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STELLINGEN 

1. De door Weyh & Maschwitz (1982) uitgevoerde experimenten 
met betrekking tot het bestaan van spoorstoffen bij de rupsen 
van Iphiclides podalirius, vormen onvoldoende rechtvaardiging 
voor hun conclusie dat er sprake is van een vluchtige 
signaalstof. 

Weyh. R. & Maschwitz, U. (1982) Individual trail marking by larvae of 
the scarce swallowtail Iphiclides podalirius L. (Lepidoptera; 
Papillonidae). Oecologia 52: 415-416. 

Sabelis, M.W. & Dicke, M. (1985) Long range dispersal and searching 
behaviour. In: W. Helle & M.W. Sabelis (eds.) Spider mites. Their Biology, 
Natural Enemies and Control. World Crop Pests IB: 141-160. Elsevier, 
Amsterdam. 

2. De door Borst (1984) voorgestelde methode om via 
electroantennogrammen aantallen geur-receptorcellen te 
bepalen, kan - in het licht van de resultaten van onder andere 
De Jong & Visser (1988) - niet langer als juist beschouwd 
worden. 

Borst, A. (1984) Identification of different chemoreceptors by 
electroantennogram-recording. J. Insect Physiol 30: 507-510. 

De Jong, R & Visser, J . H. (1988) Specificity-related suppression of 
responses to binary mixtures in olfactory receptors of the Colorado 
potato beetle. Brain Research 447:18-24. 

3. In plaats van de door Fitzgerald & Peterson (1988) gebruikte 
term "sociaal" voor sommige gregair levende rupsesoorten 
verdient de aanduiding "pre-sociaal" de voorkeur. 

Fitzgerald, T.D. & Peterson, S. C. (1988) Cooperative foraging and 
communication in caterpillars. BioScience 38: 20-25. 

4. De methodologie voor de analyse van extracellulaire zintuig-
fysiologische afleidingen is onvoldoende gedefinieerd. 

5. In het kader van milieu maatregelen moet het als een 
verbijsterend voorbeeld van kortzichtigheid beschouwd worden 
dat men, kennelijk op grond van economische motieven, niet 
verder komt dan het geleidelijk afbouwen van de produktie van 
Chloorfluorkoolwaterstoffen. 

De Volkskrant 15 oktober 1988. 



6. Geïntegreerde plaag bestrijding heeft geen werkelijke 
toekomst zonder een drastische verandering in de houding van 
de consument ten opzichte van niet volledig gave produkten. 

7. Risico's van moderne technologieën worden veelal 
gedomineerd door menselijke factoren. Het voorstel van Islam 
& Lindgren (1986) om risicoschattingen te baseren op een 
analyse van de werkelijke frequentie's van ernstige 
ongelukken, in plaats van op combinatie van de geschatte 
faalkansen van afzonderlijke onderdelen, verdient daarom 
nadrukkelijk aandacht. 

Freudenberg, W.R (1988) Perceived risk, real risk: Social science and the 
art of probabilistic risk assessment. Science 242: 44-49. 

Islam, S. & Lindgren. K. (1986) How many reactor accidents will there 
be? Nature 322: 691-692. 

Het invoeren van "road pricing" door middel van het 
aanbrengen van sensoren in het wegdek brengt ernstige 
risico's voor de privacy met zich mee. 

Niet zozeer het feit dat er sprake is van het opzetten van 
spermabanken met sperma van "genieën" moet verbazing 
wekken, als wel het feit dat het mogelijk zou zijn deelnemers 
voor zo'n project te vinden. 

10. Arts assistenten zijn de slaven van deze tijd, jonge 
wetenschappers de voortdurend rondtrekkende zigeuners. 

11. De kunstmatig intelligente systemen van de toekomst zullen als 
hulpeloze baby's ter wereld komen en zullen moeten 
beschikken over een immuunsysteem tegen virussen en 
wormen. 

Kupersteln, M. (1988) Neural model of adaptive hand-eye coordination 
for single postures. Science 239: 1308-1310. 

Marshall. E. (1988) Worm Invades computer networks. Science 242: 855-
856. 
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Figure 1 Rasterscanning electronenmicroscopische foto van de kop van 
Yponomeuta cagnageüus, van onderen gezien. In het midden van de foto 
is het spinselorgaan zichtbaar, met een nog steeds aanwezig stuk 
spinseldraad. Daarboven zijn de spitse palpen en de wat bredere galea 
zichtbaar, die gebruikt worden voor het waarnemen van reuk en 
smaakprikkels. Deze organen zijn zo geplaatst dat ze de ruimte voor de 
mondopening bestrijken. Hierboven zijn de twee kaken te zien afgedekt 
door de plaatvormige bovenlip. Aan weerszijde hiervan zijn de 
gedeeltelijk ingetrokken antennen zichtbaar die reukzintuigen bevatten. 
Nog verder naar de buitenzijde ligt een cirkelvormige groep van 6 
enkelvoudige ogen. In de hals is de uitgang van het halsorgaan zichtbaar 
juist voor het voorste paar poten. De gehele kop is bedekt met lange 
tastharen. 

Rasterscanning electron micrograph of the ventral side of the head of 
Yponomeuta cagnageüus . In the center of the picture the spinneret can 
be seen with a silken thread still attached to it. Anterior from this 
structure the maxillary palps and galea, used for olfaction and taste are 
visible, conveniently situated in front of the mouth. The two mandibles 
covered by the labrum are placed further anterior .The (partly retracted) 
antennae, bearing olfactory sensilla are located on each side of the 
mandibles, and further lateral, 6 simple eyes can be seen. In the neck 
region, just anterior of the first thoracal legs, the exit of the prothoracic 
organ is visible. The whole headcapsule is covered with tactile hairs. 



la. Inleiding en samenvatting 

Chemische verbindingen spelen een belangrijke rol in het 
gedrag van insekten. Bekende voorbeelden zijn de sex-lokstoffen 
van motten en vlinders en de aggregatiesignalen van bastkevers. 
Sociale insekten, zoals bijen, wespen, mieren en termieten, 
produceren chemische stoffen die een rol spelen in de organisatie 
van de kolonie. Veel soorten gebruiken ook spoorstoffen 
(spoorferomonen) voor oriëntatie en voor het markeren van routes 
in hun omgeving. Het gebruik van spoorstoffen is echter niet 
beperkt tot sociale insekten, maar wordt ook gevonden bij 
verschillende rupsesoorten. 

J.H. Fabre beschreef al in 1922 nauwkeurig het volggedrag 
van de processierups. Hij verklaarde zijn waarnemingen door te 
wijzen op de aanwezigheid van spinseldraden die deze (en vele 
andere rupsesoorten) produceren, en die door soortgenoten 
worden gevolgd. Hoewel dit argument tegenwoordig nog steeds 
geldt (Hoofdstuk 2), is het duidelijk geworden dat spoorferomonen 
ook een rol kunnen spelen. De best gedocumenteerde voorbeelden 
worden gevonden bij de Lasiocampidae. In het geslacht 
Malacosoma, de ringelrupsen, zijn spoorferomonen aangetoond die 
informatie overbrengen over de kwaliteit van het voedsel. Sporen 
die naar een hoogwaardige voedselbron leiden worden 
geprefereerd boven sporen naar andere locaties. Ondanks dit goed 
bestudeerde voorbeeld is de kennis over chemische communicatie 
bij rupsen nog zeer beperkt. 

Om meer inzicht te verwerven in het markeren en volgen van 
sporen door rupsen wordt dit gedrag in dit proefschrift bestudeerd 
bij stippelmotten, een groep waaraan veel werk gedaan is in het 
kader van een multi-disciplinair onderzoeksprogramma naar 
soortvormingspocessen. De waardplantselectie van de vrouwlijke 
stippelmot wordt verondersteld een belangrijke rol te spelen bij 
de soortvorming. De voedselpreferentie van de rupsen hangt samen 
met voorkeur van het vrouwtje. Dit maakt het interessant te 
bekijken of het soortvormingsproces zich weerspiegelt in een 
differentiatie tussen de sporen van de verschillende rupsesoorten 
naar hun voedsel. 



Er zijn echter nog andere redenen om het spoorvolgen van 
rupsen te onderzoeken. Verschillende eigenschappen van deze 
insekten maken dat zij zich goed lenen voor onderzoek over de 
regulatie van de voedselopname. Het gedrag van een rups is relatief 
eenvoudig, en de primaire functie van het dier (zoveel mogelijk 
eten) wordt niet gecompliceerd door andere activiteiten zoals het 
zoeken naar een partner, of de verzorging van nakomelingen. 

Daarnaast heeft een rups een relatief beperkt zintuigsysteem. 
Slechts ongeveer 90 zintuigcellen zijn beschikbaar voor het 
doorgeven van chemische prikkels uit de omgeving naar het 
centrale zenuwstelsel. Ondanks deze beperkte mogelijkheden 
kunnen rupsen zeer sterke voedselvoorkeuren vertonen. Veel 
soorten zullen liever van honger omkomen dan te eten van een 
andere plant dan hun eigen voedselplant. Deze combinatie van 
factoren maakt rupsen zeer geschikt voor onderzoek naar het 
verband tussen zintuiglijke prikkels en gedrag. Daarnaast biedt ook 
de mogelijke integratie van verschillende prikkels een interessant 
perspectief. Receptoren voor sexferomonen zijn in het algemeen 
gescheiden van die voor het waarnemen van prikkels die 
samenhangen met voedsel. Spoorferomonen daarentegen, bezitten 
in dit geval een nauwe band met voedsel. Dientengevolge kan 
verwacht worden dat ook de zintuiglijke verwerking niet langs 
strikt gescheiden kanalen zal lopen. 

De doelstellingen van dit onderzoek kunnen als volgt worden 
samengevat: Ten eerste, worden er spoorferomonen gebruikt door 
de stippelmotlarven, en zo ja, bestaan er dan verschillen tussen de 
verschillende soorten? Vervolgens moet worden vastgesteld welke 
receptoren gebruikt worden voor de waarneming van deze prikkel. 
Het is dan interessant te bepalen of deze informatie al dan niet 
geïntegreerd verwerkt wordt met prikkels van het voedsel. 

Als eerste stap in een analyse van dit systeem moet echter 
basis-kennis verzameld worden over het spoorvolggedrag zelf, de 
chemische stoffen die daar een rol bij spelen, de zintuigen die 
gebruikt worden en de oecologische betekenis ervan voor het dier. 
Deze vragen vormen de belangrijkste onderwerpen in dit 
proefschrift. 



De meeste experimenten zijn uitgevoerd met Y. cagnagellus 
(Fig. 1). Deze soort komt algemeen voor in Nederland en is zeer 
geschikt voor gedragsstudies. Bovendien blijven de rupsen 
gedurende hun gehele ontwikkeling bij elkaar, waardoor ze voor de 
hand liggende kandidaten zijn voor onderzoek naa r 
spoorferomonen. In sommige delen van het onderzoek werden ook 
Malacosoma rupsen gebruikt, waardoor een vergelijking mogelijk 
werd met een soort met goed beschreven spoorvolggedrag en een 
geïdentificeerd spoorferomoon. 

Spoorvolggedrag van Y. cagnagellus 

In hoofdstuk 2 werd onderzocht of Y. cagnagellus inderdaad 
spoorvolggedrag vertoont. Uit de resultaten van tweekeuzetoetsen 
bleek duidelijk dat dit het geval is. Bovendien werd duidelijk dat 
de aanwezigheid van spinseldraden een rol kan spelen. 

Y. cagnagellus maakt geen onderscheidt tussen zijn eigen 
sporen en die van een vijftal andere stippelmotsoorten, maar wel 
ten opzichte van sporen van ringelrupsen. Dit gebrek aan 
soortspecificiteit komt ook voor bij andere insektensoorten m.b.t. 
spoorferomonen, en berust waarschijnlijk op de, in vergelijking 
met sexferomonen, indirekte koppeling tussen het signaal en het 
voortplantingssucces. 

De spoorstof 

Hoewel het bestaan van spoorvolggedrag werd aangetoond in 
hoodstuk 2, is daarmee nog niet bewezen dat hierbij een 
spoorferomoon betrokken is. Het bewijs dat een chemische 
verbinding in het volgedrag een rol speelt wordt in hoofdstuk 4 
gegeven. Deze signaalstof is in water oplosbaar, en blijft (in het 
laboratorium) langdurig werkzaam. Gedragsexperimenten met 
extracten van klieren en delen van het lichaam laten zien dat de 
stof uitsluitend aanwezig is in de spinselklieren. Van daar uit wordt 
het waarschijnlijk met het spinsel mee uitgescheiden. 



Het gebruikte zintuig 

In hoofdstuk 3 wordt vastgesteld welk zintuig gebruikt wordt 

voor de waarneming van het spoor. In dit hoofdstuk wordt een 

vergelijking gemaakt met de r ingelrups Malacosoma americanum, 

een bekende spoorvolger. Bij rupsen zijn zintuigen aanwezig op de 

a n t ennen , de t a s t e r s (palpen) van de onderkaak , en a an de 

binnenzijde van de bovenlip. Door systematisch verwijderen van de 

verschillende belangrijke zintuigen werd aangetoond da t zowel bij 

Malacosoma a ls bij Yponomeuta de palpen noodzakelijk zijn voor de 

waarneming van het spoor. Aangezien zowel de plaats van herkomst 

als de aard van de spoorstoffen in hoge mate verschilt bij deze twee 

soorten, behorend tot verschillende families, is deze overeenkomst 

waarschijnlijk het gevolg van convergentie van de receptorfunctie. 

De palpen bevatten receptoren voor zowel smaak als reuk, 

maa r de spoorstoffen worden kennelijk waargenomen met de 

smaakzin. 

Dit volgt u i t de observatie da t met fijnmazig nylon gaas 

afgedekte s po ren n ie t meer k u n n e n worden gevolgd. Deze 

conclusie is in overeenstemming met het feit dat de spoorstoffen 

een grote stabiliteit en lange levensduur bezitten, e igenschappen 

die op een geringe vluchtigheid wijzen. 

Electrofysiologie van de palp 

De palp bevat een aanzienlijk deel van de gehele zintuigelijke 

u i t rus t ing van de r ups (30-40 chemoreceptoren, meer d an 1/3 

deel van he t totaal). Desondanks is s lechts heel weinig over deze 

z i n tu igen b ekend . Daa rom werd een e lec t rofys iologische 

inventarisatie van de aanwezige receptoren uitgevoerd (Hoofdstuk 

5). De zintuigharen zijn te klein voor het toepassen van de normale 

afleidtechniek via de tip van de sensillen. Smaakprikkels werden 

daarom aangeboden a an alle zintuigen op de palptop met een 

relatief wijde s t imuluspipet, terwijl de activiteit van s lechts enkele 

zintuigcellen selectief werd opgepikt met behulp van een capillaire 

micro-electrode en vastgelegd op een magnet i sche b and voor 

latere analyse. 



Om dit analyseproces te vereenvoudigen werd een computer 
programma geschreven (Hoofdstuk 7). De gekozen methode is 
gebaseerd op een voortdurende interactie tussen het programma 
en de gebruiker, waarbij het programma gebruikt wordt als 
instrument voor de manipulatie en weergave van de gegevens. 

Als stimuli voor de reukzintuigen werden plantengeuren 
gebruikt, terpenen en C6 verbindingen uit de vetzuur­
stofwisseling, de zgn 'groene geuren'. Deze prikkelstoffen werden 
gedeeltelijk gekozen op grond van de resultaten van een 
chemische analyse van het geurcomplex rondom de waardplant van 
Y. cagnagellus, de kardinaalsmuts [Euonymus europaeus). De 
smaakzintuigen werden gestimuleerd met zoutoplossingen en met 
extracten van spinsels. 

Er zijn aanwijzingen gevonden voor het bestaan van twee 
groepen van geur-receptoren. De ene groep is het meest gevoelig 
voor (E)-2-hexenal en hexanal (aldehydes) en de andere voor (Z)-3-
hexen-1-ol en 1-hexanol (alcoholen). Ook werden receptoren 
gevonden die reageren op een extract van (spoor) spinsel, en dus 
waarschijnlijk op de spoorstof. Deze cellen hebben niet die hoge 
mate van specialisatie die vaak aangetroffen wordt bij receptoren 
voor sexferomonen van vlinders, maar lijken meer op de minder 
gespecialiseerde receptoren voor stimuli uit voedsel. 

De resultaten uit de voorgenoemde hoofdstukken vormen 
tezamen een sterke indicatie voor het bestaan van een spoorstof bij 
Y. cagnagellus, die wordt uitgescheiden met het spinsel en 
waargenomen door contact-chemoreceptoren in de palpen. 

Oecologische en evolutionaire aspecten 

De vraag hoe de spoorstof gebruikt wordt, en wat de 
oecologische en evolutionaire betekenis van zo'n signaal kan zijn, 
wordt gesteld in hoofdstuk 6. Bij sociale insekten en ook bij de 
ringelrupsen worden spoorstoffen gebruikt om soortgenoten naar 
een goede voedselbron te leiden (de zgn. recruitering). Dit blijkt 
niet het geval te zijn bij de stippelmotrupsen. Uit veldobservaties is 
gebleken dat groepen rupsen hun gezamenlijk spinselnest tijdens 
de larvale levensduur enige malen verplaatsen, soms over vrij 



aanzienlijke afstanden. De spoorstof kan een rol spelen in het 
bijeen houden van de groep gedurende deze verhuizingen. Dit 
roept de vraag op waarom het voordelig zou zijn voor de rupsen 
een groep te blijven vormen. Verscheidene auteurs hebben 
hiervoor goede redenen aangevoerd. Er moet echter opgemerkt 
worden dat er ook duidelijke nadelen verbonden zijn aan 
groepsvorming, bijvoorbeeld doordat er voedselconcurrentie kan 
ontstaan. In hoofdstuk 6 wordt een simpel evolutionair model 
gebruikt als hulp bij een beschouwing over de invloed van deze 
positieve en negatieve effecten op de evolutionaire stabiliteit van 
groepsgedrag. Een van de resultaten hiervan is dat het 
waarschijnlijk zinvol is om groepsgedrag te klassificeren aan de 
hand van het moment waarop een overgang plaatsvindt van een 
strategie die het bijeenblijven van de groep bevordert naar een 
strategie die resulteert in solitair voedselzoeken. 



lb. Introduction and summary 

The importance of chemical cues in insect behaviour is well 
established (Bell & Cardé, 1984). The best known examples 
include the sex pheromones of butterflies and moths, and the 
aggregation pheromones of bark beetles. In eusocial insects (bees, 
wasps, ants, and termites) pheromones are widely used to maintain 
the organization of the colony. Many of these species produce 
chemical markers (trail pheromones) and deposit them on 
terrestrial trails that lead to food sources or nesting sites. Trail 
pheromones may also serve as cues in home range orientation and 
can facilitate migration of colonies (Attygalle & Morgan, 1985). 
However, trail following is not confined to eusocial species and is, 
for instance, also found in the Lepidoptera. Fabre (1922) already 
described the striking following behaviour of the procession 
caterpillar Thaumetopoea pityocampa (Denis & Schiffermüller). To 
explain his observations, he stressed the importance of tactile 
stimuli from the silken treads that these (and other) caterpillars 
produce, and that can be followed. Although this argument still 
holds today (Chapter 2), it has become clear that, in addition to 
silk, chemical trail markers may also be important in the social 
behaviour of caterpillars (Fitzgerald & Peterson, 1988). The best 
documented examples are found in the Lasiocampidae. In 
Eriogaster lanestris trail marking was demonstrated by Weyh & 
Maschwitz (1978), and in the genus Malacosoma chemical trails 
convey information about the quality of a feeding site, and recruit 
other larvae to these places (Fitzgerald & Peterson, 1983; 
Peterson, 1988). In spite of these thoroughly studied examples, 
knowledge about chemical communication in caterpillars is 
limited, and mainly restricted to the Lasiocampidae. To gain more 
insight in trail following and trail marking in the Lepidoptera it is 
necessary to study this behaviour in other families. 

This thesis focuses on caterpillars of small ermine moths, 
members of the genus Yponomeuta. This group has been studied in 
the context of a long term multi-disciplinary research program on 
speciation, and host plant selection is thought to be an important 
element in the speciation process (Wiebes, 1976). Food 
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preferences of larvae are related to host preferences of female 
moths. This makes it interesting to see whether speciation is 
accompanied by interspecific differences in larval trails to feeding 
sites. 

