence of litters with 

two subpopulations, which is not likely to be the case, it will still be 

beneficial for the pig producer because litter size will increase without 

an unexpected increase in piglet mortality or decrease in average 

preweaning growth rate. 

Conclusions 

From the results of the present study the following conclusions can be 

drawn: 

1. The functional integrity of the uterus of gilts as measured by its 

ability to support the survival and normal development of embryos, can 

not be adversely affected by a regular, severe growth retardation 

during the first 80 days of life, i.e. during the period of 

differentiation of the uterine glands. 

2. Day 35 embryos in gilts with a low embryonic mortality rate (the larger 

litters) are better developed than day 35 embryos in gilts with a high 

embryonic mortality rate (the smaller litters), indicating that factors 

that are favourable for embryonic survival are also favourable for 

embryonic development or are associated with factors that are 

favourable for embryonic development. 

3. The placentae of day 35 embryos in gilts with a high embryonic 

mortality rate (the smaller litters) are better developed than the 

placentae of day 35 embryos in gilts with a low embryonic mortality 

rate (the larger litters). As a consequence the foetuses in gilts with 

a high embryonic mortality rate will grow faster than foetuses in gilts 

with a low embryonic mortality rate. 

4. The within-litter weight distribution is normal (Gaussian) in 
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approximately 67% of all litters; within the remaining litters two 

discrete subpopulations of variable size can be identified. 

5. The within-litter weight distribution at birth is established at the 

end of the embryonic stage of pregnancy (day 35) and is related to the 

embryonic mortality rate. 

6. The within-litter weight distribution at birth is neither an important 

determinant of the within-litter variation in birthweight, nor an 

important determinant of the preweaning death risk of liveborn piglets. 

128 



REFERENCES 

Adams, P.H., 1971. Intra-uterlne growth retardation In the pig. II. Development 
of the skeleton. Biol. Neonate, 19: 341-353. 

Anderson, L.L., 1978. Growth, protein content and distribution of early pig 
embryos. Anat. R e c , 190: 143-154. 

Ayalon, N., 1981. Embryonic mortality in cattle. Zuchthyg., 16: 97-109. 
Bal, H.S. and Getty, R., 1970. Postnatal growth of the swine uterus from birth 

to six months. Growth, 34: 15-30. 
Bazer, F.W., Geisert, R.D., Thatcher, W.W. and Roberts, R.M., 1982. The 

establishment and maintenance of pregnancy. In: Control of pig reproduction. 
Eds. D.J.A. Cole and G.R. Foxcroft. Butterworth Scientific, London, pp. 227-
252. 

Bazer, F.W. and Thatcher, W.W., 1977. Theory of maternal recognition of pregnancy 
in swine based on estrogen controlled endocrine versus exocrine secretion 
of prostaglandin F2a by the uterine endometrium. Prostaglandins, 14: 397-
401. 

Bishop, M.W.H., 1964. Paternal contribution to embryonic death, (Review). J. 
Reprod. Fert., 7: 383-396. 

Bolet, G. , 1986. Timing and extent of embryonic mortality in pigs, sheep and 
goats: genetic variability. In: Embryonic mortality in farm animals. Eds. 
J.M. Sreenan and M.G. Diskin. Martinus Nijhoff Publishers, Dordrecht, pp. 
12-43. 

Bolet, G., Martinat Botte, F., Locatelli, A., Gruand, J., Terqui, M. and 
Berthelot, F., 1986. Components of prolificacy in hyperprolific Large White 
sows compared with the Meishan and Large White breeds. Génét. Sei. Evol., 
18: 333-342. 

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of 
microgram quantities of protein utilizing the principle of protein-dye 
binding. Anal. Biochem., 72: 248-254. 

Brambel, C.E., 1933. Allantochorionic differentiations of the pig studied 
morphologically and histochemically. Am. J. Anat., 52: 397-459. 

Cole, D.J.A., 1982. Nutrition and reproduction. In: Control of pig reproduction. 
Eds. D.J.A. Cole and G.R. Foxcroft. Butterworth Scientific, London, pp. 603-
619. 

Conley, A.J., Jung, Y.C., Schwartz, N.K., Warner, CM..Rothschild, M.F. and Ford, 
S.P., 1988. Influence of SLA haplotype on ovulation rate and litter size in 
miniature pigs. J. Reprod. Fert., 82: 595-601. 

Cooper, J.E., John, M., McFadyen, I.R. and Wootton, R., 1978. Early appearance of 
"runting" in piglets. Vet. R e c , 102: 529-530. 

Cöp, W.A.G., 1971. Prenatale groei. De groei van varkens (Literatuuroverzicht). 
Mededelingen Landbouwhogeschool Wageningen, 4: 7-12. 

Dawes, G.S., 1976. The physiological determinants of fetal growth. J. Reprod. 
Fert., 47: 183-187. 

Den Hartog, L.A. and Noordewier, G.J., 1984. The effect of energy intake on age 
at puberty in gilts. Neth. J. Agr. Sei., 32: 263-280. 

Den Hartog, L.A. and Van Kempen, G.J.M., 1980. Relation between nutrition and 
fertility in pigs. Neth. J. Agr. Sei., 28: 211-227. 

Dhindsa, D.S., Dziuk, P.J. and Norton, H.W., 1967. Time of transuterine migration 
and distribution of embryos in the pig. Anat. R e c , 159: 325-330. 

Dixon, W.J., 1951. Ratios involving extreme values. Ann. Math. Statist., 22: 68-
78. 

Dolch, K.M. and Chrisman, C.L., 1981. Cytogenetic analysis of preimplantation 

131 



blastocysts from prepuberal gilts treated with gonadotropins. Am. J. Vet. 
Res., 42: 344-346. 

Dunbar, B.S. and Bundman, D.S., 1987. Evidence for a role of the major 
glycoprotein in the structural maintenance of the pig zona pellucida. J. 
Reprod. Fert., 81: 363-376. 

Dyck, G.W. and Swierstra, E.E., 1983. Growth of the reproductive tract of the gilt 
from birth to puberty. Can. J. Anim. Sei., 63: 81-87. 

Dyck, G.W. and Swierstra, E.E., 1987. Causes of piglet death from birth to 
weaning. Can. J. Anim. Sei., 67: 543-547. 

Dziuk, P.J., 1968. Effect of number of embryos and uterine space on embryo 
survival in the pig. J. Anim. Sei., 27: 673-676. 

Dziuk, P.J., 1985. Effect of migration, distribution and spacing of pig embryos 
on pregnancy and fetal survival. J. Reprod. Fert., Suppl. 33: 57-63. 

