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CHAPTER 1 

Outline 



The symbiotic interaction between bacteria of the genus Rhizobium and leguminous plants 

leads to the formation of root nodules, which are specific nitrogen-fixing organs on the roots 

of plants. Bacteria enter the root by infection threads, and concomitantly cell divisons are 

induced in the root cortex, which lead to the formation of a meristem. From this meristem the 

different tissues of the root nodule originate. In the nodule bacteria are released in plant cells 

and then differentiate into the endosymbiotic bacteroids. These bacteroids are capable of 

nitrogen fixation. 

The formation of root nodules involves expression of both bacterial and plant genes. 

Rhizobium genes involved in nodule formation are the nodulation (nod) genes. Nodule-

specific plant genes are termed nodulin genes. According to their timing of expression they 

can be divided into early and late nodulin genes. Early nodulin genes are expressed well 

before the onset of nitrogen fixation, at the time that the nodule tissue is formed and the roots 

become infected by bacteria, while expression of late nodulin genes starts shortly before the 

onset of nitrogen fixation, when the nodule structure has been formed. Therefore only early 

nodulins can be involved in the infection process and in nodule development. Early nodulin 

genes expressed during the pea (Pisum sativum L.) - Rhizobium leguminosarum bv. viciae 

interaction are the subject of this thesis. Several cDNA clones representing pea early nodulin 

genes have been isolated and they have been used to study root nodule development and the 

communication between bacteria and host plant. 

In chapter 2 we review general aspects of plant development. Recent progresses in 

understanding the molecular mechanisms underlying animal development are listed, and the 

possible significance of such mechanisms for plant development is discussed. The features of 

the root nodule formation system that make it suitable to study particular questions on the 

molecular basis of plant development are put forward. 

In chapter 3 the pea early nodulin cDNA clone pPsENOD2 is characterized. The nature of the 

encoded polypeptide is compared with that of the soybean early nodulin described before. 

ENOD2 transcripts are localized both in pea and soybean root nodules throughout successive 

stages of development by in situ hybridization. Data on the primary structure of the ENOD2 

protein and localization data are then combined to hypothesise that the function of this early 

nodulin is to create an oxygen barrier in the root nodule. 
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In chapter 4 the early nodulin ENOD12 is described. The spatial distribution of the 

corresponding transcript throughout root nodule development is depicted to demonstrate the 

involvement of ENOD12 in the infection process. We describe the primary structure of the 

ENOD12 protein and we examine whether ENOD12 gene expression is related to a defense 

respons. Using a sensitive detection method based on the polymerase chain reaction (PCR) we 

demonstrate that ENOD12 gene expression is induced by excreted Rhizobiwn factors and that 

bacterial nod genes are involved. ENOD12 transcripts found in flower and stem tissue are 

compared to the ENOD12 mRNAs in nodules using, among other techniques, a novel 

adaptation of RNase mapping to determine whether the same genes are expressed in these 

different tissues or not. 

In chapter 5 it is demonstrated that the accumulation pattern of the transcripts corresponding to 

the pPsENOD5, pPsENOD3 and pPsENODH cDNA clones differs from that of ENOD2 and 

ENOD12 mRNA. The distribution of the former three transcripts is compared with the 

distribution of ENOD12 mRNA and the late nodulin leghemoglobin transcript. It is shown that 

the different transcripts are present at successive stages of development of the infected cell 

type. The primary structure of the ENOD5, ENOD3 and ENOD14 early nodulins is 

determined and these data are combined with the localization data of the transcripts to speculate 

on functions of these proteins. The involvement of different factors to induce expression of 

different early and late nodulin genes is discussed. 

In chapter 6 the results described in the previous three chapters are summarized and some 

additional data on early nodulins are presented. The significance of the availability of early 

nodulin gene probes to elucidate the mechanisms of communication between rhizobia and 

legumes, which underly the process of root nodule formation, is discussed. Finally, in chapter 

7, the value of the obtained information on early nodulins for studying both specific and 

general aspects of root nodule development is discussed. 
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CHAPTER 2 

Plant development and root nodule formation. 



INTRODUCTION 

Since the discovery that nitrogen fixation occurs in legume root nodules as the result of 

symbiosis with bacteria (Beyerinck, 1888), the interaction between (brady-)rhizobia and 

legumes has been studied extensively. Fixed nitrogen is of crucial importance to 

agriculture and this has been a major reason for studying the Rhizobium-legume 

symbiosis in detail. Also from a scientific point of view a symbiosis in which one of the 

partners is taken up into the cells of the other partner to act as an 'organelle' with a 

specific function (viz. nitrogen fixation) is intriguing. These two reasons explain the 

considerable amount of cytological and plant physiological research that has been devoted 

to root nodules for decades. 

The rise of molecular biology has brought important new tools to the study of the 

Rhizobium-legame symbiosis. Our understanding has been deepened by analyses of both 

bacterial and plant genes involved in this process. This progress has been extensively 

reviewed elsewhere and will not be discussed here (e.g. Rolfe and Gresshoff, 1988; 

Morrison et al, 1988; Long, 1989). Rather I should like to substantiate that the 

Rhizobium-lcgume symbiosis, due to the achievements of molecular (genetic) research, 

becomes an attractive model system to study important aspects of plant development. An 

overview of the current knowledge on developmental processes in higher plants will be 

presented and compared with the principles of developmental programs in animals. Data 

on molecular mechanisms governing pattern formation and differentiation in animals will 

be listed, and the question whether similar mechanisms occur in plants will be adressed. 

Finally the importance of root nodule formation as a system for studying plant 

development will be discussed. 

THE PROCESS OF DEVELOPMENT IN HIGHER PLANTS. 

CONCEPTS IN DEVELOPMENT 

Plants and animals are multicellular organisms that develop from a single cell, the zygote, 

which is the result of the fusion of male and female gametes. Upon division of the zygote 

morphologically and physiologically different cells are produced, a process referred to as 

differentiation. A body plan is established, and many different cell types are organized in 

15 



an orderly spatial distribution, referred to as morphogenesis. At the moment mechanisms 

of development have been studied in animals much more extensively than in plants. In 

animals several theoretical concepts have been defined that categorize events occurring 

during development. At the first stage of development, called commitment, the fate of a 

cell is set by its physical position. Commitment is mostly a theoretical concept, since 

experimental demonstration of commitment relies on the next stage in development, 

determination. Determination is defined as the progressive fixation of cell fates among a 

group of cells, and competence is the ability of a determined cell to respond to a signal to 

express the phenotype belonging to that specific fate. Determination is not necessarily the 

result of a single event but can be achieved in successive steps during development. 

Determination can occur early in development, prior to extensive cellular proliferation, as 

examplified in the 'mosaic type' animal embryos. On the other hand, determination can 

also occur late in development, as in 'regulative type' animal embryos. In regulative 

animal embryos a progressively refined network of positional cues appears to provide the 

information for determination, and it is difficult to unclutter determination and 

competence stages (For a detailed overview of concepts in developmental biology and of 

different ways of animal embryonic development see Walbot and Holder, 1987). 

Examples exist where, upon determination, a single cell is able to exhibit the same 

developmental program in isolated form as in situ, and no further signals are involved. 

The term cell-autonomous development is used for these cases. The autonomy of 

blastomers specialized for muscle formation in the nematode Caenorhabditis elegans is an 

example of this type of development (Whittaker et al, 1977). In other cases a 

developmental pathway can only be continued when the cells acquire the competence to 

respond to a certain signal, as found in Drosophila melanogaster cell groups, which are 

determined to form progenitor cells for a particular type of imaginai disk at the cellular 

blastoderm stage. These cells can only follow the developmental pathway they are 

determined to after they have acquired the capacity to respond to the moulting hormone 

ecdysone at a later stage (Nöthinger, 1972). 

SPECIFIC FEATURES OF PLANT DEVELOPMENT 

It is by no means evident that plant and animal development follow the same principles. 

Features which clearly distinguish plant from animal development are 1) the 

establishment of only a rudimentary body plan during embryogenesis, 2) post-



embryogénie development from centres of mitotic activity, the meristems, and 3) the 

absence of cell mobility because of the presence of cell walls. In the following I shall 

briefly describe these three specific features, and try to establish which of the concepts 

like determination, competence, cell-autonomous development, and development 

according to positional information, will be useful to provide a theoretical framework in 

plant developmental biology. 

Embryogenesis 

While in most animals morphogenesis and differentiation occur largely during 

embryogenesis, in plants these processes span both the embryonic and the post-

embryonic phase (Walbot, 1985). During plant embryogenesis a seed is produced which 

contains two different organ systems: the terminally developed cotyledon, which in 

general function as a food reserve, and a polarized axis with two cell clusters that become 

very different centres of mitotic activity after germination of the seed: the root and shoot 

meristems. Not much is understood about the mechanisms by which axis polarity, the 

meristems, and the body plan are established in the embryonic phase. In the brown alga 

Fucus the sperm cell entrance site polarizes the egg cell and marks the point of future 

rhizoid development (Jaffe, 1958). Redistribution of F-actin filaments has been shown to 

accompany polarization of the unicellular Fucus zygote (Kropf et al, 1989). In eggs of 

the amphibian Xenopus laevis polartity is likewise induced by the entrance of the sperm 

cell at a specific site, and followed by a redistribution of cytoplasm (Gerhart et al, 1981). 

Hence at least in non-vascular plants and amphibians polarization involves similar 

mechanisms. On the other hand, in Drosophila it is well established that maternally 

delivered cytoplasmic factors provide polarity to the egg cell, demonstrating that several 

ways to establish zygotic polarity exist in the animal kingdom (Ingham, 1988). It is not 

clear which mechanism provides polarity to the embryo in higher plants, but apparently 

the first cell division of the plant zygote, resulting in a terminally differentiated suspensor 

cell and the embryo proper cell which will give rise to the mature embryo, already 

provides the polarity that specifies the sites where root and shoot meristems are formed at 

later stages. 

Meristem initiation has been studied in explanted tissues because the embryo, 

which is surrounded by carpel tissues, is inaccessible to manipulations. A classic 

experiment using cultured tobacco cells showed that the ratio of the plant hormones auxin 

and cytokinin determine the type of meristem that is formed (Skoog and Miller, 1957). 
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Experiments with cultured Convolvulus arvensis leaf segments confirmed the importance 

of the auxin to cytokinin balance, and demonstrated that commitment of new meristematic 

cells to develop into either root or shoot tissues was irreversible, and hence the result of 

two different and non-convertable developmental pathways (Christianson and Warnick, 

1983). Here a clear analogy to the determination concept in animal systems exists, but on 

the other hand it is unknown whether differences in hormone balance result in 

determination of root and shoot meristems in vivo. The concept of competence might 

apply to the ability of the root and shoot mersitems to become active only at a certain time 

point, when the seed germinates. 

Post-embryonic development 

In plants post-embryonic differentiation starts when, upon germination of the seed, the 

root and shoot meristems exhibit cell divisions in directed geometric planes, and in that 

way lead to the formation of new organs and tissues. Initial cells in the meristem, which 

are morphologically different and have a longer cell cycle then the other meristematic 

cells, remain the source of new meristem cells, and resemble animal stem cells in function 

and characteristics (Barlow, 1978). In general, meristems can give rise to indeterminate 

growth patterns and can continuously generate vegetative and floral organs. The shoot 

meristem forms axillary meristems and thus enables the formation of lateral branches with 

a new apical meristem. 

Root and shoot meristem cells are determined to root and shoot developmental 

programs, respectively. Nevertheless, these cells and their derivatives have a large 

developmental plasticity. The formation of stable tissue patterns in plants shows that cells 

become determined to a particular developmental fate, but this fate is very often 

reversible. The capacity of many (but not all) plant cells to respond to signals for the 

redirection of development throughout their life cycle, and the absence of irreversible 

developmental commitment even in a differentiated state is referred to as totipotency. This 

is in contrast with the general occurrence of irreversible determination in animal 

development, examplified by the cell autonomous development observed in lineage 

mutants from Caenorhabditis elegans (e.g. Horvitz and Sulston, 1980). 

Many features during the post-embryonic growth phase demonstrate the plasticity 

of plant development, for example: 1) The shoot meristem of determinate plants can 

become re-directed as a whole by various stimuli during plant development. These stimuli 

can be of both internal and external nature, and they cause terminal differentiation of the 
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meristem into floral tissues, tendrils or thorns. 2) A subset of cells in the petiole becomes 

competent to respond to the hormone abscisic acid (ABA) and forms the leaf abscission 

layer. 3) Pericycle cells derived from the root meristem can be re-activated to form new 

meristems for lateral root formation. 4) Vascular cells derived from the procambium can 

become mitotically re-activated to establish secondary growth of the vascular cylinder. 5) 

A haploid germ line can be established from functionally differentiated diploid cells in 

pistil and stamens of the flower. 6) In monocots, intercalary meristems develop at the 

base of leafs to supply cells for leaf elongation. 7) Meristematic activity and new pattern 

formation can also be induced in plant tissues for wound healing after physical damage. 

This capacity of plant cells to retain totipotency after specialization, is also reflected by the 

relative ease with which many cell types can be used to regenerate complete plants in 

vitro. The regeneration potential of plant cells by far exceeds that of animal stem cells, 

which are always pre-specialized. 

A major question in plant developmental biology is how the activity of meristems 

is programmed. This question has been addressed on an operational level mostly using 

the shoot meristem as a model, recendy reviewed by Sussex (1989). The shoot meristem 

consists of three superimposed cell layers, of which the upper LI layer forms exclusively 

epidermis tissue. All the other tissues are formed by a mixed population of derivatives 

from the other two L2 and L3 cell layers. LI cells sometimes divide parallel to the surface 

and give rise to cells of the L2 layer, which then do not form epidermal cells anymore 

(Derman, 1953). This demonstrates that, already within the meristem, developmental 

fates are position dependent, and not lineage dependent, and that cells in the three layers 

are not irreversibly determined. In the fern Osmunda cinnamomea the upper five leaf 

primordia, after excision from the shoot, give rise to complete plants in sterile culture, but 

an increasingly higher number of expiants from the next leaf primordia give rise to leaves 

instead of complete plants (Caponetti and Steeves, 1963). This indicates that the 

developmental fate of leaf primordia is acquired gradually. Additionally, scorable 

mutations induced in the shoot apical meristem of mature embryos of maize and 

sunflower, allowed clonal analysis of the progenitor cells. It appeared that different cells 

in the meristem formed distinct sectors in the plant, usually bounded by internodes. 

However, these sectors appeared to overlap when large numbers of plants were analysed, 

indicating that meristem cells were not precisely determined to form particular plant 

sectors (Coe and Neuffer, 1978; McDaniel and Poethig, 1988; Jegla and Sussex, 1988). 

A highly significant result of these experiments is that no evidence was obtained for pre-
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specialization of meristematic cells to form different tissues, with the exception of the 

epidermis tissue mentioned above. All these observations indicate that determination of 

the developmental fate of single cells to form a particular tissue does not occur inside the 

shoot meristem during post-embryonic development. 

Cell walls and development 

In plants the presence of a cell wall fixes the relative positions of neighbouring cells and 

prevents cell mobility, an important means to achieve morphogenesis in animals. The 

post-embryogenic morphological pattern is formed by differences in meristematic 

division rates and division planes, and cell growth rates. Since developmental 

adjustments during morphogenesis cannot be made by re-grouping of cells this appears to 

be counteracted by the ability of cells in a fixed position to adjust their developmental 

fates to those of neighbouring cells. This implies the capacity of plant cells to receive 

information on the developmental stages of neighbouring cells, which can also be 

referred to as positional information. As stated before developmental fates are fixed late 

during post-embryonic development. Positional information is therefore likely to be of 

major importance in determination of cell fate. 

Conclusions 

The concept of determination appears applicable to the stable formation of root and shoot 

meristems during plant embryogenesis, and competence is possibly involved in 

determining the start of meristem activity upon germination. During the post-embryonic 

stage of development, which covers the most elaborate part of the cell differentiation and 

morphogenesis events in the plant life cycle, the developmental fate of cells derived from 

at least the shoot meristem is established late in development, when cells are fixed in 

position relative to their neighbours. Therefore developmental decisions rely heavily on 

positional cues. Since developmental fates of many cells remain flexible, the term 

determination can only be adapted to plant development if it is defined as a commitment to 

a particular developmental fate which is reversible. 
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MOLECULAR MECHANISMS INVOLVED IN DEVELOPMENT 

ANIMAL DEVELOPMENT 

Genes and animal development 

Recently the combination of genetical, biochemical and molecular biological research has 

provided some insight into the molecular mechanisms governing animal development and 

the compounds involved, and before turning to plant development it is useful to list the 

emerging principles. The importance of genes in animal development has become clear 

from two kinds of observations: 1) single-gene mutations affect developmental decisions, 

e.g. the homeotic mutations in Drosophila; 2) differentiated cell types are marked by the 

expression of specific gene sets. The first set of observations show that animals contain 

in their genome a set of genes which affect developmental decisions during the formation 

of a multicellular organism from the zygote. The second set of observations demonstrate 

that cellular differentiation involves activation and repression of specific gene sets, 

leading to different cellular phenotypes. An important question regarding the genes which 

form developmental instructions is which molecular mechanisms allow these genes to 

affect developmental decisions. This question is now adressed in several experimental 

systems, and an overview will be provided below. The question of how specific gene 

sets are activated and repressed during cell differentiation, and how do these gene sets 

lead to the differentiated cell phenotype, is also being addressed, but only fragmentary 

knowledge about the modes of activation of large sets of specific genes has been 

obtained. Combinatorial use of different cis elements in promoter regions and rrans-acting 

factors is thought to be the mechanism by which limited numbers of inductive 

compounds in different combinations can lead to a large diversity in gene expression 

patterns (Dickinson, 1988). 

Molecular mechanisms of animal development 

Animal development occurs mainly during embryogenesis and is characterized by an 

interplay of cell-autonomous differentiation programs and differentiation upon receival of 

positional cues. On the other hand the majority of plant development occurs after 

embryogenesis and positional cues appear most important. Therefore I shall below 

concentrate on those mechanisms which are related to positional information in animals. 
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In chicken wing buds, it was found by grafting experiments that cells receive 

positional information for specifying differentiation, and that differentiation is dependent 

on the distance to a tissue which is giving a positional signal. This resulted in the 

hypothesis that gradients of diffusible compounds of low molecular weight, so-called 

morphogens, provide positional information (Wolpert, 1969; Crick, 1970). In the 

original definition a morphogen is a positional signal that can produce multiple, 

concentration-dependent, developmental outcomes. Emerging details on the chemical 

nature of morphogen gradients that invoke differentiation in several animal systems will 

be discussed. Second, data concerning the molecular systems that lead from positional 

information provided by morphogens to cellular differentiation responses will be 

presented. Third, a group of molecules receiving positional information by cell-cell 

interactions, leading to all-or-none inductive events, is discussed. Fourth, the role of 

signal transduction in development will be regarded. 

1) Positional signals 

Several morphogens have been identified in animal systems. In the developing chicken 

wing bud retinoic acid appears to influence differentiation in a concentration-dependent 

manner. Furthermore, retinoic acid was shown to be present in developing chicken wing 

buds at different concentrations, consistent with the hypothesis that this compound is 

locally elicited and forms a concentration gradient (Thaller and Eichele, 1987). 

During Xenopus embryogenesis, two peptide growth factor analogues induce 

ectoderm cells to differentiate into mesoderm dérivâtes (Kimelman and Kirschner, 1987). 

The maternally deposited Vgl mRNA, encoding the TGF-ß homologue, has been shown 

to form a gradient in the developing embryo (Weeks and Melton, 1987). In explanted 

animal pole cells the two factors mentioned induce different mesodermal cell types when 

applied in different concentrations and they therefore seem to meet the morphogen 

definition (Smith, 1989). 

Nurse cells distribute bicoid (bed) mRNA into the anterior pole of the Drosophila 

oocyte. Upon fertilization this mRNA is translated and the resulting protein forms a 

concentration gradient in the zygote. The bed protein contains a conserved 'homeobox' 

motif with DNA binding properties, and has been shown to induce transcription of at 

least the zygotic gap-class gene hunchback in a concentration-dependent manner (Strahl 

et al., 1989). Hence the bed protein can be regarded as a morphogen. 
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2) Receptors 
Clearly several kinds of molecules conferring positional information during development 
exist in animals. Equally important in development are molecules by which cells or 
intracellular regions receive and subsequently respond to positional information. The 
presence of such systems marks the stage of competence to respond to developmental 
cues. A variety of molecular components of systems that appear to elaborate initial 
positional information both at uni- and multicellular stages have been reported on. 
Representative examples of the different classes of molecules involved are given below. 
The retinoic acid receptor has homology to nuclear receptors for steroid/thyroid hormones 
with putative DNA-binding 'zinc finger' domains (Petkovitch et al, 1987). 
Steroid/thyroid hormones specifically direct differentiation processes, but not necessarily 
affect graded responses (for an overview see Walbot and Holder, 1987). This implies 
that the retinoic acid system is a member of a larger, related family of 
morphogens/hormones and receptors that govern particular stages of differentiation by 
direct transcriptional activation of target genes. 

The transition of morphogenetic gradients in the unicellular zygote to increasingly 
complex patterns of differentiated cell states at blastula stage is becoming unravelled now 
in Drosophila embryogenesis. The emerging picture is that initial gradients, from which 
the bed protein gradient is only one, cause differential expression of genes encoding 
transcriptional regulators. These transcriptional regulators bring about the expression of 
genes encoding different transcriptional regulators. In this way the products of several 
genes establish a hierarchic cascade of transcriptional regulation leading to a differential 
distribution of gene products. The differential distribution of the encoded proteins forms 
an increasingly complex spatial pattern which confers unique positional values to 
different regions in the embryo. In this way both segmentation and segment identity are 
established. Two classes of transcriptional regulators appear to be active with different 
putative DNA binding domains: the nucleic acid binding 'zinc-finger' and the homeobox 
domain, respectively (Ingham, 1988). The establishment of pattern by these 
transcriptional regulators requires interactions between them, as inferred from 
mathematical models that mimiek pattern formation (Meinhardt, 1988; Nagorcka, 1988). 
Experimental evidence for activation and repression of genes by different homeobox 
proteins has been obtained (Krasnow et al, 1989), and synergism in activation and 
repression activities between different homeobox proteins has also been proven (Han et 
al, 1989). 
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3) Cell-cell interactions 

Interestingly, while the first subdivision of the Drosophila embryo is accomplished 

mainly by a transcriptional regulation cascade, many cells at blastula stage are still 

pluripotent, and further differentiation requires intercellular communication. Examples of 

genes involved in developmental decisions by intercellular communication are the notch, 

the a!ppHin<1, and the sevenless (sev) genes. During embryogenesis the notch gene is 

involved in the binary switch between neural and epidermal differentiation. The d/J/JHind 

gene is essential for the establishment of the dorsal cell type during embryogenesis. In the 

developing eye the sev gene determines the differentiation of the R7 photoreceptor cell. 

Both notch, dppainA and sev gene products have protein domains homologous to peptide 

growth factors and transmembrane domains. Mosaic analysis of sev mutants indicates 

that the sev product is a receptor for a differentiation-inducing signal from neighbouring 

cells (Wharton et al, 1985; Hafen et al, 1988). Most likely also the notch and dppmnd 

gene products enable cells to receive a signal from an already differentiated neighbouring 

cell. This signal then specifies development of the receiving cell. 

4) Signal transduction 

It is also becoming clear that specific signal transduction pathways have an important role 

in animal development. The Drosophila sev receptor contains a protein tyrosine kinase 

domain, presumably capable of phosphorylation of specific target proteins (Hafen et al, 

1988). Genetic evidence suggests interaction of the notch gene product with the Enhancer 

of split protein, a putative G-protein involved in signal transduction (D. Hartley et al, 

cited in Ingham, 1988). The Drosophila oncogene Abelson tyrosine kinase (abl) is 

involved in the development of axons in the embryonic central nerve system (Gertler et 

al, 1989). Finally, most likely also Drosopila oncogene c-src homologs, the tyrosine 

kinase Dsrc28C proteins, are involved in segmentation as well as in neuronal 

differentiation (Vincent III et al, 1989).These examples show that specific signal 

transducers like G-proteins and protein kinases are involved in development. 

Generality of molecular mechanisms in animal development 

Drosophila embryonic development, from which most of the examples mentioned above 

were taken, exhibits many species-specific features. Still Drosophila appears to be useful 

to elucidate general molecular mechanisms that convert positional signals into actual 
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differentiation, because many homologous gene products are found in other animals: 1) 

At least three Caenorhabditus elegans genes that regulate differentiation have been shown 

to contain homeoboxes (see Levine and Hoey, 1988), and in mice the members of the 

Hox family contain homeoboxes. The spatial distribution of the different Hox transcripts 

during murine embryogenesis implies a role in development (Dressier and Gruss, 1988). 

2) The mouse zinc-finger domain containing mKrl gene product is present throughout 

development of the central nervous system, and might be involved in development of this 

tissue (Dressier and Gruss, 1988). 3). The Caenorhabditis elegans lin-12 gene product is 

one of the best studied receptors for an inductive molecule, and appears homologous in 

both structure and function to the Drosophila notch, dp/7Hind, and sev gene products. In 

several different cell lineages this gene product affects a binary switch between one cell 

fate and another (Greenwald et al, 1983). The lin-12 protein has repeated peptide 

domains homologous to those in mammalian growth factors (Greenwald, 1985). At least 

in a gonad precursor cell depending on lin-12 activity for differentiation, it was shown 

that the lin-12 protein is the receptor for a positional signal from a neighbouring cell 

which specifies development (Seydoux and Greenwald, 1989). 4) The general 

importance for growth-factor like molecules and their receptors in mammalian 

development is well recognized. 

Conclusions 

Taken together, several main groups of gene products appear to be involved in regulating 

animal development: positional signals and their membrane-bound receptors, 

transcriptional regulators, and proteins which are part of specific signal transduction 

pathways. Important molecular mechanisms in animal development appear to be the 

generation of graded positional signals, which are then translated into concentration-

dependent differential responses. Translation of signal into response occurs either by 

direct transcriptional activation or by signal transduction mechanisms leading to activation 

of specific subsets of proteins. Furthermore receptors which can recognize neighbouring 

cells exist, where the presence of the appropriate signal molecule on the neighbouring cell 

results in an all-or none developmental decision in the cell carrying the receptor. 

The generalized picture of animal development is one of several cascades of 

spatial compartimentalization by different gradients of positional signals. The differential 

distribution of these signals causes certain cells to become determined. Specific signals 

elicited by or present on the surface of already determined cells can then further modulate 
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fine-grained development by cell-cell interactions (see also Ingham, 1988). Ultimately an 

elaboration of initial differences, obtained in a limited amount of cells, into large 

organized groups of cells with a specific pattern of gene expression that determines their 

phenotype has to be established to complete development. 

PLANT DEVELOPMENT 

The importance of genes in plant development 

Indications for the importance of gene expression in plant development stem from the 

same arguments initially raised for animal systems. First, plant homeotic mutants in 

which one mutated gene affects specific developmental steps are known, and second, 

different plant tissues show specific gene expression patterns. 

Single-gene mutations in Arabidopsis that alter flower development show the 

direct role of genes in specific developmental processes, and provide genetic evidence 

that development in plants indeed relies on positional information. A precise study on the 

phenotype of four recessive, chemically induced mutations revealed homeotic changes 

from stamens to petals in agamous-1; sepals to leaves and petals to staminoid petals in 

apetalal-l; petals to sepals and stamens to carpels in apetala3-l; and petals to sepals in 

pistillata-1 (Bowman et al, 1989). Temperature-shift experiments on the temparature-

sensitive apetala mutants revealed that the wild-type products act at the same time or after 

the primordia of the organs they affect are formed. Hence the wild-type products appear 

to allow primordial cells to determine their place in the developing flower and differentiate 

appropriately. Flower mutations in other plant species are described which are very 

similar, perhaps homologous (discussed by Bowman et al, 1989), indicating that the use 

of positional information in flower development is a universal mechanism in higher 

plants. 

By studying hybridization kinetics Goldberg et al (1978), and Kamalay and Goldberg 

(1980) demonstrated that tobacco organ systems contain 24,000-27,000 polysomal RNA 

species, of which approx. 8,000 are shared in all organs, and at least 6,000 are unique to 

each organ system. Differences in nuclear mRNAs composition were also shown to exist 

between the different organ systems, but more overlap in nuclear mRNA composition 

then in polysomal mRNA composition between the different organs was observed, 

indicating that both transcriptional and post-transcriptional regulation occur to achieve 

differences in mRNA sets (Kamalay and Goldberg, 1984). The majority of the organ-
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specific transcripts were shown to belong to the rare-class mRNAs (in total less then 

0.01% of the mRNA mass). This mRNA complexity in plants is equivalent to the 

complexity in animals (Hastie and Bishop, 1976). Hence plants, albeit apparently more 

simple in structure and containing less morhpologically different cell types, show a 

complexity in gene regulation similar to that in animals. Stage-specific differences in rare-

class mRNA composition of different mature organs were not observed during the later 

stages of soybean embryogenesis (Goldberg et al., 1981). Therefore it is not clear 

whether regulation of rare class mRNA plays a role at that stages of embryo 

development. However, by molecular cloning numerous (medium-) abundant mRNAs 

have been shown to be regulated in a variety of developmental processes, emphasizing 

the importance of differential gene expression during development. 

Compounds involved inplant development 

At this moment research on the molecular biology of plant development is just starting. 

Plant physiologists and biochemists have however been putting effort in analyzing the 

effects of various compounds on development. Therefore a short description will be 

given of compounds shown to be involved in plant development. The existence of 

possible analogies to animal developmental mechanisms will be considered. 

