
5.2 Application of operations research techniques in crop protection 

W.A.H. Rossing 

5.2.1 Introduction 

Management of cropping systems and pathosystems requires (as discussed in 
Section 5.1) appropriate, well-defined decision procedures and adequate infor
mation on the state and dynamics of the system. If these conditions are fulfilled, 
decisions may be made by evaluating all possible options. This is a feasible and 
operational method if only a limited number of options exists, and few decisions 
have to be made. For example, a seedling disease may or may not be controlled 
chemically; if control measures are taken, the pesticide may be applied as seed 
dressing or after sowing. However, in crop protection it is a recognized fact that 
many decisions interact. For example, many pests and diseases react to the 
nutritional status of the crop which, in turn, is determined by cultural measures 
such as seedbed preparation and fertilization. Traditionally, the experience of the 
decision maker plays a major role in such cases. Many combinations or options 
are ruled out in advance, based on experience and knowledge of the behaviour of 
the system. However, the approach is not transferable and, although the results 
may be satisfactory, it is not known whether a different combination of decisions 
would have led to better results. 

The rapidly growing research on expert systems employs empirical experience. 
Here, researchers try to quantify and make explicit the insight and knowledge of 
the experienced decision maker. The drawback to this approach is that it freezes 
the knowledge of the currently 'good' farmer and does not help in the develop
ment of better and well transferable information. Previous Sections have shown 
an approach that may lead to improvement in decision making. Information on 
the effect of various decisions on the behaviour of the system can be obtained by 
simulation or by experiments, or by combining both ways. The latter seems the 
best route. 

Decision making is a process which continues throughout the growing season. 
Methods and techniques developed in operations research can be applied to tune 
managerial actions to objectives. These objectives need not be economic; they 
may be, e.g. environmental. With most techniques, however, the objectives must 
be quantifiable, although sophisticated methods are being developed which can 
handle qualitative objectives. 

One optimization technique which has found wide application, including the 
scheduling of farm operations, is linear programming. Non-linear regression 
methods originate from operations research. Dynamic programming, discrete 
event simulation and goal programming are examples of techniques which have 
been used in agricultural decision problems, although mainly at the research 
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level. In this Section, the basic principles of linear programming (LP), dynamic 
programming (DP) and discrete event simulation for decision making in crop 
protection are discussed. After studying this Section, the reader should be able to 
recognize the structure of the optimization methods discussed here. Formulating 
a specific problem, e.g. an LP-problem, will require more experience as will the 
choice of one optimization method over an other. Handbooks, e.g. van Beek 
& Hendriks (1985), Dannenbring & Starr (1981), Hillier & Lieberman (1980) and 
Wagner (1979) are advised for further study. 

Before proceeding to explain the techniques, the general structure of a decision 
problem should be discussed. 

5.2.2 General structure of a decision problem 

In general, a decision problem involves one or more objective functions, 
decision variables, constraints and a transformation function. The objective 
function(s) describe(s) the aim of optimization and measure(s) how 'good' a cer
tain combination of decision variables is. The ways in which the decision maker 
can intervene in the system are represented by the decision variables. Several 
combinations of decisions may not be feasible, owing to technical or policy 
considerations. The feasible combinations are described by the constraints. The 
transformation function describes the way the system evolves under various 
decision alternatives. 

A solution is optimal only within the boundaries of the constraints. These 
constraints reflect an opinion on the socio-economic situation and on the 
technical possibilities. As points of view differ and are incomplete a generally 
optimal solution does not exist. This can be illustrated by an example from the 
crop protection practice. 

When deciding to apply a pesticide, a farmer usually only weighs costs of 
treatment against costs due to harmful organisms without treatment. Crop 
husbandry measures, effects on non-target organisms, pesticide residues, dangers 
to the health of the person applying the chemical and long-term effects on 
productivity, constitute technical and policy constraints. Each of these repre
sents a decision problem in itself, but with respect to applying a pesticide, they are 
treated as given facts which cannot be influenced. The farmer's decision problem 
is then reduced to: what is the optimum timing of pesticide applications to give 
the highest financial returns (objective function)? The decision variable is 'treat
ment' with options 'treat' and 'do not treat'. This concept is called 'supervised 
control'. 

In the 'integrated control' concept, less constraints appear in the decision 
problem. Here, the constraints of the supervised control problem appear as 
variables in the objective function. Thus, the number of decision alternatives 
increases. An example is the explicit minimization of effects on non-target 
organisms in integrated control, as opposed to 'do not spray more than X active 
ingredient, to prevent excessive effects on non-target organisms' in supervised 
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control. In the former case, the concentration of active ingredients occurs in the 
objective function, in the latter case in the constraints. 

Optimization of decisions in agricultural management may occur at different 
levels: 
1. Crop husbandry measures (e.g. optimal timing of fertilizer applications); 
2. Cropping system (e.g. timing of fertilizer application in relation to pests and 

diseases); 
3. Farm (e.g. optimization of the choice of crops); 
4. Policy (e.g. optimal farming systems). 
The higher the level of integration, the more complex the decision problem, as the 
number of decision alternatives grows. In principle, management science pro
vides techniques to deal with problems at all levels of integration. 

