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STELLINGEN

1.

Modellen zijn vereenvoudigde percepties van de werkeliikheid.
Doordat: onze perceptie van werkelijke systemen gedicteerd
wordt door de metingen die we daaraan kunnen verrichten, is
het in principe juister om modellen aan te passen aan nieuwe
waarnemingstechnieken, zcals remote sensing, dan vice versa.

X-band radarreflectie wvan landbouwgewassen wordt met name
bepaald door de structuur van het gewas. De interpretatie van
radarbeelden wveoor het monitoren wvan groel en ontwikkeling
van landbouwgewassen moet dan ock vooral gericht zijn op de
detectie van veranderingen in de structuur en de morfclogie.

(Dit proefschrift, Hoofdstuk 3)

Radar remote sensing, en radar polarimetrie in het bijzonder,
is zeer geschikt voor herkenning en areaalbepaling van
landbouwgewassen ten behoeve wvan oogstverwachting op
regiocnale schaal. ’

X-band radarreflectie data zijn owver het algemeen ongeschikt
voor het voldoende nauwkeurig schatten van gewasgroei-
parameters als de hceveelheden droge stof en water in het
vegetatiedek, en de bedekking van de bodem door het gewas.

(Dit proefschrift, Hoofdstuk 4)

X-band radarreflectie data zijn slechts bruikbaar voor de
initialisatie en het bijsturen van
gewasgroeisimulatiemodellen in het begin van het groeiseizoen
voor een beperkt aantal gewassen. Optische reflectie data
daarentegen, zijn hiervoor geschikt gedurende het gehele
groeiseizoen en voor een groot aantal gewassern.

(Dit preoefschrift, Hoofdstuk 7)

De bodembedekkingsgraad van landbouwgewassen kan met
veldeende nauwkeurigheid uit optische reflectie data worden
geschat om als input in gewasgrceimodellen te kunnen dienen,

(Dit preoefschrift, Hoofdstuk B)

De onderkenning van de mondiale problematiek van
veranderingen in het klimaat en ons leefmilieu is mede een
gevolg van de opkomst van remote sensing technieken die de
observatie van cnze aarde op mondiale schaal mogelijk maken.

De kracht wvan aardobservatie wvanuit satellieten 1is het
verschaffen wvan overzichten in ruimte en tijd, en niet de
nauwkeurige bepaling van bio/geo-fysische parameters op een
vierkante meter aardoppervlak.

De praktische toepasbaarheid van gewasgroei-simulatiemodellen
veor voorspellingsdoeleinden is omgekeerd evenredig met de
complexiteit van die modellen. BN
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15.

Bij de presentatie van berekeningen met simulatiemodellen
voor gewasgroei en uit 'Multiple Goal Programming' studies
krijgt een discussie over gevoeligheden wvan uitkomsten voor
onnauwkeurigheden in inputwaardes zelden de nodige aandacht.

Om de milieu-vervuiling door autoverkeer tegen te gaan zijn
maatregelen gericht op het verminderen van het gebruik van de
auto niet meer dan hoogstnoodzakelijke lapmiddelen. Een
uiteindelijke oplossing kan alleen liggen in het gebruik van
energiebronnen zonder vervuilende afvalprodukten, ¢f in het
gecontroleerd copslaan van de afvalprodukten.

Het zou de kwaliteit wvan de samenleving ten goede komen als
een deel van de taken van het leger omgebogen zou worden van
de bewaking wvan de landsgrenzen naar de bewaking van het
milieu.

Het autobezit en rijgedrag van de mannelijke Homo sapiens
vertoont vaak treffende gelijkenis met het balts- en poch-
gedrag van de mannelijke Philomachus pugnax (Kemphaan).

Vanwege het niet-determinstische karakter wvan de natuur
bestaat de kans dat U deze stelling niet op deze plaats zult
aantreffen.

Een toetje is pas lekker als het veel is.
(Rijnsteeg 8-15A, 1986-1989%)

Stellingen behorende bij het Proefschrift van B.A.M. Bouman:
Linking X-band radar backscattering and optical reflectance with
crop growth models. Wageningen, 17 september 1961.




ABSTRACT

Bouman, B.AM., 1991. Linking X-band radar backscattering and optical
reflectance with crop growth models. Ph.D. Thesis, Wageningen Agricultural
University, The Netherlands. 169 pages, 21 Tables, 44 Figures.

This thesis describes an investigation into the possibilities of linking X-band radar
backscattering and optical remote sensing data with crop growth models for the
monitoring of crop growth. The emphasis is on the usability of X-band radar data,
with a detailed analysis of the main backscattering influencing factors of
agricultural crops in The Netherlands,

Six-years of ground-based X-band radar observations (VV and HH polarized, 10°
to 80" incidence angle) were used to study the temporal radar backscattering of
sugar beet, potato, wheat, barley and oats. The geometry of the crop canopy was
found to be a major backscattering influencing factor, especially for the cereals.
The possibilities of crop growth parameter (soil cover, biomass, height) estimation
from the radar data were investigated using empirical and simple physical
relationships. Except for sugar beet in the early growing season, the accuracies of
parameter estimation were generally too low to be used in crop growth models.

In the optical region, the accuracy of estimating the leaf area index (LA!) from
vegetation indices was studied. In a case study for sugar beet, the LAl was fairly
accurately estimated from the so-called Weighted Difference Vegetation Index
(WDVI). ' '

Two methodologies were developed to link X-band radar and optical remote
sensing data with crop growth models. In the first method, remote sensing data
were used to estimate the fraction soil cover of a crop as input for a simple light-
interception growth model. This method was especially suitable for the use of
optical remote sensing data. The use of X-band radar data was only feasible for
sugar beet.

In the second method, X-band radar and optical remote sensing data were used to
initialize and re-parameterize the crop growth simulation model SUCROS (Simple
and Universal Crop Growth Simulator). In six years of sugar beet observations, this
method improved the simulation of canopy biomass over the use of SUCROS only.
The radar and optical reflectance data were very effective in the initialization of
SUCROS, and in adjusting the model during early, exponential crop growth,
Optical data also adjusted SUCROS in the middle of the growing season.

Key words: remote sensing, radar, crops, growth model.
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1 INTRODUCTION

1.1 Yield prediction and crop growth models

In agriculture, monitoring of crop growth and development, and early estimates
of final yield are of general interest. At a local level, individual farmers want to
know how their crops perform for optimum crop management. At a regional and
national level, local governments need data on type, location and acreage of crops
for land use planning and management. Early yield forecasts may be helpful for
market orientation. For some crops that are not marketed by wholesalers, but, like
maize in The Netherlands, are more or less privately marketed, insight into annual
production and distribution figures is still scarce. Timely yield forecasting is also
crucial for some agricultural industries. Sugar beet factories must have an idea
about expected dates of delivery and yields of sugar beets in order to plan their
processing capacity.

At an international level, like the European Community (EC), yield estimates
are an indispensable tool for pricing policies and the setting of import/export
quotas. For Third World countries, early yield forecasting to mitigate possible
food-shortage is of utmost importance.

Traditionally, yteld forecasts are made on the basis of samples taken from
individual farms, e.g. field visits or written enquiries. Problems encountered
concern subjectivity in responses, respondent differences and non-response (Heath,
1990). At regional and (inter-) national level, the processing of these sample data is
an expensive and time consuming procedure. Moreover, in the EC for example,
there is a need for greater objectivity and inter-country comparability in the
agricultural statistics delivered by the member states (Heath, 1990). In general, a
more objective, standardized and possibly cheaper and faster methodology for
collecting yield estimations is needed.

Over the last few years, attention has been given to the possibility of using
remote sensing techniques and crop growth models as new tools for crop growth
monitoring and yield prediction. The Council of the EC began, for example, in
September 1988 a pilot project on the application of remote sensing for the
improvement of agricultural statistics (Toselli and Meyer-Roux, 1990). Beside
remote sensing, crop growth models were recognized as a promising tool for
regional yield prediction.

Most deterministic crop growth meodels try to explain the growth and
development of crops from an understanding of the physiological and physical
processes involved (King, 1988). The complexity of these models ranges from very
simple, consisting of only one equation (Monteith, 1981), to very complex, like
the ones developed and described by van Keulen and Wolf (1986), Jones and
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Kiniry (1986), van Keulen and Seligman (1987), and Spitters et al. (1989) for
example. This last category of growth models generally corputes the daily growth
and development rate of the crop from meteorological parameters like solar
radiation, maximum and rinimum temperature, precipitation, relative humidity
and wind speed.

Most deterministic growth models were developed as research tools to
synthesize available knowledge on crop growth and development. Not so
surprisingly, these crop growth models often appear to fail when applied to
practical field conditions for the purpose of yield estimations (Kanemasu et al,
1984). Detailed ficld data necessary as input for the model, such as sowing date,
empirical and physiological crop parameters and physical soil properties, are often
lacking, and the effects of the possible occurrence of stress factors on yield
formation are insufficiently known. Therefore, simulated crop growth in any
regional environment will nearly always deviate from the crop growth that actually
occurs.

For practical application of growth medels, there is a need to update the model
in the course of the growing season with information on the actual status of the
crops. Such information can be obtained, in a non-destructive way, using remote
sensing techniques.

1.2 Remote sensing

Remote sensing is basically the measurement of electromagnetic radiation that
is reflected or emitted from the surface of the earth. Reflected electromagnetic
waves may have been emitted by the sun (optical remote sensing) or by artificial
sources (e.g. radar). An illustration of the electromagnetic spectrum and the regions
used for remote sensing is given in Figure 1.1. An introduction to the fundamental
physical aspects of electromagnetic radiation and its use for remote sensing is
given by Schanda (1986).

Through repeated remote sensing observations of agricultural crops during the
growing season, a so-called temporal signature of the crops is obtained. The
problem is to translate this temporal signature of remote sensing signals, like
reflected solar radiation or radar backscattering, into crop biomass and final yield.
Direct relationships between remote sensing signals and yields of crops are
generally too inaccurate to be used successfully in yield prediction systems.
Relationships between remote sensing signals and 'secondary’ crop variables like
fraction sotl cover or leaf area index {(LAl) appear more reliable. Crop growth
models are then needed to proceed from these variables to crop biomass and final
yield figures.
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12.1 Optical remote sensing

The most widely used remote sensing technique so far is optical remote
sensing: the measurement of the amount of reflected solar radiation from the earth’s
surface. Reflectance values are calculated by dividing the reflected amount of
radiation by the incident radiation, or by the reflected amount of radiation from an
ideal reflector (Suits, 1975). Reflectances are mainly measured in different optical
spectrum wavelength bands, for instance in the blue (0.4-0.5 um), green (0.5-0.6
um) or red (0.6-0.7 pm) part of the visible region, or in parts of the near infrared
(0.7-1.3 pm) and the middle-infrared (1.3-2.5/3.0 pm) spectrum. Because of the
differences in the interaction of electromagnetic radiation of different wavelengths
with vegetation, the various wavelength bands have different information contents
(Bunnik, 1978). For in-depth studies of the physics of optical remote sensing, see
Wendlandt and Hecht (1966), Lavin (1971) and Schanda (1986).

A number of operational satellite systems provide regular images of the earth
in different wavelength bands in the optical region, e.g. METEOSAT, NIMBUS,
NOAA, Landsat and SPOT (Buiten and Clevers, 1990). The availability of these
data has stimulated scientists to study the reflectance properties of crops, and to use
these data for crop growth monitoring (Wiegand et al., 1979; Tucker et al., 1979,
1980). However, a main drawback of optical systems in tropical and temperate
climates is cloud occurrence. Since a frequency of observations is necessary for
menitoring purposes, optical space-borne systems are less suitable in these regions.
At a sub-regional level, air-borne systems may be used, and at farm and field level,
portable reflectance meters.

The optical reflectance of crops is determined by the interaction of solar
radiation with the crop canopy. From the late sixties, this interaction process has
been extensively studied and modelled (Allen and Richardson, 1968; Allen at al.,
1969; Suits 1972a; de Wit, 1965; Goudriaan 1977; Bunnik 1978; Verhoef, 1984,
Den Dulk, 1989; Kuusk and Nilson, 1989). From these studies and numerous field
observations (Suits, 1972b; Bunnik, 1978; Clevers, 1986; Nilson, 1988; Schellberg,
1990), the interaction of optical radiation with vegetation canopies is relatively
well understood.

The spectral (i.e. as function of wavelength) optical reflectance of crops is a
function of canopy factors, viewing and illumination conditions, and of the
properties of the underlying soil. Canopy factors are the optical properties of
elements like stems and leaves, and the amount and spatial distribution of these
elements (canopy structure). Viewing conditions are the azimuth and incidence
angle of the view direction of the sensor. Illumination conditions are the azimuth
and incidence angle of the sun, and the fraction between diffuse and direct solar
radiance. The reflectance properties of soil are mainly a function of mineralogical
and organic composition, water content and the surface roughness.
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When monitoring crop growth and development by means of optical remote
sensing, a number of the above mentioned factors remain stable or can be
standardized. For consecutive measurements, the sensor can be placed in a standard
position with respect to the crop, and measurements can be performed at
comparable solar elevation angles, Furthermore, some changes in factors during the
growing season, that disturb relationships between reflectance and significant crop
parameters (¢.g. LAI), may be corrected through the calculation of so-called
Vegetation Indices (VI's). An example is the much-used Normalized Difference
Vegetation Index NDVT (first described as VI by Rouse, 1973):

NDVI = ({R-R){({R+R)
where /R = infrared reflectance of crop, and R = red reflectance of crop.

A number of authors have successfully correlated spectral reflectances and VI's
to crop parameters like LAl fraction soil cover, light interception or the chlorophyll
content of different types of crops (Kumar and Monteith, 1981; Steven at al., 1983;
Asrar et al., 1984; Wiegand at al., 1986; Birnie ¢t al., 1987; Huete, 1988; Clevers,
1986, 1989; Schellberg, 1990). These crop parameters play an important role in
crop growth and can be used in crop growth simulation models. However, there is
no agreement yet on the most suitable VI for the estimation of specific crop
parameters from optical remote sensing measurements.

1.2.2 Radar remote sensing

A radar system generally consists of a transmitter in which microwaves of the
desired wavelength (usually between 1 and 30 cm) are generated, and an antenna
for spatial distribution of the generated radiation. After reflection in a backward
direction by an object on the earth's surface, the microwaves are received by the
antenna and detected on the radar receiver (radar backscattering). The radar
backscattering of an object is expressed by its radar cross-section, which may be
defined as its microwave reflective power in the direction of the source.

Microwaves that are used in radar remote sensing are relatively unhindered by
atmospheric conditions. Wavelengths longer than 3 cm are hardly affected by
clouds or fog and wavelengths longer than 10 cm are very little attenvated by rain
(Goodman, 1980). The used radar wavelengths for remote sensing and their
nomenclature are given in Figure 1.1. Basic principles of radar and radar remote
sensing are given by Ulaby, Moore and Fung (1981, 1982 and 1986).

Compared to optical systems, the use of radar in remote sensing is relatively
new. Up to 1991 there had been one satellite mission, the Scasat in 1978; a mission
which only lasted for about three months. Other space observations were
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performed during the SIR-A and -B Space Shuttle missions in 1981 and 1984
respectively. Most radar images have been collected using air-borne systems.
Compared to optical remote sensing, very little use has been made of ground-based
systems.

In land applications, radar data have mostly been studied for the mapping and
inventorization of impenetrable marshes and tropical forests with near-permanent
cloud cover (Hoekman, 1990). Research into agricultural applications has focussed
mainly on crop type classification (Batliva and Ulaby, 1975; van Kasteren, 1981;
Hoogeboom, 1983; Wooding, 1988; Wegmiiller, 1990), whereas the monitoring of
crop growth has, so far, received little attention. Overviews of the achievements of
radar remote sensing in agriculture are given by Cihlar (1984), Krul (1984) and
Ulaby et al. (1986).

The radar backscattering from a crop depends on the properties of the incident
microwaves, and on those of the canopy and the undetlying soil. Properties of
microwaves are wavelength, state of polarization and angle of incidence. In
microwave scattering models, a crop canopy can be considered as a dielectric
mixture of discrete inclusions (e.g. leaves and stems) distributed in a host material
of air (Ulaby and Jedlicka, 1984). Fundamental models generally describe the
scattering strength and the microwave attenuation through crop canopies from the
dielectric constant, the volume fraction and the geomeltry of the various types of
inclusions (Ulaby et al., 1982, 1986; Allen and Ulaby, 1984; Eom and Fung, 1984;
Ulaby and Wilson, 1985; Lang et al, 1986; Karam and Fung, 1988). These models
have not yet been validated for different crops and growing conditions. Moreover,
some of the input parameters could not be successfully related to measurable
physical properties of the crop.

Another class of (simple) physical models has been developed that treat the
canopy as a collection of water droplets {Attema and Ulaby, 1978: Ulaby et al.
1982, 1984; Hoekman et al., 1982). The possibilities of crop parameter estimation
with this type of models has to some extent been investigated (Ulaby et al., 1984;
Prévot et al., 1988; de Loor, 1985, 1987), but a large-scale effort by the research
community has been hindered by the lack of sufficient temporal radar data with
supporting ground-truth.

Overall, information about the radar backscattering of crops is less wide-spread
than that on the optical reflectance of crops. Attempts to use radar backscattering
data for monitoring of crop growth have, so far, been very few.
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1.3 Objective and scope of thesis

The research presented in this thesis focuses on two objectives. Firstly, the
application possibilities of X-band radar backscattering in crop growth monitoring
are studied. The second objective is the development of methodologies which link
remote sensing data in general to crop growth models for monitoring crop biomass
development. For this, optical remote sensing data are used in addition to radar
data.

Radar remote sensing is applied because of its unique all-weather capability. A
number of earth observation satellites that are scheduled in the coming decade will
carry radar sensors {¢.g. ERS-1, JERS-1, Radarsat, EOS). Optical remote sensing is
used because of the proven relationships with canopy parameters, and because of
the many optical remote sensing satellites that are operational.

The scale of research is the 'field’ level. Ground-based radar and optical remote
sensing data collected from the agricultural fields of experimental stations and
private farmers are used. The field level has the advantage that, on agricultural
stations, growth and management conditions can be manipulated to study the
effects on remote sensing signals. Also, on field level, detailed ground-truth can be
collected on the near-exact location of the remote sensing measurement. Finally,
the field level agrees with the scale on which most crop growth models have been
developed.

Organisation of thesis

Chapter 2 introduces the experiments on the X-band radar backscatiering of
crops. The radar backscattering of sugar beet and potato is described in relation to
crop growth and development. The backscattering is studied in vertical and
horizontal like-polarization, VV and HH respectively, and at incidence angles from
10°-80°.

In Chapter 3, the backscattering of wheat, barley and oats is investigated.
Special emphasis is placed on the influence of canopy structure on the
backscattering. From the analyses in both Chapters 2 and 3, conclusions are drawn
with regard to the application possibilities of X-band radar remote sensing in
agriculture.

In Chapter 4, the possibilities of estimating crop parameters from X-band radar
backscattering data are investigated using empirical and simple physical
relationships. The crops investigated are sugar beet, potato, wheat and barley. The
investigated crop parameters are dry canopy biomass, fraction soil cover, crop
height and canopy plant water. The empirical and physical relationships use multi-
ternporal and muti-angle backscattering data in both YV and HH polarization.
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In Chapter 5, X-band radar backscattering data are applied in a simple growth
model for sugar beet. Using the 'Cloud' equations (Attema and Ulaby, 1978), a so-
called 'microwave soil cover' is estimated from the radar backscattering at a high
and a low angle of incidence. This microwave soil cover is related to the optical
soil cover and used in a light-interception growth model. This model calculates the
rate of growth from the product of the amount of intercepted solar radiation and a
light use efficiency factor. The intercepted solar radiation is computed from daily
measured values of total incoming solar radiation and the estimated soil cover of
the crop.

Chapter 6 introduces optical remote sensing with an analysis of the estimation
accuracy of LAT from different spectral Vegetation Indices. A physical interaction
model (EXTRATD; Goudriaan, 1977) is used to simulate the effects of so-called
‘disturbing factors’, such as canopy structure, illumination condition and soil
muoisture, on the VI-LA/ relationships. The effects of the disturbing factors on the
accuracy of LA[ estimation are quantified along the LA/ trajectory. From this
quantification, the most suitable VI for the estimation of LA7 is derived. The
simulation experiment is supported by field measurements of sugar beet crops.

In Chapter 7, a methodology for linking physical remote sensing models with
physiological crop growth models is presented that allows for the use of multi-
sensor information. A crop growth model (SUCROS; Spitters et al,, 1989) is
extended with the 'Cloud' equations and the EXTRAD model to calculate the X-
band radar backscattering and the optical reflectance of the simulated crop. The
simulated time series of remote sensing signals is compared to a measured time
series of remote sensing signals. From this comparison, the combined SUCROS-
Cloud-EXTRAD model is re-initialized and re-parameterized to fit the simulated
remote sensing signals to the measured remote sensing signals, The methodology is
applied on 11 fields of sugar beet, using both radar and optical remote sensing data.
The simulated canopy biomass is compared with values measured in the field,
before and after the re-initialization and re-parameterization of SUCROS.

Chapter 8 presents the main conclusions and discussions on the usability of X-
band radar for crop growth monitoring, and on the methodologies developed for
linking remote sensing data with crop growth models.
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2 GROUND-BASED X-BAND (3-CM WAVES)
RADAR BACKSCATTERING OF
AGRICULTURAL CROPS. I: SUGAR BEET
AND POTATO; BACKSCATTERING AND
CROP GROWTH

Abstract Six years of ground-based radar observations were used to study
backscattering influencing factors of agricultural crops. The X-band, 3 cm
wavelength, radar backscattering of sugar beet and potato was studied at vertical
and horizontal like-polarization and at several angles of incidence. For both crops
the backscattering increased with crop growth until a saturation level was reached
at about 80% soil cover, The average radar backscattering of a closed sugar beet
canopy varied between -2 and 0 dB at all angles of incidence. The average
backscattering of potato ranged from -2 to 0 dB at 20° incidence angle, to -7 to -5
dB at 70° incidence angle.

The geometry of the crop-soil system was an important backscattering
influencing factor. In potato, the orientation of the ridges with respect to the
incident radar beam dominated the backscattering in the early growing season. The
architecture of individual beet plants, and their distribution in space affected the
radar backscatter of sugar beet. For both beet and potato, changes in the canopy
architecture due to strong winds affected the radar backscattering by 1-2 dB.

2.1 Introduction

In recent years the usefulness of remote sensing in agriculture is increasingly
recognized. Applications vary from large scale crop inventory and disease
detection to the monitoring of growth and development. The availability of satellite
data from the Landsat, NOAA and SPOT satellites has stimulated research and
applications in the optical region. For arid and semi-arid areas, these satellites
deliver useful data on a regular basis. In many regions with a tropical or temperate
climate, however, cloud cover frequently hampers remote sensing of the land
surface. In The Netherlands the average number of cloud free imagery of a sector
of 40x50 km, using the Landsat satellite is only four to six times a year (van der
Laan, 1989). Therefore the attention of researchers is shifting to a remote sensing
technique which is relatively unhindered by atmeospheric conditions. Microwaves
have the capability of penctrating clouds and fog and are therefore in principle
suitable for remote sensing. Knowledge of the behaviour of microwave
backscattering of agricultural crops is, however, still scarce while the lack of a
remote sensing satellite with radar has hindered general investigations. This has
prompted scientists in Europe to participate in communal airborne radar campaigns
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such as Agrisar 1986 (Fiumara, 1988) and Agriscatt 1987-1988 (Artema, 1988).
Such campaigns deliver a wealth of data under actual field conditions. However,
because airborne campaigns are quite expensive, the number of observations is
often limited to no more than four to seven in a growing season. This may be a
handicap when the object of study is the monitoring of crop growth. Another
drawback is that ground conditions can not be manipulated to investigate the
effects of specific surface parameters. Therefore, airborne observations - giving
area coverage at specific moments in time - have to be supported by ground-based
measurements - which give continuity in time - in well conditioned environments
like agricultural test farms.

In this series of two papers, the relationship between ground-based, X-band (3
em-waves) radar backscattering of agricultural crops and agronomic (e.g. crop
type, crop growth, management practices) and environmental factors (e.g. weather
influences) is investigated. The ohjective is to assess main backscattering
influencing factors of crops. Where possible, the effects of these factors on the
radar backscattering are quantified. At the end, the potential role of X-band radar in
agricultural application is discussed,

The present paper, part 1 of the series, presents an overview of the
measurement methodology and deals with the relatively broad-leaved crops sugar
beet and potato. The relationship between the radar backscattering and crop growth
is investigated. With two special experiments, the importance of the geometry of
the crop-soil system will be demonstrated. The consecutive paper, part II, discusses
the backscattering of wheat, barley and oats with special emphasis on the influence
of canopy structure. The canopies of these small-grain cereals consist of long,
narrow leaves and stalks. The differences in general canopy architecture of sugar
beet and potato on the one hand, and wheat, barley and oats on the other, caused
specific differences in backscattering from these two crop groups.

2.2 Measurement methodology

The data used for this study were collected by the Dutch tearn ROVE (Radar
Observation on Vegetation) during 1975-1981. The tearn consisted of:

- The Centre for Agrobiological Research (CABQ), Wageningen

- The Microwave Department of the Delft University of Technology

- The Physics and Electronics Laboratory TNO, The Hague

- The National Aerospace Laboratory (NLR), Amsierdam

- The Department of Soils and Fertilizers of the Agricultural University,
Wageningen
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Figure 2.2. Schematic representation of the illumination geometry af the radar beam. The
symbols in the figure have the following meaning.: 9 = angle of incidence; h = height of the
radar; ¥ = axis of the radar beam, a = projected area of the cross-section of the radar
beam, b = area illuminated by the radar beam.