Plant growth regulators 

Growth and development of plants is beyond doubt influenced by the plant growth 

regulators (phytohormones), five groups of small chemical compounds. Plant growth 

regulators have pleiotropic effects throughout the plant life cycle and the same set of 

growth regulators is involved in developmental processes (reviewed by Hall, 1984) as 

well as in coordination of overall plant activities (reviewed by Wareing, 1984). Space is 

too limited here to list all known effects of plant growth regulators, and to elaborate data 

on biosynthesis, active structures, and transport (for a recent overview see Roberts and 

Hooley, 1988). It is however relevant to call to mind briefly that growth regulators 

appear to induce meristem induction and subsequent differentiation of plant cells in a 

concentration dependent manner, which classifies them as positional signals resembling 

the animal morphogens: the ratio of auxin to cytokinin influences the decision to form 

root or shoot meristems in callus (Skcog and Miller, 1957). The formation of floem and 

xylem fibers in callus is dependent on the auxin concentration (Jeffs and Nothcote, 

27 



1967). In these examples plant growth regulators seem to establish determination of 

undifferentiated cells. 

The nature of the molecular mechanisms underlying hormone-induced 

development is unknown. The general opinion is that, to account for the different 

responses of plant cells to one or more growth regulators, the existence of a multitude of 

receptors, capable for specifying responses, has to be proposed (Hall, 1984). The 

balance of certain hormones could then form a developmental field with analogies to 

morphogen gradients in animals. A specified developmental pathway could be triggered if 

appropriate receptors, reflecting the competence of the target cell, are present. Answers to 

basic questions on the action of plant growth regulators thus depend on description of 

receptors and growth regulator effects at the cellular level. 

The auxins are the best studied plant growth regulators in terms of searching for 

putative receptors and analyzing effects at the cellular level. Evidence has been presented 

for the existence of both membrane-bound and soluble auxin receptors in tobacco cells 

(Libbenga et al, 1986). This points to the presence of an amount of target molecules for 

one single plant growth regulator that is unparallelled in animal systems, supporting the 

multiple receptor hypothesis to account for the many different responses of plant cells to 

auxins. For molecular cloning of a putative auxin-receptor, antibodies to an auxin-

binding protein have been raised that block auxin-induced, ATPase-mediated proton 

import across tobacco protoplast membranes (Löbler and Klämbt, 1985; Barbier-Brygoo 

et al, 1989). The primary structure of the protein encoded by a cDNA clone isolated with 

the aid of these antibodies surprisingly provides evidence that not an integral membrane 

protein but a protein residing in the endoplasmatic reticulum is encoded (Tillmann et al, 

1989). This indicates that the epitope on the membrane-bound protein reacting with the 

antibody is also present on a protein residing in the cytosol. It will have to be established 

whether the latter protein is an auxin receptor. The amino acid sequence derived from this 

putative auxin receptor protein is not homologous to previously described proteins, 

indicating that plant growth regulator receptors may be structurally unrelated to animal 

signal receptors. As to the subsequent activities of auxin upon binding to receptors, rapid 

induction of specific mRNA synthesis indicates that at least part of the auxin effects rely 

on transcriptional activation of target genes (Theologis, 1986). Whether plants are able to 

respond to other growth regulators by the means of various receptors is not yet 

conclusively established, although there are clues to the possible existence of 
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proteinaceous receptors for abscissic acid and gibberellins (Hornberg and Weiler, 1984; 

Stoddart, 1986). 

The pleiotropic effect of plant growth regulators (phytohormones) on 

development has urged investigators to seek for more specific regulators of growth and 

differentiation in plants. Cell-wall derived oligosaccharins (oligosaccharides with 

regulatory activity) have been shown to influence morphogenetic pathways in tobacco 

thin-layer expiants (Tran Thanh Van et al, 1985; Eberhard et al, 1989). These compounds 

can, at narrow concentration ranges comparable to those at which the classical plant 

growth regulators are effective, induce expiants to form either vegetative buds, flowers, 

callus or roots. The authors conclude that plant growth regulators could affect the release 

of cell wall oligosaccharides as non-pleiotropic chemical messages in vivo which 

'regulate a delineated set of biochemical processes that regulate morphogenesis'. Proof 

for this statement has to await further experimentation. Interesting with regard to this 

evidence for sugar residues as signal molecules, is the suggestion that sugar-binding 

glycoproteins termed lectins, which are widespread in the plant kingdom, may play a role 

as receptor in various cell-cell recognition events in plants (Knox and Clarke, 1984). 

Phenylpropanoids, possibly derived from the plant cell wall, have been shown to 

replace cytokinin requirement for growth in cultured tobacco cells (Lynn et al, 1987). 

Hence not only sugars but also phenolic compounds from cell walls could be cues for 

growth and development in plants. 

In conclusion, plant growth regulators, notably auxin, share certain characteristics 

with animal hormones: receptor-mediated activity, and hormone-induced selective gene 

expression. The growth regulator molecules themselves are however completely different 

from the morphogen/hormone molecules that provide positional information in animals. 

Neither gradient responses as with animal morphogens have been clearly demonstrated. 

Furthermore the question as to whether plant growth regulators are primary causative 

agents in in vivo differentiation events, or secondary compounds like oligosaccharins and 

phenylpropanoids play a decisive role, remains to be established. 

Transcriptional regulators 

The findings of Paz-Arez et al (1987) that the maize CI regulatory locus encodes a 

protein that is homologous to the transcriptional activator and proto-oncogene c-myb , 

and of Katagiri et al (1989) that two tobacco DNA binding proteins share homology with 

animal nuclear factors, can be seen as an argument for the conserved structure of 
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regulatory proteins in animal and plant kingdoms. Proteins with demonstrated 

transcriptional regulator activities, and involved in development, have to our knowledge 

not yet been identified in plants. However, the existence of a homeodomain in the yeast 

mating type proteins, which act as transcriptional activators invoking a developmental 

switch, proves that the use of this type of proteins is not restricted to the animal kingdom 

but might be used in all eukaryotes. This indicates that homologous proteins with 

analogous functions might be active in plants. 

Signal transduction 

Accumulating data on the relevance of signal transduction systems for plants have been 

recently reviewed by West et al (1989). In plants compounds have been found which 

could function in signal transduction systems like described for animals. Currently the 

existence of phosphatidylinositol pathways in plants is supported by more convincing 

data then the existence of cyclic nucleotide-mediated pathways. Phosphatidylinositol 

compounds and the membrane-bound phospholipase C enzyme that can generate them 

have been detected in plants (Boss, 1989). Especially interesting is the finding that auxin 

can induce cell division in arrested Catharanthus roseus cells, which is accompanied with 

a rapid generation of specific phoshatidylinositols (Ettlinger and Lehle, 1988). Several 

lines of evidence point to the importance of Ca2+ as second messenger in plants (Marmé, 

1989). Ca2+/calmodulin-dependent proteins kinases have been identified in plants (e.g. 

Blowers et al, 1985). Whether these compounds are functional in plant developmental 

processes remains to be established. The application of 'brute force' cloning of specific 

protein kinases and G-proteins in plants might be one way to establish the importance of 

signal transduction mechanisms in plant development (Palme et al, 1989). 

Conclusions 

A major effort of the research on the molecular basis of plant development is the 

identification of compounds possibly involved in pattern formation and differentiation. 

The emerging hypothesis is that phytohormones act as positional signals, whose 

pleiotropic effects could be mediated by different receptors, possible involving elements 

of signal transduction systems. The molecular structure of known developmental signals 

and putative receptors in plants does not resemble the structure of animal positional 

signals and receptors. On the other hand analogous transcriptional activators and signal 

transducing proteins exist in animals and plants. It can therefore be postulated that if the 
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mechanisms to convey positional information in plants and animals are different, the 

mechanisms to translate this information into differential gene expression may be rather 

similar. Models on molecular mechanisms leading from positional information to 

differentiation during embryogenesis and post-embryonic development are lacking so far. 

To establish these models questions regarding plant development will have to be asked in 

suitable experimental systems. Below I will discuss root nodule formation as such a 

system, capable of providing clues to the molecular mechanisms of post-embryonic 

development from meristems. 

ROOT NODULE FORMATION AS A SYSTEM TO STUDY PLANT 

DEVELOPMENT 

Root nodule formation involves development of an organ in which nitrogen fixation takes 

place. This particular case of organogenesis is induced by Rhizobium bacteria. In section 

A, I shall explain why the root nodule can be considered to be a unique plant organ, and I 

shall describe the series of events leading to nodule formation. In sections B and C, I 

shall discuss the intrinsic qualities that make root nodule formation suitable to study 

meristem formation and the subsequent differentiation leading to the different nodule cell 

types. 

A). DESCRIPTION OF ROOT NODULE FORMATION. 

Root nodules consist of several different tissues, schematically represented in figure 1: 

nodule cortex, endodermis, nodule parenchyma ('inner cortex') containing vascular 

strands, and a central tissue made up of cells infected with rhizobia and uninfected cells 

(Newcomb, 1976; chapter 3). The cell types of the central tissue are unique for root 

nodules as they have special functions bearing on symbiosis and assimilation of fixed 

nitrogen. The spatial organization of tissues like endodermis and vascular strands in root 

nodules is characteristic and is not found in other parts of the plant containing endodermis 

and vascular strands. Furthermore the origin of the nodule primordium in the root cortex 

is exceptional since organs do not normally arise from this tissue. For all these reasons 

the root nodule may be considered a unique organ. 
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Figure 1. Anatomy of the root 

nodule compared to the root. 

Two types of root nodules are distinguished, the indeterminate type found e.g. in 

pea and alfalfa infected with Rhizobium species, and the determinate type found in e.g. 

soybean infected with Bradyrhizobium. Indeterminate nodules contain a persistent 

meristem at the apex from which the different tissues of the nodule develop. In that 

respect the nodule meristem resembles the apical root and shoot meristems, which are 

also persistent and which are the source of the different root and shoot tissues. Since 

post-embryonic development in plants involves indeterminate meristems their formation 

and activity are of wide importance. In the following I shall therefore elaborate only on 

the formation of indeterminate root nodules. Determinate nodules which lack a true 

persistent meristem will not further be discussed. 

Different stages of the formation of a pea root nodule are depicted in figure 2, 

copied from Libbenga and Harkes (1973). Bacteria first attach to root hairs, make them 

curl and enter the hairs after local hydrolysis of the cell wall. Upon entering the bacteria 

induce the plant cells to deposit cell wall material which forms a tubular structure, the 

infection thread. Through this thread the bacteria enter the plant. This type of infection 

process is a specific feature of the pl&nt-Rhizobium interaction. In front of the growing 

infection thread tip (ti) a centre of mitotic activity is induced in the inner cortex which 

constitutes the nodule primordium, as shown in figure 2A and 2B. Upon reaching the 

primordium the infection thread branches (figure 2C, 2D). In the centre of the 

primordium the first bacteria are released into plant cells where they eventually 

differentiate into bacteroids (bt) capable of nitrogen fixation (figure 2E). When the 

bacteria are released from the infection thread, cells at the distal site of the primordium 
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Figure 2. Pea root nodule development. A-F: successive stages of development from nodule primordium 

initiation to the formation of a root nodule containing an apical meristem. En: endodermis; ti: infection 

thread tip; ep: epidermis; bt: bacteroids; m: meristem. Reprinted from Libbenga and Harkes, 1973. 
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become small and rich in cytoplasm. These cells form the apical nodule meristem. The 

meristematic centre is pushed outward, while generating the different nodule tissues 

(figure 2F). The infection threads have now reversed their original growth direction by 

180° and follow the meristem. In the zone immediately adjacent to the meristem the 

release of bacteria from the infection threads continues. In that way new infected cells are 

continuously added to the central tissue, that contains infected and uninfected cells in an 

appr. 1:1 ratio. Hence root nodule formation, induced by a symbiosis-specific infection 

process, includes such characteristic developmental events as the induction of 

meristematic activity and formation of a new plant organ. 

B) ROOT NODULE FORMATION AND THE DEVELOPMENT OF APICAL 

MERISTEMS. 

From preceeding paragraphs it will be clear that the question as to how meristems are 

initiated and how they are determined to generate specific tissues is crucial in the study of 

post-embryogenic development in plants. There are three arguments for considering root 

nodule formation a suitable system to study meristem formation: 1) the development of 

nodules, involving the formation of a nodule primordium and meristem, can be studied in 

a fixed spatial and temporal frame; 2) a limited, and therefore approachable, set of defined 

Rhizobium genes is involved in nodule primordium and meristem formation; 3) 

determination of the nodule meristem seems to be achieved by a limited number of 

compounds. These arguments will be elaborated below. 

1. Controlled induction of primordium and nodule meristem formtion 

The starting point of the induction of the primordium from which the nodule meristem is 

ultimately formed, is the first cell division in the root cortex. These cell divisions can be 

induced in a controlled way by spot-inoculation of Rhizobium on plants, which defines 

the time and location of primordium development (Calvert et al, 1984; Dudley et al, 

1987). Similarly the time and site of appearance of the nodule meristem at the distal site 

of the primordium are defined. This enables the precise description of variations in 

primordium and meristem formation if mutant Rhizobium bacteria, rhizobial factors or 

mutant plants are used. Also the various stages at which specific plant genes are involved 

in this process can be studied by visualising the location of the corresponding transcripts 

at defined time points after inoculation by in situ hybridization (this thesis). 
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The site where the first mitotic activity is induced resides in the inner cortex, in 

almost all cases opposite the xylem poles. The specific localization of the responding cells 

raises the question whether this is a predetermined site, implying that inner cortex cells 

are the only ones competent to respond to a bacterial signal, or whether the initiation place 

is determined by gradients of positional signals produced by both the plant and 

Rhizobium bacteria. A clue for the latter mechanism can be inferred from the observation 

that in vitro a diffusible factor from the root vascular system can specify in a pea root 

expiant system the cortical cells which become mitotically active at the proper auxin-

cytokinin ratio (Libbenga et al, 1973). In the Rhizobium-lcgame symbiosis this ratio of 

plant hormones might be established by inductive signals from the bacterium (see below). 

Although nodule meristem formation occurs at the time when the first bacteria are 

released in the primordium, bacterial release per se appears not to be the essential trigger 

for meristem induction as evidenced by Rhizobium exopolysaccharide-deficient mutants 

which do not infect the plant but are nevertheless able to elicit formation of a nodule 

meristem (Finan et al, 1985). At the other hand the observation that the nodule apical 

meristem only develops after a specific nodule primordium has been formed might be 

relevant. Traditionally the requirement of primordium formation prior to induction of 

meristematic activity has been explained by assuming that primordium formation is the 

necessary dedifferentiation event preceeding meristem formation. The presence of 

nodule-specific gene transcripts in the primordium which labels it as a specific tissue, and 

the observation that only a few distal cell layers of the nodule primordium form the 

meristem (Libbenga and Harkes, 1973; chapter 4), point to a more complicated function 

of primordium cells in induction, and perhaps determination, of the apical meristem. 

In contrast with the root nodule meristem, the apical root and shoot meristems are 

not accessible to experimentation in a comparable way at the time when they are formed 

during embryogénie development. New foci of meristem activity that arise for example at 

the onset of lateral root development, are inaccessible to experimentation since they 

cannot be induced with external factors and for that reason their formation cannot be 

examined in fixed space and time frames. In vitro meristem induction with hormones on 

cultured cells (cf. Skoog and Miller, 1957) or with oligosaccharins on thin layer expiants 

(Tran Thanh Van et al, 1985) can serve as an alternative to study in vivo meristem 

formation by the controlled external application of various growth regulators. However, 

if important clues on compounds possibly involved in meristem induction and 

specification have emerged from these studies, it remains difficult to establish whether 
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such compounds are also active in the in vivo situation. Because nodule formation is both 

externally inducable and occurring in vivo, the root nodule appears an attractive system to 

study general aspects of apical meristem formation. 

2. Rhizobium genes and primordiumlmeristem formation 

It has been established that a limited set of Rhizobium genes is involved in initiating the 

root nodule developmental program (cf. Long, 1989). This offers the unique possibility 

to interfere with a plant developmental process in vivo by manipulating the bacterial 

molecules involved in root nodule development using molecular genetic methods. Genetic 

manipulation of the production of endogenous plant compounds involved in development 

of, for example, the root and shoot meristems is not quite feasible for at least two 

reasons. First, plant genetics is technically more difficult than bacterial genetics because 

of the larger genome of plants. Second, even if the technical difficulties of applying plant 

genetics might be overcome, it is quite likely that mutations in meristem induction will be 

lethal or display pleiotropic effects. 

The bacterial common nodulation (nod) genes have been shown to be essential for 

cortical cell division (Dudley et al, 1987), and most likely they produce a low molecular 

weight factor to achieve this (Schmidt et al, 1988). A striking observation has been that 

induction of cortical cell division, and subsequent meristem formation can be triggered by 

adding auxin transport inhibitors (Allen and Allen, 1940; Hirsch et al, 1989). Hence 

induction of nodule meristem initiation may involve plant growth regulators in an 

analogous way as postulated from in vitro meristem induction experiments (Skoog and 

Miller, 1957). This strongly suggests that also the bacterial factors that trigger cortical cell 

division and formation of a nodule meristem interfere with the plant hormone balance. If 

these compounds are comparable with those used in the formation of other meristems, 

mechanisms that influence the fine-grained distribution of plant growth regulators, 

possibly important for establishing positional information involved in meristem 

induction, can be investigated. 

3. Determination of the nodule meristem 

Apart from the possibility to study in vivo meristem formation in the root nodule system, 

it seems possible to study the mechanisms that lead to determination of the nodule apical 

meristem. An important observation in that respect is that the meristem induced by 

addition of auxin transport inhibitors to alfalfa roots gives rise to a pseudonodule 
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structure cytologically similar to bacterial root nodules, and in which at least one early 

nodulin gene transcript is present (Hirsch et al, 1989). The location of this transcript in 

pseudonodules corresponds to the location in bacterial nodules (Van De Wiel et al, in 

prep.). From these data it can be concluded that a single compound can establish in vivo 

induction of a meristem which is determined to form a tissue strongly resembling a 

bacterial root nodule. Therefore it is quite possible that compounds made by the nod gene 

products are also able to induce both meristem formation and determination. For example 

the factor identified by Schmidt et al (1988), might not only be involved in induction of 

cortical cell division but also in meristem specification. In addition, nod gene factors may 

cover other aspects of determination, required for the formation of a mature root nodule. 

The observation that Agrobacteriwn transconjugants carrying the cloned Rhizobium nod 

genes can induce formation of a cytologically normal nodule structure containing early 

nodulin transcripts is in agreement with the assumption that nod gene products govern 

both meristem induction and determination (Hirsch et al, 1984; Truchet et al, 1985; 

Dickstein et al, 1988; Nap et al, 1989). Characterization of the factors produced by the 

nod gene products can lead to an understanding of the mechanisms underlying meristem 

determination. 

An intriguing question is how a limited number of bacterial compounds is capable 

of specifying a complex developmental pathway. This phenomenon might be explained if 

it is assumed that these compounds merely trigger and slightly modify an existing 

developmental pathway. It can be argued that the triggering and modification of an 

existing developmental pathway requires less information then the complete specification 

of a developmental process. In the following I will summarize some data that are in favor 

of considering root nodule development as a modified version of lateral root 

development. 

Inoculation of the R. meliloti strain JT205, carrying a mutation in a Sym-plasmid 

gene, results in the formation of nodules that resemble lateral roots (Dudley et al, 1987). 

Root nodules formed by Frankia sp. on the non-legume Alnus and by Rhizobium species 

on the non-legume Parasponia, do resemble lateral roots in morphology (Drake et al, 

1985; Lancelle and Torrey, 1984a,b); they contain an apical meristem and a central 

vascular tissue as in roots; the vascular tissue originates from the root pericycle, which is 

the site of origin of lateral roots. Rhizobium nodABC genes which bring about the 

formation of the lateral root-like nodules on Parasponia can also induce formation of 

nodules with normal morphology on legumes (Marvel et al, 1985). This indicates that 
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compounds initiating a developmental pathway containing elements of lateral root 

development can also, in a legume, induce developent of a meristem giving rise to the 

unique nodule structure. For that reason it is possible that root nodule development is a 

slightly modified version of lateral root development in Parasponia, and a more 

extensively modified version in legumes. If this is the case it is not only conceivable that 

a few bacterial compounds can trigger a developmental pathway, but it is also quite 

possible that (lateral) root development involves similar compounds and mechanisms as 

nodule development. Elucidation of the mechanisms by which bacterial compounds 

determine the nodule meristem can than gain access to mechanisms involved in the 

determination of other meristems. 

CELLULAR DIFFERENTIATION IN THE DEVELOPING ROOT NODULE 

Once the nodule meristem has been determined to form the different nodule-specific 

tissues, a further important question becomes how differentiation and the differential gene 

expression programs belonging to it are executed. During root nodule development cells 

derived from the apical meristem differentiate into the central tissue with infected and 

uninfected cells, while peripheral tissues like nodule cortex, endodermis, nodule 

parenchyma and vascular strands also originate from the meristem. During root nodule 

development the synthesis of nodule-specific plant proteins, the nodulins, occurs (Van 

Kammen, 1984). Whereas late nodulin gene expression is detectable in the mature nodule 

shortly before the onset of nitrogen fixation, early nodulin gene expression accompanies 

different stages of root nodule development (Nap and Bisseling, 1989; this thesis). Not 

only does early nodulin gene expression mark different cell types within the developing 

nodule (compare chapters 3 and 4), it also marks successive developmental stages of one 

cell type (chapter 5). The availability of early nodulin cDNA probes specific for particular 

cell types and/or particular developmental stages within one cell type, together with the 

possibility to apply Rhizobium mutants defective in nodulation can be used to study 

cellular differentiation. Mutants can be selected that cause developmental blocks at 

specific stages of root nodule development, like the R. meliloti JT205 strain which forms 

nodules that have only peripheral but no central tissues developed from the meristem 

(Dudley et al, 1987). The developmental stages reached in these nodules can be 

monitored by expression analysis of early nodulin genes. The molecular defect caused by 

the bacterial mutation can be identified, and this may provide insight in the bacterial 
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signals that give rise to particular stages of differentiation marked by early nodulin gene 

expression. As stated before, during development signal transduction mechanisms 

probably play a crucial role in translating extracellular signals into differentiation 

responses. The availability of both signal molecules produced by the nod- or other 

bacterial genes and different target genes (early and late nodulins) allows the investigation 

of signal transduction chains from both ends: first, putative receptor molecules for the 

different signals can be isolated and studied; second, the possibility to clone a set of 

sequentially induced nodulin genes (chapter 5) also allows studying the cis and trans 

elements involved in time- and tissue-dependent gene activation upon differentiation of 

cells from an apical meristem. In this way the combinatorial model for the induction of 

differential gene expression (Dickinson, 1988) can be tested in a plant system. 

CONCLUDING REMARKS 

Current information on compounds involved in plant development has not resulted in a 

firm basis for hypotheses about molecular mechanisms of plant development. In this 

chapter I have outlined the features specific for plant development compared with animal 

development and I have used current ideas about the molecular mechanisms underlying 

animal development to provide a framework for listing data on molecular mechanisms of 

plant development. 

A major problem of plant development is the understanding of the formation and 

the post-embryonic development of apical meristems from which different specific tissues 

originate. I have pointed out that the development of a root nodule has features 

corresponding to apical meristems and that, for that reason, nodule development can 

serve as a model system to investigate important questions on plant development. These 

questions are: 1) which plant compounds carry positional information necessary for 

development in vivol; 2) which gene products guide the determination of cells to generate 

specific tissues?; 3) how do the compounds regulating development establish differential 

gene expression and the differences among cell types belonging to it? 

The first question, on the plant compounds carrying positional information, might 

be approached using the root nodule system because it is possible to identify bacterial 

compounds that direct plant developmental decisions. The second question, concerning 

the plant gene products involved in determining the fate of cells and the generation of 

specific tissues, may be adressed by analyzing the nature of the defects in the 
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differentiation of specific cell types produced by Rhizobium mutants. Unfortunately at 

present there is no set of plant mutants available in which genes involved in cell fate 

decisions during nodule formation are affected, which would greatly facilitate the 

identification of plant genes involved in nodule development. The third question, 

concerning the mechanism of differentiation, may be answered by analyzing signal 

molecules and their target genes in different cell types and at successive stages of 

development. The root nodule system offers with the early nodulin genes a good entry to 

identify the specific signal molecules that are involved in the regulation of the expression 

of plant genes related to successive stages of development. Ultimately this may lead to 

unravelling the route from developmental signals to a differentiated phenotype. 
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CHAPTER 3 

The early nodulin transcript ENOD2 is located in the nodule 
parenchyma (inner cortex) of pea and soybean root nodules. 
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ABSTRACT 

A pea cDNA clone homologous to the soybean early nodulin clone pGmENOD2 that 

most likely encodes a cell wall protein was isolated. The derived amino acid sequence of 

the pea ENOD2 protein shows that it contains the same repeating pentapeptides, 

ProProHisGluLys and ProProGluTyrGln, as the soybean ENOD2 protein. By in situ 

hybridization the expression of the ENOD2 gene was shown to occur only in the inner 

cortex of the indeterminate pea nodule. The transcription of the pea ENOD2 gene starts 

when the inner cortical cells develop from the nodule meristem. In the determinate 

soybean nodule the ENOD2 gene is expressed in the inner cortex as well as in cells 

surrounding the vascular bundle that connects the nodule with the root central cylinder. 

The name "nodule inner cortex" is misleading, as there is no direct homology with the 

root inner cortex. Therefore, we propose to consider this tissue as nodule parenchyma. A 

possible role of ENOD2 in a major function of the nodule parenchyma, namely creating 

an oxygen barrier for the central tissue with the Rhizobium containing cells, is discussed. 

INTRODUCTION 

Root nodules formed on the roots of leguminous plants are unique organs for symbiotic 

nitrogen fixation by Rhizobium bacteria. Root nodules are organized structures which 

develop from meristems newly formed in the cortex of the root as a result of the 

interaction with rhizobia. The mature root nodule is made up of a central tissue containing 

infected and uninfected cells, surrounded by a cortex. The nodule has a common 

endodermis which divides the cortex into an outer and an inner cortex. The inner cortex is 

traversed by vascular strands, each surrounded by a bundle endodermis. The strands are 

connected to the central cylinder of the root (for review see Newcomb, 1981; Bergersen, 

1982). 

By their morphology two main categories of leguminous nodules can be recognized, 

determinate and indeterminate nodules (for discussion see Sprent, 1980). Legumes such 

as Pisum (pea), Trifolium (clover) and Medicago (alfalfa) species develop indeterminate 

nodules, whereas determinate nodules are formed on the roots of for example Glycine 

(soybean) and Phaseolus (bean) species. Indeterminate root nodules have a persistent 
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meristem at the apex from which cells are continuously added to the cortical and central 

tissues. Consequently all tissues of these nodules are of graded age from the meristem to 

the root attachment point. The meristem of a determinate nodule ceases to divide two to 

three weeks after inoculation and it differentiates completely into nodular tissue 

(Newcomb, 1981). 

The formation of root nodules involves the differential expression of a series of nodule-

specific plant genes, the nodulin genes (Van Kammen, 1984). These genes have been 

divided into early and late nodulin genes. The early nodulin genes are already expressed 

at early stages of root nodule development, well before the onset of nitrogen fixation. The 

late nodulin genes are first expressed around the onset of nitrogen fixation, after a 

complete nodule structure has been formed. Several late nodulins e.g. leghemoglobin, n-

uricase and nodulins present in the peribacteroid membrane, have been located in the 

central tissue of the nodule (Robertson et al., 1984; Van den Bosch and Newcomb, 1986, 

1988; Verma et al., 1986). Involvement of nodulins in the function of the cortical tissues 

in the nodule has not been defined for so far. 

Recently we have characterized the product of the early nodulin gene ENOD2 from 

soybean as a proline-rich protein built up of two repeating pentapeptides (Franssen et al., 

1987). In this paper we report the amino acid sequence of a homologous ENOD2 nodulin 

from pea. Moreover, we demonstrate that the ENOD2 gene is specifically expressed in 

the inner cortex of the determinate soybean nodule as well as in the inner cortex of the 

indeterminate pea nodule. In the discussion we suggest that the ENOD2 nodulin has a 

role in the characteristic morphology of the inner cortex and the function of this tissue as 

barrier for oxygen diffusion into the root nodules. 