There are additional reasons to investigate trail marking and 
following in the Lepidoptera. Caterpillars have been advocated as 
model systems in the study of feeding behaviour (Schultz, 1983; 
Schoonhoven 1987), in part because their behaviour is relatively 
simple. A caterpillars primary function, gathering as much food as 
possible, is not complicated by tasks such as mate finding or taking 
care of offspring. In addition the sensory system is limited. Only 
about 90 chemosensory cells function in translating chemical 
messages from the environment into signals for the central 
nervous system (Albert, 1980; Devitt & Smith, 1982; 
Schoonhoven, 1987). In spite of this restricted number of input 
channels, caterpillars can display striking food preferences, and 
will often die from starvation, rather than accept a non-host plant. 
Such behaviour, together with the possibility of tracing sensory 
connections into the central nervous system (Kent & Hildebrand, 
1987) make caterpillars a good choice for studying the relationship 
between neurophysiology and behaviour. 

A further point of interest is the possible integration of 
sensory information. The receptors for sex pheromones are in 
general separated from those that perceive stimuli associated with 
food. Trail pheromones of caterpillars bear a close relation to food 
finding. Therefore these insects may have an integrated receptor 
system that responds to both food and trail pheromone stimuli. 

The objectives of this study were (1) to determine whether 
trail pheromones are employed by Yponomeuta and, if so, whether 
they differ in different species, (2) To identify receptors 
responsible for pheromone detection, and (3) to determine 
whether these receptors operate in an integrated way with 
receptors for food perception. However, as a first step in the 
analysis of this system basic knowledge must be gained about trail 
following behaviour itself, the chemicals involved, the senses used 
and the oecological context in which it functions. These questions 
form the main topics of this thesis. 



Most experiments were performed on larvae of Y. cagnagellus 
(Hübner) (Fig. 1). This species is common in the Netherlands and 
suitable for behavioural studies. In addition, the caterpillars are 
gregarious throughout their development, suggesting that they may 
use a trail marker. Malacosoma caterpillars were used in some 
experiments to allow comparison to a species with well defined 
trail following behaviour, and an identified trail pheromone. 

Outline of the thesis 

Trail following in Y. cagnagellus 

The study begins by asking whether Y". cagnagellus in fact 
exhibits trail following behaviour (chapter 2). Two-choice tests on 
filter paper Y-mazes show clearly that this is the case. In addition it 
is demonstrated that a tactile component of the trail (the silk) can 
be used as a cue. Y. cagnagellus does not discriminate between its 
own trails and those of 5 other Yponomeuta species, but does 
prefer its own trails over those of M. neustria. This lack of species 
specificity within the genus is, in contrast to sex pheromones, not 
uncommon for trail pheromones, possibly because the relationship 
between mating success and the signal is indirect. 

A chemical marker 

The existence of trail following behaviour does not by itself 
prove that a chemical marker is involved. Evidence for the 
presence of a chemical signal is presented in chapter 4. The 
marker appears to be water soluble, and highly stable under 
laboratory conditions. Behavioural responses to extracts from 
several glands and body parts show that the marker is present in 
the labial glands (the silk gland) only. Therefore, the marker is 
probably secreted with the silk. 



The receptors involved in trail following behaviour 

Chapter 3 describes the sensory organ used for the 
perception of the trail. In this chapter a comparison is made with 
the American tent caterpillar Malacosoma americanum, a known 
trail follower (Fitzgerald, 1976). Chemoreceptors in caterpillars 
are located on the antennae, the maxillary palps, the galea and on 
the inner side of the labrum (Fig. 1). Systematic removal of various 
relevant structures shows that the maxillary palps are necessary for 
the detection of the trail in both M. americanum and Y. cagnagellus. 
Since the source of the trail marker, as well as its chemical 
composition, differs between the two species, this is most likely an 
example of convergence of chemoreceptor function. 

Although the maxillary palps contain olfactory as well as 
gustatory receptors, the trail markers seem to be perceived only by 
contact chemoreception. This follows from the observation that 
trails covered with fine nylon mesh do not elicit any response. 
Moreover the long lifetime and stability of the markers, suggest 
that they have a low volatility. 

Electrophysiology of the maxillary palp 

Although the palps house a considerable fraction of the 
sensory equipment of a caterpillar (30-40 cells, more than 1/3 of 
the total), only very little is known about these organs. Therefore 
an electrophysiological survey of the chemoreceptors was 
conducted (Chapter 5). Because the sensilla are too small for tip 
recording, gustatory stimuli were applied to the whole tip of the 
palp. Electrical activity of only a few cells at a time was recorded 
with a glass microcapillary electrode. To aid analysis, a computer 
program was developed (Chapter 7). Following the ideas of van 
Drongelen et al. (1980), the program was designed to be highly 
interactive and to function as both as a display- and manipulation 
tool. 

Plant volatiles were used as olfactory stimuli (terpenoids and 
C6 fatty acid derivatives or 'green odours', Visser & Avé, 1978). 
These were chosen in part on the basis of the results from a 
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dynamic headspace analysis (Cole, 1980) of Euonymus europaeus, 
the host of Y. cagnagellus. Silk extracts and salt solutions were 
employed as gustatory stimuli. Evidence was found for the 
existence of two groups of olfactory receptor cells, sensitive to (E)-
2-hexenal and hexanal (aldehydes) or to (Z)-3-hexen-l-ol and 1-
hexanol (alcohols). Receptors responsive to the silk extracts (and 
probably to the trail pheromone) were also identified. These cells 
do not show the degree of specificity typical of cells specialized for 
lepidopteran sex pheromones but, rather, resemble the generally 
more broadly tuned receptors for food components. 

The results from this and the preceding chapters strongly 
suggest the existence of a chemical trail marker in Y. cagnagellus, 
secreted with the silk and detected by contact-chemosensory 
neurons housed in the maxillary palps. 

Oecological and evolutionary aspects 

Chapter 6 addresses the the oecological and evolutionary 
relevance of such a signal. In eusocial insects as well as in 
Malacosoma, trail pheromones are often used to recruit siblings to 
high quality feeding sites (Peterson, 1988). In Y. cagnagellus this 
does not happen, but field observations have shown that a groups of 
caterpillars moves its silken nest over considerable distance, on 
average four times during development. The trail marker could 
help to maintain gregariousness during these migrations. Thus, it 
is of interest to ask whether gregariousness is advantageous. While 
many authors have discussed the benefits of larval aggregation (e.g. 
Tsubaki, 1981; Fitzgerald & Peterson, 1988; Weaver, 1988), 
gregariousness may also be associated with distinct disadvantages, 
for instance those arising from competition for food (Charnov et al., 
1976). In chapter 6 a simple evolutionary model is presented to 
analyze the influence of these conflicting parameters on the 
evolutionary stability of gregarious behaviour. One result from this 
study is that it would be informative to classify larval behaviour in 
terms of the time of which larvae switch from gregariousness to 
solitary food searching. 

1 1 
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2. The trail following behaviour of Yponomeuta cagnagellus. 

Peter Roessingh 

Abstract 

In this study the trail following behaviour of the caterpillar 
Yponomeuta cagnagellus (Hübner) (Lepidoptera, Yponomeutidae) is 
investigated. It is demonstrated that these caterpillars follow trails 
made by conspecifics. Ablation experiments show that at least part 
of this behaviour is directed by the tactile senses, but additional 
chemical cues cannot be excluded. In choice experiments, using 
trails from different species, Y. cagnagellus strongly preferred 
conspecific trails over those from Malacosoma neustria , but did 
not prefer conspecific over other Yponomeuta trails. This lack of 
species-specificity within Yponomeuta is discussed and it is 
concluded that trail following is probably of little help in the 
elucidation of the evolutionary history of the genus. 

Introduction 

Trail following is well known from many eusocial insects (e.g. 
ants, termites and bees). It is often based on chemical markers 
conveying information about potential food sources, mates or 
resting sites (Butler, 1970). In ants this system is often highly 
refined, and facilitates finely-tuned interactions between colony 
members (Bradshaw & Howse, 1984). However, trail following is, 
not confined to eusocial species and has been documented for a 
number of other taxa (Fitzgerald, 1976; Cook, 1979, Maschwitz & 
Gutmann, 1979; Tietjen & Rovner 1982; Chelazzi et al, 1985). 
Lepidopterous larvae provide some of the best known examples, 
and Fitzgerald & Peterson (1983) even suggest that the diversity of 
trail systems in the Lepidoptera might parallel that found in the 
Formicidae. To evaluate such a claim, we must substantially 
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improve our presently poor understanding of trail following 
behaviour in this group (Silberglied, 1977; Fitzgerald & Peterson, 
1983). 

In this study, trail following in Yponomeuta cagnagellus 
(Hübner) (Lepidoptera, Yponomeutidae) is investigated. Caterpillars 
of this species live gregariously in silken webs on the spindle tree 
Euonymus europaeus, and remain aggregated through pupation 
(Hoebeke, 1987). Feeding takes place at the periphery of the web, 
which is gradually extended to encompass new leaves. If the local 
food supply is exhausted, the group moves to a new feeding site. 
During locomotion silken threads are produced. This results in 
trails composed of silk and possibly chemical markers. In this 
respect, it is important to separate the concept of "trail following", 
a behaviour which might be based on several cues, from the 
existence of a "trail pheromone", one of the possible cues that 
elicits trail following. Here the trail following behaviour of Y. 
cagnagellus is investigated with special attention to the importance 
of tactile cues, a trail component that has received little attention 
to date. 

Y. cagnagellus is one of nine European Yponomeuta species 
which show various degrees of taxonomie relationship (Povel 
1984), and which have been used to study the stages in a 
speciation process (Herrebout et al, 1976; Wiebes 1976). 
Therefore, the response of V. cagnagellus towards trails from other 
Yponomeuta species is also evaluated, to determine whether 
speciation in this group has been accompanied by differentiation of 
trail following behaviour. It should also provide more insight in the 
specificity of lepidopterous trail pheromones in general. 

Materials and Methods 

Insects 

Yponomeuta evonymelius (L.), Y. cagnagellus (Hübner), Y. 
malinellus Zeller, Y. padellus (L.), Y. rorellus (Hübner) and Y. 
vigintipunctatus (Retz.), were collected in the field from their host 
plants. Species in the padeüus-complex, (see Povel, 1984 for 
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discussion), were identified on the basis of the hosts from which 
they were collected. The larvae were reared in the laboratory in 
petri-dishes on host foliage at 25 °C under a 18:6 h L:D cycle. 
Yponomeuta caterpillars migrate during the day as well as during 
the night, but all experiments were conducted during the 
photophase. To obtain silk from another species, Malacosoma 
neustria (Hübner) egg batches were collected from oak and larvae 
were reared on leaves of apple seedlings. Yponomeuta caterpillars 
were used during the first 4 days of their fifth stadium. Malacosoma 
caterpillars were used during their third stadium. At these stages 
the larvae were comparable in size. 

Bioassay 

The trail following behaviour was measured using a Y-maze 
test modified from Fitzgerald and Edgerly (1979). Trails were 
produced by placing caterpillars on 80 cm long, 4 mm wide filter 
paper strips, and allowing them to crawl to the other end. Twenty-
five caterpillars were permitted to move along the paper to 
produce the test strip. The arms of the Y-maze were formed by 4 
cm. long sections cut from either the test strip or a clean control. 
The maze was laid out on a piece of perspex. Its smooth surface 
effectively prevented the larvae from moving off the strips. 

Individual caterpillars were tested by placing them at the 
start of a marked strip that formed the stem of the Y. In a typical 
experiment the larva would follow the strip toward the branch 
point and, after palpating both arms, choose one. A larvae was 
considered to have made a choice when it moved completely on to 
one arm. Caterpillars that left the maze or refused to choose were 
re-tested up to 4 times. If they still failed to choose they were 
excluded from the experiment. Caterpillars that did not move 
within 3 min were also excluded (in a sample of 400 larvae, only 4 
were not testable). To prevent contamination from deposited silk 
or pheromones during the experiment, the Y-maze arms were 
changed after each choice. The stem was re-used. The 
experimental arena received diffused light and was shielded from 
the environment with white paper to prevent orientation to visual 
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Stimuli. The positions of the experimental and control arms were 
reversed after each test. 

The specificity of trail following in Y. cagnagellus w a s 
determined by comparison of the response to conspecific trails 
with response to trails of other Yponomeuta species. The same 
caterpillars were also presented with a choice between Y. 
cagnagellus and M. neustria trails in order to determine whether 
the caterpillars were capable of discriminating between trails. 

Ablations 

Ablations were conducted using a 50 MHz. radio 
microcautery device (Murphy Developments, Hilversum, The 
Netherlands) modified from Unwin (1978). This device allowed 
removal of sensory organs, in most cases without bleeding. Insects 
that did not stop bleeding within 60 seconds were rejected. During 
the operation the larvae were strapped to a glass surface with small 
strips of masking tape. 

The chemosensory organs of caterpillars are present on the 
antennae, the maxillary palpi, the galeae and on the inside of the 
labrum (Schoonhoven, 1987; see also Fig. 1). Except for the 
epipharyngeal organs which do not touch the surface, all structures 
were removed. In a series of experiments each structure was first 
removed individually. Combinations of the operations, (removing 
several sensory structures at the same time) were also performed. 
Control larvae were handled in the same way (i.e. strapped) as the 
experimental group, with the exception of the ablations. 

Statistical analysis 

The Y-maze experiments were analyzed using a G-test (Sokal 
& Rohlf 1981), to determine if the choice ratio between the two 
arms differed significantly from the 1:1 ratio expected under the 
null hypothesis. 
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Figure 1 Ventral view of the head of the fifth stadium larvae of 
Yponomeuta cagnagellus A: Labrum, B: Antenna, C: Galea, D: 
Maxillary palp, E: Labium (Spinneret). Only the most prominent 
of the numerous tactile hairs on the head have been drawn. 
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Results 

Trail following 

Trail following behaviour in V. cagnagellus and its relation to 
the strength of the trail was demonstrated in a series of 
experiments in which trails produced by different numbers of 
caterpillars were used. In Y-maze tests, these trails were compared 
to clean control arms. As shown in Fig. 2, a significant preference 
emerges for trails made by five or more larvae. 

iÇ 100-

10 20 50 100 
Number of larvae depositing trail 

Figure 2. Choice behaviour of fifth stadium Yponomeuta cagnagellus 
larvae in Y-maze tests on trails made by different numbers of Y. 
cagnagellus larvae. Control arms free of trails. N=20 for all data 
points. 

To investigate the influence of tactile cues from the silk, and 
to discriminate between these effects and chemical signals, 
selective ablation experiments would have to be performed. 



removing either all chemosensory or all tactile inputs . In addition 

to c h emo r e c ep t o r s (see S choonhoven , 1987 for review), 

caterpillars a re richly equipped with tactile receptors. These are 

partly associated with the chemosensory organs (Schoonhoven & 

Dethier , 1966; Hanson , 1970), and par t ly located in s e tae 

distributed over the body (Tautz, 1977, 1978; Levine et al, 1985). 

Since it is the head of the caterpillar t ha t is most actively involved 

in scanning the trail, the hairs on this part of the body (Fig. 1) could 

be especially important . Fig. 3 gives an example of an i nput -

response curve from one of these hairs showing t ha t it is indeed 

innervated. The ha i rs contain a single cell t h a t is sensitive to 

deflections as small a s three degrees from the resting position. 
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Figure 3 Stimulus-response curve for the large hair ventro-medial of the 
maxillary palp of Y. cagnagellus. in the fifth stadium. One spike 
was observed in response to displacement of the hair with a 
tungsten hook. The number of replications is given between 
brackets. Vertical bars indicate 95 % confidence interval. 
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Since the tactile receptors are so widely distributed over the 
body, ablating the chemosensory organs is more feasible. Table 1 
summarizes the results of this experiment. Even when all sensory 
organs were ablated, effectively e l iminating external 
chemoreceptors, caterpillars still significantly preferred trails over 
clean controls. 

Table 1. Effect of sensory ablations on trail following behaviour in Y-maze tests of fifth 
stadium Yponomeuta cagnageUus larvae . 

Treatment 

Control 

Antennae removed 

Palpi removed 

Galea removed 

Antennae & palpi 
removed 

Galeae & palpi 
removed 

Antennae, galeae 
& palpi removed 

N 

80 

20 

20 

20 

40 

40 

45 

Y.cagnagell 

t ra i l 

75 

17 

16 

17 

29 

31 

35 

-is l arvae on 

cont ro l 

5 

3 

4 

3 

11 

9 

10 

G 

70.84 •• 

9.18** 

6 . 4 0 « 

9.18** 

7.46** 

11.60** 

13.49 ** 

Trails were made by 25 Y.cagnagellus larvae, and tested against clean controls. G-test for 
goodness of fit to 1:1 ratio, 
ns = p > 0.05 ** = p < 0.01 

In another series of experiments Y. cagnageUus larvae were 
tested on substrates with varying similarity to Y. cagnageUus trails. 
This is another way to exclude the possibility that trail recognition 
occurs solely via chemicals. 
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From Table 2 it can be seen that silk from Y. evonymellus, from a 
species of Malacosoma, from a cocoon of Bombyx mari, and fibers 
pulled from cottonwool were all preferred over clean controls. 

Table 2. Trail following behaviour of fifth stadium larvae of Yponomeuta cagnagellus in 
Y-maze tests on trails from different sources. 

Y. cagnagellus larvae on 

source of trail N trail control G 

Yponomeuta cagnagellus 20 19 1 17.07" 

Yponomeuta evonymellus 20 19 1 17.07' 

Malacosoma castrensis 40 

Bombyx mort cocoon 20 

Cotton wool fibers 20 

Trails were made by 25 larvae, and tested against clean controls. G-test for goodness of fit to 
1:1 ratio. 
ns = p>0.05 * = p<0.05 ** = p<0.01 

33 

17 

15 

7 

3 

5 

16.85 

9.18 

4.20 

Trail specificity 

To test whether Y. cagnagellus larvae prefer their own trails 
over that of other species, trail specificity experiments were 
conducted. Y. cagnagellus did not discriminate among trails made 
by conspecifics and trails made by other Yponomeuta species 
(Table 3). However, Y. cagnagellus larvae prefer a congeneric trail 
over a Malacosoma trail. 
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Table 3 . Trail following behaviour of fifth stadium larvae of Yponomeuta cagnagellus In 
Y-maze tests providing a choice between conspecific and heterospeciflc trails. 

a. test series 

exp. species producing N larvae on trail of 
number test trail 

Y.cagnagellus other species 

1 

2 

3 

4 

5 

Y.evonymellus 

Y.padellus 

Y.malinellus 

Y.rorellus 

Y. uigintipunctatus 

20 

4 0 

40 

4 0 

40 

8 

14 

20 

15 

20 

12 

26 

20 

2 5 

20 

0.45 ns 

3.06 ns 

0.02 ns 

2.04 ns 

0.02 ns 

b. control series 

exp. species producing N larvae on trail of 
number test trail 

Y.cagnagellus M.neustria 

1 

2 

3 

4 

5 

M.neustria 

M.neustria 

M.neustria 

M.neustria 

M.neustria 

20 

4 0 

40 

4 0 

40 

19 

3 5 

34 

3 3 

36 

1 

5 

6 

7 

4 

17.07 " 

23.42 ** 

19.95 ** 

16.85 *• 

27.32 ** 

The same groups of caterpillars were tested in control series on Malacosoma neustria trails 
to verify that they were capable of discriminating between trails. G-test for goodness of fit to 
1:1 ratio. 
ns = p>0.05 * = p<0.05 ** = p<0.01 

Discussion 

Detailed information about trail following behaviour in 
Lepidoptera is limited. The most thoroughly studied examples are 
in the genus Malacosoma. Evidence has been reported for the 
presence of one or more chemical factors eliciting trail following 
(Fitzgerald, 1976; Fitzgerald & Gallagher, 1976; Fitzgerald & 
Edgerly 1979; Fitzgerald & Costa, 1986; Crump et ai, 1987), as 
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well as recruitment to feeding sites (Fitzgerald & Peterson, 1983; 
Peterson 1986, 1987, 1988). In addition to these chemical factors, 
an influence of tactile input from the silk was found (Fitzgerald & 
Edgerly, 1982). This possibly dual nature of caterpillar trails has 
not received much attention. Some authors do not differentiate 
between tactile cues from the silk and chemical signals (Long, 
1955; McManus and Smith, 1972). Others fail to make an 
unambiguous distinction due to the uncontrolled effect of solvents 
on the silk structure (Gallagher & Lanier, 1977; Weyh & 
Maschwitz, 1982), or focus only on the chemical cues ( Weyh & 
Maschwitz, 1978; Capinera, 1980). Kalkowski (1958) concluded 
that although tactile input played a role in trail following in Y. 
evonymellus, a volatile chemical factor was more important. This 
result was not easily reproducible for Y. cagnagellus (Roessingh et 
al, 1988, Chapter 3). 