5.2.3 Linear programming 

Linear programming (LP) is a general-purpose technique for determining the 
best allocation of scarce resources. LP-problems are characterized by an objec
tive function (a way of measuring how good an allocation is), a set of decision 
variables (the way in which scarce resources can be allocated) and a set of 
resource constraints (limitations placed on the decision variables to reflect the 
resource scarcity). The objective function and the resource constraints must be 
linear in the decision variables. This means that a change of one unit in the 
decision variables results in a constant change in the value of the objective 
function and in the resource constraint. 

LP-problems cannot be solved analytically. They are solved by an algorithm 
which involves a finite number of operations, the so-called simplex method, 
developed by Dantzig in 1947, which has found wide application in managerial 
decision problems. 

In this Subsection, two examples will be presented to convey some idea of the 
type of problem that can be handled by linear programming. A graphic approach 
and an algebraic approach to solving LP-problems are given. Finally, some 
advanced applications are considered. 

LP-problem formulation, Example 1 Consider a farmer who wants to maximize 
financial returns from two crops, potatoes and wheat. One hectare of potatoes 
gives two-and-a-half times the financial return of one hectare of wheat. The 
farmer faces three constraints: he only has 6 hectares of arable land, potatoes may 
not be grown more than once every two years and, for reasons of diversity, the 
farmer does not want wheat to cover more than two-thirds of his arable land. The 
farmer wants to know how many hectares he should put under potatoes and 
wheat, respectively. 

LP-problem formulation, Example 2 is taken from animal ecology. A bird may 
collect food for itself and its nestlings from two isolated areas. One is at 2 minutes 
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distance, the other at 3. The energy needed to visit the two areas is 5 and 10 Joules, 
respectively. The prey at the first site has an energy content of 25 Joules per 
individual, the prey item at the other site 40 Joules. The amount of time needed to 
find and catch a prey item is 2 minutes at the first site and 1 minute at the second. 
Once a prey is caught, the bird takes it to its nest. Per day, the predator spends no 
more than 80 minutes hunting and 120 minutes travelling. To satisfy its own 
basic energy needs, and that of the nestlings, it requires 600 Joules. How many 
individuals of each prey species must be caught to maximize the net amount of 
energy gained? 

To solve these problems a more formal notation is useful. Example 1 may be 
reformulated in this way: 

maximize (w = 2\x -f 5x2) financial return objective Equation 121 

where \x = number of hectares under wheat, 
number of hectares under potatoes 

subject to 

x 1 + x 2 ^ 6 total area constraint Equation 122 
xt <̂  4 area constraint wheat Equation 123 

x2 ^ 3 area constraint potatoes Equation 124 

*i ^ 0, x2 ^ 0 xt and x2 cannot be negative Equation 125 

As described in the introduction, the problem consists of an objective function 
(Equation 121), a number of resource constraints (Equation 122 to 125) and 
decision variables (xx and x2). 

Exercise 77 
Give the mathematical representation of Example 2. 

Optimal solution to an LP-problem: the iso-profit line approach In Figure 78, 
a graphic representation is given of the LP-problem of Example 1. The range of 
values of xx and x2 permitted by the inequalities is indicated by the shaded area in 
Figure 78a. The set of permitted values of xx and x2 is called the solution set or the 
feasible region and consists of the polygon O ABCD. The points O, A, B, C and 
D are referred to as corner points of the solution space. Points on the transects 
connecting these corner points are referred to as extreme points. 

The objective function, w, can assume different values as represented by the 
broken lines in the graph of Figure 78b. Each line consists of combinations of xx 

and x2 which result in the same amount of profit. Note that these 'iso-profit lines' 
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Figure 78. Graphic representation of a linear programming problem. The solution space 
(shaded) and iso-profit lines (dashed lines). 
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are perpendicular to the vector (5), which consists of the coefficients of x x and x2 in 
the objective function. The combination of xx and x2 within the feasible region 
OABCD which is situated on the highest iso-profit line is optimal. In Example 1, 
the optimal solution is point B, where xx = 3 and x2 = 3. The objective function 
value here is 21. 

It is not a coincidence that the optimal solution is reached in an extreme point. 
Only points on the border of the feasible region can be optimal. The explanation 
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can be inferred from Figure 78b. The objective function value can be increased 
only by moving the iso-profit line 'up' or, more exactly, along the gradient vector 
(5). Thus, there are two possibilities: the iso-profit line with the highest objective 
function value either shares one point with the feasible region or coincides with 
one of its sides. In both cases, the optimal points are extreme points. In the first 
case the solution is unique, in the second case there are alternative solutions. 
Thus, when trying to find the optimal solution the search may be limited to the 
border of the solution space. 

