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L I S T O F S Y M B O L S 
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I N T R O D U C T I O N 

The rate of évapotranspiration of a cropped soil surface can be estimated 

with the aid of various simulation models. Most models describe the tran­

sport of water as a liquid medium across the entire soil profile, either 

one dimensionally (e.g. SWATRE, Feddes et al., 1978 and Rabat et al., 1989) 

or multidimensionally (e.g.UNSAT2, Neuman et al., 1975). Bare soil evapora­

tion is hereby assumed to take place at soil surface level. The application 

of such models in hyper-arid regions like deserts and dry soils has to be 

questioned. The topsoil under these conditions can be extremely dry and 

vapour flow through the dry and often salty sandcrust may be the dominant 

transport process. Hence, existing simulation models, describing liquid 

transport towards the surface, can not be applied without major modifica­

tions. 

The hydraulic conductivity as a transport process parameter in the dry 

range of soil water content relates to a transient mixture of liquid and 

vapour flow. Such an "effective" hydraulic conductivity is very difficult 

to measure with available laboratory techniques. An outcome is to establish 

a treshold for matric pressure head, below which one applies a Richard's-

type equation to describe liquid flow, while above this treshold one should 

only consider vapour flow described by diffusion-type equations. Parameters 

of both type of equation have to consist of a permeability of the medium to 

vapour and to liquid flow. A theoretical concept of a liquid-vapour inter­

face characterized by the critical matric pressure head i.e. evaporation 

front (Mènent!, 1984) situated somewhere inside the unsaturated zone is 

briefly reviewed in this study. 

A new finite difference one-dimensional transient numerical simulation 

model for bare soil EVAporation in DESerts (EVADES) has been developed. The 

model is written in Fortran 77 on the VAX/VMS version V4.5 operating 

system. The EVADES-model contains the Richard's equation for the movement 

of water in the liquid phase with its numerical solution scheme as applied 

in the SWATRE-mode1. 
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Above the vapour-liquid interface a vapour continuity equation of the Fick-

type is applied. After establishing of the depth of the evaporation front, 

resistance factors for the transport of vapour and heat trough the soil 

profile are simulated in order to calculate the actual evaporation rate 

away from the surface by means of a combination equation. 

In the framework of an evaporation study in the Western Desert of Egypt, 

vapour transport through the toplayer has to be assessed in order to pre­

dict natural losses of fossil groundwater. The new EVADES-model has been 

tested and validated with field data collected in the above mentioned 

regions. 
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S U M M A R Y O F T H E S W A T R E - M O D E L 

2.1. THEORETICAL ASPECTS OF THE EVAPORATION ESTIMATION IN THE SWATRE-MODEL 

The SWATRE-model (Feddes et al., 1978 and Rabat et al., 1989) simulates 

translent one-dimensional water flow through the unsaturated/saturated 

zone, including water extraction by roots. The evaluation of the complete 

water balance is given at each time step. The applied upper boundary con­

dition for bare soils is the maximum possible flux through the soil surface 

i.e. potential evaporation flux or infiltration. The actual flux through 

the soil surface in rainless areas is limited by the transport capacity of 

the soil matrix so that a flux regulation procedure is applied. Similarly, 

if the potential rate of infiltration exceeds the infiltration capacity of 

the soil, part of the water runs off, since the actual flux through the top 

layer is limited by moisture conditions in the soil. 

/q(K,hm)/ « /qp/ 

htotllm < hm < 0 

where: q(K,hm) = actual Darcian flux through the soil-air interface 

(evaporation or infiltration) determined by soil 

hydraulic properties (hm(6)- and K(hm) relation­

ship) 

qp = the known potential surface flux (i.e. potential 

evaporation or infiltration) 

ht o t = minimum allowed pressure head at the soil surface 

(matric and osmotic forces included) 

hm = actual matric pressure head at the soil surface 

The limited value of the pressure head at the soil surface can be deter­

mined from equilibrium conditions between soil water and atmospheric vapour 

with the interface at the soil surface (Kelvin's law): 

(cm 

(cm 

d"1) 

d-1) 

(cm) 

(cm) 
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. lim Ru T . „ . . ,,, 
htot = MT ln u (m) [1] 

where Ru (8.314 J.mol.K ) is the universal gas constant, T (K) the abso­

lute temperature, M (0.018 kg.mol ) the molecular weight of water, 

-2 

g (m.s ) the acceleration due to gravity and U (-) the relative air humi­

dity. Hence, in case the soil is not evaporating potentially, a reduced 

flux (q ) is considered to be the upper boundary flux. When the pressure 

head in the profile close to the soil surface, has the same order of magni­

tude as hm , the reduced evaporation flux (q ) is expressed as a 
Darcian flux q(K,h ) through the upper topsoil. When the pressure head in 

m 1 . 

the topsoil differs by order of magnitude comparing with h , a flux 

reducing procedure is involved based on the empirical model of Black and 

Gardner (1969): 

E - x/tTÏ - \Vt (mm.d-1) [2] 
act 

where E (mm.d ) is the actual (reduced) evaporation flux for the drying 
-0 5 

period, Mmm.d ' ) is a soil dependent parameter and t (d) the time after 

the last day with a precipitation larger than 10 mm.d . The actual soil 

evaporation flux rate is taken in the SWATRE-model as the minimum of the 

Darcian flux q(K,h ) and the flux E 

m act 

Non-steady water flow through the unsaturated porous soil, is based on the 

one-dimensional Darcy-equation in combination with the conservation of 

mass: 

3h 3h S(h ) 

TZ [K(h ) ( T — + D ] - TTTT-T (CB.d ) [3] at C(h ) 3z L v m'v3z 'J C(h ) 

where h (cm) is the soil-water (matric) pressure head, t (d) the time, 
m -1 

C(h ) (cm ) the differential soil-water capacity at specific matric 
m 

pressure head, z (cm) the depth, positive when directed upwards, K(h ) 
-1 m 

(cm.d ) the hydraulic conductivity at specific matric pressure head and 
S(h ) (d ) the water uptake by roots sink term at specific matric pressure 

m 

head. This implicit second order partial differential equation is solved 

numerically by assuming linear gradients of matric pressure head versus 

time and depth between the nodes (Haverkamp et al., 1977). 
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The Thomas algorithm is applied to solve the finite difference scheme with 

explicit linearization of hydraulic conductivity and soil-water capacity 

for each time step (Remson, 1971). 

An iteration procedure is applied within each variable time step with a 

convergence criterium allowing to simulate the real terms of water balance 

for any time period selected (Kabat et al., 1989). 

The value of the pressure head at the soil surface can be treated in the 

model as Dirichlet type boundary condition (specified pressure head). The 

flux through the bottom of the profile can be given as input (Neuman type 

condition) or can be calculated from a relationship between bottom flux and 

groundwater level below surface and subsurface flow systems (Cauchy type 

condition)(Feddes et al., 1988). Eventually the depth of the groundwater 

table can be calculated. A prescribed pressure head at the bottom of the 

profile can be given as Dirichlet type boundary condition (zero matric 

pressure head at phreatic surface). For specific cases, a zero flux con­

dition and free drainage can be used. 

The potential évapotranspiration can be computed by means of several alter­

natives. Options for the application of semi-physical based equations of 

Penman and Monteith are built in. Also, empirically derived radiation 

equations like the equation proposed by Makking and by Priestly and Taylor 

belongs to the options. Values of evaporation and transpiration can be 

directly given as input to the model when known a priori. 

2.2. COMMENTS ON THE APPLICATION OF THE SWATRE-MODEL IN ARID REGIONS 

The land types in arid regions are characterized by mostly scarce vegetated 

and dry soils. When a shallow groundwater table is present, salt traces are 

often noticed. For example, the situation in the natural depressions of the 

Western Desert of Egypt are characterized by a flat, mainly non-vegetated, 

topography including a shallow groundwater table. The mean annual rainfall 

is less than 10 mm.y"1. The surface consists of evaporites (halite) with a 

consequently high solute concentration in the bottom. The soil temperature 

shows a large diurnal oscillation and can be extremely high (upto 60°C). 
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The sink term of eq. [3] is to be neglected since the soil is mainly bare. 

The main complications on the application of the basic version of the 

SWATRE-model under hyper-arid bare soil conditions can be summarized as 

follows: 

1. Motion of soil water is dominated by the large friction force between 

soil particles and water. The transport mechanism and the conditions 

under which it takes place can reach a magnitude of soil water content 

where the ability of the soil to conduct water in the liquid phase beco­

mes asymptotically zero. It is intuitively clear that prevalent vapour 

displacement through the dry, sandy (eventually salt) crust will then be 

the major transport process. At such water content, the liquid dif-

fusivity becomes less than the vapour diffusivity (Jackson et al., 

1974) because the vapour diffusivity increases more with temperature 

than the liquid diffusivity does. So, vapour transport equations in the 

top layer have to be involved. The interface between vapour and liquid 

transport, i.e. evaporation front, can be found deep in the soil pro­

file. 

2. Empirical Eq. [2] does not hold true. Predictions of evaporation by 

means of this expression are reasonably accurate for short dry spells, 

which condition does not apply to desert climate. 

3. When Eq. [2] is rejected, the actual evaporation will be taken as the 

Darcy flux through the top soil. The concept of a hydraulic conductivity 

in the very dry range is basically wrong when one consider it as a pro­

cess directed ("effective") parameter, since the solid-vapour interac­

tion is dominant over the solid-liquid interaction. The "effective" 

hydraulic conductivity in the dry range, is poorly measurable, so the 

application of such parameter under hyper-arid conditions has to be 

discussed with great attention. The current experimental knowledge of 

soil hydraulic conductivity in the dry range of soil water content has 

in this respect to be discussed. A proper fluid dynamic description of 

the process would involve a two-phase flow, thus describing the interac­

tions between: 

- liquid and vapour 

- solid matrix and vapour 

- solid matrix and liquid 
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4. The matric pressure head gradient in this thin top layer is not very 

accurate, since pressure head at the soil surface is obtained by 

assuming equilibrium between atmospheric vapour pressure and vapour 

pressure in soil air. 

Small deviations from this equilibrium conditions cause large deviations 

in the pressure head gradient. Osmotic forces play another relevant role 

here, which is described more intensely in section 3.2.7. Hence, the 

Darcy flux through the top layer under dry conditions with possible 

osmotic effects is an educated guess. 

5. From the surface energy balance equation it is known that net radiation 

(Rn) equals the sum of latent heat flux (LE), sensible heat flux (H) and 

the soil heat flux (GQ) : Rn+LE+H+GQ=0. Since the soil heat exchange term 

(G0) is for practical reasons not applied in the combination equations 

currently applied in the SWATRE-model, an error in the determination of 

the latent heat flux is introduced. The soil heat exchange has to be 

theoretically subtracted from the net radiation, with less radiation 

energy available for latent and sensible heat fluxes. Under dry con­

ditions and absence of vegetation, soil heat flux is a large fraction of 

the net radiation (10-35 %). 

6. The actual temperature and solute concentration of soil water may be 

different from pure water at 20° C (laboratory conditions). The 

resulting changes in the bulk properties of soil water will deeply 

modify the analyzed soil hydraulic properties hm(8) and K(hm) in the 

labaratory. Hence, corrections have to be applied to the measured 

hydraulic relationships. 

7. When calculation of the actual latent heat flux in small time steps has 

to be carried out, hourly values of potential évapotranspiration are 

required. An option to calculate the hourly meteorological variables for 

cases where meteorological data sets are incomplete, is not implemented 

in the current SWATRE-model. 

Because of the above mentioned considerations, it was deemed necessary to 

design a new simulation model using the Richard's equation with its finite 

difference numerical solution scheme, but including the necessary improve­

ments in the physics of transport processes between the evaporation front 

and the soil surface. 
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3 . M E C H A N I S M S O F L I Q U I D , V A P O U R A N D 
H E A T T R A N S P O R T IN U N S A T U R A T E D S O I L S 

3.1. DETERMINATION OF ACTUAL EVAPORATION 

3.1.1. Actual evaporation from a drying bare soil 

Soil evaporation is potential when the soil does not restrict liquid flow 

towards the evaporation sites. However, at windy locations with a high soil 

temperature and absence of rainfall, the top layer can be very dry 

(< 0.03 cm3.cm-3) e.g. the encrusted top soil in the Western desert of 

Egypt. 

Water will no longer evaporate directly from the soil surface. A liquid-

vapour interface or so called evaporation front is situated then inside the 

Net radiation Heat 
(H) 

Vapour 
(LE) 

Soil surface 

m*î^mmm^m%m% 
S Prevailing 

vapour phase 
1 

Heat 
(G) 

Evaporation front . 

1 

Prevailing 
L liquid phase 

Heat 
(G) 

1 

Groundwater level 7̂ 

Vapour 
(LE) 

Liquid 
(q) 

Saturation 

Fig. 1 Schematic representation of the presence of an evaporation front 
inside a dry topsoil. The directions of vapour and heat flow are 
indicated for the midday situation, where Rn is the net radiaton, LE 
the latent heat flux, H the sensible heat flux, G the soil heat flux 
and q the Darcy flux 



NOTA/1938 

soil profile. Under these conditions, the interrelation of vapour and heat 

transfer through unsaturated soil must be theoretically described. 

Vapour transport through air filled pores is the dominant mass transport 

process above the evaporation front. Water in the liquid phase represents 

the main contribution to mass transfer through water filled pores under the 

evaporation front. Theories underlying the transition from liquid to vapour 

flow and a definition of the evaporation front are outlined in section 

3.1.2. The heat and vapour flow through the air filled pores above the eva­

poration front are coupled. This procedure is associated with conductive 

heat flow, thermal convection of soil air and gas diffusion transport. 

Since water is per definition released at the evaporation front and the 

heat wave penetrates from the soil surface, the flow directions of heat and 

vapour through the soil can be contrary during long spells of the day. 

The required latent heat at the evaporation front is released from the soil 

heat flow, which drives the vapour flow upwards. 

3.1.2. Definition of the evaporation front 

Preliminary, a definition of the liquid-vapour interface or so called eva­

poration front as proposed by Menenti (1984) will be briefly recalled. 