In the present paper it is shown that trail following does 
occur in Y. cagnagellus and that at least part of this behaviour may 
be explained by responses to tactile cues provided by the silk 
strands (Fig. 1, Table 1 & 2). From this it can be concluded that 
when studying trail following behaviour, care must be taken to 
include controls for the tactile component of the trail. 

The fact that tactile cues are important does not exclude the 
existence of chemical cues. Results from the specificity 
experiments in which Yponomeuta caterpillars differentiated 
between their own trails and trails made by M. neustria suggest 
that such chemical factors exist. This possibility is examined in 
more detail elsewhere (Chapter 4). 

From Fig. 2 it can be deduced that trails from single 
caterpillars do not evoke trail following. This is in contrast to 
Malacosoma, where a single caterpillar is able to recruit its 
tentmates (Fitzgerald, 1976). The significance of this fact is 
difficult to assess. It might indicate that the trail system in 
Yponomeuta, in contrast to that of Malacosoma, does not function 
in recruitment behaviour but, rather, facilitates aggregation during 
exploration. This function for trail following has been mentioned by 
several authors (Long, 1955; Capinera, 1980; Stamp, 1984), and 
might not require the stronger effects typical of mass recruitment 
systems. Interestingly, the gregarious larvae of the bug Elasmucha 
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grisea (L.) produce a trail that functions in this manner and elicits 
significant following only after the passage of about 5 insects 
(Maschwitz & Gutmann 1979). 

In trail pheromone systems, lack of species specificity seems 
to be common. Attygalle & Morgan (1985) and Morgan (1984) 
conclude that in ants trail pheromones are frequently not species 
specific. In termites interspecific interactions also occur 
(Prestwich, 1983). In Lepidoptera it has been shown that different 
species in the genus Malacosoma readily follow each other's trail 
(Fitzgerald & Edgerly, 1979; Crump et al, 1987; Peterson, 1988). 
A notable exception to this pattern is the larva of the scarce 
swallowtail, Iphiclides podalirius L., in which trail recognition at 
the level of the individual has been described (Weyh & Maschwitz, 
1982). 

The general lack of species specificity in trail pheromone 
systems provides a contrast to the usually striking specificity in 
sexual communication systems. Most of the mechanisms proposed 
to explain distinct chemical communication channels are relaying 
on a direct influence of the signal on reproductive success. 
(Hölldobler, 1984; Cardé, 1986; Hölldobler & Carlin, 1987). 
Trail pheromones do not have this direct link to reproduction and 
consequently may change at a low rate, resulting in a limited 
degree of species specificity. West-Eberhard (1983; 1984), 
suggested that intra-specific communication may be either co­
operative or competitive. Co-operative signals have the function of 
coordinating the activities of different individuals in the 
performance of a task that has survival value for the interactants. 
Competitive signals, on the other hand, lead to differential success 
in obtaining some resource. It is thought that the stronger 
selection resulting from social competition can lead to more rapid 
divergence of the communication signal, resulting in greater 
species specificity. According to this hypothesis, highly specific 
signals can also be expected in case of competition for food. This 
might explain the observed specificity of the trails made by 
Iphiclides larvae. These larvae are solitary and show marked 
aggressiveness towards each other. Trail marking in this species 
seems to function in demarcating a foraging territory in a habitat 
with limited resources.(Weyh & Maschwitz, 1982), These signals 
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have a competit ive n a t u r e and would consequent ly be more 

specific. 

In cont ras t , in cases where trail communica t ion is non­

competitive and serves only to coordinate the behaviour of colony 

members , a limited degree of species specificity is expected. This 

expectation is met for Y. cagnagellus (Table 3). To date , only 

in teract ions between Y. cagnagellus and other Yponomeuta s pp . 

have been investigated. However, in the light of the d iscussion 

above, it is unlikely t ha t trail following behaviour will be more 

specific in other species of this genus. Prestwich (1983) concludes 

tha t the lack of specificity of trail pheromones in termites a rgues 

aga ins t their u se in sys temat ics . Given the repor ted lack of 

specificity in t h e t rai l following behaviour wi thin t he g enu s 

Malacosoma (Fitzgerald & Edgerly, 1979; C rump et al, 1987; 

Peterson, 1988) and the results for Y. cagnagellus p resented here , 

th is conclusion also seems justified for gregarious Lepidoptera. 

Therefore, the s tudy of trail following in Yponomeuta is probably of 

little help in the elucidation of the evolutionary history of th is 

genus. 

Acknowledgements 

I t h ank Louis Schoonhoven, Wim Herrebout and Ruurd de 

J o ng for cr i t ical r ead ing of the m a n u s c r i p t a nd va luab le 

discussions, Birgit Nübel for rearing the caterpillars, Frederik von 

P lanta and Piet Kostense for drawing the figures and J u l i a n 

Keenlyside for linguistic corrections. This research was supported 

by a g rant from the Netherlands foundation for Pure Research, 

NWO-BION. 

References 

Attygalle, A.B. & Morgan, E.D. (1985). Ant trail pheromones. Adv. Insect 
Physiol 18, 1-30. 

Bradshaw, J.W.S & Howse, P.E. (1984) Sociochemicals of ants.In:_msect 
Communication (ed. by T. Lewis),pp 429-473. Academic Press, 
London. 

Butler, C.G. (1970) Chemical communication in insects: Behavioral and 
ecologie aspects. Adv. Chemoreceplion 1, 35-78. 

25 



Capinera, J.L. (1980) A trail pheromone from silk produced by larvae of 
the range caterpillar Hemileuca oliviae (Lepidoptera: Saturniidae) and 
observations on aggregation behaviour. J. Chem. Ecol 6, 655-664. 

Cardé, R.T. (1986) The role of pheromones in reproductive isolation and 
speciation of insects. In:Evolutionary Genetics of Invertebrate 
Behavior..( ed. by M.D. Huettel). pp. 303-317.Plenum Press, New 
York. 

Chelazzi, G., Delia Santina, P. & Vannini, M. (1985). Long-lasting 
substrate marking in the collective homing of the gastropod Nerita 
textilis. Biological Bulletin (Woods Hole) 168, 214-221. 

Cook, A. (1979) Homing by the slug Limax pseudoßavus. Anim. Behav. 27, 
545-552. 

Crump, D., Silverstein, R.M., Williams, H.J. & Fitzgerald, T.D. (1987) 
Identification of trail pheromone of the larvae of eastern tent 
caterpillar Malacosoma americanum (Lepidoptera: Lasiocampidae). J. 
Chem. Ecol, 13, 397-402. 

Fitzgerald, T.D. (1976) Trail marking by larvae of the eastern tent 
caterpillar. Science 194, 961-963. 

Fitzgerald, T.D. & Costa III, J.T. (1986). Foraging and trail marking 
behavior of young colonies of the forest tent caterpillar Malacosoma 
disstria Hübn. (Lepidoptera: Lasiocampidae). Ann. Entomol. Soc. 
Amer. 79, 999-1007. 

Fitzgerald, T.D. & Edgerly, J .S. (1979) Specificity of trail markers of 
forest and eastern tent caterpillars. J. Chem. Ecol. 5, 565-574. 

Fitzgerald, T.D. & Edgerly, J .S. (1982) Site of secretion of the trail 
marker of the eastern tent caterpillar. J. Chem. Ecol 8, 31-40. 

Fitzgerald, T.D. & Gallagher, E.M. (1976) A chemical trail factor from 
the silk of the eastern tent caterpillar Malacosoma americanum 
(Lepidoptera : Lasiocampidae). J. Chem. Ecol 2, 187-193. 

Fitzgerald, T.D. & Peterson, S.C (1983) Elective recruitment by the 
eastern tent caterpillar (Malacosoma americanum). Anim. Behav. 3 1 , 
417-423. 

Gallagher, E.M. & Lanier, G.N. (1977) Trail following behavior in the 
gypsy moth caterpillar Porthetria dispar (L.) (Lepidoptera: 
Lymantriidae). Neu; York Entomol. Soc. 85, 174-175. 

Hanson, F.E. (1970) Sensory response of phytophagous Lepidoptera to 
chemical and tactile stimuli. In: Control of Insect Behavior by Natural 
Products ( ed. by D.L. Wood, R.M. Silverstein and M. Nakajima), pp 
81-91, Academic Press, New York. 

Herrebout, W.M., Kuyten, P.J., & Wiebes, J.T. (1976) Small ermine 
moths of the genus Yponomeuta and their host relationships. 
(Lepidoptera: Yponomeutidae). Symp. Biol. Hung. 16, 91-94 

Hoebeke, E.R. (1987) Yponomeuta cagnagella (Lepidoptera: 
Yponomeutidae): A palearctic ermine moth in the United States, with 
notes on its recognition, seasonal history, and habits. Ann. Entomol. 
Soc. Am 80, 462-467. 

Hölldobler, B. (1984) Evolution of insect communication. In: Insect 
Communication (ed. by T.Lewis),pp 349-377. Academic Press, 
London. 

Hölldobler, B & Carlin, N.F. (1987) Anonymity and specificity in the 
chemical communication signals of social insects. J. Comp. Physiol. 
161, 567-581. 

Kalkowski, W. (1958) Investigations on territorial orientation during 
ontogenic development in Hyponomeuta evonymellus L. Lepidoptera, 
Hyponomeutidae. Fol Biol. 6, 245-263. 

Levine, R.B., Pak, C. and Linn, D. (1985) The structure function and 
metamorphic reorganization of somatotopically projecting sensory 
neurons in Manduca sexta larvae. J. Comp. Physiol A 157, 1-13. 

26 



Long, D.B. (1955) Observation on sub-social behaviour in two species of 
lepidopterous larvae, Pieris brassicae L. and Plusia gamma L. Trans. 
Roy. Entomol Soc. London 106, 421-437. 

Maschwitz, U. & Gutmann, Ch. (1979) Spur- und Alarmstoffe bei der 
gefleckten Brutwantze Elasmucha grisea. Ins. Sociaux 26, 101-111. 

McManus, M.L. & Smith, H.R. (1972) Importance of the silk trail in the 
diel behavior of late instar of the gypsy moth. Envir. Entomol 1, 793-
795. 

Morgan, E.D. (1984) Chemical words and phrases in the language of 
pheromones for foraging and recruitment. In: Insect Communication 
(ed. by T.Lewis),pp 169-194. Academic Press, London. 

Peterson, S.C. (1986) Host specificity of trail marking to foliage by 
eastern tent caterpillars. Entom. Exp. & Appl. 42,91-96. 

Peterson, S.C. (1987) Communication of leaf suitability by gregarious 
eastern tent caterpillars (Malacosoma americanum) Ecol. Entomol. 
12, 283-289. 

Peterson, S.C. (1988) Chemical trail marking and following by 
caterpillars of Malacosoma neustria. J. Chem. Ecol. 14, 815-823 

Povel, G.D.E. (1984) The identification of the European small ermine 
moths with special reference to the Yponomeuta padellus- complex 
(Lepidoptera, Yponomeutidae). Proc. Konink. Ned. Akad. Wet. C 87 , 
149-180. 

Prestwich, G.D. (1983) Chemical systematics of termite exocrine 
secretions. Ann. Rev. Ecol. System. 14, 287-311. 

Roessingh, P., Peterson, S . C Fitzgerald, T.D. (1988) Sensory basis of 
trail following in some lepidopterous larvae: contact chemoreception. 
Physiol Entomol 13, 219-224. 

Schoonhoven, L.M. (1987) What makes a caterpillar eat ? The sensory 
code underlying feeding behaviour. In: Perspectives in Chemo­
reception and Behavior (ed. by R.F. Chapman, E.A. Bernays and J . G. 
Stoffolano), pp 69-97. 

Schoonhoven, L.M. & Dethier, V.G. (1966) Sensory aspects of host- plant 
discrimination by lepidopterous larvae. Arch. Neerl Zool 16, 497-
530. 

Silberglied, R.E. (1977) Communication in the Lepidoptera. In: How 
animals communicate (ed. by T.A.Sebeok) Bloomington, Indiana 
University Press, pp 362-402. 

Sokal, RR. & Rohlf, F.J. (1981) Biometry, pp 691-778.Freeman, San 
Francisco. 

Stamp, N.E. (1984) Foraging behavior of tawny emperor caterpillars 
(Nymphalidae: Asterocampa clyton). J. Lepid. Soc. 38, 189-191. 

Tautz, J . (1977) Reception of medium vibration by thoracal hairs of 
caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) I. 
Mechanical properties of the receptor hairs. J. Comp. Physiol. 118, 
13-31. 

Tautz, J (1978) Reception of medium vibration by thoracal hairs of the 
caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) II. 
Response characteristics of the sensory cell. J. Comp. Physiol. 125, 
67-77. 

Tietjen, W.J. & Rovner, J.S. (1982) Chemical communication in lycosids 
and other spiders. In: Spider Communication (Ed. by P.N. Witt and 
J.S.Rovner) pp 249-279. Princeton University Press, Princeton. 

Unwin, D.M. (1978) A versatile high frequency radio microcautery 
Physiol Ent. 3, 71-73. 

West-Eberhard, M.J. (1983) Sexual selection, social competition and 
speciation. Quart. Rev. Biol. 58, 155-183. 

West-Eberhard, M.J. (1984) Sexual selection, competitive communi­
cation and species-specific signals in insects . In: Insect 

27 



Communication (ed. by T.Lewis), pp 284-324. Academic Press. 
London. 

Weyh, R & Maschwitz, U. (1978) Trail substance in larvae of Eriogaster 
kmestris L. Naturwissenschaften 65, 64. 

Weyh, R & Maschwitz, U. (1982) Individual trail marking by larvae of the 
scarce swallowtail Iphiclides podalirius L. (Lepidoptera; Papilionidae). 
Oecologia 52, 415-416. 

Wiebes, J.T (1976) The speciation process in the small ermine moths. 
Neth. J. Zool 26. 440-441. 

.ui, i Uj U 
sswä^s 2 8 * s r o ® g 



3. The sensory basis of trail following in some lepidopterous 
larvae: contact chemoreception. 

Peter Roessingh, Steven C. Peterson & Terry D. Fitzgerald 
Physiological Entomology 13, 219-224 (1988). 

Abstract 

Caterpillars of the genus Malacosoma follow trails of the 
chemical 5-beta-cholestane-3,24-dione, but nothing is known of 
how they perceive this compound, or more generally about the 
sensory basis of trail following in caterpillars. By selective ablations 
of chemosensory organs we show that, in Malacosoma, the trail 
chemical is perceived by the maxillary palpi. In another 
lepidopteran species, Yponomeuta cagnagellus, the palpi are 
needed to discriminate their own trails from a trail of Malacosoma.. 
Malacosoma larvae also lose their specificity for conspecific trails 
when their palpi are ablated. Volatile cues evidently do not play a 
role in trail following behaviour, since neither Malacosoma nor 
Yponomeuta can orient a trail covered with fine nylon mesh. These 
data indicate that for Malacosoma, and probably also for 
Yponomeuta, contact chemoreception mediated by the maxillary 
palpi is the primary mode of pheromone perception. The evolution 
or receptor sensitivity to trail chemicals in caterpillars is 
discussed. 

Introduction 

Trail following behaviour in lepidopterous larvae has been 
demonstrated in a number of cases (Fitzgerald, 1976; Capinera, 
1980; Weyh & Maschwitz, 1978, 1982). In the best-documented 
example, Malacosoma americanum, this response depends on a 
chemical marker (trail pheromone) secreted from a site on the 
sternum of the last abdominal segment (Fitzgerald & Edgerly, 
1982). Recently, the steroid 5-beta-cholestane-3,24-dione has 

29 



been identified as an active component of this marker (Crump et 
al, 1987). This non-volatile chemical is most likely perceived by 
contact chemoreception, but nothing is known about the receptors 
involved. We have tested the hypothesis tha t contact 
chemoreception is important in trail following and used an ablation 
technique to locate the pheromone receptors. 

For other caterpillars species in which trail following is 
thought to occur, no data concerning the chemical nature of the 
trail or the senses involved are available, although volatile markers 
have been implicated (Kalkowski, 1958; Wojtusiak, 1972; Weyh & 
Maschwitz, 1982). A problem in these cases is that no pure trail 
chemicals are available for testing. An alternative way to assess the 
importance of sensory structures in trail following is to examine 
the preference of larvae for trails. Malacosoma caterpillars of 
different species follow each other's trails, but are able to 
discriminate their own trails from those made by more distantly 
related species (Fitzgerald & Edgerly, 1979). Since this specificity 
must have a sensory basis, it is possible to determine the 
importance of the different chemoreceptors using larvae with 
selectively ablated sensory organs. Following this reasoning we 
investigated the preference of another trail following species, 
Yponomeuta cagnagellus, for its own trails in comparison with 
Malacosoma neustria trails and evaluated the sensory basis of this 
behaviour. 

Materials and Methods 

Insects 

Egg batches of Malacosoma americanum (Fabritius), 
Malacosoma neustria (Hübner) and Yponomeuta cagnagellus 
(Hübner) were collected in the field and kept at 6°C and 80% 
relative humidity until needed (cf. Bucher, 1959). The larvae were 
reared at 25°C in petri-dishes on host foliage. In all experiments, 
third stadium larvae of Malacosoma and fifth stadium larvae of 
Yponomeuta were used. Caterpillars in these stadia are of 
comparable size. Because of the limited number of M. americanum 
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available, most work was done on M. neustria. This species readily 

follows the chemical isolated from M. americanwn (Crump et al.. 

1987). 

Ablation technique 

The ablations of sensory s t ructures were performed us ing a 

50 Mhz HF radio microcautery device (Murphy Developments , 

Hilversum, The Netherlands) modified from Unwin (1978). Three 

types of operat ions were carried out; removal of the an tennae , 

removal of the maxillary palpi and removal of the galeae. The three 

opera t ions together remove all known chemosensory o rgans 

(Schoonhoven, 1986) except the epipharyngeal t a s te sensilla on 

the inner side of the labrum, bu t these do not contact the subs t ra te 

in a walking caterpillar. 

During the operations, Malacosoma larvae were immobilized 

by s t rapping them down on the top of an ice-filled petri-dish with 

small pieces of parafilm. The dish was placed in a larger container 

filled with ice and a layer of frozen CO2 (dry ice) to keep the water 

ice cool. For Yponomeuta, no cooling was necessary and t he 

s t rapping was done with small s tr ips of masking tape. After the 

ablations, larvae were fed and given at least 20 h a t 25°C to recover. 

Control larvae were handled in the s ame way b u t were no t 

cauterized. 

Bioassays 

Two types of bioassays were used, one for testing responses 

to synthetic trails and one for testing specificity for na tura l trails. 

Synthe t ic t ra i l s were p roduced u s ing 5 -be ta-3 ,24-dione 

(henceforth referred to as dione) dissolved in methanol (Merck) to 

from a pheromone solution of 0.1 mg/ml . With this solution, t rails 

of 10 cm long and 2 mm wide were laid out on white paper with 

the aid of a microcapillary pipette calibrated to deliver 4 .̂1 per 10 

cm of trail. This resulted in a pheromone dilution of 4 x 10*9 g / m m 

of trail. 
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The caterpillars were placed with their heads on one end of 
the trail and observed. A typical following response consisted of a 
larva crawling to the other end of the trail and stopping there. If 
the trail was followed all the way this was called following. If the 
caterpillar left the trail before reaching the end the response was 
called not following. A caterpillar that lost the trail was given a 
second opportunity. Caterpillars that did not move within 3 min 
were excluded from the experiment. 