It still remains to be proved that point B is optimal. When moving from one 
point on the border to another the objective function value either increases, 
decreases or remains unchanged depending on the constraint describing the 
intermediate intersect. Proceeding from O (with xx = 0 and x2 = 0) to A in 
Figure 78, the objective function increases by the marginal contribution of x2 (the 
contribution of one unit x2) which equals 5, the coefficient of x2 in the objective 
function. At A (x2 = 3), therefore, the objective function value is 15. 

Going from A to B along the constraint line, x2 remains unchanged while xx 

increases. The equation describing the line (x2 = 3) shows that xx can be in
creased independent of x2 until point B is reached. Here Xj = 3 and x2 = 3. The 
change in xx results in a change in the value of the objective function of 2(3) = 6, 
so the objective function value is 21. Thus B is preferred to A. 

Going from B to C, x2 decreases while xx increases. As dictated by the equation 
of the intermediate line (xx + x2 = 6), each unit of decrease of x2 is equalled by an 
increase in xx of one unit. Thus, each unit decrease of x2 results in an increase of 
the objective function value of 2(1) + 5(— 1) = —3. When moving from B to C, 
the objective function value decreases. As the objective function is always linear 
in LP-problems, it can be concluded that any other point is inferior to B, since 
A and C are inferior. 

Exercise 78 
Repeat this line of reasoning with the objective function w = xx + x2. 

Apart from the unique and alternative solutions illustrated above, two other 
classes of solutions exist, as illustrated in Figures 79 and 80. In Figure 79, the 
problem has an unbounded solution set. The objective function value can be 
made arbitrarily large, while still satisfying the constraints. In a practical setting, 
this situation may exist for a range of values of a variable until another constraint 
is reached. In Figure 80, a problem is depicted for which no feasible and, 
therefore, no optimal, solution exists. As an example, consider the case where 
a certain minimum amount of pesticide is needed to control a pest while this 
amount exceeds the maximum level tolerated by beneficial insects. 
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Figure 79. Graphic representation of a linear programming problem with an infinite 
solution. V is the solution space, c the vector of coefficients of the objective function. 
(Source: van Beek & Hendriks, 1985). 

V = v1 n v2 

Figure 80. Graphic representation of a linear programming problem without a feasible 
solution. (Source: van Beek & Hendriks, 1985). 

General algebraic form of an LP-problem Two forms of LP-problems are distin
guished: the standard form and the canonical form. An LP-problem in the 
standard form can be written as: 

maximize (w = c ^ + c2x2 + . . . + cnxn) 

subject to 
a n x i + <*i2x2 + . . . + a lnxn = bx 
a 2 1 X l + a 22 X 2 + • • • + a2nXn = ^2 

Equation 126 

amix i 4- am2x2 -f-... + am«xn —- b l m2 A 2 mn"n m 

xt ^ 0 , x 2 ^ 0 , . . . , x n ^ 0 

Here cj; ajj and bj (i = 1,2,. .,m; j = 1,2,.. .,n) are fixed and the decision vari
ables X; are to be determined. 
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In the canonical form the LP-problem is 

maximize(w = clxl -f c2x2 + . . . + cnxn) Equation 127 

subject to 

a l l X l + a 12 X 2 + • • • + a l n X n = ^1 
a2i*i + a22x2 + . . . + a2nxn ^ b2 

a m l X l + am2X2 + • • • + amnXn = "m 

x l ^ 0 , x 2 ^ 0 , . . . , x n ^ 0 

A number of transformations exists by means of which any LP-problem may be 
reformulated in its equivalent standard or canonical form. For example, 'maxi-
mize (w)' is equivalent to 'minimize (— w)\ and multiplying the objective function 
by a scalar k # 0 does not change the optimal solution. Of course, if k < 0, 
a maximization problem becomes a minimization problem and vice versa. An 
important transformation is: Sa^Xj ^ bj is equivalent to Sa^Xj + y* = bj (and 
vice versa), where yi ^ 0. The variable y{ is called a slack variable as it removes the 
slack in the constraint. It appears in the objective function with coefficient 0. 

Exercise 79 
Apply the transformation rules to derive the standard form of Example 1 and 
Example 2. 

Optimal solution of an LP-problem: algebraic analysis and simplex algorithm The 
iso-profit line method with evaluation of extreme border points is only applicable 
in the case of a two-dimensional LP-problem. For problems of higher dimen
sionality, the simplex algorithm has been developed. In spite of its name, the 
method is too complex to be dealt with in detail here. In order to appreciate the 
hurdles involved in the technique, an algebraic solution to the example in 
Equations 121-125 will be examined. 

Applying the transformations of the previous section, the LP-problem can be 
rewritten in the standard form: 

maximize (w = 2xx + 5x2 + 0yx + 0y2 + 0y3) Equation 128 

subject to 
xx + yi = 4 Equation 129 

x2 + y2 = 3 Equation 130 
x{ + x2 + y3 = 6 Equation 131 

x i ^ 0,x2 ^ 0,y! ^ 0,y2 ^ 0,y3 ^ 0 Equation 132 
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The simplex algorithm starts with a feasible solution, checks whether it is 
optimal, identifies a better solution if optimality is not yet reached and stops if it 
is. A reasonable initial feasible solution seems to be Xj = 0 and x2 = 0 and the 
slack variables at their maximum (why?) values yi = 4, y2 = 3, y3 = 6. As the 
coefficients of the slack variables in the object function are zero, w = 0. 