Dziuk, P.J., 1987. Embryonic loss in the pig: an enigma. In: Manipulating pig 
production. Eds. J.L. Barnett, E.S. Batterham, G.M. Cronin, C. Hansen, P.H. 
Hemsworth, D.P. Hennessy, P.E. Hughes, N.E. Johnston and R.H. King. 
Australasian pig science association, Werribee, Victoria, Australia, pp. 28-
39. 

Dziuk, P.J., Polge, C. and Rowson, L.E., 1964. Intra-uterine migration and mixing 
of embryos in swine following egg transfer. J. Anim. Sei. 23: 37-42. 

Edey, T.N., 1976. Embryo mortality. In: Sheep Breeding. Eds. G.J. Tomes, D.E. 
Robertson and R.J. Lightfoot. Proceedings of the 1976 International Congress 
Muresk and Perth, pp. 400-410. 

Elze, K., Jacob, D., Uecker, B. and Richter, P., 1987. Verlauf der Blastogenese 
in bezug auf die embryonale Mortalität beim Schwein. Mh. Vet.-Med. , 42: 543-
545. 

English, P.R. and Morrison, V., 1984. Causes and prevention of piglet mortality. 
Pig News and Inf., 5: 369-376. 

English, P.R. and Smith, W.J., 1975. Some causes of death in neonatal piglets. 
Vet. Ann., 15: 95-104. 

English, P.R. and Wilkinson, V., 1982. Management of the sow and litter in late 
pregnancy and lactation in relation to piglet survival and growth. In: 
Control of pig reproduction. Eds. D.J.A. Cole and G.R. Foxcroft. Butterworth 
Scientific, London, pp. 479-506. 

Erices, J. and Schnurrbusch, U., 1979. Die Entwicklung des Uterus des Schweines 
von der Geburt bis zum Alter von 8 Monaten. Arch, exper. Vet. med., 33: 
457-473. 

Fahmy, M.H. and Bernard, C., 1971. Causes of mortality in Yorkshire pigs from 
birth to 20 weeks of age. Can. J. Anim. Sei., 51: 351-359. 

Fahmy, M.H., Holtmann, W.B., Maclntyre, T.M. and Moxley, J.E., 1978. Evaluation 
of piglet mortality in 28 two-breed crosses among eight breeds of pig. Anim. 
Prod., 26: 277-285. 

Fenton, F.R., Bazer, F.W., Robison, O.W. and Ulberg, L.C., 1970. Effect of 
quantity of uterus on uterine capacity in gilts. J. Anim. Sei., 31: 104-
106. 

Flint, A.P.F., 1981. A unifying hypothesis for the control of blastocyst growth 
based on observations on the pig. J. Reprod. Fert., Suppl. 29: 215-227. 

Flint, A.P.F., Burton, R.D., Gadsby, J.E., Heap, R.B. and Sheldrick, E.L., 1983. 
Embryonic steroid synthesis and luteal oxytocin production: controlling 
mechanisms for the maternal recognition of pregnancy. J. steroid Biochem., 
19: 973-978. 

Flint, A.P.F., Saunders, P.T.K. and Ziecik, A.J., 1982. Blastocyst-endometrium 
interactions and their significance in embryonic mortality. In: Control of 
pig reproduction. Eds. D.J.A. Cole and G.R. Foxcroft. Butterworth 

132 



Scientific, London, pp. 253-275. 
Ford, S.P., Christenson, R.K. and Ford, J.J., 1982. Uterine blood flow and uterine 

arterial, venous and luminal concentrations of oestrogens on days 11, 13 and 
15 after oestrus in pregnant and non-pregnant sows. J. Reprod. Fert., 64: 
185-190. 

Gadsby, J.E., Heap, R.B. and Burton, R.D., 1980. Oestrogen production by 
blastocyst and early embryonic tissue of various species. J. Reprod. Fert., 
60: 409-417. 

Geisert, R.D., Renegar, R.H., Thatcher, W.W., Roberts, R.M. and Bazer, F.W. , 
1982a. Establishment of pregnancy in the pig: I. Interrelationships between 
preimplantation development of the pig blastocyst and uterine endometrial 
secretions. Biol. Reprod., 27: 925-939. 

Geisert, R.D., Brookbank, J.W., Roberts, R.M., Bazer, F.W., 1982b. Establishment 
of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst 
during elongation on day 12 of pregnancy. Biol. Reprod., 27: 941-955. 

Geisert, R. D., Thatcher, W.W. , Roberts , R.M. and Bazer, F.W. , 1982c. Establishment 
of pregnancy in the pig: III. Endometrial secretory response to estradiol 
valerate administered on day 11 of the estrous cycle. Biol. Reprod., 27: 
957-965. 

Goldbard, S.B., Verbanac, K.M. and Warner, C.M., 1982. Role of the H-2 complex in 
preimplantation mouse embryo development. Biol. Reprod., 26: 591-596. 

Goode, L., Warnick, A.C. and Wallace, H.D., 1965. Alkaline and acid phosphatase 
activity in the endometrium and ovary of swine. J. Anim. Sei., 24: 955-958. 

Gossett, J.W., and Sorensen, A.M., 1959. The effects of two levels of energy and 
seasons on reproductive phenomena of gilts. J. Anim. Sei., 18: 40-47. 

Grob, F., 1987. Beziehungen zwischen SLA-Haplotypen und Fruchtbarkeitsmerkmalen. 
Vortragstagung der Deutschen Gesellschaft für Züchtungskunde e.V. und der 
Gesellschaft für Tierzuchtwissenschaft am 17. und 18. September 1987, 
Hohenheim. 

Hadek, R. and Getty, R. , 1959. The changing morphology in the uterus of the 
growing pig. Am. J. Vet. Res., 20: 573-577. 

Hafez, E.S.E., 1963. Physio-genetics of prenatal and postnatal growth. J. Anim. 
Sei., 22: 779-791. 

Hafez, E.S.E., 1969. Prenatal growth. In: Animal growth and nutrition. Eds. E.S.E. 
Hafez and I.A. Dyer. Lea and Febiger, Philadelphia, pp. 21-40. 

Haines, C E . , Warnick, A.C. and Wallace, H.D., 1959. The effect of two levels of 
energy intake on reproductive phenomena in Duroc Jersey gilts. J. Anim. 
Sei., 18: 347-354. 

Hanly, S., 1961. Prenatal mortality in farm animals. J. Reprod. Fert., 2: 182-
194. 

Hawkins, D.M., 1980. Identification of outliers. Chapman and Hall, London, pp. 27-
41 and pp. 51-73. 

