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STELLINGEN 

1. Modellen zijn vereenvoudigde percepties van de werkelijkheid. 
Doordat onze perceptie van werkelijke systemen gedicteerd 
wordt door de metingen die we daaraan kunnen verrichten, is 
het in principe juister om modellen aan te passen aan nieuwe 
waarnemingstechnieken, zoals remote sensing, dan vice versa. 

2. X-band radarreflectie van landbouwgewassen wordt met name 
bepaald door de structuur van het gewas. De interpretatie van 
radarbeeiden voor het monitoren van groei en ontwikkeling 
van landbouwgewassen moet dan ook vooral gericht zijn op de 
detectie van veranderingen in de structuur en de morfologie. 

(Dit proefschrift, Hoofdstuk 3) 

3. Radar remote sensing, en radar Polarimetrie in het bijzonder, 
is zeer geschikt voor herkenning en areaalbepaling van 
landbouwgewassen ten behoeve van oogstverwachting op 
regionale schaal. 

4. X-band radarreflectie data zijn over het algemeen ongeschikt 
voor het voldoende nauwkeurig schatten van gewasgroei-
parameters als de hoeveelheden droge stof en water in het 
vegetatiedek, en de bedekking van de bodem door het gewas. 

(Dit proefschrift, Hoofdstuk 4) 

5. X-band radarreflectie data zijn slechts bruikbaar voor de 
initialisatie en het bijsturen van 
gewasgroeisimulatiemodellen in het begin van het groeiseizoen 
voor een beperkt aantal gewassen. Optische reflectie data 
daarentegen, zijn hiervoor geschikt gedurende het gehele 
groeiseizoen en voor een groot aantal gewassen. 

(Dit proefschrift, Hoofdstuk 7) 

6. De bodembedekkingsgraad van landbouwgewassen kan met 
voldoende nauwkeurigheid uit optische reflectie data worden 
geschat om als input in gewasgroeimodellen te kunnen dienen. 

(Dit proefschrift. Hoofdstuk 8) 

7. De onderkenning van de mondiale problematiek van 
veranderingen in het klimaat en ons leefmilieu is mede een 
gevolg van de opkomst van remote sensing technieken die de 
observatie van onze aarde op mondiale schaal mogelijk maken. 

8. De kracht van aardobservatie vanuit satellieten is het 
verschaffen van overzichten in ruimte en tijd, en niet de 
nauwkeurige bepaling van bio/geo-fysische parameters op een 
vierkante meter aardoppervlak. 

9. De praktische toepasbaarheid van gewasgroei-simulatiemodellen 
voor voorspellingsdoeleinden is omgekeerd evenredig met de 
complexiteit van die modellen. 



10. Bij de presentatie van berekeningen met simulatiemodellen 
voor gewasgroei en uit 'Multiple Goal Programming' studies 
krijgt een discussie over gevoeligheden van uitkomsten voor 
onnauwkeurigheden in inputwaardes zelden de nodige aandacht. 

11. Om de milieu-vervuiling door autoverkeer tegen te gaan zijn 
maatregelen gericht op het verminderen van het gebruik van de 
auto niet meer dan hoogstnoodzakelijke lapmiddelen. Een 
uiteindelijke oplossing kan alleen liggen in het gebruik van 
energiebronnen zonder vervuilende afvalprodukten, of in het 
gecontroleerd opslaan van de afvalprodukten. 

12. Het zou de kwaliteit van de samenleving ten goede komen als 
een deel van de taken van het leger omgebogen zou worden van 
de bewaking van de landsgrenzen naar de bewaking van het 
milieu. 

13. Het autobezit en rijgedrag van de mannelijke Homo sapiens 
vertoont vaak treffende gelijkenis met het balts- en poch-
gedrag van de mannelijke Philomachus pugnax (Kemphaan). 

14. Vanwege het niet-determinstische karakter van de natuur 
bestaat de kans dat U deze stelling niet op deze plaats zult 
aantreffen. 

15. Een toetje is pas lekker als het veel is. 
(Rijnsteeg 8-15A, 1986-1989) 

Stellingen behorende bij het Proefschrift van B.A.M. Bouman: 
Linking X-band radar backscattering and optical reflectance with 
crop growth models. Wageningen, 17 september 1991. 



ABSTRACT 

Bouman, B.A.M., 1991. Linking X-band radar backscattering and optical 
reflectance with crop growth models. Ph.D. Thesis, Wageningen Agricultural 
University, The Netherlands. 169 pages, 21 Tables, 44 Figures. 

This thesis describes an investigation into the possibilities of linking X-band radar 
backscattering and optical remote sensing data with crop growth models for the 
monitoring of crop growth. The emphasis is on the usability of X-band radar data, 
with a detailed analysis of the main backscattering influencing factors of 
agricultural crops in The Netherlands. 

Six-years of ground-based X-band radar observations (VV and HH polarized, 10° 
to 80° incidence angle) were used to study the temporal radar backscattering of 
sugar beet, potato, wheat, barley and oats. The geometry of the crop canopy was 
found to be a major backscattering influencing factor, especially for the cereals. 
The possibilities of crop growth parameter (soil cover, biomass, height) estimation 
from the radar data were investigated using empirical and simple physical 
relationships. Except for sugar beet in the early growing season, the accuracies of 
parameter estimation were generally too low to be used in crop growth models. 

In the optical region, the accuracy of estimating the leaf area index (LAI) from 
vegetation indices was studied. In a case study for sugar beet, the LAI was fairly 
accurately estimated from the so-called Weighted Difference Vegetation Index 
(WDV1). 

Two methodologies were developed to link X-band radar and optical remote 
sensing data with crop growth models. In the first method, remote sensing data 
were used to estimate the fraction soil cover of a crop as input for a simple light-
interception growth model. This method was especially suitable for the use of 
optical remote sensing data. The use of X-band radar data was only feasible for 
sugar beet. 
In the second method, X-band radar and optical remote sensing data were used to 

initialize and re-parameterize the crop growth simulation model SUCROS (Simple 
and Universal Crop Growth Simulator). In six years of sugar beet observations, this 
method improved the simulation of canopy biomass over the use of SUCROS only. 
The radar and optical reflectance data were very effective in the initialization of 
SUCROS, and in adjusting the model during early, exponential crop growth. 
Optical data also adjusted SUCROS in the middle of the growing season. 

Key words: remote sensing, radar, crops, growth model. 
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1 INTRODUCTION 

1.1 Yield prediction and crop growth models 

In agriculture, monitoring of crop growth and development, and early estimates 
of final yield are of general interest. At a local level, individual farmers want to 
know how their crops perform for optimum crop management. At a regional and 
national level, local governments need data on type, location and acreage of crops 
for land use planning and management. Early yield forecasts may be helpful for 
market orientation. For some crops that are not marketed by wholesalers, but, like 
maize in The Netherlands, are more or less privately marketed, insight into annual 
production and distribution figures is still scarce. Timely yield forecasting is also 
crucial for some agricultural industries. Sugar beet factories must have an idea 
about expected dates of delivery and yields of sugar beets in order to plan their 
processing capacity. 

At an international level, like the European Community (EC), yield estimates 
are an indispensable tool for pricing policies and the setting of import/export 
quotas. For Third World countries, early yield forecasting to mitigate possible 
food-shortage is of utmost importance. 

Traditionally, yield forecasts are made on the basis of samples taken from 
individual farms, e.g. field visits or written enquiries. Problems encountered 
concern subjectivity in responses, respondent differences and non-response (Heath, 
1990). At regional and (inter-) national level, the processing of these sample data is 
an expensive and time consuming procedure. Moreover, in the EC for example, 
there is a need for greater objectivity and inter-country comparability in the 
agricultural statistics delivered by the member states (Heath, 1990). In general, a 
more objective, standardized and possibly cheaper and faster methodology for 
collecting yield estimations is needed. 

Over the last few years, attention has been given to the possibility of using 
remote sensing techniques and crop growth models as new tools for crop growth 
monitoring and yield prediction. The Council of the EC began, for example, in 
September 1988 a pilot project on the application of remote sensing for the 
improvement of agricultural statistics (Toselli and Meyer-Roux, 1990). Beside 
remote sensing, crop growth models were recognized as a promising tool for 
regional yield prediction. 

Most deterministic crop growth models try to explain the growth and 
development of crops from an understanding of the physiological and physical 
processes involved (King, 1988). The complexity of these models ranges from very 
simple, consisting of only one equation (Monteith, 1981), to very complex, like 
the ones developed and described by van Keulen and Wolf (1986), Jones and 
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Kiniry (1986), van Keulen and Seligman (1987), and Spitters et al. (1989) for 
example. This last category of growth models generally computes the daily growth 
and development rate of the crop from meteorological parameters like solar 
radiation, maximum and minimum temperature, precipitation, relative humidity 
and wind speed. 

Most deterministic growth models were developed as research tools to 
synthesize available knowledge on crop growth and development. Not so 
surprisingly, these crop growth models often appear to fail when applied to 
practical field conditions for the purpose of yield estimations (Kanemasu et al, 
1984). Detailed field data necessary as input for the model, such as sowing date, 
empirical and physiological crop parameters and physical soil properties, are often 
lacking, and the effects of the possible occurrence of stress factors on yield 
formation are insufficiently known. Therefore, simulated crop growth in any 
regional environment will nearly always deviate from the crop growth that actually 
occurs. 

For practical application of growth models, there is a need to update the model 
in the course of the growing season with information on the actual status of the 
crops. Such information can be obtained, in a non-destructive way, using remote 
sensing techniques. 

1.2 Remote sensing 

Remote sensing is basically the measurement of electromagnetic radiation that 
is reflected or emitted from the surface of the earth. Reflected electromagnetic 
waves may have been emitted by the sun (optical remote sensing) or by artificial 
sources (e.g. radar). An illustration of the electromagnetic spectrum and the regions 
used for remote sensing is given in Figure 1.1. An introduction to the fundamental 
physical aspects of electromagnetic radiation and its use for remote sensing is 
given by Schanda (1986). 

Through repeated remote sensing observations of agricultural crops during the 
growing season, a so-called temporal signature of the crops is obtained. The 
problem is to translate this temporal signature of remote sensing signals, like 
reflected solar radiation or radar backscattering, into crop biomass and final yield. 
Direct relationships between remote sensing signals and yields of crops are 
generally too inaccurate to be used successfully in yield prediction systems. 
Relationships between remote sensing signals and 'secondary' crop variables like 
fraction soil cover or leaf area index {LAI) appear more reliable. Crop growth 
models are then needed to proceed from these variables to crop biomass and final 
yield figures. 
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1.2.1 Optical remote sensing 

The most widely used remote sensing technique so far is optical remote 
sensing: the measurement of the amount of reflected solar radiation from the earth's 
surface. Reflectance values are calculated by dividing the reflected amount of 
radiation by the incident radiation, or by the reflected amount of radiation from an 
ideal reflector (Suits, 1975). Reflectances are mainly measured in different optical 
spectrum wavelength bands, for instance in the blue (0.4-0.5 |am), green (0.5-0.6 
Urn) or red (0.6-0.7 u.m) part of the visible region, or in parts of the near infrared 
(0.7-1.3 urn) and the middle-infrared (1.3-2.5/3.0 |i.m) spectrum. Because of the 
differences in the interaction of electromagnetic radiation of different wavelengths 
with vegetation, the various wavelength bands have different information contents 
(Bunnik, 1978). For in-depth studies of the physics of optical remote sensing, see 
Wendlandt and Hecht (1966), Lavin (1971) and Schanda (1986). 

A number of operational satellite systems provide regular images of the earth 
in different wavelength bands in the optical region, e.g. METEOSAT, NIMBUS, 
NOAA, Landsat and SPOT (Buiten and Clevers, 1990). The availability of these 
data has stimulated scientists to study the reflectance properties of crops, and to use 
these data for crop growth monitoring (Wiegand et al., 1979; Tucker et al., 1979, 
1980). However, a main drawback of optical systems in tropical and temperate 
climates is cloud occurrence. Since a frequency of observations is necessary for 
monitoring purposes, optical space-borne systems are less suitable in these regions. 
At a sub-regional level, air-borne systems may be used, and at farm and field level, 
portable reflectance meters. 

The optical reflectance of crops is determined by the interaction of solar 
radiation with the crop canopy. From the late sixties, this interaction process has 
been extensively studied and modelled (Allen and Richardson, 1968; Allen at al., 
1969; Suits 1972a; de Wit, 1965; Goudriaan 1977; Bunnik 1978; Verhoef, 1984; 
Den Dulk, 1989; Kuusk and Nilson, 1989). From these studies and numerous field 
observations (Suits, 1972b; Bunnik, 1978; Clevers, 1986; Nilson, 1988; Schellberg, 
1990), the interaction of optical radiation with vegetation canopies is relatively 
well understood. 

The spectral (i.e. as function of wavelength) optical reflectance of crops is a 
function of canopy factors, viewing and illumination conditions, and of the 
properties of the underlying soil. Canopy factors are the optical properties of 
elements like stems and leaves, and the amount and spatial distribution of these 
elements (canopy structure). Viewing conditions are the azimuth and incidence 
angle of the view direction of the sensor. Illumination conditions are the azimuth 
and incidence angle of the sun, and the fraction between diffuse and direct solar 
radiance. The reflectance properties of soil are mainly a function of mineralogical 
and organic composition, water content and the surface roughness. 
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When monitoring crop growth and development by means of optical remote 
sensing, a number of the above mentioned factors remain stable or can be 
standardized. For consecutive measurements, the sensor can be placed in a standard 
position with respect to the crop, and measurements can be performed at 
comparable solar elevation angles. Furthermore, some changes in factors during the 
growing season, that disturb relationships between reflectance and significant crop 
parameters (e.g. LAI), may be corrected through the calculation of so-called 
Vegetation Indices (V7's). An example is the much-used Normalized Difference 
Vegetation Index NDVI (first described as VI by Rouse, 1973): 

NDVI = (IR-R)/(IR+R) 

where IR = infrared reflectance of crop, and R = red reflectance of crop. 

A number of authors have successfully correlated spectral reflectances and Ws 
to crop parameters like LAI, fraction soil cover, light interception or the chlorophyll 
content of different types of crops (Kumar and Monteith, 1981; Steven at al., 1983; 
Asrar et al, 1984; Wiegand at al., 1986; Birnie et al., 1987; Huete, 1988; Clevers, 
1986, 1989; Schellberg, 1990). These crop parameters play an important role in 
crop growth and can be used in crop growth simulation models. However, there is 
no agreement yet on the most suitable VI for the estimation of specific crop 
parameters from optical remote sensing measurements. 

1.2.2 Radar remote sensing 

A radar system generally consists of a transmitter in which microwaves of the 
desired wavelength (usually between 1 and 30 cm) are generated, and an antenna 
for spatial distribution of the generated radiation. After reflection in a backward 
direction by an object on the earth's surface, the microwaves are received by the 
antenna and detected on the radar receiver (radar backscattering). The radar 
backscattering of an object is expressed by its radar cross-section, which may be 
defined as its microwave reflective power in the direction of the source. 

Microwaves that are used in radar remote sensing are relatively unhindered by 
atmospheric conditions. Wavelengths longer than 3 cm are hardly affected by 
clouds or fog and wavelengths longer than 10 cm are very little attenuated by rain 
(Goodman, 1980). The used radar wavelengths for remote sensing and their 
nomenclature are given in Figure 1.1. Basic principles of radar and radar remote 
sensing are given by Ulaby, Moore and Fung (1981,1982 and 1986). 

Compared to optical systems, the use of radar in remote sensing is relatively 
new. Up to 1991 there had been one satellite mission, the Seasat in 1978; a mission 
which only lasted for about three months. Other space observations were 
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performed during the SIR-A and -B Space Shuttle missions in 1981 and 1984 
respectively. Most radar images have been collected using air-borne systems. 
Compared to optical remote sensing, very little use has been made of ground-based 
systems. 

In land applications, radar data have mostly been studied for the mapping and 
inventorization of impenetrable marshes and tropical forests with near-permanent 
cloud cover (Hoekman, 1990). Research into agricultural applications has focussed 
mainly on crop type classification (Batliva and Ulaby, 1975; van Kasteren, 1981; 
Hoogeboom, 1983; Wooding, 1988; Wegmüller, 1990), whereas the monitoring of 
crop growth has, so far, received little attention. Overviews of the achievements of 
radar remote sensing in agriculture are given by Cihlar (1984), Krul (1984) and 
Ulaby et al. (1986). 

The radar backscattering from a crop depends on the properties of the incident 
microwaves, and on those of the canopy and the underlying soil. Properties of 
microwaves are wavelength, state of polarization and angle of incidence. In 
microwave scattering models, a crop canopy can be considered as a dielectric 
mixture of discrete inclusions (e.g. leaves and stems) distributed in a host material 
of air (Ulaby and Jedlicka, 1984). Fundamental models generally describe the 
scattering strength and the microwave attenuation through crop canopies from the 
dielectric constant, the volume fraction and the geometry of the various types of 
inclusions (Ulaby et al., 1982, 1986; Allen and Ulaby, 1984; Eom and Fung, 1984; 
Ulaby and Wilson, 1985; Lang et al, 1986; Karam and Fung, 1988). These models 
have not yet been validated for different crops and growing conditions. Moreover, 
some of the input parameters could not be successfully related to measurable 
physical properties of the crop. 

Another class of (simple) physical models has been developed that treat the 
canopy as a collection of water droplets (Attema and Ulaby, 1978; Ulaby et al. 
1982, 1984; Hoekman et al., 1982). The possibilities of crop parameter estimation 
with this type of models has to some extent been investigated (Ulaby et al., 1984; 
Prévôt et al., 1988; de Loor, 1985, 1987), but a large-scale effort by the research 
community has been hindered by the lack of sufficient temporal radar data with 
supporting ground-truth. 

Overall, information about the radar backscattering of crops is less wide-spread 
than that on the optical reflectance of crops. Attempts to use radar backscattering 
data for monitoring of crop growth have, so far, been very few. 
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1.3 Objective and scope of thesis 

The research presented in this thesis focuses on two objectives. Firstly, the 
application possibilities of X-band radar backscattering in crop growth monitoring 
are studied. The second objective is the development of methodologies which link 
remote sensing data in general to crop growth models for monitoring crop biomass 
development. For this, optical remote sensing data are used in addition to radar 
data. 

Radar remote sensing is applied because of its unique all-weather capability. A 
number of earth observation satellites that are scheduled in the coming decade will 
carry radar sensors (e.g. ERS-1, JERS-1, Radarsat, EOS). Optical remote sensing is 
used because of the proven relationships with canopy parameters, and because of 
the many optical remote sensing satellites that are operational. 

The scale of research is the 'field' level. Ground-based radar and optical remote 
sensing data collected from the agricultural fields of experimental stations and 
private farmers are used. The field level has the advantage that, on agricultural 
stations, growth and management conditions can be manipulated to study the 
effects on remote sensing signals. Also, on field level, detailed ground-truth can be 
collected on the near-exact location of the remote sensing measurement. Finally, 
the field level agrees with the scale on which most crop growth models have been 
developed. 

Organisation of thesis 

Chapter 2 introduces the experiments on the X-band radar backscattering of 
crops. The radar backscattering of sugar beet and potato is described in relation to 
crop growth and development. The backscattering is studied in vertical and 
horizontal like-polarization, VV and HH respectively, and at incidence angles from 
10°-80\ 

In Chapter 3, the backscattering of wheat, barley and oats is investigated. 
Special emphasis is placed on the influence of canopy structure on the 
backscattering. From the analyses in both Chapters 2 and 3, conclusions are drawn 
with regard to the application possibilities of X-band radar remote sensing in 
agriculture. 

In Chapter 4, the possibilities of estimating crop parameters from X-band radar 
backscattering data are investigated using empirical and simple physical 
relationships. The crops investigated are sugar beet, potato, wheat and barley. The 
investigated crop parameters are dry canopy biomass, fraction soil cover, crop 
height and canopy plant water. The empirical and physical relationships use multi-
temporal and muti-angle backscattering data in both VV and HH polarization. 
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In Chapter 5, X-band radar backscattering data are applied in a simple growth 
model for sugar beet. Using the 'Cloud' equations (Attema and Ulaby, 1978), a so-
called 'microwave soil cover' is estimated from the radar backscattering at a high 
and a low angle of incidence. This microwave soil cover is related to the optical 
soil cover and used in a light-interception growth model. This model calculates the 
rate of growth from the product of the amount of intercepted solar radiation and a 
light use efficiency factor. The intercepted solar radiation is computed from daily 
measured values of total incoming solar radiation and the estimated soil cover of 
the crop. 

Chapter 6 introduces optical remote sensing with an analysis of the estimation 
accuracy of LAI from different spectral Vegetation Indices. A physical interaction 
model (EXTRAD; Goudriaan, 1977) is used to simulate the effects of so-called 
'disturbing factors', such as canopy structure, illumination condition and soil 
moisture, on the VI-LAI relationships. The effects of the disturbing factors on the 
accuracy of LAI estimation are quantified along the LAI trajectory. From this 
quantification, the most suitable VI for the estimation of LAI is derived. The 
simulation experiment is supported by field measurements of sugar beet crops. 

In Chapter 7, a methodology for linking physical remote sensing models with 
physiological crop growth models is presented that allows for the use of multi-
sensor information. A crop growth model (SUCROS; Spitters et al., 1989) is 
extended with the 'Cloud' equations and the EXTRAD model to calculate the X-
band radar backscattering and the optical reflectance of the simulated crop. The 
simulated time series of remote sensing signals is compared to a measured time 
series of remote sensing signals. From this comparison, the combined SUCROS-
Cloud-EXTRAD model is re-initialized and re-parameterized to fit the simulated 
remote sensing signals to the measured remote sensing signals. The methodology is 
applied on 11 fields of sugar beet, using both radar and optical remote sensing data. 
The simulated canopy biomass is compared with values measured in the field, 
before and after the re-initialization and re-parameterization of SUCROS. 

Chapter 8 presents the main conclusions and discussions on the usability of X-
band radar for crop growth monitoring, and on the methodologies developed for 
linking remote sensing data with crop growth models. 
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2 GROUND-BASED X-BAND (3-CM WAVES) 
RADAR BACKSCATTERING OF 
AGRICULTURAL CROPS. I: SUGAR BEET 
AND POTATO; BACKSCATTERING AND 
CROP GROWTH 

Abstract Six years of ground-based radar observations were used to study 
backscattering influencing factors of agricultural crops. The X-band, 3 cm 
wavelength, radar backscattering of sugar beet and potato was studied at vertical 
and horizontal like-polarization and at several angles of incidence. For both crops 
the backscattering increased with crop growth until a saturation level was reached 
at about 80% soil cover. The average radar backscattering of a closed sugar beet 
canopy varied between -2 and 0 dB at all angles of incidence. The average 
backscattering of potato ranged from -2 to 0 dB at 20° incidence angle, to -7 to -5 
dB at 70° incidence angle. 

The geometry of the crop-soil system was an important backscattering 
influencing factor. In potato, the orientation of the ridges with respect to the 
incident radar beam dominated the backscattering in the early growing season. The 
architecture of individual beet plants, and their distribution in space affected the 
radar backscatter of sugar beet. For both beet and potato, changes in the canopy 
architecture due to strong winds affected the radar backscattering by 1-2 dB. 

2.1 Introduction 

In recent years the usefulness of remote sensing in agriculture is increasingly 
recognized. Applications vary from large scale crop inventory and disease 
detection to the monitoring of growth and development. The availability of satellite 
data from the Landsat, NOAA and SPOT satellites has stimulated research and 
applications in the optical region. For arid and semi-arid areas, these satellites 
deliver useful data on a regular basis. In many regions with a tropical or temperate 
climate, however, cloud cover frequently hampers remote sensing of the land 
surface. In The Netherlands the average number of cloud free imagery of a sector 
of 40x50 km, using the Landsat satellite is only four to six times a year (van der 
Laan, 1989). Therefore the attention of researchers is shifting to a remote sensing 
technique which is relatively unhindered by atmospheric conditions. Microwaves 
have the capability of penetrating clouds and fog and are therefore in principle 
suitable for remote sensing. Knowledge of the behaviour of microwave 
backscattering of agricultural crops is, however, still scarce while the lack of a 
remote sensing satellite with radar has hindered general investigations. This has 
prompted scientists in Europe to participate in communal airborne radar campaigns 
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such as Agrisar 1986 (Fiumara, 1988) and Agriscatt 1987-1988 (Attema, 1988). 
Such campaigns deliver a wealth of data under actual field conditions. However, 
because airborne campaigns are quite expensive, the number of observations is 
often limited to no more than four to seven in a growing season. This may be a 
handicap when the object of study is the monitoring of crop growth. Another 
drawback is that ground conditions can not be manipulated to investigate the 
effects of specific surface parameters. Therefore, airborne observations - giving 
area coverage at specific moments in time - have to be supported by ground-based 
measurements - which give continuity in time - in well conditioned environments 
like agricultural test farms. 

In this series of two papers, the relationship between ground-based, X-band (3 
cm-waves) radar backscattering of agricultural crops and agronomic (e.g. crop 
type, crop growth, management practices) and environmental factors (e.g. weather 
influences) is investigated. The objective is to assess main backscattering 
influencing factors of crops. Where possible, the effects of these factors on the 
radar backscattering are quantified. At the end, the potential role of X-band radar in 
agricultural application is discussed. 

The present paper, part I of the series, presents an overview of the 
measurement methodology and deals with the relatively broad-leaved crops sugar 
beet and potato. The relationship between the radar backscattering and crop growth 
is investigated. With two special experiments, the importance of the geometry of 
the crop-soil system will be demonstrated. The consecutive paper, part II, discusses 
the backscattering of wheat, barley and oats with special emphasis on the influence 
of canopy structure. The canopies of these small-grain cereals consist of long, 
narrow leaves and stalks. The differences in general canopy architecture of sugar 
beet and potato on the one hand, and wheat, barley and oats on the other, caused 
specific differences in backscattering from these two crop groups. 

2.2 Measurement methodology 

The data used for this study were collected by the Dutch team ROVE (Radar 
Observation on Vegetation) during 1975-1981. The team consisted of: 

- The Centre for Agrobiological Research (CABO), Wageningen 
- The Microwave Department of the Delft University of Technology 
- The Physics and Electronics Laboratory TNO, The Hague 
- The National Aerospace Laboratory (NLR), Amsterdam 
- The Department of Soils and Fertilizers of the Agricultural University, 
Wageningen 
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surface 

Figure 2.2. Schematic representation of the illumination geometry of the radar beam. The 
symbols in the figure have the following meaning: 8 = angle of incidence; h = height of the 
radar; r = axis of the radar beam; a = projected area of the cross-section of the radar 
beam; b = area illuminated by the radar beam. 