The positive coefficients of Xi and x2 in the objective function imply that 
increasing either \x or x2 results in an increase of w. The marginal contribution of 
x2 is greater. Thus, for the purpose of maximizing w, increasing the value of x2 is 
most attractive. 

To which value can x2 be increased while still satisfying the constraints? From 
Equation 130 it can be seen that x2 may be maximally 3, otherwise y2 becomes 
negative. According to Equation 131, x2 may be maximally 6. Thus, the maxi
mum value of x2 is 3 according to the most limiting constraint. If x2 = 3, 
Equation 131 dictates that y3 = 3. The value of xt is left at zero, xx = 0, therefore 
y x=4. The second solution, still feasible, is therefore xx = 0, x2 = 3, yx = 4, 
Yi = 0> Y3 = 3 and the objective function value is w = 15. 

How can this be interpreted graphically? The initial solution involved point 
O in Figure 78a. The value of the slack variables designated the shortest distance 
along the x r and x2-axis from O to each of the constraints: the distance to 
constraint Equation 129 was 4 (yx = 4), etc. Next, x2 was increased. As can be 
seen in Figure 78a, values of x2 greater than 3 are no longer within the solution 
space. Therefore, the next feasible solution is point A. With x2 = 3 the slack in the 
first constraint (Equation 129) has not changed and is represented by the intersect 
AR, whereas the slack in the second constraint (Equation 130) has been elimi
nated. The slack in the third constraint (Equation 131) is reduced to 3, represen
ted by the intersects AP and AB. 

As a next step in the optimization, a criterion is needed to judge whether 
increasing the value of any other variable results in an increase in w. As x2 = 3, 
this variable can be eliminated from the constraints by making it explicit in 
Equation 130 and using it as a so-called pivot to remove x2 from other equations. 
This results in: 

x1 +yi = 4 Equation 129 
x2 = 3 — y2 Equation 133 

xx + y3 = 3 + y2 Equation 134 

Substituting x2 described by Equation 133 into the objective function (Equation 
128) yields: . 

maximize(w = 2xx + 15 — 5y2 -f 0yx + 0y2 -f 0y3) Equation 135 

The positive sign of the coefficient of xx in Equation 135 indicates that increasing 
Xj from its original value (xj =0) can result in a solution superior to the previous 
one. Therefore, the solution found so far is not optimal. 

To what value can x1 be increased while still satisfying the constraints? From 
Equations 129 and 134 it can be inferred that xx may not be made larger than 3, 
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otherwise y2 and y3 become negative. By making xx explicit in Equation 134 and 
using it as a pivot, x t is eliminated from the other equations: 

yi — y3 = 1 — y2 Equation 136 
x2 = 3 — y2 Equation 133 

*i = 3 + y2 — y3 Equation 134 

From these equations it can be seen that if Xj = 3 and x2 = 3, it follows that 
yi = 1, y2 = 0 and y3 = 0. 

Substituting xt (Equation 134) and x2 (Equation 133) into the objective 
function (Equation 128) yields: 

w = 2xx -f 5x2 -f 0yt -f 0y2 + 0y3 

= 2(3 + y2 - y3) + 5(3 - y2) + 0yt + 0y2 + 0y3 

= 21 - 3y2 - 2y3 + 0yx + 0y2 + 0y3 Equation 137 

The coefficients of all variables are zero or negative. Thus, no more improvement 
can be expected by increasing the value of any variable, and the optimal solution 
found is: xx = 3, x2 = 3, yt = 1, y2 = 0, y3 = 0. 

As shown in Figure 78b, the optimal solution coincides with point B. The value 
of yx = 1 indicates that not all the 'room' available according to constraint 
1 (Equation 129) is used, as represented by the intersect BR. The other slack 
variables have assumed the value 0, indicating that constraints 2 and 3 (Equa
tions 130 and 131) are exactly satisfied. 

The steps made in the simplex algorithm can be summarized as follows: 
1. The LP-problem is transformed into its standard form. In the example, this 

was done by adding slack variables. 
2. A feasible solution is determined. In this case we chose the origin. Other 

initial solutions may be appropriate. 
3. The optimality of the solution is checked by examining the potential changes 

in the objective function value resulting from changes in each of the variables. 
4. A promising adjacent corner point is selected. Note that this involves 

changing variables with a value of zero into variables with a value greater 
than zero, and vice versa. In the example, x2 was changed from 0 to 3 in the 
first step, while y2 decreased from 3 to 0. Variables with a value of zero are 
called non-basic, the others are called basic variables. The fundamental 
theorem of linear programming states that the number of basic variables will 
always equal the number of constraints. The most promising variable, i.e. the 
one with the highest coefficient in the objective function, is made basic. The 
variable to become non-basic is the basic variable in the most limiting 
constraint (check this in the example). 