RESULTS 

Sequence of the pea ENOD2 early nodulin 

From a cDNA library prepared against polyA(+) RNA from 21-day-old pea root nodules 

several clones were selected that specifically hybridized with the insert from the soybean 

cDNA clone pGmENOD2 (Franssen et al., 1987). The clone with the largest insert was 

50 



ProProHisGluLysProProHisGluAsnThrProProGluTyrGlnProProHisGlu 

CCCCCTCATGAGAAACCACCTCATGAAAATACACCACCAGAATACCAACCTCCTCATGAG 
10 20 30 40 50 60 

LysProProHisGluHisProProProGluTyrGlnProProHisGluLysProProHis 

AAACCACCACATGAACATCCACCTCCAGAGTACCAACCTCCTCATGAGAAACCTCCTCAT 
70 80 90 100 110 120 

GluLysProSerProLysTyrGlnProProHisGluHisSerProProGluTyrGlnPro 

GAAAAGCCCTCACCAAAGTATCAACCACCACATGAACATTCGCCGCCAGAGTACCAACCT 
130 140 150 160 170 180 

ProHisGluLysProProHisGluAsnProProProValTyrLysProProTy rGluAs n 

CCGCACGAGAAACCACCACATGAGAATCCACCACCAGTGTACAAACCGCCTTATGAGAAC 
190 200 210 220 230 240 

SerProProProHisValTy rHisArgProLeuPheGlnAlaProProProValLysPro 

TCACCCCCACCACATGTGTACCATCGTCCACTCTTTCAGGCACCTCCTCCTGTGAAGCCA 
250 260 270 280 290 300 

SerArgProPheGlyProPheProAlaPheLysAsn * * * 

TCCCGACCTTTTGGCCCATTTCCAGCCTTTAAAAACTAATAATAACCACCACTGAAGAAT 

310 320 330 340 350 360 

CTGCACATTTAACTTGGTAAAGTAAAATTCAGAGTGGTTGTTTGTTATGCCTTTTATATC 
370 380 390 400 410 420 

AAGTGTTTATGTTCTTGTTTTCATTTGTTTTCCTTTTCTGTTTTAAAAGCTCTTTTAAGA 
430 440 450 460 470 480 

TGTAAAGCACAATGTGCCCTTTCTGCATGCAAATAAAGGCTCTATATATATTGCCTCTGT 
490 500 510 520 530 540 

AAAAAAAAAAAAAAAAAAAAAA 
550 560 

Fig. 1. cDNA and predicted amino acid sequence of the pPsENOD2 insert. Nucleotides 1-562 are 

determined from the pPsENOD2 insert. The sequence of nucleotides 34-562 is confirmed by analysis of an 

independently obtained ENOD2 cDNA clone. The amino acid sequence of the only long open reading 

frame is displayed over the nucleotide sequence. The amino acid triplets characteristic for the different 

types of pentapeptide repeats described in the text are overlined with unbroken and dashed bars, 

respectively. The three termination codons ending the reading frame are marked by asterixes. Nucleotides 

511-517 encompass the polyadenylation signal. 
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Fig. 2. Localization of ENOD2 transcripts by in situ hybridization in pea (A,B) and soybean (C-G) 

nodules. 

(A) Bright field micrograph of a longitudinal section through a nodule from a 20-day-old pea plant. In the 

nodule from the top to the base, the apical meristem (M), and early (ES) and late (LS) symbiotic 

growth stages of the central tissue can be discerned. Over the nodule inner cortex (IC) an 

autoradiographic signal of black silver grains is present. No signal can be observed over the nodule 

outer cortex (OC) nor the vascular bundle (VB). The nodule endodermis can not be easily recognized 

in this section, since in pea the endodermis does not sclerify like in maturing soybean nodules (Fig. 

2(C) and (E)). At the base of the nodule, part of the root is visible in transversal section. Here the 

cortex (RC), and a group of phloem fibers (F) and a xylem pole (X) of the central cylinder are 

indicated. Bar represents 200 \sm. 

(B) Dark field micrograph of the same section as in (A) showing the autoradiographic signal as white 

grains. 

(C) Bright field micrograph of a longitudinal section through a nodule from a 21-day-old soybean plant. 

The central tissue (CT) is completely surrounded by an inner cortex (IC) over which an 

autoradiographic signal of black silver grains can be observed. This signal continues over the tissue 

surrounding the vascular bundle (CVB) that connects the nodule to the central cylinder of the root. E, 

endodermis, other abbreviations as in (A). Bar represents 200 urn. 

(D) Dark field micrograph of the same section as in (C) showing the autoradiographic signal as white 

grains. 

(E) Bright field micrograph of a detail of a section through the same nodule as in (C). From top to 

bottom the outer cortex (OC), the sclerified endodermis (E), the inner cortex (IC) with a vascular 

bundle (VB), the boundary layer (BL), and the infected (In) and uninfected (Un) cells of the central 

tissue can be discerned. Bar represents 50 iim. 

(F) The same detail as shown in (E), photographed with a combination of bright field and epipolarization 

illumination. A strong autoradiographic signal of white grains is visible over the inner cortex. A 

lower signal is present over the endodermis and the adjacent layer of the outer cortex. 

(G) Detail of a glycolmethacrylate section through a 21-day-old soybean nodule showing the same tissues 

at the same magnification as in (E) and (F).Abbreviations as in (E). The arrows indicate intercellular 

spaces and the arrowheads calcium oxalate crystals in the outer cortex (OC). 
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named pPsENOD2. The insert of pPsENOD2, 558 bp in length, was sequenced and a 

partial amino acid sequence of the pea ENOD2 nodulin deduced from the cDNA sequence 

is shown in Figure 1. The sequence contains 336 nucleotides of an open reading frame 

(ORF) encoding 112 amino acids of the C-terminal end of the ENOD2 protein. The ORF 

ends with three successive termination codons and is followed by a 3' non-translated 

region of about 235 nucleotides in which a potential poly(A) addition signal is present and 

a short part of a poly(A) tail. The amino acid sequence reveals that the pea ENOD2 

protein is very proline-rich and is mainly composed of two repeating pentapeptides, 

ProProHisGluLys and ProProGluTyrGln, respectively. Two ProProHisGluLys repeats 

alternate with one ProProGluTyrGln element. Southern blots containing pea genomic 

DNA digested with EcoRI or SphI and a dilution series of pPsENOD2 were hybridized 

with the insert of pPsENOD2. A 7.2 kb EcoRI fragment and a 4.6 kb SphI fragment 

hybridized to pPsENOD2. Moreover, comparison of the levels of hybridization of the 

pPsENOD2 dilution series and the pea genomic fragments, respectively, indicated that 

only one ENOD2 gene is present in the pea genome (data not shown). 

Localization of the ENOD2 transcript in indeterminate pea nodules 

We examined with the in situ hybridization technique in which nodular tissue the pea 

ENOD2 gene is expressed. Longitudinal sections of pea nodules from 20-day-old plants 

were hybridized with 35s-labeled sense and antisense RNA transcribed from the insert of 

pPsENOD2. After autoradiography the anti-sense RNA probe appeared to hybridize with 

RNA present in the sections whereas the sense RNA probe did not (result not shown). 

The antisense RNA probe only hybridized with RNA present in the inner cortex of the 

nodule, suggesting that the pea ENOD2 gene is exclusively expressed in this nodular 

tissue (Figure 2A,B). The ENOD2 gene is expressed throughout the whole inner cortex; 

from the youngest cells directly adjacent to the meristem up to the oldest cells near the 

root attachment point. The vascular tissue traversing the nodule inner cortex does not 

contain detectable levels of the ENOD2 transcript. 

The presence of the ENOD2 transcript in the inner cortical cells close to the nodule 

meristem indicated that expression of the ENOD2 gene is induced at a relatively early 

stage of development. To test this we also hybridized serial sections of nodule primordia 

of seven-, eight-, and ten-day-old roots to antisense RNA from pPsENOD2. The pea 
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Fig. 3. Localization of ENOD2 transcripts by in situ 

hybridization during nodule development in pea. 

In the dark field micrographs (B) and (D), which 

correspond to the bright field micrographs (A) and (C), 

respectively, the autoradiographic signal is visible as 

white grains. (A) Detail of a transection through an 8-

day-old root showing a nodule primordium with an 

apical meristem (M). The arrow points to the part of the 

infection thread that has grown through the root cortex 

to the primordium. A few inner cortical cells containing 

an autoradiographic signal of black silver grains are 

indicated by the large arrowhead. CC, central cylinder of 

the root. Bar representd 50 um. (B) The autoradiographic 

signal over the inner cortical cells is indicated by the 

arrowhead. (C) Transection through a root with a 10-day-

old nodule. The autoradiographic signal of black silver 

grains is visible over the inner cortex (IC). CC, central 

cylinder of the root; RC, root cortex; M, apical 

meristem of the nodule; ES, early symbiotic growth 

zone of the nodule central tissue; OC, nodule outer 

cortex. Bar represents 250 um. 

nodule primordia are initiated in the inner cell layers of the root cortex. At day seven no 

ENOD2 messenger was detectable in nodule primordia (data not shown). The ENOD2 

transcript is first detectable in nodule primordia of an eight-day-old pea plant (Figure 

3A,B). At this stage the infection thread, which transports the rhizobia from an infected 

root hair to the nodule primordium, has already reached the primordium and branched off 

into different cells of the central part of the pimordium. Moreover the first differentiation 

of procambial strands (not shown in Figure 3A, but visible in consecutive sections of the 

same primordium) and the formation of ar pical meristem have taken place (Figure 3A). 

The ENOD2 messenger is present in a few inner cortical cells at the base of the nodule 

primordium (Figure 3B). In nodules of ten-day-old pea plants, which is three days 

before the onset of nitrogen fixation, infected cells filled with bacteroids can be seen at 
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the base of the nodule (Fig. 3C). The ENOD2 transcript is now present throughout the 

inner cortex as in the 20-day-old nodule (compare Figure 3C,D with Figure 2A,B). 

Localization of the ENOD2 transcript in determinate soybean nodules 

Sections of soybean nodules of 21-day-old plants were hybridized with 35s-labeled 

antisense RNA made from the insert of pGmENOD2. Figures 2C and D show that as in 

pea nodules the soybean ENOD2 messenger is located in the nodule inner cortex and in 

the tissue surrounding the vascular bundle connecting the nodule to the central cylinder of 

the root. Since there is no persistent meristem in this type of nodule, the inner cortical 

tissue completely surrounds the central tissue of the mature nodule (compare Figure 2C,D 

with Figure 2A,B of pea). The distribution of the silver grains in the different nodule 

tissues is better shown in Figures 2E and F, which represent magnifications of a section 

through a 21-day-old soybean nodule hybridized with ENOD2 antisense RNA. In order 

to obtain a good impression of the various tissues, a similar part of a section of a soybean 

nodule from a 21-day-old plant embedded in glycolmethacrylate resin, is shown in Figure 

2G. Here the tissue morphology is better preserved than in paraffin. The inner cortical 

cells have fewer and smaller intercelullar spaces than the outer cortical cells. The 

endodermis that separates the inner and outer cortex mainly consists of large 

sclerenchymatic cells at this stage (Figure 2G). Figure 2E and F show that the vast 

majority of ENOD2 transcript is found in the inner cortex, but low levels of this 

messenger are also present in the endodermis and the outer cortical cell layer directly 

adjacent to it. The boundary cell layers of uninfected cells between the cortex and the 

central tissue, like the central tissue itself, appear to contain no ENOD2 transcript 

(Figures 2E and F). 

Also in soybean we studied the appearance of ENOD2 transcript during nodule 

development. The earliest stage that we investigated was six days after sowing and 

inoculation. At this stage small bumps become just visible on the main root indicating the 

presence of nodule primordia. The primordia of the determinate nodule type originate in 

the outer cell layers of the root cortex. At six days cell divisions have also been induced in 

the inner cell layers of the root cortex and the central part of these dividing cells is 

developing into vascular tissue that connects the root nodule with the central cylinder of 

the root (Figure 4A and C). At six days the soybean ENOD2 messenger is detectable in 
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Fig. 4. Localization of ENOD2 transcripts by in situ 

hybridization during nodule development in soybean. In the 

dark field micrographs (B), (D) and (F), which correspond to 

the bright field micrographs (A), (C) and (E), respectively, 

the autoradiographic signal is visible as white grains. 

(A) Transection through a six-day-old root with a nodule 

primordium (NP); CC, central vascular cylinder; RC, root 

cortex. Bar represents 250 um. 

(C) Detail of the root in (A) showing the nodule 

primordium (NP) and the procambial strand (PC) between 

the primordium and the central vascular cylinder of the root. 

The arrowhead indicates an infection thread in the basal part 

of a root hair cell. Bar represents 50 (im. 

(D) shows the autoradiographic signal over the newly 

developed tissue surrounding the procambial strand and over 

the developing inner cortical cells in the lateral and basal 

parts of the nodule primordium. 

(E) Detail of a transection through a 10-day-old root 

showing a nodule with the procambial strand (PC) 

connecting the nodule to the central vascular cylinder at one 

of the xylem poles. An autoradiographic signal of black 

silver grains is visible over the inner cortex (IC) and the 

tissue surrounding the procambial strand. CT, central tissue 

of the nodule; OC, nodule outer cortex; F, a group of 

phloem fibers in the central vascular cylinder of the root; 

RC, root cortex. Bar represents 100 um. 

the newly formed tissue surrounding the procambial strand between the primordium and 

the root central cylinder and in inner cortical cells at the proximal and lateral sides of the 

nodule primordium (Figures 4B and D). In a ten-day-old plant the globular meristem has 

further developed into a central and a cortical tissue (Figure 4E). The ENOD2 gene is 

expressed in the nodule inner cortex as well as in the tissue surrounding the vascular 

strand that connects the nodule with the central cylinder (Figure 4E, F). At this stage the 

inner cortex at the distal part of the nodule already contains the ENOD2 messenger, albeit 
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still at a lower level than in the proximal part of the nodule (Figure 4E, F). In nodules 

from 21-day-old plants similar amounts of the ENOD2 transcripts are present in all parts 

of the nodule inner cortex (cf. Figure 2C, D). 

DISCUSSION 

In this paper we have presented evidence that the early nodulin gene ENOD2 is 

specifically expressed during the formation of the tissue in determinate as well as in 

indeterminate root nodules that has so far been described as the inner cortex. Moreover, 

the occurrence of homologous ENOD2 genes encoding polypeptides with a conserved 

structure in different legume species (Franssen et al., 1987; Dickstein et al., 1988) 

strongly suggests that the ENOD2 protein has a role in the function of this root nodule 

tissue (Govers et al., 1989). 

In earlier studies we have demonstrated that in both soybean and pea the ENOD2 gene is 

expressed during early stages of nodule morphogenesis (Franssen et al., 1987; Govers et 

al., 1986). Besides, it has been shown that in soybean and alfalfa this early nodulin gene 

is expressed in so-called empty nodules that contain neither infection threads nor 

intracellular bacteria (Franssen et al., 1987; Dickstein et al., 1988). Such empty nodules 

are elicited on legume roots by certain Rhizobium and Bradyrhizobium strains and 

mutants (Finan et al., 1985; Franssen et al., 1987) and by Agrobacterium strains carrying 

the Rhizobium meliloti nod genes (Hirsch et al., 1985; Truchet et al., 1985). The 

expression of the ENOD2 gene in these empty nodules strongly suggested a role for the 

ENOD2 early nodulin in the formation of the nodule structure and not in the infection 

process. This conclusion has now been consolidated by our finding that the ENOD2 gene 

is specifically expressed upon differentiation of the nodule meristem into inner cortical 

cells. 

Root nodules are organs with a histological organization that is markedly different from 

roots. Nevertheless since the one originates from the other these two organs might share 

homologous tissues. Thus, the names nodule inner cortex and root inner cortex suggest 

that these two tissues are closely related. However, by definition, the root cortex is 

inwardly delimited from the central cylinder by the endodermis. In nodules only what has 
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hitherto been called the outer cortex has a similar position as the root cortex and is also 

connected with it at the base of the nodule. In contrast, what has been hitherto called the 

inner cortex has no positional relationship with the root cortex: it is located inside the 

nodule endodermis and around the vascular strands. In other plant parts, notably the 

stem, the cortex is also, by definition, always located outside the vascular system and, to 

our knowledge, never surrounding individual vascular strands. In addition, the 

morphology of the nodule inner cortical cells distinguishes this tissue from root cortical 

tissues. The nodule inner cortical cells have fewer and smaller intercellular spaces than 

most other cortical cells (figure 2G, see also Tjepkema and Yocum, 1974 and Witty et al., 

1986). Also at the molecular level the nodule inner cortex is different from the root cortex 

as we showed that at least one nodulin gene is specifically expressed during the formation 

of the nodule inner cortex. So both from an anatomical and a molecular point of view the 

name nodule inner cortex is misleading. Therefore we propose to consider this tissue as 

nodule parenchyma, while the nodule outer cortex can properly be described as nodule 

cortex. In determinate nodules the tissue that surrounds the vascular bundle connecting 

the nodule and the root central cylinder is morphologically very similar to the nodule 

parenchyma (see below). In addition, the ENOD2 gene is expressed in both tissues. 

Therefore we propose to consider also the tissue surrounding the connecting vascular 

bundle as nodule parenchyma. 

The determination of the nucleotide sequence of the cloned pea ENOD2 cDNA, and the 

amino acid sequence derived from it, allow a comparison with the structures of the 

soybean and alfalfa ENOD2 proteins that have been determined previously (Franssen et 

al., 1987; Dickstein et al., 1988, respectively). The pea ENOD2 protein appears to be 

composed of the same two repeating pentapeptides as the soybean ENOD2 protein or 

variants of these sequences with one amino acid replacement. However, whereas in the 

soybean ENOD2 protein the repeating elements occur alternately, in the pea ENOD2 

protein two ProProHisGluLys repeats are alternated with the ProProGluTyrGln element. 

The latter organization also occurs in the alfalfa ENOD2 polypeptide, in which the same 

pentapeptides are present. This difference in structure between the soybean and pea/alfalfa 

ENOD2 proteins, respectively, suggests that the amino acid composition of the 

pentapeptides might be the main requirement for the function of the ENOD2 protein. A 

specific organization of the repeating elements seems less essential. The different 

distribution of the two pentapeptides in soybean and pea/alfalfa, respectively, might 
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indicate that independent duplication events involving different basic polypeptide units 

gave rise to the different ENOD2 genes during the evolution of these legumes. However, 

more sequence data from a wider variety of legumes will be needed to substantiate this 

hypothesis. 

The amino acid sequence of both the pea and soybean ENOD2 protein strongly resembles 

the recently described soybean protein 1A10 that occurs in cell walls of the axis tissue of 

germinating soybean seeds (Averyhart-Fullard et al., 1988). This glycoprotein consists of 

at least 40 repeating ProProValTyrLys units and about 50% of the prolines are 

hydroxylated to hydroxyproline. Because of this similarity in structure it is very likely 

that also ENOD2 is a (hydroxy)proline-rich cell wall protein. Together with the carrot 

P33 protein, thel A10 and ENOD2 proteins seem to form a new class of cell wall proteins 

that are composed of pentapeptides containing two prolines. Their low Ser content forms 

a major difference with another important group of hydroxyproline-rich cell wal proteins, 

the extensins, which are characterized by (Hyp)4Ser-pentapeptide repeats (Cassab and 

Varner, 1988). Sequence analysis of two soybean ENOD2 genes revealing that a putative 

signal peptide is present at the N-terminus of the ENOD2 protein lends further support to 

the hypothesis that ENOD2 represents a cell wall protein (Franssen et al., 1988). 

The nodule parenchyma ("inner cortex") appears to be an important tissue in the 

/?/îj'zotoH/n-legume symbiosis. The free oxygen concentration in a nodule shows a sharp 

decline across the nodule parenchyma to a very low value in the central tissue, which is a 

necessity to protect the extremely oxygen-sensitive nitrogen-fixing enzyme nitrogenase 

(Tjepkema and Yocum, 1974; Witty et al, 1986). It was shown that this decline must be 

due to a high consumption rate of oxygen by the rhizobia in the infected cells of the 

central tissue combined with a diffusion barrier residing in the nodule parenchyma (Witty 

et al., 1986). As oxygen diffusion through air is approximately 10^ times faster than 

through water, it is very likely that in nodules oxygen diffusion occurs through the 

intercellular spaces. As mentioned above, the nodule parenchyma contains relatively few 

and small intercellular spaces. In contrast, in both ("outer") cortex and central tissue 

relatively wide intercellular spaces occur. By this specific morphology the nodule 

parenchyma will be able to form the oxygen diffusion barrier (Tjepkema and Yocum, 

1974; Witty et al., 1986). Since the differentiation of the cell wall will be a factor in 
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determining tissue morphology, we propose that the putative cell wall protein ENOD2 is 

contributing to this special morphology of the nodule parenchyma. 

In soybean the ENOD2 gene appears also to be expressed in the cells that surround the 

vascular strand connecting the nodule with the central cylinder of the root. In pea such a 

long connecting vascular bundle is lacking, since here the nodule originates more closely 

to the central cylinder. The cells surrounding the connecting vascular strand are 

morphologically similar to the nodule parenchyma of the nodule, i.e. they have relatively 

few and small intercellular spac.es. This is consistent with the idea that the ENOD2 gene 

product can contribute to cell morphology. There are, however, no experimental data 

indicating that this tissue has a function similar to the nodule parenchyma that surrounds 

the central tissue. 

MATERIALS AND METHODS 

Growth conditions for plants 

Soybean plants (Glycine max (L.) Merr. cv. Williams) and pea plants (Pisum sativum (L) cv. Rondo) 

were cultured as described before (Franssen et ai, 1987; Bisseling et al., 1978). At the time of sowing the 

soybean seeds were inoculated with Bradyrhizobium japonicum USDA110 and the pea seeds were with 

Rhizobium leguminosarum biovar. viciae PRE. 

Isolation and sequencing of pPsENOD2 

A Xgtll cDNA library against RNA from root nodules of Pisum sativum (L.) cv. Sparkle was kindly 

provided by dr. G. Corruzi (Tigney et al., 1987). Nitrocellulose replicas from plates containing 2000 

plaques were made using standard procedures (Maniatis et ai, 1982). The plaques were screened with nick 

translated (Maniatis et al., 1982) insert from the soybean cDNA clone pGmENOD2 (Franssen et al., 

1987). Phage DNA purification, insert isolation and cloning in pUC18 was according to standard 

procedures (Maniatis et ai, 1982). Both strands of the pPsENOD2 insert were sequenced using the 

chemical degradation method (Maxam and Gilbert, 1980). 
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In situ hybridization 

The in situ hybridizations were performed essentially as described by Cox et al. (1984), following a 

protocol kindly provided by Dr. M. van Montagu and Dr. G. Engler. Nodules were fixed with 3% 

paraformaldehyde and 0.25% glutaraldehyde in 0.1 M sodium phosphate buffer pH 7.2 at room 

temperature (RT), dehydrated in graded ethanol and xylene series and embedded in paraplast. Sections, 7 

|j,m thick, were attached to poly-L-lysine-coated slides. Sections were deparaffinized with xylene and 

rehydrated through a graded ethanol series. They were subsequently pretreated with 1 |ig/ml proteinase K 

in 200 mM TrisHCl pH 7.5,2 mM CaCl2 at 37°C for 30 min and with 0.25% acetic anhydride in 0.1 M 

triethanolamine pH 8.0 at RT for 10 min, dehydrated in a graded ethanol series and air-dried. Sections were 

hybridized with (anti)sense RNA probes, which were made by transcribing pT7 clones (a kind gift of dr. 

S. Tabor) containing the inserts of pPsENOD2 and pGmENOD2. 

The antisense RNA probes were radioactively labeled with 35S-UTP (1000-1500 Ci/mmole, 

NEN). The probes were partially degraded to a length of 150 nucleotides by heating at 65°C in 0.2 M 

Na2CO3/0.2 M NaHCOß. Sections were hybridized with RNA probes in 50% formamide, 0.3 M NaCl, 

10 mM TrisHCl pH 7.5, 1 mM EDTA, 10% dextransulfate, 1 x Denhardt's, 70 mM DTT at42°C for 16 

hours. After washing three times in 4 x SSC, 5 mM DTT at RT slides were treated with 20 |xg/ml RNase 

A in 0.5 M NaCl, 10 mM Tris/HCl pH 7.5, 5 mM EDTA at 37°C for 30 min and washed in the same 

buffer with 5 mM DTT at 37°C for 30 min. The final wash consisted of two times 2 x SSC, ImM DTT 

at RT. Slides were dehydrated in graded ethanols (each with 300 mM ammoniumacetate) and 100% 

ethanol. After air- drying, slides were coated with Kodak NTB2 nuclear emulsion 1:1 diluted with 600 

mM ammoniumacetate and exposed for one to three weeks at 4°C. They were developed in Kodak D19 

developer for three minutes and fixed in Kodak Fix. Sections were stained with 0.025% toluidine blue 0 

for 5 min and mounted with DPX. 

For embedding in glycolmethacrylate resin nodules were fixed with 2.5% glutaraldehyde in 0.1 M 

sodiumphosphate buffer, pH 7.2 for three hours. After dehydration in a graded ethanol series the nodules 

were embedded in Technovit resin according to the manufacturer's instructions (Kulzer, Friedrichsdorf, 

FRG). Section of 4 (im thickness were stained with 1% toluidine 0 blue for 1 min and mounted with 

Euparal. 

Sections were photographed with a Nikon microscope equipped with dark field and epipolarization 

optics. 
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SUMMARY 

The pea cDNA clone pPsENOD12 represents a gene involved in the infection process during 

the Pisum sativum L. - Rhizobium leguminosarum bv. viciae symbiosis. The ENOD12 

protein is composed of pentapeptides containing two (hydroxy)prolines. The expression of the 

ENOD12 gene is induced in cells through which the infection thread is migrating, but also in 

cells that do not yet contain an infection thread. Soluble compounds from Rhizobium are 

involved in eliciting ENOD12 gene expression. Rhizobium common and host-specific 

nodulation genes are essential for the production of these compounds. Two ENOD12 genes 

are expressed in nodules and in stem tissue of uninoculated plants. The gene represented by 

the cloned ENOD12 mRNA is also expressed in flowers, but a different transcription start 

might be used. 

INTRODUCTION 

The symbiosis between Rhizobium bacteria and legumes results in the formation of highly 

organized structures, namely the infection threads and the root nodules. These nodules, in 

which nitrogen fixation takes place, consist of different tissues, organized in a specific way 

(Newcomb,1980). 

The infection process starts with the deformation and curling of root hairs (Bauer, 1981). 

Curling is thought to achieve enclosure of attached bacteria, permitting them to locally modify 

and hydrolyse the cell wall of the root hairs (Callaham & Torrey, 1981; Turgeon & Bauer, 

1985). At this site cell wall material is deposited by the plant and it forms tubular structures, 

the infection threads. Infection threads, containing dividing bacteria, grow into the root cortex. 

In pea roots the infection thread proceeds toward the inner cortical cell layers, where the 

following events occur: prior to penetration of the infection thread into root cortex cells, the 

cells change remarkably, as microtubules rearrange, an additional cell wall layer is deposited 

and a cytoplasmic bridge is formed by which the infection thread will migrate. The infection 

thread passes through the prepared cells by a cell wall degradation/deposition mechanism just 

like in root hairs Bakhuizen et al, 1988a, 1988b). Concomitantly with infection thread 

formation rhizobia induce the formation of a premeristem, the nodule primordium, in the inner 

cortical cell layers. Infection threads grow into the nodule primordium, where bacteria are 

released from the infection thread tips (Libbenga and Bogers, 1974). Simultaneously at the 
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apical site of the nodule primordium the meristem is formed. The meristem cells are smaller in 

size and have smaller vacuoles than the primordium cells. The direction of infection thread 

growth is then reversed as it now follows the apical meristem that grows out of the root by 

adding cells which differentiate into the various nodule tissues. In this way there is a 

continuous infection process in the so-called invasion zone, immediately adjacent to the 

meristem. Upon release of bacteria in the plant cells, the bacteria are encapsulated by a 

membrane of plant origin, and differentiate into N2-fixing bacteroids (Newcomb, 1976). 

It has been shown that both bacterial and plant genes are involved in nodule formation. For 

example the bacterial common and host specific nodulation (nod) genes are involved in root 

hair deformation, infection thread formation, and induction of cortical cell division (for review 

see Long, 1989). They are also essential for the induction of expression of nodule-specific 

plant genes, the nodulin genes (Van Kammen, 1984; Govers et al, 1986). Nodulin genes can, 

according to the the timing of their expression during nodule development, be divided into 

early and late nodulin genes (Govers et al, 1987). Early nodulins are involved in root hair 

deformation, infection or nodule morphogenesis. The best studied early nodulin is ENOD2. It 

is a (hydroxy)proline rich protein which is most likely a cell wall component (Franssen et al, 

1987), that is formed in nodule parenchyma ('inner cortex') cells (Van De Wiel et al, 1990). 

Late nodulins are detectable after the nodule has developed and bacterial release has taken 

place. Therefore, they are neither involved in infection nor in nodule morphogenesis. Well 

characterized late nodulins are the leghemoglobins (Brisson and Verma, 1982) and a nodule 

specific uricase (Bergmann et al, 1983), involved in oxygen transport and nitrogen 

metabolism, respectively. Several late nodulins are located in the peribacteroid membrane, but 

their function is yet unknown (Fortin et al, 1985, 1987; Jacobs et al, 1987; Sandal et al, 

1987). 

The early nodulins characterized so far, GmENOD2, GmENODB, and GmENOD55, are 

related to nodule morphogenesis and not to the infection process (Franssen et al, 1987,1988). 

Our aim was to isolate a cDNA clone encoding a nodulin involved in the infection process, in 

order to investigate the role of plant genes in this process and the regulation of their expression 

by Rhizobium. The infection process occurs abundantly in the invasion zone of young pea 

nodules, where many cells derived from the meristem are penetrated by an infection thread. 

Therefore we decided to isolate early nodulin cDNA clones from a pea nodule cDNA library. 

The infection process occurs in root hairs as well as in nodules, so we selected putative 

infection-related clones by testing whether the corresponding genes are expressed both in root 

hairs of inoculated plants and in nodules. With this approach we obtained a cDNA clone 
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representing an early nodulin gene, involved in the infection process. In the following we 

report on the characterization of the ENOD12 cDNA clone, the regulation of expression of the 

corresponding gene by Rhizobium and its possible function in the infection process. 

Furthermore we discuss the evolutionary origin of this nodulin gene, since transcripts 

homologous to this cDNA clone were detected in stem and flower tissues. 