For testing the specificity of the trail following response on 
natural trails, a Y-maze test was used, modified from Fitzgerald & 
Edgerly (1979). The trails were produced by placing twenty-five 
caterpillars one by one on a long, 4 mm wide paper strip and 
allowing them to traverse to the other end. These paper strips 
were divided into sections of 4 cm. One section was used as the 
experimental branch of a Y-maze laid out on a plexiglass plate. The 
control branch was a similar section bearing the trail of another 
species. The smooth surface of the plexiglass prevented the 
caterpillars from moving off the strips. The branches were at an 
angle of 60° to each other and connected to a 5 cm long paper 
runway with a trail on it, forming the stem of the Y. 

A caterpillar placed at the base of this runway could be 
observed to choose one of the two branches. After each choice the 
branches were replaced to prevent contamination of the trails by 
newly deposited silk and pheromone. The runway was re-used. To 
exclude bias due to a possible side preference, the experimental 
and control branch were interchanged. All tests were conducted in 
a shielded area with diffuse light to prevent larval orientation to 
visual stimuli. A choice for either side was counted if the 
caterpillar completely passed onto one of the branches. Caterpillars 
that refused to choose and moved back on the stem were given 
four additional tries before they were rejected. Caterpillars that did 
not move or choose within 3 min were also excluded from the test. 

To investigate if volatile factors are important in the trail 
following behaviour, both bioassays were performed with a fine 
nylon mesh (90 |im mesh size) drawn taut over the trails. In this 
way the caterpillars were unable to contact the silk or the 
chemicals on the surface, but any volatile components would still 
be available. 
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Statistical analysis 

The results were analysed using a G-test (Sokal & Rohlf, 
1981), either testing for significant differences between 
treatments or for a difference from the expected 1:1 ratio in the Y-
maze tests. 

Results 

The results for Malacosoma caterpillars on a dione trail are 
given in Table 1. It is clear that after removal of the palpi the trail 
following response disappeared. All other operations did not affect 
trail following behaviour. This was true for both M. americanum and 
M. neustria. These results indicate that the maxillary palpi are 
necessary for trail following. This correlates well with our 
observation that the caterpillars continuously palpate the surface 
during walking. 

Table 1. Effect of sensory ablations on trail following behaviour of Malacosoma spp. on a 
linear trail of dione (0.1 mg/ml). 

Control 
Antennae removed 
Palpi removed 
Galeae removed 

M. americanum 

Following 

10 
8 
0 

• 

Not 
following 

0 
1 
9 

• 

G 

l . O ^ 
24.35* 

-

M. neustria 

Following 

20 
31 

0 
19 

Not 
following 

0 
0 

30 
2 

G 

0.0ns 
65.12* 
2.22ns 

ns p>0.05, * p<0.01, G-test, two-way comparison with control. 

Table 2 summarizes the results of the preference 
experiments to assess the specificity of the trail following 
response. Both Malacosoma and Yponomeuta preferred trails laid 
down by conspecifics over trails made by the other species. This 
preference was preserved after removal of galeae and antennae, but 
disappeared after ablation of the palpi. 
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Table 2 Effect of sensory ablations on preference for trails in M. neustria and Y. cagna-
gellus given a choice between their own and each other's trails in Y-maze tests. 

M. neustria 

Choosing: 

Y. cagnagellus 

Choosing: 

Control 

Conspeclflc 
trail 

Antennae removed 
Palpi removed 
Galeae removed 

76 
19 
22 
17 

Hetrospecific 
trail 

4 
3 

19 
4 

G 

78.65» 
12.69* 
0.22ns 

8.46* 

Conspeclflc 
trail 

67 
32 
31 
18 

Hetrospecifi 
trail 

13 
8 

30 
2 

c G 

39.65* 
15.23* 
0.02ns 

14.36* 

p>0.05, * p<0.01, G-test, goodness of fit to 1:1 ratio. 

In the investigation of the role of volatile components, none 
of the M. neustria caterpillars tested responded to a covered dione 
trial (Table 3). If the cover was removed, however, all of these 
insects followed the trail. 

Table 3 . Effect of covering trails with nylon mesh in M. neustria and Y. cagnagellus on 
linear trail following and Y-maze preference tests. 

Assay 

Linear 
trail test 

Assay 

Y-maze 
test 

Cover 

No 
Yes 

Cover 

No 
Yes 

M. 

Larvae 
following 

10 
0 

Y. 

Larvae on 
trail 

53 
34 

neustria 

Larvae not 
following 

0 
10 

cagnagellus 

Larvae on 
control 

7 
26 

G 

25.79* 

G 

39.63* 
1.06™ 

n s p>0.05, * p<0.01, G-test, for M. neustria two-way comparison with control, for Y. 
cagnagellus goodness of fit to 1:1 ratio. 
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Y. cagnagellus also showed a strong preference for uncovered 
natural trails compared to clean paper strips when offered a choice 
on a Y-maze, but if both arms were covered with mesh, no 
significant preference could be detected. These experiments 
indicate that contact cues are important in the trail following 
response of both species. 

Discussion 

In summary, the following observations have been made: the 
maxillary palpi are needed for chemical trail following in 
Malacosoma, when the palpi are ablated preference for conspecific 
trails is lost in both Malacosoma and Yponomeuta, and contact with 
the trail is necessary for the following response in both 
Malacosoma and Yponomeuta. 

The main conclusion from these results is that the maxillary 
palpi are the appendages involved in the perception of trail 
pheromones. In Malacosoma there is no doubt about this 
conclusion, because the pure chemical was used in testing. 

For Yponomeuta it can only be said that the palpi are 
important for trail following behaviour. In this species there is no 
direct evidence that a chemical factor is involved. Subtle 
differences in the structure of the silk could, for instance, be 
responsible for the observed discrimination between their own 
trails and those of Malacosoma.. If this is the case, trail following 
would merely depend on tactile cues rather than on the presence 
of a pheromone. It is known that caterpillars have an acute tactile 
sense (Hanson, 1970, Tautz, 1977). The observation that the 
removal of only the tops of the maxillary palpi suffices to inhibit the 
preference response to their own trails can be interpreted in three 
ways: in Yponomeuta an extreme tactile sensibility is located at the 
distal end of the palps, chemoreceptors which are tuned to trail 
chemicals are involved, and chemoreceptors detecting deterrent 
chemicals in the control trails made by Malacosoma are involved. 
This last explanation is unlikely considering that Yponomeuta 
caterpillars prefer Malacosoma trails over clean controls, 
indicating that a possible deterrent has limited influence (Chapter 
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2). At present no discrimination between the other two 
explanations, extreme tactile sensibility or trail pheromone 
detection, is possible, but given the general importance of 
chemical signals in insect behaviour the latter explanation is more 
likely. Further work is in progress on the relative significance of 
silk and pheromone in the trail following behaviour of Yponomeuta. 

The role of the palpi in lepidopterous larvae is not well 
understood. It appears that although they house a considerable 
fraction of the caterpillar's total sensory equipment, their role in 
the process of food testing and recognition is less prominent than 
that of the taste hairs on the galeae (Schoonhoven, 1986). From 
our research, it can be concluded that at least one other function 
in some species is the perception of trail pheromones. 

The fact that these trail pheromones seem to be contact 
stimuli differs from the situation in other trail following species. In 
ants and termites, identified chemicals are mostly volatile (Howse, 
1984; Morgan, 1984). Although several authors have expressed the 
idea that lepidopteran trail pheromones might also be volatile 
(Kalkowski, 1958; Merz, 1959; Wojtusiak, 1972; Weyh & 
Maschwitz, 1982), no conclusive evidence has been presented. 
Rather, it seems that trail following in caterpillars is more 
analogous to the situation in spiders. In this group some of the 
chemicals used in communication are thought to be contact cues 
bound to the silk (Tietjen & Rovner, 1982; Roland, 1984). 

The trail pheromone of Malacosoma is very similar to beta-
sitosterol, a common sterol present in the surface wax of many 
plants (Caldicott & Eglinton, 1973). Since caterpillars palpate the 
surface when testing their food and during feeding (Devitt & 
Smith, 1985), sensory receptors tuned to this type of compound 
can be expected to be present in the palpi. For example, in Bombyx 
mori the maxillary palpi are sensitive to beta-sitosterol (Ishikawa et 
al., 1969). One might speculate that some modification of these 
receptors could lead to pheromone detectors, thus providing an 
evolutionary pathway from the detection of leaf compounds to 
sensing trail pheromones. A similar idea has been proposed for 
bark beetles (Shorey, 1976), where the pheromones show a 
striking resemblance to the terpene resins from the host tree. To 
set this process in motion, a suitable chemical must become 
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available as a pheromone. The accidental leakage of substances into 
the environment as a basis for the evolution of chemical 
communication has been proposed by several authors (Wynne-
Edwards, 1962; Kittredge & Takahashi, 1972; Shorey, 1976; 
Tietjen & Rovner, 1982). In insects, steroids are known to occur 
in cuticular waxes (Blomquist & Dellwith, 1985) so wax glands may 
have acquired a pheromone-producing function. In this respect it 
is interesting to note that the trail marker in Malacosoma does not 
seem to be stored in a special gland, but is given off directly from 
the body surface (Fitzgerald & Edgerly, 1982). Thus a body surface 
chemical, at first inadvertently contaminating the environment, 
may have come into play as a trail pheromone, sensed by a receptor 
that was pre-adapted for this function. 

For Y. cagnagellus, a similar tentative hypothesis is less easy 
to construct. Although the same sensory organ is involved, the 
chemical nature of the pheromone, if any, is unknown. There is no 
reason to assume that the pheromone of Y. cagnagellus is 
chemically related to the pheromone used in Malacosoma. The 
dragging of the abdomen over the substrate during deposition of 
trail pheromone by Malacosoma is clearly observable (Fitzgerald & 
Edgerly, 1982). Such marking behaviour has not been observed in 
Yponomeuta, suggesting that the pheromone is produced at 
another site. Moreover, the pheromone of Malacosoma does not 
stimulate trail following in Yponomeuta.. In ants it is thought that 
trail communication has arisen independently many times 
(Hölldobler, 1984). This could also be the case in Lepidoptera, 
resulting in chemically unrelated trail pheromones in different 
species, which are, however, perceived by means of receptors 
located in the same morphological structure. 
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A chemical marker from the silk of Yponomeuta cagnagellus. 

Peter Roessingh 

Abstract 

Trail following in lepidopterous larvae is often attributed to 
chemical markers but only a few clear cut examples are found in 
the literature. In this paper evidence is presented for a chemical 
basis of the trail following behaviour of Yponomeuta cagnagellus. 
(Lepidoptera: Yponomeutidae) 

The marker is shown to be very persistent under laboratory 
conditions and is water soluble. Several possible secretory sites 
were investigated and it is concluded that the marker is probably 
secreted together with the silk from the labial gland. Problems 
associated with the demonstration of trail markers in caterpillars 
are discussed. 

Introduction 

Trail following has been described for several species of 
lepidopterous larvae (See Fitzgerald & Peterson, 1988 for review). 
This behaviour is thought to facilitate orientation and plays a role in 
larval aggregation (Long, 1955; Fitzgerald & Peterson, 1983, 
Fitzgerald & Costa, 1986). In addition to these functions it has 
been shown that in the genus Malacosoma "recruitment trails" are 
produced by successful foragers. Such trails can convey information 
about the quality of a distant food source and are preferred by 
colony members over exploratory trails (Fitzgerald, 1976; 
Fitzgerald & Peterson 1983; Peterson, 1986,1988 ). 

Although trail following in Lepidoptera is often attributed to 
chemical markers associated with the trail, only a few clear cut 
demonstrations of a chemical basis for this behaviour have been 
reported in the literature. Except for the results in Malacosoma 
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(Fitzgerald & Gallagher, 1976; Fitzgerald & Edgerly, 1982; 
Fitzgerald & Costa, 1986; Peterson, 1988) only two other 
unequivocal cases have been found. The European birch tent moth 
Eriogaster lanestris has been shown to possess a trail marker 
(Weyh & Maschwitz, 1978). This species belongs to the same 
family as Malacosoma, i.e. the Lasiocampidae. The other example is 
the satumiid Hemileuca oliviae (Capinera, 1980). 

It can be concluded that trail pheromones are predominantly 
known from the Lasiocampidae. To broaden the knowledge of trail 
pheromone systems and the types of substances used in the 
Lepidoptera, trail following in Yponomeuta cagnagellus 
(Yponomeutidae) was investigated. Caterpillars of this species live 
gregariously in groups of 20-50 on the Spindle tree Euonymus 
europaeus and produce conspicuous webs that may envelop the 
leaves of their food plant. During their development the larvae 
gradually extend the limits of this web to encompass new leaves. 
When the local food supply is exhausted the colony often moves to 
a new feeding site, sometimes at a great distance from the original 
web. The larvae remain gregarious during this process as well as 
during their migration to the vegetation on the ground at the time 
of pupation (Hoebeke, 1987). A trail pheromone could facilitate 
this gregarious behaviour. 

It has been shown that Yponomeuta larvae are able to follow 
each other's trails (Chapter 2) Tactile cues from the silk play a role 
in this behaviour, while an additional chemical factor has been 
hypothesized (Roessingh et al, 1988, Chapter 3; Chapter 2). In 
this paper experiments are described which establish the 
existence of such a trail marker. In addition the longevity of the 
trail under laboratory conditions was studied, as well as the effects 
of washing trails with water and organic solvents. 

An important piece of evidence in the validation process of a 
trail pheromone is the localization of the secretory site (Howard et 
al, 1976). Several sites have been identified or proposed for 
caterpillars. In the genus Malacosoma a trail marker is produced by 
cuticular glands on the ventral side of the abdomen (Fitzgerald & 
Edgerly, 1982; Fitzgerald & Costa, 1986; Peterson, 1988). Another 
possibility, suggested by Weyh & Maschwitz (1978), is that the 
marker originates in the labial glands (the silk glands), and is 
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excreted together with the silk. This could also be the case for 
Hemileuca oliviae (Capinera, 1980) An alternative idea was 
formulated by Povel & Beckers (1982) in a paper describing the 
prothoracic organ, a gland on the ventral side of the prothoracic 
segment, that traditionally has been designated a defensive role. 
These authors stated that this gland does not seem to function in 
this manner in Yponomeuta, and they suggested that it might be 
the source of a trail pheromone. In addition to the glands already 
mentioned, Yponomeuta caterpillars are also equipped with 
prominent mandibular- and pharyngeal glands as well as glands of 
filippi (Berlese, 1909). 

In an attempt to answer the question whether a trail 
pheromone is produced in Yponomeuta, extracts from glands and 
body parts were assayed for their ability to induce trail following 
behaviour. Additional information about the possible role of some of 
these structures was collected in experiments in which the release 
of chemicals was blocked, and in tests with trails made out of 
chemicals wiped directly from the body surface of the caterpillars. 

Materials and Methods 

Insects and plants 

Egg batches of Yponomeuta cagnagellus (Hübner) were 
collected in the field on Euonymus europaeus and kept at 6°C. and 
80 % relative humidity until needed (cf. Bucher, 1959). Rearing 
was done in petri-dishes at 25°C and an 18:6 h. LD photoperiod on 
young Euonymus leaves taken from potted plants in the 
greenhouse. Plants were periodically cut back to induce 
development of new shoots with young leaves, essential for the 
survival of the first instar. The insects had continuous access to 
food and were used during the first four days of their fifth stadium. 
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Bioassay 

All tests on natural trails were performed on filter paper Y-
mazes modified from Fitzgerald & Edgerly (1979) and described in 
detail elsewhere (Roessingh et. al, 1988, Chapter 3; Roessingh, 
Chapter 2). Filter paper proved to be unsuitable for testing 
extracts, probably because the extract is absorbed in the paper and 
only small quantities of active material are present on the surface 
(Crump et al, 1987). To overcome this problem stainless steel 
segments of 50 x 2.5 mm wide were used. Forty of these strips 
were placed in line and 25 caterpillars were allowed to lay a trail 
by crawling over this pathway. After the production of the trail all 
sections were washed 3 times for 5 min. in aqua dest. to inactivate 
the trail. The first 2 cm of 20 of these silk covered metal segments 
were painted with 5 (il of extract, while the first 2 cm of the 
remaining twenty segments were painted with the plain solvent. 
One segment from each group was used to form an arm in the Y-
maze (Fig. 1). Since Y. cagnagellus caterpillars are reluctant to 
enter silk free substrates (Kalkowski, 1958; pers. observations), 
the presence of the silk on both arms of the Y is important and 
facilitates the choice process. 

Washing and extraction procedures 

Washing of trails was done in petri-dishes in 100 ml. of 
solvent. The liquid was refreshed three times and gently shaken 
during the whole procedure. 

Extracts were made from silk produced by caterpillars which 
had just moulted into their fifth stadium. When starved these larvae 
display extensive locomotion and produce large amounts of silk, 
only minimally contaminated with fecal pellets. The few pellets 
that are produced can easily be removed. Quantities of silk with 
known weights were soaked in 1 ml of aqua dest. and stirred on a 
vortex for 5 min. The silk strands were then taken out and the 
remaining solution was centrifuged for two minutes at 10.000 g to 
remove solids. The supernatant was subsequently concentrated at 
room temperature to yield 100 ^1 of silk extract. 
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For the gland and tissue extracts fifth stadium larvae were 
killed by immersion in dichloromethane for about 20 sec and 
dissected in distilled water. Labial glands, mandibular glands and 
the prothoracic organ were removed. Also the last two segments of 
the abdomen and the head (containing the pharyngeal glands, the 
glands of filippi and the extreme distal parts of the labial and 
mandibular glands) were dissected. Tissues from 40 or 50 larvae 
were immersed in one ml aqua dest. and disintegrated with a 
sonifier cell disrupter (Model B-12, Branson sonic power Co. Soest, 
The Netherlands, equipped with a 3 mm micro tip for use with 
small volumes). During this procedure the tissue solution was kept 
chilled at 0°C. After homogenization the solution was centrifuged 
for 2 min at 10.000 g and the supernatant was concentrated at 
room temperature to yield 100 ji.1 of tissue extract. 

Aging of trails 

The trails for the aging experiment were made by 25 
caterpillars on filter paper strips. Aging of these trails was done in 
the lab in the dark in petri-dishes. No special measures were taken 
to control humidity or temperature. Aged trails were compared to 
fresh ones also made by 25 caterpillars. The test started within 45 
minutes after production of the fresh trail. 

Ablations, wiping and sealing experiments 

The ablations were conducted with the help of a HF 
microcautery device (Murphy Developments, Hilversum, The 
Netherlands) following the method described in detail elsewhere 
(Roessingh et al, 1988, Chapter 3) 

Sealing of the prothoracic organ was done using wax with a 
low melting point and with the help of a laboratory build 
temperature controlled needle. Caterpillars were given 24 hours to 
recover from the treatment before they were used to produce 
trails. Before and after the trail production the wax cover was 
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checked to prevent contamination of the trail. Control trails were 
made by sham treated larvae. 

The test for an active surface residue from the prothoracic 
organ was done following the method used in the Malacosoma 
studies (Fitzgerald & Costa 1986; Peterson, 1988). Fifth stadium 
larvae were held firmly between two fingers and the creased edge 
of a piece of filter paper was wiped over the exit of the prothoracic 
organ. The filter paper was then unfolded and the linear trail that 
results was tested using a fresh caterpillar. 

Statistical analysis 

The results of the Y-maze tests were analyzed using a G-test 
for goodness of fit (Sokal & Rohlf, 1981). The numbers of larvae 
found on both arms of the Y were compared to the 1:1 ratio that is 
expected under the hypothesis that there is no difference in 
attractiveness between the two arms of the Y-maze. For the linear 
trails from the wiping experiment a comparison was made with the 
results of a control experiment. 

Results 

The existence of a trail pheromone can be demonstrated by 
determining behavioural responses to extracts from trails or trail 
silk. Washing trails with different solvents, and testing the washed 
trails to see if the behavioural activity is lost, allows the 
identification of solvents that removes the pheromone from the 
silk. 

