
Simulation Reports CABO-TT

The FSE system for crop simulation

D. W.G. van Kraalingen

Simulation Report CABO-TT nr. 23

A joint publication of

Centre for Agrobiological Research (CABO)

Department of Theoretical Production Ecology (TPE), Agricultural University

Wagenlngen 1991

Simulation Reports CABO-TT

Simulation Reports CABO-IT is a series giving

supplementary information on agricultural simulation

models that have been published elsewhere. Knowledge of

those publications will generally be necessary in order to

be able to study this material.

Simulation Reports CABO-IT describe improvements

of simulation models, new applications or translations of the

programs into other computer languages. Manuscripts or

suggestions should be submitted to:
H. van Keulen (CABO) or J. Goudriaan (TPE).

Simulation Reports CABO-IT are issued by CABO and

TPE and they are available on request. Announcements of

new reports will be issued regularly. Addresses of those
who are interested in the announcements will be put on a

mailing list on request.

Address

Simulation Reports CABO-IT
P.O. Box 14

6700 AA Wageningen
Nether lands

Authors affiliation

D.W.G. van Kraalingen:

Centre of Agrobiological Research

P.O. Box 14,

6700 AA Wageningen, The Netherlands

Contents

Samenvatting

Summary

Acknowledgements

1 Introduction

2 Principles of the FORTRAN Simulation Environment

3 The structure of Euler integration in the FSE program

4 lmplementating Euler integration in FORTRAN .

Control of the time loop

Initializing the states and parameters from external data files

Implementing reruns .

Output of simulation results

Weather data

Errors and warnings from the FSE program

5 How to operate the model and its data files

Modify data files if necessary

The TIMER.DATfile

Other data files .

The RERUNS.DATfile

Run the model

Examine output

Error recovery

6 How to make changes to an existing subroutine

Modification of subprocess calculations.

Add a variable to the output list .

Add a finish condition

Add titles to the output file

Add print plotted variables

7 How to create a new subprocess description

8 Installing the FSE program

Requirements for running the FSE program

Contents of the disk

General installation

Working with Microsoft FORTRAN on IBM PC's and compatibles

Working with other FORTRAN compilers on IBM PC's and compatibles

Working on a VAX computer of CABO or TPE

Working on an Apple Macintosh using MacFortran/020 v2.3

9 References and further reading

Page no.

1

1

2

3

5

9

15

15

18

19

22

24

26

29

29

30

32

32

33

33

34

35

35

36

36

36

36

37

39

39

39

40

40

41

41

43

45

Appendix A : FSE main program, with SUCROS-wheat and data files

FSEWHT.FOR

TIMER. OAT

PLANT. OAT

Appendix B : Listing of names of variables in the main program

Appendix C : Listing of names of variables in SUCROS and other subroutines

Appendix D : List of available weather data (June 1991).

Appendix E : OUTREC, program to recover lost output data

47

48

62

63

65

67

71

77

- 1 -

Samenvatting

Dit rapport beschrijft een FORTRAN 77 omgeving voor het ontwikkelen van continue

simulatie modellen. Deze omgeving wordt FSE (FORTRAN Simulation Environment)

genoemd. Het systeem bestaat uit een hoofdprogramma, weersgegevens, en verscheidene

utility routines for het uitvoeren van specifieke taken. De feitelijke modelvergelijkingen

worden in de vorm van een of meer subroutines gebracht die bestuurd worden door het

hoofdprogramma. De FSE omgeving is flexibel, voert de tijdsbesturing uit, haalt weers­

gegevens op uit datafiles en voorziet in de mogelijkheid van eenvoudige invoer van

parameters en initiele toestanden. Tevens zijn voorzieningen aanwezig voor het op een

eenvoudige manier maken van uitvoertabellen en grafieken. De FSE omgeving kan zonder

wijzigingen op zeer uiteenlopende computers draaien.

De FSE omgeving biedt oplossingen voor veel problemen die ondervonden worden door

onderzoekers die in FORTRAN werken. Door gebruik te maken van deze omgeving kan de

onderzoeker zich beter op de wetenschappelijke aspecten van het model richten zonder

geconfronteerd te worden met de technische problemen van het modelleren in FORTRAN.

Summary

An environment for continuous simulation of crop growth in FORTRAN 77 is discussed. This

system, called FSE (FORTRAN Simulation Environment), consists of a main program, weather

data and utilities for performing specific tasks. The model equations have to be defined in one

or more subroutines that are called by the main program. The environment is flexible, provides

weather data, easy input of parameters and initial states, easy output in the form of tables or

graphs, and time control. The FSE program is highly portable to other computers.

The FSE program overcomes many programming problems that crop modellers face when

programming in FORTRAN. By making use of this environment they can concentrate more on

the scientific aspects of modelling than on the technical ones.

- 2 -

Acknowledgements

The following people are acknowledged for their contribution to the FSE program and this

manual: Frits Penning de Vries for creating the possibility to translate the CSMP MACROS

programs into FORTRAN. The FSE program and this manual is based heavily on this work,

Gon van Laar for suggesting the FSE name and making constructive comments, Martin Kropff

for helpful suggestions and the idea of writing this manual, and Peter Kooman and Willem Stol

for testing the FSE program and making suggestions for its improvement.

- 3 -

1 Introduction

This report presents a simulation environment for crop growth models in FORTRAN. After

discussing the principles of simulation in FORTRAN these are translated into a full working

program. Much of this report is based on work done for the SARP project notably the

conversion of the CSMP MACROS programs into FORTRAN (van Kraalingen & Penning de

Vries, 1990). It is intended to meet the need expressed by crop modellers in CABO/TPE to

have this approach further refined and documented without special reference to the SARP

programs but as a general documentation to the FSE simulation environment.

In the past, crop simulation often used CSMP as the simulation language. But recently, many

crop modellers have switched to FORTRAN. Several reasons have been the cause of this

development, largely because most of the scientific community uses FORTRAN and

therefore it is very difficult to exchange models written in CSMP. Furthermore, CSMP is no

longer available commercially. In fact, CSMP is kept 'alive' by the computer centre at

Wageningen Agricultural University. It is available on only a few computers and requires a

considerable programming effort for maintenance. Yet good FORTRAN compilers are widely

available and are easy to purchase. Consequently, crop models in FORTRAN can be

exchanged more easily and can run on more computers with less maintenance effort.

There are also technical reasons for preferring FORTRAN to CSMP. One is that larger, more

flexible and more sophisticated models can be developed that can run on themselves

providing more flexible output, or can be incorporated into a larger structure, e.g. for

parameter optimization, Geographical Information Systems (GIS), Crop Management systems,

and Educational software.

In this report we begin by describing the principles of simulation in FORTRAN and then go on

to discuss a simulation environment for crop growth models. This environment consists of a

main model that provides the control structure for reruns, weather data and timing, and a

collection of utilities that perform specific tasks such as parameter input from files and model

output. This system of main model and utilities is called FSE (FORTRAN Simulation

Environment).

The principles of simulation and the simulation environment itself will provide a sound initial

basis for modellers who are working in FORTRAN. It will save them of having to find out the

correct sequence of calculations, model structure, subprocess communication, etc. In this

report the SUCROS model is used as an example of a crop model that has been programmed

Utility routines from the TTUTIL utility library will be used frequently in this report and in the

FSE program. For a full documentation of TTUTIL, including examples, see Rappoldt & van

Kraalingen (1990).

- 4 -

To obtain the FSE program, as well as the full TTUTIL library on floppy disk, write to:

Centre for Agrobiological Research,

P.O. Box 14,

6700 AA Wageningen,

The Netherlands.

or:

Department of Theoretical Production Ecology,

Agricultural University,

P.O. Box 430,

6700 AK Wageningen,

The Netherlands.

- 5 -

2 Principles of the FORTRAN Simulation Environment

In this Chapter we will discuss the principles adhered to in the development of the FORTRAN

Simulation Environment other than the general structure of Euler simulation in FORTRAN

(this is further outlined in Chapter 3).

• Calculations are done in the correct order

Care has been taken to ensure that the structure of the model is such that the different types

of calculations, such as integration, rate calculation, time update, output and initialization, are

all done in the right order. Experience learns that often in continuous simulation models this is

not the case. Sometimes the rates and states in the model output do not pertain to the same

TIME, or rate and state calculations are not done separately; as a result, rates may be derived

partly from state variables at the current time and partly from state variables one DEL T ago.

The results produced by a simulation model correctly implemented in the FSE program differ

by not more than a rounding error from the results produced by the same model implemented

in a continuous simulation language such as CSMP.

• Efforts have been made to conceal program complexity that 1s
irrelevant to the simulation

Sometimes complex algorithms are used in the FSE program. For example, the set of routines

that is used to read parameter values from data files, the routines to generate output tables

and graphs and the TIMER routine. These routines have a clearly defined task that is easy to

understand, but their implementation into a FORTRAN program can be very complex. For

example, it is easy to understand that with the following statement: CALL RD s REA

('WLVI', WLVI) you get the value of the parameter WLVI from a data file. But the

FORTRAN code is very complex, and the user of the simulation program does not need to

know it. These routines are stored in a separate library, TTUTIL, the utility library of the

Department of Theoretical Production Ecology of the Wageningen Agricultural University.

We have also tried to make the program flow straightforward, by minimizing the number of

GOTO statements. In general, the liberal use of GOTO statements is considered bad

programming, because the GOTO and the corresponding coNTINUE labels tend to be

confusing. The problem is actually caused by the coNTINUE statement, because it

represents a label to which any section of the program can jump to. In other words, with the

statement GOTO 1 o, you will know where the program resumes execution, but at the line 1 o
e<JNTiNtrE-yott-eanTtever--b&Sure-from where-irW!le-progrE.m a.~ump_ts libneJo tn1LCDNT !NOE_~-~­

statement.

- 6 -

• Standard FORTRAN 77 is used and transfer to new FORTRAN
language definitions is easy

The FSE program has been written entirely in FORTRAN 77. This language is well defined

(better than Pascal or C) and good compilers are available on many computers and operating

systems. (The definition of the language is published in ANSI document X3.9-1978). There

are many good textbooks from which programming in FORTRAN 77 can be learned. Some of

these have been listed in the reference section. For a definition of the language see ter Haar

(1983) among others.

The portability of the program is greatly improved by adhering to the definition of standard

FORTRAN 77, and avoiding compiler extensions that many compilers provide. To further

improve portability among compilers, we have deliberately not used certain features that are

part of the standard of the language (such as nested character operations) but that, in our

experience, have sometimes been wrongly implemented in the compiler.

At the time of writing of this document, a new FORTRAN standard had been defined: Fortran­

go (note the lower case name). It includes several features that were already defined in other

languages or that were sometimes provided as FORTRAN compiler extensions. For example

advanced control structures socl1 as DO WHILE and volatile-leeaHiafi-abttle~s-Hin+-OISU:.nb;~t-r~ou~ttu-in-ltie~s-Eal-1-lntU------­

functions. In the FSE program we have anticipated these improvements to the language by

following the guidelines in ter Haar (1983, see listing 1) and emulating a DO-WHILE control

structure with IF-END IF statements and by including a SAVE statement in all the subroutines

and functions to prevent disappearance of local variables upon return to the calling program.

The switch to Fortran-90 as a general progamming language is however, only worthwile when

good compilers on several computers are widely available. Until then, we will presumably

continue to use FORTRAN 77 as the language for the FSE program. If the DO-WHILE

construct becomes part of the language, the emulated DO-WHILE structure can easily be

modified:

Listing 1: The standard FORTRAN structure to emulate a DO-WHILE loop.

Emulated DO-WHILE

10 IF (logical expression) THEN

GOTO 10
END IF

True DO-WHILE

DO WHILE (logical expression)

END DO

- 7 -

• Portability has been increased by not using large amounts of RAM

memory

Large arrays are not used, because these increase RAM memory requirements. Although

programming is often much easier and program execution much faster when arrays are used

to solve specific problems, the use or arrays limits the number of computers on which the

program can be run. Disk memory is often much larger than RAM memory, and therefore

information is stored in temporary files where possible. This practice limits the total array size of

the whole program to about 42 kb of memory.

• The program is safeguarded against inaccurate floating point

operations

The definition of standard FORTRAN 77 (like that of most languages) does not specify the

algorithms to be used for floating point calculations. Consequently, the results of floating

point operations can differ among compilers. The portability of a program in general is

improved if these problems are anticipated and solved.

The inaccuracy is important in the TIMER routine, which should trigger output whenever TIME

is a multiple of PRDEL (consequently, PRDEL is the time between success1ve outputs). Due to

floating point inaccuracy, it is not correct simply to test if TIME is a multiple of PRDEL by using a

MOD function. This problem has been solved by using integer variables (see TIMER routine).

- 8 -

- 9 -

3 The structure of Euler integration in the FSE program

This Chapter introduces the principles of Euler integration and the method adopted to couple

different subprocesses without transgressing the rules of Euler integration. We assume here

a basic knowledge of the state variable approach as it is used in continuous simulation (see

e.g. de Wit & Goudriaan, 1978; Penning de Vries & van Laar, 1982).

Various integration methods can be used in the simulation of continuous systems, ranging

from simple rectangular integration (Euler) to higher order integration algorithms (trapezoidal,

Runge-Kutta, etc.), possibly with a variable time step. From the point of view of program

structure, a program that accommodates Euler integration only, is less complicated and easier

to understand than one accommodating higher order methods of integration. But this less

complicated structure requires changes to be made in the integration section of the

simulating subroutines to allow higher order integration methods to be used (see Rappoldt &

van Kraalingen, 1990). The simulation of crop growth in CSMP often uses Euler integration

with a fixed time step of one day and because the program structure is less complicated, we

have adopted this integration method in the FSE program.

Order of execution

Fig. 1 shows the correct order in which calculations should be executed when Euler

integration is used:

/Integration~

time = time+delt Driving variables

Output Rate calculations

~
Fig. 1: The order in which calculations are executed when simulating continuous systems using Euler

integration.

Note that in this sequence, at the point where output is generated, state variables and rates of

change correspond to the time for which they were calculated. Evidence that this sequence

of calculations gives results in FORTRAN and CSMP that are identical, is shown for a simple

- 10 -

simulation of exponential growth in Listings 2 and 3.

Listing 2: CSMP program of exponential growth and output (only the relevant output is reproduced):

TITLE DEMONSTRATION
INCON IH=1.
PARAMETER RGR=0.1
H = INTGRL (IH, GR)
GR = RGR*H
METHOD RECT
TIMER TIME=O.O, FINTIM=10., DELT=1.0, PRDEL=1.0
PRINT H, GR
END
STOP
END JOB

OTIMER VARIABLES RECT
DELT

1.0000
DELMIN

1.00000E-06
1 DEMONSTRATION
0 TIME H

.000000 1.0000
1.00000 1.1000
2.00000 1.2100
3 00000 1.3310
4.00000 1.4641
5.00000 1.6105
6.00000 1.7716
7.00000 1.9487
8.00000 2.1436
9.00000 2.3579
10.0000 2.5937

1$$$ SIMULATION HALTED FOR

INTEGRATION
FINTIM

10.000

GR
.10000
.11000
.12100
.13310
.14641
.16105
.17716
.19487
.21436
.23579
.25937

PRDEL
1.000

FINISH CONDITION

1$$$ CONTINUOUS SYSTEM MODELING PROGRAM III

Listing 3: FORTRAN program of exponential growth and output.

PROGRAM DEMO
IMPLICIT REAL (A-Z)

START TIME
OUTDEL
.00000

TIME 10.000

.00000
DELT
1.0000

V2.0 EXECUTION OUTPUT

PARAMETER (RGR=0.1, FINTIM=10., DELT=1.0)

H 1.0
GR 0.0
TIME= 0.0

OPEN (20, FILE='RES.OUT', STATUS='NEW')
WRITE (20,' (A9,2A13) ') 'TIME', 'H', 'GR'

H H+GR*DELT

GR RGR*H
WRITE (20,' (3G13.5) ') TIME, H, GR
TIME = TIME+DELT

<--integration
<--driving variables (none)
<--rate calculation
<--output
<--time=time+delt

- 11 -

GOTO 10
END IF

STOP
END

TIME H GR
.00000 1.0000 .10000
1.0000 1.1000 .11000
2.0000 1.2100 .12100
3.0000 1.3310 .13310
4.0000 1.4641 .14641
5.0000 1.6105 .16105
6.0000 1.7716 .17716
7.0000 1.9487 .19487
8.0000 2.1436 .21436
9.0000 2.3579 .23579
10.000 2.5937 .25937

In theory, the sequence in which various state variables are updated is not important because

their values should not depend on each other but should be fully determined by the rate

variables. In practice, however, state variables may sometimes be derived from other state

variables (e.g. root/shoot ratio or total weight of leaves equals weight of dead leaves plus

weight of green leaves). It is therefore important to put the state calculations in the right order,

as is also necessary for the rate calculations.

To ensure that the results of the simulation are correct, the different types of calculations

(integration, driving variables and rate calculations) should be strictly separated. In other

words, all states should be updated, then all driving variables should be calculated, after which

all rates of change should be calculated. If this rule is not applied rigorously, there is a risk that

some rates will pertain to states at the current time whereas others will pertain to states from

the previous time step.