Hayashi, M. , Ingram, D.L. and Dauncey, M.J., 1987. Heat production and respiratory 
enzymes in normal and runt newborn piglets. Biol. Neonate, 51: 324-331. 

Heap, R.B., Flint, A.P.F., Gadsby, J.E. and Rice, C , 1979. Hormones, the early 
embryo and the uterine environment. J. Reprod. Fert., 55: 267-275. 

Hegarty, P.V.J, and Allen, C E . , 1978. Effect of pre-natal runting on the 
post-natal development of skeletal muscles in swine and rats. J. Anim. Sei. , 
46: 1634-1640. 

Helmond, F., Aarnink, A. and Oudenaarden, C , 1986. Periovulatory hormone prof iles 
in relation to embryonic development and mortality in pigs. In: Embryonic 
mortality in farm animals. Eds. J.M. Sreenan and M.G. Diskin. Martinus 
Nijhoff Publishers, Dordrecht, pp. 119-125. 

Hughes, P.E., 1982. Factors affecting the natural attainment of puberty in the 

133 



gilt. In: Control of pig reproduction. Eds. D.J.A. Cole and G.R. Foxcroft, 
Butterworth Scientific, London, pp. 117- 138. 

Hughes, P.E. and Varley, M.A., 1980. Factors affecting embryonic and foetal 
mortality. In: Reproduction in the pig. Eds. P.E. Hughes and M.A. Varley. 
Butterworth & Co. (Publishers) Ltd., pp. 107-118. 

Hunter, R.H.F., 1967. Effect of aging eggs on embryonic survival in pigs. J. Anim. 
Sei., 26: 945. 

Hunter, R.H.F., 1977. Physiological factors influencing ovulation, fertilization, 
early embryonic development and establishment of pregnancy in pigs. Br. vet. 
J., 133: 461-470. 

Johnson, R.K., Zimmerman, D.R., Lamberson, W.R. and Sasaki, S., 1985. Influencing 
prolificacy of sows by selection for physiological factors. J. Reprod. 
Fert., Suppl. 33: 139-149. 

Johnson, S.A., Morgan, G. and Wooding, F.B.P., 1988. Alterations in uterine 
epithelial tight junction structure during the oestrous cycle and 
implantation in the pig. J. Reprod. Fert. 83: 915-922. 

Knight, J.W., Bazer, F.W., Thatcher, W.W., Franke, D.E. and Wallace, H.D., 1977. 
Conceptus development in intact and unilaterally hysterectomized-
ovariectomized gilts: interrelations among hormonal status, placental 
development, fetal fluids and fetal growth. J. Anim. Sei., 44: 620-637. 

Knight, J.W., Bazer, F.W. and Wallace, H.D., 1973. Hormonal regulation of porcine 
uterine protein secretion. J. Anim. Sei., 36: 546-553. 

Leymaster, K.A., Christenson, R.K. and Young, L.D., 1986. A biological model to 
measure uterine potential for litter size in swine. 3 World congress on 
genetics applied to livestock production. XI. Genetics of reproduction, 
lactation, growth, adaptation, disease, and parasite resistance. Lincoln, 
Nebraska, pp. 209-214. 

Long, S.E. and Williams, C.V., 1982. A comparison of the chromosome complement of 
inner cell mass and trophoblast cells in Day-10 pig embryos. J. Reprod. 
Fert., 66: 645-648. 

Lutter, K., Huhn, R., Huhn, U., Kaltofen, U., Lampe, B. and Schneider, F., 1981. 
Untersuchungen zum pränatalen Fruchttod bei Jungsauen sowie zum Wachstum der 
Embryonen und Feten. Arch, exper. Vet. med., Leipzig, 35: 687-695. 

Mallard, B.A., Wilkie, B.N., Croy, B.A., Kennedy, B.W. and Friendship, R., 1987. 
Influence of the swine major histocompatibility complex on reproductive 
traits in miniature swine. J. Reprod. Imm., 12: 201-214. 

Martin, P.A., and Dziuk, P.J., 1977. Assessment of relative fertility of males 
(cockerels and boars) by competitive mating. J. Reprod. Fert., 49: 323-329. 

McFeely, R.A., 1967. Chromosome abnormalities in early embryos of the pig. J. 
Reprod. Fert., 13: 579-581. 

McGovern, P.T., Morcom, C.B., de Sa, W.F. and Dukelow, W.R., 1981. Chorionic 
surface area in conceptuses from sows treated with progesterone and 
oestrogen during early pregnancy. J. Reprod. Fert., 61: 439-442. 

McLaren, A., 1965. Genetic and environmental effects on foetal and placental 
growth in mice. J. Reprod. Fert., 9: 79-98. 

Morgan, G.L., Geisert, R.D., Zavy, M.T. and Fazleabas, A.T., 1987a. Development 
and survival of pig blastocysts after oestrogen administration on day 9 or 
days 9 and 10 of pregnancy. J. Reprod. Fert., 80: 133-141. 

Morgan, G.L., Geisert, R.D., Zavy, M.T., Shawley, R.V. and Fazleabas, A.T., 1987b. 
Development of pig blastocysts in a uterine environment advanced by 
exogenous oestrogen. J. Reprod. Fert., 80: 125-131. 

Neal, S.M. and Johnson, R.K., 1986. Selection for components of litter size in 
swine: genetic parameters and expected respons. 3 World congress on 
genetics applied to livestock production. XI. Genetics of reproduction, 

134 



lactation, growth, adaptation, disease, and parasite resistance. Lincoln, 
Nebraska, pp. 228-233. 

Oxenreider, S.L. and Day, B.N., 1965. Transport and cleavage of ova in swine. J. 
Anim. Sei., 24: 413-417. 

Papaioannou, V.E. and Ebert, K.M., 1988. The preimplantation pig embryo: cell 
number and allocation to trophectoderm and inner cell mass of the blastocyst 
in vivo and in vitro. Development, 102: 793-803. 

Partridge, I.G. and Brown, R.G., 1972. The influence of dietary energy upon the 
uterus of the prepuberal gilt. I. Growth measurements. Growth, 36: 99-112. 

Perry, J.S. , 1960. The incidence of embryonic mortality as a characteristic of the 
individual sow. J. Reprod. Fert., 1: 71-83. 

Perry, J.S., and Rowell, J.G., 1969. Variations in foetal weight and vascular 
supply along the uterine horn of the pig. J. Reprod. Fert., 19: 527-534. 

Perry, J.S. and Rowlands, I.W., 1962. Early pregnancy in the pig. J. Reprod. 
Fert., 4: 175-188. 

Polge, C. , 1982. Embryo transplantation and preservation. In: Control of pig 
reproduction. Eds. D.J.A. Cole and G.R. Foxcroft. Butterworth Scientific, 
London, pp. 277-291. 

