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This investigation deals with the development and operation of a simple 

radiation budget model at a point on a surface in snow covered mountainous 

terrain. Net radiation is usually the most important component of the surface 

energy balance in alpine environments, both with respect to its magnitude and 

with respect to its temporal and spatial variability. A positive energy 

balance at the snow surface will cause snowmelt once the snow pack is in 

thermal equilibrium. A radiation budget model can therefore provide an 

estimate of the snow surface energy balance and the associated snowmelt. 

To allow easy incorporation into operational snowmelt runoff models, 

snowmelt factors should be simple with respect to the amount of required input 

parameters and their temporal resolution. Most deterministic snowmelt runoff 

models employ a degree-day factor for computing the amount of snowmelt from 

a watershed. It is postulated that the incorporation of a radiation balance 

algorithm will provide a more physically based snowmelt factor than the 

presently applied temperature index methods, which may reduce the parameter 

variability associated with local calibrations and adjustments based on 

observations of snow properties or hydrological judgments of the model 

operator. 

To maintain a high operational capability under a variety of atmospheric 

conditions and terrain configurations without the need for extensive 

measurements, a Radiation Budget Module (RBM) was developed based on broadband 

radiative transfer parameterizations. Topographic complexity associated with 

the effects of obstruction, reflection and emission by surfaces surrounding 

the model point is accounted for by means of isotropic conversion factors. The 

complex physical processes associated with snowmelt that take place underneath 

the snow surface are not modeled explicitly. 

The independent input variables required to drive RBM are: (1) Fixed 

geographical parameters which need to be determined only once from topographic 

maps and/or digital elevation data: Latitude, longitude, altitude, slope, 

aspect and local horizon of the surface in question; (2) Temporal variables: 

Day of the year, time of the day and amount of days since the last snow 

accumulation event occured; (3) Atmospheric/meteorological variables which 

need to be determined at least on a daily basis from ground truth or remote 



sensing measurements: Optical depth of the atmosphere, air pressure, surface 

temperature, air temperature, vapor pressure and mean fractional cloudcover 

(and/or duration of sunshine). RBM provides means of estimating the first 

three atmospheric variables on a daily basis. 

Computed twenty minute values of incoming shortwave and net radiation for 

a whole day were compared with observations taken over a uniform wheat field 

under clear skies. RBM performed satisfactorily under these ideal topographic 

and atmospheric conditions. Computed daily averages of incoming shortwave 

radiation for a complete ablation period were compared with observations taken 

over an unobstructed horizontal snow covered surface in a Swiss alpine 

watershed under highly variable atmospheric conditions. Although RBM performed 

rather accurate on a seasonally averaged basis, the model could not explain 

the large variability of the measured values: It generally underpredicted high 

values and overpredicted low values. More realistic cloud treatment procedures 

than the current daily average corrections will undoubtedly improve RBM's 

simulation capacity. Computed daily averages of point snowmelt depth for a 

complete ablation period were compared with observed lysimeter outflows. Three 

different snowmelt prediction methods were compared: (1) The original degree-

day method; (2) A combined temperature index-radiation budget approach, 

referred to as the restricted degree-day method; (3) The reduced energy budget 

method which contains the radiation balance and bulk turbulent transfer 

parameterizations. In addition to a direct comparison, the simulated snowmelt 

depths and measured lysimeter outflows were used to generate artificial 

hydrographs for a complete watershed by means of the Rango-Martinec Snowmelt 

Runoff Model (SRM). Although all three methods performed equally well on a 

seasonally averaged basis, the original degree-day method could not explain 

the variability associated with snowmelt and the consequent runoff to the same 

extent as the other two methods. The restricted degree-day method performed 

even slightly better than the reduced energy budget method. 

Although this investigation deals with the development of a point radiation 

budget model, it is envisioned that distributed models using digital elevation 

data should become operational in the near future. The hydrological character 

of the currently available operational snowmelt runoff models however, should 

become more distributed in order to take full advantage of the benefits of a 

snowmelt factor based on the radiation budget. 
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Dit onderzoek behelst de ontwikkeling en werking van een eenvoudig 

stralingsbalansmodel voor een punt op een oppervlak in met sneeuw bedekt 

bergachtig terrein. Netto straling is gewoonlijk de belangrijkste component 

van de energiebalans aan het aardoppervlak in alpiene milieus, zowel wat 

betreft grootte als wat betreft temporele en ruimtelijke resolutie. Een 

positieve energiebalans aan het sneeuwoppervlak zal sneeuwsmelt veroorzaken 

zodra het sneeuwpakket in thermisch evenwicht is. Een stralingsbalansmodel kan 

daarom een schatting geven van de energiebalans aan het sneeuwoppervlak en de 

daarmee samenhangende sneeuwsmelt. 

Om een gemakkelijke inpassing in operationele sneeuwsmelt-afvoermodellen 

mogelijk te maken, dienen sneeuwsmeltfactoren eenvoudig te zijn wat betreft 

het aantal vereiste invoerparameters en hun temporele resolutie. De meeste 

deterministische sneeuwsmelt-afvoermodellen gebruiken een graad-dag factor om 

de hoeveelheid sneeuwsmelt in een stroomgebied te berekenen. Hier wordt 

gesteld dat de toepassing van een stralingsbalansalgoritme tot een meer 

fysisch gebaseerde sneeuwsmeltfactor zal leiden dan de huidige temperatuur-

index methoden, hetgeen de parametervariabiliteit zal reduceren die samenhangt 

met locale calibrâties en aanpassingen die gebaseerd zijn op waargenomen 

sneeuweigenschappen of het hydrologisch oordeel van de gebruiker van het 

model. 

Om in hoge mate operationeel te kunnen blijven onder een verscheidenheid 

van atmosferische omstandigheden en terreinconfiguraties zonder dat 

uitgebreide metingen nodig zijn, is een stralingsbalansmodule (RBM) ontwikkeld 

die gebaseerd is op parameterisaties van de voortplanting van kort- en lang-

golvige straling in de atmosfeer en aan het aardoppervlak. De topografische 

complexiteit die samenhangt met de effecten van onderbreking, reflectie en 

emissie van straling door oppervlakken die het gemodelleerde punt omringen 

wordt in rekening gebracht door middel van conversiefactoren die gebaseerd 

zijn op een uniforme stralingsverdeling. De gecompliceerde, door sneeuwsmelt 

geïnduceerde fysische processen die in het sneeuwpakket zelf plaatsvinden 

worden niet expliciet gemodelleerd. 

De benodigde onafhankelijke invoervariabelen ten behoeve van RBM zijn: (1) 

Vaste geografische parameters die slechts eenmalig bepaald behoeven te worden 



van topografische kaarten en/of digitale terreinmodellen: De breedtegraad, 

lengtegraad, hoogte, helling, richting en locale horizon van het betreffende 

oppervlak; (2) Temporele variabelen: De dag van het jaar, de locale tijd en 

het aantal dagen sinds de laatste sneeuw is gevallen; (3) Atmosferische/ 

meteorologische variabelen die tenminste op dagbasis bepaald dienen te worden 

uit waarnemingen aan het aardoppervlak of uit teledetectiegegevens: De 

optische diepte of transmissiviteit van de atmosfeer, de luchtdruk, de 

oppervlakte- en luchttemperatuur, de dampspanning en de gemiddelde 

bewolkingsgraad (en/of zonneschijnduur). RBM biedt de mogelijkheid om de 

eerste drie atmosferische variabelen op dagbasis te schatten. 

Berekende twintig minuten waarden van inkomende kortgolvige- en netto 

straling voor een hele dag zijn vergeleken met metingen gedaan boven een 

uniform tarweveld onder een onbewolkte hemel. RBM presteerde naar behoren 

onder dergelijke ideale topografische en atmosferische omstandigheden. 

Berekende daggemiddelden van inkomende kortgolvige straling voor een heel 

sneeuwsmeltseizoen zijn vergeleken met metingen gedaan boven een horizontaal 

met sneeuw bedekt oppervlak in een Zwitsers alpien stroomgebied onder zeer 

variabele atmosferische omstandigheden. Alhoewel RBM tamelijk goed presteerde 

met betrekking tot de seizoengemiddelden, bleek het model niet in staat om de 

grote variabiliteit in gemeten waarden te verklaren: In het algemeen werden 

hoge waarden onderschat en lage waarden overschat. Meer realistische 

procedures ter correctie van bewolking dan de huidige daggemiddelde 

correctiefactoren zullen de simulatiecapaciteit van RBM ongetwijfeld 

verbeteren. Berekende daggemiddelden van sneeuwsmelt voor een compleet 

sneeuwsmeltseizoen zijn vergeleken met gemeten lysimeterafvoeren. Daarbij is 

een vergelijking gemaakt tussen drie verschillende sneeuwsmelt-

voorspellingsmetnoden: (1) De originele graad-dag methode; (2) Een 

gecombineerde temperatuur index-stralingsbalans methode, waaraan gerefereerd 

wordt als "de beperkte graad-dag methode"; (3) De gereduceerde energiebalans 

methode die de stralingsbalans en parameterisaties voor de turbulente 

uitwisseling bevat. Naast een directe vergelijking zijn de gesimuleerde 

sneeuwsmeltdiepten en gemeten lysimeterafvoeren gebruikt om kunstmatige 

hydrografen voor een heel stroomgebied af te leiden met behulp van het Rango-

Martinec sneeuwsmelt-afvoermodel (SRM). Alhoewel alle drie de methoden even 

goed presteerden met betrekking tot de seizoengemiddelden, bleek de originele 

graad-dag methode niet in staat de variabiliteit die samenhangt met 

sneeuwsmelt en de resulterende afvoer in dezelfde mate te verklaren als beide 

andere methoden. De beperkte graad-dag methode presteerde zelfs enigszins 

beter dan de gereduceerde energiebalans methode. 

Alhoewel het hier een onderzoek naar de ontwikkeling van een 

stralingsbalansmodel voor een punt betreft, zullen gedistribueerde modellen 

die gebruik maken van digitale hoogte gegevens in de nabije toekomst 

operationeel worden. Het hydrologische karakter van de huidige generatie 

operationele sneeuwsmelt-af voermodel len zal echter meer gedistribueerd dienen 

te worden om ten volle gebruik te kunnen maken van de voordelen die een op de 

stralingsbalans gebaseerde (gedistribueerde) sneeuwsmeltfactor biedt. 
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CHAPTER 1. 

INTRODUCTION 

Net radiation is normally the most important term in the surface energy 

balance at a point in snow covered mountainous terrain [Zuzel and Cox, 1975]. 

Results of previous investigations have shown that net radiation remains the 

dominant energy source under a wide range of microclimates and terrain 

configurations [Granger and Male, 1978; Olyphant, 1984; 1986b; Marks, 1988]. 

Hence, the reliability of snowmelt predictions depends largely on the accuracy 

of radiation measurements, simulations and forecasts. 

The general energy budget equation of a snow cover may be expressed in 

terms of energy flux densities as follows [e.g., U.S. Army Corps of Engineers, 

1956; Male and Gray, 1981; Brutsaert, 1982]: 

ûQ = R„ + Qh + Qe + G + A,, (1) 

where1 : 

ûQ = Change in internal energy 
R„ = Net radiation 
Qh = Sensible heat flux 
Qe = Latent heat flux 
G = Heat flux by soil conduction 
Ah = Heat flux by advection 

1 Unit of energy flux density is [Wirf2]. 

The advection term is mainly associated with rainfall, however it includes 

the total energy flux associated with water flowing in or out of the system 

to which (1) is applied. If the energy fluxes toward the snow layer are 

defined as positive and those away from it as negative, then positive values 

of ûQ result in snowmelt once the entire snow cover is isothermal at 0°C 

[Marks, 1988]. 

Since the temperature gradients in a melting snow cover and the soil 

directly beneath it are always small, the heat flux by soil conduction can be 

neglected for most purposes [Male and Gray, 1981]. The same holds for the 

energy contribution as a result of advection (due to the release of latent 

heat by freezing or cooling rain), since precipitation occuring during the 

snowmelt season tends to have a temperature close to 0°C [Marks et al., 1986]. 

These theoretical considerations are confirmed by the experimental findings 

of several investigators [Granger and Male, 1978; Marks, 1988]. 

The turbulent exchange terms, Qj, and Q,,, may be major components relative 

to the other terms in (1) just before the actual beginning of the snowmelt 

season, when the daily radiation balance changes from a net energy loss to a 

net gain [Marks, 1988]. Moreover, advection of sensible heat (not to be 

confused with Ah) may have a considerable influence on the melting process 



over remaining snow covered areas towards the end of the snowmelt season 

[Granger and Male, 1978; Olyphant and Isard, 1988]. But for most of the 

snowmelt season the net turbulent heat transfer is small, since Q,, and Q,, are 

partly counterbalancing one another due to their opposite signs [Marks, 1988]. 

During the snowmelt season, the former is namely associated with an energy 

input, whereas the latter is associated with an energy loss due to 

evaporation. Therefore net radiation is usually the dominant energy source. 

Various investigators have used an empirical temperature index approach for 

modeling snowmelt [e.g., Martinec, 1960; Pysklywec et al., 1968; Granger and 

Male, 1978; Kuusisto, 1980; Martinec et al., 1983; Martinec and Rango, 1986; 

van Katwijk and Rango, 1988; Moussavi et al., 1989]. Such an approach assumes 

the existance of a linear relationship between the ambient air temperature and 

the snowmelt resulting from a positive energy balance. Although air 

temperature may be correlated to the energy budget, it cannot account for its 

temporal or spatial variability in mountainous terrain, which is mainly 

associated with the radiation budget [Pysklywec et al., 1968; Zuzel and Cox, 

1975]. Conceptual snowmelt models based on an empirical temperature index 

therefore require local calibrations for the identification of their 

parameters. Hence, their simulation and forecast reliability will be inferior 

under extreme conditions. Moreover, the application of a temperature based 

approach is restricted to lumped or quasi-distributed hydrologie models, but 

will not comply with the input requirements of forthcoming distributed models. 

In an effort to improve snowmelt modeling by reducing parameter variability, 

some invesigators have used a combination of a temperature index and a surface 

radiation budget [Martinec and de Quervain, 1975; Ambach, 1988; Martinec, 

1989]. Generally, a more physically based snowmelt factor has distinct 

advantages over the empirical degree day factor, particularly when the 

atmospheric conditions are variable and the topography is rough [Charbonneau 

et al., 1981], 

Because a snowmelt factor based on net radiation accounts for atmospheric 

and geographic variability, its determination is more complex than merely 

determining an empirical factor. General problems related to modeling 

radiation are concerned with the partition of solar radiation into a direct 

and a diffuse component, the effect of cloud cover on incident solar and 

thermal radiation, the angular distribution of the diffuse radiation 

components and the spatial, temporal and spectral dependency of the 

reflectivity of snow [Dozier, 1980]. Moreover, modeling radiation in 

mountainous areas brings about specific topographic difficulties due to the 

effects of obstruction, reflection and emission by surrounding terrain. 

This investigation deals with developing a (spectrally and geometrically) 

simplified approach as a first step towards modeling the radiation budget in 

complex terrain, in order to limit the required number of input parameters. 

This will reduce the need for extensive measurements and facilitate the 

incorporation of basin scale energy budget estimates in operational snowmelt 

runoff models. It is envisioned that future radiation budget estimates will 



be the result of distributed modeling efforts combining digital terrain models 

and satellite remote sensing scenes in the environment of geographic 

information systems [Dozier, 1987; Leavesley, 1989]. However, recent 

investigations have shown that broadband radiation models in combination with 

simple terrain models can yield acceptable results [Olyphant, 1984; 1986a]. 

Olyphant [1986b] argues that in mountainous terrain the effects of terrain 

heterogenity must be nearly as great as the effects of spectral variation in 

determining variations in the surface radiation budget. Moreover, modeling the 

complex spatial and spectral properties of radiative transfer through an 

atmosphere containing cloud layers requires a large amount of detailed 

information and has rarely been applied in an operational environment [e.g., 

Lacis and Hansen, 1974; Kimball et al., 1982]. 

In the next chapter the general theory of radiation modeling and its 

application to uniform surfaces and complex terrain will be discussed. The 

third chapter presents an outline of the developed computer simulation model 

RBM (Radiation Budget Module) and its model assumptions and input 

requirements. Chapter four deals with the validation and verification 

(testing) of RBM, and presents its application to various sites and a 

comparison between a simplified energy budget method and two temperature index 

methods for the simulation of point snowmelt for a complete ablation period. 

In the final chapter a summary and conclusions of this investigation will be 

presented and remarks will be made with respect to future work in this field. 



CHAPTER 2. 

MODELING RADIATION 

2.1. General Theory 

The net allwave electromagnetic flux density at a point at the surface-

atmosphere interface is defined as the total incident monochromatic radiation 

(irradiance) less the total exiting monochromatic radiation (upward) 

integrated over all wavelengths [e.g., Marks et al., 1986]: 

Rn = (I[l] - E[l]) * dl (2) 

1=0 

where: 
R„ = Net allwave radiation [Wm"2] 
1 = Wavelength [jum] 
I = Monochromatic irradiance [Wm'̂ m"1 ] 
E = Exiting monochromatic radiation 

[Wm̂ /inf1] 

For the purpose of modeling the surface radiation budget, it is both 

reasonable and convenient to separate the total electromagnetic spectrum into 

two distinct spectral regions, i.e. one emitted by the sun and one emitted by 

the earth and its atmosphere. That is to say, their overlap is negligible and 

their behaviour in the atmosphere and at the earth's surface differs markedly. 

According to Wien's displacement law, the product of the absolute temperature 

of a perfect emitter (black body) and the wavelength of the most intense 

radiation, is a constant [e.g., Liou, 1980]. Hence, since the effective 

radiative temperature of the sun (between 5800 and 6000 K [Fritz, 1951]) is 

much higher than that of the earth (approximately 288 K [Ramanathan et al., 

1989]) and the earth-atmosphere system (approximately 250 K [Liou, 1980]), it 

emits at shorter wavelengths (effectively in the range from 0.3 to 4.0 /um, 

with an energy peak at 0.47 /im) than does the earth and its atmosphere 

(effectively in the range from 4.0 to 50 /im, with an energy peak at 10 /im) 

[Marks et al., 1986]. 

Not only do the origins of shortwave (solar) and longwave (terrestrial) 

radiation differ, but also their behaviour in the earth's atmosphere and at 

its surface: shortwave radiation is attenuated due to absorption and 

scattering by terrestrial materials, but it is not emitted; longwave radiation 

on the other hand is absorbed and emitted, without appreciable scattering. 



2.1.1. Radiation in the Earth's Atmosphere 

The atmosphere consists of a group of nearly permanent gases (nitrogen, 

oxygen and carbon dioxide, among others), a group of gases with variable 

concentration (mainly water vapor and ozone) and various liquid and solid 

particles (water drops, ice crystals and aerosols). They are responsible for 

the radiative processes (scattering, absorption and emission) in the 

atmosphere. 

The main absorbers of shortwave radiation are water vapor in the 

troposphere and ozone in the stratosphere, accounting for appoximately 7 and 

2 percent attenuation, respectively [Kimball, 1928; List, 1966]. The former 

absorbs primarily in the near infrared wavelength region, whereas the latter 

is the main gaseous absorber in the shorter visible and ultraviolet 

wavelengths [Lacis and Hansen, 1974]. Absorption by miscellaneous gases 

(oxygen, carbon dioxide and nitrogen compounds) is of minor importance in this 

spectral region. The most important longwave absorbing (and consequently 

emitting) constituents are water vapor in the lower atmosphere, and carbon 

dioxide and ozone in the upper atmosphere [Idso and Jackson, 1969]. 

It is common in radiation modeling to distinguish between two types of 

scattering, namely molecular or Rayleigh scattering and aerosol scattering. 

The former is caused by air molecules that tend to scatter equal amounts of 

electromagnetic waves (radiation) forward and backward (isotropic scattering) ; 

its intensity is inversely proportional to the fourth power of the wavelength. 

The latter is caused by particles whose sizes are much larger than the 

wavelength of the incoming solar radiation, partly by dust particles that tend 

to affect radiation at longer wavelengths than air molecules (Mie scattering), 

and partly by water droplets that scatter all wavelenghts in equal amounts 

(non selective scattering) [Liou, 1980]. Aerosol scattering is generally 

peaked forward [Fritz, 1951; Lo, 1986]. The purpose of using the terms forward 

and backward instead of downward and upward is that the atmosphere as a whole 

scatters both the incoming solar radiation and the upcoming surface 

reflection. 

Since the atmosphere is a scattering volume containing many particles, each 

particle is exposed to and also scatters radiation which has already been 

scattered by other particles. Multiple scattering is of great importance to 

radiative transfer in the atmosphere. The result of atmospheric scattering is 

that part of the total amount of shortwave radiation reaches the surface as 

direct radiation, and part of it as diffuse radiation. This partition and the 

hemispherical distribution of the diffuse component are of great importance 

to the surface radiation budget, the latter especially in mountainous terrain. 

Clouds can contain considerable amounts of water, both in the form of water 

vapor and of liquid droplets, and in some cases also as ice and snow particles 

[Fritz, 1951]. Therefore, they enhance the mentioned radiative effects of the 

atmosphere due to increased scatter of shortwave radiation (both downcoming 

solar radiation and upcoming surface reflection) and increased absorptance and 



emittance of longwave radiation. The former generally has an effect of net 

cooling, whereas the latter has a net warming effect [Ramanathan et al., 

1989]. The net result of these opposing feedback mechanisms however, is still 

very much in doubt among researchers. Since cloud-radiative interaction is a 

very complex phenomenon both for large scale climate applications and for 

small scale radiation budget studies, it is common among investigators to 

either simplify or even completely omit the influence of clouds on the surface 

radiation budget [e.g., Marks and Dozier, 1979; Dozier, 1980; Bird and 

Riordan, 1986]. Although omitting cloud effects may be useful for theoretical 

purposes, it is not acceptable in operational radiation budget models [e.g., 

Munro and Young, 1982]. 

2.1.2. Radiation at the Earth's Surface 

When the various radiation components eventually reach the earth after 

their modification by the atmosphere, a complex interaction with its surface 

and the features upon it takes place. Depending on the spectral and spatial 

distribution of the incoming radiation and on the intrinsic and geometric 

properties of its recipients, this process consists of different amounts of 

scattering (eventually resulting in upwelling reflection), absorption and 

transmission. The intrinsic properties of the surface (such as chemical and 

mineral composition, texture (grain size), structure (roughness) and content 

of moisture and organic matter) determine the radiation-surface interaction 

on a microscopic scale and consequently influence both the spectral and the 

spatial characteristics of this process; they are quantified by means of such 

well known terms as reflectivity, emissivity and albedo. The surface's 

geometric properties (terrain relief) on the other hand, determine the 

radiation-surface interaction on a macroscopic scale and consequently mainly 

influence its spatial characteristics; they are quantified by means of 

conversion factors (section 2.3.2.). 

When a ray of electromagnetic radiation strikes the surface of an object, 

it may be absorbed, transmitted or reflected. What kind of interaction or 

combination of interactions (reflection, refraction of diffraction) actually 

takes place at the surface-atmosphere interface depends on the microstructure 

of the surface layer, i.e. its roughness and homogeneity observed on a 

microscopic scale. The amount of (intrinsic) microrelief relative to the scale 

of observation determines whether the surface appears as a specular (Fresnel) 

or as a diffuse reflector, and if the latter is the case whether it appears 

as an isotropical (Lambertian) or as an anisotropical reflector. It follows 

from Rayleigh's criterion (which distinguishes optically smooth surfaces from 

optically rough surfaces by relating the dimensions of surface perturbations 

on a molecular scale to the wavelength of the incident radiation), that most 

natural surfaces appear to be diffuse reflectors. Specular reflection of 

direct insolation is therefore often ignored, since it occurs too infrequently 



to be of importance in the radiation budget [Dozier, 1980]. The exact 

distribution of reflected radiation, however, is a complex function of the 

direction of the incident rays and of the microstructure of the surface layer, 

which is determined a.o. by its mineral compostion, texture, moisture content 

and organic matter content. The relationship between the surface reflectance 

on the one hand and the incident and reflected beam geometry on the other hand 

is known as the Bidirectional Reflectance-Distribution Function (BRDF) [Horn 

and Sjoberg, 1979]. The amount of (geometric) macrorelief and the position of 

the sun determine the source-object-receptor geometry and consequently the 

occurence of obstruction (shading), reflection and emission by adjacent 

surfaces. Even for the simplified case where the intrinsic surface would 

behave like a Lambertian (perfect diffuse) reflector, the surface roughness 

observed on a macroscopic scale would always cause the entire land surface to 

reflect the incident radiation nonuniformly as a result of the complex 

geometric effects at the land surface [Dozier and Frew, 1989]. 

Particularly in the case of snow, reflection is the dominant component in 

the shorter (ultraviolet and visible) wavelengths, whereas absorption and 

transmission are dominant in the longer (infrared) wavelengths [Geiger, 1959; 

Kondratyev, 1973; Kondratyev et al., 1982; Dozier et al., 1989]. According to 

Kirchhoff's law, the emissivity of a medium under local thermodynamic 

equilibrium equals its absorptivity for a given wavelength [e.g., Liou, 1980]. 