Since the calculations of rates and states cannot be mixed during a time step but should be

executed separately, all the state calculations have to be merged into one block as do all the

rate calculations. Often, different subprocesses are interacting (e.g. a plant transpiring water

from the soil). In many cases these interactions among the subprocesses are only weak. The

water content at different depths in the soil is needed for the plant/soil system in the plant

submodel. This is then used to determine water uptake for transpiration in dependence of

rooting depth. The submodels for the plant and soil water thus share a limited amount of

information, but they may contain very detailed descriptions of plant growth and soil moisture

redistribution with many different rate and state calculations.

-~rn view of the above,lt-ls nor a goOdSOlillion to cornomeal1 ttle~stale-calcu1attons~fromihe ~-~""~""""""""~~-""""""

different subprocesses into one large program section and all the rate calculations in another.

But it is feasible to separate the state and rate calculations within the subprocess descriptions

(such as the plant) and have a calling program decide which of the two to execute. With this

- 12 -

method, the states can be calculated separately from the rates, whereas rates and states

pertaining to the same subprocess are within the same subprogram. This technique is also

discussed by van Kraalingen and Rappoldt (1989).

This concept of 'task-controlled execution' is illustrated in Fig. 2. The program lines of the

plant and soil water subprocesses are separated into rate and state sections and only one of

these is executed during a single call. Note that this program structure performs the

calculations in exactly the same order as the circle given in Fig. 1.

~,

task = integration Plant -.ij State section

Rate section

--

Soil - --• State section - ---
-- Rate section ----

Determine driving variables

task= rate calculation Plant

------------~-1 I State section i" === Rate section
~-~---------------------

-~----------~-~Soil I State section

Rate section

Output

time = time+delt

I
I

Fig. 2: General structure for incorporating several subprocesses containing integration and rate

calculation into a single simulation model.

- 13 -

So far, we have not discussed how to initialize the states, or where to enter the simulation

circle and where to leave it (see Fig. 1).

It is convenient to leave the circle somewhere between time update and integration, because

there the time and corresponding rates have been written to the output device and after the

time update it seems logical to check whether the finish time (FINTIM) has been exceeded or

whether further simulation is required. Consequently, the circle should also be entered

between time update and integration. The most convenient way to initialize the subprocesses

is to have this operation controlled by the main program. This makes reruns possible, because

in the main program the whole model can be reset to its initial state and be run again, with

different weather data for instance. These refinements to Fig. 1 are shown in Fig. 3.

End,..,..

Initialization
Rerun~/_,

Ter~in~~ Integ ratio~
time = time+delt Driving variables

Output Rate calculations

~
Fig. 3: The order in which calculations are executed when simulating continuous systems using Euler

integration, illustrating where to enter and leave the circle and how reruns are implemented.

The question mark between time = time+delt and integration indicates the point at which it is

decided whether or not to execute another time step. If the decision is "no", the model

proceeds to the terminal section; if it is "yes" the circle is run once more. After proceeding to

the terminal section, it must be decided whether a rerun is required. If the decision is "yes" the

- moaernas Iooe re-=immmzea ana~a new slmolattonTUn is-started.

As shown in Fig. 2, the modularity of the subprocess descriptions is preserved by introducing

the concept of task-controlled execution (the calling program decides what the subroutine

- 14 -

should do: either integration or rate calculation). To be able to do reruns, the various

subprocess descriptions that can also be driven by the task variable have to be initialized

externally, and some terminal calculations (e.g. harvest index) have to be done. Thus, a

subprocess description in the FSE program should recognize four different tasks:

initialization, integration, rate calculation and terminal calculation.

A consequence of this structure is that the first step after initialization is integration. This does

no harm if the rates have been set to zero explicitly, so that the first integration has no effect

on the value of the states. In practice this means incorporating many rate assignments to zero

into the model. To avoid this, integration can be skipped if the previous task was initialization

(during which the states have been assigned values anyway). The subsequent rate

calculation will then use the state variables to initialize the rates of change. This shortcut is

implemented in the main program of FSE but has not been shown in Fig. 3.

In the next Chapter we will discuss how this theory of continuous simulation using Euler

integration is implemented in FORTRAN.

- 15 -

4 Implementing Euler integration in FORTRAN

In this Chapter the principles of Fig. 2 and Fig. 3, discussed in the previous Chapter, are

translated into a full program. Also, some more technical details will be discussed, to clarify

how the program actually works. For a definition of the utility subroutines and functions, see

Rappoldt & van Kraalingen (1990), and for a description of the weather subprogram and its

corresponding datafiles, see van Kraalingen eta/. (1990).

By the end of this Chapter you should have a fair understanding of the FSE program. More

technical details of the use of subprograms in simulation models can also be found in van

Kraalingen & Rappoldt (1989).

Control of the time loop

As shown in Fig. 3, after each time step it must be decided whether another time step is

required or whether the simulation should proceed to the terminal section. One of the criteria

to stop the simulation is that the finish time (F INT IM) has been exceeded. In crop growth

simulation however, simulation is more often terminated because the crop is mature or some

otllet ctitetion has been met. In other 'vvords, it shettld-be-pessible to terminate the siml!latitfOAH---.-------~

loop from within each of the subprocesses. This is most conveniently done with a global

variable called TERMNL of type LOGICAL, that indicates whether the loop should be

terminated. The simulation loop should continue as long as TERMNL = . FALSE. and the

criterion is programmed as an emulated DO-WHILE loop. This is shown in the example

program in Listing 4. Note that this program is conceptually similar to the program in Listing 3.

(The implementation of the rerun facility is not shown here.)

Some other features are also illustrated in this example program:

• Implementing the concept of task-controlled execution

The task concept discussed in the previous Chapter is implemented using an INTEGER

variable ITASK that can have four different values, indicating the action required of the

subroutines: 1 =initialization, 2=rate calculation, 3=integration and 4=terminal.

• Initializing the rates by skipping integration after initialization

As discussed in the previous Chapter, an integration call after initialization requires all rates to

--~have 1>een set.at z~r~during initialization.~WttbJarge mOdels~onfamtng_man}Lrafe_yanablas~~~ _

this would require a long list of assignments to zero. We consider this an inelegant solution

that is also error-prone (if the list is incomplete). A better solution is to perform rate calculations

directly after initialization. The states have been initialized in the initial section, so it is

- 16 -

permissible to compute rates of change from the states directly after initialization. In the

dynamic section of the model therefore, an IF-ENDIF has been put around the integration

section. The integration is now done only if a rate calculation has been carried out previously .

• Time control and output at multiples of PRDEL

The time control in a simulation program is more complicated than simply the increase of TIME

with DELT and therefore it has been hidden in a TIMER subroutine, together with the setting

of a flag when output is required (at the start time of the simulation, when TIME is a multiple of

PRDEL and at the time that the simulation terminates). The basic actions of the subroutine

TIMER are: ITASK=1: check values of FINTIM, DELT, TIME, etc. and copy these to variables

local to the subroutine, turn output flag on, ITASK=2: check whether local time variables

have the same value as the global time variables, add DELT to TIME, calculate day number

(DAY), flag if TIME is a multiple of PRDEL using the variable OUTPUT, flag if TIME has exceeded

FINTIM using the variable TERMNL.

The TIMER routine that is used in the FSE program has more features; for example, the year

of simulation is automatically incremented and the day number is reset to 1 when the day

number passes 365. Leap years are also recognized (DAY runs until 366), and the day

----------nombet is available as an integer-and-a.s-s-aa:-rre~eaati--\Jvr-aa:ttlutee~(-riDD:A'PiY~aAn~dEJ-BDAAYY.)t-;-. ----------------

• An outline of a plant routine

Program listing 4 shows a 'stripped' version of a main program and of a plant routine. Note that

the subroutine consists of four sections, corresponding to initialization, rate calculations,

integration, and terminal. We have chosen for each subprocess to write its relevant output

variables to an output device separately, instead of organizing the output from the main

program. This has the advantage that fewer variables have to be communicated with the main

program and fewer changes have to be made in the main program when a new plant routine is

used.

Listing 4: Example program of simulation loop driving a hypothetical plant routine.

PROGRAM SMALL
IMPLICIT REAL (A-Z)
LOGICAL TERMNL, OUTPUT
INTEGER ITASK

* initialization
TERMNL .FALSE.

TIME 0.0
FINTIM = 100.
DELT 1.0

* initialization of TIMER and PLANT subroutines

- 17 -

CALL TIMER (ITASK, DELT, PRDEL, FINTIM, TIME, DAY, TERMNL, OUTPUT)
CALL PLANT (ITASK, OUTPUT, TERMNL, TIME, DAY, DELT, ...)

* run loop as long as TERMNL is not .TRUE.
10 IF (.NOT.TERMNL) THEN

*
IF (ITASK.NE.1) THEN

integration
ITASK = 3
CALL PLANT (ITASK, OUTPUT, TERMNL, TIME, DAY, DELT, ...)

END IF

* driving variables
CALL WEATHR (DAY, weather variables)

* rate calculation
ITASK = 2
CALL PLANT (ITASK, OUTPUT, TERMNL, TIME, DAY, DELT,

& weather variables)

* time update, TIME multiple of PRDEL ? => OUTPUT = .TRUE.
CALL TIMER (ITASK, DELT, PRDEL, FINTIM, TIME, DAY, TERMNL, OUTPUT)

GOTO 10
END IF

* terminal calculations
ITASK = 4
CALL PLANT (ITASK, OUTPUT, TERMNL, TIME, DAY, DELT, ...)

STOP
END

*---

*

*

*

SUBROUTINE PLANT (ITASK, OUTPUT, TERMNL, TIME, DAY, DELT,
& weather variables)

IMPLICIT REAL (A-Z)
LOGICAL TERMNL, OUTPUT
INTEGER ITASK
SAVE

IF (ITASK.EQ.1) THEN
initialization of states and parameters
WLVI = 6. 8
WLV = WLVI

ELSE IF (ITASK.EQ.2) THEN
rate calculation and output
GLV = ...

IF (OUTPUT .OR. TERMNL) THEN

WRITE (IUNITO, format) WLV,
END IF

ELSE IF (ITASK.EQ.3) THEN
state calculation and check if TERMNL must be .TRUE.
WLV = WLV+GLV*DELT

IF (DVS.GE.2.0) TERMNL
ELSE IF (ITASK.EQ.4) THEN

* terminal calculations

END IF

RETURN
END

- 18 -

.TRUE.

The crop growth simulation program thus consists of a main program and one or more

subroutines (similar to Listing 4) that represent the different subprocesses. Because of the

complexity of the descriptions of the subprocesses (soil water and plant), and the limited

number of interactions between plant and soil, the soil water and plant subprocesses will

normally be separated into different subroutines.

Initializing the states and parameters from external data flies

Three of the four sections distinguished in the plant submodel (integration, rate calculation

and terminal) consist of relatively straightforward calculations. The initalization section,

however, requ1res a separate explanation.

As explained in Chapter 3, model parameters have to be given values and states have to be

initialized. As shown in Listing 4, this can be done by simple assignments such as

WLVI = 6 . 8. Any change in the value of one of the parameters or initial states, however,

would then require compilation and linking of the model, a serious drawback compared with

CSMP. In CSMP the user can run the model with different parameter sets automatically (after

the END statement) or after parameter values in the CONTRO.SYS file have been changed.

To introduce that option in the FSE program too, initial parameters values are read from data

files.

The values are extracted from the data files using a set of subroutines whose names all begin

with RD (e.g. RDSREA means 'read a single real value')'. With these routines the user can

request the value by supplying the name of the requested variable (after having defined

which data file to use). The statement:

CALL RDSREA ('WLVI', WLVI)

requests the subroutine RDSREA to extract the value of WLVI from the data file and assign it to

the variable WLVI. It does so by searching for the line: WLVI =<value> in the data file (in fact,

u ~~~~~~~~~1he procedure~isslightJyaifferent ourthafaoes not affect the unde~rstanaing oflhe concept of

the RD routines: the values are actually read from a temporary file which is created after syntax

check and analysis of the data file). Consequently, the data file consists of the names and

values of variables. The syntax of the data files is explained in more detail in Chapter 5.

- 19 -

As an example, Listing 5 shows part of the initialization section of a plant routine. An

explanation is given below the example listing.

Listing 5: Example illustrating the use of some RD routines.

IF (ITASK.EQ.1) THEN
CALL RDINIT (IUNITP, IUNITO, FILEP)
CALL RDSREA ('WLVI', WLVI)
WLV = WLVI
CALL RDSINT ('ILEAF', ILEAF)
CALL RDAREA ('PLMTT', PLMTT, ILAR,

CLOSE (IUNITP, STATUS='DELETE')
ELSE IF (ITASK.EQ.2) THEN

The statement:

CALL RDINIT (IUNITP, IUNITO, FILEP)

IPLMTN)

calls the routine that 1) opens the file with variable name FILEP using unit=IUNITP+1 (FILEP

---------~·S--a-Cnataeter string that has been asslgned the string PLANT .D~T in the calllng-pro'=J-grklaH-lmi-1-1}~, £.-2}~---------------~

analyses the data file, 3) creates a temporary file from the data file using unit=IUNITP, 4)

closes the data file (leaving IUNITP used !!), and 5) sends all error messages that have been

created to a log file (with unit=IUNITo; this log file must have been opened previously!).

After this call, the plant subroutine can acquire the numerical values (including arrays) through

three different AD routines, RDSREA (read single real), RDSINT (read single integer), and

RDAREA (read array of reals). The CLOSE statement deletes the temporary file that is created

by the AD routines.

The corresponding data file PLANT.DAT pertaining to Listing 5 could be as follows:

WLVI = 10.; PLMXP = 38.
PLMTT 0.,0., 10.,1., 30.,1., 50.,0.
ILEAF = 218

The TIMER routine does not initialize itself from a data file like the plant and soil routines, but

initial values are extracted from a data file in the main program, after which TIMER is initialized

with these values.

Often, several runs with a crop growth simulation model are required. Examples are the study

of crop yields for a number of years, or the analysis of the effect of a different value for an input

parameter. In CSMP this can be done by repeating the parameter that is to be changed after

- 20 -

an END statement. In Listing 6, weather data from 1984 are used in the first run; additional runs

are made using weather data from 1985 and 1986. This facility in CSMP is called the rerun

facility. The output of the different runs is merged in the same output file, for easy

comparison.

Listing 6: Example of the rerun facility in CSMP.

TITLE DEMONSTRATION
PARAM YEAR=l984.
< model description etc. >
END
PARAM YEAR=l985.
END
PARAM YEAR=l986.
STOP
END JOB

We have included a similar rerun facility in the FSE program. Had this not been implemented,

the user would have had to make changes in the data files and run the model again (but,

without compiling and linking). Each new run would also have deleted existing output files.

This would have been a clumsy way to do multiple runs.

The general idea behind the rerun facility is that the data files remain identical and that the

changes in data are specified in a separate file called RERUNS.DAT, which may contain the

names and values of variables from any of the 'standard' data files that are read by the

program. Thus, the file RERUNS. OAT may contain parameters from soil, plant and TIMER data

files. In the first run, the values from the standard data files will be used. In subsequent runs

those values are then automatically replaced by the values from the rerun file. Execution will

continue until all the rerun sets from RERUNS.DAT have been used. The output of the

different runs is merged in one output file. An example rerun file is:

WLVI
WLVI
WLVI

8.0; DSI
6.8; DSI
8.0; DSI

0.18
0.25
0.25

This specifies three reruns with different values of WLVI and DSI. Unlike in CSMP, variables

have to be repeated even if they do not change value. This is explained in more detail in

Chapter 5.

It may be deduced from Fig. 3 that the control structure for the reruns should be programmed

as a loop around the actual model. In Listing 7 the principle of the reruns is illustrated, using

lf11fmam-prog~ramof t1stin~g~3 a-s a-basis. ~ro-strorten-the-text;Lhe~contents-ot1tre~mainioop-~~·

(IF ... until END IF) have not been repeated.

- 21 -

Listing 7: Schematic program showing the implementation of reruns.

*

PROGRAM RERUN
IMPLICIT REAL (A-Z)
LOGICAL TERMNL, OUTPUT
INTEGER I1, ITASK, INSETS

CALL RDSETS (... , INSETS)

DO 5 I1=0,INSETS
CALL RDFROM (I1, ...)

initialization of TIMER and PLANT subroutines
ITASK 1
TERMNL .FALSE.
TIME 0.0
FINTIM 100.
DELT 1.0
CALL TIMER (ITASK, DELT, PRDEL, FINTIM, TIME, DAY, TERMNL, OUTPUT)
CALL PLANT (ITASK, OUTPUT, TERMNL, TIME, DAY, DELT, ...)

* run loop as long as TERMNL is not .TRUE.
10 IF (.NOT.TERMNL) THEN

< main loop contents removed >
GOTO 10
END IF

ITASK = 4
CALL PLANT (ITASK, OUTPUT, TERMNL, TIME, DAY, DELT, ...)