Pomeroy, R.W., 1955. Ovulation and the passage of the ova through the fallopian 
tubes in the pig. J. Agric. Sei., 45: 327-330. 

Pomeroy, R.W., 1960. Infertility and neonatal mortality in the sow. III. Neonatal 
mortality and foetal development. J. Agr. Sei., Camb.54: 31-56. 

Pope, W.F. and First, N.L., 1985. Factors affecting the survival of pig embryos. 
Theriogenology, 23: 91-105. 

Pope, W.F., Lawyer, M.S., Butler, W.R., Foote, R.H. and First, N.L., 1986a. Dose-
response shift in the ability of gilts to remain pregnant following 
exogenous estradiol-17ß exposure. J. Anim. Sei., 63: 1208-1210. 

Pope, W.F., Lawyer, M.S., Nara, B.S. and First, N.L., 1986b. Effect of 
asynchronous superinduction on embryo survival and range of blastocyst 
development in swine. Biol. Reprod., 35: 133-137. 

Pope, W.F., Maurer, R.R. and Stormshak, F., 1982a. Survival of porcine embryos 
after asynchronous transfer. Proc. Soc. Exp. Biol. Med., 171: 179-183. 

Pope, W.F., Maurer, R.R. and Stormshak, F., 1982b. Intrauterine migration of the 
porcine embryo: influence of estradiol-17ß and histamine. Biol. Reprod., 
27: 575-579. 

Renard, C. and Bolet, G., 1983. Relations between the major histocompatibility 
complex (SLA) and some reproductive characteristics in pigs. Preliminary 
results. 34th Annual meeting of the European Association for Animal 
Production, Madrid, pp. 21. 

Richter, P. and Elze, K., 1986. Elzell- und Embryonendiagnostik sowie 
Untersuchungen an Uterus und Eileiter bei Sauen in der Frühgravidität aus 
klinischer Sicht. Mh. Vet.-Med., 41: 741-745. 

Roberts, R.M. and Bazer, F.W., 1988. The functions of uterine secretions. J. 
Reprod. Fert., 82: 875-892. 

Romeis, 1968. Mikroskopische techniek. R. Oldenbourg Verlag, München'Wien. 
Rothschild, M.F., Zimmerman, D.R., Johnson, R.K, Venier, L. and Warner, C.M., 

1984. SLA haplotype differences in lines of pigs which differ in ovulation 
rate. Animal Blood Groups and Biochemical Genetics, 15: 155-158. 

Royston, J.P., Flecknell, P.A. and Wootton, R., 1982. New evidence that the 
intra-uterine growth-retarded piglet is a member of a discrete 
subpopulation. Biol. Neonate., 42: 100-104. 

SAS., 1985. SAS Users' Guide: Statistics, SAS Inst., Inc., Cary, North Carolina, 
956 pp. 

Schnurrbusch, U. and Elze, K. , 1981. Prä- und peripartale Ferkelverluste. Mh. 

135 



Vet.-Med., 36: 706-711. 
Schnurrbusch, U., Erlces, J. and Elze, K., 1980. Zur Entwicklung des Uterus und 

zum Problem des verzögerten Eintritts der Geschlechtsreife beim Schwein. Mh. 
Vet.-Med., 35: 566-568. 

Scofield, A.M., 1971. Embryonic mortality. In: Pig production. Proceedings of the 
18th Easter School in Agricultural Science, University of Nottingham. Ed. 
D.J.A. Cole. Butterworths, London, pp. 367-383. 

Sreenan, J.M. and Diskin, M.G. , 1986. The extent and timing of embryonic mortality 
in the cow. In: Embryonic mortality in farm animals. Eds. J.M. Sreenan and 
M.G. Diskin. Martinus Nijhoff Publishers, Dordrecht, pp. 1-11. 

Steven, D.H., 1975. Comparative Placentation. Essays in structure and function. 
Academic Press, London. 

Stroband, H.W.J., Taverne, N. and Van der Bogaard, M., 1984. The pig blastocyst: 
Its ultrastructure and the uptake of protein macromolecules. Cell Tissue 
Res., 235: 347-356. 

Svajgr, A.J., Hays, V.W., Cromwell, G.L. and Dutt, R.H., 1974. Effect of lactation 
duration on reproductive performance of sows. J. Anim. Sei. 38: 100-105. 

Swierstra, E.E. and Dyck, G.W., 1976. Influence of the boar and ejaculation 
frequency on pregnancy rate and embryonic survival in swine. J. Anim. Sei. 
42: 455-460. 

Tassell, R., 1967. The effects of diet on reproduction in pigs, sheep and cattle. 
I. Plane of nutrition in pigs. Br.vet.J. 123: 76-84. 

Te Kronnie, G. , Boerjan, M.L. and Leen, T., 1988. The relation between trophoblast 
and embryoblast size of day 11 pig conceptus. J. Reprod. Fert., Abstr. 
Series, 1: 59. 

Tietjen, G.L. and Moore, R.H., 1972. Some Grubbs-type statistics for the detection 
of several outliers. Technometrics, 14: 583-597. 

Van der Hoeven, F.A., Cuijpers, M.P. and De Boer, P., 1985. Karyotypes of 3- or 
4-day-old pig embryos after short in-vitro culture. J. Reprod. Fert., 75: 
593-597. 

Van der Lende, T., Hazeleger, W. , Soede, N.M. and Stroband, H.W.J., 1988. Reversal 
of anionic protein dominance to cationic protein dominance in uterine 
secretions at the time of elongation and attachment of the conceptus in 
gilts. J. Reprod. Fert., Abstr. Series, 1: 23. 

Van der Steen, H.A.M., 1985. Maternal influence mediated by litter size during the 
suckling period on reproduction traits in pigs. Livest. Prod. Sei., 13: 
147-158. 

Varley, M.A. and Cole, D.J.A., 1976. Studies in sow reproduction. 5. The effect 
of lactation length of the sow on the subsequent embryonic development. 
Anim. Prod., 22: 79-85. 

Verstegen, M.W.A., Mateman, G., Brandsma, H.A. and Haartsen, P.I., 1979. Rate of 
gain and carcass quality in fattening pigs at low ambient temperatures. 
Livest. Prod. Sei., 6: 51-60 

Warner, CM., Brownell, M.S. and Ewoldsen, M.A., 1988. Why aren't embryos 
immunologically rejected by their mothers? Biol. Reprod., 38: 17-29. 

Warner, CM., Gollnick, S.O. and Goldbard, S.B., 1987a. Linkage of the 
preimplantation-embryo-development (Ped) gene to the mouse major 
histocompatibility complex (MHC). Biol. Reprod., 36: 606-610. 