The effects of washing trails are summarized in Table 1. The 
effect of washing with hexane is small, no significant difference 
with the untreated controls could be detected. Washing with H2O 
on the other hand, exhibits a large effect on the attractiveness of 
the trail and almost all insects prefer untreated controls over H2O 
washed trails. Extended washing with Dichloromethane (DCM) also 
influences trail attractiveness. The last two rows in the table show 
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a direct comparison between washing with H2O and hexane, again 
indicating the strong effect of H2O on the trail following response. 

Table 1 Effects of different solvents on the following response of Yponomeuta 
Cagnagellus caterpillars. 

Solvent used on: Larvae on branch: Wash time 

(min) 

-
-
-
-
-
-

DCM 
DCM 

Hexane 
Hexane 

"s p>0.05, 

Hexane 
Hexane 

H 2 0 
H 2 0 
H 2 0 
H 2 0 
H 2 0 
H 2 0 
H 2 0 
H 2 0 

* p<0.05, 

12 
12 
18 
18 
16 
18 
13 
12 
17 
18 

8 
8 
2 

2 
4 
2 
7 
8 
3 
2 

** p < 0.01. G-test for goodness 

5 
5 

5 
5 
5 

60 
180 
180 

5 
5 

of fit to 1:1 ratio. 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

0.45™ 
0.45 œ 

12.66** 
12.66** 
6.40 * 

12.66** 
1.26 "s 
0.45 re 

9.18** 
12.66** 

More direct evidence for the existence of a trail pheromone 
is provided by the data in Fig 2. In these experiments extracts of 
trail silk have been applied to a stainless steel Y-maze. Differential 
effects of the solvents on the structure of the silk (as might occur 
in the experiment described above) can now be excluded. From 
this figure it is clear that extracts from 25 mg silk/ml or more, are 
preferred over the plain solvent, indicating that a chemical marker 
is involved in the trail following response of Y. cagnagellus. To 
demonstrate that this factor is characteristic for Y. cagnagellus and 
is not a general constituent of silk, or brought about by 
contamination with fecal pellets, an additional series of assays was 
done. The results in Table 2 indicate that neither extracts from M. 
neustria or B. mori silk, nor fecal pellet extracts evoke a following 
response, but an extract of Y. cagnagellus silk is again significantly 
preferred over the control. 

48 



100-

o 
o 
-ë 90-
x 

c. 
o 
O) 

5 

80 

70-

60-

50-

40-

~ i — i — r 
3 4 5 10 20 50 100 200 

Concentration of silk extract (mg/ml ) 

Figure 2 Results of Y-maze tests with extracts from trail silk of Y. 
cagnagellus. The circles are results from tests with different 
batches of silk.The points on the curve are based on a dilution 
sequence of a single silk extract. 

Table 2. Response of Yponomeuta cagnagellus larvae to extracts from fecal pellets and 
to heterospecific silk extracts. 

Silk M.neustria 

Silk B. mort 

Silk Y.cagnagellus 

Silk Y.cagnagellus 

Fecal pellets 
Fecal pellets 

Fecal pellets 

Fecal pellets 

Extract on branch: 

A 
mg/ml) 

200 

200 

200 

200 

16 

20 

20 

67 

B 

H 2 0 

H 2 0 

H 2 0 

Fecal pellets 
20 mg/ml 

H 2 0 

H 2 0 

H 2 0 

H 2 0 

Larvae 

A 

8 

7 

18 

19 

9 

16 

9 

10 

on branch: 

B 

12 

13 

2 

1 

11 

4 

11 

10 

N 

2 0 

2 0 

20 

20 

20 

20 

20 

20 

G 

0.45 "s 

1.26 "S 

12.66 ** 
17.07 ** 

0.05 "S 
6.40* 

0.05 "S 
0.05 "s 

118 p> 0.05, * p <= 0.05, ** p <= 0.01, G-test for goodness of fit to 1:1 ratio. 
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20 30 £0 50 100 200 
Age of trail (days) 

Figure 3 Effect of aging on the preference for these trails over fresh 
controls. N=20 for all data points. 

Table 3 . Responses of Y. cagnagellus larvae to extracts from glands and body tissue. 

Extract of: 

Head 
Abdomen 
Pro thoracic 
Mandibular 
Labial glanc 

organ 
gland 

Larvae 

Ext rac t 

35 
16 
17 

17 

4 5 

on: 

Cont ro l 

25 
24 
23 

23 
15 

N 

60 

40 
40 
40 
60 

G 

1.36 "S 
1.23 " s 
0.63 "S 
0.63 "S 

14.62 ** 

ns p>0.05,* p<0.05,** p< 0.01, G-test for goodness of fit to 1:1 ratio. 

To investigate t he longevity of the marker, experiments were 
performed in which freshly produced trails were compared to 
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trails aged in the laboratory for up to 200 days. Fig. 3 gives an 
overview of the results. It can be concluded that even extensive 
aging of trails does not decrease their attractiveness compared to 
fresh trails. This indicates that the trail marker is non-volatile and 
very persistent under laboratory conditions. 

To determine the site of secretion of the marker five possible 
sources have been examined: i) The terminal part of the abdomen 
(cf. Fitzgerald & Edgerly, 1982), ii)The labial gland (cf. Weyh & 
Maschwitz, 1978; Capinera, 1980), iii) The prothoracic organ (cf. 
Povel & Beckers, 1982), iv) The mandibular glands (cf. Mudd & 
Corbet, 1984), and v) The head, with the glands of filippi and the 
pharyngeal glands. Tissue extracts from all of these sources were 
tested (Table 3). The only extract that is consistently active in the 
bioassay is that of the labial gland (the silk gland). Attempts to 
identify the exact region of the gland were the trail marker is 
produced were unsuccessful. 

In other experiments to investigate whether or not the 
prothoracic organ produces the trail pheromone, this organ was 
sealed with wax. Trails made by these larvae were compared to 
those of sham treated insects. No difference was found between 
the trails of larvae with sealed and unsealed prothoracic organs 
(Table 4). Also trails produced by wiping with filter paper over the 
exit of the gland did not induce following behaviour. 

Table 4. Results of Y-maze tests on trails made by Y. cagnagellus larvae with sealed 
prothoracic organs. 

Total 

Larvae on trail 
made by larvae with 

sealed organ 

13 
12 
7 

11 

43 

Larvae on trail 
made by larvae 

with unsealed organ 

7 
8 

13 
9 

37 

N 

20 
20 
20 
20 

80 

G 

1.26 ns 
0.45 ns 
1.26 ns 
0.05 ns 

0.31 ns 

118 p > 0.05 , * p < 0.05 , ** p < 0.01. G-test for goodness of fit to 1:1 ratio. 
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Discussion 

The main aim of this paper is to demonstrate the existence 
of a trail pheromone associated with the silk trails of Y. cagnagellus. 
When the methods used to authenticate trail pheromones in 
lepidopterous larvae are reviewed it appears that a standard 
procedure does not exist. 

Several authors have suggested the presence of trail 
pheromones on the basis of the observation that caterpillars prefer 
conspecific trails over heterospecific trails (Fitzgerald & Edgerly, 
1979 for Archips; Roessingh et al, 1988, (Chapter 3) for 
Yponomeuta and Weyh & Maschwitz, 1982 for Iphiclides). While 
such results might provide good indications for the existence of 
trail markers, they do not yield unequivocal evidence. It has, for 
instance, been demonstrated that Y. cagnagellus can use tactile 
information from the trail (Chapter 2) and therefore subtle cues 
from the silk structure can not be excluded as a basis for the 
observed discrimination. 

Other authors relied on washing of trails with solvents to 
demonstrate trail markers (Gallagher & Lanier, 1977 for 
Lymantria; Masaki & Umeya, 1977 for Hyphantria and Weyh & 
Maschwitz, 1982 for Iphiclides). Conclusions from these 
experiments are based on the implicit assumptions that: (a) the 
marker can be removed by the solvent used, and (b) The solvent 
does not change any other aspect of the trail that can be sensed by 
the caterpillars. Neither of these two assumptions can be justified. 
The results of Table 1 show the risk of relying on extraction 
without prior knowledge of the type of chemical involved. In the 
case of Yponomeuta attempts to remove the trail marker with 
hexane are unsuccessful. Concerning the second point, it has been 
shown that silk can irreversibly change its shape and conformation 
in response to wetting (Hepburn et al, 1979; Denny, 1980; Gosline 
et al, 1986). For spider silk a 45% axial shrinkage has been 
reported together with a volume increase of about 15% (Work, 
1977). Because of these effects a change in silk structure rather 
than the removal of a chemical marker could explain the responses 
of the larvae. 
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Unequivocal evidence for the existence of chemical markers 
can be obtained by demonstrating trail following activity in 
response to solvent extracts of trails. This method was applied by 
Fitzgerald & Gallagher, (1976) and Fitzgerald & Edgerly, (1979) 
for Malacosoma, by Weyh & Maschwitz, (1978) for Eriogaster, and 
by Capinera, (1980) for Hemileuca. Water extracts of trail silk from 
Y. cagnagellus showed activity in the trail following bioassay 
described in the present paper. This indicates that a chemical 
marker is indeed associated with the silk. The marker is not a 
general constituent of silk, since extracts of silk from other 
species do not evoke following behaviour. These findings 
contribute strong evidence that a pheromone is involved in the 
trail communication of Y. cagnagellus. 

A plausible source of this marker is the prothoracic organ, as 
suggested by Povel and Beckers (1982). This gland terminates in a 
slit-like opening on a cone shaped protrusion that is movable to 
some degree. Silk threads from the spinneret pass over this 
protrusion, and therefore a marker from this gland could be readily 
added to the newly spun silk. In view of the results presented in 
this paper it must be concluded that this hypothesis is no longer 
tenable. All approaches used to substantiate a role for this organ 
(blocking of the gland, assays of tissue extracts and surface 
residues) yielded negative results. In contrast, extracts from the 
labial glands did induce trail following behaviour and this is taken 
as evidence that the trail marker in Yponomeuta is secreted 
together with the silk. 

Experiments using labial gland extracts from 40 or 50 larvae 
showed that even this large amount of material yielded a trail that 
evoked only cautious reactions by the caterpillars and often 
induced extensive searching behaviour. This result differs, for 
instance, from findings in termites and ants, which strongly 
respond to extracts from a single gland (Traniello, 1983; Jaffe & 
Howse, 1979). A possible explanation is that the trail marker in 
Yponomeuta is not stored in significant quantities in the gland, a 
situation comparable to that found in Malacosoma (Fitzgerald & 
Edgerly, 1982). 
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In gypsy moth larvae, Lymantria dispar, a water soluble 
kairomone was found that elicits searching behaviour in the 
braconid parasite Cotesia (=Apanteles) melanoscela (Weseloh, 
1976, 1987). The labial gland was identified as the principal 
source of this substance (Weseloh, 1976, 1977). It has been argued 
that a kairomone also must possess some biological advantage for 
the emitter, or otherwise production of the chemical would be 
selected against (Vinson, 1976). Since in Lymantria larvae trail 
following behaviour has been described (McManus & Smith, 1972; 
Gallagher & Lanier, 1977), it is conceivable that the primary 
function of this kairomone is that of a trail marker, which is 
secreted together with the silk, like in Yponomeuta. 

From the work on ants and termites it has become clear that 
longevity of trail pheromones is correlated with their function. 
Markers for orientation in the home range largely retain their 
information content over time and can be persistent. In snails and 
slugs orientation cues have been described that persisted for days 
(Cook, 1979; Chelazzi et al, 1985). For several termite species it 
has been shown that extremely stable markers are produced that 
(under laboratory conditions) stay active over periods of months or 
years. (Traniello, 1982; Runcie, 1987). Recruitment signals, on the 
other hand, carry information about food sources and when these 
become exhausted the signal should disappear. Consequently these 
signals are in general volatile substances that are often only 
effective over periods of minutes (Hölldobler, 1977; Traniello 
1982; Bradshaw & Howse 1984; Runcie, 1987). More durable 
markers are used in situations with a stable food supply 
(Hölldobler, 1977). This might explain the relatively long lifetime 
of trail markers in phytophagous insects like leaf cutting ants and 
caterpillars (Lewis et al, 1974; Fitzgerald, 1976; Peterson, 1988), 
as well as in Yponomeuta. 

The extreme persistence of the Yponomeuta marker 
indicates that it must be largely non-volatile. This is consistent 
with results from tests on Y. cagnagellus in a bioassay where trails 
were shielded with nylon mesh. The mesh inhibited following 
behaviour, although possible volatiles from the trail were still 
accessible to the larvae (Roessingh et al., 1988 , Chapter 3). It was 
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concluded that if a trail marker exists it will be a contact cue. The 
observed persistence reported in this paper corroborates this 
conclusion. 

These facts are not consistent with data published on a near 
relative of Y. cagnagellus, i.e. Y. evonymelius. Kalkowski (1958) 
reported a volatile trail marker for this species. The cause of this 
discrepancy is not clear. Given the close taxonomie relationship of 
the two species it seems unlikely that these species use completely 
different trail pheromones. One possibility is that the marker is a 
multi-component system consisting of a stable contact cue, and a 
short lived rapidly evaporating volatile cue. A volatile marker 
disappearing within 30 minutes might have escaped attention in 
the present research on Y. cagnagellus. This explanation assumes 
that Kalkowski tested his trails within this time span, but the 
information on experimental procedures given does not allow 
conclusions on the likelihood of this interpretation. 

From experiments in which Y. cagnagellus trails were treated 
with different types of chemicals it is clear that the trail following 
behaviour of the larvae is not influenced by the apolar solvent 
hexane, while a polar solvent like H2O effectively removes the 
following response. This result indicates that the marker has a 
polar character and is water soluble. 

A water soluble marker seems to be of limited use under 
natural conditions, and has led to some doubts about the adaptive 
value of some of these substances (Prokopy, 1975). On the other 
hand, water soluble semiochemicals are not at all uncommon. 
Prokopy (1981) gives an extensive list of epideictic pheromones 
and many of these have been found to be water soluble. The contact 
sex pheromone bound to the silk of the lycosid spider Pardosa 
lapidicina also is readily inactivated by water (Dondale & Hegdekar, 
1973), as is the chemical present in the silk of the gypsy moth 
Lymantria dispar (Weseloh, 1976, 1977). Thus it may be concluded 
that many semiochemicals are easily washed away by rain or 
inactivated by dew, but this does not seem to prevent their 
successful use in nature (Averill & Prokopy, 1987). In some cases 
this may be related to the fact that only a limited activity period is 
needed for the substance to function. The oviposition deterring 
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pheromone of the leaf miner Agromyza frontella, for ins tance, is 

washed away in heavy rains, but a 24 hours activity period seems to 

suffice to give t he larvae a competitive advantage over la ter 

deposited ones (Quiring & McNeil, 1984). 

In the case of Yponomeuta t he water solubility might cause 

periodic updat ing of the information in the trail system and offset 

the long lifetime of the marker. 
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5. An electrophysiological survey of chemoreceptors on the 
maxillary palps of Yponomeuta cagnagellus larvae. 

Peter Roessingh 

Abstract 

In lepidopterous larvae the maxillary palps contain a 
relatively large portion of the sensory equipment available to the 
insect. Yet, only very little is known about the sensitivity of these 
cells. In this paper an electrophysiological investigation of the 
maxillary palps of Yponomeuta cagnagellus (Lepidoptera: 
Yponomeutidae) is presented. Evidence is reported for the 
existence of two groups of receptor cells sensitive to plant volatiles 
(C6 fatty acid derivatives or 'green odours'). Cells mainly sensitive 
to (E)-2-hexenal and hexanal (aldehydes) or to (Z)-3-hexen-l-ol 
and 1-hexanol (alcohols) were observed. The maxillary palps also 
contain gustatory neurons and evidence for the existence of 
receptors responding to this species' chemical trail marker is 
presented. In addition, responses to CO2 were recorded, as well as 
responses from receptors sensitive to temperature change (cold 
receptors). The external morphology of the palp was studied using 
a cryo-SEM technique and the electrophysiological results are 
discussed in relation to the morphology and ultrastructure of palpal 
sensilla in lepidopterous larvae in general. 

Introduction 

Lepidopterous larvae can display striking food preferences. 
Yet they have only a limited set of chemoreceptors to translate 
messages from the outside world into signals for the central 
nervous system (Schoonhoven 1987). In addition, the behaviour of 
a caterpillar is relatively simple, and its primary function, 
gathering as much food as possible, is not complicated by tasks 
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such as mate finding or taking care of offspring. For these reasons 
caterpillars have been advocated as model systems for the study of 
feeding behaviour (e.g. Schultz, 1983; Schoonhoven, 1987) and 
attempts have been made to analyse the relation between sensory 
input and behavioural output (Ma, 1972; Blom, 1978; Schoonhoven 
& Blom, 1988). Such an approach requires knowledge about the 
receptors involved. 

External chemoreceptors in caterpillars are located on the 
antennae, on the maxillae, and on the epipharynx. The sensilla 
styloconica on the galea and the epipharyngeal organs on the 
labrum are the most important in defining food choice, and a large 
body of data is available about their sensitivity (see Schoonhoven, 
1987 for review). The two other sets of receptors, those on the 
antennae and the maxillary palps, are more difficult to study and 
consequently less well known, but their combined influence on 
feeding behaviour is commensurate with that of the taste hairs on 
the galea (Hanson & Dethier 1973) 

The olfactory receptors of the antennae were studied in 
Manduca sexta and Hyalophora gloveri by Schoonhoven & Dethier 
(1966) and Dethier & Schoonhoven (1969), in Bombyx mori by 
Morita & Yamashita (1961) in Malacosoma americanum by Dethier 
(1980), and recently in Pieris brassicae by Visser & de Jong 
(1988). 

The maxillary palps, on the other hand, have received very 
little attention. Except for the pioneering studies of Schoonhoven 
& Dethier (1966) and the recordings from the maxillary nerve of 
the silkworm by Hirao (1976), no electrophysiological data are 
available. Behavioural experiments (Dethier, 1937; Ishikawa et al, 
1969; Hanson & Dethier, 1973) together with the above 
mentioned electrophysiological work indicate olfactory as well as 
gustatory functions for the palp, and this is confirmed by the 
structure of the sensilla (Hanson & Dethier, 1973; Albert, 1980; 
Devitt & Smith, 1982). In this paper morphological and 
electrophysiological aspects of the maxillary palps in larvae of 
Yponomeuta cagnagellus are investigated. The feeding behaviour of 
this species is relatively well known (Gerrits-Heybroek et al, 1978; 
Van Drongelen, 1980; Kooi & v.d.Water, 1988). In addition, van 
Drongelen (1979) investigated the sensitivity of the sensilla 
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styloconica on the galea. To add to th is framework the first 

inventory of palpal sensilla is presented here. 

The maxillary palps in Y. cagnagellus are also involved in the 

detection of a non-volatile trail marker (Roessingh et al, 1988; 

Chapter 4), and an a t tempt is made to identify receptors for th is 

stimulus. 

Materials and Methods 

Insects 

Egg ba t ches of Yponomeuta cagnagellus (Hübner) were 

collected in the field from their host p lant Euonymus europaeus 

and kept a t 6°C and 80% relative humidity until needed. Larvae 

were reared in 10 cm-wide petri-dishes ( 25°C, ambient humidity, 

18:6 hou r LD photoperiod) on host foliage from potted p l an t s 

grown in the greenhouse. During the rearing period larvae were 

fed ad lib, bu t they were starved for two to three hours prior to the 

experiments. All experiments were done with 1 to 4 days old 5 th 

s tadium larvae. 

Morphology 

The morphology of the palps was studied using scanning EM. 

The most critical s teps in th is procedure are the fixation and 

drying, necessary before the preparation can be introduced in the 

v a cuum of t he microscope. These p rocedures often i nduce 

shrinking and cause collapse of soft t issue par ts . One way to avoid 

this is to skip fixation and drying. The preparat ion is stabilized 

instead by quick immersion in nitrogen s lush (60 K) and viewed in 

the frozen s tate (Cryo-SEM). This approach was taken here. Larvae 

were used directly after moulting into the fifth s t ad ium. After 

coating with a 200 Â thick layer of gold, they were examined in a 

Philips 535 SEM equipped with a Hexland CT.1000/CP2000 and in 

a Jeo l 35C SEM equipped with an EMSCOPE SP2000A cryo 

preparation assembly. 
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It has become clear that a classification of sensilla based on 
external morphology is no longer tenable and a new typology based 
on ultrastructural characteristics has been developed (Altner & 
Prillinger, 1980; Zacharuk, 1980). Since ultrastructural details are 
not yet available for Yponomeuta larvae, the old nomenclature will 
be used here. 