5 CONTINUE

STOP
END

The call to RDSETS detects the possible presence of the RERUNS. OAT file and then analyses

the data file if there is one. The return variable INSETS contains the number of rerun sets

present in the rerun file; its value is zero if the rerun file is absent or empty. The subsequent

Do-loop runs INSETS+1 times, because there is always one more than the number of sets in

the rerun file (one run with standard data files+ INSETS reruns). The value of the Do-loop

counter (I1, the set number) is then used in the call to RDFROM to select a parameter set for

the simulation. For I1 is zero, the standard data files will be used by the RD routines, for I1

larger than zero, the RD routines will automatically replace values with values from the rerun

file. No changes are necessary in the subprocess descriptions, as these replacements are

internal to the RD routines. To the plant or the soil water balance routines it appears as if the

values used originate from the standard data files I!! Therefore no ~hanges are necessary in

the such as the ones in to make reruns po~;s101e

Results from the reruns are written to the output file after analysis of the rerun file and after

each replacement. Before a rerun is started, a check is done to see if all the variables of the

preceding set were used. If this is not the case, it is assumed that there is a typing error in the

- 22 -

data files and the simulation is halted.

Output of simulation results

As shown in Listing 4, output is organized from each subroutine separately. This avoids large

argument lists to communicate output variables to the main program and limits the number of

changes in the main program when, for instance, another plant routine with different output

variables is used.

All subroutines write their output to the same output file (whose name is defined in the FSE

main program). By using a set of special routines (the OUT routines), output can be written in

the form of tables. It is also possible to add print plots of selected variables to that output file.

The use of the OUT routines considerably simplifies the generation of output files. The

available routines are OUTDAT for output of single variables, ouTARR for arrays and OUTPLT for

print plots of selected variables. Note that OUTPLT can only be used for variables that have

been 'dumped' with either the OUTDAT or OUTARR routines. The basic operations are shown

in Listing 8. In this example, a table and a print plot of the function y = sin (X), y =cos (X), for

X=O, n (with steps of n/20) are created. Also, both values are stored in an array of two

elements which is written to the output table with a single OUTARR call.

Listing 8: Example program for the use of the OUT routines.

10

PROGRAM SINE
IMPLICIT REAL (A-Z)
REAL A(2)
INTEGER I1
PARAMETER (PI=3.141597)

CALL OUTDAT (1, 20, 'X', 0.)
DO 10 I1=0,20

X= FLOAT (I1)*PI/20.
SINX SIN (X)
COSX COS (X)
A (1) SIN (X)
A(2) COS (X)
CALL OUTDAT (2, o, 'X'' X)
CALL OUTDAT (2, o, 'SINX',
CALL OUTDAT (2, o, 'COSX',
CALL OUTARR (A, 'A'' 1, 2)

CONTINUE

SINX)
COSX)

CALL OUTDAT
CALL OUTPLT

4, 0, 'sin+ cos', 0.)
1, 'SINX')

~6~;~~Ts~1n ~+~cos •-)

CALL OUTDAT (99, 0, ' ', 0.)
STOP
END

<- define x as independent variable,
use unit=20 for output file

<- store value of x
<- store value of SINX

<- store value of cosx
<- store array A from 1st to 2nd element

<- create normal output table
<- define srNx to be plotted

~creare-pTintplot withiitle­
<- delete temporary file

- 23 -

Output of Listing 8:
*--
* Run no.:

* sin + cos

X

X
.00000
.15708
.31416
.47124
.62832
.78540
.94248
1.0996
1.2566
1.4137
1. 5708
1. 7279
1.8850
2.0420
2.1991
2.3562
2.5133
2.6704
2.8274
2.9845
3.1416

.00000

.15708

.31416

.47124

.62832

.78540

.94248
1. 0996
1.2566
1.4137
1. 5708
1. 7279
1.8850
2.0420
2.1991
2.3562
2.5133
2.6704

3.1416

1, (Table output)

SINX cosx A(1) A(2)
.00000 1. 0000 .00000 1. 0000

.15643 .98769 .15643 .98769

.30902 .95106 .30902 . 95106

.45399 .89101 .45399 .89101

.58779 .80902 .58779 .80902

.70711 .70711 .70711 .70711

.80902 .58778 .80902 .58778

.89101 .45399 .89101 .45399

.95106 .30902 .95106 .30902

.98769 .15643 .98769 .15643

1.0000 -0.21895E-05 1. 0000 -0.21895E-05

.98769 -.15644 .98769 -.15644

.95106 -.30902 .95106 -.30902

.89101 -.45399 .89101 -.45399

.80902 -.58779 .80902 -.58779

.70710 -.70711 .70710 -. 70711

.58778 -.80902 .58778 -.80902

.45399 -.89101 .45399 -.89101

.30901 -.95106 .30901 -.95106

.15643 -.98769 .15643 -.98769

-0.43790E-05 -1.0000 -0.43790E-05 -1.0000

sin + cos
Variable Marker Minimum value Maximum value

-------- ------------- -------------
SINX 1 -0.4379E-05 1. 000

A(2) 2 -1.000 1.000

Scaling: Individual

1---2
I 1 I I I 2
I I 1 I I 2I

I

I

I

I

I

I
I
I
I
I
I
I 2

2
2

2

I

I

I

I

I

I
I
I2
I
I
I

I

1 I
I 1
I
I

I

I

2 I
2 I

I
I
I
I 1

1 I

I 2 I
I 2 I

1 I 2 I
I 21 I

2I 1 I
2 I

I 1I

I 1 I
I 1 I
I 1 I

1 I I
I I
I I

*---I

- 24 -

The OUTDAT and OUTPLT routines also have a task parameter as input (the first argument in

the call statement), similar to the subprocess descriptions. The first call (with ITASK=l) to

ouTDAT specifies that x will be the independent variable and that unit=20 can be used for the

output file. Subsequent calls with ITASK=2 instruct OUTDAT to store the incoming names and

numerical values in a temporary file (with unit=21). The number of combinations of name and

value that can be stored depends solely on free disk space and not on RAM memory. The first

call to ouTDAT below the Do-loop (with ITASK=4) instructs the routine to create an output

table using the information stored in the temporary file. Different output formats may be

chosen, dependent on the value of the task variable. Tab-delimited format (e.g. for MS­

EXCEL) can be generated with ITASK=S, two-column format (for TTPLOT) with ITASK=6.

With any of these I TASK values, the string between quotes is written above the output.

The OUTARR call (see listing 8) is actually an 'interface' call to OUTDAT. What the routine does

internally is that it generates names (like A (1) and A (2)) and calls OUTDAT repeatedly for

each of these name-value combinations. The range of subscripts that should be generated

by OUTARR is specified by the third and the fourth (last) subroutine arguments.

The first and second calls to OUTPLT define that s INX and A (2) should be plotted (up to 25

variables can be plotted per graph). The third call to OUTPLT (ITASK=6) instructs the routine

to create a graph using the variable(s) that were defined with ITASK=l. Two different options

for the width of the plot are available, 80 and 132 columns, and two different scalings, a

common scale for all variables or individual scaling for each of the variables (see Table 1). This

procedure can be repeated several times. Separate print plots can be made of dry weights,

weather data etc .. The final call to OUTDAT (with 99) deletes the temporary file.

Table 1: Task variable options that should be supplied to OUTPLT to generate the different print plot

types.

Scaling
Individual

Common

Weather data

Width
132 80

4 6

5 7

The weather data used in the model are read from external files. The weather data file

definition, however, is different from those for the RD routines. The weather data system

used, has been developed jointly by the Centre for Agrobiological Research and- f~-~

Department of Theoretical Production Ecology. It is especially suited for use in crop growth

simulation models and has been documented in a separate report (van Kraalingen et a/.,

1991) that can be obtained from the same sources as this documentation. It is an easy system

- 25 -

to understand and we will outline it briefly using some introductory paragraphs from van

Kraalingen eta/. (1991). The latter report also contains a list of weather data from all around

the world that are currently available on request (this list is reproduced in Appendix D).

The weather data system basically consists of two parts: the weather data files and a reading

program to retrieve data from those files. A single data file can contain, at the most, the daily

weather data from one meteorological station for one particular year. The country name

(abbreviated), station number and year to which the data refer are reflected in the name of the

data file.

The reading program consists of a set of subroutines and functions, only two of which are

intended to be called by the user (Listing 10, STINFO and WEATHR). The others are internal to

the reading program.

A call to the first subroutine (STINFO) defines the country (CNTR), station code (ISTN), year

number (IYEAR) and the name of the directory containing the weather data (WTRDIR). A

control parameter (IFLAG) should also be supplied to indicate where possible messages of

the system should be directed (screen and/or log file), and a name must be given to the log

file if that name should differ from the default name WEATHER. LOG. The subroutine STINFO

returns the location parameters (longitude, LONG, latitude, LAT and altitude, ELEV) of th

selected meteorological station, and two coefficients of the Angstrom formula (A and B)

pertaining to the selected station, if the irradiation data are derived from sunshine hours. The

value of a status variable (I STAT) indicates a possible error or warning (e.g. the data file

requested does not exist). The location parameters can later be used to calculate daylength

(from latitude) or average air pressure (from altitude).

After this initialization procedure, weather data for specific days can be obtained by calls to the

second subroutine (WEATHR) with day number starting from January 1st as 1, as input

parameter. The output of WEATHR consists of six weather variables for that day and the value

of the status variable I STAT indicating a possible error or warning (e.g. missing data, data

obtained by interpolation, requested day is out of range, etc.). The six weather variables are

daily shortwave irradiation (RAD), minimum and maximum air temperature (TMMN and TMMX),

vapour pressure (VAPOUR), wind speed (wiND) and rainfall (RAIN). In Listing 9, the weather

data for 1984 from the meteorological station in Wageningen are extracted from the file

NL1. 984:

Listing 9: Example of use of the weather data system.

PROGRAM EXTR

INTEGER IFLAG, ISTN, IYEAR, ISTAT,

CHARACTER WTRDIR*80, CNTR*6

I FLAG
WTRDIR

1101

' '
<- errors to screen and log file, warnings to log file
<- weather files on current directory

CNTR
ISTN
I YEAR

'NL'
1
1985

- 26 -

<- country name
· <- station number

<- year number

CALL STINFO (!FLAG, WTRDIR, ' ', CNTR, ISTN, !YEAR,
& !STAT, LONG , LAT, ELEV, A, B)
< location parameters of station are known >

DO 10 IDAY=1,365
CALL WEATHR (IDAY, !STAT, RAD, TMMN, TMMX, VAPOUR, WIND, RAIN)
< weather for day= IDAY is known, calculations can be done >

10 CONTINUE

STOP
END

STINFO can be called again at any time during program execution to change any of its input

parameters. A call to STINFO with identical input parameters is also permitted (in fact this is

done regularly in the FSE main program). Similarly, WEATHR can be called repeatedly with any

day number between 1 and 365 (or 366 in the case of a leap year).

Errors and warnings from the FSE program

Errors are defined as conditions that make it Impossible to continue simulation. Examples

are: a parameter value not found in a data file, or weather data not available for the year

requested. A warning occurs in the case of unlikely events that do not, however, prevent

continuation. Examples are: an attempt to search outside the range of the independent

variable in a LINT function table, or one or more weather data that are not available for the

requested day but are provided by interpolation.

All errors terminate model execution and a message to that effect is displayed on the screen.

In some cases the error is also written to the output file (RESUL TS.OUT). Warnings are

displayed on the screen and are sometimes also written to the output file (remember,

warnings allow simulation to continue).

The weather system can also generate errors and warnings. Unlike errors from other sections

of the model, the weather system itself never terminates execution of the model. It is the FSE

main program that subsequently terminates the simulation run. Errors from the weather

system are written to the screen and the log file WEATHER.LOG, warnings are written to the

log file only.

The general syntax of errors and warnings is similar:

text>

WARNING from <module name>: <warning text>

- 27 -

for example:

ERROR in FSE-MAIN: cannot read weather directory and country name
from TIMER file

WARNING from OUTDAT: zero length variable name

- 28 -

- 29 -

5 How to operate the model and its data files

This Chapter describes how the model operates and the syntax of the corresponding data

files. Chapter 6 explains how to modify the source code of the program. We assume that you

have successfully compiled and linked the FSE program and that you know how to run the

model and are able to use an editor to create and modify the data files (otherwise, see Chapter

9).

The following steps have to be taken to use the model:

1) Modify data files if necessary

Most of the parameters and initial values of the state variables of the various subprocesses are

read from data files. This has the advantage that the model does not have to be recompiled

and linked if changes are implemented in the data only.

The following data files are used when SUCROS is used with the FSE program :

Name:

TIMER. OAT

PLANT.DAT

Weather data files

<optional>

RERUNS. OAT

Used by:

TIMER

SUCROS

STINFO,

WEATHR

RDSETS,

RDFROM

Contents:

time variables (year, time step, etc.), weather station,

country, control variables,

plant parameters and initial values of state variables,

daily weather data.

TIMER and plant parameters (used in reruns),

Note: When models other than SUCROS are used with the FSE program it is possible for more data files

to be used and/or for them to have different names.

The data files TIMER.DAT, PLANT. OAT have identical formats, and each variable in them may

appear only once. The file RERUNS. OAT has basically the same syntax, except that it should

consist of identical sets of variables. The following syntax rules apply to TIMER.DAT and

PLANT.DAT:

the file consists of names and numerical values of variables, separated by an '=' sign.

the name of a variable cannot exceed six characters,

for array variables, more than one numerical value may follow the equal sign, separated by

commas,

- 30 -

identical numerical array values may be given as n*<numerical value>,

variables may appear in the file in any order,

comment lines start with ' * ' in the first column, or ' ! ' in any column (the rest of the line

is ignored),

continuation character is',' on preceding line, applies to arrays only,

names of variables and numerical values can be given on the same line if separated by a

single semicolon ' ; ' ,

Only the first 80 characters of each record of the data file are read,

The decimal point in a real value like 2 o . may be omitted,

No tabs or other control and extended ASCII characters are allowed in the file.

These rules are illustrated in Listing 1 0.

Listing 1 0: Example data file:

<Start of datafile>

* example data file
A 10.
B 0., 2., 3., 4.
c 10., 20.,

D

E

100*10.
10.; F 20.; G

<end of file>

The TIMER.DAT file

30.

single value
array of four elements
array continued on next line

array of 100 elements
more than one parameter on single
line

This data file specifies 1) the value of the time variables such as time step of integration, time

between different outputs to file, etc., 2) the directory in which the weather data are stored,

the country code, station number and year, and 3) some miscellaneous control variables. An

example file is given in Appendix A. The meaning of the different variables of this file is:

First line with exclamation mark(!):

Very often, large numbers of weather data files will be used. For this reason it is convenient to

store these data in a separate directory. By typing a directory name after this exclamation mark,

you can direct the weather system to read weather data from that directory. An example line

could be:

! DISK$DUA1: [<account>. SYS. WEATHER] <- example directory for VAX-VMS

! G: \ SYS \WEATHER\ <- example directory for IBM-PC and compatibles

! HD 4 0 :WEATHER: <- example directory for Apple Macintosh

Note the colon (:) and backslash (\) characters following some directory strings.

- 31 -

Second line with exclamation mark(!):

This line contains the abbreviated country code; it too is written immediately after the

exclamation mark. For a list of available weather data files, their corresponding country codes

and station numbers, see van Kraalingen eta/. (1990) and Appendix D. Example lines are:

!NL

!UK

!ITALY

<- country code for The Netherlands

<- country code for United Kingdom

<- country code for Italy

You may have noted that according to the rules of the data files, any text immediately following

an exclamation mark is regarded as comment by the RD routines. However, it is not yet

possible to read character strings from a data file with the RD routines. Separate code has

been added to the FSE main program to extract these two character strings from the data file

without interfering with the RD routines. The rules that apply to these two character strings

differ from those that apply to the rest of the file. The rules are: 1) the weather directory should

be given immediately after an exclamation mark on the first line after a comment block with

asterisks, 2) the country code should be given immediately after an exclamation mark on a

new line following the weather directory (see Appendix A). Unlike other variables, these

character strings cannot be used in reruns.

IS TN and I YEAR

These variables refer to weather data and indicate the station number and year that should be

used from the country following the second exclamation mark. For example, when the country

code is NL (The Netherlands), ISTN=1 and IYEAR=1984, the weather data from

Wageningen 1984 will be used by the model. During execution, the weather system will try to

open a file by the name of NL 1 .984 on the directory given after the first exclamation mark.

DAYB, FINTIM. PRDEL and DELT

These variables represent the time parameters of the model. DAYB is the start day of the

whole program; its value should be between 1 and 365. F INT IM is the finish time of the

simulation. Note that this is counted from the start of simulation! For example when

DAYB = 93, and FINTIM = 10, the simulation will continue until DAY = 103. The variable

PRDEL indicates the time between consecutive outputs to file. For example, when

PRDEL = 5, output is given each time that TIME is a multiple of PRDEL (TIME=5, 10, 15 etc.).

Irrespective of the value of PRDEL, output is always given at the start of the simulation

(TIME=O) and when the simulation is terminated (either FINTIM = TIME or some other finish

~riterion)~By-giving--PRDE-rra-high-value-(e.g.-1.000)-intermediat~outputs-a.-e-Suppressed-and __ ~ _ _ -~­

only the initial and terminal rates and states will be output. DELT is the time step of integration.

The value of DELT cannot be chosen freely, but is normally determined by the model that you

are using. For SUCROS a value of one day is normally required.

- 32 -

ITABLE, IDTMP and HARDAY

The variable I TABLE defines whether an output table is required (no output table: IT ABLE

o) and if so, what the format should be. A multiple column table (I TABLE = 4) is sufficient for

normal printing and viewing. But the normal table format is not very suitable to be imported in

spreadsheet or graphics programs. Using I TABLE = 5, a tab-delimited multiple column table

which is easily imported in programs such as Excel is generated. A two-column format,

suitable for further processing with TTPLOT, is generated using I TABLE = 6.

