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Summary - A maximum likelihood method is described to identify a major gene using
F2, and optionally Fi, data of an experimental cross. A model which assumed fixation
at the major locus in parental lines was investigated by simulation. For large data sets
(1000 observations) the likelihood ratio test was conservative and yielded a type I error
of 3%, at a nominal level of 5%. The power of the test reached > 95% for additive and
completely dominant effects of 4 and 2 residual SDs respectively. For smaller data sets,
power decreased. In this model assuming fixation, polygenic effects may be ignored, but on
various other points the model is poorly robust. When Fl data were included any increase
in variance from Fi to F2 biased parameter estimates and led to putative detection of
a major gene. When alleles segregated in parental lines, parameter estimates were also
biased, unless the average allele frequency was exactly 0.5. The model uses only the non-
normality of the distribution due to the major gene and corrections for non-normality due
to other sources cannot be made. Use of data and models in which alleles segregate in
parents, eg F3 data, will give better robustness and power.
cross / major gene / maximum likelihood / hypothesis testing

Résumé - Identification d’un gène majeur en Fi et F2 quand les allèles sont

supposés fixés dans les lignées parentales. Cet article décrit une méthode de maximum
de vraisemblance pour identifier un gène majeur à partir de données F2, et éventuellement
Fl, d’un croisement expérimental. Un modèle supposant un locus majeur avec des allèles
fixés dans les lignées parentales est étudié à l’aide de simulations. Pour des fichiers de
grande taille (1 000 observations), le test du rapport de vraisemblance est conservateur,
avec une erreur de première espèce de ,i%, à un niveau nominal de 5%. La puissance du
test d’identification d’un gène majeur atteint plus de 95% pour des effets additifs et de
dominance de 4 et 2 écarts-types respectivement. Pour des fichiers de taille plus petite,
la puissance baisse rapidement. Dans le modèle utilisé la variance polygénique peut être
négligée mais sur d’autres points le modèle est peu robuste. Si des données Fi sont incluses,
toute augmentation de la variance entre Fl et F2 introduit un biais sur les paramètres
estimés et peut mener à la détection d’un fau! gène majeur. Quand les allèles ségrègent



dans les lignées parentales, les paramètres estimés sont également biaisés si la fréquence
allédique moyenne n’est pas exactement de 0,5. Finalement, le modèle n’utilise que la non
normalité de la distribution due au gène majeur, et ne peut pas corriger pour une non
normalité due à d’autres raisons. L’utilisation d’un modèle ou les allèles ségrègent chez
les parents, par exemple sur des données F3, doit améliorer la robustesse et la puissance
du test.

croisement / gène majeur / maximum de vraisemblance / test d’hypothèse

INTRODUCTION

In animal breeding, crosses are used to combine favourable characteristics into one
synthetic line. It is useful to detect a major gene as soon as possible in such a line,
because selection could be carried out more efficiently, or repeated backcrosses be
made. Once a major gene has been identified it can also be used for introgression
in other lines.

Major genes can be identified using maximum likelihood methods, such as

segregation analysis (Elston and Stewart, 1971; Morton and MacLean, 1974).
Segregation analysis is a universal method and can be applied in populations where
alleles segregate in parents. However, when applied to Fl, F2 or backcross data

assuming fixation of alleles in parental lines, genotypes of parents are assumed
known and all equal and this analysis leads to the fitting of a mixture distribution
without accounting for family structure.

Fitting of mixture distributions has been proposed when pure line and backcross
data as well as Fi and F2 data are available, and when parental lines are homozygous
for all loci (Elston and Stewart, 1973; Elston, 1984). Statistical properties of this
method, however, were not described, and several assumptions may not hold. For
example, not much is known concerning the power of this method when only
F2 data are available, which is often the case when developing a synthetic line.
Furthermore, homozygosity at all loci in parental lines is not tenable in practical
animal breeding. Here it is assumed that many alleles of small effect, so-called
polygenes, are segregating in the parental lines. Alleles at the major locus are
assumed fixed. Fl data could possibly be included, but this is not necessarily more
informative because Fi and F2 generations may have different means and variances
due to segregating polygenes.

The aim of this paper is to investigate by simulation some of the statistical
properties of fitting mixture distributions, such as Type I error, power of the
likelihood ratio test and bias of parameter estimates when using only F2 data. To
study the properties of the major gene model, polygenic variance is not estimated.
The robustness of this model will be checked when polygenic variance is present in
the data, and when the major gene is not fixed in the parental lines. The question
of whether Fi data can and should be included will be addressed.