The X-band radar backscattering was measured with a FM-CW scatterometer
mounted on a trailer. This trailer could be moved along the test field to measure the
different plots at angles of incidence from 10° to 80° (Fig. 2.1). The distance of the
scatterometer to the target could remain 10 m along the axis of the beam, at all
angles of incidence. The antenna beam width was 4° (at the half power or 3 dB
points), so the cross section of the antenna beam at the place of the target was 0.6
m2, The central frequency of the scatterometer was 9.5 GHz (corresponding to a
wavelength of about 3 cm) with a frequency sweep of about 0.4 GHz.
Measurements could be made at different combinations of polarization VV, HH,
HV and VH. In these abbreviations, the first letter stands for the polarization of
transmitting, the second for the polarization of reception of the microwaves. 'V’
denotes the vertical state and "H' denotes the horizontal state.

The radar was calibrated by directing the radar beam to a corner reflector of
known radar cross-section. This calibration was done for each state of polarization
at the beginning and end of each measurement day. More information on the
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calibration procedure is given by van Kasteren and Smit (1977) and by de Loor et
al. (1982).

The radar backscattering was expressed as ¥: the radar cross-section of the
target per unit projected area of the cross-section of the radar beam (m%m?2). The
relationship between v and ¢° (the Normalised Radar Cross Section NRCS, which
is the radar cross-section per unit area illuminated by the antenna) is:

¥ =6"fcosB (4}

where 0 is the angle of incidence, defined as the angle between the incident radar

beam and the vertical (Fig. 2.2). In the text, a low angle of incidence refers to
angles of 10°-30°, a medium angle to 40°-60° and a high angle to 60°-80°.
Furthermore, as a standard, v is expressed in dB:

¥ (dB) = 10*log10(y (m%/m?2)) 2

The total measurement accuracy (as determined by the inaccuracies in the
scatterometer, in the calibration procedure, in the data processing, and due to
averaging over independent samples in a plot) was about 0.5 dB. The radar
measurements were repeated during the growing season with intervals of about two
to five days. This resulted in the following number of observations (per incidence
angle and per state of polarization) per year: 27 in 1975, 24 in 1976, 32 in 1977, 36
in 1979, 3% in 1980 and 19 in 1981,

The experiments were done at three different test farms in The Netherlands:
"Droevendaal” at Wageningen (1975-1977), "De Bouwing” at Randwijk (1978-
1979) and "De Schreef" near Dronten (1980-1981). These farms are located in
different environments on sandy soil, alluvial clay and marine clay respectively.
All crops were given the best treatment for a healthy growth and development
(with regard to fertilizer, weed control, pesticides, etc.). However, since no
irrigation was possible, a natural water shortage caused in a limited number of
occasions an under-developed or failing crop.

Together with the radar measurements, visual observations were made of the
soil surface and of the crop morphology, phenological stage, and any anomalies
like weeds or diseases. Quantitative measurements were made of the volumetric
soil moisture content of five cm top seil, fresh and dry weight of the above ground
biomass, crop height, soil cover, row spacing, number of stems/m2 and for some
crops the dimensions and number of leaves per plant. The measurements on
biomass were done only a few times in the growing season. A fitted growth
function was used to interpolate between the measurements to all dates of radar
observations. Overviews of the experiments are given by van Kasteren (1981), de
Loor {1982, 1985), Bouman (1987) and Bournan and van Kasteren (1989),
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2.3 Crop description

The description of the crops applies to those in the ROVE data set and
concerns the variety Monohil for sugar beet and Bintje for potato. Although in
general it will apply to crops grown under various growing conditions, deviations
may occur in, for instance the size of the canopy elements or the yield.

The canopy of Sugar beet is characterized by a relatively uniform architecture
during its growth cycle. The leaves are placed in rosettes on the root and have
approximately a plagiophile or uniform angle distribution during the whole
growing period (de Wit, 1965). Depending on variety and growth conditions, the
dimensions of the leaves varied from some 5 x 10 c¢m in the first month after
emergence to some 25 x 35 cm in the late growing season. Thus, the leaves were
relatively large in comparison with the 3-cm wavelength of X-band microwaves.

After about two months of growth, a healthy crop covered the soil completely
and nearly no bare soil was visible. Under average, non-stressed growing
conditions the above ground biomass attained seven to eight ton of dry matter/ha.
The average plant water content was 93% throughout the growing season.

Porato was cultivated on ridges of some 25 cm height and 50-75 cm apart.
Potato leaves were made up by small leaflets with an average size of about 4 x 8
cm for fully grown plants. This size was of the same order as the wavelength of X-
band microwaves. Potato leaflets have a planophile angle distribution (de Wit,
1965), which means that horizontal leaves are most frequent,

A healthy potato crop covered the soil surface almost completely after six
weeks from emergence. In the midst of the growing season a peried of flowering
occurred. The flowers were small (about 2 ¢m in diameter) and stood in the top of
the canopy. At the end of the growing season, sometimes individual plants would
lodge and spots of bare soil appeared in the canopy. Leaves clustered together on
the ground ard the stems became visible.

The above ground biomass attained some three ton of dry matter/ha, which is
considerably less than that of sugar beet. The average plant water content was 90-
95% throughout the growing season,

Examples of the growth of the above ground canopy of sugar beet and potato
in 1975, 1979 and 1980 are given in Figure 2.3. The potato of 1975 is not included
because this crop had a ridge direction perpendicular to the incident radar beam,
where the other crops had a ridge direction parallel to the beam (see § 2.5). For
sugar beet, the growth in 1979 and 1980 was comparable with a somewhat earlier
start in 1980, The crop in 1975 had a much faster start but the maximum biomass
was already reached at two months after emergence.
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Figure 2.3. Examples of the development of the above ground canopy biomass in the
course of the growing season for sugar beet (2.3a) in 1975 (0), 1979 (A) and 1980 (#),
and for potato (2.3b) in 1979 and 1980.
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Figure 2.4, Vertical (VV) polarized X-band radar backscattering at 40° incidence angle in
the course of the growing season for the same crops as in Figure 2.3,
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Because of drought, the final weight of the above ground biomass was about
twice as low as in the other two years. Contrary to sugar beet, potato in 1979 had a
much faster start than in 1980. After about two months from emergence, no more
growth in canopy biomass took place. All newly assimilated matter was transported
to the tubers. At the end of the growing season, canopy biomass declined due to
dying and loss of leaves.

2.4 Detailed radar backscattering in time
2.4.1 Backscattering and crop growth

The VV radar backscattering at a medium angle of incidence is plotted against
time in Figure 2.4 for the same crops as in Figure 2.3.

For sugar beet, a 'radar-growth' curve is recognized in the temporal radar
backscattering. Until day 150, no vegetation was present and the peaks in the
backscattering curve coincided with peaks in the moisture content of the top soil.
After day 150, the beets started to grow (Fig. 2.3) and the radar backscattering
increased. The relative early growth of the crop in 1975, and the relative late
growth of the crop in 1980 corresponded with a similar pattern in the
backscattering curves until day 180-190. Around day 180-190, the radar
backscattering saturated for all three crops relatively early in the growing season
with biomass values of only two to three ton/ha. Because of this early saturation of
the backscattering, the spectacular difference in biomass between 1975, and 1979
and 1980 (Fig. 2.3) was uonoticed. The radar backscattering remained on a more or
less stable level for the rest of the growing season until harvest. The differences in
the level of saturation, some 3 dB between the crops of 1975 and 1979, could not
be explained by ground-truth observations.

The temporal curves of the radar backscattering of potato were less
pronounced. Before emergence, day 140, there was a difference of about 4 dB
between the bare soil (relatively smooth and weed-free) of 1979 and of 1980, With
the growth of the crops after day 150, the backscattering increased until day 180-
190. The earlier growth of the crop between day 160 and day 190 in 1979 is not
recognized in the backscattering curves. From day 180, the backscattering appeared
saturated for both crops after biomass values of one to two tons/ha. The flowering
in the midst of the growing season and the lodging at the end, are not recognized as
distinct features in the backscattering curves.
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2.4.2 Fluctuations in the backscattering curves

Both the backscattering curves of sugar beet and potato had a large number of
small fluctuations (peaks and dips) in the order of 1 to 2 dB (Fig. 2.4). These
fluctuations were ne measurement errors or inaccuracies. Firstly, a peak or dip in
the curve of a specific crop on a certain day was repeated in several measurement
series on that day. Secondly, most peaks and dips were not the same for different
crop types, but were clearly related to specific crops. Therefore, the causes for
these fluctuations must be looked for in the crops themselves.

Before emergence and in the early stages of growth, peaks and dips were
explained by similar features in the moisture content of the top soil. The
relationship between the radar backscattering and the moisture content of a soil
surface is generally recognized (Attema and Ulaby, 1978; Waite, et al., 1984).
With the saturation of the backscattering, the influence of the soil background was
reduced. The fluctuations were then caused by other factors, namely the changes in
the geometry of the canopy induced by the weather. Strong winds can enforce
preference in orientation of the canopy elements. Little variation in wind in 1979
was generally reflected in relatively small fluctuations in the temporal curves.
Large variations in wind speed and direction in 1980 produced relatively more and
larger fluctuations. For potato, wind directed towards the radar often coincided
with a relatively high backscattering value. Wind directed away from the radar
often coincided with a relatively low backscattering value. The opposite effect was
observed for sugar beet: high backscattering values often coincided with wind
directed away from the radar and low backscattering values often coincided with
wind directed towards the radar. This effect of wind direction occurred only when
the wind speed exceeded 5 m/fs, and it was stronger for sugar beet than for potato.

The canopy structure is not only affected by wind but also by other
environmental conditions. Rain may cause drooping of leaves while prolonged
drought may cause wilting in sugar beet. Moreover, the condition of the crop itself
plays an important role in determining resistance to changes in the canopy’s
geometry. Because of these complex relationships between canopy structure on the
one hand and crop condition and weather on the other, the relation between
weather and radar backscattering could not be further elaborated.

24.3 Polarization and incidence angle

For both sugar beet and potato, the backscattering was nearly identical at VV
and at HH polarization. The general shape of the temporal curves, the absoluie
level and the many small fluctuations at the different angles of incidence were
faithfully reproduced at both states of polarization (Boumnan, 1987). The coefficient
of correlation (between VV and HH) was 0.98 for sugar beet and 0.94-0.97 for
potato at the different angles of incidence. The data for the correlation calculations
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were taken for the crops in Figure 2.4 from sowing to harvest and numbered 66 for
beet and 57 for potato, at each angle of incidence.

The coefficients of correlation between the VV radar backscattering at
different angles of incidence are given in Table 2.1. The radar backscattering of
sugar beet was highly correlated between the different angles of incidence, The
correlations were only slightly lower between the backscattering at 20° and at 50°
to 70°.

Table 2.1. Carrelation matrix for the VV radar backscattering at different angles of
incidence for sugar beet and potato, using data from sowing to harvest.

SUGAR BEET {number of data = 6 ®x 75)

20° 1.00

3¢° 0.97 1.00C

40" 0.95 0.95 1.00

50° 0.%94 0.98 0.93 1.00

60° 0.93 0.97 0.99 0.99 1.00

70° 0.90 0.96 0.98 0.98 0.9 1.00

POTATO (number of data = 6 x 64)

207 1.00

30° 0.97 1.00

40" 0.94 0,98 1.00

50° 0.89 0,95 0.98 1.00

60° 0.83 0.9C 0.94 0.98 1.00

70° 0.77 0.85 0.89 0.85 0.%8 1.00

20° 30° 40° 50° 60" 70°

The radar backscattering of potato was correlated between most angles of
incidence. However, the coefficients of correlation decreased faster with increasing
difference between the angles of incidence than for beet. The coefficient of
correlation between 20° and 70" had dropped to 0.77 where it still was 0.90 for
sugar beet These lower correlations were caused by the fluctuations in the
temporal curves of the radar backscattering. For sugar beet, most peaks and dips
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coincided at all angles of incidence. For potato, peaks at low angles of incidence
sometimes coincided with dips at high angles, and vice versa. This resulted in
lower correlations between these incidence angles.

The shape of the temporal backscattering curves of sugar beet and potato at
different angles of incidence is discussed in the next paragraph.

2.5 Average temporal trends

The many stall fluctuations in the temporal backscattering curves hinder the
derivation of general trends. Moreover, the time scale of the temporal curves
should be normalized to compare the different years on a similar basis.
Normalizing is generally done by plotting the data on a development scale. The
steps in a development scale are related to characteristic morphological and
physiological phenomena that occur during the development of the crop. For
instance the four-grammes sugar weight of the root is a characteristic point of sugar
beet. However, radar data of sugar beet and potato plotted on these conventional
scales were not consistent. The radar backscattering of crops reacted on the above-
ground crop canopy and did not respond to phenomena that occurred in roots and
tubers below-ground. Also some above-ground phenomena like flowering in potato
were not noticed by the radar. Therefore a special ‘radar-growth' scale was
constructed to accommodate characteristics of the crop that put the radar data on a
consistent basis (Table 2.2).

Table 2.2. Proposed ‘radar-growth’ scale to put the temporal X-band radar backscantering
data of sugar beet and potato in various years on a consistent basis.

Stage Crop Description
RO beet, potato seed-bed
Rl beet, potato soil cover 0-10 %
R2 beet, potato soil cover 11-20 %
R3 beet, potato soil cover 21-50 %
R4 beet, potato soil cover 51-80 %;
biomass < 200 g/m?
RS beet, potato soil cover > 80 %;
biomass 200-500 g/m?
R6 beet biomass > 500 g/m?
R7 potato vellowing in bottom of cancopy
RS potato vellowing in top of cancpy
RO rpotato leaf-deformation, patches of

lodged crop
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The first four stages of the radar-growth scale were related to soil cover. After
80% cover, a further differentiation was based on biomass. For potato, the stages
were further extended to include loss of leaves and the lodging at the end of the
growing season. The steps in the scale were necessarily large to smooth the
fluctuations in the temporal backscattering curves and to get reliable average
values per stage.

The radar measurements on a crop falling within a growth stage were averaged
for 20°, 40° and 70° incidence angle and plotted on the radar-growth scale (Fig.
2.5). The standard deviation was about 0.8 dB for most averages. For stage RO and
R1 of potato, the standard deviation was about £.5 dB. The averages for sugar beet
were derived from five plots with non-stressed growth and development and those
for potato from three, All plots had a row or ridge direction parallel to that of the
incident radar beam. For beet, a total number of about 104 data was used per
incidence angle, and for potato some 95.

The backscattering of beet increased after emergence until it saturated at about
80% soil cover in stage R5. At all angles of incidence, the temporal curves
converged to a common level of saturation. This common level may be explained
by the uniform leaf angle distribution of the crop: the canopy reflects the
microwaves in backward direction equally well at all incidence angles. After stage
RS, the backscattering remained at the same level at all angles of incidence until
harvest. The average range in radar backscattering from crop emergence to full
crop cover was about 3 dB at 20°, 7 dB at 40° and 10 dB at 70° incidence angle.

The backscattering of potato increased after crop emergence until 80% soil
cover in stage RS, During these stages, the backscattering curves ran completely
parallel at all angles of incidence. This reflects the planophile leaf angle
distribution of the crop: the microwaves are more reflected in backward direction at
a low angle of incidence than at a high angle of incidence. After stage RS, the
backscattering at 70° incidence angle further increased some 1.5 dB until the end of
the growing season. The backscattering at 40° incidence angle remained the same,
where that at 20° decreased 2 dB with the yellowing and lodging of the crop. In a
low incidence angle, patches of bare soil were 'visible' which might be the cause of
this small decrease in the radar backscattering.

The average range in radar backscattering from crop emergence to full crop
cover was about 4.5 dB at all angles of incidence.
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Figure 2.5. Average VV radar backscattering of five sugar beet crops (2.5a) and three
potato crops (2.5b) at 20° (0), 40° (&) and 70° (A) degrees incidence angle versus
introduced 'radar-growth’ stage.
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2.6 Special experiments

In 1981 two experiments were beld to investigate the relationships between the
architecture of the crop-soil system and the radar backscattering. The first
concerned the effect of ridge direction in potato, and the second the effect of plant
thinning in sugar beet.

2.6.1 Ridge orientation in potato

In 1981 the effect of the orientation of ridges on the radar backscattering of
potato was investigated using two plots with different ridge orientations. The plot
with the ridges parallel to the incident radar beam was labelled 'parallel plot', and
the plot with the ridges perpendicular io the beam 'across plot’. On the parallel plot,
the ridges had an East-West direction, and on the across plot a North-South
direction. The effect of ridge orientation depended on the angle of incidence and on
the stage of development of the crop (Fig. 2.6).

At 10° incidence angle, the radar backscattering of the parallel plot increased
with the growth of the crop until some 80% crop cover on day 160 (Fig. 2.6a). For
the across plot this familiar ‘radar-growth' curve was absent. When the soil was still
bare, the microwaves were especially scattered in backward direction from the
sides of the ridges. This resulted in a relatively high radar backscattering. The
difference in backscattering between the two bare plots averaged some 6 dB. After
day 170, the crop covered the soil for 90% and formed a homogeneous layer over
the ridges. The microwaves did not penetrate the canopy and there was no
influence of the soil background. The level of radar backscattering of the two plots
was now the same.

With increasing incidence angle the radar beam became more perpendicular to
the slope angle of the ridges on the across plot. The backscattering from the ‘across'
ridges increased and the difference between the plots became larger. When the
radar beam was most perpendicular to the slope angle of the ridges, at 307, the
backscattering from the bare soil of the across plot was highest (Fig. 2.6b). The
difference in backscattering between the two plots amounted to 13 dB. The familiar
radar-growth' curve of the across plot was now reversed: after a small initial
increase, the backscattering decreased with the growth of the crop until 95% soil
cover on day 180. Again, with full cover, the differences between the two plots
vanished.
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Figure 2.6. VV radar backscatiering at 10° (2.6a), 30° (2.6b), 50" (2.6¢) and 70" (2.6d}
incidence angle versus time; potato 1981 with a row direction parallel to that of the
incident radar beam (#), and with a row direction across (¢). The (P) indicates a peak in
the radar backscattering caused by a high moisture content of the top soil between the
ridges of the across plot.
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With still further increasing incidence angle, the backscattering from the
ridges on the across plot decreased again, and the difference between the two plots
became smaller (some 4 dB at 50%). At 30° incidence, the backscattering of the
across plot first increased with the growth of the crop, and then decreased again
from 60% to 90% soil cover (Fig. 2.6c). This pattern, which was also to some
extent present at the other angles of incidence, illustrates the complex relationship
between the radar backscattering and the changing architecture of the crop-soil
system. At 70" incidence, the field of view of the radar beam was dominated by the
flat top of the ridges for both plots. The effect of ridge orientation was minimized
and the difference in backscattering was reduced to some 2-3 dB (Fig. 2.6d).

The effect of ridge orientation was also notable in the peak in the radar
backscattering curves of the across row plot on day 146. This peak is marked with
(P) in Figure 2.6. That day, the bottom between the ridges on the across plot was
still wet from previous rain, The North-South direction of the ridges had prevented
the rising sun in the East to dry the soil between the ridges. The high soil moisture
content caused a peak in the temporal backscattering curve. This peak only
appeared at low incidence angles that permitted the wet soil between the dry ridges
to be 'seen’ by the radar. On the parallel plot, the sun had dried the soil between the
ridges and there was no peak in the temporal backscattering curves.

2.6.2 Plant thinning in sugar beet

In the midst of the growing season of 1981, beets were thinned from 100% soil
cover to 50%, 25%. 12.5% and 6% cover in an attempt to quantify the effect of
plant reduction (Fig. 2.7). In this figure, the backscattering of a neighbouring
smooth, weed-free bare soil is also plotted as a reference field with 0% cover.
Between each thinning, the soil was raked to get a smooth surface. The canopy
biomass before thinning was about 4.5 ton/ha.

At all angles of incidence, the reduction in plant number was only notable afier
thinning to less than 25%. The decrease in radar backscattering from 100% to 25%
beet cover was only about 0.5 dB at low angles of incidence to 1 dB at medium and
high angles, Thus only a quarter of the surface covered with fully grown sugar beet
(above ground) still dominated the radar backscattering of the whole plot!

With a further reduction in plant number to 12.5% and 6% soil cover the shape
of the angular curve changed from horizontal to concave. Between low and
medium angles of incidence, the curve resembled more and more that of the
neighbouring bare soil: the backscattering decreased with increasing incidence
angle. The largest decrease in backscartering with thinning was at the medium
angles of incidence, respectively about 3 dB and $ dB from 25% to 12.5% and 6%
cover,
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Figure 2.7. VV radar backscattering of sugar beet in the midst of the growing season of
1981 versus angle of incidence. Beet planis were thinned from 100% (0) t0 25% (®),
12.5% (A) and 6% (A) soil cover. The backscattering of a nreighbouring bare soil is
plotted for comparison {0% soil cover (R), weed-free, smooth surface).

At high angles of incidence the field of view of the radar beam was still
dominated by the 6% sugar beet plants and the backscattering hardly decreased.
Also, a comer effect between the soil surface and the sides of the plants may have
added to the high backscattering. At 70°, there was no decrease in backscattering at
all from 100% to 6% soil cover!

The observed reaction of the radar backscattering on the thinning of plants
does not agree with the relations found between backscattering and soil cover in
the early growing season, Generally, the radar backscattering increased with soil
cover until it saturated at a cover of about 80% at high incidence angles and of
70%-80% at medium to low incidence angles. In terms of biomass the 'saturation
values’ were about two and three ton/ha respectively. However, when the sugar
beet field was thinned in the midst of the growing season, the backscattering only
started to decrease after less than 25% crop cover and about one ton/ha canopy
biomass. This suggests that the architecture of the canopy and of the individual
plants largely affects the radar backscattering. A same cover or amount of canopy
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biomass made up by small, developing plants, or by large, fully grown plants has a
different level of (X-band) radar backscattering,

2.7 Discussion

An important (X-band) backscattering influencing factor of sugar beet and
potato was the geometry of the crop-soil system. The thinning experiment in beet
suggested that the architecture of individual beet plants, and their distribution in
space dominated the radar backscattering of the crop. The increase in radar
backscattering with crop growth of beet may then be associated with architectural
changes in the plants from small saplings to fully grown plants with large and
broad leaves. In potato, the direction of the ridges with respect to the incident
microwaves dominated the radar backscattering from bare soil to an 80% crop
cover. For both beet and petato, changes in the canopy architecture due to strong
winds affected the radar backscattering by 1-2 dB.

The importance of the geometry of the crop-seil system affects the potential
applications of X-band radar in agriculture, The different backscattering levels at
medium to high angles of incidence of sugar beet and potato will result in a high
probability of discrimination between these two crop types. The differences in
angular behaviour of the crops can be exploited by using more than one incidence
angle. The best single angle of observation for discrimination appears to be a high
one. At 70° incidence angle, possible disturbing effects on the radar backscattering
like ridge orientation in potato and canopy architecture of sugar beet are minimal.

The possibilities of X-band radar for the monitoring of crop growth are
different for sugar beet and for potato. For sugar beet, the possibilities seem good
for monitoring early growth until a soil cover of about 8% and biomass values of
two to three ton/ha. At full crop cover the radar backscattering no longer reacted on
any further increase in biomass (Figs. 3a and 4a). Also, the thinning experiment
showed that any decrease in biomass and/or soil cover in the midst of the growing
season (such as may be caused by pests or diseases) will most likely not be
detected.

The monitoring of the growth of potato will be more troublesome than that of
sugar beet because of the large effect of ridge orientation in the early growing
season. Thus, it is necessary that this direction be either known from other sources
of information, or be derived from the measurements themselves.
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3 GROUND-BASED X-BAND (3-CM WAVES)
RADAR BACKSCATTERING OF
AGRICULTURAL CROPS. II: WHEAT,
BARLEY AND OATS; THE IMPACT OF
CANOPY STRUCTURE

Abstract The ground-based, X-band radar backscattering of wheat, barley and oats
was investigated through the growing season at VV and HH polarization, and at
incidence angles from 10°-80°. The VV and HH backscattering of wheat and barley
decreased at all incidence angles with crop growth until it fluctuated around a
stable level from grain filling to dying of the canopy. The VV backscattering of
oats at low to medium angles of incidence decreased during vegetative growth and
sharply increased to a steady level with the appearance of the panicles.

The geometrical architecture of the crop canopy was a major factor that
influenced the X-band radar backscattering of wheat, barley and oats. Row spacing,
crop variety, lodging and ear orientation of barley had a large effect on the radar
backscattering. The architecture of the canopy also influenced the impact of the
soil background on the radar backscattering of the whole crop. Stubble and straw
largely determined the radar backscattering of harvested fields. Because of the
many complex factors that influence the canopy structure, the radar backscattering
was highly variable through the years.