The variable IDTMP defines whether the file of temporary output data (RES.TMP) should be

deleted at termination of the simulation (IDTMP = o, do not delete, IDTMP = 1, delete).

This file is built during the dynamic phase of the simulation and is read during the terminal

phase of the simulation to generate the output file RESUL TS.OUT from. The temporary file is

not of great value for normal purposes and can be deleted. However, there is the option of

generating graphs directly from the temporary file after termination of the simulation with the

TTSELECT program in combination with the TTPLOT graphing program. For this special

purpose the temporary file should not be deleted.

The variable HARDAY can be used to force output at day_numbers for which haruest data from

the field are available. In many cases these harvest data will not coincide with output intervals

in the model unless P RDEL is set to unity (which may cause large output files to be

generated). A maximum of twenty day numbers can be defined here. A single value of zero

indicates that no forced output is required. Examples are:

HARDAY = 11.,27.,52.

HARDAY = 0.

Other data files

<- Output is forced on days 11, 27 and 52

<- No forced output

The name and definition of other data files depend on the model used in conjunction with the

FSE program. If you are working with a model like SUCROS, you are likely to be using a data

file PLANT.DAT. When simulating how lack of water limits growth, a file named SOIL.DAT

containing soil parameters and initial values, has to be present in the appropriate format.

Normally, the general syntax rules as discussed above will apply to these data files.

The RERUNS.DAT file

lhe lileRERUNSTI~nsaosem or erripty~fffe~rriodel wi11execuleone single run, u-s,ng tne

data from the standard data files. By creating a rerun file, the model will execute additional runs

with different parameters and/or initial values for the state variables. Therefore, the total

number of runs made by the model is always one more than the number of rerun sets. Names

- 33 -

of variables originating from different data files can be redefined in the same rerun file (see

example). The format of the rerun files is identical to that of the other data files, except that the

names of variables may appear in the file more than once. Arrays can also be redefined in a

rerun file. The order and number of the variables should be the same in each set. A new set

starts when the first variable is repeated. This is shown in the following example:

<Start of file>

* example rerun file redefining the single variable DAYB from file
* TIMER.DAT and NPL from file PLANT.DAT

DAYB = 90.; NPL 250. 1st rerun set
DAYB 110.; NPL 210. 2nd rerun set
DAYB 110.; NPL 250. etc.
DAYB 130.; NPL 210.
DAYB 130.; NPL 250.

<end of file>

Unlike reruns in CSMP, each variable whose value is changed somewhere in the rerun file

should be assigned a value in each set, even if that value is identical to the value in the

previous set.

We discussed the implementation of reruns in the source code of the program 1n Chapter 4.

2) Run the model

The model does not require interactive input during execution. The runs have been specified

completely in the data files. During execution, the model will display run number, year number

and day number repeatedly on the screen. During execution, errors and warnings may occur

from the weather system and/or from the other modules of the model. They generally consist

of one line of text. If simulation is terminated by an error during the dynamic section of the run,

the outputs generated before the error in that particular run occurred, are written to the

temporary file but are not yet written to the output file until the terminal section of the model.

Data can be recovered from the temporary file, using the OUTREC program (OUTput

RECovery, see the section on Error Recovery in this Chapter).

3) Examine output

The model typically creates two output files: RESUL TS.OUT and WEATHER.LOG. The

RESUL TS.OUT file contains the contents of the input files copied into the output file plus the

output of the model with the reruns merged below each other in the file. WEATHER.LOG

---~centaifls~H~the ~messages-generated-by- the -weather--Sy-Stem.~By default, -aiLthe~commenf __

headers of the data files, all warnings and all errors from the weather system are written to this

log file. The format of the output file RESUL TS.OUT depends on the value of the variable

ITABLE from the TIMER.DAT file.

- 34-

As explained in Chapter 3, some of the warnings and error messages generated in the

program (except those generated in the weather system), are written to RESUL TS.OUT. If

this happens it is important to note that the output table is created during the terminal section

of the model and that warnings are written to the output file during the dynamic simulation, so

that the output table follows the warnings in the output file.

The output can be graphically analysed using the TTSELECT and/or TTPLOT programs.

Error recovery

If a run is terminated by some error from the model, the output file RESUL TS.OUT will not

contain the results of that specific run. But the results up till the error occurred are written to

the temporary file RES.TMP. This file can be converted into an output table by running the

output recovery program OUTREC. This program requests an integer number from the user.

A standard output table is generated by a '4' (the default), '5' generates a tab-delimited table

(meant to be imported in Excel), '6' generates an output of only two columns at a time. The

output table will be written to the file OUTREC.OUT so that any existing RESUL TS.OUT file is

not deleted.

The listing of the OUTREC program is given in Appendix E.

- 35 -

6 How to implement changes to an existing subroutine

You are strongly advised not to make changes in the subroutine structure unless you are well

acquainted with the theory underlying that structure. Changes will more often be made in the

description of the plant or soil subprocesses. In general, you have to be more careful

changing a FORTRAN program than one in CSMP. If you understand the principles of the

program, however, it is not difficult to implement modifications correctly and FORTRAN

provides a much greater flexibility. A list of possible modifications will be discussed here. We

assume that you know the syntax rules of FORTRAN.

If you want to create a new subprocess description (including data file initialization, integration,

output, etc.), follow the structure of the subprocess descriptions as closely as possible. This

is further outlined in Chapter 7.

Modification of subprocess calculations

First, define the modification in terms of program statements. If new variables are introduced,

determine the type for each of them (parameter, driving variable, rate of change or state). If the

new variables are local to the subroutine, determine the exact position in the text where each

variable should be assigned a value. Parameters and initial values of states are likely to be

given their values in the initialization section, using one of the RD routines (see Chapter 3).

These routines can extract the values of variables by their name from a data file. Different RD

routines can be used depending on the data type of the variable. The routines RDSREA,

RD s INT, and RDAREA, enable .s,ingle m.a,ls, .s,ingle iD.tegers and .arrays of m_als to be read.

Driving variables should be assigned a value at the top of the rate section, rates should be

defined in the proper order in the rate section. States should be integrated in the integration

section.

It is especially important that rate calculations appear in the correct order. So any variable

that appears to the right of the'=' sign of the modification you are making, and that is assigned

a value in the rate section, should have been assigned a value above the line of the

modification, i.e.:

Wrong

ELSE IF (ITASK.EQ.2) THEN

A= B* ...

B =

Correct

ELSE IF (ITASK.EQ.2) THEN

B =
A= B* ..•

If variables are to be communicated among subprocesses, include them in the list of formal

parameters too.

- 36 -

Add a variable to the output list

In general the output list should appear at the end of the ITASK=2 section. Output however,

should only be generated if either the output flag (ouTPUT), or the terminal flag (TERMNL) is

on. Rates, states, and driving variables should be output here. A variable can be added to the

output list by simply adding another call to ouTDAT (or ouTARR, if you want to output an array)

in the output list, between the IF-END-IF lines. The names of variables in the output file will

be in the same order as in the output list.

Add a finish condition

Each subprocess can terminate the run by setting TERMNL to . TRUE .. However, in each

subprocess description there is only one place where this can be done in such a way that

corresponding states, driving variables, and rates are all output to file. This place is at the end

of the ITASK=3 section, as shown in Listing 4. Any additional finish condition should be

added here, similar to the existing ones.

Add titles to the output file

As shown in the listings of the modules, in the initial section a subroutine, OUTCOM, that

accepts a text string, is called. This string is handled as a title by the output routines. Several

subprocesses can send their title to the output routines and these titles are printed above

each output table. There is no objection to several titles from a subprocess. The call to

ouTCOM can be repeated several times with different text strings. A total of 25 titles can be

handled by the output routines (identical ones are discarded).

Add print plotted variables

In the terminal sections of the subprocesses, calls to OUTPLT are given. The calls with a '1' as

the first argument define a list of variables to be print plotted. The call to OUTPLT with '4', '5',

'6', or '7' as the first argument, actually creates the print plot for the selected variables. This has

been described in more detail in Chapter 3. Variables can simply be modified or added in this

section. Up to 25 variables can be print plotted in the same graph. More than one print plot

can be made immediately after the first print plot by specifying a new set of variables to be

plotted (with ITASK=1 calls). Variables that have been written through OUTARR can be print

plotted with the names under which they appear in the output table (e.g. RDF (1), RDF (2)).

- 37 -

7 How to create a new subprocess description

It will have become clear from the previous chapters, that if a new subprocess is implemented

within the FSE program, the actual subroutine should distinguish the four different tasks.

Listing 12 shows an empty subroutine that can be used as a starting point for a new

subprocess description. Experience has shown that the best sequence for creating a new

subprocess description is:

1) begfn by defining the integration section and the finish condition(s),

2) initialize the states in the initial section,

3) define the driving variables and the rates in the rate section,

4) define the parameters in the initial section,

5) check thoroughly that each of the rates that is used in the integral section appears to the

left of an '=' sign in the rate section,

6) check thoroughly from the top to the bottom that the sequence of the rate assignments in

the rate section is correct. Each variable appearing to the .d.ght of an '=' sign .m..um have

been defined earlier in the subroutine (either in the rate section or in the initial section), or

defined through the formal parameters of the subroutine.

I o obtain rates and states at every PRDEL and to have both pertain to the same time, it is

essential not to change the locations where output is generated and where the finish

condition is tested. Even if the value of a rate or driving variable terminates the simulation, the

check should be done in the integral section.

The subroutine call should be inserted at 1Qu.r different locations in the main program. These

locations have been indicated in the main program with the line:

*----< Insert plant call here >

Listing 12: Empty subroutine that can be used with the FSE program.

SUBROUTINE PLANT (ITASK, IUNITP, IUNITO, FILEP, OUTPUT, TERMNL,
& TIME , DAY , DELT
& LAT
& DTR , TMMN , TMMX)

IMPLICIT REAL (A-Z)

* Formal parameters

INTEGER ITASK, IUNITP, IUNITO

* Standard local declarations

INTEGER ITABLE, ITOLD

*

*

*

*

*

*

*

- 38 -

SAVE

DATA ITOLD /4/

CALL CHKTSK ('PLANT', IUNITO, ITOLD, ITASK)

IF (ITASK.EQ.l) THEN

CALL RDINIT (IUNITP, IUNITO, FILEP)

Insert RD calls here

CLOSE (IUNITP, STATUS='DELETE')

ELSE IF (ITASK.EQ.2) THEN

Rate calculation section
GLV = ...

output of states and rates only if it is required
IF (OUTPUT .OR. TERMNL) THEN

CALL OUTDAT (2, 0, 'variable name', variable name)

END IF

ELSE IF (ITASK.EQ.3) THEN

Integration
new state INTGRL (old_state rate, DELT)

Determine the finish conditions of the simulation

IF (state.GE.???) TERMNL = .TRUE.

ELSE IF (ITASK.EQ.4) THEN

Terminal section

Define graph for output
CALL OUTPLT (1, 'variable name')

CALL OUTPLT (6, 'Printplot')

END IF

ITOLD = ITASK

RETURN
END

- 39 -

8 Installing the FSE program

Requirements for running the FSE program

There are few requirements for running the FSE program. Any standard FORTRAN 77

compiler should be able to compile the program successfully, because it has been developed

on VAX-VMS, Atari 520ST +,Apple Macintosh II, and several IBM compatibles, using standard

FORTRAN 77 compilers.

The minimum RAM memory requirement depends on the computer and the compiler. It

should be at least 512 kb.

If you intend to do serious development work with the FSE program or any other FORTRAN

program, we recommend you use the FORCHECK program to check your source code for

errors (see references). In FORCHECK the syntax, variable declaration, argument passing

and standard FORTRAN checking capacities are much better than in most compilers and this

will save much time when debugging any FORTRAN program.

If you are working on an IBM-PC or compatible computer, you are advised to use Microsoft

FORTRAN 5.0 or any later version. A batch file and some object f1les are prov1ded on the

floppy disk to be used with this compiler. Any other standard FORTRAN 77 compiler on any

machine with at least 512 kb RAM can also be used, but this requires renewed compilation of

the utility source files. Note that complete source listings of all the relevant programs are

provided in the appendices.

Contents of the disk:

The disk you receive is a 5.25" double sided high density disk and has been formatted for

IBM-PC's and compatibles. If you are working on another machine and have no way to transfer

the source files to your machine, send a request to one of the addresses mentioned in the

introduction, to obtain the programs in another disk format (specify your hardware

configuration).

In the following we assume that you have received the FSE program with the wheat version of

SUCROS as a plant routine. Any other model that is programmed using FSE will have a

comparable directory structure on the floppy disk. The contents of the disk are:

A:\ FSE \WHEAT\ FSEWHT.FOR

PLANT.DAT

TIMER. OAT

RERUNS. OAT

FSE main program with wheat SUCROS

Plant parameters and initial state variables,

Weather, time and control variables,

Example rerun file,

A:\ SYS \WEATHER\ NL 1.970

NL 1.990

A:\ SYS \ F77 \ TTUTIL.LIB

WEATHER. LIB

EXE.BAT

OUTREC.FOR

- 40 -

Weather data, Netherlands, Wageningen,

1970-1990,

Object library of TTUTIL routines compiled with

Microsoft FORTRAN 5.0,

Object library of weather system compiled with

Microsoft FORTRAN 5.0,

Batch file for compilation, linking and

execution for Microsoft FORTRAN 5.0 compiler,

Source code of program to recover output when

an error has occurred during dynamic simulation.

Has to be compiled with the same compiler you

will be using with the FSE program.

A:\ FSE \ SUB ROUT\ 57 FORTRAN files Source code of TTUTIL routines,

WEATHER. FOR Source code of weather system,

General installation

You are advised to create the same directory structure on the disk of the machine you will be

working on and to copy the files manually onto these directories. If you are short of disk space

you could omit the FORTRAN source code files from the A:\FSE\SUBROUT\ directory as

these files are not used during normal work.

Working with Microsoft FORTRAN 5.0 on IBM PC's and compatibles

If you will be working with the Microsoft FORTRAN compiler, make sure you have installed the

compiler's library on the directory C:\SYS\F77 as follows: large memory model, floating point

emulator, no C and no MS FORTRAN 3.30 compatibility. This library will have the name:

LLIBFORE.LIB.

Install the MS-compiler files also in the directory C:\SYS\F77. Make sure that the directory of

the compiler files (FL.EXE, etc.) is 'in' the PATH.

You can now compile the FORTRAN files, link with the object libraries, and run the program

using the following commands (important: do not add '.FOR' to the file name):

EXE file D compilation, linking and debugging of 'file.for' (requires much more

memory!).

After successful compilation and linking, repeated execution can also be invoked by typing

- 41 -

the name of the program. Typing the name of the program after a successful 'EXE file D'

command will execute the program without debugging. Renewed debugging can be invoked

by typing:

CV file (CV stands for Code View, the debugger of the Microsoft languages.)

The executable files, created by the EXE command, will run on both XT, AT and PS/2 type

computers. They do not require a coprocessor but will use one if it is present.

Working with other FORTRAN compilers on IBM PC's and compatibles

We have no experience with other compilers on IBM-PC's and compatibles. You will probably

have to recompile the source files on the \FSE\SUBROUT\ directory and create object

libraries from them. Also, you will have to figure out how to link the FSE program with these

newly created object libraries.

Working on a VAX computer of CABO or TPE

On VAX machines of both computing centres, simple compilation, linking and execution can

be done with (note that the DUTIL and WEATHER logicals refer to another account so that

you don't have to have the object libraries):

~ FORTRAN/CHECK=BOUNDS/STANDARD file

~LINK file,TTUTIL/LIB,WEATHER/LIB

~ RUN file

compilation of 'file .for',

linking of 'file.obj',

execution of 'file.exe'.

Compilation, linking and execution with debugging can be done with:

~ FORTRAN/CHECK=BOUNDS/STANDARD/DEBUG/NOOPTIMIZE file

compilation of 'file .for',

~LINK/DEBUG file,TTUTIL/LIB,WEATHER/LIB

~ RUN file

linking of 'file.obj',

execution of 'file.exe'.

Note: the TTUTIL and WEATHER object libraries can be linked automatically after the

following commands are given (include these in your LOGIN.COM for permanent use, be

aware, however, that from then on these two libraries are always used during linking even if

don't need

~ DEFINE LNK$LIBRARY TTUTIL:

~ DEFINE LNK$LIBRARY_l WEATHER:

- 42 -

The link command is now shorter:

~ LINK file

Weather data can be accessed directly by specifying WEATHER_DATA: as the directory in

the TIMER. OAT file.