5. The optimality of the solution is checked. If the solution is optimal, stop. If 
not, return to step 4. 

The different solutions can be clearly arranged in a so-called simplex tableau. 
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The optimality criterion is also represented in the tableau. For advanced treat
ment of this subject the reader is referred to handbooks. 

Exercise 80 
Solve the foraging problem described in Example 2. 

Post-optimal analysis A farmer may be interested not only in the optimal solution 
but also in the conditions under which it holds. These are investigated in the 
post-optimal analysis. Reconsider the problem of the previous section. The 
optimal solution was Xj = 3 and x2 = 3. From Figure 78b the consequences of 
relaxing the constraints for the optimal solution can be seen. By making con
straint 1 (Equation 122) less limiting, the optimum moves to R along the third 
constraint line. Relaxing constraint 3 (Equation 124) moves the optimum to 
point P along the first constraint line. Relaxing constraint 2 (Equation 123) does 
not affect the optimal solution, as, with optimality at point B, there is still slack 
with respect to this constraint. 

If the ratio of coefficients of xt and x2 in the objective function were 5:2 
(instead of 2:5), the iso-profit lines would be perpendicular to the vector (2) and 
the optimum would be point C, as can be seen in Figure 78c. If the coefficients 
were equal, the highest iso-profit line would coincide with the transect BC (check 
this). In this case, there is an infinite number of alternative optimal solutions. 

Exercise 81 
Identify the range of ratios of the coefficients of xx and x2 for which the solution 
xt = 3, x2 = 3 is optimal. 

Goal programming In most applications, decision problems consist of more than 
one objective. If absolute weights can be attached to each objective, the multiple 
objective problem may be transformed into a single objective problem. For 
example, if the problem is to maximize the hectarage of potatoes and wheat on 
a farm, subject to a number of constraints, the preference of crops may be 
expressed in their price per unit area. Thus, the problem is transformed into 
maximization of financial output of potatoes and wheat. 

However, for many objectives, only a priority order may be distinguished 
rather than a quantifiable priority of one over the other. An example is profit 
maximization on a farm versus conservation of scenic elements. Goal program
ming is a method of dealing with this type of problem. 

The method requires that the objectives are placed in priority order. Starting 
with the objective of highest priority, the method attempts to satisfy each goal, or, 
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failing that, to minimize the undesirable deviations. In this way, a solution can be 
found that will minimize the amount of underachievement for any goal that 
cannot be met, without worsening the achievement of any higher-priority goal. 
Here too, the simplex method can be applied. The following example illustrates 
the method. 

Assume the farmer of Example 1 also wants to produce at least 401 of wheat to 
meet a business agreement. His yield expectation for wheat is 8 t ha" *. His goals 
in order of priority are (1) use maximally 6 hectares of land, (2) obey the 
constraints with respect to rotation, (3) profit at least equal to 18 and (4) produce 
at least 40 t of wheat. 

This two-dimensional goal programming problem can be solved graphically 
by repeatedly solving the optimization problem, each time adding an extra goal. 
Thus, the solution space remains unchanged or, if new goals turn out to be 
constraints, is decreased. Eventually, a goal may be added that cannot be met by 
any of the solutions satisfying the higher-priority goals. The solution, feasible 
with respect to the higher-priority objectives, which deviates least from the 
unsatisfied goal, is designated as being the optimal solution to the problem. 

In Figure 81, this approach is illustrated. After having drawn in the first three 
goals (Figure 81a, b, c), the solution set with corner points BCE is found. The 
fourth goal (production ^ 40) cannot be achieved at any of the points in the 
solution space. Now a solution has to be found that minimizes the deviation from 
the fourth constraint and is still feasible. The dashed lines in Figure 8Id represent 
combinations of the decision variables xx and x2 that deviate to the same amount 
from the fourth constraint. Point C is the first solution encountered which is 
feasible with respect to the first three goals. Thus, the optimal solution, point C, is 
to grow 2 ha of potatoes and 4 ha of wheat. The profit is 18 and the deviation from 
the 40 t level is 1 • 8 = 81. 

52.4 Dynamic programming 

Dynamic programming (DP) is a technique which efficiently determines the 
optimal policy in problems with separate but related decisions in a set of 
sequential time periods. DP is generally compatible with pest management 
models where decisions are made sequentially. The models may be dynamic, 
non-linear or stochastic. Because of the ability to handle these types of models, 
DP is a more suitable tool for problems involving timing of chemical applications 
than LP. 

First, the principle of DP will be explained using a deterministic example. It 
will become clear why DP is an efficient method. Next, a stochastic problem will 
be treated. 

Shortest route in a network DP-problems can often be formulated as shortest 
route problems: finding the shortest route from one state in a network to another. 
Figure 82 represents such a network with four levels or decision stages (N = 4). 
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Figure 82. Network representation of a deterministic dynamic programming problem 
with 4 levels or decision stages. The distance between two nodes or states connected by 
a branch is indicated. 