The X-band radar backscattering was measured with a FM-CW scatterometer 
mounted on a trailer. This trailer could be moved along the test field to measure the 
different plots at angles of incidence from 10° to 80° (Fig. 2.1). The distance of the 
scatterometer to the target could remain 10 m along the axis of the beam, at all 
angles of incidence. The antenna beam width was 4° (at the half power or 3 dB 
points), so the cross section of the antenna beam at the place of the target was 0.6 
m2. The central frequency of the scatterometer was 9.5 GHz (corresponding to a 
wavelength of about 3 cm) with a frequency sweep of about 0.4 GHz. 
Measurements could be made at different combinations of polarization VV, HH, 
HV and VH. In these abbreviations, the first letter stands for the polarization of 
transmitting, the second for the polarization of reception of the microwaves. 'V' 
denotes the vertical state and 'H' denotes the horizontal state. 

The radar was calibrated by directing the radar beam to a corner reflector of 
known radar cross-section. This calibration was done for each state of polarization 
at the beginning and end of each measurement day. More information on the 
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calibration procedure is given by van Kasteren and Smit (1977) and by de Loor et 
al. (1982). 

The radar backscattering was expressed as y: the radar cross-section of the 
target per unit projected area of the cross-section of the radar beam (m2/m2). The 
relationship between y and o° (the Normalised Radar Cross Section NRCS, which 
is the radar cross-section per unit area illuminated by the antenna) is: 

Y=aYcos0 (1) 

where 9 is the angle of incidence, defined as the angle between the incident radar 
beam and the vertical (Fig. 2.2). In the text, a low angle of incidence refers to 
angles of 10°-30°, a medium angle to 40°-60° and a high angle to 60°-80°. 
Furthermore, as a standard, y is expressed in dB: 

y (dB) = 10*logl0(y (m2/m2)) (2) 

The total measurement accuracy (as determined by the inaccuracies in the 
scatterometer, in the calibration procedure, in the data processing, and due to 
averaging over independent samples in a plot) was about 0.5 dB. The radar 
measurements were repeated during the growing season with intervals of about two 
to five days. This resulted in the following number of observations (per incidence 
angle and per state of polarization) per year: 27 in 1975, 24 in 1976, 32 in 1977, 36 
in 1979, 39 in 1980 and 19 in 1981. 

The experiments were done at three different test farms in The Netherlands: 
"Droevendaal" at Wageningen (1975-1977), "De Bouwing" at Randwijk (1978-
1979) and "De Schreef" near Drenten (1980-1981). These farms are located in 
different environments on sandy soil, alluvial clay and marine clay respectively. 
All crops were given the best treatment for a healthy growth and development 
(with regard to fertilizer, weed control, pesticides, etc.). However, since no 
irrigation was possible, a natural water shortage caused in a limited number of 
occasions an under-developed or failing crop. 

Together with the radar measurements, visual observations were made of the 
soil surface and of the crop morphology, phenological stage, and any anomalies 
like weeds or diseases. Quantitative measurements were made of the volumetric 
soil moisture content of five cm top soil, fresh and dry weight of the above ground 
biomass, crop height, soil cover, row spacing, number of stems/m2 and for some 
crops the dimensions and number of leaves per plant. The measurements on 
biomass were done only a few times in the growing season. A fitted growth 
function was used to interpolate between the measurements to all dates of radar 
observations. Overviews of the experiments are given by van Kasteren (1981), de 
Loor (1982,1985), Bouman (1987) and Bouman and van Kasteren (1989). 
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2.3 Crop description 

The description of the crops applies to those in the ROVE data set and 
concerns the variety Monohil for sugar beet and Bintje for potato. Although in 
general it will apply to crops grown under various growing conditions, deviations 
may occur in, for instance the size of the canopy elements or the yield. 

The canopy of Sugar beet is characterized by a relatively uniform architecture 
during its growth cycle. The leaves are placed in rosettes on the root and have 
approximately a plagiophile or uniform angle distribution during the whole 
growing period (de Wit, 1965). Depending on variety and growth conditions, the 
dimensions of the leaves varied from some 5 x 10 cm in the first month after 
emergence to some 25 x 35 cm in the late growing season. Thus, the leaves were 
relatively large in comparison with the 3-cm wavelength of X-band microwaves. 

After about two months of growth, a healthy crop covered the soil completely 
and nearly no bare soil was visible. Under average, non-stressed growing 
conditions the above ground biomass attained seven to eight ton of dry matter/ha. 
The average plant water content was 93% throughout the growing season. 

Potato was cultivated on ridges of some 25 cm height and 50-75 cm apart. 
Potato leaves were made up by small leaflets with an average size of about 4 x 8 
cm for fully grown plants. This size was of the same order as the wavelength of X-
band microwaves. Potato leaflets have a planophile angle distribution (de Wit, 
1965), which means that horizontal leaves are most frequent. 

A healthy potato crop covered the soil surface almost completely after six 
weeks from emergence. In the midst of the growing season a period of flowering 
occurred. The flowers were small (about 2 cm in diameter) and stood in the top of 
the canopy. At the end of the growing season, sometimes individual plants would 
lodge and spots of bare soil appeared in the canopy. Leaves clustered together on 
the ground and the stems became visible. 

The above ground biomass attained some three ton of dry matter/ha, which is 
considerably less than that of sugar beet. The average plant water content was 90-
95% throughout the growing season. 

Examples of the growth of the above ground canopy of sugar beet and potato 
in 1975, 1979 and 1980 are given in Figure 2.3. The potato of 1975 is not included 
because this crop had a ridge direction perpendicular to the incident radar beam, 
where the other crops had a ridge direction parallel to the beam (see § 2.5). For 
sugar beet, the growth in 1979 and 1980 was comparable with a somewhat earlier 
start in 1980. The crop in 1975 had a much faster start but the maximum biomass 
was already reached at two months after emergence. 
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Figure 2.3. Examples of the development of the above ground canopy biomass in the 
course of the growing season for sugar beet (2.3a) in 1975 (0), 1979 (h) and 1980 ( • ; , 
and for potato (2.3b) in 1979 and 1980. 
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Figure 2.4. Vertical (W) polarized X-band radar backscattering at 40 ° incidence angle in 

the course of the growing season for the same crops as in Figure 2.3. 
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Because of drought, the final weight of the above ground biomass was about 
twice as low as in the other two years. Contrary to sugar beet, potato in 1979 had a 
much faster start than in 1980. After about two months from emergence, no more 
growth in canopy biomass took place. All newly assimilated matter was transported 
to the tubers. At the end of the growing season, canopy biomass declined due to 
dying and loss of leaves. 

2.4 Detailed radar backscattering in time 

2.4.1 Backscattering and crop growth 

The VV radar backscattering at a medium angle of incidence is plotted against 
time in Figure 2.4 for the same crops as in Figure 2.3. 

For sugar beet, a 'radar-growth' curve is recognized in the temporal radar 
backscattering. Until day 150, no vegetation was present and the peaks in the 
backscattering curve coincided with peaks in the moisture content of the top soil. 
After day 150, the beets started to grow (Fig. 2.3) and the radar backscattering 
increased. The relative early growth of the crop in 1975, and the relative late 
growth of the crop in 1980 corresponded with a similar pattern in the 
backscattering curves until day 180-190. Around day 180-190, the radar 
backscattering saturated for all three crops relatively early in the growing season 
with biomass values of only two to three ton/ha. Because of this early saturation of 
the backscattering, the spectacular difference in biomass between 1975, and 1979 
and 1980 (Fig. 2.3) was unnoticed. The radar backscattering remained on a more or 
less stable level for the rest of the growing season until harvest. The differences in 
the level of saturation, some 3 dB between the crops of 1975 and 1979, could not 
be explained by ground-truth observations. 

The temporal curves of the radar backscattering of potato were less 
pronounced. Before emergence, day 140, there was a difference of about 4 dB 
between the bare soil (relatively smooth and weed-free) of 1979 and of 1980. With 
the growth of the crops after day 150, the backscattering increased until day 180-
190. The earlier growth of the crop between day 160 and day 190 in 1979 is not 
recognized in the backscattering curves. From day 180, the backscattering appeared 
saturated for both crops after biomass values of one to two tons/ha. The flowering 
in the midst of the growing season and the lodging at the end, are not recognized as 
distinct features in the backscattering curves. 
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2.4.2 Fluctuations in the backscattering curves 

Both the backscattering curves of sugar beet and potato had a large number of 
small fluctuations (peaks and dips) in the order of 1 to 2 dB (Fig. 2.4). These 
fluctuations were no measurement errors or inaccuracies. Firstly, a peak or dip in 
the curve of a specific crop on a certain day was repeated in several measurement 
series on that day. Secondly, most peaks and dips were not the same for different 
crop types, but were clearly related to specific crops. Therefore, the causes for 
these fluctuations must be looked for in the crops themselves. 

Before emergence and in the early stages of growth, peaks and dips were 
explained by similar features in the moisture content of the top soil. The 
relationship between the radar backscattering and the moisture content of a soil 
surface is generally recognized (Attema and Ulaby, 1978; Waite, et al., 1984). 
With the saturation of the backscattering, the influence of the soil background was 
reduced. The fluctuations were then caused by other factors, namely the changes in 
the geometry of the canopy induced by the weather. Strong winds can enforce 
preference in orientation of the canopy elements. Little variation in wind in 1979 
was generally reflected in relatively small fluctuations in the temporal curves. 
Large variations in wind speed and direction in 1980 produced relatively more and 
larger fluctuations. For potato, wind directed towards the radar often coincided 
with a relatively high backscattering value. Wind directed away from the radar 
often coincided with a relatively low backscattering value. The opposite effect was 
observed for sugar beet: high backscattering values often coincided with wind 
directed away from the radar and low backscattering values often coincided with 
wind directed towards the radar. This effect of wind direction occurred only when 
the wind speed exceeded 5 m/s, and it was stronger for sugar beet than for potato. 

The canopy structure is not only affected by wind but also by other 
environmental conditions. Rain may cause drooping of leaves while prolonged 
drought may cause wilting in sugar beet. Moreover, the condition of the crop itself 
plays an important role in determining resistance to changes in the canopy's 
geometry. Because of these complex relationships between canopy structure on the 
one hand and crop condition and weather on the other, the relation between 
weather and radar backscattering could not be further elaborated. 

2.4.3 Polarization and incidence angle 

For both sugar beet and potato, the backscattering was nearly identical at VV 
and at HH polarization. The general shape of the temporal curves, the absolute 
level and the many small fluctuations at the different angles of incidence were 
faithfully reproduced at both states of polarization (Bouman, 1987). The coefficient 
of correlation (between VV and HH) was 0.98 for sugar beet and 0.94-0.97 for 
potato at the different angles of incidence. The data for the correlation calculations 
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were taken for the crops in Figure 2.4 from sowing to harvest and numbered 66 for 
beet and 57 for potato, at each angle of incidence. 

The coefficients of correlation between the VV radar backscattering at 
different angles of incidence are given in Table 2.1. The radar backscattering of 
sugar beet was highly correlated between the different angles of incidence. The 
correlations were only slightly lower between the backscattering at 20° and at 50° 
to 70°. 

Table 2.1. Correlation matrix for the W radar backscattering at different angles of 
incidence for sugar beet and potato, using data from sowing to harvest. 
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The radar backscattering of potato was correlated between most angles of 
incidence. However, the coefficients of correlation decreased faster with increasing 
difference between the angles of incidence than for beet. The coefficient of 
correlation between 20° and 70° had dropped to 0.77 where it still was 0.90 for 
sugar beet. These lower correlations were caused by the fluctuations in the 
temporal curves of the radar backscattering. For sugar beet, most peaks and dips 
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coincided at all angles of incidence. For potato, peaks at low angles of incidence 
sometimes coincided with dips at high angles, and vice versa. This resulted in 
lower correlations between these incidence angles. 

The shape of the temporal backscattering curves of sugar beet and potato at 
different angles of incidence is discussed in the next paragraph. 

2.5 Average temporal trends 

The many small fluctuations in the temporal backscattering curves hinder the 
derivation of general trends. Moreover, the time scale of the temporal curves 
should be normalized to compare the different years on a similar basis. 
Normalizing is generally done by plotting the data on a development scale. The 
steps in a development scale are related to characteristic morphological and 
physiological phenomena that occur during the development of the crop. For 
instance the four-grammes sugar weight of the root is a characteristic point of sugar 
beet. However, radar data of sugar beet and potato plotted on these conventional 
scales were not consistent. The radar backscattering of crops reacted on the above-
ground crop canopy and did not respond to phenomena that occurred in roots and 
tubers below-ground. Also some above-ground phenomena like flowering in potato 
were not noticed by the radar. Therefore a special 'radar-growth' scale was 
constructed to accommodate characteristics of the crop that put the radar data on a 
consistent basis (Table 2.2). 

Table 2.2. Proposed 'radar-growth' scale to put the temporal X-band radar backscattering 
data of sugar beet and potato in various years on a consistent basis. 

Stage Crop Description 

seed-bed 
soil cover 0-10 % 
soil cover 11-20 % 
soil cover 21-50 % 
soil cover 51-80 %; 
biomass < 200 g/m2 

R5 beet, potato soil cover > 80 %; 
biomass 200-500 g/m2 

biomass > 500 g/m2 

yellowing in bottom of canopy 
yellowing in top of canopy 
leaf-deformation, patches of 
lodged crop 

R0 
Rl 
R2 
R3 
R4 

beet, 
beet, 
beet, 
beet, 
beet, 

potato 
potato 
potato 
potato 
potato 

R6 
R7 
R8 
R9 

beet 
potato 
potato 
potato 
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The first four stages of the radar-growth scale were related to soil cover. After 
80% cover, a further differentiation was based on biomass. For potato, the stages 
were further extended to include loss of leaves and the lodging at the end of the 
growing season. The steps in the scale were necessarily large to smooth the 
fluctuations in the temporal backscattering curves and to get reliable average 
values per stage. 

The radar measurements on a crop falling within a growth stage were averaged 
for 20°, 40° and 70° incidence angle and plotted on the radar-growth scale (Fig. 
2.5). The standard deviation was about 0.8 dB for most averages. For stage R0 and 
Rl of potato, the standard deviation was about 1.5 dB. The averages for sugar beet 
were derived from five plots with non-stressed growth and development and those 
for potato from three. All plots had a row or ridge direction parallel to that of the 
incident radar beam. For beet, a total number of about 104 data was used per 
incidence angle, and for potato some 95. 

The backscattering of beet increased after emergence until it saturated at about 
80% soil cover in stage R5. At all angles of incidence, the temporal curves 
converged to a common level of saturation. This common level may be explained 
by the uniform leaf angle distribution of the crop: the canopy reflects the 
microwaves in backward direction equally well at all incidence angles. After stage 
R5, the backscattering remained at the same level at all angles of incidence until 
harvest. The average range in radar backscattering from crop emergence to full 
crop cover was about 3 dB at 20°, 7 dB at 40° and 10 dB at 70° incidence angle. 

The backscattering of potato increased after crop emergence until 80% soil 
cover in stage R5. During these stages, the backscattering curves ran completely 
parallel at all angles of incidence. This reflects the planophile leaf angle 
distribution of the crop: the microwaves are more reflected in backward direction at 
a low angle of incidence than at a high angle of incidence. After stage R5, the 
backscattering at 70° incidence angle further increased some 1.5 dB until the end of 
the growing season. The backscattering at 40° incidence angle remained the same, 
where that at 20° decreased 2 dB with the yellowing and lodging of the crop. In a 
low incidence angle, patches of bare soil were 'visible' which might be the cause of 
this small decrease in the radar backscattering. 

The average range in radar backscattering from crop emergence to full crop 
cover was about 4.5 dB at all angles of incidence. 
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Figure 2.5. Average W radar backscattering of five sugar beet crops (2.5a) and three 
potato crops (2.5b) at 20 ' (0), 40 ° ( •) and 70 ° f A) degrees incidence angle versus 
introduced 'radar-growth' stage. 
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2.6 Special experiments 

In 1981 two experiments were held to investigate the relationships between the 
architecture of the crop-soil system and the radar backscattering. The first 
concerned the effect of ridge direction in potato, and the second the effect of plant 
thinning in sugar beet. 

2.6.1 Ridge orientation in potato 

In 1981 the effect of the orientation of ridges on the radar backscattering of 
potato was investigated using two plots with different ridge orientations. The plot 
with the ridges parallel to the incident radar beam was labelled 'parallel plot', and 
the plot with the ridges perpendicular to the beam 'across plot'. On the parallel plot, 
the ridges had an East-West direction, and on the across plot a North-South 
direction. The effect of ridge orientation depended on the angle of incidence and on 
the stage of development of the crop (Fig. 2.6). 

At 10 ° incidence angle, the radar backscattering of the parallel plot increased 
with the growth of the crop until some 80% crop cover on day 160 (Fig. 2.6a). For 
the across plot this familiar 'radar-growth' curve was absent. When the soil was still 
bare, the microwaves were especially scattered in backward direction from the 
sides of the ridges. This resulted in a relatively high radar backscattering. The 
difference in backscattering between the two bare plots averaged some 6 dB. After 
day 170, the crop covered the soil for 90% and formed a homogeneous layer over 
the ridges. The microwaves did not penetrate the canopy and there was no 
influence of the soil background. The level of radar backscattering of the two plots 
was now the same. 

With increasing incidence angle the radar beam became more perpendicular to 
the slope angle of the ridges on the across plot. The backscattering from the 'across' 
ridges increased and the difference between the plots became larger. When the 
radar beam was most perpendicular to the slope angle of the ridges, at 30°, the 
backscattering from the bare soil of the across plot was highest (Fig. 2.6b). The 
difference in backscattering between the two plots amounted to 13 dB. The familiar 
'radar-growth' curve of the across plot was now reversed: after a small initial 
increase, the backscattering decreased with the growth of the crop until 95% soil 
cover on day 180. Again, with full cover, the differences between the two plots 
vanished. 
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Figure 2.6. W radar backscattering at 10 ' (2.6a). 30 ' (2.6b), 50 ° (2.6c) and 70 ° (2.6d) 
incidence angle versus time; potato 1981 with a row direction parallel to that of the 
incident radar beam (•,), and with a row direction across fO). The (P) indicates a peak in 
the radar backscattering caused by a high moisture content of the top soil between the 
ridges of the across plot. 
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With still further increasing incidence angle, the backscattering from the 
ridges on the across plot decreased again, and the difference between the two plots 
became smaller (some 4 dB at 50°). At 50° incidence, the backscattering of the 
across plot first increased with the growth of the crop, and then decreased again 
from 60% to 90% soil cover (Fig. 2.6c). This pattern, which was also to some 
extent present at the other angles of incidence, illustrates the complex relationship 
between the radar backscattering and the changing architecture of the crop-soil 
system. At 70° incidence, the field of view of the radar beam was dominated by the 
flat top of the ridges for both plots. The effect of ridge orientation was minimized 
and the difference in backscattering was reduced to some 2-3 dB (Fig. 2.6d). 

The effect of ridge orientation was also notable in the peak in the radar 
backscattering curves of the across row plot on day 146. This peak is marked with 
(P) in Figure 2.6. That day, the bottom between the ridges on the across plot was 
still wet from previous rain. The North-South direction of the ridges had prevented 
the rising sun in the East to dry the soil between the ridges. The high soil moisture 
content caused a peak in the temporal backscattering curve. This peak only 
appeared at low incidence angles that permitted the wet soil between the dry ridges 
to be 'seen' by the radar. On the parallel plot, the sun had dried the soil between the 
ridges and there was no peak in the temporal backscattering curves. 

2,6.2 Plant thinning in sugar beet 

In the midst of the growing season of 1981, beets were thinned from 100% soil 
cover to 50%, 25%, 12.5% and 6% cover in an attempt to quantify the effect of 
plant reduction (Fig. 2.7). In this figure, the backscattering of a neighbouring 
smooth, weed-free bare soil is also plotted as a reference field with 0% cover. 
Between each thinning, the soil was raked to get a smooth surface. The canopy 
biomass before thinning was about 4.5 ton/ha. 

At all angles of incidence, the reduction in plant number was only notable after 
thinning to less than 25%. The decrease in radar backscattering from 100% to 25% 
beet cover was only about 0.5 dB at low angles of incidence to 1 dB at medium and 
high angles. Thus only a quarter of the surface covered with fully grown sugar beet 
(above ground) still dominated the radar backscattering of the whole plot! 

With a further reduction in plant number to 12.5% and 6% soil cover the shape 
of the angular curve changed from horizontal to concave. Between low and 
medium angles of incidence, the curve resembled more and more that of the 
neighbouring bare soil: the backscattering decreased with increasing incidence 
angle. The largest decrease in backscattering with thinning was at the medium 
angles of incidence, respectively about 3 dB and 5 dB from 25% to 12.5% and 6% 
cover. 
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Figure 2.7. W radar backscattering of sugar beet in the midst of the growing season of 
1981 versus angle of incidence. Beet plants were thinned from 100% (0) to 25% (+), 
12.5% (A) and 6% (A) soil cover. The backscattering of a neighbouring bare soil is 
plotted for comparison [0% soil cover (M), weed-free, smooth surface). 

At high angles of incidence the field of view of the radar beam was still 
dominated by the 6% sugar beet plants and the backscattering hardly decreased. 
Also, a corner effect between the soil surface and the sides of the plants may have 
added to the high backscattering. At 70°, there was no decrease in backscattering at 
all from 100% to 6% soil cover! 

The observed reaction of the radar backscattering on the thinning of plants 
does not agree with the relations found between backscattering and soil cover in 
the early growing season. Generally, the radar backscattering increased with soil 
cover until it saturated at a cover of about 80% at high incidence angles and of 
70%-80% at medium to low incidence angles. In terms of biomass the 'saturation 
values' were about two and three ton/ha respectively. However, when the sugar 
beet field was thinned in the midst of the growing season, the backscattering only 
started to decrease after less than 25% crop cover and about one ton/ha canopy 
biomass. This suggests that the architecture of the canopy and of the individual 
plants largely affects the radar backscattering. A same cover or amount of canopy 
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biomass made up by small, developing plants, or by large, fully grown plants has a 
different level of (X-band) radar backscattering. 

2.7 Discussion 

An important (X-band) backscattering influencing factor of sugar beet and 
potato was the geometry of the crop-soil system. The thinning experiment in beet 
suggested that the architecture of individual beet plants, and their distribution in 
space dominated the radar backscattering of the crop. The increase in radar 
backscattering with crop growth of beet may then be associated with architectural 
changes in the plants from small saplings to fully grown plants with large and 
broad leaves. In potato, the direction of the ridges with respect to the incident 
microwaves dominated the radar backscattering from bare soil to an 80% crop 
cover. For both beet and potato, changes in the canopy architecture due to strong 
winds affected the radar backscattering by 1-2 dB. 

The importance of the geometry of the crop-soil system affects the potential 
applications of X-band radar in agriculture. The different backscattering levels at 
medium to high angles of incidence of sugar beet and potato will result in a high 
probability of discrimination between these two crop types. The differences in 
angular behaviour of the crops can be exploited by using more than one incidence 
angle. The best single angle of observation for discrimination appears to be a high 
one. At 70° incidence angle, possible disturbing effects on the radar backscattering 
like ridge orientation in potato and canopy architecture of sugar beet are minimal. 

The possibilities of X-band radar for the monitoring of crop growth are 
different for sugar beet and for potato. For sugar beet, the possibilities seem good 
for monitoring early growth until a soil cover of about 80% and biomass values of 
two to three ton/ha. At full crop cover the radar backscattering no longer reacted on 
any further increase in biomass (Figs. 3a and 4a). Also, the thinning experiment 
showed that any decrease in biomass and/or soil cover in the midst of the growing 
season (such as may be caused by pests or diseases) will most likely not be 
detected. 

The monitoring of the growth of potato will be more troublesome than that of 
sugar beet because of the large effect of ridge orientation in the early growing 
season. Thus, it is necessary that this direction be either known from other sources 
of information, or be derived from the measurements themselves. 
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3 GROUND-BASED X-BAND (3-CM WAVES) 
RADAR BACKSCATTERING OF 
AGRICULTURAL CROPS. II: WHEAT, 
BARLEY AND OATS; THE IMPACT OF 
CANOPY STRUCTURE 

Abstract The ground-based, X-band radar backscattering of wheat, barley and oats 
was investigated through the growing season at VV and HH polarization, and at 
incidence angles from 10°-80°. The VV and HH backscattering of wheat and barley 
decreased at all incidence angles with crop growth until it fluctuated around a 
stable level from grain filling to dying of the canopy. The VV backscattering of 
oats at low to medium angles of incidence decreased during vegetative growth and 
sharply increased to a steady level with the appearance of the panicles. 

The geometrical architecture of the crop canopy was a major factor that 
influenced the X-band radar backscattering of wheat, barley and oats. Row spacing, 
crop variety, lodging and ear orientation of barley had a large effect on the radar 
backscattering. The architecture of the canopy also influenced the impact of the 
soil background on the radar backscattering of the whole crop. Stubble and straw 
largely determined the radar backscattering of harvested fields. Because of the 
many complex factors that influence the canopy structure, the radar backscattering 
was highly variable through the years. 

3.1 Introduction 

This paper is the second in a series of two on the ground-based X-band (3-cm 
waves) radar backscattering of agricultural crops. The objective is to investigate 
main backscattering influencing properties of agricultural crops. The first paper 
presented the experiments and measurement methodology of the ground based 
ROVE (Radar Observation on VEgetation) programme. It also described the radar 
backscattering of the relatively broad-leaved crops sugar beet and potato. The 
geometry of the crop-soil system was identified as an important backscattering 
influencing factor. 

In this second paper, the X-band radar backscattering of wheat, barley and oats 
will be described and the influence of the geometry of the crop-soil system will be 
further analysed. First, average trends in the temporal backscattering curves of six 
years of observation will be presented on a specially constructed 'radar-growth' 
scale. The influence of the canopy structure as a main backscattering influencing 
factor will then be elaborated and where possible quantified. The effect of 
harvesting and post-harvest management activities on the radar backscattering will 
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be investigated. After this analysis the implications for potential agricultural 
application of X-band radar remote sensing will be discussed. 