Host plant odour composition 

One of the problems in determining the function of relatively 
unknown sensory organs is the choice of the stimuli to be tested 
(Johnson et al, 1988). To identify a set of relevant substances an 
attempt was made to characterize the chemical composition of the 
headspace of Euonymus europaeus, the host of Y. cagnagellus. 
Branches (30 cm long) of E. europaeus growing in the field in 
Wageningen were cut with sharp garden scissors and transferred 
to the lab. About two kg of branches was placed in a 20-1 stainless 
steel vessel within 30 minutes after cutting. Care was taken not to 
damage the leaves. Air from a membrane pump was passed through 
KOH pellets, molecular sieves 5A and 3X, active charcoal and a 
tenax pre-trap. This cleaned air flowed for 7 to 15 hours at a rate 
of 70 ml/min through the stainless steel vessel and from there 
through the tenax-TA sample trap. The collected volatiles were 
released from the tenax by heating in a Thermo-desorption Cold 
Trap Unit (Chrompack, Middelburg, The Netherlands) at 250°C for 
3 minutes. The desorbed compounds were collected in a SÜ5CB 
coated, fused silica capillary at -100°C. Flash heating of the cold 
trap provided sharp injection of the compounds into the GC/MS 
unit (Chrompack SÜ19CB column (25 m x 0.25 mm, df 0.25 |^m). 
Electron impact ionisation was carried out at 70 eV on a VG MM 
7070F mass spectrometer. 
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Electrophysiological recordings 

A diagram of the recording set-up is presented in Fig. 1. An 
isolated caterpillar head was mounted on a silver wire loop and 
connected via a 10-mm connector to the input terminal of a 
laboratory built amplifier (Ri > 109O, Ci < 1 pF, Ib < 1 pA). The 
sensory cells of the sensilla on the palp are located below the base 
of the terminal segment (Schoonhoven & Dethier.1966; 
Albert, 1980). To gain access to these cells, the connecting 
membrane between the two most distal segments was pierced with 
a sharpened tungsten wire. The actual recording was made using 
glass capillary electrodes (impedance about 40 MQ) inserted 
through the hole. The glass electrode, filled with 3M KCl, served as 
the indifferent electrode and was connected to ground. 

The preparation was placed in a continuous stream of clean, 
moistened air (80 ml/sec, 25 cm/sec). Odour stimuli were injected 
in the main air stream by switching a second stream (2ml/sec) for 
one second through a pasteur pipette that contained the stimulus. 
Stimulation with CO2 required the following modifications: the 
stimulus and control flow were replaced with pure CO2 and the 
control flow was not injected into the main air stream. The 
stimulus flow was adjusted to produce the desired concentration of 
CO2 in the main stream during stimulation. Pure compounds were 
diluted in paraffin oil (10'3, 1 0 2 and 1 0 1 v/v). 25 nl of these 
solutions was applied to filter paper strips (6.0 x 0.5 cm) and 
placed in pasteur pipettes. The following compounds (99% pure) 
were used: 1-hexanol, benzaldehyde (Fluka Switzerland); (Z)-3-
hexenyl acetate, (E)-2-hexenal, (Z)-3-hexen-l-ol (Roth, West 
Germany); hexanal (98% pure) (Merck, USA); limonene, citral 
(97% pure), geraniol, (98% pure.) (Aldrich, Germany) and CO2 
(Hoekloos, the Netherlands). Taste stimuli (extracts from Y. 
cagnagellas silk, Bombyx mori silk and KCl solutions), were applied 
to the apex of the palp with an insulated capillary filled with the 
stimulus solution. Silk extracts were made by washing quantities of 
silk in distilled water and concentrating the extract at room 
temperature to obtain the desired concentration. 
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All stimuli were applied in random order with at least 30 
seconds between them. Longer intervals were used after strong 
stimuli. Preparations were discarded after 60 minutes and changed 
after a successful recording. 

The AC amplified action potentials from the sensory cells 
were recorded on tape (Racal FM taperecorder). To facilitate 
computer assisted analysis, the valve signal and a pre-pulse one 
second earlier were recorded on an additional channel. 

Analysis of recordings 

The recordings made with the system described above 
contained activity from 1 to 4 sensory cells but usually not more 
than 2. Recordings with more than 3 cells were discarded. Multi­
cellular responses were analysed with the help of an interactive 
computer program based on the approach of van Drongelen et al. 
(1980) and described in more detail in chapter 7. Spikes were 
characterized primarily by amplitude. Amplitude boundaries for 
different cells were taken from an amplitude vs. time plot. The 
separation of the cells is a cyclic process in which spike amplitude 
and spike interval distribution are used as criteria to judge the 
separation. After the separation, responses for each cell were 
calculated as the difference in action potential frequency between 
the last second before the onset of stimulation and the first 
reaction second. A cell was assumed to respond to a stimulus if an 
increase of more than 10 spikes was found. Cells with weaker 
reactions were assumed to be sensitive to other stimuli and were 
not further analysed. Relative response spectra were obtained by 
setting a cell's 'best' stimulus to 100 % and scaling all other 
responses accordingly. To test the significance of observed 
differences in spike frequency, a two way ANOVA was used on log 
transformed response data. 
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Figure 2 Cryo-SEM micrographs of Y. cagnagellus. A. Ventral view of 
the head. B. Maxillary palp showing the digitiform sensillum and a large 
campaniform sensillum. C. Overview of the tip of the most distal segment. 
Note the relatively linear arrangement of the sensilla. D. Detail of the 
digitiform sensillum. E. On the apex of the palp, seven sensilla basiconica 
and one sensillum styloconicum are present. From left to right, LI, L2, 
L3, Al, a styloconic A2, A3, a partly hidden Ml, and M2 can be seen 
(Terminology after Grimes & Neunzig, 1986). F. High magnification of 
the the lateral side of the apex. The two leftmost sensilla belong to the 
lateral group. The slightly more blunt sensillum on the right is Al. Note 
the absence of surface structures. 
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Results 

Morphology 

A description of the external s t ructure of the maxillary palps 

of l ep idopterous larvae was recently publ i shed by Grimes & 

Neunzig (1986). From their results it is clear t ha t location, size and 

shape of palpal sensilla are relatively cons tan t in lepidopterous 

larvae. Eight sensilla are always found on the apex. In addition, a 

digitiform sens i l lum and up to four campaniform sensil la a re 

present in the wall of the most distal segment. 

The palps of Y. cagnagellus are more elongated t han in many 

other species (see Grimes & Neunzig, 1986), b u t t he sensory 

equipment does conform to the general pat tern. At the apex seven 

sensi l la bas iconica and one sens i l lum s ty loconicum can be 

dist inguished. On the side of the segment a digitiform sensi l lum 

and a t least one campaniform sensillum are visible (Fig 2). With the 

exception of the styloconic sensillum, which ha s a prominent base, 

the sensilla on the apex are simple b lunt cones. The lateral and 

medial sensilla seem to be slightly more tapered (Fig. 2E, 2F) bu t 

there is no clear distinction. It was not possible to observe details 

like grooved surfaces or apical pores. 

Host p lant odour composition 

The compounds used for olfactory s t imulation were chosen 

par t ly on the bas i s of the headspace analysis of t he insect ' s 

h o s t p l an t E. europaeus. Fig. 3 shows an example of a gas -

chromatogram. The need to use whole p lants instead of macerates 

h a s recently been stressed by several au thors (Buttery et al., 1985; 

Tollsten & Bergström, 1988). However, whole p lants release only 

limited amounts of volatiles (Buttery et al, 1985; Dicke, 1988), and 

indeed only small quantities were found in the present study, t hu s 

complicating analysis. The only compounds tha t could be detected 

reliably were fatty acid derivatives ('green odours ' , Visser & Avé, 
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1978). Other compounds (limonene, beta-ocimene, alpha-copaene, 

beta-bourbonene, b enza ldehyde ) , could be d e t ec t ed only 

occasionally. 

TIME (MIN) 

Figure 3 Gaschromatogram of volatiles from undamaged E. europaeus 
leaves collected on Tenax-TA. 1. hexane, 2. ethyl acetate, 3 . 
chloroform, 4. benzene, 5. 1-butanol, 6. toluene, 7. hexanal, 8. 
m /p xylene, 9. (E)-2-hexenal, 10. 3-hexen-l-ol, 11 . (Z)-3-
hexen-1-ol, 12. 1-hexanol, 13. limonene, 14. (Z)-3-hexen-l-yl 
acetate. Note the relatively high contribution of compounds 
from the atmosphere. 

Electrophysiology 

In experiments on 69 preparations, a total of 85 single cells 

were analysed. Twentyfour cells did not respond to any of the 

applied stimuli. Of the remaining receptors, 22 responded strongly 

to 'green' odours (Fig. 4), whereas 22 o ther cells showed no 

response to odours, bu t responded to taste stimuli, i.e. silk extracts 

or salt solutions (Fig. 5). 
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m 

Figure 5 Responses of cells in the maxillary palps of Y. cagnageüus to 
gustatory stimuli. A & B Extract of Y. cagnagellus silk (200 
mg/ml) C 100 mM KCl, D 10 mM KCl. The arrow indicates the 
onset of stimulation. The time marker indicates 1 second. 

Response spectra of the 22 cells sensitive to the green odour 
complex are given in Fig. 6. Two groups can be distinguished. Cells 
1 to 6 respond to the aldehydes (EJ-2-hexenal and hexanal. The 
other cells respond to the leaf alcohol (Z)-3-hexen-l-ol and to 1-
hexanol. In t h i s l a t ter g roup a cont inui ty exis ts from cells 
responding mostly to 1-hexanol (cells 7-10) to cells responding 
strongly to (Z)-3-hexen-l-ol (cells 11-18). No cell responded to 
(Z)-3-hexen-l-yl acetate. 

70 



J2 
"S 
o 
CD 
O) 
c 
co 

1 

? 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1? 

13 

14 

15 

16 

17 

18 

19 

?0 

21 

22 

>* 
c 
eu 
X 
o 
X 
cr> 

S1 

* 

* 

— . — 

o 

c 
X 
CD 
X 
có 

0 
—rv 
^\^r 

m 
M 

A V 
A 
V ^ 
^ 

o 
c 
CD 
X 
<D 

X 

A V 

H# 

1 • 
H# 
h-^ 

c 
CD 
X 
CD 

X 

S' 

A 
w 

• — 

— • — 

c 
ca 
X 
CD 
X 

A 

p̂ 

? 

• w 

V 
« 

' v 

Ä 

" a f i u 
° o.te 
M ri 

•S« -S 

c3 _ , " o ai^ 
CL) ^ 

-"-1 à* J3 

S O u , 

§« ' " 
O 

g 
'co 
co 

5" 
— - "tu o 
o , , e ft 

§5 
CU r̂ -« 

u * J 

6 
CD 

° g ^5 

— <2 "S o 

2 o ;o „• 
- a ß 

CD CO . S O 

£2*2 
S £ « -S 

s^.s s 
•a S 

CN eu eu S 
CM C! co ö 

o co 

co o 
CU l-c 

te * 

•as 

a > .s _ 
(O ' • " ft 
eu c a -5 o 

O u 

co •=>. * 
u eu C te 

I c 5 | l 
CS 0 3 

« 3 W 3 
S co co 

CO CU CU 

« a ^ L o T S 
fa o t , .te 

71 



o 
ü 
II) 

o 
CO o 

II) 

'5. 
co 

60 

50 i 

40 

30-

20-

10 

0 

-10 

(E)-2-Hexenal 'best' cells 

A (E)-2-hexenal 
A 1 -hexanal 
• — (2)-3-hexen-1 -ol 

— O - - 1-hexanol (4) 

0.001 0.010 0.100 

Stimulus concentration (v/v) 
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Dose respons relations for the two main cell groups are given 

in Fig. 7. In Fig. 7A the responses of the (E)-2-hexenal 'best' cells 

to the different odours are plotted. The same is done in Fig. 7B for 

the (Z)-3-hexen-l-ol 'best' cells. 

The (Z) -3-hexen- l -o l and 1-hexanol 'bes t ' cells were 

cons i s t en t ly sens i t ive to b enza ldehyde (Fig. 4F). Evidence 

indicating t ha t the sensitivity could be a t t r ibuted to another cell 

(e.g. superposi t ions, i rregular spike interval histograms) was not 

observed. The aldehyde 'best' cells did not show th is sensitivity. 

Only two cells responded weakly to benzaldehyde (19% and 23 % 

of the response to (E)-2-hexenal). 

No responses to the terpenoids l imonene, (6 cells tested), 

citral (3 cells tested) and geraniol (5 cells tested) have been found. 

Fig. 8 displays the resul ts obtained with t as te s t imuli . A 

classification was made in 'silk extract ' cells a nd 'salt ' cells, 

according to each cells 'best ' s t imulus . In Fig. 8A the dose-

response curves for KCl are plotted for the two cell g roups. The 

salt 'best' cells show a log-linear dose dependency. The silk extract 

'best' cells are significantly less sensitive to KCl (p < 0.001), b u t 

stimulation with 100 mM KCl clearly evokes a response. 
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Figure 8A Dose-response relations of gustatory cell groups in the palp of 
V. cagnagellus . Stimulation with KCl. 
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In Fig. 8B the sensitivity of the two cell g roups to silk 

extracts is plotted. In this case the two curves overlap. At the two 

highest concentrations the salt 'best' cells respond also to the silk 

extract a l though the variation is large. Stimulation with an extract 

from B. mori silk (Fig 8B, black symbols) shows t ha t the silk 

extract 'best' cells (more correctly: V. cagnagellus silk extract 'best' 

cells) are in comparison to the salt 'best' cells significant less 

responsive to the B. mori extract (Anova on log transformed spike 

counts from individual stimulations, p < 0.03). 

Q. 
If) 

10-

Responses to sitk extract 

Salt 'besr cells 
Silk extract 'best' cells 

Concentrat ion si lk (mg/ml) 

Figure 8B Dose-response relations of gustatory cell groups in the palp of 
V. cagnagellus. Stimulation with silk extract from Y. 
cagnagellus. The black symbols represent B. mori silk extract 
(200 mg/ml). Vertical bars indicate SEM. The number of 
single cells on which the point was based is indicated in 
brackets 

Four teen cells responded selectively to CO2 (Fig. 9). The 

dose-response curve (Fig. 10) is a lmost linear from 0.2 to 2.5 % 

CO2. No significant response to other odour stimuli was found for 

these cells. All green odours sometimes inhibited spike activity, 

a l though th is did not h appen consistently, and only a t h igh 

concen t ra t ions (10_ 1 v /v). The terpenoids l imonene, citral and 

geraniol did not inhibit the CO2 cells (N=14 cells). 
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Three cells did not react to chemical stimuli b u t responded 

strongly to a drop in temperature (Fig 11). 

The modalities were always clearly separated. Taste cells did 

not respond to odours, and olfactory cells were never observed to 

respond to t as te stimuli. Moreover, cells with different modalities 

were also spatially separated. In multi-unit recordings olfactory and 

t a s t e cells were never observed s imul taneous ly . Also, s ince 

recordings containing either activity from a cold- or a CO2 cell 

never contained any o ther active receptors with a comparable 

amplitude, it is likely tha t these cells are located at some distance 

from other receptor types. 

I IM.HMH 

m I |*!H| lillllii|Hli|lli|i 

Figure 11 Response of a cold receptor in the maxillary palp of Y. 
cagnagellus. A. Stimulation with a cold metal rod at an upwind 
distance of about 10 mm. B. Stimulation with a warm metal rod 
at an upwind distance of about 10 mm. Stimulus bar 2.5 
seconds. 
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Discussion 

The external morphology of the sensilla on the maxillary 
palps conforms to the general pattern of ditrysian species as 
outlined by Grimes & Neunzig (1986). These authors divide the 8 
sensilla on the apex in a medial group (Ml, M2), an apical group 
(Al, A2, A3) and a lateral group (LI, L2). These groups can be 
recognised in Y. cagnagellus, although the layout of the sensilla is 
more linear than the generalised pattern (Fig. 2). 

Grimes & Neunzig (1986) make a distinction between the 
more primitive, endophagous feeders, and larger, exophagous 
feeders. In endophagous species the walls of the A sensilla are 
smooth, and A2 is often two-tiered (styloconic). In the more 
advanced, exophagous groups A2 is basiconic and the A sensilla are 
wrinkled or pock-marked. The Yponomeutidae are regarded as 
relatively primitive within the ditrysia (Common, 1975), and 
indeed a styloconic A2 and smooth A sensilla are found (Fig. 2; see 
also van Drongelen 1979). It is possible that the slightly more 
tapered form of the L and M sensilla indicates a taste function for 
these structures, as found in many other species (Grimes & 
Neunzig, 1986). However, since neither apical nor wall pores were 
observed in Y. cagnagellus, definite conclusions about the 
modalities of these sensilla await ultrastructural investigations. 

The wall of the most distal segment of the palp bears at least 
one campaniform sensillum. This sensillum is probably equivalent 
to the large plate sensillum described in Euxoa messoria (Devitt & 
Smith, 1982). The plate sensilla in this species are multiporous, 
multiple innervated, and possess branching dendrites. If this is 
also true for Y. cagnagellus these sensilla must be considered as 
olfactory organs, where the neural responses reported in this 
paper could originate. 

In the wall of the most distal segment, a digitiform sensillum 
is present which is normally innervated by one neuron 
(Schoonhoven & Dethier, 1966; Albert, 1980; Devitt & Smith, 
1982). In E. messoria, this sensillum appears to possess a 
laminated outer dendritic segment and no wall pores (Devitt & 
Smith, 1982). Laminated dendrites have been associated with cold 
receptors (see Steinbrecht, 1984; Altner & Loftus, 1985 for 
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reviews), as well as with CO2 receptors (Chu-wang et al., 1975; 
Mclver & Siemicki, 1984; Lee et al, 1985; Bogner et al, 1986). In 
the latter case the neurons are housed in wall pore sensilla. In Y. 
cagnagellus both cold receptors and CO2 receptors were found. 
Since digitiform sensilla have no pores (Devitt & Smith, 1982) the 
digitiform sensillum of Y. cagnagellus may function as a cold 
receptor. 

Temperature reception could be used for monitoring the 
microclimate (Schoonhoven, 1967) or could play a role in 
determining leaf quality (Dethier & Schoonhoven, 1968). The 
function of the CO2 receptor is less clear. CO2 reception in 
phytophagous and saprophagous species is restricted mainly to soil 
dwelling organisms that must locate plant roots (Jones & Coaker, 
1978). For larvae living above ground there seems to be no need for 
such a receptor, at least not in the context of host finding. During 
the day, CO2 levels near the surface of green leaves will be 0.03% 
or lower, while this level may rise during nocturnal respiration. 
The observed sensitivity range of the CO2 receptor makes it 
unlikely that this receptor is used to assess the respiratory status 
of the leaf. An alternative hypothesis is that the receptor monitors 
CO2 levels during periods of tight clustering of larvae, or facilitates 
aggregation behaviour. 

The interpretation of the responses to plant odour 
components is complicated by the fact that mechanisms of odour 
discrimination and identification in insects are still largely obscure 
(Visser, 1986; Boeckh & Ernst, 1987). Traditionally olfactory 
receptors have been divided into 'specialists' and 'generalists' 
(Boeckh et al, 1965). Although still useful, it has become clear that 
these terms represent the two extremes of a continuum (see, for 
instance, de Jong & Visser, 1988), and numerous problems exist 
concerning their definition. Kafka (1987) has argued that true 
generalist receptors do not exist. He found that, although single 
cells in Antheraea polyphenols show broad and overlapping 
spectra, each is also highly selective. As a consequence he argued 
that odour generalists should be regarded as a subset of specialists. 