Each level contains one or more states, nodes in the graphic representation, in 
which one (the states at the levels 0 and 3) or three decisions (the states on all other 
levels) are possible. The distances between the nodes vary as indicated in Figure 
82. The network may be traversed only from left to right. The problem is to find 
the shortest route from node 2 at level 0 to the final node 2 at level 4. 
Define: 

cik : = the distance from node i at an arbitrary level to node k, one level higher 
Vj(i):= the shortest route from node (state) i at level j to the final node. 

The function V is called the value function. The DP-algorithm states: 

V4(2) = 0 

Vj(i) = minimum (cik -f Vj + x (k)) 
k 

The second line states that, starting in state i at level j , the decision should always 
be such that the distance to state k at level j + 1 (cik) plus the minimal distance 
from state k at level j + 1 to the final state (Vj + 1(k)) are minimal. By fixing the 
value of V at the final (fourth) level and carrying out the calculations starting at 
the highest level, the algorithm is complete. This procedure can be illustrated 
using the example of Figure 82. 

1. Level 4 
The distance from state 2 at level 4 to any subsequent level and state is zero: 
V4(2) = 0 

291 



2. Level 3 
Determine the smallest distance from each of the states at level 3 to each of the 
next states at level 4: 

V3(l) = min(clf2 + V4(2)) = 4 
2 

V3(2) = min(c2,2 + V4(2)) = 5 
2 

V3(3) = min(c3,2 + V4(2)) = 3 
2 

3. Level 2 
Determine the smallest distance from each of the states at level 2 to each of the 
next states at level 3: 

V2(l) = min (c l t l + V3(l), c l t2 + V3(2), c l f3 + V3(3)) 
1,2,3 

= min(7 + 4, 4 + 5, 6 + 3) = 9 via state 2 or 3 

Here, the values of the value function V3(i) which were calculated at level 3 are 
used. 

V2(2) = min (c2tl + V3(l), c2,2 + V3(2), c2,2 + V3(3)) 
1,2,3 

= min(4 -f 4, 9 4- 5, 8 + 3) = 8 via state 1 

V2(3) = min (c3il + V3(l), c3,2 + V3(2), c3,3 + V3(3)) 
1,2,3 

= min(5 + 4, 4 + 5, 6 + 3) = 9 via state 1, 2 or 3 

4. Level 1 
Determine the smallest distance from each of the states at level 1 to each of the 
next states at level 2: 

V^l) = min (c l t t + V2(l), c lf2 + V2(2), c l t 3 + V2(3)) 
1,2.3 

= min(8 + 9, 6 + 8, 10 + 9) = 14 via state 2 

Vx(2) = min (c2tl + V2(l), c2,2 + V2(2), c2,3 + V2(3)) 
1,2,3 

= min(7 + 9, 5 + 8, 8 + 9) = 13 via state 2 

V&) = min (c3il + V2(l), c3t2 + V2(2), c3,3 + V2(3)) 
1,2,3 

= min(6 + 9, 4 + 8, 8 + 9) = 12 via state 2 
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5. Level 0 

V0(2) = min (c2tl + V^l), c2,2 + V^) , c2,3 + V&)) 
1.2.3 

= min (4 + 14, 5 + 13, 5 + 12) = 17 via state 3 

By storing the best decisions and associated value functions, the set of optimal 
decisions is recorded. Thus, the shortest route from state 2 at level 0 to state 2 at 
level 4 is via states 3, 2 and 1 on the subsequent levels and has length 17. 

The algorithm was developed by Bellman (1957), who described the principle 
of optimality which was applied above as follows: an optimal set of decisions has 
the property that, whatever the initial state and decision are, the remaining 
decisions must be optimal with respect to the outcome which results from the 
initial decision. 

The value of the value function V in the state at the final level was arbitrarily 
chosen to be zero. If there are more states at the last level, the final decision may 
be directed to a preferred state by attaching appropriately high (in the case of 
minimization) or low (in the case of maximization) values to value functions in 
unpreferred states. For example, states 1 and 3 at level 4 may be defined to have 
value function values of infinity: 

V4(l) = oo 
V4(3) = oo 

Thus, they will never be included in the optimal solution. 
The efficiency of DP becomes evident when comparing the number of oper

ations carried out with the number of operations needed when checking all 
possible routes. The DP-method needed 21 additions, 3 for each node at levels 
0 to 2, and 14 comparisons of 2 figures, 2 for each node at levels 0 to 2. In an 
'exhaustive search', 3 • 3 • 3 • 1 =27 routes have to be checked. This involves 
3 • 27 = 81 additions and 26 comparisons of 2 figures. In problems with more 
states and levels, the discrepancy between the two methods grows in favour of 
DP. 

Exercise 82 
Distinguish the basic components of a decision problem (objective function, 
decision variables, transformation function and constraints) in the DP-problem 
formulated in the text. 

Stochastic dynamic programming Stochastic dynamic programming concerns the 
same type of N-step decision problems as deterministic dynamic programming. 
However, in stochastic DP, the outcome of a decision is not known with certainty 
in advance. Two or more outcomes may occur, their likelihood described by 
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a probability distribution. In this case, the optimal policy is the series of decisions 
which minimizes the expected costs. Calculation is recursive, analogous to the 
deterministic case. However, the number of computations is generally greater, 
due to calculation of the expected values. 