Warner, CM., Gollnick, S.O., Flaherty, L. and Goldbard, S.B., 1987b. Analysis of 
Qa-2 antigen expression by preimplantation mouse embryos: possible 
relationship to the preimplantation-embryo-development (Ped) gene product. 
Biol. Reprod. 36: 611-616. 

Webel, S.K. and Dziuk, P.J., 1974. Effect of stage of gestation and uterine space 
on prenatal survival in the pig. J. Anim. Sei., 38: 960-963. 

136 



Weibel, E.R., 1969. Stereological principles for morphometry in electron 
microscopic cytology. Int. Rev. Cytol., 26: 235-302. 

Widdowson, E.M., 1971. Intra-uterine growth retardation in the pig. I. Organ size 
and cellular development at birth and after growth to maturity. Biol. 
Neonate, 19: 329-340. 

Wigmore, P.M.C. and Stickland, N.C., 1985. Placental growth in the pig. Anat. 
Embryol., 173: 263-268. 

Wilde, M.H., Xie, S., Nephew, K.P. and Pope, W.F., 1987. The relationship between 
ovulation and morphological variation of day 11 swine embryos. Biol. Reprod. 
36, Suppl. 1: 60 

Wilmut, I., Sales, D.I. and Ashworth, C.J., 1985. The influence of variation in 
embryo stage and maternal hormone profiles on embryo survival in farm 
animals. Theriogenology, 23: 107-119. 

Wilmut, I., Sales, D.I. and Ashworth, C.J., 1986. Maternal and embryonic factors 
associated with prenatal loss in mammals. J. Reprod. Fert., 76: 851-864. 

Wootton, R., Flecknell, P.A., Royston, J.P. and John, M., 1983. Intrauterine 
growth retardation detected in several species by non-normal birthweight 
distributions. J. Reprod. Fert., 69: 659- 663. 

Wrathall, A.E., 1971. Prenatal survival in pigs. Part 1. Ovulation rate and its 
influence on prenatal survival and litter size in pigs. Review series no. 
9 of the Commonwealth Bureau of Animal Health, New Haw, Weybridge, Surrey, 
108 pp. 

Wright, R.W. and Grammer, J.C., 1980. Size variation and total protein in porcine 
embryos collected from individual pigs. Theriogenology 13: 111. 

Wright, R.W. , Grammer, J., Bondioli, K. , Kuzan, F. andMenino, A., 1983. Protein 
content and volume of early porcine blastocysts. Anim. Reprod. Sei., 5: 
207-212. 

Wu, M.C., Dziuk, P.J., Jarell, V.L. and Chen, Z.Y., 1988. Fetal survival and 
initial length of uterus per pig fetus. 11th International Congress on 
Animal Reproduction and Artificial Insemination, Dublin. 

Wu, M.C., Shin,W.J. and Dziuk, P.J., 1988. Influence of pig embryos on uterine 
growth. J. Anim. Sei., 66: 1721-1726. 

Young, L.D., Johnson, R.K. and Omtvedt, I.T., 1976. Reproductive performance of 
swine bred to produce purebred and two-breed cross litters. J. Anim. Sei., 
42: 1133-1149. 

137 



SUMMART 

In the present study aspects of the impact of early pregnancy on the 

average prenatal development per litter and on the within-litter weight 

distribution at birth have been investigated. The alms of the present study 

are given in the introduction (chapter 1). A brief review of the literature 

concerning the chronology of early pregnancy and embryonic mortality in the 

pig is given in chapter 2. 

In chapter 3 an experiment is described in which it was attempted to 

affect the development and functioning of the uterus structurally in order 

to obtain a model in which the role of the uterus and its secretion 

products as determinants of embryonic mortality and/or embryonic 

development could be studied. The possibility to affect the functional 

integrity of the uterus by means of a severe growth retardation during the 

first 80 days of life, i.e. during the period in which the uterine glands 

differentiate, was investigated. A group of female piglets were weaned 

within 24 hours after birth and either fed unrestricted (n=35) or 

restricted (n=34). The restricted fed piglets were allowed to grow at a 

rate of approximately 50% of that of their unrestricted littermates. This 

contrast was maintained until day 80 after birth. Another group of piglets 

(control group, n=38) were normally weaned at an age of 35 days and 

subsequently fed unrestricted until day 80. From day 35 onwards all piglets 

were kept under the same conditions and from day 80 onwards they were also 

treated the same. A representative sample from each of the three groups 

(unrestricted fed (n=8), restricted fed (n=8) and control (n=10)) were 

slaughtered at an age of 80 days to study the hlstomorphology of their 

uterus. The remaining gilts which reached puberty and became pregnant 

(n=50) were slaughtered on either day 34, 35 or 36 of first pregnancy. The 

uterine and conceptus development were subsequently studied. 

At day 80 the average weight of restricted fed piglets was 45% of that 

of unrestricted fed piglets and 48% of that of control piglets. Although 

the averages for uterine length and weight, thickness of the myometrium and 

endometrium and the relative glandular surface area were all lower in the 

restricted fed than in both other groups, only the difference in thickness 

of the myometrium between the restricted fed group and control group was 

significant. All differences were merely due to differences In bodyweight. 
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No negative effects were seen on ovulation rate, number of embryos, 

embryonic mortality rate, uterine length and weight or any of the 

parameters for conceptus development. This indicates that the functional 

integrity of the uterus is not affected by a severe growth retardation 

during the first 80 days of life. 

With the data collected for the gilts which were slaughtered on day 35 

of pregnancy in this experiment (n=31) and data collected for another group 

of Dutch Landrace gilts which were also slaughtered on day 35 of pregnancy 

(n=40), the relationship between conceptus development and embryonic 

mortality was studied. The results of this study are described in chapter 

4. For purposes of interpretation of the results, especially concerning the 

development of the placentae, relevant uterine parameters were also 

considered. The results indicate that the embryonic weight and length 

significantly decrease with an increasing embryonic mortality rate, whereas 

the placental weight and length significantly increase with an increasing 

embryonic mortality rate. Statistical analyses have shown that this 

decrease in embryonic development with an increasing embryonic mortality 

rate was not due to the concomitant increase in placental development. 

After correction for differences in number of embryos, these relationships 

(except for placental length) were no longer significant, indicating that 

embryonic mortality is related to conceptus development through its 

relationship with number of embryos. It was concluded that factors that 

caused a high embryonic mortality - and thus small litters - also caused 

a low embryonic weight and length. From the fact that the uterine length 

available per embryo significantly increased with an increasing embryonic 

mortality, even after correction for the number of embryos, it was 

concluded that the relationship of embryonic mortality with placental 

development might be due to the effect that embryos which died had on the 

uterine length before their death. 