RESULTS 

Isolation of an infection related early nodulin cDNA clone 

A pea nodule cDNA library was differentially screened with cDNA probes made of RNA from 

nodules from 10 day old plants and uninfected roots from 8 day old plants, respectively. One 

of the isolated nodulin clones, pPsENOD12, appeared to encode an early nodulin potentially 

involved in the infection process. RNA transfer blot analysis revealed that the ENOD12 

mRNA has a transient pattern of appearance during nodule development (figure 1A). It is 

already detectable in root segments of 8 day old infected pea plants, which do not possess 

macroscopically visible nodules. The mRNA reaches its maximum concentration from day 10 

pPsEN0D12 

pPsEN002 

pPsLb 

Figure 1. RNA transfer blot analysis of RNA 

from roots, nodules and root hairs. 

A. RNA transfer blots contain 10 ug of total 

RNA from uninoculated roots of 8 day old 

plants (R), and nodules (N), 8, 10, 13, and 17 

days after sowing and inoculation. Blots were 

probed with pPsENOD12, pPsENOD2 and 

pPsLb inserts, respectively. 

B. RNA transfer blot contains 20 ug of total RNA from root hairs 

(RH), and nodules 13 days after inoculation (N). Plants were 

inoculated 3 days after sowing and root hairs were harvested 48 hrs 

after inoculation (+); after 48 hrs without inoculation (-); 48 hrs 

after inoculation with R.leguminosarum bv. viciae A10 

(nodA::Tn5).(K-) The blot was probed with pPsENOD12 insert. 
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to day 13 and decreases in concentration thereafter. In contrast to ENOD12 mRNA the 

transcript of the pea early nodulin ENOD2 is first detectable on similar blots at day 10 and 

reaches a maximum concentration between day 13 and 17, whereas the concentration remains 

constant thereafter. The mRNA of the late nodulin leghemoglobin is first detectable at day 13 

and increases in concentration during the following days (figure 1 A). 

Next, we determined whether the ENOD12 gene was expressed in root hairs from 

inoculated plants using RNA transfer blot analysis. This study revealed that the ENOD12 

transcript is present in root hairs 24 hours after inoculation, but not in the root hairs from 

uninoculated peas (figure IB, RH + and - lanes). The presence of the ENOD12 transcript in 

root hairs of plants shortly after inoculation indicates that ENOD12 gene expression may 

correlate with the occurrence of the infection process. 

Localization of ENOD12 mRNA in root cortex and nodule cells 

The correlation between ENOD12 gene expression and the occurrence of infection threads was 

further examined by in situ hybridization. Roots of pea plants, inoculated with bacteria three 

days after sowing, were harvested 2 and 3 days after inoculation. They were embedded in 

paraffin and serial sections containing nodule primordia and infection threads were selected. 

These sections were hybridized to 35s-labeled antisense ENOD12 RNA. 

Two days after inoculation ENOD12 transcript appeared to be located in cortex cells 

containing the infection thread (figure 2A, figure 2B, small arrowhead + arrow). In root hairs 

where infection threads are present ENOD12 mRNA is also detected (figure 2A, figure 2B, 

Figure 2. Localization of ENOD12 transcripts in pea root segments at different stages of nodule development 

by in situ hybridization 

The right panel shows dark field micrographs corresponding with the bright field micrographs in the left panel. 

In the dark field micrographs, silver grains representing hybridization signal are visible as white spots. A/B, 

C/D, E/F, and G/H represent successive stages of nodule development. A: Transection of a five-day old root, 

two days after inoculation. An infection thread which is clearly visible at higher magnification can be observed 

in a root hair (arrow), the tip of which has reached the second cortical cell layer as deduced by analysis of a 

complete set of serial sections (small arrowhead). In the inner cortex the site of the future nodule primordium is 

marked (large arrowhead). C: Transection of a six day old root, three days after inoculation. Infection thread 

(arrow), infection thread tip located by analyzing a complete set of serial sections (arrowhead), and the nodule 
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primordium (NP) in the root inner cortex are indicated. E: Transection of a seven day old root, four days after 

inoculation. The infection thread (arrows) has reached the nodule primordium (NP), and branches off into 

several thinner threads (small arrowheads), which grow into cells at the base of the primordium. A few cell 

layers at the periphery of the primordium, which will most likely develop into the cortex and, at the top, into 

the apical meristem of the nodule, do not contain hybridization signal (large arrowhead). G: Transection of a ten 

day old pea root, seven days after inoculation. The original site of entrance of the infection thread into the 

nodule primordium is indicated with an arrow. The apical meristem (M), invasion zone (IZ), early symbiotic 

zone (ES), and nodule cortex (NC) are indicated. Sections were hybridized with ̂ -labeled antisense ENOD12 

RNA. Using sense RNA as a probe we did not observe hybridization signals (data not shown). Bar = 100 |im. 

Further abbreviations: X = xylem pole, F = phloem fibers of central cylinder. 
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arrow). By analysis of serial sections we determined the location of the tip of the infection 

thread (figure 2A, small arrowhead) and the ENOD12 transcript appeared not to be confined to 

the cells containing an infection thread. A track of cortical cells in front of the thread towards 

the central cylinder also contains ENOD12 mRNA (figure 2B). From cytological studies it is 

known that these cells undergo several morphological changes and become 'prepared' for 

infection thread passage (Bakhuizen et al, 1988a, 1988b). Moreover, ENOD12 transcript is 

also present in cells in the root inner cortex (figure 2A, figure 2B, large arrowhead), which 

will form the nodule primordium (Libbenga and Bogers, 1974). 

Three days after inoculation a centre of mitotic activity, the nodule primordium (NP), is 

clearly visible in the inner cortical cell layers, containing dividing cells which possess enlarged 

nuclei and a higher content of cytoplasm then the root cortex cells (figure 2C). The infection 

thread (arrow) has not yet reached the primordium. At this stage ENOD12 mRNA can be 

detected in the cortex cells containing the infection thread, in the cells preparing for infection 

thread passage, and also in the cells that form the new centre of mitotic activity, the nodule 

primordium (figure 2C, figure 2D). 

We also localized ENOD12 transcript in pea nodules at later stages of development. 

Sections from pea nodules of 7, 10 and 20 day old plants were hybridized with 35s labeled 

antisense ENOD12 mRNA. In 7 day old plants infection threads are penetrating the nodule 

primordium (NP) (figure 2E). At this stage ENOD12 mRNA is located in all cells of the part 

of the nodule primordium where the infection thread branches (figure 2E, small arrowheads). 

Only a few small cells at the periphery of the primordium do not contain ENOD12 transcript 

(figure 2E, figure 2F, large arrowhead). These cells will form the apical meristem and the 

nodule cortex, while the other cells of the primordium are destined to become the first cells of 

the infected and the uninfected cell type (Libbenga & Bogers, 1974, C.V.D.W., unpubl. 

res.). In root cortex cells where the oldest part of the infection thread resides ENOD12 

transcript is no longer detectable (figure 2E, figure 2F, arrows). 

Nodules from 10 day old plants posses an apical meristem (M), containing small, actively 

dividing cells which are rich in cytoplasm (figure 2G). The different tissues are graded in age 

from the apical meristem to the base of the nodule (Newcomb, 1976). Immediately adjacent to 

the meristem, in the invasion zone (IZ), cells are penetrated by infection threads, growing in 

reversed direction as they now follow the meristem. About half of the cells in the invasion 

zone are infected by bacteria released from infection threads. In the early symbiotic zone (ES) 

these cells differentiate into the infected cell type. The other cells which are not infected by 

rhizobia become the uninfected cell type. ENOD12 transcript is present in the invasion zone, 
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adjacent to the meristem, but is not detectable in the meristematic cells (figure 2G, figure 2H). 

In the early symbiotic zone, where cells are elongating, the concentration of ENOD12 

transcript is decreasing. 

In nodules from 20 day old plants ENOD12 mRNA is detectable at the nodule apex (figure 

3A, figure 3B). A magnification of figure 3A shows that the transcript is located in the zone 

where infection threads are growing (figure 3C). No transcript is detectable in the meristem, 

and the concentration of the transcript decreases in the early symbiotic zone. We conclude that, 

in 7 day old as well as in 10 and 20 day old nodules, ENOD12 mRNA is restricted to the 

region of the nodule where active infection thread growth occurs, and therefore it marks the 

invasion zone. 

Figure 3. Localization of ENOD12 transcripts in nodules 

from 20 day old pea plants by in situ hybridization. 

A. Bright field micrograph of a longitudinal section of a 

20 day old pea nodule. The arrow points to the remnant of 

the infection thread that originally penetrated the nodule 

primordium (cf. figure 2E,G). Late symbiotic zone (LS), 

vascular bundles (VB), and nodule cortex (NC), which 

developed from the apical meristem, are indicated. Part of 

the root to which the nodule is attached is visible in a 

transversal section. Here the root cortex (RC), a xylem 

pole (X) and phloem fibers (F) of the central cylinder are 

indicated. B: Dark field micrograph of the section shown 

in A. Silver grains representing hybridization signal are 

visible as white spots. C: Magnification of the bright 

field micrograph in A, as outlined in figure A. Silver 

grains representing hybridization signal are visble as black 

spots. The hybridization signal is strong over the invasion 

zone (IZ), and gradually diminishes over the early 

symbiotic zone (ES). Nodule cortex (NC) and meristem 

(M) are indicated. Sections were hybridized with 35$. 

labeled antisense ENOD12 RNA. Bar in A: 300 urn. Bar 

in C: 50 \sm. 
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ENOD12 is a (hydroxy)proline rich protein 

Further information on the nature of the ENOD12 early nodulin was obtained by determining 

the nucleotide sequence of the insert of pPsENOD12 (figure 4). The insert is 553 bp in length, 

excluding a short poly A stretch at the 3' end of the sequence. The mRNA measures approx. 

MetAlaSerPhePheLeuSerSer 
nnnnnnnaaaaatcactaCTTAAAATGGCTTCCTTTTTCTTGTCCTCA 

-10 0 10 20 30 

4 
LeuValLeuPheLeuAlaAlaLeuIleLeuValProGlnGlyLeuAlaGlnTyrHisLeu 
CTAGTGTTGTTCCTTGCTGCTCTTATCCTTGTTCCTCAAGGACTTGCTCAATATCACCTT 

40 50 60 70 80 90 

AsnProValTyrGluPzoProValAsnGlyProProValAsnLysProProGlnLysGlu 
AATCCTGTTTATGAACCACCAGTGAATGGGCCACCGGTGAATAAGCCACCACAGAAAGAG 

100 110 120 130 140 150 

ThrProValHisLysProProGlnLysGluThrProValHlsLysProProGlnLysGlu 
ACACCGGTTCATAAGCCACCACAGAAAGAGACACCGGTTCATAAGCCACCACAAAAAGAG 

160 170 180 190 200 210 

ProProArgHisLysProProGlnLysGluProProArgHlsLysProProHisLysLys 
CCACCGAGGCATAAGCCACCACAAAAAGAGCCACCGAGGCATAAACCACCACACAAGAAG 

220 230 240 250 260 270 

SerHisLeuHisValThrLysProSerTyrGlyLysHisProThrGluGluHisAsnlle 
TCACATTTGCACGTGACAAAACCATCTTATGGTAAACATCCTACAGAAGAACATAACATC 

280 290 300 310 320 330 

HisPhe * 
CATTTCTAAAGCATTCTAGTACCAATGTTTCATTTGATATGTACCTTTTGTAACATGTGT 

340 350 360 370 380 390 

GGCCTTGTTGTTTTTCCATTTATGCATGGTTAAGTTATGTTTTTCTCTTATGTATGGCCA 
400 410 420 4 30 440 450 

AGTAAAGAGTAGCATATATTTGTTGCTTTTTGTTTAAAGGTACTTCCTGCTAGTGCAGTG 
460 470 480 490 500 510 

ATTTGTAGTCTTGATTGTGATGGTAAGCAGTTGTTTTGGTATTAAAAAAAAAAAA 
520 530 540 550 560 

Figure 4. cDNA and predicted amino acid sequence of the pPsENOD12 insert. 

Nucleotides 1-565 are determined from the pPsENOD12 insert. Nucleotides -18 (the 5' end of the mRNA) to 0 

are determined using direct RNA sequencing (see materials and methods). The amino acid sequence of the only 

long open reading frame is depicted over the nucleotide sequence. The putative signal peptide cleavage site is 

marked with an arrow. Prolines in the repeat region are in bold typeface. The amino acid triplets characteristic 

of both types of pentapeptide repeats described in the text are overlined with unbroken and dashed bars, 

respectively. The termination codon ending the reading frame is marked by an asterix. 
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600 bases, as determined on an RNA transfer blot, and primer extension analysis showed that 

less than 20 bases from the 5' end of the mRNA are missing in pPsENOD12 (figure 10). The 

sequence of the 5' end of the mRNA missing in the cDNA clone was determined by direct 

RNA sequencing (figure 4, small typeface). The cDNA sequence contains only one long open 

reading frame, starting with an ATG codon at position 7 which is the first and only methionine 

codon in the reading frame. From the derived amino acid sequence a molecular weight of 12.5 

kD was calculated for the ENOD12 protein. A putative signal peptide containing a 

hydrophobic core sequence is present at the N-terminal part and the possible cleavage site of 

the signal peptide, marked with an arrow in figure 4, was determined by the rules of Von 

Heijne (1983). The major part of the following protein sequence consists of two pentapeptide 

repeating units. One of these units, Pro-Pro-Gln-Lys-Glu, indicated with solid lines, is well 

conserved throughout the protein sequence. The other unit is present as Pro-Pro-Val-Asn-Gly 

at the amino-terminal part and gradually every amino acid except the prolines is permuted to 

give a Pro-Pro-His-Lys-Lys unit at the carboxy-terminal part of the polypeptide chain (dashed 

lines). At two positions a proline codon is changed into a threonine codon by a single base 

substitution. Further downstream to the carboxy terminus the proline repeat units are absent. 

In vitro translation of hybrid-selected ENOD12 mRNA from nodules yielded one 

radioactive polypeptide of 12.5 kD when 35s-methionine was used as radioactive amino acid. 

When the same selected mRNA was translated in the presence of ^H-leucine two radioactive 

polypeptides of 12.5 and 14 kD were formed (figure 5). Since the smaller polypeptide is the 

Met Leu 
i "i i 
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12.5 

Figure 5. In vitro translation products of hybrid-

selected ENOD12 mRNA. 

ENOD12 mRNA was selected form total nodule 

RNA and translated in vitro in the presence of " S -

methionine (Met) or ^H-leucine (Leu) as 

radioactive amino acid. Filters used for hybrid 

selection contained pBR322 (-) or pPsENOD12 

insert (+). The right two lanes are exposed 6-fold 

longer than the neighbouring two lanes to the left. 

The size (kD) of the in vitro translation products is 

indicated to the right side. 
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one labeled with 35<5_methionine this cannot be a breakdown product of the larger 

polypeptide. Hence there appear to be two different ENOD12 mRNAs in nodules. The 

observation that there is no methionine encoded in the open reading frame of pPsENOD12, 

except at the start, shows that the cDNA clone corresponds to the mRNA encoding the 14 kD 

polypeptide that can only be detected with ^H-leucine. The observed discrepancy between the 

calculated and the apparent mol. wt. is rather common for proline-rich proteins (e.g. Franssen 

et al, 1987). 

ENOD12 gene expression requires Rhizobium nod genes and is induced by excreted bacterial 

compounds 

To determine which bacterial genes are essential for the induction of ENOD12 gene expression 

we analyzed the expression of this gene after inoculation with different Rhizobium mutants. 

The R.leguminosarum bv. viciae common nodulation genes nod ABC are required for 

initiation of cortical cell division, root hair curling, and infection thread formation (Wijffelman 

et al, 1985). In the R.meliloti - alfalfa interaction the host-specific nodEF genes are also 

important for infection thread formation (Horvath et al, 1986), and recendy the involvement of 

nodEF in infection thread formation has also been demonstrated for the R.leguminosarum bv. 

viciae - Vicia hirsuta interaction (Van Brussel et al, 1988). Therefore we examined whether 

both common and host-specific nod genes are essential for eliciting ENOD12 gene expression 

in root hairs. Pea plants were inoculated with various mutant R.leguminosarum bv. viciae 

strains. As a control wild-type R. leguminosarum bv. viciae 248 was used. To obtain 

maximum sensitivity in detecting ENOD12 gene expression in root hairs we amplified cDNA 

specifically made from total root hair RNA by the polymerase chain reaction (PCR, see Saiki 

et al, 1985; Mullis and Faloona, 1987). The amplified cDNA was visualized by DNA transfer 

blotting using pPsENOD12 cDNA insert as a probe. In this way the presence of ENOD12 

transcript in 1 |0.g total root hair RNA, inoculated with wild-type R. leguminosarum bv. viciae 

could be visualized within several hours after exposure of a hybridized DNA transfer blot 

(figure 6, WT). Upon longer exposure a weak signal could also be observed in uninoculated 

root hair RNA (not shown). We do not know whether this signal is caused by low levels of 

ENOD12 mRNA or by residual chromosomal DNA present in the RNA preparations. 

The R. leguminosarum bv. viciae A10 strain carries a Tn5 mutation in nodA which blocks 

the formation of the nodA, nodB, and nodC products (Wijffelman et al, 1985). In our first 

experiments we demonstrated by RNA transfer blot analysis that ENOD12 transcript is found 
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1 6 7 8 
Figure 6. PCR analysis of ENOD12 

gene expression in root hair RNA. 

ENOD12 sequences from 1 ug total root 

hair RNA were amplified using 12 PCR 

cycles, and after electrophoresis a DNA 

transfer blot was probed with 32p. 

labeled pPsENOD12 insert. The different 

lanes contain amplified root hair 

ENOD12 sequences from uninoculated 

plants (1 and 6); from plants inoculated 

with R.leguminosarum bv. viciae A10 (2), wild-type R.leguminosarum bv. viciae 248 (3 and 8), 

R.leguminosarum bv. viciae 248*-- (pMP104) (4); R.leguminosarum bv. viciae 248c (pMP104 nodE::TnS) 

(5); and from plants inoculated with the cell-free supernatant of wild-type R.leguminosarum bv. viciae 248 

induced with naringenin (7). 

in root hairs from plants inoculated with wild type R.leguminosarum bv. viciae, but not in 

root hairs from plants inoculated with R. leguminosarum bv. viciae A10 (figure IB). Using 

the more sensitive PCR method it was confirmed that a mutation in nodA abolished the ability 

of bacteria to induce ENOD12 gene expression in root hairs (figure 6, lanes 2 and 3). 

The Sym-plasmid cured R. leguminosarum bv. viciae 248c (pMP104) strain, carrying the 

nodEFDABCIJ genes on the low-copy plasmid pMP104, is capable of nodulating Vicia 

(Spaink et al, 1987) and pea (H.P. Spaink, personal communitcation). This strain was able to 

induce ENOD12 gene expression (figure 6, lane 4). On the other hand the R. leguminosarum 

bv. viciae 248c (pMP104 nodE::Tn5) strain, carrying a mutation in nodE, which forms no 

infection threads on Vicia (Van Brussel et al, 1988), showed no induction of ENOD12 gene 

expression (figure 6, lane 5). We concluded that both common and host-specific nod genes of 

Rhizobium are essential for eliciting ENOD12 gene expression in pea plants. 

It has been shown that, upon induction of the nod genes with a flavonoid, rhizobia excrete 

compounds that cause deformation of root hairs (Zaat et al, 1987). Therefore we studied 

whether the bacteria also excrete compounds capable of inducing the ENOD12 gene. Rhizobia 

were grown in the presence or absence of naringenin, a flavonoid inducing the nod genes. 

After removal of the bacteria (see experimental procedures) the Rhizobium-free culture 

medium was applied to 3 day old pea seedlings. Two days after inoculation root hairs were 

harvested and the presence of ENOD12 mRNA in root hair RNA was studied. The ENOD12 
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transcript was detectable in root hair RNA from plants treated with the medium of bacteria 

cultured in the presence of naringenin (figure 6, lane 7). On the other hand the culture media 

of bacteria grown in the absence of naringenin could not establish an increase in the amount of 

transcript (data not shown). We concluded that excreted compounds, formed after induction of 

the Rhizobium nod genes, are able to elicit ENOD12 gene expression in root hairs. 

ENOD12 gene expression is not a defense reaction 

The proline repeat units in the ENOD12 protein are quite similar to those in the amino acid 

sequence of hydroxyproline-rich glycoproteins (HRGPs), accumulating in plant tissue after 

wounding or upon interactions with pathogens (Chen and Varner, 1985; Corbin et al, 1987). 

Furthermore, infection thread formation has been viewed as a modified plant defense response 

(Vance, 1983; Djordjevic et al, 1987). This prompted us to investigate whether the ENOD12 

gene or similar genes are induced as part of a defense response in pea. For these experiments 

we used the pathogenic fungus Fusarium oxysporum f. sp. pisi. While accumulation of 

HRGP transcripts was observed upon RNA transfer blot analysis of total RNA from pea roots 

inoculated with the fungus, no ENOD12 mRNA was detectable in these RNA preparations 

(data not shown). We can, therefore, conclude that the expression of the ENOD12 gene(s) 

during the infection process cannot be attributed to a general defense response following 

Rhizobium infection. 

^ ^ ^ <o <? v <o 9r ^ 4 ^ 

Figure 7. RNA transfer blot analysis 

of various uninoculated pea tissues. 

RNA transfer blots contain 20 ug of total RNA from the following tissues; from 5 day old pea plants: root tip 

(RT), root elongation zone (REL), hypocotyl (H), epicotyl (E), plumule (P), leaf (L); from 12 day old pea 

plants: stem (S), root (R); nodules 13 days after inoculation (N), and from plants of varying age: flower (F). 

Blots were probed with pPsENOD12 insert; in lanes P to N of the left panel a faint band migrating with lower 

mobility than ENOD12 mRNA can be observed which represents aspecific binding of probe to the small 

ribosomal RNA. 
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ENOD12 gene expression in stem and flower 

We studied whether the ENOD12 gene or genes resembling ENOD12 are expressed in other 

parts of the plant since this might give some clues on the evolutionary origin of the ENOD12 

early nodulin. By RNA transfer blot analysis we were unable to detect ENOD12 transcripts in 

root tip, root elongation zone, mature root, hypocotyl, epicotyl, plumule, and leaf (figure 7). 

On the other hand, hybridizing RNA similar in size to ENOD12 transcript, but less abundant, 

was found in stem and flower RNA. (figure 7). In both tissues this RNA was also detectable 

with an ENOD12 probe, pPsENOD12-3', containing only the 3' region downstream from the 

Bgll site at position 239 in the cDNA sequence (figure 4) (data not shown). 

Using the in situ hybridization technique we localized ENOD12 mRNA in stem internode 

sections. The transcript appeared to be located in a zone of cortical cells surrounding the 

central ring of vascular bundles and the interfascicular cambium cells (figure 8). In flowers we 

were not able to localize the ENOD12 transcript unambiguously. 

^,^»•^0» Figure 8. Localization of ENOD12 

transcripts in stem tissue by in situ 

hybridization. 

A. Bright field micrograph of a 

transection of the fourth internode of a 

24-day-old pea plant, showing a central 

ring of vascular bundles (VB) with two 

fibrovascular bundles (FVB) and two 

cortical fiber bundles (CF) traversing 

the cortex (C). P: pith; arrow: 

fascicular cambium; arrowhead: 

interfascicular cambium. B. Dark field 

micrograph of the same section as in 

A. Silver grains representing 

hybridization signal are visible as 

white spots. The section was 

hybridized with 35S-labeled EN0D12 

antisense RNA. Bar = 300 |xm. 
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In vitro translation of hybrid-selected ENOD12 nodule mRNA resulted in two distinct 

polypeptides, as shown in figure 5. Therefore the existence of two or more ENOD12 genes in 

the pea genome seemed plausible. In order to obtain information on the number of ENOD12 

genes we performed Southern blot analyses of restricted pea genomic DNA using the cDNA 

clones pPsENOD12 and pPsENOD12-3' as probes. Two EcoRI fragments of 4.5 and 5.5 kb 

hybridized to pPsENOD12. Both fragments also hybridized to the 3' region probe. Restriction 

with Hindlll again yielded two fragments, 1.8 and 7 kb in size, hybridizing as well to 

pPsENOD12 as to the 3' region probe (data not shown). Since the two Hindin and the two 

EcoRI fragments hybridized to the same level with both pPsENOD12 and pPsENOD12-3' it 

appears very likely that there are two ENOD12 genes in the pea genome. 

The presence of more than one ENOD12 gene raises the question of which genes are 

transcribed in the different tissues. To answer this question we could not use in vitro 

translation of hybrid-selected ENOD12 mRNA from stem and flower since in our hands the 

sensitivity of hybrid-released translation was insufficient with low abundant mRNA and ^H-

leucine as the labeled amino acid. Specific probes for different transcripts could neither be 

used since all isolated ENOD12 cDNA clones corresponded to the same ENOD12 mRNA. 

Therefore we adapted the RNase mapping assay (Melton et al, 1984) to discriminate between 

different mRNAs by virtue of their complete or incomplete protection to RNase digestion. As 

a probe for RNase mapping we used the 3' region of the pPsENOD12 insert as the 5' region 

contains sequence duplications which will prevent accurate mapping. 32p.iabeled antisense 

ENOD12 mRNA was transcribed from the 3' region of the insert of pPsENOD12 as indicated 

in figure 9C1,2. This antisense RNA was hybridized to total RNA from roots and nodules, or 

to root RNA which was mixed with 1 ng unlabeled ENOD12 sense RNA transcribed from the 

3' region of the insert of pPsENOD12, cloned in the opposite orientation towards the T7 

promoter, as indicated in figure 9C3. After hybridization single-stranded RNA was digested 

using increasing amounts of RNase Tl and subsequently the RNA was separated by 

Polyacrylamide gel electrophoresis. The RNase mapping experiment showed that a 216 bp 

sense-antisense ENOD12 RNA hybrid remained fully protected using increasing amounts of 

RNase Tl (figure 9A, R+S lanes). This 216 bp band was absent when root RNA was 

hybridized to antisense ENOD12 RNA (figure 9A, R lanes). Hybridization of the antisense 

probe to nodule RNA and subsequent digestion resulted in a fully protected hybrid of 202 bp 

(fig. 9A, N lanes 1/5T and IT) which was the expected size, as indicated in figure 9C. Using 

low concentrations of RNase Tl the trimming of the fully protected hybrid was still 

incomplete, resulting in products ranging in size between 202 and 220 bp (fig.9A, N lane 
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1/25T). In addition to the fully protected 202 bp hybrid, partially protected hybrids were 

formed (figure 9A, N lanes). Since these hybrids were not formed when the ENOD12 sense 

RNA was hybridized to the antisense probe (figure 9A, R+S lanes), we conclude that they 

originate from the second ENOD12 mRNA that occurs in nodules. Using increasing amounts 

of RNase many of these heterologous hybrids were degraded to smaller molecules, which 

cannot be analyzed on sequence gel as their size corresponds to the size of the fragments 

generated by digestion of the excess antisense RNA probes. However, the 74 and 48 bp 

fragments (figure 9A, N lanes) are examples of fragments which are not further degraded by 

increasing RNase concentrations. In conclusion, at fixed RNase concentration identical 

digestion patterns of the heterologous ENOD12 hybrid were obtained in different, independent 

experiments using nodule RNA from two different pea cultivars (figure 9A and 9B, N lanes). 

This indicates that with the RNase mapping method partially protected hybrids formed by 

hybridization of the antisense probe to a non-homologous mRNA are reproducibly detected as 

specific fragments on a Polyacrylamide gel. We concluded that RNase Tl mapping is useful 

for distinguishing between different mRNAs. 

Using this RNase mapping method we analyzed RNA from stem and flower to determine 

which ENOD12 mRNAs occur in these tissues. We also analysed root hair RNA to investigate 

whether both ENOD12 mRNAs detected in nodule are already present at the early stages of 

infection thread formation. The 202 bp full-size protected hybrid as well as the 75 and 48 bp 

bands, specific for the partially degraded hybrid, are present in the RNase protection pattern of 

stem and root hair RNA as shown in figure 9B (S and RH lanes), indicating that in these parts 

of the plant the same ENOD12 mRNAs are present as in nodules. Using flower RNA we 

could visualize the full-size protected hybrid, indicating that mRNA corresponding to the 

isolated pPsENOD12 clone is present in flower tissue. We could not demonstrate in this 

experiment, nor in experiments using more flower RNA and prolonged exposures, the 

presence of both the 75 and 48 bp bands originating from the protected heterologous ENOD12 

mRNA. 

Long exposures like in figure 9B always revealed the presence of 216 and 212 bp 

fragments in all lanes including the root lane. The concentration of these fragments was 

dependent on the amount of probe input and not on the amount of hybridizing mRNA in the 

total RNA preparations. Therefore they are not due to the formation of a hybrid between probe 

and ENOD12 mRNA. 

Since we could not detect differences between the ENOD12 mRNAs present in nodule, 

stem and flower using RNase mapping with the 3' region of pPsENOD12, we investigated 



whether differences were detectable at the 5' end of the ENOD12 mRNA in the different 

tissues. Therefore we extended a synthetic primer complementary to nucleotides 70-90 of the 

pPsENOD12 insert. After hybridizing with nodule, stem and flower RNA we compared the 

size of the extension products, as shown in figure 10 (lanes S and N). The sizes of the 

extension products with stem and nodule RNA appeared to be identical. Hence no difference 

in size of the 5' ends can be detected with this primer. In contrast, the extension products with 

flower RNA differed in size (figure 10, lane F). The largest extension product with flower 

RNA measured 16 extra nucleotides compared to the largest extension product with nodule 

Figure 9. RNase mapping of ENOD12 transcripts in nodule, stem, root hair and flower tissues. 