MODELS USED FOR SIMULATION

A base-population of F1 individuals was simulated, although the F1 generation may
not have had observed records. Consider a single locus A with alleles Al and A2,
where Al has frequencies fp and 1m in the paternal and maternal line. Genotype
frequencies, values and numeration are given for Fl individuals as:

Genotypes of F1 animals were allocated according to the frequencies given above
using uniform random numbers. For the F2 generation, genotype probabilities were
calculated given the parents’ genotypes using Mendelian transmission probabilities
and assuming random mating and no selection. A random environmental component
ei was simulated and added to the genotype. The observation en individual i(Fl or

Fz) with genotype r(y.L ) is:

with ei distributed N(O, 0&dquo;2). Polygenic effects are assumed to be normally dis-
tributed. For base individuals polygenic values were sampled from N(O, a 9 2), where
a§ is the polygenic variance. No records were simulated for Fi individuals when

polygenic effects were included. For F2 2 offspring, phenotypic observations y’Ù were
simulated as:

where Oi is the Mendelian sampling term, sampled from N(O, Q9/2), ap and a&dquo;, are

paternal and maternal polygenic values and eij is distributed N(0, !2). Additionally,
data were simulated with no major gene or polygenic effect:

where ei is distributed ./V(0,o!). A balanced family structure was simulated, with
an equal number of dams, nested within sire, and an equal number of offspring for
each dam. Random variables were generated by the IMSL routines GGUBFS for
uniform variables and GGNQF for normal variables (Imsl, 1984).

MODELS USED FOR ANALYSIS

The test for the presence of a major gene is based on comparing the likelihood of
a model with and without a major gene. Polygenic effects are not included in the
model, and the model without a major gene therefore contains random environment
only. Apart from major gene or no major gene, models can account for only F2 data,
or for both F1 and Fz data. This results in a total of 4 models to be described.



Model for F2 data with environment only

For F2 data, with n observations, the model can be written:

The logarithm of the joint likelihood for all observations, assuming normality
and uncorrelated errors, is:

Maximising [5] with respect to Q and QZ yields as the maximum likelihood

(ML) estimate for the mean, /3 = Eiyi/n, and the ML estimate for the variance is
!2 = &dquo;E.i(Yi - íJ)2/n.
Model for Fi and F2 data with environment only

Data on Fi and F2 are combined, with nl + n2 = N observations. The observation
on animal j from generation i(i = 1, 2) is:

where !32 is the mean for generation i. Observations for FI and F2 are assumed to
have equal environmental variance. The joint log-likelihood is given as:

The ML estimates for _,Oi are simply the observed means for each generation,
ie í31 = E!yl!/nl, and j2 = £;y2;/n2. The ML estimate for the variance is

Model with major gene and environment for F2 data

When alleles are assumed fixed in parental lines, all Fi individuals are known
to be heterozygous. If no polygenic effects are considered, this means that all F2 2

individuals have the same expectation, and conditioning on parents is redundant.
In the likelihood for such data, summuations over the parents’ possible genotypes
can be omitted and families can be pooled. The model is given as:

and the log-likelihood equals:



In [9] Gi is the genotype of individual i, Pr denotes the prior probability that
Gi = r, which equals 1/4, 1/2 and 1/4 for r = 1, 2 and 3 (or AIAl, AlA2 and

A2A2). The total number of F2 individuals is given as n, and the function f is
given as:

Model with major gene and environment for Fi and F2 data

In the Fl generation only one genotype occurs; hence Fl data are distributed around
a single mean, with a variance equal to the residual variance in the F2 generation.
Due to possible heterosis shown by the polygenes a separate mean is modelled, but
the possible heterogeneity in variance caused by polygenes is not accounted for.
The model for individual j from generation i for genotype r is:

where /3i is a fixed effect for generation i. Model [11] is overparameterised because
genotype means and 2 general means are modelled. We chose to put /?2 = 0. In
that case the mean of Fi individuals, which all have known genotype r = 2, can be
written as !F1 = U2 +,31. The joint log-likelihood for Fi and F2 data, using !,F1 is:

where nl and n2 are number of observations in the Fl and F2 generation. The ML
estimate for pfi is equal to !31 in !6).
ML estimates for !C,.(r = 1, 2, 3) and Q2 in models [8] and [11] cannot be given

explicitly. These parameters were estimated by minimising minus log-likelihood L2
in [9] and L2 in !12!, using a quasi-Newton minimisation routine. A reparameter-
isation was made using the difference between homozygotes t = A3 - iii, and a
relative dominance coefficient d = (!2 - !i)/t, as in Morton and MacLean (1974).
By experience, this parameterisation was found more appropriate than the param-
eterisation using 3 means iLl, !2 and J.l3, because convergence is generally reached
faster due to smaller sampling covariances between the estimates. The mean was
chosen as the midhomozygote value: a = 1 /2pi + 1/2/!3.