To study whether the accelerated growth of the placentae in gilts with 

a high embryonic mortality rate will be beneficial for the foetal 

development until birth, the relationship between foetal development and 

the prenatal mortality rate was studied. The results of this study for 

which 195 pregnant Dutch Landrace gilts were slaughtered between day 35 and 

day 112 of pregnancy, are described in chapter 5. From these results it was 

clear that the weight gain of foetuses between day 35 and day 100 of 
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pregnancy was higher within gilts with a high prenatal mortality rate than 

within gilts with a low prenatal mortality rate. There were also marked 

differences between these two groups for placental development during this 

period. Within the group of gilts with a high prenatal mortality rate the 

placental weight and length increased until day 95 of pregnancy, to 

decrease thereafter. Within the group of gilts with a low prenatal 

mortality rate it increased until day 65, remained fairly constant until 

day 95, to increase rapidly thereafter. Although the prenatal mortality 

rate during the early foetal stage is most probably still a good estimator 

of the embryonic mortality rate, towards the end of pregnancy this is 

almost certainly no longer the case. The present study therefore does not 

allow decisive conclusions as to the relationship between embryonic 

mortality rate and the average birthweight. 

In chapter 4 and 5 the emphasis has been on the variation in prenatal 

development between litters. In chapter 6 and 7 one aspect of differences 

in prenatal development within litters (the within-litter weight 

distribution) has been studied. Although it is generally assumed that the 

within-litter weight distribution is normal (Gaussian), evidence has been 

provided for the fact that in approximately one-third of litters the 

distribution is abnormal in a sense that two subpopulations can be 

identified within these litters. On the other hand there is an accumulation 

of indications that within-litter variation in embryonic developmental 

stage can occur very early in pregnancy and that this variation is reduced 

before or shortly after the time of maternal recognition of pregnancy (day 

11) through selective mortality of the less developed embryos. The results 

described in chapter 6 confirms the fact that the within-litter weight 

distribution is abnormal in 33% of all litters studied (466 foetal litters 

and 915 litters at term). On the basis of the within-litter weight 

distribution 5 littertypes were defined: normal litters (one normal 

distribution), litters with one or two runts (two discrete subpopulations: 

one main distribution and one or two growth retarded outliers), litters 

with left-hand individuals (two discrete subpopulations, the left-hand 

distribution numerically smaller than or equal to the right-hand 

distribution and both larger than 2), litters with right-hand individuals 

(two discrete subpopulations, the right hand distribution numerically 

smaller than the left-hand distribution and both larger than 2) and litters 

141 



with one or two giants (two discrete subpopulations: one main distribution 

and 1 or 2 growth accelerated outliers). The results strongly suggest that 

the within-litter weight distribution as found at term has been established 

by the end of the embryonic stage (day 35) of pregnancy, at least in the 

majority of litters. The average embryonic mortality rate differed between 

littertypes. The lowest mortality rate was found for the litters with left-

hand individuals, the highest for litters with giants. 

The preweaning death risk and preweaning growth rate of piglets in 

relation to the within-litter weight distribution of the litter in which 

they were born and suckled were subsequently studied. The results, based 

on data for 819 litters, are described in chapter 7. The preweaning death 

risk of piglets from litters with two discrete subpopulations was not 

higher than that for piglets from litters with a normal within-litter 

weight distribution. In all 5 littertypes the death risk was similarly 

dependent on birthweight, litter size and within-litter variation in 

birthweight. The average preweaning growth rate per litter differed between 

littertypes but was entirely due to differences in average litter size at 

birth. Within each of the 4 littertypes with two discrete subpopulations 

the average growth rate of the piglettype with the lower average 

birthweight was always less than that for the piglettype with the higher 

average birthweight. Within litters with runts and left-hand individuals 

this remained the case even after correction for birthweight, indicating 

that the growth rate of runts and left-hand individuals is less than would 

be expected on the basis of their birthweights. 

A general discussion of the results and the conclusions are given in 

chapter 8. The results of the present study allows the following 

conclusions: 

1. The functional integrity of the uterus of gilts as measured by its 

ability to support the survival and normal development of embryos, can 

not be adversely affected by a regular, severe growth retardation during 

the first 80 days of life, i.e. during the period of differentiation of 

the uterine glands. 

2. Day 35 embryos in gilts with a low embryonic mortality rate (the larger 

litters) are better developed than day 35 embryos in gilts with a high 
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embryonic mortality rate (the smaller litters), indicating that factors 

that are favourable for embryonic survival are also favourable for 

embryonic development or are associated with factors that are favourable 

for embryonic development. 

3. The placentae of day 35 embryos in gilts with a high embryonic mortality 

rate (the smaller litters) are better developed than the placentae of 

day 35 embryos in gilts with a low embryonic mortality rate (the larger 

litters). As a consequence the foetuses in gilts with a high embryonic 

mortality will grow faster than foetuses in gilts with a low embryonic 

mortality rate. 

4. The within-litter weight distribution is normal (Gaussian) in 

approximately 67% of all litters; within the remaining litters two 

discrete subpopulations of variable size can be identified. 

5. The within-litter weight distribution at birth is established at the end 

of the embryonic stage of pregnancy (day 35) and is related to the 

embryonic mortality rate. 

6. The within-litter weight distribution at birth is neither an important 

determinant of the within-litter variation in birthweight, nor an 

important determinant of the preweaning death risk of liveborn piglets. 
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SAMENVATTING 

In dit onderzoek zijn aspecten van de invloed van de vroege dracht op 

de gemiddelde prenatale ontwikkeling per toom en de aard van de verdeling 

van geboortegewichten binnen een toom bestudeerd. De doelstellingen van het 

onderzoek worden in de inleiding (hoofdstuk 1) aangegeven. In hoofdstuk 2 

wordt een kort overzicht gegeven van de literatuur met betrekking tot de 

chronologie van de vroege dracht en embryonale sterfte bij het varken. 

In hoofdstuk 3 wordt een experiment beschreven waarin is getracht de 

ontwikkeling en het functioneren van de uterus van gelten structureel te 

beïnvloeden, teneinde een model te verkrijgen waarmee de invloed van de 

uterus en haar secretieproducten op de incidentie van embryonale sterfte 

en de embryonale ontwikkeling kan worden bestudeerd. Getracht is de 

differentiatie van de uteriene klieren negatief te beïnvloeden door middel 

van een sterke voerbeperking gedurende de periode waarin deze differentia­

tie optreedt. Een groep Nederlands Landras gelten werd binnen 24 uur na 

geboorte gespeend en vervolgens onbeperkt of beperkt gevoerd (n=35 en n-34, 

respectievelijk). De beperkt gevoerde gelten werden zodanig gevoerd dat hun 

groei ongeveer 50% bedroeg van dat van hun onbeperkt gevoerde toomgenoten. 