Working on another VAX computer

Before you can start work with the FSE program you have to compile the TTUTIL and

WEATHER.FOR source files on the [<account>.FSE.SUBROUT] directory. This can be done

with the commands:

~ CREATE TTUTIL.F77

"Z

~APPEND *.FOR TTUTIL.F77

~ RENAME TTUTIL.F77 TTUTIL.FOR

~ FORTRAN/CHECK=BOUNDS TTUTIL.FOR

~ FORTRAN/CHECK=BOUNDS WEATHER.FOR

Now insert the object files into an object library:

~ LIBRARY/CREATE TTUTIL.OLB

~ LIBRARY/INSERT TTUTIL.OLB TTUTIL.OBJ

~ LIBRARY/CREATE WEATHER.OLB

~ LIBRARY/INSERT WEATHER.OLB WEATHER.OBJ

Assign two logicals:

creates an empty file,

appends all TTUTIL files to the

empty file,

change the file type,

compilation of TTUTIL file,

compilation of I WEATHER. FOR 1
,

~DEFINE TTUTIL <diskname>: [<account>.FSE.SUBROUT]TTUTIL.OLB

~DEFINE WEATHER <diskname>: [<account>.FSE.SUBROUT]WEATHER.OLB

(for permanent use, insert these two lines in your LOGIN.COM file)

The FSE program can subsequently be compiled, linked and executed with:

$ FORTRAN/CHECK=BOUNDS/STANDARD file compilation of I file .for 1
,

$ RUN file

Debugging can be done with:

- 43 -

$ FORTRAN/CHECK=BOUNDS/STANDARD/DEBUG/NOOPTIMIZE file

compilation of' file .for',

$ LINK/DEBUG file, TTUTIL/LIB, WEATHER/LIB linking Of 'file.obj',

$ RUN file execution of 'file.exe'.

Note: the TTUTIL and WEATHER object libraries can be linked automatically after the

following commands are given (include these in your LOGIN.COM for permanent use, be

aware, however, that from then on these two libraries are always used during linking even if

you don't need them):

~ DEFINE LNK$LIBRARY TTUTIL:

~ DEFINE LNK$LIBRARY_l WEATHER:

The link command is now shorter:

~ LINK file

Working on an Apple Macintosh using MacFortran/020 v2.3

The easiest solution in general is to obtain the two object libraries and link these to the main

program. Another solution is to add INCLUDE statements at the end of your program, though

this may give problems with debugging. The use of a library, is definitely the best solution

here, but it is difficult to create a library yourself because the routines have to be inserted in a

specific order because the linker cannot resolve backward references.

The object library can be obtained directly from the Department of Theoretical Production

Ecology or by submitting a request to one of the addresses mentioned in the introduction

(specify your processor and coprocessor type !).

- 44-

- 45 -

9 References and further reading

IBM, 1975. Continuous System Modeling Program III. General system information manual

(GH19-7000) and users manual (SH19-7001-2). IBM Data Processing Division, White

Plains, New York.

FORCHECK: A FORTRAN-77 Verifier and Programming aid, E.W. Kruyt, Dept. of Physiology.

Leiden University. PO Box 9604. 2300 RC Leiden. The Netherlands.

Haar, L.G.J. ter, 1983. FORTRAN 77, programmers pocket guide. Nederlands Normalisatie

lnstituut. 47 pp.

Hahn, B.D., Problem solving with FORTRAN-77. Edward Arnold Ltd. London. 247 pp.

Kraalingen, D.W.G. van, and F.W.T. Penning de Vries. 1990. The FORTRAN version of

CSMP MACROS. Simulation Report CABO-TT nr. 21. Centre for Agrobiological Research

and Dept. of Theoretical Production Ecology. Wageningen. The Netherlands. 145 pp.

(available on request).

Kraalingen, D.W.G. van, C. Rappoldt, 1989. Subprograms m s1mulat1on models. S1mulat1on

Report CABO-TT nr. 18. Centre for Agrobiological Research and Dept. of Theoretical

Production Ecology. Wageningen. The Netherlands. 54 pp. (available on request).

Kraalingen, D.W.G. van, W. Stol, P.W.J. Uithol, M. Verbeek, 1991. User Manual of CABO/TPE

Weather System. CABO/TPE internal communication. 27 pp. (available on request).

Meissner, L.P., E.l. Organick, 1984. FORTRAN 77, featuring structured programming.

Addison-Wesley publishing company. 500 pp.

Penning de Vries, F.W.T., D.M. Jansen, H.F.M. ten Berge, A. Bakema, 1989. Simulation of

Ecophysiological Processes of Growth in Several Annual Crops. Simulation Monograph

29. PUDOC Wageningen and IRRI, Los Banos. 271 pp.

Penning de Vries, F.W.T., H.H. van Laar, 1982. Simulation of plant growth and crop

production. Simulation Monograph. PUDOC. Wageningen. 308 pp.

Rappoldt, C., D.W.G. van Kraalingen, 1990. FORTRAN utility library TTUTIL. Simulation

Report CABO-TT no. 20. Centre for Agrobiological Research and Dept. of Theoretical

Wagener, J.L., 1980. FORTRAN 77, principles of programming. John Wiley & Sons. New

York. 370 pp.

- 47-

Appendix A: FSE main program, with SUCROS wheat
and data files

This Appendix gives the listings of the main program with the SUCROS wheat subroutines,

the timer and plant data files. These programs can be found on the disk, in the directory

A:\FSE\WHEAT\.

The file order in this Appendix is as follows:

FSEWHT.FOR

TIMER.DAT

PLANT.DAT

Main program and SUCROS subroutines,

Data file containing time and weather variables,

Data file containing parameters and initial values of the states for a crop,

- 48 -

File: A:\FSE\WHEAT\FSEWHT.FOR

--
*
*
*
*
*
*

FSE-SUCROS-WHEAT
Simple and Universal CROp Simulator

Version July 1991

*
*
*
*
*
*

* FORTRAN version of the crop growth simulator SUCROS. This version is *
* based on earlier versions, written in CSMP. References: *

*
* F.W.T. Penning de Vries & H.H. van Laar (Eds), 1982:
* Simulation of plant growth and crop production,
* Simulation Monograph Series. Pudoc Wageningen. 308 pp.

*
* R. Rabbinge, S.A. Ward & H.H. van Laar (Eds), 1989:
* Simulation and systems management in crop protection.
* Simulation Monograph 32. PUDOC Wageningen. 420 pp.

*

*
*
*
*
*
*
*
*
*

* The model is programmed, using the FORTRAN Simulation Environment *
* developed by D.W.G. van Kraalingen. Simulation Reports CABO-TT No.23 *

*
*
* External datafiles needed: timer.dat
* plant.dat
* Weather data files

*
*
*
*
*

* reruns.dat (only when reruns are needed) *
--

--
*
*
*
*

MAIN PROGRAM
FORTRAN Simulation Environment (FSE)

*
*
*
*

--

PROGRAM MAIN

*-----Standard declarations

IMPLICIT REAL (A-Z)
INTEGER ITASK , INSETS,
INTEGER IUNITR, IUNITT,
INTEGER ISTAT1, ISTAT2,
INTEGER I TABLE, IDTMP ,

IRUN , I1, I2, I3
IUNITO, IUNITP, IUNITS
IDAY , IYEAR , ISTN , ILEN
IMNHD , INHD

LOGICAL OUTPUT, TERMNL, WTRMES, EOF

CHARACTER*80 WTRDIR, FILER, FILET, FILEO, FILEP, FILES
CHARACTER CNTR*7, DUMMY*1

PARAMETER (IMNHD=20, TINY=1.E-4)
REAL HARDAY(IMNHD)

r~~s-ert ~here declarat+ons~f-or-u-se-w-it-h

* waterbalances

*-----Unit numbers for rerun (R), timer (T), output (0), plant data (P)
* and soil data (S) files. WTRMES flags any messages from
* the weather system

IUNITR
I UNITT
ION ITO
IUNITP
IUNITS
WTRMES

*-----Ditto

FILER
FILET
FILEO
FILEP
FILES

20
30
40
50
60
.FALSE.

file names

'RERUNS.DAT'
'TIMER. OAT'
'RESULTS.OUT'
I PLANT 0 OAT I

'SOIL.DAT'

- 49 -

*-----Open output file and copy contents of timer file to output file

CALL FOPEN (IUNITO, FILEO, 'NEW', 'DEL')
CALL COPFIL (IUNITT, FILET, IUNITO)

*-----Get directory and country name of weather data from timer file

CALL FOPEN (IUNITT, FILET, 'OLD', 'NVT')
CALL GETREC (IUNITT, WTRDIR, EOF)
CALL GETREC (IUNITT, CNTR , EOF)
IF (EOF) CALL ERROR ('FSE-MAIN',

& 'unexpected end of file in TIMER file')
I2 = ILEN (WTRDIR)
I3 = ILEN (CNTR)
IF (I2.NE.O.AND.I3.NE,O) THEN

I2 =MAX (2,I2)
I3 = MAX (2,I3)
WTRDIR(l:I2) WTRDIR(2:I2)//' 1

CNTR (l:I3) = CNTR(2:I3)//' '
ELSE

CALL ERROR ('FSE-MAIN',
&'cannot read weather directory and country name from TIMER file')

END IF
CLOSE (I UNITT)

*-----Read number of rerun sets, if rerun sets have been defined
* copy contents of rerun file to output file

CALL RDSETS (IUNITR, IUNITO, FILER, INSETS)
IF (INSETS.GT.O) CALL COPFIL (IUNITR+l, FILER, IUNITO)

==
==

*
*
*

Main loop and rerun begins here
*
*
*

==
==

DO 10 Il=O,INSETS

IRON = Il+l

*-----Select data set
CALL RDFROM (Il, .TRUE,)

==

*
*
*

- 50 -

Initialization section
*
*
*

==

I TASK 1
TERMNL .FALSE.

*-----Read variables from timer file

CALL RDINIT (IUNITT
'

IUNITO, FILET)
CALL RDSREA ('DAYB' DAYB)

CALL RDSREA ('FINTIM', FINTIM)
CALL RDSREA ('PRDEL'

'
PRDEL)

CALL RDSREA ('DELT'
'

DELT)

CALL RDSINT ('IYEAR'
'

I YEAR)

CALL RDSINT ('ISTN' ISTN)

CALL RDSINT ('ITABLE', I TABLE)
CALL RDSINT ('IDTMP'

'
IDTMP)

CALL RDAREA ('HARDAY', HARDAY, IMNHD, INHD)
CLOSE (IUNITT, STATUS='DELETE')

*-----Initialize TIMER and OUTDAT routines
CALL TIMER (ITASK, DAYB, DELT, PRDEL, FINTIM,

& IYEAR, TIME, DAY , IDAY , TERMNL, OUTPUT)

CALL OUTDAT (ITASK, IUNITO, 'TIME', TIME)

*-----Open weather file and read station information and return
* weather data for start day of simulation.
* Check status of weather system, WTRMES flags if warnings or errors
* have occurred during the simulation.

CALL STINFO (1100 , WTRDIR, ' ', CNTR, ISTN, IYEAR,
& ISTAT1, LONG , LAT, ELEV, A, B)

CALL WEATHR (IDAY, ISTAT2, RDD, TMMN, TMMX, VP, WN, RAIN)
IF (ISTAT1.NE.O.OR.ISTAT2.NE.O) WTRMES = .TRUE.

*-----Conversion of total daily radiation from kJ/m2/d to J/m2/d
RDD = RDD*1000.

* < Insert water balance call here if required >

* < Insert plant call here >
CALL SUCROS (ITASK, IUNITP, IUNITO, FILEP, OUTPUT, TERMNL,

& DAY , DELT
&

&

LAT
RDD , TMMN , TMMX)

==

*
*
*

Dynamic simulation section
*
*
*

==

20 IF (.NOT.TERMNL) THEN

&

--
* Integration of rates section *
--

- 51 -

IF (ITASK.NE.1) THEN

ITASK = 3

*--------< Insert plant call here >
CALL SUCROS (ITASK, IUNITP, IUNITO, FILEP, OUTPUT, TERMNL,

& DAY DELT
&
&

LAT
RDD , TMMN , TMMX)

*--------< Insert water balance call here if required >

END IF

ITASK = 2

--

* Calculation of driving variables section *
--

*-----Get weather data for new day and flag messages
CALL STINFO (1100 , WTRDIR, ' ', CNTR, ISTN, IYEAR,

& ISTAT1, LONG , LAT, ELEV, A, B)
CALL WEATHR (IDAY, ISTAT2, RDD, TMMN, TMMX, VP, WN, RAIN)
IF (ISTAT1.NE.O.OR.ISTAT2.NE.O) WTRMES = .TRUE.

*-----Conversion of total daily radiation from kJ/m2/d to J/m2/d
RDD = RDD*1000.

IF (OUTPUT.OR.TERMNL) THEN
CALL OUTDAT (ITASK, IUNITO, 'TIME', TIME)
CALL OUTDAT (ITASK, IUNITO, 'DAY' , DAY)

END IF

--
* Calculation of rates section *
--

*-----< Insert plant call here >
CALL SUCROS (ITASK, IUNITP, IUNITO, FILEP, OUTPUT, TERMNL,

& DAY DELT
& LAT
& RDD TMMN , TMMX)

*-----< Insert potential soil evaporation call here if required >

*-----< Insert water balance call here if required >

*-----Time variables update, check for FINTIM and OUTPUT
CALL TIMER (ITASK, DAYB, DELT, PRDEL, FINTIM,

& IYEAR, TIME, DAY , IDAY , TERMNL, OUTPUT)

*-----Generate output to file if day is equal to a harvest day

IF (HARDAY(1) .NE.O.) THEN
DO 30 I2=1,INHD

IF (DAY.GT. (HARDAY(I2)-TINY) .AND.DAY.LT. (HARDAY(I2)+TINY))

ELSE IF (INHD.GT.1) THEN
CALL ERROR ('FSE-MAIN',

& 'harvest data in timer file not correct')
END IF

GOTO 20
END IF

- 52 -

==

*
*
*

Terminal section
*
*
*

==

ITASK = 4

*-----Generate output file dependent on option from timer file
IF (ITABLE.GE.4) CALL OUTDAT (ITABLE, 20, ' ',0.)

*-----< Insert plant call here >

&

&

&

CALL SUCROS (ITASK, IUNITP, IUNITO, FILEP, OUTPUT, TERMNL,
DAY , DELT
LAT
RDD , TMMN , TMMX)

*-----< Insert water balance call here if required >

*-----Delete temporary output file dependent on switch from timer file
IF (IDTMP.EQ.1) CALL OUTDAT (99, 0, ' ', 0,)

10 CONTINUE

*-----Delete temporary rerun file if reruns were carried out
IF (INSETS.GT.O) CLOSE (IUNITR, STATUS='DELETE')

*-----Write message to screen and log file if warnings and/or errors
* have occurred, pause and wait for return from user

IF (WTRMES) THEN

WRITE (*, 1 (A, I, A, I, A) 1
)

1 WARNING from FSE-MAIN: 1
,

& ' There have been errors and/or warnings from',
& 1 the weather system, check file WEATHER.LOG'

WRITE (IUNITO,' (A, I ,A, I ,A)') ' WARNING from FSE-MAIN: ',
& 1 There have been errors and/or warnings from',
& 1 the weather system, check file WEATHER.LOG'

WRITE (*, ' (A) ') ' Press <RETURN>'
READ (*,I (A)') DUMMY

END IF

STOP
END

--
* SUBROUTINE SUCROS *
* Authors: various authors *
* Date 14-Nov-1990 *
* Purpose: This subroutine is the spring wheat version of SUCROS, to *
* calculate growth in situations of potential production. *
* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

*
* ITASK I4
* IUNITP I4
* IUNITO I4
* FILEP C*
* OUTPUT L4

Task that subroutine should perform
Unit of input file with plant data
Unit of output file
Name of file with plant data
Flag to indicate if output should be done

I

I

I
I
I

*
*
*
*
*

- 53 -

* TERMNL L4 Flag to indicate if simulation is to stop I/0 *

*
*
*
*
*
*
*

DAY
DELT
LAT
ROD
TMMN
TMMX

R4
R4
R4
R4
R4
R4

Day number
Time step of integration
Latitude of site
Daily shortwave radiation
Daily m1n1mum temperature
Daily maximum temperature

* FATAL ERROR CHECKS (execution terminated, message)

d I *
d I *

degrees I *
J/m2/d I *

degrees c I *
degrees c I *

*
*

* condition: FSO < -0.001, DELT < 1, LAT < -98, ROD < -98, TMMN < -98 *
* TMMX < -98, checks internal to other subroutines *

* *
*
*
*
*

SUBROUTINES and FUNCTIONS called : TOTASS, ASTRO, GLA,
CHKTSK, COPFIL, ERROR, OUTCOM, OUTDAT, OUTPLT,
RDINIT, RDSREA, RDAREA

FILE usage : IUNITP, IUNITO

*
*
*
*

--

SUBROUTINE SUCROS (ITASK, IUNITP, IUNITO, FILEP, OUTPUT, TERMNL,
& DAY DELT
&

&

IMPLICIT REAL (A-Z)

LAT
ROD TMMN , TMMX)

* Formal parameters

INTEGER ITASK , IUNITP, IUNITO
LOGICAL OUTPUT, TERMNL

CHARACTER*(*) FILEP

* Standard local declarations

INTEGER ITABLE, ITOLD, IEMERG
PARAMETER (ITABLE=100)
LOGICAL INIT

REAL AMDVST(ITABLE), AMTMPT(ITABLE), DVRVT(ITABLE), RDRTB(ITABLE)
INTEGER IAMDVN, IAMTMN, IDVRVN, IRDRN

REAL DVRRT(ITABLE), FSHTB(ITABLE), FLVTB(ITABLE), FSTTB(ITABLE)
INTEGER IDVRRN, IFSHN, IFLVN, IFSTN

SAVE

DATA ITOLD /4/, INIT /.FALSE./

* Check the new task against the old task, and check weather data
CALL CHKTSK ('SUCROS', IUNITO, ITOLD, ITASK)