Fick's law for the diffusion of gases remains only valid in pores having a 

radius (rm) much larger than the mean free-path of a water vapour molecule 

(lm). Einstein's random-walk theory shows that gas-gas collisions will take 

place in this pores (rm > l m ) . The mean free-path of water vapour is depen­

dent on temperature as: 

im = i^îHr 1 3 + 4 - ° ) ( 1 0 ~ 8 m> t 43 

where lm (m) is the mean free path of a water vapour molecule and T (°C) 

the temperature. With decreasing pore size, Fick's molar flow will gra­

dually change to Knudsen- and film flow (rm < l m ) . Under gas flow regime of 

the Knudsen type, vapour flow becomes equal to the mean molecular velocity 

(water vapour: 565 m . s - 1 ) , so that the probability of reentering a par­

ticular pore is small. 

The mean molecular velocity is much larger than the diffusion velocity. 

Thus the air-liquid water interface (meniscus) in pores having rm = lm is 
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unstable. When the meniscus reach this radius (rm = l m ) , the evaporation 

rate will increase from the meniscus. So there will be a rapid transition 

from a condition where pores with rm > lm are water-filled to the case of 

pores with rm < lm being air filled. This process will give a sharp tran­

sition of soil water content with depth. To support interpretation, it was 

indicated by Philip (1957) that the ratio of vapour flux (qv) to liquid 

water flux (q^) increases rapidly above this transition zone. Jackson 

declared later (1964, 1974) that the vapour diffusivity becomes even higher 

than the liquid diffusivity. The particular threshold of matric pressure 

head (hm) or water content where rm = lm can be expressed as the soil water 

content at the evaporation front (6e). A definition of this transition 

layer can now be given on the basis of the relationship between pore 

radius, matric pressure head and soil water content. The matric pressure 

head at the depth of the evaporation front (ze) where rm = lm can be calcu­

lated as: 

Kw s ^m 

where h m e = matric pressure head at the evaporation front (m) 

p w = local density of liquid water (kg.m-3) 

°wa = l°cal tension of water against air (N.m-1) 

lm = mean free path of a watermolecule (m) 

g = acceleration due to gravity (m.s~2) 

Values of the physical properties of water can be found in appendix 5 and 6. 

Theories underlying variation of these properties are presented rather 

extensively in section 3.2.8. 

From the vertical matric pressure head distribution (hm(z)) and the matric 

pressure head at the evaporation front (h m e ), the depth of the evaporation 

front (ze) can be located as that ze = z where hm(z) = hm e. The soil water 

content at the evaporation front (8e) can then be obtained through the 

hm(8)-relationship. 

3.1.3. Menenti's combination equation 

The basic principles underlying Menenti's combination equation (eq. [6]), 

is the internal soil evaporation process combination with the radiation and 
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flux terms at the soll surface. The derivation of eq. [6] is presented in 

appendix 1. To evaluate the evaporation flux at time steps less than one 

day, a term accounting for heat storage between the surface and the eva­

poration front has been added to the original equation. The fluxes are con­

sidered positive when reaching the surface. 

p C [e „(zj-e „(z)] + S R . (R +G +W ) + S p Cp R . (G +W ) 
Ka pL saty act' J a ah' n e e' s *a ^ sh e e' f . 

y(R +R ) + S R . + S p C R . L J 

av sv a ah s a p sh 

where LE 

'sat 

'act 

ah 

*sh 

av 

sv 

= Latent heat flux 

= Air density 

= Air specific heat at constant pressure 

= Saturated air vapour pressure 

= Actual air vapour pressure 

(W.m~2) 

(kg.m"3) 

(J.kg_1.K_1) 

(mbar) 

(mbar) 

= Slope of the saturated air vapour pressure curve (mbar.K ) 

= Slope of the saturated soil vapour pressure curve (mbar.K ) 
1 

W 

= Air resistance to heat transfer 

= Soil resistance to heat transfer 

= Air resistance to vapour transfer 

= Soil resistance to vapour transfer 

= Net radiation 

= Soil heat flux at the evaporation front 

= Soil heat flux at the surface 

= Heat storage between surface and evap. front 

= Thermodynamic psychrometric constant 

(s.m ) 

m 
-1 

(W 1.m2.K) 

(s.m 

(s.m 

(W.m 

(W.m 

(W.m 

(W.m 

-1 

-2 

-2 

-2 

-2 

(mbar.K ) 

Resistance factors for the transport of vapour (R ) and heat (R , ) between 

the evaporation front and the soil surface have to be taken into account 

(Fig. 2). The applied procedure in our model is to simulate the depth of 

the evaporation front, according the theories of section 3.1.2 and 3.1.4 

respectively, whereafter the evaporation can be computed by means of 

eq. [6]. 

When the evaporation front is situated at surface level, the resistance 

factors R , R . equals zero. For a zero depth of the evaporation front and 
sv sh 

with the assumption R = R , , the combination equation coincides with com-
sv ah 

monly accepted potential evaporation formulae (e.g. Penman 1948, v. Bavel 

1966). 

When the evaporation front is located inside the soil profile, the actual 

evaporation is governed by meteorological and soil physical parameters as 
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Actual evaporation 

Surface 

Potential evaporation 

~9~ 

mmmmmmzmmzzr/, \ 

o Evaporation j 
front 

'Mmzzmmmmmmz 

K(hm )hm ( f l ) 

Groundwater level 

K(hm)hm(9) 

JS 2 _ ii 2_ 

Fig. 2 Schematic representation of the resistances (R) to heat (h) and 
vapour (v) flow in air (a) and soil (s). The depth of the evapora­
tion front (ze) depends on the soil moisture contribution in the 
profile, i.e. on hydraulic properties like hm(6)- and K(hm) rela­
tionships 

well. The deeper the evaporation front, the higher the resistance fac­

tors. Further it can be mentioned that the Rsv-value are physically analo­

gous to the internal crop resistance when considering a canopy layer as 

proposed by Monteith (1965). For a detailed description of the 

Table 1. Outine of the parameters required for the combination equation 
(eq. [6]) as presented elsewhere in this report 

Parameter Section Equation 

<sh> 
3e-
Jsat 
*act 

*ah-

vsv 
We 

3.1.4 
3.1.5 
3.2.5 
3.2.7 
appendix 
appendix 

vav 
appendix 3 

7, 

19, 
36 
50 
77 
81 
88 , 

8, 
20 , 

89 , 

12 , 
21 

92 , 

13 , 

93 

16, 17 
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Penman- v. Bavel expression, one Is refered to appendix 2. 

Table 1 presents an overview with the references of all terms required for 

eq. [6] as described in the present report. 

Field observations showed the presence of a daily cyclus of deposition and 

successive evaporation of dew. This form of latent heat exchange occurs 

early in the morning. Consequently, a temporary second evaporation front is 

present. Generally, the second evaporation front will disappear through the 

course of the day. The same evaporation theory should be applicable. 

3.1.4. Soil resistances to heat and vapour flow 

As illustrated in Fig. 2, resistance factors for the transport of vapour 

(Rsv) and heat (Rsn) through the soil have to be considered. 

The next step is to describe the dynamic processes in relation with the 

resistance factors above the evaporation front. The procedure is composed 

of three cases: 

(A) evaporation takes place at the soil surface (potential evaporation) 

(B) evaporation takes place at the evaporation front, with diffusive 

transport of water vapour between the evaporation front and the soil 

surface (actual evaporation) 

(C) evaporation takes place at the evaporation front, with thermal convec­

tion of moist soil air i.e. free convection between the evaporation 

front and the soil surface (actual evaporation) 

Case (A): When the evaporation site is at surface level, the limit of the 

depth of the evaporation front equals zero: 

lim (LEact) = LEp o t 

ze -* 0 

The evaporation rate is governed by the micro-meteorological conditions 

rather than by soil physical properties. Hence, there is no resistance for 

transport between the phase transition zone and the evaporation site. 

solution: Rsh = 0.0 (W_1.m2.K) [7] 

Rsv = 0.0 (s.m-1) [8] 



NOTA/1938 14 

Case (B): The transport coefficients in the top soil play a role for the 

estimation of the actual evaporation flux. The liquid transport capacity 

above the evaporation front (6 < 6 ) is limited and may be neglected. Air 

filled pores above the evaporation front contain moist soil air i.e. a mix­

ture of dry air and water vapour. The vapour pressure at the evaporation 

front is nearly saturated, while the relative humidity near the soil sur­

face is much lower. Gradients in vapour density can be related with the 

gradients of temperature (thermal vapour diffusion) and soil water content 

(iso-thermal vapour diffusion). This can be combined to obtain the distri-

bution of vapour density or the so called abolute humidity (kg.m ), 

according eq. [9]: 

8p (e,T ) dp (e) 3T dp (T ) ae 
v s v s v s ., -4. ,„, 

— â î = _ ä T — al- + - a ë — aï (kgm > [9] 

s 

The vapour flux equation can be written as an ordinairy Fick-type vapour 

diffusion equation, describing the vapour flow by means of an "effective" 

molecular diffusion coefficient (D _ ) of water vapour in moist soil air: 

3p O.T ) 6p 
q = - D __ — ^ — or q = _ D — (kg.m .s"1) [10] 

v eff 8z v eff z e 

In section 3.2.5 it will be shown that vapour flux can be related with the 

apparent soil thermal conductivity (X ' ) . Latter parameter takes into 

account the overall effect of heat conduction and heat convection (see 

eq. [37]). 

The vapour flux can be expressed as a vapour diffusion velocity too 

(eq. [11]), which can vice versa be applied to obtain the vapour flux from 

the vapour diffusion velocity. With the gradient of vapour density known, 

D „_ can then be derived, 
eff 

LE = - L q = - Lp Vda (W.nf2) [11] 

solution: R . = z A ' (W_1.m2.K) [12] 
sh e s 

Rs v = ze/De f f (s.m"1) [13] 

Case (C): Onset of thermal convection is likely when the Rayleigh number is 

higher than a treshold value of the Rayleigh number with correspondave 
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boundary conditions (MENENTI, 1984). 

Otherwise the density driven flow of vapour in moist air is a diffusive 

transport process (case B). When thermal convection of moist soil air takes 

place, the latent heat flux can be expressed in the following form: 

LE = - L qy = - L Pv Vca (W.m~2) [14] 

where Vca (rn.s"1) is the mean convective velocity of soil air. In order to 

establish in this situation the physical meaning of Rgv, the term 

"effective" vapour diffusivity (Dgff) is again introduced, where the con­

vective soil air motion is rearranged into an "effective" diffusive 

transport phenomenon of the Fick-type: 

6p v 

p Vca = - D f. - — *v eii z 

solution: R . = z
e/*s' 

(kg.m .s ) 

(W_1.m2.K) 

R = z /D _„ sv e efr 
(s.m ) 

[15] 

[16] 

[17] 

The preceding discussions and criteria can be summarized as in table 2: A 

schematic representation is depicted in Fig. 3. For details, one is refered 

to section 3.2.6. 

A 

I 

R 

OUTPUT INPUT OUTPUT 

Soil heat 
flux 

Soil surface 

mmm^mmmm immmmm 

Soil heat 
flux Latent heat f lux 

y///////////////////-//^, ;mi?mjmmim> W/mmmmm w////,////, 

Evaporation front 

Heat 
conduction 

1 

Heat 
conduction 

Thermal convection 
Knudsen — flow 

Thermal vapour 
diffusion 

Iso-thermal vapour 
diffusion 

Heat 
conduction 

Groundwater level v 

Heat 
conduction 

Heat 
conduction 

(Thermal) liquid 
mass transport 

Fig. 3. Schematic representation of possible heat flow processes in the 
unsaturated zone 
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Table 2. Overview resistance to transport of heat and vapour In soil 

transport z evapo- 9pv/9z Raylelgh A ' D __ R , R 
e . . s eff sn sv r a t l 0 n -4 -1 -1 2 -1 -1 -1 

(cm) (kg.m ) (-) (W.m .K ) (m .s ) (s.m ) (s.m ) 

0.0 0.0 

f(A *,Vca) Vca.ap /3z z A • z /D ._ 
s 'v e s e eff 

f(A *,Vda) Vda.ap /3z z A s ' z /D „ 
s v e e eff 

3.1.5. Soil heat flux at the soil surface 

The heat flux penetrating a bare soil surface (G ) reduces with depth since 

heat will be accumulated along the profile. Heat storage (W ) reduces the 

downwelling heat wave from the surface (damping effect). Hence, the heat 

flux entering the evaporation front (G-W ) differs from the heat flux 

penetrating the soil surface (G ). The net energy reaching the evaporation 

front is used for both the evaporation process (LE) and heat flux between 

the evaporation front and the groundwater table (G ). Figure 4 illustrates 

the distribution of the energy flux from the soil surface. 

The soil heat flux penetrating the soil surface can be empirically related 

with net radiation (BASTIAANSSEN, 1988b). It was shown that the 

ratio G„/R varies with soil thermal diffusivity and surface reflectance. 
O n * 

This is a practical solution for cases where no measurements of G are 

available. The expression is based on field work carried out in the mainly 

non-vegetated Qattara depression. The measured thermal diffusivity varied 
_o —1 

between 0.25 and 0.55 10 s.m 

GQ/Rn = (0.84 a0"-0.35).(p-/p2-4pp) (-) [18] 

with p = 0.995 a' - 0.185 

pp = 0.179 a'2 - 0.14 a' 

—6 2 —1 
where a' = soil thermal diffusivity (10 m .s ) 

a " = normalized surface reflectance (-) 

The physical meaning of soil thermal diffusivity and the normalized surface 

reflectance are discussed in paragraph 3.2.5 and appendix 2 respectively. 

The importance of eq. [18] is evident for the estimation of G and W since 

both variables has to be known in order to solve eq. [6]. 
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A 

I 

R 
Soil surface 

WmMmMMMMMmmiWWMmÏÏ 

( 6 0 - W e ) ,,LE 

Evaporation front 

" G e 

Groundwater level 
JSL. 

(G e -W g w l ) 

Fig. 4. Distribution of the energy penetrated from the soil surface at mid­
day. Heat storages (W , W ), latent- (LE) and soil heat fluxes 
(G„, G ) are taken into account 

0 e 

Although G and W can be derived seperately by eq. [20] and [21], it is 
e e 

desirable to apply a energy balance procedure as expressed with eq. [19]. 