3.2 Crop development 

Table 3.1. Proposed radar-growth scale to put the temporal X-band radar backscattering 
of wheat, barley and oats in various years on a consistent basis. The Zadoks code is given 
for comparison as a morpho-physiological growth scale commonly used in agriculture. 

Stage Description Zadoks code 

RO seed-bed 00 
Rl soil cover 0-20% 10-25 
R2 soil cover 20-50% 25-30 
R3 soil cover >50%; beginning stem 

extension 30-37 
R4 shooting 1st and 2nd leaf; booting 37-47 
R5 ear formation from the opening of 

the flag leaf sheath 47-60 
R6 ear stem formation 60-70 
R7 grain filling; yellowing at the 

bottom 70-75 
R8 grain filling; yellowing 2nd leaf 75-80 
R9 ripening; yellowing 1st leaf; dry 

weight% ear> 40% 80-93 
RIO dying; brown leaves; dry weight% 

ear> 50% 80-93 
Rll thresh ready; ears bent; dry 93-99 

weight% ear> 80% 

R21 lodged in grain filling stage (7,8) 70-90 
R22 lodged in ripening stage (9,10,11) 99-99 

R30 harvest 
R31 stubble field 
R32 ploughed field 
R33 harrowed field 

To consider average trends in the temporal radar backscattering curves of 
wheat, barley and oats, the time scale had to be normalized to crop growth and 
development. For cereals, normalization is usually done by plotting data on the 
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Zadoks scale of development (Zadoks et al., 1974). However, radar data of 
different years of observation plotted on this scale were not consistent. The radar 
backscattering did not react on many of the morpho-phenological events that form 
the basis of the Zadoks scale, e.g. seedling emergence, booting or flowering. On 
the other hand, the radar backscattering reacted on specific changes in the canopy 
architecture that make no part of the Zadoks scale, e.g. ear-stem formation and 
lodging. Therefore, like for sugar beet and potato, a 'radar-growth' scale was 
constructed that put the temporal radar data of different years of observation on a 
consistent base (Table 3.1). The 'radar-growth' scale for cereals is based on 
morphological characteristics of the crop during its development cycle that had 
some effect on the X-band radar backscattering. 

The stages Rl-Rll describe the development of the crop from seed-bed to 
harvest. The stages R21 and R22 designate lodging in respectively the period of 
grain filling and the period of ripening. Stage R30 indicates the harvested crop with 
optionally the stages R31-R33 to designate respectively a stubble field, ploughed 
soil or harrowed soil. 

3.2.1 Wheat 

In Figure 3.1 the average VV radar backscattering per growth stage of wheat is 
plotted on the 'radar-growth' scale for three angles of incidence. The standard 
deviation of the averages was about 1.5-2.0 dB. The average values were 
calculated from some 325 data per incidence angle, from 10 plots between 1975 
and 1979. All data that fell within the same growth stage were averaged. The crops 
had a row direction parallel to the incident radar beam, and a non-stressed growth 
and development. 

During vegetative growth, the radar backscattering at 50° and 70° incidence 
angle initially increased a little during stages R1-R3. Seedling growth and tillering 
took place and the height of the crop remained relatively low. At these angles of 
incidence, the minor increase in backscattering was probably the result of directed 
scattering in backward direction from the canopy. At the end of stage R3 stem 
extension began and the backscattering at 50° and 70° started to decrease. At 20° 
incidence angle the backscattering decreased already from the first stage of 
development. The decrease in radar backscattering, as opposite to the increase 
observed for sugar beet and potato, was caused by the relatively open structure of 
the canopy and the small dimensions of its elements. Microwaves penetrated 
relatively deeply in the canopy where they were eventually extinct through 
absorption by the canopy elements (stems, leaves). While the crop increased in 
height through the stages of shooting, booting and ear formation the radar 
backscattering kept decreasing. During these stages two things were remarkable. 
First, from the stage of shooting the radar backscattering decreased more at 
medium angles of incidence than at low and high angles of incidence. The angular 
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dependency-curve (i.e. the radar backscattering versus incidence angle) is said to 
become hollow and remained so until the cultivation of the soil after harvest. The 
second remarkable feature was the lack of a pronounced response of the radar 
backscattering to the emergence of the ears in stage R5. The radar backscattering 
just kept decreasing at all angles of incidence and the shape of the angular 
dependency-curve remained unchanged. 

During stage R6 the ear-stems were formed and anthesis took place. The 
backscattering decreased further until no more growth in height took place at the 
beginning of stage R7. 

o 
Gamma (dB) 

harvest 

R9 R10 R11 R30 
Development stage 

Figure 3.1. Average Wpolarized radar backscattering of 10 wheat crops at20°(+), 40° 
(0) and 70° (A) incidence angle versus introduced radar-growth stage. 

In the generative stage after flowering, the crop started to yellow and wither 
from the bottom of the canopy upwards and it lost crop water. Since this loss may 
affect the radar backscattering (Attema and Ulaby, 1978; Ulaby et al., 1982), the 
further division in development stages was based on this yellowing and dying of 
the canopy. The backscattering of wheat was stable at all angles of incidence 
through both stages of grain filling and yellowing R7 and R8. Only during the 
stages R9 and RIO did the backscattering increase some 2 dB at medium and high 
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angles of incidence where it was still hardly affected at low angles of incidence. 
From this, it is concluded that the increase in backscattering at medium and high 
angles of incidence did not result from an increased contribution of the underlying 
soil background (increasing transparency of the crop), but from changes in the 
backscattering from the canopy itself. An increase in soil background would have 
been especially notable at the lowest angle of incidence. At stage Rl 1 the crop was 
completely ripe and the radar backscattering increased at all angles of incidence. 

3.2.2 Barley 

The average VV radar backscattering of barley is given in Figure 3.2. The 
standard deviation of the averages varied per incidence angle. At 20° incidence 
angle the standard deviation was some 3 dB, at 50° incidence angle it was 2 dB in 
stages R0-R6 and 3-4 dB in stages R7-R30, and at 70° incidence angle it was 2 dB. 
The average values were calculated from 225 data per incidence angle, from seven 
plots between 1975-1980. 
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Figure 3.2. Average W polarized radar backscattering of seven barley crops at 20° (+), 
40 °(0) and 70° (A) incidence angle versus introduced radar-growth stage. 
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In general, the trends were the same as for wheat with two main exceptions. 
First, barley did hardly form ear-stems and the radar backscattering reached a 
minimum level already in stage R6. This minimum level was some 2 dB lower than 
that of wheat, indicating that barley was a stronger absorbent of microwaves than 
wheat. Secondly, the backscattering of barley was less stable during the phases of 
grain filling than that of wheat. Already at stage R7 the backscattering increased at 
medium and high angles of incidence with some 2 dB. This was not caused by 
yellowing but by the lodging of the crops (see § 3.3.2). The backscattering then 
increased further through the stages R8-R10 by the combined effects of ripening, 
dying and lodging. At low angles of incidence the backscattering only rose during 
stage R9 when the crop ripened to the phase of dying. 

3.2.3 Oats 

For oats the VV radar backscattering was only averaged per growth stage for 
the crop in 1979 (Fig. 3.3). The standard deviation of the averages was about 1 dB. 
The number of data was 36 per incidence angle. 
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Figure 3.3. Average W radar backscattering of one oats crop at 20 ' (•), 40 ' (0) and 70 ° 
(A) incidence angle versus introduced radar-growth stage. 
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After an initial increase from stage Rl to stage R2, the backscattering 
decreased at the beginning of stem extension in stage R3. At medium and high 
angles of incidence the backscattering further decreased until the beginning of 
panicle formation. With the emergence of the panicles, the backscattering sharply 
increased during the stages R5-R7. The panicles with their cloud of small, 
elongated grains were highly reflective for the VV polarized microwaves. During 
grain filling and early ripening the backscattering remained at a stable level. 
Contrary to the backscattering at medium and high angles of incidence, that at low 
angles did not react on the appearance of the panicles. From the stage of stem 
extension onwards, the backscattering steadily decreased without any marked 
features until the end of the ripening phase. 

In stage R22 the crop lodged and was manually beaten down to some 30 cm 
height. The result was a dramatic increase in the backscattering at low angles of 
incidence and a comparatively small increase at medium angles. At high angles of 
incidence the backscattering decreased about 1 dB but this may also have been 
caused by the ripening and dying of the crop. At harvest the backscattering had 
returned to the level of that of the bare soil. 

3.2.4 State of polarization. 

The previous section only described the radar backscattering at VV 
polarization. The differences between the VV and HH backscattering were 
generally small, in the order of 0-3 dB. They were related to the development of 
the crop and to the angle of incidence. 

For wheat, the average VV backscattering at low angles of incidence was 
similar to that at HH before ear formation, and a bit lower (1-2 dB) somewhere 
from ear formation to harvest. At medium angles it was somewhat higher (0-1 dB) 
than at HH before, and lower (1-2 dB) after ear formation. At high angles of 
incidence the average VV backscattering was somewhat higher (0-1 dB) before ear 
formation and significantly higher (0-3 dB) from grain filling to harvest. It should 
be noted that these differences applied to average values (from some 325 data per 
incidence angle and per state of polarization). For single crops, and especially for 
individual measurements, the differences were sometimes higher (Fig. 3.4). 

For barley, the comparison between the backscattering at VV and at HH gave 
about the same results as for wheat. The difference was that the cross-over point 
between VV and HH was more at the stage of shooting than at that of ear 
formation. 
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Figure 3.4. W (<>) and HH (+) radar backscattering of spring wheat with 12.5 cm row 
spacing, in the course of the growing season of 1977, at 50 'incidence angle. 
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Figure 3.5. W (0) andHH (+) radar backscattering of oats in the course of the growing 
season of 1979, at 50 'incidence angle. 
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For oats, the situation differed again from that of wheat and barley (Fig. 3.5). 
At low angles of incidence there was practically no difference between the 
backscattering at VV and at HH during the whole growing season. At medium 
angles the backscattering was generally somewhat lower at VV than at HH (0-1 
dB) during tillering and shooting. With the emergence of the panicles the 
backscattering at VV rose sharply while that at HH only initially rose until the 
formation of the ear-stems. From the formation of ear-stems to harvest the 
backscattering was then considerably higher (1-4 dB) at VV polarization. The 
panicles with the vertical needles were more reflective for microwaves in VV 
polarization than in HH polarization. At high angles of incidence the situation was 
comparable to that at medium angles, except that the backscattering was similar 
between VV and HH during tillering and shooting. 

These observations were derived from about 102 measurements at each angle 
of incidence and state of polarization. 

3.3 The influence of canopy structure 

Although an average shape was given for the radar backscattering curves of 
each crop, large variations occurred between the curves from individual plots, and 
between single measurements. This variation was only to a limited extent related to 
parameters which are of direct agronomic interest like biomass, soil cover or crop 
water (Bouman and van Kasteren, 1989). Most variation was caused by differences 
in the geometry of the canopy. This geometry was affected by management 
practices (e.g. row direction, row spacing, crop variety), and environmental factors 
(e.g. wind and soil background). Table 3.2 lists the average variation and its causes 
for wheat, barley and oats between 1975 and 1981. 

3.3.1 Management practice 

Row spacing was varied in an experiment with wheat and barley in 1977. The 
crops were sown parallel to the direction of the radar beam with 12.5, 25.0 and 
37.5 cm row spacing. The total number of measurements was 288 per incidence 
angle and state of polarization. All plots of the same crop type showed comparable 
development in height, biomass and crop water. Only the soil cover of the crops 
differed, with the 12.5 cm crops having the highest cover and the 37.5 cm crop the 
lowest. 
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Table 3.2. Average variation and its causes in X-band radar backscattering (dB) at W 
polarization during the period of grain filling and ripening for cereals in 1975-1981. 

Effect 

Row spacing 

12.5-37.5 cm 

Row direction 
parallel-
perpendicular 

Crop variety 

Lodging 

Ear orientation 

Annual variation 

Crop 

wheat 1977 
barley 1977 

barley 1976 
wheat 1981 

wheat 197 9 
wheat 1981 

barley 1980 
wheat 1979 
oats 

barley 1977 
wheat 1977 

wheat 1975-1979 
barley 1975-1980 
oats 1975-1980 

Incidence angle 
20* 50" 70-

3 
6.5 

2.5 
2.5 

1.5 
3.0 

4.5 
5.0 
5.5 

6.5 
0 

5 
6 
3 

1.5 
2.5 

0.5 
0.5 

1 

3.0 

11 
1.5 
2 

7.5 
0 

5 
6 
1.5 

2.2 
0.5 

0 
0.5 

0.5 
2.0 

11.5 
4.0 
0.5 

7.5 
3 

4 
3 
1.5 

A close row spacing resulted in an enhancement of the typical features in the 
temporal curves of the radar backscattering at low and medium angles of incidence. 
This is illustrated for barley in Figure 3.6. The typical features were the relatively 
high radar backscattering during early vegetative growth at medium angles of 
incidence, and the low backscattering during grain filling and ripening at low and 
medium angles of incidence. At high angles of incidence no significant effect of 
row spacing was notable. Since there were no differences between the growth and 
development of the crops, the differences in backscattering must be attributed to 
the spatial distribution of the canopy elements. This distribution was relatively 
homogeneous with a close row spacing, and 'clustered' in rows with a large row 
spacing. 
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Figure 3.6. W radar backscattering of barley with 12.5 (A) , 25.0 (0) and 37.5 (•) cm 
row spacing, in the course of the growing season of 1977, at 50''incidence angle. 

The row spacing of the crop also affected the radar backscattering through the 
influence of the underlying soil surface. In Figure 3.6, the increase in 
backscattering between days 200 and 220 was caused by an increase in the 
moisture content of the top soil. The crop with 12.5 cm row spacing was 
completely closed between the rows and the effect of the soil moisture was 
relatively small. The open rows of the crops with 25 and 37.5 cm row spacing 
permitted a considerable fraction of bare soil to be 'seen' (lower soil cover) and the 
effect of the soil background was larger. 

The effect of row direction of wheat and barley was much smaller than that of 
row spacing. At medium and high angles of incidence there was practically no 
(consistent) difference between the backscattering with a radar beam direction 
parallel or perpendicular to the row direction. A marked difference was only 
present at low angles of incidence: the backscattering was some 2.5 dB lower with 
a perpendicular beam direction than with a parallel beam direction. 

The number of observations was 86 per incidence angle and state of 
polarization, throughout the growing season. 

Different crop varieties influenced the radar backscattering according to the 
geometry of the canopy. In 1981 four wheat varieties were sown with a 
considerable difference in canopy structure, resulting in some differences in the 
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radar backscattering. The number of data was 76 per incidence angle and state of 
polarization, from sowing to the beginning of grain filling. 

A variety with a short and dense canopy, and with broad top leaves with a large 
horizontal component, Durin, had a relatively high level of radar backscattering at 
medium and low angles of incidence. The 3-cm microwaves did not enter the 
canopy very deeply but were reflected from the broad leaves in the top of the 
canopy. A tall and thin variety with narrow top leaves with a small horizontal 
component, Okapi, had a relatively low level of radar backscattering. The 
microwaves could penetrate deeper in the canopy and were absorbed. The average 
difference in radar backscattering between the 'dense' crop Durin and the 'open' 
crop Okapi in 1981 was about 2-3 dB. 

3.3.2 External conditions 

The effect of lodging on the radar backscattering is illustrated for barley in 
1980 (Fig. 3.7). Already on day 187 the first observations were made of patches of 
lodged crop which caused an irregular appearance of the canopy. These patches 
increased in size and degree of lodging with initially no reaction on the radar 
backscattering until it suddenly increased on day 197. The changes in the canopy 
structure before this day were apparently not significant enough to affect the radar 
backscattering. On day 197, however, lodging became complete. This resulted in a 
large increase in radar backscattering at medium and high angles of incidence. The 
effect was somewhat larger at VV than at HH polarization. Other examples of 
lodging indicated a high variability of the effect of lodging on the radar 
backscattering. Beside the common feature of an increase in the backscattering, the 
effects were different in magnitude at different angles of incidence and at the 
different states of polarization. In general, however, the increases were largest at 
high angles of incidence. 

Strong wind can influence the radar backscattering of crops through its effect 
on the orientation of the canopy elements (van Kasteren, 1981). A specific example 
of the effect of ear orientation is given in Figure 3.8 for barley in 1977. During the 
period of grain filling the stems of the ears were bent and the ears lied almost 
horizontally in the top of the canopy. On day 182 the ears were directed towards 
the radar, while on day 186 winds had reversed their orientation and they pointed 
away from the radar. The result of this change on the backscattering depended on 
the state of polarization, and in this specific example also on the spacing between 
the rows. For the 12.5 cm row crop the backscattering increased about 7 dB at 
nearly all angles of incidence at VV polarization, and about 2.5 dB at HH 
polarization. The effect of ear orientation became small when the angle of 
incidence became very low, at about 10° incidence. 
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Figure 3.7. W (0) and HH (+) radar backscattering of barley in lodged and non-lodged 
situation in the course of the growing season of1980, at 50 'incidence angle. 
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Figure 3.8. W radar backscattering of barley in the stage of ear filling in 1980 versus 
angle of incidence. The ears were directed towards (•,) and away (O)from the radar. 
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For the 37.5 cm row crop there was practically no effect at all angles of 
incidence. This is explained by the "ear-less" space between the rows of the crop 
which attenuated the effect of the ears in the rows. 

The above examples illustrate the complex relationships between X-band radar 
backscattering and crop type, crop conditions, management practices and external 
factors. The combination of these effects resulted in large fluctuations in the 
backscattering curves and in a large annual variation in the level of the 
backscattering (Fig. 3.9). 
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Figure 3.9. W radar backscattering in the course of the growing season of wheat in 1975 
(A), 1977 (A), 1979 (0) and 1980 (•), at 50 incidence angle. 

Especially remarkably in this Figure is the backscattering curve of wheat in 
1980. That year, the familiar shape of a wheat curve was completely absent at all 
angles of incidence. Instead, the general pattern and most of the fluctuations largely 
resembled the backscattering curves of two neighbouring bare soil plots (one plot 
ploughed and rough, the other harrowed and smooth; both plots weed-free). The 
explanation is that soil cover, height and biomass of the crop were extremely low 
during the growing season. The crop was therefore relatively transparent for 
microwaves which resulted in a dominant contribution from the underlying soil 
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surface. Since the weather was very rainy, the moisture content of the top soil was 
high. As a result the radar backscattering of the soil surface and that of the whole 
crop was also high. 

3.4 Harvest 

A special point of interest was the radar backscattering at the end of the 
growing season and the effect of harvesting and post-harvest practices. At the end 
of the growing season, canopies of cereals are ripened and dried to some 25-30% 
moisture content. Where the amount of crop water in a green canopy may attain 
values of 3 Kg/m2, values decreased to some 0.25-0.5 Kg/m2 just before harvest. 
Because of these low amounts of crop water one would expect the soil background 
to play a major role on the radar backscattering (Ulaby et al., 1982). However, the 
data showed that the influence of the soil background depended much on the 
architecture of the ripened crop canopy. For thin crops with an open row structure, 
temporal fluctuations in the moisture content of the top soil clearly showed up in 
the backscattering curves of the crop. Crops with a dense canopy could mask the 
influence of the soil background completely until they were harvested. 

After harvest fields were left as stubble-field with or without straw, or they 
were ploughed and/or harrowed immediately. There was no consistent change in 
the radar backscattering of a ripe crop to that of a harvested field. The changes in 
backscattering were generally small (0-3 dB) and depended on the state of the crop 
before, and on the management practices after harvest For stubble-fields with the 
straw removed from the field, the temporal backscattering resembled that of 
neighbouring bare soil plots (both rough and smooth, weed-free) at all angles of 
incidence. The fluctuations in the temporal backscattering curves were caused by 
corresponding fluctuations in the soil moisture content. The levels of the curves 
however differed because of differences in surface roughness and the presence of 
the stubbles. When straw was left on the field between the stubbles, it appeared to 
mask the influence of the soil background at medium and high angles of incidence. 
Only at low angles of incidence did fluctuations in the temporal backscattering 
curves always correspond with similar fluctuations in the soil moisture content. 

An interesting feature of stubble was its angular dependency-curve (Fig. 3.10). 
The shape of this curve was hollow and resembled more that of ripened wheat and 
barley than that of bare soils (rough or smooth). The level of the stubble-curve was 
either higher, lower, or similar to that of the ripened crop. The differences between 
the backscattering at VV and HH polarization also resembled those of a ripe crop. 
At high angles of incidence the backscattering was mostly larger at VV than at HH, 
while at medium and low angles of incidence it was mostly smaller. 
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Figure 3.10. W radar backscattering of ripened crop (A) and stubble (•) of wheat in 
1979 versus angle of incidence. The backscattering of a neighbouring bare soil (ploughed, 
rough surface; weed-free) (0) is also given. The volumetric soil moisture content in all 
three cases was 18%. The amount of water in the ripened crop canopy was 0.75 Kglm2, 
that in the stubbles was about 0.04 Kglm2. The tiller density of crop and stubbles was 
4451m2. The crop was 90 cm high, the stubbles were 15 cm high. 

The large effect of stubbles and straw on the X-band radar backscattering was 
surprising because of the very low amount of water it contained (measured values 
of stubble water varied between 0.02 and 0.05 Kg/m2). The geometry of the 
material (vertical structures) apparently had a determining influence. A large effect 
of stubbles on the radar backscattering of harvested cereals was also reported by 
Bouman and Uenk (1987) for C-band radar imagery. They found that the azimuthal 
direction of stubbles towards and away from the radar resulted in dark respectively 
light colours on VV polarized images. 

3.5 Discussion 

The X-band (3-cm waves) radar backscattering of wheat, barley and oats was 
much determined by the general architecture of the canopy. Canopy architecture is 
the result of a complex of interacting factors: crop development stage, crop variety, 
row spacing and weather influences. Other factors that were not investigated in this 
paper will probably have to be added to this list, e.g. general crop condition (for 
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instance nitrogen status in relation to resistance to lodging), pest, disease and weed 
infection, sowing practice (broad-cast or in rows), tiller density. The architecture of 
the canopy also influenced the impact of the soil background on the radar 
backscattering of the whole crop. Stubble and straw, that are theoretically relatively 
transparent to microwaves, even largely determined the radar backscattering of 
harvested fields. 

Because of the large effect of canopy structure, the radar backscattering of 
cereals was highly variable in time, both on daily and on yearly scales. For wheat 
and barley, the variation in radar backscattering in the stages of grain filling and 
ripening between the years 1975-1981 was about 5-6 dB at low and medium 
incidence angles. This variability nearly equalled the total 'radar-growth' range 
from sowing to closed crop canopy in a single (average) year. The interpretation of 
X-band radar data, acquired with remote sensing, should therefore be done with 
great care and preferably be based on a large number of measurements. 

In agricultural application, the use of X-band radar remote sensing seems to 
offer good perspectives for crop classification. The large differences between the 
radar backscattering of cereals and that of beet and potato (first article of this 
series) will result in a high probability of discrimination between these crop types. 
Hoogeboom (1985) and Binnenkade and Uenk (1987) reported good classification 
results in the HH polarized X-band using the Dutch absolute and digital SLAR 
(Side Looking Airborne Radar). The differences between the backscattering 
properties of wheat and barley are relatively small and differentiation between 
these crops may be troublesome. On the other hand, the typical backscattering 
properties of oats will result in a high probability of identification. 

Detailed temporal signatures of wheat, barley and oats can be used to 
discriminate between generalized crop development phases, e.g. emergence-
tillering, stem extension-heading, grain filling-ripening. Crop emergence was not 
very prominent in temporal radar backscattering curves. It was mostly masked by 
peaks and dips caused by changes in soil moisture content. Also, the harvesting of 
cereals was often unnoticed because of the similarity in backscattering 
characteristics of ripened crop and stubble. Moreover, management practices such 
as the leaving-behind or the removal of the straw, or the ploughing and harrowing 
of the stubble affected the radar backscattering of harvested fields. 

Finally, it is stressed that these conclusions are derived from a specific data set 
of ground-based, X-band scatterometer measurements in VV and HH polarization. 
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4 CROP PARAMETER ESTIMATION FROM 
GROUND-BASED X-BAND (3-CM WAVE) 
RADAR BACKSCATTERING DATA 

Abstract The possibilities of crop parameter estimation from X-band radar 
backscattering measurements were investigated using empirical and simple 
physical relationships. The study used ground-based, multitemporal, multi-angle 
and co-polarized radar data. The investigated crops were beet, potato, wheat and 
barley. The investigated crop parameters were dry canopy biomass, amount of crop 
water, soil cover and crop height. The implications of the results and 
recommendations for further research were discussed. 

Empirical relations and the 'Cloud' equations were inapt for accurate 
estimations of crop parameters from X-band radar data at one state of co-
polarization and one angle of incidence. The use of both vertical and horizontal co-
polarized radar data did not improve Ae estimation accuracy. The use of both a 
medium and a high angle of incidence improved the estimation accuracy of the 
amount of crop water in the early growing season of (only) beet. The use of more 
angles of incidence did not further improve the estimation accuracy. 

The low estimation accuracies were attributed to speficic features of the X-
band (early saturation, low soil-crop contrast), and to the simplicity of the mono/bi-
variate inversion schemes used. 

4.1 Introduction 

The general use of remote sensing in land observation is the characterization of 
surface conditions. In agriculture this means often the estimation of crop 
parameters that can be used for e.g. crop type identification or growth monitoring. 
In the radar domain of remote sensing, crop type identification has relatively often 
been studied (Batliva and Ulaby, 1975; van Kasteren, 1981; Hoogeboom, 1983; 
Wooding, 1988, Wegmüller, 1990), but the estimation of crop parameters has been 
less addressed (Ulaby et al., 1984; Prévôt et al., 1988). However, because of the 
all-weather capability of radar, the estimation and monitoring of crop parameters 
from radar data deserves ample attention. 

Crop parameters may be estimated from radar backscattering measurements 
through empirical regressions, or through the inversion of simple physical models. 
The use of more fundamental physical models (e.g. Eom and Fung, 1984; Karam 
and Fung, 1988) appears, up to now, not yet feasible because: 1) the models have 
not yet been calibrated for different crops and growing conditions, 2) some of the 
input parameters can not successfully be related to measurable physical properties 
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of the crop, and 3) the inversion of such models will be a complicated and 
cumbersome task. Therefore, the use of more fundamental models was not pursued 
here (see § 4.5.2). 