IF (LAT.LT.-98 .. 0R.RDD.LT.-98 .. OR.TMMN.LT.-98 .. 0R.TMMX.LT.-98.)
& CALL ERROR ('SUCROS',
& 'missing weather data, check file WEATHER.LOG')

IF (ITASK.EQ.1) THEN

* copy input file to output file once

IF (.NOT.INIT) THEN
CALL COPFIL (IUNITP, FILEP, IUNITO)

END IF

* Send title to output file

CALL OUTCOM ('SUCROS, Plant growth at potential production')

*

*

*

*

*
*

*
*
*

&

- 54 -

Initialization section

IF (DELT.LT.l.O) CALL ERROR
('SUCROS', 'DELT too small for SUCROS')

CALL RDINIT (IUNITP, IUNITO, FILEP)

Initialization of states
CALL RDSREA ('NPL' , NPL)

CALL RDSREA (I LAO I , LAO)
CALL RDSREA ('RGRL' , RGRL)
CALL RDSREA (I TMBJUV', TMBJUV)
CALL RDSREA ('SLA' , SLA)
CALL RDSREA ('AMX' , AMX)
CALL RDSREA ('EFF' , EFF)
CALL RDSREA ('KDIF' , KDIF)
CALL RDSREA ('SCV' , SCV)
CALL RDSREA ('QlO' , QlO)
CALL RDSREA ('MAINSO', MAIN SO)
CALL RDSREA (I ASRQSO', ASRQSO)
CALL RDSREA ('EAR' , EAR)
CALL RDSREA ('WLVG' , WLVG)
CALL RDSREA ('WST' , WST)
CALL RDSREA ('WSO' , WSO)
CALL RDSREA ('WRT' , WRT)
CALL RDSREA ('DVS' , DVS)
CALL RDSREA (I TMSUME I, TMSUME)

CALL RDSREA ('EMERG' , EMERG)
CALL RDSREA ('DAYSOW', DAY SOW)

read in tables
CALL RDAREA ('AMDVST', AMDVST, I TABLE, IAMDVN)

CALL RDAREA ('AMTMPT', AMTMPT, ITABLE, IAMTMN)

CALL RDAREA ('DVRVT' , DVRVT , ITABLE, IDVRVN)

CALL RDAREA ('DVRRT' , DVRRT , IT ABLE, IDVRRN)

CALL RDAREA ('FSHTB' , FSHTB , I TABLE, IFSHN)

CALL RDAREA ('FLVTB' , FLVTB , ITABLE, IFLVN)

CALL RDAREA ('FSTTB' , FSTTB , IT ABLE, IFSTN)

CALL RDAREA ('RDRTB' , RDRTB , ITABLE, IRDRN)

CLOSE (IUNITP, STATUS= I DELETE I)

WLVD 0.
EAI 0.
LAII NPL * LAO * l.E-4

LAI 0.
WLV WLVG + WLVD
TADRW WLV+WST+WSO
LAIP LAI+0.5*EAI
IEMERG 0

ELSE IF (ITASK.EQ.2) THEN

rate calculation section

daily temperature (C) : maximum, minimum, average, daytime and

effective

TMAV
TMAVD
TMELV

0.5 * (TMMX+TMMN)
TMMX - 0.25 * (TMMX-TMMN)
MAX (0., TMAV-TMBJUV)

subroutine ASTRO computes daylength and daily radiation
characteristics from Julian day, latitude and measured daily total
global radiation

&

*

*

*

&

*

*

*
*

*

*

- 55 -

CALL ASTRO (DAY, LAT,
SC , OSO, SINLD, COSLD, DAYL, DSINB, DSINBE)

emergence process begins after sowing
DEMERG = MAX (0., TMAV-3.)

leaf photosynthesis rate at light saturation (kg C02/ha leaf/h)
AMDVS LINT (AMDVST, IAMDVN, DVS)
AMTMP LINT (AMTMPT, IAMTMN, TMAVD)
AMAX AMX * AMDVS * AMTMP

subroutine TOTASS computes daily total gross assimilation (DTGA)
CALL TOTASS (SC , DAYL, SINLD, COSLD, DSINBE, ROD,

SCV, AMAX, EFF , KDIF , LAIP , DTGA)

conversion from assimilated C02 to CH20
GPHOT = DTGA * 30./44.

maintenance respiration (kg CH20/ha/d)

IF (WLV.GT.O) THEN
MNDVS WLVG / WLV

ELSE
MNDVS 1.

END IF

MAINTS
MAINT

0,03*WLV + 0.015*WST + 0.015*WRT + MAINSO*WSO
MIN (GPHOT, MAINTS * TMEFF * MNDVS)

fraction of dry matter growth occurring in shoots, leaves, stems,
storage organs and roots

FSH LINT (FSHTB, IFSHN, DVS)
FLV LINT (FLVTB, IFLVN, DVS)
FST LINT (FSTTB, IFSTN, DVS)
FSO 1. - FLV - FST
FRT 1. - FSH

IF (FSO.LT.-0.001) THEN
CALL ERROR ('SUCROS', 'FSO negative')

ELSE IF (FSO.GT.-0.001.AND.FSO.LT.O.) THEN
FSO = 0.

END IF

assimilate requirements for dry matter conversion (kgCH20/kgDM)
ASRQ = FSH * (1.46*FLV + 1.51*FST + ASRQSO*FSO) + 1.44*FRT

relative death rate of leaves and development rate
IF (IEMERG.EQ.O) THEN

RDR = 0.
DVR = 0.

ELSE IF (DVS.LT.1.) THEN
RDR 0.
DVR LINT (DVRVT, IDVRVN,

ELSE
RDR LINT (RDRTB, IRDRN ,
DVR LINT (DVRRT, IDVRRN,

END IF

GTW (GPHOT - MAINT) I ASRQ

GST FST * GSH
GSO FSO * GSH
GRT FRT * GTW
DLV WLVG * RDR

TMAV)

TMAV)
TMAV)

- 56 -

GLAI IEMERG * GLA (TMELV, DVS, LAII, LAI, RGRL, TMSUME, SLA,

& GLV , DLV)

IF (DVS.LT.1.3) THEN
GEAI 0.

ELSE
GEAI -RDR * EAI

END IF

* output of states and rates only if it is required

IF (OUTPUT .OR. TERMNL) THEN

* states
CALL OUTDAT (2, 0, 'DVS' , DVS)

CALL OUTDAT (2, 0, 'TADRW' , TADRW)
CALL OUTDAT (2, 0, 'LAI' , LAI)
CALL OUT OAT (2, 0, 'WLV' , WLV)
CALL OUTDAT (2, 0, 'WST' , WST)
CALL OUTDAT (2, 0, 'WSO' , WSO)
CALL OUTDAT (2, 0, 'WRT' , WRT)
CALL OUTDAT (2, 0, 'WLVG' , WLVG)
CALL OUTDAT (2, 0, 'WLVD' , WLVD)
CALL OUTDAT (2, 0, 'EAI' , EAI)
CALL OUTDAT (2, 0, 'TMSUME', TMSUME)
CALL OUTDAT (2, 0, 'EMERG' , EMERG)

* driving variables and rates
CALL OUTDAT (2, 0, 'ROD' , ROD)
CALL OUTDAT (2, 0, 'TMAV' , TMAV)
CALL OUTDAT (2, 0, 'TMAVD' , TMAVD)
C~LL OUTD.AT (2, 0, '.AMDVS' AMDVS)

CALL OUTDAT (2, 0, 'AMTMP' , AMTMP)
CALL OUTDAT (2, 0, 'AMAX' , AMAX)
CALL OUTDAT (2, 0, 'GPHOT' , GPHOT)

CALL OUTDAT (2, 0, 'MAINTS I, MAINTS)
CALL OUTDAT (2, 0, 'TMEFF' , TMEFF)
CALL OUTDAT (2, 0, 'MNDVS' , MNDVS)
CALL OUTDAT (2, 0, 'MAINT' , MAINT)
CALL OUTDAT (2, 0, 'FSH' , FSH)
CALL OUTDAT (2, 0, 'FLV' , FLV)
CALL OUTDAT (2, 0, 'FST' , FST)
CALL OUTDAT (2, 0, 'FSO' , FSO)
CALL OUTDAT (2, 0, 'FRT' , FRT)
CALL OUTDAT (2, 0, 'ASRQ' , ASRQ)

CALL OUTDAT (2, 0, 'RDR' , RDR)
CALL OUTDAT (2, 0, 'DVR' , DVR)
CALL OUTDAT (2, 0, 'GTW' , GTW)

CALL OUTDAT (2, 0, 'GLV' , GLV)
CALL OUTDAT (2, 0, 'GST' , GST)

CALL OUTDAT (2, 0, 'GSO' , GSO)

CALL OUTDAT (2, 0, 'GRT' , GRT)
CALL OUTDAT (2, 0, 'DLV' , DLV)

CALL OUTDAT (2, 0, 'GLAI' , GLAI)
END IF

ELSE IF (ITASK.EQ. 3) THEN

* integration
WLVG INTGRL (WLVG GLV-DLV, DELT)

WLVD INTGRL (WLVD DLV DELT)

WRT INTGRL (WRT GRT DELT)
EAI INTGRL (EAI GEAI DELT)

LAI INTGRL (LAI GLAI DELT)

DVS INTGRL (DVS DVR DELT)
TMSUME INTGRL (TMSUME, TMELV*IEMERG , DELT)

*

*

*

*
*

-57-

EMERG = INTGRL (EMERG , DEMERG , DELT)

operations on state variables

IF (EMERG.GE.120 .. AND.IEMERG.EQ.O) THEN
IEMERG = 1
LAI = LAII

END IF

WLV
TADRW

WLVG + WLVD
WLV + WST + WSO

at DVS > 0.8 ears are pushed into the green area:

IF (DVS.GT.0.8 .AND. EAI.EQ.O.) EAI =EAR * TADRW
LAIP = LAI + 0.5 * EAI

Determine the finish conditions of the simulation

IF (DVS.GE.2.0) TERMNL = .TRUE.

ELSE IF (ITASK.EQ.4) THEN

Define graph for output
use individual scale, small plot width for output

CALL OUTPLT (1, 'TADRW')
CALL OUTPLT (1, 'LAI')
CALL OUTPLT (1, 'WSO')
CALL OUTPLT (6, 'Printplot of SUCROS')

END IF

ITOLD = ITASK

RETURN
END

--
* Function GLA: *
* Computes daily increase of leaf area index (ha leaf/ ha ground/ d) *
--

REAL FUNCTION GLA (TMELV, DVS, LAII, LAI, RGRL, TMSUME, SLA,
& GLV , DLV)

IMPLICIT REAL (A-Z)
SAVE

IF (DVS.LT.0.3 .AND. LAI.LT.0.75) THEN
* during juvenile growth:

GLA = LAII * RGRL * TMELV * EXP (RGRL * TMSUME)
ELSE

* during mature plant growth:
GLA = SLA * (GLV - DLV)

END IF

RETURN
END

--
* SUBROUTINE ASTRO *

* Date 9-Aug-1987

* Modified by Jan Goudriaan 4 Febr 1988 *
* Modified by Jan Goudriaan and Kees Spitters 7 December 1989 *
* Purpose: This subroutine calculates astronomic daylength, *
* diurnal radiation characteristics such as the daily *
* integral of sine of solar elevation and solar constant. *

- 58 -

*
*

FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *
name type meaning units class *

*
* DAY R4
* LAT R4
* SC R4
* DSO R4
* SINLD R4
* COSLD R4
* DAYL R4
* DSINB R4
* DSINBE R4

*

Day number (Jan 1st = 1)
Latitude of the site
Solar constant
Daily extraterrestrial radiation
Seasonal offset of sine of solar height
Amplitude of sLne of solar height
Astronomical daylength (base = 0 degrees)
Daily total of sine of solar height
Daily total of effective solar height

* FATAL ERROR CHECKS (execution terminated, message)
* condition: LAT > 67, LAT < -67

*
* SUBROUTINES and FUNCTIONS called : ERROR
* FILE usage : none

degrees
J m-2 s-1
J m-2 d-1

h
s
s

*
I *
I *
0 *
0 *
0 *
0 *
0 *
0 *
0 *

*
*
*
*
*
*

--

SUBROUTINE ASTRO (DAY, LAT,
& SC , DSO, SINLD, COSLD, DAYL, DSINB, DSINBE)

IMPLICIT REAL (A-Z)
SAVE

*-----PI and conversion factor from degrees to radians
PARAMETER (PI=3.141592654, RAD=0.017453292)

*-----check on input range of parameters
IF (LAT.GT.67.) CALL ERROR ('ASTRO', 'LAT > 67')
IF (LAT.LT.-67.) CALL ERROR ('ASTRO', 'LAT < -67')

*-----declination of the sun as function of daynumber (DAY)
DEC= -ASIN (SIN (23.45*RAD)*COS (2.*PI*(DAY+10.)/365.))

*-----SINLD, COSLD and AOB are intermediate variables

SINLD
COSLD
AOB

SIN (RAD*LAT)*SIN (DEC)
COS (RAD*LAT)*COS (DEC)
SINLD/COSLD

*-----daylength (DAYL)

&

DAYL 12.0*(1.+2.*ASIN (AOB)/PI)

DSINB
DSINBE

3600.*(DAYL*SINLD+24.*COSLD*SQRT (1.-AOB*AOB)/PI)
3600.*(DAYL*(SINLD+0.4*(SINLD*SINLD+COSLD*COSLD*0.5))+
12.0*COSLD*(2.0+3.0*0.4*SINLD)*SQRT (1.-AOB*AOB)/PI)

*-----solar constant (SC) and daily extraterrestrial (DSO)
SC 1370.*(1.+0.033*COS (2.*PI*DAY/365.))
DSO = SC*DSINB

RETURN
END

--
* SUBROUTINE TOTASS
* Authors: Daniel van Kraalingen
* Date 10-Dec-1987
* Modified by Jan Goudriaan 5-Febr-1988
* Modified by Jan Goudriaan and Kees Spitters 7 December 1989

*
*
*
*
*

over time. At three of the day,
radiation is computed and used to determine assimilation
whereafter integration takes place.

*
*
*
*
*

*
*
*
*

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

- 59 -

* name type meaning units class *

* ------- *

* sc R4 Solar constant J m-2 s-1 I *

* DAYL R4 Astronomical daylength (base = 0 degrees h I *

* SINLD R4 Seasonal offset of sine of solar height I *

* COSLD R4 Amplitude of sine of solar height I *

* DSINBE R4 Daily total of effective solar height s I *

* ROD R4 Daily total of global radiation J/m2/d I *

* scv R4 Scattering coefficient of leaves for visible *

* radiation (PAR) I *

* AMAX R4 Assimilation rate at light saturation kg C02/ I *

* ha leaf/h *

* EFF R4 Initial light use efficiency kg C02/J/ I *

* ha/h m2 s *

* KDIF R4 Extinction coefficient for diffuse light I *

* LAI R4 Leaf area index ha/ha I *

* DTGA R4 Daily total gross assimilation kg C02/ha/d 0 *

* *

* *

* SUBROUTINES and FUNCTIONS called : ASSIM *

* FILE usage : none *
--

SUBROUTINE TOTASS (SC , DAYL, SINLD, COSLD, DSINBE,
& ROD, SCV , AMAX , EFF , KDIF , LAI, DTGA)

IMPLICIT REAL(A-Z)
REAL XGAUSS(3), WGAUSS(3)
INTEGER I1, IGAUSS
SAVE

PARAMETER (PI=3.141592654)

DATA IGAUSS /3/
DATA XGAUSS /0.1127, 0.5000, 0.8873/
DATA WGAUSS /0.2778, 0.4444, 0.2778/

*-----assimilation set to zero and three different times of the day (HOUR)
DTGA = 0.

DO 10 I1=1,IGAUSS

*--------at the specified HOUR, radiation is computed and used to compute

* assimilation
HOUR= 12.0+DAYL*0.5*XGAUSS(I1)

*--------sine of solar elevation
SINB MAX (0., SINLD+COSLD*COS (2.*PI*(HOUR+12.)/24.))

*--------diffuse light fraction (FRDIF) from atmospheric
* transmission (ATMTR)

PAR 0.5*RDD*SINB*(1.+0.4*SINB)/DSINBE
ATMTR = PAR/(O.S*SC*SINB)

IF (ATMTR.LE.0.22) THEN
FRDIF = 1.