Otherwise, temperature values may effect the determination of W - and G -

values too much. If for instance the evaporation front is near the soil 

surface, large gradients of temperature results immediately in highly sen­

sitive quantaties of W and G . If the assessed sum of W and G from 
e e e e 

eq. [20] and [21] is larger than G , the flux will be limited by the energy 

balance equation at the evaporation front (eq. [19]). Fluxes in the direc­

tion of the evaporation front are considered positive. 

G - - W + L E + G = 0 
0 e e 

(W.nf2) [19] 

" e " f 
3Ts -2 

C -rr̂  dz if /W / < /(Gft - LE - G )/ (W.m ) 
s ot e 0 e 

[20] 

G = 
e 

8T 
V . — ! 
s 8z if /G / < /(G. - LE 

e 0 w e ) / (W.m *) [21] 
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3.2. COUPLED PHYSICAL PROPERTIES IN THE TOPSOIL 

3.2.1. Soil thermal properties 

Soil heat exchange is dependent on the thermal properties of the different 

soil constituents. The non-steady volumetric fraction of water and air can 

be used to obtain variable heat capacity and heat conductivity figures i.e. 

the associated heat-water flow. Table 3 gives some values of the thermal 

properties of the soil components. 

Table 3. Thermal properties of main soil particles (T=10°C) (after MENENTI, 

LUPINI and ALIVERTI, 1979) 

Substance 

Quartz 
Water 
Air 
Organic matter 
Clay 
Halite 

Thermal con 

(W.m-i.K-1) 

8.832 
0.575 
0.025 
0.245 
2.905 
5.750 

Specific heat 

(J.kg"1 

758.1 
4186.0 
1004.0 
1938.0 
758.1 
412.6 

K-1) 

Density 

(kg.nT3) 

2660 
1000 
1.25 
1300 
2650 
2180 

The soil heat capacity (Cs) is the product of density (ps) and specific 

heat (cs), where the soil has to be regarded as a composition of the given 

constituents. The soil heat capacity of the system can be computed as the 

weighted mean of the heat capacities of the different soil constituents: 

Cs = (Pc)s = (xsi Psi csi + xw Pw cw + xa Pa ca + xna Pna cna ) [22] 

where C = heat capacity 

c = specific heat (see table 2) 

p = density (see table 2) 

x = volumetric fraction of each soil constituent 

quartz (si), water (w), halite (na), air (a) 

(J.nT3.!*-1) 

(J.kg-^K-1) 

(kg.m-3) 

(cm3.cm-3) 
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The high thermal conductivity of quartz and its abundant presence in sandy 

soils requires for a more detailed temperature (°C) dependent description 

(after International Critical Tables): 

(Ts-20) 
A s i = 8-57 • [ — H E ~ 1 4 7 ] (Wm K ' t 2 3 ] 

3.2 .2 . Heat b a l a n c e e q u a t i o n 

The general one-dimensional heat balance equation, without radiat ion term, 

heat sources and sinks for a homogeneous so i l layer reads: 

32T 3T 
( p c )s If* • V - r - ( p c ) f V c a âr < " • • > ^ 

3z 

_3 
where (pc) = Soil heat capacity (J.m .K) 

s _3 
(pc)f = Fluid heat capacity (J.m .K) 

-1 -1 
A * = Isotropic "effective" heat conductivity (W.m .K ) 

s -1 

Vca = Convective flow velocity (m.s ) 

T = Temperature (K) 

t = Time (s) 

z = Vertical distance (m) 

The first term on the right hand side describes the conductive heat 

transport through the porous soil medium when no fluid convection takes 

place, while the second term on the right hand side accounts for the con­

vective heat transport with moist soil air being the fluid. The procedures 

to describe the conductive heat and convective heat flow are anticipated in 

section 3.2.4. and 3.2.5. respectively. 

The convective vapour displacement will increase the total transport of 

heat through the unsaturated region. The required experimental data to 

describe properly the microphysical aspects of convective flow as described 

in Eq. [24] are seldom available. 

Therefore, the explicit description of convective flow is often omitted and 

substituted by the conduction-like balance equation, introducing an 

apparent conductivity term: 
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BT 32T 
( p c )sär = Y TT (wm > [25] 

oz 

where X ' (W.m.K-1) is the apparent heat conductivity of the soil. The 
5 

apparent heat conductivity accounts for the conductive and convective heat 

transport as well. Changes of latent heat at the liquid-vapour interface 

may be conceived as a sink term in the heat balance equation under the eva­

poration front. 
3.2.3. Temperature distribution in the soil profile 

A time dependent one-dimensional soil temperature profile can be obtained 

from the solution of the soil heat balance equation (eq. [25]). Two pheno­

mena play an important role on the periodical temperature fields; the 

damping effect and the phase shift of the heat wave. An analytical solution 

for the heat balance equation with a sinusoidal function of the upper boun­

dary condition at z = 0 was given by Carslaw and Jaeger (1959). If the 

average periodical surface temperature equals the average periodical soil 

temperature at each depth, the temperature function becomes for homogeneous 

soils: 

T (z,t) = T + A(0) e~ z / d sin(Qt-z/d) with (K) [26] 
s o 

d = (2 a'/fl)0'5 and (m) [27] 

A = 2 JT/P (rad.s-1) [28] 

where T (z,t) = Soil temperature at time t and depth z (K) s 
T = Average surface temperature for period P (K) 

A(0) = Amplitude of surface temperature (K) 

z/d = Phase shift of temperature wave (-) 

d = Damping depth. (m) 
2 -1 

a' = Apparent thermal diffusivity (m .s ) 

Q = Angular frequency (rad.s ) 

P = Period (s) 

The only way to verify predicted values of soil temperature, are on site 

soil temperature observations. Fieldwork in the Qattara depression showed 
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that the apparent thermal dlffuslvity varies with depth (Bastlaanssen, 

1988b). The heterogeneity can be explained by the stratified water content, 

varying salt aggregates and presence of cracks. The heat flow through gas 

filled pores is hereby an entangled process. A different explanation is 

that the curvature of the measured sinoide between day and night time is 

different (Fig. 5). An alternative solution was found by combining measured 

soil temperature amplitudes in the depth-domain with sinusoidal temperature 

regimes in the time-domain. The daily cyclus is split up into two different 

periods : 

Ts(z,t) = Ts(z) + Al(z) sin[(7rt/Pl)] when Ts(z,t) Ï Ts(z) (K) [29] 

Ts(z,t) = Ts(z) - A2(z) sin[(7rt/P2)] when Ts(z,t) < Ts(z) (K) [30] 

where Ts(z) (K) is the daily average temperature at depth z, Ax(z) the tem­

perature amplitude of the period considered and Px the total period between 

the moments of the time where Ts(z,t) £ Ts(z) and Ts(z,t) < Ts(z). Note 

that this trick involves two different amplitudes and periods (Fig. 5) for 

one daily cyclus. In this form, the function is not a depth related problem 

anymore, so that difficulties around the heat damping proces are evaded. 

As a matter of fact, temperature values for each depth and time step can be 

established when the temperature amplitudes are observed and the average 

temperature can be estimated. Similar types of equation will be applied for 

the air temperature, global radiation and relative humidity during day and 

nighttime as well. 

An approach with sinusoidal function against time are outlined in 

appendix 4. It is logical that this type of functions are only validated 

when clouds are absent so that the cyclus of the net radiation and con­

sequently surface temperature is sinusoidal. 

3.2.4. Heat conduction in soil according to de Vries model 

Heat conduction in soils is the mechanism where heat transfer takes place 

by transfering kinetic energy of the molecules. 
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Fig. 5. Observed and calculated diurnal variation of soil temperature in a 
salty sandy topsoil (2.5 cm) at Bir Qifar in the Western Desert 
of Egypt, 18/19 June 1988. The considered period is one day. 

The mean "effective" thermal conductivity per unit volume of soil (X * ) , 
s 

can be derived from the different constituents being water (w), quartz 

(si), halite (na) and air (a) according to de Vries (1963): 

X * = s 

u x X + u . x . X . + u x X + u x X 
w w w s i s i s i na na na a a a 

u x + u . x . + u x + u x 
w w s i s i na na a a 

(W.m" 1^" 1 ) [31] 

where u (-) is the ratio of the average temperature gradient in soil par­

ticles to the corresponding gradient in the surrounding medium and 
3 -3 

x (cm .cm ) the volumetric fraction of each soil constituent. 

The volumetric fraction of quartz is equal to the inverse porosity minus 

the volumetric fraction of salt aggregates. 

The determination of u is difficult due to two reasons: 

1. The ratio of temperature gradients can only be estimated under the 

assumption that heat flux is the same in both materials, which is not 

necessarily true. 

2. It is very difficult to obtain accurate experimental data on this pro­

cess. 

Equations to obtain u can be given with the following restrictions (table 4) 

the soil particles are ellipsoidal shaped 
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Table 4. Expressions for the ratio of thermal gradients of soil particles 
in relation with their neighbouring medium 

Surrounding medium air Surrounding medium water 

1 . 2 1 > 
Uw 3 4+A A g + 1+A A (l-2g ) ; 

w a a w a a 

1 . 2 1 . 1 , 2 1 . 
Usi 3 * 1+A .A g + 1+A .A (l-2g )' 3 * 1+A .A g + 1+A .A .(l-2g )' si a &a si a a si w &a si wi 6a 

1 ( 2 1 . 1 , 2 1 
Una 3 ll+A A g + 1+A A (l-2g )' 3 {1+A A g 1+A A (l-2g )' 

na a a na a a na w a na w a 

u 1.0 i ( 
a 3 Xl+A A g 1+A A (l-2g ) 

a w a a w a 

- the axes a, b and c of the ellipsoidal particles are orientated in a ran­

dom way 

- a specific particle will not affect the temperature distribution of its 

surrounding particles 

Furthermore, it should be noted that the choice of one constituent as "the 

continuous surrounding medium" depends on the volumetric water content. In 

the EVADES-model, the soil water content at the evaporation front is 

applied as the treshold value, since the soil water content above the eva­

poration front is rather small and constant. Below this treshold of 

moisture content, air is considered as being "the continuous surrounding 

medium". 

When the soil remains saturated, the shape factor of the ellipsoid in 

direction of the a-axis (g ) is considered to be spherical i.e. g = 0.333. 
a a 

With decreasing water content, g can be evaluated upto the water content 
a 

at the evaporation front by means of a linear interpolation between the 
maximum value, g = 0.333 and minimum value, g = 0.035 (De Vries, 1963): 

a a 

(0 t-e ) 
ga = 0.035 + (0.333-0.035) ,£C _§ \ (-) 9e S 8 t > 6sat [32] 

sat e 

Below the threshold, with a discontinuity of g , the calculations with air 
a 

being the surrounding medium can be done according eq. [33]. This is impor-
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tant for the derivation of the effective soil heat conductivity above the 

evaporation front. 

g = 0.013 + (0.098 - 0.013) - § ^ 9 . < 6 (-) [33] 
a ü act e 

e 

3.2.5. Heat convection in soil 

Heat convection in soil is the mechanism where heat transfer takes place by 

liquid and vapour transport. Free and forced convection has to be 

distinghuished. Free or thermal convection occurs when temperature gra­

dients cause air movement. This is different from the so called thermally 

induced vapour flux, which is a vapour diffusion transport process induced 

after temperature gradients (see case B, section 3.1.4). Forced convection 

of heat only occurs when frictional forces like wind induces a heat flow 

transport. 

A rule of thumb is that free or thermal convection will certainly occur 

when the air flow velocity becomes larger than twice the speed of vapour 
-3 -1 

diffusion i.e. faster than 2.5 10 m.s (see case C, section 3.1.4). 

Soil air convection and diffusive vapour movement are heat transfer enhan­

cements superposed on the conductive heat flow. Differences in vapour den­

sity cannot be obtained directly from soil temperature only (see eq. [9]). 

A driving buoyancy force exist above the evaporation front since density of 

soil air decreases with increasing humidity. The density of soil air at the 

evaporation front is lower than at the soil surface most of the time, 

because the molecular weight of water vapour is smaller (18 gr.mol ) than 

of dry air (29 gr.mol ) at the same pressure and temperature. Moist air is 

a gas mix ture consisting of dry air with water vapour. The contribution of 

the actual vapour pressure (e ) and the total pressure of moist air (P) 
eact 

has to be considered. Temperature of moist soil air has to be converted 

first into an equivalent temperature, the so called virtual temperature. 

Virtual temperature is the temperature of dry air when it has the same den­

sity as moist air at a constant total pressure of moist air. 

Then, gradients in virtual temperature will directly yields density gra­

dients of soil air. The virtual temperature is calculated as: 
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T . = <V fiC) T (K) [34] 
vi 1 + r s 

where f (-) is the mixing ratio i.e. the ratio between the mass of vapour 

in moist air to the mass of dry air, e (-) the ratio of moleculair weight 

of water vapour to dry air, usually assumed as e=0.621 and T (K) the abso-
S 

lute soil temperature. The mixing ratio can be obtained as: 

act 

where Rd = Specific gas constant of dry air (287 J.K .kg ) 

Rv = Specific gas constant for water vapour (461 J.K .kg ) 

P = Atmospheric pressure (mbar) 

e = Actual vapour pressure (mbar) 
act 

where the rightmost denominator accounts for the actual vapour pressure 

(e î and the rightmost numerator for the dry air pressure (P-e ). The 
act act 

upper limit of the vapour pressure is known as the saturated vapour 

pressure, which is the vapour pressure just above a plane surface of salt 

free water. The temperature (°C) dependence of the saturated vapour 

pressure can be written as: 

e s a t = 1.332 et<1 7-2 5 T>/<237.3 + T)+1.519] ( j n b a r ) [ 3 6 ] 

The actual vapour pressure can be determined from data of temperature and 

relative humidity (U): e = U e . The relative humidity of moist soil air 

can be derived from the total pressure head (h ) according eq. [1]. 