Hence, snow acts as a nearly perfect emitter, as do most terrestrial materials 

[Geiger, 1959; Kondratyev et al., 1982]. Although the distinctive spectral 

dependency of the reflectivity of snow and of the optical properties of the 

substances in the atmosphere will not be taken into account in this study, 

their interaction affects the spectrally integrated reflectivity (albedo) of 

snow and thus significantly influences the radiation budget at the surface. 

For instance, the fact that the reflectivity of snow for near infrared 

radiation is much smaller than its reflectivity for ultraviolet or visible 

radiation (roughly 0.2 versus 0.8) [Dozier, 1980] causes (1) attenuation of 

solar radiation by water vapor in the near infrared wavelength region to 

result in a markedly higher reduction of the surface radiation budget than the 

same amount of attenuation by aerosols in the ultraviolet and visible bands, 

and causes (2) diffuse radiation to consist of shorter wavelengths than direct 

radiation as a result of multiple reflections between the snow surface and the 

atmosphere (in particular the cloud bases). Hence, the snow reflectivity for 

diffuse radiation is generally higher than that for direct radiation, and the 

snow albedo consequently increases with an increasing cloud cover [Petzold, 

1977], 

The roughness of a snow surface is mainly a function of its mean grain 

size, which increases during the snow melt season. Grain growth and 

contamination bring about a decay of the snow reflectivity for both the direct 

and the diffuse radiation during the melt season: The snow grain size mainly 

affects the snow reflectivity in the near infrared wavelength region, whereas 

absorbing impurities mainly affect snow reflectivity in the visible wavelength 
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region [Dozier, 1987]. The liquid water content of snow does not appreciably 

affect its bulk radiative transfer properties [Dozier et al., 1989]. The 

diffuse reflectivity for direct insolation is also dependent on the angle of 

incidence as determined by the sun's position [Kondratyev, 1973; Kondratyev 

et al., 1982]. Reliable parameterizations of this relationship have yet to be 

developed for most land surface types [Briegleb et al., 1986]. As for snow 

however, several investigators have presented empirical formulae which allow 

the determination of the albedo as a function of grain size and solar zenith 

angle [Petzold, 1977; Marks, 1988; Williams, 1988]. Although the intrinsic 

reflection of solar radiation from a snow cover is more closely isotropical 

than scattering by vegetation [Eyton, 1989], it contributes along with the 

geometric effects in mountainous areas to the complex anisotropic properties 

of reflection from adjacent terrain [Dozier and Frew, 1989; Shoshany, 1989]. 

The radiation balance at a point can be written as the sum of net shortwave 

and net longwave radiation and their respective components [e.g., Gamier and 

Ohmura, 1970; Marks and Dozier, 1979; Marks et al., 1986]: 

Rn - Kn + Ln (3) 

= K-l - Kt + Li - Lt 

Kir = Kdir + Kdif + Ktrn 

Kt = a * K4-

^ = Lsky + Ltrn 

L t - Lsfc + (1 - C) * L* 

where1 : 

R„ = Net radiation 
KJ, = Net shortwave radiation 
Ln = Net longwave radiation 
Kl = Downward shortwave radiation 
Kt = Upward shortwave radiation 
L4- = Downward longwave radiation 
Lt = upward longwave radiation 
Kdir = Direct solar radiation 
Kdif = Diffuse sky radiation 
K[m = Reflection from adjacent terrain 
a = Surface albedo [-] 
Lsky = Emission from atmosphere 
Ltrn = Emission and reflection from adjacent terrain 
Lsfc = Surface emission 
e = Surface emissivity [-) 

1 Unit of radiative flux density 
is [Wm"2]. 

This is a more convenient set of equations than expression (2) since it 

consists of components which are more easily defined in terms of broadband 

radiative flux densities. 



2.2. Uniform Surfaces 

2.2.1. Direct Solar Radiation 

The instantaneous solar radiative flux density at the top of the atmosphere 

is transformed in two ways to provide the direct solar radiation incident on 

a uniform (i.e. horizontal and unobstructed) surface under cloudless 

conditions: (1) through a modification due to the fact that its direction is 

rarely perpendicular to the receiving surface, and (2) through an attenuation 

in the earth's atmosphere, as described in section 2.1.1. The former requires 

the application of spherical trigonometry, whereas in broadband radiation 

modeling the latter is accounted for by means of a generalization of the Beer-

Bouguer-Lambert law for the exponential extinction of monochromatic radiation 

traversing a homogeneous absorbing medium. The solar radiation at the top of 

the atmosphere, corrected for the angle of incidence, is usually referred to 

as extraterrestrial radiation. The direct insolation on a horizontal surface 

under cloudless conditions (potential insolation) can be expressed as the 

product of the extraterrestrial radiation and an attenuation factor accounting 

for atmospheric absorption and scattering [e.g., Kondratyev, 1973]: 

K0 = S0 * r"2 * cos[6s] (4) 

Kdiro = Ko * e x p [ - M a * p * Po"1 * r ] 

= K * T(Ma*p*po-l) j 5 j 

where: 
K0 = E x t r a t e r r e s t r i a l r a d i a t i o n [Wnf2] 
Kdiro ~ D i r ec t i n s o l a t i o n under c l oud l e s s c ond i t i on s [Wirf2] 
S0 = Solar cons tan t [Wirf2] 
r = Earth's radius vector [-] 
6S = Solar zenith angle [rad] 
Ha = Relative optical airmass or relative path length 

of atmosphere [-] 
p = Air pressure at surface [Pa] 
p0 = Standard air pressure at mean sea level [Pa] 
T = Integral atmospheric extinction coefficient 

or normal optical depth [-] 
T = Zenith path transmissivity or transparency of 

atmosphere [-] 

S0 is the flux density of solar radiation perpendicular to the rays at the 

mean earth-sun distance. A value of 1353 (±21) Wirf2 issued by the National 

Aeronautics and Space Administration (NASA) has been accepted as a standard 

solar constant, which happens to be exactly the same value as proposed earlier 

by the Smithsonian Institution [List, 1966; Liou, 1980]. Moreover, it is in 

good agreement with experimental findings resulting from recent investigations 

as part of the Earth Radiation Budget Experiment (ERBE) : they show 1365 Wirf2 

to be a reasonable average for the second half of the 1980's [Ramanathan et 
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al., 1989; Barkstrom et al., 1990]. 

The radius vector of the earth quantifies the deviation from the mean 

earth-sun distance. Its value as a function of the day of the year can be 

found from tables prepared by List [1966], from Fourier series representations 

as derived by various authors [e.g., Spencer, 1971], or from representations 

based on the theory of conies [Whiteman and All wine, 1986] (appendix A . ) . None 

of these formula types explicitly takes into account the effects of leap 

years, precession and fluctuations in the earth's orbital eccentricity and the 

inclination angle of the axis of the earth's rotation. Blackadar [1984] 

therefore proposed a more accurate algorithm which gives the radius vector of 

the earth and the solar declination as a function of the Julian date. However, 

since the value of r"2 never differs more than about 3.5 percent from unity, 

assuming r to remain constant during the day is only a minor approximation. 

From spherical trigonometry it can be seen that the cosine of the solar 

zenith angle with respect to a horizontal surface is a function of the 

corresponding date and time and of the latitude of the receiving surface 

[e.g., List, 1966; Kondratyev, 1973; Liou, 1980]: 

cos[6s] = sin[$] * sin[5] + cos[$] * cos[5] * cos[H] (6) 

where1 : 

9S = solar zenith angle [rad] 
$ = Latitude of receiving surface [rad] 
S = Solar declination [rad] 
H = Hour angle [rad] 

1 Latitudes in the northern hemisphere are taken as positive; 
those in the southern hemisphere as negative. 

The solar declination is the terrestrial latitude of the point where the 

sun is in the zenith at true solar noon, i.e. when 68 = 0 and H = 0 in (6). 

As for the approximation of S as a function of the day of the year, the same 

sources may be consulted as mentioned in the case of the earth's radius 

vector. However, the variation of the solar declination over the year is an 

order of magnitude larger than that of the radius vector: its maximum, which 

occurs around June 22, is approximately 0.41 rad (23.44°), whereas its 

minimum, occuring around December 22, is -0.41 rad. Between these so-called 

(summer and winter) solstices occur the (vernal and autumnal) equinoxes, at 

which the solar declination becomes 0 (approximately March 21 and September 

23) [List, 1966]. 

The hour angle is the angular distance between the solar longitude and the 

meridian of the observer. By definition, H is 0 at true solar noon and is —K 

rad or n rad at true midnight. The hour angles of sunrise and sunset on a 

horizontal surface are found by setting 6S equal to n/2 (cos[6j = 0) in (6) 

and then solving for H. As a result, (4) can be integrated analytically 

between sunrise and sunset (with the minor approximations that S and r are 
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LAT. 
JAN. FEB. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. 

r 

JAN. FEB. MAR. APRIL MAY JUNE JULY AUG. SEPT. OCT. NOV. OEC. 

fig. 2.1.1. Total daily solar radiation reaching a horizontal surface at 
the top of the atmosphere. Solid curves represent lines of equal radiation 
[calcnPd"1 ~ 4.184 * 104 Jm^d*1]; shaded areas represent regions of 
continuous darkness [List,1966]. 
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constant during the day) to yield the total daily radiation reaching a 

hypothetical horizontal surface at the top of the atmosphere [List, 1966; 

Liou, 1980] (appendix C ; figure 2.1.1.). Since (5) cannot be integrated 

analytically, it has to be evaluated numerically when daily totals are 

required. Garnier and Ohmura [1968, 1970] and Isard [1983] apply integration 

steps of 20 minutes (dH = TT/36) with reasonable accuracy, whereas Olyphant 

[1986b] uses Simpson's rule with integration steps of one hour (dH = TT/12). 

True solar time is generally not the same as local standard time (zone 

time). The first reason for this deviation is that each degree of longitudinal 

difference from the standard meridian results in a time difference of 4 

minutes. The second reason is related to the irregular motion of the earth 

around the sun, known as the equation of time. The maximum departure from the 

longitudinally corrected time is about 17 minutes and occurs presently in the 

beginning of November. The equation of time can be approximated as a function 

of the day of the year by means of tables [e.g., List, 1966] and Fourier 

series representations as derived by various authors [e.g., Spencer, 1971; 

Whiteman and Allwine, 1986] (appendix A.). 

The relative optical airmass is the path length traversed by the sun's rays 

in the atmosphere relative to this length when the sun is in the zenith. For 

solar zenith angles less than n/3 rad (60s), Ma may be approximated with an 

accuracy of 0.25 percent by the secant of 68 (cos^tGj) [Kasten, 1966]. 

However, for lower solar elevation angles, the curvature of the earth and its 

atmosphere and atmospheric refraction cannot be neglected. Tables based on 

Bemporad's computations made in the beginning of this century [e.g., 

Kondratyev, 1973], have been widely used for this purpose. More recently, 

Kasten [1966] developed a table for the relative optical airmass based on a 

new model atmosphere and provided the following approximation formula which 

generally deviates no more than 0.1 percent from the tabulated values: 

Ma = (cos[9s] + 0.1500 * (93.885 - 6S * 180 * ff"1)"1-253)"1 (7) 

where: 

Ma = Relative optical airmass or path length of atmosphere [-] 
6g = Solar zenith angle [rad] 

Especially in mountainous terrain, the actual air pressure at the surface 

(p) is generally different from the standard air pressures at sea level (p0) 

on which the airmass tables are based (10s Pa for Bemporad's and 1.01325 * 105 

Pa for Kasten's table, respectively). A common altitude correction for Ma 

consists therefore of multiplying the tabulated values by the relative air 

pressure (p/p0) [List, 1966; Kondratyev, 1973]. If no air pressure 

measurements are available, a relative air pressure can be approximated by one 

of the following expressions, based on the hypsometric formula for a dry 

atmosphere. Equation (8) assumes a constant temperature lapse rate (Ta*T0
-1=l-
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r*T0
_1*h) [Marks and Dozier, 1979], whereas (9) assumes a nearly constant 

exponential temperature decay with altitude (Ta*T0"
1=exp[-r*T0"

1*h] ) [Willet and 

Sanders, 1959]: 

p * p«;1 = exp[-g * (f * R,,)-1 * ln[l + T * h * T,"1]] (8) 

« exp[-g * h * (Rd * TJ-1] (9) 

where: 

p = Air pressure at surface [Pa] 
p0 = Standard air pressure at mean sea level [Pa] 
g = Gravitational acceleration [~ 9.81 ms"2] 
T = Temperature lapse rate [~ 0.0065 Km"1] 
Rd = Gas constant for dry air [« 287.04 Jkg^K"1] 
h = Surface altitude above mean sea level [m] 
Ta = Absolute air temperature at surface [K] 
T0 = Mean air temperature at sea level [~ 288.15 K] 

Van Katwijk and Rango [1988] and Leavesley [1989] suggested that the 

assumption of a constant temperature lapse rate in snow covered mountainous 

terrain may not be accurate, especially in the vicinity of transition zones 

between snow covered and snow free areas. However, values close to the 

standard lapse rate for the troposphere of 0.0065 Km'1 [Brutsaert, 1975; Liou, 

1980] have been applied in alpine areas yielding reasonable results [Dozier 

and Outcalt, 1979; Marks and Dozier, 1979; Munro and Young, 1982; Running et 

al., 1987]. Moreover, (8) is relatively insensitive to departures from the 

standard lapse rate, whereas (9) does not contain a lapse rate at all. 

If accurate solar photometer measurements are not available, the optical 

depth (r) or transmissivity (T) of the atmosphere for clear skies may be 

approximated by integrating standard monochromatic transmission 

parameterizations of the various constituents of the atmosphere over all solar 

wavelengths [e.g., Fritz, 1951; Leckner, 1978; Dozier, 1980; Bird and Riordan, 

1986]. Rearranging (5) to obtain r or T as a function of Kdir, yields 

reasonable approximations when daily averages of direct solar radiation are 

available [Gamier and Ohmura, 1970]. As a first approximation of the 

atmospheric transmissivity for clear sky conditions at high altitudes, a value 

of 0.75 (corresponding to an optical depth of about 0.29) seems appropriate 

[Isard, 1983]. Using the shortwave radiative transfer parameterizations of 

Lacis and Hansen [1974], Dozier and Outcalt [1979], Munro and Young [1982] or 

Stuhlmann et al. [1990] to determine Kdir, values for r or T close to these 

average values can be obtained. 

Substituting the equations (4) and (6)-(9) in (5), thereby making use of 

the approximation formulae for the earth's radius vector, the sun's 

declination and the equation of time (appendix A . ) , and of the mentioned 

typical values for the solar constant and the atmospheric transmissivity, one 

yields an estimate of the desired potential direct insolation. The required 

input parameters are the latitude, longitude and altitude of the surface, and 
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the time and day of the year. 

2.2.2. Diffuse Sky Radiation 

As mentioned in section 2.1., diffuse sky radiation has two sources, which 

cannot be measured separately, but need both be taken into account when 

modeling radiative transfer: (1) radiation that is scattered downward out of 

the solar beam, and (2) radiation that is reflected upward from the earth's 

surface and subsequently backscattered by the atmosphere (referred to as 

multiple reflection or multiple scattering). The latter is especially 

important over snow covered surfaces, because of the highly reflective nature 

of snow. Diffuse sky radiation on an unobstructed horizontal surface 

contributes about 25 percent to the global insolation on an average clear day 

[e.g., Becker and Boyd, 1957] and offsets roughly half of the reduction of 

direct insolation during periods of partial cloud cover [Olyphant, 1984]. Over 

snow covered surfaces these figures are generally even more pronounced. 

Different methods have been developed for determining the amount of diffuse 

sky radiation reaching horizontal surfaces, ranging from more physically based 

scattering models to more empirically based parameterizations. The latter 

usually relate the ratio of diffuse and global insolation on an unobstructed 

horizontal surface (Kdif/K<l) to the ratio of global and extraterrestrial 

insolation corrected for the incidence angle (K4/K0), which is interpreted as 

a clearness index [Liu and Jordan, 1960; 1961]. These relationships are based 

on the observation that the fraction of diffuse sky radiation decreases from 

1 to about 0.15 as the global transmission increases from 0 to about 0.8. 

These parameters have been correlated through polynomial regression functions 

for averaging intervals of one minute [Smietana et al., 1984], an hour [Erbs 

et al., 1982], a day [Liu and Jordan, 1960; 1961; Erbs et al., 1982] and a 

month [Liu and Jordan, 1960; Erbs et al., 1982]. The scatter of measurements 

about these regression lines is significant, particularly for the shorter 

intervals. Hay and Davies [1978] suggested that a major part of the spatial 

and temporal variability associated with these relationships might be 

attributed to the effect of multiple scattering between the earth's surface 

and the atmosphere. However, Olyphant [1984] compared his measurements to the 

one hour correlation of Erbs et al. [1982] and concluded that "the 

relationship is indeed location independent". Moreover, the agreement between 

this one hour standard correlation and the curves obtained by Stuhlmann et al. 

[1990], both from radiation measurements and model simulations, is striking. 

Although these empirical parameterizations allow easy adjustment for the 

influence of cloudiness on the amounts of direct insolation and diffuse sky 

radiation (section 2.2.3.), the simplified assumption that the amount of 

diffuse sky radiation under clear skies is a constant fraction of the global 

insolation is insufficient for application in radiation models that do not 
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require radiation measurements as input data. 

Lacis and Hansen [1974] developed a monochromatic radiative transfer model 

and broadband parameterizations for absorption and scattering in the 

atmosphere and at the earth's surface based on accurate multiple scattering 

computations in a plane-parallel atmosphere [e.g., Liou, 1980]. However, their 

parameterization for the incident solar radiation at an unobstructed 

horizontal surface does not allow the required separation into a direct and 

a diffuse flux density. Leckner [1978], Dozier [1980] and Bird and Riordan 

[1986] among others applied exponential decay functions based on the Beer-

Bouguer-Lambert law to model absorption and scattering by substances in the 

atmosphere. Although these models distinguish between direct and diffuse 

radiation, they cannot easily be generalized to broadband parameterizations. 

A simple but physically based algorithm for estimating the amount of 

scattered sky radiation reaching a uniform surface on a daily basis was 

originally proposed by Fritz [List, 1966]. He stated (1) that the total amount 

of radiation scattered from the solar beam may be expressed as the difference 

between a fictitious radiative flux, subject to atmospheric absorption only, 

and the direct beam, subject to both absorption and scattering, and (2) that 

half of the resulting flux is scattered downward towards the earth's surface. 

The latter is strictly only a correct assumption when the scattering takes 

place in a pure Rayleigh atmosphere (a clear dry atmosphere without dust 

particles or water vapor). The actual fraction of the total scattered 

radiation that reaches a uniform surface under clear sky conditions is 

increased by aerosol scattering and decreased as a function of the solar 

zenith angle. According to Blackadar [1985b], this fraction amounts to only 

about 36 percent on a daily basis. On the other hand, the relative amount of 

diffuse sky radiation generally increases with increasing solar zenith angle 

due to increased scattering of the direct beam with increasing path lengths 

[Fritz, 1951]. 

Robinson [1966] introduced an empirical correction factor to account for 

the zenith angle dependency of the fraction of the total scattered radiation 

reaching the earth's surface [Dozier, 1980]. Temps and Coulson [1977] proposed 

an additional correction factor to account for the circumsolar or aureole 

component, i.e. for brightening of the sky in the vicinity of the sun. 

Applying these factors to Fritz's algorithm and neglecting absorption of solar 

radiation by miscellaneous gases in the atmosphere leads to the following 

expression for the instantaneous scattered radiation reaching an unobstructed 

horizontal surface under clear sky conditions: 

Kscto = cz * cs 

* <K0 * (1 - A ^ ^ * w] - AJM,, * (O3)]) - Kdiro) (10) 

Cz = 0 . 5 * c o s 1 / 3 [ 6 s ] 

Cs = 1 + c o s 2 [ 0 s ] * s i n 3 [ 6 s ] 
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where: 
Kgcto = Radiation scattered downward from direct beam under cloudless 

conditions [Wnf2] 
Cz = Fraction of scattered radiation reaching surface [-] 
Cs = Correction for sky brightening in vicinity of sun [-] 
K0 = Extraterrestrial radiation [Wm"2] 
\ , - Fraction of radiation absorbed by water vapor or absorptivity 

of water vapor [-] 
n^ = Relative path length for water vapor [-] 
w = Zenith path water vapor content of atmosphere or normal path 

length for water vapor [kgnf2] 
A0 = Fraction of radiation absorbed by ozone or absorptivity of ozone 

[-] 
M0 = Relative path length for ozone [-] 

(O3) - Zenith path ozone content of atmosphere [m(NTP)] 
Kdiro - Direct solar radiation under cloudless conditions 

[Wm"2] 
6S = Solar zenith angle [rad] 

Alternative parameterizations for determining the amount of scattered solar 

radiation reaching an unobstructed horizontal surface under clear skies are 

provided by Dozier and Outcalt [1979] and Munro and Young [1982]. 

Absorption of solar radiation by water vapor is more difficult to 

parameterize than absorption by ozone, because (1) the absorption spectrum of 

water vapor is more complicated, (2) the absorption by water vapor occurs in 

the lower atmosphere where there is both absorption and significant 

scattering, and (3) the absorption by water vapor depends strongly on 

temperature and pressure [Lacis and Hansen, 1974; Wang, 1976]. Yet, various 

authors have derived simple parameterizations, either as a function of the 

actual (precipitable) water vapor content of the atmosphere or as a function 

of the effective (temperature and pressure scaled) water vapor amount. Wang 

[1976] presented an empirical expression that includes the effects of 

atmospheric inhomogeneity: 

logjoIA«,] = -1.6754 + 0.5149 * log^M,, * w] 

- 0.0345 * (log^M,, * w] ) 2 (11) 

where: 

A,̂  = Absorptivity of water vapor [-] 
^ = Relative path length for water vapor [-] 
w = Actual zenith path water vapor content of atmosphere or 

normal path length for water vapor [kgnf2] 

Although this parameterization is based on a tropical model for both the 

water vapor profile and for the temperature and pressure distributions, it 

retains its reliability for a subarctic winter atmosphere and for the case of 

a high (snow) surface albedo. Moreover, it remains a satisfactory 

approximation for water vapor contents outside the fitting interval of 0.08 

<= Mw*w <= 41.5 kgm—2, which may occur at high solar zenith angles [Wang, 

1976]. 
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Various investigators assume the relative path length for water vapor to 

be equal to the relative optical airmass [Leckner, 1978; Bird and Riordan, 

1986]. Although this is a reasonable approximation, Kasten [1966] adjusted the 

coefficients of his air mass formula to provide an expression for the relative 

water vapor path length: 

1^ = (cos[0g] + 0.05480 * (92.650 - 6g * 180 * w"1)-1452)"1 (12) 

where: 

h^ = Relative path length for water vapor [-] 
6S = Solar zenith angle [rad] 

The zenith path precipitable water vapor content of the atmosphere above 

the surface can be approximated by assuming an exponential decay of the water 

vapor density with the altitude. Combining this assumption with the equation 

of state of moist air and integrating over the appropriate altitudes, yields 

the water vapor amount in the atmosphere as a function of the surface air 

temperature and vapor pressure (appendix B.): 

w = 0.622 * ea * (k,, * Rd * T,)"1 (13) 

~ 0.622 * ea * (k̂ , * Rd * (T0 - T * h) )_1 ==> 

w0 = 0.017 * e0 

where: 

w = Actual zenith path water vapor content of atmosphere or 
normal path length for water vapor [kgnf2] 

e8 = Vapor pressure at surface [Pa] 
k̂ , = Water vapor density decay coefficient [~ 4.4 * 10"4 m"1] 
Rj = Gas constant for dry air [~ 287.04 Jkg^K"1] 
Ta = Absolute air temperature at surface [K] 
T0 = Mean air temperature at sea level [~ 288.15 K] 
r = Temperature lapse rate [~ 0.0065 Km'1] 
h = Surface altitude above mean sea level [m] 
w0 = Actual zenith path water vapor content of atmosphere at sea 

level [kgnf2] 
e0 = Vapor pressure at sea level [Pa] 

Since the vapor pressure decay with increasing altitude is an order of 

magnitude larger than the temperature decay (due to its strong temperature 

dependence), (13) implicitly accounts for the decrease of the amount of 

precipitable water vapor in the atmosphere above a surface with increasing 

altitude. 

In order to obtain the last expression, the indicated representative values 

were substituted for k*, and T0 [Brutsaert, 1975]. The resulting approximation 

for the amount of water vapor in a vertical path through the atmosphere at sea 

level is consistent with previous results [Kimball, 1928; Monteith, 1961; 

Leckner, 1978; Munro and Young, 1982; Iqbal, 1983], The approximate nature of 

the assumed vertical water vapor density profile does not allow application 

of (13) for instantaneous values. However, these formulae may be expected to 
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yield reasonable approximations of daily or weekly averages. 