A. 20 ug total RNA from 8 day old roots (R), nodules 13 days after inoculation (N), and roots mixed with 1 ng 

'sense' ENOD12 RNA transcribed from a T7 RNA polymerase vector (fig 9C,3) (R+S), was hybridized to a 

227 nt 'antisense' ENOD12 RNA probe (fig 9C,2), followed by digestion with varying amounts of RNase Tl 

(1/25 T: 228 U/ml, 1/5 T: 1140 U/ml, 1 T: 5760 U/ml). Protected RNA molecules were separated by 

electrophoresis on a 6% polyacrylamide/urea gel and sizes were compared to pBR322 x Hinfl size markers (M) 

and the input ENOD12 RNA probe (P). Vertical bars over the figure represent the borders of the different lanes. 

B. 20 jig total RNA form 8 day old roots (R), flowers (F), 4th intemode stem sections from 35 day old plants 

(S), root hairs 48 hrs after inoculation (RH), nodules 13 days after inoculation (N), and root + 1 ng 'sense' 

ENOD12 RNA (R+S), was hybridized to 'antisense' ENOD12 RNA probe (P) as in A., followed by digestion 

with 5760 U/ml RNase Tl and electrophoresis on a 6% polyacrylamide/urea gel. Root, flower and nodule 

RNA was taken from two different cultivars, cv. 'Rondo' and cv. 'Sparkle'. A small portion of root RNA 

immediately after hybridization with probe without RNase digestion (C), and pBR322 x Hinfl size markers 

(M), were also subjected to electrophoresis. Vertical bars over the figure represent borders of the different lanes. 

C. 1: Schematic representation of the cloned ENOD12 mRNA. The position of the restriction sites in the 

corresponding cDNA clone that were used to subclone the fragment used for RNase mapping is indicated 

3: Sequences present in the ENOD12 'antisense' (2), and 'sense' (3) T7 RNA transcripts. 202 nucleotides 

between the Bgl I site at position 246 and the Bal I site at position 448 in the pPsENOD12 cDNA (figure 9C1) 

( V//A ); 11 nt T7 RNA polymerase promoter region ( I I ); 14 nt pT7 polylinker ( ^ ^ ^ 1 ). 

Complementary sequences are indicated by identically shaded inversed arrows. Dashed vertical lines depict the 

size of the hybridizing fragments upon hybridization of the antisense RNA probe to the homologous ENOD12 

mRNA (202 nt.) and to the sense RNA transcript (216 nt.), respectively. Restriction sites in the corresponding 

DNA fragments: Bal = Ball, Bgl = Bgll, E = EcoRI, H = HindIII, S = Smal. 
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RNA. This suggests that different transcriptional start sites are used on the gene 

corresponding to pPsENOD12 in flower and nodule, or alternatively the RNA transcript is 

differentially spliced at the 5' end in these tissues. 
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Figure 10. Primer extension analysis of 

ENOD12 mRNA from nodule, stem and flower. 

An end-labeled oligonucleotide complementary 

to nt 70-90 of the cDNA sequence was annealed 

to total RNA from: 4th internode stem sections 

from 35 day old plants (S), 8 day old roots (R), 

nodules 13 days after inoculation (N), and 

flowers (F), extended with reverse transcriptase 

and subjected to electrophoresis on 6% 

polyacrylamide/urea gels. 20 ug total RNA was 

used for each extension, except in the 

extensions shown in the right panel where 80 

ug total RNA from flowers and roots was used. 

The size of the largest reproducible extension 

fragment in each of the lanes is indicated to the 

right side (nt) to indicate the size differences 

between the two groups of extension products. 

DISCUSSION 

The ENOD12 gene product is involved in the infection process 

The data presented in this paper demonstrate that the cDNA clone pPsENOD12 represents a 

gene encoding a (hydroxy-)proline-rich early nodulin, involved in the infection process which 

is part of the pea-Rhizobium interaction. pPsENOD12 is the first clone that represents a 

nodulin gene involved in a process occurring in root hairs. The expression of the ENOD12 

gene in root hairs requires the presence of functional nod genes in Rhizobium. Therefore 

pPsENOD12 can be an important help for analyzing the mechanism by which the bacterial nod 

genes initiate the infection process. 
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Previously three cloned soybean early nodulins, GmENOD2, GmENOD13 and 

GmENOD55, have been shown to be involved in steps in nodule morphogenesis but not in 

the infection process (Franssen et al, 1987, 1988). Likewise the alfalfa and pea ENOD2 early 

nodulins are involved in nodule formation and not in the infection process (Dickstein et al, 

1988; Van De Wiel et al, 1990). These early nodulins from soybean, alfalfa, and pea are all 

(hydroxy)proline-rich proteins. Strikingly, the infection related ENOD12 early nodulin is also 

proline-rich. As in the ENOD2 early nodulins from different species and in GmENOD13, the 

major part of the ENOD12 protein is composed of repeating elements containing three amino 

acids interspersed with two or three prolines. The structure of these three early nodulins is 

very similar to the soybean cell wall protein 1A10 (Averyhart-Fullard et al, 1988). Because of 

the homology between 1A10 and ENOD12 we assume that ENOD12 is also a cell wall 

protein, involved in the infection process. The occurrence of a putative signal peptide, which 

might function in excreting the protein, is consistent with this hypothesis. 

All root and nodule cells in which we have found ENOD 12 transcript are sites of new cell 

wall synthesis and therefore possible sites of incorporation of the ENOD 12 protein. In the root 

cortex cells containing the infection thread, the infection thread wall is formed. The root 

cortical cells preparing for infection thread passage, which contain ENOD12 mRNA, form an 

additional cell wall layer (Bakhuizen et al, 1988b). The dividing cells in the nodule 

primordium also form new cell walls. In the invasion zone of the developing nodule again the 

infection thread tips are sites of cell wall synthesis. Our present knowledge about ENOD 12 

does not allow predictions on a biochemical function of the protein in cell walls yet, but the 

absence of ENOD12 transcripts in pea roots infected with F. oxysporum indicates that the 

protein is not functional in a defense response. 

Rhizobium nod genes are essential for the induction of ENOD12 gene expression. 

Our observation that soluble compounds in a Rhizobium-free culture medium can induce 

ENOD 12 gene expression, shows that physical contact between plant and bacterium is not a 

necessary prerequisite for ENOD 12 gene expression. Therefore the direct role of bacterial 

genes in producing compounds involved in ENOD 12 expression can be studied. The presence 

of ENOD 12 transcript in root hairs of plants inoculated with the R. leguminosarum bv. viciae 

248c (pMP104) strain, carrying only cloned nodEFDABCIJ genes, shows that these Sym-

plasmid genes are sufficient to induce ENOD12 gene expression. The absence of ENOD12 

RNA in root hairs from plants inoculated with R.leguminosarum bv. viciae carrying a Tn5 
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mutation in nodA indicates that ENOD12 gene expression requires expression of at least one 

of the common nod genes. This is consistent with the fact that these genes are essential for the 

induction of the infection process. Furthermore the host-specific nodE gene, and/or the nodF 

gene present on the same operon, is also essential. Hence both common and host-specific nod 

genes appears to be involved in producing the factor(s) that elicit ENOD12 gene expression. 

The R. meliloti nodA and nodB genes have been shown to be involved in generating small 

soluble compounds that stimulate mitosis of plant protoplasts (Schmidt et al, 1988). Faucher 

et al (1989) reported that R. meliloti common nod genes are essential for the production of 

root hair deformation factor, and that the nodH gene is involved in determining the host 

specificity of this factor. These authors hypothesize that the common nod genes produce a 

compound that can be modified to different factors, e.g. to root hair deformation factor by the 

nodH gene product. Whether the compound(s) inducing ENOD12 gene expression is also the 

result of a modification of a nodABC dependent factor by the nodE product, or whether 

nodABC and nodE enable production of different factors which are both necessary for 

induction of ENOD12 gene expression, cannot yet be decided. 

Which molecular mechanisms lead to ENOD12 gene expression? We have shown that 

soluble compounds from Rhizobium which are excreted upon induction of the nod genes are 

the trigger in inducing expression of the early nodulin gene. Induction occurs in front of the 

growing infection thread and in the nodule primordium. This induction at significant distance 

from the bacteria indicates the involvement of factors which are capable to diffuse through 

several cell layers. In the invasion zone of the nodule ENOD12 mRNA is present in infected 

as well as in uninfected cells, as far as can be judged from our in situ hybridizations using 

"S-labeled probes. This observation is compatible with the notion of diffusible inducing 

compounds. Whether these are the bacterial compounds made under influence of the nod 

genes, or plant substances influenced by these compounds, is presently unknown. Clues to 

the mechanism involved in ENOD12 gene expression come from the observation that 

ENOD12 genes are expressed in the cells preparing for infection thread growth as well as in 

the mitotically reactivated cells of the initiating nodule primordium. A plant compound from 

the root vascular tissue, most likely present in the xylem, has been found to act in concert with 

plant hormones for the induction of primordia in the root inner cortex, similar to the nodule 

primordium (Libbenga et al, 1973). The root cortex cells preparing for infection thread 

passage show many structural analogies to cells in the nodule primordium and it has been 

postulated that a similar compound from the xylem and phytohormones are also involved in 

the preparation of these cells (Bakhuizen et al, 1988b). The analogy between these cells is 
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supported by our observation that in both cell types ENOD12 genes are expressed. Hence we 

take into account that the postulated xylem factor and plant hormones are involved in the 

induction of ENOD12 gene expression. The necessary changes in phytohormone balance 

might be induced by the excreted bacterial compounds we have shown to be involved in 

induction of ENOD12 gene expression. The involvement of a xylem factor can explain the 

distribution of ENOD12 mRNA from the infection thread toward the nodule primordium near 

a xylem pole, at early stages of the infection process. 

ENOD12 gene expression in stem and flower tissue 

An important question concerning the evolutionary origin of the ENOD12 genes active in the 

Rhizobium infection process is whether the ENOD12 mRNAs in stem and flower are 

transcribed from the same genes. From Southern analysis and hybrid released translation 

experiments we conclude that two genes are present in the pea genome, and they are both 

transcribed in nodules. Since the occurrence of these two mRNAs in stem and flower tissue 

could not be analyzed by standard means we successfully modified an RNase mapping 

procedure to distinguish between different ENOD12 transcripts. In general this method might 

be a useful tool to analyse differential transcription of gene families, since extensive cDNA 

cloning is not required. In summary, the conclusions from our RNase mapping and primer 

extension experiments are that both ENOD12 genes are expressed in nodule and stem tissue, 

whereas in flower tissue the expression of only one gene, corresponding to pPsENOD12, can 

be detected. The 5' end of this mRNA differs from that of its homologous counterpart in 

nodule. We assume that the difference in nodule and flower is due to a different start of 

transcription on the same gene, or by alternative splicing of an intron near the 5' end. 

Nodulin genes are by definition genes exclusively expressed during root nodule formation 

and not in any other part of the plant (Van Kammen, 1984). Our finding that ENOD12 genes 

are expressed at a low level in flower and stem tissue shows that the ENOD12 genes are not 

true nodulin genes. However, in most other studies on nodulin genes the analyses have been 

restricted to root and nodule tissues. One can therefore expect that several genes considered to 

represent true nodulins are also used in other developmental programs in the plant. Recently 

this was demonstrated for the nodule specific glutamine synthetase gene. More detailed 

analyses showed that this gene is expressed at low levels in e.g. the stem of Phaseolus plants 

(Bennett et al, 1989). Also the expression of a globin gene in both roots and nodules from 

Parasponia suggests that leghemoglobin, the 'archetype' of the nodulins, might be expressed 
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in non-symbiotic tissues (Bogusz et al, 1988). In conclusion, nodule formation involves not 

only genes that are specifically evolved for the benefit of the symbiosis, but also genes that are 

normally used in other parts of the plant, as examplified by the ENOD12 genes in pea and the 

"nodule specific" glutamine synthetase gene in bean. These genes are not expressed in 

uninoculated roots, and therefore their expression must be directly or indirectly induced by 

Rhizobium factors. It becomes an intriguing question whether Rhizobium is exploiting the 

regulatory mechanisms used in other parts of the plant, or whether new symbiotic regulatory 

mechanisms have evolved. 

EXPERIMENTAL PROCEDURES 

Plant materials 

Pea (Pisum sativum L. cv. rondo or sparkle) plants were cultured and inoculated with R. leguminosarum bv. 

viciae 248 as described by Bisseling et al (1978). Nodules were excised from root tissue, except in the case of 

pea plants 8 days after inoculation, where 2.5 cm sections of the main root, where nodules would appear, were 

harvested. Uninfected pea plants were cultured in the same way, and pieces of the main root were collected 8 

days after sowing. Pea root hairs were brushed from the main root of seedlings, 48 hrs after inoculation of 3 

day old seedlings, as described by Gloudemans et al. (1989). 

Fusarium oxysporum mycelium was inoculated in Czapek-dox medium and grown for 2 days at 30°C. Pea 

plants were inoculated with this suspension three days after sowing, and cultured as above. Root tissue was 

harvested after various incubation times. All plant tissues were frozen in liquid nitrogen immediately after 

harvesting and stored at -70°C. 

Preparation of Rhizobium-free culture medium 

Bacterial free culture medium for the inoculation of plants was prepared as follows: R.leguminosarum bv. 

viciae 248 was grown in YMB medium to late log phase, diluted to ODÔOO = 0-01 in minimal medium and 

grown to late log phase, and diluted again 1:100 in plant medium containing 2uM naringenin. Bacteria were 

then grown to ODgoo = 0.3. The culture was centrifiuged, and the supernatant was treated with chloroform and 

inoculated on 3 day old pea seedlings. 



cDNA cloning 

A Xgtl 1 cDNA library, prepared from Pisum sativum cv. sparkle nodule RNA of 21 day old plants, was kindly 

provided by dr. G. Coruzzi (Tigney et al, 1987). Nitrocellulose replicas were made, containing phage DNA of 

approx. 3000 plaques, using standard procedures (Maniatis et al, 1982). 32p-]abeled cDNA probes were prepared 

from poly(A)+RNA of nodules from 10 day old plants, and of 8 day old, uninoculated roots. Replica filters 

were hybridized to either root or nodule cDNA as described by Franssen et al (1987). Plaques, giving a nodule-

specific signal, were purified, phage DNA was isolated, and cDNA inserts were subcloned into pUC vectors 

using standard procedures (Maniatis et al, 1982). 

RNA expression analyses 

Total RNA from nodules and other tissues was isolated by phenol extraction and LiCl precipitation according 

to De Vries et al. (1982). Total RNA concentrations were measured spectrophotometrically. Equal amounts of 

total RNA, as indicated in the figure legends, were subjected to gel electrophoresis. RNA transfer blotting was 

performed as described by Franssen et al (1987), using GeneScreen membranes as support. Blots were 

hybridized to nick-translated cDNA inserts. 

Genomic DNA isolation and blotting 

Genomic DNA from pea leaves was isolated using the CT AB method, described by Rogers and Bendich (1988). 

Restriction enzyme digestions were performed under standard conditions. Digested DNA was electrophoresed on 

a 1% agarose gel and transferred to GeneScreen plus membranes (NEN) using ammonium acetate transfer 

(Rigaud et al, 1987). The blot was hybridized to nick-translated cDNA insert in IM NaCl, 1%SDS, 10% 

dextran sulphate and 100 (ig/ml denatured salmon sperm DNA at 65°C during 24 hr. Subsequently blots were 

washed, 2x10' in 2xSSC and 2x20' in 2xSSC/l% SDS at 65°C. 

Hybrid-released translation 

Selection of ENOD12 mRNA was done with the insert of PsENOD12 bound on DPT paper (BioRad) as 

described by Maniatis (1982). 50 ng denatured DNA was spotted on DPT discs of 0.5 cm^. Hybridization to 1 

mg total nodule RNA from 12 day old plants was done in 300 |xl containing 50%(v/v) formamide; 0,1%SDS; 

0.6 M NaCl; 4mM EDTA; 80 mM Tris-HCl (pH 7.8). Hybridization was initiated at 50°C and temperature 

was decreased to 37°C over a 6h period. Hybrid selected mRNA was translated in a wheat germ extract (BRL) 
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using 35s-met or ^H-leu (NEN) as radioactive amino acid. Proteins were separated on SDS containing 25% 

acrylamide gels. Gels were fluorographed to Kodak XAR-5 films. 

DNA sequencing 

pPsENOD12 insert was sequenced using the double stranded dideoxy chain termination procedure (Komeluk et 

al, 1985). Both strands were sequenced entirely. Additionally, the insert of a second, independently obtained 

ENOD12 clone was sequenced, spanning nt 16-565 of the sequence in fig.3. Sequence data were stored and 

analyzed using programs written by R.Staden on VAX/VMS and microVAX/VMS computers. 

In situ hybridization 

In situ hybridization was performed essentially as described by Cox et al (1984), following a protocol kindly 

provided by Dr. M. van Montagu and Dr. G. Engler. 

The insert of pPsENOD12 was cloned in pT7-6 (kindly provided by dr. S.Tabor) and antisense RNA probes 

were transcribed using T7 RNA polymerase (New England Biolabs) and 35S-UTP (NEN, 1000-1500 Ci/mmol) 

as the radioactive nucleotide, unlabeled UTP was not added. The probes were partially degraded to an average 

length of 150 nucleotides by heating for 90 min. at 60°C in 0.2 M Na2CC>3/0.2 M NaHC03. 

Plant tissues were fixed with 3% paraformaldehyde, 0.25% glutaraldehyde in 0.1 M sodium phosphate 

buffer pH 7.4. Dehydration was performed in graded ethanol and xylol series and tissues were embedded in 

paraplast (Brunswick). 7 (im thick sections were attached to poIy-L-lysine-coated slides. Sections were 

deparaffinized with xylol and rehydrated through a graded ethanol series. They were pretreated with 1 (ig/ml 

proteinase K in 100 mM Tris/HCl, pH 7.5, 50 mM EDTA at 37°C for 30 min. and 0.25% acetic anhydride in 

0.1 M triethanolamine pH 8.0 at room temperature for 10 min. Subsequently they were dehydrated in a graded 

ethanol series and air dried. Sections were hybridized with RNA probes (10*> cpm/ml) in 50% formamide, 0.3 

M NaCl, 10 mM Tris/HCl pH 7.5, 1 mM EDTA, 10% dextran sulphate, lx Denhardt's, 500 |ig/ml poly-A, 

150 |xg/ml yeast tRNA and 70 mM DTT for 16 hrs at 42°C. Washing was performed in 4 x SSC, 5 mM 

DTT at room temperature. Next sections were treated with 20 |xg/ml RNase A in 0.5 M NaCl, 5 mM EDTA, 

10 mM Tris/HCl PH 7.5 at 37°C for 30 min. and washed in the same buffer with 5 mM DTT at 37°C for 30 

min. The final wash was twice 2 x SSC, 1 mM DTT at room temperature. Sections were dehydrated in graded 

ethanol and air dried. Slides were coated with Kodak NTB2 nuclear emulsion diluted with an equal volume 600 

mM ammoniumacetate and exposed for 1-4 weeks at 4°C. They were developed in Kodak D19 developer for 3 

min. and fixed in Kodak fix. Sections were stained with 0.025% toluidine blue O for 5 min. and mounted with 

DPX. 
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Polymerase chain reactions (PCR) 

1 ng of the synthetic oligomer 5'-CGTGCAAATGTGACTTCTTG-3', complementary to nt. 263-283 of the 

ENOD12 cDNA sequence, and 1 p.g root hair total RNA were annealed by heating 3 min. at 85°C in 10 |il 

annealing buffer (250 mM KCl, 1 mM EDTA and 10 mM Tris/HCl, pH 8.3), incubating for 30 min. at 52°C, 

and gradually cooling to 42°C for 30 min. 15 (il cDNA buffer (10 mM MgCl2, 8 mM DTT, 0.4 mM of all 

four dNTPs, and 25 mM Tris/HCl, pH 8.3) and 5 U AMV reverse transcriptase (Life Science) were added, and 

ENOD12-specific cDNA was synthesized at 42°C for 60 min. Then 55 (il Taq polymerase buffer (30 mM 

(NH4)2S04, 9 mM MgCl2, 10 mM b-mercaptoethanol and 100 mM Tris/HCl, pH 8.8), 20 \sX 5 mM dNTPs, 

10 |il DMSO, 1.25 \il2M KCl, 1 Hg of the synthetic oligomer 5'-CTTGTCCTCACTAGTGTT-3' (nt. 21-41 

of the ENOD12 cDNA sequence), and 2 U Taq polymerase (Cetus) were added. The mixture was heated for 3 

min. at 92°C, annealed for 2 min. at 52°C, and 12-16 of the following amplification cycles were performed: 5 

min. at 70°C; 1 min. at 92°C; and 1 min. at 52°C. Amplified cDNA was ethanol precipitated, the pellet was 

dissolved in TE buffer and nucleic acids were separated on a 2% agarose gel. Upon DNA transfer blotting the 

amplified fragment was visualized by hybridization to -^p-iabeied ENOD12 insert As established by three 

initial experiments the concentration differences between amplified ENOD12 cDNA from the different root hair 

RNA preparations reflected differences in the initial mRNA concentrations: 1) Differences in ENOD12 mRNA 

concentrations as revealed by the PCR method matched the differences revealed by RNA transfer blot analysis 

of 20 jig root hair RNA (cf figure 6 and IB, WT and nodA" lanes); 2) PCR experiments on a dilution series of 

total nodule RNA revealed that, with 12-16 amplification cycles, initial mRNA concentration differences were 

reflected in the differences of the amounts of amplified ENOD12 cDNA; 3) amplification rates in different total 

root hair RNA preparations were compared by taking samples after different numbers of cycles. It appeared that 

the ENOD12 cDNA concentration indeed increased with the same rate in different root hair RNA preparations. 

Primer extension analysis and RNA sequencing 

The synthetic oligomer 5'-AGGTGATATTGAGCAAGTCC-3', complementary to nucleotide 70-90 of the 

pPsENOD12 sequence, was 32p-iabeled using T4 polynucleotide kinase (Pharmacia). 1.10° cpm of this primer 

was coprecipitated with 20 |ig total RNA. Nucleic acids were resuspended in 6.25 |xl annealing buffer (50 mM 

Tris/HCl, pH 8.2, 60 mM NaCl, 10 mM DTT), put at 68°C, and allowed to cool down to 35°C. 2.25 ^ RT 

buffer (250 mM Tris/HCl, pH 8.2, 30 mM MgC12, 500 mM NaCl, 50 mM DTT) 2.5 nl dNTP mixture (2 

mM) and 0.5 p.1 AMV reverse transcriptase (Life Science, 25 U/(il) were added and primer extension was 

performed at 45°C for 20 min. Subsequently, 1 p.1 RNase A was was added and incubation was prolonged for 

15 min. The mixture was extracted once with phenol/chloroform (1:1) and ethanol precipitated using 2 |ig/ml 
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tRNA as a carrier. Upon resuspension in 1.5 |il H2O loading buffer was added and after denaturation samples 

were analyzed on a 6% polyacrylamide/8 M urea sequencing gel. 

For RNA sequencing 5.10^ cpm primer was coprecipitated with 80 |ig total RNA. The precipitate was 

resuspended in 12.5 |il annealing buffer and annealed as described above. 4.5 pi RT buffer, 5 pi dNTP mixture 

(2 mM) and 25 U AMV RT were added. 4 pi of this solution was added to four separate tubes, containing 1 pi 

of one of the four dideoxyNTP's (800 |iM). Extension was performed for 20 min. at 45°C. Subsequently 1 ul 

of the dNTP mixture was added for a chase reaction for 15 min. at 45°C. Samples were extracted, precipitated, 

and subjected to gel analysis as described above. 

RNase mapping 

The region of pPsENOD12 from the Bgll site at position 246 up to the Ball site at position 448 containing 

202 nucleotides from the 3' end of the cDNA was cloned into pT7-6. Antisense RNA was transcribed from this 

plasmid, after linearization immediately behind the insert, using T7 RNA polymerase (New England Biolabs) 

and 32-P UTP (NEN) as labeled nucleotide. 50 pM unlabeled UTP was added to ensure 95-100% full size 

transcription. After synthesis the reaction was stopped with DNasel (Boehringer) extracted once with 

phenol/chloroform (1:1) and once with chloroform, and unincorporated nucleotides were removed by spin-

column chromatography (Maniatis et al 1982). 

For RNase mapping 1.10^ cpm of probe was coprecipitated with 20 |!g total RNA. Pellets were 

resuspended in 30 pi hybridization buffer, and following denaturation at 85°C for 5 min the mix was incubated 

16 hr at 45°C (Melton et al, 1984). Digestion with 640 to 5760 U/ml RNase Tl (BRL) was performed at 

45°C for 60 min, RNases were removed by an additional incubation for 15 min with proteinase K and SDS at 

37°C, all as described by Melton et al (1984). The mixture was extracted with phenol/chloroform (1:1) and 

precipitated with carrier tRNA and ethanol. The pellet was resuspended in H2O, loading buffer was added and 

upon denaturation samples were analyzed on 6% Polyacrylamide/ 8M urea sequencing gels. 
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ABSTRACT 

A set of cDNA clones have been characterized which represent early nodulin mRNAs from 

pea root nodules. By RNA transfer blot analyses the different early nodulin mRNAs were 

found to vary in time course of appearance during the development of the indeterminate pea 

root nodule. In situ hybridization studies demonstrated that the transcripts are located in 

different zones, representing subsequent steps in development of the central tissue of the root 

nodule. ENOD12 transcripts are present in every cell of the invasion zone, whereas ENOD5, 

ENOD3 and ENOD14 transcripts are restricted to the infected cells in successive but partially 

overlapping zones of the central tissue. We conclude that the corresponding nodulin genes are 

expressed at subsequent developmental stages. The nature of the nodulins that emerges from 

the amino acid sequence derived from the nucleotide sequences of the cDNAs, in combination 

with the localization data, are used to hypothesize about the possible functions of the early 

nodulins and the regulation of the expression of the corresponding genes by compounds 

produced by Rhizobium. 

INTRODUCTION 

The formation of nodules on roots of leguminous plants induced by Rhizobium bacteria 

proceeds according to Vincent (1980) as a "multistage sequence of interdependent steps". 

Based on cytological examinations of nodule development and the observation that this 

development can be blocked at discrete stages using plant or Rhizobium mutants, root nodule 

formation has been divided into three main stages that each can be subdivided into several 

steps (Vincent, 1980). First, in the so-called preinfection stage (stage 1), rhizobia attach to the 

root hairs and root hair deformation occurs. Next, in the infection and nodule formation stage 

(stage 2), infection threads containing rhizobia penetrate into roots, a nodule structure is 

formed, and bacteria are then released in plant cells and develop into bacteroids. Finally, in the 

nodule function stage (stage 3), the root nodule becomes a functional, nitrogen fixing, organ. 

As has been shown by genetic studies plant genes are involved in each defined step of root 

nodule formation (for an overview see Vincent, 1980). However, none of the genes 

concerned have been cloned and as a consequence the characteristics of these genes and the 

encoded proteins remain unknown. On the other hand nodule-specific plant proteins, 

nodulins, have been identified (Van Kammen, 1984), and are studied extensively. They have 
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been divided into early and late nodulins. Late nodulin genes are first expressed during stage 3 

of nodule development, when infection of the roots by bacteria has taken place and a nodule 

structure has been formed. Hence the expression of these genes is not related to the first two 

stages of nodule development. On the other hand, early nodulin genes are expressed during 

stage 1 and 2 of root nodule formation (Govers et al, 1985; Gloudemans et al, 1987). Late 

nodulin mRNAs have been cloned from several legumes, including pea (Govers et al., 1987). 

cDNA clones representing early nodulins have been obtained from soybean (Franssen et al, 

1987; Franssen et al., 1988), alfalfa (Dickstein et al, 1988), and pea (Van De Wiel et al, 

1990; Scheres et al, 1990). The pea early nodulin cDNA clone pPsENOD2 is homologous to 

the soybean pGmENOD2 and the product it codes for has been shown to be involved in the 

formation of the nodule parenchyma ('inner cortex') surrounding the central nodule tissue 

(Van De Wiel et al, 1990). The pea ENOD12 early nodulin is involved in the infection 

process (Scheres et al, 1990). Both ENOD2 and ENOD12 are proline-rich proteins composed 

of repeating pentapeptide units containing two (hydroxy-)prolines and are thought to be cell 

wall proteins. 

The aim of the present study has been to obtain a set of pea early nodulin cDNA clones 

representing genes involved in the second stage of nodule development, when infection and 

nodule development take place. Both processes occur in pea nodules of 10 day old pea plants, 

when late nodulin mRNAs are not yet present (Govers et al, 1985). Therefore we screened a 

nodule cDNA library with cDNA probes of RNA from nodules of 10 day old plants and 

uninfected roots, respectively. In this paper we describe the characterization of three early 

nodulin cDNA clones pPsENOD5, pPsENOD3, and pPsENOD14, and compare the spatial 

distribution of the corresponding mRNAs in the developing pea nodule with that of the 

pPsENOD2 and pPsENOD12 mRNAs by in situ hybridization. The results show that we have 

now available a series of cDNA clones corresponding to nodulin genes that are expressed in a 

sequential order and are related to different steps in the second stage of root nodule formation. 

RESULTS 

Isolation and characterization of early nodulin cDNA clones. 

We differentially screened a nodule cDNA library with cDNA probes prepared from mRNA of 

roots of 8 day old uninoculated pea plants and nodules of 10 day old plants. In this way we 
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isolated three early nodulin cDNA clones, pPsENOD5, pPsENOD3, and pPsENOD14. The 

characteristics of these cDNA clones were determined and compared with those of the 

previously studied cDNA clones pPsENOD2 (Van De Wiel et al, 1990) and pPsENOD12 

(Scheresera/., 1990). 