The movement of moist soil air is proportional to the gradients of virtual 

temperature. Thermal convection occurs when the Rayleigh number of a speci­

fic layer at a certain moment is higher than a critical Rayleigh number 

under the same conditions (e.g. Ribando and Torrance, 1976). Thermal 

induced convective vapour movement is proportional with the thermal convec-

tive velocity (Vca) of moist soil air. Vca can be estimated, comparing the 

calculated conductive soil heat flow at one hand, and the observed sum of 

conductive and convective soil heat flow on the other hand (heat balance 

equation, eq. [15]). This results in the derivation of the apparent soil 

thermal conductivity (X ') as given in the conduction-like heat balance 
S 
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(eq. [16]). The approximation of A '- A * is only a reasonable approxima-
S s 

tion for small depths (1 cm) with constant heat conductive properties. With 

larger depths, the soil is not homogeneous so that the difference between 

the apparent and the "effective" properties may be related with transient 

properties e.g. water content. Equation 37 is derived from the conduction­

like continuity equation (eq. [16]) and the conduction-convection con­

tinuity equation (eq. [15]) applying linear temperature gradients across 

small depths (Menenti, 1984). Similar formula for A ' was given by de 
S 

Marsily (1986) who showed that A ' is the sum of A * and a term due to con-
s s 

vective flow. 

Taking the limit of Vca=0, i.e. no soil air convection, A ' and A * should 

be identical. 
A ' = A * + p Cp/Vca/ôz (W.m"1.^1) [37] 

s s ä 

Similarily as in cases with thermal convective vapour transport, the velo­

city of diffusive vapour transport can be obtained after the substitution 

of Vca with Vda. 

When the continuous surrounding medium is water i.e. under the evaporation 

front, conductive heat movement will be the dominant heat transport since 

vapour flow is eliminated. The "effective" thermal conductivity will then 

increase with the large thermal conductivity of water. Since the relative 

humidity and the temperature under the transition zone are more stable, 

thermal convection is practically ruled out. The velocity of vapour move­

ment in moist soil air can than be expressed as a diffusive flow pattern 

(Vda). 

The difference between A ' and A * will be smoothed out so that errors in 
s s 

the estimation of the vapour flow velocity can be introduced. To face this 

problem with partly water filled pores, an equation different from eq. [37] 

valid for a homogeneous thin layer (1 cm) has been applied. 

3A ' 
T - ^ - = - p Cp Vda (W.m .K ) [38] 
8z a 

Figure 6 illustrates the particular procedures to analyse the convective-

and difusive flow velocity. 

The apparent thermal conducivity in the present report is repeatedly 
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Fig. 6. Schematization of the effective and apparent soil heat conductivity 
in order to establish the convective- (Vca) and diffusive (Vda) 
flow velocity of moist soil air 

denoted as an important parameter for the calculation of Rsn (see e.g. sec­

tion 3.1.3). Field investigations are mandatory to get appropriate values 

of As'. Fieldwork carried out in the Western Desert of Egypt confirmed that 

the soil apparent thermal conductivity is larger than the effective soil 

thermal conductivity. The peak of the convection process was noticed around 

16.00 hour. An alternative procedure to get data on As', is to combine 

measured values of apparent thermal diffusivity (a') with the theoretical 

soil heat capacity (C)s*. For this, the calculation of the effective soil 

heat capacity (C)s* has to be carried out in advance by means of eq. [13]. 

a' (pc)„* (W.m^.K-1) [39] 

The apparent thermal diffusivity can be obtained from observed soil tem­

perature measurements by applying one or more of the following methods: 

- La-place transformation 

- Green's function 

- Ratio of temperature amplitudes 

The solution given by the La-place transformation sounds positive, but sets 

of diurnal measurements recorded with fixed intervals are required, which 

are seldom available. Disadvantage of the Green's function method is that 

the soil profile is implicitly assumed to be homogeneous, i.e. constant a-
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value. The most practical solution Is the method of ratio of temperature 
amplitudes: 

a' = | z2/[Ln A(0) - Ln A(z)]2 / 2 -1* (m .s ) [40] 

where fl (rad.s ) is the angular frequency, A(0) the temperature amplitude 

at surface level and A(z) the soil temperature amplitude at a particular 

depth. This implies that the thermal diffusivity can be depth dependent, 

which agrees with varying soil water and vapour content profiles. 

Combination of Eq. [22] and Eq. [40] yield in eq. [39] which gives the 

apparent soil thermal conductivity looked for. Hence, the soil resistance 

factor for heat flow (R .) can be calculated from the apparent thermal 

diffusivity. The resistance factor for vapour transport (R ) will be 

derived in the next section. 

3.2.6. Diffusion of vapour in the moist soil air 

It is reminded that the possible free convection and vapour diffusion were 

anticipated in previous paragraph. Let us assume that the onset of free 

convection is possible (q = - p Vca). Therefore it was mentioned in the 
v v 

section of heat convection, that thermal convection of soil air can be 

related to the convective air flow velocity. Yet, the vapour density of 

this convective movement has to be derived with the perfect gas approach 

(Boyle-Gay-Lussac) from the virtual temperature in order to predict the 

vapour flux. This difficulty can be solved by introducing following set of 

equations: 

a Rd T 
vi 

(kg.m ~) [41] 

p = p r 
v a 

q = - p Vca 
v v 

where p = Dry air density 

p = Vapour density 

r = Mixing ratio 

T . = Virtual temperature 
vi 

(kg. 

(kg. 

m 

m 

3 ) 

-2 . s - 1 ) 

(kg. 

(kg. 

( - ) 

(K) 

m 

m 
• 3 ) 

• 3 ) 

[42] 

[43] 
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P = Total gas pressure 

Rd = Specific gas constant for dry air 

Vca = Convective flow velocity 

q = Vapour flux 

(N.m~2) 

(287 J.K_1.kg_1) 

(m.s ) 

(kg.m .s ) 

When convective flow velocity (Vca) between the evaporation front and the 

surface is known from the apparent soil heat properties, an "effective" 

vapour diffusivity (D f f ) can be derived from Pick's law for the diffusion 

of water vapour in air (see eq. [10]) since both the vapour flux (q ) and 

the vapour density distribution (3p /8z) is known. This effective dif­

fusivity can be related to the vapour resistance (R ) required for the 

combination equation (eq. [6]). 

The situation is more complicated with diffusive vapour transport, since 

plural vapour diffusivities are unknown. Two types of vapour diffusivities 

have to be distinguished: 

- isothermal vapour diffusivity (eq. [44]) 

- thermal vapour diffusivity (eq. [45]) 

D ,9 = D ,„ m vs vs 'R T 

P B 3h , v ë tot. 

ap 
D ,T = D (U vs vs 

ae 

sat 
j sat 3U . 
3T + Pv 3T ' s s 

/ 2 -1, (m .s ) 

/ 2 -1. (m .s ) 

[44] 

[45] 

The diffusion coefficient of water vapour in soil air (D ) can be derived 
vs 

when the path length due to pore geometry (tortuosity) and an additional 

mass flow factor i.e. "enhancement" factor are taken into account (Currie 

1960, Feddes 1971) as: 

D = (Ç0.83 X 1,T D ) vs a va 
/ 2 -1, (cm .s ) [46] 

with 

= 23-3
 ( T . 2.3 

va P *273' 
/ 2 -1, (cm .s ) [47] 

where Ç = enhancement factor 

X = air filled porosity 

P = atmospheric pressure 

T = temperature 

(-) 

/ 3 -3^ (cm .cm ) 

(mbar) 

(K) 
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The bottle-neck of this approach Is the unpredictable value of the enhan­

cement factor (1-100), so that this approach can only be applied after 

extensive laboratory experiments. The depicted method can be checked 

against a different approach, but one has to consider the onset of thermal 

convection as well. It should be realized that the criterion for free con­

vection is somewhat questionable since the actual field conditions cannot 

be fully idealized. The onset of thermal convection by means of the 

Rayleigh number then becomes difficult to evaluate. Despite the fact that 

the above depicted theories supplies the only appropriate physical descrip­

tion, it is stressed here that the apparent soil thermal conduction theory 

is applied above the evaporation front to obtain the diffusive vapour velo­

city as well. The same procedure to find an "effective" vapour diffusivity 

will therefore be followed, considering a diffusive velocity (Vda) instead 

of a convective velocity (Vca) (see Fig. 6). 

The vapour transfer coefficient cannot be computed in cases without gra­

dient of virtual temperature (3Tvi/3z=0). The maximum possible resistance 
15 -1 

is then arbitrary limited to R = 1 0 s.m . 
sv 

3.2.7. Matric pressure head distribution in the entire 

soil profile 

The problem addressed in this section is that the matric pressure head -

above the evaporation front has to be associated with a gaseous medium in 

predominantly air filled pores. Fundamental fluid transport laws like 

Darcy's law have to be replaced by laws for the gaseous phase. 

Consequently, the pressure head in a gaseous surrounding medium has to be 

estimated from the relative humidity of moist soil air in equilibrium with 

water in the liquid phase by applying Kelvin's law (see eq. [1]). 

This means that the derivation of the matric pressure head above the 

liquid-vapour interface is different from the calculation procedure of 

matric pressure head below it. Instead of considering the classical 

Richard's fluid mass equation, a vapour type mass continuity equation has 

to be applied above the evaporation front. The vapour flux equation is of 

the Fick's diffusion type. 

3 Pv 9 qv ,„ "3 -1, 

at aT (kgm s > 
[48] 
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The above mentioned vapour density of moist soil air plays a significant 

role in the determination of the total (read: osmotic- and matric) pressure 

head. The actual vapour pressure, can be simply found from the vapour den­

sity by eq. [49]. The solution of an equation accounting on vapour density 

and vapour pressure yields: 

e . = (p Rv T ) (10~2 mbar) [49] 
act v s 

where Rv (461 J.K .kg ) is the specific gas constant for water vapour. 

In order to express the relative humidity quantitatively, actual vapour 

pressure as well as saturated vapour pressure have to be known. 

The saturated vapour pressure can be obtained through its dependence on 

temperature (eq. [36]). 

A peculiar effect on the gaseous phase in a saline medium has to be 

noticed. The actual vapour pressure close to a saline medium has to be 

lowered since the movement of vapour molecules is restricted. Actual vapour 

pressure then is besides the solid-liquid forces, also affected by the 

solute concentration of the solvent. Equation [50] describes the lowering 

of actual vapour pressure above a saline water plane with a varying NaCl 

solute concentration. 

Note that this equation holds also true for the vapour pressure in air. The 

linear regression coefficients were obtained after a curve fitting proce­

dure with data from Robinson and Stokes (1955). 

Ü = e Je ^ = (1 - 0.039 C ) (-) [50] 
act sat na v ' J 

where C (mol.l ) is the NaCl solute concentration. The conservation of na 
energy of a fluid particle can be expressed per unit of weight and 

accounting on osmotic forces according eq. [52]. Having established the 

total pressure head by means of Kelvin's law, the matric pressure head can 

be found after substraction of the osmotic pressure head (eq. [53]). One 

has to note that the molecular weight and density of saline water differ 

from pure water. The molecular weight may be conceived as the weighted mean 

value of the molecular weights of water and salt. In case of NaCl salt, the 

following equation is applicable: 

p p 
M = — 0.0585 + -fiHES 0.018 (kg.mol J) [51] 

P P 
w w 
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where p , p and p are the densities of the total solution, thé solutes w na pure 
apart and water respectively. The density of the total solution (p ) 

w 
("heavy water") is worked out in section 3.2.8. 

H = h + h + h and (m) [52] 
m osm z v ' 

Ir _ = h + h (m) [53] 
tot m osm 

where H = hydraulic head (m) 

h = matric pressure head (m) m 
h = osmotic pressure head (m) osm 
h = elevation head (m) 

z 
h. . = total pressure head (m) tot 

The osmotic pressure head is linear related with the solute concentration 

according the state of a perfect gas. Van 't Hoff's equation can be written 

in unit of weight: 

Ru T C 
/h / = -— d (10 m) [54] osm g p x ' L J 

w 

where C is the concentration (mol.l ), Ru (8.314 J.mol .K ) the univer­

sal gas constant, T (K) the absolute soil temperature and d (-) 
S 

v. 't Hoff's disscociation factor. Latter parameter is the increment of 

dissolved moles by dissociation of electrolyte molecules. NaCl is ah 

example of a completely dissociating salt because both iones contribute to 

the dissociating process. Combination in sequential order of 

eq. [50], eq. [51], eq. [1], eq. [53] and eq. [54] shows values of 

v. 't Hoff's dissociation factor in a NaCl solution around d-1.8. This 

agrees nicely with values published by Barrow (1966). 

Gradient of pressure head causes water to move. The gradient of osmotic 

pressure head is difficult to estimate since h varies with the 
osm 

(transient) solute distribution. This facet can only be solved when solute 

transport is mathematically coupled with unsaturated soil water flow e.g. 

SWASALT-model (Kabat et al., 1988b). Osmotic forces are quite evident in 

rainless desert soils with a shallow groundwater table. We will provi­

sionally assume that the ratio of the total pressure head (8h /3z) over 
tot 

the ratio of the matric pressure head (3h /3z) equals the ratio 
m 
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Fig. 7. Establishment of the pressure head distribution (hm(z)) according 
the different continuity equations of water in the vapour and 
liquid phase respectively above and below the evaporation front 

K(hm)/K(htot) (see BASTIAANSSEN and HALBERTSMA, 1989). An additional study 

towards this subject has to be carried out. Hence, the Darcy equation is 

written in the "classical form" (eq. [3])- The preceding theories are sche­

matized into Fig. 7. 

3.2.8. Correction for the bulk properties of soil water 

The unsaturated hydraulic conductivity (K(hm)) and the water retention 

characteristic (hm(6)) play a key role in the liquid transport capacity 

through partly gas filled pores. The importance of these hydraulic proper­

ties may require an extensive approach because interactions between soil 

fluid (liquid and vapour) and soil solid (grains and pore walls) phases do 

also depend on temperature and salt concentration as well. It should be 

understood that large temperature oscillations and large solute con­

centrations may modify the bulk properties of liquid water. To obtain 

corrections for this phenomenon, very complicated experiments are required. 

Theoretical corrections for the bulk properties of water can be calculated 

considering the partial derivatives of the matric pressure head with 

respect to temperature (3hm/3Ts) and salt concentration (3hm/3C). 



NOTA/1938 34 

Identically, the partial derivatives of the unsaturated hydraulic conduc­

tivity with respect to temperature (8K(hm)/3Ts) and salt concentration 

(3K(J7m)/3C) can be derived. 