The total absorption of visible and ultraviolet radiation by ozone in the 

stratosphere can be accurately parameterized because it is primarily the 

result of exponential attenuation at each wavelength with negligable 

scattering or temperature and pressure dependence [Wang, 1976]. Lacis and 

Hansen [1974] derived parameterizations for the visible and ultraviolet bands 

with an accuracy exceeding that with which the ozone amount in the atmosphere 

is likely to be known in most cases: 

A0 = A ™ + A0
UV (14) 

V " - 2.118 * M0 * (03) * (1 + 4.2 * M0 * (O3) + 3.23 * (M0 * (O3) J2)"1 

A0
UV = 108.2 * M0 * (03) * (1 + 1.386 * 104 * M„ * (Oj))"0805 

+ 6.58 * M0 * (03) * (1 + (1.036 * 104 * M„ * (O3))3)"1 

where: 

A0 = Total absorptivity of ozone [-] 
A0

V,S = Absorptivity of ozone in visible band [-] 
A0

UV = Absorptivity of ozone in ultraviolet band [-] 
M0 = Relative path length for ozone [-] 

(O3) = Zenith path ozone content of atmosphere [m(NTP)] 

According to Lacis and Hansen [1974], Rodgers [1967] proposed a simple 

formula for the relative ozone path length, which is in close agreement with 

Kasten's [1966] expression for the relative optical air mass (7): 

M0 = 35 * (1224 * cos2[9s] + 1)",/2 (15) 

where: 

M0 = Relative path length for ozone [-] 
9S = Solar zenith angle [rad] 

Since the amount of ozone in a vertical path through the atmosphere shows 

typical spatial and temporal variations between about 0.002 to 0.006 m(NTP), 

it can be estimated with reasonable accuracy. Briegleb et al. [1986] used a 

simple trigonometric approximation that is a function of the latitude only 

( (O3)=0.0031+0.001*sin[$]). Van Heuklon [1979] developed a more accurate 

empirical formula that describes the seasonal, latitudinal and longitudinal 

variations in Northern America. However, it neglects the short term variations 

in the lower atmosphere and the long term trends in the upper atmosphere 

associated with air pollution: 

(03) = 0.00235 + sin2[1.28 * $] * (0.0015 + 0.0004 

* sin[0.0172 * (D - 30)] - 0.0002 * «in[3 * 1]) (16) 
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where1 : 

(03) = Zenith path ozone content of atmosphere [m(NTP)] 
$ = Latitude of surface [rad] 
D = Day of year [-J 
1 = Longitude of surface [rad] 
1 Longitudes west of the meridian at Greenwich are taken as 

positive; those east of the meridian at Greenwich as negative. 

Since the ozone absorption of solar radiation mainly takes place in the 

upper atmosphere (stratosphere), it is assumed that the altitude dependency 

of (16) is negligible. 

Substituting the equations (4), (5) and (11)-(16) in (10), thereby making 

use of the approximation formulae for the earth's radius vector, the sun's 

declination and the equation of time (appendix A . ) , and of the mentioned 

typical values for the solar constant and the atmospheric transmissivity, one 

yields an estimate of the desired scattered sky radiation on an unobstructed 

horizontal surface under clear sky conditions. The required input parameters 

are the latitude, longitude and altitude of the surface, the time and day of 

the year, and the vapor pressure at the surface. 

The remaining fraction of the diffuse sky radiation is a result of an 

infinite converging series of multiple reflections between the earth's surface 

and the atmosphere [Hay and Davies, 1978; Dozier, 1980; Liou, 1980; Bird and 

Riordan, 1986]. With the rough approximations of isotropic reflection by the 

snow covered ground and isotropic backscatter from the atmosphere, this 

phenomenon can be modeled as follows: 

Kbck = (adir * Kdir + adif * Kdif) * asky 

- (adir * Kdir + adif * Ksct) * asky * U " ad,f * ^ky)"1 ( 1 7 > 

« (Kdir + Ksct) * << a * asky)"1 " D " 1 

where: 

Kbcl 
adir = Diffuse surface reflectivity for direct radiation [-] 

Kjjgfc = Backscatter from atmosphere [Wm"2] 

Kdir = Direct insolation [Wm"2] 
adif = Surface reflectivity for diffuse radiation [-] 
Kdif = Diffuse sky radiation [Wm"2], which can be computed from: 

Ksct = Radiation scattered downward from direct beam [Wm"2] 

Kdif - Ksct + Kbck 

Ksct = Radiât 
asky = Fraction of surface reflection backscattered by atmosphere or 

effective sky albedo [-] 
a = Surface albedo [-], which can be computed from: 

a = (a d i r * Kji, + a d i f * Kaf) * <Kdir + »dif)"1 ( 1 8 ) 

The above equations imply that the area surrounding the model point is 

uniformly covered with snow. Since this does not always have to be the case, 

the application of an estimate of the (significantly lower) areal average 

surface albedo (a=atrn) would probably yield more accurate results (section 
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Parameterizations for the reflectivity of snow for direct and diffuse 

radiation will be presented in section 2.2.3. The (broadband) surface albedo 

is generally defined as a weighted average of the spectral surface 

reflectivities, using all monochromatic irradiances as weights. For the snow 

reflectivity parameterization used in this investigation, this results in a 

weighted average of the reflectivities for direct and diffuse radiation, using 

the direct insolation and the diffuse radiation as weights. The albedo of snow 

ranges roughly from 0.4 for old (contaminated), wet snow to 0.9 for fresh, dry 

snow [U.S. Army Corps of Engineers, 1956; List, 1966; Kondratyev, 1973; 

Kondratyev et al., 1982; Brutsaert, 1982]. 

The term effective sky albedo in (17) and (18) is used instead of sky 

albedo to denote the difference between reflection from a flat surface and 

that from a nonhomogeneous, transparent slab of air. The latter is a combined 

result of (multiple) backscattering of part of the surface reflection and 

absorption of part of the backscattered radiation, integrated over the entire 

spherical solid angle and over all appropriate altitudes and wavelengths. 

Several investigators assume backscattering to be entirely the result of 

Rayleigh scattering, since aerosol scattering is generally forward peaked 

[Lacis and Hansen, 1974; Dozier, 1980]. 

According to Hay and Davies [1978], the effective sky albedo can be 

adequately expressed as a weighted average of the effective albedo of an 

overcast sky and that of a cloudless atmosphere, using the mean fractional 

cloudcover and its complement as weights: 

asky = mc * ac + (1 - mc) * a0 (19) 

where: 
asky = Effective sky albedo [-] 
mc = Mean fractional cloud cover [-] 
ac = Effective albedo of overcast sky [~ 0.5] 
a0 = Effective albedo of clear sky [~ 0.15] 

The mean fractional cloudcover can be defined as some kind of projection 

of the fraction of the part of the sky dome unobstructed by terrestrial 

objects that is covered with clouds on a point at the earth's surface. It may 

be estimated from the earth's surface by means of human observations or whole 

sky photography, or from the sky by means of satellite observations. However, 

serious discrepancies between estimates may arise from differences in applied 

projection methods and from the fact that observers tend to overestimate the 

angular distance between points in the sky closer to the horizon in comparison 

with points closer to the zenith. The actual effect of this phenomenon depends 

on the cloud type, since for some types the apparent fractional cloudcover 

tends to increase towards the horizon, whereas for others it tends to decrease 

[McGuffie and Henderson-Sellers, 1989]. Although the anisotropy that is 

characteristic for surface reflection is not taken into account in this study, 

the projection of the fraction of the sky covered with clouds should actually 
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be weighted for the angular distribution of the surface reflection that 

reaches the cloud bases [Unsworth and Monteith, 1975]. Munro and Young [1982] 

successfully applied an effective mean fractional cloudcover, defined as a 

weighted average of the actual observed mean fractional cloudcover and 1 minus 

the relative sunshine duration. 

The fraction of the surface reflection that is backscattered by the base 

of the cloud cover, is commonly approximated by the cloud top albedo as 

measured by airborne or spaceborne instruments [Müller, 1985]. Although the 

albedo of the base of a cloud cover is a function of the cloud's water content 

(as determined by its thickness and density) and of its altitude (as 

determined in part by the cloud type), fixed mean values are usually applied 

[Hay and Davies, 1978]. 

Cloud base and clear sky albedos are markedly higher when the underlying 

surface is snow covered, since the reflection from snow is shifted towards the 

shorter visible and ultraviolet wavelengths that are more effectively Rayleigh 

backscattered and not absorbed by water vapor. Obviously, multiple reflections 

contribute a considerable amount of diffuse sky radiation to snow covered 

terrain [Fritz, 1951]. Kondratyev [1973] even reports cloud base albedo's 

above snow of 0.51 to 0.86 and clear sky albedos of 0.45 to 0.79. From tables 

prepared by List [1966] and Kondratyev [1973] a cloud base albedo averaged 

over different types of clouds of about 0.55 can be derived. This figure is 

in close agreement with the average value of 0.5 to 0.55 mentioned by Fritz 

[1951] and that of 0.6 used by Hay and Davies [1978] and Munro and Young 

[1982]. Hay and Davies, however, propose a mean clear sky albedo of 0.25, 

which is very different from the value of 0.13 that Williams [1988] uses above 

snow covered terrain, from a value between 0.08 and 0.13 that Fritz [1951] 

derives and from the value of 0.0685 that Lacis and Hansen [1974] derive as 

"the albedo of the Rayleigh atmosphere for illumination from below". 

With conservative values for the snow albedo (0.7), the effective (single 

scattering) sky albedo under overcast conditions (0.5), and the effective sky 

albedo under cloudless conditions (0.15), the use of (17) results in 

insolation increases from more than 10 to more than 50 percent compared with 

a situation without multiple reflections. Thus, the atmospheric backscatter 

on an unobstructed horizontal surface can be estimated by substituting 

equation (19) in (17), when the direct insolation, the scattered radiation, 

the mean fractional cloudcover and the surface reflectivities for direct and 

diffuse radiation are known. 

2.2.3. Global and Net Solar Radiation 

Since reflection from adjacent terrain does not play a role in the 

radiation budget at a point of an unobstructed horizontal surface, the total 

shortwave radiative flux received per unit area (global radiation) is the sum 

of the direct insolation and the diffuse sky radiation. Combining equation (3) 
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with (17), yields for the global radiation under clear skies: 

K 4 o = K<Hro + Kaclo + Kbclco ( 2 0 ) 

where: 

conditions [Wm"2] 
K4-0 = Downward shortwave radiation under cloudless 

Kdiro = Direct solar radiation under cloudless conditions 
[Wm2] 

Kscto = Radiation scattered downward from direct beam under 
cloudless conditions [Wm"2] 

Kbcko ~ Backscatter from atmosphere under cloudless 
conditions [Wm"2] 

a - (Areal average) surface albedo [-] 
a0 - Effective albedo of clear sky [-] 

In the previous sections of this chapter, simple expressions are presented 

for computing Kdir and Kxt for cloudless conditions and K^j. for cloudy 

conditions. As stated before, when a model is to become truly operational it 

should provide some means to correct for the complex effects of clouds. 

However, a physically based (e.g., effective sky albedo) approach as commonly 

used for modeling atmospheric backscatter has not yet been developed for 

providing cloudcover corrections for direct and scattered solar radiation. 

Hence, investigators dealing with the influence of (partial) cloudcover on 

global radiation have developed several empirical correction formulae. Apart 

from some temperature based corrections [Bristow and Campbell, 1984; Zuzel, 

1989, personal communication], they are generally linear relationships between 

(1) the quotient of the daily average global radiation under cloudy to that 

under clear skies and (2) either the relative duration of sunshine or the mean 

fractional cloud cover [Fritz, 1951; Geiger, 1959; List, 1966; Kondratyev, 

1973; Brutsaert, 1982]. Although local calibration will probably yield more 

accurate results, various tables are available from which the coefficients of 

these relationships can be found as a function of the cloud type, cloud 

height, and surface latitude. 

A nonlinear expression that guarantees a reasonable accuracy has been 

developed by Berlyand [Kondratyev, 1973]: 

K* * K V 1 - 1 - (ci + ca * mc) * mc (21) 

where: 

K4- = Downward shortwave radiation [Wm"2] 
Kl0 = Downward shortwave radiation under cloudless 

conditions [Wm"2] 
Cj,c2 = Empirical coefficients [c2 ~ 0.38] 
mc » Mean fractional cloudcover [-] 

The coefficient Cj is reported to have a value of about 0.40 from the 

equator to 60°N and of about 0.15 for higher latitudes, whereas c2 has a fixed 
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value of 0.38. Since the decrease of Cj with increasing latitude implicitly 

accounts for the influence of the surface albedo on global radiation, a value 

of 0.15 will probably yield more satisfactory results in snow covered alpine 

areas of the lower latitudes than a value of 0.40. Nevertheless, cl ~ 0.40 is 

in better agreement with the parameter value that Kimball [1928] used for the 

linear equivalent of (21), namely ct + c2 * mc = 0.71. 

The above expression has serious shortcomings for application in a more 

detailed snow surface radiation budget model because (1) it does not 

distinguish between direct and diffuse radiation, (2) it does not explicitly 

take into account the dependency of the amount of global radiation on the 

surface albedo and (3) it does not depend on the optical air mass as 

determined by the sun's position. However, (21) and similar empirical 

expressions allow easy operational application since they lack the need for 

a significant number of input parameters associated with detailed calculations 

by more sophisticated models [e.g., Lacis and Hansen, 1974]. 

When the global radiation is known as a function of the mean fractional 

cloudcover from (20) and (21), estimates of the fractions of direct and 

diffuse radiation can be obtained from empirically determined relationships 

between the ratio of diffuse to global radiation (Kdif/Kl) and the ratio of 

global to extraterrestrial radiation (K4-/K0), as mentioned in section 2.2.2. 

Olyphant [1984] conducted extensive radiation measurements during different 

snow melt seasons in an alpine area and concluded that the one hour standard 

correlation of Erbs et al. [1982] (figure 2.2.3.) "provides a convenient basis 

for separating the direct and diffuse components of global insolation under 

a broad range of atmospheric conditions". The striking agreement between this 

one hour standard correlation and curves obtained by Stuhlmann et al. [1990], 

both from radiation measurements and model simulations, suggests the same. 

Only a part of the global radiation that reaches the snow surface is 

absorbed. The absorptivity of a surface is generally determined as the 

complement of its reflectivity in the case of a spectral model, and of its 

albedo in the case of a broadband model. The albedo of a snow surface 

decreases during a snow melt season from about 0.9 to about 0.4 as a result 

of grain growth and contamination. The U.S. Army Corps of Engineers [1956] and 

Petzold [1977] among others derived typical snow albedo decay functions for 

ablation seasons. As mentioned before, snow reflectivity is not only a 

function of the amount of days since the last snowfall occured, but also of 

wavelength and solar zenith angle. Examples of spectral snow reflectivity 

models are the monochromatic model of Dozier [1980] that is based upon actual 

measurements and the two band model of Marks [1988]. Williams [1988] used a 

physically based broadband parameterization for the snow albedo that seems 

suitable for the simplified approach of the present study. This scheme 

accounts implicitly for some of the distinct spectral properties of snow 

reflection because it distinguishes between the reflectivities for direct 

insolation and diffuse radiation: 
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fig. 2.2.3. One hour standard correlation between the ratio of diffuse to 
global radiation (Kdif/lU) and the ratio of global to extraterrestrial 
radiation (Kl/K0) [Erbs et al., 1982]: 

Kdif/K4- = 1 - 0.09 * K4/K0 for KA/K0 < 0.22 
Kdif/K4. = 0.9511 - 0.1604 * K4./K,, + 4.388 * (IU/K0)2 

- 16.638 * (1U/K0)3 + 12.336 * (K4-/K,,)4 

for 0.22 < IU/K0 < 0.80 
Kdif/lU = 0.165 for IU/K0 > 0.80 

Olyphant [1984] found Kdif/K4. =0.12 for K4/K0 > 0.80 to be more appropriate 
for high altitude environments. 
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adir - adiro - ( 0 . 0 8 3 + 7 . 27 * rm) * c o s 1 / 2 6 s ( 22) 

•dif = adifo - 6 . 6 4 * rm ( 23) 

r = ( r 0
3 + 2 . 5 2 * HT10 * Dg)1/3 ( 24) 

where1 : 

adir = Diffuse surface reflectivity for direct radiation [-] 
adiro s Diffuse surface reflectivity for direct radiation at 

sunrise or sunset [~ 0.965] 
r = Mean grain size [m] 
6S = Solar zenith angle [rad] 
adif « Surface reflectivity for diffuse radiation [-] 
adifo = Surface reflectivity for diffuse radiation of fresh, dry 

snow [~ 0.96] 
r0 = Mean grain size before melting occurs [~ 1 - 4*10~4m] 
D8 = Number of days since last snowfall [-] 

1 Although "reflectivity" normally refers to the spectral 
(monochromatic) scattering properties of a medium, it is used here 
to denote the difference between the scattering properties of a 
surface for broadband (i.e. direct plus diffuse) radiation 
("albedo") and those for direct and diffuse radiation separately. 

The formulation of (24) implicitly assumes (1) that the surface of a 

melting snow pack is wet during the entire day, and (2) that each new snow 

accumulation consists of dry uncontaminated snow with the same mean grain 

size. The fraction of the day that the snow surface has been wet is actually 

not a constant, but is determined by the positive feedback between the mean 

grain size of the snow surface and the amount of solar radiation it absorbes 

(and consequently by the complex feedback mechanisms with the other terms of 

the energy budget) [Dozier et al., 1989]. However, (22) and (23) are not very 

sensitive to changes in the empirical factor in (24) that accounts for the 

daily number of hours that the snow has been wet. Marks [1988] provides an 

alternative grain growth function which is not based on the physics of grain 

growth either, but which can generate reflectivities that closely fit observed 

decays because its asymptotic functional form allows to specify the expected 

grain growth maximum (and consequently the expected albedo minimum). For the 

model presented above the reflectivity decays with the square root of the mean 

grain size and with the cosine of the solar zenith angle however, which is 

consistent with Marks' two band model. Lastly, the broadband albedo (a) of a 

snow surface can be evaluated as a weighted average of (22) and (23), using 

the direct insolation (Kdir) and the total diffuse radiation (K^ + K ^ ) as 

weights (equation (18)). 

The net shortwave radiation on an unobstructed horizontal surface can be 

defined as the product of global radiation and the complement of the snow 

surface albedo, i.e. the surface absorptivity: 

K„ = (1 - a d i r) * Kdir + (1 - adif) * Kdif (25) 

= (1 - a) * 1U 
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where: 

KJJ = Net shortwave radiation [Wirf2] 
adir = Diffuse surface reflectivity for direct radiation [-] 
Kdir - Direct solar radiation [Wm~2] 
adif = Surface reflectivity for diffuse radiation [-] 
Kdif = Diffuse sky radiation [Wirf2] 
a = Surface albedo [-] 
K4- = Downward shortwave radiation [Wnf2] 

The procedure for determining the components of the shortwave radiation 

budget at an unobstructed horizontal surface as a function of the ambient 

atmospheric conditions can be summarized as follows: 

(1) Computation of the potential direct and scattered insolation on an 

unobstructed horizontal surface from (5) and (10), as described in 

sections 2.2.1. and 2.2.2. 

(2) Computation of the diffuse surface reflectivity for direct insolation 

and the surface reflectivity for diffuse radiation from (22)-(24). 

(3) Substitution of the computed values in (17) with asky = a0 to obtain the 

atmospheric backscatter under cloudless conditions. 

(4) Substitution of the computed values in (20) to obtain the global 

radiation under cloudless conditions; continue to step (5) if the mean 

fractional cloudcover is greater than zero, else skip to step (11). 

(5) Multiplication by the cloudcover correction factor from (21) to obtain 

the global radiation as a function of the ambient atmospheric conditions. 

(6) Substitution of the ratio of global and extraterrestrial radiation (from 

(4)) in the one hour standard correlation of Erbs et al. [1982] (figure 

2.2.3), and multiplication of the result by the global radiation to 

obtain the diffuse sky radiation. 

(7) Subtraction of the diffuse sky from the global radiation to obtain the 

direct insolation. 

(8) Computation of the effective sky albedo as a function of the ambient 

atmospheric conditions from (19). 

(9) Substitution of the obtained values in (17) to obtain the atmospheric 

backscatter. 

(10) Subtraction of the obtained value from the diffuse sky radiation to 

obtain the scattered insolation. 

(11) Direct substitution of the obtained values in (25), or computation of the 

(broadband) surface albedo from (18) and substitution of the resulting 

albedo and the obtained global radiation in (25), to yield the net 

shortwave radiation on an unobstructed horizontal surface as a function 

of the ambient atmospheric conditions. 
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2.2.4. Longwave Radiation 

Longwave radiation in the terrestrial environment originates mainly from 

two sources, namely as emission from the atmosphere and from the earth's 

surface. Although the sun also contributes to the amount of longwave 

radiation, this source is generally neglected because it represents less than 

one percent of the solar energy received at the top of the atmosphere and is 

reduced to a negligible amount at the earth's surface due to atmospheric 

absorption. It is therefore reasonable to treat the terrestrial (thermal or 

longwave) radiative flux separately from the solar (shortwave) flux [Marks and 

Dozier, 1979; Liou, 1980]. Since no appreciable scattering takes place at 

wavelengths longer than 4 /xm, radiation in this wavelength region is mainly 

associated with emission and absorption. This makes thermal radiative 

processes much easier to model than shortwave radiative transfer. Moreover, 

thermal infrared radiation does not have the marked diurnal, seasonal or 

latitudinal zenith angle dependence that characterizes shortwave radiation 

[Liou, 1980]. 

The three major components affecting thermal radiation in the atmosphere 

are water vapor in the lower atmosphere (troposphere), and carbon dioxide and 

ozone in the upper atmosphere (stratosphere). Most of the longwave radiation 

originates within the lower hundreds of meters of the atmosphere [Brunt, 1932; 

Swinbank, 1963; Unsworth and Monteith, 1975]. The atmosphere therefore acts 

as an optically active gas, absorbing and emitting radiation as the atoms and 

molecules undergo transitions (quantum jumps) between fixed energy states, 

which results in line and band spectra (selective radiation). The earth's 

surface on the other hand essentially behaves as a black body in the thermal 

wavelength region, generating continuous absorption and emission spectra 

(continuous radiation) [Geiger, 1959; Liou, 1980]. This implies that the 

surface reflectivity is nearly zero for radiation with wavelenghts above 4 /im. 

For snow this is already the case for wavelenghts as low as 2.5 /xm [Marks and 

Dozier, 1979]. 

Planck's law expresses the emitted monochromatic intensity of a black body 

as a function of the wavelength of the emitted radiation and the temperature 

of the emitting body [e.g., Liou, 1980]. Integrating this expression over all 

wavelengths and over the entire spherical solid angle (assuming an isotropic 

radiation field) yields Stefan-Boltzmann's law, which states that the 

radiative flux density emitted by a black body is proportional to the fourth 

power of its absolute temperature [e.g., Liou, 1980]. For convenience, the 

radiative flux density emitted by a real body can be related to that of a 

black body of the same temperature by means of a proportionality factor known 

as the emissivity of the body. This can be interpreted as the ratio of the 

actual to the potential thermal radiation. The emission of a point at the 

earth's surface is therefore defined as follows: 
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Lsfc = e * a * Ts
4 (26) 

where: 

Lsfc = Surface emission [Wnf2] 
e = Surface emissivity [~ 0.98] 
a = Stefan-Boltzmann's constant 

[~ 5.6697 * 10"8 VUn'h.-4) 
Ts = Absolute surface temperature [~ 273 K] 

The average emissivity of the earth's surface can be assumed to be 0.95, 

whereas for snow an even higher value of about 0.98 seems appropriate 

[Kondratyev et al., 1982]. This value is very insensitive to changes in snow 

cover properties resulting from grain growth or contamination during the snow 

melt season [Marks, 1988]. Snowmelt is a result of a net energy input at the 

snow surface once the entire snow pack is isothermal at 0°C. Therefore the 

snow surface temperature will approximately be constant at 273 K throughout 

the snowmelt season resulting in a mean surface emission of a little more than 

300 Wm-2. 

Because the atmosphere behaves as a band or selective radiator, it is not 

feasible to describe its emission analytically. Numerous investigators over 

the past 75 years have therefore sought to establish (semi-)empirical 

relationships between the actual emission of a cloudless atmosphere and that 

of a black body at screen level air temperature. Although some of them related 

atmospheric emission directly to air temperature [Swinbank, 1963; Unsworth and 

Monteith, 1975], most of them presented expressions for the effective 

emissivity of such an atmosphere as a function of screen level values of 

either air temperature or vapor pressure or both, which will be presented 

here. 