Dit verschil in voeropname werd gehandhaafd tot een leeftijd van 80 dagen. 

Een derde groep Nederlands Landras gelten (de controle groep, n=38) werd 

gespeend op een leeftijd van 35 dagen en vervolgens onbeperkt gevoerd tot 

een leeftijd van 80 dagen. Vanaf dag 35 werden alle gelten onder dezelfde 

omstandigheden gehuisvest en vanaf dag 80 werden alle gelten gelijk behan­

deld. Een representatieve steekproef uit elk van de drie proefgroepen 

(onbeperkt gevoerd, n=8; beperkt gevoerd, n=8; controle groep, n-10) werd 

geslacht op een leeftijd van 80 dagen teneinde de histomorfologie van de 

uterus te bestuderen. Van de resterende gelten zijn er uiteindelijk 50 

geslacht op dag 34, 35 of 36 van de eerste dracht. Bij deze gelten werd de 

ontwikkeling van de uterus, embryo's en vruchtvliezen bestudeerd. 

Op een leeftijd van 80 dagen was het gemiddelde gewicht van de beperkt 

gevoerde gelten 45% van dat van de onbeperkt gevoerde gelten en 48% van dat 

van de controle gelten. De waarden voor de lengte en het gewicht van de 

uterus, de dikte van het myometrium en endometrium en het percentage van 

de oppervlakte van een doorsnede van het endometrium dat bestond uit 

klierdoorsneden waren allen lager in de beperkt gevoerde groep dan in beide 

145 



andere groepen. Alleen het verschil in dikte van het myometrium tussen de 

beperkt gevoerde en de controle groep was significant. De gevonden ver­

schillen bleken echter slechts een gevolg te zijn van het reeds genoemde 

verschil in lichaamsgewicht. 

Bij de gelten die gedurende de dracht zijn geslacht, werden geen 

verschillen gevonden ten aanzien van het aantal ovulaties, aantal embryo's, 

embryonaal sterftepercentage, lengte en gewicht van de uterus en de 

ontwikkeling van de embryo's en hun vruchtvliezen. Uit dit onderzoek is 

duidelijk geworden dat het functioneren van de uterus niet te beïnvloeden 

is door een sterke groeivertraging gedurende de eerste 80 levensdagen. 

Met de gegevens die in het hiervoor beschreven experiment zijn verzameld 

bij de gelten die op dag 35 van de dracht zijn geslacht (n=31) en 

overeenkomstige gegevens verzameld bij een groep van Nederlands Landras 

gelten die eveneens op dag 35 van de dracht zijn geslacht (n=40), is 

onderzocht of er een relatie bestaat tussen de ontwikkeling van embryo's 

en hun vruchtvliezen op dag 35 van de dracht en de incidentie van 

embryonale sterfte. Teneinde de resultaten beter te kunnen interpreteren, 

in het bijzonder voor wat betreft de ontwikkeling van de placentae, zijn 

relevante uteriene parameters in het onderzoek meegenomen. De resultaten 

van dit onderzoek geven aan dat het gewicht en de lengte van embryo's 

significant afnemen met een toename van het embryonale sterftepercentage'. 

Het gewicht en de lengte van de placentae nemen daarentegen juist toe met 

een toename van het embryonale sterftepercentage. Uit de statistische 

analyses kwam duidelijk naar voren dat de negatieve relatie tussen 

embryonale ontwikkeling en embryonale sterfte niet een gevolg is van de 

positieve relatie tussen placenta-ontwikkeling en embryonale sterfte. 

Indien werd gecorrigeerd voor het aantal aanwezige embryo's waren de 

hiervoor genoemde relaties niet meer significant, met uitzondering van de 

relatie tussen placenta lengte en embryonale sterfte. Dit geeft aan dat de 

relatie tussen embryonale sterfte en de ontwikkeling van de embryo's en 

vruchtvliezen hoofdzakelijk samenhangt met de relatie tussen embryonale 

sterfte en het aantal aanwezige embryo's. Uit dit onderzoek wordt geconclu­

deerd dat de factoren die ten grondslag liggen aan een hoge embryonale 

sterfte - en dus aan kleine tomen -ook ten grondslag liggen aan een 

verminderde ontwikkeling van de embryo's. Gezien het feit dat de per embryo 

beschikbare lengte van de uterus significant toeneemt met een toename van 
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de embryonale sterfte, zelfs indien er gecorrigeerd wordt voor het aantal 

aanwezige embryo's, kan worden geconcludeerd dat de relatie tussen embryo­

nale sterfte en de ontwikkeling van de placentae waarschijnlijk samenhangt 

met de invloed die ook de embryo's die reeds zijn afgestorven, nog voor hun 

dood hebben gehad op de lengte toename van de uterus. 

Teneinde na te gaan ot de versnelde groei van de placentae in gelten met 

een hoge embryonale sterfte een gunstig effect heeft op de foetale groei, 

is de relatie tussen foetale ontwikkeling en prenatale sterfte bestudeerd. 

Voor dit onderdeel zijn in totaal 195 Nederlands Landras gelten geslacht 

tussei dag 35 en dag 112 van de dracht. De resultaten, beschreven in 

hoofdstuk 5, geven aan dat de gewichtstoename van foeten tussen dag 35 en 

dag IOC van de dracht hoger is in gelten met een hoge prenatale sterfte. 

Er waren tussen de gelten met een hoge embryonale sterfte en de gelten met 

een lage embryonale sterfte gedurende genoemde periode eveneens duidelijke 

verschillen in de ontwikkeling van de placentae. In de groep van gelten met 

een hoge prenatale sterfte namen het gewicht en de lengte van de placentae 

toe tot dag 95 van de dracht, om daarna af te nemen. In de groep van gelten 

met een lage prenatale sterfte namen het gewicht en de lengte van de 

placentae toe tot dag 65, bleven vervolgens vrijwel constant tot dag 95 om 

daarna snel toe te nemen. Hoewel het prenatale sterftepercentage gedurende 

het eerste deel van de foetale fase hoogstwaarschijnlijk betrouwbare 

informatie geeft over het embryonale sterftepercentage, zal dit tegen het 

einde van de dracht veel minder het geval zijn doordat dan de foetale 

sterfte een rol gaat spelen. Uit dit onderzoek kan daarom geen eenduidige 

conclusie worden getrokken voor wat betreft de relatie tussen embryonale 

sterfte en gemiddelde geboortegewicht. 