3.1 Introduction

This paper is the second in a series of two on the ground-based X-band (3-cm
waves) radar backscattering of agricultural crops. The objective is to investigate
main backscattering influencing properties of agricultural crops. The first paper
presented the experiments and measurernent methodology of the ground based
ROVE (Radar Observation on VEgetation) programme. It also described the radar
backscattering of the relatively broad-leaved crops sugar beet and potato. The
geometry of the crop-soil system was identified as an important backscattering
influencing factor,

In this second paper, the X-band radar backscattering of wheat, barley and oats
will be described and the influence of the geometry of the crop-soil system will be
further analysed. First, average trends in the temporal backscattering curves of six
years of observation will be presented on a specially constructed 'radar-growth'
scale. The influence of the canopy structure as a main backscattering influencing
factor will then be elaborated and where possible quantified. The effect of
harvesting and post-harvest management activities on the radar backscattering will
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be investigated. After this analysis the implications for potential agricultural
application of X-band radar remote sensing will be discussed.

3.2 Crop development

Table 3.1. Proposed radar-growth scale to put the temporal X-band radar backscattering
of wheat, barley and oats in various years on a consistent basis. The Zadoks code is given
Sfor comparison as a morpho-physiological growth scale commonly used in agriculture.

Stage Description Zadoks code
RO seed-bed 0G
R1 soil cover (-20% 10-25
R2 soil cover 20-50% 25-30
R3 soil cover >50%; beginning stem

extension 30-37
R4 shooting 1lst and 2nd leaf:; becoting 37-47
R5 ear formation frcm the opening of

the flag leaf sheath 47-60
R& ear stem fermation 6070
R7 grain filling; vellowing at the

bottem 70-75
RS grain filling; yellowing 2nd leaf 75-80
R9 ripening; yellowing 1lst leaf; dry

weight¥ ear> 40% 80-93
R10 dying; brown leaves; dry weight%

ear> 50% 80-93
R11 thresh ready; ears bent; dry 93-99

weight% ear> 80%

R21 lodged in grain filling stage (7,8) 70-9C
R22 lodged in ripening stage (9,10,11) 99-99
R340 harvest -
R31 stubble field

R32 ploughed field

R33 harrowed field

To consider average trends in the temporal radar backscattering curves of
wheat, barley and cats, the time scale had to be normalized to crop growth and
development. For cereals, normalization is usually done by plotting data on the
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Zadoks scale of development (Zadoks et al.,, 1974). However, radar data of
different years of observation plotted on this scale were not consistent. The radar
backscattering did not react on many of the morpho-phenological events that form
the basis of the Zadoks scale, e.g. seedling emergence, booting or flowering. On
the other hand, the radar backscattering reacted on specific changes in the canopy
architecture that make no part of the Zadoks scale, e.g. ear-stem formation and
lodging. Therefore, like for sugar beet and potato, a ‘radar-growth’ scale was
constructed that put the temporal radar data of different years of observation on a
consistent base (Table 3.1). The ‘radar-growth' scale for cereals is based on
morphological characteristics of the crop during its development cycle that had
some effect on the X-band radar backscattering.

The stages R1-R11 describe the development of the crop from seed-bed to
harvest. The stages R21 and R22 designate lodging in respectively the period of
grain filling and the period of ripening. Stage R30 indicates the harvested crop with
optionally the stages R31-R33 to designate respectively a stubble field, ploughed
soil or harrowed soil.

32,1 Wheat

In Figure 3.1 the average VV radar backscattering per growth stage of wheat is
plotted on the 'radar-growth' scale for three angles of incidence. The standard
deviation of the averages was about 1.5-2.0 dB. The average values were
calculated from some 325 data per incidence angle, from 10 plots between 1975
and 1979. All data that fell within the same growth stage were averaged. The crops
had a row direction parallel te the incident radar beam, and a non-stressed growth
and development.

During vegetative growth, the radar backscattering at 50° and 70° incidence
angle initially increased a little during stages R1-R3. Seedling growth and tillering
took place and the height of the crop remained relatively low. At these angles of
incidence, the minor increase in backscattering was probably the result of directed
scattering in backward direction from the canopy. At the end of stage R3 stem
extension began and the backscattering at 50° and 70° started to decrease. At 20°
incidence angle the backscattering decreased already from the first stage of
development. The decrease in radar backscattering, as opposite to the increase
observed for sugar beet and potato, was caused by the relatively open structure of
the canopy and the small dimensions of its elements. Microwaves penetrated
relatively deeply in the canopy where they were eventually extinct through
absorption by the canopy elements (stems, leaves). While the crop increased in
height through the stages of shooting, booting and ear formation the radar
backscattering kept decreasing. During these stages two things were remarkable.
First, from the stage of shooting the radar backscattering decreased more at
medium angles of incidence than at low and high angles of incidence. The angular
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dependency-curve (i.e. the radar backscattering versus incidence angle) is said to
become hollow and remained so until the cultivation of the soil after harvest. The
second remarkable feature was the lack of a pronounced response of the radar
backscattering to the emergence of the ears in stage RS, The radar backscattering
just kept decreasing at all angles of incidence and the shape of the angular
dependency-curve remained unchanged.

During stage R6 the ear-stems were formed and anthesis took place. The
backscattering decreased further until no more growth in height took place at the
beginning of stage R7.
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Figure 3.1. Average VV polarized radar backscattering of 10 wheat crops ar 20° (%), 40
{0) and 70 °(A) incidence angle versus introduced radar-growth stage.

In the generative stage after flowering, the crop started to yellow and wither
from the bottom of the canopy upwards and it lost crop water. Since this loss may
affect the radar backscattering (Attema and Ulaby, 1978; Ulaby et al., 1982), the
further division in development stages was based on this yellowing and dying of
the canopy. The backscattering of wheat was stable at all angles of incidence
through both stages of grain filling and yellowing R7 and R8. Only during the
stages R9 and R10 did the backscattering increase some 2 dB at medium and high
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angles of incidence where it was still hardly affected at low angles of incidence.
From this, it is concluded that the increase in backscattering at medium and high
angles of incidence did nat result from an increased contribution of the underlying
soil background (increasing transparency of the crop), but from changes in the
backscattering from the canopy itself. An increase in soil background would have
been especially notable at the lowest angle of incidence, At stage R11 the crop was
completely ripe and the radar backscattering increased at all angles of incidence.

3.2.2 Barley

The average VV radar backscattering of barley is given in Figure 3.2, The
standard deviation of the averages varied per incidence angle. At 20° incidence
angle the standard deviation was some 3 dB, at 50 incidence angle it was 2 dB in
stages RO-R6 and 3-4 dB in stages R7-R30, and at 70° incidence angle it was 2 dB.
The average values were calculated from 225 data per incidence angle, from seven
plots between 1975-1980.
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Figure 3.2. Average VV polarized radar backscattering of seven barley crops at 20° (#),
40°(0) and 70 °(A) incidence angle versus introduced radar-growth stage.
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In general, the trends were the same as for wheat with two main exceptions.
First, barley did hardly form ear-stems and the radar backscattering reached a
minimum level already in stage R6. This minimum level was some 2 dB lower than
that of wheat, indicating that barley was a stronger absorbent of microwaves than
wheat. Secondly, the backscattering of barley was less stable during the phases of
grain filling than that of wheat. Already at stage R7 the backscattering increased at
medium and high angles of incidence with some 2 dB. This was not caused by
yellowing but by the lodging of the crops (see § 3.3.2). The backscattering then
increased further through the stages R8-R10 by the combined effects of ripening,
dying and lodging. At low angles of incidence the backscattering only rose during
stage R9 when the crop ripened to the phase of dying.

3.2.3 Oats
For oats the VV radar backscattering was only averaged per growth stage for

the crop in 1979 (Fig. 3.3). The standard deviation of the averages was about 1 dB.
The number of data was 36 per incidence angle.
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Figure 3.3, Average VV radar backscattering of one oats crop at 20° (%), 40° (%) and 70°
(A) incidence angle versus introduced radar-growth stage.
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After an initial increase from stage R1 to stage R2, the backscattering
decreased at the beginning of stem extension in stage R3. At medium and high
angles of incidence the backscattering further decreased until the beginning of
panicle formation. With the emergence of the panicles, the backscattering sharply
increased during the stages R5-R7. The panicles with their cloud of small,
elongated grains were highly reflective for the VV polarized microwaves. During
grain filling and early ripening the backscattering remained at a stable level.
Contrary to the backscattering at medium and high angles of incidence, that at low
angles did not react on the appearance of the panicles. From the stage of stem
extension onwards, the backscattering steadily decreased without any marked
features until the end of the ripening phase.

In stage R22 the crop lodged and was manually beaten down to some 30 cm
height. The result was a dramatic increase in the backscattering at low angles of
incidence and a comparatively small increase at medium angles. At high angles of
incidence the backscattering decreased about 1 dB but this may also have been
caused by the ripening and dying of the crop. At harvest the backscattering had
returned to the level of that of the bare soil.

3.2.4 State of polarization.

The previous section only described the radar backscattering at VV
polarization. The differences between the VV and HH backscattering were
generally small, in the order of 0-3 dB. They were related to the development of
the crop and to the angle of incidence.

For wheat, the average VV backscattering at low angles of incidence was
similar to that at HH before ear formation, and a bit lower (1-2 dB) somewhere
from ear formation to harvest. At medium angles it was somewhat higher (0-1 dB)
than at HH before, and lower (1-2 dB) after ear formation. At high angles of
incidence the average VV backscattering was somewhat higher (0-1 dB) before ear
formation and significantly higher (0-3 dB) from grain filling to harvest. It should
be noted that these differences applied to average values (from some 325 data per
incidence angle and per state of polarization). For single crops, and especially for
individual measurements, the differences were sometimes higher (Fig. 3.4).

For bariey, the comparison between the backscattering at VV and at HH gave
about the same results as for wheat. The difference was that the cross-over point
between VV and HH was more at the stage of shooting than at that of ear
formation.
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For oats, the sitvation differed again from that of wheat and barley (Fig. 3.5).
At low angles of incidence there was practically no difference between the
backscattering at VV and at HH during the whole growing season. At medium
angles the backscattering was generally somewhat lower at VV than at HH (0-1
dB) during tillering and shooting. With the emergence of the panicles the
backscattering at YV rose sharply while that at HH only initially rose until the
formation of the ear-stems. From the formation of ear-stems to harvest the
backscattering was then considerably higher (1-4 dB) at V¥V polarization. The
panicles with the vertical needles were more reflective for microwaves in VV
polarization than in HH polarization. At high angles of incidence the situation was
comparable to that at medium angles, except that the backscattering was similar
between VV and HH during tillering and shooting.

These observations were derived from about 102 measurements at each angle
of incidence and state of polarization.

3.3 The influence of canopy structure

Although an average shape was given for the radar backscattering curves of
each crop, large variations occurred between the curves from individual plots, and
between single measurements. This variation was only to a limited extent related to
parameters which are of direct agronomic interest like biomass, soil cover or crop
water (Bouman and van Kasteren, 1989). Most variation was caused by differences
in the geometry of the canopy. This geometry was affected by management
practices (e.g. row direction, row spacing, crop variety), and environmental factors
{e.g. wind and soil background). Table 3.2 lists the average variation and its causes
for wheat, barley and oats between 1975 and 1981.

3.3.1 Management practice

Row spacing was varied in an experiment with wheat and barley in 1977, The
crops were sown parallel to the direction of the radar beam with 12.5, 25.0 and
37.5 cm row spacing. The total number of measurements was 288 per incidence
angle and state of polarization. All plots of the same c¢rop type showed comparable
development in height, biomass and crop water. Only the soil cover of the crops
differed, with the 12.5 cm crops having the highest cover and the 37.5 cm crop the
lowest.
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Table 3.2. Average variation and its causes in X-band radar backscarttering (dB} at VV
polarization during the period of grain filling and ripening for cereals in 1975-1981.

Incidence angle

Effect Creop 20° 50° 70°
Row spacing wheat 1977 3 1.5 2.2
12.5-37.5 cm barley 1977 6.5 2.5 0.5
Row directicn barley 1976 2.5 0.5 0
parallel- wheat 1981 2.5 0.5 0.5
perpendicular
Crop variety wheat 1979 1.5 1 0.5
wheat 1981 3.0 3.0 2.0
Lodging barley 1980 4.5 11 11.5
wheat 1979 5.0 1.5 4.0
oats 5.5 2 0.5
Ear orientation barley 1977 6.5 7.5 7.5
wheat 1977 0 0 3
Annual variation wheat 1975-1979 5 5 4
barley 1975-1980 6 6 3
oats 1975-1980 3 1.5 1.5

A close row spacing resulted in an enhancement of the typical features in the
temperal curves of the radar backscattering at low and medium angles of incidence.
This is illustrated for barley in Figure 3.6. The typical features were the relatively
high radar backscattering during early vegetative growth at medium angles of
incidence, and the low backscattering during grain filling and ripening at low and
medium angles of incidence. At high angles of incidence no significant effect of
row spacing was notable. Since there were no differences between the growth and
development of the crops, the differences in backscattering must be attributed to
the spatial distribution of the canopy elements. This distribution was relatively
homogeneous with a close row spacing, and ‘clustered' in rows with a large row
spacing,
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Figure 3.6. VV radar backscattering of barley with 12.5 (A) , 25.0 (0) and 37.5 (®) cm
row spacing, in the course of the growing season of 1977, at 50 "incidence angle.

The row spacing of the crop also affected the radar backscattering through the
influence of the underlying soil surface. In Figure 3.6, the increase in
backscattering between days 200 and 220 was caused by an increase in the
moisture content of the top soil. The crop with 12.5 cm row spacing was
completely closed between the rows and the effect of the soil moisture was
relatively small. The open rows of the crops with 25 and 37.5 ¢m row spacing
permitted a considerable fraction of bare soil to be 'seen’ (lower soil cover) and the
effect of the soil background was larger.

The effect of row direction of wheat and barley was much smaller than that of
row spacing. At medium and high angles of incidence there was practically no
(consistent) difference between the backscattering with a radar beam direction
parallel or perpendicular to the row direction. A marked difference was only
present at low angles of incidence: the backscattering was some 2.5 dB lower with
a perpendicular beam direction than with a parallel beam direction.

The number of observations was 86 per incidence angle and state of
polarization, throughout the growing season.

Different crop varieties influenced the radar backscattering according to the
geometry of the canopy. In 1981 four wheat varieties were Sown with a
considerable difference in canopy structure, resulting in some differences in the
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radar backscattering. The number of data was 76 per incidence angle and state of
polarization, from sowing to the beginning of grain filling.

A variety with a short and dense canopy, and with broad top leaves with a large
herizontal component, Durin, had a relatively high level of radar backscattering at
medium and low angles of incidence. The 3-cm microwaves did not enter the
canopy very deeply but were reflected from the broad leaves in the top of the
canopy. A fall and thin variety with narrow top leaves with a small horizontal
component, Okapi, had a relatively low level of radar backscattering. The
microwaves could penetrate deeper in the canopy and were absorbed. The average
difference in radar backscattering between the ‘dense’ crop Durin and the ‘open’
crop Okapi in 1981 was about 2-3 dB.

3.3.2 External conditions

The effect of lodging on the radar backscattering is illustrated for barley in
1980 (Fig. 3.7). Already on day 187 the first observations were made of patches of
lodged crop which caused an irregular appearance of the canopy. These patches
increased in size and degree of lodging with initially no reaction on the radar
backscattering until it suddenly increased on day 197. The changes in the canopy
structure before this day were apparently not significant enough to affect the radar
backscattering. On day 197, however, lodging became compiete. This resulted in a
large increase in radar backscattering at medium and high angles of incidence. The
effect was somewhat larger at VV than at HH polarization. Other examples of
lodging indicated a high varability of the effect of lodging on the radar
backscattering. Beside the common feature of an increase in the backscattering, the
effects were different in magnitude at different angles of incidence and at the
different states of polarization. In general, however, the increases were largest at
high angles of incidence.

Strong wind can influence the radar backscattering of crops through its effect
on the orientation of the canopy elements (van Kasteren, 1981). A specific example
of the effect of ear orientation is given in Figure 3.8 for barley in 1977. During the
period of grain filling the stems of the ears were bent and the ears lied almost
horizontally in the top of the canopy. On day 182 the ears were directed towards
the radar, while on day 186 winds had reversed their orientation and they pointed
away from the radar. The result of this change on the backscattering depended on
the state of polarization, and in this specific example also on the spacing between
the rows. For the 12.5 cm row crop the backscattering increased about 7 dB at
nearly all angles of incidence at VV polarization, and about 2.5 dB at HH
polarization. The effect of ear orientation became small when the angle of
incidence became very low, at about 10° incidence.
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Figure 3.7. VV (Q) and HH (@} radar backscattering of barley in lodged and non-lodged
situation in the course of the growing season of 1980, at 50 “incidence angle.
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Figure 3.8. VV radar backscattering of barley in the stage of ear filling in 1980 versus
angle of incidence. The ears were directed towards (%) and away (¢) from the radar,
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For the 37.5 cm row crop there was practically no effect at all angles of
incidence. This is explained by the "ear-less” space between the rows of the crop
which attenuated the effect of the ears in the rows.

The above examples illustrate the complex relationships between X-band radar
backscattering and crop type, crop conditions, management practices and external
factors. The combination of these effects resulied in large fluctuations in the
backscattering corves and in a large annual variation in the level of the
backscattering (Fig. 3.9).
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Figure 3.9. VV radar backscattering in the course of the growing season of wheat in 1975
(A), 1977 (A), 1979 (0) and 1980 (®), at 50 °incidence angle.

Especially remarkably in this Figure is the backscattering curve of wheat in
1980. That year, the familiar shape of a wheat curve was completely absent at all
angles of incidence. Instead, the general pattern and most of the fluctuations largely
resembled the backscattering curves of two neighbouring bare seil plots (one plot
ploughed and rough, the other harrowed and smooth; both plots weed-free). The
explanation is that soil cover, height and biomass of the crop were extremely low
during the growing season. The crop was therefore relatively transparent for
microwaves which resulted in a dominant contribution from the underlying soil
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surface. Since the weather was very rainy, the moisture content of the top soil was
high. As a result the radar backscattering of the soil surface and that of the whole
crop was also high.

3.4 Harvest

A special point of interest was the radar backscattering at the end of the
growing season and the effect of harvesting and post-harvest practices. At the end
of the growing season, canopies of cereals are ripened and dried to some 25-30%
moisture content. Where the amount of crop water in a green canopy may attain
values of 3 Kg/m2, values decreased to some 0.25-0.5 Kg/m? just before harvest.
Because of these low amounts of crop water one would expect the soil background
to play a major role on the radar backscattering (Ulaby et al., 1982). However, the
data showed that the influence of the soil background depended much on the
architecture of the ripened crop canopy. For thin crops with an open row structure,
temnporal fluctuations in the moisture content of the top soil clearly showed up in
the backscattering curves of the crop. Crops with a dense canopy could mask the
influence of the soil background completely until they were harvested.

After harvest fields were left as stubble-field with or without straw, or they
were ploughed and/or harrowed immediately. There was no consistent change in
the radar backscattering of a ripe crop to that of a harvested field. The changes in
backscattering were generally small (0-3 dB) and depended on the state of the crop
before, and on the management practices after harvest. For stubble-fields with the
straw removed from the field, the temporal backscattering resembled that of
neighbouring bare soil plots (both rough and smooth, weed-free) at all angles of
incidence. The fluctuations in the temporal backscattering curves were caused by
corresponding fluctuations in the soil moisture content. The levels of the curves
however differed because of differences in surface roughness and the presence of
the stubbles. When straw was left on the field between the stubbles, it appeared to
mask the influence of the soil background at medium and high angles of incidence.
Only at low angles of incidence did fluctuations in the temporal backscattering
curves always correspond with similar fluctuations in the soil moisture content.

An interesting feature of stubble was its angular dependency-curve (Fig. 3.10).
The shape of this curve was hollow and resembled more that of ripened wheat and
barley than that of bare soils (rough or sincoth). The level of the stubble-curve was
¢ither higher, lower, or similar to that of the ripened crop. The differences between
the backscattering at VV and HH polarization also resembied those of a ripe crop.
At high angles of incidence the backscattering was mostly larger at VV than at HH,
while at medium and low angles of incidence it was mostly smaller.
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Figure 3.10. VV radar backscattering of ripened crop (A) and stubble (®) of wheat in

1979 versus angle of incidence, The backscattering of a neighbouring bare soil (ploughed,

rough surface; weed-free) (¢) is also given. The volumetric soll molisture content in all

three cases was 18%. The amount of water in the ripened crop canopy was 0.75 Kgim?2,

that in the stubbles was about 0.04 Kgim?, The tiller density of crop and stubbles was

445/m2. The crop was 90 cm high, the stubbles were 15 cm high.

The large effect of stubbles and straw on the X-band radar backscattering was
surprising because of the very low amount of water it contained (measured values
of stubble water varied between 0.02 and 0.05 Kg/m2). The geometry of the
material (vertical structures) apparently had a determining influence. A large effect
of stubbles on the radar backscattering of harvested cereals was also reported by
Bouman and Uenk (1987) for C-band radar imagery. They found that the azimuthal
direction of stubbles towards and away from the radar resulted in dark respectively
light colours on VV polarized images.

3.5 Discussion

The X-band (3-cm waves) radar backscattering of wheat, barley and oats was
much determined by the general architecture of the canopy. Canopy architecture is
the result of a complex of interacting factors: crop development stage, crop variety,
row spacing and weather influences. Other factors that were not investigated in this
paper will probably have to be added to this list, e.g. general crop condition (for
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instance nitrogen status in relation to resistance to lodging), pest, disease and weed
infection, sowing practice (broad-cast or in rows), tiller density. The architecture of
the canopy also influenced the impact of the soil background on the radar
backscattering of the whole crop. Stubble and straw, that are theoretically relatively
transparent to microwaves, even largely determined the radar backscattering of
harvested fields.

Because of the large effect of canopy structure, the radar backscattering of
cercals was highly variable in time, both on daily and on yearly scales, For wheat
and barley, the variation in radar backscattering in the stages of grain filling and
ripening between the years 1975-1981 was about 5-6 dB at low and medium
incidence angles. This variability nearly equalled the total ‘radar-growth' range
from sowing to closed crop canopy in a single (average) year. The interpretation of
X-band radar data, acquired with remote sensing, should therefore be done with
great care and preferably be based on a large number of measurements.

In agricultural application, the use of X-band radar remote sensing seems to
offer good perspectives for crop classification. The large differences between the
radar backscattering of cereals and that of beet and potato (first article of this
series) will result in a high probability of discrimination between these crop types.
Hoogeboom (1985) and Binnenkade and Uenk (1987) reported good classification
results in the HH polarized X-band using the Dutch absolute and digital SLAR
(Side Looking Airborne Radar). The differences between the backscattering
properties of wheat and barley are relatively small and differentiation between
these crops may be troublesome. On the other hand, the typical backscattering
properties of oats will result in a high probability of identification.

Detailed temporal signatures of wheat, barley and oats can be used to
discriminate between generalized crop development phases, e.g. emergence-
tillering, stem extension-heading, grain filling-ripening. Crop emergence was not
very prominent in temporal radar backscattering curves. It was mostly masked by
peaks and dips caused by changes in soil moisture content. Also, the harvesting of
cereals was often unnoticed because of the similarity in backscattering
characteristics of ripened crop and stubble. Morecover, management practices such
as the leaving-behind or the removal of the straw, or the ploughing and harrowing
of the stubble affected the radar backscattering of harvested fields.

Finally, it is stressed that these conclusions are derived from a specific data set
of ground-based, X-band scatterometer measurements in VV and HH polarization.
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4 CROP PARAMETER ESTIMATION FROM
GROUND-BASED X-BAND (3-CM WAVE)
RADAR BACKSCATTERING DATA

Abstract The possibilities of crop parameter estimation from X-band radar
backscattering measurements were investigated using empirical and simple
physical relationships. The study used ground-based, multitemporal, multi-angle
and co-polarized radar data. The investigated crops were beet, potato, wheat and
barley. The investigated crop parameters were dry canopy biomass, amount of crop
water, soil cover and crop height. The implications of the results and
recommendations for further research were discussed.

Empirical relations and the 'Cloud' equations were inapt for accurate
estimations of crop parameters from X-band radar data at one state of co-
polarization and one angle of incidence. The use of both vertical and horizontal co-
polarized radar data did not improve the estimation accuracy. The use of both a
medivm and a high angle of incidence improved the estimation accuracy of the
amount of crop water in the early growing season of (only) beet. The use of more
angles of incidence did not further improve the estimation accuracy.

The low estimation accuracies were attributed to speficic features of the X-
band (early saturation, low soil-crop contrast), and to the simplicity of the mono/bi-
variate inversion schemes used.

4.1 Introduction

The general use of remote sensing in land observation is the characterization of
surface conditions. In agriculture this means often the estimation of crop
parameters that can be used for e.g. crop type identification or growth menitoring.
In the radar domain of remote sensing, crop type identification has relatively often
been studied (Batliva and Ulaby, 1975; van Kasteren, 1981; Hoogeboom, 1983;
Wooding, 1988, Wegmiiller, 1990), but the estimation of crop parameters has been
less addressed (Ulaby et al., 1984; Prévot et al., 1988). However, because of the
all-weather capability of radar, the estimation and monitoring of crop parameters
from radar data deserves ample attention.

Crop parameters may be estimated from radar backscattering measurements
through empirical regressions, or through the inversion of simple physical models.
The use of more fundamental physical models (e.g. Eom and Fung, 1984; Karam
and Fung, 1988) appears, up to now, not yet feasible because: 1) the models have
not yet been calibrated for different crops and growing conditions, 2) some of the
input parameters can not successfully be related to measurable physical properties
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of the crop, and 3) the inversion of such models will be a complicated and
cumbersome task. Therefore, the use of more fundamental models was not pursued
here (sce § 4.5.2).