Both Angstrom and Brunt [1932] developed equations that contained vapor 

pressure alone and required the determination of empirical coefficients from 

local observations. Angstrom's formula took the form of a linear relationship 

between the effective atmospheric emissivity and an exponential function of 

the vapor pressure at screen level. Brunt, on the other hand, established a 

relationship with the square root of the vapor pressure, based on the analogy 

he assumed between radiative transfer and heat conduction. Theoretical 

evidence for this relationship was found by Monteith [1961] (as cited by Idso 

and Jackson [1969]) and Unsworth and Monteith [1975]. One disadvantage of 

these empirical relationships is the wide variation of the "constants" with 

locality, which Brunt ascribed largely to differences in experimental 

procedure instead of to differences in vertical air temperature and vapor 

pressure profiles. 

Swinbank [1963] argued that "the correlation between emissivity and vapor 

pressure (in both Angstrom's and Brunt's equations, R.U.) arises, not from any 

significant influence of variation of vapor pressure on atmospheric emission, 

but from a correlation between temperature and humidity", and furthermore that 

the wide variations in the empirical coefficients with locality are "due to 
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differences in the temperature-humidity regime from place to place, and not 

to any basic difference in the nature of the incoming radiation". He related 

the atmospheric emissivity directly to the square of the air temperature at 

screen level, without making use of empirical coefficients (i.e. he related 

the atmospheric emission to the sixth power of the air temperature). 

Idso and Jackson [1969], questioned the value of the power of the 

temperature in Swinbanks relationship. They showed that powers varying from 

1 to 10 all yielded very high correlations with Swinbank's original radiation 

data and argued that "there appears to be no theoretical justification for the 

power of the air temperature being greater than 4 for any air temperature 

obtainable on earth". According to Idso and Jackson, the atmospheric 

emissivity is symmetrical about a minimum at 273K and tends exponentially 

toward unity both for increasing and for decreasing temperatures, because ice 

and snow behave as nearly perfect emitters. 

In an effort to reconcile some of the earlier discrepancies and to account 

for emission and absorption of longwave radiation in the atmosphere due to 

water vapor and carbon dioxide, Brutsaert [1975] took a more physically based 

approach that was completely different from the previously discussed empirical 

parameterizations. By substistuting exponential decay functions for 

temperature, pressure and water vapor density (as close approximations of 

their mean vertical profiles), he was able to integrate the equation for 

infrared radiative transfer in a plane stratified and nonscattering atmosphere 

in local thermodynamic equilibrium to yield the effective atmospheric 

emissivity as a function of both screen level vapor pressure and air 

temperature. The result was a relationship which is not very sensitive to 

changes in air temperature. The advantages of this formula over empirical 

expressions are (1) that it does not require empirical parameters to be 

determined from radiation experiments, and (2) that it allows easy adjustment 

for local conditions, both with respect to changes in surface elevation 

(appendix B. ) and with respect to changes in humidity or temperature 

stratification. 

A comparison experiment of Aase and Idso [1978] showed that both Idso and 

Jackson's empirical and Brutsaert's analytical formula adequately predicted 

longwave radiation from the atmosphere for screen level air temperatures above 

0°C. Under freezing conditions however, the former was generally found to 

overestimate and the latter was found to underestimate the atmospheric 

emissivity. In response to this problem, Satterlund [1979] derived an 

exponential formula (again containing both vapor pressure and air temperature) 

that improved the agreement with measurements under freezing conditions. 

Although Idso [1981] stated like Swinbank that "the relative successes of 

all prior equations have been due to general correlations between vapor 

pressure and air temperature", he took a different approach and developed a 

new physically based set of equations for the effective atmospheric emissivity 

of the entire spectrum and of two wavelength bands as functions of both air 

temperature and vapor pressure instead of air temperature alone. Idso showed 
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that "the true effect of increasing temperature (keeping vapor pressure 

constant, R.U.) is to decrease the effective emissivity of a cloudless 

atmosphere". He argued that "it is only because screen level vapor pressure 

generally increases with screen level air temperature that on a gross scale 

the Idso-Jackson (and Swinbank's and Satterlund's, R.U.) equation appears to 

give qualitatively correct results". Idso's equations are based on the 

postulation that the variable concentration of water dimers (pairs of water 

molecules linked together by weak hydrogen bonds) in the free atmosphere is 

the main source of variations in the effective emissivity associated with 

water vapor [Liou, 1980]. His equation for the entire spectrum yields accurate 

results over a wide range of screen level air temperatures, including freezing 

conditions. 

Although Satterlund's and Idso's equations generally yield more reliable 

results for freezing conditions, Brutsaert's equation seems preferable not 

only from a theoretical point of view (i.e., it is not in contradiction with 

Idso's [1981] conceptual model) but also because the form of his derivation 

allows adjusting for the decreasing amount of water vapor in the atmosphere 

with increasing surface altitude. Moreover, during the melting season screen 

level air temperatures tend not to fall far below zero, thus generally 

avoiding the temperature region that causes this equation to deviate slightly 

from observations: 

£gkyo = 0.642 * (ea * T,"1)1'7 (27) 

where: 
£skyo = Effective atmospheric emissivity under cloudless 

conditions [-] 
ea = Vapor pressure at surface [Pa] 
Ta = Absolute air temperature at surface [K] 

It can be shown that when Brutsaert's derivation is generalized to yield 

the effective atmospheric emissivity at any altitude in the atmosphere as a 

function of vapor pressure and air temperature at that altitude, the 

functional form of his equation remains exactly the same (appendix B. ). 

Brutsaert's equation in its original form already implicitly accounts for the 

effect of an increasing surface altitude, because it contains the ratio of 

vapor pressure and air temperature at screen level above the surface. This 

ratio decreases with increasing surface altitude, since vapor pressure, as a 

result of its significant temperature dependence, decreases much faster than 

air temperature itself (equation (13) and subsequent remarks). A linear 

pressure correction in combination with an extrapolation of vapor pressure and 

air temperature towards mean sea level (assuming a constant temperature lapse 

rate and a constant relative humidity), as proposed by Marks and Dozier [1979] 

and Marks [1988], seems therefore inappropriate (appendix B . ) . 

As a result of Kirchhoff 's law, the fraction of the incident longwave 

radiation that is absorbed by a surface equals its emissivity. Therefore, the 
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net longwave radiation at an unobstructed horizontal surface can be written 

as follows: 

L„ = * * I^y - Lsfc (28) 

= e * a * (e8ky * T,4 - T,4) 

where: 

L„ = Net longwave radiation [Wm"2] 
e - Surface emissivity [« 0.98] 
Lsky = Atmospheric emission [Wm"2) 
Lsfc - Surface emission [Wm"2] 
a = Stefan-Boltzmann's constant 

[~ 5.6697 * 10"8 Wrn̂ K"4] 
€sky = Effective atmospheric emissivity [-] 
Ta = Absolute air temperature at surface [K] 
Ts = Absolute surface temperature [~ 273 K] 

Under cloudy skies the atmospheric emission increases, mainly as a result 

of the increased water vapor content. An appropriate adjustment for this 

effect would be to increase the effective atmospheric emissivity. Yet, various 

authors apply correction factors to the net longwave radiation under clear 

skies instead. These factors often take the form of a reduction of the 

longwave radiation budget proportional to the mean fractional cloud cover 

[Geiger, 1959; Unsworth and Monteith, 1975; Brutsaert, 1982]. This approach 

assumes the net longwave radiation under clear skies to be negative which may 

be true in most cases, but may actually be invalid in snow covered mountainous 

terrain. This is caused by snow surface temperatures that tend to be 

appreciably lower than air temperatures during snowmelt seasons (equation 

(28)). Therefore, an adjustment to the effective atmospheric emissivity seems 

more suitable under these conditions. 

Such an adjustment basically can take three forms: (1) a linear 

relationship between the effective atmospheric emissivity under cloudy 

conditions and the mean fractional cloudcover, based upon weighing the 

emissivities for clear and overcast skies over the unobscured and obscured 

portions of the whole sky dome, respectively [Unsworth and Monteith, 1975]; 

(2) a quadratic empirical relationship that seems to be in better agreement 

with observations [Geiger, 1959; Brutsaert, 1982]; (3) a more physically based 

relationship as developed by Kimball et al. [1982] that takes into account the 

cloud amount and altitude for up to four cloud layers. The latter is based 

upon the emissivity equations developed by Idso [1981], and on the assumption 

that the cloud contribution to the atmospheric longwave radiation has to be 

transmitted to the earth's surface through the "atmospheric window". Although 

this method has yielded promising results, its relative complexity does not 

allow application to simplified operational approaches. 

Therefore, the atmospheric emissivity under clear skies is adjusted for the 

effect of cloudcover through a nonlinear function of the mean fractional 

cloudcover: 
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<»ky * «skyo"1 = 1 + C3 * m,2 (29) 

where: 
€sky = Effective atmospheric emissivity [-] 
£skyo ~ Effective atmospheric emissivity under cloudless 

conditions {-] 
c3 = Empirical coefficient [« 0.22] 
mc = Mean fractional cloudcover [-] 

Although the coefficient c3 is actually dependent on cloud type, Brutsaert 

[1982] suggested that 0.22 should be a reasonable average. This is in good 

agreement with the experimental findings of Kimball et al. [1982] and with 

Sellers' [1965] remark that cloud layers generally do not increase atmospheric 

emission by more than 25 percent [Kimball et al., 1982]. If the atmosphere is 

assumed to behave like a perfect emitter for overcast skies (i.e. if esky is 

assumed to become close to unity when mc equals unity), then a value of 0.22 

for c3 restricts e^y0 to a maximum of about 0.82. Under typical atmospheric 

conditions however, the effective clear sky emissivity (as can be seen from 

Brutsaert's formula, equation (27)) seldom becomes larger than this maximum. 

After application of this correction to (27), (28) can be used to determine 

the net longwave radiation at an unobstructed horizontal surface as a function 

of the atmospheric conditions. The required input parameters are the surface 

temperature, the air temperature and vapor pressure at the surface and the 

mean fractional cloudcover. 

2.3. Complex Terrain 

2.3.1. Problems Encountered 

The difficulties concerned with modeling the radiation budget in 

mountainous terrain are mainly associated with an additional topographic 

modification of incident electromagnetic radiation as compared to a uniform 

surface. The radiation-terrain interaction at a uniform surface is fully 

determined by its intrinsic reflective properties, whereas the radiation 

budget at a surface in complex terrain also is significantly influenced by 

obstruction, reflection and emission of radiation by adjacent surfaces. These 

effects are especially important in alpine watersheds where most of the larger 

snow covered areas have slopes of 10° to 30° [Olyphant, 1986a]. Similar 

obstacles as those in topoclimatology are encountered in building and urban 

climatology, bioclimatology and solar energy studies [Becker and Boyd, 1957; 

Arnfield, 1982]. Although most attention in this section will be paid to the 

effects of terrain geometry, altitude differences play an important role in 

radiation modeling because incoming solar radiation can vary by 25 percent 

over an elevation change of order 3000 meters [Dozier, 1980]. 

As far as modeling methodology for a point in complex terrain is concerned, 
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basically three types of incident radiation can be distinguished [Dozier and 

Frew, 1989]: (1) direct insolation, subject to a modification due to its 

projection at the surface and to possible obstruction by neighboring surfaces 

and objects superimposed on them (e.g., forest canopy); (2) diffuse radiation 

from the sky (both scattered solar and emitted thermal radiation), subject to 

a reduction as compared to a point at a uniform surface due to the partial 

obstruction of the sky hemisphere; (3) diffuse radiation from adjacent 

surfaces (both reflected solar and emitted thermal radiation), proportional 

to the viewed fraction of the hemisphere that is covered by surrounding 

terrain. As already mentioned, specular reflection of direct insolation is 

usually ignored. Although it might be of importance at particular combinations 

of solar position and slope exposure, its occurence is too infrequent to be 

of any significance in the radiation budget [Dozier, 1980; Proy et al., 1989]. 

The topography induced effect concerning direct insolation in mountainous 

areas is twofold: (1) a possible reduction of the day length due to shadowing, 

resulting both in large temporal and spatial variabilities; (2) a modification 

of the direct beam as a function of slope exposure, resulting mainly in large 

spatial variability. Dozier [1980] stated that "at all times of year horizons 

reduce the effective day length by intercepting direct beam radiation at low 

sun angles", and Whiteman et al. [1989] found that shadowing "is critical to 

the daily radiation totals". 

Because multiple reflections are a major contribution to global radiation 

in snow covered terrain (section 2.2.2.), partial obstruction of diffuse sky 

radiation will cause a significant reduction of global radiation in complex 

terrain. Gamier and Ohmura [1970] argued that the interception of reflected 

radiation from adjacent surfaces plays a minor role in the energy budget of 

surfaces with albedo's less than 0.30. However, Kondratyev and Manolova [1960] 

found that the diurnal variation of the sum of scattered sky radiation and 

intercepted surface reflection on slopes with albedo's of about 0.20 was 

nearly independent of the inclination angle. They attributed their observation 

to "the tendency for compensation of the decrease of scattered radiation 

inflow (with increase in slope inclination angle) by the increase in the 

reflected radiation inflow". In snow covered terrain the latter will have even 

greater importance due to the high albedo of snow [Becker and Boyd, 1957; 

Shoshany, 1989]. Moreover, Olyphant [1986a] concluded that "surrounding 

rockwalls enhance the radiation balance of cirque glaciers and snowfields by 

reducing the net longwave loss 37-63 percent below that of an unobstructed 

horizontal surface". 

2.3.2. Conversion Factor Approach 

Since being proposed by Liu and Jordan [1961], it has been common practice 

to relate the components of the radiation budget in complex terrain to their 

corresponding values at uniform surfaces (as presented in section 2.2.) by 
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means of conversion factors. Applying the geometrical ray optics approach to 

describe the illumination of a terrain object and the shadow it casts, the 

conversion factor for direct radiation (or beam shading function) can be 

derived analytically. It is merely of function of the angle of incidence 

relative to the surface and of a binary coefficient that determines whether 

or not the surface is shadowed by itself or by surrounding slopes. The 

geometrical ray optics approach is based on the common assumption that the 

incident beam of light may be thought of as consisting of separate localized 

rays pursuing their own strait-line paths [Liou, 1980]. For diffuse radiation 

from the sky and from surrounding terrain however, an analytical solution can 

only be derived if the radiance (i.e. the broadband radiative flux density per 

sterradian of the spherical solid angle) distribution over the viewed fraction 

of the hemisphere is known. 

Various authors have proposed semi-empirical radiance distribution 

functions for background (i.e. excluding the circumsolar or aureole component) 

scattered solar radiation [Moon and Spencer, 1942; Steven and Unsworth, 1979; 

1980], for atmospheric emission [Unsworth and Monteith, 1975] and for net 

longwave radiation [Geiger, 1959; Kondratyev and Manolova, I960]. Since 

background solar or thermal radiance in most cases do not possess any 

significant azimuthal dependence, they are usually given merely as functions 

of the zenith angle. A radiance distribution can be conveniently expressed as 

a so-called anisotropy factor [Dozier and Frew, 1989], defined as the ratio 

of the equivalent flux density from a particular solid angle to the flux 

density reaching a uniform horizontal surface from the entire hemisphere. It 

follows from this definition that the radiance from a direction characterized 

by an anisotropy factor equaling unity equals the average radiance reaching 

a uniform horizontal surface. The conversion factor that can be derived by 

integrating the surface projection of such an anisotropy factor over the 

viewed fraction of the sky hemisphere is usually referred to as the sky view 

factor. It is expressed as a dimensionless number that falls generally (though 

not necessarily) between zero and one. 

Under the assumptions that the radiance distribution is isotropical and 

that the local topography can be described by a simple terrain model, 

integration yields convenient trigonometric conversion factors (appendix E.) 

[e.g., Hay and Davies, 1978]. The validity of such isotropic approximations 

however, has been questioned by various authors: Kondratyev and Manolova 

[1960] argued that although the isotropic approximation proves to be 

satisfactory for overcast sky conditions and for high solar elevation angles, 

it usually gives unsatisfactory results for calculating the scattered 

radiation fluxes on slopes. Steven and Unsworth [1980] state that "although 

the isotropic assumption (for diffuse solar radiation, R.U.) is mathematically 

convenient, it is supported neither by theory nor by observation", and they 

show that even for overcast skies it can result in a significant 

overestimation of the irradiance of sloping surfaces. On the other hand, they 

mentioned that both Fritz [1955] and Goudriaan [1977] gave a theoretical 
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foundation for the fact that the hemispherical uniformity (isotropy) of 

diffuse sky radiance under overcast skies increases with surface albedo, 

resulting in a rather weak zenith angle dependence above snow covered terrain 1 

In any case, the suggestion by Becker and Boyd [1957] that the ratios (of 

solar radiation incident upon tilted surfaces to that incident on horizontal 

surfaces) would tend toward unity with increased cloudiness completely 

overlooks the characteristic phenomenon of terrain obstruction of part of the 

sky hemisphere in complex terrain. Olyphant [1986a] compared isotropic and 

anisotropic models for the longwave irradiance in a mountainous area and found 

that the isotropic assumption does not yield satisfactory results for longwave 

irradiance. 

Other investigators have attempted to account for anisotropy without 

performing the computationally intensive spatial integration of radiance 

distribution functions (e.g., Temps and Coulson [1977]). Temps and Coulson 

took a more empirical approach in modeling the anisotropic properties of 

scattered solar radiation under clear skies by multiplying the isotropic view 

factor by correction factors to account for brightening of the sky in the 

vicinity of the sun and the horizon (section 2.2.2.). On the other hand, 

Klucher [1979] observed that the isotropic approximation yields satisfactory 

results under overcast sky conditions but underestimates the insolation at 

higher intensities, whereas the modified model of Temps and Coulson provides 

an improvement under clear sky conditions but overestimates the insolation 

under partly cloudy and overcast conditions. He therefore introduced a 

"modulating function" containing the ratio of diffuse to global insolation at 

a uniform surface (Kdif/K4) to account for the effect of cloudiness. Hay and 

Davies [1978] used a similar approach by using the ratio of direct to 

extraterrestrial radiation at a uniform surface (Kdir/K0) for this purpose. 

Both models were found to be superior to the isotropic model, although the 

model of Hay and Davies showed a smaller difference in seasonal performance 

than Klucher's model [Ma and Iqbal, 1983]. 

The conversion factor that can be derived by integrating the surface 

projection of the distribution of the intercepted reflection or emission over 

the viewed fraction of the hemisphere covered by surrounding terrain is 

usually referred to as the terrain configuration factor. As a result of the 

complex geometric effects between a point in mountainous terrain and each 

point in the surrounding terrain with which it is mutually visible, the 

isotropic assumption is unrealistic even if the surrounding terrain is a 

Lambertian reflector or a perfect emitter [Dozier and Frew, 1989]. Moreover, 

radiation received from obscured portions of the sky hemisphere strictly 

speaking also depends upon transmission and emission by the slab of air 

between source and receptor [Olyphant, 1986a; Shoshany, 1989]. Temps and 

Coulson [1977] also derived an empirical correction factor for application to 

the isotropic terrain configuration factor. Since it was based on reflectance 

measurements for grass turf however, it does not seem to be suitable for snow 

covered terrain. Hence, if no measurements of surface reflection or emission 
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are available an isotropic terrain configuration factor remains the only 

option. 

Since the interception of reflection and emission from surrounding terrain 

do not have a corresponding value at a uniform surface, they are usually 

related to the reflected or emitted radiation from a uniform surface. For the 

diffusely reflected direct insolation however, this is a rather crude 

approximation since the average reflection from surrounding terrain can be 

markedly different from the reflection from a uniform surface [Dozier, 1980]. 

Furthermore, the effects of multiple reflections between facing slopes are 

generally neglected, although an investigation carried out by Shoshany [1989] 

suggests that those might be significant for highly reflective (snow) surfaces 

facing each other at a relatively steep angle. Proy et al. [1989] state that 

interception of reflection from surrounding terrain can be neglected for 

directly illuminated sites, but should be taken into account for shadowed 

sites. Nonetheless, it is postulated that the average reflection from 

surrounding terrain can be adequately approximated by the reflection from a 

uniform surface since (1) it is not a major term in the radiation budget and 

(2) terrain induced effects tend to cancel out when integrated over space 

[Kondratyev and Manolova, 1960; Shoshany, 1989]. 

Taking into account the considerations stated above, the shortwave (solar) 

and longwave (thermal) components of the radiation balance at a point in snow 

covered mountainous terrain can be conveniently expressed as functions of 

their equivalents at a uniform snow surface: 

K„ = (1 - a d i r) * Vdir * Kdir + (1 - adif) 

* (Vsc, * (CV * CV1 * K^ + Kb,*) + V t a * a*,, * K+) (30) 

L„ - e * ( V ^ * Lsky + V ^ * em* o * T^,4) - Lgfc (31) 

where1 : 

K„ = Net shortwave radiation 
adir = Diffuse surface reflectivity for direct radiation [-] 
Vdir = Conversion factor for direct radiation or beam shading function 

[-] 
Kdir = Direct solar radiation 
adif = Surface reflectivity for diffuse radiation [-] 
Vggj = Conversion factor for background solar sky radiation or sky view 

factor [-] 
Cs' = Correction for sky brightening in vicinity of sun in complex 

terrain [-] 
Cs = Correction for sky brightening in vicinity of sun at 

unobstructed horizontal surface [-] 
Kg,,, = Radiation scattered downward from direct beam 
Kj,ck = Backscatter from atmosphere 
Vtrn = Conversion factor for diffuse radiation from surrounding terrain 

or terrain configuration factor [-] 
atrn = Average albedo of adjacent terrain [« 0.25] 
Ki = Downward shortwave radiation 
Ln » Net longwave radiation 
€ = Surface emissivity [~ 0.98] 
Vsky = Conversion factor for atmospheric emission or sky view factor [-] 
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Lsky - Emission from atmosphere 
eÜB = Average emissivity of adjacent terrain [~ 0.95] 
a = Stefan-Boltzmann's constant [» 5.6697 * 10"8 WrrfV4] 
Ttrn = Average surface temperature of adjacent terrain [K] 
Lsfc = Surface emission 

1 Unit of radiative flux density is [Wnf2]. 

All radiative flux densities in equation (30) and (31) are already 

determined in sections 2.2.3 and 2.2.4. (for substitution in equations (25) 

and (28), respectively). The determination of the conversion factors and of 

the additional correction factor (Cg'/Cg) accounting for sky brightening in the 

vicinity of the sun will be discussed in the next section. 

This additional correction for sky brightening in the vicinity of the sun 

is necessary because the radiance distribution functions for scattered solar 

radiation mentioned earlier and consequently the sky view factors based upon 

them only account for background radiation (both resulting from scattering of 

the direct beam and from atmospheric backscatter) but not for the circumsolar 

or aureole component (merely resulting from scattering of the direct beam) 

that is present when the direct beam is not obstructed by a local horizon or 

a cloudcover. This correction takes the form of a ratio because Temps and 

Coulson [1977] proposed different factors for unobstructed horizontal surfaces 

(uniform terrain) and obstructed inclined surfaces (complex terrain). Hence, 

for applications in complex terrain, the former, which has been used in 

equation (10), should be eliminated and substituted by the latter. 

The average surface properties of the terrain surrounding the point at 

which the radiation budget is modeled (i.e. albedo, emissivity and surface 

temperature) depend largely on the question of whether it is snow covered or 

not. In case the adjacent surfaces are completely snow covered, the same 

values can be applied as determined for the model point itself. In case of 

bare rock or vegetation however, the surface albedo will be significantly 

lower (about 0.25-0.30 for rockwalls), the surface emissivity will be somewhat 

lower (about 0.95), and the daily average surface temperature will be 

presented more adequately by the daily average air temperature than by the 

freezing temperature of water [Marks and Dozier, 1979; Olyphant, 1984; 

1986a,b]. Such reasonable approximations are accurate enough in most cases, 

because terrain configuration factors are usually small when compared to sky 

view factors, even in mountainous terrain. 

Although the current investigation deals with determining the radiation 

budget at a point, simulation of radiation induced snow melt rates for a whole 

watershed requires spatial integration of point values. Various investigators 

have used digital elevation data as input for solar [Dozier, 1980; Isard, 

1983; Olyphant, 1984; 1986b] and for thermal radiation models [Marks and 

Dozier, 1979]. Problems related to the efficiency of spatial integration 

algorithms [Dozier and Frew, 1989] and to the spatial extrapolation of input 

data [Marks and Dozier, 1979; Running et al., 1987] are not within the scope 
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of this investigation. Nonetheless, they will be of importance in future 

implementations of the present model. 

2.3.3. Conversion Factor Determination 

As mentioned in section 2.3.2., the conversion factor for direct radiation 

incident on a point in complex terrain (beam shading function) is a function 

of: (1) a binary shading coefficient that determines whether the observed 

point is in the shadow or not, and (2) the ratio of the cosine of the 

incidence angle at the inclined surface which contains the observed point to 

that at an imaginary horizontal surface at the same location: 

vdir = r * cos[es-] * coste,]-1 (32) 
i f 9S > H[$ s] t h en T = 0 , e l s e T = 1 

where1 '2: 

Vdir = Beam shading function [-] 
T = Binary shading coefficient [-] 
6S' = Incidence angle of direct radiation [rad] 
8S = Solar zenith angle [rad] 
H = Zenith angle of local horizon [rad] 
$g = Solar azimuth angle [rad] 

1 The incidence angle is defined as the angle between a unit 
coordinate vector normal to the surface and pointing away 
from the ground and a unit coordinate vector pointing 
toward the center of the solar disk. 