The algorithm must now be described in more formal terms. Define for 
k = 1,2,...,N: 

xk : = state of the system at level k. The variable xk is a vector: the state of the 
system may be characterized by one or more components. 

dk := describes the decisions to be made between level k — 1 and level k. 
rk : = a vector of stochastic variables, the outcome of which is known at level 

k. The probability distribution of the variables is assumed to be known 
and the variables are independent. The stochastic vector is indicated by 
rk, its outcome by rk. 

Tk : = the transformation function: the function which describes the evolution 
of the system from state xk_1? decision dk and outcome rk to state xk, 
yields xk = Tk(xk_l9dk,rk). 

Gk: = function describing the costs incurred between levels k — 1 and k. 
These are dependent upon xk_l5 dk and rk. This yields G^^^d^ r , , ) . 

Vk : = value function on level k. This is the expected value of costs incurred 
from state xk at level k to the final level N, if the series of optimal 
decisions is implemented. Vk is dependent upon xk: Vk(xk). 

The algorithm now is: 

VN(xN) = 0 

Vk-i(xk_x) = minimum {E(Gk(\k-l9dk,rk) + Vk(Tk(xk_udk9rk)))} 

where E denotes the expected value. 
In the case of stochastic dynamic programming, it is less meaningful to attach 

different values to VN(xN), in order to direct the final outcome towards one 
preferred state, as the final outcome depends on the chance mechanism. 

An example: once a week a decision is made on whether to treat a wheat crop 
against aphids, based upon the number of aphids and the weather forecast. Two 
types of weather conditions are distinguished: warm and cool. In the first case, the 
aphid population grows rapidly and a lot of damage is done. If the weather is 
cool, the opposite occurs. The decision problem can be formulated in terms of 
a DP-problem, as illustrated in Figure 83. 

The state of the system xk is described in terms of the number of aphids per 
wheat tiller. The one-dimensional decision vector consists of the decision to 
spray or not to spray. Stochasticity is introduced into the system by rk, describing 
the probabilities (Pr) of the two weather types. The values of variables defining 
the system at level k — 1 are given in Table 38, which also represents the 
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no spray 

\ spray 

Figure 83. Illustration of a stochastic DP-problem. In each state at each level two 
decisions may be made: 'spray' or 'no spray.' In each case two type of weather conditions 
may occur: warm or cool. 

Table 38. Chemical control of aphids as an example of stochastic dynamic programming: 
values of the variable defining the system at level k — 1. 

*k-i = 5 

dk 

r. 
lk 

JO (no spray) 

[ l (spray) 

f 1 (cool), Pr(rk = 1) = 0.8 

" 12 (warm), Pr(rk = 2) = 0.2 

rk 

h 

l 
2 

for xk 

dk 

- i = 5: 

0 

10 
20 

1 

1 
5 

Gk 

rk 

1 
2 

for X k - 1 ~ 

dk 

= 5: 

0 

35 
100 

1 

205 
225 
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evolution of the system from level k — 1 to level k. For reasons of clarity, 
calculation of the value function in only one decision period is discussed. 
Calculations for the other periods proceed analogously. 

The number of aphids in the state vector xk_! is a continuous variable. 
However, the value function can be calculated only for a finite number of states. 
Therefore, the value function is calculated for a number of discrete values of xk 

and the intermediate values are found by linear interpolation. Suppose Vk(xk) is 
known for xk = 1, xk = 5, xk = 20. Then Vk(10) = Vk(5) + l/3(Vk(20) - Vk(5)). 

The value function for xk_ t = 5 can now be calculated: 
COOL WARM 

Vk_! (5) = min [0.8{Gk(5,0,1) + Vk(10)} -f 0.2{Gk(5,0,2) + Vk(20)}> no spray 
dk = 0 , l 

0.8{Gk(5,l,l) + Vk(l)} + 0.2{Gk(5,l,2) + Vk(5)}] spray 

With the value function Vk(xk) known (the calculation proceeds backwards), 
Vk _ j (5) is determined. 

5.2.5 Simulation analysis of complex decisions 

Both linear and dynamic programming have a number of limitations. Linear 
programming employs fixed coefficients which may in fact be dynamic. This can 
be overcome by repeatedly solving the LP-problem with newly calculated coeffi
cients, a time-consuming procedure. Another limitation is the handling of ran
dom events. Post-optimal (sensitivity) analysis does not always suffice to esti
mate the effect of uncertainty in the system. Finally, the model must be linear in 
the decision variables, a limitation which is hard for many biologists and 
agronomists to accept, although recently, interesting solutions have been devel
oped (de Wit et al., 1988). 