In this study, the possibilities of crop parameter estimation from radar data
were investigated using empirical and simple physical relationships. The radar data
concern ground-based, multitemporal X-band radar measurements in vertical and
horizontal co-polarization at different angles of incidence.

The investigated crops were beet, potato, wheat and barley. Beet and potato
represent a class of relatively broad-leaved crops (compared to the wavelength of
X-band microwaves) and wheat and barley represent a class of relatively narrow-
leaved crops. The relative dimensions of the leaves cause a specific behaviour of
the X-band radar backscattering. In our data set, the backscattering of beet and
potato increases with crop growth between 0 and =0.8 fraction soil cover. The
backscattering of wheat and barley increases a little with very early crop growth,
and then decreases between stem extension and grain filling (Bouman and van
Kasteren, 1990a, 1990b), (Fig. 4.1). The decreasing temporal backscattering of
wheat is confirmed by ground-based measurements by Wegmiiller (1990), and
partly by measurements by Ulaby (Ulaby et al., 1984; de Loor, 1984), In Ulaby's
measurements (1984), the radar backscattering increases between emergence and
booting, and only then decreases to the end of anthesis. The increasing radar
backscattering of beet and potato is confirmed by Wegmiiller (1990), and Bouman
et al. (1991).

The selected crop parameters for estimation from the radar data were above-
ground, dry canopy biomass, fraction soil cover, crop height and the amount of
above-ground crop water. Dry canopy biomass and soil cover have direct
agricultural relevance. Crop height plays an important role in modelling energy
fluxes at the earth’s surface boundary layer, and the amount of crop water was
selected because of its importance in modelling radar backscattering (Ulaby et al.,
1982).

4.2 Materials

The data for this study were collected by the Dutch ROVE team (Radar
Observation on Vegetation; de Loor, 1982), between 1975 and 1981 on agricultral
test farms in The Netherlands. The test farms were Droevendaal (1975-1977) on
sandy soil at Wageningen, De Bouwing (1978-1979) on alluvial clay at Randwijk,
and De Schreef (1980-1981) on marine clay near Dronten,
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Figure 4.1, Temporal, X-band radar backscattering of beet (@), potato (3}, wheat (A) and
bariey (A) at test farm De Bouwing in 1979. The incidence angle was 40° and the state of
polarization was VV: vertical transmitting and vertical receiving. Note the increase in
backscattering of barley caused by lodging of the canopy.

An X-band FM-CW radar was mounted on a trailer and could be moved to
measure the radar backscattering of plots with different crops. The radar
backscattering was measured at angles of incidence between 10° and 80°, and at
vertical co- (VV), horizontal co- (HH), and cross-polarization (VH, HV). However,
the received power of the cross polarized signal was not sufficient to give reliable
measurements, and the cross polarized data were discarded for this analysis. The
radar system was externally calibrated at the end and beginning of each
measurement day to ensure compatibility of the data during the growing season,
and over the years. Details on the radar system, the calibration procedure and data
handling are given by Atterna (1974), van Kasteren and Smit (1977), Smit (1978),
and de Loor et al. (1982).

The radar backscattering was expressed in . the radar cross-section of the
target per unit projected area of the radar beam. From comparison with repetitive
measurements (and from the calibration procedure), the overall accuracy of a field-
average value of ¥ was supposed to be =~ 0.5 dB.

On each day of radar observation, the height of the crops was measured, and
the fraction soil cover was visually estimated. The standard error of estimate of
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crop height generally ranged between 1 cm at the beginning of the growing season
to 5 cm in the midst of the growing season. The visual estirmations of soil cover
were supported by grid measurements on photographs of the crops. The average
{(absolute) accuracy of the estimated fraction soil cover was = 0.05. Dry canopy
biomass and the amount of crop water were measured at 2 number of times in the
growing season: 1975, 1979 and 1980: 8-10 times; 1976 and 1977: at all radar
observation days; 1981: 3 times in early growing season. These measurements
were smoothed by growth functions and missing values for days of radar
observation were interpolated. No accuracies were attributed to these smoothed
values, but they were consistent in time and with measured crop height and cover,

For this study, five plots of sugar beet were available (one in 1975, 1979 and
1980 each, two in 1981), three of potato (one in 1979, 1980 and 1981 each), 15 of
wheat (one in 1975 and 1976 each, six in 1977, three in 1979, four in 1981), and
seven of barley (one in 1975, 1976, 1979 and 1980 each, three in 1977). All crops
had a good, non-stressed growth and development. The soil background was
always harrowed at the beginning of the growing season by seed-bed preparations.
On potato fields, ridges were created of some 20 cm height and 75 cm apart. The
row directions of the crops were all parallel to the incident radar beam. Between
some experiments, differences existed in row spacing, variety, plant density, soil
background and meteorclogical conditions, Bouman and van Kasteren (1990a,
1990b) presented descriptions of the experiments, and of the radar backscattering
of the crops.

4.3 Empirical relations
4.3.1 Linear regression

For all crop types, the radar measurements and ground-truth from sowing to
harvest, of all years, were lumped. As a first insight in the relationships between
radar backscattering and the crop parameters, linear coefficients of correlation r
were calculated (Table 4.1).

The coefficients of correlation were higher for beet and potato than for wheat
and barley, with all crop parameters and at all angles of incidence. The radar
backscattering had the highest cormrelation at a medium angle of incidence with
crop height and soil cover (Fig. 4.2). For beet, the coefficients of correlation were
about 0.15-0.20 lower with canopy biomass and crop water. These differences in
correlation with crop height and soil cover on the one hand, and canopy biomass
and crop water on the other, were explained by the seasonal trends of these
parameters. Crop height and soil cover increased after crop emergence to reach a
stable level in the midst of the growing season. This trend was matched by that in
the radar backscattering at most angles of incidence, leading to relatively high
coefficients of correlation.
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Table 4.1. Correlation matrix between canopy biomass, crop water, soil cover and height,
and the VV radar backscattering at different angles of incidence, using data from sowing
to harvest. Except for the values marked with (*), all coefficiemts are statistically
significant with 99% confidence.

BEET (N = 75 per incidence angle)

Angle Can. biomass Crop Water Cover Height
(kg /m?) {kg/m2) (fraction) (m)
20° 0.54 0.56 0.71 0.71
30° 0.61 0.64 0.79 0.79
40" 0.66 0.69% 0.84 0.84
50° 0.68 0.70 0.85 0.85
60" 0.68 0.70 0.86 .85
70" 0.67 0.69 0.86 0.85

POTATO (N = 64 per incidence angle)

20° 0.76 0.78 0.82 0.86
30° 0.77 0.79 0.82 0.87
40° 0.79 0.80 0.82 0.86
50° 0.77 0.77 0.77 0.83
60° 0.78 0.76 0.75 0.79
70° 0.77 0.75 0.73 0.77
WHEAT (N = 230 per incidence angle)

20 -0.39 -0.356 -0.47 -0.66
30° -0.53 -0.29 -0.22 -0.76
40° -0.63 -0.29 -0.16 -0.81
50° -0.561 -0.32 -0.186 -0.80
60° -0.51 -0.41 -0.19 -0.72
70° -0.24 -0.39 -0.17 -0.50
BARLEY (N = 145 per incidence angle)

20" -0.21 -0.44 =-0.57 -0.73
30° -0.23 -0.32 -0.45 -0.76
40" -0.20 -0.26 -0.37 -0.76
50° -0.17 -0.25 -0.32 -0.75
60" -0.09* -0.32 -0.32 -0.77

70° -0.02* -0.42 -0.31 -0.62
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Figure 4.2, VV radar backscarttering at 50° incidence angle of beet versus crop height
{4.2a) and soil cover (4.2b). The data were taken from sowing to harvest, from five
different plots in four different years (N = 75). The drawn lines indicate the finted
logarithmic expressions.
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Figure 4.3. VV radar backscattering at 50" incidence angle of wheat versus crop height
{43a) and dry canopy biomass (4.3b). The data were taken from sowing to harvest, from
15 different plots in five different years (N = 230). The drawn lines indicate the Jirted
logarithmic expressions.
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Canopy biomass and crop water, on the other hand, kept increasing from crop
emergence until the end of the growing season. For potato, canopy biomass and
crop water also reached a stable level in the midst of the growing season and the
coefficients of correlation were higher than for beet.

The coefficients of correlation for whear and barley were negative because of
the decreasing radar backscatiering from stem extension to ripening. The radar
backscattering only correlated with crop height, with the highest coefficients of
correlation for wheat at medium angles of incidence (Fig. 4.3a). For wheat the
radar backscattering at medium angles of incidence also correlated somewhat with
canopy biomass (Fig. 4.3b),

The scatter in the data points of Figure 4.3 is quite large. This was partly
caused by radar observations on lodged and dying crops at the end of the growing
season. The changes in canopy structure through lodging and dying greatly affected
the radar backscattering (Bouman and van Kasteren, 1990b), see also Figure 4.1.

For further analysis, data on lodged or on ripened wheat and barley, i.c. after
stage 8 of the Zadoks growth scale (Zadoks et al., 1974), were excluded from the
data set. This exclusion led to increased coefficients of correlation, especially at
medium angles of incidence (Table 4.2).

Table 4.2. Average coefficients of correlation r between canopy biomass, crop water, soil
cover and crop height, and the VV radar backscastering at 40 -60 " incidence angle, using
data on non-lodged crops from sowing to growth stage 8 on the Zadoks growth scale, i.e. =
ripening. The number of data for wheat was 184 per incidence angle, and for bariey 116
per incidence angle. All coefficients are statistically significans with 99.5% confidence.,

Crop Biomass Crop water Cover Height
(kg /m?) (kg/m?) (=) {m)

Wheat -0.75 -0.48 -0.50 -0.84

Barley -0.70 -0.65 -0.65 -0.85

4.3.2 Parameter estimation

Non-lincar regression analysis was used to study the accuracy of crop
parameter estimation, Crop height and soil cover of beet and potato, and crop
height and canopy biomass of wheat and barley were estimated from the radar
backscattering at 50° incidence angle. The crop parameters were estimated from
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second order polynomial or logarithmic equations. As an example, the logarithmic
equations that best described the relationship between the crop parameters and the
radar backscattering are given for beet and wheat:

Beer:
k= -0.473*10log[-{y-0.334)/10.90] (1
f=-0.648*10log[-(y+0.084)/10.26] (2)
Wheat:
h=2.21- 10log[-(339.38/y+6.37)+1]/1.40 3
W4 =5.08 - 10log[-(8.19/y+5.64)+1}/0.20 4y

where: h = crop height (m); f = soil cover of the crop (fraction); W4 = dry weight of
the crop canopy (kg/m2); ¥ = radar cross section (dB)

These equations are drawn as solid lines in the scatter diagrams of Figures 4.2
and 4.3. For beet, slightly better relationships were obtained by using higher order
polynomial equations. The coefficients of correlation r and the residual standard
deviations S(residual) between the measured and estimated crop parameters are
given for all crops in Table 4.3. The S(residual) can be seen as a measure of
accuracy of parameter estimation:

S(residual) = V[V(y-y)2N-1] 3

where: y = measured value of parameter; y' = estimated value of parameter; N =
number of data pairs

For all parameters, the estimation accuracy [S(residual)] was about 20% of the
total range in the parameter values from zero to its maximum value. The
coefficients of comrelation were not very high, with the highest values for beet.

These poor results were caused by 1) a large variability in the radar
backscattering curves of the same crop type in different years, and 2) relatively
large fluctuations in the individual backscattering curves. The large variability was
explained by differences in crop variety and management practices (e.g. row
spacing), and by differences in growth conditions and environment (e.g. soil
background). The relatively large fluctnations in the curves were caused by
variation in the soil moisture content and by changes in the canopy architecture
induced by weather (Bouman and van Kasteren; 1990a, 1990b).
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Table 4.3. Results of the estimation of crop parameters from the VV radar backscattering
at 50° incidence angle. The coefficients of correlation r and the residual standard
deviations S(residual) weve calculated between the measured and estimated crop
parameters from empirical regressions.

Crop parameter r S{residual)
Beet height 0.86 0.14 m
cover 0.87 0.21 fracticn
Potato height 0.78 0.12 m
cover 0.70 0.19 fracticn
Wheat height 0.83 0.19 m
biocmass 0.79 0.22 kg/m?
Barley height 0.85 0.18 m
bicmass 0.73 0.23 kg/m?

The estimation accuracies in Table 4.3 are empirical averages over different
fields and years, and over the whole growing season. A theoretic example
illustrates the effect of deviations in radar backscattering from the regression line
on the accuracy of crop parameter estimation, along the range in crop parameter
values from its minimum to a maximum. The inverse of equation 2 was used to
calculate the radar backscattering of a hypothetical beet crop for a range in soil
cover from 0.0 to 1.0. Equation 2 was then used again to estimate the soil cover
from the calculated radar backscattering with deviations of +/- 0.5, +/- 1 and +/- 2
dB. Estimated soil covers below 0.0 and above 1.0 were set on these boundaries to
avoid unrealistic values. In Figure 4.4, the estimated soil cover is plotted against
true soil cover of the hypothetical crop. The effect of deviations in the radar
backscattering on parameter estimation depended on the magnitude of the
estimated parameter itself. At values close to 0 the estimation error was about 0.05
and 0.08 with deviations of 0.5 and 1 dB respectively. With increasing fraction soil
cover the errors increased to values of more than (.30 and 0.45 at full cover.

Fluctuations in the order of 1 dB, and sometimes even larger, were common in
the temporal backscatiering curves of beet and other crops. This means that the
estimation of soil cover from each single radar measurement has an accuracy that
ranges from 0.05 to 0.45. For application in, for instance, crop growth modelling,
this accuracy should be in the order of 0.05.
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Figure 44. Theoretical sensitivity of the estimation of soil cover of beet on deviations in
the radar backscattering from an empirically fitted curve, at 50° incidence angle. The
estimated soil cover is plotted on the vertical axis and the true soil cover on the horizontal
axis,

4.4 The simple physical 'Cloud’ equations

Attema and Ulaby (1978) have modelled the radar backscattering from
vegetation by representing the vegetation canopy as a cloud of isotropic water
droplets. The driving parameters in their 'Cloud’ model are the amount of water in
the vegetation layer and the volumetric moisture content in the top seil (for X-band
radar, typically the layer of first 5 cm):

¥ = C(O)(1-exp(-DW/cos(8)))+ G(O)exp(Km-DW/cos(8)) (6)

where: Y = radar cross section (m%/m2), W = crop water per unit soil surface
(kg/m?2), m = volumetric moisture content of top soil (%), 8 = incidence angle (°),
D = coefficient of attenuation per unit of crop water (m%kg), X = moisture
coefficient of top soil per volumetric moisture content {-), C(8) = backscattering
coefficient of an optically thick vegetation cover (m¥m2), G(6) = backscattering of
dry soil (m%/m?2).

In this formulation (equations 6 and 7), y is expressed in mZ/m? instead of in
dB. The 'Cloud’ model was calibrated for a number of crops in different growing
conditions with ground-based data cellected by the University of Kansas and by the
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Dutch ROVE team. The residual standard deviation between the measured radar
backscattering and the calculated backscattering with the 'Cloud' equations
averaged about 1 dB for beet and potato. Hockman et al (1982) extended the
'Cloud’ model in a two-layer mode! to describe the radar backscattering of cereals.
Because this model can not be analytically inverted it is less suitable for the
estimation of crop parameters. Bouman and van Kasteren (1989) modified the
original ‘Cloud’ model for wheat and barley by replacing the term W/cos(8) by the
crop height &:

¥ = C(O)(1-exp(-Dh)) + G(®)exp(Km-DF) Q)

This model described the radar backscattering as accurate as the two-layer
'Cloud’ model. The residual standard deviation between measured and calculated
backscattering varied between 0.8 and 2.4 dB for various data sets of wheat and
barley.

The model parameters of the 'Cloud' equations for beet, potato, wheat and
barley in 1979 are given in Table 4.4,

Table 4.4. Model parameters and the residual standard deviation S(residual) of the ‘Cloud’
equations at 40" incidence angle for beet, potato (Hoekman et al, 1982), wheat and barley
in 1979 (modified ‘Cloud’ equations, Bouman and van Kasteren, 1989).

Crop G(0) K c(6) D S{residual) (dB)
Beet 0.061 0.051 0.%29 0.76 0.83
Pctato 0.078 0.051 0.594 0.25 0.94
Wheat 0.188 0.051 0.056 2.95 0.83
Barley 0.198 0.051 0.037 2.54 0.88

4.4.1 Single incidence-angle dota

With the model parameters in Table 4.4, the radar backscattering at 40°
incidence angle was calculated for a given range in crop water for beet, and for a
given range in crop height for wheat. The soil moisture content was taken 5%. The
inverse equations of 6 and 7 were then used to estimate crop water of beet and crop

height of wheat respectively, from the calculated backscattering with deviations of
+/- 0.5 to +/- 2 dB.
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For beet, the error of estimation increased sharply with increasing amount of
crop water (Fig. 4.5a). With a negative deviation of 0.83 dB in the radar
backscattering, S(residual) in Table 4.4, the error increased from some 0.05 kg/m?
at 0 kg/m? crop water to more than 1 kg/m? at 2 kg/m2 crop water. With a positive
deviation of 0.83, the error was already more than 2 kg/m?2 at values of 1.5 kg/m2
crop water.

The main cause for these large errors was the early saturation of the radar
backscattering in the growing season (Fig. 4.1). After saturation, the radar
backscattering no longer reacted on any increase in crop water. Because of this
insensitivity, small deviations in the radar backscattering near saturation resulted in
large errors in the estimation of crop water.

For wheat, the errors in estimation of crop height were also quite large (Fig.
4.5b). Compared to beet, the estimation error varied less with crop height itself
(within the realistic range of 0-1.2 m), With deviations of +0.83 dB, the error was
about 0.1 m at 0 m crop height, and 0.3 m at [ m crop height. With a negative
deviation of 0.83 dB, the error increased already to 0.3 m at 0.8 m crop height.

In this case, the errors were mainly caused by a relatively low contrast in radar
backscaltering, only some 5 dB, from bare soil to that of the full crop (Fig. 4.1).
Deviations of 0.83 dB were relatively large and resulted in correspondingly large
errors of estimation. In general, the same ratio of average deviations in radar
backscattering to total radar-growth' range (here some 100*0.83/5 = 17%) is
reurned in the ratio of average estimation errer to total growth range of the
estimated parameter.

4.4.2 Multl incidence-angle data

Radar data of the same crop can be collected at different angles of incidence.
Model equations like 6 and 7 may be derived for each angle of incidence. This has
two implications. First, with two independent equations, the estimation of a second
driving parameter becomes possible. In the case of the 'Cloud' equations, this
parameter is the moisture comtent in the top soil. Secondly, if the number of
independent equations is larger than the number of driving parameters in the
model, these parameters are over-determined and can be statistically estimated.

Beet

The possibilities of parameter estimation with two incidence angles will first
be investigated for beet in 1979. The best combination of two incidence angles is a
low and a medium angle. At a low angle, the microwaves penetrate the canopy best
and the soil contribution to the radar backscattering is relatively large. This angle is
therefore suitable for estimations of the soil
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Figure 4.5. Theoretical sensitivity of the estimation of crop water of beet (4.5a) and crop
height of wheat (4.5b) on deviations in the radar backscattering from the 'Cloud’ equation,
at 40" incidence angle. The estimated parameter is plotted on the vertical axis and the true
parameter on the horizontal axis.
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moisture content. At a medium angle of incidence, the contribution of the soil
background is less, and the radar backscattering reacts strongly on crop water.
When the angle of incidence is high, the backscattering also reacts strongly on crop
water but the saturation of the backscattering takes place sooner than at medium
angles of incidence (de Loor, 1985).

The estimation of crop water and soil moisture content from the radar
backscattering at 10° and 50° incidence angle is graphically illustrated in Figure
4.6a. The 'Cloud' equations were used to calculate the radar backscattering at 10°
and 50° incidence angle for a range in soil moisture contents and crop water values.
'Tso-crop water' and 'iso-soil moisture’ lines were drawn in a nomogram with the
radar backscattering at the two angles of incidence on the axes.

The measured radar backscattering pairs at 10° and 50° incidence angles were
plotted in the nomogram. Interpolation between the iso-soil moisture and iso-crop
water lines yielded estimated values of soil moisture and crop water (Fig. 4.7). The
amount of crop water was estimated within 0.1 kg/m?2 accuracy until 1 kg/m2,
Between values of 1 and 2.5 kg/m?2 crop water, the estimation accuracy was about
0.4 kg/m?, and after 2.5 kg/m? crop water the estimations became unrealistic. The
decreasing estimation accuracy with increasing crop water was caused by the
narrower spacing of the iso-crop water lines. The soil moisture content was
estimated with an average absolute accuracy of some 3% until day 185. After day
183, the microwaves no longer penetrated the canopy sufficiently to give (reliable)
information on the soil moisture status.

Both the amount of crop water and soil moisture content can be statistically
estimated when more than two incidence angles are available. In this example, the
radar backscattering of beet was measured at six angles of incidence from 10° to
80°. Crop water and soil moisture were estimated with non-linear optimization
procedures from the software package GENSTATS (Reference manual, 1988). The
results are again depicted in Figure 4.7. Between 1 and 2.5 kg/m2, the estimations
of crop water were slightly better than with two incidence angles only. With one
exception, the estimations became again unrealistic at crop water values above 2.5
kg/m2,

The soil moisture content was also estimated with an average absolute
accuracy of about 3% until day 180,




78

(gl/z W) 3duspIdul ,0L ‘DULIWDRG

£e Ve 6L FARN Gl £l Ll 6'0 L0 G0
f T T T T T T T T T T T 1 T T T T T o 0

(o9p)

yaamsiow 1195 d1o
-1¢°0
- €0
40
160
190
140
480

- 60

6.6l 1934

x X -0l
(WM/zW)
aifiup 82uspidUl ,OG ‘DWWDY




"GP U1 fo poasuy gy 1 wasil 51 Sunanposyong 4oppi ayy “S.and SulanIsYIng PRSDAt yt JWIPUT SITS0LI 3Y L "6L6]
. n Butnnog aqq wanf 1521 10 sdoa2 Y10q 10f pPAIgD3 ‘318up 3ouapIoul 0§ PUD | f 10f Suonombs projs, a4l yiim PAINOSU0D Som woisouon iy
(qyy) o1mod puv (pgp) 122q 40f 105 doy a1 jo w300 2.0S101 Y5 pup 1ADm do.d o umown ay1 Jo uonpDwnsSa 2yl 10f wWoLSowioN Q' p 2n81d

{ NE\NEU 3IUIPIDUL L0 "DWWDD (Go'$)
8’ 9L 7l Z’l o)y 08’0 090 o' (OFAS] 0
r T T T T T | T T T T T ] T T r

T
% Q
0 410

4G50
—9°0

4470

180

6/6L O01P1Cd 16°C

=0l
(gW/zW)
516UD 82UBPIDUl L OG DWWDY



80

Crop water (kg/m?)
7 I Best 1679
6

n
———

#

L A

fa
120 140 160 180 200 220 240 280
4.7a : Day number
Scil maisture (vol%)
B Beet 1979
3T = 3
l! :
25 - \ ¥
2t : 2
15 r AN _j
HI A
- - -
5 % 2 £ 40
E = o
H * T + t 4 t i
120 140 160 180 200 220 240 260
4.7 Day number

Figure 4.7. Measured and estimated amount of crop water (4.7a) and moisture content of
the top soil (4.7h) for beet in 1979. The drawn lines are smoothed curves from measured
data. A indicates the estimated values using two angles of incidence, I0° and 50° % with
the error bars indicate the estimated values using six angles of incidence, 10°,20°..70°.
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Wheat, barley and potato

For wheat, barley and potato, the temporal radar backscattering was similar at
different angles of incidence (Bouman and van Kasteren; 1990a, 1990b). The
temporal backscattering curves at the various angles of incidence were parallel and
the correlations were high. The nomograms of the radar backscattering at two
angles of incidence were therefore narrow, as illustrated for potato in Figure 4.6b.
Because of this narrow spacing, the same magnitude of deviations in the measured
radar backscattering from the fitted 'Cloud’ equations as for sugar beet, resulted in
relatively large errors of estimation.

Even when six angles of incidence between 10° and 80° were used, the
estimation accuracies did not increase over the single-incidence angle approach.
The reason for this was that the 'Cloud’ equations were not independent at the
different angles of incidence.

4.4.3 VV and HH polarization

Radar backscattering measurements can not only be made at different angles of
incidence, but also at different states of polarization. For beet, potato, wheat and
barley, however, both the trends and the absolute values in the radar backscattering
were similar at VV and at HH polarization (Bouman and van Kasteren; 1990a,
1950b). Therefore, the accuracy of parameter estimation did not increase by
considering radar data at both states of polarization,

4.5 Discussion
451 Conclusion

Empirical and simple physical relations were inapt for accurate estimations of
crop parameters from X-band radar observations. The estimation accuracies were
generally too low for agricultural applications like production estimations or crop
growth modelling.