Parameters t and d are easier to interpret than 3 means, and therefore results are
also presented using these parameters. Parameter t indicates the magnitude of the
major gene effect and can be expressed either absolutely or in units of the residual
standard deviation. Parameter t was constrained to be positive, which is arbitrary
because the likelihood for the parameters p, t and d is equal to the likelihood for
the parameters p, -t and (1-d). Parameter d was estimated in the interval [0,1].
Problems were detected when this constraint was not used, because t could become
zero, leading to infinitely large estimates for d. This occurred frequently when the
effects where small and dominant. Minimisation by IMSL routine ZXMIN (Imsl,
1984) specified 3 significant digits in the estimated parameters as the convergence
criterion.



HYPOTHESIS TESTING

The null hypothesis (Ho) is &dquo;no major gene effect&dquo;, whereas the alternative

hypothesis (Hi) is &dquo;a major gene effect is present&dquo;. The log-likelihoods LI in [5]
and L2 in [9] are the likelihoods for each hypothesis when only F2 data are present.
When Fl data are included the likelihoods Li in [7] and L* in [12] apply. A likelihood
ratio test is used to accept or reject Ho. Twice the logarithm of the likelihood ratio
is given as:

Two important aspects of any test are the type I and type II errors. The type
I error is the percentage of cases in which Ho is rejected, although it is true. The
Ho model is simulated by (3!. The type II error is the percentage of cases in which
Hl is rejected, although it was true. Here, the type II error is not used, but its

complement, the power, which is the percentage of cases in which Hl is accepted,
when Hl is true. The HI model is simulated by model (1!. Fixation of alleles in
parental lines is simulated by taking fp = 1 and fm = 0.

Type I error

The distribution of T when Ho is true is expected asymptotically to be x2 with
2 degrees of freedom, because the HI model has 2 parameters more than the Ho
model (Wilks, 1938). Since in practice data sets are always of finite size, it is

interesting to know whether and when the distribution of T is close enough to the
expected asymptotic distribution, so that quantiles from a x2 distribution can be
used as critical values. Type I errors were estimated for data sets of 100 up to 2 000
observations, simulating 1 000 replicates for each size of data set. Three critical
values were used, corresponding to nominal levels of 10, 5 and 1%. The nominal level
is defined as the expected error rate, based on the asymptotic distribution. Exact
binomial probabilities were used to test whether the estimates differed significantly
from the nominal level. When the observed number of significant replicates does not
differ significantly, a xz distribution is considered suitable to provide critical values.
Also, when the observed number is lower than expected the asymptotic distribution
might remain useful. The nominal tye I error is in that case an upper bound for
the real type I error.

Power of the test and estimated parameters

The power is investigated for additive (d = 0.5) and completely dominant (d = 1)
effects, with a residual variance of 100, and t varying from 10-40, ie from 1 to
4 SDs. The additive genetic variance caused by this locus equals t2/8, when t is
absolute. Heritability in the narrow sense therefore varies from 0.11-0.67. Each data
set contained 1 000 observations, and each situation was repeated 100 times. The
power of the test for smaller data sets was investigated for one relatively small effect
and one relatively large effect.



Robustness

Investigation of the type I error and the power considered situations where either
Ho or Hl was true, satisfying all assumptions in the models. The robustness of this
test and usefulness of the assumption of fixation in parents for parameter estimation
was investigated for situations which violate 2 assumptions:

- when there is a covariance between error terms. This was induced by simulation
of polygenic variance by model (2]. The total variance was held constant at 100, so
that the power of the test could not change due to a change in total variance;

- when fixation of alleles is not the case. The data were simulated by model (1],
in which fp and fm were not equal to 0 and 1, resulting in segregation of alleles
in the Fl parents. Firstly, 3 situations were simulated where the average allele
frequency remains 0.5. In that case only the assumption that all F1 parents are
heterozygous was violated. Secondly, 3 situations were simulated where the average
allele frequency was not 0.5. In that case, the assumption that genotype frequencies
in F2 are 1/4, 1/2, and 1/4 was also violated.