The time course of appearance of the various early nodulin mRNAs during nodule 

development was studied by RNA transfer blot analyses. Identical blots containing total RNA 

from roots of 8 day old uninfected plants, root segments of 8 day old inoculated plants, and 

nodules of 10, 13, and 17 day old plants, were hybridized to the inserts of the three newly 

isolated early nodulin clones and the inserts of pPsENOD2 and pPsENOD12 (Figure 1). 

ENOD12 mRNA is already detectable in root segments of 8 day old inoculated plants, then 

accumulates to maximum amounts from day 10 to 13 and, after that, decreases in 

concentration. ENOD5 mRNA is first detectable at day 10, reaches a maximum level around 

day 13, and subsequendy decreases in concentration. The ENOD2 mRNA is first detectable at 

day 10 on these RNA blots and increases in concentration during the next seven days. The 

accumulation patterns of both ENOD3 and ENOD14 mRNAs during nodule development are 

similar. Both transcripts (only hybridization to ENOD14 is shown) are first detectable at day 

10. The transcripts reach their maximum concentration around day 13 and maintain this 

R 8 10 13 17 

• • • 

* • • 

ft 

pPsEN0D12 

pPsEN0D5 

pPsEN0D2 

pPsENODU 
(pPsEN0D3) 

pPslb 

Fig. 1. RNA transfer blot analysis of RNA 

from roots and nodules. 

RNA transfer blots contain 10 ug of total 

RNA from uninoculated roots of 8 day old 

plants (R), and nodules 8, 10, 13 and 17 days 

after sowing and inoculation, as indicated. 

Similar blots were probed with pPsENOD12, 

pPsENOD5, pPsENOD2, pPsENOD14 and 

pPsLb inserts, respectively. 
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concentration thereafter. Leghemoglobin (Lb) mRNA has been included in the experiment as a 

typical example of a late nodulin transcript. Lb mRNA is first detectable at day 13 and the 

concentration of the transcript increases thereupon. None of the (early) nodulin mRNAs are 

detectable in uninoculated pea roots (Figure 1), neither in hypocotyl, epicotyl, plumule, stem, 

leaf, and flower tissue, respectively (data not shown), with the exception of ENOD12 mRNA. 

As was reported previously (Scheres et al., 1990) ENOD12 transcripts are detectable at low 

levels in stem and flower tissue. 

To examine whether the early nodulin genes are specifically expressed during the 

symbiotic interaction of Rhizobium and legumes, but not during pathogenic interactions of 

microorganisms and pea roots, we studied whether early nodulin genes are expressed during 

infection of pea roots with the pathogenic fungus Fusarium oxysporumf.sp. pisi. Earlier we 

established that, during this pathogenic interaction, the ENOD12 early nodulin gene, which is 

involved in the bacterial infection process, is not expressed (Scheres et al., 1990). Similar 

experiments showed that ENOD5, ENOD3, and ENOD14 transcripts are equally not 

detectable in pea roots upon inoculation with F. oxysporum (data not shown). Therefore the 

accumulation of these early nodulin transcripts during nodule formation cannot be attributed to 

a general defense response. 

C 3 14 

•i 

% 12 

I 

! 

u 
.12.5 

Fig. 2. In vitro translation products of hybrid 

selected early nodulin mRNAs. 

Early nodulin mRNAs were selected from total 

nodule RNA and translated in vitro in the 

presence of 35s_m e m i o n i n e a s radioactive 

amino acid. Filters used for hybrid selection 

contained pBR322 (C), the inserts of 

PPsENOD3 (3), pPsENODH (14), 

pPsENODS (5), and pPsENOD12 (12). C, 3, 

14: total RNA from nodules of 20 day old 

plants was used; 5, 12: total RNA from 

nodules of 13 day old plants was used. The size 

(kd) of the in vitro translation products as 

determined by comparison with size markers is 

indicated to the right side. 
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Hybrid-released translation of mRNA, selected with the inserts of pPsENOD5, 

pPsENOD3, and pPsENOD14 was performed to determine the size of the corresponding 

primary translation products. The insert of pPsENOD5 selected an mRNA that upon 

translation produced a 14 kd polypeptide, while the ENOD3 and ENOD14 mRNAs both 

encoded a 6 kd polypeptide (Figure 2). On a Southern blot containing pea genomic DNA 

digested with EcoRl, pPsENOD5 hybridized to a single 6.5 kb fragment, pPsENOD3 to a 

single 6.0 kb fragment, and pPsENOD14 to fragments of 15 kb, 6.7 kb, and also, with lower 

intensity, to fragments of 7.5 kb and 2.5 kb. None of the cloned cDNAs hybridized to 

Rhizobium DNA (data not shown). In conclusion, pPsENOD5 and pPsENOD3 appear to 

represent single or low copy plant genes while pPsENOD14 might represent a member of a 

small gene family. 

Sequence analysis of pPsENOD5, pPsENOD3, and pPsENOD14 

Further information about the nature of the early nodulins encoded by the different cDNA 

clones was obtained by determining the nucleotide sequence of the inserts of pPsENOD5, 

pPsENOD3, and pPsENOD14. The cDNA insert of pPsENOD5 is 553 bp in length and has a 

polyA stretch at the 3' end of the sequence while the corresponding mRNA has a size of 700 

nt, as determined on an RNA transfer blot. By direct RNA sequencing the sequence of 20 

nucleotides from the 5' end of the mRNA, missing in the cDNA clone, was determined 

(Figure 3., small typeface). The full sequence contained one large open reading frame that 

presumably starts with the first in-frame ATG codon, at position -5, as the sequences 

surrounding this ATG meet the requirements for the start codon consensus in plants (Lütcke et 

al., 1987). The encoded protein of 135 amino acids has a mol. wt. of 14 kd, which matches 

exactly the value of the apparent mol.weight of the polypeptide produced upon hybrid released 

translation. The protein sequence is characterized by hydrophobic domains at the amino- as 

well as at the carboxy terminus (overlined). The N-terminal hydrophobic domain can be the 

core of a signal peptide of which the putative cleavage site (indicated by an arrow) can be 

predicted if the rules of Von Heijne (1983) are applied. Between amino acids 88 and 108 the 

polypeptide has a high proline content and in that part of the sequence prolines are alternated 

by either serines or alanines. Computer search in the NBRF database revealed no significant 

homology to other proteins. The high percentage of pro, ser, ala, and gly residues in the 

ENOD5 protein is reminiscent of the amino acid composition of arabinogalactan proteins (Van 

Hoist et al, 
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pPsEN0D5 

S S S S P I F L M I I F S M W L L F S Y 
TCTTCTTCTTCTCCAATATTTTTGATGATCATTTTCTCAATGTGGCTTCTATTTTCCTAC 

L V R D S E N W K V N F 
TCAGAATCCACAGAATATCTTGTTAGAGATAGTGAGAATTCATGGAAGCTTAATTTTCCA 

S R D A L N R W V T R H Q L T I H D T I 
TCACGAGATGCACTCAACCGTTGGGTCACTAGACACCAACTCACAATCCACGATACTATC 

D V V D E D D L G G D 
GATGTAGTGGATGAGGATGACTGTAATACAGAGATTCGTTCCAAGCTAGGTGGTGATTTC 

V T K R P L V L P P L I L P L S P S 
GTTGTTACAMGAGGCCTCTGGTTCTTCCACCTCTAATTACATTGCCACTCTCACCTTCA 

P A P A P L S G A A 
CCCGCACCGGCACCGAGTTTGTCCGGCGCTGCGGCTGGCCATGGATTCATCGTGTGCTTG 

CATAAACAAACATATGCAATTTTTGTGTGTGTGGTGAAGGTCAATTACAGTCTTATTTTG 

TTTTTAAGTTTCCTTCATTTTTATTTTTATGGACAATAAAAGGTTGTTGTTAGTTTAAAA 

AAAAAAAAAAA 

pPsEN0D3 

n n n n n a g t a a a a a a g a a a a t c a t a t g 

A K I L K F V F A I I L F F S L F L L S 
GCTAAAAT TCTCAAGTTTGTTTTTGCTATAATTTTATTTTT CTCTCTATT TCTTCTTT CA 

A L P C E T D G D C P L K P 
ATGGAAGCTGAACCACTTTTGCCATGTGAAACTGATGGAGATTGTCCGTTGAAACCAATT 

E T T P S L H Y M C D K E C V 
ATCGAAACGACACCAATGATATCATTACATTATATGTGTATTGACAAAGAATGTGTACTG 

TTAAGCTTCCATTTAAGATTTATGTTTTCCACCAATAATTGTATTTTTTACATATTTATT 

TCGTTTCGTAATTTCATTTTCATAATTTCATTTTCATAAGCTTCCTTTTAATGTTGATGT 

ATACCTTTCCTTCTACGTTCTCTATATCAATAAACAATTTGAGTTATAATAAAAAAAAAA 

pPsEN0D14 

L K F V Y A L L L S L F L L 5 M G 
TCCCTCAAGTTTGTTTATGCTATAATTTTACTTCTCTCCCTATTTCTCCTTTCAATGGGA 

N I P L V P C E T D D D C P M E M S I P 
AATATACCGCTTGTGCCATGTGAAACTGATGACGATTGTCCAATGGAAATGAGTATCCCA 

Fig. 3. Nucleotide sequences and 

the deduced amino acid sequences 

of the inserts of pPsENOD5, 

pPsENOD3, and pPsENOD14. 

The amino acid sequences of the 

only long open reading frames 

present in the nucleotide 

sequences of the inserts of 

pPsENOD5, pPsENOD3, and 

pPsENOD14 are depicted over the 

nucleotide sequences. In 

pPsENOD5 and pPsENOD3 the 

sequence from the 5' end of the 

mRNA to the first base present in 

the cDNA clone (numbered 1) is 

indicated in small typeface. 

Putative signal peptide cleavage 

sites are marked with arrows. In 

the pPsENOD5 sequence 

hydrophobic regions are 

overlined. Termination codons 

ending the reading frames are 

marked with an asterix. 

S I P N K L L F F M C W E K E C V Y R P . 
TCGATCCCAAATAAATTACTCTTTTTTATGTGTTGGGAAAAAGAATGTGTATATCGCAGA 

TCGAGGTTCTCCAAATAAATAAAGAATTTGAGCTATAATTAAAAAAAAAA 
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1981), of which however no sequences have been published so far. 

The cDNA insert of pPsENOD3 is 430 bp in length, and has at the 3' end of its sequence a 

poly (A) stretch. The mRNA sizes 550 nucleotides on an RNA transfer blot. The sequence of 

25 nucleotides from the 5' end of the mRNA, missing in the cDNA clone, was again 

determined by direct RNA sequencing (Figure 3, small typeface). The final cDNA sequence 

reveals a single large open reading frame starting with the ATG codon at position -2 (Figure 

3), that conforms to the rules for initiation codons in plants (Liitcke et al., 1987). The 

calculated mol. wt. of the encoded protein is 8 kd, slightly larger than the size determined for 

the polypeptide produced upon hybrid released translation. The protein has a putative signal 

peptide at the N-terminus for which the predicted cleavage site in the amino acid sequence 

(Von Heijne, 1983) is marked with an arrow. A remarkable feature of the protein sequence is 

the presence of four cysteines (bold typeface), arranged in two pairs, in such a way that they 

might be capable of binding a metal ion (Berg, 1986). 

pPsENOD14 has an insert of 350 bp with at the 3' end of its sequence a poly (A) stretch 

While the mRNA was estimated to measure 500 nt. on an RNA transfer blot primer extension 

analysis showed that 29 nt. from the 5' end of the mRNA are missing in the cloned cDNA 

(data not shown). The only long open reading frame in the cDNA sequence starts at the 5' end 

and runs up to nucleotide 181, encoding an amino acid sequence of 61 amino acids. The 

ENOD14 and the ENOD3 cDNA sequences are 65% homologous. The homology is found in 

the coding as well as in the non-coding regions (Figure 4A). The amino acid sequences of 

ENOD3 and ENOD14 are 55% homologous (Figure 4B), which is lower than the 65% 

homology between ENOD3 and ENOD14 on the DNA sequence level. This discrepancy is 

due to a large number of single base substitutions leading to amino acid substitutions. The N-

termini of ENOD3 and ENOD14 are 70% homologous. Therefore we assume that, like 

ENOD3, ENOD14 will also have a signal peptide. The predicted signal peptide cleavage site 

(Von Heijne, 1983), assuming that the hydrophobic regions in the ENOD3 and ENOD14 N-

termini have a similar size, is indicated with an arrow in Figure 3. Just like the ENOD3 

sequence, the amino acid sequence of the ENOD14 protein contains two cysteine pairs (bold 

typeface) and the distance between them is the same in both proteins. While the amino acids 

surrounding the cysteines are well conserved, the region between the two cysteine pairs 

shows substantial variation among the ENOD3 and ENOD14 proteins (Figure 4B). Neither 

ENOD3 nor ENOD14 are homologous to late nodulins in soybean that contain cysteines with 

a similar spacing (Jacobs et al., 1987; Sandal et al., 1987). They neither have the 
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EN0D3 

EN0D14 

EN0D3 

EN0D14 

EN0D3 

EN0D14 

EN0D3 

EN0D14 

EN0D3 

EN0D14 

EN0D3 

EN0D14 

1 70 
CCTAAAATTCTCAAGTTTGTTTTTGCTATAATTTTATTTTTCTCTCTATTTCTTCTTTCAATGGAAGCTG 

TTCCCTCAAGTTTGTTTATGCTATAATTTTACTTCTCTCCCTATTTCTCCTTTCAATGGGAAATA 
1 65 

71 140 
AACCACTTTTGCCATGTGAAACTGATGGAGATTGTCCGTTGAAACCAATTATCGAAACGACACCAATGAT 

TACCGCTTGTGCCATGTGAAACTGATGACGATTGTCCAATGGAAATGAGTATCCCATCGATCCCAAATAA 
66 135 

141 210 
ATCATTACATTATATGTGTATTGACAAAGAATGTGTACTGTTTAGAGAGGTTTTACAAACACCATAGTTG 

ATTACTCTTTTTTATGTGTTGGGAAAAAGAATGTGTAT ATCGCAGATG 
136 183 

211 280 
CAAGTAATATACCTTTCAGTAAACATTTTCTTAAGCTTCCATTTAAGATTTATGTTTTCCACCAATAATT 

184 
-TTCATGAATTTCCATTTAAGATTTATGTTTCCCACCAATAATT 

233 

281 350 
GTATTTTTTACATATTTATTTCGTTTCGTAATTTCATTTTCATAATTTCATTTTCATAAGCTTCCTTTTA 

GTATTTTTTACATATTTATGTCGTTTTGTAATTTCATTTTC TCTTAATGTT 
234 284 

351 410 
ATGTTGATGTATACCTTTCCTTCTACGTTCTCTATATCAATAAACAATTTGAGTTATAAT-(A)n 

TGATGTATACATTGGCTTCGAGGTTCTCCAAATAAATAAAGAATTTGAGCTATAATT-(A)n 
285 341 

ENOD3 MAKI 

ENOD14 S 

LKFV F AI IL TF SLFLLSN EAEPL L PCETC G DCP LKPIIETT ?^IS 

LKFVÏAI LL1 SLFLLSK SNIPLi/PCETC D3CPMEMSIPSI? SKI LTF« WE KECV-YRXW 

L iY « ID KECV LF R ÎVLQTP 

Fig. 4. Alignment of ENOD3 and ENOD14 nucleotide and amino acid sequences. 

A: Alignment of the nucleotide sequences of the pPsENOD3 and pPsENOD14 cDNA inserts. Dots mark 

homologous bases. B: alignment of the ENOD3 and ENOD14 amino acid sequences. Homologous amino acids 

are boxed. 
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characteristics of DNA binding proteins with zinc-fingers, containing similarly spaced 

cysteines (Berg, 1986). Furthermore, searching the NBRF database did not reveal any other 

proteins with significant amino acid sequence homology to ENOD3 and ENOD14. 

Spatial distribution of early nodulin transcripts in pea root nodules. 

The distribution of the different early nodulin transcripts over the nodule tissue was studied in 

serial sections of nodules from 10 and 16 day old pea plants. Since pea nodules have a 

persistent meristem, the nodule tissues are of graded age from the apical meristem up to the 

root attachment point. A single longitudinal nodule section thus comprises various successive 

developmental stages of each particular cell type. The left panels of figure 5 and 6 show 

longitudinal sections of a nodule from 10 and 16 day old plants, respectively. The central part 

of the nodule can be divided into several zones (Newcomb, 1976). The meristem (M) is 

present at the apex. Adjacent to the meristem is the invasion zone (IZ), where infection thread 

growth and release of rhizobia occur. This zone is followed by the early symbiotic zone (ES) 

where the infected cells, containing bacteria, and the uninfected cells can first be distinguished 

and bacterial proliferation and cell enlargement occurs. The zone with fully elongated cells 

containing bacteroids, which are able to fix nitrogen, is the late symbiotic zone (S). This tissue 

is still lacking in nodules from 10 day old plants but clearly visible in sections of nodules from 

16 day old plants (compare Figure 5 and Figure 6). Several other tissues surrounding the 

central part of the nodule are also derived from the apical meristem: the cortex (previously 

'outer cortex', Van De Wiel et al., 1990), the endodermis, the nodule parenchyma (previously 

'inner cortex', Van De Wiel et al., 1990) and the vascular tissue. Sections were analyzed by in 

situ hybridization using 35s labeled antisense and sense RNA probes transcribed from the 

inserts of pPsENOD12, pPsENOD5, pPsENOD3, pPsENOD14, and pPsLblOl (Govers et 

al., 1985), the latter representing the late nodulin leghemoglobin. Whereas none of the sense 

RNA probes hybridized to the sections at detectable levels (data not shown), the antisense 

probes hybridized with RNA present in different regions of the central tissue of the nodule, 

with exception of the ENOD2 probe. ENOD2 mRNA has been detected in the nodule 

parenchyma as described in a recent paper by Van De Wiel et al. (1990). In situ hybridizations 

with the ENOD12 transcript are included in these studies to allow direct comparison of the 

zones in the central tissue in which the various early nodulin genes are expressed. 

In nodules from 10 day old plants ENOD12 transcript is present in the invasion zone 

(Figure 5). The cells of the invasion zone directly adjacent to the meristem contain the largest 
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proportion of the ENOD12 transcripts, while in the early symbiotic zone the amount of 

ENOD12 transcripts is falling off. This decrease of ENOD12 mRNA in the early symbiotic 

zone is also observed in sections from nodules of 16 day old plants (Figure 6). ENOD12 

mRNA is absent in the older part of the early symbiotic zone and in the symbiotic zone. The 

occurence of ENOD12 transcript in the invasion zone containing growing infection threads, 

together with its presence in root hairs and root cortex cells through which infection threads 

pass (see also Figure 9), have led to the conclusion that this early nodulin is involved in the 

infection process (Scheres et al, 1990). 

Low amounts of ENOD5 transcripts are detected in the youngest cells of the invasion zone 

directly adjacent to the apical meristem in nodules from 10 day old plants. The largest amount 

of ENOD5 mRNA is present in the early symbiotic zone, in which bacterial proliferation and 

enlargement of the infected cells occur (Newcomb, 1976) (Figure 5). In nodules from 16 day 

old plants it can be seen that after reaching its maximum concentration in the early symbiotic 

zone, the amount of ENOD5 transcript decreases rapidly in the late symbiotic zone where it 

remains at a constant low level (Figure 6). 

The location of ENOD3 and ENOD14 transcripts was found to be the same and therefore 

only pictures on the localization of ENOD3 mRNA are shown. In nodules from 10 day old 

plants ENOD3 mRNA is present in the older part of the early symbiotic zone, where cells have 

already substantially enlarged, and in which ENOD12 transcript is no longer detected (Figure 

5). The ENOD3 and ENOD14 transcripts are thus first detectable at a later stage of 

development than the ENOD12 and ENOD5 mRNAs. In nodules from 16 day old plants 

ENOD3 transcript appears to reach its maximum proportion in the symbiotic zone where the 

amount of ENOD5 mRNA is decreasing (Figure 6). In nodules from 16 day old plants the 

oldest cells of the symbiotic zone show a decrease in ENOD3 mRNA. In such cells, where the 

ENOD3 mRNA concentration diminishes, the bacterial nifH mRNA encoding nitrogenase is 

first detectable with in situ hybridization (T.B., unpubl. res.). Maximum amounts of ENOD3 

transcript, and of ENOD14 mRNA as well, therefore are present in the symbiotic zone just 

before the stage at which the bacteria start to fix nitrogen. 

In nodules from 16 day old plants Lb transcripts are first detectable in cells of the late 

symbiotic zone where the level of ENOD3 mRNA is maximal (Figure 6). So the Lb mRNA 

concentration reaches its maximum amount at a later stage than ENOD3 mRNA and it remains 

at a high level in older parts of the symbiotic zone. 

The central tissue of the nodule contains both the infected and the uninfected cell type. The 

data obtained with 35s-labeled probes clearly show that all different early nodulin transcripts 



ENOD 12 ENOD5 

Fig.7. Localization of ENOD12 and ENOD5 transcripts using ̂ H-labeled probes. 

The lower panels show epipolarization micrographs corresponding with the bright field micrographs in the 

upper panels. A,B- Longitudinal section through the meristem (M) and invasion zone (IZ) of a nodule from a 

16 day old pea plant. C,D. Longitudinal section through a nodule from a 16 day old pea plant showing a part of 

the symbiotic zone. Infected cells (IC) contain bacteria, and uninfected cells (UC) possess large vacuoles and 

cytoplasm with amyloplasts containing large starch grains which line the cell walls. Sections were hybridized 

with with 3H-labeled antisense RNA probes translated from the inserts of pPsENOD12 (B) and pPsENOD5 

(D)), respectively. Bar = 50 (im. 

are present in the infected cell type. On the other hand it was not possible to exclude that 

transcripts were also present in the higly vacuolated, uninfected cells using 35s-labeled 

probes. Therefore we also hybridized sections from nodules of 16 day old plants with ^H-

labelled probes, which allow more accurate localization. ENOD 12 transcripts appeared to be 

present in all cells of the invasion zone, regardless whether they developed into infected- or 

uninfected cells (Figure 7A, 7B). The ENOD5, ENOD3, and Lb transcripts all appeared to be 



E NOD 3 

Fig.8. Localization of ENOD3 and 

leghemoglobin transcripts using 3H-labeled 

probes. 

The lower panels show epipolarization 

micrographs corresponding with the bright 

field micrographs in the upper panels. A,C: 

Longitudinal sections through a nodule 

from a 16 day old pea plant, showing a part 

of the symbiotic zone. Sections were 

hybridized with 3H-labeled antisense RNA 

probes translated from the inserts of 

pPsENOD3 (B) and pPsLMOl (D), 

respectively. IC: infected cell; UC: 

uninfected cell. Bar = 50 (im. 

detectable in the infected cells, but not in the thin layer of cytoplasm lining the cell wall of the 

higly vacuolated non-infected cells (Figure 7C, 7D; Figure 8). 

Localization of ENOD5 and ENOD12 transcripts at early stages of root nodule development. 

ENOD5 and ENOD12 transcripts are both detected in the youngest cells of the invasion zone, 

but while the ENOD12 transcript is present in these cells at maximum concentration, the 

ENOD5 mRNA is present at low concentration and this transcript reaches its maximum 

concentration later, in the early symbiotic zone. These data suggest that the ENOD5 gene is 

induced at a later stage of root nodule development than the ENOD12 gene. To test this 

assumption we hybridized 35s-labeled ENOD5 and ENOD12 antisense RNA to sections of 

pea roots containing earlier stages of nodule development. In the root inner cortex of 6 day old 

plants, inoculated 3 days after sowing, the penetrating infection thread is visible in the outer 
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Fig.9. Localization of ENOD5 and ENOD12 transcripts in root segments of 6 and 8 day old inoculated pea 

plants. 

The B, D, F, and H panels show dark field micrographs corresponding with bright field micrographs in the A, 

C, E, and G panels, respectively. In the dark field micrographs silver grains representing hybridization signal 

are visible as white spots. A and C: Root transections of 6 day old plants, 3 days after inoculation, showing 

infection events at similar developmental stages. The infection thread (arrow) has reached the third/fourth 

cortical cell layer, as determined by serial sectioning. In the inner cortex the nodule primordium (NP) is 

indicated. B: ENOD5 localization; D: ENOD12 localization. E and G: Cross sections through a pea root of 8 

day old plants, 5 days after inoculation, showing similar stages of nodule development. The infection thread 

(arrow) has reached the nodule primordium (NP), and branches off into several thinner threads (arrowheads), 

growing into the cells of the primordium where the first bacteria are released. F: ENOD5 localization; H: 

ENOD12 localization. Sections were hybridized with 35S-labeled antisense ENOD5 and ENOD12 RNA. Bar = 

50 [un. X = xylem pole of central cylinder. 
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root cortex (Figure 9A, 9C, arrow) while in the inner cortex the nodule primordium is 

developing. ENOD5 transcript is only detectable in root cortex cells containing the infection 

thread tip and in the cells through which the infection thread has just passed, and not in the 

nodule primordium (Figure 9B). On the other hand, ENOD12 mRNA is present in the cells 

carrying the invading infection thread, but also in the nodule primordium (Figure 9D). In 8 

day old plants the infection thread has reached the nodule primordium (Figure 9E, 9G). At that 

stage ENOD5 transcript is detected in cells in the centre of the primordium (Figure 9F). 

Analyses at higher magnifications show that these cells contain branches of the infection 

thread (data not shown). The ENOD12 mRNA is present in all cells of the nodule primordium 

(Figure 9H). Hence ENOD5 and ENOD12 genes appear to be expressed at the same stage of 

the Rhizobium-pea interaction. There is however a major difference in accumulation of the 

transcripts during early stages of root nodule development: the ENOD5 transcript is restricted 

to the cells containing the actively growing infection thread, whereas ENOD12 mRNA is 

present well in advance of the growing thread. 

DISCUSSION 

Early nodulin transcripts mark successive stages of root nodule development. 

Three early nodulin transcripts which are present in successive zones of the central tissue of 

the indeterminate pea nodule are characterized. Together with the previously described early 

nodulin transcript ENOD12 and the leghemoglobin mRNA they form a set of markers for 

successive developmental stages of the central tissue. While ENOD12 mRNA is present in 

both infected and uninfected cells of the invasion zone, the ENOD5, ENOD3, ENOD14, and 

Lb transcripts are restricted to the infected cell type. Therefore all five transcripts mentioned 

above mark different developmental stages of the infected cells, which are part of the actual 

symbiotic tissue. The location of the different mRNAs in the symbiotic tissue can be compared 

with the cytological zones according to Newcomb (1976), as indicated in figures 5 and 6. 

ENOD12 transcript is mainly present in the invasion zone; ENOD5 transcript in the invasion 

zone and the early symbiotic zone; and Lb mRNA in the late symbiotic zone. The location of 

these transcripts therefore roughly coincides with one or more zones described by cytological 

criteria. On the other hand the location of ENOD3 and ENOD14 mRNA does not mark a 

cytologically distinct zone. The possibility to describe root nodule development not only by 
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cytological criteria but also in molecular terms facilitates analysis of wild-type and mutant root 

nodule development. 

Previously it has been recognized that nodulin genes are expressed at different time stages 

of nodule development (Govers et al., 1985; Gloudemans et al., 1987). This has led to the 

division between early and late nodulins. The accumulation of early nodulin transcripts in 

different zones of the pea nodule as shown in this paper implies that Rhizobium causes 

induction of nodulin gene expression at various time points. The division of nodulin genes 

into two classes according to their timing of expression should therefore not be regarded as 

reflecting the actual existence of two main time points at which Rhizobium induces plant gene 

expression. Rather it forms an arbitrary division within a set of genes induced by the 

bacterium in a sequential manner. 

The accumulation patterns in time of different transcripts within the early nodulin class are 

already visualised on RNA transfer blots, as can be seen in figure 1, but are most clearly 

reflected by the in situ hybridization data. The apparent difference in time between onset of 

ENOD12 and ENOD5 gene expression as deduced from RNA transfer blot analyses appears 

not to be true. The in situ hybridization data show that a few cells express the ENOD5 gene at 

an early stage of bacterial infection, but the amount of transcript is not sufficient to be seen on 

transfer blots of RNA extracts at that time. Furthermore, from localization studies it is more 

evident that the ENOD5 gene is expressed at an earlier stage of development than the 

ENOD3/14 genes than from RNA transfer blots. Finally the transient accumulation patterns of 

ENOD12 and ENOD5 transcripts on an RNA transfer blot appear to reflect a decrease of the 

size of the zone in which the ENOD12 and ENOD5 mRNAs are present, relative to the total 

size of the nodule, rather than reflecting a decrease of the amount of transcript in a particular 

tissue zone. 

Possible functions of early nodulins located in the central nodule tissue 

In nodules the ENOD12 gene is expressed in the invasion zone which is the zone where active 

infection thread growth occurs (Newcomb, 1976). In addition ENOD12 gene expression is 

induced in root hairs, in root cortical cells through which the infection thread will migrate, and 

in the nodule primordium. It is likely that the (hydroxy-)proline-rich ENOD12 early nodulin is 

a cell wall component involved in preparing cells for the infection process, while the protein 

can also have a function in the formation of the nodule primordium (Scheres et al, 1990). 
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The ENOD5 gene is expressed at early stages in cortex cells containing the infection thread 

tip so expression of this gene is induced during the same stage of development as the 

ENOD12 gene. The ENOD5 gene is expressed in the invasion zone and not in the meristem, 

which is consistent with a role of ENOD5 in the infection process. However, the highest 

levels of the ENOD5 transcript are present in infected cells of the early symbiotic zone. 