The low estimation accuracies may be attributed to specific features of X-band
radar backscattering, and to the simplistic inversion schemes used here. An X-band
specific problem appeared to be the early saturation of the radar backscattering
with crop growth (beet). This suggests the use of other radar frequency bands.
Lower frequency microwaves that (theoretically) penetrate the crop canopy deeper
than X-band microwaves might give a longer sensitivity to crop growth. Another
X-band specific problem was the low contrast between the backscattering of bare
soil and that of a fully grown crop canopy (wheat). Small deviations in the radar
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backscattering from the fitted regression or physical model, resulted then in
relatively high errors in the estimation of a crop parameter. Deviations in the radar
backscattering are caused by inaccuracies in the measurement (here only = 0.5 dB)
and by effects of other canopy-factors on the measured signal (e.g. ‘canopy
structure’). These effects render simple relationships between the backscattering
and individual crop parameters relatively noisy.

452 Recommendations

Higher accuracies of crop parameter estimation may be obtained through the
use of more physically based models that account for the variance and covariance
of many variables simultanecusly. However, 'multi’ data are required to obtain
unique solutions of the inversion of the model and to solve ambiguities. Within a
single frequency band, like the X-band, 'multi' data may be multi-angle,
multipolarization or multitemporal. In this study, it was shown that multi-angle
data in the X-band were too highly correlated to help solve the inversion problem
{except for beet in the early growing season). Moreover, multi-angle observations
will not be very feasible from space platforms,

The aspect of multipolarization was only studied in the combination of vertical
and horizontal co-polarization. Again, this 'multi' aspect did not improve the
inversion accuracies because of the high correlation between the two states of co-
polarization. However, cross-polarized backscattering (HV, VH) is generally not
correlated with co-polarized backscattering (due to the multiple scattering within
the canopy), and may be more useful. Also the introduction of radar polarimetry
(Evans et al., 1988) may contribute to the solution of the inversion problem.

The aspect of multitemporal data may be used to improve the inversion
algorithms through the linking with crop growth models. Crop growth is a dynamic
process in which the state of the crop at one moment is not independent from that
on a previous moment. The estimation of crop parameters from each single radar
measurement in time does not take into account this temporal dependency.
Improvement may be obtained when crop growth models are used to smooth the
fluctuations in the radar backscattering curves (Bouman, 1991).

Finally, the (multi-variate) inversion scheme may be approached with
multifrequency measurements. Because the interaction of microwaves with
vegetation is wavelength dependent, the radar backscattering in different frequency
bands may have a different information content.

Research into the multifrequency radar backscattering of crops was conducted
in Europe during the Agriscatt 1987-1988 campaign (6 wavelengths between 1.7
and 25 cm; Attema, 1989). Preliminary results reported by Bouman et al. (1991)
suggest that the L-band (25 cm wave) may be sufficiently decorrelated from the X-
band (and smaller wavelengths) for combined use in agricultural applications.



&3

5 ESTIMATION OF CROP GROWTH FROM
OPTICAL AND MICROWAVE SOIL COVER

Abstract Direct derivation of biomass from radar backscattering gives erratic
results so this paper discusses another method in which biomass was not estimated
directly, but was found as the accumulated value of the estimated crop growth rate.
The estimation was based on soil crop cover and global radiation. The relationship
between soil cover in the optical and microwave regions was investigated. Analysis
of the methodology showed that improvement is obtained in comparison with the
direct estimation method. Despite variation in parameters for different years, a
remarkable consistency in estimated biomass was observed. Nevertheless,
measurements of radar backscattering still suffer from too much variation to be
reliable for biomass estimation.

5.1 Imtroduction

In contrast to remote sensing in the optical region, radar remote sensing is
hindered very little by clouds, fog or absence of global radiation during the night.
Therefore, radar remote sensing provides a more reliable frequency for data
collection and can be useful for a variety of land applications. In agriculture, a
general demand exists for up-to-date inventories, and classifications of forests and
field crops. Such inventories, however, only fulfil primary needs. Further interests
are vested upon themes such as the monitoring of crop growth and development,
and ultimately yield forecasting (ESA Land Applications Working Group, 1987).
Up to now, much research work has been done in the field of classification with
promising results (Hoogeboom, 1983, 1986; Binnenkade, 1986), but research in the
field of growth monitoring and yield-prediction has made little progress. The great
practical advantages of radar remote sensing are offset by the difficulties that have
existed so far in the interpretation of the backscattering data, and in their
conversion into biomass or into other meaningful crop characteristics.

In 1987, the MONISAR project (MONItoring with Synthetic Aperture Radar)
was initiated in The Netherlands to investigate the possibilities of estimating crop
growth and development from radar backscattering. For this purpose radar remote
sensing data were integrated into crop growth models. These models are based on
relationships between the physiological processes of plants and environmental
factors such as solar radiation, temperature, day length, water and nutrient
availability, etc. The development of these models for sub-optimal growing
conditions is difficult and estimates of crop growth often turn out to be inaccurate.
If remote sensing techniques can be used to yield information about the actual




84

status of a crop, growth models can be adjusted and more accurate predictions of
crop growth can be made.

In this paper an attempt is made to develop a method for integrating radar
remote sensing data and a basic crop growth model. The data used for this study
have been derived from ground based radar experiments conducted by the ROVE
(Radar Observation of VEgetation) team in the Netherlands in 1979 and 1980 (de
Loor et al. 1976). The radar system utilized was an X-band scatterometer,
operating at 9.5 GHzy frequency. Measurements made at vertical like-polarization
VV on the crops bect, peas, and potatoes have been selected. These crops are
important in European agriculture and have hardly been studied in radar remote
sensing literature,

5.2 Outline of the methodology
5.2.1 The 'Cloud’ equaiions

Radar remote sensing data can be converted into fresh weight by inversion of
the so-called 'Cloud' equations. In these equations (Attema and Ulaby, 1978;
Hoekman, 1980} the microwave backscattering is the weighted addition of a
backscattering component of the bare soil, and that of the vegetation cover. The
weighting coefficient is a function of the amount of plant water (water contained in
plants}, W, in the vegetation canopy, and can be called the microwave soil cover

f = 1-exp(-DW/sin6) 4]

The amount of plant water W is the fresh weight minus the dry weight of all the
above-ground material of the crop canopy per unit soil surface. With the weighting
coefficient, the microwave backscattering can be written as

Y= Cf + (1/)Gexp(Km} 2

where Y = normalized radar cross-section (m%/m?), @ = grazing angle, C =
backscattering coefficient of an optically thick vegetation cover and is angle
dependent (m%/m?), G = backscattering of dry soil, also angle dependent (m%/m?2),
W = plant water (kg/m?), m = volumetric moisture content of the top soil (per cent),
K = moisture coefficient of soil per volumetric moisture content, and D =
coefficient of attenuation per unit plant water.

This relation is based on the exponential extinction of microwave radiation by
the amount of plant water in the vegetation canopy. The parameter D is the
coefficient of attenuation and gives the extinction of microwaves of a unit of plant
water in the canopy. The parameter G is soil-specific and must be determined by
regression on microwave backscattering data for bare soil. The parameter X is less
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soil-specific and its value is about 0,051 (Hoekman et al., 1982), The parameters D
and C are crop-specific and must be determined by regression on microwave
backscattering data for crop-soil systemns, using previously determined G and K
values for the soil underneath the crop. If a series of measurements from bare soil
exists throughout a growing season until the harvest, all four parameters can be
determined in the same regression. Since the parameters € and G are dependent on
the grazing angle of the radar, the regressions must be made for each grazing angle
separately. The 'Cloud’ equations comprise a set of the same equations with
parameters for different grazing angles. An example of parameters collected in this
way is given in Table 5.1.

If these parameters are known, inversion of the measured backscattering values
15 in principle possible in order to find W and m, by using data for different grazing
angles 6, If the relative water content of the crop canopy is known from previous
measurements, the amount of plant water can be used to calculate a direct estimate
of dry canopy biomass.

In practice, this inversion turns out to be loaded with difficulties, especially
when there is a lack of contrast between crop and soil, as occurs with potatoes
(Bouman, 1988). Secondly in many crops, especially cereals, the parameters D and
C have a strong azimuthal component governed by the orientation of the scatter
elements, i.e. stems, leaves, and ears (van Kasteren, 1981; Ulaby and Allen, 1984).
This orientation is influenced by meteorological conditions and thereby introduces
a dependency of the radar backscattering on weather during measurements.
Thirdly, the 'Cloud’ parameters for the same crop may vary in different years
(Table 5.1).

Beet canses fewer problems and attention was focussed on this crop for further
analysis. Potatoes and peas have been used for comparison. The results of a direct
inversion of backscattering data to dry canopy biomass, through the estimated
amount of plant water and a measured value for the relative plant water content, are
given for beet in two growing seasons (Fig. 5.1). The results have been obtzined by
using the 'Cloud’ parameters collected for the same crop and the same year. To
simulate future practical conditions only two angles were used for the inversion,
40° and 80° grazing angle. Because there are two parameters to be estimaied, plant
water and soil moisture, a minimum of two independent backscattering
measurements are needed. The high grazing angles were chosen because the radar
backscattering responds for a greater length of time to crop growth at high grazing
angles than at low pgrazing angles. At a grazing angle of 20° the radar
backscattering of beet reaches a saturation level relatively early in the growing
season (Bouman, 1987).
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Figure 5.1. Measured and calculated dry canopy biomass as a function of time for beet
(5.1a) in 1979 and (5.1b) in 1980. The calculated biomass is derived from the relative
plant water content of a beet canopy, an average of 90 per cent, and from the amount of
Dplant water estimated from inversion of the ‘Cloud’ equations.
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In 1979, the calculated biomass followed the observed biomass with
floctuations until the end of July (Fig. 5.1a). In 1980, only 6 measurements out of
thirty could be inverted to derive biomass values (Fig. 5.1b). Due to the fluctuating
pattern of the backscattering measurements, twenty-four measurements fell outside
the model range of grazing angles of 40° and 80° set by the factors Gexp(Km) and
C. When backscattering measurements at more than two grazing angles are used
for the inversion, the parameters plant water and soil moisture are over-determined.
Optimization techniques can then be used to amrive at a larger number of
estimations of plant water with a better accuracy. However, a large number of
grazing angles imposes practical problems for radar remote sensing from airborne
or spaceborne platforms.

5.2.2 Crop growth rate and intercepted radiation

The poor quality of the results of this direct method necessitates another way
of using the data, based on the presumption that the real crop does not fluctuate in
biomass as Figure 5.1 suggests. Assuming continuity in biomass, the problem can
be considered one of estimating the crop's growth rate. As shown by several
authors such as Gallagher and Biscoe (1978), Milthorpe and Moorby (1979) and
Monteith (1981), a crop's growth rate is closely correlated with intercepted global
radiation, which can be estimated as the product of global radiation and soil cover.
This means that the dry weight, W, of the crop is written as

Wy = IRdt 3
with
R=aSf 4)

where R = growth rate of the crop (g/day), a = conversion efficiency to dry weight
(g/7), § = incoming daily global radiation (J/mZ/day), f = fraction of green soil
cover, and Wy = dry weight of the crop (g).

Our approach here was to estimate the seil crop cover from radar data and then
multiply it by the global radiation collected in the conventional way. The following
cutlines the development of the method.
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The first step was to derive the conversion efficiency & between crop growth
rate, R, and intercepted global radiation, Sf, based on collected ground truth data
(Fig. 5.2).

W4 (measured) )
b Wy=odl@pdr - o
ISf (measured) J

Next, the regression coefficient B between the optical soil cover £, estimated in
the field, and the microwave soil cover f, computed from the measured amount of
plant water W, was calculated (Fig. 5.3),

f (estimated) ]
t f=Br > B
J' (calculated from measured W) J

Then, as in equations (3) and (4), the optical soil cover was replaced by the
regression coefficient B, multiplied by the calculated microwave soil cover.

Wy = apl(Sf)dr (5)
where f is calculated from measured W,

Finally, the microwave soil cover calculated from the measured value for W
was replaced by the microwave soil cover derived from radar backscattering
measurements (Fig. 5.4).

Wy = ofl(Sde

where f is calculated from backscattering measurements

5.3 Calculation of the parameters ¢ and
5.3.1 Conversion efficiency o

Based on the ground truth cellected in 1979 at test farm "De Bouwing”, and in
1980 at test farmn "De Schreef”, the values for the efficiency factor oo were derived
(Table 5.2). The test farms are located in ecologically different areas some 50
kilometres apari.




90

Table 5.2. Conversion efficiency o of intercepted global radiation to dry weight of the crop
canopy (Mgt}

1979 1980 197% + 1980

Beet 1.12 1.74 1.35
Peas 1.29 1.8% 1.65
Potatoes 1.02 1.02 1.03

dry cancpy biomass
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Figure 5.2. Measured and calculated dry canopy biomass of beet, 1979. The calculated
biomass was found by nccumulation of intercepted global radiation multiplied by the
conversion efficiency derived from regression on the same data,
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These data were derived from visually estimated crop cover and measured
values of the canopy biomass. Due to the nature of the study, ne ground truth was
collected with regard to tuber biomass. Therefore, only data for the first two
months of the growing season were taken into consideration in order to minimize
disturbances caused by preferential growth of subsurface tubers. As a check for the
method above, the integrated value of the crop growth rate of beet calculated in this
way, and the measured canopy dry weight were plotted together (Fig. 5.2). The
regression parameter, o, was not obtained independently of the data. Therefore,
only the variability around the measured line can be used as an indication of the
efficiency of this step in the method.

5.3.2 Optical and microwave soil cover

Given the good quality of the results in Figure 5.2, which were based
exclusively on ground truth data, the next step was to extend the method to using
radar data for estimating soil cover. To eliminate the disturbance from soil
backscattering and meteorological influences on the crop canopy, microwave soil
cover values were generated that were expected theoretically on the basis of
equation (1). The input values for this equation were the ground truth data for the
amount of plant water, W, and the values for D which gave the best correlations
between the backscattering calculated by means of the 'Cloud' model and the
measured backscattering (Bouman, 1987). The results are plotted against the
visnally estimated soil cover data for beet, peas and potatoes (Fig. 5.3). In Figure
5.3, the data for 1979 and 1980 are combined for beet and potatoes. In Figure 5.3a,
the relationship between optical and microwave soil cover for beet is an S-shaped
curve, although large linear stretches exist at all grazing angles. In Figure 5.3b,
near-linear relationships are observed for potatoes. For peas (Fig. 5.3c), linear
relationships only exist for the period of vegetative growth which agrees with the
limited applicability of the 'Cloud' equations (Bouman, 1987). Because f' and f
were almost linearly related over fairly large ranges, linear regression was used.
The regression coefficients were calculated between the visually estimated soil
cover and the theoretically expected microwave soil cover at an 80° grazing angle
(Table 5.3).

Table 5.3. Regression coefficient, P, between optical soil cover, f, and calculated
microwave soil cover, f, at 80 " grazing angle, f = Bf’

Beet Peas Potatoes

1.07 1.69 2,54
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Figure 5.3. Visually estimated soill cover, f, versus theoretically expected microwave soil
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The differences of the results for the crop species were due to the differences in
transparency of the crop canopies to microwaves relative to the trangparency in the
optical region, A large value of the coefficient of attenuation D for beet coincided
with a low coefficient of regression while a low value of D for potatoes coincided
with a high value of the coefficient. The different values of D for beet in 1979 and
1980 coincided with similar differences in the optical transparency. Therefore, the
relationship between optical and microwave soil cover of the crop was the same in
both years (Fig. 5.3).

5.4 From microwave soil cover to canopy biomass

The two steps discussed above had io be combined and checked in their
combined functioning. The dry weight of the crop canopy, W (in g} was written as

Wy =opl(Sf)dr

Using the conversion efficiency and the coefficient of regression calculated
above, and the microwave soil cover calculated from the measured amount of plant
water, the integrated value of the crop growth rate was computed. Compared with
Figure 5.2, this step in the method did not lead to an increase in the deviation of the
calculated biomass from the measured biomass.

The last step was to derive the microwave soil cover from the radar
observations instead of from the ground truth measurements as is described above.
From inversion of the "Cloud’ equations, the amount of plant water was estimated
from backscattering measurements. This estimation was used to calculate the
microwave soil cover with the aid of equation (1). Using the microwave soil cover
thus obtained, the integrated value of the crop growth rate could again be
calculated with equations (3) and (4). In Figure 5.4, this value was plotted in time
together with the measured dry biomass of the crop canopy. It should be
remembered that the coefficient of regression, [3, the conversion efficiency, o, and
the 'Cloud’ parameters were derived from the same set of data. The resuits were
only used for comparison of the method with results from the direct estimation of
canopy biomass (Fig. 5.1).
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Figure 54. Measured and calculated dry canopy biomass of beet, 1979. See text for
method of calculating dry biomass.

Compared with Figure 5.1, the method we developed led to an improvement in
the calculation of the canopy biomass. The fluctuations in the curve of the
calculated biomass in time had disappeared and a more realistic estimation of the
biomass was obtained at the level of saturation of the backscattering. The
calculated biomass, however, generally overestimated the measured biomass by
some 25 g/m?.

The method was used to predict the canopy biomass of beet from radar
measurements during field experiments in 1981. That year, 15 radar measurements
were made during the first two months of the growing season at the same location
as in 1980. In Figure 5.5, the estimated canopy biomass is plotted together with the
measured biomass. It shows the directly estimated biomass, calculated from the
estimated amount of plant water by inversion of the 'Cloud’ equations of 1980 and
the relative water content of a beet canopy (90 per cent), and the continuously
estimated biomass, based on the estimated microwave soil cover and the amount of
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global radiation measured in the field. In Figure 5.5a the calculation of the
estimated canopy biomass is based on the 'Cloud' parameters and conversion
efficiency derived from the experiment in 1980. In Figure 5.5b the calculation is
based on the 'Cloud’ parameters and the conversion efficiency from the experiment

in 1979.
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Figure 5.5. Measured and estimated dry canopy biomass of beet, 1981. Estimated biomass

based on the ‘Cloud’ equations of (5.5a) 1980 and (5.5b) 1979.

When the 'Cloud’ parameters in 1980 were used, 12 out of the 15 radar
measurements could be inverted to yield estimates of the amount of plant water. By
using the 'Cloud’ parameters in 1979 only 7 radar measurements could be inverted.
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The values of the backscattering from 10 June to 1 July exceeded the theoretical
maximum of the 1979 C values (Table 5.1). This suggested that the 'Cloud'
parameters from 1980 were better. The continuously estimated biomass based on
the 'Cloud’ parameters and the conversion efficiency from 1979 as on the
parameters and the conversion efficiency from 1979, however, was just as efficient
as those from 1980,

5.5 Discussion

The method of calculating dry biomass through the accumulation of the
estimated rate of crop growth resulted in an improvement over the method of
calculating the direct estimation of biomass. For potential use in the prediction of
biomass from radar remote sensing, information should be available on the amount
of daily incoming radiation for the site under consideration. This information is
routinely gathered at most meteorological stations and can be input, along with
other relevant information such as topographic data and crop type inventories, into
any geographical information system, The radar system should deploy at least two,
but preferably more, grazing angles from medium to high elevation. Based on the
measurements used for this study, the backscattering measurements have to be
calibrated with an absolute accuracy of 1 dB or less.

The prospects for the application of the method we have developed depends on
the accuracy with which the 'Cloud' parameters and the conversion efficiencies can
be determined. They also depend on the amount by which these parameters and
efficiencies vary between different crop varieties and regional and climatological
conditions.

Table 5.1 shows the variation that can exist in the '‘Cloud’ parameters for the
same crop. The parameters for the crops in 1980 were derived from experiments at
a location different from the one in 1979. In a previous study, Bouman (1987)
showed that the differences in 'Cloud' parameters for beet do not relate to
differences in crop biomass or soil cover. The effects of the canopy structure and
the plant water density on the 'Cloud' parameters is still, mostly, an unknown
factor. Even if the 'Cloud' parameters are chosen correctly, the inversion of
backscattering data to an estimation of the microwave soil cover still remains
troublesome due to the variability in the radar measurements (Fig. 5.1b). Since
much of this variation is caused by seasonal influences on the structure of the crop
canopy, some improvement might be obtained by averaging the backscattering
measurements over a number of sequential days.
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Figure 5.6. Measured and calculated dry canopy biomass of beet, 1979. The estimated
biomass was found from the microwave soil cover through inversion of the backscattering
data using the ‘Cloud’ parameters of 1980, and from the coefficient of regression § and the
conversion efficiency o derived from the experimenis in both 1979 and 1980.

The varnation that occurs in the conversion efficiencies is demonstrated in
Table 3.2. It is only for potatoes that this factor is the same for the two years. In
theory, the linear relationship between the crop's growth rate and the intercepted
global radiation is stable over a fairly wide range of external conditions. However,
at various sites, deviations in the relationship for the same crop have been reported.
These deviations could be due to errors in measurement, temperature differences,
drought stress and diseases. Haverkort and Harris (1986) reported a range of
conversion efficiencies for potato crops at the same location and related the
variation to differences in air temperature. For potential use in the prediction of
biomass, the method we developed should be extended to include the influences of
external conditions and the limits of its applicability should be studied.
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Despite the variations that occur in the 'Cloud’ parameters and the conversion
efficiencies for 1979 and 1980, a remarkable consistency was observed for beet
when they were combined in the method we developed (Fig. 5.5). The lower value
for the coefficient of attenuation, D, found in 1980, needed for the calculation of
the microwave soil cover, was matched by a higher value for the conversion
efficiency, o.. When the biomass of beet in 1979 was calculated with the 'Cloud’
parameters from 1980 and the conversion efficiency from 1979, the canopy
biomass was seriously underestimated. When the canopy biemass in 1979 was
predicted with all parameters from 1980, the biomass was estimated with the same
accuracy as with the fitted parameters in 1979 themselves (Fig. 5.6). Ne
explanation for this consistency in results has been found so far.
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6 ACCURACY OF ESTIMATING THE LEAF
AREA INDEX FROM VEGETATION INDICES
DERIVED FROM CROP REFLECTANCE
CHARACTERISTICS, A SIMULATION
STUDY.

Abstract The canopy radiation model EXTRAD was used to quantify the
accuracy of Leaf Area Index (LAI) estimations from Vegetation Indices (VIs),
derived from green and infra-red crop reflectance. The VIs were the infra-red/green
(R/GR) ratio, the Normalised Difference Vegetation Index NDVI, the
Perpendicular Vegetatior Index PVI, and the Weighted Difference Vegetation
Index WDVI. The accuracy of LAl estimation was calculated in relation to variation
in leaf green and infra-red colour, leaf angle distribution, soil background and
illumination conditions. The theoretical calculations were supported with a field
experiment on sugar beet.

Variation in illumination conditions and soil background gave relatively small
estimation errors with all four VIs. The largest estimation errors resulted from
variation in leaf colour and leaf angle distribution. With variation in green leaf
colour, the estimation etrors were lowest with the WDV/. With variation in leaf
angle distribution, the errors were lowest with the JR/GR ratio and the NDVI. In
practice, the magnitude of the error in LA estimation will depend mostly on the
magnitude and combination of occurring variation in leaf colour and leaf angle
distribution.

In an average of 100 random combinations of disturbing conditions, and in a
field experiment with sugar beet, the absolute estimation errors ranged between
about 0.1 for 0<LAl<1 and 0.35 for 3<LAI<5.

6.1 Introduction

In the past 20 years, a number of vegetation indices (VI) has been constructed
to aid the interpretation of remotely sensed data in the optical wavelength region.
VIs are linear, orthogonal or ratio combinations of reflectances in the green (GR)
and/or red (R}, and infra-red (JR) part of the spectrum. Examples are the IR/GR
ratio (first used by Jordan, 1969), the Normalized Difference Vegetation Index,
NDVI (developed as 'VI' by Rouse, 1973), the Perpendicular Vegetation Index, PVI
(Richardson and Wiegand, 1977), and the Weighted Difference Vegetation Index,
WDVI (Clevers, 1989). The calculation formulae are
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NDVI = (IR-GR)/(IR+GR)
PVI =~[(R-IRY2+(GR-GR)?]
WDVI = IR-(UIRJGRYGR

where: GR and IR is the GR and IR crop reflectance respectively, and GR, and
IR is the GR and IR reflectance of (the underlying) bare soil respectively.

The main function of VIs is to minimize the effect of 'disturbing’ factors on the
relationship between reflectance and crop characteristics of interest such as crop
type, Leaf Area Index (LAI) or canopy biomass. Disturbing factors may be
illumination conditions, soil background and crop parameters of other interest such
as leaf colour and canopy structure.

The cheice and suitability of a VI for agricultural application is generally
determined by its sensitivity to the crop parameter of interest, andfor to its
sensitivity to disturbing factors (Bunnik, 1978; Clevers, 1988, 1989; Huete et al,
1984a, 1984b; Richardson and Wiegand, 1977; Tucker, 1979; Vygodskaya, 1989).
However, the key property of a V7 for application in agriculture lies in its inverse
use, i.e. the accuracy of crop parameter estimation. Den Dulk (1989) is one of the
few who systematically presented some errors in the estimation of LAf from a VI
He used the LAI-NDVT relationship, as calculated with the model TURTLE for a
reference crop under reference conditions, to estimate the LAS with deviations in
input parameters from the reference crop (Table 6.1).

In this paper, a theoretical sensitivity analysis will be given to quantify the
accuracy of LAT estimation from VIs in relation to specific disturbing factors. The
LAT was chosen as crop parameter because of its general importance in agriculture
(e.g. crop growth and transpiration modelling). The analysis was based on model
simulations with the canopy radiation model EXTRAD (Goudriaan, 1977) that
describes the visible and infra-red reflection of leaf canopies. The simulation
results were compared with a field experiment with sugar beet.