In this study, the possibilities of crop parameter estimation from radar data 
were investigated using empirical and simple physical relationships. The radar data 
concern ground-based, multitemporal X-band radar measurements in vertical and 
horizontal co-polarization at different angles of incidence. 

The investigated crops were beet, potato, wheat and barley. Beet and potato 
represent a class of relatively broad-leaved crops (compared to the wavelength of 
X-band microwaves) and wheat and barley represent a class of relatively narrow-
leaved crops. The relative dimensions of the leaves cause a specific behaviour of 
the X-band radar backscattering. In our data set, the backscattering of beet and 
potato increases with crop growth between 0 and «0.8 fraction soil cover. The 
backscattering of wheat and barley increases a little with very early crop growth, 
and then decreases between stem extension and grain filling (Bouman and van 
Kasteren, 1990a, 1990b), (Fig. 4.1). The decreasing temporal backscattering of 
wheat is confirmed by ground-based measurements by Wegmüller (1990), and 
partly by measurements by Ulaby (Ulaby et al., 1984; de Loor, 1984). In Ulaby's 
measurements (1984), the radar backscattering increases between emergence and 
booting, and only then decreases to the end of anthesis. The increasing radar 
backscattering of beet and potato is confirmed by Wegmüller (1990), and Bouman 
et al. (1991). 

The selected crop parameters for estimation from the radar data were above-
ground, dry canopy biomass, fraction soil cover, crop height and the amount of 
above-ground crop water. Dry canopy biomass and soil cover have direct 
agricultural relevance. Gop height plays an important role in modelling energy 
fluxes at the earth's surface boundary layer, and the amount of crop water was 
selected because of its importance in modelling radar backscattering (Ulaby et al., 
1982). 

4.2 Materials 

The data for this study were collected by the Dutch ROVE team (Radar 
Observation on Vegetation; de Loor, 1982), between 1975 and 1981 on agricultural 
test farms in The Netherlands. The test farms were Droevendaal (1975-1977) on 
sandy soil at Wageningen, De Bouwing (1978-1979) on alluvial clay at Randwijk, 
and De Schreef (1980-1981) on marine clay near Dronten. 
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Figure 4.1. Temporal, X-band radar backscattering of beet (•), potato (0), wheat (A) and 
barley (A) at test farm De Bouwing in 1979. The incidence angle was 40 'and the state of 
polarization was W: vertical transmitting and vertical receiving. Note the increase in 
backscattering of barley caused by lodging of the canopy. 

An X-band FM-CW radar was mounted on a trailer and could be moved to 
measure the radar backscattering of plots with different crops. The radar 
backscattering was measured at angles of incidence between 10° and 80°, and at 
vertical co- (VV), horizontal co- (HH), and cross-polarization (VH, HV). However, 
the received power of the cross polarized signal was not sufficient to give reliable 
measurements, and the cross polarized data were discarded for this analysis. The 
radar system was externally calibrated at the end and beginning of each 
measurement day to ensure compatibility of the data during the growing season, 
and over the years. Details on the radar system, the calibration procedure and data 
handling are given by Attema (1974), van Kasteren and Smit (1977), Smit (1978), 
and de Loor et al. (1982). 

The radar backscattering was expressed in y: the radar cross-section of the 
target per unit projected area of the radar beam. From comparison with repetitive 
measurements (and from the calibration procedure), the overall accuracy of a field-
average value of y was supposed to be = 0.5 dB. 

On each day of radar observation, the height of the crops was measured, and 
the fraction soil cover was visually estimated. The standard error of estimate of 
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crop height generally ranged between 1 cm at the beginning of the growing season 
to 5 cm in the midst of the growing season. The visual estimations of soil cover 
were supported by grid measurements on photographs of the crops. The average 
(absolute) accuracy of the estimated fraction soil cover was = 0.05. Dry canopy 
biomass and the amount of crop water were measured at a number of times in the 
growing season: 1975, 1979 and 1980: 8-10 times; 1976 and 1977: at all radar 
observation days; 1981: 3 times in early growing season. These measurements 
were smoothed by growth functions and missing values for days of radar 
observation were interpolated. No accuracies were attributed to these smoothed 
values, but they were consistent in time and with measured crop height and cover. 

For this study, five plots of sugar beet were available (one in 1975, 1979 and 
1980 each, two in 1981), three of potato (one in 1979, 1980 and 1981 each), 15 of 
wheat (one in 1975 and 1976 each, six in 1977, three in 1979, four in 1981), and 
seven of barley (one in 1975, 1976, 1979 and 1980 each, three in 1977). All crops 
had a good, non-stressed growth and development. The soil background was 
always harrowed at the beginning of the growing season by seed-bed preparations. 
On potato fields, ridges were created of some 20 cm height and 75 cm apart. The 
row directions of the crops were all parallel to the incident radar beam. Between 
some experiments, differences existed in row spacing, variety, plant density, soil 
background and meteorological conditions. Bouman and van Kasteren (1990a, 
1990b) presented descriptions of the experiments, and of the radar backscattering 
of the crops. 

4.3 Empirical relations 

4.3.1 Linear regression 

For all crop types, the radar measurements and ground-truth from sowing to 
harvest, of all years, were lumped. As a first insight in the relationships between 
radar backscattering and the crop parameters, linear coefficients of correlation r 
were calculated (Table 4.1). 

The coefficients of correlation were higher for beet and potato than for wheat 
and barley, with all crop parameters and at all angles of incidence. The radar 
backscattering had the highest correlation at a medium angle of incidence with 
crop height and soil cover (Fig. 4.2). For beet, the coefficients of correlation were 
about 0.15-0.20 lower with canopy biomass and crop water. These differences in 
correlation with crop height and soil cover on the one hand, and canopy biomass 
and crop water on the other, were explained by the seasonal trends of these 
parameters. Crop height and soil cover increased after crop emergence to reach a 
stable level in the midst of the growing season. This trend was matched by that in 
the radar backscattering at most angles of incidence, leading to relatively high 
coefficients of correlation. 
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Table 4.1. Correlation matrix between canopy biomass, crop -water, soil cover and height, 
and the W radar backscattering at different angles of incidence, using data from sowing 
to harvest. Except for the values marked with (*), all coefficients are statistically 
significant with 99% confidence. 

BEET (N = 75 per incidence angle) 

Angle Can. biomass Crop Water Cover Height 

(kg/m2) (kg/m2) (fraction) (m) 

20' 
30" 
4(T 
50" 
60" 
70* 

POTATO (N 

20' 
30' 
40' 
50' 
60" 
70* 

WHEAT (N = 

20' 
30' 
40' 
50' 
60-
70" 

BARLEY (N 

20' 
30" 
40' 
50" 
60' 
70' 

0.54 

0.61 
0.66 
0.68 
0.68 
0.67 

= 64 per 

0.76 
0.77 
0.79 
0.77 
0.78 
0.77 

230 per 

-0.39 
-0.53 
-0.63 

-0.61 
-0.51 
-0.24 

= 145 per 

-0.21 
-0.23 
-0.20 
-0.17 

-0.09* 
-0.02* 

0.56 
0.64 
0.69 
0.70 
0.70 
0.69 

incidence angle) 

0.78 
0.79 
0.80 
0.77 
0.76 
0.75 

incidence angle) 

-0.36 
-0.29 
-0.29 
-0.32 
-0.41 
-0.39 

incidence angle) 

-0.44 
-0.32 
-0.26 
-0.25 
-0.32 
-0.42 

0.71 
0.79 
0.84 
0.85 
0.86 
0.86 

0.82 
0.82 
0.82 
0.77 
0.75 
0.73 

-0.47 
-0.22 
-0.16 
-0.16 
-0.19 
-0.17 

-0.57 
-0.45 
-0.37 
-0.32 
-0.32 

-0.31 

0.71 
0.79 
0.84 
0.85 
0.85 
0.85 

0.86 
0.87 

0.86 
0.83 
0.79 
0.77 

-0.66 
-0.76 
-0.81 
-0.80 
-0.72 
-0.50 

-0.73 
-0.76 
-0.76 
-0.75 
-0.77 

-0.62 
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Figure 4.2. W radar backscattering at 50 ° incidence angle of beet versus crop height 
(4.2a) and soil cover (4.2b). The data were taken from sowing to harvest, from five 
different plots in four different years (N = 75). The drawn lines indicate the fitted 
logarithmic expressions. 
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Figure 4.3. W radar backscattering at 50 ° incidence angle of wheat versus crop height 
(4.3a) and dry canopy biomass (4.3b). The data were taken from sowing to harvest, from 
15 different plots in five different years (N = 230). The drawn lines indicate the fitted 
logarithmic expressions. 
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Canopy biomass and crop water, on the other hand, kept increasing from crop 
emergence until the end of the growing season. For potato, canopy biomass and 
crop water also reached a stable level in the midst of the growing season and the 
coefficients of correlation were higher than for beet. 

The coefficients of correlation for wheat and barley were negative because of 
the decreasing radar backscattering from stem extension to ripening. The radar 
backscattering only correlated with crop height, with the highest coefficients of 
correlation for wheat at medium angles of incidence (Fig. 4.3a). For wheat the 
radar backscattering at medium angles of incidence also correlated somewhat with 
canopy biomass (Fig. 4.3b). 

The scatter in the data points of Figure 4.3 is quite large. This was partly 
caused by radar observations on lodged and dying crops at the end of the growing 
season. The changes in canopy structure through lodging and dying greatly affected 
the radar backscattering (Bouman and van Kasteren, 1990b), see also Figure 4.1. 

For further analysis, data on lodged or on ripened wheat and barley, i.e. after 
stage 8 of the Zadoks growth scale (Zadoks et al., 1974), were excluded from the 
data set. This exclusion led to increased coefficients of correlation, especially at 
medium angles of incidence (Table 4.2). 

Table 4.2. Average coefficients of correlation r between canopy biomass, crop water, soil 
cover and crop height, and the W radar backscattering at 40 °-60 ° incidence angle, using 
data on non-lodged crops from sowing to growth stage 8 on the Zadoks growth scale, i.e. ~ 
ripening. The number of data for wheat was J 84 per incidence angle, and for barley J16 
per incidence angle. All coefficients are statistically significant with 99.5% confidence. 

Crop Biomass Crop water Cover Height 
(kg/m2) (kg/m2) (-) (m) 

Wheat -0.75 -0.48 -0.50 -0.84 
Barley -0.70 -0.65 -0.65 -0.85 

4.3.2 Parameter estimation 

Non-linear regression analysis was used to study the accuracy of crop 
parameter estimation. Crop height and soil cover of beet and potato, and crop 
height and canopy biomass of wheat and barley were estimated from the radar 
backscattering at 50° incidence angle. The crop parameters were estimated from 
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second order polynomial or logarithmic equations. As an example, the logarithmic 
equations that best described the relationship between the crop parameters and the 
radar backscattering are given for beet and wheat: 

Beet: 

h = -0.473* 101og[-(Y-0.334)/10.90] (1) 

ƒ = -0.648* 101og[-(y+0.084)/10.26] (2) 

Wheat: 

h = 2.21 - 101og[-(339.38/y+6.37)+l]/1.40 (3) 
Wd = 5.08 - 101og[-(8.19/y+5.64)+l]/0.20 (4) 

where: h = crop height (m); ƒ = soil cover of the crop (fraction); W^ = dry weight of 
the crop canopy (kg/m2); Y = radar cross section (dB) 

These equations are drawn as solid lines in the scatter diagrams of Figures 4.2 
and 4.3. For beet, slightly better relationships were obtained by using higher order 
polynomial equations. The coefficients of correlation r and the residual standard 
deviations S(residual) between the measured and estimated crop parameters are 
given for all crops in Table 4.3. The S(residual) can be seen as a measure of 
accuracy of parameter estimation: 

S(residual) = V[V(y-/)2/W-1] (5) 

where: y = measured value of parameter; y' = estimated value of parameter; N = 
number of data pairs 

For all parameters, the estimation accuracy [S(residual)] was about 20% of the 
total range in the parameter values from zero to its maximum value. The 
coefficients of correlation were not very high, with the highest values for beet. 

These poor results were caused by 1) a large variability in the radar 
backscattering curves of the same crop type in different years, and 2) relatively 
large fluctuations in the individual backscattering curves. The large variability was 
explained by differences in crop variety and management practices (e.g. row 
spacing), and by differences in growth conditions and environment (e.g. soil 
background). The relatively large fluctuations in the curves were caused by 
variation in the soil moisture content and by changes in the canopy architecture 
induced by weather (Bouman and van Kasteren; 1990a, 1990b). 
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Table 4.3. Results of the estimation of crop parameters from the W radar backscattering 
at 50° incidence angle. The coefficients of correlation r and the residual standard 
deviations S(residual) were calculated between the measured and estimated crop 
parameters from empirical regressions. 

Crop 

Beet 

Potato 

Wheat 

Barley 

parameter 

height 
cover 
height 
cover 
height 
biomass 
height 
biomass 

r 

0 
0 
0 
0 
0 
0 
0 
0 

86 
87 

78 
70 
83 
79 
85 
73 

S (residual) 

0.14 
0.21 
0.12 
0.19 
0.19 
0.22 
0.18 
0.23 

m 
fraction 
m 
fraction 
m 
kg/m2 

m 
kg/m2 

The estimation accuracies in Table 4.3 are empirical averages over different 
fields and years, and over the whole growing season. A theoretic example 
illustrates the effect of deviations in radar backscattering from the regression line 
on the accuracy of crop parameter estimation, along the range in crop parameter 
values from its minimum to a maximum. The inverse of equation 2 was used to 
calculate the radar backscattering of a hypothetical beet crop for a range in soil 
cover from 0.0 to 1.0. Equation 2 was then used again to estimate the soil cover 
from the calculated radar backscattering with deviations of +/- 0.5, +/- 1 and +/- 2 
dB. Estimated soil covers below 0.0 and above 1.0 were set on these boundaries to 
avoid unrealistic values. In Figure 4.4, the estimated soil cover is plotted against 
true soil cover of the hypothetical crop. The effect of deviations in the radar 
backscattering on parameter estimation depended on the magnitude of the 
estimated parameter itself. At values close to 0 the estimation error was about 0.05 
and 0.08 with deviations of 0.5 and 1 dB respectively. With increasing fraction soil 
cover the errors increased to values of more than 0.30 and 0.45 at full cover. 

Fluctuations in the order of 1 dB, and sometimes even larger, were common in 
the temporal backscattering curves of beet and other crops. This means that the 
estimation of soil cover from each single radar measurement has an accuracy that 
ranges from 0.05 to 0.45. For application in, for instance, crop growth modelling, 
this accuracy should be in the order of 0.05. 
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Figure 4.4. Theoretical sensitivity of the estimation of soil cover of beet on deviations in 
the radar backscattering from an empirically fitted curve, at 50 ° incidence angle. The 
estimated soil cover is plotted on the vertical axis and the true soil cover on the horizontal 
axis. 

4.4 The simple physical 'Cloud' equations 

Attema and Ulaby (1978) have modelled the radar backscattering from 
vegetation by representing the vegetation canopy as a cloud of isotropic water 
droplets. The driving parameters in their 'Cloud' model are the amount of water in 
the vegetation layer and the volumetric moisture content in the top soil (for X-band 
radar, typically the layer of first 5 cm): 

Y= C(8)(l-exp(-DW7cos(8)))+ G(8)exp(/Qn-DWcos(6)) (6) 

where: y = radar cross section (m2/m2), W = crop water per unit soil surface 
(kg/m2), m = volumetric moisture content of top soil (%), 8 = incidence angle ("), 
D = coefficient of attenuation per unit of crop water (m2/kg), K = moisture 
coefficient of top soil per volumetric moisture content (-), C(8) = backscattering 
coefficient of an optically thick vegetation cover (m^m2), G(8) = backscattering of 
dry soil (m2/m2). 

In this formulation (equations 6 and 7), y is expressed in m2/m2 instead of in 
dB. The 'Cloud' model was calibrated for a number of crops in different growing 
conditions with ground-based data collected by the University of Kansas and by the 
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Dutch ROVE team. The residual standard deviation between the measured radar 
backscattering and the calculated backscattering with the 'Cloud' equations 
averaged about 1 dB for beet and potato. Hoekman et al (1982) extended the 
'Cloud' model in a two-layer model to describe the radar backscattering of cereals. 
Because this model can not be analytically inverted it is less suitable for the 
estimation of crop parameters. Bouman and van Kasteren (1989) modified the 
original 'Cloud' model for wheat and barley by replacing the term W/cos(0) by the 
crop height h: 

Y= C(8)(l-exp(-£>/i)) + G(Q)cxp(Km-Dh) (7) 

This model described the radar backscattering as accurate as the two-layer 
'Cloud' model. The residual standard deviation between measured and calculated 
backscattering varied between 0.8 and 2.4 dB for various data sets of wheat and 
barley. 

The model parameters of the 'Cloud' equations for beet, potato, wheat and 
barley in 1979 are given in Table 4.4. 

Table 4.4. Model parameters and the residual standard deviation S(residual) of the 'Cloud' 
equations at 40 ° incidence angle for beet, potato (Hoekman et al, 1982), wheat and barley 
in 1979 (modified 'Cloud' equations, Bouman and van Kasteren, 1989). 

Crop 

Beet 
Potato 
Wheat 
Barley 

G(9) 

0.061 
0.078 
0.188 
0.198 

K 

0.051 
0.051 
0.051 
0.051 

C(9) 

0.929 
0.994 
0.056 
0.037 

D 

0.76 
0.25 
2.95 
2.54 

5 (residual) 

0.83 
0.94 
0.83 
0.88 

(dB) 

4.4.1 Single incidence-angle data 

With the model parameters in Table 4.4, the radar backscattering at 40° 
incidence angle was calculated for a given range in crop water for beet, and for a 
given range in crop height for wheat. The soil moisture content was taken 5%. The 
inverse equations of 6 and 7 were then used to estimate crop water of beet and crop 
height of wheat respectively, from the calculated backscattering with deviations of 
+/- 0.5 to +/- 2 dB. 
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For beet, the error of estimation increased sharply with increasing amount of 
crop water (Fig. 4.5a). With a negative deviation of 0.83 dB in the radar 
backscattering, S(residual) in Table 4.4, the error increased from some 0.05 kg/m2 

at 0 kg/m2 crop water to more than 1 kg/m2 at 2 kg/m2 crop water. With a positive 
deviation of 0.83, the error was already more than 2 kg/m2 at values of 1.5 kg/m2 

crop water. 

The main cause for these large errors was the early saturation of the radar 
backscattering in the growing season (Fig. 4.1). After saturation, the radar 
backscattering no longer reacted on any. increase in crop water. Because of this 
insensitivity, small deviations in the radar backscattering near saturation resulted in 
large errors in the estimation of crop water. 

For wheat, the errors in estimation of crop height were also quite large (Fig. 
4.5b). Compared to beet, the estimation error varied less with crop height itself 
(within the realistic range of 0-1.2 m). With deviations of +0.83 dB, the error was 
about 0.1 m at 0 m crop height, and 0.3 m at 1 m crop height. With a negative 
deviation of 0.83 dB, the error increased already to 0.3 m at 0.8 m crop height. 

In this case, the errors were mainly caused by a relatively low contrast in radar 
backscattering, only some 5 dB, from bare soil to that of the full crop (Fig. 4.1). 
Deviations of 0.83 dB were relatively large and resulted in correspondingly large 
errors of estimation. In general, the same ratio of average deviations in radar 
backscattering to total 'radar-growth' range (here some 100*0.83/5 = 17%) is 
returned in the ratio of average estimation error to total growth range of the 
estimated parameter. 

4.4.2 Multi incidence-angle data 

Radar data of the same crop can be collected at different angles of incidence. 
Model equations like 6 and 7 may be derived for each angle of incidence. This has 
two implications. First, with two independent equations, the estimation of a second 
driving parameter becomes possible. In the case of the 'Cloud' equations, this 
parameter is the moisture content in the top soil. Secondly, if the number of 
independent equations is larger than the number of driving parameters in the 
model, these parameters are over-determined and can be statistically estimated. 

Beet 

The possibilities of parameter estimation with two incidence angles will first 
be investigated for beet in 1979. The best combination of two incidence angles is a 
low and a medium angle. At a low angle, the microwaves penetrate the canopy best 
and the soil contribution to the radar backscattering is relatively large. This angle is 
therefore suitable for estimations of the soil 
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Figure 4.5. Theoretical sensitivity of the estimation of crop water of beet (4.5a) and crop 
height of wheat (4.5b) on deviations in the radar backscattering from the 'Cloud' equation, 
at 40° incidence angle. The estimated parameter is plotted on the vertical axis and the true 
parameter on the horizontal axis. 
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moisture content. At a medium angle of incidence, the contribution of the soil 
background is less, and the radar backscattering reacts strongly on crop water. 
When the angle of incidence is high, the backscattering also reacts strongly on crop 
water but the saturation of the backscattering takes place sooner than at medium 
angles of incidence (de Loor, 1985). 

The estimation of crop water and soil moisture content from the radar 
backscattering at 10° and 50° incidence angle is graphically illustrated in Figure 
4.6a. The 'Cloud' equations were used to calculate the radar backscattering at 10° 
and 50° incidence angle for a range in soil moisture contents and crop water values. 
'Iso-crop water' and 'iso-soil moisture' lines were drawn in a nomogram with the 
radar backscattering at the two angles of incidence on the axes. 

The measured radar backscattering pairs at 10° and 50° incidence angles were 
plotted in the nomogram. Interpolation between the iso-soil moisture and iso-crop 
water lines yielded estimated values of soil moisture and crop water (Fig. 4.7). The 
amount of crop water was estimated within 0.1 kg/m2 accuracy until 1 kg/m2. 
Between values of 1 and 2.5 kg/m2 crop water, the estimation accuracy was about 
0.4 kg/m2, and after 2.5 kg/m2 crop water the estimations became unrealistic. The 
decreasing estimation accuracy with increasing crop water was caused by the 
narrower spacing of the iso-crop water lines. The soil moisture content was 
estimated with an average absolute accuracy of some 3% until day 185. After day 
185, the microwaves no longer penetrated the canopy sufficiently to give (reliable) 
information on the soil moisture status. 

Both the amount of crop water and soil moisture content can be statistically 
estimated when more than two incidence angles are available. In this example, the 
radar backscattering of beet was measured at six angles of incidence from 10° to 
80°. Crop water and soil moisture were estimated with non-linear optimization 
procedures from the software package GENSTAT5 (Reference manual, 1988). The 
results are again depicted in Figure 4.7. Between 1 and 2.5 kg/m2, the estimations 
of crop water were slightly better than with two incidence angles only. With one 
exception, the estimations became again unrealistic at crop water values above 2.5 
kg/m2. 

The soil moisture content was also estimated with an average absolute 
accuracy of about 3% until day 180. 
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7 J 

6 

Crop water (kg/m2] 

Beet 1979 
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4.7a Day number 

Soil moisture (vol%) 

Beet 1979 
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Figure 4.7. Measured and estimated amount of crop water (4.7a) and moisture content of 
the top soil (4.7b) for beet in 1979. The drawn lines are smoothed curves from measured 
data. A indicates the estimated values using two angles of incidence, 10 ' and SO °. • with 
the error bars indicate the estimated values using six angles of incidence, 10 °, 20 '...70 °. 



81 

Wheat, barley and potato 

For wheat, barley and potato, the temporal radar backscattering was similar at 
different angles of incidence (Bouman and van Kasteren; 1990a, 1990b). The 
temporal backscattering curves at the various angles of incidence were parallel and 
the correlations were high. The nomograms of the radar backscattering at two 
angles of incidence were therefore narrow, as illustrated for potato in Figure 4.6b. 
Because of this narrow spacing, the same magnitude of deviations in the measured 
radar backscattering from the fitted 'Cloud' equations as for sugar beet, resulted in 
relatively large errors of estimation. 

Even when six angles of incidence between 10° and 80° were used, the 
estimation accuracies did not increase over the single-incidence angle approach. 
The reason for this was that the 'Cloud' equations were not independent at the 
different angles of incidence. 

4.4.3 W and H H polarization 

Radar backscattering measurements can not only be made at different angles of 
incidence, but also at different states of polarization. For beet, potato, wheat and 
barley, however, both the trends and the absolute values in the radar backscattering 
were similar at VV and at HH polarization (Bouman and van Kasteren; 1990a, 
1990b). Therefore, the accuracy of parameter estimation did not increase by 
considering radar data at both states of polarization. 

4.5 Discussion 

45.1 Conclusion 

Empirical and simple physical relations were inapt for accurate estimations of 
crop parameters from X-band radar observations. The estimation accuracies were 
generally too low for agricultural applications like production estimations or crop 
growth modelling. 

The low estimation accuracies may be attributed to specific features of X-band 
radar backscattering, and to the simplistic inversion schemes used here. An X-band 
specific problem appeared to be the early saturation of the radar backscattering 
with crop growth (beet). This suggests the use of other radar frequency bands. 
Lower frequency microwaves that (theoretically) penetrate the crop canopy deeper 
than X-band microwaves might give a longer sensitivity to crop growth. Another 
X-band specific problem was the low contrast between the backscattering of bare 
soil and that of a fully grown crop canopy (wheat). Small deviations in the radar 
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backscattering from the fitted regression or physical model, resulted then in 
relatively high errors in the estimation of a crop parameter. Deviations in the radar 
backscattering are caused by inaccuracies in the measurement (here only = 0.5 dB) 
and by effects of other canopy-factors on the measured signal (e.g. 'canopy 
structure'). These effects render simple relationships between the backscattering 
and individual crop parameters relatively noisy. 

45.2 Recommendations 

Higher accuracies of crop parameter estimation may be obtained through the 
use of more physically based models that account for the variance and covariance 
of many variables simultaneously. However, 'multi' data are required to obtain 
unique solutions of the inversion of the model and to solve ambiguities. Within a 
single frequency band, like the X-band, 'multi' data may be multi-angle, 
multipolarization or multi temporal. In this study, it was shown that multi-angle 
data in the X-band were too highly correlated to help solve the inversion problem 
(except for beet in the early growing season). Moreover, multi-angle observations 
will not be very feasible from space platforms. 

The aspect of multipolarization was only studied in the combination of vertical 
and horizontal co-polarization. Again, this 'multi' aspect did not improve the 
inversion accuracies because of the high correlation between the two states of co-
polarization. However, cross-polarized backscattering (HV, VH) is generally not 
correlated with co-polarized backscattering (due to the multiple scattering within 
the canopy), and may be more useful. Also the introduction of radar polarimetry 
(Evans et al., 1988) may contribute to the solution of the inversion problem. 