2 Azimuths are measured from north through east. 

The cosine of the solar zenith angle (i.e. the incidence angle at a 

horizontal surface) is given by equation (6) as a function of surface 

latitude, solar declination and hour angle. The cosine of the incidence angle 

at an inclined surface can be given either (1) directly as a function of the 

solar zenith and azimuth angles and of the surface geometry as determined by 

its inclination (slope) and azimuth angles (aspect), or (2) indirectly as a 

function of latitude, declination, hour angle, slope and aspect. The latter 

can be derived from the former (equation (36) with 6=6g and $=$g) when 

expressions for the solar zenith and azimuth angles are substituted [e.g., 

List, 1966; Kondratyev, 1973; Whiteman and Allwine, 1986], which is shown in 

appendix C. Gamier and Ohmura [1968; 1970] took a slightly different approach 

and used a coordinate transformation following the principles of spherical 

trigonometry to derive the same convenient formula. 

Local horizon functions can be sampled accurately from digital terrain 

models, although traditional brute force techniques result in a huge 

computational burden. Dozier and Frew [1989] developed a rapid algorithm for 

the calculation of terrain parameters from digital elevation data and found 

that 16 directions around the circle (equivalent with an angular increment of 
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jr/8 radians or 22.5°) are usually enough to describe the horizon angle 

adequately. Given the hypothetical case that only self-shading occurs, the 

inclined surface is described by an infinitely long uniform slope, and the 

local horizon is merely a function of the inclination and azimuth angles of 

the surface itself (equation (41)). The criterion for switching the binary 

shading coefficient from zero to one now reduces to: if (cos(88' ]<0 or 

cos[6g]<0) then r=0, else r=l. This geometrical simplification is the basis 

for the well-known simple trigonometric conversion factors for isotropically 

distributed diffuse radiation from the sky and radiation from adjacent 

terrain. 

Because the additional correction factor used in equation (30) to account 

for brightening of the sky in the vicinity of the sun is treated geometrically 

as part of the direct solar beam, it is discussed here before the actual 

conversion factor for background scattered solar radiation. To account for the 

possible obstruction of the direct beam by a local horizon or a cloudcover, 

the binary shading coefficient from equation (32) and Klucher's [1979] 

modulating function (based on variables whose determination has been discussed 

extensively in section 2.2.3.) are applied, respectively. As for the rest, 

Temps and Coulson's [1977] correction factor retains basically its original 

form (as given in equation (10)) in complex terrain: 

cs' * c»~l = (1 + T * F * cos2[eg'] * sin3[e„]) 

* (1 + F * cos2[9 s] * Bin'ie,])-1 (33) 

F = 1 - (Kdif * Kl"1)2 

where: 
Cs' = Correction for sky brightening in vicinity of sun in 

complex terrain [-] 
Cs = Correction for sky brightening in vicinity of sun at 

unobstructed horizontal surface [-] 
T = Binary shading coefficient [-] 
F = Modulating function for cloudcover [-] 
6S' = Incidence angle of direct radiation [rad] 
6S = Solar zenith angle [rad] 
Kdif = Diffuse sky radiation reaching unobstructed horizontal 

surface [Wm"2] 
K4- = Downward shortwave radiation reaching unobstructed 

horizontal surface [Wm"2] 

The conversion factor for diffuse radiation from the sky (both for 

background scattered solar and emitted thermal radiation) incident on a point 

in complex terrain (sky view factor) is by definition the ratio of the 

hemispherically integrated sky radiance at the inclined surface which contains 

the observed point to that at an imaginary horizontal surface at the same 

location. In terms of the previously mentioned anisotropy factor, being the 

ratio of the equivalent flux density from a particular direction to the 

diffuse radiation reaching a horizontal surface [Dozier and Frew, 1989], the 
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sky view factor can be expressed as follows in the polar coordinates of a 

viewer-oriented (global) coordinate system [Kondratyev and Manolova, 1960; 

Arnfield, 1982]: 

2it H [ $ ] 

vdif = *" 
1 ndif[e,*] * s in[6] * cos [e ' ] * de * d$ (34) 

fldift9'*] - * * R[«»*] * Rdif1 (35) 
c o s [ e ' ] = cos[S] * cos [0] + s in [S ] * s i n [ 6 ] * cos [$ - A] (36) 

where: 
Vdif = Sky view factor [-] 
H = Zenith angle of local horizon [rad] 
tyjjf = Anisotropy factor for diffuse radiance from the sky [-] 
6 = Zenith angle [rad] 
6' = Incidence angle of diffuse radiance from the sky [rad] 
$ = Azimuth angle [rad] 
R = Diffuse radiance from the sky [Wm̂ sr"1] 
Rdif ~ Diffuse radiation from the sky reaching unobstructed horizontal 

surface [Wm~2] 
S = Surface inclination angle or slope [rad] (= Zenith angle of 

surface normal) 
A = Surface azimuth angle or aspect [rad] (- Azimuth angle of 

surface normal) 

The previously mentioned semi-empirical distribution functions for 

background scattered solar radiation and atmospheric emission usually take the 

form of radiance distributions as functions of the zenith angle only (R[6J) 

instead of anisotropy factors as functions of both zenith and azimuth angles 

(ß[6,$]), i.e. azimuthal dependence is ignored and the convenient anisotropy 

factor approach is not applied. However, R[6] can easily be converted to 0[6] 

by means of equation (35), because Rdif is merely the hemispherical integration 

of R[6] at an unobstructed horizontal surface, which can be seen from equation 

(34) by setting Vdif=l when H[$]=*r/2 and e'=6: 

2w TT/2 

f r 
Rdif - R[9] * s in [6 ] * cos [0] * d9 * d$ 

0 0 

1 
r 

= 2n * R[/i] * n * dju ; /i = c o s [ 6 ] (37) 
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where: 
Rdif ~ Diffuse radiation from the sky [Wirf2] 
R = Diffuse radiance from the sky [Wm^sr"1] 
6 = Zenith angle [rad] 
$ = Azimuth angle [rad] 
/i = Cosine of zenith angle (-] 

It can be seen from this equation that the term ir*R[8,$] in equation (35) 

is the equivalent flux density from a hemisphere radiating isotropically like 

the solid angle denoted by the coordinates (6,$). By definition (equation 

(35)), this equivalent flux density is equal to the actual flux density when 

the anisotropy factor equals unity. 

In appendix D. the following anisotropy factors are derived on the basis 

of widely used radiance distribution functions for background scattered solar 

radiation and atmospheric emission for varying atmospheric conditions (figure 

2.3.3.): 

0k[M] = (1 + bk * n) * (1 + bk * 2/3)"1 (38) 

tyt/i] - 1 - b, * ê y"1 * (0.5 - l n ^ ] ) (39) 

where: 

fik = Anisotropy factor for background solar sky radiance 

{-] 
fi = Cosine of zenith angle [-] 
bk = Empirical coefficient [» -0.87 for clear skies; 

» 1.23 for overcast skies] 
fij = Anisotropy factor for atmospheric emittance [-] 
b| = Empirical coefficient (~ 0.09] 
£sky = Effective atmospheric emissivity [-] 
K^ = Relative path length for water vapor [-] 

It is noted that the values given above for the empirical coefficients bk 

and b| were derived on the basis of extensive measurements presented by Steven 

and Unsworth [1979; 1980] and Unsworth and Monteith [1975], respectively. With 

bk=2, this yields the well known "Standard Overcast Sky" (SOC) proposed by 

Moon and Spencer [1942]. 

It is shown in appendix D. that b| can be determined solely as a function 

of esky if it is assumed that the equivalent emissivity tends to unity as \i 

approaches zero (zenith angle 6 approaches n/2), as was reasoned both by Brunt 

[1932] and by Unsworth and Monteith [1975]. Within the range of effective sky 

emissivities that occur (i.e. that result from equations (27) and (29)), this 

approach yields values close to 0.09. Hence, the value proposed by Unsworth 

and Monteith can be reconciled with theoretical considerations. 

Unsworth and Monteith [1975] showed the anisotropy factor for atmospheric 

emittance to be valid for both clear and overcast skies. Olyphant [1986b] 

proposed a weighted average estimate of the anisotropy factor for background 

solar sky radiance under partly cloudy skies, using the shortwave 
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transmissivity of the atmosphere (Ki/K0) and its complement as weights, 

respectively. Since this was meant as an indicator of the percentage 

cloudiness, direct application of the mean fractional cloudcover (mc) like in 

equation (19) seems more obvious. Note that bk equal to -0.87 in equation (38) 

accounts for the horizon brightening effect under clear skies (fig. 2.3.3.). 

Since the functional form of the horizon function and some of these 

anisotropy factors prevents us from integrating equation (34) analytically, 

numerical integration methods remain the only alternative. Arnfield [1982] 

carried out an error analysis to determine the optimal value (in the tradeoff 

between computing expense and accuracy) of the angular increment used in the 

numerical integration over zenith and azimuth angle. He recommended angles of 

at most TT/36 and JT/18 radians to achieve deviations of no more than 5 and 10 

percent respectively from the "exact" solution, which was evaluated with an 

angular increment of JT/180 radians (1°) using Simpson's numerical integration 

rule. 

When the anisotropy factor in equation (34) is set equal to one, the 

isotropic approximation of the sky view factor is determined. Dozier and Frew 

[1989] showed that in that case (34) can be converted to a more convenient 

expression that merely requires numerical integration over all azimuth 

directions. An even greater reduction in computational effort can be achieved 

when the horizon function is described by some integrable expression that is 

completely determined by the geometrical properties of the surface in 

question, i.e. slope and aspect. Local topography is than modeled by an 

infinitely long uniform slope facing an infinitely long horizontal surface. 

The zenith angle of the local horizon is consequently determined in upslope 

direction (cos[$-A]<0) by the zenith angle of a ray that is parallel to the 

slope, and in downslope direction (cos[$-A]>0) by an angle of n/2 radians. 

Setting 6 equal to H and 6' equal to n/2 in equation (36) yields the following 

local horizon function for this simple terrain model: 

if cos[$ - A] > 0 then H[$] = w/2, 

else H[*] = arctan[-(tan[S] * cos[$ - A])"1] (40) 

where: 

$ = Azimuth angle [rad] 
A - Surface azimuth angle [rad] 
H = Zenith angle of local horizon [rad] 
S = Surface inclination angle [rad] 

This simplification allows analytical integration of (34), resulting in the 

well known isotropic trigonometric sky view factor approximation [e.g., Hay 

and Davies, 1978]. Steven and Unsworth [1979; 1980] even present an analytical 

solution for the anisotropic case where the background solar sky radiance 

distribution is described by equation (38). An extension of the isotropic 

model to an infinitely long V-shaped valley, i.e. two infinitely long uniform 
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slopes facing each other leads to the following exact solution of equation 

(34) (appendix E.): 

Vdif = cos2[(S + S') / 2] = (1 + cos[S + S']) / 2 (41) 

where: 

Vdif - Sky view factor [-] 
S = Surface inclination angle [rad] 
S' - Inclination angle of facing slope or inclination angle of 

horizon in direction of facing ridge top [rad] 

Obviously, this equation must also be valid at the valley floor of a V-

shaped valley composed of two facing slopes of finite dimensions. Setting S' 

equal to zero yields the solution of (34) for the isotropic case (Q=l) when 

the local horizon function is defined according to (40). Olyphant [1984, 

1986a] used the square of the sine of the average zenith angle of the local 

horizon as a sky view factor approximation. 

In a preliminary numerical integration study, an intercomparison was made 

between the sky view factors for a symmetrical infinitely long V-shaped valley 

computed according to the anisotropic formula (34), the isotropic formula (41) 

and Olyphant's formula (Vdif= sin2[Hm]). Equation (34) (with the anisotropy 

factors defined according to (38) and (39)) was integrated numerically over 

the appropriate zenith and azimuth angles with angular increments of pi/18 

radians using Simpson's 1/3 rule. The (Microsoft Quick)BASIC computer program 

that was constructed for this purpose ("FACTORS" in appendix E.) has been 

validated in 3 ways [Feldman and Rugg, 1988]: (1) When used for simulating a 

horizontal surface, the integrated view factors never deviated more than 0.02 

percent from unity; (2) When the anisotropy factors were set equal to one, the 

integrated view factors never departed more than 0.01 percent from their 

isotropic equivalents; (3) When simulating an infinitely long uniform slope 

facing an infinitely long uniform surface, the integrated view factors for 

background solar sky radiance never deviated more than 0.01 percent from the 

analytical solution that Steven and Unsworth derived for this case. It was 

found that the isotropic formula is an accurate approximation for the view 

factor for atmospheric emittance for facing slopes of up to 60° (the maximum 

error amounted about 3 percent). As an approximation for the view factor for 

background solar sky radiance however, it performed slightly less accurate, 

resulting in an overestimation for clear skies of 14 (43) percent and an 

underestimation for overcast skies of 4 (9) percent for facing slopes of 30° 

(60°). Olyphant's formula always drastically overpredicted the sky view 

factor, but will probably yield better results in real mountainous terrain. 

When the local horizon function defined in FACTORS is delineated from a 

topographic map or digital terrain model, this computer program can serve as 

a subroutine in a radiation budget model for mountainous terrain (chapter 3.). 

The conversion factor for the intercepted diffuse radiation from adjacent 

surfaces (both for reflected solar and emitted thermal radiation) incident on 
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a point in complex terrain (terrain configuration factor) is by definition the 

ratio of the hemispherically integrated diffuse terrain radiance at the 

inclined surface which contains the observed point to the radiation reflected 

or emitted by an imaginary horizontal surface at the same location. The 

general functional form defining the terrain configuration factor is the same 

as that of equation (34) (defining the sky view factor), except that the 

surface projection of the terrain anisotropy factor is integrated over all 

zenith angles from the local horizon downward to where a ray is parallel to 

the slope in question (as given by the arctangent expression in (40) without 

the mentioned azimuthal restriction) instead of over all zenith angles from 

the zenith downward to the local horizon [Dozier and Frew, 1989]. Hence, an 

additional component of diffuse irradiance will be contributed to an inclined 

surface in complex terrain from the lower hemisphere by adjacent surfaces in 

the downslope direction [Arnfield, 1982]. This effect partially compensates 

the obstruction of the upper hemisphere by the same surrounding surfaces and 

by the receiving surface itself, as quantified by the sky view factor. As 

stated in section 2.3.2., the isotropic approximation remains the only option 

for the terrain configuration factor if no measurements of surface reflection 

or emission are available. The same (geometric) simplifications as discussed 

for the isotropic sky view factor approximation can be applied to the 

isotropic terrain configuration factor approximation, resulting in the 

following expression valid for an infinitely long V-shaped valley: 

Vtn, = sin2[(S + S') / 2] - (1 + sin[S + S1]) / 2 (42) 

where: 

Vtm = Terrain configuration factor [-] 
S = Surface inclination angle [rad] 
S' - Inclination angle of facing slope or inclination angle of 

horizon in direction of facing ridge top [rad] 

It can be seen from the equations (41) and (42) and from investigations by 

Olyphant [1984, 1986a], who used the square of the cosine of the average 

zenith angle of the local horizon as isotropic approximation of the terrain 

configuration factor, that the sum of these isotropic approximations of Vdif 

and Vtm equals unity. Dozier and Frew [1989] state that this sum equals 

cos2[S/2], suggesting that the terrain configuration factor for an infinitely 

long slope equals zero. The above analysis clearly shows that this is 

incorrect. 

Finally, it is noted that from a computational point of view the two basic 

differences between the conversion factor for direct solar radiation (beam 

shading function) on the one hand and the conversion factors for diffuse 

radiation from the sky (sky view factor) and for intercepted diffuse radiation 

from surrounding terrain (terrain configuration factor) on the other hand are: 

(1) that the former represents an instantaneous value whereas the latter 

represent daily averages (for anisotropical radiation fields) or even constant 
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values only depending on terrain geometry (in case the radiation fields are 

assumed to be isotropic), and (2) that the former does not require spatial 

integration because the solar disk is assumed to be a point source 

superimposed on a nonradiating background (as far as direct solar radiation 

is concerned). Thus its radiation field could be described by an appropriate 

anisotropy factor expressed in terms of the Oirac S function [Horn and 

Sjoberg, 1979]. 
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CHAPTER 3. 

RADIATION BUDGET MODULE - RBM 

3.1. Model Assumptions 

The simplified approach toward modeling the radiation budget at a point in 

snow covered mountainous terrain as presented in the preceeding chapter has 

been the basis for the development of the computer simulation program RBM 

(Radiation Budget Module), which is implemented in the (Microsoft Quick)BASIC 

programming language [Feldman and Rugg, 1988]. From its source code listing 

as presented in appendix E. it can be seen that RBM is a structured computer 

program designed according to the method of procedural abstraction (functional 

decomposition). That is, the main objective of the program was decomposed into 

several subfunctions, most of which are implemented as separate subroutines 

[van Vliet, 1988]. The resulting model structure generally follows that of the 

radiation budget algorithm as presented in the preceeding chapter. 

RBM was actually designed as a module within the framework of the larger 

modular computer simulation program EBM (Energy Budget Model). The latter not 

only models the diurnal variation of the radiation balance, but also contains 

parameterizations for some of the other components of the energy budget as 

described in equation (1) (i.e. the turbulent exchange terms) and compares the 

capability of the energy budget method with two methods based on the empirical 

temperature index approach in simulating daily snowmelt and runoff for a 

complete melt season. These last functions however are not directly within the 

scope of this research project, and will therefore be discussed in a later 

stage (section 4.3.). 

Generally, the assumptions of a model should always be given explicitly to 

avoid ambiguities and to allow a judgement of the model on its merits. 

Although the basic assumptions of the present modeling approach have been 

mentioned throughout the text, they will be summarized here for reasons of 

clearness and completeness: 

3.1.1. Assumptions Concerning the Earth's Atmosphere 

- The overlap between the region of the electromagnetic spectrum consisting 

of radiation emitted by the sun (shortwave) and the region consisting of 

radiation emitted by the earth-atmosphere system (longwave) is negligible 

and may therefore be treated separately. 

- Scattering of electromagnetic radiation only affects the shortwave region 

of the spectrum, i.e. the longwave region is merely associated with emission 

and absorption. 
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- Water vapor and ozone are the only constituents of the atmosphere that 

absorb shortwave electromagnetic radiation, i.e. absorption of shortwave 

radiation by permanent or miscellaneous gases (nitrogen, oxygen and carbon 

dioxide) and by aerosols is negligible. 

- Water vapor and carbon dioxide are the only constituents of the atmosphere 

that absorb and emit longwave electromagnetic radiation. 

- In a clear atmosphere at high altitudes (i.e. in mountainous terrain) direct 

solar radiation is attenuated exponentially with a constant extinction 

coefficient (optical depth). 

- The average vertical temperature profile of the atmosphere is a constant 

decay with altitude equal to the standard lapse rate. 

- The average vertical air pressure and water vapor pressure and density 

profiles of the atmosphere are exponential decays with altitude. 

- There exists a space and time invariant functional relationship between the 

ratio of diffuse to global solar radiation and the ratio of global to 

extraterrestrial solar radiation. 

- The azimuthal dependency of diffuse (both background scattered solar and 

emitted thermal) radiance from the sky is negligible. 

- The atmosphere acts as an isotropically backscattering medium. 

3.1.2. Assumptions Concerning the Earth's Surface 

- Net radiation is the dominant component in the surface energy budget at a 

point in snow covered mountainous terrain. 

- The surface of a melting snowpack is wet during the entire day. 

- Each new snow accumulation consists of dry uncontaminated snow with the 

same mean grain size. 

- The earth's surface acts as a perfect diffuse (isotropical or Lambertian) 

reflector, i.e. the occurence of specular (Fresnel) reflection of direct 

insolation and of anisotropical diffuse reflection resulting from 

macroscopic geometric effects (terrain relief) are ignored. 

- The effects of transmission and emission by the slab of air between 

neighbouring surfaces in complex terrain on the one hand and the effect of 

multiple scattering between such surfaces on the other hand cancel out when 

integrated over space. The average reflection and emission from surfaces 

surrounding the model point in complex terrain are therefore equal to the 

reflection and emission from a uniform horizontal surface with the same 

surface properties (i.e. albedo, emissivity and temperature). 

- The possible effects of diffraction and refraction of electromagnetic 

radiation at the earth's surface are negligible. 

- The direct beam of electromagnetic radiation reaching the earth's surface 

consists of parallel rays, i.e. the earth-sun distance is infinitely large. 
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- The apparent position of the sun as it is observed at the earth's surface 

equals the true position of the sun relative to the centre of the earth, 

i.e. the apparent reduction of the solar zenith angle close to sunrise and 

sunset as caused both by refraction of electromagnetic radiation in the 

atmosphere and by parallax is negligible [Blackadar, 1984]. 

3.2. Required Input 

The input parameters and variables required for the simulation of each term 

of the radiation budget at a point in snow covered mountainous terrain are 

given in table 3.2. The first six (namely the latitude ($), longitude (1), 

altitude (h), slope (S), aspect (A) and horizon (H) of the surface in 

question) are fixed geographical parameters that need to be determined only 

once, whereas the day of the year (D, or date), the number of days since the 

last snowfall event occured (Ds) and the time of the day (t) are variables 

that are measured easily and accurately. This leaves six unknown variables 

that have to be determined on a daily basis (wich is usually sufficient for 

the simulation of the daily radiation budget throughout a snowmelt season) or 

with a higher temporal resolution (needed if a more accurate simulation of the 

diurnal radiation budget variation is desired). Three of these meteorological 

variables (namely the optical depth (r) or transmissivity (T) of the 

atmosphere, the air pressure at screen level (p) and the surface temperature 

(Ts)) can be estimated with reasonable accuracy as pointed out in the 

preceeding chapter. The remaining variables serving as input for RBM are the 

temperature (Ta) and vapor pressure (ea) of the air at screen level and the 

mean fractional cloudcover (mc) (and/or relative sunshine duration). 

As a result, the radiation budget simulation module in its present form 

requires only three variables to be determined on a regular basis for its 

execution, given the values for the constants and parameters mentioned along 

with the equations in the preceeding chapter. Hence, it complies with one of 

the most important objectives of the current research project, namely the 

development of a physically based radiation budget model requiring only a 

limited number of input data in order to remain operational relative to the 

Snowmelt Runoff Model (SRM). However, additional input in the form of 

measurements of net radiation and other variables may be required for 

verification purposes (section 4.1.). Moreover, if the meteorological 

variables (air pressure, temperature and vapor pressure) are not determined 

at screen level, the altitudes of the measuring devices relative to the 

modeling point need to be determined in order to be able to extrapolate the 

measurements using standard vertical profiles. 
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+ + ± + ' + + + - + ± ± - ± - + 

+ + ± + + + + - + ± ± - ± + + 

+ + ± + + + + + + ± ± - ± + + 

+ + ± + + + + + + ± ± - ± + + 

- - - + + + 

- - - + + + 

- - - - - + + + 

_ _ _ - + + + + 

+ + ± + + + + + + ± ± ± + + + 

Table 3.2. Input required for the simulation of each term of the 
radiation budget at a point in snow covered mountainous terrain, 
where + = necessary, ± = useful and - = not necessary (see text 
for notation of symbols). 
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CHAPTER 4. 

SIMULATING RADIATION AND SNOWMELT 

4.1. Model Testina 

Thorough testing of a computer simulation model can consist of three 

phases, namely a validation, a verification and possibly a calibration phase. 

Validation is defined as a means of static analysis that consists of an 

internal consistency check resulting in a proof of the correctness of the 

model, which may be accomplished by means of structured testing of the 

individual refinement steps of the model. In practice this phase reduces to 

the check on the syntax and semantics of the program with respect to the 

programming language that is performed automatically by the installed compiler 

and manually by the author. Verification is defined as a means of dynamic 

analysis that consists of an accuracy check by means of a comparison of model 

results with standard references and an assessment of the model performance 

with respect to the resulting differences [van Vliet, 1988]. Examples of 

standard references are observations on the modeled system, analytical 

solutions of numerical equations used in the model and results obtained by 

other investigators. Calibration is the optimization of model parameters using 

some criterion to minimize the differences between the results of model 

simulations and measurements of the modeled system. The Radiation Budget 

Module has an option for calibrating the optical depth (or transmissivity) of 

the atmosphere using radiation measurements. The optimized values however, 

should always be checked to avoid the use of physically unrealistic values. 

Apart from the internal consistency checks that were performed throughout 

the construction of the computer simulation program RBM, the actual model 

testing was basically an extensive verification procedure. This consisted of 

comparisons between simulations and measurements of global and net radiation 

for a whole day at a site near Phoenix, Arizona (section 4.2.) and of global 

radiation and snowmelt for a complete melt season at a site near Davos, 

Switzerland (section 4.3.4.). 