6.2 Method and materials.

The VIs were calculated from the nadir (90° angle with the horizontal plane)
reflectances in the green (GR) and the infra-red (/R) spectral wavelength bands.
The use of nadir reflectance corresponds with the general practice of remote
sensing from satellites and with hand held radiometers. The choice of the green
band rather than the more generally used red band was guided by the availability of
field data for this study. For the (theoretical) sensitivity analysis, this choice did not
make any difference since the studied range in leaf colour could apply to both the R
and the GR band.
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Table 6.1. Error in LAI estimation from the NDVI, with deviations in crop, soil and
observation conditions from a reference crop. The reference crop had a spherical leaf
angle distribution, isotropically scattering leaves, a soil background with an average
reflection coefficient, and a sun's inclination angle of 60 . The calculations for the cotton
plant were based on measurements presented by Lang (1973). Source: J.A. den Dulk
(1989). The interpretation of remote sensing, a feasibility study, Thesis, Agricultural
University Wageningen, p. 115.

LAT: 0.57 1.37 2.74
Bright leaves 0 0.01 0.01
Dark leaves 0 0 0.01
Specularly refl. leaves 0.02 0.01 0.02
Rough leaves 0.03 0.05 0.09
Erectophile crop 0.07 0.07 0.05
Plancphile crop 0.16 0.14 0.10
Cotton 0.31 0.26 0.19
Dark soil 0.19 0.11 0.05
Bright soil 0.03 0.03 0.02
Sun's inclination 45° 0.09 0.07 0.06
Minimum observed value 0 0 0

Maximum observed value 0.16 0.16 n.27
Erectophile, rough leaves 0.11 0.11 0.15
Planophile, rough leaves 0.13 0.09 0.02
Cotton, min. sun's incl. 0.24 0.20 0.17
Cotton, max. sun's incl. 0.53 0.44 0.26

6.2.1 The canopy radiation model EXTRAD

GR and IR nadir crop reflectance was calculated with the canopy radiation
model EXTRAD developed by Goudriaan (1977). It is beyond the scope of this
paper to discuss in detail the formulae and computation procedures. Goudriaan
(1977, pp 143-145)) gave a complete listing of the model, and Bunnik (1978, pp
26-29) presented a condensed summary of the calculation procedures.

A brief description of EXTRAD is as follows. The canopy is subdivided into a
number of horizontal infinitely extended layers. The optical behaviour of a layer is
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calculated as a function of the scattering coefficient of the leaves (equal
hemispherical reflection and transmission), and of the leaf angle distribution. The
azimuthal orientation of the leaves is assumed to be uniform. Nine inclination
intervals from 10° each are used to describe the leaf angle distribution, and to
compute the fluxes of upward and downward radiation through the layers of the
canopy.

The radiation profile in the canopy is calculated with a relaxation method. The
boundary conditions are the soil with ideal diffuse reflectance, and the total
incident radiation on the top layer of the canopy. The incident radiation is
subdivided into a direct solar component and a diffuse sky component emanating
from nine equal intervals in the upper hemisphere. The canopy reflectance in a
given direction (10° interval) is then computed from the total radiance leaving the
top layer of the canopy in that direction.

The model input of EXTRAD is given in Table 6.2,

Table 6.2, Input for the model EXTRAD for canopy reflectance and vaiues chosen for
sugar beet. The spherical leaf angle distribution is explained in Table 6.4.

Input parameter Value

Leaf GR scattering ceefficient 0.294 (*)
Leaf IR scattering cecefficient 0.974 (*}
L.eaf angle distribution spherical
Hemispherical soil reflectance GR 0.146 (*}
Hemispherical soil reflectance IR 0.178 (*)
Fraction diffuse sky irradiance 0.7

Sun's elevation angle 60°

{(*) = fitted values to data set

A comparative study between the EXTRAD model and the models SAIL
(Verhoef, 1984) and TURTLE/HARE (Den Dulk, 1989) revealed a very close
agreement in results between all three with equal input values (Clevers, pers.
comm.}.

6.2.2 Model calibration

For this study, the model EXTRAD was calibrated on (nadir) reflectance data
on sugar beet. The data were collected using a portable radiometer at intervals of
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two to three weeks during the growing seasons of 1987 and 1988, on six fields in
the Dutch Flevopolder. These fields belonged to different farmers who cultivated
different sugar beet varieties: Regina (2x), Accord (2x), Salohil and Univers.

The GR reflectance was measured at 548 nm with a bandwidth of 31 nm, and
the IR reflectance at 823 nm with a bandwidth of 80 nm. At each field and day of
observation, ten measurements were averaged at each wavelength band. The
radiometer was calibrated at construction and the stability was monitored by
measuring panels of known reflectance values at the end of the growing season.
The LAl of the crops was measured on the same day as the reflectance
measurements. The total number of reflectance and LAJ data was 33 (all fields, two
years),

The model EXTRAD was calibrated on the data in the individual spectral
bands of all six fields together. The calibration procedure was based on a controlled
random search algorithm as developed by Price (1979) and extended by Klepper
{1989) and Rouse (in prep.). Fitted values were obtained for the GR and /R
scattering coefficients of the leaves, and for the hemispherical reflection
coefficients of the soil. All parameters were assumed to be constant during the
growing season. The calibrated values of the model parameters are given in Table
6.2.

6.3 Model simulations

The set of model parameters given in Table 6.2 was used to calculate the
IR/GR ratio, the NDVI, the PVI and the WDVI for LAJ values from 0 to 5. This
parameter set was the standard set and the obtained curves were the standard
curves around which the effects of disturbing factors were studied. The disturbing
factors were deviations from the standard parameter set, and are given in Table 6.3.
They were grouped in three general classes: 1) illumination condition (fraction
diffuse sky irradiance and sun elevation angle), 2) soil background, and 3) canopy
condition (leaf GR and IR colour, leaf angle distribution).

Ad 1} illumination condition, The fraction diffuse sky irradiance ranged from a
completely clear sky, a minimum of 0.2, to a fully clouded sky, 1.0. The minimum
sun's elevation angle was determined by the angle at which accurate reflection
measurements ¢ould still be made in the field, about 30°. The maximum was set for
Mid-North European latitudes, about 70°.

Ad 2) Soil background. Since the soil type under consideration had a medium
reflection coefficient, disturbing effects were calculated for a light and a dark soil.
The input values were the same as those used by Vygodskaya et al. (1989, p.
1860). A difference in soil moisture was implicitly present in the choice of the light
and the dark soil with GR /R respectively 0.06:0.09 and 0.25:0.35.
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The IRJ/GR, ratio of these soils was about the same, thus representing a dry
and a wet condition respectively of a same soil type (Clevers, 1988).

Ad 3) canopy condition. The range in leaf GR and IR scattering coefficient was
derived from reflection and transmission measurements on individual green and
yellowish leaves. The measured range in the GR scattering coefficient was twice as
large as that in the IR. The leaf angle distributions were taken from Bunnik (1978,
pp 35-36), and are given in Table 6.4.

Table 6.4. Leaf angle distribution functions according to Bunnik (1978). 0 is the angle
berween the leaf axis and the horizontal plane.

Planophile 2{l+cos20) /=
Erectophile 2{l-cos20)/x
Plagiophile 2{1l-cos46) /%
Extremophile 2{l+cos48) /x
Spherical sinf

Uniform 2/n

6.3.1 The sensitivity of Vis

As an example, the effect of deviations in leaf angle distribution and in GR leaf
colour on the NDVI-LAT and the WDVI-LAT relationship is given in Figure 6.1.

First it is noted that the WDVI was sensitive to LA over a larger LAS range than
the NDVI. Where the NDVI 'saturated' at an LAS of about 3, the WDVI “saturated’
only after an LAS of 5. The WDVI was more sensitive to leaf angle distribution than
the NDVI, thus offsetting its larger sensitivity to LA/. Compared to the effect of leaf
angle distribution, that of GR leaf colour was much smaller for the WDVY, and a bit
larger for the ¥NDVI, The WDV/ was slightly less sensitive to GR leaf colour than
the NDVI,
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Figure 6.1, The effect of canopy properties on the theoretical relationship between LAI
and the computed vegetation indices NDVI and WDVI. Figs. 6.1a and 6.1b give the effect
of leaf angle distribution, and Figs. 6.1c and 6.1d for the green scattering coefficient of the

leaves.
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To compare the effects of the variation in parameter values {disturbing factors)
on the VIs, the sensitivity to these parameters was calculated as a nommalized
standard deviation §"

§'=S/Vi
where § is the standard deviation:
S =N[ZVI-VDYN-1]

where VI = VI at standard parameter and LAJ value; VI' = VI at alternative
parameter value and standard LAT value; VI = average value of VI in the 0-5 LA/
range; N = number of V7 calculations in the 0-5 LA7 range.

§’ indicated the sensitivity of the VI to changes in parameter values as an
average over the whole LAl range. It was normalized to the average value of the VI
to compare the values for the different VIs. Table 6.5 gives the average $° per
parameter listed in Table 6.4.

Table 6.5. Average sensitivity §' of the Vis to variations in canopy properties, soil
background and illumination conditions (Table 6.3).

Parameter IR/CGR WDVI NDVI PVI
Leaf GR 26.8 5.3 9.1 1.9
Leaf IR 10.1 12.0 3.1 14.6
Leaf angle distribution 9.1 18.4 5.0 26.5
Soil background 10.8 19.3 14.2 24.6
Fraction diffuse sky 3.2 4.4 2.5 4.6
irradiance
Sun's elevation angle 1.4 2.8 1.1 3.6

From this Table, two general conclusions were drawn. 1) All VIs were
comparatively least sensitive to changes in illumination conditions. 2) The PVI was
most sensitive to all disturbing factors, except for GR leaf colour, and the NDVI
was generally the least sensitive to disturbing factors.
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6.3.2 The accuracy of LAl estimation

The next step consisted of analysing the effect of the disturbing factors on the
accuracy of LAl estimation. Therefore, the standard curves of the Vs, calculated
with the standard parameter set from Table 6.2, were inversely used to estimate
LAJ, The VIs calculated with the deviating parameters from Table 6.3 resulted in
LAl estimations LAI' which deviated with dLAJI from the true LAl

LAI(true) —-> Vi(true)
with disturbing factor

VItrue) > LAl
inverse standard relationship

dlLAT = |LAI - LAI'|

The estimated LAI" was limited to a maximum of 5 to avoid unrealistic values.
It is important to consider the values of dLAJ along the 0-5 LAJ range and not to
analyse the results on an average basis over the whole LAl range (see example of
Fig. 6.1). The values of dLA] were averaged per disturbing factor for each VI, and
are presented as function of LAJ in Figure 6.2. For all disturbing factors but soil
background, the estimation accuracy was lowest at low values of LAl and generally
increased with LA/

Ilumination conditions had the smallest effect on the accuracy of LA/
estimation for all four VIs (note the difference in dLAf scale between Figs. 6.2a/b
and 6.2c-f). Errors in LAl estimation were generally not higher than 0.25 at high
tevels of LAI. The IR/GR and the NDVT had generally the lowest estimation errors,
The low errors implicate that no further correction on remotely sensed optical data
for illumination condition is needed.

Soil background had the second smallest effect on the estimation accuracy. The
IR/GR ratio and the NDVI limited the error to 0.25, the WDV and the PVI to about
0.4. The errors were constant over the whole LAT range.

Canopy properties had relatively the largest effect on the estimation accuracy.
GR leaf colour largely affected the estimation errors with the IR/GR ratio and the
NDVI. the errors sharply increased from about (.5 at an LAf of 2, to 3.5 at an LA/
of 4.5. The PVI and the WDVJ limited the errors to 0.1 and 0.4 respectively at a
high LAI of 5.
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dlAl  Leaf green scattering coefficient

ol NDVI
|

3t 7

6.2f

Figure 6.2. Theoretical error in LAI estimation from the IRIGR ratio, the NDVI, the WDVI
and the PVI, as a function of LAl The errors were due 1o variations in fraction diffuse sky
irradiance (6.2a), sun angle (6.2b), soil background (6.2c), leaf angle distribution (6.2d),
leaf green scattering coefficient (6.2e), and leaf infra-red scattering coefficient (6.2f).
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The effect of IR leaf scattering coefficient was comparable with all four Vls.
The errors ranged from about 0.5 at medium LA levels to 1.5 at high LAI levels.

The estimation errors caused by leaf angle distribution were again lowest with
the JR/GR ratio and the NDVI; they limited the errors to 0.25 at LAJ values up to 3.
The estimation errors with the PVI and the WDVT steadily increased from 0 at an
LAIof 0,t0 1.5 atan LAJ of 5.

The example of the effect of GR leaf colour clearly demonstrated the necessity
to evaluate the perfonmance of the VIs in terms of estimation accuracy. From Table
6.5 it is read that the average sensitivity §° of the IR/GR ratio to GR leaf colour was
three times larger than that of the NDVI. The lower S’ of the NDVI however, was
counter-affected by its lower sensitivity to LAL. The end result, the accuracy of LA/
estimation, was similar for both.

Figure 6.2 suggests that, in practice the optimum V7 for estimation of LAJ will
be largely determined by occurring variations in GR leaf colour. With a stable GR
leaf colour, the estimation errors will be lowest with the JR/GR ratio and the NDVI.
When GR leaf colour is variable, the estimation errors will probably be lowest with
the WDV, The estimation errors were largest with the PVT for all other disturbing
factors.

The final error in LA7 estimation in field situations will depend on the
combination and magnitude of occurring disturbing factors, especially GR leaf
colour and leaf angle distribution. The effect of variation in ong factor might either
counter-affect or reinforce that in another factor. To simulate possible field
situations, the model EXTRAD was run 100 times with a random selection of
parameter values chosen between the boundary values given in Table 6.3. The
errors in LAl estimation were averaged over these 100 runs and given in Figure
6.3a. In this example, the estimation errors were lowest nearly throughout the
whole 0-5 LA/ range with the IR/GR ratio and the NDVI (exactly the same errors).
The estimation error was limited to 0.15-0.25 between LAS values of 0 and 2.5, and
increased to 1.25 at an LAJ of 5. The estimation error was only smaller with the
WDVI at LA values lower than 0.5. The estimation errors were largest with the PV
because of the accumulation of large errors with all disturbing factors (except GR
leaf colour).

6.4 Field verification

The data set of the radiometer measurements used to calibrate the EXTRAD
model comprised variations in disturbing factors. Reflectance measurements were
made with either a dry or a wet top soil, depending on the natural whims of rainfall.
They were also made in the course of a whole day so that variation in illumination
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conditions was present. Furthermore, the data set consisted of measurements on
different fields in two years. This set was therefore suitable to study the accuracy
of LAT estimation from VIs in a specified, regional agricultural situation.

The VIs were calculated from the measured GR and IR reflectances and plotted
against measured LAJ. The model EXTRAD was fitted to these data for each V7
separately to obtain the best curve per VY. This resulted in only minor differences in
the fitted parameters for the four VIs. An example is given in Figure 6.4 for the
IR/GR ratio and the WDVI. For both VIs, the fitted curve ran nicely through the
data set. For the JR/GR ratio, the scatter around the curve was larger at high values
of LAJ than at low values, suggesting variation in GR leaf colour (compare Fig.
6.2e). For the WDVJ, the scatter around the curve at high values of LAl was
smaller.

The fitted curves through the VI-LAl data sets were now used to estimate LAJ
from the measured VIs. The estimated LA/ was compared with the measured LAl to
give the error in estimation dLAI. For graphical presentation, the emrors were
smoothed by taking the average of a dLAJ value with two neighbouring values (Fig.
6.3b). The best V] for accurate estimations of LA/ in this data set was the WDVI:
the estimation error was about 0.1 at low values of LAl and averaged 0.35 at high
values of LAl. The estimation errors with the JR/GR ratio and the NDVI were
mutually nearly identical and averaged 0.1 at low levels of LAf, and 0.8 at high
levels.

The magnitude of the errors of estitmation in Figure 6.3b compared favourably
with those of the simulation study in Figure 6.3a up to LAl values of 3. After LAJ
values of 3, the errors were smaller in the field experiment than in the simulation
study. In both cases, the estimation errors were highest with the PVI at all values of
LAL In the simulation study, however, the estimation errors were lowest with the
IR/GR ratio and the NDVI. In the field experiment, the errors were lowest with the
WDVI. The lower estimation errors with the WDV in the field experiment again
suggested a relatively large variation in GR leaf colour compared to that in other
disturbing factors, especially leaf angle distribution. Field observations and
literature (De Wit, 1965; Loomis and Williams, 1969) indicate that sugar beet has a
high consistency in leaf angle distribution throughout the growing season.
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6.5 Discussion

The simulation study for average disturbing conditions, and the field
experiment indicated that the LAS could be estimated from either the JR/GR ratio
and the NDVI, or the WDVI, with accuracies that ranged between about 0.1 for
O<LAI<1 and 0.35 for 3<LAI<5. These values agree with the magnitude of the
errors given in Table 6.1 (Den Dulk, 1989). In practice, the accuracy of estimating
LAI will depend largely on the occurring variation in leaf colour. Even in sugar
beet that has no phase of ripening and yellowing of the canopy, the WD VI was the
best VT for estimating LAJ.

In the analysis of the field experiment, the error in the standard LAJ
determination through leaf surface measurements (typically 0.25 tw 0.4 at LAJ
values around three; van Keulen, pers. comm.) was tacitly neglected. All
differences between the LAS determined by the standard method (LAT true'), and
that estimated from the VIs were attributed to estimation errors from the VIs. Since
part of these differences should be attributed to errors in the standard LAJ
determination, the accuracy of the VI-LAJ estimation is in reality probably higher
than that given in Figure 6.3b.

The effect of (GR) leaf colour on the estimation accuracy of LAl from the
IR/GR ratio and the NDVI was relatively large. In preliminary reflection and
transmission measurements on individual leaves, the variation in scattering
properties was, on an absolute scale smaller in the red band than in the green band.
This suggests that the red band would be more suitable than the green band for the
estimation of LAI from vegetation indices.

In this study, the crop parameter of interest was LA/ while leaf colour and
canopy structure were treated as disturbing factors. However, leaf colour and
canopy structure may also be properties of interest (e.g. in the relationship between
leaf colour and rate of photosynthesis). The presented analysis can be repeated for
any selection of properties of interest and 'disturbing’ factors.
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7 LINKING PHYSICAL REMOTE SENSING
MODELS WITH CROP GROWTH
SIMULATION MODELS, APPLIED FOR
SUGAR BEET

Abstract In recent years, remote sensing and crop growth simulation models
have become increasingly recognized as potential tools for growth monitoring and
yield estimation of agricultural crops. In this paper, a methodology is developed to
link remote sensing data with a crop growth model for monitoring crop growth and
development. The 'Cloud’ equations for radar backscattering and the optical canopy
radiation model EXTRAD were linked to the crop growth simulation model
SUCROS: SUCROS-Cloud-EXTRAD. This combined model was initialized and
re-parameterized to fit simulated X-band radar backscattering and/or optical
reflectance values, to measured values. The developed methodology was applied
for sugar beet. The simulated canopy biomass after initialization and re-
parameterization was compared with simulated canopy biomass with SUCROS
using standard input, and with measured biomass in the field, for 11 fields in
different years and different locations.

The seasonal-average error in simulated canopy biomass was smaller with the
initialized and re-parameterized model (225-475 kg/ha), than with SUCROS using
standard input (390-700 kg/ha), with 'end-of-scasom’ canopy biomass values
between 5500 and 7000 kg/ha.

X-band radar backscattering and optical reflectance data were very effective in
the initialization of SUCROS. The radar backscattering data further adjusted
SUCROS only during early crop growth (exponential growth), whereas optical data
still adjusted SUCROS until late in the growing season (at high levels of LA/J, 3-5).

7.1 Introduction

In agriculture, monitoring of crop growth and development, and early estimates
of the final yield to be expected are of gemeral interest. Traditionally, yield
forecasts are made on the basis of samples at individual farmers, i.e. field visits or
written enquiries. Problems encountered concern subjectivity in responses,
respondent differences and non-response (Heath, 1990). On regional and (inter-)
national scales, the processing of these sample data is an expensive and time-
consuming procedure. In general, there is a need for an objective, standardized and
possibly cheaper and faster methodology for collecting yield estimations. The last
few years, attention has been paid to the possibilities of crop growth models and
remote sensing techniques (King, 1988; Toselli and Meyer-Roux, 1990). In this
paper, a methodology is developed to link radar and optical remote sensing data
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with a crop growth simulation model for the monitoring of crop growth. The
description of the methodology is preceeded by a short literature review to sketch
some approaches and problems encountered so far.

In the integration with growth models, remote sensing data are mostly used to
estimate some measure of light interception, e.g. Leaf Area Index (LAI) or green
soil cover (Wicgand et al., 1986; Bimic et al., 1987). The rate of crop growth is
then calculated from the product of light interception with global solar radiation
and an efficiency factor with which crops convert radiant energy to biomass
(Steven et al., 1983; Garcia et al., 1988; Bouman and Goudriaan, 1989). Using
more elaborate, cyclic growth models, Kanemasu et al. (1984) and Maas (1988)
replaced the LAT simmlated in time by the model itself, with the LA estimated from
remote sensing data. However, Maas pointed out that a high accuracy of simulation
results is dependent on frequent remote sensing observations. He developed a
technique to initialize and re-parameterize a crop growth model to the LAl
estimated from remote sensing data,

For practical reasons, LAl or soil cover is often estimated from (semi-)
empirical regressions on remote sensing data. Such regressions are generally only
valid for the specific environment and growth conditions under which they were
derived. Morcover, they are non-explanatory and ignore existing knowledge on the
interaction of radiation (light, microwaves} with vegetation canopies. Deterministic
remote sensing models that explain the remote sensing signals from crop canopies
have a wider applicability. However, the inversion of these models for the
estimation of crop variables is often a difficult and cumbersome procedure (Goel et
al., 1983, 1984). Finally, with (X-band) radar data, the accuracy of crop parameter
estimation, like seil cover, is often too low for use in crop growth models
(Boumnan, 1991),

The synergistic use of remote sensing data from different types of sensors in
crop growth models is, up to now, hardly being addressed. Researchers have
suggested to relate optical and microwave remote sensing signals to crop
parameters through common physical concepts (Goel, 1985; Clevers, 1988a). The
estimation of, for instance LA/, may be improved with the introduction of
independent equations that relate LA to different remote sensing signals. However,
this approach does not benefit from sensor-specific information and will not be
pursued here.

In this paper a methodelogy of integrating remote sensing data with crop
growth models is presented, that allows for the use of data from different types of
sensors. Theoretic remote sensing models were not analytically inverted, but used
in their original, explanatory formulation. The remote sensing models were ‘Cloud’
for canopy radar backscattering (Attema and Ulaby, 1978), and EXTRAD
(EXTinction of RADiation) for optical canopy reflectance (Goudriaan, 1977). The
radar backscattering was taken in the X-band (3-cm waves), and the optical
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reflectance in the visible and near infra-red wavelengths. The used crop growth
model was SUCRQS (Simple and Universal CROp growth Simulator; Spitters et
al., 1989). The methodology was tested on data of 11 fields of sugar beet, in
different years and different locations.

7.2 Methodology

The crop growth simulation model SUCROS was extended with the 'Cloud'
equations and the reflectance model EXTRAD. The combined SUCROS-Cloud-
EXTRAD model simulated crop variables, such as biomass and LAI, together with
radar backscattering and canopy reflectance during the growing season. SUCROS-
Cloud-EXTRAD was then initialized and parameterized to fit the simulated remote
sensing signals to the measured signals (Fig. 7.1).

7.2.1 The crop growth model SUCROS

SUCROS is a mechanistic crop growth model that describes the potential
growth of a crop from irradiation, air temperature and crop characteristics.
Potential growth means the accumulation of dry matter under ample supply of
water and nutrients, in an environment that is free from pests and diseases.

A schematic illustration of the model is given in Figure 7.2, The light profile
within a crop canopy is computed on the basis of the Leaf Area Index (LA} and the
extinction coefficient (based on the formulations in EXTRAD, see §7.2.3). At
selected times during the day and at selected depths within the canopy,
photosynthesis is calculated from the photosynthesis-light response of individual
leaves. This response curve is characterized with its initial slope (the initial light
use efficiency) and the asymptote (the light saturated photosynthesis). Integration
over the canopy layers and over time within the day gives the daily assimilation
ratc of the crop (partly from Spitters, 1990).

Assimilated matter is first used to maintain the present biomass (maintenance
respiration) and for the remainder converted into new, structural plant matter (with
loss due to growth respiration). The newly formed dry matter is partitioned to the
various plant organs through partitioning factors introduced as a function of the
phenological development stage of the crop. Multiptication of the simulated leaf
dry matter with the specific leaf area of new leaves gives the increase in leaf area
(LAD. The increase in leaf area contributes to next day's light interception and
hence to next day's rate of assimilation.
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The parameters of the model can be divided into species parameters (e.g.
partitioning factors, light use efficiency), location parameters (latitude),
initialization parameters (e.g. sowing date, number of plants/m?) and driving
variables (daily irradiance, daily maximum and minimum temperature). Species
parameters have 1o be estimated from field and laboratory measurements. Location
and initialization parameters have to be known for each simulation condition, and
driving variables have to be measured datly throughout the growing season.