The aspect of multitemporal data may be used to improve the inversion 
algorithms through the linking with crop growth models. Crop growth is a dynamic 
process in which the state of the crop at one moment is not independent from that 
on a previous moment. The estimation of crop parameters from each single radar 
measurement in time does not take into account this temporal dependency. 
Improvement may be obtained when crop growth models are used to smooth the 
fluctuations in the radar backscattering curves (Bouman, 1991). 

Finally, the (multi-variate) inversion scheme may be approached with 
multifrequency measurements. Because the interaction of microwaves with 
vegetation is wavelength dependent, the radar backscattering in different frequency 
bands may have a different information content. 

Research into the multifrequency radar backscattering of crops was conducted 
in Europe during the Agriscatt 1987-1988 campaign (6 wavelengths between 1.7 
and 25 cm; Attema, 1989). Preliminary results reported by Bouman et al. (1991) 
suggest that the L-band (25 cm wave) may be sufficiently decorrelated from the X-
band (and smaller wavelengths) for combined use in agricultural applications. 
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5 ESTIMATION OF CROP GROWTH FROM 
OPTICAL AND MICROWAVE SOIL COVER 

Abstract Direct derivation of biomass from radar backscattering gives erratic 
results so this paper discusses another method in which biomass was not estimated 
directly, but was found as the accumulated value of the estimated crop growth rate. 
The estimation was based on soil crop cover and global radiation. The relationship 
between soil cover in the optical and microwave regions was investigated. Analysis 
of the methodology showed that improvement is obtained in comparison with the 
direct estimation method. Despite variation in parameters for different years, a 
remarkable consistency in estimated biomass was observed. Nevertheless, 
measurements of radar backscattering still suffer from too much variation to be 
reliable for biomass estimation. 

5.1 Introduction 

In contrast to remote sensing in the optical region, radar remote sensing is 
hindered very little by clouds, fog or absence of global radiation during the night. 
Therefore, radar remote sensing provides a more reliable frequency for data 
collection and can be useful for a variety of land applications. In agriculture, a 
general demand exists for up-to-date inventories, and classifications of forests and 
field crops. Such inventories, however, only fulfil primary needs. Further interests 
are vested upon themes such as the monitoring of crop growth and development, 
and ultimately yield forecasting (ESA Land Applications Working Group, 1987). 
Up to now, much research work has been done in the field of classification with 
promising results (Hoogeboom, 1983, 1986; Binnenkade, 1986), but research in the 
field of growth monitoring and yield-prediction has made little progress. The great 
practical advantages of radar remote sensing are offset by the difficulties that have 
existed so far in the interpretation of the backscattering data, and in their 
conversion into biomass or into other meaningful crop characteristics. 

In 1987, the MONISAR project (MONItoring with Synthetic Aperture Radar) 
was initiated in The Netherlands to investigate the possibilities of estimating crop 
growth and development from radar backscattering. For this purpose radar remote 
sensing data were integrated into crop growth models. These models are based on 
relationships between the physiological processes of plants and environmental 
factors such as solar radiation, temperature, day length, water and nutrient 
availability, etc. The development of these models for sub-optimal growing 
conditions is difficult and estimates of crop growth often turn out to be inaccurate. 
If remote sensing techniques can be used to yield information about the actual 
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status of a crop, growth models can be adjusted and more accurate predictions of 
crop growth can be made. 

In this paper an attempt is made to develop a method for integrating radar 
remote sensing data and a basic crop growth model. The data used for this study 
have been derived from ground based radar experiments conducted by the ROVE 
(Radar Observation of VEgetation) team in the Netherlands in 1979 and 1980 (de 
Loor et al. 1976). The radar system utilized was an X-band scatterometer, 
operating at 9.5 GHzy frequency. Measurements made at vertical like-polarization 
VV on the crops beet, peas, and potatoes have been selected. These crops are 
important in European agriculture and have hardly been studied in radar remote 
sensing literature. 

5.2 Outline of the methodology 

5.2.1 The'Cloud'equations 

Radar remote sensing data can be converted into fresh weight by inversion of 
the so-called 'Cloud' equations. In these equations (Attema and Ulaby, 1978; 
Hoekman, 1980) the microwave backscattering is the weighted addition of a 
backscattering component of the bare soil, and that of the vegetation cover. The 
weighting coefficient is a function of the amount of plant water (water contained in 
plants), W, in the vegetation canopy, and can be called the microwave soil cover 

ƒ = l-exp(-DW7sin6) (1) 

The amount of plant water W is the fresh weight minus the dry weight of all the 
above-ground material of the crop canopy per unit soil surface. With the weighting 
coefficient, the microwave backscattering can be written as 

Y=C/ + (l-/)Gexp(ttn) (2) 

where y - normalized radar cross-section (m2/m2), 0 = grazing angle, C = 
backscattering coefficient of an optically thick vegetation cover and is angle 
dependent (m2/m2), G = backscattering of dry soil, also angle dependent (nr^/m2), 
W = plant water (kg/m2), m = volumetric moisture content of the top soil (per cent), 
K = moisture coefficient of soil per volumetric moisture content, and D = 
coefficient of attenuation per unit plant water. 

This relation is based on the exponential extinction of microwave radiation by 
the amount of plant water in the vegetation canopy. The parameter D is the 
coefficient of attenuation and gives the extinction of microwaves of a unit of plant 
water in the canopy. The parameter G is soil-specific and must be determined by 
regression on microwave backscattering data for bare soil. The parameter K is less 
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soil-specific and its value is about 0.051 (Hoekman et al, 1982). The parameters D 
and C are crop-specific and must be determined by regression on microwave 
backscattering data for crop-soil systems, using previously determined G and K 
values for the soil underneath the crop. If a series of measurements from bare soil 
exists throughout a growing season until the harvest, all four parameters can be 
determined in the same regression. Since the parameters C and G are dependent on 
the grazing angle of the radar, the regressions must be made for each grazing angle 
separately. The 'Cloud' equations comprise a set of the same equations with 
parameters for different grazing angles. An example of parameters collected in this 
way is given in Table 5.1. 

If these parameters are known, inversion of the measured backscattering values 
is in principle possible in order to find W and m, by using data for different grazing 
angles 0. If the relative water content of the crop canopy is known from previous 
measurements, the amount of plant water can be used to calculate a direct estimate 
of dry canopy biomass. 

In practice, this inversion turns out to be loaded with difficulties, especially 
when there is a lack of contrast between crop and soil, as occurs with potatoes 
(Bouman, 1988). Secondly in many crops, especially cereals, the parameters D and 
C have a strong azimuthal component governed by the orientation of the scatter 
elements, i.e. stems, leaves, and ears (van Kasteren, 1981; Ulaby and Allen, 1984). 
This orientation is influenced by meteorological conditions and thereby introduces 
a dependency of the radar backscattering on weather during measurements. 
Thirdly, the 'Cloud' parameters for the same crop may vary in different years 
(Table 5.1). 

Beet causes fewer problems and attention was focussed on this crop for further 
analysis. Potatoes and peas have been used for comparison. The results of a direct 
inversion of backscattering data to dry canopy biomass, through the estimated 
amount of plant water and a measured value for the relative plant water content, are 
given for beet in two growing seasons (Fig. 5.1). The results have been obtained by 
using the 'Cloud' parameters collected for the same crop and the same year. To 
simulate future practical conditions only two angles were used for the inversion, 
40° and 80° grazing angle. Because there are two parameters to be estimated, plant 
water and soil moisture, a minimum of two independent backscattering 
measurements are needed. The high grazing angles were chosen because the radar 
backscattering responds for a greater length of time to crop growth at high grazing 
angles than at low grazing angles. At a grazing angle of 20° the radar 
backscattering of beet reaches a saturation level relatively early in the growing 
season (Bouman, 1987). 
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Figure 5.1. Measured and calculated dry canopy biomass as a function of time f or beet 
(5.1a) in 1979 and (5.1b) in 1980. The calculated biomass is derived from the relative 
plant water content of a beet canopy, an average of 90 per cent, and from the amount of 
plant water estimated from inversion of the 'Cloud' equations. 
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In 1979, the calculated biomass followed the observed biomass with 
fluctuations until the end of July (Fig. 5.1a). In 1980, only 6 measurements out of 
thirty could be inverted to derive biomass values (Fig. 5.1b). Due to the fluctuating 
pattern of the backscattering measurements, twenty-four measurements fell outside 
the model range of grazing angles of 40° and 80° set by the factors Gexp(Km) and 
C. When backscattering measurements at more than two grazing angles are used 
for the inversion, the parameters plant water and soil moisture are over-determined. 
Optimization techniques can then be used to arrive at a larger number of 
estimations of plant water with a better accuracy. However, a large number of 
grazing angles imposes practical problems for radar remote sensing from airborne 
or spaceborne platforms. 

5.2.2 Crop growth rate and intercepted radiation 

The poor quality of the results of this direct method necessitates another way 
of using the data, based on the presumption that the real crop does not fluctuate in 
biomass as Figure 5.1 suggests. Assuming continuity in biomass, the problem can 
be considered one of estimating the crop's growth rate. As shown by several 
authors such as Gallagher and Biscoe (1978), Milthorpe and Moorby (1979) and 
Monteith (1981), a crop's growth rate is closely correlated with intercepted global 
radiation, which can be estimated as the product of global radiation and soil cover. 
This means that the dry weight, W^, of the crop is written as 

Wd = JRdt (3) 

with 

R = aSf 4) 

where R = growth rate of the crop (g/day), a = conversion efficiency to dry weight 
(g/J), 5 = incoming daily global radiation (J/m2/day), ƒ = fraction of green soil 
cover, and Wd = dry weight of the crop (g). 

Our approach here was to estimate the soil crop cover from radar data and then 
multiply it by the global radiation collected in the conventional way. The following 
outlines the development of the method. 
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The first step was to derive the conversion efficiency a between crop growth 
rate, R, and intercepted global radiation, S/, based on collected ground truth data 
(Fig. 5.2). 

Wd (measured) ] 
} Wd = aj(Jf)dt -> a 

jSf (measured) J 

Next, the regression coefficient ß between the optical soil cover/, estimated in 
the field, and the microwave soil cover/, computed from the measured amount of 
plant water W, was calculated (Fig. 5.3). 

/(estimated) ] 
\ f = W -» ß 

ƒ (calculated from measured W) J 

Then, as in equations (3) and (4), the optical soil cover was replaced by the 
regression coefficient ß, multiplied by the calculated microwave soil cover. 

Wd = a$(Sf)dt (5) 

where ƒ is calculated from measured W. 

Finally, the microwave soil cover calculated from the measured value for W 
was replaced by the microwave soil cover derived from radar backscattering 
measurements (Fig. 5.4). 

Wd = ocßJ(S/ )dt 

where ƒ is calculated from backscattering measurements 

5.3 Calculation of the parameters a and ß 

53.1 Conversion efficiency a 

Based on the ground truth collected in 1979 at test farm "De Bouwing", and in 
1980 at test farm "De Schreef', the values for the efficiency factor a were derived 
(Table 5.2). The test farms are located in ecologically different areas some 50 
kilometres apart. 
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Table 5.2. Conversion efficiency a of intercepted global radiation to dry weight of the crop 
canopy (\LglJ) 

1979 1980 1979 + 1980 

Beet 
Peas 
Potatoes 

1.12 
1.29 
1.03 

1.74 
1.89 
1.02 

1.35 
1.65 
1.03 
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Figure 5.2. Measured and calculated dry canopy biomass of beet, 1979. The calculated 
biomass was found by accumulation of intercepted global radiation multiplied by the 
conversion efficiency derived from regression on the same data. 

file:///LglJ


91 

These data were derived from visually estimated crop cover and measured 
values of the canopy biomass. Due to the nature of the study, no ground truth was 
collected with regard to tuber biomass. Therefore, only data for the first two 
months of the growing season were taken into consideration in order to minimize 
disturbances caused by preferential growth of subsurface tubers. As a check for the 
method above, the integrated value of the crop growth rate of beet calculated in this 
way, and the measured canopy dry weight were plotted together (Fig. 5.2). The 
regression parameter, a, was not obtained independently of the data. Therefore, 
only the variability around the measured line can be used as an indication of the 
efficiency of this step in the method. 

5.3.2 Optical and microwave soil cover 

Given the good quality of the results in Figure 5.2, which were based 
exclusively on ground truth data, the next step was to extend the method to using 
radar data for estimating soil cover. To eliminate the disturbance from soil 
backscattering and meteorological influences on the crop canopy, microwave soil 
cover values were generated that were expected theoretically on the basis of 
equation (1). The input values for this equation were the ground truth data for the 
amount of plant water, W, and the values for D which gave the best correlations 
between the backscattering calculated by means of the 'Cloud' model and the 
measured backscattering (Bouman, 1987). The results are plotted against the 
visually estimated soil cover data for beet, peas and potatoes (Fig. 5.3). In Figure 
5.3, the data for 1979 and 1980 are combined for beet and potatoes. In Figure 5.3a, 
the relationship between optical and microwave soil cover for beet is an S-shaped 
curve, although large linear stretches exist at all grazing angles. In Figure 5.3b, 
near-linear relationships are observed for potatoes. For peas (Fig. 5.3c), linear 
relationships only exist for the period of vegetative growth which agrees with the 
limited applicability of the 'Cloud' equations (Bouman, 1987). Because ƒ and ƒ 
were almost linearly related over fairly large ranges, linear regression was used. 
The regression coefficients were calculated between the visually estimated soil 
cover and the theoretically expected microwave soil cover at an 80° grazing angle 
(Table 5.3). 

Table 5.3. Regression coefficient, ß, between optical soil cover, f, and calculated 
microwave soil cover, f, at 80 'grazing angle, f= ß / 

Beet Peas Potatoes 

1.07 1.69 2.54 
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Figure 5.3. Visually estimated soil cover, f versus theoretically expected microwave soil 
cover, f, calculated from equation (1) from ground truth data and D values found by 
regression: beet (1979) D = 0.76, beet (1980) D = 0.46, potatoes (1979,1980) D = 0.25, 
peas (1979, 1980) D = 0.41. Graphs are given (5 Ja) for beet, (5.3b) for potatoes and 
(5 3 c) for peas for different grazing angles: W20, W40 and W80: vertical like-polarized 
radar waves at respectively 20 °, 40 ' and 80 ° grazing angles. 
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The differences of the results for the crop species were due to the differences in 
transparency of the crop canopies to microwaves relative to the transparency in the 
optical region. A large value of the coefficient of attenuation D for beet coincided 
with a low coefficient of regression while a low value of D for potatoes coincided 
with a high value of the coefficient. The different values of D for beet in 1979 and 
1980 coincided with similar differences in the optical transparency. Therefore, the 
relationship between optical and microwave soil cover of the crop was the same in 
both years (Fig. 5.3). 

5.4 From microwave soil cover to canopy biomass 

The two steps discussed above had to be combined and checked in their 
combined functioning. The dry weight of the crop canopy, W$ (in g) was written as 

Wd = atf(Sf)dt 

Using the conversion efficiency and the coefficient of regression calculated 
above, and the microwave soil cover calculated from the measured amount of plant 
water, the integrated value of the crop growth rate was computed. Compared with 
Figure 5.2, this step in the method did not lead to an increase in the deviation of the 
calculated biomass from the measured biomass. 

The last step was to derive the microwave soil cover from the radar 
observations instead of from the ground truth measurements as is described above. 
From inversion of the 'Cloud' equations, the amount of plant water was estimated 
from backscattering measurements. This estimation was used to calculate the 
microwave soil cover with the aid of equation (1). Using the microwave soil cover 
thus obtained, the integrated value of the crop growth rate could again be 
calculated with equations (3) and (4). In Figure 5.4, this value was plotted in time 
together with the measured dry biomass of the crop canopy. It should be 
remembered that the coefficient of regression, ß, the conversion efficiency, a, and 
the 'Cloud' parameters were derived from the same set of data. The results were 
only used for comparison of the method with results from the direct estimation of 
canopy biomass (Fig. 5.1). 



94 

dry canopy 
( g / m 2 ) 

8 0 0 

7 0 0 

6 0 0 

500 

4 0 0 

300 

200 

100 

_ 

A u t ^ s 

b 

© 

iomass 

Beet 1979 
® measured biomass „ 

® ~ 
/ / / / / 

.•y 

.- / 

.• / 

• • / 

y / ; / / / 
.• © 

.•• / 
.-• • 

..-••y 

.̂ 

® 

® 

' 1 

5 15 -25 5 15 25 4 14 24 4 
June July Aug. Sept. 

Figure 5.4. Measured and calculated dry canopy biomass of beet, 1979. See text for 
method of calculating dry biomass. 

Compared with Figure 5.1, the method we developed led to an improvement in 
the calculation of the canopy biomass. The fluctuations in the curve of the 
calculated biomass in time had disappeared and a more realistic estimation of the 
biomass was obtained at the level of saturation of the backscattering. The 
calculated biomass, however, generally overestimated the measured biomass by 
some 25 g/m2. 

The method was used to predict the canopy biomass of beet from radar 
measurements during field experiments in 1981. That year, 15 radar measurements 
were made during the first two months of the growing season at the same location 
as in 1980. In Figure 5.5, the estimated canopy biomass is plotted together with the 
measured biomass. It shows the directly estimated biomass, calculated from the 
estimated amount of plant water by inversion of the 'Cloud' equations of 1980 and 
the relative water content of a beet canopy (90 per cent), and the continuously 
estimated biomass, based on the estimated microwave soil cover and the amount of 
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global radiation measured in the field. In Figure 5.5a the calculation of the 
estimated canopy biomass is based on the 'Cloud' parameters and conversion 
efficiency derived from the experiment in 1980. In Figure 5.5b the calculation is 
based on the 'Cloud' parameters and the conversion efficiency from the experiment 
in 1979. 
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Figure 5.5. Measured and estimated dry canopy biomass of beet, 1981. Estimated biomass 
based on the 'Cloud' equations of (5.5a) 1980 and (5.5b) 1979. 

When the 'Cloud' parameters in 1980 were used, 12 out of the 15 radar 
measurements could be inverted to yield estimates of the amount of plant water. By 
using the 'Cloud' parameters in 1979 only 7 radar measurements could be inverted. 
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The values of the backscattering from 10 June to 1 July exceeded the theoretical 
maximum of the 1979 C values (Table 5.1). This suggested that the 'Cloud' 
parameters from 1980 were better. The continuously estimated biomass based on 
the 'Cloud' parameters and the conversion efficiency from 1979 as on the 
parameters and the conversion efficiency from 1979, however, was just as efficient 
as those from 1980. 

5.5 Discussion 

The method of calculating dry biomass through the accumulation of the 
estimated rate of crop growth resulted in an improvement over the method of 
calculating the direct estimation of biomass. For potential use in the prediction of 
biomass from radar remote sensing, information should be available on the amount 
of daily incoming radiation for the site under consideration. This information is 
routinely gathered at most meteorological stations and can be input, along with 
other relevant information such as topographic data and crop type inventories, into 
any geographical information system. The radar system should deploy at least two, 
but preferably more, grazing angles from medium to high elevation. Based on the 
measurements used for this study, the backscattering measurements have to be 
calibrated with an absolute accuracy of 1 dB or less. 

The prospects for the application of the method we have developed depends on 
the accuracy with which the 'Cloud' parameters and the conversion efficiencies can 
be determined. They also depend on the amount by which these parameters and 
efficiencies vary between different crop varieties and regional and climatological 
conditions. 

Table 5.1 shows the variation that can exist in the 'Cloud' parameters for the 
same crop. The parameters for the crops in 1980 were derived from experiments at 
a location different from the one in 1979. In a previous study, Bouman (1987) 
showed that the differences in 'Cloud' parameters for beet do not relate to 
differences in crop biomass or soil cover. The effects of the canopy structure and 
the plant water density on the 'Cloud' parameters is still, mostly, an unknown 
factor. Even if the 'Cloud' parameters are chosen correctly, the inversion of 
backscattering data to an estimation of the microwave soil cover still remains 
troublesome due to the variability in the radar measurements (Fig. 5.1b). Since 
much of this variation is caused by seasonal influences on the structure of the crop 
canopy, some improvement might be obtained by averaging the backscattering 
measurements over a number of sequential days. 
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Figure 5.6. Measured and calculated dry canopy biomass of beet, 1979. The estimated 
biomass was found from the microwave soil cover through inversion of the backscattering 
data using the 'Cloud'parameters of 1980, and from the coefficient of regression ß and the 
conversion efficiency a derived from the experiments in both 1979 and 1980. 

The variation that occurs in the conversion efficiencies is demonstrated in 
Table 5.2. It is only for potatoes that this factor is the same for the two years. In 
theory, the linear relationship between the crop's growth rate and the intercepted 
global radiation is stable over a fairly wide range of external conditions. However, 
at various sites, deviations in the relationship for the same crop have been reported. 
These deviations could be due to errors in measurement, temperature differences, 
drought stress and diseases. Haverkort and Harris (1986) reported a range of 
conversion efficiencies for potato crops at the same location and related the 
variation to differences in air temperature. For potential use in the prediction of 
biomass, the method we developed should be extended to include the influences of 
external conditions and the limits of its applicability should be studied. 
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Despite the variations that occur in the 'Cloud' parameters and the conversion 
efficiencies for 1979 and 1980, a remarkable consistency was observed for beet 
when they were combined in the method we developed (Fig. 5.5). The lower value 
for the coefficient of attenuation, D, found in 1980, needed for the calculation of 
the microwave soil cover, was matched by a higher value for the conversion 
efficiency, a. When the biomass of beet in 1979 was calculated with the 'Cloud' 
parameters from 1980 and the conversion efficiency from 1979, the canopy 
biomass was seriously underestimated. When the canopy biomass in 1979 was 
predicted with all parameters from 1980, the biomass was estimated with the same 
accuracy as with the fitted parameters in 1979 themselves (Fig. 5.6). No 
explanation for this consistency in results has been found so far. 
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6 ACCURACY OF ESTIMATING THE LEAF 
AREA INDEX FROM VEGETATION INDICES 
DERIVED FROM CROP REFLECTANCE 
CHARACTERISTICS, A SIMULATION 
STUDY. 

Abstract The canopy radiation model EXTRAD was used to quantify the 
accuracy of Leaf Area Index (LAI) estimations from Vegetation Indices (Vis), 
derived from green and infra-red crop reflectance. The Vis were the infra-red/green 
(JR/GR) ratio, the Normalised Difference Vegetation Index NDVI, the 
Perpendicular Vegetation Index PVI, and the Weighted Difference Vegetation 
Index WDVL The accuracy of LAI estimation was calculated in relation to variation 
in leaf green and infra-red colour, leaf angle distribution, soil background and 
illumination conditions. The theoretical calculations were supported with a field 
experiment on sugar beet. 

Variation in illumination conditions and soil background gave relatively small 
estimation errors with all four Vis. The largest estimation errors resulted from 
variation in leaf colour and leaf angle distribution. With variation in green leaf 
colour, the estimation errors were lowest with the WDVL With variation in leaf 
angle distribution, the errors were lowest with the IR/GR ratio and the NDVI. In 
practice, the magnitude of the error in LAI estimation will depend mostly on the 
magnitude and combination of occurring variation in leaf colour and leaf angle 
distribution. 

In an average of 100 random combinations of disturbing conditions, and in a 
field experiment with sugar beet, the absolute estimation errors ranged between 
about 0.1 for 0<L4/<1 and 0.35 for 3<L4/<5. 

6.1 Introduction 

In the past 20 years, a number of vegetation indices (VI) has been constructed 
to aid the interpretation of remotely sensed data in the optical wavelength region. 
Vis are linear, orthogonal or ratio combinations of reflectances in the green (GR) 
and/or red (R), and infra-red (//?) part of the spectrum. Examples are the IR/GR 
ratio (first used by Jordan, 1969), the Normalized Difference Vegetation Index, 
NDVI (developed as 'VI by Rouse, 1973), the Perpendicular Vegetation Index, PVI 
(Richardson and Wiegand, 1977), and the Weighted Difference Vegetation Index, 
WDVI (Clevers, 1989). The calculation formulae are 
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NDVI = (IR-GR)/(IR+GR) 
PVI = ̂ [(IR-IRS)

2+(GR-GRS)
2] 

WDVI = IR-(IRs/GRs)GR 

where: GR and IR is the GR and IR crop reflectance respectively, and GRS and 
IRsis the G/? and //? reflectance of (the underlying) bare soil respectively. 

The main function of Vis is to minimize the effect of 'disturbing' factors on the 
relationship between reflectance and crop characteristics of interest such as crop 
type, Leaf Area Index (LAI) or canopy biomass. Disturbing factors may be 
illumination conditions, soil background and crop parameters of other interest such 
as leaf colour and canopy structure. 

The choice and suitability of a VI for agricultural application is generally 
determined by its sensitivity to the crop parameter of interest, and/or to its 
sensitivity to disturbing factors (Bunnik, 1978; Clevers, 1988, 1989; Huete et al, 
1984a, 1984b; Richardson and Wiegand, 1977; Tucker, 1979; Vygodskaya, 1989). 
However, the key property of a VI for application in agriculture lies in its inverse 
use, i.e. the accuracy of crop parameter estimation. Den Dulk (1989) is one of the 
few who systematically presented some errors in the estimation of LAI from a VI. 
He used the LAI-NDVI relationship, as calculated with the model TURTLE for a 
reference crop under reference conditions, to estimate the LAI with deviations in 
input parameters from the reference crop (Table 6.1). 

In this paper, a theoretical sensitivity analysis will be given to quantify the 
accuracy of LAI estimation from Vis in relation to specific disturbing factors. The 
LAI was chosen as crop parameter because of its general importance in agriculture 
(e.g. crop growth and transpiration modelling). The analysis was based on model 
simulations with the canopy radiation model EXTRAD (Goudriaan, 1977) that 
describes the visible and infra-red reflection of leaf canopies. The simulation 
results were compared with a field experiment with sugar beet. 

6.2 Method and materials. 

The Vis were calculated from the nadir (90° angle with the horizontal plane) 
reflectances in the green (GR) and the infra-red (//?) spectral wavelength bands. 
The use of nadir reflectance corresponds with the general practice of remote 
sensing from satellites and with hand held radiometers. The choice of the green 
band rather than the more generally used red band was guided by the availability of 
field data for this study. For the (theoretical) sensitivity analysis, this choice did not 
make any difference since the studied range in leaf colour could apply to both the R 
and the GR band. 
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Table 6.1. Error in LAI estimation front the NDVI, with deviations in crop, soil and 
observation conditions from a reference crop. The reference crop had a spherical leaf 
angle distribution, isotropically scattering leaves, a soil background with an average 
reflection coefficient, and a sun's inclination angle of60°. The calculations for the cotton 
plant were based on measurements presented by Lang (1973). Source: J.A. den Dulk 
(1989), The interpretation of remote sensing, a feasibility study, Thesis, Agricultural 
University Wageningen, p. 115. 