First the contribution of the bulk properties of water have to be 

discussed: 

p w = density of water in the liquid phase (kg.m-3) 

nw = dynamic viscosity (N.s.m-2) 

'wa 
= surface tension of water against air (N.m-1) 

The variation of the temperature related density of water in the liquid 

phase can be found from tables such as table F-5 in the Handbook of 

Chemistry and Physics. Table F-30 of the same book deals with temperature 

related surface tension of water against air while table F-36 contains the 

temperature related viscosity (see Fig. 8). As a reference, values are 

illustrated in appendix 5. Statistical relations are derived to relate 

viscosity (N.s.m-2) with temperature (°C) and yield (also table F-36): 

when Ts < 20 °C, C=0 mol.l-1 

log(nw) = [1301/(998.3+8.18(Ts-20)+0.0059(Ts-20)2)]-3.3 (10~4 N.s.m-2) [55] 

when Ts > 20 °C, C=0 mol.l 1 

log(nw/1.002) = [1.327(20-Ts)-0.001(Ts-20)2]/(Ts+105) (10-4 N.s.m-2) [56] 

40 50 60 
Temperature (°C) 

100 

Fig. 8. Relationship between temperature and viscosity of water 
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The modifications of bulk properties caused by the presence of salt solutes 

are all best fit approximations derived from data sets found in the same 

handbook. 

for T = 20 °C: s 

p (C) = 998.23 + (C 37.5) (table D-261) (kg.m~3) [57] 

= (0.10 C - 0.064) 
V ' e (table D-261) (10 N.s.m ) [58] 

a (C) = 72.75 + C 1.924 (table F-28) (10 _3N.m ~) [59] 

Having defined the bulk properties of water, the partial derivatives of 

these properties with respect to temperature and salt concentration can be 

calculated. 

It appears that all derivatives with respect to temperature are negative, 

while for salt effects the opposite is evident. 

The matric pressure head is a function of p and a , while the saturated 
w wa 

hydraulic conductivity (K , m.s ) dependens on p and n among others. 
The unsaturated hydraulic conductivity (K(h ), m.s ) is a combination of 

m 
both h and K . so that all properties i.e. p , r\ and a has to be 

m sat w w wa 

involved. Accordingly, the matric pressure head can be calculated analogue 

to eq. [5] as: 

1 2 ff 
h = — (m) [60] 
m p g r J 

w m 

Where r (m) is the effective radius of curvature of the air filled pores, 
m 

A standard approach to describe K(h ) is the partition with the saturated 
m 

hydraulic conductivity: 

K(h ) = b(h ) K ^ with (m.s-1) [61] 
m m sat L 

Ksat - p w g K / r } w ( m-S _ 1 ) [ 6 2 ] 

2 
Where b(h ) (-) is the relative hydraulic conductivity and K (m ) the spe­

nt 
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cific permeability. The variation of h and K _. with respect to environ-
in sat 

mental conditions can now be derived (see table 5). The relevance of the 

change in the hydraulic properties is more evident when one has either to 

deal with high temperature or high salt concentration only. The combined 

effect compensates large changes of the bulk properties of water. 

Table 5. Partial derivatives of bulk properties of water with respect 
to temperature and salt concentration 

hydraulic temperature solute concentration 
parameter 

nm IT" lau,JPj < ° I? <a™/0 > ° 
m ÖL wa w 3C wa w 

s 
Ksat If < W < ° le < W > ° 

s 

The partial derivatives of h (6) and K(h ) can be given now. The partial 
m m 

derivatives with respect to salt concentration are analogue with the par­

tial derivatives with respect to temperature (Appendix 6). Here only one 

set is described. 

ah p h o a 
m w m . w a . . . . - 1 » r ~ ~ i 

â r = _ 5 — w ( p _ ) (mK ) t63] 

s wa s w 
3K(h ) p g k 3b(h ) 3h a p , 

m w m m , , , , , . . w. , - 1 „ - 1 . r*.t 

IT—' - Î Ï 55- âr + g K b(hm) â r {v] ( m s K )- [ 6 4 ] 

s w m s s w 

These theories are implemented in the EVADES-model by the adaption of the 

matric pressure head and unsaturated hydraulic conductivity through the 

temperature increment between the laboratory (T1 , ) - and the field (T ) 

situation: 

3h 

V0 ) = V e ) + â r <VTiab> ( m) [ 65 ] 

s 

3K(h ) 
K ( h m) - K ^ V + -W^ V*-*!*) <*•* ) W 

s 
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4 . S T R U C T U R E O F T H E E V A D E S — M O D E L 

4.1. BOUNDARY CONDITIONS 

The matric pressure head at the groundwater table (hm=0) is the lower boun­

dary condition of the soil system in the EVADES-model (prescribed pressure 

head). Alternatives of the boundary conditions at the bottom of the system, 

such as applied in the SWATRE-model, has not yet been implemented in the 

current version of the EVADES-model. The depth of the groundwater table can 

be either taken constant or as a daily variable. For bare soils, the poten­

tial evaporation flux according to v. Bavel (1966) is the maximum possible 

flux through the surface. Hence, the vapour flux can never exceed the 

potential evaporation rate. The minimum possible matric pressure head at 

the surface is governed by eq. [1] and the salt concentration at the sur­

face (eq.[53]) as well. 

4.2. GEOMETRY OF THE COMPARTMENT NETWORK 

The soil system is divided into a grid of soil compartments of unequal size 

with a depth-time domain (see Fig. 9). The nodal points are located at the 

centre of the compartments. The total number of compartments is fixed at 

40. The upper 20 compartments have a fixed 1 cm thickness. Thus micro-scale 

flow domain provides for detailed temperature distribution and stabiliza­

tion of the position of the evaporation front. An improved description of 

the interface displacement and soil temperature regime, results in a better 

estimation of the soil resistance factors for the transport of vapour and 

heat. Hence, maximally 20 compartments are left between 20 cm below surface 

level and the bottom of the soil system. It is recommendable to select the 

size of the variable compartment thickness below the 20 cm layer, not 

thicker than 10 centimeter. The latter means that the total flow domain has 

a maximum depth of 220 cm. Yet, situations with a deep groundwater table 

such as in cases with free drainage, cannot be simulated with the present 

stage of the model. 
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Fig. 9. Compartment scheme of the verticale profile; the variable compart­
ment thickness is indicated 

The nodal points of the finite difference scheme are located at the centre 

of each compartment. Maximum 5 different layers with different physical 

properties can be determined. The boundary of each layer should be exactly 

located at the edge of a compartment i.e. in the midle of two nodalpoints. 

4.3. NUMERICAL SOLUTION SCHEME 

Combination of the equations for mass conservation and transport results in 

second order partial differential transport equations which have to be 

solved numerically. Two types of fluid transport have to be distinguished; 

the liquid mass continuity equation applies below the evaporation front 

36/3t= - Bq^Sz where q. (cm.d ) is the Darcy-type liquid flux while a 

vapour mass continuity equation has to be applied above the evaporation 
-2 -1 

front 3p /3t= - 3q /3z with q (kg.m .s ) the Fick-type vapour flux. To 

evade the difficulties of the transition from vapour diffusion in air to 

vapour diffusion in soil, the diffusion coefficient is written is an 

"effective" diffusion coefficient. 

3p o 9p 

3t 3z l eff 3z ' 
(kg.m .s ) [67] 

The implicit partial differential equations have to be rearranged using 

explicit linearization of matric pressure head and vapour density gra­

dients. When the boundary and initial conditions e.g. matric pressure head 

in an equilibrium profile with the groundwater table, are known, the system 
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of linear equations can be solved. The numerical approximation of eq. [68] 

is made analogue with the finite difference technique to solve the 

Richard's equation. A linear expression for the vapour content at each 

intermediate nodal point is found by meas of the Thomas algorithm technique 

(Remson, 1971). 

p 1+1= -A p 1 + 1 + B p 1 + 1 - D p 1 + 1 (kg.m-3) [68] 
V. . V . „ . V. . V. , 

j J J+l J j J j-1 

where j is the depth-index and i is the time-index with u and 1 being the 

vertical distance with the upper and lower nodal point respectively, (for 

more details see appendix 7). For a detailed description of the finite dif­

ference solution of the Richard's equation, one is refered to HAVERKAMP et 

al. (1977) and RABAT et al. (1989). 

The difficulty with this type of coupled liquid-vapour flow is that the 

depth of the evaporation front has to be known a priori. Remember that this 

interface is the boundary between the vapour and liquid system. The applied 

procedure is that in first step liquid flow is assumed across the entire 

profile. The matric pressure head distribution according the solution given 

by the Richard's equation is established first. The numerical solution pro­

cedure starts from the upper boundary of the compartment network. 

The depth of the evaporation front can be found from the criterion that the 

pressure head below the evaporation front is, absolutely seen, smaller than 

the pressure head at the evaporation front (hme). The evaluation of this 

criterion starts from the groundwater table upwards at each time step. 

At each nodal point, hme is calculated first from the soil temperature. 

Then, hme is compared with hm-value obtained from the Richard's equation at 

the same time step. If /hm/ is smaller than /hme/, the above laying com­

partment will be considered. This procedure will be repeated until /hm/ is 

larger than /hme/. 

A logarithmic interpretaton between the nodal points in which the evapora­

tion front is situated will be done to establish the exact depht of the 

front. 
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After determination of the location of the evaporation front, all compart­

ments between the surface and the evaporation front will be recalculated 

with the Fick-type vapour continuity equation. The matric pressure head 

distribution (h (z)) above the evaporation front can finally be obtained m 

from the vapour density distribution (p (z)). The required theories for 

this convertance were exposed in section 3.2.7. and Fig. 7. 

The allowed time step is evaluated by either a prescribed maximum change of 

soil water content or an assigned value of the maximum change of vapour 

content: 

A8 Ap max 
At = (A8/At) ° r At = (Ap /At) <d> ™ 

max v max 

where 8 is a prescribed value, valid for the compartments underlying 

the evaporation front. Consequently, p max will be applied for the com­

partments above the evaporation front. The ratio (A0/At) or (Apv/At) 
max max 

is the maximum calculated change of water content or change of vapour den­

sity over all compartments at time i respectively. The simulation process 

is continued by the evaluation of the matric pressure head distribution at 

the next time step. 

4.4. INPUT PARAMETERS 

The required input data contains meteorological and soil physical 

variables. All input parameters as listed in table 6 have to be prescribed 

in the central input file "EVADES.IN". 

It goes without saying that on site observations are required to get proper 

input data. Such a comprehensive dataset is however difficult to observe in 

the field. Even, some vertical profiles of parameters are required. 

At least, air temperature, soil temperature, surface temperature, relative 

humidity, windspeed, incident and reflected irradiance, estimated uniform 

solute concentration, depth of the groundwater table, the K(h ) and h (6) 
m m 

relationship and the water content profile z(8) have to be recorded. 

The value of the remaining not observed parameters can be assessed by means 

of alternative techniques. Diffuse irradiance can be estimated on basis of 

cloudiness, recorded at meteorological stations. The bulk density can be 

computed from the weighted mean volumetric fraction of porosity, quartz and 
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Pig. 10. Schematic overview to find the matric pressure head in the entire 
soil profile 

Table 6A. Overview required input parameters for the EVADES-model; part 
Meteorological conditions 

A, 

Parameter 

Air 

temperature 

Relative 

humidity 

Windspeed 

Inc. irrad. 

Diff. irrad. 

Zenith angle 

Time of 
sunset,sunrise 

Number 
of 
layers 

> 2 

Ï 2 

1 

>s 2 

£ 1 

1 

>s 2 

>, 2 

-

-

-

-

-

-

Unit 

°C 

°C 

K 

K 

-

-

-1 
m.s 

-1 
m.s 

W.m~2 

W.m~2 

-

hour 

hour 

hour 

Purpose 

Vapour pressure deficit 

Sensible heat flux 

Longwave sky radiation 

Richardson number 

Vapour pressure deficit 

Pressure head 
surface level 

Aerodynamic resistance 

Richardson number 

Net shortwave radiation 

Surface reflectance 

Surface reflectance 

Day/night time windspeed 

Relative humidity 

Apparent emissivity 

Energy process 

Latent heat flux 

Sensible heat f1. 

Net radiation 

Sensible,latent 
heat flux 

Latent heat flux 

Darcy flux 

Sensible,latent 
heat flux 

Sensible,latent 
heat flux 

Net radiation 

Net radiation 

Net radiation 

Sensible,latent 
heat flux 

Latent heat flux 

Net radiation 

eq. 

6,76 

70 

77 

90 

6,76 

3 

92,93 

90 

77 

77 

77 

90 

6,76 

79 
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Table 6B. Overview required input parameters for the EVADES-model; part B, 
Soil conditions 

Parameter Number 
of 
layers 

Unit Purpose Energy process eq. 

Surface 

temperature 

1 

1 

1 

K 

°C 

°C 

Soil 

temperature 

Norm, reflect 

Depth ground 
water tabel 

Solute cone. 

Ï 

Ï 

Ï 

> 

. 

> 

5 

5 

5 

5 

-

1 

5 

°C 

°C 

K 

°C 

-

cm 

mo 

* 5 

Vol. water 
cont. profile 

Bulk dens. 

Salt cone. 