4.2. Simulating Radiation 

The data used for the verification of the Radiation Budget Module (RBM) 

were collected at Maricopa Agricultural Research Center (MAC farm, 33.1°N and 

112.0°W), which is about 60km south of Phoenix, Arizona. The applied data set 

consists of one minute averages of downward shortwave radiation (global 

radiation, K4-), net radiation (Rn), air temperature (Ta), surface temperature 

(Tg) and vapor pressure (ea). They were collected over a horizontal wheat field 
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with an elevation (h) of merely 358m under ideal atmospheric conditions (mc=0) 

at April 10, 1989 between midnight and 16:17h (Local Standard Time, LST) [The 

University of Arizona, 1989]. Although measurements of soil temperatures were 

available, the canopy temperature was used as an estimate of the surface 

temperature in the computation of the thermal emission from the wheat field. 

Apart from a few unit conversions, small corrections were applied to the 

original data of global and net radiation and canopy temperature to account 

for instrumental errors [Kustas, 1989, personal communication]. The corrected 

values of global and net radiation range from minima of 0 and -58 Wm~2 during 

the night to maxima of 981 and 668 Wm'2 just after local noon (figures 4.2.1. 

and 4.2.2.). The minimum air and surface temperatures amount 11.5°C and 7.2°C 

and occur just before local sunrise, whereas their respective maxima of 35.0°C 

and 30.5°C lag 2 to 3 hours behind the global radiation maximum. The vapor 

pressure of the air lastly ranges from 368 to 1544 Pa, with the lower values 

occuring during nighttime and the higher values during daytime. 

In order to make an accurate comparison with simulation results possible, 

RBM converts local standard time to true solar time using the method presented 

in section 2.2.1 and solar ephemeris formulae as presented in appendix A. For 

the Maricopa wheat field, this resulted in a total time subtraction of 30 

minutes, composed of about 28 minutes to account for the longitude difference 

with the standard meridian, about 1.5 minutes for the equation of time and 0.5 

minutes for the fact that the one minute averages were collected during the 

preceeding minute. A first verification of the model is provided by the fact 

that the amounts of global radiation that were registrated by the radiometer 

at the times which RBM computed for the occurence of the apparent sunrise 

(corrected for atmospheric refraction) and solar noon, only deviated by 3 and 

6 Wm"2 from the minimum (zero) and maximum (about 1 kWm"2) registrations, 

respectively. Those values are well within the sensitivity and accuracy of the 

applied instrumentation: The latter is commonly found to be around 5 percent 

[Gamier and Ohmura, 1970; Morris, 1989; Stuhlmann et al., 1990]. 

The two most important unknowns are the transmissivity (T) or optical depth 

(r) of the atmosphere and the albedo of the surface (a). For the ideal 

atmospheric conditions at the MAC test site, values of 0.75 and 0.29 should 

suffice for T and r, respectively. As for the albedo of the wheat field, List 

[1966] and Kondratyev et al. [1982] report daily average values of 0.07 and 

0.05-0.1 during early spring, respectively. Particularly for clear skies 

however, the diurnal variation of the vegetation albedo shows a strong 

dependence on the solar elevation. Kondratyev et al. [1982] provide a 

parameterization for this phenomenon for grass covered surfaces that accounts 

for the attenuating effect of cloud cover by means of the ratio of diffuse to 

global radiation. Briegleb et al. [1986] give a simpler expression, which is 

merely a function of the solar zenith angle and one empirical parameter. This 

parameterization seems to be applicable to various land surface types without 
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fig. 4.2.1. Simulated extraterrestrial and global radiation and measured 
global radiation as a function of the hour angle at the MAC wheat field for 
April 10, 1989 (MBE = 0.6%; RMSE = 3.5%). 
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exhibiting much scatter in its parameter. 

As for the actual verification of the simulated radiation budget at the 

surface of the wheat field, RBM grouped the total of 947 one minute averages 

of all input variables into 47 consecutive bins of 20 minutes (disregarding 

the last 7 measurements) and computed their respective averages. The same time 

step was applied for the simulation of the various components of the radiation 

budget. Global and net radiation were computed for all moments representing 

the center of a measurement bin and were compared with the averages of their 

measured counterparts. Consecutively, RBM computed two statistics to assess 

the simulation performance, namely the mean bias error (MBE) and the root mean 

square error (RMSE). The MBE is defined as the mean difference between the 

computed and the measured values, which is a measure for overestimation or 

underestimation on a daily basis. The RMSE on the other hand is defined as the 

square root of the mean of the squared differences between the simulated and 

the measured values, which provides more specific information with respect to 

the model accuracy [Ma and Iqbal, 1983]. It is common practice to express 

these statistics as a percentage of the measured mean for the time period 

concerned. 

To check the capability of RBM with respect to simulating the thermal 

(longwave) radiation budget at the surface of the wheat field, the statistical 

analysis was restricted initially to the 17 time steps between local midnight 

and sunrise, when the radiation budget is determined completely by its 

longwave components. This yielded a MBE and a RMSE of -2.6 and 6.0 percent 

respectively, when the surface emissivity was assumed to be 0.95 and the clear 

sky effective atmospheric emissivity was computed according to Satterlund 

[1979]. The model results showed little sensitivity to small changes in the 

former, but were rather sensitive to changes in the latter. Application of 

Brutsaert's [1975] formula for the atmospheric emissivity instead of 

Satterlund's resulted in an average overprediction of the nighttime net 

longwave radiation loss of about 60 percent (MBE). This can partly be 

attributed to measurement errors [Kustas, personal communication] and partly 

to conditions of temperature inversion, for which Brutsaert's formula is not 

intended. However, the other available formula's (appendix B.) generally 

yielded deviations of less then 15 percent and moreover, the MBE resulting 

from Brutsaert's formula decreased to an underprediction of the net radiation 

of merely 10 percent when applied to all 47 time steps instead of only to the 

first 17. With respect to all time steps, Satterlund's formula resulted in a 

MBE and a RMSE of 1.7 and 5.1 percent, respectively. 

The capability of RBM in simulating the solar (shortwave) radiation 

incident at the wheat field was checked through a statistical analysis of the 

30 time steps after local surise. When the zenith path transmissivity of the 

atmosphere was assumed to be 0.75, the effective (clear) sky albedo 0.1 and 

the surface albedo with the sun in the zenith also 0.1, RBM yielded a MBE and 

a RMSE of 0.6 and 3.5 percent, respectively. The dependency of the surface 

albedo on the solar zenith angle was parameterized according to Kondratyev et 
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al. [1982] (see the appropriate subroutine in the RBM source code as listed 

in appendix E.)• 

Unless the surface is snow covered, net shortwave radiation is generally 

more important in the daily average surface radiation budget than net longwave 

radiation. For this particular test case, the simulated daily average 

radiation budget amounted +163 Wm"2, composed of +222 Wm"2 for shortwave 

radiative input and -59 Wm'2 for longwave radiative loss. The daily average 

extraterrestrial radiation, integrated numerically using Simpson's 1/3 rule 

and a temporal increment of 20 minutes, was found to be 413 Wm'2, and deviates 

by less than 0.03 percent from the value that results from analytical 

integration (appendix C. ). The ratio of daily global to daily extraterrestrial 

radiation amounted 0.766, which would result in a diffuse fraction of the 

global radiation of 0.175 according to the daily standard correlation of Erbs 

et al. [1982]. RBM yielded a value of 0.148, i.e. about 15 percent lower. 

Because the data collected at this particular test site lack the 

topographic and atmospheric complexity for which RBM is actually designed, 

additional verifications are required to provide a more exhaustive test of the 

main module and its subroutines. This holds in particular for the subroutine 

designed to determine the various conversion factors (FACTORS in appendix E.), 

which was discussed briefly in section 2.3.3. However, as can be gathered from 

the statistics assessing the simulation performance and from the figures 

4.2.1. and 4.2.2., RBM yields encouraging results when applied to a uniform 

horizontal surface under clear skies. Its application to a site under less 

ideal atmospheric conditions will be presented in the next section. 

4.3. Simulating Snowmelt 

The radiation budget algorithm presented in chapter 2., which has been the 

basis of RBM, is actually developed to provide a first estimate of the surface 

energy balance in snow covered mountainous terrain. The latter can provide 

snowmelt factors that are more physically based than the present temperature 

index (degree-day) method, which will reduce both the parameter variability 

associated with local calibrations and the need for extensive measurements. 

Moreover, a simplified energy balance model of the snowmelt at a point with 

a limited number of required input parameters will allow easy incorporation 

in operational snowmelt runoff models like the Snowmelt Runoff Model (SRM). 

The considerations that provided the basis for the development of more 

physically based snowmelt factors are discussed below in a short review of the 

presently available methods for point snowmelt prediction. 
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4.3.1. The Degree-Day Method 

The simplest and still most widely used method both for the short term 

prediction of snowmelt at a point [e.g., Martinec, 1960; Pysklywec et al., 

1968; Granger and Male, 1978; Kuusisto, 1980] and as the basis for snowmelt 

runoff modeling on a watershed scale [e.g., Martinec et al., 1983; Martinec 

and Rango, 1986; van Katwijk and Rango, 1988; Moussavi et al., 1989] is the 

so-called degree-day method. This temperature index approach relates the total 

daily decrease of the water content of a snow cover directly to the daily mean 

air temperature above a certain base temperature (usually taken as the 

freezing temperature of water) by means of the more or less empirical degree-

day factor [e.g., Leavesley, 1989]: 

M = a * Td (43) 

i f Ta > Tb t h en Td = Ta - Tb 

e l s e Td = 0 

where: 

M = Snowmelt rate (water equivalent) [md"1] 
a = Degree-day factor [mK"1d"1] 
Td = Degree-day temperature [K] 
Ta = Absolute air temperature at surface [K] 
Tb = Base temperature [~ 273.15 K] 

The above expression for the degree-day temperature is in fact an 

approximation, since the instantaneous air temperature might rise above the 

base temperature (around noon) when the daily mean air temperature is still 

lower than the base temperature. This can be accounted for when the daily 

minimum and maximum air temperatures are known and a certain linear [van 

Katwijk and Rango, 1988] or sinusoidal [Running et al., 1987; Reicosky et al., 

1989] temperature variation throughout the day is assumed. However, this will 

require extra input parameters which will reduce the operational capacity of 

the model. Moreover, this phenomenon is not likely to occur very often during 

the snowmelt season and may therefore be disregarded. 

A disadvantage of equation (43) is the high spatial and temporal 

variability of the degree-day factor, which is associated with the fact that 

it is actually a bulk melt factor, implicitly accounting for all terms of the 

energy budget that affect the mass balance of the snow pack. Hence, it 

accounts in some way for the hydrothermal condition of the snow pack itself 

(affecting both its hydraulic storage and transmissivity characteristics and 

its optical properties), and for microclimatic conditions as determined by 

vegetative ground cover and terrain structure. In order to take this 

variability into account without depending to much on the hydrological 

judgment of the operator, the degree-day factor is sometimes linearly related 

to physical parameters that can easily be determined, such as snow density 

[Martinec, 1960; Kuusisto, 1980], average daily air temperature range 
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[Moussavi et al., 1989], or mean wind speed [Martinec, I960]. Because snow 

density increases during the snowmelt season, a linear relation with the 

degree-day factor is found to represent several factors affecting snowmelt 

(e.g. increasing liquid water content and decreasing albedo) rather well. The 

daily air temperature range has been related to the daily total atmospheric 

transmittance of solar radiation [Bristow and Campbell, 1984], which is an 

important term in the snow surface energy budget. Conclusively, although 

exceptional conditions may require different values for the degree-day factor, 

they generally lie in the range from 3.5*10"3 to 6.0*10"3 mK̂ d"1 and increase 

gradually during the snowmelt season as the snow pack ripens [Martinec et al., 

1983; Martinec and Rango, 1986]. 

A statistical analysis carried out by Zuzel and Cox [1975] showed that if 

only one meteorological variable is available for daily snowmelt prediction, 

daily average air temperature is the best predictor. It is probably for this 

reason that the degree-day method has yielded acceptable results over the past 

decades. However, significant deviations from predicted values particularly 

occur at days with heavy rainfall or high wind speeds [Martinec, 1960; 

Pysklywec et al., 1968; Kuusisto, 1980]. This finding is not surprising since 

heavy rain strongly influences both the mass and the energy balance of a snow 

pack, the latter because cooling or freezing rain releases latent heat. Strong 

winds not only directly affect the energy and mass balances because they 

increase turbulent transfer (sensible and latent heat exchange), but also 

indirectly since they can cause blowing snow that can be sublimated and 

redistributed [Morris, 1989]. The latter phenomenon however, also causes 

problems when predicting snowmelt with more physically based methods. 

4.3.2. A Combined Approach: Temperature Index and Radiation Budget 

Net radiation is not only the most important term in the surface energy 

balance at a point in snow covered mountainous terrain because of its 

magnitude, but also because it explains most of the variation in snowmelt 

[Zuzel and Cox, 1975; Granger and Male, 1978]. However, Olyphant [1984] found 

that "there is no simple proportionality between net radiation and glacier 

ablation", which he partly contributed to the probable importance of other 

energy sources, especially the sensible heat flux. Hence, a combination of a 

surface radiation budget (as discussed extensively in chapter 2.) and a 

temperature index (the so-called restricted degree-day factor) as proposed by 

several investigators [Martinec and de Quervain, 1975; Ambach, 1988; Martinec, 

1989] offers a promising perspective: 

if R„ > 0 then M = aT * Td + aQ * R„ (44) 

else M = aT * Td 
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if Ta > Tb then Td = Ta - Tb 

else Td = 0 

aq = 86400 * (SOf * rhow * Lf)_1 (45) 

= 2.7 * 10"4 md-^Wm"2)"1 

where1 : 

M = Snowmelt rate (water equivalent) [md1] 
aT = Restricted degree-day factor [mic'd"1] 
Td - Degree-day temperature [K] 
aq « Conversion factor for energy flux density to snowmelt 

depth [md'^Wm"2)"1] 
R„ = Net radiation [Wm"2J 
Ta = Absolute air temperature at surface [K] 
Tb = Base temperature [~ 273.15 K] 
SQj = Thermal snow quality [~ 0.96] 
rhow = Density of water [« 1000 kgm"3] 
Lf = Latent heat of fusion [~ 3.337*105 Jkg"1] 

1 The factor 86400 accounts for the conversion of s"1 to d"1. 

Male and Gray [1981] suggested that an average value of 0.96 for the 

thermal snow quality should account reasonably well for the contamination of 

the snow pack. Applying this value to (45), it can be seen that each watt per 

square meter of daily average energy input results in a daily snowmelt depth 

of about 0.27 millimeter water equivalent. 

The restricted degree-day factor in (44) implicitly accounts for the 

remaining terms of the energy budget at the snow surface as described by (1), 

i.e. mainly for the turbulent exchange at the interface between the snow 

surface and the atmospheric boundary layer. Martinec and de Quervain [1975] 

and Martinec [1989] neglect the transfer of water vapor and the associated 

latent heat flux and assume the restricted degree-day factor to be entirely 

related to the sensible heat flux. This is in contradiction with observations 

published by Granger and Male [1978] and Marks [1988], which show that the 

latent heat loss (required to produce the measured evaporation) partly or 

almost entirely offsets the sensible heat input during the snowmelt season. 

Moreover, Marks et al. [1986] state that even at a high elevation site in the 

Sierra Nevada where "radiative transfer is by far the largest and most 

important form of energy exchange over a snow cover during melt", measurements 

over several years indicate that commonly 25 percent of the mass of the snow 

cover is lost to evaporation/sublimation during the spring snowmelt. However, 

an extensive survey carried out by Morris [1989] shows that the latent heat 

loss of a melting snow cover is usually around 10 percent of the net 

radiation, whereas the sensible heat input is often around 40 percent of it. 

The latter is confirmed by Olyphant and Isard [1988] who simulated turbulent 

transfer over alpine snow fields and concluded that snowmelt by radiant energy 

will dominate early in the season, while turbulent energy processes will 

dominate snowmelt late in the season. This conclusion primarily stems from the 

increasing influence of advected sensible heat as the snow fields decrease in 
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area. The relative importance of the latent heat loss of a melting snow pack 

in particular and of the turbulent heat exchange in general obviously is a 

function of the ambient weather conditions. For instance, Hartinec [1989] 

found that the net outgoing longwave radiation at night promotes refreezing 

of meltwater and hence appears to be a significant factor in alpine 

conditions. However, Granger and Male [1978] concluded for a melting prairie 

snow pack that the positive fluxes of latent and sensible heat that occur at 

night actually counteract nighttime radiative loss and thus limit refreezing 

of the snow pack. Although there is some disagreement among investigators 

about the relative importance of the latent heat loss of a melting snow pack, 

they generally agree on the fact that it cannot be neglected. Preliminary 

results of Martinec [1989], who found that the values assessed for the 

restricted degree-day factor generally lie in the range from 2.0*10~3 to 

2.5*10'3 mK̂ d"1 and exhibit much less variability throughout the ablation 

period than the values for the original degree-day factor, suggest that (44) 

is a more physically based melt factor. Lower values were generally assessed 

on days with little wind (reducing the input of sensible heat) and a low air 

humidity (increasing the evaporation and the associated loss of latent heat). 

It follows from (44) that snowmelt might occur as a result of a positive 

radiation budget at the snow surface, while the degree day temperature still 

equals zero. In the beginning of the ablation period, this amount of melt 

water will generally not result in immediate runoff, but will rather be used 

to saturate the snow pack. Martinec [1989, personal communication] therefore 

proposed the application of a certain threshold temperature (taken slightly 

lower than 0°C), below which possible snowmelt resulting from net radiation 

is not taken into account. During most of the ablation period however, such 

a correction will not be necessary, since the snow pack is isothermal at 0°C, 

its liquid water content is nearly constant and the degree day temperature is 

no longer zero. 

Ambach [1988] took a slightly different approach than the parameterization 

described by equation (44), deriving an expression for a temperature index 

related to the sensible heat flux only. However, the application of this "heat 

transfer coefficient", which is a function of mean air pressure and wind 

speed, is basically equivalent with a bulk turbulent transfer approach for 

sensible heat, which will be discussed in section 4.3.3 (equation (47)). 

4.3.3. The Reduced Energy Budget 

The previously mentioned statistical analysis of Zuzel and Cox [1975], also 

indicated that daily snowmelt prediction could be significantly improved by 

using net radiation, vapor pressure and wind in predictive equations rather 

than just an air temperature variable alone. An even more physically based 

method for the prediction of point snowmelt than the combined temperature-net 
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radiation approach presented in the preceeding section would therefore consist 

of parameterizing all terms of the energy balance at the snow surface and 

consequently determining their respective melt water equivalents by means of 

(45). However, heat conduction to the soil beneath the snow pack and heat 

advection to the snow pack due to precipitation events are of little 

importance to the energy budget during the snowmelt season because the 

temperatures of soil, snow pack and rain tend to be close to 0°C. Hence, a 

melt factor was developed based on the reduced energy budget at the snow 

surface, consisting of the radiation budget and the turbulent exchange terms 

(sensible and latent heat flux): 

ûQ = R„ + Qh + Q,, 

= Rn + Q h - L e * E (46) 

if ûQ > 0 then M = ag * ûQ 

else M = 0 
where: 

ûQ= Energy available for snowmelt [Wm"2] 
R„ = Net Radiation [Wm"2] 
QJ, = Sensible heat flux [Wm"2] 
Qe = Latent heat flux [Wm"2] 
Le • Latent heat of vaporization [= 2.501*106 Jkg"1] 
E = Evaporation [kgrn̂ s"1] 
M = Snowmelt rate [md"1] 
SLQ = Conversion factor for energy flux density to 

snowmelt depth [md"1 (Wm"2) "' ] 

This equation holds for equilibrium conditions, when the snow pack is 

isothermal at 0°C and its liquid water content is constant. This is normally 

the case during almost the entire ablation period (section 4.3.4). 

The determination of the radiation budget at a point in snow covered 

mountainous terrain is discussed extensively in chapter 2. Hence, some 

attention will be paid here to the parameterization of the turbulent exchange 

at the interface between the surface of a melting snow pack and the 

atmospheric boundary layer. One of the main objectives of this research effort 

was to develop and test more physically based snowmelt prediction methods that 

require only a limited number of input data, both with respect to the number 

of parameters and to their temporal resolution. Hence, sophisticated methods 

for the closure of the vertical eddy transfer equations based on the Monin-

Obukhov similarity theory [Brutsaert, 1982] are avoided, although they have 

been shown to yield promising results in snow surface energy balance models 

[Marks, 1988]. Moreover, even more advanced methods are generally based on the 

assumption of horizontal uniformity, thus neglecting advection of sensible 

heat and local (katabatic) pressure gradients, although such phenomena may be 

important in mountainous terrain [Olyphant and Isard, 1988; Morris, 1989]. 

For the simulation of the turbulent exchange at the surface of a melting 

snow pack, the convenient energy budget method is generally not directly 
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applicable, because the energy flux density (R„-ûQ) available for turbulent 

exchange (Le*E-Qh) is not known a priori. Only if the mass budget of the 

melting snow pack is also taken into account (by means of measurements of 

lysimeter outflow and precipitation), ûQ can be estimated from the ratio of 

the net snowmelt rate (M) and ag. This allows expressing Qj, and E in terms of 

(R„-ûQ) and the Bowen ratio (0^/0^), which is a function of the mean vertical 

profiles of temperature and water vapor, as can be seen from equations (47) 

and (48). In this manner, the energy (plus mass) budget method can be used to 

verify estimates of the turbulent transfer terms directly obtained from the 

mean vertical scalar profiles. 

For the current research effort, the simplified Thornthwaite-Holzman bulk 

transfer approach towards parameterizing the turbulent transfer of momentum, 

sensible heat and water vapor was applied, in combination with an atmospheric 

stability criterion based on the bulk Richardson number [Brutsaert, 1982; 

Morris, 1989] (fluxes are defined as positive towards the surface): 

Qh = Fh * C„ * rhoa * cp * u * (9a - 9g) (47) 

Qe - Fe * Cn * r h o a * Le * u * (<3a " 1s> < 4 8 ) 

RiB = g * z * u"2 * ((9a - 6S) * T,"1 + 0.61 * (q. - q„) ) 

if RiB < 0 then Fh * (1 - 58 * R i B ) 0 2 5 

else Fh = (1 + 7 * Riß)"01 

Fe - 0.5 * Fh 

Cn = k2 * ln"2[z * z,,"1] 

rhoa = p * (R * T.)"1; R = Rd * (1 + 0.61 * q„) 

cp = Cpd * (1 + 0.84 * qj 

6 = T * (Po * p 1 ) * ; K = R * Cp'1 

q = 0.622 * ea * (p - 0.378 * e,)"1 

where1'2: 

Ql, = Sensible heat flux [Wm"2] 
Fh = Ratio of eddy diffusivities for sensible heat and momentum; 

Correction for departures from neutral stability [-] 
Cn = Bulk transfer coefficient for neutral stability [-] 
rhoa = Air density [kgnf3] 
Cp(cpd) • Specific heat of (dry) air [~ 1005 Jkg^K"1] 
u = Mean wind speed [ms'1] 
6 = Potential temperature [K] 
Qe = Latent heat flux [Wm"2] 
Fe = Ratio of eddy diffusivities for latent heat and momentum; 

Correction for departures from neutral stability [-] 
Le = Latent heat of vaporization [« 2.501*106 Jkg"1] 
q = Specific humidity [-] 
RiB = Bulk Richardson number [-] 
g = Gravitational acceleration [« 9.81 ms"2] 
z = Height of wind, temperature and humidity measurements [~ 2 m] 
T = Absolute temperature [K] 
k = von Kârmân's constant [~ 0.4] 
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z0 = roughness lengths for momentum and for the scalars (sensible 
heat and water vapor) [~ 5*10"4 m] 

p = Air pressure [Pa] 
R(Rd) = Gas constant of (dry) air [» 287.04 Jkg^K"1] 
p0 = Standard pressure [10s Pa] 
K = Ratio of gas constant and specific heat of air [~ 0.286] 
e = Vapor pressure [Pa] 

1 The indices a and s refer to air and surface, respectively. 
2 The effect of water vapor in the expressions for Rig, rhoa, 9 and q can 

be neglected for practical purposes, thus R=R(i and c_=cpd. 

Although the formulation of the stability parameters (Fh, Fe) in terms of 

the bulk Richardson number and the formulation of the bulk transfer 

coefficient according to Thornthwaite and Holzman are based on some 

simplifying assumptions (e.g. one measurement height (z) for wind, temperature 

and humidity, and one roughness length (z0) for momentum, sensible heat and 

water vapor), similar schemes have been used with success in energy budget 

models for the prediction of snowmelt in different environments [Granger and 

Male, 1978; Dozier and Outcalt, 1979; Williams, 1988]. 