LAI: 0.57 1.37 2.74 

Bright leaves 
Dark leaves 
Specularly refl. leaves 
Rough leaves 

Erectophile crop 
Planophile crop 
Cotton 

0 
0 
0.02 
0.03 

0.07 
0.16 
0.31 

0.01 
0 
0.01 
0.05 

0.07 
0.14 
0.26 

0.01 
0.01 
0.02 
0.09 

0.05 
0.10 
0.19 

Dark soil 0.19 0.11 0.05 
Bright soil 0.03 0.03 0.02 

Sun's inclination 45' 
Minimum observed value 
Maximum observed value 

Erectophile, rough leaves 
Planophile, rough leaves 
Cotton, min. sun's incl. 
Cotton, max. sun's incl. 

0.09 
0 
0.16 

0.11 
0.13 
0.24 
0.53 

0.07 
0 
0.16 

0.11 
0.09 
0.20 
0.44 

0.06 
0 
0.27 

0.15 
0.02 
0.17 

0.26 

6.2.1 The canopy radiation model EXTRAD 

GR and IR nadir crop reflectance was calculated with the canopy radiation 
model EXTRAD developed by Goudriaan (1977). It is beyond the scope of this 
paper to discuss in detail the formulae and computation procedures. Goudriaan 
(1977, pp 143-145)) gave a complete listing of the model, and Bunnik (1978, pp 
26-29) presented a condensed summary of the calculation procedures. 

A brief description of EXTRAD is as follows. The canopy is subdivided into a 
number of horizontal infinitely extended layers. The optical behaviour of a layer is 
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calculated as a function of the scattering coefficient of the leaves (equal 
hemispherical reflection and transmission), and of the leaf angle distribution. The 
azimuthal orientation of the leaves is assumed to be uniform. Nine inclination 
intervals from 10° each are used to describe the leaf angle distribution, and to 
compute the fluxes of upward and downward radiation through the layers of the 
canopy. 

The radiation profile in the canopy is calculated with a relaxation method. The 
boundary conditions are the soil with ideal diffuse reflectance, and the total 
incident radiation on the top layer of the canopy. The incident radiation is 
subdivided into a direct solar component and a diffuse sky component emanating 
from nine equal intervals in the upper hemisphere. The canopy reflectance in a 
given direction (10° interval) is then computed from the total radiance leaving the 
top layer of the canopy in that direction. 

The model input of EXTRAD is given in Table 6.2. 

Table 6.2. Input for the model EXTRAD for canopy reflectance and values chosen for 
sugar beet. The spherical leaf angle distribution is explained in Table 6.4. 

Input parameter Value 

Leaf GR scattering coefficient 
Leaf IR scattering coefficient 
Leaf angle distribution 
Hemispherical soil reflectance GR 
Hemispherical soil reflectance IR 
Fraction diffuse sky irradiance 
Sun's elevation angle 

(*) = fitted values to data set 

A comparative study between the EXTRAD model and the models SAIL 
(Verhoef, 1984) and TURTLE/HARE (Den Dulk, 1989) revealed a very close 
agreement in results between all three with equal input values (Clevers, pers. 
comm.). 

6.2.2 Model calibration 

For this study, the model EXTRAD was calibrated on (nadir) reflectance data 
on sugar beet. The data were collected using a portable radiometer at intervals of 

0.294 
0.974 
spherical 
0.146 
0.178 
0.7 
60' 

(*) 
(*) 

(*) 
(*) 
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two to three weeks during the growing seasons of 1987 and 1988, on six fields in 
the Dutch Flevopolder. These fields belonged to different farmers who cultivated 
different sugar beet varieties: Regina (2x), Accord (2x), Salohil and Univers. 

The GR reflectance was measured at 548 nm with a bandwidth of 31 nm, and 
the IR reflectance at 823 nm with a bandwidth of 80 nm. At each field and day of 
observation, ten measurements were averaged at each wavelength band. The 
radiometer was calibrated at construction and the stability was monitored by 
measuring panels of known reflectance values at the end of the growing season. 
The LAI of the crops was measured on the same day as the reflectance 
measurements. The total number of reflectance and LAI data was 33 (all fields, two 
years). 

The model EXTRAD was calibrated on the data in the individual spectral 
bands of all six fields together. The calibration procedure was based on a controlled 
random search algorithm as developed by Price (1979) and extended by Klepper 
(1989) and Rouse (in prep.). Fitted values were obtained for the GR and IR 
scattering coefficients of the leaves, and for the hemispherical reflection 
coefficients of the soil. All parameters were assumed to be constant during the 
growing season. The calibrated values of the model parameters are given in Table 
6.2. 

6.3 Model simulations 

The set of model parameters given in Table 6.2 was used to calculate the 
IR/GR ratio, the NDVI, the PVI and the WDVI for LAI values from 0 to 5. This 
parameter set was the standard set and the obtained curves were the standard 
curves around which the effects of disturbing factors were studied. The disturbing 
factors were deviations from the standard parameter set, and are given in Table 6.3. 
They were grouped in three general classes: 1) illumination condition (fraction 
diffuse sky irradiance and sun elevation angle), 2) soil background, and 3) canopy 
condition (leaf GR and IR colour, leaf angle distribution). 

Ad I) illumination condition. The fraction diffuse sky irradiance ranged from a 
completely clear sky, a minimum of 0.2, to a fully clouded sky, 1.0. The minimum 
sun's elevation angle was determined by the angle at which accurate reflection 
measurements could still be made in the field, about 30°. The maximum was set for 
Mid-North European latitudes, about 70°. 

Ad 2) Soil background. Since the soil type under consideration had a medium 
reflection coefficient, disturbing effects were calculated for a light and a dark soil. 
The input values were the same as those used by Vygodskaya et al. (1989, p. 
1860). A difference in soil moisture was implicitly present in the choice of the light 
and the dark soil with GRS:IRS respectively 0.06:0.09 and 0.25:0.35. 
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The IRg/GRs ratio of these soils was about the same, thus representing a dry 
and a wet condition respectively of a same soil type (Clevers, 1988). 

Ad 3) canopy condition. The range in leaf GR and IR scattering coefficient was 
derived from reflection and transmission measurements on individual green and 
yellowish leaves. The measured range in the GR scattering coefficient was twice as 
large as that in the IR. The leaf angle distributions were taken from Bunnik (1978, 
pp 35-36), and are given in Table 6.4. 

Table 6.4. Leaf angle distribution functions according to Bunnik (1978). 9 is the angle 
between the leaf axis and the horizontal plane. 

Planophile 2 (l+cos29)/it 
Erectophile 2 (l-cos29) /JC 
Plagiophile 2(l-cos49)/% 
Extremophile 2(l+cos49)/% 
Spherical sin9 
Uniform 2/Jt 

6.3.1 The sensitivity of Vis 

As an example, the effect of deviations in leaf angle distribution and in GR leaf 
colour on the NDVI-LAI and the WDVI-LAI relationship is given in Figure 6.1. 

First it is noted that the WDVI was sensitive to LAI over a larger LAI range than 
the NDVI. Where the NDVI 'saturated' at an LAI of about 3, the WDVI 'saturated' 
only after an LAI of 5. The WDVI was more sensitive to leaf angle distribution than 
the NDVI, thus offsetting its larger sensitivity to LAI. Compared to the effect of leaf 
angle distribution, that of GR leaf colour was much smaller for the WDVI, and a bit 
larger for the NDVI. The WDVI was slightly less sensitive to GR leaf colour than 
the NDVI. 
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NDVI 

GR scattering coeff. =0.25 

WDVI 

GR scattering coeff. =0.25 

Figure 6.1. The effect of canopy properties on the theoretical relationship between LAI 
and the computed vegetation indices NDVI and WDVL Figs. 6.1a and 6.1b give the effect 
of leaf angle distribution, and Figs. 6.1c and 6.1 d for the green scattering coefficient of the 
leaves. 
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To compare the effects of the variation in parameter values (disturbing factors) 
on the Vis, the sensitivity to these parameters was calculated as a normalized 
standard deviation S': 

S' = s/vr 

where S is the standard deviation: 

S = V[X(W-V7)2/AM] 

where VI = VI at standard parameter and LAI value; VI' = VI at alternative 
parameter value and standard LAI value; VI = average value of VI in the 0-5 LAI 
range; N = number of VI calculations in the 0-5 LAI range. 

S' indicated the sensitivity of the VI to changes in parameter values as an 
average over the whole LAI range. It was normalized to the average value of the VI 
to compare the values for the different Vis. Table 6.5 gives the average S' per 
parameter listed in Table 6.4. 

Table 65. Average sensitivity S' of the Vis to variations in canopy properties, soil 
background and illumination conditions (Table 6.3). 

Parameter 

Leaf GR 
Leaf IR 
Leaf angle distribution 
Soil background 
Fraction diffuse sky 

irradiance 
Sun's elevation angle 

IR/GR 

26.8 
10.1 

9.1 
10.8 

3.2 

1.4 

WDVI 

5.3 
12.0 
18.4 
19.3 

4.4 

2.8 

NDVI 

9.1 
3.1 
5.0 

14.2 
2.5 

1.1 

PVI 

1.9 
14.6 
26.5 
24.6 

4.6 

3.6 

From this Table, two general conclusions were drawn. 1) All Vis were 
comparatively least sensitive to changes in illumination conditions. 2) The PVI was 
most sensitive to all disturbing factors, except for GR leaf colour, and the NDVI 
was generally the least sensitive to disturbing factors. 
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6.3.2 The accuracy of LAI estimation 

The next step consisted of analysing the effect of the disturbing factors on the 
accuracy of LAI estimation. Therefore, the standard curves of the Vis, calculated 
with the standard parameter set from Table 6.2, were inversely used to estimate 
LAI. The Vis calculated with the deviating parameters from Table 6.3 resulted in 
LAI estimations LAT which deviated with dLAI from the true LAI: 

LAI(true) > Vlitrue) 
with disturbing factor 

VIQrue) > LAI' 
inverse standard relationship 

dLAI= \lAI-LAI'\ 

The estimated LAI' was limited to a maximum of 5 to avoid unrealistic values. 
It is important to consider the values of dLAI along the 0-5 LAI range and not to 
analyse the results on an average basis over the whole LAI range (see example of 
Fig. 6.1). The values of dLAI were averaged per disturbing factor for each VI, and 
are presented as function of LAI in Figure 6.2. For all disturbing factors but soil 
background, the estimation accuracy was lowest at low values of LAI and generally 
increased with LAI. 

Illumination conditions had the smallest effect on the accuracy of LAI 
estimation for all four Vis (note the difference in dLAI scale between Figs. 6.2a/b 
and 6.2c-f). Errors in LAI estimation were generally not higher than 0.25 at high 
levels of LAI. The IR/GR and the NDVI had generally the lowest estimation errors. 
The low errors implicate that no further correction on remotely sensed optical data 
for illumination condition is needed. 

Soil background had the second smallest effect on the estimation accuracy. The 
IR/GR ratio and the NDVI limited the error to 0.25, the WDVI and the PVI to about 
0.4. The errors were constant over the whole LAI range. 

Canopy properties had relatively the largest effect on the estimation accuracy. 
GR leaf colour largely affected the estimation errors with the IR/GR ratio and the 
NDVI: the errors sharply increased from about 0.5 at an LAI of 2, to 3.5 at an LAI 
of 4.5. The PVI and the WDVI limited the errors to 0.1 and 0.4 respectively at a 
high LAI of 5. 
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Leaf green scattering coefficient 

Leaf infra-red scattering coefficient 

Figure 6.2. Theoretical error in LAI estimation from the IR/GR ratio, the NDVI, the WDVI 
and the PVI, as a function of LAI. The errors were due to variations infraction diffuse sky 
irradiance (6.2a), sun angle (6.2b), soil background (6.2c), leaf angle distribution (6.2d), 
leaf green scattering coefficient (6.2e), and leaf infra-red scattering coefficient (6.2f). 
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The effect of IR leaf scattering coefficient was comparable with all four Vis. 
The errors ranged from about 0.5 at medium LAI levels to 1.5 at high LAI levels. 

The estimation errors caused by leaf angle distribution were again lowest with 
the IR/GR ratio and the NDVI; they limited the errors to 0.25 at LAI values up to 3. 
The estimation errors with the PVI and the WDVI steadily increased from 0 at an 
LAI of 0, to 1.5 at an LAI of 5. 

The example of the effect of GR leaf colour clearly demonstrated the necessity 
to evaluate the performance of the Vis in terms of estimation accuracy. From Table 
6.5 it is read that the average sensitivity S' of the IR/GR ratio to GR leaf colour was 
three times larger than that of the NDVI. The lower S' of the NDVI however, was 
counter-affected by its lower sensitivity to LAI. The end result, the accuracy of LAI 
estimation, was similar for both. 

Figure 6.2 suggests that, in practice the optimum VI for estimation of LAI will 
be largely determined by occurring variations in GR leaf colour. With a stable GR 
leaf colour, the estimation errors will be lowest with the IR/GR ratio and the NDVI. 
When GR leaf colour is variable, the estimation errors will probably be lowest with 
the WDVI. The estimation errors were largest with the PVI for all other disturbing 
factors. 

The final error in LAI estimation in field situations will depend on the 
combination and magnitude of occurring disturbing factors, especially GR leaf 
colour and leaf angle distribution. The effect of variation in one factor might either 
counter-affect or reinforce that in another factor. To simulate possible field 
situations, the model EXTRAD was run 100 times with a random selection of 
parameter values chosen between the boundary values given in Table 6.3. The 
errors in LAI estimation were averaged over these 100 runs and given in Figure 
6.3a. In this example, the estimation errors were lowest nearly throughout the 
whole 0-5 LAI range with the IR/GR ratio and the NDVI (exactly the same errors). 
The estimation error was limited to 0.15-0.25 between LAI values of 0 and 2.5, and 
increased to 1.25 at an LAI of 5. The estimation error was only smaller with the 
WDVI at LAI values lower than 0.5. The estimation errors were largest with the PVI 
because of the accumulation of large errors with all disturbing factors (except GR 
leaf colour). 

6.4 Field verification 

The data set of the radiometer measurements used to calibrate the EXTRAD 
model comprised variations in disturbing factors. Reflectance measurements were 
made with either a dry or a wet top soil, depending on the natural whims of rainfall. 
They were also made in the course of a whole day so that variation in illumination 
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conditions was present. Furthermore, the data set consisted of measurements on 
different fields in two years. This set was therefore suitable to study the accuracy 
of LAI estimation from Vis in a specified, regional agricultural situation. 

The Vis were calculated from the measured GR and IR reflectances and plotted 
against measured LAI. The model EXTRAD was fitted to these data for each VI 
separately to obtain the best curve per VI. This resulted in only minor differences in 
the fitted parameters for the four Vis. An example is given in Figure 6.4 for the 
IR/GR ratio and the WDVL For both Vis, the fitted curve ran nicely through the 
data set For the IR/GR ratio, the scatter around the curve was larger at high values 
of LAI than at low values, suggesting variation in GR leaf colour (compare Fig. 
6.2e). For the WDVI, the scatter around the curve at high values of LAI was 
smaller. 

The fitted curves through the VI-LAI data sets were now used to estimate LAI 
from the measured Vis. The estimated LAI was compared with the measured LAI to 
give the error in estimation dLAI. For graphical presentation, the errors were 
smoothed by taking the average of a dLAI value with two neighbouring values (Fig. 
6.3b). The best VI for accurate estimations of LAI in this data set was the WDVI: 
the estimation error was about 0.1 at low values of LAI and averaged 0.35 at high 
values of LAI. The estimation errors with the IR/GR ratio and the NDVI were 
mutually nearly identical and averaged 0.1 at low levels of LAI, and 0.8 at high 
levels. 

The magnitude of the errors of estimation in Figure 6.3b compared favourably 
with those of the simulation study in Figure 6.3a up to LAI values of 3. After LAI 
values of 3, the errors were smaller in the field experiment than in the simulation 
study. In both cases, the estimation errors were highest with the PVI at all values of 
LAI. In the simulation study, however, the estimation errors were lowest with the 
IR/GR ratio and the NDVI. In the field experiment, the errors were lowest with the 
WDVI. The lower estimation errors with the WDVI in the field experiment again 
suggested a relatively large variation in GR leaf colour compared to that in other 
disturbing factors, especially leaf angle distribution. Field observations and 
literature (De Wit, 1965; Loomis and Williams, 1969) indicate that sugar beet has a 
high consistency in leaf angle distribution throughout the growing season. 
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6.3b 
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LAI 

Figure 6.3. Comparison between theoretical and experimental error in LAI estimation. In 
6.3a, the theoretical error in LAI estimation was averaged over hundred selections of 
random combinations in disturbing factors (Table 6.3). In 6.3b, the errors were calculated 
from experimental data on sugar beet. 
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Figure 6.4. Measured IR/GR reflectance ratio (6.4a) and WDVl (6.4b) versus LAI for 
sugar beet. The fitted curve with the model EXTRAD is given by the solid line. The 
numbers in the legend refer to different sugar beet fields. 
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6.5 Discussion 

The simulation study for average disturbing conditions, and the field 
experiment indicated that the LAI could be estimated from either the IR/GR ratio 
and the NDVI, or the WDVI, with accuracies that ranged between about 0.1 for 
0<LAI<1 and 0.35 for 3<LAI<5. These values agree with the magnitude of the 
errors given in Table 6.1 (Den Dulk, 1989). In practice, the accuracy of estimating 
LAI will depend largely on the occurring variation in leaf colour. Even in sugar 
beet that has no phase of ripening and yellowing of the canopy, the WDVI was the 
best VI for estimating LAI. 

In the analysis of the field experiment, the error in the standard LAI 
determination through leaf surface measurements (typically 0.25 to 0.4 at LAI 
values around three; van Keulen, pers. comm.) was tacitly neglected. All 
differences between the LAI determined by the standard method ('LAI true'), and 
that estimated from the Vis were attributed to estimation errors from the Vis. Since 
part of these differences should be attributed to errors in the standard LAI 
determination, the accuracy of the VI-LAI estimation is in reality probably higher 
than that given in Figure 6.3b. 

The effect of (GR) leaf colour on the estimation accuracy of LAI from the 
IR/GR ratio and the NDVI was relatively large. In preliminary reflection and 
transmission measurements on individual leaves, the variation in scattering 
properties was, on an absolute scale smaller in the red band than in the green band. 
This suggests that the red band would be more suitable than the green band for the 
estimation of LAI from vegetation indices. 

In this study, the crop parameter of interest was LAI while leaf colour and 
canopy structure were treated as disturbing factors. However, leaf colour and 
canopy structure may also be properties of interest (e.g. in the relationship between 
leaf colour and rate of photosynthesis). The presented analysis can be repeated for 
any selection of properties of interest and 'disturbing' factors. 
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7 LINKING PHYSICAL REMOTE SENSING 
MODELS WITH CROP GROWTH 
SIMULATION MODELS, APPLIED FOR 
SUGAR BEET 

Abstract In recent years, remote sensing and crop growth simulation models 
have become increasingly recognized as potential tools for growth monitoring and 
yield estimation of agricultural crops. In this paper, a methodology is developed to 
link remote sensing data with a crop growth model for monitoring crop growth and 
development. The 'Cloud' equations for radar backscattering and the optical canopy 
radiation model EXTRAD were linked to the crop growth simulation model 
SUCROS: SUCROS-Cloud-EXTRAD. This combined model was initialized and 
re-parameterized to fit simulated X-band radar backscattering and/or optical 
reflectance values, to measured values. The developed methodology was applied 
for sugar beet. The simulated canopy biomass after initialization and re-
parameterization was compared with simulated canopy biomass with SUCROS 
using standard input, and with measured biomass in the field, for 11 fields in 
different years and different locations. 

The seasonal-average error in simulated canopy biomass was smaller with the 
initialized and re-parameterized model (225-475 kg/ha), than with SUCROS using 
standard input (390-700 kg/ha), with 'end-of-season' canopy biomass values 
between 5500 and 7000 kg/ha. 

X-band radar backscattering and optical reflectance data were very effective in 
the initialization of SUCROS. The radar backscattering data further adjusted 
SUCROS only during early crop growth (exponential growth), whereas optical data 
still adjusted SUCROS until late in the growing season (at high levels of LAI, 3-5). 

7.1 Introduction 

In agriculture, monitoring of crop growth and development, and early estimates 
of the final yield to be expected are of general interest. Traditionally, yield 
forecasts are made on the basis of samples at individual farmers, i.e. field visits or 
written enquiries. Problems encountered concern subjectivity in responses, 
respondent differences and non-response (Heath, 1990). On regional and (inter-) 
national scales, the processing of these sample data is an expensive and time-
consuming procedure. In general, there is a need for an objective, standardized and 
possibly cheaper and faster methodology for collecting yield estimations. The last 
few years, attention has been paid to the possibilities of crop growth models and 
remote sensing techniques (King, 1988; Toselli and Meyer-Roux, 1990). In this 
paper, a methodology is developed to link radar and optical remote sensing data 



120 

with a crop growth simulation model for the monitoring of crop growth. The 
description of the methodology is preceeded by a short literature review to sketch 
some approaches and problems encountered so far. 

In the integration with growth models, remote sensing data are mostly used to 
estimate some measure of light interception, e.g. Leaf Area Index {LAT) or green 
soil cover (Wiegand et al., 1986; Birnie et al., 1987). The rate of crop growth is 
then calculated from the product of light interception with global solar radiation 
and an efficiency factor with which crops convert radiant energy to biomass 
(Steven et al., 1983; Garcia et al., 1988; Bouman and Goudriaan, 1989). Using 
more elaborate, cyclic growth models, Kanemasu et al. (1984) and Maas (1988) 
replaced the LAI simulated in time by the model itself, with the LAI estimated from 
remote sensing data. However, Maas pointed out that a high accuracy of simulation 
results is dependent on frequent remote sensing observations. He developed a 
technique to initialize and re-parameterize a crop growth model to the LAI 
estimated from remote sensing data. 

For practical reasons, LAI or soil cover is often estimated from (semi-) 
empirical regressions on remote sensing data. Such regressions are generally only 
valid for the specific environment and growth conditions under which they were 
derived. Moreover, they are non-explanatory and ignore existing knowledge on the 
interaction of radiation (light, microwaves) with vegetation canopies. Deterministic 
remote sensing models that explain the remote sensing signals from crop canopies 
have a wider applicability. However, the inversion of these models for the 
estimation of crop variables is often a difficult and cumbersome procedure (Goel et 
al., 1983, 1984). Finally, with (X-band) radar data, the accuracy of crop parameter 
estimation, like soil cover, is often too low for use in crop growth models 
(Bouman, 1991). 

The synergistic use of remote sensing data from different types of sensors in 
crop growth models is, up to now, hardly being addressed. Researchers have 
suggested to relate optical and microwave remote sensing signals to crop 
parameters through common physical concepts (Goel, 1985; Clevers, 1988a). The 
estimation of, for instance LAI, may be improved with the introduction of 
independent equations that relate LAI to different remote sensing signals. However, 
this approach does not benefit from sensor-specific information and will not be 
pursued here. 

In this paper a methodology of integrating remote sensing data with crop 
growth models is presented, that allows for the use of data from different types of 
sensors. Theoretic remote sensing models were not analytically inverted, but used 
in their original, explanatory formulation. The remote sensing models were 'Cloud' 
for canopy radar backscattering (Attema and Ulaby, 1978), and EXTRAD 
(EXTinction of RADiation) for optical canopy reflectance (Goudriaan, 1977). The 
radar backscattering was taken in the X-band (3-cm waves), and the optical 
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reflectance in the visible and near infra-red wavelengths. The used crop growth 
model was SUCROS (Simple and Universal CROp growth Simulator, Spitters et 
al., 1989). The methodology was tested on data of 11 fields of sugar beet, in 
different years and different locations. 

7.2 Methodology 

The crop growth simulation model SUCROS was extended with the 'Cloud' 
equations and the reflectance model EXTRAD. The combined SUCROS-Cloud-
EXTRAD model simulated crop variables, such as biomass and LAI, together with 
radar backscattering and canopy reflectance during the growing season. SUCROS-
Cloud-EXTRAD was then initialized and parameterized to fit the simulated remote 
sensing signals to the measured signals (Fig. 7.1). 

72.1 The crop growth model SUCROS 

SUCROS is a mechanistic crop growth model that describes the potential 
growth of a crop from irradiation, air temperature and crop characteristics. 
Potential growth means the accumulation of dry matter under ample supply of 
water and nutrients, in an environment that is free from pests and diseases. 

A schematic illustration of the model is given in Figure 7.2. The light profile 
within a crop canopy is computed on the basis of the Leaf Area Index (LAI) and the 
extinction coefficient (based on the formulations in EXTRAD, see §7.2.3). At 
selected times during the day and at selected depths within the canopy, 
photosynthesis is calculated from the photosynthesis-light response of individual 
leaves. This response curve is characterized with its initial slope (the initial light 
use efficiency) and the asymptote (the light saturated photosynthesis). Integration 
over the canopy layers and over time within the day gives the daily assimilation 
rate of the crop (partly from Spitters, 1990). 

Assimilated matter is first used to maintain the present biomass (maintenance 
respiration) and for the remainder converted into new, structural plant matter (with 
loss due to growth respiration). The newly formed dry matter is partitioned to the 
various plant organs through partitioning factors introduced as a function of the 
phenological development stage of the crop. Multiplication of the simulated leaf 
dry matter with the specific leaf area of new leaves gives the increase in leaf area 
(LAI). The increase in leaf area contributes to next day's light interception and 
hence to next day's rate of assimilation. 
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The parameters of the model can be divided into species parameters (e.g. 
partitioning factors, light use efficiency), location parameters (latitude), 
initialization parameters (e.g. sowing date, number of plants/m2) and driving 
variables (daily irradiance, daily maximum and minimum temperature). Species 
parameters have to be estimated from field and laboratory measurements. Location 
and initialization parameters have to be known for each simulation condition, and 
driving variables have to be measured daily throughout the growing season. 