Sat. conduc. 

hm(9)-curve 

K(h )-curve 
m 

* 

>, 

>s 

5 

2 

5 

1 

1 

1 

.-1 

Net longwave radiation 

Soil heat flux 

Apparent thermal 
diffusivity 

Pressure head 
surface level 

Soil heat flux 

Apparent thermal 
diffusivity 

Soil air humidity 

Correction soil 
bulk properties 

Surface reflectance 

Bottom boundary 
unsaturated zone 

Correction soil 
bulk properties 

mol. 1 
-1 

Lowering vapour 
pressure 

3 -3 
cm .cm Model calibration 

kg.m Heat storage 
3 -3 

cm .cm Thermal properties 

cm.d Relative unsat. 
hydr. cond. 

h (8) relationship 
m v 

K(h ) relationship 
m 

Net radiation 77 

Soil heat flux 19 

Convective heat flux 40 

Darcy flux 3 

Soil heat flux 19 

Convective heat flux 40 

Convective heat flux 34 

Darcy flux 65,66 

Net radiation 

Darcy flux 

Darcy flux 

77,78 

3 

102,103 

Latent heat flux, 6,76 
Convective heat flux 50 

Fluid flux 

Soil heat flux 

Soil heat flux 

Darcy flux 

Darcy flux 

Darcy flux 

— 

20 

22, 

61 

3 

3 

31 

salt minerals. The porosity and saturated conductivity can be obtained via 

the retention and conductive characteristics, eventually described by the 

parameter estimation technique (RABAT et al, 1988c). The diurnal sun zenith 

angle cyclus and extra-terrestrial sunshine duration can be found in tables 

(Smithsonian Meteorological Tables, 1969). 
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4.5. OUTPUT PARAMETERS 

The EVADES-model foresees in several intermediate calculation results, 

which fit the users goal to follow the total physical transport process 

quantitatively. Not only the final evaporation rate, but also intermediate 

steps can be of outstanding interest. Especially the simulated trends among 

parameters can be very usefull to understand their meaning in the entangled 

flow process. Eventually, such trends can be applied as input data for 

simplified fluid transport models e.g. ze = f(k(hm)). Hence, the heat flow 

process and the water displacement can be traced in detail. Intermediate 

output results are presented in twelve different output files. Table 7 

gives an overview of all output information at each stage of the com­

putation scheme. 

Table 7. Output files of the EVADES-model 

Filename Output parameter 

EVADES.EX ze,LEp0t,LEact,FLXS(l),Rsv,Rsh,hm(ze),hm 

EVADES.ACT pa,VPD,Sa,Ss,Rav,Rah,Ri,Rn,We,Ge,Rsh,y,Rsv,LE,Ta(l),U 

EVADES.POT Sa,Rn,G0,pa,VPD,Rav,Rah,U*,Ri,y,LE,Ta(l),U 

EVADES.RES E p o t ,Epot(cum) ,Ea c t ,Eact(cum) ,ze,6(l) ,LE^,Rsw,Ta(l) ,TS(0) ,Rah,Ge 

EVADES.TEM Ts(0),T8(1),T8(2),TS(3),T8(4),T8(5),Ta(l),Ta(2)>a'(1),a'(5)>a'(10) 

EVADES.VAP1 AS*,A8',a'(1),Vca,esat,eact,f,TS,Tvi,pa,pv,qv 

EVADES.VAP2 pv(0),pv(ze),qv,Dv,ze,Xs'(0),XS'(ze),Te,T0 

EVADES.PRH hB(0),U(ze),hm(l),hm(5),hm(10),hm(15),hm(20),hm(22),hm(25) 

EVADES.HED hme,ad hme,6e,k(hm)(ze),ad k(hm)(ze)-pTg/pTglab-aTg/aTglab' 

nTg/nTglab' 

pC/pClab,aC/CTClab,nC/nClab 

EVADES.FLX Rn,G0,LE,H 

EVADES.STA Ri ,<J>v,(J>h,u*v,u*n,Ta(l) ,Ta(2) ,dTa,u(zl) ,u(z2) ,zl ,z2 

EVADES.OUT General output information 
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F O R T R A N C O D E 

5.1. SUBROUTINES 

The model Is split up In subroutines with specific procedures. By this 

approach, the software can be read more easily and becomes more attractive 

to adapt. Totally 17 subroutines have been implemented. Table 8 gives a 

list of subroutines and a short explanation of its function. 

Table 8. Subroutines of the EVADES-model 

Subroutine Job 

RDATA Reading of the general input data, calculation of equilibrium 

conditions 

PARSOL Reading and calculation of the soil properties 

BOCOBO Reading bottom boundary conditions 

BOCOTO Reading meteorological data, synchronisation calculations 

POTVAL Calculation of hourly potential latent heat flux values 

WATCON Calculation of soil water content profile 

ADAPT Adaption of the simulated matric pressure head into a matric 

pressure head with pure water at 20 °C 

M0SC0N Calculation of conductivity and differential moisture capacity 

VISCO Calculation of viscosity 

FLUXES Calculation of the Darcy fluxes between the nodes 

B0C0 Calculation of boundary conditions 

VAPOUR Calculation of the location of the evaporation front 

FRONT Calculation of the actual evaporation rate 

INTGRL Calculation of cumulative values 

DELTIM Calculation of next time step 

HEDCAL Calculation of the vertical pressure head distribution 

OUTPUT Write data to EVADES.OUT 
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The double precision Fortan 77 version of the EVADES-model is implemented, 

compiled and linked on a micro VAX with the VAX/VMS V4.5 operation system. 

Variable transfer between the separate subroutines is performed with aid of 

the "include" statement. The file COMMON.FOR acts as the "include" file, 

where only common blocks are present. During the compilaton procedure, the 

files EVADES.FOR and COMMON.FOR are engaged together obtaining the 

EVADES.OBj version. After the linkage procedure, the model will be execuble 

by means of the EVADES.EXE version. Hence, simulation work can be done when 

the following scheme is applied: 

1 EVADES. FOR 

COMMON. FOR 

CggBüiiJamvADEs. OBJ | Linka9e » rEvÄpiTixT 

EVADES. IN J 

Execution EVADES 
output files (12) 

Fig. 11. Overview EVADES-programs 

5.2. COMPUTATION SCHEME 

The steps of the simulation process can be outlined by mentioning the dif­

ferent subroutines in their order of computation. The main job of each 

routine is depicted in section 5.1. The theoretical description of each job 

is presented in chapter 3. 

The computation process can be discriminated in a preprocessing and a simu­

lation part. With preprocessing is ment the reading of the input data i.e. 

input parameters presented in EVADES.IN and calculation of the potential 

evaporation on hourly basis. The simulation process afterwards uses the 

boundary and initial conditions as derived from the former step. 

Translating this outline in terms of subroutines, the following scheme 

applies: 
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POTVAL | 

^| ADAPT ~ | 

^ VISCO ~[ 

Fig. 12A. Computation scheme in terms of subroutines; reading and calcula­
tion of boundary and initial conditions 

J 

Fig. 12B. Computation scheme in terms of subroutines; simulation actual 

rate of water flow 
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6 . A N A L Y S I S O F R E S U L T S 

6.1. VALIDATION 

Several simulations were performed to test the new EVADES-model. The model 

was applied with data collected during fieldwork carried out in the Qattara 

depression. This field measurements included all the required parameters as 

listed in table 6. Besides, the actual evaporation was measured by means of 

the Bowen-ratio energy balance method. Since several sites with different 

depths of the groundwater table were throughly analysed, it was possible to 

obtain evaporation measurements under very different conditions. The 

groundwater table varied between 25 and 68 cm minus surface level. 

The principal issue is the simulation of the depth of the evaporation front 

in combination with the derivation of the soil resistances of vapour and 

heat flow. As already depicted in Fig. 2, this is strongly related to the 

soil hydraulic properties. Preliminary hydraulic soil classification was 

used for the simulations. The classification is based upon measurements of 

several hm(6)- and K(hm) relationships, which were grouped by means of a 

clusteranalysis technique of their individual trends, analytically fitted 

by the v. Genuchten parameters (Bastiaanssen and de Groot,1989). 

The simulation results can be verified against measurements of e.g. the 

soil temperature profile, the soil water content profile and the actual 

evaporation. The agreement between simulated and observed evaporation rates 

was quite good, so, the description of the entangled physical processes for 

bare soil evaporation as included in this model, seems rather accurate. 

The soil temperature profile can be compared with measured data of a whole 

diurnal soil temperature cycle. The soil temperature profile was calculated 

rather well as shown in Fig. 14. 

More complicated was the validation on basis of the soil water content pro­

file. The soil water content depends on the soil hydraulic properties. 
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Simulated evaporation (mrn.d"') 

2.4 r-

0-4 0.8 1.2 1.6 2.0 2.4 

Measured evaporation (mrn.d"1 ) 

Fig. 13. Measured evaporation according the Bowen-ratio energy balance 

method versus the simulated evaporation by means of the 

EVADES-model. 

Different depths of the water table at different sites are con­

sidered 

Temperature (°C) 

48 r 

44 

40 -

36 

•32 

28 -

24 

\ -

o Depth 1.5cm measured 

• Depth 1.5cm calculated 

/ 

/ 

{/ 

sV 
/ • \ 

•--•-—•:£-•"V' 

10 12 14 16 18 20 22 24 
Time (hour) 

Fig. 14. Measured- and calculated soil temperature profile (1.5 cm) on 

12/13 June 1988. A sandy puffy soil situated at Bir Qifar in the 

Qattara depression is considered 
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Since the individual hm(8)- and K(hm) relationships, as analyzed at the 

laboratory, were grouped, the simulation were performed with mean charac­

teristics per group. Consequently, the water content profile for a single 

spot cannot per definition be identical with the simulation results. 

However, the variation of hydraulic characteristics in the group of coarse 

sands was acceptably small so that the model gives accurate vertical profi­

les of soil water content. The soil water content at the liquid-vapour 

interface, however, was not accurately simulated since this theoretically 

defined interface should be conceived as a transition zone were the dif­

ferential soil water capacity (39/3hm) is not so steep as the model assu­

mes. 

Depth below surface (cm) 

0 

• Simulated values 
o Measured values 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 *Ö40 

Volumetric water content 

Fig. 15. Measured versus simulated soil water content profiles with the 
EVADES-model for a bare coarse sand soil as present at Bir Tarfawi 
in the Soutwestern part of Egypt. 

6.2. SHORTCOMINGS AND PROSPECTIVES 

Simulation of transient waterflow in unsaturated soils by the EVADES-model 

is a rather good estimation of the actual evaporation from bare soils. 



NOTA/1938 50 

However a model is a chain of physical laws and is only beneficial when 

environmental processes can be parameterized. It can be easily understood 

that surface topography with micro-relief cannot be modelled. Cracks in the 

saltcrust upto a depth of 30 cm were noted by various authors (Ritchie and 

Adams, 1974; Menenti, 1984). The vapour flow from such cracks appears to be 

two orders of magnitude larger than for ordinary diffusion flow rates. This 

feature requires for an explicit description of soil air convection. 

Although the latter phenomenon can be modelled for clayey soils (Bronswijk, 

1988) the describing functions are not implemented in the EVADES-model. 

The concentration of precipitated salts in the top layer varies with depth. 

Even at larger depths, thick salt layers can be noticed. 

Accordingly, the aqueous solution along the profile is variable. The gra­

dient of this solution can be assessed by the analyses of solute con­

centration from the lower part of the zone. A more relevant but expensive 

technique is the application of micro-psychrometers which measure the total 

potential until 80 bar (Gaudu, 1988). If the solute gradient along the 

whole profile can be determined and simulated, a step forward regarding the 

gradient of osmotic potential and the correction for the bulk properties of 

liquid water can be done. Knowing the gradient of osmotic potential, the 

Darcy equation can be extended with an additive driving force (3hosm/3z). 

This point of discussion can be realized in the EVADES-model, when a solute 

transport model is developed (e.g. SWASALT-model). 

The presence of dew in the early morning and precipitation is another point 

of discussion. The microscopic thin dew layer will evaporate during the 

morning, which in fact can be stated as a second evaporation front 

overlying the first and main evaporation front. Intermittent precipitation 

implies the onset of multiple evaporation fronts also, which are not 

modelled at present. Multiple evaporation fronts should be implemented in 

the model in a later phase. 

Another fact to be mentioned is that dry saline soils are mainly non-

vegetated. Transpiration processes are not considered in the present stage 

of the model. In order to apply the present model for agricultural pur­

poses, e.g. transpiration and crop yield forecasting, a term for the water 

uptake by roots has to be added such as in eq. [3]. 
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Although the soil water extraction pattern by plants growing under arid 

conditions are unknown, an attempt to solve this topic has to be made. 

A method has been developed to compute the soil temperatures when the depth 

dependent temperature amplitude (A(z)) and average daily temperature (T(z)) 

are known. This is a drawback for situations when soil temperature profiles 

are not measured at regularly intervals. It should be realized that the 

varying damping depth approach may be an improvement for the present model 

to forecast soil temperature fields when data is not available. Empirical 

expressions of the depth dependent thermal diffusivity has to be developed 

and implemented. 

The exact value of the matric pressure head and the unsaturated hydraulic 

conductivity at each time step are computed by linear interpolations of the 

hm(6) and K(hm) relationships. It is preferred to use an analytical func­

tion e.g. van Genuchten (1980) or polynomial regression function since it 

gives a direct expression between 8 and K versus hm. This option in not yet 

foreseen in the EVADES-model. It also improves the conveniency of the pre­

paration of the input data. 

The mathematical solution of the implicit partial differential equation 

must include an appropriate description of the boundary and intial con­

ditions. Besides the depth of the groundwater table, alternative specifica­

tions for the bottom boundary condtition has to built in the future version 

of the model. 
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7 . S U M M A R Y 

The SWATRE-model is a commonly used and continuous up-dated simulation 

model, describing water transport in the liquid phase through the porous 

soil under humid conditions. However, for non-vegetated rainless areas like 

the Saharian belt, water vapour transport through the extremely dry topsoil 

forms the limiting factor for capillary rise from the groundwater table. 

A new simulation model of bare soil EVAporation in DESerts (EVADES) has 

been developed to describe vapour displacement in the top soil. The 

EVADES-model is a combination of the Dirichlet type boundary condition with 

the soil water displacement described by a Darcy-type equation for liquid 

transport and a Fick-type equation for movement of vapour. Water evaporate 

inside the soil at the location where mainly liquid displacement changes 

into mainly vapour displacement. This layer is the liquid-vapour interface 

or so called evaporation front. Gas kinetics underlying this theory has 

been briefly summarized. The evaporation front is defined as the depth 

where the matric pressure head at the evaporation front coincides with the 

equivalent matric pressure head obtained by taking the pore radius equal to 

the mean free path of water vapour. 

Potential evaporation is defined as the evaporation rate where the evapora­

tion front is situated at surface level. The lower the evaporation front, 

the lower the actual evaporation which can be algebraically expressed by 

considering soil resistance factors to account for flow limiting transport 

of vapour and heat from the evaporation front towards surface level. These 

factors can only be derived if the conductive and convective heat flow are 

precisely described by effective and apparent soil thermal conductivity. 