Therefore in the nodule the highest level of the ENOD5 transcript does not coincide with the 

zone where infection thread growth occurs. This might indicate that the protein is functional 

both during infection thread growth and bacterial proliferation. Cells containing the infection 

thread tip and cells containing released bacteria share as a common property the presence of 

rhizobia within the cell, only shielded from direct contact with the cytoplasm by the membrane 

surrounding the open infection thread tip or the peribacteroid membrane, respectively. The 

hydrophobic domains in the ENOD5 protein could point to a location of the protein within 

such membranes. On the other hand the resemblance in amino acid composition of a central 

region of the ENOD5 protein to that of arabinogalactan proteins (AGPs), might indicate that 

ENOD5 is an extracellular protein present in both the infection thread matrix and the 

peribacteroid space. The functions of AGPs are as yet unknown (Fincher et al., 1983), but 

they are widely distributed and organ-specific forms occur (Knox et al., 1989). In soybean 

nodules specific AGPs were detected, demonstrating that some nodulins can be AGPs 

(Cassab, 1986). We intend to establish whether ENOD5 is a nodule specific AGP or a 

membrane-associated protein by immunological analyses with the aid of antisera raised against 

ENOD5 peptides. 

The inserts of pPsENOD3 and pPsENOD14 are 65% homologous. However, on Southern 

blots these inserts do not cross-hybridize under standard conditions (data not shown). 

Therefore we expect that also on nodule sections the ENOD3 and ENOD14 probes hybridize 

predominantly with their homologous RNAs. Since the ENOD3 and ENOD14 probes 

hybridize in the same zone of the nodule it is very likely that these two early nodulin genes are 

expressed in infected cells during the same stage of development, when the bacteria have 

proliferated to a certain extent. Remarkably, while the expression behaviour of the ENOD3 

and ENOD14 genes is identical and the proteins have similar features, close comparison of the 

amino acid sequences reveals many amino acid substitutions indicating that the functions of 

the proteins might be similar but not identical. The ENOD3 and ENOD14 proteins consist of a 

signal peptide and a small polypeptide containing four cysteines which may bind a metal ion. 

Therefore we assume that these early nodulins have a metal ion transport function. Since the 

bacteroids require high amounts of molybdenum and iron for the synthesis of nitrogenase 
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(Shah and Brill, 1977), it is tempting to speculate that ENOD3 and ENOD14 have a role in the 

transport of these metals over the peribacteroid membrane to the bacteroid. Cysteine clusters 

and a putative signal peptide like in ENOD3 and ENOD14 are also present in a set of soybean 

nodulins, although there is no further sequence homology among these proteins (Jacobs et al., 

1987; Sandal et al., 1987). One of these soybean proteins, N-23, is located in the 

peribacteroid membrane (Jacobs et al., 1987), and hence like ENOD3 and ENOD14 present in 

infected cells. Nevertheless it seems too early to speculate that these soybean and pea nodulins 

have similar functions based on the correlations mentioned above. 

Regulation of early nodulin gene expression by Rhizobium. 

An intriguing question concerning the establishment of symbiosis is whether Rhizobium needs 

to elicit only a few or a multiplicity of signals to effect root nodule formation and the 

accompanying expression of nodulin genes. The availability of the set of cDNA clones 

described in this paper, representing genes expressed at different stages during nodule 

formation, adds to the possibility of exploring this problem. 

In a previous paper we demonstrated that the ENOD12 gene is expressed in nodule 

primordia and root cortex cells that do not yet contain the infection thread so a diffusible 

compound from Rhizobium, involved in inducing this early nodulin gene, seems to act over a 

rather large distance (Scheres et al., 1990). This is consistent with the finding reported in this 

paper that the ENOD12 gene is not only expressed in nodule cells containing bacteria, but in 

all cells of the invasion zone. The bacterial nodulation {nod ) genes have been shown to be 

essential for ENOD12 gene expression, and soluble bacterial compounds are able to elicit 

ENOD12 gene expression in root hairs (Scheres et al., 1990). 

Our studies on the distribution of ENOD5 mRNA during nodule development indicate that 

bacterial compounds inducing ENOD5 gene expression appear to be active only in cells 

containing bacteria surrounded by either the infection thread tip membrane or the peribacteroid 

membrane. Apparently an intercellular barrier exists for the signal that induces ENOD5 gene 

expression. Hence there is a clear difference in the way Rhizobium induces ENOD5 and 

ENOD12 gene expression. While a factor acting over a long range is inducing ENOD12 gene 

expression most likely another factor acting over a short distance induces expression of the 

ENOD5 gene. The nature of the ENOD5 inducing signal and the bacterial genes involved in 

producing it is still unknown. However, the low level of ENOD5 mRNA in the infected cells 
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of the late symbiotic zone shows that the presence of rhizobia in a cell is not sufficient for the 

accumulation of the ENOD5 mRNA. 

The observation that the amount of ENOD5 transcripts in the infected cells is already 

declining while the amount of ENOD3/14 transcript is maximal, indicates that different 

bacterial factors may be responsible for the induction of ENOD5 and ENOD3/14 gene 

expression. In a similar way different bacterial factors may induce ENOD3/14 and Lb gene 

expression, respectively, because the amount of ENOD3/14 transcript decreases in the zone 

where the amount of leghemoglobin transcript becomes maximal. Alternatively one bacterial 

signal, inducing a cascade of developmental events, may lead to differential expression of the 

ENOD5, ENOD3/14, and leghemoglobin nodulin genes. The argument for considering 

induction of ENOD12 and ENOD5 gene expression to be caused by different bacterial factors, 

namely the fact that one gene is induced at distance from infected cells and the other gene not, 

does not apply to the ENOD5, ENOD3/14, and Lb genes since these are all expressed in 

infected cells. Genetically defined bacterial mutants that do not produce the compounds 

necessary to invoke ENOD5, ENOD3/14, or Lb gene expression may provide clues to resolve 

whether one or more bacterial signals are involved in the induction of expression of these 

genes. Moreover these mutants may be usefull to elucidate the structure of different signal 

molecules. In this regard the bacterial release (bar) (De Maagd et al., 1989) and bacteroid 

development (bad) mutants are promising since these mutants affect nodule development at the 

time that ENOD5 and ENOD3/14 genes are expressed. 

MATERIALS AND METHODS 

Plant materials 

Pea (Pisum sativum cv. rondo or sparkle) plants were cultured and inoculated with Rhizobium leguminosarum 

bv. viciae 248 as described by Bisseling et al. (1978). Inoculation was performed directly upon sowing, unless 

stated otherwise. Nodules were excised from root tissue, except in the case of pea plants 8 days after 

inoculation, where 2.5 cm sections of the main root, where nodules would appear, were harvested. Uninfected 

pea plants were cultured in the same way, and pieces of the main root were collected 8 days after sowing. 

Fusarium oxysporum mycelium was inoculated in Czapek-dox medium and grown for 2 days at 30°C. Pea 

plants were inoculated with this suspension 3 days after sowing, and cultured as above. Root tissue was 



harvested after various incubation times. All plant tissues were frozen in liquid nitrogen immediately after 

harvesting and stored at -70°C. 

cDNA cloning 

A X.gtll cDNA library, prepared from Pisum sativum cv. sparkle lateral root nodule RNA, 21 days after 

infection, was kindly provided by dr. G. Coruzzi (Tingey et al, 1987). Nitrocellulose replicas, containing 

phage DNA of appr. 3000 plaques, were made using standard procedures (Maniatis et al., 1982). 32p-iabelled 

cDNA probes for differential screening were prepared from poly(A)+RNA of nodules, 10 days after inoculation, 

and of 8 day old, uninfected roots. Replica filters were hybridized to either root or nodule cDNA as described by 

Franssen et al. (1987). Plaques, giving a nodule-specific signal, were purified using another differential 

screening. Phage DNA was isolated and cDNA inserts were subcloned into pUC vectors using standard 

procedures (Maniatis et al, 1982). 

RNA transfer blot analysis 

Total RNA from nodules and other tissues was isolated by phenol extraction and LiCl precipitation according 

to De Vries et al. (1982). RNA concentrations were measured spectrophotometrically and equal amounts of 

total RNA were used for gel blot analysis as stated in the legends. RNA transfer blotting was performed as 

described by Franssen et al. (1987), using GeneScreen membranes and nick-translated cDNA inserts or antisense 

RNA probes. 

Genomic DNA isolation and blotting 

Genomic DNA from pea leaves was isolated using the CTAB method, described by Rogers and Bendich (1988). 

Restriction enzyme digestions were performed under standard conditions. Digested DNA was transferred to 

GeneScreen plus membranes using ammonium acetate transfer (Rigaud et al., 1987). The blot was hybridized 

to nick-translated cDNA insert probes in IM NaCl, 1%SDS, 10% dextran sulphate and 100 ng/ml denatured 

salmon sperm DNA at 65°C during 24 hr. Subsequently blots were washed, 2x10' in 2xSSC and 2x20' in 

2xSSC/l% SDS at 65°C 
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Hybrid-released translation 

Selection of mRNA was done with inserts from the various cDNA clones, bound on DPT paper (BioRad) as 

described by Maniatis et al. (1982). 50 ng denatured DNA was spotted on DPT discs of 0,5 cnA Hybridization 

to 1 mg total nodule RNA from 12 day old plants was done in 300 \il containing 50%(v/v) formamide; 

0,1%SDS; 0.6 M NaCl; 4mM EDTA; 80 mM Tris-HCl (pH 7.8). Hybridization was initiated at 50°C and 

temperature was decreased to 37°C over a 6 h period. Hybrid selected mRNA was translated in a wheat germ 

extract (BRL) using 35s-methionine (NEN) as radioactive amino acid. Proteins were separated on SDS-

containing 25% acrylamide gels. Gels were fluorographed to Kodak XAR-5 films. 

DNA sequencing 

cDNA inserts were sequenced using the double stranded dideoxy chain termination procedure (Korneluk et al., 

1985). Both strands were sequenced entirely. In all cases two independently obtained clones were sequenced to 

rule out the possibility of recombined cDNAs. Sequence data were stored and analyzed using programs written 

by R.Staden on VAX/VMS and micro VAX/VMS computers. 

In situ hybridization 

All cDNA inserts were cloned in pT7-6 (a kind gift of Dr. S.Tabor), and antisense RNA probes were transcribed 

using T7 RNA polymerase (New England Biolabs) and 35S-UTP (NEN, 1000-1500 Ci/mmol) or 3H-UTP (40 

Ci/mmol) as the radioactive nucleotide. The probes were partially degraded to an average length of 150 

nucleotides by heating at 60°C in 0.2 M Na2CÛ3/0.2 M NaHC03. Nodules, stems, and root sections were 

fixed with 3% paraformaldehyde and 0.25% glutaraldehyde in 0.1 M sodium phosphate buffer pH 7.4. 

Dehydration was performed in graded ethanol and xylol series and tissues were embedded in paraplast 

(Brunswick). 7 (im thick sections were attached to poly-L-lysine coated slides. Sections were deparaffinized 

with xylol and rehydrated through a graded ethanol series. They were pretreated with 1 pg/ml proteinase K in 

100 mM Tris/HCl, pH 7.5, 50 mM EDTA at 37°C for 30 min. and 0.25% acetic anhydride in 0.1 M 

triethanolamine pH 8.0 at room temperature for 10 min. Subsequently they were dehydrated in a graded ethanol 

series and air dried. Sections were hybridized with RNA probes (10^ cpm/ml) in 50% formamide, 0.3 M NaCl, 

10 mM Tris/HCl pH 7.5, 1 mM EDTA, 10% dextran sulphate, lx Denhardt's, 500 |ig/ml poly-A, 150 ng/ml 

yeast tRNA and 70mM DTT for 16 hrs at 42°C. Washing was performed in 4 x SSC, 5 mM DTT at room 

temperature, followed by treatment with 20 ng/ml RNase A in 0.5 M NaCl, 5 mM EDTA, 10 mM Tris/HCl 

pH 7.5 at 37°C for 30 min. and washed in the same buffer with 5 mM DTT at 37°C for 30 min. The final 
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wash was twice 2 x SSC, 1 mM DTT at RT. Sections were dehydrated in 70% and 90% ethanol (each with 300 

raM ammoniumacetate) and 100% ethanol, and air dried. Slides were coated with Kodak NBT2 nuclear 

emulsion diluted with an equal volume 600 mM ammoniumacetate and exposed for 1-4 weeks at 4°C. They 

were developed in Kodak D19 developer for 3 min. and fixed in Kodak fix. Sections were stained with 0.025% 

toluidine blue O for 5 min. and mounted with DPX. Sections were photographed with a Nikon microscope 

equipped with dark field and epipolarization optics. 

Primer extension analysis and RNA sequencing. 

Synthetic oligomers complementary to nucleotide 118-138 of the pPsENOD5 insert, nucleotide 51-71 of the 

pPsENOD3 insert, and nucleotide 57-77 of the pPsENOD14 insert, were 32p_iabeled using T4 polynucleotide 

kinase (Pharmacia). 1.10^ cpm of these primers was coprecipitated with 20 |xg total RNA. Nucleic acids were 

resuspended in 6.25 \il annealing buffer (50 mM Tris/HCl, pH 8.2, 60 mM NaCl, 10 mM DTT), put at 68°C, 

and allowed to cool down to 35°C. 2.25 (il RT buffer (250 mM Tris/HCl, pH 8.2, 30 mM MgC12, 500 mM 

NaCl, 50 mM DTT) 2.5 nl dNTP mixture (2 mM) and 0.5 ni AMV reverse transcriptase (Life Science, 25 

u/jil) were added and primer extension was performed at 45°C for 20 min. Subsequently, 1 (il RNase A was 

was added and incubation was prolonged for 15 min. The mixture was extracted once with phenol/chloroform 

(1:1) and ethanol precipitated using 2 ng/ml tRNA as a carrier. Upon resuspension in 1.5 uJ H2O loading 

buffer was added and after denaturation samples were analyzed on a 6% polyacrylamide/8 M urea sequencing gel. 

For RNA sequencing 5.10° cpm primer was coprecipitated with 80 |xg total RNA. The precipitate was 

resuspended in 12.5 |xl annealing buffer and annealed as described above. 4.5 |il RT buffer, 5 |il dNTP mixture 

(2 mM) and 25 u AMV RT were added. 4 jjj of this solution was added to four separate tubes, containing 1 |il 

of one of the four ddNTP's (800 |iM). Extension was performed for 20 min. at 45°C. Subsequently 1 pi of the 

dNTP mixture was added for a chase reaction for 15 min. at 45°C. Samples were extracted, precipitated, and 

subjected to gel analysis as described above. 
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CHAPTER 6 

Identification of Rhizobium leguminosarum genes and signal 
compounds involved in the induction of early nodulin gene 

expression. 
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Bisseling. 

In: Molecular signals in microbe-plant symbiotic and pathogenic systems. BJJ. Lugtenberg, 

(ed.), NATO ASI series, Springer Verlag, Heidelberg, pp. 367-377 (1990). 



INTRODUCTION 

The process of root nodule formation on legumes, induced by Rhizobium, can be looked upon 

as a sequence of several distinct steps. These steps have been defined by cytological studies 

on developing wild-type root nodules, and by analyses of nodules formed by either plant or 

bacterial mutants (Vincent 1980). Nowadays attachment of bacteria, root hair deformation and 

curling, induction of cortical cell division, infection thread formation, nodule development, 

bacterial release from infection threads, bacteroid development and effective nitrogen fixation 

are recognized as successive steps in root nodule formation (Vincent 1980). The multistep 

nature of root nodule formation has led to the hypothesis that at several stages in the 

Rhizobium-plant interaction signal molecules from either symbiotic partner are involved in 

inducing a process in the other partner. Identification of the different bacterial and plant signals 

and analysis of the mode of action of each separate compound would then significantly enlarge 

our knowledge about the establishment of symbiosis. 

To date only two factors involved in the communication between the two symbionts have 

been identified. Using nod-LacZ reporter gene fusions, plant flavonoids have been identified 

as elicitors of the beginning of the communication. These flavonoids act in concert with the 

product of the constitutively expressed bacterial nodD gene to induce expression of the other 

nod genes (Mulligan and Long 1985). Upon induction of the nod genes the root hair 

deformation factor is formed by the bacteria. This factor has been identified using root hair 

deformation as qualitative bioassay (Bhuvaneswari & Solheim 1985). The relevant compound 

has however not been purified and the structure has not yet been determined due to the lacking 

of a quantitative assay. This demonstrates the importance of reporter genes for developing 

quantitative assays to be used for the purification of compounds, involved in different steps of 

root nodule formation. 

We have set out to isolate nodule specific plant cDNA sequences representing genes of 

which the expression marks different stages of root nodule development. When we started, 

the already cloned plant nodulin sequences mainly represented genes expressed when nodule 

development, according to cytological criteria, is completed (reviewed in Govers et al 1987a). 

We have now isolated cDNA clones representing genes expressed earlier in nodule 

development and examined whether the expression of these genes correlates to distinct steps in 

root nodule formation. The information that may be obtained with such marker genes is 

twofold. First, characterization of the proteins encoded by these genes will provide 

information about the type of plant proteins essential for different developmental steps. 
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Second, if indeed the expression of a certain gene is characteristic for a step in root nodule 

development, the expression of such gene may be used to identify bacterial or plant signals 

necessary to invoke the developmental step in which the gene is involved. Here we shall 

briefly summarize the characteristics of a set of pea early nodulin cDNA clones. We will 

describe the correlation of the expression of different genes and different steps in root nodule 

formation. We further show how expression of these genes can be used to examine whether 

certain compounds can mimic the effect of signal molecules in the Rhizobium-pl&nt 

interaction. We then focus on the question how one of the cloned cDNAs, pPsENOD12, may 

be used for developing an assay for purification of bacterial signal molecules. 

EARLY NODULINS 

Nodulin genes are differentially expressed during nodule development and therefore these 

genes have been divided into two groups, early and late nodulins (for review see Nap and 

Bisseling 1989). The late nodulin genes are first expressed shortly before or concomitantly 

with the onset of nitrogen fixation. The genes expressed at earlier stages of nodule 

development are named early nodulin genes. 

pGmENOD2 was the first early nodulin for which a cDNA clone has been described 

(Franssen et al 1987). This cDNA clone was isolated from a soybean nodule cDNA library, 

and was found to encode a protein composed of 2 repeating penta- or hexapeptides, containing 

two or three prolines each. At the N-terminus a putative signal peptide is present. Later similar 

ENOD2 cDNA clones were isolated from alfalfa (Dickstein et al 1988), sesbania (F. de 

Bruijn, N-H.Chua, pers. comm.), and pea (our work). Besides pGmENOD2, two other 

soybean early nodulin clones have recently been described, pGmENOD13 and pGmENOD55 

(Franssen et al 1988). ENOD13 has a structure similar to ENOD2. The 52 amino acid 

sequence of the polypeptide derived from the partial reading frame in the cloned sequence 

shows 70% homology to the C-terminal part of the ENOD2 protein. The structure of the 

ENOD55 protein differs from that of the ENOD2 protein, but ENOD55 is a proline rich 

protein as well. The proline rich region of the ENOD55 protein is confined to an internal 

domain of 32 amino acids and is composed of proline and serine residiues. 

From Pisum sativum, the garden pea, we isolated five early nodulin clones pPsENOD2, 

pPsENOD12, pPsENOD5, pPsENOD3, and pPsENOD14, which could be involved in 
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different developmental steps, judged by the different time courses of accumulation of the 

corresponding mRNAs during nodule development. pPsENOD12 encodes a protein with a 

structure similar to that of the pea ENOD2 protein , since both are built up of a series of two 

repeating pentapeptides each containing two prolines. The three other amino acids in the 

pentapeptide unit of pPsENOD12 differ from those in ENOD2. In conclusion, the pea ENOD2 

and ENOD12 early nodulins are, like the soybean early nodulins ENOD2 and ENOD13, 

(hydroxy-)proline rich proteins. It is thought that (hydroxy-)proline rich proteins are often 

associated with cell walls. Therefore we assume that at least part of these proline rich early 

nodulins are components of cell walls of the different cell types that are formed during 

symbiosis. The homology of ENOD2, ENOD13 and ENOD12 to the soybean cell wall protein 

1A10 (Averyhart- Fullard et al 1988) supports this hypothesis. pPsENOD5 encodes a protein 

with hydrophobic regions at both the C- and the N-terminus, the latter possibly forming a 

signal peptide. This early nodulin also has a proline rich domain, which moreover has a high 

content of glycine, alanine, and serine. The amino acid composition of this domain of ENOD5 

is reminiscent of that of arabinogalactan proteins (Van Hoist et al 1981). To date no amino 

acid sequences of arabinogalactan proteins have been published, which prevents a more 

detailed comparison of ENOD5 and arabinogalactan proteins. Upon searching different 

databases no significant homology between ENOD5 and other previously described proteins 

was found. pPsENOD3 and pPsENOD14 both encode small nodulins, with a molecular 

weight of about 6 kD. These two early nodulins are 60% homologuous and contain as most 

striking characteristic a cluster of four cysteins, arranged in such a way that a metal can be 

bound. This suggests that the ENOD3 and ENOD14 proteins contain a metal ion. Similar 

motifs of four cysteines are found in the late nodulins Ngm-20, Ngm-23, Ngm26b, Ngm-27, 

and Ngm-44, forming a small gene family in soybean (Jacobs et al 1987). However, there is 

no significant sequence homology between these or any other proteins from which the 

sequence is stored in the different databases, and the ENOD3 and ENOD14 proteins. 
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NODULIN GENE EXPRESSION DURING NODULE DEVELOPMENT 

Pea nodules belong to the indeterminate nodule type. These nodules have a persistent 

meristem. Hence all nodules contain cells at different stages of development: the youngest 

cells adjacent to the apical meristem and the oldest cells at the basal root attachment point. This 

type of nodules has the advantage that the presence of transcripts related to particular stages of 

root nodule development is less dependent on the age of the nodule. A further advantage is 

that it is possible to compare the expresssion patterns of the nodulin genes in different cell 

types during nodule development by comparing the spatial distribution of different nodulin 

transcripts in serial sections from one nodule using in situ hybridization. 

The different pea early nodulin clones were hybridized with sections of nodules from 

plants of various ages. The plants start to fix nitrogen from day 13 after inoculation and 

sowing, and at this day the first late nodulin transcripts are detectable by RNA blot analysis 

(Govers et al 1987b). On sections of these nodules the leghemoglobin (Lb) cDNA clone 

pPsLb was used as a marker for the expression of late nodulin genes, and the 

R.leguminosarum nifH gene as a marker for expression of bacterial genes involved in nitrogen 

fixation. 

The transcripts corresponding to four of the five selected early nodulin clones are present 

in the central tissue of the nodule. For ENOD2, on the other hand, the transcript was 

specifically located in the nodule inner cortex. The ENOD12, ENOD5, ENOD3, and ENOD14 

transcripts are present in successive, but partially overlapping zones of the central tissue. The 

ENOD12 mRNA is present in a small zone directly adjacent to the meristem, the invasion 

zone. The ENOD5 transcript starts to accumulate in the cells where ENOD12 mRNA is still 

present, but the concentration reaches a maximum in the zone of the central tissue that contains 

enlarging cells. This zone has been named the early symbiotic zone as in this zone the first 

plant cells that contain bacteria are present (Newcomb 1981). The ENOD5 transcript is present 

at strongly reduced levels in the cells of the central tissue that have reached their maximum 

size. This is the late symbiotic zone. The ENOD3 and ENOD14 messengers start to 

accumulate in the cells where the ENOD5 transcript is present at a maximal level and the 

concentration of these transcripts reaches its maximum in the youngest 3-4 cell layers of the 

late symbiotic zone. In the older cells of the symbiotic zone the ENOD3 and ENOD14 mRNA 

concentration decreases. In these older cells the level of the transcript of the late nodulin Lb is 

at its maximum. The ENOD5, ENOD3, and ENOD14 mRNAs are only present in the cells 

containing rhizobia, while ENOD12 mRNA is present in all the cells of the invasion zone. 
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Therefore ENOD12 transcript is present in cells that will develop in either infected or 

uninfected cells. At the stage of development of the infected cells when the ENOD3 and 14 

mRNA concentrations are decreasing, the nitrogenase mRNA can first be detected in the 

bacteroid . This proves that the infected cell becomes a functional nitrogen fixing cell at that 

stage. Therefore the decline of the ENOD3 and 14 mRNA concentrations marks the stage at 

which the infected cell is fully differentiated into a functional nodule cell. 

In conclusion, the in situ hybridization studies show that the differentiation of meristematic 

cells into the infected cell type in the central zone of the nodule requires at least four successive 

steps of specific gene expression. These different steps are marked by the presence of 

ENOD12, ENOD5, ENOD3 and ENOD14, and Lb transcripts, respectively. Most likely 

several other late nodulin genes are expressed concomitantly with the Lb genes, but this has 

not yet been tested. 

The availability of data on both the sequence and the localization of the early nodulin 

transcripts in some cases allows one to speculate about functions of the encoded proteins. As 

for the site of expression of the ENOD2 gene, it has been shown by Witty et al (1986) that the 

nodule inner cortex is the major barrier for oxygen diffusion within a root nodule. It is 

conceivable that ENOD2, being a putative cell wall protein, contributes to the absence of 

intercellular spaces in the inner cortex which causes this tissue to be the major oxygen barrier. 

In situ hybridization studies have now revealed that ENOD12 genes are expressed not only 

in the nodule invasion zone but also in root hairs and in the root cortex during the infection 

process. ENOD12 transcripts are found in the cells that become prepared for infection thread 

growth (Bakhuizen et al 1989), and in cells containing the infection thread tip. Therefore it 

was concluded that ENOD12 has a role in the "preparation" of cells for infection thread 

growth and maybe also in the formation of the infection thread. Sequence analyses suggest 

that ENOD12 is a cell wall component. In the "prepared" root cortex cells an additional cell 

wall is formed, an infection thread contains a wall. Whether these walls indeed contain 

ENOD12 protein remains to be established by immunocytological studies. 

Combination of structural data of ENOD5, ENOD3, and ENOD14 early nodulins, and the 

location of the corresponding transcripts, does not yet allow predictions about the functions of 

these early nodulins during development. Immunocytological localization of the proteins might 

give more clues. More direct evidence for the function of these early nodulins would require 

the succesfull application of reverse genetics, e.g. antisense RNA inhibition. 
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In view of the possible function of nodulins we have wondered if the expression of 

nodulin genes is related to defense responses to plant pathogens. The study of signals and 

transduction mechansisms for activation of plant defense genes is a well developed area of 

plant molecular biology (Lamb et al 1989). Also the Rhizobium-lcgumc symbiosis has been 

viewed as a modified defense response (Djordjevic et al 1987). This hypothesis implies that 

during nodule development the expression of plant genes might be triggered as a result of 

bacterial signals and signal transduction pathways normally used as part of a response to 

pathogens. We tested whether pea early nodulin genes were expressed when pea roots were 

inoculated with the pathogen Fusarum oxysporum f. sp. pisi. While we found accumulation 

of defense related hydroxyproline rich glycoprotein mRNAs in these roots, no accumulation 

of early nodulin transcripts could be detected. We conclude that early nodulin gene expression 

is not related to a general plant defense respons and that the signals and transduction 

mechanisms that trigger early nodulin gene expression therefore differ from those occuring 

during a pathogenic interaction. 

EARLY NODULIN GENES AS REPORTERS FOR BACTERIAL OR PLANT 

SIGNALS 

The differential accumulation of nodulin transcripts during the differentiation of the 

infected cell type points to the occurence of successive steps in nodulin gene expression. 

Successive induction of gene expression can be caused by different bacterial signals, by 

different kinetics of gene expression in response to the same bacterial signal, or by different 

second messengers that are formed in the plant as a result of a process induced by one 

bacterial signal. The mechanisms used by Rhizobium to establish the differential gene 

expression during nodule development can now be studied with the set of nodulin cDNA 

clones described here. We do not pretend to have cloned all early nodulin transcripts, and 

hence we cannot expect that the six genes studied here are markers for all steps of plant-

bacterium communication and nodule development. Still the answers obtained on the 

expression of the available nodulin genes can substantially increase the insight into the way 

plant and bacterium communicate. Here we will demonstrate the use of the pea ENOD12 and 

ENOD2 genes as marker genes. 
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A. Nodulin genes as tools to study compounds that mimic Rhizobium signals. 

More than forty years ago Allen and Allen (1940) showed that compounds that block the 

polar transport of auxin induce nodule-like outgrowths on the roots of several plants. Later it 

was shown that auxins and cytokinins induce cell division in the inner cortex of root expiants, 

possibly in cooperation with a factor from the xylem (Libbenga et al 1973). In these studies 

processes were induced that resemble steps occurring in root nodule formation. Unfortunately 

these processes could only be studied on a cytological level at that time, and it remained 

undecided whether these compounds really mimiced part of the nodule formation process. 

Now probes for the expression of several early and late nodulin genes are available and the 

expression of specific marker genes can be used to mark different steps in the Rhizobium-

legume interaction. It is now possible to reexamine the effect of such compounds and re

evaluate data that were already buried in the archaeology of science. The nodule structures 

formed by anti-auxins were recently studied at the molecular level by Hirsch et al (1989). In 

such nodules formed on alfalfa roots upon treatment with the anti-auxins 2,3,5-triiodobenzoic 

acid (TIBA) or N-(l-naphtyl)-phthalamic acid (NPA) the alfalfa early nodulin genes ENOD2 

and Nms-30 appeared to be expressed. Moreover we demonstrated that the ENOD2 transcripts 

are located in a tissue at the periphery of these nodule structures. By position and gene 

expression this tissue is therefore very similar to the nodule inner cortex, which points to the 

existence of both cytological and molecular similarities between anti-auxin formed nodules and 

nodules formed by Rhizobium. 