ELSE IF (ATMTR.GT.0.22 .AND. ATMTR.LE.0.35) THEN
FRO IF

ELSE
FRO IF

END IF

1.-6.4*(ATMTR-0.22)**2

1.47-1.66*ATMTR

*--------diffuse PAR (PARDIF) and direct PAR (PARDIR)
PARDIF MIN (PAR, SINB*FRDIF*ATMTR*O.S*SC)
PARDIR = PAR-PARDIF

CALL ASSIM (SCV,AMAX,EFF,KDIF,LAI,SINB,PARDIR,PARDIF,FGROS)

- 60 -

*--------integration of assimilation rate to a daily total (DTGA)
DTGA = DTGA+FGROS*WGAUSS(I1)

10 CONTINUE

DTGA = DTGA * DAYL

RETURN
END

--
* SUBROUTINE ASSIM *
* Authors: Daniel van Kraalingen *
* Date 10-Dec-1987 *
* Modified by Jan Goudriaan 5-Febr-1988 *
* Purpose: This subroutine performs a Gaussian integration over *
* depth of canopy by selecting three different LAI's and *
* computing assimilation at these LAI levels. The *
* integrated variable is FGROS. *

* *
*
*
*

FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *
name type meaning units class *

*
* scv
*

R4 Scattering coefficient of leaves for visible
radiation (PAR)

*
I *

* AMAX

*
* EFF

*
* KDIF

* LAI
SINB

R4 Assimilation rate at light saturation

R4 Initial light use efficiency

R4 Extinction coefficient for diffuse light
R4 Leaf area index
R4 Sine of solar height

kg C02/ I *
ha leaf/h *
kg C02/J/ I *
ha/h m2 s *

I *
ha/ha I *

I * *
* PARDIR R4 Instantaneous flux of direct radiation (PAR) W/m2 I *

* PARD IF R4 Instantaneous flux of diffuse radiation(PAR) W/m2 I *

*
*

FGROS R4 Instantaneous assimilation rate of kg C02/ 0 *
whole canopy ha soil/h *

*
* SUBROUTINES and FUNCTIONS called : none
* FILE usage : none

*
*
*

--

SUBROUTINE ASSIM (SCV, AMAX, EFF, KDIF, LAI, SINB, PARDIR, PARDIF,
& FGROS)

IMPLICIT REAL(A-Z)
REAL XGAUSS(3), WGAUSS(3)
INTEGER I1, I2, IGAUSS
SAVE

*-----Gauss weights for three point Gauss
DATA IGAUSS /3/
DATA XGAUSS /0.1127, 0,5000, 0,8873/
DATA WGAUSS /0.2778, 0.4444, 0.2778/

*-----reflection of horizontal and spherical leaf angle distribution
SQV SQRT(1.-SCV)
REFH (1.-SQV)/(1.+SQV)
REFS REFH*2./(1.+2.*SINB)

*-----extinction coefficient for direct radiation and total direct flux
CLUSTF KDIF / (0.8*SQV)

KDIRT

*-----selection of depth of canopy, canopy assimilation is set to zero
FGROS = 0.

- 61 -

DO 10 I1=1,IGAUSS
LAIC= LAI * XGAUSS(I1)

*--------absorbed fluxes per unit leaf area: diffuse flux, total direct
* flux, direct component of direct flux.

VISDF (1.-REFH)*PARDIF*KDIF *EXP (-KDIF *LAIC)
VIST (1.-REFS)*PARDIR*KDIRT *EXP (-KDIRT *LAIC)
VISD (1.-SCV) *PARDIR*KDIRBL*EXP (-KDIRBL*LAIC)

*--------absorbed flux (J/M2 leaf/s) for shaded leaves and assimilation of

* shaded leaves
VISSHD = VISDF + VIST - VISD
IF (AMAX.GT.O.) THEN

FGRSH = AMAX * (1.-EXP(-VISSHD*EFF/AMAX))
ELSE

FGRSH = 0.
END IF

*--------direct flux absorbed by leaves perpendicular on direct beam and
* assimilation of sunlit leaf area

VISPP = (1.-SCV) * PARDIR / SINB
FGRSUN = 0.
DO 20 I2=1,IGAUSS

VISSUN = VISSHD + VISPP * XGAUSS(I2)
IF (AMAX.GT.O.) THEN

FGRS AMAX * (1.-EXP(-VISSUN*EFF/AMAX))
ELSE

FGRS 0.
END IF
FGRSUN = FGRSUN + FGRS * WGAUSS(I2)

*--------fraction sunlit leaf area (FSLLA) and local assimilation
* rate (FGL)

FSLLA CLUSTF * EXP(-KDIRBL*LAIC)
FGL = FSLLA * FGRSUN + (1.-FSLLA) * FGRSH

*--------integration of local assimilation rate to canopy
* assimilation (FGROS)

FGROS = FGROS + FGL * WGAUSS(I1)

10 CONTINUE
FGROS = FGROS * LAI

RETURN
END

- 62 -

File: A:\FSE\WHEAT\TIMER.DAT

* Put the directory where your weather data are stored behind
* the first exclamation mark and the country code behind the second.
* These variables cannot be used in rerun files !
* do not use blank lines between this comment block and the two lines
* with the exclamation mark ! !
* Directories are likely to be on

*
* PC : C:\SYS\WEATHER\
* VAX: <diskname>: [<account>.SYS.WEATHER]
~ MAC: HD40:WEATHER:

*
!C:\SYS\WEATHER\
!NL

ISTN
I YEAR

*

1
1984

Station number of weather data
Year of weather data

* Time variables and output file options

*

DAYB 90.
FINTIM 1000.
PRDEL 10.
DELT 1.
I TABLE 4

ID1'MP I

HARDAY 0.

Start day of simulation
Finish time of simulation
Time between consecutive outputs to file
Time step of integration
Format of output file:
(0 = no output table, 4 = normal table,
5 =Tab-delimited (for Excel), 6 = TTPLOT format)

Sw1tch var1able what should be done with the
temporary output file (0 = do not delete,
1 = delete)

List of harvest data for which output is required
0 = no harvest data

-63-

File: A:\FSE\WHEAT\PLANT.DAT

* Data file with species parameters for spring wheat

* Initial conditions

WLVG 0.
WST 0.
wso 0.
WRT 0.
DVS 0.
TMSUME 0.
EMERG 0.
DAYSOW 90.
NPL 210.
LAO 0.57
RGRL 0.014
TMBJUV = 0.
SLA 0.0022
AMX 40.
EFF 0. 45
KDIF 0.6
scv 0.2
Q10 2.
MAIN SO 0.01
ASRQSO 1. 41
EAR 6.3E-5

* AMDVST, relative effect of development stage on Amax
AMDVS'f' - 0., 1. 0, 1.,1.0, 2.,0.5, 2.5,0.

* AMTMPT, relative effect of temperature on Amax
AMTMPT = -30.,0., 0.,0., 10.,1.0, 25.,1.0, 35.,0., 50.,0.

* DVRVT, effect of temperature on rate of development in vegetative stage
DVRVT = -30.,0.0, 0.,0., 30.,0.0377

* DVRRT, effect of temperature on rate of development in reproductive stage
DVRRT = -30.,0., 0.,0., 30.,0.033

* FSHTB, partitioning to shoot as affected by DVS
FSHTB = 0.0, 0.500, 0 .1, 0.500, 0.2, 0. 600, 0.350, 0.780,

0. 4, 0.830, 0.5, 0.870, 0. 6, 0.900, 0.700, 0.930,
0.8, 0.950, 0. 9, 0. 970, 1.0, 0.980, 1.100, 0.990,

1. 2, 1.000, 2.5, 1.000

* FLVTB, partitioning of shoot growth to leaves as affected by DVS
FLVTB = 0.0, 0.650, 0.10, 0.650, 0.25, 0.7, 0.5,0.5,

0.7, 0.150, 0.95, 0.000, 2.50, o.o

* FSTTB, partitioning of shoot growth to stems as affected by DVS
FSTTB = 0.0, 0.35, 0.10, 0.35, 0.25, 0.3, 0.5,0.5,

0.7, 0.85, 0.95, 1.00, 1.05, o.o, 2.5,0.0

* RDRTB, relative death rate of leaves as affected by temperature
RDRTB = 0.0, 0.03, 10.0,0.03, 15.0,0.04, 30.0,0.09

- 64-

- 65 -

Appendix B: Listing of names of variables in the main program

A

8

CNTR

COPFIL

DAY

DAYS

DELT

DUMMY

ELEV

ERROR

EOF

FILEO

FILEP

FILER

FILES

FILET

FINTIM

FOP EN

GETREC

HARDAY

Meaning

A parameter of Angstrom formula (only used with sunshine duration data)

B parameter of Angstrom formula (only used with sunshine duration data)

Country name

Routine to copy one file into another (from library TTUTIL)

Day of simulation (REAL)

Start day of simulation

Time step of integration

Dummy variable used in interactive input

Elevation of the site

Subroutine to handle errors that have occurred in the program (errors terminate the program)

(from library TTUTIL)

Flag that indicates an end_of_file condition

Name of output file

Name of file containing plant data

Name of file containing rerun data

Name or file containing soil data

Name of file containing timer data

Finish time of simulation

Subroutine to open sequential, formatted files (from library TTUTIL)

Subroutine to read non-empty, non-comment lines from a file (from library TTUTIL)

Array with harvest data at which output is forced

11 Integer counter used for miscellaneous purposes

12 Integer counter used for miscellaneous purposes

13

I DAY

IDTMP

I LEN

IMNHD

INHD

INSETS

I RUN

ISTAT1

ISTAT2

IS TN

IT ASK

I UN ITO

IUNITP

Integer counter used for miscellaneous purposes

Day number of simulation (INTEGER)

Variable indicates if temporary file should be deleted or not

Function to determine significant length of string (from library TTUTIL)

Maximum number of harvest data in HARDAY

Actual number of harvest data in HARDAY

Number of rerun sets found on rerun file

Run number

Status code of STINFO weather routine

Status code of WEA TH R routine

Station number of weather data

Task that should be carried out by subroutines

Unit of file used for output

Unit of file containing plant data

d

d

d

m

d

d

d

IUNITR

I UNITS

I UNITT

Unit of file containing rerun data

Unit of file containing soil data

Unit of file containing timer data

Year of simulation

- 66 -

I YEAR

LAT

LONG

OUTDAT

Latitude of weather station

Longitude of weather station

[degrees].[decimal minute]

[degrees].[decimal minute]

Subroutine to generate output file (from library TTUTIL)

OUTPUT Flag that indicates if output should be generated

PRDEL

RAIN

Time difference between output intervals

Daily rainfall

RDAR EA Subroutine to read array of real values from file (from library TTUTIL)

RDD Daily shortwave irradiation from weather system

RDFROM Subroutine to select a rerun set (from library TTUTIL)

RDINIT

RDSETS

RDSINT

Subroutine to initialize RD routines (from library TTUTIL)

Subroutine to find number of rerun sets (from library TTUTIL)

Subroutine to read single integer variable from file (from library TTUTIL)

RDSREA Subroutine to read single real variable from file (from library TTUTIL)

SUCROS Subroutine that simulates a crop at potential production

STINFO Subroutine to read weather data into internal buffer (from CABO weather system)

TERMNL

TIME

TIMER

TINY

Flag that indicates if simr 1lation will continue for another time step

Time after start of simulation (always starts at zero !)

Subroutine that increases time variables (from library TTUTIL)

Small number to avoid problems with rounding

d

TMMN Daily minimum temperature from weather system oc
TMMX Daily maximum temperature from weather system oc
VP Daily vapour pressure of air from weather system kPa

WEATHR Subroutine to get weather data from internal buffer (from CABO weather system)

WN Daily average wind speed at 2 m height m s-1

WTRDIR Directory of the weather data

WTRMES Flag that indicates if warnings and/or errors have occurred from the weather system

- 67-

Appendix C: Listing of names of variables in SUCROS and other
subroutines

Meaning

AMAX Actual C02 assimilation rate at light saturation for individual leaves

AMDVS Factor accounting for effect of development stage on AMX

AMDVST Table for AMDVS

AMTMP Factor accounting for effect of daytime temperature on AMX

AMTMPT Table for AMTMP

AMX

AOB

AS IN

ASRQ

Potential C02 assimilation rate at light saturation for individual leaves

Intermediate variable

Arcsine function (intrinsic FORTRAN function)

Assimilate (CH20) requirement for dry matter production

ASRQSO Assimilate requirement for dry matter production of storage organs

ASSIM Subroutine to calculate FGROS

Subroutine to compute astronomic- and photoperiodic day length

Atmospheric transmission coefficient

radians

kg (CH20) kg-1 (d.m.)

kg (CH20) kg-1 (d.m.)

ASTRO

ATMTR

CHKTSK Subroutine to check new task against previous task of simulating subroutines

CLUSTF

cos
Cluster factor

Cosine function (intrinsic FORTRAN function)

COSLD Intermediate variable in calculating daylength

DAY Day number (1 January =1)

DA YL Daylength

DA YSOW Sowing day, day number since 1 January

DEC

DELT

Declination of the sun

Time step of integration (=time step of the model)

d

h d-1

d

radians

d

DEMERG Daily increase in temperature sum oc d-1

DLV Death rate of leaves kg (leaf) ha-1 d-1

DSO Daily extra-terrestrial irradiation J m-2 d-1

DSINB Integral of SINB over the day s d-1

DSINBE As DSINB, but with a correction for lower atmospheric transmission at lower solar elevations s d-1

DTGA Daily total gross assimilation of the crop kg (C02) ha-1 d-1

RDD Daily total solar irradiation J m-2 d-1

DVR Development rate d-1

DVRRT

DVRVT

EAI

EAR

EFF

Development rate in pre-anthesis phase as a function of temperature

Development rate in post-anthesis phase as a function of temperature

Ear area index

Ear area ratio

Initial light use efficiency for individual leaves

ha (ear) ha-1 (soil)

ha (ears 2*one-sided projection) kg-1 (shoot)

(kg (C02)ha-1 (leaf) h-1)(J m-2 (leaf) s-1r1

- 68 -

Temperature sum for crop to emerge

Exponent function (intrinsic FORTRAN function)

EM ERG

EXP

FGL

FGROS

FGRS

C02 assimilation rate at one depth in the canopy kg (C02) ha-1 (leaf) h-1

Instantaneous C02 assimilation rate of the crop (per unit ground area)kg (C02) ha-1 (ground) h-1

Intermediate variable for calculation of assimilation of sunlit leaves

FGRSH C02 assimilation rate at one depth in the canopy for shaded leaves

FGRSUN C02 assimilation rate at one depth in the canopy for sunlit leaves

FILEP String variable that contains name of plant-data file

FL V Fraction of shoot d.m. increase allocated to leaves

FL VTB Table for FL V

FOPEN Subroutine to open sequential, formatted files (from library TTUTIL)

FRDIF Diffuse irradiation as a fraction of measured shortwave irradiation

FRT Fraction of total d.m. increase allocated to roots

FSH Fraction of total d.m. increase allocated to shoots

FSHTB Table for FSH

FSLLA Fraction of leaf area that is sunlit

FSO Fraction of shoot d.m. increase allocated to storage organs

FST Fraction of shoot d.m. increase allocated to stems

FSTTB Table for FST

GEAI

GLA

GLAI

GLV

GPHOT

GRT

GSH

GSO

GST

GTW
HOUR

11

12

IAMDVN

IAMTMN

IDVRRN

IDVRVN

I EM ERG

IFSHN

IFSTN

Net growth rate of ear area index

Subroutine to calculate daily increase of leaf area index

Net growth rate of leaf area index of the crop

D.m. growth rate of leaves

Daily total gross assimilation (CH20)

D.m. growth rate of roots

D.m. growth rate of shoots

D.m. growth rate of storage organs

D.m. growth rate of stems

Total d.m. growth rate of the crop

Hour during the day

DO-loop counter

DO-loop counter

Integer variable for number in table for AMDVS

Integer variable for number of elements in table for AMTMP

Integer variable for number of elements in table for DVRR

Integer variable for number of elements in table for DVRV

Variable that indicates if emergence has taken place

Integer variable for number of elements in table for FSH

Integer variable for number of elements in table for FST

kg (C02) ha-1 (leaf) h-1

kg (C02) ha-1 (leaf) h-1

ha (ear) ha-1 d-1

ha (leaf) ha-1 (soil) d-1

kg (leaf) ha-1 d-1

kg (CH20) ha-1 (soil) d-1

kg (roots) ha-1 (soil) d-1

kg (shoots) ha-1 (soil) d-1

kg (stor. organ) ha-1 (soil) d-1

kg (stem) ha-1 (soil) d-1

kg (d.m.) ha-1 (soil) d-1

h

I GAUSS Number of Gauss points that is used in some numerical integrations

I LEN

IN IT

INTGRL

IRDRN

IT ABLE

IT ASK

IT OLD

IUNITO

IUNITP

- 69 -

Function to determine significant length of string (from library TTUTIL)

Flag used to carry out operations only once

Function for doing: state = state+rate*delt (from library TTUTIL)

Integer variable for number of elements in table for RDR

Integer variable to set size of local arrays

Integer variable to indicate the required action of subroutines in main program

As IT ASK but for a previous call

Unit number for output file

Unit number for plant data file

KDIF Extinction coefficient for diffuse PAR flux

KDIRBL Extinction coefficient for direct component of direct PAR flux

KDIRT Extinction coefficient for total direct PAR flux

LA 0 Extrapolated leaf area at field emergence

LAI Leaf area index

LAIC Partial cumulative leaf area index at various canopy depths

LAII Initial leaf area index

LAr1

LAr1

LAr1

cm2 planr1

ha (leaf) ha-1 (soil)

ha (leaf) ha-1 (soil)

ha (leaf) ha-1 (soil)

LAIP Total green area to calculate daily assimilation

LA T Latitude of the site

ha (gr. area) ha-1 (soil)

[degrees].[decimal minute]

LINT Function for linear interpolation (from library TTUTIL)

LOG Function for natural logarithm (intrinsic FORTRAN function)

MAINSO Maintenance respiration coefficient of storage organs kg (CH20) kg-1 (d.m.)