Soil heat processes have therefore to be determined in detail. This appears 

only succesfull if accurate field observations of the temperature distribu­

tion inside the heterogenous soil are available. 

To increase the accuracy of the determination of the evaporation front, a 

network of one centimeter compartments in the topsoil (20 cm) is applied. 
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Either the liquid continuity or the vapour continuity equation applies, 

depending on the phase. The simulation can be performed in small time 

increments (less than 30 minutes) because the upper forcing factor 

(potential evaporation) is calculated as hourly values. 

The validation of the EVADES-model has been performed with meteorological 

and hydrological data collected in the Western Desert of Egypt. The results 

were calibrated against observed evaporation fluxes, soil temperature pro­

files and soil water content profiles. Although the field conditions were 

quite different between the sites (variable evaporation front), the 

agreement between the measured and simulated data was quite good. 
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A P P E N D I X 1 

DERIVATION OF MENENTI'S COMBINATION EQUATION 

The transport equations for the vertical flux of heat in air and soil can 

succesively be written as: 

Pa C D -2 
H = - - § — E (T - T ) (W.m ') [70] 

ah 

( V V -2 
G0 = ^ — — (W.m ') [71] 

sh 

The combined latent heat flux through soil and air, assuming that the 

latent heat flux between the evaporation front and the soil surface coin­

cides with the latent heat flux through the air layer above the surface, is 

of the form: 

L E » - Y ( / a + R P ) ( e 8 a t ( V - e ( z ) ) ( W - m _ 2 ) [ 7 2 ] 

av sv 

The saturated vapour pressure at the evaporation front (e (T )) can be 
sat e 

related with the usually applied saturated vapour pressure at screen height 
(e ^(T )) including the slope of the saturated vapour pressure curves i.e. 

sat a 
S = de VdT and S = de /dT : a sat a s sat s 

e.«*<TJ = ec»t<TJ + s«<Tn- TJ + SJW (mbar) [73] 

sat e sat a a 0 a s e 0 

Substituting the energy balance equation without latent heat exchange 

(Rn+H+G = 0) and the soil heat flux leaving the surface composed of 

(G -W )+G +LE = 0 one g e t s : 
0 e e 

S R 
e AT ) = e fT ) + a ^ a (Rn+LE+G +W ) + S R . (LE+G +W ) (mbar) [74] s a t e s a t a p C e e s sh e e a p 

Combination of equation [72] and [74] shows: 
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- y(R R )LE = p C [e J T -e(z)] + S R . (R +LE+G +W ) + av sv ra p sat a J a ah n e e 

S p C R . (LE+G +W ) [75] 
s a p sh e e 

The expression of all variables in terms of latent heat flux, yields the 

required expression for LE ^. 
act 
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A P P E N D I X 2 

CALCULATION OF POTENTIAL EVAPORATION 

When the evaporation front is located at surface level i.e. when 

z = 0.0 cm, the latent heat flux coincides with the definition of the 
e 

potential evaporation. The potential evaporation concept on itself is quite 

questionable, because varying soil heat flow, sensible heat advection and 

the presence of salts are hardly measurable. Nevertheless, the approach is 

applicable as a maximum possible flux through the surface. Penman (1948) 

proposed the following combination of aerodynamic transfer fluxes with the 

surface energy balance equation of an open water surface. V. Bavel (1966) 

suggested the same formula for land types. Fluxes towards the surface are 

counted postive: 

LE = -
P C [e .(z) a p sat eact(z)l/Ra + Sa(Rn + V 

Y + S 
(W.m fc) [76] 

where LE 

pa 

'sat 

= Latent heat flux 

= Air density 

= Air specific heat at constant pressure 

= Saturated air vapour pressure 

e __ = Actual air vapour pressure 
act 

S = Slope of the saturated air vapour pressure curve 

R = Aerodynamic resistance 

R = Net radiation 
n 

G = Soil heat flux at the surface 

y = Thermodynamic psychrometric constant 

W.m-2) 

kg.m ) 

J.kg-:l.K--

mbar) 

mbar) 

mbar.K ) 
-1, s.m ) 

W.m-2) 

W.m-2) 

mbar.K ) 

The net radiaton budget requires for additional elucidation. The net 

radiation is proposed in a simple form after introduction of an apparent 

term for the longwave sky radiation (e'): 

R = (1 
n a ) R + e' o sw 

4 4 
o-T - eaTrt a 0 

(W.m-2) [77] 

where Rn (W.m ) is the net radiation, a (-) the surface reflectance, 

_2 ° 
R (W.m ) the incident irradiance, e'(-) the apparent emissivity of the 

S W -8 -2 -4 
atmosphere, CT(8.67 10 W.m .k ) the Stefan Boltzmann constant, T (K) 
the air temperature at screen height, c(0.97 (-)) the emissivity of the 
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soil surface and T (K) the surface temperature. The surface reflectance 

shows a diurnal variation (eq. [78]), and is an important variable in the 

estimation of net radiation budget and evaporation rate. So, the surface 

reflectance is an useful characteristic for remote sensing investigation to 

study energy processes at the surface (Menenti et al., 1988b). The 

EVADES-model is able to simulate such physical relationships. 

A new empirical equation (Bastiaanssen, 1988a and Menenti et al., 1988b) 

which relates surface reflectance data (a„) to solar zenith angle (<t> ) , 
0 su 

atmospheric transmittance (T) and ground conditions such as soil type (m), 

•oisture content (m f(<|> )) and roughness (g), is implemented in the current 
SU 

version of the EVADES-model. 

a Q = a0' m f(«gu) [g(r)] s i n ^su (-) [78] 

where m f((J> ) and g(T) (-) are empirical constants for the effect of dew 
SU 

and atmospherical scattering properties respectively and a ' (-) the surface 
reflectance at * =0.0. Furthermore, the apparent emisivity of the 

su 

atmosphere was empirically fitted with the actual vapour pressure (Brunt, 

1932) after measurements in the Western Desert of Egypt according: 
e' = a + b Ye (-) [79] 

act 

where a and b are the regression coefficients being a = 0.72, b = 0.046 and 

a = 0.61, b = 0.068 for daytime and night time respectively (BASTIAANSSEN, 

1988b). 

In order to predict the saturated vapour pressure at surface level, the 

temperature dependent slope of the saturated vapour pressure curve was 

introduced (Penman, 1948). He considered that the air above an (salt free) 

open water surface was saturated and that the required saturated vapour 

pressure could be derived from air temperature recordings: 
e s a t ( V » e s a t ( V + Sa (T0 " V W i t h ( m b a r ) [80] 

4093.4 e 
S = 52i- , (mbar.K ) [81] 

3 (237.3 + T) 

where S (mbar.K ) is the slope of the saturated air vapour pressure a 
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curve, e (mbar) the saturated vapour pressure and T (°C) the temperature. 

The thermodynamic psychrometric constant (y) (mbar.k ) varies with tem­

perature because the latent heat of vaporization (L) (J.kg ) varies with 

temperature (T) (°C): 

L = (2501 - T 71/30) (103 J.kg'1) [82] 

.1004 461._ , . -1, r n o 1 

y= ( 2 8 7 L )P (mbar.K ) [83] 

Particular theories of the atmospheric resistance are seperated and pre­

sented in appendix 3. 
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A P P E N D I X 3 

ATMOSPHERIC RESISTANCES TO HEAT AND VAPOUR TRANSFER 

The lower part of the atmosphere where the physical processes of the 

atmosphere are affected by the surface, is called the atmospheric boundary 

layer. The vertical vapour and temperature profiles in the turbulent 

atmospheric boundary layer can be among others described by means of the 

aerodynamic resistance (R ). The turbulent atmosphere has different stabi-
a 

lity conditions. The air stabilitity can be evaluated with the gradient of 
air temperature. If this gradient dT /d equals 6.5 Kelvin per kilometer, 

a z 

there is no heat exchange with the surrounding air (adiabatic process). 

This is the theoretical defenition of neutral condition. More practically, 

one may assume that the neutral stratification is reached when the surface 

and air temperature are of the same order of magnitude (T(z) s: T ). This is 

more likely with potential evaporation then in cases of actual evaporation. 

In unstable conditions, temperature decreases with height, while in stable 

conditions the situation is otherwise. When the actual evaporation is 

reduced by the vapour transfer through the topsoil, the atmosphere is cer­

tainly assumed to be unstable which induces large differences in tem­

perature (T * T(z)). 

The vertical flux of momentum can be written in the form: 

T = - p f ^ (N) [84] 
am 

where T(N) is the shear stress, u (m.s ) the windspeed at height z and 

R (s.m ) the aerodynamic resistance to momentum. The shear stress on am 
turn is determined from the friction velocity (u*) (m.s ) and density 

_3 
(kg.m ) according: 

T = pu*2 (N) [85] 

Hence, the aerodynamic resistance to momentum can be simple written as 
2 

R = [u(z2)-u(zl)]/u* . The friction velocity can be calculated on basis 
3. in 

of eq. [86]. 

The term (J> becomes one when the atmosphere is neutral. 
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u* = k(z-d) <J»m "
 1 |^ (m.s *) [86] 

where u (m.s ) is the windspeed, z (m) the height, u* (m.s ) the friction 

velocity, k (-) the von karman constant (0.41) and d (m) the zero plane 

displacement. The latter parameter can be empirically related with the 

vegetation lenght of a uniform crop e.g. 0.63 times the vegetation height 

(Monteith, 1973). The logarithmic windprofile follows after the integration 

of eq. [86] with respect to depth: 

u*<J> 
u(z2)-u(zl) = -Y"51 ln(ffr§) ( m s ) t8?] 

Mathematically seen, zl is the elevation where the windspeed u(zl) becomes 

zero. Hence, zl is the roughness length (m.s ) just above the surface. 

The roughness length varies for different surface types. In cases of rough­

ness length above a bare soil surface, a value of zl = 0.005 m can be con­

sidered (de Bruin, 1984). Combination of eq. [84], [85] and eq. [87] yields 

the required expression for aerodynamic resistance under neutral stratifi­

cation: 

R = R v, = R = ÏT-* ln(^T-?) (s.m_1) [88] 
am ah av k u* zl-d 

or in terms of wind velocity: 

R = R . = R = -= p n ( z 2 ~ d ï ] ( s .m" 1 ) [89] am ah av . 2 , . n, . .,. L , , J L 

k (u(z2)-u(zl)) zl-d 

The temperature profile is surely non-neutral, when the evaporation front 

is located inside the soil (LE . << LE ^ ) . A measure for stability is 
act pot 

given by the Monin-Obukov stability parameter or the Richardson number 

(Ri). The condition of air thermal stratification can be expressed by eva­

luation of the easy measurable Richardson number (Ri): 

Ri = _ f ( a T a / 8 Z )
2 (-) [90] 

T (9U/8z) a 

The unstable condition applies when the Richardson number is negative. 

The ratio R ,/R is different from unity under a non-neutral conditions ah av 
For this reason, different flux profile relationships ((f>- f unctions) for 



NOTA/1938 65 

heat and vapour transport through a non-neutral atmosphere have to be 

distinguished. 

The ̂ -functions are derived for layers where the energy fluxes are constant 

with height, so that the air layer at the soil surface (i.e. by taking the 

surface temperature) may not be considered in the calculation of the 

Richardson number. A summary is presented in table 9: 

Table 9. Flux-profile relationships; Monin-Obukov's <t>-functions applied in 
the EVADES-model 

Stable 
condition 

Unstable 
condition 

Neutral 
condition 

definition 

T -profile 
a 

evaporation 

Richardson 

4>heat 

«Jivapour 

dT /dz>6.5 K.km 1 dT /dz<6.5 K.km 1 

a a 

T > T 
a 0 

act 

Ri>0 

a 0 

act 

Ri<0 

dT /dz=6.5 K.km 
a 

T =T. 
a 0 

pot 

Ri=0 

cf>. =0.885 (l+34Ri)°' 4 ° «J». =0.885 (l-22Ri ) - 0 - 4 0 A =1.0 
h h h 

4> =0.950(l + 16Ri)0,33 <p =(l-16Ri)~°"25 <J> = 1 . 0 
V V V 

The friction velocities (u*) for transport of heat and vapour in turbulent 

air can now be calculated with eq. [87], applying the above specified 

<J>-f unctions. Monteith (1981) suggested to write finally the resistance 

transport factors as : 

R = b -1 *2/(u* z-d) 1 cj> 
X X zl ' X dz (s.m ) [91] 

After an integration with respect to height, the resistance for heat and 

vapour transfer can respectively be written analogous with eq. [88] as: 

ah 

1 <t> 

k u*v IIMzl-d' 
(s.m ) [92] 

av 

1 d> 
_ _il_ /22-d. 
k u*h (zl-d] 

(s.m ) [93] 
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A P P E N D I X 

DIURNAL VARIATION OF METEOROLOGICAL VARIABLES 

Calculating the evaporation rate in time steps less than one day, the 

course of meteorological variables during the day has to be known. Most 

meteorological variables have a clear diurnal cyclus. Some of them have 

even a predictable trend. This especially holds true with cloudless skies, 

like in arid regions. Then the net radiation, which is the source of all 

energy processes, has a clear sinusoidal shape with time (see Fig. 16). As 

a consequence, the surface temperature, air temperature and relative humi­

dity follow this trend during daytime. 

1000 r 
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Fig. 16. Diurnal variation of net- and global radiation as measured at 

Bir Qifar in the Western Desert of Egypt on 24 June 1988 

Cooling down processes by the difference between emitted thermal radiation 

from the atmosphere and the surface at night, result in negative net 

radiation values and dew point temperatures at the soil surface. This makes 

the amplitudes of the meteorological variables during the night lower then 

during the day. Hence, sinusoidal functions considering the complete 

period of one day has to be substituted by two half-sinusoidal functions 

with different amplitudes. 
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Global radiation and surface temperature generally response directly to the 

zenith angle of the sun so that the maximum values are reached at the 

lowest zenith angle. Values at sunsrise and sunset has to be prescribed. 