72.2 The 'Cloud''equationsfor radarbackscattering 

Attema and Ulaby (1978) have modelled the radar backscattering from 
vegetation by representing the vegetation canopy as a cloud of isotropic water 
droplets. Their 'Cloud' equations belong to the class of semi-empirical models. The 
driving variables are the amount of water in the vegetation canopy and the 
volumetric moisture content in the top soil (for X-band radar, typically the layer of 
0-5 cm). The radar backscattering is calculated at different angles of incidence: 

Y = C(8).[ l-exp(-£W/cos8)] + G(8).exp(Arm-£>W7cos6) (1) 

where y = radar cross section per unit projected area (m2/m2), W = amount of water 
in the canopy per unit soil surface (kg/m2), m = volumetric soil moisture content 
(%), 0 = incidence angle (°), D = coefficient of attenuation, K = soil moisture 
coefficient, C(0) = backscattering of an optically thick crop cover, G(0) = 
backscattering of dry soil. The parameters C(9), D, G(8) and K have to determined 
from regression analysis for specific crop types (from theoretical considerations K 
= 0.05-0.06). An example of Y as function of the amount of canopy water is given 
for sugar beet in Figure 7.3. The Y increases mainly with the early growth (= 0-
1000 kg/ha) in canopy water. 

The 'Cloud' equations were linked to SUCROS by calculating the amount of 
water in the canopy from the simulated canopy dry biomass and the water content 
of the canopy (Fig. 7.2). Canopy water content (defined as fresh canopy weight 
minus dry canopy weight, divided by fresh weight) was derived from field 
experiments for different crop types. In sugar beet, the canopy water content was 
stable throughout the growing season at about 91%. 

For the time being, the input for soil moisture content was taken from 
measurements in the field (see § 7.5.2). 
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Figure 7.3. X-band radar backscattering (y at 40 ' incidence angle) versus the amount of 
canopy water in sugar beet. • are measurements on beet in 1979 and the drawn line is the 
fitted 'Cloud' curve. 

7.2.3 The canopy radiation model EXTRAD 

EXTRAD was developed by Goudriaan (1977) to calculate the (solar) radiation 
profile in crop canopies. A simplified version of EXTRAD is used in the 
photosynthesis subroutine of SUCROS to compute the extinction of 
photosynthetically active radiation (= 400-700 nm wavelength). However, the 
original, more detailed model was needed to calculate the directional reflectance 
from crop canopies at specific wavelengths up to the infrared region. 

In EXTRAD, the canopy is subdivided into a number of horizontal infinitely 
extended layers. The leaves in these layers are assumed to have Lambertian 
scattering properties, and to have a uniform azimuthal distribution. The angle 
distribution of the leaves is described by nine inclination intervals from 10° each. 
The radiation profile in the canopy is then calculated with a relaxation method. The 
canopy reflectance in a given direction (in our study: nadir) is computed from the 
total radiance leaving the top layer of the canopy in that direction. 
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The input of the model are crop parameters {LAI, leaf scattering coefficient at 
specific wavelength, leaf angle distribution function), soil parameters 
(hemispherical reflection coefficient at specific wavelength) and illumination 
parameters (solar elevation angle, fraction diffuse sky irradiance). In principle, 
each parameter can be physically measured. Because a constant value is used as 
input for the reflection coefficient of bare soil, the influence of top soil (= 0-1 cm) 
moisture content on the reflectance of a crop-soil system is not modelled. However, 
the Weighted Difference Vegetation Index (WDVI), calculated from the infrared 
(//?) and the green (GR) (or red) reflectance, is relatively insensitive to variation in 
soil moisture content (Bouman, 1991; Clevers, 1989b): 

WDVI = IRC - (IRs/GRJGRç (2) 

where IRS and GRS is the reflectance of the bare soil, and IRC and GRC is the 
reflectance of the crop. An example of the relation between WDVI and LAI is given 
for sugar beet in Figure 7.4. 

Figure 7.4. The Weighted Difference Vegetation Index (WDVI) versus Leaf Area Index 
(LAI) for sugar beet. • are measurements on beet in 1987-1988 and the drawn line is the 
fitted EXTRAD curve. 
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EXTRAD was linked to SUCROS through the simulated LAI (Fig. 7.2). The 
other crop parameters were chosen according to crop type. In sugar beet, the leaf 
angle distribution was chosen spherical during the whole growing season. The 
scattering coefficients of the leaves were estimated from regression analysis on 
experimental data sets, and the hemispherical soil reflection coefficients were 
derived from measurements on bare soil. The input parameters for illumination 
conditions were chosen for each simulation condition. In principle, solar elevation 
angle and fraction diffuse sky irradiance can be set to actual conditions on days of 
remote sensing measurements. 

7.2.4 Combined model functioning. 

An example of simulated canopy biomass, LAI, X-band radar backscattering y 
and WDVI with the combined SUCROS-Cloud-EXTRAD model is given for a 
hypothetical sugar beet crop in Figure 7.5. 

In the early crop growth, y reacted strongly on the first increase in canopy 
water (compare Fig. 7.3): y increased already on day 140 with no significant dry 
biomass accumulation. The y also saturated relatively soon, at day 180 with only 
some 2500 kg/ha dry biomass, and after day 180, no information on crop growth 
could be derived from y. 

The WDVI developed parallel to the LAI. It increased on about day 150 and 
reached a maximum value together with LAI on day 195. Because the maximum 
value of the WDVI was related to the maximum value of LAI, the WDVI still 
yielded information on LAI development at high levels of LAI. 

Figure 7.5 illustrates the (potential) gain by considering both radar 
backscattering and optical reflectance data. (X-band) radar data extended the range 
over which information on crop growth can be derived in the 'early-growth' 
direction, and optical data in the 'mid-season' direction. 

7.2.5 Initialization and (re-)parameterization 

In reality, most crop species parameters in SUCROS do not have one specific 
value but are characterized by a 'biologically plausible range' (Rouse et al., 1991). 
This variation in parameter values allows for a range in simulation results from 
SUCROS-Cloud-EXTRAD. The model may thus be (re-)parameterized within the 
biologically plausible ranges to fit the simulated remote sensing signals to the 
measured remote sensing signals. Parameterization of the starting conditions (e.g. 
sowing date, number of plants/m2) of SUCROS is called initialization. 
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Figure 7.5. Simulated canopy biomass, Leaf Area Index, X-band radar backscattering (y at 
40'incidence angle) and optical reflection (WDVI) of a hypothetical sugar beet crop with 
the combined SUCROS-Cloud-EXTRAD model. The simulation environment was the 
Flevopolder with weather data from 1988. 
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Initialization and (re-)parameterization of SUCROS-Cloud-EXTRAD was 
based on a controlled random search procedure as developed by Price (1979) and 
extended by Klepper (1989) and Rouse et al. (1991). This procedure yielded per 
simulation condition 'optimum' initialization conditions and species parameter 
values. Optimum refers to parameter values that resulted in the smallest (absolute) 
difference between simulated and measured remote sensing signals (either optical 
or radar, or both), averaged over the whole growing season. With optimum 
parameter values, the simulated time course of remote sensing signals best fitted 
the measured signals. The procedure provided for the optimization of any number 
of parameters, to any number and combination of measured remote sensing signals. 
Thus, SUCROS-Cloud-EXTRAD could be optimized simultaneously to both 
optical and radar remote sensing measurements, at any combination of (radar) 
incidence angles. 

A sensitivity analysis was used to select the initialization conditions and crop 
species parameters to be (re-)parameterized. The growing season was divided into 
three distinct growth periods: initialization, exponential growth, and linear growth 
(Fig. 7.5). Per growth period, parameters were selected that had a large effect on 
both the remote sensing signal and the canopy biomass and/or the LAI (Table 7.1). 
Because of the redundancy in the effect of parameter changes, the selection of 
parameters was kept to a minimum. With only radar data, 'sowing date' and 
'relative growth rate' were selected. Changes in parameter values during linear 
growth had hardly any effect on y (see also Fig. 7.5). With optical data, 'sowing 
date', 'relative growth rate', 'light use efficiency' and 'maximum leaf area' were 
selected. 'Maximum leaf area' (defined here as the leaf area above which dying 
occurs due to shading) had especially a large effect on the WDVI and the LAI in the 
second half of the period of linear growth. 

Because the parameterization procedure optimized a number of parameters at 
the same time, the obtained optimum values may deviate from the true physical 
values. Optimum values only fitted the simulated remote sensing signals to the 
measured signals in order to improve the simulations of canopy biomass. 

7.3 Description of experiments 

The developed methodology was tested on a historical data set of 11 fields of 
sugar beet, both on experimental stations (1975-1983) and on farms in agricultural 
practice (1987-1988). The experiments were held in two different regions in The 
Netherlands: Wageningen and South-Flevoland (Table 7.2). The choice of this data 
set was solely guided by the availability of data (optical, radar, groundtruth). 
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Table 7.2. Year, location (Wag = Wageningen, Fie = Flevoland), type and number of 
remote sensing observations of experiments on sugar beet. 

Year 

1975 
1979 

1980 
1981 
1983 
1987 

1988 

Location 

Wag 
Wag 
Fie 
Fie 
Fie 
Fie 
Fie 

Station name 

Droevendaal 
De Bouwing 
De Schreef 
De Schreef 
De Schreef 
1 Farmer' 
• Farmer' 

(1 
( 
( 
( 
( 
(3 
(3 

field ) 

) 
) 
) 
) 

fields) 
fields) 

Observation days 
Radar 

20 
35 
36 
17 
-
-
-

Optical 

-

-
34 
-
32 

6 
9 

The X-band radar backscattering was measured at 9.5 GHz, with a frequency 
sweep of about 0.4 GHz, using a ground-based FM-CW radar (van Kasteren and 
Smit, 1977; de Loor et al., 1982). Measurements were used here at different angles 
of incidence and at vertical co-polarization (VV: vertical transmitting and vertical 
receiving). The green (nadir) canopy reflectance was measured at 548 nm with a 
bandwidth of 31 nm, and the infra-red reflectance at 823 nm with a bandwidth of 
80 nm, using a portable radiometer (van Kasteren, 1981). Both the radar system 
and the radiometer were frequently calibrated to ensure compatibility over the 
years. 

Each year, canopy biomass and canopy water content were measured in the 
field at selected intervals during the growing season. The LAI was only measured 
in 1983-1988. On the experimental stations, canopy biomass was smoothed with 
growth functions, and values for the days of remote sensing observation were 
interpolated. In 1987 and 1988, the measurements coincided with the remote 
sensing observations. 

In all years but 1975 and 1983, the volumetric moisture content of 0-5 cm top 
soil was measured on all days of remote sensing observation. 

For this study, the empirical parameters of SUCROS, 'Cloud' and EXTRAD 
were determined/adapted for both the Wageningen and the Flevoland region. 

SUCROS was originally developed and calibrated on field data in the 
Wageningen region (Spitters et al., 1989). For this study, the model was adapted 
for the Flevopolder region on the basis of the 1987 and 1988 data. Adaptations 
were made in the assimilate partitioning factors between leaf blades and leaf stems. 
Because of the prolonged growth of leaves (as compared to the Wageningen 
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region), the influence of temperature sum on the leaf photosynthesis rate and on the 
death rate of leaves, was removed. 

The 'Cloud' equations were calibrated for the Wageningen region in 1979 
(Hoekman et al., 1982) and for the Flevoland region in 1980 (Bouman and 
Goudriaan, 1989). EXTRAD was calibrated for the Flevoland region on the data of 
1983, and on the data of 1987 and 1988. 

7.4 Results 

The simulations with the optimized SUCROS-Cloud-EXTRAD model were 
compared to those obtained with SUCROS-Cloud-EXTRAD with standard model 
input ('standard SUCROS'). Standard SUCROS runs were initialized with actual 
sowing dates. First, results will be discussed for a case study of beet in 1980 with 
optimization to radar data, to optical data, and to both radar and optical data (§ 
7.4.1). Beet in 1980 are presented because only this year, both radar backscattering 
and optical reflectance were measured (Table 7.2). Next, the results of the 
methodology, expressed as seasonal-average difference between simulated and 
measured canopy biomass, are presented for all available data sets (§ 7.4.2). 
Finally, some limitations of the SUCROS-Cloud-EXTRAD model are indicated 
with a case study of beet in 1975 (§ 7.4.3). 

7.4.1 Sugar beet in 1980 

With standard SUCROS the simulated canopy biomass underestimated actual 
values during the whole growing season (Fig. 7.6). The corresponding simulated y 
and WDVI were lower than the measured data in the early part of the growing 
season. The simulated WDVI was higher than the measured WDVI in the second 
half of the season. 

After optimization to y at 20°, 40° and 60° incidence angle, the simulated 
canopy biomass overestimated measured values for the largest part of the growing 
season (Fig. 7.6a). The description of the radar backscattering by the 'Cloud' 
equations was not adequate enough for better simulation results (of canopy 
biomass). In this case, a relatively large contribution of the soil background to the 
total radar backscattering from day 170 on (caused by high soil moisture contents) 
was 'misinterpreted' by the 'Cloud' equations as relatively high canopy water (and 
consequently high canopy biomass) values. However, the difference between 
simulated and measured canopy biomass, averaged over the whole growing season, 
was smaller than with standard SUCROS (Fig. 7.7). 
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Figure 7.6. Simulated canopy biomass, X-band radar backscattering (y at 40 ' incidence 
angle) and optical reflection (WDVI) for beet in 1980, with standard SUCROS and with 
SUCROS-Cloud-EXTRAD optimized to y (7.6a/b) and optimized to WDVI (7.6c/d). • are 
field measurements. 
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in canopy biomass (kg/ha) 

Standard Radar Optic Radar + optic 

Figure 7.7. Seasonal-average error between measured and simulated canopy biomass for 
beet in 1980, with standard SUCROS, and with SUCROS-Cloud-EXTRAD optimized to y 
(radar), to WDVI (optic) and to both y and WDVI (radar + optic). 

With optimization to WDVI, the simulated canopy biomass was in good agreement 
with measured data until day 205 (Fig. 7.6c). After day 205, SUCROS started to 
partition a larger portion of the assimilates to the underground crop parts, at the 
expense of the (above ground) canopy. The field measurements, however, showed 
that the growth of the canopy biomass after day 205 still took place at the same rate 
as before. After day 205, the (optimized) simulated WDVI remained a bit lower 
than measured WDVI. By optimizing SUCROS-Cloud-EXTRAD also to assimilate 
partitioning between canopy and root, simulated WDVI and canopy biomass could 
be brought in better agreement with measured values after day 205. However, 
because optical reflectance data only provide information on the above ground 
parts of the crop, the optimization to canopy-root assimilate partitioning seems a 
hazardous affair. Moreover, the optimized simulation of assimilate partitioning 
could not be verified due to the lack of measurements on root weight. 

The seasonal-average difference between simulated and measured canopy 
biomass was smaller than with SUCROS-Cloud-EXTRAD optimized to y (Fig. 
7.7). 

Figures 7.6a and 7.6c indicate that optimization of SUCROS-Cloud-EXTRAD 
to both y and WDVI would not improve canopy biomass simulation over 
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optimization to WDVI only. However, the overestimation of canopy biomass with 
optimization to y compensated somewhat for the underestimation with optimization 
to WDVI at the end of the growing season (Fig. 7.7). 

7.4.2 All fields 1975-1988 

The seasonal-average error in simulated canopy biomass with standard 
SUCROS and with optimized SUCROS-Cloud-EXTRAD was calculated for all 
available data sets (Fig. 7.8). The errors were averaged over data between crop 
emergence and harvesting. In 1975 and 1981, the errors were calculated over the 
first half of the growing season only, i.e. between crop emergence and some two 
weeks after closure of the canopy (= day 190). In 1975, a decrease in actual canopy 
biomass after day 190 hindered a meaningful comparison with simulations (see § 
7.4.3). In 1981 biomass measurements were only made until day 190. 

Error in canopy biomass (kg/ha] 

700 T 

600 

500 

400 

300 

200 

100 

0 

Ra 

Ra 

1975 1979 1980 1981 1983 1987 

Standard ffl Optimized 

Figure 7.8. Seasonal-average error between measured and simulated canopy biomass for 
beet in 1975-1988, with standard SUCROS and with optimized SUCROS-Cloud-EXTRAD. 
'Ra' means optimization to g, and 'Op' to WDVI. 
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In 1987 and 1988, the errors are averages over three fields, and in the other years, 
the errors relate to one field per year (Table 7.2). 

Except for 1988, the errors with optimized SUCROS-Cloud-EXTRAD were 
lower than with standard SUCROS. The seasonal-average error in simulated 
canopy biomass with the optimized model ranged between 225 and 475 kg/ha, and 
with standard SUCROS between 390 and 700 kg/ha. For comparison: the 'end-of-
season' canopy biomass values ranged between 5500 and 7000 kg/ha. 

In 1988, the larger errors with optimized SUCROS-Cloud-EXTRAD were 
caused by a deviating (from other years) growth pattern of leaf-stems measured in 
the field (all three fields!). Only the biomass of leaf-blades was simulated 
accurately by the optimized model (to WDVf). The deviating measured growth 
pattern of leaf-stems could not be explained by the growth model SUCROS. 

In 1975 and 1981 with radar data, and in 1980 with optical data, the model 
components of SUCROS-Cloud-EXTRAD were calibrated on independent data 
sets. In these years, the simulations of canopy biomass may be regarded as 
'predictions'. In the other years, some or all SUCROS-Cloud-EXTRAD 
components were calibrated on the same data set used for comparison with 
simulations. 

7.4.3 Model limitations 

In 1975, crop growth of beet was seriously affected by drought in the second 
half of the growing season. Canopy biomass actually decreased after day =190 
(Fig. 7.9). Simulations of canopy biomass with standard SUCROS already 
underestimated early crop growth. Moreover, because water stress is not modelled 
in SUCROS (§ 7.2.1: ample supply of water), the decrease in canopy biomass was 
not simulated. 

SUCROS-Cloud-EXTRAD was optimized to y at 20°, 50° and 70° incidence 
angle. Since no soil moisture contents were measured, this input in the 'Cloud' 
subroutine was fixed at 10% throughout the growing season. The optimized model 
simulated canopy biomass more accurately in the first half of the growing season 
(see also Fig. 7.8). Because y was saturated above 2500 kg/ha canopy biomass 
(compare Fig. 7.5), the decrease in canopy biomass after day 190 was not noticed 
in the radar data and simulated canopy biomass kept on increasing. 

Because no optical data were collected, the performance of SUCROS-Cloud-
EXTRAD optimized to WDVI could not be evaluated. However, even if the WDVI 
did notice the decrease in canopy biomass (through decreasing LAI), the influence 
of water stress has to be included in SUCROS for correct simulations. 
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Figure 7.9. Simulated canopy biomass of sugar beet in 1975, with standard SUCROS and 
with SUCROS-Cloud-EXTRAD optimized to y. • are field measurements. 

7.5 Discussion 

75.1 Conclusion 

Initialized and (re-)parameterized SUCROS-Cloud-EXTRAD to X-band radar 
(y) and optical (WDVI) remote sensing data generally simulated canopy biomass 
more accurately than SUCROS with standard crop-species input and actual sowing 
date. Moreover, for growth monitoring on a regional scale, actual sowing dates of 
crops are generally not available as input for SUCROS. 

The radar and optical remote sensing measurements adjusted the crop growth 
model mainly in the period of initialization and exponential growth. The y saturated 
above canopy biomass values of about 2500 kg/ha and then no longer provided 
information on crop growth. The WDVI still yielded useful information on LAI 
development at high levels of LAI (3-5) in the second half of the growing season. 
Though the effect of LAI on net assimilation rate is relatively low at LAI values 
above three, a correct simulation of (high levels of) LAI is important for an 
accurate simulation of assimilate partitioning. This latter is important in crops 
where only specific parts have economic value, e.g. grains, roots, tubers. 
Furthermore, radar backscattering and optical reflectance data provide direct 
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information only on the (above-ground) crop canopy. The simulation of below-
ground parts remains a 'derivative' of the optimized simulation of above-ground 
biomass. 

75.2 Model improvements. 

SUCROS-Cloud-EXTRAD may be improved by creating more links between 
SUCROS and the remote sensing model components. In the crop canopy, 
assimilate partitioning may be detected by remote sensing signals if the 
contribution of specific canopy parts to the total remote sensing signal of the crop 
is explicitly modelled. For example, in the two-layer 'Cloud' equations (Hoekman 
et al., 1982) a distinction is made between the contribution from the layer of ears in 
cereals, and that from the underlying vegetative matter. Up to now, more 
deterministic backscattering models that include canopy structure (Eom and Fung, 
1984; Chuah and Tan, 1990) have been too complex for integration with crop 
growth models. 

Again in cereals, the leaf angle distribution, canopy water content (in the ear-
layer and in the vegetative layer) and leaf colour change with crop development. 
These three 'linking' parameters may be introduced in SUCROS as function of 
development stage. Possible links using the green leaf colour, that influences 
visible canopy reflectance and that may be related to leaf photosynthesis rate, have 
to be studied further. 

In this study, measured top soil moisture contents were used as input in the 
'Cloud' equations to calculate the radar backscattering. In practical applications, top 
soil moisture contents have to be estimated otherwise, for example from rainfall 
data, from C-band radar measurements (Bernard et al., 1982, 1984), or from radar 
measurements in combination with a water balance model (Prévôt et al., 1984). 
The introduction of a soil water balance may also be used to extend SUCROS to 
account for effects of water stress, like for instance in WOFOST (van Diepen et al., 
1989). Remote sensing models and observations in thermal bands may then be used 
to steer crop growth via the modelling of crop évapotranspiration (Thunnissen and 
Nieuwenhuis, 1989). 

Finally, SUCROS-Cloud-EXTRAD may be extended with remote sensing 
models that operate in other radar bands or in the passive microwave region. 
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8 MAIN CONCLUSIONS AND DISCUSSION 

This chapter synthesizes the main conclusions from the previous chapters, 
discusses implications and suggests possible directions for further research. First, 
the possibilities of specifically X-band radar remote sensing for use in monitoring 
crop growth and development are discussed. Next, two methods are described that 
were developed to link radar and optical remote sensing data with crop growth 
models for monitoring crop biomass. 

8.1 The suitability of X-band radar for monitoring growth and 
development 

The importance of canopy structure for X-band radar backscattering 

An analysis was made of the main factors that influence radar backscattering of 
crop canopies. It was found that the X-band radar backscattering of crops was 
largely determined by canopy structure: the size, shape and orientation of canopy 
elements in three-dimensional space. Because the microwave dielectric constant of 
water is by an order of magnitude higher than that of dry biomass (Attema and 
Ulaby, 1978; Hoekman et al., 1982), water, for radar, is the most important 
constituent of canopy elements. It was found that even the spatial orientation of 
elongated canopy elements with a relatively low water content (= 10-20%), like 
straw and stubble, could still dominate the radar backscattering. 

For a given crop type, variation in canopy structure may occur because of 
variety, ridge direction (potato), row spacing, wind and rain. In potato crops, the 
ridge direction was a major backscattering-infuencing factor from bare soil to = 
80% closure of the canopy. In wheat, barley and oats, the backscattering was 
greatly affected by lodging. In barley, the azimuthal orientation of the ears, as 
determined by wind direction and speed, was an important factor influencing radar 
backscattering. Canopy structure also changes due to morphological development 
in the course of the growing season. 

Because of sensitivity to canopy structure, radar may be a tool to measure or 
monitor the morphology of crops. No instrument is as yet capable of doing so (non-
destructively). Canopy structure is the basis of many morphological stages used to 
describe crop development (e.g. Zadoks et al., 1974). If the radar backscattering 
can be related to the morphological development of the crop, this information can 
be used in crop growth models. For instance in wheat, barley and oats, the temporal 
signature of the radar backscattering was shown to indicate general crop 
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development stages. Furthermore, canopy structure may give information about the 
general status of the crop, like lodging or wilting, which can affect crop growth. In 
wheat, for example, a sudden increase in radar backscattering suggested lodging. 
However, an interpretation such as this can be ambiguous sometimes because of 
unknown variables involved in determining radar backscattering. It can be 
expected that this problem will be solved by experienced interpreters by comparing 
other fields in the same region on radar imagery. (Other ways to solve ambiguities 
in the interpretation of canopy structure from radar data are given at the end of the 
end of this paragraph). 

Another way of using the sensitivity of radar to canopy structure is in crop 
classification (Batliva and Ulaby, 1975; van Kasteren, 1981; Hoogeboom, 1983; 
Uenk et al., 1987; Wooding, 1988; Wegmüller, 1990). It is suggested here that crop 
types are differentiated mainly because of differences in canopy structure. For the 
monitoring of crop growth and yield estimations on a regional level, a 
classification of crops and an acreage inventory are the first steps that must be 
made. 

Estimation of crop growth variables from X-band radar backscattering 

Next, X-band radar data have been investigated in terms of the possibilities for 
estimating crop growth variables. Canopy biomass, canopy water, soil cover and 
height were estimated from radar data through empirical regressions and the semi-
physical 'Cloud' equations. It was found that the estimation accuracies were 
generally too low for precise growth monitoring or for use in crop growth models. 
Out of the investigated crops (sugar beet, potato, wheat, barley, and oats), 
estimation of growth variables was only feasible for sugar beet in the early growing 
season. The amount of canopy water and the fraction soil cover were accurately 
estimated to values of about 2 kg/m2 and 0.8 respectively, from radar data at a 
medium (40°-60°) and a high (60°-80°) angle of incidence. 

The low estimation accuracies were caused by the simplicity of the estimation 
algorithms, and by specific features of the X-band: the relatively large influence of 
canopy structure, the early saturation of backscattering in the growing season 
(sugar beet, potato), and the relatively low crop-soil contrast (potato, wheat, 
barley). Even when regressions and the 'Cloud' equations are calibrated for specific 
crops, varieties and growth conditions, the effects of wind and rain on the canopy 
structure can not be accounted for (especially in cereals). It is suggested here that, 
for the estimation of crop growth variables from X-band radar data, the growth 
variable under consideration should be highly correlated with canopy structure. 
The following crop characteristics seem then to be important: uniform canopy 
geometry throughout the growing season, no azimuthal preference of canopy 
elements, absence of canopy elements with a pronounced narrow, longitudinal 
structure (e.g. ears and stems of wheat and barley), and relatively large and broad 
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leaves. From this reasoning, other crops that may be suitable for growth variable 
estimation, beside beet, are maize, sorghum and millet in the vegetative phase of 
the growing season. 