7.2.2 The Cloud’ equations for radar backscattering

Attema and Ulaby (1978) have modelled the radar backscattering from
vegetation by representing the vegetation canopy as a cloud of isotropic water
droplets. Their 'Cloud’ equations belong to the class of semi-empirical medels. The
driving variables are the amount of water in the vegetation canopy and the
volumetric moisture content in the top soil (for X-band radar, typically the layer of
0-5 cm). The radar backscattering is calculated at different angles of incidence:

¥ = C(0).[1-exp(-DW/cosB)] + G(9).exp(Km-DW/cos) 4y

where ¥ = radar cross section per unit projected area (m2%/m?2), W = amount of water
in the canopy per unit soil surface (kg/m2), m = volumetric soil moisture content
(%), 6 = incidence angle ("), D = coefficient of attenuation, K = soil moisture
coefficient, C(8) = backscattering of an optically thick crop cover, G(8) =
backscattering of dry soil. The parameters C(8), I, G(0) and K have to determined
from regression analysis for specific crop types (from theoretical considerations K
= 0.05-0.06). An example of ¥ as function of the amount of canopy water is given
for sugar beet in Figure 7.3. The ¥ increases mainly with the early growth (= 0-
1000 kg/ha) in canopy water.

The 'Cloud’ equations were linked to SUCROS by calculating the amount of
water in the canopy from the simulated canopy dry biomass and the water content
of the canopy (Fig. 7.2). Canopy water content {defined as fresh canopy weight
minus dry canopy weight, divided by fresh weight) was derived from ficld
experiments for different crop types. In sugar beet, the canopy water content was
stable throughout the growing season at about 91%.

For the time being, the input for soil moisture content was taken from
measurements in the field (see § 7.5.2).
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Figure 7.3. X-band radar backscattering (y at 40° incidence angle) versus the amount of
canopy water in sugar beet. ¥ are measurements on beet in 1979 and the drawn line is the
finted ‘Cloud’ curve,

7.2.3 The canopy radiation model EXTRAD

EXTRAD was developed by Goudriaan (1977} to calculate the (solar) radiation
profile in crop canopies. A simplified version of EXTRAD is used in the
photosynthesis subroutine of SUCROS to compute the extinction of
photosynthetically active radiation (= 400-700 nm wavelength). However, the
original, more detailed model was needed to calculate the directional reflectance
from crop canopies at specific wavelengths up to the infrared region.

In EXTRAD, the canopy is subdivided into a number of horizontal infinitely
extended layers. The leaves in these layers are assumed to have Lambertian
scattering properties, and to have a uniform azimuthal distribution. The angle
distribution of the leaves is described by nine inclination intervals from 10° each.
The radiation profile in the canopy is then calculated with a relaxation method. The
canopy reflectance in a given direction (in our study: nadir) is computed from the
total radiance leaving the top layer of the canopy in that direction.
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The input of the model are crop parameters (LAJ, leaf scattering coefficient at
specific wavelength, leaf angle distribution function), soil parameters
(hemispherical reflection coefficient at specific wavelength) and illumination
parameters (solar elevation angle, fraction diffuse sky irradiance). In principle,
each parameter can be physically measured. Because a constant value is used as
input for the reflection coefficient of bare soil, the influence of top soil (= 0-1 cm)
moisture content on the reflectance of a crop-soeil system is not modelled. However,
the Weighted Difference Vegetation Index (WDVI), calculated from the infrared
(/R) and the green (GR) (or red) reflectance, is relatively insensitive to variation in
so0il moisture content (Bouman, 1991; Clevers, 1989b):

WDVI =1IR_ - (R/GRIGR, 2
where IR, and GR, is the reflectance of the bare soil, and IR, and GR, is the

reflectance of the crop. An example of the relation between WDVI and LA/ is given
for sugar beet in Figure 7.4.

Wovi

6

LAl

Figure 7.4. The Weighted Difference Vegeration Index (WDVI) versus Leaf Areq Index
(LAI) for sugar beet. ® are measurements on beet in 1987-1988 and the drawn line is the
Jitted EXTRAD curve.
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EXTRAD was linked to SUCROS through the simulated LAJ (Fig. 7.2). The
other crop parameters were chosen according to crop type. In sugar beet, the leaf
angle distribution was chosen spherical during the whole growing season. The
scattering coefficients of the leaves were estimated from regression analysis on
experimental data sets, and the hemispherical soil reflection coefficients were
derived from measurements on bare soil. The input parameters for illumination
conditions were chosen for each simulation condition. In principle, solar elevation
angle and fraction diffuse sky irradiance can be set to actual conditions on days of
remote sensing measurements.

7.2.4 Combined model functioning.

An example of simulated canopy biomass, LA/, X-band radar backscattering y
and WDVI with the combined SUCROS-Cloud-EXTRAD model is given for a
hypothetical sugar beet crop in Figure 7.5.

In the early crop growth, ¥ reacted strongly on the first increase in canopy
water (compare Fig. 7.3): ¥ increased already on day 140 with no significant dry
biomass accurnulation. The ¥ also saturated relatively soon, at day 180 with only
some 2500 kg/ha dry biomass, and after day 180, no information on crop growth
could be derived from .

The WDVI developed parallel to the LAJ. It increased on about day 150 and
reached a maximum value together with LA/ on day 195. Because the maximum
value of the WDVI was related to the maximum value of LA/, the WDVI still
yielded information on LAI development at high levels of LAL

Figure 7.5 illustrates the (potential} gain by considering both radar
backscattering and optical reflectance data. (X-band) radar data extended the range
over which information on crop growth can be derived in the ‘early-growth’
direction, and optical data in the 'mid-scason’ direction.

7.2.5 Initialization and (re- }parameterization

In reality, most crop species parameters in SUCROS do not have one specific
value but are characterized by a 'biologically plausible range' (Rouse et al,, 1991),
This variation in parameter values allows for a range in simulation results from
SUCROS-Cloud-EXTRAD. The mode]l may thus be (re-)parameterized within the
biclogically plausible ranges to fit the simulated remote sensing signals to the
measured remote sensing signals. Parameterization of the starting conditions {e.g.
sowing date, number of plants!mz) of SUCROS is called initialization.
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Figure 7.5. Simulated canopy biomass, Leaf Area Index, X-band radar backscanering (v ar
40 "incidence angle) and optical reflection (WDVI} of a hypothetical sugar beet crop with
the combined SUCROS-Cloud-EXTRAD model. The simulation environment was the

Flevopolder with weather data from 1988.
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Initialization and (re-)parameterization of SUCROS-Cloud-EXTRAD was
based on a controlled random search procedure as developed by Price (1979) and
extended by Klepper (1989) and Rouse et al. (1991). This procedure yielded per
sirmulation condition ‘optimum' initialization conditions and species parameter
values. OQptimum refers to parameter values that resulted in the smallest (absolute)
difference between simulated and measured remote sensing signals (either optical
or radar, or both), averaged over the whole growing season. With optimum
parameter values, the simulated time course of remote sensing signals best fitted
the measured signals. The procedure provided for the optimization of any number
of parameters, to any number and combination of measured remote sensing signals.
Thus, SUCROS-Cloud-EXTRAD could be optimized simultaneously to both
optical and radar remote sensing measurements, at any combination of (radar)
incidence angles.

A sensitivity analysis was used to select the initialization conditions and crop
species parameters to be (re-)parameterized. The growing season was divided into
three distinct growth periods: initialization, exponential growth, and linear growth
(Fig. 7.5). Per growth period, parameters were selected that had a large effect on
both the remote sensing signal and the canopy biomass and/or the LAl (Table 7.1).
Because of the redundancy in the effect of parameter changes, the selection of
parameters was kept to a minimum. With only radar data, 'sowing date’ and
'refative growth rate’ were selected. Changes in parameter values during linear
growth had hardly any effect on 'y (see also Fig. 7.5). With optical data, 'sowing
date', 'relative growth rate', light use efficiency' and 'maximum leaf area’ were
selected. ‘Maximum leaf area’ (defined here as the leaf area above which dying
occurs due to shading) had especially a large effect on the WDVT and the LA in the
second half of the period of linear growth.

Because the parameterization procedure optimized a number of parameters at
the same time, the obtained optimum values may deviate from the true physical
values, Optimum values only fitted the simulated remote sensing signals to the
measured signals in order to improve the simulations of canopy biomass.

7.3 Description of experiments

The developed methodology was tested on & historical data set of 11 fields of
sugar beet, both on experimental stations (1975-1983) and on farms in agricultural
practice (1987-1988). The experiments were held in two different regions in The
Netherlands: Wageningen and South-Flevoland (Table 7.2). The choice of this data
set was solely guided by the availability of data (optical, radar, groundtruth),
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Table 7.2. Year, location (Wag = Wageningen, Fle = Flevoland), type and number of
remote sensing observations of experiments on sugar beet.

Observation days

Year Location Station name Radar Optical
13975 wWag Droevendaal {1 field ) 20 -

1979 wag De Bouwing { " } 35 -

1980 Fle De Schreef | ” ) 36 34

1981 Fle De Schreef ( " } 17 -

1983 Fle De Schreef ( " } - 32

1987 Fle 'Farmer' (3 fields) - 6

1988 Fle 'Farmer' {3 fields) - 9

The X-band radar backscattering was measured at 9.5 GHz, with a frequency
sweep of about 0.4 GHz, using a ground-based FM-CW radar (van Kasteren and
Smit, 1977; de Loor et al., 1982). Measurements were used here at different angles
of incidence and at vertical co-polarization (VV: vertical transmitting and vertical
receiving). The green (nadir) canopy reflectance was measured at 548 nm with a
bandwidth of 31 nm, and the infra-red reflectance at 823 nm with a bandwidth of
80 nm, vsing a portable radiometer (van Kasteren, 1981). Both the radar system
and the radiometer were frequently calibrated to ensure compatibility over the
vears,

Each year, canopy biomass and canopy water content were measured in the
field at selected intervals during the growing season. The LA/ was only measured
in 1983-1988. On the experimental stations, canopy biomass was smoothed with
growth functions, and values for the days of remote sensing observation were
interpolated. In 1987 and 1988, the measurements coincided with the remote
sensing observations.

In all years but 1975 and 1983, the volumetric moisture content of 0-5 cm top
soil was measuored on all days of remote sensing observation.

For this study, the empirical parameters of SUCROS, 'Cloud’ and EXTRAD
were determined/adapted for both the Wageningen and the Flevoland region.

SUCROS was originally developed and calibrated on field data in the
Wageningen region (Spitters et al., 1989). For this study, the model was adapted
for the Flevopolder region on the basis of the 1987 and 1588 data. Adaptations
were made in the assimilate partitioning factors between leaf blades and leaf stems.
Because of the prolonged growth of leaves (as compared to the Wageningen




132

region), the influence of temperature sum on the leaf photosynthesis rate and on the
death rate of leaves, was removed.

The 'Cloud’ equations were calibrated for the Wageningen region in 1979
(Hoekman et al, 1982) and for the Fleveland region in 1980 (Bouman and
Goudriaan, 1989). EXTRAD was calibrated for the Flevoland region on the data of
1983, and on the data of 1987 and 1988.

7.4 Results

The simulations with the optimized SUCROS-Cloud-EXTRAD model were
compared to those obtained with SUCROS-Cloud-EXTRAD with standard model
input ('standard SUCROS"). Standard SUCROS runs were initialized with actual
sowing dates. First, results will be discussed for a case study of beet in 1980 with
optimization to radar data, to optical data, and to both radar and optical data (§
7.4.1). Beet in 1980 are presented because only this year, both radar backscattering
and optical reflectance were measured (Table 7.2). Next, the results of the
methodology, expressed as seasonal-average difference between simulated and
measured canopy biomass, are presented for all available data sets (§ 7.4.2).
Finally, some limitations of the SUCROS-Cloud-EXTRAD model are indicated
with a case study of beetin 1975 (§ 7.4.3).

7.4.1 Sugar beet in 1980

With standard SUCROS the simulated canopy biomass underestimated actual
values during the whole growing season (Fig. 7.6). The corresponding simulated 7y
and WDVI were lower than the measured data in the early part of the growing
season. The simulated WDVI was higher than the measured WDVI in the second
half of the season,

After optimization to +y at 20°, 40° and 60° incidence angle, the simulated
canopy biomass overestimated measured values for the largest part of the growing
season (Fig. 7.6a). The description of the radar backscattering by the 'Cloud’
equations was not adequate enough for better simulation results (of canopy
biomass). In this case, a relatively large contribution of the soil background to the
total radar backscattering from day 170 on {caused by high soil moisture contents)
was 'misinterpreted’ by the 'Cloud’ equations as relatively high canopy water (and
consequently high canopy biomass) values. However, the difference between
simulated and measured canopy biomass, averaged over the whole growing season,
was smaller than with standard SUCROS (Fig. 7.7).
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Figure 7.6, Simulated canopy biomass, X-band radar backscattering (Y at 40° incidence
angle) and oprical reflection (WDVI) for beet in 1980, with standard SUCROS and with
SUCROS-Cloud-EXTRAD optimized to ¥ (7.6alb) and optimized to WDVI (7.6c/d). ¥ are
field measurements.



135

Error in canopy biomass (kgha)
w7

600 T

500 +

400 +

300 +

200 T

Standard Radar Optic Radar + optic

Figure 7.7. Seasonal-average error between measured and simulated canopy biomass for
beet in 1980, with standard SUCROS, and with SUCROS-Cloud-EXTRAD optimized to vy
(radar), to WDVI (optic) and to both ¥ and WDVI (radar + optic).

With optimization to WDVI, the simulated canopy biomass was in good agreement
with measured data until day 205 (Fig. 7.6c). After day 205, SUCROS started to
partition a larger portion of the assimilates to the underground crop parts, at the
expense of the {above ground) canopy. The field measurements, however, showed
that the growth of the canopy biomnass after day 205 still took place at the same rate
as before. After day 205, the (optimized) simulated WDVI remained a bit lower
than measured WDVI. By optimizing SUCROS-Cloud-EXTRAD also to assimilate
partitioning between canopy and root, simulated WDV{ and canopy biomass could
be brought in better agreement with measured values after day 205. However,
because optical reflectance data only provide information on the above ground
parts of the crop, the optimization to canopy-root assimilate partitioning seems a
hazardous affair. Moreover, the optimized simulation of assimilate partitioning
could not be verified due to the lack of measurements on root weight.

The seasonal-average difference between simulated and measured canopy
bicmass was smaller than with SUCROS-Cloud-EXTRAD optimized to v (Fig.
7M.

Figures 7.6a and 7.6¢ indicate that optimization of SUCROS-Cloud-EXTRAD
to both v and WDVI would not improve canopy biomass simulation over




136

optimization to WDV/ only. However, the overestimation of canopy biomass with
optimization to y compensated somewhat for the underestimation with optimization
to WDV at the end of the growing season (Fig. 7.7).

74.2 All fields 1975-1988

The seasonal-average error in simulated canopy biomass with standard
SUCROS and with optimized SUCROS-Cloud-EXTRAD was calculated for all
available data sets (Fig. 7.8). The errors were averaged over data between crop
emergence and harvesting. In 1975 and 1981, the errors were calculated over the
first half of the growing season only, i.e. between crop emergence and some two
weeks after closure of the canopy (~ day 190). In 1975, a decrease in actual canopy
biomass after day 190 hindered a meaningful comparison with simulations (see §
7.4.3). In 1981 biomass measurements were only made until day 190.

Error in canopy biemass {kg'ha)
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300 1
200 1
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Figure 7.8. Seasonal-average error between measured and simulated canopy biomass for
beet in 1975-1988, with standard SUCROS and with optimized SUCROS-Cloud-EXTRAD.
‘Ra’ means optimization to g, and 'Op’ to WDVI.
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In 1987 and 1988, the errors are averages over three fields, and in the other years,
the errors relate to one field per year (Table 7.2).

Except for 1988, the errors with optimized SUCROS-Cloud-EXTRAD were
lower than with standard SUCRQOS. The seasonal-average error in simulated
canopy biomass with the optimized medel ranged between 225 and 4735 kg/ha, and
with standard SUCROS between 390 and 700 kg/ha. For comparison: the 'end-of-
season' canopy biomass values ranged between 5500 and 7000 kg/ha.

In 1988, the larger errors with optimized SUCROS-Cloud-EXTRAD were
caused by a deviating (from other years) growth pattern of leaf-stems measured in
the field (all three fields!). Only the biomass of leaf-blades was simulated
accurately by the optimized model (to WDVI). The deviating measured growth
pattern of leaf-stems could not be explained by the growth model SUCRQS,

In 1975 and 1981 with radar data, and in 1980 with optical data, the model
components of SUCROS-Cloud-EXTRAD were calibrated on independent data
sets. In these years, the simulations of canopy biomass may be regarded as
‘predictions’. In the other years, some or all SUCROS-Cloud-EXTRAD
components were calibrated on the same data set used for comparison with
simulations.

743 Model limitations

In 1975, crop growth of beet was seriously affected by drought in the second
half of the growing season. Canopy biomass actually decreased after day =~ 190
(Fig. 7.9). Simulations of canopy biomass with standard SUCROS already
underestimated early crop growth. Moreover, because water stress is not modelled
in SUCROS (§ 7.2.1: ample supply of water), the decrease in canopy biomass was
not simulated.

SUCROS-Cloud-EXTRAD was optimized to -y at 20°, 50° and 70° incidence
angle. Since ne soil moisture contents were measured, this input in the 'Cloud'
subroutine was fixed at 10% throughout the growing season. The optimized model
simulated canopy biomass more accurately in the first half of the growing season
(see also Fig. 7.8). Because ¥ was saturated above 2500 kg/ha canopy biomass
(compare Fig. 7.5), the decrease in canopy biomass after day 190 was not noticed
in the radar data and simulated canopy biomass kept on increasing.

Because no optical data were collected, the performance of SUCROS-Cloud-
EXTRAD optimized to WDVI could not be evaluated. However, even if the WDVI
did notice the decrease in canopy biomass (through decreasing LAD), the influence
of water stress has to be included in SUCROS for correct simulations.
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Figure 7.9, Simulated canopy biomass of sugar beet in 1975, with standard SUCROS and
with SUCROS-Cloud-EXTRAD oprimized to . ® are field measurements.

7.5 Discussion
75.1 Conclusion

Initialized and (re-)parameterized SUCROS-Cloud-EXTRAD to X-band radar
() and optical (WDVI) remote sensing data generally simulated canopy biomass
more accurately than SUCROS with standard crop-species input and actual sowing
date. Moreover, for growth monitoring on a regional scale, actual sowing dates of
crops are generally not available as input for SUCROS.

The radar and optical remote sensing measurements adjusted the crop growth
model mainly in the period of initialization and exponential growth. The ¥ saturated
above canopy biomass values of about 2500 kg/ha and then no longer provided
information on crop growth, The WDVI still yielded useful information on LA/
development at high levels of LA (3-5) in the second half of the growing season.
Though the effect of LAJ on net assimilation rate is relatively low at LAJ values
above three, a correct simulation of (high levels of) LAl is important for an
accurate simulation of assimilate partitioning. This latter is important in crops
where only specific parts have economic value, e.g. grains, roots, tubers.
Furthermore, radar backscattering and optical reflectance data provide direct
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information only on the (above-ground) crop canopy. The simulation of below-
ground parts temains a 'derivative' of the optimized simulation of above-ground
biomass.

73.2 Model improvements.

SUCROS-Cloud-EXTRAD may be improved by creating more links between
SUCROS and the remote sensing model components. In the crop canopy,
assimilate partitioning may be detected by remote sensing signals if the
contribution of specific canopy parts to the total remote sensing signal of the crop
is explicitly modelled. For example, in the two-layer 'Cloud' equations (Hoekman
et al., 1982) a distinction is made between the contribution from the layer of ears in
cereals, and that from the underlying vegetative matter. Up to now, more
deterministic backscattering models that include canopy structure (Eom and Fung,
1984; Chuah and Tan, 1990) have been too complex for integration with crop
growth models.

Again in cereals, the leaf angle distribution, canopy water content (in the ear-
layer and in the vegetative layer) and leaf colour change with crop development.
These three 'linking' parameters may be introduced in SUCROS as function of
development stage. Possible links using the green leaf colour, that influences
visible canopy reflectance and that may be related to leaf photosynthesis rate, have
to be studied further.

In this study, measured top soil moisture contents were used as input in the
'Cloud' equations to calculate the radar backscattering. In practical applications, top
soil moisture contents have to be estimated otherwise, for example from rainfall
data, from C-band radar measurements (Bernard et al., 1982, 1984), or from radar
measurements in combination with a water balance model (Prévot et al., 1984).
The introduction of a soil water balance may also be used to extend SUCROS to
account for effects of water stress, like for instance in WOFOST (van Diepen et al.,
1989). Remote sensing models and observations in thermal bands may then be used
to steer crop growth via the modelling of crop evapotranspiration (Thunnissen and
Nieuwenhuis, 1989).

Finally, SUCROS-Cloud-EXTRAD may be extended with remote sensing
models that operate in other radar bands or in the passive microwave region.
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8 MAIN CONCLUSIONS AND DISCUSSION

This chapter synthesizes the main conclusions from the previous chapters,
discusses implications and suggests possible directions for further research. First,
the possibilities of specifically X-band radar remote sensing for use in monitoring
crop growth and development are discussed. Next, two methods are described that
were developed to link radar and optical remote sensing data with crop growth
models for monitoring crop biomass.

8.1 The suitability of X-band radar for monitoring growth and
development

The importance of canopy structure for X-band radar backscattering

An analysis was made of the main faciors that influence radar backscattering of
crop canopies. It was found that the X-band radar backscattering of crops was
largely determined by canopy structure: the size, shape and orientation of canopy
elements in three-dimensional space. Because the microwave dielectric constant of
water is by an order of magnitude higher than that of dry biomass (Attema and
Ulaby, 1978; Hoekman et al., 1982), water, for radar, is the most important
constituent of cancpy elements. It was found that even the spatial orientation of
elongated cancpy elements with a relatively low water content (= 10-20%), like
straw and stubble, could still dominate the radar backscattering.

For a given crop type, variation in canopy structure may occur because of
variety, ridge direction (potato), row spacing, wind and rain. In potato crops, the
ridge direction was a major backscattering-infuencing factor from bare soil to =
80% closure of the canopy. In wheat, barley and oats, the backscattering was
greatly affected by lodging. In barley, the azimuthal orientation of the ears, as
determined by wind direction and speed, was an important factor influencing radar
backscattering. Canopy structure also changes due to morphological development
in the course of the growing season.

Because of sensitivity to canopy structure, radar may be a tool to measure or
monitor the morphology of crops. No instrument is as yet capable of doing so (non-
destructively}. Canopy structure is the basis of many morphological stages used to
describe crop development (e.g. Zadoks et al., 1974). If the radar backscattering
can be related to the morphological development of the crop, this information can
be used in crop growth models. For instance in wheat, barley and oats, the temporal
signature of the radar backscattering was shown to indicate general crop
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development stages. Furthermore, canopy structure may give information about the
general status of the crop, like lodging or wilting, which can affect crop growth. In
wheat, for example, a sudden increase in radar backscattering suggested lodging.
However, an interpretation such as this can be ambiguous sometimes because of
unknown variables involved in determining radar backscattering., It can be
expected that this problem will be solved by experienced interpreters by comparing
other ficlds in the same region on radar imagery. (Other ways to solve ambiguities
in the interpretation of canopy structure from radar data are given at the end of the
end of this paragraph).

Another way of using the sensitivity of radar to canopy stmcture is in crop
classification (Batliva and Ulaby, 1975; van Kasteren, 1981; Hoogeboom, 1983;
Uenk et al., 1987; Wooding, 1988; Wegmiiller, 1990). It is suggested here that crop
types are differentiated mainly because of differences in canopy structure. For the
monitoring of crop growth and yield estimations on a regional level, a
classification of crops and an acreage inventory are the first steps that must be
made.

Estimation of crop growth variables from X-band radar backscattering

Next, X-band radar data have been investigated in terms of the possibilities for
estimating crop growth variables. Canopy biomass, canopy water, soil cover and
height were estimated from radar data through empirical regressions and the semi-
physical 'Cloud’ equations, It was found that the estimation accuracies were
generally too low for precise growth monitoring or for use in crop growth models,
Out of the investigated crops (sugar beet, potato, wheat, barley, and oats),
estimation of growth variables was only feasible for sugar beet in the early growing
season. The amount of canopy water and the fraction soil cover were accurately
estimated to values of about 2 kg/m? and 0.8 respectively, from radar data at a
medium (40°-60°) and a high (60°-80°) angle of incidence.

The low estimation accuracies were caused by the simplicity of the estimation
algorithms, and by specific features of the X-band: the relatively large influence of
canopy structure, the early saturation of backscattering in the growing season
(sugar beet, potato), and the relatively low crop-soil contrast (potato, wheat,
barley). Even when regressions and the 'Cloud' equations are calibrated for specific
crops, varieties and growth conditions, the effects of wind and rain on the canopy
structure can not be accounted for (especially in cereals). It is suggested here that,
for the estimation of crop growth variables from X-band radar data, the growth
variable under consideration should be highly correlated with canopy structure.
The following crop characteristics seem then to be important: uniform canopy
geometry throughout the growing season, no azimuthal preference of canopy
elements, absence of canopy clements with a pronounced narrow, longitudinal
structure (e.g. ears and stems of wheat and barley), and relatively large and broad
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leaves. From this reasoning, ather crops that may be suitable for growth variable
estimation, beside beet, are maize, sorghum and millet in the vegetative phase of
the growing season.