This is applied in the following equations: 

* 

Rsw(t) = Rswmax sin(7rt/Pl) t s u n r * t S t s u n s e t (W.m-2) [94] 

Rsw(t) = 0 tsunset < t « ts u n r (W.m-2) [95] 

T0<t) = T0sunr. + (T0max-T0sunr.) sin(7rt/Pl) t s u n r « t S t s u n s e t (K) [96] 

T0(t) = T0sunr.-(T0sunset-T0min) sin(7Tt/P2) t s u n s e t « t * ts u n r (K) [97] 

Due to time lag effects, the half-sinusoidal functions of air temperature 

and relative humidity often not comprises the periods between sunrise and 

sunset. Therefore the approach to estimate soil temperature as outlined in 

section 3.2.3 is followed. This concerns the variation of the air tem­

perature and the relative humidity as follows: 

Ta(t) = Ta* + A(Ta)l sin(7Tt/Pl) Ta(t) > Ta (K) [98] 

Taft) = Tl - A(Ta)2 sin(7Tt/P2) Ta(t) « Ta (K) [99] 

U(t) = Û + A(U)1 sin(7Tt/Pl) U(t) ? U (-) [100] 

U(t) = Ü - A(U)2 sin(nt/P2) U(t) < U (-) [101] 

where Ta, U are the daily average values and A(Ta)x, A(U)x the amplitudes 

of the period considered. The diurnal variation of windspeed is unpredic­

table, since it is affected by large scale weather systems. However, a 

general ratio between the day- and nighttime is often considered for the 

calculation of the average daily windspeed. The ratio Uday/^night c a n D e 

given is an input parameter. Observations in hyper-arid regions like the 

Western Desert of Egypt showed values of U(jay/Unjgnt=l.3. Latter ratio 

shows no approved relation with the height above the surface. 
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APPENDIX 5 

TEMPERATURE RELATED PROPERTIES OF LIQUID WATER 

A. density 

T(°C) 

-20 
-18 
-16 
-14 
-12 
-10 
- 9 
- 8 
- 7 
- 6 
- 5 
- 4 
- 3 
- 2 
- 1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

/ -3v Pw(gr.cm ) 

0.99349 
0.99474 
0.99581 
0.99672 
0.99749 
0.998137 
0.998417 
0.998671 
0.998899 
0.999102 
0.999283 
0.999441 
0.999578 
0.999694 
9.999790 
0.999868 
0.999927 
0.999968 
0.999992 
1.000000 
0.999992 
0.999968 
0.999930 
0.999877 
0.999809 
0.999728 
0.999634 
0.999526 
0.999406 
0.999273 
0.999129 

T(°C) 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

Pw(gr.cm ) 

0.998972 
0.998804 
0.998625 
0.998435 
0.998234 
0.998022 
0.997801 
0.997569 
0.997327 
0.997075 
0.996814 
0.996544 
0.996264 
0.995976 
0.995678 
0.995372 
0.995057 
0.994734 
0.994403 
0.994063 
0.993716 
0.993360 
0.992997 
0.992626 
0.992247 
0.991861 
0.991467 
0.991067 
0.990659 
0.990244 
0.989822 
0.989393 

T(°C) 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

Pw(gr.cm ) 

0.988957 
0.988515 
0.988066 
0.987610 
0.987148 
0.986680 
0.986205 
0.985723 
0.985236 
0.984743 
0.984243 
0.983737 
0.983226 
0.982708 
0.982185 
0.981655 
0.981120 
0.980580 
0.980034 
0.979482 
0.978924 
0.978361 
0.977793 
0.977219 
0.976640 
0.976056 
0.975466 
0.974871 
0.974271 
0.973665 
0.973055 
0.972439 

T(°C) 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

Pw(gr.cm ) 

0.971819 
0.971193 
0.970562 
0.969926 
0.969286 
0.968640 
0.967990 
0.967335 
0.966674 
0.966009 
0.965340 
0.964665 
0.963986 
0.963302 
0.962613 
0.961920 
0.961222 
0.960519 
0.959812 
0.959100 
0.958384 
0.957662 
0.956937 
0.956207 
0.955472 
0.954733 
0.953989 
0.953240 
0.952488 
0.951730 
0.950968 

After Handbook of Chemistry and Physics. Table F-5 
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B. Surface tension of «rater against air 

TCC) 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 

CTwa 
dynes/cm 

75.69 
75.46 
75.32 
75.18 
75.04 
74.90 
74.76 
74.63 
74.49 
74.36 
74.22 

T('C) 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0"wa 
dynes/cm 

74.07 
73.93 
73.78 
73.64 
73.49 
73.34 
73.20 
73.05 
72.90 
72.75 

T( 

21 
22 
23 
24 

25 
26 
27 
28 
29 
30 

C) C7wa 

dynes/cm 

72.59 
72.44 
72.28 
72.13 
71.97 
71.81 
71.65 
71.50 
71.34 
71.18 

T( 

31 
32 
33 
34 

35 
36 
37 
38 
39 
40 

O awa 

dynes/cm 

71.02 
70.86 
70.69 
70.53 
70.37 
70.21 
70.05 
69.88 
69.72 
69.56 

TCC 

41 
42 
43 
44 

45 
46 
47 
48 
49 
50 

0"wa 
dynes/cm 

69.40 
69.23 
69.07 
68.90 
68.74 
68.57 
68.41 
68.24 
68.08 
67.91 

T( 

51 
52 
53 
54 

55 
56 
57 
58 
59 
60 

"G) CTwa 

aynes 

67.74 
67.56 
67.39 
67.22 
67.05 
66.87 
66.70 
66.53 
66.35 
66.18 

After Handbook of Chemistry and Physics, Table F-30 

C. V i s c o s i t y 

T(°C) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

nu(cp) 

1.787 
1 .728 
1 .671 
1 .618 
1.567 
1.519 
1.472 
1 .428 
1 .386 
1.346 
1.307 
1 .271 
1 .235 
1.202 
1 .169 
1.139 
1 .109 
1 .081 
1 .053 
1.027 
1.002 
0 . 9779 
0 . 9548 
0 . 9325 
0 . 9111 
0 .8904 

T(°C) 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

>7w(cp) 

0 . 8705 
0 . 8513 
0 . 8327 
0 . 8148 
0 . 7975 
0 . 7808 
0 .7647 
0 . 7491 
0 . 7340 
0 .7194 
0 .7052 
0 . 6915 
0 . 6783 
0 . 6654 
0 .6529 
0 . 6408 
0 . 6291 
0 . 6178 
0 .6067 
0 .5960 
0 .5856 
0 . 5755 
0 .5656 
0 .5561 
0 . 5468 
0 . 5378 

T(°C) 

52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

nw(cp) 
0 .5290 
0 .5204 
0 .5121 
0 . 5040 
0 . 4961 
0 .4884 
0 .4809 
0 . 4736 
0 . 4665 
0 . 4596 
0 . 4528 
0 .4462 
0 . 4398 
0 . 4335 
0 . 4273 
0 . 4213 
0 . 4155 
0 . 4098 
0 .4042 
0 .3987 
0 . 3934 
0 .3882 
0 . 3831 
0 .3781 
0 .3732 
0 .3684 

T(°C) 

78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

l?u(cp) Hu(cp) 

0 . 3638 w = f o u t 
0 . 3592 W = goed 
0 .3547 
0 . 3503 
0 . 3460 
0 . 3418 
0 . 3377 
0 .3337 
0 .3297 
0 . 3259 
0 . 3221 
0 . 3184 
0 . 3147 
0 . 3111 
0 . 3076 
0 .3042 
0 . 3008 
0 . 2975 
0 .2942 
0 . 2911 
0 . 2879 
0 . 2848 
0 . 2818 

After Handbook of Chemistry and Physics, Table F-36 



NOTA/1938 70 

A P P E N D I X 6 

SALT EFFECTS ON SOIL HYDRAULIC PARAMETERS 

The partial derivatives of the matric pressure head and the unsaturated 

hydraulic conductivity with respect to solute concentration are as follows: 

3h p h 3 a m _ w m , wa, 
3C ' a 3C (p ' 

wa w 

, 4 ,-1, (m .mol ) [102] 

3K(h ) p g k 3b(h ) 3h p A m' *w m' m „ . ,. . 3 ,Kw, . 4 -1 ,-1, - — + gK b(h ) ̂  (-) (m .8 .mol ) 
w ac dh 

[103] 

0,0 0.5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 
Solute concentration (mol.l') 

Fig. 17. Relationship between the solute concentration and the viscocity of 
the water 
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c 
mol.1-1 

0.017 
0.034 
0.051 
0.069 
0.086 
0.103 
0.120 
0.137 
0.155 
0.172 
0.189 
0.207 
0.224 
0.241 
0.259 
0.276 
0.294 
0.311 
0.329 
0.346 
0.364 
0.382 
0.399 
0.418 
0.435 
0.452 
0.470 
0.488 
0.505 
0.523 

pw 
gr. cm"3 

0.9989 
0.9997 
1.0004 
1.0011 
1.0018 
1.0025 
1.0032 
1.0039 
1.0046 
1.0053 
1.0060 
1.0068 
1.0075 
1.0082 
1.0089 
1.0096 
1.0103 
1.0110 
1.0117 
1.0125 
1.0132 
1.0139 
1.0146 
1.0153 
1.0160 
1.0168 
1.0175 
1.0182 
1.0189 
1.0196 

ï?w „ 
10-4 N 

1.005 
1.006 
1.007 
1.008 
1.009 
1.011 
1.012 
1.013 
1.014 
1.015 
1.016 
1.017 
1.017 
1.018 
1.019 
1.020 
1.021 
1.022 
1.022 
1.023 
1.024 
1.025 
1.026 
1.027 
1.028 
1.028 
1.029 
1.030 
1.031 
1.032 

C 
S.M-2 mol.1-1 

0.541 
0.559 
0.577 
0.595 
0.613 
0.631 
0.649 
0.667 
0.685 
0.703 
0.721 
0.739 
0.757 
0.775 
0.794 
0.812 
0.830 
0.848 
0.866 
0.885 
0.921 
0.958 
0.995 
1.032 
1.069 
1.106 
1.144 
1.181 
1.218 
1.256 
1.294 
1.331 
1.369 

Pw 
gr.cm 3 

1.0203 
1.0211 
1.0218 
1.0225 
1.0232 
1.0239 
1.0246 
1.0254 
1.0261 
1.0268 
1.0275 
1.0282 
1.0290 
1.0297 
1.0304 
1.0311 
1.0318 
1.0326 
1.0333 
1.0340 
1.0355 
1.0369 
1.0384 
1.0398 
1.0413 
1.0427 
1.04*2 
1.0456 
1.0471 
1.0486 
1.0500 
1.0515 
1.0530 

Iw C 
10"4 N.S.M-2 mol.1-1 

1.033 
1.033 
1.034 
1.035 
1.036 
1.037 
1.037 
1.038 
1.039 
1.040 
1.041 
1.042 
1.043 
1.044 
1.045 
1.046 
1.046 
1.047 
1.048 
1.049 
1.052 
1.054 
1.056 
1.058 
1.060 
1.062 
1.065 
1.067 
1.069 
1.072 
1.074 
1.077 
1.079 

1.407 
1.445 
1.484 
1.522 
1.560 
1.599 
1.637 
1.676 
1.715 
1.754 
1.793 
1.832 
1.930 
2.029 
2.129 
2.229 
2.330 
2.432 
2.534 
2.637 
2.741 
2.845 
3.056 
3.270 
3.486 
3.706 
3.928 
4.153 
4.382 
4.613 
4.848 
5.085 
5.326 

Pw 
gr .cnr>-3 

1.0544 
1.0559 
1.0574 
1.0588 
1.0603 
1.0618 
1.0633 
1.0647 
1.0662 
1.0677 
1.0692 
1.0707 
1.0744 
1.0781 
1.0819 
1.0857 
1.0894 
1.0932 
1.0970 
1.1008 
1.1047 
1.1085 
1.1162 
1.1240 
1.1319 
1.1398 
1.1478 
1.1558 
1.1640 
1.1721 
1.1804 
1.1887 
1.1972 

Tw . 
10-4 N.S.M-2 

1.082 
1.084 
1.087 
1.090 
1.093 
1.096 
1.099 
1.102 
1.105 
1.108 
1.111 
1.115 
1.123 
1.132 
1.142 
1.152 
1.162 
1.173 
1.184 
1.196 
1.207 
1.219 
1.243 
1.267 
1.293 
1.322 
1.357 
1.396 
1.441 
1.489 
1.542 
1.600 
1.662 

after Handbook of Chemistry and Physics, Table D-261 
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A P P E N D I X T 

FINITE DIFFERENCE SCHEME 

i + 1 pv . - pv . H . 1+1 . . 1+1 

i + l i 
2 Äpv p V j - p j 

' At 1 At 1 

. 1+1 (pv. , -pv. ) 
3 (Apv) = j-l j 

vAz ' ._. Az(i 

1+1 i+l 1+1 
pv. - pv . 4 (âfiv = IJ y_J_ 

v A z l ' . . Azl 
3+h 

i+l i 1+1 i+l i+l i+l 
pv. - pv. . pv. -pv. , . pv. -pv. , 

5 _ J _J. = -L-/DV1 ( J"1 J H - -^-(Dv1 fJ J+1)l 
5' A t i A z j t D V j - * 1 Az/i " Azli D Vj+!él Azl " 

r. i + l i At i„ i / i+l i + l\i At (r. i / i + l i + l\i 
6. pv . - pv . = T — — — { D v . . (pv. H -pv. )} - -—. . ,{Dv . . (pv . -pv . ,)} 

J J Azj Azfi1 3-hK j-l j " Azj Azl 1 3+\x j j + l " 

i 
* l A t

 n i \ i+l /, At „ i At „ i i i 

/ At _ j i Ä i+l i 
I T — r - r - Dv. . ) pv. , = pv. vAzj Az«. i - V ^ j-l K j 

Equation 7 is the linear Thomas trio-algorithm looked for: 

8. - A. pv. , + B. pv. - D . pv . . = E . 
J J + l J J j j-l J 

with 

At 1 _ i 
A. = T—. . . Dv. . 

j Azj Azl j+% 
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At1 _ i At* _ i 
B. = 1 + -—r-7— Dv . . + T—. . . Dv . . 

J Azj Azji j - % Azj Azl j+% 

j Azj AZU j-ïé 
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A P P E N D I X 8 

EXAMPLE INPUT- AND OUTPUT FILES 
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