Inclusion of Fl data

A major gene which starts segregating in the F2 not only renders the distribution
non-normal, but also increases the phenotypic variance in the F2 relative to the Fi.
When Fi data are included, this increase in variance may be taken as supplementary
evidence, apart from any non-normality, for the existence of a major gene. Assessing
the relative importance of the 2 sources of information is useful so as to judge
the robustness of the model including Fi data. The effects on non-normality and
increased F2 variance due to the major gene should therefore be distinguished. This
was accomplished by simulating different residual variances in FI and F2. Four
situations were investigated, combining all combinations of non-normality in F2
and increased variance in F2 (table I). In general, 500 Fi and 1000 F2 observations
were simulated. For situation 3, data sets with 1000 FI and 1000 F2 observations
were also investigated. Data for situations 1 and 3 were simulated by model (3],
whereas data for situations 2 and 4 were simulated by model (1].



RESULTS

Type I error and parameter estimates under the null hypothesis

Estimated type I errors, based on 1 000 replicates, have been given in table II for
different sizes of the data set. Estimates decreased, and more or less stabilised when
the size of the data set exceeded 1 000 observations, especially for a nominal level
of 10%, which were most accurate. For these large data sets, however, the type I
errors were too low (P < 0.01), which means that critical values obtained from a X’2
distribution would provide a too conservative test. For example, application of the
X2 95-percentile to data sets with 1 000 observations will not result in the expected
type I error of 5%, but rather in a type I error of x5 3%.

When no major gene effect was present, stil on average a considerable effect
could be found. Parameter estimates for the major gene model have been given in
table III, simulating just a normally distributed error effect with variance 100. The
empirical standard deviation for estimated t-values ranged between 7(N = 100)
and 5(N = 2000) (not in table). The average estimate for t is therefore biased, and
many of the individual estimates were significantly different from zero if a t-test was
applied. The average estimated d is 0.5, which is expected because the simulated
distribution was symmetrical.

Parameter estimates and power of the test

Results for the different situations studied under a major gene model are in table IV.
The x) 95-percentile was used as critical value for the test. The power reached over
95% for additive effects (d = 0.5) with a t-value of 40, which is 4 a (residual
standard deviations). For completely dominant effects (d = 1), 100% power was
reached for an effect of t = 20 (2a). Phenotypic distributions for these 2 cases are
unimodal, although not normal (fig 1).

For small genetic effects (t ! 10, ie 1Q) t was overestimated, in particular when
t = 0, as was already mentioned. For larger genetic effects, t was overestimated for



d = 1 and was underestimated for d = 0.5. For d = 0.5, average estimates for t and
d differed from the simulated values by < 1% when the power reached near 100%.
For d = 1, however, the bias in t was still 10% when the power had reached 100%.
This bias reduced gradually, and was < 1% for a genetic effect of t = 40.

In figure 2 power of the test is depicted for varying sizes of the data set. Two
additive effects were chosen, with t = 25 and t = 35. Each point in the figure
is on average of 100 replicates. The power increased with increasing number of
observations. Increasing the number of observations > 1000 gave relatively less
improvement in power, especially for the smaller effect (= 25). For a small number



of observations this graph is expected to level off at the type I error (nominally
5%), but sampling makes results somewhat erratic.

Robustness when ignoring polygenic variance

Data following model [2] were simulated with d = 0.5 and t = 35 and different

proportions of polygenic and residual variance. The data set contained 20 sires
with 5 dams each and 10 offspring per dam; each situation was repeated 100 times.
Estimated parameters and resulting power are in table V. Parameter estimates for
t and d, and the power of the test were not affected when a part of the variance
was polygenic. The total estimated variance was equal to the sum of simulated
variances.

Robustness when ignoring segregation in the parental lines

Data following model [1] were simulated with d = 0.5, t = 35, Q2 = 100 and various
values for fp and fm. The genotype probabilities in parents (F1) and offspring (F2)
have been given in table VI. For the first 3 situations, genotype probabilities in
the Fj were 1/=1, 1/2 and 1/4, as assumed under the fixation assumption. For the
last 3 situations, however, genotype probabilities were different, because the allele





frequency was not 0.5 on average. High average allele frequencies were simulated,
but because only additive effects are considered, results are equally valid for low
allele frequencies. The power remained equal, as long as genotype probabilities in
F2 remained 1/4, 1/2 and 1/4, and parameter estimates are unbiased (table VII).
In case the allele frequency did not average 0.5, however, parameter estimates were
biased. The power of the test increased, because in this situation the distribution
became skewed. The situation with d = 0.5 and t = 35 for data where the gene is
fixed in parental lines (table IV), with a power of 82%, may serve as a reference.