Dynamic programming requires simplified systems with only few state vari
ables, as the computational task soon becomes too large to handle. In the aphid 
example of Subsection 5.2.4, the number of aphids was the only component 
describing the state. Other components may include the development stage of the 
crop, if this interacts with the animal population, or the spraying decisions of 
previous periods, if residual effects of chemicals are modelled. As a general rule 
the 'curse of dimensionality' limits the number of state variables to 5 or 6. The 
inclusion of random events, the number of discrete values of a state component, 
the complexity of the transformation function and the computer facilities avail
able may alter this figure. 

Most of the optimization techniques developed so far are not very suitable for 
dealing with the combined effects of uncertainty, dynamic interaction between 
decisions and subsequent events, and complex interdependencies among the 
variables in the system. When dealing with such a problem, simulation may be 
a useful tool. 

Similar to LP and DP, the system is described in terms of state variables, 
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decision variables and a transformation function. However, simulation does not 
involve a fixed algorithm. The effect that the choice of decision variables has on 
model output is evaluated using an objective function. Different series of decision 
variables can be fed through the model and assessed with respect to efficacy. 
Thus, simulation is used as a numerical search method, which is very flexible. 
However, because of the absence of a predescribed solution structure, conver
gence of subsequent solutions to an optimal solution is not guaranteed as in LP 
and DP. This is a serious limitation. 

System dynamics are simulated with a fixed-time increment or with an event-
step increment. In the former case, the procedure is similar to that described in 
the previous Sections: the state of the system is updated once per time step. In this 
way, a continuous process is mimicked. In the latter case, the state of the system is 
updated at time steps, the length of which is dictated by the occurrence of events 
defined in advance. An example of a discrete event simulation model is described 
by Tourigny (1985) who simulated the foraging behaviour of Rhagoletis 
pomonella, the apple maggot fly. This insect searches apple trees for host fruits in 
which to lay eggs. The fruits are patchily distributed, as they occur in clusters. 
Once a fruit has been accepted for oviposition, it is marked to avoid secondary 
parasitism. In the model, three events were defined: (1) systematic search of the 
host tree for fruit clusters, (2) assessment of the fruits within a cluster for 
oviposition and (3) oviposition. 

The occurrence of an event is a random variable. The time to complete an event 
is also described by a probability distribution. Events can only occur in a logical 
order: oviposition is not considered before assessment of fruits has occurred. 

In the computer model, an event-list defines the state of the system. The 
event-list gives the last event that occurred, and its completion time. Upon 
completion of an event, the next event is added to the list, based upon the 
outcome of the previous event and the random variables generated. The foraging 
behaviour of individual flies is thus simulated until they emigrate from the host. 

Management simulation models may be either deterministic or stochastic. 
Deterministic models are useful in retrospective analysis of decisions. An 
example is the assessment of the efficacy of pesticide applications on cereal aphids 
by British farmers in 1975 and 1977 (Watt et al., 1984). Based on a model of aphid 
damage, which was correlated to aphid density, the effect of spray timing was 
evaluated. The evaluation consisted of the repeated execution of a computer 
program, each time with a different application date of the chemical. Finally, the 
optimal decisions were compared with the actual decisions and the differences 
were expressed in financial terms. 

Stochastic management models include random phenomena. In crop protec
tion, these may be weather variables, sampling errors, immigration of pests, etc. 
The term risk analysis is often applied to such decision models. For example, 
consider a farmer who wishes to minimize expected costs attributable to aphids, 
subject to the constraint that the risk of incurring high costs should not exceed 
a certain threshold. If he does not spray, both the risk and the expected costs are 
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high. If he sprays frequently, the risk of aphid outbreaks may be sufficiently low, 
but the expected costs are again high due to the application costs. Less frequent 
treatment, and appropriate timing, may satisfy the objective. In this situation, 
simulation of the decision problem is useful since: (1) the number of decisions is 
large (a farmer may spray every day of the growing season), (2) the interactions 
between crop, aphids and environment are complex and (3) as a result of (2) no 
analytical solution exists for the probability distribution of costs. 

The usefulness of a stochastic model in this case depends on the extent to which 
the stochastic variables influence damage. This example is treated in detail by 
Rossing(1988). 

5.2.6 Final remarks 

Decision-optimization models may be used strategically or tactically. In the 
first case, the optimal solution for a number of initial conditions is calculated and 
tabulated or otherwise stored. The decision maker then refers to these tables. In 
the case of tactical or on-line use, the optimization model is run for one specific set 
of initial conditions. The approach chosen to disseminate information depends 
on the problem. 

The value of optimization models depends on the quality of the pathosystem 
description. Poor models of the ecophysiological aspects of population dynamics 
and damage may yield unrealistic optimal decisions. This is especially true for 
DP where optimization is carried out over a large planning horizon, i.e. the 
period of time for which optimal decisions are calculated. Thus, errors when 
describing the state of the system at the end of the season, affect the first optimal 
decision calculated. The extent to which this occurs must be evaluated for each 
case in sensitivity runs with the decision model. 

Whether or not further research into certain biological aspects is worthwhile, 
can be evaluated by sensitivity analysis of the decision model. For efficient 
planning of biological research activities, it is advisable, therefore, to combine the 
development of biological models for decision purposes with the development of 
optimization models. 
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