In the experiments with Y. cagnagellus presented here not 
enough stimuli were tested to allow firm conclusions, but presently 
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two spectral types can be recognised: aldehyde sensitive cells and 

alcohol sensitive cells. The two groups are clearly separated from 

each other. It should be kept in mind, however, tha t this might be 

the resul t of the limited set of stimuli used. The reaction spectra 

for the Colorado potato beetle (Ma & Visser, 1978) also show only 

minor overlap between aldehyde and alcohol functional groups (see 

Visser, 1983). However, when the responses to (EJ-2-hexen- l -o l 

are also taken into account, the separation disappears. Overlapping 

sensitivities are also found for the two aldehydes and for the two 

alcohols tested on Y. cagnagellus. In the last group all combinations 

(from cells mainly sensitive to 1-hexanol towards cells mainly 

sensitive to (Z)-3-hexen-l-ol) are present . 

The fact tha t a single receptor cell reacts to different types of 

c ompounds is commonly in terpre ted a s a reflection of t he 

p resence of several receptor 'sites' on the membrane (Kaissling, 

1976; Selzer, 1984). In gustatory neurons this is even more clear 

(Hansen, 1978). The observed sensitivity from the (Z) -3-hexen- l -

ol and 1-hexanol 'best' cells in Y. cagnagellus to benzaldehyde may 

arise from the presence of multiple receptor sites. 

In the present s tudy no response to (Z)-3-hexenyl ace ta te 

was found in the palps of Y. cagnagellus. However, r e cep to r s 

sensitive to this compound have been found in the antennae of this 

species (Roessingh, unpublished results) as well a s in the an tennae 

of Pieris brassicae larvae (Visser & de Jong, 1988). In this respect 

it is interesting to note t ha t in Manduca sexta f ibers from t he 

maxi l l a ry ne rve t ravel in to a core of n eu rop i l e in t h e 

suboesophageal ganglion, that also receives antennal axons (Kent & 

Hildebrand, 1987). 

The resul ts from stimulation with tas te subs tances indicate 

the p r e sence of two cell types with l imited specificity a nd 

respectively most sensitive to KCl and Yponomeuta silk extract. 

Each type shows a clear dose-response relat ionships for its bes t 

s t imulus . The sensitivity of the salt 'best' cells to silk extract could 

be explained by the presence of other compounds in th is r a ther 

c rude s t imu lus mixture. This explanation is suppor ted by the 

finding t ha t these cells respond also to Bombyx silk, though it 

should be mentioned tha t the number of observations is r a ther 
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small. Jus t as with Yponomeuta silk, the Bombyx silk extract 
evokes activity in the salt 'best' cell. Apparently stimulatory 
compounds for this cell type are present in both silk extracts. The 
limited effectiveness of Bombyx silk on the silk extract 'best' cells 
is taken as evidence supporting the hypothesis that specific 
compounds in the Yponomeuta extract (e.g. the trail marker, 
Chapter 4) cause the response of this cell to Yponomeuta silk. 

The maxillary palps of caterpillars contain 15-30 
chemoreceptors (Schoonhoven & Dethier, 1966; Albert, 1980; 
Devitt & Smith, 1982). If the 85 cells in the present study had 
been chosen at random from the population in the palps, then the 
proportion of neurons sensitive to each of the applied stimuli could 
have been estimated. However, it must be stressed that the 
position of the electrode and details in the recording procedure 
strongly influence which cell type is found. A successful procedure 
for a certain cell type typically was continued until enough data 
were obtained to allow statistical analysis. As a consequence, the 
recordings by no means represent a random sample. Due to the 
limited lifetime of the preparation, only one recording per insect 
was made, further complicating the estimation of cell-type 
proportions. In spite of these limitations, however, it can be 
concluded that receptors for the tested terpenoids and for (Z)-3-
hexen-1-yl acetate are relatively scarce (if present at all in this 
species), since no cells sensitive to these stimuli were found. 
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Foraging behaviour and the adaptive significance of trail 
following in larvae of Yponomeuta cagnagellus. 

Peter Roessingh & Mart C. M. De Jong 

Abstract 

Larval foraging behaviour and migration patterns of Yponomeuta 
cagnagellus Hübner (Lepidoptera: Yponomeutidae) were studied. 
The larvae live in a communal nest on their host Euonymus 
europaeus and move to new locations up to 85 cm away about four 
times during development. Most movements take place after local 
depletion of food. In contrast to the central place forager 
Malacosoma neustria (Hübner), studied for comparative purposes, 
Y. cagnagellus larvae do not show recruitment behaviour. The 
possible advantages of trail following and gregarious behaviour are 
discussed with the help of a simple evolutionary model. It is 
suggested to classify larval foraging strategies on the basis of the 
moment at which larvae become solitary. 

Introduction 

The use of chemical signals to facilitate group formation and 
cooperative foraging, a principle well known from social insects, 
has recently also been studied in gregarious lepidopterous larvae 
(for review, see Fitzgerald & Peterson, 1988). In their analysis of 
the links between foraging behaviour and trail pheromones these 
authors broadly distinguish 3 types of foraging behaviour: patch 
restricted foraging, nomadic foraging, and central place foraging. 
The patch restricted strategy is defined as feeding on a contiguous 
patch of leaves by systematically moving to adjacent intact leaves. 
Nomadic foragers make frequent moves to new, often distant 
feeding sites and may abandon a feeding patch before it is 
completely depleted. The last, and least common, strategy is 
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central place foraging. The best known examples of this behaviour 
occur in the genus Malacosoma (Fitzgerald, 1976; Peterson 1987, 
1988). In Malacosoma americanum, feeding takes place during 
excursions from the central nest site, and routes to food sources 
are marked by brushing a sternal secretory site against the 
substrate (Fitzgerald & Edgerly 1982; Peterson 1988). The signal 
appears to be used for elective recruitment and is contingent upon 
each larva's assessment of the food quality at the feeding site 
(Fitzgerald & Peterson, 1983; Peterson 1987; Peterson, 1988). 

Fitzgerald and Peterson (1988) predict that the type of trail 
communication is dependent on the type of foraging behaviour. 
Patch restricted caterpillars are predicted to use relatively simple 
communication systems (e.g. demarcation of the foraging arena), 
while recruitment pheromones are expected in central place 
foragers. This theory is indeed supported for central place foragers 
(Fitzgerald & Peterson 1983; Fitzgerald & Peterson, 1988; 
Peterson, 1988) but more information is needed for the other 
behavioural types. 

In this paper we investigate the foraging behaviour of 
Yponomeuta cagnagellus (Hübner). Trail following is known to 
occur in this species (Chapter 2; Roessingh et al, 1988), and the 
use of a chemical trail marker has been established (Chapter 4). To 
determine how these observations relate to the biology of the 
caterpillars, details on the foraging behaviour were collected. 
Migration in the field was assessed for 17 groups during 
development from the first stadium to pupation. In addition, group 
movements of Y. cagnagellus in the laboratory, and for comparative 
purposes those of the central place forager Malacosoma neustria 
(Hübner), were studied. 

Studies of lepidopterous larvae frequently invoke the possible 
advantages of group living as an explanation for the existence of 
trail following systems (Butler, 1970; Capinera, 1980; Fitzgerald & 
Costa, 1986; Fitzgerald & Peterson, 1988; Chapter 4) However, it 
should be noted that there are also distinct disadvantages 
associated with gregariousness if food is limited (Charnov et al. 
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1976; Schultz, 1983). We developed a simple qualitative model to 
gain insight into the balance between advantages and disadvantages 
of gregarious behaviour, and thus into the evolutionary 
consequences of trail following. 

Materials and methods 

Field observations 

Y. cagnagellus moths lay their eggs in batches. The larvae 
hatch at the end of the summer but remain as first instars under 
the egg cover until next spring. Around the time the leaves flush, 
the larvae migrate to the bursting buds and mine into them. 

Field observations were conducted on groups of caterpillars 
on a naturally infested host tree (Euonymus europaeus) in 
Wageningen, The Netherlands. After larval establishment (in the 
first week of May), 20 infested buds were located and labelled. 
Nearby groups were removed to prevent interference at later 
stages of development. The position and size of each nest was 
recorded daily. If groups fragmented, the position of each subgroup 
was assessed. Distances were measured along the connecting 
branches. Nest size was measured as the largest diameter of the 
nest. The amount of food remaining in deserted locations was 
scored using 3 categories: no food available, food available at the 
periphery of the nest, and food available in the nest itself. For each 
of the groups the observation was continued until the larvae left the 
tree for pupation (in the first week of June). No counts of the exact 
number of larvae were made since this would have required the 
partial destruction of the nest, causing interference with normal 
behaviour. 

Although care was taken to remove nests in the 
neighbourhood of each group under observation at the beginning of 
the experiment, 4 groups fused during their development. These 
were treated as one single group. 



Lab observations 

One day old, fifth instars of Y. cagnagellus and third ins tars of 

M. neustria were placed on b ranches of host t rees (respectively E. 

ewopaeus and Quercus robur) in groups of 20 . After the formation 

of a nest, the b ranch was connected by a paper strip (5 mm wide, 

20 cm long) to a new branch. 

When the food on the first b ranch was almost depleted (after 

about 24 hours) the larvae began to explore their environment and 

eventually found the new food on the other side of the s tr ip. The 

onset of exploration was defined as the moment the first larva 

reached the paper s trip. The foraging pa t tern was observed for 6 

g roups of Yponomeuta and 3 groups of Malacosoma l arvae. All 

observations were conducted under cont inuous light at 21°C and 

ambient humidity. 

Table 1 Summary of field observations on nest building and foraging 
behaviour of 17 groups of Y. cagnagellus larvae 

Number of 
movements 

57 
movements 
to new 
locations 

Food situation at 
moment of movement 

40 times no 
food left 

8 times food 
in periphery 
5 times food in 
nest 
4 missina values 

20 movements 
resulting in nest 
fusions 

Observations 
on distance 
moved 

74 
distances 
measured 

3 missina values 

22 movements away from 
the plant for pupation 



Results 

Field observations 

A s ummary of the field observations on nes t building and 

foraging behaviour of Y. cagnagellus is given in Table 1. From 17 

groups a total of 99 nes ts (and the accompanying location shifts) 

were observed. The frequency d is t r ibut ion of t he movements 

(Fig. 1) h a s a modus and a median of 4, and is skewed towards 

higher numbers of shifts. 

u 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Number of movements 

Figure 1 Frequency distribution of 99 movements of 17 groups of 
Yponomeuta cagnagellus on the host tree Euonymus europaeus 
during development from first instar to pupation. 
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When the total n umbe r of movements for each g roup is 

plotted against the final nest size (as an indicator for the number of 

larvae), a significant positive correlation is found (Fig. 2, r = 0.74; 

p<0.001). A significant correlation remains even when the large 

fused group is excluded from the analysis (r=0.6; p< 0.013). This 

indicates tha t bigger groups move more often. 

The distr ibution of the d is tances travelled is p resented in 

Fig. 3 . The final movements to the ground for pupat ion (22 cases), 

a s well a s 3 missing observations, are excluded from this figure. 

The r e su l tan t distr ibution ha s a long tail; a l though the median 

movement is 10 to 15 cm, movements up to 85 cm were observed. 

In abandoned nes t s (53 cases) the availability of food was 

determined. (Fig. 4) (22 pupation movements, 20 nes t fusions and 

4 missing observations were excluded). 75,5 % of all movements 

(40 cases) took place when all available food was eaten. For 15% (8 

cases) there was food available in the periphery of the nest , and for 

the remaining 9 .5% (5 cases) there also was food left in the nes t 

itself. 
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Figure 2 Relation between the total number of movements and the final 
size of the last nest for 17 groups of Yponomeuta cagnagellus 
on the host tree Euonymus europaeus. 
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Figure 3 Frequency distribution of travelled distances to new locations 
for 57 movements of groups of Yponomeuta cagnagellus on the 
host tree Euonymus europaeus. 
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Figure 4 Availability of food in 53 deserted nest of 14 groups of 
Yponomeuta cagnagellus on the host tree Euonymus europaeus. 
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100 150 200 

Minutes since begin of exploration 

Figure 5 Foraging behaviour of 3 groups of third stadium Malacosoma 
neustria larvae in a laboratory assay with two disjunct food 
patches. Symbols indicate different experiments. 

400 600 800 

Minutes since begin of exploration 

Figure 6 Foraging behaviour of 6 groups of fifth stadium Yponomeuta 
cagnagellus larvae in a laboratory assay with two disjunct food 
patches. Symbols indicate different experiments. 
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Lab observations 

The results from observations of the foraging behaviour of Y. 
cagnagellus and M. neustria in experiments with one old and one 
new feeding station are given in Fig. 5 and 6. The percentage of 
larvae present on the new food source is plotted against time. 
Malacosoma larvae display a typical central place foraging strategy. 
After feeding at the new location, all caterpillars return to the old 
nest site. Foraging excursions are synchronized. While foraging, 
larvae often move back and forth between the two locations, as 
indicated by the waves superimposed on the main peaks in Fig. 5. 

Yponomeuta larvae on the other hand, display a different 
foraging pattern. Although migration is still synchronized, the 
process takes longer than in Malacosoma (Mann-Whitney U test, 
p<0.05) After finding the new food source the larvae do not return 
to the old nest. From the 116 observed larvae in 6 groups, only 2 
individuals went briefly back (1.7%). Since returning to the old 
nest is a prerequisite for recruitment behaviour, this strategy is not 
used by Y. cagnagellus ( Fig. 6). 

Discussion 

Experimental data 

From our results it follows that, in contrast to the situation in 
the genus Malacosoma, recruitment cannot be considered as an 
important factor underlying the trail following behaviour of Y. 
cagnagellus. The caterpillars show a combination of patch 
restricted and nomadic foraging. The nomadic aspect is shown in 
the repeated movements to new feeding sites (Fig. 1), and the 
occasionally long distances travelled (Fig. 3). Patch restricted 
behaviour is reflected in the fact that when sufficient food is 
available the nest may be expanded continuously to form a single 
patch. Also, in general all available food is consumed before the 
group moves to a new feeding site (Fig. 4). Together with the 
observation that larger groups (with high overall food consumption) 
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move relative often, this indicates tha t migration in Y. cagnagellus 

is induced by food shortage. 

Given this type of behaviour, the use of a trail pheromone 

could be advantageous if maintaining group cohesion is beneficial. 

Many au thors have discussed the possible advantages of living in a 

group. An important aspect is the ability to produce a silk nest . A 

group can make a bigger and s t ronger s t ruc tu re t h an a single 

caterpillar. The nes t may facilitate control of t he microclimate 

(Strong et al, 1984; Tsubaki , 1981), improve thermoregula t ion 

(Porter, 1982; Knapp & Casey 1986), and function a s holdfast and 

an t i -p reda tor s t r uc tu re (Capinera, 1980; T subak i & Kitching, 

1986). In addition, gregariousness can increase survival rate, at 

least for early ins ta rs (Ghent, 1960 (for sawfly larvae); Capinera 

1980; T subak i , 1981 ; Weaver, 1988), and defense aga ins t 

p redators may be more efficient (Meyers & Smith, 1978; S tamp, 

1981). However, it should be noted tha t distinct d isadvantages of 

gregariousness also exist. The caterpillars are faced with a set of 

conflicting demands (Schultz, 1983). Members of a group depress 

the availability of food to themselves (Charnov et al, 1976), and 

frequent movement to new feeding sites may be associated with an 

increased r isk of mortality (Morimoto 1979, cited in Tsubaki & 

Shiotsu 1982; Capinera 1980; Bergelson & Lawton 1988; Steward 

et al, 1988). This cost h a s not always been recognized. For 

ins tance, the conclusion of Tsubaki & Shiotsu (1982) t ha t group 

feeding can be beneficial b ecause it p romotes more efficient 

resource utilization relies on the a s sumpt ion t h a t the costs of 

frequent movements to new feeding sites are negligible. 

In s ummary , the ques t ion emerges why larvae of Y. 

cagnagellus, a nd in a more general context all g regar ious 

caterpillars, s tay together in spite of the resulting competition for 

food. 

Evolutionary interpretation 

To gain insight into this problem and the possible role of trail 

pheromones , it is useful to consider larval behaviour from an 

evolutionary point of view. Y. cagnagellus larvae initially s tar t a s a 
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group because females deposit eggs in batches. Since there is a 
disadvantage associated with gregarious behaviour (local food 
depletion) solitary foraging will be favored by natural selection 
unless group foraging offers commensurate advantages. When such 
advantages exist, any Evolutionary Stable Strategy (ESS) will 
require that larvae remain together until the local food supply is 
depleted. Following depletion of food, larvae can either adopt a 
strategy that leads to solitary food searching, or one that leads to 
re-grouping at a new feeding site. 

As long as gregarious behaviour confers a net advantage upon 
the individual, the ESS for a larva will be to follow the others when 
they leave the depleted site. To do this, the larva might use cues, 
left by departing larvae. Furthermore, if being a member of a group 
is advantageous, it will also be to the advantage of the departing 
larvae to assure that others will follow. One way to achieve this is to 
produce trail pheromones. Thus, to gain insight into the 
evolutionary consequences of the use of trail communication, the 
advantages and disadvantages of gregarious behaviour must be 
evaluated. 

The adaptive significance of larval gregariousness is at 
present not well understood (Sillén-Tullberg, 1988). We therefore 
developed a simple model, in which larvae follow different 
strategies at the moment of food depletion. The aim of the model 
is to determine the circumstances under which gregarious 
behaviour is an ESS, i.e. circumstances under which the population 
can not be invaded by larvae with solitary behaviour. 

Two larval types are modelled: 1] A type with a group 
strategy, which responds to, and/or produces trail pheromones, 
i.e. a larva whose behaviour after food depletion contributes to the 
maintenance of the group, and 2] a solitary foraging type that 
neither produces nor responds to trail pheromones. In this 
analysis we only evaluate the larval strategies and ignore possible 
evolutionary changes in oviposition behaviour. As a consequence, 
the initial group size is only determined by the size of the egg 
batch produced by the female moth. For simplicity it is also 
assumed that each larva follows only one of the two strategies and 
that generations are discrete. 

9 5 



The resul ts in this paper show tha t food shortage effects the 

migration behaviour of Y. cagnagellus We therefore dist inguish in 

t he model between two factors t h a t influence larval mortali ty: 

morta l i ty due to local food deplet ion (i.e. r i sks involved in 

searching for a new feeding patch after local food depletion), and 

all non-food related mortality factors, e.g. prédation, t empera ture 

effects, etc. The following symbols are used: 

gt = Number of larvae with a group strategy in generation t 

Sf = Number of larvae with a solitary strategy in generation t 

R = Number of offspring per surviving larva 

Pfood, 1 = Probability of finding sufficient food to survive for a larva 
with a solitary strategy 

Pfood.n = Probability of finding sufficient food to survive for a larva 
with a group strategy in a group of size n 

pother, 1 = Probability of surviving non-food-related mortality 
factors for a larvae with a solitary strategy 

pother,n = Probability of surviving non-food related mortality 
factors for a larva with a group strategy in a group of 
size n 

The number of larvae of each type in the next generation can 

be c a lcu la ted from the n umbe r in the c u r r en t genera t ion 

multiplied by the number of offspring and the survival probabilities: 

St+l = St * R • Pfood.l * pother,l ( l a ) 

gt+1 = gt * R * Pfood.n * Pother.n ( l b ) 

If one is interested only in the frequency of the group s trategy in 

the populat ion (cf. De Jong & Sabelis 1988; Sabelis & De J ong 

1988) it suffices to determine whether the growth r a te for the 

group strategy (R- Pf00d,n " Pother.n) i s larger t han tha t of the solitary 

strategy (R • Pf00d,l * Pother, l) o r n o t - Thus for R being the same for 

both strategies the outcome of the evolution is determined by: 

Pfood.n * Pother.n " Pfood. 1 " Pother, 1 
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When (2) is positive the group strategy will be the ESS and when 

(2) is negative the solitary strategy will be the ESS. After division 

by Pfood.1 
obtain: 

Pother.n -to allow convenient graphical analysis we 

(Pfood.n / Pfood.l ) " (Pother, 1 / Pother.n) (3) 

When (3) is positive the group strategy is evolutionary stable, and 

when (3) is negative, the solitary strategy is stable. 