Inclusion of F, data

Five hundred, or 1 000, F1 observations were also simulated, with additive major
gene effects (table VIII). With no major gene effect (t = 0 and hence a 771 2 = 0), and
with equal variances in Fi and F2 (situation 1) the average estimated t was much
smaller than in the model using only F2 data (table III). In the second situation
(table VIII) a major gene effect of t = 20 was simulated which corresponds to the



given major gene variance of 50. When using only F2 data, the test had a power of
only 12% for detection of an additive effect of t = 20 (table IV). When including
Fi data, however, the power was 100% (table VIII). From the situations 3 and 4
considered in table VIII, however, it becomes apparent that when FI data were
included, the major gene was detected only by its effect on variance, considering a
power near the type I error rate as irrelevant. When the variance in F2 increased
by 50%, but when in fact no major gene was present, a major gene was found in
100% of the cases. For smaller increases of the variance (10%) major genes were still
detected, and the probability of detection increased with the size of the data set
(alternative 3* with more Fi observations). A major gene was totally undetectable,
on the other hand, when the total variance in Fi was equal to the total variance
in F2 (situation 4). This shows that the ability to detect a major gene can even be
worsened when FI data are included. If only F2 data were used a major gene with
similar effect was detected in 12% of the cases (table IV).

DISCUSSION AND CONCLUSIONS

Type I error

Nominal levels for type I errors were based on Wilks (1938) who proved asymptotic
convergence of the likelihood ratio test statistic to a X2 distribution. Type I errors
decreased and stabilised for larger data sets, as expected. The estimated type I
errors, however, were significantly too low. It is unlikely that the type I error,
after having first decreased, would increase for even larger data sets as studied
here. It can be concluded therefore, that type I errors are significantly lower than
expected in the asymptotic case, and that for large data sets the likelihood ratio
test is conservative. It has been investigated whether the constraint used on the
dominance coefficient could have caused the too low type I errors. However, this
was not the case, because even with no constraint, too low type I errors were found
of 7.5% and 3.9% at nominal levels of 10 and 5%.



For the investigation of power we have chosen to use the theoretical asymptotic
quantiles, although they were shown to give a conservative test. The nominal level
for the type I error is then an upper bound, and the experimenter still has a

reasonably good idea of the risk of making a type I error. When the actual type
I error would be above the expected level, however, the test would become of less
use.

A second reason for still using theoretical asymptotic quantiles is that adapting
the test is difficult and of little practical use. A difficulty is, for instance, that
estimated quantiles would be subject to sampling and the obtained point estimate
is therefore only expected to give the correct test. Therefore, 2 experimenters
investigating the same test, will find different critical values and the test applied will
depend on the experimenter. Also in practice such a procedure would be difficult
to apply since the calculated quantile would only hold for the same model and data
sets of similar size and structure.

Power of the test

Using only F2 data, the power of this test was poor for additive effects (dominance
coefficient = 0.5). This can be explained by the resulting symmetrical distribution
which is similar to the distribution under Ho. In this case, the genetic effect has
to be about 4Q to be detectable, which corresponds to a heritability of 0.67 in the
F2 generation. When the dominance coefficient is 1, an effect of 2Q was detectable.
These results are based on data sets with 1000 observations, but it was shown that
the power decreased dramatically for smaller data sets.

Power increased when FI data was included in the analysis, and additive effects
of 2a could be detected. In that case the increase in variance in F2, caused by
the major gene, was taken as an important indication for the presence of a major
gene. The power to detect a major gene in F2 data may also increase if alleles were
not fixed in the parental lines, or alternatively F3, instead of F2, data were used.
This corresponds more to the situation in a usual population, where between-family
variation will arise. For F3 data, for example, when pure lines were homozygous,
the allele frequency will be 0.5, and parents will be in Hardy-Weinberg equilibrium.
For such a situation, Le Roy (1989) found a power of 25% for an additive effect
of 2u in a data set of 400 observations (20 sires with 20 half-sib offspring each).
In figure 2, the power for a data set of similar size can be seen to be only ! 10%
for an even larger effect of 2.5!(t = 25). This indicates that an increase in power
may be expected when the F3 generation is observed, despite the facts that more
parameters have to be estimated, and that parents’ genotypes are no longer known.