Further research in radar remote sensing

More precise information on crop type, canopy structure and growth variables
from radar remote sensing may be obtained from the analysis of so-called ‘multi-
parameter’ data. Such data can be multi-angle, multi-temporal, multi-frequency or
multi-polarization (polarimetry). To be useful, such data should be independent. In
this study, it was found that multi-angle backscattering data in the X-band were
generally too highly correlated to be useful for the estimation of growth variables
(except for sugar beet; see above). In cereals, changes in canopy structure were
often angle-dependent, and may be recognized by skilful interpreters. However, the
use of a number of incidence angles is not suitable for observations from satellites.
The use of multi-ternporal radar data was elaborated in this study in combination
with crop growth models, and will be summarized in the next paragraph. A first
analysis of the usefulness of multi-frequency data was started in The Netherlands
with the Agriscait 1987-1988 (Bouman et al, 1991) and the Maestro 1989
campaigns. The Maestro campaign also initiated the study into radar peolarimetry.
Recent developments in this field of radar remote sensing seem especially
promising (Kong, 1990; Ulaby and Elazhi, 1990).

The radar satellites planned for the near-future, ERS-1, JERS-1 and Radarsat,
will only operate at one frequency, state of polarization and angle of incidence. The
main feature of these satellites is that they will provide multi-temporal radar
imagery of the surface of the Earth, unhindered by atmospheric conditions. This
study has shown that, due to the many factors involved in determining radar
backscattering, such data are generally not suitable for the precise estimation of
crop canopy conditions in terms of guantitative growth variables or canopy
structure. The use of future radar satellites in monitoring crop growth and
development should focuss mere on the spatial aspect of the radar data. The aim of
satellite remote sensing is the observation of regional to global surface conditions,
and not of detailed surface conditions on field level, Radar imagery can be used to
spatially map and geo-code radar backscattering in relation to other types of
geographic information such as topography, soil types, drainage conditions and
rainfall patterns. Such combined data set can be used to extrapolate knowledge on
the growth of crops on field level to regional and (inter-) national levels.
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8.2 Methods of linking remote sensing data with crop growth
models

Two methods were developed to link remote sensing data with crop growth
models to monitor crop biomass. The first method was the estimation of soil cover
from remote sensing data, and the use of this estimation as input into a light-
interception growth model. The second method was the calibration of the crop
growth model SUCROS on X-band radar backscattering and optical reflectance.

Estimation of soil cover from X-band radar data

In the first method, the growth rate of a crop was calculated from the fraction
sail cover, the incident solar radiation, and a light use efficiency. The biomass of
the crop was found by integration of the calculated growth rate of the crop in time.
The fraction soil cover was estimated from X-band radar data. From the crops
investigated (sugar beet, potato, wheat, barley, and oats), the use of X-band radar
was only feasible for sugar beet (see above). In a case study of sugar beet for three
different years, the canopy biomass was fairly accurately estimated throughout the
growing season. The average error of estimation was about 250 kg/ha during the
growing season. For operational use in biomass estimations, however, the
consistency of the model parameters in the ‘Cloud’ equations needs to be further
studied for differences in variety, and regional and climatological conditions.

Estimation of soil cover from optical reflectance data

The use of optical remote sensing data for the estimation of soil cover appears
more promising. In this thesis, it was shown that the LAT (Leaf Area Index) of a
crop can be fairly accurately estimated from the WDVI (Weighted Difference
Vegetation Index). The LAI can then be converted into fraction soil cover f by the
general expression f= l-exp(-k LATI), where k is the light extinction coefficient.

The fraction soil cover can also be directly estimated from the WDVI, using
empirical regressions. Figure 8.1 gives the WDVI versus fraction soil cover of nine
fields of sugar beet (five different varieties, five different years, at four locations in
the Flevopolder). A linear regression was fitted to this data set with an r2 of 0.97.
Using this regression, the average error of estimation of the fraction soil cover was
the same as the estimation accuracy of the observer in the field, i.e. = 0.05. The
relationship between fraction soil cover and WDVI appears sufficiently stable o be
used successfully in growth estimations. Stable relationships between soil cover
and optical reflectance factors or Vegetation Indices have also been reported for
other crops, e.g. potalo (Bimie et al., 1987) and wheat (Kumar and Monieith, 1982,
Lapitan, 1986; Garcia et al., 1988).
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Figure 8.1. Fraction soil cover versus the Weighted Difference Vegetation Index (WDVI)
for nine fields of sugar beet: one in 1980, 1981 and 183 each, and three in 1987 and 1988
each. The drawn line is the fitted regression, r*=0.97, N=97,

Calibrating SUCROS on X-band radar backscattering and optical reflectance

In the second method used to link remote sensing data to crop growth models,
the growth model SUCROS was extended with the remote sensing models 'Cloud’
and 'EXTRAD' to calculate the radar backscattering and optical reflectance from
the simulated crop. SUCROS was then calibrated by fitting the simulated remote
sensing signals to a time series of actually measured remote sensing signals. In this
method, the general shape of the growth curve is determined by SUCROS but the
fine-tuning is done by the remote sensing data.

Important characteristics of this method are:

1) Remote sensing signals are calculated from the state of the crop canopy;
physical remote sensing models are used in the original, explanatory way they
were formulated. Inversion procedures, or the use of empirical regressions with
limited applicability, are avoided.

2) Knowledge of the development of crop variables in time, incorporated into
growth models, is optimally used. The fluctuations that occur in temporal
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backscattering curves are nicely smoothed by the growth model, especially for
radar.

3) Multi-sensor remote sensing data are applied in such a way that use is made
of sensor-specific information. For beet, optical remote sensing data were related to
the LAl, and X-band radar data to the amount of canopy water. When more
sophisticated radar interaction models become availabie that are calibrated, these
may be used to link radar data to the morphology of the canopy. SUCROS has then
to be extended to include the simulation of canopy morphology. Furthermore, other
remote sensing techniques, such as thermal infrared and passive microwave, may
be incorporated by linking the interaction models to specific sub-processes of
SUCROS.

The developed calibration method was tested on 11 fields of sugar beet. The
accuracy of canopy biomass simulation was higher after calibration on remote
sensing data than using standard medel input in five out of six years. The seasonal-
average error of estimation ranged between 225 and 475 kg/ha after calibration,
and between 390 and 700 kg/ha before calibration, with 'end-of-season’ canopy
biomass values of 5500-7000 kg/ha.

Both X-band radar and optical remote sensing data were very effective in the
initialization of SUCROS, i.e. the determination of the starting point of crop
growth. This is one major contribution made by remote sensing to the operational
application of growth models on regional levels. Information about the dates of
sowing or emergence of crops to initialize growth models is generally not
available.

After initialization, X-band radar data only adjusted SUCROS during early,
exponential crop growth. Optical data still adjusted SUCROS in the middle part of
the growing season. It is to be expected that in crops with a distinct ripening phase
at the end of the growing season, such as cereals, optical data will again be very
useful in calibrating that part of the growth model.

Further research in the appiication of radar and optical remote sensing with crop
growth models for biomass monitoring

For the operational use of remote sensing and crop growth models in biomass
monitoring, further research should be directed to calibration and validation of the
model components for a number of crops under varying growth conditions. In root
and tuber crops, like beet and potato, the sitmulation accuracy of the economically
important under-ground parts should be investigated. This investigation was not
carried out in this thesis because of lack of data. X-band radar and optical remote
sensing data only provide direct information on the above-ground parts of a crop.
In general, for biomass estimations of specific parts of a crop, the light-interception
growth model presented here is too simplistic. On the other hand, the growth model
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SUCROS requires many crop- and variety-specific input data that are often not
available. Further research should be directed to the development of growth models
of intermediate complexity that are specifically designed for, and calibrated on the
scale of application. Such models may be linked with remote sensing data through
either of the above developed methods.

The output of biomass estimations should be presented in terms of confidence
intervals rather than in single, absolute values. This requires a sensitivity analysis
of the model output in relation to the accuracy of model input, model parameters
and remote sensing data.
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SUMMARY

In agriculture, there is a general demand for monitoring crop growth and
development for early yield estimations. New methodologies are being looked for
that are more objective, standardized and possibly cheaper than traditional ways of
monitoring and yield forecasting, Remote sensing and crop growth simulation
models have become increasingly recognized as being new tools suitable for this
purpose. Radar in particular seems suitable for monitoring purposes because its use
is unhindered by weather conditions like clouds and fog.

This thesis describes an investigation into the switability of X-band radar for
monitoring crop growth and development, and into the possibilities of linking X-
band radar backscattering and optical remote sensing data with crop growth
models. The level of investigation is the field-level: radar backscattering and
optical remote sensing data collected on experimental research stations and on
fields of farmers are used.

In Chapters 2 and 3, six years of ground-based X-band radar observations were
used to study the radar backscattering of sugar beet, potato, wheat, barley and oats
in relation to crop growth and development. The radar data set included horizontal
(HH) and vertical (VV} co-polarized radar data, at incidence angles from 10° to
80°. For beet and potato, the HH and VV radar backscattering increased at all
angles of incidence until a level of saturation was reached at about 0.8 fraction soil
cover. For wheat and barley, the HH and VV backscattering decreased with crop
growth (after a small initial increase at low and mediumn incidence angles) until it
fluctuated at a stable level from grain filling to the dying off of the canopy. The
VYV backscattering of oats at low to medium angles of incidence decreased during
vegetative growth and sharply increased to a steady level with the appearance of
the panicles.

The geometry of the crop-soil system was a major factor influencing radar
backscattering. In potato, the orientation of the ridges with respect to the incident
radar beam dominated the backscattering in the early growing season. The
architecture of individual beet plants, and their distribution in space affected the
radar backscattering of sugar beet.

Row spacing, crop variety and lodging influenced the radar backscattering of
wheat, barley and oats. The effect of wind direction was sometimes very large for
barley through changes in azimuthal ear-orientation. The architecture of the canopy
also influenced the impact of the soil background on the radar backscattering, In
cereal crops with a relatively wide row spacing, the influence of soil background
was larger than in crops with a relatively close row spacing that had the same
canopy biomass. Because of the many factors that influence canopy structure, the
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radar backscattering of cereals was highly variable through the years. After
harvesting, the radar backscattering was largely determined by the presence and
spatial orientation of stubble and straw.

In Chapter 4, the possibilities of crop parameter estimation from X-band radar
backscattering measurements were investigated using empirical and simple
physical relationships. The crops investigated were sugar beet, potato, wheat and
barley. The crop parameters investigated were dry canopy biomass, amount of
canopy water, soil cover and crop height.

Empirical relations and the 'Cloud’ equations were unsuitable for accurate
estimations of crop parameters from X-band radar data at one angle of incidence at
either HH or V'V polarization. The use of both HH and V'V polarized radar data did
not improve the estimation accuracy. Using both a medium (40°-60°) and a high
(60°-80°) angle of incidence, the amount of canopy water for sugar beet was
estimated with an accuracy of 0.1-0.4 kg/m2, to crop water values of about 2.5
kg/m2, For potato, wheat and barley, the use of more than one angle of incidence
did not result in higher accuracies of (any) parameter estimation.

The low estimation accuracies were attributed to the simplicity of the mono/bi-
variate inverston schemes used, and to specific features of the X-band: 1) the
disturbing influence of canopy structure on the radar backscattering, 2) the early
saturation of the backscattering with crop growth, and 3) the low soil-crop contrast
in backscattering. It was suggested that improvement of estimation accuracies
might be obtained from radar remote sensing data using multi-frequency data, radar
polarimetry and mere sophisticated radar interaction models.

In Chapter 5, a method of growth monitoring was developed in which canopy
biomass was not estimated directly, but was found as the accumulated value of the
estimated crop growth rate. The crop growth rate was calculated from the fraction
soil cover of the crop, the incident solar radiation, and a light use efficiency factor.
The fraction soil cover was estimated from X-band radar data through the 'Cloud’
equations and a regression with optical soil cover.

The method was applied on experimental data consisting of three sugar beet
fields. In comparison with the direct estimation method, improved estimation
accuracies of canopy biomass were obtained using 'Cloud’ parameters and
regression coefficients that were determined on the same data set. Using 'Cloud’
parameter and regression coefficients that were determined in two different years,
canopy biomass was fairly accurately estimated in a third year. Nevertheless, it was
concluded that measurements of X-band radar backscattering still suffer from too
much variation to be reliable for biomass estimation,
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In Chapter 6, the optical canopy radiaton model EXTRAD was used to
quantify the accuracy of Leaf Area Index (LA/) estimations from Vegetation
Indices (V7's). The EXTRAD model was calibrated on sugar beet field data. The
VI's were the infrared/green ratio, [[R/GR], the Normalised Difference Vegetation
Index, NDVI [(IR-GR)/(IR+GR)], the Perpendicular Vegetation Index, PVI [V((/R-
!Rs)2+(GR-GRS)2)], and the Weighted Difference Vegetation Index, WDV [IR-
(fRYGROGR]. The accuracy of LAI estimation was calculated in relation to
variation in so-called 'disturbing factors': green and infra-red leaf colour, leaf angle
distribution, soil background and illumination conditions.

Variation in illumination conditions and soil background gave relatively small
estimation errors with all four VI's. The largest estimation errors resulted from
variation in green leaf colour and leaf angle distribution. With variation in green
leaf colour, the estimation errors were lowest with the WDVI, With variation in leaf
angle distribution, the errors were lowest with the IR/GR ratio and the NDVI. In
practice, the magnitude of the error in LAJ estimation will depend on the magnitude
and combiration of occurring variation in leaf colour and leaf angle distribution.

In an average of 100 random combinations of disturbing conditions, and in a
field experiment with six sugar beet fields, the absolute estimation errors ranged
between about 0.1 for ¢ < LA7 < 1 and 0.35 for 3 < LAI < 5.

In Chapter 7, a method of calibrating crop growth simulation medels on time
series of remote sensing data was developed. The 'Cloud’ equations for radar
backscattering and the optical canopy radiation model EXTRAD were linked to the
crop growth model SUCROS. SUCROS-Cloud-EXTRAD was then calibrated, i.e.
re-initialized and re-parameterized, by fitting simulated X-band radar
backscattering andfor optical reflectance (WDVI) to actually measured remote
sensing data. The procedure developed allowed for the simultaneous calibration of
any nuiitber.of SUCROS parameters (0 any number and type of remote sensing
data. Thus, SUCROS-Cloud-EXTRAD could be calibrated to both optical and
radar measurements, individually or together, and at any combination of radar
incidence angles.

The develeped calibration method was applied to 11 fields of sugar beet in six
different years. The simulated canopy biomass after calibration on remote sensing
data was compared to simulations using SUCROS with standard model input.
Except for one year, the seasonal-average error in simulated canopy biomass was
smaller with the calibrated model (225-475 kg/ha) than using standard model input
(390-700 kg/ha), with 'end-of-season' values of canopy biomass between 5500 and
7000 kg/ha.

X-band Radar backscattering and optical reflectance measurements were very
effective in initializing SUCROS, i.c. the determination of the start of crop growth.
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The radar backscattering further adjusted SUCROS only during early, exponential
crop growth, while optical data still adjusted SUCROS until the late growing
season at high levels of LAI, 3-5.

Chapter 8 brings together the main conclusions from the previous chapters,
discusses implications and suggests possible directions for further research. The
suitability of specifically X-band radar remote sensing for monitoring crop growth
and development is discussed, together with its implications for radar remote
sensing in general. The developed methods for linking optical and radar remote
sensing data with crop growth models are also summarized.
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SAMENVATTING

De koppeling van X-band radarreflectiec en optische reflectie met
gewasgroeimodellen.

In de landbouw bestaat een algemene behoefte aan het volgen van gewasgroei
en -ontwikkeling ten behoeve van vroegtijdige oogstvoorspellingen. Hiervoor
wordt naar nieuwe methoden gezocht die gestandaardizeerd, objectiever en
mogelijk ook goedkoper zijn dan huidige methoden. Remote sensing en
gewasgroeimodellen zijn veelbelovende technieken die hiervoor in aanmerking
kunnen komen. Met name radar als remote sensing techniek lijkt bij uitstek
geschikt voor monitoringsdoeleinden vanwege de ongevoeligheid voor
weersomstandigheden als bewolking en mist.

In dit proefschrift wordt een onderzoek beschreven naar de mogelijkheden van
X-band radar remote sensing voor het volgen van groei en ontwikkeling, en naar
metheden om X-band radar en optische remote sensing data aan
gewasgroecimodellen te koppelen. De schaal van onderzoek was het veldniveau: er
zijn radar en optische reflectiemetingen gebruikt, verzameld met grondopstellingen
op proefvelden en op praktijkpercelen.

In de hoofdstukken 2 en 3 is de radarreflectic van suikerbicten, aardappelen,
tarwe, gerst en haver beschreven in relatie tot groei en ontwikkeling. De radar data
set bestond vit een meetserie van zes jaren, in horizontale (HH) en vertikale (VV)
polarizatie, en in kijkhoeken tussen 10° en 80° van de vertikaal. Voor bieten en
aardappelen nam de HH en VV radarreflectie bij alle kijkhoeken toe met de groei
van het gewas tot een verzadigingsniveau vanaf ongeveer 80% bodembedekking.
Voor tarwe en gerst daalde de HH en VV radarreflectie (na een kleine toename in
het eerste begin van het groeiseizoen) tot het fluctueerde rond een stabiel niveau
van korrelvulling tot afsterving. De VV radarreflectie van haver bij lage en middel
kijkhocken nam af gedurende de vegetatieve fase van gewasgroei, en nam scherp
toe naar een stabiel niveau bij het verschijnen van de pluim.

De geometrie van het bodem-vegetatie systeemn bleek een zeer groot effect te
hebben op de radarreflectie. Bij aardappelen in het vroege groeiseizoen domineerde
de nichting van de ruggen ten opzichte van de kijkrichting van de radar de
radarreflectie. De architectuur van individuele bietenplanten, en hun verspreiding
in de ruimte beinvloedde de radarreflectic van bieten.

Rij-afstand, gewasvariéteit en legeren beinvloedde de radarreflectie van tarwe,
gerst en haver. Het effect van windrichting op de radarreflectie van gerst was soms
erg groot via de azimuthale richting van de aren. De geometrie van het gewas
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beinvioedde eveneens de mate waarin de onderliggende bodem aan de
radarreflectie bijdroeg. Bij granen met een relatief grote rij-afstand was de bijdrage
van de bodem groter dan bij granen met een relatief kleine rij-afstand en met een
zelfde hoeveelheid biomassa. Vanwege de veelheid aan factoren die de
gewasgeometrie bepaalt, was de radarreflectie van granen zeer variabel door de
jaren heen. Na de oogst werd de radarreflectic met name bepaald door de
aanwezigheid en ruimtelijke origntatie van stoppels en overgebleven stro (haksel).

In hoofdstuk 4 :zijn de mogelijkheden onderzocht om uit X-band
radarreflectiemetingen gewasparameters te schatten met behulp van eenvoudige
empirnische of fysische modellen. De bestudeerde gewassen waren suikerbieten,
aardappelen, tarwe en gerst. De bestudeerde gewasparameters waren bovengrondse
droge biomassa, hoeveelheid bovengronds plantwater, bodembedekking en
gewashoogte.

Schattingen van gewasparameters uit HH of VV radarreflectiemetingen bij één
enkele kijkhoek, met behulp van empirische relaties of van het 'Cloud' model
waren onnauwkeurig. Het gebruik van zowel HH als VV data verhoogde de
nauwkeurigheid niet. Met gebruikmaking van een middel- (40°-60°) en een grote
(60°-80°) kijkhoek, kon voor bieten de hoeveelheid bovengronds plantwater
worden geschat met een nauwkeurigheid van 0.1-0.4 kg/m2, tot een waarde van
ongeveer 2.5 kg/m2. Voor aardappelen, tarwe en gerst leidde het gebruik van meer
dan één kijkhoek niet tot nauwkeurigere schattingen van gewasparameters.

De lage schattingsnauwkeurigheden werden toegeschreven aan de eenvoud van
de gebruikte mono/bi-variabele inversie algoritmes, en aan enkele specificke
eigenschappen van de X-band: de invloed van gewasstructuur, de vroege
verzadiging van de radarreflectie en het lage bodem-gewas contrast. Er werd
voorgesteld dat hogere schattingsnauwkeurigheden verkregen zouden kunnen
worden uit radar remote sensing met een aantal frekwenties, met radar polarimetrie
en met meer geavanceerde interactiemodellen,

In hoofdstuk 5 is een methode van het volgen van gewasgroei ontwikkeld
waarbij de biomassa niet rechtstrecks geschat werd, maar bepaald werd door
integratie van de geschatte gewasgroeisnelheid. De gewasgroeisnelheid werd
berekend uit de fractie bodembedekking van het gewas, de hoeveelheid invallend
zonlicht en een lichtbenuttingsefficiéntie factor. De fractie bodembedekking werd
geschat uit X-band radar data met behulp van het 'Cloud' model en een regressie
met optische bodembedekking.

De ontwikkelde methode werd toegepast op een experimentele dataset van drie
jaar waamemingen aan suikerbieten. In vergelijking met directe schattingen van
biomassa uit radar metingen, leverde deze methode nauwkeurigere schattingen op
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bij gebruikmaking van 'Cloud' parameters en regressiecoefficiénten die bepaald
waren uit dezelfde dataset. Bij gebruikmaking van 'Cloud' parameters en
regressiecoefficiénten die bepaald waren in twee verschillende jaren, werd in een
derde, onafhankelijk jaar de biomassa geschat met een redelik goede
nauwkeurigheid. Desalniettemin werd geconcludeerd dat de variabiliteit in X-band
radarreflectie data té groot was voor betrouwbare cogstschattingen.

In hoofdstuk 6 is het optische stralingsmodel EXTRAD gebruikt om de
schattingsnauwkeurigheid van het relatieve bladoppervlak (LA[) uit Vegetatie
Indices (VI's) te simuleren. Het EXTRAD model werd gecalibreerd op
veldgegevens van suikerbieten. De VI's waren de infrarood/groen ratio [/[R/GR], de
‘Normalized Difference Vegetation Index’, NDVI [(/R-GRY/(IR+GR)], de
‘Perpendicular Vegetation Index’, PVI [V((IR-IRS)2+(GR—GRS)2)}, en de ‘'Weighted
Difference Vegetation Index', WDVI [{R-(IR/GRHGR]. De nauwkeurigheid van
LAl schattingen werd gesimuleerd bij variaties in de volgende zogenaamde
'storende  invloeden: groene en infrarode bladkleur, bladhoekverdeling,
bodemachtergrond en belichtingsomstandigheden.

Variaties in belichtingsomstandigheden en in bodemachtergrond gaven relatief
de kleinste schattingsfout bij alle vier VI's. De grootste schattingsfouten werden
veroorzaakt door variaties in groene bladkleur en in bladhoekverdeling. Bij
variaties in groene bladkleur was de schattingsfout het kleinst met de WDVI, en bij
variaties in bladhoekverdeling met de /R/GR ratio en de NDVI, In praktijk zal de
schattingsfout afhangen van de grootte en de combinatie van voorkomende
variaties in bladkleur en bladhoekverdeling.

In een gemiddelde van 100 willekeurige combinaties van variaties in storende
invloeden, en in ecen veldexperiment met zes velden suikerbieten, varieerde de
absolute schattingsfout van LA van ongeveer 0.1 bij 0 < LA/ < 1 tot 0.35 bij 3 <
LAI < 5.

In hoofdstuk 7 is een methode ontwikkeld waarbij een gewasgroeimodel
gecalibreerd werd op remote sensing gegevens. De 'Cloud’ vergelijkingen voor
radarreflectie en het EXTRAD maodel voor optische refiectic werden gekoppeld aan
het gewasgroecimodel SUCROS. SUCROS-Cloud-EXTRAD werd vervolgens
gecalibreerd, d.w.z. ge-initialisecerd en ge-reparameteriseerd, door de gesimuleerde
X-band radarreflectic enfof de optische reflectie (WDVT) te *fitten’ door de gemeten
remote sensing data. In de fit procedure kon SUCROS gecalibreerd worden naar
ieder aantal modelparameters, en op ieder aantal en type remote sensing metingen.
SUCROS-Cloud-EXTRAD kon b.v. gecalibreerd worden op radar en optische data,
zowel gelijktijdig als ieder afzonderlijk, en naar iedere combinatic van radar
kijkhocken.
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De ontwikkelde calibratic methode werd toegepast op elf velden suikerbieten
in zes verschillende jaren. De gesimuleerde bovengrondse biomassa ni calibratie
werd vergeleken met die verkregen met standaard model input. Op &€&n jaar na, was
de seizoensgemiddelde fout in biomassa schatting kleiner na calibratie (225-475
kg/ha) dan met standaard model input (3%90-700 kg/ha), bij biomassa waarden aan
het eind van het groeiscizoen van 5500-7000 kg/ha.

X-band radarreflectie en optische reflectie data waren met name effectief in de
initialisatie van SUCROS, d.w.z. in het bepalen van de start van gewasgroei. De X-
band radarreflectie stelde SUCRQS verder nog bij in het vroege groeistadium van
exponentiéle groei, en optische reflectie data tot laat in het groeiseizoen (blj hoge
LAT waarden van 3-5).

Hoofdstuk 8 vat de belangrijkste conclusies van de vorige hoofdstukken samen,
en bespreekt implicaties en mogelijke richtingen voor vervolgonderzoek. De
bruikbaarheid van specifiek de X-band radarreflectie voor het volgen van
gewasgroei en -ontwikkeling is besproken, met gevolgirekkingen voor radar in
grotere algemeenheid. De ontwikkelde methoden voor de koppeling van
radarreflectie en optische reflectie gegevens aan gewasgroeimodellen zijn samen
gevat.
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