Since RiB will generally be positive during the snowmelt season, which is 

associated with stable atmospheric conditions, Fh will not show much departure 

from unity most of the time as a result of its functional form. Although 

taking Fe as half of Fh is significantly different from the generally accepted 

equality or near equality [Brutsaert, 1982], Granger and Male [1978] showed 

that this value represents both unstable and stable (nearly neutral) 

conditions over a melting snow pack adequately. 

During the snowmelt season, the air temperature at the snow surface will 

always be close to the temperature of the melting snow pack, i.e. 

approximately the freezing temperature of water (Ts « 273.15 K), and the air 

layer just above the snow surface will generally be saturated. Hence, the 

vapor pressure at the snow surface is assumed to be the saturated value that 

corresponds to the snow surface temperature (ea » 610.78 Pa) [Charbonneau et 

al., 1981; Olyphant and Isard, 1988]. Parameterizations for the saturated 

vapor pressure over water and ice as functions of the ambient temperature have 

been presented by various authors [Idso and Jackson, 1969; Aase and Idso, 

1978; Brutsaert, 1982; Kimball and Idso, 1982; Williams, 1988]. 

4.3.4. Comparison of Snowmelt Prediction Methods: 
Verification of the Energy Budget Model - EBM 

For the purpose of comparing the capabilities of the three above presented 

methods in simulating daily snowmelt at a point in alpine terrain, a 

(Microsoft Quick)BASIC computer simulation program EBM (Energy Budget Model) 

was developed based on the radiation budget simulation algorithm of RBM and 

additional subroutines based on the parameterizations presented in the 
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preceeding sections [Feldman and Rugg, 1988]. 

In a verification procedure, the performance of EBM was assessed using 

outflow measurents from a snow lysimeter at the test site of the Swiss Federal 

Institute for Snow and Avalanche Research at Weissfluhjoch/Davos, Switzerland 

(46.8°N, 9.8°E). The applied lysimeter, which has a surface area of 5m2, is 

situated in a horizontal snow field at an altitude of 2540m above mean sea 

level. Its outflow is intercepted by a steel vessel and recorded continuously 

using a tipping bucket gauge. Due to resistances in the unsaturated and 

saturated snow layers and in the pipe leading from the vessel to the gauge, 

the transformation of a snowmelt depth resulting from a positive energy budget 

at the snow surface into a outflow hydrograph from the entire snowpack in the 

lysimeter exhibits a certain time lag and attenuation. However, it was found 

that, apart from daily fluctuations associated with day time variations in 

snowmelt and nightly refreezing, the liquid water content of the snow pack did 

not increase any more after the day on which the lysimeter outflow started. 

Consequently, on a daily basis snowmelt depth (water equivalent) approximately 

equals lysimeter outflow [Martinec, 1989]. 

The data set that was used for the verification of the Energy Budget Model 

(EBM) was collected during the 1985 ablation season and consists of daily 

averages of air pressure (p), air temperature (Ta), relative humidity (RH), 

wind speed (u), fractional cloudcover (mc), sunshine duration (n), global 

radiation (K4-), precipitation occuring as rain (Pr), precipitation occuring 

as snow (Ps) and lysimeter outflow (Q|) [Federal Institute for Snow and 

Avalanche Research, 1989]. The entire 1985 snowmelt season lasted from May 9 

(start of the decrease in snowpack level) to July 15 (last day with lysimeter 

outflow). During the first week however, no lysimeter outflow occured because 

the entire snowmelt depth was used to increase the liquid water content of the 

snow pack gradually. Hence, equilibrium conditions only occured on the 58 days 

between May 16 (start of lysimeter outflow) and July 12, which therefore were 

taken into consideration for verification purposes. 

Unfortunately, only the data pertaining to the mass (i.e. water) balance 

of the snow lysimeter (which was used for the verification of EBM) were 

collected on the spot: Qt was measured with the described gauge and lysimeter 

and Pr was measured by a heated pluviograph. The data pertaining to the energy 

balance (which is the theoretical framework of EBM) were collected elsewhere: 

p was measured at an altitude of 2667m and Ta, RH, u, mc and K<1 at 2693m above 

mean sea level (at the automatic meteorological station of the Swiss 

Meteorological Office), i.e. 127m and 153m above the snow field which contains 

the lysimeter, respectively. Although p and Ta could have been estimated from 

their respective measurement altitudes and their mean values at sea level 

using standard vertical profiles (e.g., equations (B4) and (B5)), use was made 

of their measurements, which were extrapolated downward to the snow field 

using the same profiles. RH was assumed to be constant over this altitude 

difference [Marks and Dozier, 1979], which allowed easy computation of the 
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vapor pressure at the lysimeter and is basically the same as assuming an 

exponential vertical vapor pressure profile [Brutsaert, 1975]. Although u will 

most likely be overestimated when applied directly to the lysimeter because 

it was measured at a mountain summit, there seems no alternative due to a lack 

of more appropriate data. No correction was made to mc either, which is 

supported by the findings of Olyphant [1984], who stated that "the effects of 

increasing cloud cover (to global insolation, R.U.) are independent of 

elevation". Finally, Ki will also be overestimated when applied directly to 

the lysimeter, because (1) it was measured at a higher elevation at which a 

lower amount of solar radiation has been absorbed, and (2) it was measured at 

a ridge top where the effects of obstruction by surrounding terrain are 

negligible. However, no correction was made to Ki, because it is only needed 

for verification purposes and moreover, the effects of obstruction by 

neighboring surfaces to the amount of solar radiation received by the snow 

lysimeter were neglected in EBM due to a lack of appropriate topographic data. 

Apart from a direct comparison between the simulated snowmelt depths and 

the measured lysimeter outflows during the 1985 snowmelt season at the 

Weissfluhjoch test site, a brief sensitivity analysis was carried out through 

the intercomparison of generated artificial hydrographe for a complete 

watershed. The point snowmelt depths simulated according to the three methods 

discussed previously and the outflows measured at the snow lysimeter were 

transformed into their respective runoffs that would occur from the nearby 

Dischma basin provided that the inputs were representative for the whole 

basin. Although this extension of point inputs to area inputs obviously has 

little physical meaning, it will provide some insight into the sensitivity of 

the applied snowmelt-runoff transformation model to its input data. The 

simplest form of the Snowmelt Runoff Model (SRM), in case the basin is not 

subdivided into different elevation zones, was used for this purpose [Martinec 

et al., 1983]: 

Qn+1 = Cn * (M„ * Sn + P„) * A * (1 - k„+1) + Qn * k„+1 (49) 

*n+l = * * Qn"y (50) 

where1'2: 

Q = Daily discharge [m3d_1] 
c = Runoff coefficient [= 0.9] 
M = Snowmelt rate [md"1] 
S = Ratio of snow covered area to basin area [-] 
P = Precipitation contributing to runoff [md"1] 
A = Basin area [= 4.33 * 107 m2] 
k = Recession coefficient [-] 
x = Recession factor [~ 0.85] 
y = Recession exponent [~ 0.086] 

1 The subscript n denotes the sequence of days during the discharge 
computation period. 

2 The parameter values given above are typical values for the alpine 
Dischma basin in Switzerland, which are not applicable to other 
basins. 
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A detailed description of the determination of the parameter values in the 

above expression exceeds the scope of this document, but the reader is 

referred to a paper on this subject by Martinec and Rango [1986]. Although 

their publication shows that runoff coefficients for snowmelt and 

precipitation can differ markedly from each other, one value is applied for 

the current purpose because the contribution of rainfall will be small as 

compared to that of snowmelt and moreover, the contribution of snowfall to the 

water balance of the basin is ignored completely. The relative snow covered 

area of the basin is assumed to decrease linearly from 1 to 0 during the 

snowmelt season, although analyses of data obtained from aircraft photography 

and satellite imagery show that areal snow cover depletion generally follows 

an S-curve [Rango and van Katwijk, 1990]. It can easily be seen from (49) that 

during periods of true recession kn+isQn+i/Qn* I n SRM, this recession 

coefficient is not assumed to be a constant as usual (leading to an 

exponential recession), but rather to be a function of the discharge on the 

day before according to (50). 

p Ta ea u mc 1U Pr Q, 
[102Pa] [K] [Pa] [ms_1] [-] [Wnf2] [10_3md-1] 

min. 

max. 

739 

757 

749 

4 

270 

285 

276 

3 

326 

818 

605 

104 

0.5 

6.9 

3.0 

1.5 

0.13 

1.00 

0.76 

0.29 

57 

458 

270 

87 

0 

38.9 

2.4 

6.6 

0.5 

59.8 

17.0 

14.9 

avg. 

dev. 

Table 4.3.4.1. Minima, maxima, averages and standard deviations of some of 
the daily average input variables for EBM collected at the Weissfluhjoch 
test site during the 1985 ablation period (see text for notation). 

The minima, maxima, averages, standard deviations and coefficients of 

variation (i.e. the ratios of the standard deviations and the averages) of 

some of the corrected input variables are listed in table 4.3.4.1. Some 

interesting facts that can be gathered from these statistics are: (1) The 

average vapor pressure of the air (ea-605 Pa) is only slightly lower than the 

saturated vapor pressure over melting snow (es=611 Pa), indicating that the 

latent heat loss of the snow pack resulting from evaporation is probably 

small; (2) The large variability in the magnitude of the mean fractional 

cloudcover (mc) as compared to the ideal atmospheric conditions at the MAC 

test site will provide a thorough test for the radiation budget algorithm; (3) 

The range in the values of the daily average global radiation (K4) is of the 

same order of magnitude, with extremes of 57 and 458 Wm~2 that correspond with 

atmospheric global transmission (K4/K0) values of less than 12 and more than 

95 percent, respectively; (4) The total lysimeter outflow (EQj) during the 58 

equilibrium days of the 1985 snowmelt season at the test site at Weissf luhjoch 

amounted 0.986m, of which 0.136m can be contributed to discharge resulting 
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from rainfall (SPr) and the remaining 0.850m consequently to actual snowmelt 

(SM), when evaporation losses are neglected. 

To assess the simulation performance of the three previously described 

point snowmelt prediction methods, EBM computes three additional statistics 

apart from the mean bias error and the root mean square error that were 

discussed in section 4.2., namely the coefficient of determination (CD) or 

Nash-Sutcliffe parameter and the slope and the intercept (and the associated 

residual standard deviation) resulting from a linear regression analysis 

between the simulated and measured values. The former is a direct measure of 

the proportion of the variance of the measured values explained by the model 

[Nash and Sutcliffe, 1970], whereas the latter provide a measure for the 

model's average overestimation or underestimation as a function of the 

magnitude of the measured values. The Nash-Sutcliffe parameter is defined as 

one minus the ratio of (1) the sum of the squared differences between the 

measured and the simulated values and (2) the sum of the squared differences 

between the measured values and their average. 

For the simulation of global and net radiation, EBM makes use of the 

radiation algorithm implemented in RBM. Instantaneous values of global 

radiation were generated on the basis of a clear sky zenith path atmospheric 

transmissivity of 0.75, clear and overcast sky albedo's of 0.1 and 0.5, 

respectively, and surface reflectivities for direct and diffuse radiation 

according to the parameterization presented in section 2.2.3. The obtained 

values were integrated numerically from sunrise to sunset using Simpson's 1/3 

rule with a temporal increment of one hour. Although the resulting daily 

averages of global radiation represented the measured values rather well on 

a seasonal average basis, as is indicated by a MBE of -1.2 percent, they could 

not explain the large variability of the measured values, as is indicated by 

a RMSE of 23 percent and a CO of 47 percent. Moreover, a linear regression 

analysis of the simulated versus the measured values yielded the poor 

statistics of 0.46 for the slope, 143 Wm"2 for the intercept and 42 Wrrf2 for 

the residual standard deviation. As can be seen from figure 4.3.4.1., the 

simulated values seem to follow the general trends in the measured values, but 

underpredict high values and overpredict low values. This observation is 

confirmed by the fact that the standard deviation of the simulated values is 

58 Wm"2, which is almost 30 Wm'2 less than the standard deviation of the 

measured values (table 4.3.4.1.). The measured global radiation on days when 

the mean fractional cloudcover equaled unity range from 57 to 365 Wm'2, i.e. 

more than a factor 6. These figures illustrate the problems associated with 

modeling the variability of global radiation due to cloudcover effects on a 

daily average basis without taking into account the diurnal variations or the 

cloud type. 

The simulated daily average surface albedo decreases from about 0.85 for 

each new accumulation of fresh dry snow with a mean grain size of 2*10"4m to 

0.59 for saturated and contaminated snow at the end of the ablation period 
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fig. 4.3.4.1. Time series and scatter plot of simulated and measured daily 
average global radiation throughout the 1985 snowmelt season at the 
Weissfluhjoch test site (MBE = -1.2%; RMSE = 23%; CD = 47%). 
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fig. 4.3.4.2. Simulated daily average broadband snow surface albedo 
throughout the 1985 snowmelt season at the Weissfluhjoch test site. 
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(figure 4.3.4.2.)* Because the shortwave radiation budget is proportional to 

the complement of the surface albedo, it is quite sensitive to variations in 

the albedo decay during the snowmelt season. For the same reason however, net 

solar radiation does not play the same dominant role in the broadband 

radiation budget at snow covered surfaces as it does with respect to surfaces 

with lower albedo's. This increases the sensitivity of the surface radiation 

budget to net longwave radiation, whose variability is mainly associated with 

the applied formula type for the determination of the effective atmospheric 

emissivity. When the emissivity of the snow surface was assumed to be 0.98 and 

the clear sky atmospheric emissivity was computed according to Brutsaert 

[1975; 1982] then a seasonal average net radiation of +26 Wm"2 was obtained, 

composed of +74 Wm"2 for the shortwave radiative input and -48 Wirf2 for the 

longwave radiative loss. The minimum and maximum daily average net radiation 

were found to be -32 and +95 Wm'2, respectively. The sum of the total measured 

precipitation and the total simulated snowmelt occuring as a result of a 

positive radiation budget at the snow surface accounts for 67 percent of the 

lysimeter outflow during the entire ablation period, i.e. the MBE equals -33 

percent. Since the average energy flux density that is associated with cooling 

of precipitation received by the snow pack is less than 0.5 Wm"2 (with a total 

melt water equivalent of only 7*10"3m), it is reasonable to conclude that the 

remaining 33 percent of the cumulative lysimeter outflow are the result of net 

turbulent heat input at the interface between the snow surface and the 

atmospheric boundary layer. The proportion of the variance of the measured 

lysimeter outflows explained by the sum of the measured precipitation and the 

simulated radiative melt (CD) amounts 69 percent. The RMSE was found to be 48 

percent and the slope, intercept and residual standard deviation of the 

performed linear regression analysis amount 

md'1, respectively. These statistics confirm 

who argue that although net radiation explains most of the variation in 

snowmelt, there is no simple proportionality between the two [Zuzel and Cox, 

1975; Olyphant, 1984]. 

The seasonal averages of the simulated flux densities associated with the 

input of sensible heat and the loss of latent heat amount 13 and -0.8 Wm'2, 

respectively. The latter is the result of a net loss of 13*10"3m of water 

equivalent from the lysimeter due to evaporation of melt water, which is 

negligible in the mass balance of the snow lysimeter in this particular case. 

According to the atmospheric stability criterion presented in section 4.3.3., 

stable (near neutral) conditions prevailed throughout the snowmelt season (43 

of the total of 58 days taken into account). The correction factor to account 

for departures from neutral conditions never departed much from unity. The 

average restricted degree-day factor assessed to fit the simulated daily 

average turbulent transfer throughout the snowmelt season amounts 1.8*10"3 m* 

K-'d"1, which is close to the value of 2.0*10'3 mic'd"1 that Martinec [1989] 

assessed for the same ablation period using Measurements of global radiation 
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instead of simulations. Figure 4.3.4.3. shows the seasonal variation of the 

three terms of the reduced energy budget. 

Finally, the simulation capabilities of the three presented methods for the 

prediction of point snowmelt were compared in a statistical analysis of the 

melt and flow rates they generated during the 1985 ablation period. Measured 

precipitation was added to the simulated snowmelt depths. A constant snow 

restricted degree-day factor of 2.0*10"3 mK̂ d"1 was used throughout the 

snowmelt season, whereas the original degree-day factor was gradually 

increased from 0.48 mic'd"1 in May to 0.50 mK'M"1 in June and 0.52 mic'd"1 in July 

[Martinec, 1989]. The resulting statistics are summarized in table 4.3.4.2. 

and the generated cumulative snowmelt depths for the lysimeter and the 

artificial discharges for the Dischma basin are visualized in figures 4.3.4.4. 

and 4.3.4.5. 

Water Equivalent MBE RMSE CD Slope Intercept Res.St.Dev. 
[%] [%] [%] [-] [lO-W1] 

Melt-a 

Melt-aT 

Melt-ûQ 

Flow-a 

Flow-aT 

Flow-ûQ 

-2.2 

1.6 

-0.35 

-1.6 

4.0 

-3.8 

55 

42 

45 

35 

25 

25 

59 

77 

73 

82 

91 

91 

0.88 

1.01 

1.12 

0.72 

0.97 

0.94 

1.7 

0.1 

-2.1 

1.9 

0.5 

0.2 

9.4 

7.2 

7.7 

1.9 

1.8 

1.7 

Table 4.3.4.2. Summary statistics for the simulation of the daily lysimeter 
outflow (Melt) and the artificial daily discharge for the Dischma basin (Flow) 
according to the original degree-day method (-a), the restricted degree-day 
method (-aT) and the reduced energy budget method (-ûQ) from input variables 
collected at the test site at Weissfluhjoch during the 1985 ablation period. 

The discharges that result from (49) are converted to equivalent water 

depths for convenience. It can be seen from table 4.3.4.2. that the snowmelt-

runoff transformation of equation (49) decreases the RMSE for all three 

methods by almost 20 percent, that it increases the proportion of the variance 

of the measured water equivalents that is explained by the simulated values 

by more than 15 percent and that it decreases the standard deviation of the 

residues of the performed linear regressions by more than a factor 4. Although 

all three methods perform equally well on a seasonal average basis as is 

indicated by their similar MBE's, the original degree-day method cannot 

account for the variability associated with snowmelt and runoff to the same 

extent as the two other methods. This is probably due to the fact that the 

former requires only air temperature as an input variable, whereas the latter 

require both air temperature and net radiation as input variables. In this 

particular case, the restricted degree-day method performs even slightly 

better than the reduced energy budget method, although the latter requires two 

additional input variables, namely mean wind speed and vapor pressure. This 
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indicates that when daily averages are used as input variables, net radiation 

and air temperature account for a larger part of the variability associated 

with snowmelt than any other input variable. 
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fig. 4.3.4.4. Cumulative measured lysimeter outflows and simulated snowmelt 
depths according to the original degree-day method (MBE = -2.2%; 
RMSE = 55%; CD = 59%), the restricted deejree-day method (MBE » 1.6%; 
RMSE = 42%; CD = 77%) and the reduced energy budget method (MBE = -0.35%; 
RMSE - 45%; CD = 73%) throughout the 1985 snowmelt season at the 
Weissfluhjoch test site. 
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fig. 4.3.4.5. Artificial hydrographs for the Dischma basin from equations 
(49) and (50) with discharges converted to equivalent water depths; Inputs 
are measured lysimeter outflows and simulated snowmelt depths according to 
the original degree-day method (MBE = -1, 
restricted degree-day method (MBE = 4.0%} RMSE = 25%; CD - 91%) and the 
reduced energy budget method (MBE = -3.8%,^ RMSE = 25%; CD = 91%) throughout 
the 1985 snowmelt season at the Weissfluhjoch test site. 
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CHAPTER 5. 

SUMMARY AND CONCLUSIONS 

This investigation dealt with the development and operation of a simple 

radiation budget model at a point on a surface in snow covered mountainous 

terrain. Net radiation is usually the most important component of the surface 

energy balance in alpine environments, both with respect to its magnitude and 

with respect to its temporal and spatial variability. A positive energy 

balance at the snow surface will cause snowmelt once the snow pack is in 

thermal equilibrium. A radiation budget model can therefore provide an 

estimate of the snow surface energy balance and the associated snowmelt. 

To allow easy incorporation into operational snowmelt runoff models like 

the Rango-Martinec Snowmelt Runoff Model (SRM), snowmelt factors should be 

simple with respect to the amount of required input parameters and their 

temporal resolution. Most currently available deterministic snowmelt runoff 

models employ a degree-day factor for computing the amount of snowmelt from 

a watershed. It is postulated that the incorporation of a radiation balance 

algorithm will provide a more physically based snowmelt factor than the 

presently applied temperature index methods, which may reduce the parameter 

variability associated with local calibrations and adjustments based on 

observations of snow properties or hydrological judgments of the model 

operator. 

To maintain a high operational capability under a variety of atmospheric 

conditions and terrain configurations without the need for extensive 

measurements, a Radiation Budget Module (RBM) was developed based on broadband 

radiative transfer parameterizations instead of on more sophisticated spectral 

schemes. Topographic complexity associated with the effects of obstruction, 

reflection and emission by surfaces surrounding the model point is accounted 

for by means of conversion factors. The snow pack itself is treated as a black 

box, i.e. the complex melt associated processes underneath the snow surface 

are not modeled explicitly. It was found that isotropic or uniform radiance 

distributions provide reasonable approximations for the incident radiation 

components in a hypothetical terrain configuration. 

The independent input variables required to drive RBM may be classified 

into three groups: (1) Fixed geographical parameters which need to be 

determined only once from topographic maps and/or digital elevation data: 

Latitude, longitude, altitude, slope, aspect and local horizon of the surface 

in question; (2) Temporal variables: Day of the year, time of the day and 

amount of days since the last snow accumulation event occured; (3) 

Atmospheric/ meteorological variables which need to be determined at least on 

a daily basis from ground truth or remote sensing measurements: Optical depth 

of the atmosphere, air pressure, surface temperature, air temperature, vapor 

pressure and mean fractional cloudcover (and/or duration of sunshine). RBM 
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provides means of estimating the first three atmospheric variables on a daily 

basis. 

As a first step towards the verification of RBM, computed twenty minute 

values of incoming shortwave and net radiation for a whole day were compared 

with observations taken over a uniform wheat field under clear skies. RBM 

performed satisfactorily under these ideal topographic and atmospheric 

conditions. As a second step, computed daily averages of incoming shortwave 

radiation for a complete ablation period were compared with observations taken 

over an unobstructed horizontal snow covered surface in a Swiss alpine 

watershed under highly variable atmospheric conditions. Although RBM performed 

rather accurate on a seasonally averaged basis, the model could not explain 

the large variability of the measured values: It generally underpredicted high 

values and overpredicted low values. This can probably be associated with the 

rather unsophisticated manner in which radiation models based on daily average 

input variables are bound to account for the complicated radiative effects of 

cloudcover. A more realistic cloud treatment procedure will undoubtedly 

improve the simulation capacities of such models. As a final verification step 

within the scope of this investigation, computed daily averages of point 

snowmelt depth for a complete ablation period were compared with observed 

lysimeter outflows. Three different snowmelt prediction methods were compared: 

(1) The original degree-day method; (2) A combined approach which contains 

both a temperature index and the simulated radiation budget, referred to as 

the restricted degree-day method; (3) The reduced energy budget method which 

contains the radiation balance and bulk turbulent transfer parameterizations. 

In addition to a direct comparison, the simulated snowmelt depths and measured 

lysimeter outflows were used to generate artificial hydrographs for a complete 

watershed by means of the Snowmelt Runoff Model (SRM). Although all three 

methods performed equally well on a seasonally averaged basis, the original 

degree-day method could not explain the variability associated with snowmelt 

and the consequent runoff to the same extent as the other two methods. The 

restricted degree-day method performed even slightly better than the reduced 

energy budget method. These preliminary results indicate that the computed net 

radiation accounts for most of the observed temporal variability and that a 

combined temperature index - simulated radiation budget approach will provide 

a simple yet physically based snowmelt factor for operational snowmelt runoff 

modeling. However, additional development and testing of RBM both with respect 

to its radiative transfer algorithms and with respect to its snowmelt and 

runoff generating procedures remains necessary to further improve the model's 

operational accuracy. 

Although this investigation deals with the development of a point radiation 

budget model, it is envisioned that distributed models using digital elevation 

data should become operational in the near future. This should provide more 

reliable estimates of snowmelt on a catchment scale, since net radiation 

accounts for most of the observed spatial and temporal variability. Until more 

accurate methods become available for the extrapolation of point measurements 
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over the whole of a catchment, turbulent transfer on this scale has to be 

accounted for by means of a temperature index. The hydrological character of 

the currently available operational snowmelt runoff models however, should 

become more distributed in order to take full advantage of the benefits of a 

snowmelt factor based on the radiation budget. 
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APPENDIX A. 