Further research in radar remote sensing 

More precise information on crop type, canopy structure and growth variables 
from radar remote sensing may be obtained from the analysis of so-called 'multi
parameter' data. Such data can be multi-angle, multi-temporal, multi-frequency or 
multi-polarization (polarimetry). To be useful, such data should be independent. In 
this study, it was found that multi-angle backscattering data in the X-band were 
generally too highly correlated to be useful for the estimation of growth variables 
(except for sugar beet; see above). In cereals, changes in canopy structure were 
often angle-dependent, and may be recognized by skilful interpreters. However, the 
use of a number of incidence angles is not suitable for observations from satellites. 
The use of multi-temporal radar data was elaborated in this study in combination 
with crop growth models, and will be summarized in the next paragraph. A first 
analysis of the usefulness of multi-frequency data was started in The Netherlands 
with the Agriscatt 1987-1988 (Bouman et al., 1991) and the Maestro 1989 
campaigns. The Maestro campaign also initiated the study into radar polarimetry. 
Recent developments in this field of radar remote sensing seem especially 
promising (Kong, 1990; Ulaby and Elazhi, 1990). 

The radar satellites planned for the near-future, ERS-1, JERS-1 and Radarsat, 
will only operate at one frequency, state of polarization and angle of incidence. The 
main feature of these satellites is that they will provide multi-temporal radar 
imagery of the surface of the Earth, unhindered by atmospheric conditions. This 
study has shown that, due to the many factors involved in determining radar 
backscattering, such data are generally not suitable for the precise estimation of 
crop canopy conditions in terms of quantitative growth variables or canopy 
structure. The use of future radar satellites in monitoring crop growth and 
development should focuss more on the spatial aspect of the radar data. The aim of 
satellite remote sensing is the observation of regional to global surface conditions, 
and not of detailed surface conditions on field level. Radar imagery can be used to 
spatially map and geo-code radar backscattering in relation to other types of 
geographic information such as topography, soil types, drainage conditions and 
rainfall patterns. Such combined data set can be used to extrapolate knowledge on 
the growth of crops on field level to regional and (inter-) national levels. 
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8.2 Methods of linking remote sensing data with crop growth 
models 

Two methods were developed to link remote sensing data with crop growth 
models to monitor crop biomass. The first method was the estimation of soil cover 
from remote sensing data, and the use of this estimation as input into a light-
interception growth model. The second method was the calibration of the crop 
growth model SUCROS on X-band radar backscattering and optical reflectance. 

Estimation of soil cover from X-band radar data 

In the first method, the growth rate of a crop was calculated from the fraction 
soil cover, the incident solar radiation, and a light use efficiency. The biomass of 
the crop was found by integration of the calculated growth rate of the crop in time. 
The fraction soil cover was estimated from X-band radar data. From the crops 
investigated (sugar beet, potato, wheat, barley, and oats), the use of X-band radar 
was only feasible for sugar beet (see above). In a case study of sugar beet for three 
different years, the canopy biomass was fairly accurately estimated throughout the 
growing season. The average error of estimation was about 250 kg/ha during the 
growing season. For operational use in biomass estimations, however, the 
consistency of the model parameters in the 'Cloud' equations needs to be further 
studied for differences in variety, and regional and climatological conditions. 

Estimation of soil cover from optical reflectance data 

The use of optical remote sensing data for the estimation of soil cover appears 
more promising. In this thesis, it was shown that the LAI (Leaf Area Index) of a 
crop can be fairly accurately estimated from the WDVI (Weighted Difference 
Vegetation Index). The LAI can then be converted into fraction soil cover ƒ by the 
general expression ƒ = l-exp(-£ LAI), where k is the light extinction coefficient. 

The fraction soil cover can also be directly estimated from the WDVI, using 
empirical regressions. Figure 8.1 gives the WDVI versus fraction soil cover of nine 
fields of sugar beet (five different varieties, five different years, at four locations in 
the Flevopolder). A linear regression was fitted to this data set with an r2 of 0.97. 
Using this regression, the average error of estimation of the fraction soil cover was 
the same as the estimation accuracy of the observer in the field, i.e. ~ 0.05. The 
relationship between fraction soil cover and WDVI appears sufficiently stable to be 
used successfully in growth estimations. Stable relationships between soil cover 
and optical reflectance factors or Vegetation Indices have also been reported for 
other crops, e.g. potato (Birnie et al., 1987) and wheat (Kumar and Monteith, 1982; 
Lapitan, 1986; Garcia et al., 1988). 
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Figure 8.1. Fraction soil cover versus the Weighted Difference Vegetation Index (WDVI) 
for nine fields of sugar beet: one in 1980,1981 and 183 each, and three in 1987 and 1988 
each. The drawn line is the fitted regression, r2=0.97, N=97. 

Calibrating SUCROS on X-band radar backscattering and optical reflectance 

In the second method used to link remote sensing data to crop growth models, 
the growth model SUCROS was extended with the remote sensing models 'Cloud' 
and 'EXTRAD' to calculate the radar backscattering and optical reflectance from 
the simulated crop. SUCROS was then calibrated by fitting the simulated remote 
sensing signals to a time series of actually measured remote sensing signals. In this 
method, the general shape of the growth curve is determined by SUCROS but the 
fine-tuning is done by the remote sensing data. 

Important characteristics of this method are: 

1) Remote sensing signals are calculated from the state of the crop canopy; 
physical remote sensing models are used in the original, explanatory way they 
were formulated. Inversion procedures, or the use of empirical regressions with 
limited applicability, are avoided. 

2) Knowledge of the development of crop variables in time, incorporated into 
growth models, is optimally used. The fluctuations that occur in temporal 
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backscattering curves are nicely smoothed by the growth model, especially for 
radar. 

3) Multi-sensor remote sensing data are applied in such a way that use is made 
of sensor-specific information. For beet, optical remote sensing data were related to 
the LAI, and X-band radar data to the amount of canopy water. When more 
sophisticated radar interaction models become available that are calibrated, these 
may be used to link radar data to the morphology of the canopy. SUCROS has then 
to be extended to include the simulation of canopy morphology. Furthermore, other 
remote sensing techniques, such as thermal infrared and passive microwave, may 
be incorporated by linking the interaction models to specific sub-processes of 
SUCROS. 

The developed calibration method was tested on 11 fields of sugar beet. The 
accuracy of canopy biomass simulation was higher after calibration on remote 
sensing data than using standard model input in five out of six years. The seasonal-
average error of estimation ranged between 225 and 475 kg/ha after calibration, 
and between 390 and 700 kg/ha before calibration, with 'end-of-season' canopy 
biomass values of 5500-7000 kg/ha. 

Both X-band radar and optical remote sensing data were very effective in the 
initialization of SUCROS, i.e. the determination of the starting point of crop 
growth. This is one major contribution made by remote sensing to the operational 
application of growth models on regional levels. Information about the dates of 
sowing or emergence of crops to initialize growth models is generally not 
available. 

After initialization, X-band radar data only adjusted SUCROS during early, 
exponential crop growth. Optical data still adjusted SUCROS in the middle part of 
the growing season. It is to be expected that in crops with a distinct ripening phase 
at the end of the growing season, such as cereals, optical data will again be very 
useful in calibrating that part of the growth model. 

Further research in the application of radar and optical remote sensing with crop 
growth models for biomass monitoring 

For the operational use of remote sensing and crop growth models in biomass 
monitoring, further research should be directed to calibration and validation of the 
model components for a number of crops under varying growth conditions. In root 
and tuber crops, like beet and potato, the simulation accuracy of the economically 
important under-ground parts should be investigated. This investigation was not 
carried out in this thesis because of lack of data. X-band radar and optical remote 
sensing data only provide direct information on the above-ground parts of a crop. 
In general, for biomass estimations of specific parts of a crop, the light-interception 
growth model presented here is too simplistic. On the other hand, the growth model 
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SUCROS requires many crop- and variety-specific input data that are often not 
available. Further research should be directed to the development of growth models 
of intermediate complexity that are specifically designed for, and calibrated on the 
scale of application. Such models may be linked with remote sensing data through 
either of the above developed methods. 

The output of biomass estimations should be presented in terms of confidence 
intervals rather than in single, absolute values. This requires a sensitivity analysis 
of the model output in relation to the accuracy of model input, model parameters 
and remote sensing data. 
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SUMMARY 

In agriculture, there is a general demand for monitoring crop growth and 
development for early yield estimations. New methodologies are being looked for 
that are more objective, standardized and possibly cheaper than traditional ways of 
monitoring and yield forecasting. Remote sensing and crop growth simulation 
models have become increasingly recognized as being new tools suitable for this 
purpose. Radar in particular seems suitable for monitoring purposes because its use 
is unhindered by weather conditions like clouds and fog. 

This thesis describes an investigation into the suitability of X-band radar for 
monitoring crop growth and development, and into the possibilities of linking X-
band radar backscattering and optical remote sensing data with crop growth 
models. The level of investigation is the field-level: radar backscattering and 
optical remote sensing data collected on experimental research stations and on 
fields of farmers are used. 

In Chapters 2 and 3, six years of ground-based X-band radar observations were 
used to study the radar backscattering of sugar beet, potato, wheat, barley and oats 
in relation to crop growth and development. The radar data set included horizontal 
(HH) and vertical (VV) co-polarized radar data, at incidence angles from 10° to 
80°. For beet and potato, the HH and VV radar backscattering increased at all 
angles of incidence until a level of saturation was reached at about 0.8 fraction soil 
cover. For wheat and barley, the HH and VV backscattering decreased with crop 
growth (after a small initial increase at low and medium incidence angles) until it 
fluctuated at a stable level from grain filling to the dying off of the canopy. The 
VV backscattering of oats at low to medium angles of incidence decreased during 
vegetative growth and sharply increased to a steady level with the appearance of 
the panicles. 

The geometry of the crop-soil system was a major factor influencing radar 
backscattering. In potato, the orientation of the ridges with respect to the incident 
radar beam dominated the backscattering in the early growing season. The 
architecture of individual beet plants, and their distribution in space affected the 
radar backscattering of sugar beet. 

Row spacing, crop variety and lodging influenced the radar backscattering of 
wheat, barley and oats. The effect of wind direction was sometimes very large for 
barley through changes in azimuthal ear-orientation. The architecture of the canopy 
also influenced the impact of the soil background on the radar backscattering. In 
cereal crops with a relatively wide row spacing, the influence of soil background 
was larger than in crops with a relatively close row spacing that had the same 
canopy biomass. Because of the many factors that influence canopy structure, the 



150 

radar backscattering of cereals was highly variable through the years. After 
harvesting, the radar backscattering was largely determined by the presence and 
spatial orientation of stubble and straw. 

In Chapter 4, the possibilities of crop parameter estimation from X-band radar 
backscattering measurements were investigated using empirical and simple 
physical relationships. The crops investigated were sugar beet, potato, wheat and 
barley. The crop parameters investigated were dry canopy biomass, amount of 
canopy water, soil cover and crop height. 

Empirical relations and the 'Cloud' equations were unsuitable for accurate 
estimations of crop parameters from X-band radar data at one angle of incidence at 
either HH or VV polarization. The use of both HH and VV polarized radar data did 
not improve the estimation accuracy. Using both a medium (40°-60°) and a high 
(60°-80°) angle of incidence, the amount of canopy water for sugar beet was 
estimated with an accuracy of 0.1-0.4 kg/m2, to crop water values of about 2.5 
kg/m2. For potato, wheat and barley, the use of more than one angle of incidence 
did not result in higher accuracies of (any) parameter estimation. 

The low estimation accuracies were attributed to the simplicity of the mono/bi-
variate inversion schemes used, and to specific features of the X-band: 1) the 
disturbing influence of canopy structure on the radar backscattering, 2) the early 
saturation of the backscattering with crop growth, and 3) the low soil-crop contrast 
in backscattering. It was suggested that improvement of estimation accuracies 
might be obtained from radar remote sensing data using multi-frequency data, radar 
polarimetry and more sophisticated radar interaction models. 

In Chapter 5, a method of growth monitoring was developed in which canopy 
biomass was not estimated directly, but was found as the accumulated value of the 
estimated crop growth rate. The crop growth rate was calculated from the fraction 
soil cover of the crop, the incident solar radiation, and a light use efficiency factor. 
The fraction soil cover was estimated from X-band radar data through the 'Cloud' 
equations and a regression with optical soil cover. 

The method was applied on experimental data consisting of three sugar beet 
fields. In comparison with the direct estimation method, improved estimation 
accuracies of canopy biomass were obtained using 'Cloud' parameters and 
regression coefficients that were determined on the same data set. Using 'Cloud' 
parameter and regression coefficients that were determined in two different years, 
canopy biomass was fairly accurately estimated in a third year. Nevertheless, it was 
concluded that measurements of X-band radar backscattering still suffer from too 
much variation to be reliable for biomass estimation. 
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In Chapter 6, the optical canopy radiation model EXTRAD was used to 
quantify the accuracy of Leaf Area Index (LAI) estimations from Vegetation 
Indices (V/'s). The EXTRAD model was calibrated on sugar beet field data. The 
V7's were the infrared/green ratio, [IR/GR], the Normalised Difference Vegetation 
Index, NDVI [(IR-GR)/(IR+GR)], the Perpendicular Vegetation Index, PVI [V((/fl-
IRS)

2+(GR-GRS)
2)], and the Weighted Difference Vegetation Index, WDVI [IR-

(IRg/GR^GR]. The accuracy of LAI estimation was calculated in relation to 
variation in so-called 'disturbing factors': green and infra-red leaf colour, leaf angle 
distribution, soil background and illumination conditions. 

Variation in illumination conditions and soil background gave relatively small 
estimation errors with all four VI's. The largest estimation errors resulted from 
variation in green leaf colour and leaf angle distribution. With variation in green 
leaf colour, the estimation errors were lowest with the WDVI. With variation in leaf 
angle distribution, the errors were lowest with the IR/GR ratio and the NDVI. In 
practice, the magnitude of the error in LAI estimation will depend on the magnitude 
and combination of occurring variation in leaf colour and leaf angle distribution. 

In an average of 100 random combinations of disturbing conditions, and in a 
field experiment with six sugar beet fields, the absolute estimation errors ranged 
between about 0.1 for 0 < LAI < 1 and 0.35 for 3 < LAI < 5. 

In Chapter 7, a method of calibrating crop growth simulation models on time 
series of remote sensing data was developed. The 'Cloud' equations for radar 
backscattering and the optical canopy radiation model EXTRAD were linked to the 
crop growth model SUCROS. SUCROS-Cloud-EXTRAD was then calibrated, i.e. 
re-initialized and re-parameterized, by fitting simulated X-band radar 
backscattering and/or optical reflectance (WDVI) to actually measured remote 
sensing data. The procedure developed allowed for the simultaneous calibration of 
any nurflber^of SUCROS parameters to any number and type of remote sensing 
data. Thus, SUCROS-Cloud-EXTRAD could be calibrated to both optical and 
radar measurements, individually or together, and at any combination of radar 
incidence angles. 

The developed calibration method was applied to 11 fields of sugar beet in six 
different years. The simulated canopy biomass after calibration on remote sensing 
data was compared to simulations using SUCROS with standard model input. 
Except for one year, the seasonal-average error in simulated canopy biomass was 
smaller with the calibrated model (225-475 kg/ha) than using standard model input 
(390-700 kg/ha), with 'end-of-season' values of canopy biomass between 5500 and 
7000 kg/ha. 

X-band Radar backscattering and optical reflectance measurements were very 
effective in initializing SUCROS, i.e. the determination of the start of crop growth. 
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The radar backscattering further adjusted SUCROS only during early, exponential 
crop growth, while optical data still adjusted SUCROS until the late growing 
season at high levels of LAI, 3-5. 

Chapter 8 brings together the main conclusions from the previous chapters, 
discusses implications and suggests possible directions for further research. The 
suitability of specifically X-band radar remote sensing for monitoring crop growth 
and development is discussed, together with its implications for radar remote 
sensing in general. The developed methods for linking optical and radar remote 
sensing data with crop growth models are also summarized. 



153 

SAMENVATTING 

De koppeling van X-band radarreflectie en optische reflectie met 
gewasgroeimodellen. 

In de landbouw bestaat een algemene behoefte aan het volgen van gewasgroei 
en -ontwikkeling ten behoeve van vroegtijdige oogstvoorspellingen. Hiervoor 
wordt naar nieuwe methoden gezocht die gestandaardizeerd, objectiever en 
mogelijk ook goedkoper zijn dan huidige methoden. Remote sensing en 
gewasgroeimodellen zijn veelbelovende technieken die hiervoor in aanmerking 
kunnen komen. Met name radar als remote sensing techniek lijkt bij uitstek 
geschikt voor monitoringsdoeleinden vanwege de ongevoeligheid voor 
weersomstandigheden als bewolking en mist. 

In dit proefschrift wordt een onderzoek beschreven naar de mogelijkheden van 
X-band radar remote sensing voor het volgen van groei en ontwikkeling, en naar 
methoden om X-band radar en optische remote sensing data aan 
gewasgroeimodellen te koppelen. De schaal van onderzoek was het veldniveau: er 
zijn radar en optische reflectiemetingen gebruikt, verzameld met grondopstellingen 
op proefvelden en op praktijkpercelen. 

In de hoofdstukken 2 en 3 is de radarreflectie van suikerbieten, aardappelen, 
tarwe, gerst en haver beschreven in relatie tot groei en ontwikkeling. De radar data 
set bestond uit een meetserie van zes jaren, in horizontale (HH) en vertikale (VV) 
polarizatie, en in kijkhoeken tussen 10° en 80° van de vertikaal. Voor bieten en 
aardappelen nam de HH en VV radarreflectie bij alle kijkhoeken toe met de groei 
van het gewas tot een verzadigingsniveau vanaf ongeveer 80% bodembedekking. 
Voor tarwe en gerst daalde de HH en VV radarreflectie (na een kleine toename in 
het eerste begin van het groeiseizoen) tot het fluctueerde rond een stabiel niveau 
van korrelvulling tot afsterving. De VV radarreflectie van haver bij lage en middel 
kijkhoeken nam af gedurende de vegetatieve fase van gewasgroei, en nam scherp 
toe naar een stabiel niveau bij het verschijnen van de pluim. 

De geometrie van het bodem-vegetatie systeem bleek een zeer groot effect te 
hebben op de radarreflectie. Bij aardappelen in het vroege groeiseizoen domineerde 
de richting van de ruggen ten opzichte van de kijkrichting van de radar de 
radarreflectie. De architectuur van individuele bietenplanten, en hun verspreiding 
in de ruimte beïnvloedde de radarreflectie van bieten. 

Rij-afstand, gewasvariëteit en legeren beïnvloedde de radarreflectie van tarwe, 
gerst en haver. Het effect van windrichting op de radarreflectie van gerst was soms 
erg groot via de azimuthale richting van de aren. De geometrie van het gewas 
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beïnvloedde eveneens de mate waarin de onderliggende bodem aan de 
radarreflectie bijdroeg. Bij granen met een relatief grote rij-afstand was de bijdrage 
van de bodem groter dan bij granen met een relatief kleine rij-afstand en met een 
zelfde hoeveelheid biomassa. Vanwege de veelheid aan factoren die de 
gewasgeometrie bepaalt, was de radarreflectie van granen zeer variabel door de 
jaren heen. Na de oogst werd de radarreflectie met name bepaald door de 
aanwezigheid en ruimtelijke oriëntatie van stoppels en overgebleven stro (haksel). 

In hoofdstuk 4 zijn de mogelijkheden onderzocht om uit X-band 
radarreflectiemetingen gewasparameters te schatten met behulp van eenvoudige 
empirische of fysische modellen. De bestudeerde gewassen waren suikerbieten, 
aardappelen, tarwe en gerst. De bestudeerde gewasparameters waren bovengrondse 
droge biomassa, hoeveelheid bovengronds plantwater, bodembedekking en 
gewashoogte. 

Schattingen van gewasparameters uit HH of W radarreflectiemetingen bij één 
enkele kijkhoek, met behulp van empirische relaties of van het 'Cloud' model 
waren onnauwkeurig. Het gebruik van zowel HH als VV data verhoogde de 
nauwkeurigheid niet. Met gebruikmaking van een middel- (40°-60°) en een grote 
(60°-80°) kijkhoek, kon voor bieten de hoeveelheid bovengronds plantwater 
worden geschat met een nauwkeurigheid van 0.1-0.4 kg/m2, tot een waarde van 
ongeveer 2.5 kg/m2. Voor aardappelen, tarwe en gerst leidde het gebruik van meer 
dan één kijkhoek niet tot nauwkeurigere schattingen van gewasparameters. 

De lage schattingsnauwkeurigheden werden toegeschreven aan de eenvoud van 
de gebruikte mono/bi-variabele inversie algoritmes, en aan enkele specifieke 
eigenschappen van de X-band: de invloed van gewasstructuur, de vroege 
verzadiging van de radarreflectie en het lage bodem-gewas contrast. Er werd 
voorgesteld dat hogere schattingsnauwkeurigheden verkregen zouden kunnen 
worden uit radar remote sensing met een aantal frekwenties, met radar Polarimetrie 
en met meer geavanceerde interactiemodellen. 

In hoofdstuk 5 is een methode van het volgen van gewasgroei ontwikkeld 
waarbij de biomassa niet rechtstreeks geschat werd, maar bepaald werd door 
integratie van de geschatte gewasgroeisnelheid. De gewasgroeisnelheid werd 
berekend uit de fractie bodembedekking van het gewas, de hoeveelheid invallend 
zonlicht en een lichtbenuttingsefficiëntie factor. De fractie bodembedekking werd 
geschat uit X-band radar data met behulp van het 'Cloud' model en een regressie 
met optische bodembedekking. 

De ontwikkelde methode werd toegepast op een experimentele dataset van drie 
jaar waarnemingen aan suikerbieten. In vergelijking met directe schattingen van 
biomassa uit radar metingen, leverde deze methode nauwkeurigere schattingen op 
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bij gebruikmaking van 'Cloud' parameters en regressiecoefficiënten die bepaald 
waren uit dezelfde dataset. Bij gebruikmaking van 'Cloud' parameters en 
regressiecoefficiënten die bepaald waren in twee verschillende jaren, werd in een 
derde, onafhankelijk jaar de biomassa geschat met een redelijk goede 
nauwkeurigheid. Desalniettemin werd geconcludeerd dat de variabiliteit in X-band 
radarreflectie data té groot was voor betrouwbare oogstschattingen. 

In hoofdstuk 6 is het optische stralingsmodel EXTRAD gebruikt om de 
schattingsnauwkeurigheid van het relatieve bladoppervlak (LAT) uit Vegetatie 
Indices (V7's) te simuleren. Het EXTRAD model werd gecalibreerd op 
veldgegevens van suikerbieten. De VTs waren de infrarood/groen ratio [IR/GR], de 
'Normalized Difference Vegetation Index', NDVI [(IR-GR)/(IR+GR)], de 
'Perpendicular Vegetation Index', PVI [^((IR-IR^+ÇGR-GRJ2)], en de 'Weighted 
Difference Vegetation Index', WDVI [IR-(IR^GR^)GR]. De nauwkeurigheid van 
LAI schattingen werd gesimuleerd bij variaties in de volgende zogenaamde 
'storende invloeden': groene en infrarode bladkleur, bladhoekverdeling, 
bodemachtergrond en belichtingsomstandigheden. 

Variaties in belichtingsomstandigheden en in bodemachtergrond gaven relatief 
de kleinste schattingsfout bij alle vier VTs. De grootste schattingsfouten werden 
veroorzaakt door variaties in groene bladkleur en in bladhoekverdeling. Bij 
variaties in groene bladkleur was de schattingsfout het kleinst met de WDVI, en bij 
variaties in bladhoekverdeling met de IR/GR ratio en de NDVI. In praktijk zal de 
schattingsfout afhangen van de grootte en de combinatie van voorkomende 
variaties in bladkleur en bladhoekverdeling. 

In een gemiddelde van 100 willekeurige combinaties van variaties in storende 
invloeden, en in een veldexperiment met zes velden suikerbieten, varieerde de 
absolute schattingsfout van LAI van ongeveer 0.1 bij 0 < LAI < 1 tot 0.35 bij 3 < 
LAI<5. 

In hoofdstuk 7 is een methode ontwikkeld waarbij een gewasgroeimodel 
gecalibreerd werd op remote sensing gegevens. De 'Cloud' vergelijkingen voor 
radarreflectie en het EXTRAD model voor optische reflectie werden gekoppeld aan 
het gewasgroeimodel SUCROS. SUCROS-Cloud-EXTRAD werd vervolgens 
gecalibreerd, d.w.z. ge-initialiseerd en ge-reparameteriseerd, door de gesimuleerde 
X-band radarreflectie en/of de optische reflectie (WDVI) te 'fitten' door de gemeten 
remote sensing data. In de fit procedure kon SUCROS gecalibreerd worden naar 
ieder aantal modelparameters, en op ieder aantal en type remote sensing metingen. 
SUCROS-Cloud-EXTRAD kon b.v. gecalibreerd worden op radar en optische data, 
zowel gelijktijdig als ieder afzonderlijk, en naar iedere combinatie van radar 
kijkhoeken. 
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De ontwikkelde calibratie methode werd toegepast op elf velden suikerbieten 
in zes verschillende jaren. De gesimuleerde bovengrondse biomassa nâ calibratie 
werd vergeleken met die verkregen met standaard model input. Op één jaar na, was 
de seizoensgemiddelde fout in biomassa schatting kleiner na calibratie (225-475 
kg/ha) dan met standaard model input (390-700 kg/ha), bij biomassa waarden aan 
het eind van het groeiseizoen van 5500-7000 kg/ha. 

X-band radarreflectie en optische reflectie data waren met name effectief in de 
initialisatie van SUCROS, d.w.z. in het bepalen van de start van gewasgroei. De X-
band radarreflectie stelde SUCROS verder nog bij in het vroege groeistadium van 
exponentiële groei, en optische reflectie data tot laat in het groeiseizoen (bij hoge 
LM waarden van 3-5). 

Hoofdstuk 8 vat de belangrijkste conclusies van de vorige hoofdstukken samen, 
en bespreekt implicaties en mogelijke richtingen voor vervolgonderzoek. De 
bruikbaarheid van specifiek de X-band radarreflectie voor het volgen van 
gewasgroei en -ontwikkeling is besproken, met gevolgtrekkingen voor radar in 
grotere algemeenheid. De ontwikkelde methoden voor de koppeling van 
radarreflectie en optische reflectie gegevens aan gewasgroeimodellen zijn samen 
gevat. 
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