MAINT Maintenance respiration (CH20) of the crop kg (CH20) ha-1 (soil) d-1

MAINTS Maintenance respiration (CH20) of the crop at reference temperature kg (CH20) ha-1 (soil) d-1

MAX Function for determining highest value (intrinsic FORTRAN function)

MIN Function for determining lowest value (intrinsic FORTRAN function)

MNDVS Factor accounting for effect of development stage on maintenance respiration

NPL Plant density

OUTCOM Subroutine to write text string to output file (from library TTUTIL)

OUTDAT Subroutine to generate output file (from library TTUTIL)

OUTPL T Subroutine to print plot (from library TTUTIL)

OUTPUT Flag that determines if output has to be generated

PAR Flux of incoming photosynthetically active irradiation

PARDIF Diffuse flux of incoming PAR

PARDIR Direct flux of incoming PAR

PI Ratio of circumference to diameter of circle

010 Factor accounting for increase in maintenance respiration

with a 1 0 oc rise in temperature

RDAREA Subroutine to read array of real values from file (from library TTUTIL)

RDD

RDINIT

Daily total solar irradiation

Subroutine to initialize RD routines (from library TTUTIL)

plants m-2

J m-2 (soil) s-1

J m-2 (soil) s-1

J m-2 (soil) s-1

RDR

RDRTB

RDSINT

Relative death rate of leaves

Table for RDR

- 70 -

Subroutine to read single integer variable from file (from library TIUTIL)

RDSREA Subroutine to read single real variable from file (from library TIUTIL)

REFH

REFS

RGRL

sc
scv
SIN

SINB

SINLD

SLA

SORT

Reflection coefficient of canopy with horizontal leaf angle distribution

Reflection coefficient of canopy with spherical leaf angle distribution

Relative growth rate during exponential leaf area growth

Solar constant, corrected for varying distance sun-earth

Scattering coefficient of leaves for PAR

Function for sine (intrinsic FORTRAN function)

Sine of solar inclination above the horizon

Intermediate variable in calculating solar declination

Specific area of new leaves

Function for square root (intrinsic FORTRAN function)

SQV Intermediate variable in calculation of reflection coefficient

TADRW Total above-ground dry weight

TERMNL Logical variable indicating if simulation run has to come to an end

TMAV Daily average temperature

TMAVD Daily average daytime temperature

TMB.IIIV Base temperature for juvenile leaf area growth

TMEFF Factor accounting for effect of temperature on maintenance respiration

TM EL V Daily effective temperature for leaf growth

TMMX Daily maximum temperature

TMMN Daily minimum temperature

TMSUME Temperature sum after emergence

TOT ASS Subroutine to calculate gross C02 assimilation of canopy

VISD Absorbed direct component of direct flux per unit leaf area (at depth LAIC)

VISDF

VISPP

VISSHD

Absorbed total direct flux per unit leaf area (at depth LAIC)

Absorbed light flux by leaves perpendicular on direct beam

Total absorbed flux for shaded leaves per unit leaf area (at depth LAIC)

VISSUN Total absorbed flux for sunlit leaves in one of three Gauss point classes

VIST Absorbed total direct flux per unit leaf area (at depth LAIC)

WGAUSS Array containing weights to be assigned to Gauss points

WL V Dry weight of leaves (green + dead)

WLVD

WLVG

WRT

wso

Dry weight of dead leaves

Dry weight of green leaves

Dry weight of roots

Dry weight of storage organs

XGAUSS Array containing Gauss points

crif cm-2 oc-1 d-1

J m-2 s-1

ha (leaf) kg-1 (leaf)

kg (d.m.) ha-1 (soil)

W m-2 (leaf)

w m-2 (leaf)

W m-2 (leaf)

W m-2 (leaf)

w m-2 (leaf)

W m-2 (leaf)

kg (leaves) ha-1

kg (dead leaves) ha-1

kg (green leaves) ha-1

kg (roots) ha-1

kg (stor. organs) ha-1

- 71 -

Appendix D: List of available weather data (June 1991)

Standardized data files are currently available from the following meteorological stations. Year

number 1 000 indicates long term average data.

Country Station Country Station Years

name name code code

Austria Wien AUSTRI 2: 1985-1986

Bangladesh Joydebpur BDESH 3: 1983-1984, 1986

Belgium Uccle BELG 4: 1985-1987, 1000

China Nanjing CHINA 2: 1983-1984

Colombia Palmira COL OM 4:1983-1986

Cyprus Akhelia CYPRUS 2: 1985-1986

Denmark Thorshavn OK 1: 1000

Denmark Alberg OK 2 1: 1000

Denmark K0benhavn I Landbohojskolen OK 3 1: 1000

Denmark Roskilde OK 4 2: 1985-1986

Egypt Sakha EGYPT 1 1: 1984

France Marseille I Marignane FRANCE 1: 100

France Nice I Cote d' Azur FRANCE 2 1: 1000

France Perpignan FRANCE 3 1: 1000

France Ajaccio I Campo del FRANCE 4 1: 1000

France Tours FRANCE 5 1: 1000

France Le Puy en Velay FRANCE 6 1: 1000

France Biarritz FRANCE 7 1: 1000

France Les Escaldes FRANCE 8 1: 1000

France Brest I Guipavas FRANCE 9 1:1000

France Trappes FRANCE 10 1:1000

France Paris I Le Bourget FRANCE 11 1: 1000

France Nancy I Essey FRANCE 12 1: 1000

France Strasbourg I Entzhe FRANCE 13 1: 1000

France Nantes FRANCE 14 1: 1000

France Bourges FRANCE 15 1: 1000

France Dijon FRANCE 16 1: 1000

France Limoges I Bellegard FRANCE 17 1:1000

France Lyon I Bron FRANCE 18 1:1000

France Bordeaux I Merignac FRANCE 19 1:1000

France Nimes I Courbessac FRANCE 21 1:1000

France La Miniere (Versailles) FRANCE 22 2: 1983-1984

France Grignon (Versailles) FRANCE 23 2: 1985,1987

- 72 -

France Le Rheu (Rennes) FRANCE 24 2: 1987-1988

France Dijon FRANCE 25 2: 1985-1986

France La Revanche-Lectoure FRANCE 26 4: 1986-1989

Germany Schleswig GERM 1 1:1000

Germany Hamburg I Fuhlsbutt GERM 2 1:1000

Germany Emden-Nesserland GERM 3 1:1000

Germany Hannover GERM 4 1: 1000

Germany Berlin IT empelhof GERM 5 1: 1000

Germany Essen GERM 6 1:1000

Germany Kassel GERM 7 1: 1000

Germany Geisenheim GERM 8 1:1000

Germany Stuttgart I Cannstadt GERM 9 1:1000

Germany NOrnberg GERM 10 1: 1000

Germany MOnchen I Riem GERM 11 1:1000

Germany Zugspitze GERM 12 1:1000

Germany Kahler Asten GERM 13 1:1000

Germany Feldberg GERM 14 1:1000

Germany Kiel GERM 15 5: 1000, 1983-1986

Germany Gottingen GERM 16 2: 1985-1986

Germany Hohenheim GERM 17 2: 1985-1986

Greece Thessaloniki I Mikr GREECE 1: 1000

Greece Kerkyra GREECE 2 1: 1000

Greece Athinai I Nat. Obs GREECE 3 1:1000

Greece Athinai I Helleniko GREECE 4 1:1000

Greece Kalamath GREECE 5 1: 1000

Greece Hiraklion I Crete GREECE 6 1:1000

Greece Kawai a GREECE 7 1:1000

Greece Tricala GREECE 8 1:1000

Greece Larisa GREECE 9 1:1000

India Patancheru, ICRISAT INDIA 1 10: 1975-1984

India Bijapur, Karnataka INDIA 2 10: 1971-1980

India Coimbatore INDIA 3 3: 1983-1985

India Cuttack INDIA 4 3: 1983-1985

India Hyderabad INDIA 5 2: 1983-1984

India Kapurthala INDIA 6 3: 1983-1985

India Pattambi INDIA 7 3: 1983-1985

Indonesia Muara IN DON 1 2: 1983-1984

Indonesia CRIFC/Sukamandi (West Java) INDON 2 3: 1983-1985

Ireland Belfast I IRL 1: 1000

~~ ~~~~~~-~~~ -~retand- · ~~~-~~va1entia~obs~rvat ~~~~ ~~ ~ ~ ~ -u"tL~~ -2~ - ~ ~~t:~tooo~~ -~~~ ~ ~~- -~~- ~~ ~~~ ~ """""-" "" ~- ~- "~ -- -"~ "~"-"" "-

Ireland Cork (Airport) IRL 3 1:1000

Ireland Shannon (Airport) IRL 4 1:1000

Ireland Dublin (Airport) IRL 5 1:1000

- 73 -

Ireland Bel mullet IRL 6 1: 1000

Ireland Malin Head IRL 7 1: 1000

Ireland Carlow Dublin IRL 8 2: 1985-1986

Israel Gilat (Migda) ISR 1 23: 1962-1984

Israel Bet Dagan ISR 2 1:1988

Italy Milano I Linate ITALY 1 1:1000

Italy Verona I Villafranc ITALY 2 1:1000

Italy •. Venezia I Tessera ITALY 3 1:1000

Italy Trieste ITALY 4 1:1000

Italy Pisa I S. giusto ITALY 5 1:1000

Italy Pescara ITALY 6 1: 1000

Italy Roma I Fiumicino ITALY 7 1: 1000

Italy Napoli I Capodichin ITALY 8 1: 1000

Italy Brindisi ITALY 9 1: 1000

Italy Messina ITALY 10 1: 1000

Italy Trapani I Birgi ITALY 11 1:1000

Italy Catania I Fontanaro ITALY 12 1: 1000

Italy Alghero ITALY 13 1:1000

Italy Cagliari I Elmas ITALY 14 1: 1000

Italy Udine Rivolto ITALY 15 1: 100

Italy Ancona ITALY 16 1:1000

Italy L'Aquila ITALY 17 1:1000

Italy Foggia ITALY 18 1: 1000

Italy Potenza ITALY 19 1: 1000

Italy Policoro ITALY 20 3: 1986-1988

Kenya Ahero KENYA 1 1: 1986

Luxembourg Clerveaux LUX 1: 1000

Luxembourg Luxembourg I Findel LUX 2 1: 1000

Mali Station du Sahel (Niono) MALl 1 4: 1976-1979

Mali Mopti-Sevare MALl 2 32: 1 000,1959-1989
1

Mali Bankass MALl 3 30: 1959-1988 1

Mali Koro MALl 4 30: 1959-1988 1

Mali Djenne MALl 5 30: 1959-1988 1

Mali Douentza MALl 6 30: 1959-1988 1

Mali Hombori MALl 7 30: 1959-1988 1

Mali Niafunke MALl 8 30: 1959-1988 1

Mali Sarafere MALl 9 5: 1965,1973,1986-1988 1

Mali Tonka MALl 10 2: 1961-19621

rvlali ---~samankcqBancoumanar~~ ··- MATtm n ~· · 4:nrs3-r986~··-

1 Rainfall only

- 74-

Mali Samanko (Makandiana) MALl 12 4: 1983-1986

Nepal Parwanipur NEPAL 1 2: 1983-1984

Netherlands Wageningen (Haarweg) NL 38:1954-1991,1000

Netherlands Swifterbant NL 2 16: 1974-1989

Netherlands De Kooy (Den Helder) NL 3 10: 1976-1985

Netherlands De Bilt NL 4 1: 1000

Netherlands Zuid Limburg (Beek airport) NL 5 2: 1987-1988

Netherlands Eelde Airport NL 6 1:1987

Netherlands Lelystad · (Exp. farm) NL 7 4: 1987-1990

Netherlands Valthermond NL 8 1: 1988

Netherlands Randwijk NL 9 2: 1980,1988

Netherlands Vredepeel NL 10 1: 1986,1987

Netherlands Vlissingen NL 11 3: 1986-1988

Netherlands De Bilt NL 12 30: 1959-1988

New Zealand Lincoln NZ 1 4:1984-1987

Nigeria Samaru NIGIA 5: 1980-1984

Pakistan Dokri PAKIS 1:1986

Peru San Camilo PERU 2:1981-1982

Philippines IRRI wet station site PHIL 11 : 1979-1989

Philippines IRRI dry station site PHIL 2 11 : 1979-1989

Philippines Masapang PHIL 3 1:1984

Philippines Los Banos (UPLB) PHIL 4 26: 1959-1984

Portugal Santa Maria I Acores PORT 1:1000

Portugal Lisboa I Portela PORT 2 1: 1000

Portugal Porto I Pedras Ruba PORT 3 1:1000

Portugal Faro PORT 4 1:1000

Portugal Beja PORT 5 1: 1000

Portugal Penhas Douradas PORT 6 1:1000

Portugal Braganca PORT 7 1:1000

Senegal Nioro du Rip SENEG 1: 1988

South Korea Milyang SKREA 2: 1983-1984

South Korea Suweon SKREA 2 2: 1983-1984

Spain La Coruiia SPAIN 1 1:1000

Spain Valladolid SPAIN 2 1:1000

Spain Madrid I Retire SPAIN 3 1: 1000

Spain Mahon Menorca I SA SPAIN 4 1:1000

Spain Badajoz SPAIN 5 1:1000

Spain Barcelona SPAIN 6 1:1000

Spain Palma De Mallorca SPAIN 7 1:1000

Ponta Oelgada~FAfr- ····· --s.PAIN- ~a~-~ ·-l:~tooo

Spain Santander SPAIN 9 1:1000

Spain Leon SPAIN 10 1:1000

Spain Soria SPAIN 11 1:1000

- 75 -

Spain Zaragoza SPAIN 12 1:1000

Spain Ciudad Real SPAIN 13 1:1000

Spain Murcia SPAIN 14 1:1000

Spain Cordoba SPAIN 15 1:1000

Spain Granada 'SPAIN 16 1:1000

Spain Malaga SPAIN 17 1: 1000

Spain Madrid Ciudad Universitaria SPAIN 18 2: 1987-1988

Spain San Esteban De Gomaz SPAIN 19 1:1988

Sri Lanka Para nth an SRI LA 1 3: 1983-1985

Switzerland Sa ntis SWIT 1 1: 1000

Syria Breda SYRIA 8: 1980-1986, 1988

Syria Ghreriffe SYRIA 2 2: 1985-1986

Syria Jindiress SYRIA 3 7: 1980-1986

Syria Kafr Antoon SYRIA 4 4: 1980-1983

Syria Khanasser SYRIA 5 7: 1980-1986

Syria Tel Hadya SYRIA 6 11 : 1978-1986, 1989-1990

Syria Hams SYRIA 7 3: 1988-1990

Syria lzra'a SYRIA 8 3: 1988-1990

Taiwan Pingtun TAIW 1 3: 1983-1985

Thailand Sanpatong THAll 1 4' 1983--1986

United Kingdom Dalwhinnie UK 1:1000

United Kingdom Lerwick UK 2 1:1000

United Kingdom Stornoway UK 3 1: 1000

United Kingdom Aberdeen I Dyce UK 4 1: 1000

United Kingdom Tiree UK 5 1:1000

United Kingdom Edurgh I Royal UK 6 1:1000

United Kingdom Eskdale muir UK 7 1:1000

United Kingdom Valley UK 8 1: 1000

United Kingdom Manchester Airport UK 9 1:1000

United Kingdom Waddington UK 10 1:1000

United Kingdom Birmingham Airport UK 11 1: 1000

United Kingdom Glamorgan I Rhouse UK 12 1: 1000

United Kingdom London I Gatwick UK 13 1:1000

United Kingdom Plymouth I Mount UK 14 1:1000

United Kingdom Durnemouth I Hurn UK 15 1:1000

United Kingdom Cambridge UK 16 2: 1985-1986

United Kingdom Cambridge UK 16 4: 1985-1988

United Kingdom Sutton Bonington UK 17 6: 1980-1985

United Kingdom lnvergowree UK 19 4: 1984-1987

United States Hancock, Wisconsin USA 3: 1985-1987

United States Bakersfield, California USA 2 1: 1988

-- ----------------~

United States

United States

United States

Davis, California

Ithaca, New York

Tulelake, California

- 76 -

USA

USA

USA

3

4

5

1: 1000

1:1987

1:1988

- 77 -

Appendix E: OUTREC, program to recover lost output
data

PROGRAM OUTREC

INTEGER IOPT, ILUl, ILU2

LOGICAL TERMNL

COMMON /OUTCUT/ TERMNL, ILUl, ILU2

DATA IOPT /4/

ILU2 20

ILUl 21

WRITE (*,'(A,/)')' Output options:'

WRITE (*, ' (A) ') ' 4

WRITE (*, ' (A) ') ' 5

WRITE (*, ' (A,/) ') ' 6

normal table'

tab-delimited table 1

two column format table'

CALL ENTDIN ('Which output option', IOPT, IOPT)

CALL FOPEN (20, 'OUTREC.OUT', 'NEW', 'UNK')

CALL OUTDAT (IOPT, 0, 'Recovered file ! ! ! ! ', 0.)

WRITE (*,'(A)')

& ' Output successfully recovered in file OUTREC.OUT ! '

END