The power for detection of a major gene is related to the unexplained variance
in the model of analysis. The inclusion of fixed and polygenic effects will therefore
make the major gene easier to detect, provided that all these effects can be

accurately estimated.

Parameter estimates

For additive effects simulated (d = 0.5), bias for the average estimated genetic effect
t and dominance coefficient d was less than 1% when the power approached 100%.



For dominant effects (d = 1), however, t was overestimated by 10% when the power
for detection of a major gene reached 100%. This overestimate is probably related to
the underestimate for d, which resulted from the applied constraint. As mentioned,
this constraint was applied to prevent t from going to zero, at which point d tended
to go to infinity. When such a constraint was not applied with, for instance, an
effect of t = 10 and d = 1, analyses gave in 100 replicates an average estimated d
of 2.93. This is an average overestimate of ! 200%. The average estimate using the
constraint was 0.93, showing that indeed better estimates were obtained under the
restriction, even when the true value was on the border of the allowed parameter
space. In practice, of course, overdominance cannot be excluded and parameter
estimates could be compared with and without this constraint. A small, near zero,
estimate for t and a large estimate for d would suggest a possible overestimation
of d.

For very small or absent effects, the ML estimates were considerably biased.
In this situation, the asymptotic properties of ML estimates, ie consistency, are
far from being attained. In the absence of a major gene, average estimates were
presented for increasing size of the data set. This showed that the average estimate
decreased, and will probably reach the true value when the number of observations is
very much larger. Bias of ML estimates in finite samples also resulted in significant t-
values when no effect was present. This indicates that the presence of a major gene
should not be judged by the estimates and their standard errors. The standard
errors discussed here were empirical standard errors. In practice such standard
errors will have to be obtained using the inverse of an estimated Hessian matrix,
or some other quadratic approximation of the likelihood curve near the optimum.
Using the estimated Hessian matrices, we found roughly the same standard errors,
although they were not very accurate. In our study, the quasi-Newton algorithm
was started close to the optimum and not enough iterations are then carried out to
estimate the Hessian matrix accurately.

Robustness of model and test

Inclusion of Fl data results in a poorly robust test when differences in variances
would arise between the Fi and F2 due to other causes than a major gene. An
increase in variance from Fi to F2 can result in a putative major gene being
detected. An increase in variance of 10%, for instance, gave 25% false detections
when 1000 Fi and 1000 F2 observations were combined. Such increases are not

unlikely, due to, for instance, polygenes. The major gene test is then merely a
test for homogeneous variance in F1 and Fz. The inclusion of Fl data could also
worsen the detection of a major gene, when the environmental variance in F2 was

less. Therefore any differences in variance, due to other causes than the major gene
effect, will bias the parameter estimates. Also in a model that allows for segregation,
such biases will remain. 

’

It was shown that the model is robust when polygenic effects were ignored.
This can be explained by the fact that the test uses only the non-normality of the
distribution as a criterion. It must be noted however that, when polygenic effects
can be accurately estimated, including a polygenic effect in the model will increase
power because it reduces the residual variance.



Another aspect of robustness concerns the assumption of fixed alleles in parental
lines. It was shown that parameter estimates were not biased when alleles segre-
gated, as long as the average frequency in the 2 lines was 0.5. In that case the as-
sumed fitting proportions 1/4, 1/2 and 1/4 are still correct. If the average frequency
in parental lines differed from 0.5, t was underestimated and, because skewness was
introduced, estimates for d deviated from 0.5. This second situation is more likely
to occur than the situation where the average frequency is exactly 0.5. Because
it could be difficult to justify the fixation assumption a priori, application of a
more general model that allows for segregation in parental lines might have to be
considered.
A final aspect of robustness concerns non-normality of the distribution not due

to a major gene. As stated earlier a mixture distribution is fitted and the detection
of a major gene in Fz data, assuming fixation, relies solely on the non-normality
caused by the major gene. This means that in fact only a significant non-normality
is proven. The method would therefore be poorly robust against any non-normality
due to another cause. The robustness might be improved using data in which
alleles segregate in parents. This is guaranteed in F3 data, but may also arise in
Fa data, when alleles were not fixed in parental lines. If segregation in parents is
the case, evidence for a major gene is no longer only in the non-normality of the
overall distribution, but also for instance in heterogeneous within family variances.
Therefore a model that allows for segregation is not only preferred to increase
power, but is also preferred to improve robustness.
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