In het in hoofdstuk 4 en 5 beschreven onderzoek heeft de nadruk gelegen 

op de variatie in prenatale ontwikkeling tussen tomen. In het onderzoek dat 

beschreven is in hoofdstuk 6 en 7 heeft één aspect van de variatie in 

prenatale ontwikkeling binnen tomen centraal gestaan. Het betrof hier de 

gewichtsverdeling binnen tomen. Alhoewel algemeen wordt aangenomen dat de 

gewichtsverdeling binnen tomen normaal (een Gausse verdeling) is, is 

aangetoond dat in ongeveer een-derde van alle voldragen tomen twee van 

elkaar te onderscheiden subpopulaties kunnen worden aangetroffen. Dit is 

met name van belang omdat er steeds meer aanwijzingen zijn dat variatie in 

ontwikkelingsstadium van embryo's binnen tomen al in een heel vroeg stadium 
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van de dracht (reeds voor dag 10) kan worden waargenomen en dat deze 

variatie wordt gereduceerd vóór of kort na het tijdstip van maternale 

herkenning van de dracht (dag 11), en wel door selectieve sterfte van de 

minder goed ontwikkelde embryo's. 

De resultaten die zijn beschreven in hoofdstuk 6 bevestigen dat de 

gewichtsverdeling in 33% van de onderzochte tomen (466 foetale tomen en 915 

voldragen tomen) niet normaal is. Op grond van de gewichtsverdeling binnen 

tomen zijn 5 typen tomen gedefinieerd: normale tomen (één normale (Gausse) 

verdeling), tomen met 1 of 2 achterblijvers (twee discrete subpopulaties: 

een hoofdgroep en één of twee minder goed ontwikkelde uitbijters), tomen 

met meerdere achterblijvers (twee discrete subpopulaties, de minst 

ontwikkelde subpopulatie is numeriek kleiner dan, of gelijk aan, de beter 

ontwikkelde subpopulatie maar bestaat uit meer dan twee individuen), tomen 

met meerdere voorlopers (twee discrete subpopulaties, de minst ontwikkelde 

subpopulatie is numeriek groter dan de beter ontwikkelde subpopulatie en 

de laatstgenoemde bestaat uit meer dan twee individuen) en tomen met 1 of 

2 voorlopers (twee discrete subpopulaties: een hoofdgroep en 1 of 2 duide­

lijk beter ontwikkelde uitbijters). Uit dit onderzoek kwamen sterke aan­

wijzingen dat de gewichtsverdeling binnen voldragen tomen reeds aan het 

einde van de embryonale fase van de dracht (dag 35) is vastgelegd. Er lijkt 

verder een verband te bestaan tussen het embryonale sterftepercentage en 

de aard van de gewichtsverdeling binnen een toom. Het laagste gemiddelde 

sterftepercentage werd gevonden bij gelten met tomen met meerdere achter­

blijvers, het hoogste bij gelten met tomen met 1 of 2 voorlopers. 

Tot slot is onderzocht of er een verband bestaat tussen de aard van de 

gewichtsverdeling binnen een toom enerzijds en de gemiddelde groei van de 

biggen en de kans op biggesterfte tijdens de zoogperiode anderzijds. De 

resultaten van dit onderzoek, gebaseerd op gegevens van 819 tomen, zijn 

beschreven in hoofdstuk 7. De kans op biggesterfte tijdens de zoogperiode 

was onafhankelijk van de aard van de gewichtsverdeling binnen de tomen. In 

elk van de 5 typen tomen was de kans op biggesterfte op dezelfde wijze 

afhankelijk van het geboortegewicht. De gemiddelde groeisnelheid vóór het 

spenen was verschillend tussen typen tomen, maar deze verschillen waren 

geheel het gevolg van verschillen in toomgrootte bij de geboorte. In elk 

van de 4 typen tomen met twee discrete subpopulaties was de groeisnelheid 

van de subpopulatie met het lagere gemiddelde geboortegewicht lager dan van 
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de subpopulatie met het hogere gemiddelde geboortegewicht. Binnen de tomen 

met 1 of 2 achterblijvers en de tomen met meerdere achterblijvers, bleef 

dit verschil na correctie voor geboortegewicht significant, hetgeen erop 

duidt dat deze achterblijvers minder hard groeien dan op grond van hun 

geboortegewicht is te verwachten. 

Een algemene discussie over de resultaten staat in hoofdstuk 8, evenals 

de conclusies. Uit dit onderzoek kunnen de volgende conclusies worden 

getrokken: 

1. Het functioneren van de uterus van gelten, gemeten aan het embryonale 

sterftepercentage en de ontwikkeling van de embryo's, kan niet negatief 

worden beïnvloed door een regelmatige, sterke groeivertraging gedurende 

de eerste 80 levensdagen, d.w.z. gedurende de periode waarin de uteriene 

klieren zich differentiëren. 

2. Op dag 35 van de dracht zijn de embryo's van gelten met een laag 

embryonaal sterftepercentage (de grotere tomen) beter ontwikkeld dan de 

embryo's van gelten met een hoog embryonaal sterftepercentage (de 

kleinere tomen), hetgeen aangeeft dat de factoren die gunstig zijn voor 

embryonale overleving ook gunstig zijn voor embryonale ontwikkeling of 

samenhangen met factoren die gunstig zijn voor embryonale ontwikkeling. 

3. Op dag 35 van de dracht zijn de placentae van de embryo's van gelten met 

een hoog embryonaal sterftepercentage (de kleinere tomen) beter 

ontwikkeld dan de placentae van embryo's van gelten met een laag 

embryonaal sterftepercentage (de grotere tomen). Dit heeft tot gevolg 

dat de foeten van gelten met een hoog embryonaal sterftepercentage 

sneller zullen groeien dan de foeten van gelten met een laag embryonaal 

sterftepercentage. 

4. De verdeling van geboortegewichten binnen een toom is normaal (Gausse 

verdeling) in ongeveer 67% van alle tomen; in de overige tomen kunnen 

twee discrete subpopulaties van variabele omvang worden aangetoond. 

5. De aard van de verdeling van geboortegewichten ligt reeds vast aan het 

einde van de embryonale fase van de dracht (dag 35) en hangt samen met 
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het embryonale sterftepercentage. 

6. De aard van de verdeling van geboortegewichten Is niet een belangrijke 

determinant van de variatie in geboortegewicht binnen een toom, noch van 

de sterftekans van levend geboren biggen tijdens de zoogperiode. 
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