The va lue of (3) d epends on the b a l ance be tween t he 

advantages and the disadvantages of being a member of a group of 

size n . In Fig. 7 A Pf00d,n/ pfood,i- (the relative 'advantage' due to 

food competition of an individual in a group of size n over a solitary 

individual), is plotted against n. For a group size of one, Pf00d,n i s 

the same a s Pf00d,i> a n d t hu s the ratio of these probabilities will 

equal one. For a group size larger t han one, the probability tha t a 

larva dies due to local food shortage increases strictly with n. The 

slope depends on the amoun t of locally available food and the 

probability to find more food in the immediate vicinity. If this is 

sufficient to sus ta in all larvae, there will be no competition for food 

in the group and the slope will be zero (Fig. 7A, curve c). As food 

becomes increasingly limited, competition becomes more intense, 

i.e. the slope becomes s teeper (Fig. 7A, curve a & b). As Fig. 4 

indicates, competition for food is likely in Y. cagnagellus. 

1 Group size ^ 

Figure 7A The relative advantage due to food competition of an individual 
in a group size n over a solitary individual. The curves a) to c) 
apply to situations with an increasing amount of available food. 
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Group size ^ 

Figure 7B The relative advantage due to non-food causes of a solitary 
individual over an individual in a group size n. See text for 
explanation of the curve shape. 

Figure 7C The difference between the relative advantages for gregarious 
and solitary individuals as given in Fig. 7A and 7B. For positive 
values of this expression gregarious behaviour is an ESS. 
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Fig. 7B depicts P0ther,i / pother,n (the relative 'advantage' due 

to non-food related factors of a solitary individual over an individual 

in a group of size n). We a s sume tha t the chance of survival in a 

group increases 

with the number of resident larvae (for ins tance due to positive 

effects of communal nest building); t hus , P0ther,l / Pother.n initially 

decreases a s group size increases. However, this advantage may 

d i sappear a t larger group sizes, for ins tance because a larger 

product ion of faeces may a t t ract p redators or may increase the 

chance of mortality from disease. Thus, the ratio increases above a 

certain group size (Fig. 7B). 

Subtract ion of P o l h er , i / Pother.n from Pf00d,n/ Pfood.i yields 

expression 3 , which is p resented in Fig. 7C, and from which 

inferences about evolution of larval behaviour can be made. Three 

si tuations can be distinguished: 

a) Food is such a limited resource tha t its effect on survival 

always outweighs the risks of leaving the group (curve a). 

Under s uch c ircumstances, the group strategy is never an 

ESS 

b) Competi t ion for food only outweighs non-food re lated 

factors if the group size is small or large relative to the food 

supply. The group strategy is an ESS if the initial group size 

is located between n i and n2 (curve b) 

c ) When sufficient food is available it is always an advantage to 

be a member of a group, unless the group is larger t h an n3 

(curve c). 

In summary , the favored larval s trategy depends on the initial 

group size (egg ba tch size), and on the relative advantages and 

disadvantages to larvae of being in a group of tha t size. This in t u rn 

depends partly on the distribution of food. Curves a to c in Fig. 7C 

reflect s i tuat ions with increasingly more food a nd / o r increasingly 

less advantage from being in a group. For positive values of these 

curves the group strategy is evolutionary stable. 

From this analysis a number of predictions can be made, 

some of which can be easily tested. Gregarious behaviour and trail 

following are not expected in habi tats with small isolated pa tches 
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of food, because then the disadvantages of local food depletion are 

the largest (curve a). From the model, it is also clear t ha t when 

food competition is less intense (curve c), e.g. in t rees or when 

p lants are clumped, it is more likely tha t gregarious behaviour will 

evolve. These predictions seem to be suppor ted by t he work of 

S tamp (1980) and Courtney (1984), and can be tested by a review 

of the l iterature on host plants of solitary and gregarious species. 

The disadvantage due to food competition t ha t a larva in a 

group experiences will increase with any increase in group size. On 

the other hand, the positive effects of a group are expected to arise 

mainly a t larger group sizes. Because of this asymmetry, the group 

strategy is not likely to be an ESS for small groups, a s indicated by 

the position of n l . (curve b) Therefore, gregarious behaviour and 

trail following are not likely to evolve when the initial group size 

(i.e. egg ba tch size) is small. This result agrees with the view of 

Courtney (1984), who argues that ba tch laying is a necessary first 

s tep in the evolution of gregarious behaviour. 

Although the model applies to lifetime strategies for larvae, 

the resul ts can be extrapolated to age dependent s trategies. The 

benefits of being in a group are especially important in early instars 

(Ghent, 1960; Capinera, 1980; Tsubaki & Kitching 1986). In Fig. 

7B this may be depicted by a curve t ha t extends less far towards 

zero. On the other hand , the competition for food will be more 

intense during later stadia, when the caterpillars consume food at a 

high rate . This results in steeper slope in Fig. 7A. The combined 

effect is t ha t n l and n2 in Fig. 7C will be closer together. As a 

consequence the r ange of g roup sizes for which g regar ious 

behaviour is an ESS becomes smaller during development, and the 

probability tha t gregarious behaviour disappears in later instars will 

increase. This indeed is a common observation in many caterpillar 

species, (e.g. Tsubaki , 1981; Larsen, 1987; Fitzgerald & Peterson, 

1988). 

The behaviour of Y. cagnagellus does not fit the behavioural types 

dist inguished by Fitzgerald & Peterson (1988), b u t can be easily 

explained from the evolut ionary in te rpre ta t ion of individual 

behaviour given here. We suggest t ha t larval behaviour should be 

classified by the age at which larvae switch from a gregarious to a 

solitary strategy. 
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Contrary to Fitzgerald & Peterson (1988) we do not consider 

it likely t h a t trail following evolves from solitary behaviour bu t , 

instead suggest t ha t selection favors trail following in ba tch laying 

species because it allows the initial group to remain together for a 

longer t ime. 
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7. Computer-assisted analysis of electrophysiological data from 
insect sensilla. 

Peter Roessingh, Hans Visser, Herman Anient & Harm Wezel 

Abstract 

Electrophysiological investigations of insect chemoreceptors 

are h ampered by the massive amoun t s of d a t a t h a t m u s t be 

analyzed. A variety of computer programs have been written to deal 

with th i s problem, b u t a fully satisfactory solut ion is no t yet 

available. In this paper the development and use of such a program 

is reported. It is concluded tha t spike analysis software should be 

viewed as a set of tools to display and manipulate the data in an 

interactive way. These facilities should guide the u se r in h i s 

decisions concerning the course of the analysis. The possibility to 

re-analyze da ta with different pa ramete r se t t ings and flexible 

cross-referencing between different display facilities are identified 

as the most important aspects of a successful program. 

Introduction 

Single un i t recordings from insect sensilla provide the bas is 

for theories about perception of stimuli, sensory coding and neural 

integration (Boeckh & Ernst , 1987). In addition these da t a are 

essential for the correct interpretation of u l t ras t ructura l details of 

sensilla (Altner & Prillinger, 1980; Zacharuk, 1980). Although the 

electrophysiological technique is more then 30 years old (Hodgson 

et al, 1955; Schneider & Hecker, 1956), progress in the field h a s 

been relatively slow. This is partly due to the extensive labor 

involved in t he analysis and in terpreta t ion of raw spike d a t a 

(Hanson et al, 1986). It is generally accepted tha t the full potential 

of electrophysiology will not be realized until this analysis is made 

less burdensome. 
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Attempts to write computer programs that accomplish the 
task of data acquisition and analysis are numerous (e.g. Gerstein & 
Clark, 1964; Kent, 1971; O'Connell et al, 1973; Piesch & 
Wieczorek, 1982; van der Molen et al, 1978; van Drongelen et al, 
1980; Teyler, 1981; Hanson et al, 1986; Mitchell & Mclntyre, 
1986; Mankin et al,. 1987). Yet the facts that new programs 
continue to be proposed and that no standard method has arisen, 
suggest that none of these programs is fully satisfactory. 

On the other hand, several techniques and algorithms for 
separation and classification of spikes are available (e.g. Gerstein & 
Clark, 1964; Smith et al, 1985; see Frazier and Hanson, 1986 for 
review). In the present paper we describe the development of a 
spike analysis program and identify critical aspects in the design of 
this type of program. 

The signal 

Due to the problems associated with data analysis, 
electrophysiological research of insect sensilla focuses at present 
on systems with relative few active units. Recordings typically 
consist of activity from one to four sensory cells, often with a poor 
signal to noise ratio. Several aspects of the signal complicate 
automated data analysis. 

In taste receptors, changes in the conformation of the apical 
pore may influence the responsiveness of the sensilla (Bernays et 
al., 1972; van der Wolk, 1984). These changes can be very rapid 
(Kramer & van der Molen, 1980) and can cause variations in 
latency time and contact artefacts. The unpredictable variability 
that results from these effects generally preclude a totally 
automatic analysis and requires great flexibility in the procedure 
and systematic monitoring of each step. In addition the spike-
shape is dependent on characteristics of the preparation, the 
amplifier, and on details of the recording procedure. Amplitudes 
and shapes of spikes may also change with spike frequency 
(Fujishiro et al, 1984; Bowdan, 1984). This limits the use of more 
rigid programs to only a few types of preparations. The constant 
need for operator control and supervision was recently stressed by 
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Hanson et al. (1986) and Frazier & Hanson (1986). It is therefore 

concluded t ha t a t ruly interactive approach , a s advocated by 

O'Connel (1973) and van Drongelen et al. (1980), is the most 

promising method for a successful analysis program. 

The Process 

The process of data analysis can be viewed a s a chain of 

discrete s teps: 

1) Data acquisition. This step involves the translation of analog spike 

da ta , e i ther directly from the preparat ion or from tape, into a 

machine readable form, i.e. analog to digital conversion. 

2) Spike/noise separat ion. This step accomplishes the separation of 

spikes from the background noise. 

3) Spike classification. Once the relevant portions of the signal are 

known, each spike mus t be assigned to one of several active 

neurons , i.e. the activities from different sensory cells mus t be 

sorted. 

4) Cell charac te r iza t ion . After the ass ignment of spikes to specific 

sensory cells, the response characterist ics of these cells can be 

descr ibed . This s tep yields the final quant i f icat ion of t he 

response, used for further analysis and interpretation. 

As s ta ted above, a high degree of operator supervision is 

necessary in order to prevent the generation of artefacts. In the 

program described here, a loop is created for each of the s teps 

(Fig. 1). 

From " ^ ^ — 

former step 

To former step 

Input 

Criteria 

Evaluation 

1 
Output — • — To 

next step 

-rom next step 

Figure 1 Each step in the analysis process should consist of a tight 
feedback loop in which the user repeatedly can specify criteria 
and evaluate the output. 
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In th is loop, input data is t aken and processed us ing user-

defined criteria. The resultant output is displayed and evaluated by 

the operator. This interactive process of analysis and evaluation is 

repeated, with different criteria, until the output is acceptable. The 

next s tep uses this result as input (Fig. 2). 

In the following section the implementation of the program 

will be d i scussed and a t tent ion will be given to some of t he 

encountered problems. 

Figure 2 The complete analysis consists of series of steps. A. trigger 
level adjustment, B. AD-conversion, C. spike/noise separation, 
D. spike classification, E. cell characterisation. 

The program 

Data acquisition 

There are two approaches to da t a acquisi t ion. The first 

method involves taking a cont inuous s t ream of samples over the 

period of interest (2 to 3 seconds). Although this method is easy, it 

u ses extensive amounts of memory. Given a minimum sample rate 

of 10 kHz (Frazier & Hanson, 1986), 3 seconds of da ta take up at 

least 60 kBytes of memory. Although this nowadays is not a real 

p rob lem anymore , h and l ing of t h e large dataf i les c an be 

complicated and slow. Therefore we use an alternative approach, 

and sample only those par t s of the signal t ha t contain relevant 

information. The timing diagram is given in Fig. 3 . Two separate 

trigger un i t s , controlled by the program, are used. The first two 

t races in Fig. 3 show the analog spike signal and a separate channel 

with a pulse indicating the s t imulus period. This channel also 

contains a pre-pulse occurring one second before the stimulation. 
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This allows for a comparison between the neural activity before and 
after the stimulation. When tip recording is used, the st imulus 
signal can be replaced by the spike signal. The stimulus artefact 
starts the process in this case. When the pre-pulse activates the 
first trigger unit, the trigger in the spike channel is enabled for a 
user-defined period, 3 seconds in our case. During this interval 
each trigger event c au se s a b u r s t of conversion commands, 
generated by an ex ternal clock. All the parameters in the 
conversion process (e.g. total sample time, sample frequency, 
duration of the sample burst) are interactively controlled by the 
user. The samples of the spike signal are saved in a special buffer. 
In addition, the interval since the last trigger event is recorded. 

The advantage of this method is that a series of recordings can be 
analysed with a high sample rate, without exhausting the available 
memory. The high sample rate (max. 100 kHz.) allows in principle 
a Fourier analysis of the spike shape. In addition time is saved 
because the s epara t ion of spikes from noise is done by the 
hardware. The only d isadvantage of this simplification is that the 
conversion step must be repeated if the trigger levels were not set 

correctly. To facilitate a correct set t ing, an analog to digital 
conversion for the complete spike signal, including the noise, can 
be performed. The r e su l t is d isplayed, and the user can 
interactively choose the magnification factors of the X and Y axis. 

With a hairline cursor, the trigger level for the spike signal can be 
specified (Fig. 4). 

Sample time 
At : 1.5688 sec. 
Selected: t r i gge r level 

0.000 - 1.638 sec 
Time +• delay: 
0.30 V 

F req . : 20.00Khz 
1.5888 se 

Figure 4 Display of the AD conversion process for the complete signal, 
including the noise. The magnification factors of the X and Y 
axis are interactively defined. With a hairline cursor, the 
trigger level for the spike signal can be specified. 
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Spike / noise separation 

Although the spike/noise separation is accomplished largely 
during the preceding step, some noise will normally also be 
sampled. In the present step, all sample groups are compared to a 
set of criteria to separate valid spikes from noise peaks. We found 
that the distances between maximum and minimum in the spikes 
as well as the time until the first maximum or minimum provided a 
good separation from the noise peaks. To evaluate the fidelity of 
this process, a display function for individual spikes is available, 
together with a list of parameter values calculated for each spike. 
The following parameters were used: the top-top amplitude, a 
shape index following van Drongelen et al. (1980) and the slope of 
the connection between the maximum and minimum of the spike. 
Special care was taken to use a modular approach during the 
writing of this section. As a consequence, subroutines that extract 
other parameters (e.g. template matching techniques or results 
from Fourier analysis) can easily be added. 

All parameters are kept in a data file, together with the 
sequence number and the time of occurrence of the spikes. In the 
classification step this file is extended with information indicating 
the cell to which each spike is assigned. The detected noise peaks 
are labelled as invalid, but not deleted, and can still be displayed in 
later steps. The valid spikes are counted. 

Classification step 

This step forms the heart of the analysis. Following the ideas 
of O'Connel (1973) and van Drongelen et al (1980), the program 
produces a display of one of the parameters from the last step. 
Traditionally frequency histograms are used for this purpose, but 
here we plotted diagrams of each parameter against time (cf. 
Frazier & Hanson, 1986). Such a diagram displays all the 
information contained in a frequency histogram and, in addition, 
shows gradual changes of the parameter over time. The user 
specifies threshold values for the different spike classes, by moving 
a hairline cursor in the plot and indicating the boundaries. After 
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this specification the program immediately executes the separation 

and draws the spikes (as vertical lines with the appropriate top-top 

amplitude) for each cell on a separate axis (Fig. 5). The u se r can 

j udge the resul t , change the posit ion of one or more of the 

boundaries, repeat the analysis and again observe the result. In this 

interactive p rocess , an acceptable separa t ion can normally be 

reached after 2 to 3 cycles. In addition it is possible to produce 

scatter plots of one parameter against another. 

This allows the user to gain insight in the way the spikes 

cluster, and which parameter yields the best separation. 

<tn 3K.N 
M l i lM t 

H-HH H h 

Class 
Count 
Boundary 

1 
5 

2837.960 

2 
1 2 

6144.880 

3 
48 

9100.000 

Invalid 
28 

Selected: Amplitude Value:305.00 
N = New class, E = Enter boundary, D = Delete boundary <SPACE> = read value, Q = Quit 

Figure 5 Display during the spike separation step. Cell type boundaries 
(small horizontal stripes on Y-axis) are specified with a hairline 
cursor in an amplitude vs. time plot. It is possible to add and 
remove boundaries. The program immediately displays the 
separated spikes with their proper amplitudes on their own 
time axis under the plot 
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Characterization step 

This par t of the process is relatively s traightforward. The 

user specifies, again with the help of a hairline cursor, the moment 

of s t imulus onset in the separation plot from the preceding s tep, 

and indicates the time interval to be used in the counting (Fig. 6). 

The program produces a table with the number of spikes per cell 

per t ime interval.This result can also be displayed in h is togram 

format (Fig. 7). 

Total [A | 

I n t e r v . I I I I I I I I I I I I I I I I 

C l a s s 1 1— 

- n — i -

File: TASTE.SRT Parameter Amplitude 

Zero-Time 0.00 Difference 0.00 

Step: 200.00 ms Nr of intervals: 15 

Type Q to quit step entry. P for screen dump and quit 

Figure 6 Video display during the Characterization step. The user 
specifies, again with the help of a hairline cursor, the moment 
of stimulus onset in a plot with separated spikes, and indicates 
the time interval to be used in the counting. The program 
produces a table with the number of spikes per cell per time 
interval. 
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Histogram o l 111» TST4AM.SRT 

l-TMi flsr^ 

tL JZL 

i i—•—i i—• m - m - m - . 

Figure 7 The results from the counting process can also be plotted as a 
histogram. 

Discussion 

The p rogram package described here was tested on several 

types of electrophysiological data, i.e. on gustatory responses from 

tarsal receptors in Pieris bu t terf l ies , on olfactory r ecep tor 

responses from t he a n t ennae of the Colorado Potato Beetle, 

Leptinotarsa decemlineata, and on recordings of gusta tory and 

olfactory receptors from an t ennae and palpi of Yponomeuta 

cagnagellus larvae. From this experience critical points in the 

design of the program showed up clearly. 

We have s tressed several t imes the need for cons tan t u ser 

supervision. To accomplish this, graphical display of the resul ts is 

obligatory. In each of the analysis s teps , some pa rameters (e.g. 

trigger levels, classification boundaries, display para-meters) mus t 

be changed. A graphical interface allows the user to inspect the 

data and change parameters in a single s tep. The feedback loop 
should be a s tight a s possible, to allow convenient repetition of the 

cycles. 
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As s t a t e d by F raz ie r & H a n s o n (1986) , mu l t i p l e 

representa t ions of the data facilitate correct interpretat ion. The 

program should allow exploration of the s t ruc tu re in the da ta . 

Important in this respect is the integration of the whole package. 

It is possible t ha t during the analysis the need arises to repeat a 

previous s tep; therefore, a quick way of en ter ing an earl ier 

program section should be available. To allow fast t racking of the 

origin of anomalies it mus t also be possible throughout the program 

to get information about the exact location of certain events. If, for 

instance, several large spikes appear in a plot of spike ampli tudes 

vs. time, it should be possible to cross reference to the display of 

individual sp ikes to check if these ampl i tudes are caused by 

superpositions. This facility is implemented in the current package 

us ing cross hairline cursors, with which information about time or 

parameter values can be retrieved from the different plots. 

To summarize, electrophysiological data often contain a high 

level of variability. As a consequence, it is unlikely tha t a completely 

automatic analysis program will be applicable. Instead, we view a 

spike analysis program as a set of tools, to manipulate and display 

the da ta interactively in a variety of ways, while the actual analysis 

is done by the user . From this perspective the main obstacles for 

writing useful spike analysis software are associated with the 

flexibility and interaction of data display and manipulation, ra ther 

t han with the lack of algorithms or separation procedures. 

Instrumentation 

Camac system with MIK 11/2 microprocessor including EIS/FIS 

chip, (Standard Engineering Corporation). RT11 operating system (v5.0A). 

RT11 Fortran IV (v2.6) programming language. Dual trigger PDS 7901. 

Twelve bit AD convertor and data logger LRS 8212A/4 (Le Croy) with 32 

kBytes memory. LRS 8800/12 interval timer PDS 8104. Pulse generator 

Hijtec 95. Clockgenerator LRS 8501 ( Le Croy) Flexible disk Memory 

system ( dual floppy disk) DSD-440 (Data systems). Cifer T5 terminal 

emulating DEC VT100 and Tektronix 4010. Adcomp X80SP printer-

plotter. 
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