If anti-auxins can induce cortical cell division and development of a nodule structure 

similar to that induced by rhizobia, an obvious question is whether Rhizobium produces 

analogous compounds. The occurence of a Rhizobium compound specifically involved in 

induction of cell division has been demonstrated, but the compound has not yet been 

characterized (Schmidt et al 1988). Two lines of evidence demonstrate a crucial role of the nod 

genes for the production of this factor. First, mutations in the common nod genes abolish the 

ability of Rhizobium to induce cortical cell division (Dudley et al 1987). Second, 12 kb of the 

R.leguminosarum Sym plasmid, containing the nod genes, can confer to Agrobacterium 

tumefaciens the ability to form root nodules, expressing the ENOD2 gene (Moerman et al 

1987). 

Based on the similarities in nodule development induced by anti-auxins and nod gene 

dependent bacterial compounds it is plausible that Rhizobium nod gene products interfere with 
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the phytohormone distribution in the legume root. The subsequent change in hormone balance 

could then induce centres of mitotic activity at certain sites in the root cortex. The observation 

that Rhizobium nod gene mutants can be complemented with the A.tumefaciens zeatin gene, 

which is involved in cytokinin synthesis, is in accordance with this hypothesis (J.Cooper, 

pers.comm.). 

Upon treatment of pea roots with anti-auxins, also the expression of ENOD12 is induced 

in root hairs already after 48 hrs. Moreover the ENOD12 transcript is detectable in nodules 

formed on pea plants by the anti-auxin NPA. During the pea.-Rhizobium symbiosis expression 

of this gene marks root hair-, root cortex-, and nodule cells involved in, or preparing for, 

infection thread growth. Specific microtubule rearrangement and nuclear migration in these 

cells also occurs in cells which, upon Rhizobium infection, become part of the centre of 

mitotic activity, the nodule primordium (Bakhuizen et al 1989). We demonstrated that in these 

cells ENOD12 gene expression is also induced. This would imply that cells preparing for 

infection thread passage and nodule primordium cells are similar as far as ENOD12 expression 

is concerned. Apparently anti-auxins can at least induce expression of the ENOD12 gene as a 

marker gene for these cell types. Since anti-auxins are able to elicit both ENOD12 and ENOD2 

gene expression, they appear to mimic two different processes. First, ENOD12 nodulin gene 

expression, related to cells involved in both infection thread growth and the establishment of a 

nodule primordium, is induced. Second, meristematic activity indeed leads to differentiation 

into at least one nodule tissue where the proper nodulin gene, ENOD2, is expressed. 

Conclusively, anti-auxins induce a cascade of events, mimicing parts of both nodule 

morphogenesis and the Rhizobium infection process. Therefore signal molecules produced by 

Rhizobium, under the direction of a small set of nod genes, may similarly establish the 

morphogenesis of certain cell types and parts of the infection process by interfering with the 

plant hormone balance. 

B. ENOD12 gene expression in root hairs as an assay for Rhizobium signal compounds. 

Genes which are expressed in root hairs upon inoculation with Rhizobium seem most 

suitable to study bacterial signal compounds. First, these genes are expressed in a pre-existing 

cell type, and not in cells modified by Rhizobium. Hence the chain of events leading from a 

bacterial signal to expression of these plant genes might be less complicated. Second, root 
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hairs directly can be treated with putative bacterial signal compounds, and then isolated and 

analyzed for gene expression. 

By in vitro translation of root hair RNA, two root hair specific pea transcripts, RH-42 and 

RH-44, have been shown to accumulate upon inoculation with R.leguminosarum 

(Gloudemans et al 1989). The accumulation of both transcripts was shown to be dependent on 

the bacterial nodC gene. Furthermore, the accumulation of RH-44 mRNA could be induced 

with a cell-free preparation of deformation factor, obtained from R.leguminosarum cultured in 

the presence of the nod gene inducer apigenin. Therefore, the appearance of RH-44 transcripts 

might be used as a molecular marker for the activity of the bacterial compound causing root 

hair deformation. Unfortunately the in vitro translation of root hair RNA followed by two 

dimensional gelelectrophoresis to detect this transcript, which has not yet been cloned, is too 

elaborate to use in a quantitative routine assay. Thus the use of RH-44 as marker has to wait 

untill more simple detection methods are available for this mRNA. 

Another gene of which the expression could function as a possible marker for the action of 

Rhizobium signal compounds is the ENOD12 early nodulin gene. Also this gene is already 

expressed in root hairs 48 hrs after inoculation with R.leguminosarum, and we demonstrated 

that the expression of the bacterial common and host-specific nod genes is essential for 

eliciting ENOD12 gene expression. The sequence data available from the pPsENOD12 were 

used in designing a specific assay for the presence of ENOD12 transcripts, using reverse 

transcription and polymerase chain reactions. This semi-quantitative detection method is now 

used to test the ability of different R.leguminosarum mutant strains and of soluble compounds 

excreted by the bacteria to induce ENOD12 gene expression. Using a variety of 

R.leguminosarum strains containing only small regions of the sym-plasmid or deletions 

spanning different nod genes (Spaink 1989) it was shown that both the common nod genes 

nodABC and the host specific nodE gene are essential for ENOD12 gene expression. This is 

consistent with the observation that both R.leguminosarum nodABC and nodE are necessary 

for infection thread formation (Spaink 1989), the process to which ENOD12 gene expression 

is correlated. Furthermore it was shown that ENOD12 gene expression is elicited by a soluble 

compound, excreted by Rhizobium upon induction of the nod genes with pea root exudate. 

The common nod genes of R.leguminosarum are known to be sufficient for excretion of 

the soluble factor that establishes root hair deformation (Zaat et al 1987). We were able to 

partially purify this deformation factor using root hair deformation on Vicia sativa as a bio-

assay. We are currently investigating whether the factor that elicits ENOD12 gene expression 

135 



can be purified with a similar purification scheme, indicating that the compound has similar 

molecular properties. In this way we hope to establish whether the nodE gene product 

modifies a deformation factor made by a nodABC product in such a way that it is able to elicit 

ENOD12 gene expression. Alternatively, root hair deformation, established by the nodABC 

dependent deformation factor, might be a prerequisite for the abilitiy of a structurally unrelated 

nodE dependent factor to elicit ENOD12 gene expression. In the Ä.we/j7ori-alfalfa symbiosis 

not only the host specific nodulation genes nod EF and nodG (Horvath et al 1986) appear to 

be essential for infection thread formation, but also exopolysaccharide genes (Finan et al 

1985). We also intend to investigate the role of exopolysaccharides in inducing expression of 

the infection related ENOD12 gene, and the possible link to nod gene products. 

Summarizing the data on ENOD12 gene expression, soluble factors dependent on both 

nod ABC and nodE are required for induction of ENOD12 gene expression in root hairs. As 

stated in the previous section of this paragraph, ENOD12 transcript also accumulates in root 

hairs upon treatment with anti-auxins. This leads us to the hypothesis that bacterial 

compounds, made either by the nodE product alone, or by the nodABC and nodE products 

together, alter the hormone balance in roots to allow bacterial infection and the development of 

a nodule structure. 

CONCLUDING REMARKS 

During the development of root nodules bacterial and plant signals play an important role 

in establishing an effective symbiosis. We have obtained a set of cDNA clones that can serve 

as probes for the expression of genes that mark different stages of root nodule development, 

demonstrating that progressive development is accompanied by differential plant gene 

expression. The induction of the expression of these specific genes might be due to the action 

of bacterial and/or plant signals effective during nodule development. We have demonstrated 

the use of ENOD2 and ENOD12 in showing that anti-auxins mimic several aspects of root 

nodule formation induced by Rhizobium. Using ENOD12, we have designed an assay for 

bacterial compounds produced by the bacterial nodABC and nodE genes, which are necessary 

to induce expression of the ENOD12 gene. The purification and characterization of these 

compounds are under way. 
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The use of the ENOD5, ENOD3, and ENOD14 genes to identify signals involved in later 
steps of root nodule development will require a search for R.legundnosarum mutants unable to 
elicit expression of these genes, and characterization of the nature of the mutations. Possible 
candidate mutant strains for such a study are bacterial release (bar) (De Maagd et al 1989) and 
bacteroid development (bad:) mutants. 
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CHAPTER 7 

Concluding remarks 



Early nodulin gene expression during root nodule development 

In this thesis it is demonstrated that pea early nodulin genes are expressed at different stages 

during root nodule development, and in different cell types. Cells which prepare for, or are 

involved in, infection thread formation, and cells which start to divide in the inner cortex to 

form the nodule primordium express the ENOD12 gene (chapter 4). The cells of the nodule 

parenchyma express the ENOD2 gene as soon as this cell layer is formed by the activity of the 

nodule meristem or primordium (Chapter 3). ENOD5 gene expression is switched on in cortex 

cells containing infection thread tips and reaches its highest level in elongating infected cells 

containing proliferating bacteria; ENOD3 and ENOD14 gene expression starts in infected cells 

when ENOD5 transcripts are already present in those cells, but before late nodulin transcripts 

are detectable. This illustrates that ENOD12, ENOD5, ENOD3 and ENOD14, and the late 

nodulin transcripts, mark succesive developmental stages of the infected cell type in the central 

tissue of the mature nodule (chapter 5). Nodule formation can now be described in molecular 

terms, which provides a substantial refinement of cytological descriptions. 

Early nodulin function 

Remarkably both the ENOD2 early nodulin, marking the nodule parenchyma, and the 

ENOD12 early nodulin, present in cells preparing for the infection process, are (hydroxy)-

proline-rich proteins, and therefore most likely cell wall proteins (chapters 3 and 4). The 

occurrence of several specific cell wall proteins in nodule tissue, with different functions 

points to an important role of the plant cell wall in tissue differentiation. Developmental 

regulation of genes encoding (hydroxy-)proline-rich cell wall proteins has recently also been 

demonstrated in soybean (Hong et al, 1989), in agreement with the suggestion that (hydroxy)-

proline-rich proteins can play in general a role in differentiation. Precise functions of the early 

nodulins are unknown, although the ENOD2 early nodulin might give the cell wall properties 

that enable it to function as an oxygen barrier. For further experiments it will be important to 

localize both ENOD2 and ENOD12 proteins in the cells and to prove whether they are indeed 

cell wall proteins and if so, in which parts of the wall they reside. The structure of the 

pentapeptide repeat units in ENOD2 and ENOD12, consisting of blocks of three amino acids 

flanked by two prolines, indicates that the blacks of three amino acids have a role in 

determining the specific function of the proteins. An analysis of the capacity of these amino 

acids to bind other cell wall components and determination of the conformation of the ENOD2 
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and ENOD12 early nodulins are essential to provide insights in the relationship between 

structure and function of these proteins. 

The function of the ENOD5 protein is unknown, but the primary structure derived 

from the cDNA sequence allows some speculation as to the nature of the protein. The amino 

acid sequence of the proline-rich region in the ENOD5 polypeptide chain has some analogy to 

arabinogalactans, as stated in chapter 5. On the other hand hydrophobic regions in the amino 

acid sequence point to the possibility of ENOD5 being a membrane protein. It seems 

worthwhile to pursue a precise cellular localization of the ENOD5 protein to gain ideas about 

the possible function. Further insight about the role of ENOD5 in the root nodule might be 

obtained from transgenic plants expressing antisense ENOD5 RNA, if at least the blocking of 

the expression of ENOD5 results in a detectable phenotypic change. 

The most striking feature of the ENOD3 and ENOD14 early nodulins are the cysteine 

clusters which indicate that these early nodulins might be capable of binding a metal ion. There 

is not sufficient amino acid sequence homology in the sequence between and around the 

cysteine clusters to allow ENOD3 and ENOD14 to be put in a particular class of proteins with 

cysteine clusters like for example the zinc-finger proteins, which are in several cases shown to 

be DNA binding proteins. We have hypothesized in chapter 5 that ENOD3 and ENOD14 

might function in the transport of metal ions towards the bacteroids. If this is the case the 

proteins are expected to reside in the peribacteroid space and, again, localization of the protein 

in the cell using specific antibodies and immunogold labeling might provide a stronger basis 

for this hypothesis. After cleavage of the signal peptide the small ENOD3 and ENOD14 

proteins are hydrophilic and presumably easily soluble and therefore their purification, 

allowing biochemical assays on metal binding properties, seems quite possible. 

Early nodulins as tools to study development 

Apart from the data obtained on the nature of the early nodulin proteins and their localizations 

the cloned early nodulin cDNAs provide several entries for the analysis of plant developmental 

processes. First, some genes that are expressed in root nodule formation upon Rhizobium 

infection, were found to be expressed in other plant tissues as well. If the mechanisms of 

regulation of these genes are analyzed and compared with regulatory mechanisms causing 

expression of the same genes in tissues in other parts of the plant, some insight in the 

regulation of the expression of these genes during differentiation of other tissues may be 

gained. Second, Rhizobium signal compounds invoking specific plant development can now 
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be isolated and examined for their function by assaying their capacity to induce early nodulin 

gene expression. Both possibilities are briefly elaborated below. 

1). In our opinion the observation that ENOD12 gene expression is not restricted to nodules 

but also found in flower and stem tissues, is very interesting. Preliminary data of F. Govers et 

al. (1989, unpublished results) suggest that the ENOD2 is expressed in other parts of the 

plants as well. Hence some genes that are activated by Rhizobium at early stages of root 

nodule development are strictly speaking not nodulin genes. In bean it has been demonstrated 

that the gene of the late nodulin glutamine synthetase (GS) is expressed also not only in 

nodules but, at low levels, in stem tissue as well (Bennett et al., 1989). Therefore throughout 

the development and functioning of root nodules, expression of plant genes is induced some 

of which are true nodulin genes according to the defenition, while others are not (Van 

Kammen, 1984). Whereas the function of GS in nitrogen metabolism is clear and appears to 

be the same in nodule and non-nodule tissue it is an intriguing, as yet unanswered question 

what the function of ENOD12 protein might be in stem and flower tissues and whether the 

function in these tissues is the same as in the root nodule. The ENOD12 gene is a typical 

examples of a gene of which the analysis of the induction of expression by Rhizobium in root 

nodules can be of help to gain better understanding of the specific expression of this gene in 

flower and stem tissue. As discussed in chapter 4 at least the bacterial compounds involved in 

ENOD12 gene expression can be identified using ENOD12 gene expression as an assay and in 

principle then the putative receptors for these compounds can be isolated and characterized. In 

addition the cis and trans regulatory factors essential for expression of ENOD12 can be 

studied. In this way the characterization of the compounds involved in the specific gene 

expression in root nodules may be of use to get some idea of the possible compounds 

involved in differentiation in stem and flower. 

2). Evidence that probably a limited number of compounds is required to induce and specify a 

nodule meristem comes from two kinds of observations: first, if the small cluster of nod genes 

of Rhizobium is transferred to a avirulent Agrobacterium tumefaciens strain, that strain 

acquires the ability to induce formation of root nodules (e.g. Hirsch et al. 1984). Second, an 

auxin transport inhibitor can elicit formation of nodules cytologically and molecularly 

resembling Rhizobium-induced root nodules (Hirsch et al. 1989). 

As discussed in chapter 4 it is feasible to identify the bacterial factors needed for 

ENOD12 gene expression, due to the possibility of rapid detection of ENOD12 transcripts in 
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root hairs upon addition of Rhizobium culture supernatants. Considering the different 

accumulation patterns of the mRNA of other early nodulins related to different steps in root 

nodule development, transcription of other early nodulin genes is probably induced by 

different bacterial factors (chapter 5). The expression of these early nodulin genes (ENOD5, 

3,14,2) may be used as reporters to identify bacterial signal molecules active in inducing the 

corresponding steps in nodule development. As auxin transport inhibitors can form nodules, it 

seems plausible that the compounds produced by Rhizobium trigger root nodule formation by 

interfering with the plant hormone balance, which might be a mechanism of wide importance 

in plant development, as was discussed in chapter 2. Characterization of the compounds of 

which the production appears to be directed by nod genes, may therefore help to identify the 

type of endogenous plant compounds involved in meristem formation and specification in 

general. 
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CHAPTER 8 

Samenvatting 



Bacteriën van het geslacht Rhizobium kunnen wortels van vlinderbloemige planten infecteren 

en induceren de vorming van wortelknollen. Dit zijn organen met een specifieke structuur 

waarin de bacterie in staat is om atmosferische stikstof (N2) om te zetten in het voor de plant 

assimileerbare ammonia. Dit proces wordt symbiontische stikstoffixatie genoemd. 

De vorming van wortelknollen kan worden verdeeld in vier stadia: 1) preïnfectie, 2) 

infectie en vorming van het knolweefsel; 3) knolfunctie, 4) knolveroudering. Het eerste 

stadium, de preïnfectie, begint met aanhechting van bacteriën aan wortelharen, en inductie van 

bacteriële nodulatie (nod) genen door flavonoiden, die door het wortelstelsel van de plant 

worden uitgescheiden. Bacteriële producten die onder invloed van de nod genen worden 

uitgescheiden doen wortelharen deformeren. Uiteindelijk resulteert dit in gekrulde 

wortelharen. In het tweede ontwikkelingsstadium induceren bacteriën die ingesloten zijn in 

gekrulde wortelharen de vorming van een draadvormig structuur, de infectiedraad. Door deze 

draad infecteren de bacteriën de wortel. Tegelijkertijd worden celdelingen geïnduceerd in de 

cortex van de wortel. Zowel bij het infectieproces als bij de inductie van corticale celdelingen 

zijn producten van de bacteriële nod genen betrokken. De corticale celdelingen leiden tot de 

vorming van het knolprimordium. Uit de cellen van het knolprimordium ontstaat uiteindelijk 

de wortelknol. In het centrale deel van de wortelknol komen bacteriën vrij uit de infectiedraad. 

Ongeveer de helft van de cellen in het centrale deel van de wortelknol zijn gevuld met bacteriën 

die zich ontwikkelen tot bacteroïden. In het derde stadium vindt stikstoffixatie plaats door de 

bacteroïden. De plant levert op zijn beurt voedingsstoffen aan de bacteroïd en er is dus sprake 

van een symbiose. Deze symbiose duurt een aantal weken totdat in de vierde fase, de 

verouderingsfase, de wortelknol afsterft. 

In dit proefschrift staat de ontwikkeling van de wortelknol als gespecialiseerd orgaan voor 

symbiose centraal. In hoofdstuk 2 worden daarom algemene aspecten van de 

ontwikkelingsbiologie van planten kort samengevat. Een overzicht van de groeiende kennis 

omtrent moleculaire mechanismen die ten grondslag liggen aan de ontwikkeling van dieren 

wordt als referentiekader gebruikt om de fragmentarische kennis omtrent moleculaire 

mechanismen die betrokken zijn bij ontwikkeling van planten te rangschikken. De 

bruikbaarheid van wortelknolvorming als modelsysteem voor het bestuderen van specifieke 

vragen omtrent dergelijke moleculaire mechanismen wordt bediscussieerd. 

In het experimentele werk beschreven in hoofdstukken 3, 4 en 5 staan genen centraal die 

specifiek in wortelknollen van de erwt (Pisum sativum L.) tot expressie komen tijdens het 
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tweede stadium van wortelknolvorming. De door deze genen gecodeerde eiwitten, nodulines 

genaamd, zullen dus betrokken zijn bij de vorming van de wortelknol of bij het infectieproces. 

Omdat de betreffende genen tot expressie komen ruim voordat stikstoffixatie detecteerbaar is 

worden ze 'vroege' noduline-genen genoemd. Vijf vroege noduline-genen, ENOD2, 

ENOD12, ENOD5, ENOD3, en ENOD14, zijn bestudeerd door het analyseren van cDNA 

klonen gemaakt tegen de corresponderende boodschapper RNAs die tijdens het tweede 

stadium van wortelknolvorming in wortelknollen detecteerbaar zijn. De accumulatie van deze 

boodschapper RNAs tijdens wortelknolvorming en de eventuele aanwezigheid van de 

transcripten in niet-knolweefsel is bestudeerd met RNA blots. De primaire structuur van de 

gecodeeerde eiwitten is vastgesteld via DNA sequentieanalyse aan de cDNA klonen en in een 

aantal gevallen via directe sequentiebepalingen in totaal knol RNA met oligonucleotiden als 

primers specifiek voor de verschillende transcripten. De transcripten en hun corresponderende 

genen zijn verder gekarakteriseerd met behulp van 'hybrid released' translaties en restrictie

analyses van hybridiserende genomische DNA fragmenten. De verschillende transcripten zijn 

gelokaliseerd in de zich ontwikkelende wortelknol met behulp van in situ hybridisatie. 

In hoofdstuk 3 wordt beschreven dat het erwte- maar ook het soya-ENOD2 boodschapper 

RNA specifiek gelokaliseerd is in de 'inner cortex' van de wortelknol. Hiermee wordt 

aangetoond dat de op grond van de oude benaming gesuggereerde overeenkomst tussen 'inner 

cortex' en cortexcellen uit de wortel niet aanwezig is op moleculair niveau en de nieuwe 

benaming knolparenchym wordt geïntroduceerd. De van de cDNA sequentie afgeleide 

aminozuurvolgorde leert dat het ENOD2 eiwit (hydroxy-)proline rijk is en bestaat uit 

repeterende pentapeptide eenheden met twee prolines. Uit de sequentiehomologie met 

hydroxyprolinerijke celwandeiwitten en uit de lokalisatiegegevens wordt afgeleid dat ENOD2 

een celwandeiwit is dat mogelijk betrokken is bij de vorming van de zuurstofbarrière die 

gelegen is in het knolparenchym. 

In hoofdstuk 4 wordt met behulp van uitgebreide lokalisatie-studies van het ENOD12 

boodschapper RNA aangetoond dat het ENOD12 genproduct betrokken is bij het 

infectieproces en bij het ontstaan van het knolprimordium. Op grond van de uit de cDNA 

sequentie afgeleide aminozuurvolgorde blijkt ook hier sprake te zijn van een (hydroxy)proline 

rijk eiwit met repeterende pentapeptide eenheden. Op grond hiervan wordt gepostuleerd dat het 

ENOD12 vroege noduline functioneel is in de celwanden die worden aangelegd tijdens het 

infectieproces en de vorming van het knolprimordium. Met behulp van RNA blots is 
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aangetoond dat ENOD12 genen niet worden aangeschakeld bij infectie van erwtewortels met 

de pathogène schimmel Fusarium oxysporum. ENOD12 genexpressie wordt geïnduceerd in 

wortelharen door excretieproducten van Rhizobium. De betrokkenheid van zowel 

gemeenschappelijke ('common') als gastheerspecifieke bacteriele nod genen bij inductie van 

ENOD12 genexpressie wordt aangetoond met een gevoelige detectiemethode gebaseerd op de 

polymerase kettingreactie (PCR). Verder blijkt ENOD12 boodschapper RNA voor te komen in 

stengel- en bloemweefsel. Met gebruikmaking van RNase mapping en primer extensie 

experimenten wordt aangetoond dat de transcripten in stengel identiek zijn aan die in 

wortelknollen, hetgeen betekent dat Rhizobium expressie van genen kan induceren die 

normaal bij andere processen in de plant zijn betrokken. 

In hoofstuk 5 wordt de karakterisering beschreven van de ENOD5, ENOD3 en ENOD14 

boodschapper RNAs. Deze blijken gedurende de ontwikkeling van wortelknollen op een 

andere wijze te accumuleren dan de ENOD2 en ENOD12 boodschapper RNAs. De afgeleide 

aminozuurvolgorde van het ENOD5 genprodukt vertoont hydrofobe gebieden die het mogelijk 

tot een membraaneiwit bestempelen, maar een bepaald deel van het eiwit vertoont ook 

overeenkomsten in aminozuursamenstelling met de oplosbare arabinogalactan glycoproteinen. 

Mogelijk is dus ook ENOD5 een arabinogalactan (precursor-)eiwit. De ENOD3 en ENOD14 

vroege nodulines zijn kleine eiwitten met een cysteïnecluster en mogelijk een signaalpeptide. 

Om die redenen en vanwege de waarneming dat ENOD3 en ENOD14 transcripten in 

geïnfecteerde cellen voorkomen wordt gepostuleerd dat ze betrokken zijn bij het transport van 

metaalionen naar de bacteroïd. De lokalisatie van ENOD12, ENOD5, ENOD3, ENOD14 en 

leghemoglobine transcripten in de wortelknol wordt uitgebreid onderling vergeleken met 

behulp van in situ hybridisatie. Deze transcripten blijken voor te komen in verschillende, maar 

gedeeltelijk overlappende zones van het centrale knolweefsel. Wortelknollen van de erwt 

bezitten een persistent meristeem, hetgeen impliceert dat verschillende zones in het centrale 

knolweefsel verschillende ontwikkelingsfasen representeren van geïnfecteerde en 

ongeïnfecteerde cellen. De jongste ontwikkelingsstadia grenzen direct aan het apicale 

meristeem en de oudste stadia bevinden zich het dichtst bij het aanhechtingspunt van de 

wortelknol aan de wortel. ENOD12 boodschapper RNA, dat voorkomt in zowel geïnfecteerde 

als ongeïnfecteerde cellen, en de andere vier transcripten die alleen in geïnfecteerde cellen van 

het centrale knolweefsel detecteerbaar zijn, markeren dus verschillende, overlappende fasen in 

de ontwikkeling van het geïnfecteerde celtype. 
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In hoofdstuk 6 worden de in hoofstuk 3-5 vermelde resultaten samengevat en aangevuld met 

andere gegevens over vroege nodulines. De bruikbaarheid van vroege noduline cDNA klonen 

als probes voor het identificeren van bacteriele genen en factoren die betrokken zijn bij 

wortelknolvorming wordt bediscussieerd. 

In hoofstuk 7 wordt tenslotte aangegeven hoe het onderzoek aan vroege nodulines beschreven 

in dit proefschrift een aanzet kan vormen om zowel specifieke aspecten van 

wortelknolvorming als ook de relatie van dit proces met andere ontwikkelingsprocessen in de 

plant te bestuderen. 
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NAWOORD 

Moleculair biologisch onderzoek gedijt het best in een plezierig samenwerkingsverband. 

Daarom is het vermelden in dit proefschrift van degenen die daartoe hebben bijgedragen geen 

formele aangelegenheid maar een zeer wezenlijk onderdeel van het totaal. 

Ab van Kammen, mijn promotor, de menselijke betrokkenheid in de gewone omgang 

én de zakelijke afstand waarmee je teksten van passende kritiek voorzag vormden voor mij 

twee van de meest plezierige facetten in onze samenwerking. 

Ton Bisseling, "chef, jouw wetenschappelijke gedrevenheid, je sterke realiteitszin ten 

opzichte van de waarde van proeven, én je gevoel voor vormgeving, zowel in als buiten het 

werk, zijn voor mij een voortdurende bron van inspiratie geweest. 

Clemens Van De Wiel, jouw werk spreekt voor zich in dit proefschrift Voor de zonder 

uitzondering prettige samenwerking en voor de volharding waarmee je de mooiste prentjes 

hebt verzameld ben ik je dankbaar. 

De andere (ex-)"knollen" mensen, Ton Gloudemans, Francine Govers, Marja 

Moerman, Jan-Peter Nap: bedankt voor al jullie hulp en bijdragen tot de sfeer. Speciaal moet 

hier worden genoemd Henk Franssen: jij was vanaf het eerste begin niet alleen een goede 

collega maar een speciale vriend. 

Fred van Engelen, Fried Zwartkruis, Marie-José van Lierop, Rafel Israels, Herman 

van Eck, Anne-Marie Wolters en Esther van der Knaap: jullie als student geleverde bijdrage 

aan dit proefschrift en/of aan experimenten die buiten het bestek van dit proefschrift vallen, is 

een erg belangrijke. Zonder die extra hersens en handen was het heel wat minder levendig 

geweest op lab 1. 

Sacco de Vries, ik ben je erg dankbaar dat je voor Apples en niet voor Peren hebt 

gekozen. 

Peter van Druten, Gré Heitkönig, Piet de Kam, Piet Madern, en Marie-José van 

Neerven: zonder jullie zou onze vakgroep, en dus ook ik, niet kunnen functioneren. Bedankt 

voor jullie bereidheid om ten allen tijde te fotograferen/afdrukken, typen, planten in te zetten, 

tekenen, en teksten op te maken. 

Alle permanente en niet-permanente niet nader genoemde molbiollers, bedankt voor 

jullie bijdrage tot de unieke sfeer van onze vakgroep, voor jullie adviezen, buffers, gelplaten, 

enz. enz. Waarbij natuurlijk Peter Roelvink en Jan Verver met name moeten worden genoemd! 

Bob Bakhuizen, Clara Diaz en Herman Spaink: bedankt voor jullie inbreng vanuit de 

"Leidsche hoek". 
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Michael "Crocodile" Djordjevic, Jeremy "Go" Weinman, Ann "PA" Hirsch, "TV" 

Bhuvana, "Takis" Katinakis and Andrei "PCR" Zalensky: it was good working and living 

together with you; thanks for all friendship and efforts! 

Tenslotte Lobke, bedankt dat je me al die jaren trouw hebt uitgelaten, en natuurlijk 

Olga: datje me daarna altijd hebt binnengelaten en het mij door je vriendschap, relativerend 

vermogen, lunchtrommeltjes en uiteraard ook kookkunst heel gemakkelijk hebt gemaakt om te 

promoveren. 
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