DETERMINING RADIUS VECTOR. DECLINATION AND EQUATION OF TIME 

The most common formula type for the parameterization of the ephemeris of 

the sun is the Fourier series representation, which considers the earth's 

radius vector, the sun's declination and the equation of time to be cyclic 

with a period of one year. Although it neglects the effects of the four year 

leap year cycle and other longer period variations, it provides approximations 

that comply with the accuracy required for purposes of modeling radiation 

[e.g., Spencer, 1971; Dozier, 1980; Bird and Riordan, 1986]. Such a Fourier 

series takes the form of a sum of sines and cosines of the day angle, which 

can generally be specified as follows (see end of each appendix for notation 

of symbols): 

a = 2 * K * (D - cd) * (365 + c,)'1 (Al) 

In this formula, cd is a small corection to the day number of the year (D 

on January 1 equals 1 and D on December 31 equals 365 or 366 for leap years), 

which takes different values from author to author but is always between zero 

and one; Cj may be set equal to 0.25 to account for the fact that one of every 

four years is a leap year. The factor 2*w*(365+Ci)~1 should be interpreted as 

the mean angular velocity of the earth in its orbit about the sun in units of 

radians per day. 

The general functional form of a n-term Fourier series, either for the 

reciprocal of the square of the earth's radius vector, for the sun's 

declination (radians) or for the equation of time (radians) is the following 

[Dozier and Outcalt, 1979]: 

n-1 
r"2, 5, E = S (a; * cos[i * a] + bj * sin[i * a]) (A2) 

i=0 

Spencer [1971] carried out Fourier analyses for all three of those 

astronomical variables, with cd equal to one and c( equal to zero, and yielded 

the cosine (a.,) and sine (bj) coefficients presented in the second and third 

column of table Al. He evaluted the maximum errors of the obtained Fourier 

series to be 0.0001, 0.0006 radians and 0.0025 radians (about 34 seconds of 

time), respectively. Dozier and Outcalt [1979] on the other hand carried out 

Fourier analyses with both cd and c{ equal to unity and obtained the 

coefficients for r and S presented in the fourth and fifth column of table Al. 

They state that their series have accuracies of about four significant 

figures. 
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Blackadar [1989] proposed the application of a slightly adjusted day angle 

(cd equal to 0.3 and c, equal to 0.25) in combination with Spencer's Fourier 

coefficients for the solar declination. Although the variation of S over the 

year is an order of magnitude larger than that of r or r"2, a single value can 

be used for each day if an accuracy to the nearest degree in calculated solar 

zenith and azimuth angles is sufficient [Spencer, 1971]. 

*i(S) bj(S) a; (DO) bi (DO) 

r"2/r 

S 

E 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 

1.000110 
0.034221 
0.000719 
0 . 0 

0.006918 
-0.399912 
-0.006758 
-0.002697 

0.000075 
0.001868 

-0.014615 

0 . 0 
0.001280 
0.000077 
0 . 0 

0 . 0 
0.070257 
0.000907 
0.001480 

0 . 0 
-0.032077 
-0.040849 

0.1000108431*101 

-0.1673661579*10"1 

-0.1203091198*10-3 

0.3517325527*10-5 

0.5796702596*10"2 

-0.3999070840*10° 
-0.6068166326*10"2 

-0.2363085071*10 -2 

— 
-
— 

0 . 0 
-0.4951856474*10'3 

-0.1790695747*10"4 

-0.1608389648*10"5 

0 . 0 
0.7359755022*10"1 

0.7560534210*10-3 

0.1389717739*10"2 

— 
-
— 

Table Al. Fourier cosine (a;) and sine (bj) coefficients for the 
(reciprocal of the square of the) earth's radius vector (r"2/r, [-]), 
for the sun's declination (6, [radians]) and for the equation of 
time (E, [radians]) according to Spencer [1971] (S) and Dozier and 
Outcalt [1979] (DO), to be substituted in equation A2. 

Whiteman and All wine [1986] took a different approach for the determination 

of the radius vector of the earth and the declination of the sun and used the 

following convenient formulae, which were originally presented by McCullough 

[1968], in combination with a day angle based on values for cd and c{ both 

equal to zero: 

r = 1 - e * cos[a] 

5 = arcsin[sin[5m] * sin[lc]] 

lc = a - a 0 + 2 * e * (sin[a] - sin[o0] ) 

(A3) 

(A4) 

a0 = 2 * w * D0 * 365 -1 

In these expressions, e is the eccentricity of the earth's orbit, Sm is the 

maximum solar declination (about 23.44°) and lc is the true celestial 

longitude of the earth in its orbit about the sun as measured from the day 

number of the vernal equinox (D0). It can be seen from the functional form of 

(A3) that a is in fact an approximation for the so-called true anomaly of the 

earth's orbit. Since the equation of time is the difference between the mean 

celestial longitude of the earth and the right ascension of the sun 

[Blackadar, 1984], which can both be defined in terms of the parameters used 
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in the above expressions, E can be expressed in the same manner as r and St 

E = (lc - dlc) - arctan[cos[dm) * tan[lc]] 

dlc = 2 * e * sin[a - dlc] + 1.25 * e2 * sin[2 * (a - dlc) ] 

« 2 * e * sin[a - dlc] * (1 + 1.25 * e * cos[a - dlcJ) 

= 2 * e * sin[a] * (1 + 1.25 * e * cos[a]) 

~ 2 * e * sin[a] 

(A5) 

(A6) 

Here (lc-dlc) and (a-dlc) stand for the mean celestial longitude and the 

mean anomaly, respectively. The maximum error in E obtained from (A5) and (A6) 

amounts about half a minute. 

0 
1 
2 
3 
4 

0.0 
0.00839 

-0.05391 
-0.00154 
-0.00222 

0.0 
-0.12193 
-0.15699 
-0.00657 
-0.00370 

Table A2. Fourier cosine (a;) and sine (bj) 
coefficients for the equation of time (E, [hr]) 
according to Whiteman and Allwine [1986], to be 
substituted in equation A2. 

However, Whiteman and Allwine [1986] did not take this convenient approach 

for the determination of the equation of time, but rather carried out a 

Fourier analysis and obtained the cosine and sine coefficients for E expressed 

in hours presented in table A2. (based on cd equal to 0.4 and c( equal to 

zero). The maximum error in E evaluated by these Fourier coefficients is 

reported to amount about 25 seconds of time (i.e. about 0.0018 radians). 

The third and most accurate approach for the parameterization of the 

ephemeris of the sun discussed here was implemented originally by Blackadar 

[1984; 1985b]. Taking the small year to year variations of the radius vector, 

the declination and the equation of time into account, he related the mean 

anomaly of the earth's orbit about the sun and the mean celestial longitude 

of the earth in (A3)-(A6) to the so-called Julian day number. This is the 

number of days (including fractions) since noon, Greenwich Mean Time, on 

November 24, 4714 B.C. (on our modern, Gregorian calendar). Sinott [1984] 

published a simple algorithm that converts a Gregorian calendar date into a 

Julian day number, which is not only required in order to be able to compute 

Blackadar's ephemeris formulae but provides also a convenient method to 

determine the number of any day of any year required for Spencer ' s and 

Whiteman and Allwine's formulae. Blackadar's ephemeris formulae together with 

Sinott's Julian date algorithm are implemented in the Radiation Budget Module, 

of which a code listing is presented in appendix E (see the appropriate 

subroutines). 
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Notation 
a = Day angle [rad] 
D - Day number of year [-] 
cd,Ci • Correction terms [-] 
r = Radius vector of earth [-] 
S « Declination of sun [rad] 
E - Equation of time [rad, hr] 
i - Term counter in Fourier series [-] 
a; = Fourier cosine coefficient [-] 
bt = Fourier sine coefficient [-] 
e = Eccentricity of earth's orbit about sun [= 0.016728] 
5 m = Maximum declination of sun [~ 0.409095 rad] 
lc = True celestial longitude of earth in orbit about sun as measured from 

vernal equinox [rad] 
a0 = Day angle of vernal equinox [rad] 
D0 = Day number of vernal equinox [~ 80] 
dlc = Difference between true and mean celestial longitude [rad] 
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APPENDIX B. 

DETERMINING THE WATER VAPOR AMOUNT AND THE EMISSIVITY 
OF THE ATMOSPHERE USING EXPONENTIAL DECAY FUNCTIONS 

B.l. The Water Vapor Amount in the Atmosphere 
in a Vertical Path above a Surface 

The actual (precipitable) water vapor amount in the atmosphere in a 

vertical path above an arbitrary surface can be approximated by the integral 

of the water vapor density between the surface altitude (h) and infinity, 

which can be seen as follows: 

Ph 
r 

Ph 

Wfc = q * g"1 * dp = rhov * (rhoa * g)"1 * dp rhov * dz (Bl) 

To simplify the determination of the integral at the upper limit, the water 

vapor density profile may be assumed to be given by an exponential decay with 

altitude (z), based on exponential decay functions for air temperature and 

vapor pressure [Brutsaert, 1975; 1982]: 

rhov = 0.622 * eh * (Rd * Th)-' * expt-k,, * (z - h) ] == (B2) 

wh = 0.622 * eh * (Rd * T h ) J expt-k^ * (z - h)] * dz 

= 0.622 * eh * (Rd * T h p 

= 0.622 * eh * (k,, * Rd * T,,)"1 

- V 1 * expt-k^ * (z - h)] 

(B3) 

The effective amount of water vapor scaled for the pressure and temperature 

effects can be determined in an analogous manner when the vertical pressure 

and temperature profiles are assumed to be given by exponential decay 

functions, which should be adequate in the lowest 10 km of the atmosphere 

[Brutsaert, 1975; 1982]: 

pz = Ph * exp[-g * (Rd * 1oy
l * (z - h) ] 

Tz = Th * exp[-r * V 1 * (z - h)] =»=> 

(B4) 

(B5) 
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weh - (Pz * Ph~1)Np * (Th * T / 1 ) 1* * rho v * dz 

= 0.622 * eh * (Rd * Th)_1 * expf-k^ * (z - h)] * dz 

h 
k - 1 = 0.622 * eh * (k̂ , * Rd * Th)-' (B6) 

kwe = K + (Np * g * Rd"1 - M, * T) * V 1 (B7) 

(0.5 < Np < 1.0; 0 < Nt < 0.5) 

As denoted above, the usual practice is to take Np between 0.5 and 1.0 

(i.e. a pressure scaling ranging between square root and linear) and Nt 

between 0 and 0.5 (i.e. a temperature scaling ranging between zero and square 

root). For the purpose of computing water vapor absorption in the earth's 

atmosphere Lacis and Hansen [1974], Wang [1976] and Leckner [1978] included 

a (near) square root temperature scaling, but Wang noted that the effect is 

small. Brutsaert [1975, 1982] and Unsworth and Monteith [1975] therefore 

probably ignored the temperature effect completely for the purpose of 

computing the emission of the atmosphere due to water vapor. On the other 

hand, they took scaling for the pressure effect as a square root, whereas 

Leckner [1978] applied Np equal to 0.9. 

Since both (B3) and (B6) are based on average vertical profiles, they 

account for the decrease of the amount of water vapor above a surface with 

increasing altitude. As can be seen from equation (B2), the ratio of vapor 

pressure and air temperature decreases with increasing altitude, because vapor 

pressure, due to its strong temperature dependence, decreases much faster than 

air temperature. 

B.2. Altitude Dependency of the 
Clear Sky Effective Atmospheric Emissivitv 

The following is a generalization of Brutsaert's [1975; 1982] derivation 

of the clear sky effective atmospheric emissivity as a function of screen 

level vapor pressure and air temperature from the integration of the equation 

for infrared radiative transfer in a plane stratified atmosphere by 

substituting exponential decay functions to approximate the vertical water 

vapor density (B2), air pressure (B4) and temperature (B5) profiles. It is 

shown that the functional form of Brutsaert's equation remains exactly the 

same at any altitude (h) in the atmosphere and that it therefore implicitly 

contains an altitude adjustment accounting for the fact that the water vapor 

amount above a certain level in the atmosphere decreases with increasing 

86 



altitude. His equation therefore makes any explicit altitude correction (as 

proposed by Marks and Dozier [1979] and Marks [1988]) superfluous when screen 

level values for vapor pressure and air temperature are substituted. 

The clear sky atmospheric emission and emissivity can be defined in terms 

of the slab emissivity (£8iat,) as follows, respectively [e.g., Liou, 1980]: 

= «.1™* * o * Tu 4 = ^slcyoh "* eskyoh 

Se slab 
a * T„ 

5w„ 
dwe <==> 

-skyoh ( V Th - 1 ) 4 

Se slab 
dw„ 

5w„ 

e x p [ - 4 * T * T0
_1 * (z - h ) ] 

Se slab 

5w„ 
dw„ (B8) 

The slab emissivity can be conveniently approximated by a power function 

of the effective amount of water vapor in the air column from the level z down 

to the surface level h scaled for the pressure effect by means of a square 

root correction: 

Se slab 

-slab = A * W, eslab ==> 
5w„ 

= m * A * w, eslab 
m-1 

-1 « 1/2 dwe = (p2 * Ph - 1)1^ * rho v * dz 

= 0 . 622 * eh * (Rd * Th)"1 * e x p t - k ^ * (z - h) ] * dz 

z 

(B9) 

(BIO) 

w, eslab dw„ 

= 0 . 622 * eh * ( k ^ * Rd * Thy
l * (1 - e x p f - k ^ * (z - h) ] ) ( B l l ) 

k » - K + g * (2 * Rd * To)"1 ( B 1 2 > 

Substituting equations (B9)-(B12) in (B8) and setting z-h equal to z' 

yields the following expression for the clear sky atmospheric emissivity: 
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«skyoh = m * A * ( 0 . 622 * eh * ( k ^ * R,, * T h ) 1 ) m 

00 

r 

k ^ * e x p t - k ^ ' * z ' ] * (1 - e x p f - k ^ * z'])™-1 * d z ' (B13) 

fcwe' - Ke + 4 * F * V 1 (B14) 

The above integral can be conveniently expressed in terms of the complete 

beta function B(a,b) [Abramowitz and Stegun, 1964], when k^e'*kv/e'
1, m and 

exp[-kwe*z'] are substituted for a, b and t, respectively. This then yields 

Brutsaert's "derivable formula for longwave radiation from clear skies": 

B(a,b) = 

1 
r 

t»-l * (1 - t)b _ 1 * dt 

0 
OS 

k ^ * exp[-a * k ^ * z'] * (1 - e x p l - ^ * z'])b-1 * dz' ==> 

«skyoh = m * A * (0.622 * eh * (k^ * Rd * Thy
l)m * Bfk^' * k,,"1, m) (B15) 

= m * A * weh
m * Bfk^' * k^"1, m) « 0.521 * w ^ (B16) 

~ 0.642 * (eh * Th
_1)1/7 (B17) 

The following altitude correction for the clear sky atmospheric emissivity 

based on the assumptions made for the derivation of (B15) can now be derived 

from equations (B2) and (B15): 

e skyoz = «skyoh * e xp [ -k e * (z - h) ] (B18) 

ke = m * k w « k w / 7 « 6 . 3 * 10"5 m"1 (B19) 

It follows from (B19) that the emissivity of the atmosphere for average 

clear sky conditions decreases by about 6 percent per kilometer altitude 

increase. 

In addition to Brutsaert's formula (B17), most of the other functional 

relationships between the effective emissivity of a cloudless atmosphere and 

the screen level air temperature and/or vapor pressure that have been 

developed over the past decades were discussed extensively in section 2.2.4. 

With the exception of Angstrom's and Brunt's equations, they do not require 

extensive local calibrations to determine empirical parameters (eh and Th are 

expressed in the S.I. units pascal and kelvin, respectively): 
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£skyoh = 9 . 39 * 10"6 * Th
2 (B20) 

[Swinbank, 1963] 

= 1 - 0 . 2 61 * e x p [ - 7 . 7 7 * 10"4 * (273 - Th)2] (B21) 

[ I d so and Jackson , 1969] 

= 1 . 08 * (1 - e x p [ - ( e h / 100)T h / 2 0 1 6 ] ) (B22) 

[ S a t t e r l u n d , 1979] 

= 0 . 7 + 5 . 95 * 10"7 * eh * e xp[1500 * T^1] (B23) 

[ I d s o , 1981] 

Arguing that "in alpine areas the assumption of a standard atmosphere 

(which has been the basis for the derivation of Brutsaert's fromula, R.U.) is 

not valid", Marks and Dozier [1979] and Marks [1988] proposed the following 

adjusted scheme for the computation of estyoh as a function of eh, Th and pj, in 

remote alpine areas (assuming a standard temperature lapse rate and a constant 

relative humidity): 

«skyoh - ° ' 6 4 2 * <eo * To"1)1'7 * (Ph * Po"1) (B24) 

T0 = Th + T * h 

e0 = eh * ( e JTJ * eJTJ-1) 

Ph * p.;1- exp[-g * (r * R,,)-1 * ln[T0 * T,,'1]] 

Although the derivations of (B20)-(B23) as opposed to that of (B17) are not 

based on vertical profiles for vapor pressure, air pressure and air 

temperature, their altitude dependency can be quantified when Brutsaert's 

[1975, 1982] typical exponential decay functions (equations (B2), (B4) and 

(B5) with 1^=4.4, g/ (Rd*T0)=1.3 and r/To=0.226*10"4m"1, respectively) are 

substituted. 

h, eh Th Ph, «skyoh I"! 
[103m] [Pa] [K] [105Pa] (B20) (B21) (B17) (B24) (B22) (B23) 

0 

1 

2 

3 

4 

5 

1278 

805 

507 

319 

201 

127 

288 

282 

275 

269 

263 

257 

1.013 

0.890 

0.781 

0.686 

0.602 

0.529 

0.780 

0.745 

0.712 

0.681 

0.651 

0.622 

0.782 

0.754 

0.740 

0.742 

0.758 

0.784 

0.795 

0.746 

0.701 

0.658 

0.618 

0.580 

0.795 

0.694 

0.605 

0.529 

0.462 

0.403 

0.824 

0.797 

0.770 

0.744 

0.719 

0.695 

0.839 

0.798 

0.770 

0.750 

0.736 

0.726 

Table Bl. Altitude dependency of clear sky effective atmospheric 
emissivities from different functional relationships using exponential 
decay functions for vertical vapor pressure, air temperature and air 
pressure profiles (RH0 = 75%). 
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For instance, it can be seen easily that substitution of (B5) in (B20) 

yields ke=2*r/To=4.52*10"5 m"1, equivalent with a clear sky emissivity decay of 

about 4.5 percent per kilometer, which is slightly lower than follows from 

Brutsaert's formula. Since the vertical profiles that Marks proposed are very 

similar to the ones Brutsaert proposed, it follows directly from (B24) that 

the emissivity decay coefficient must approximately equal the pressure decay 

coefficient, i.e. ke«g/(Rd*To)=1.3*10"4 m"1. The resulting 12 percent clear sky 

emissivity decay per kilometer is twice as much as results from Brutsaert's 

and almost three times as much as results from Swinbank's equation1 

Table Bl. gives the emissivities resulting from (B20)-(B24) for altitudes 

up to 5 kilometers, when the relative humidity at mean sea level is 75 

percent. These figures confirm the observation of Aase and Idso [1978] that 

under moderate atmospheric conditions (B21) and (B17) adequately predict the 

clear sky effective atmospheric emissivity, whereas under freezing conditions 

the former tends to overestimate and the latter tends to underestimate. It can 

also be concluded that the linear pressure correction in (B24) causes an 

emissivity decay with altitude that is considerably stronger than that of the 

other equations, and that the scheme of Marks and Dozier [1979] is therefore 

likely to underestimate the atmospheric emissivity at high altitudes. 

Notation 
w = Actual (precipitable) zenith path water vapor content of 

atmosphere [ kgm"2 ] 
h - Reference altitude above mean sea level [m] 
q = Specific humidity [-] 
g = Gravitational acceleration [~ 9.81 ms"2] 
rhov = Water vapor density [kgm"3] 
rhoa = Air density [kgm"3] 
p = Air pressure [Pa] 
z = Altitude above mean sea level [m] 
e = Vapor pressure [Pa] 
Rd = Gas constant of dry air [~ 287.04 Jkg^K"1] 
T - Air temperature [K] 
k̂ , = Water vapor density decay coefficient [~ 4.4 * 10"4 m"1] 
T 0 = Mean air temperature at sea level [= 288.15 K] 
r = Temperature lapse rate [~ 0.0065 Km"1] 
we - Effective (scaled) zenith path water vapor content of atmosphere 

[kgm"2] 
Np = scaling exponent for pressure [~ 0.5] 
Nt = Scaling exponent for temperature [« 0.0] 
k w e = Effective water vapor density decay coefficient 

[= 5.05 * 10"4 m"1] 
Lskyo = Atmospheric emission for clear skies [Wm"2] 
£skyo ~ Effective atmospheric emissivity for clear skies [-] 
a = Stefan-Boltzmann's constant [« 5.6697 * 10"8 W n f V 4 ] 
€slab = Emissivity of slab of water vapor with CO2 [-] 
A = Factor of power function [~ 0.54] 
wesUb = Effective water vapor content of slab of air [kgm"2] 
m = Exponent of power function [~ 1/7] 
k ^ * = Decay coefficient [« 5.95 * 10"4 m"1] 
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z' = Altitude above reference level [m] 
B(a,b) = Complete beta function with coefficients a and b [~ 6.76] 
t = Independent variable [-] 
kg = Decay coefficient for clear sky effective atmospheric emissivity 

[« 6.3 * 1er5 m"1] 
p0 = Standard air pressure at mean sea level [~ 1.01325 * 105 Pa] 
e = Vapor pressure at 288.15 K with 75% relative humidity [« 1278 Pa] 
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APPENDIX C. 

DETERMINING THE ANGLE OF INCIDENCE 
OF DIRECT SOLAR RADIATION AT INCLINED SURFACES 

The cosine of the incidence angle of direct solar radiation at an inclined 

surface can be given directly as a function of the sun's position in the sky 

as determined by its zenith and azimuth angles and of the geometry of the 

surface as determined by its inclination (slope) and azimuth (aspect) angles, 

as follows [e.g., Kondratyev, 1973]: 

cos[9g'] = cos[S] * cos[6g] + sin[S] * sin[9g] * cos[$g - A] (CI) 

= cos[S] * cos[9s] + sin[S] * sin[8s] 

* (cos[A] * cos[$s] + sin[A] * sin[$g]) 

This equation can be transformed into a for some purposes more convenient 

functional form in which the sun's position is given indirectly as a function 

of the latitude of the surface, the date as determined by the solar 

declination and the time of the day as determined by the hour angle. The 

following expressions for-the cosine of the solar zenith angle and the sine 

and cosine of the solar azimuth angle derived on the basis of spherical 

trigonometry [e.g., List, 1966; Kondratyev, 1973] must then be substituted in 

(CI): 

cos[9s] = sin[$] * sin[5] + cos[$] * COB[S] * cos[H] (C2) 

sin[$s] = -cos[5] * sin[H] * sin'^Sg] <==> (C3) 

sin[9g] * sin[$g] = -cos[5] * sin[H] 

cos[$s] = (sin[S] - sin[$] * cos[9g]) * (cos[$) * sin [ 9S ]) "*<==> (C4) 

sin[9s] * cos[$g] = (sin[5] - sin[$] * cos[9g]) * cos"1!*] 

It is noted here for reasons of completeness that taking the quotient of 

(C3) and (C4) yields the same expression for the tangent of the solar azimuth 

angle as Iqbal [1983] presented [Blackadar, 1989]. Moreover, expressions for 

the solar zenith angle at true solar noon and for the hour angles at true 

sunrise and sunset at an unobstructed horizontal surface (i.e. neglecting the 

phenomena of atmospheric refraction and parallax that determine the apparent 

sunrise and sunset) can easily be derived from (C2) by setting H equal to zero 

(=> 9g=|*-$|) and 9g equal to JT/2 (=> Hgetrige=±arccos[-tan[$]*tan[S] ] ), 

respectively. The latter allows (C2) to be integrated analytically between 

solar noon (H=0) and sunset (H=Hset) to yield an expression (sin[$]*sin[5]*Hset 

+cos[$]*cos[fi]*sin[Hset] ) which after multiplication with the factor S0*(»r*r2)"1 

determines the average daily radiation reaching a hypothetical horizontal 

93 



surface at the top of the atmosphere (with the minor approximations that 6 and 

r are constant during the d a y ) . See figure 2.1.1. 

Substitution of (C2)-(C4) in (CI) yields the same formula as G a m i e r and 

Ohmura [1968, 1970] developed on thé basis of a coordinate transformation 

following the principles of vector algebra. In this expression, latitudes and 

declinations north of the equator are taken as positive and south of the 

equator as negative, the hour angle is measured from solar noon positively 

towards west and negatively towards east, and lastly azimuths are measured 

from north through east: 

cos[es'] = (cos[S] * sin[$] + sin[SJ * cos[A] * cos[$]) * sin[£] 

+ (cos[S] * cos[$] * cos[H] - sin[S] * sin[A] * sin[H] 

- sin[S] * cos[A] * sin[$] * cos[HJ) * COB[S] (C5) 

When the surface inclination angle is set equal to zero in (C5), (C2) can 

easily be obtained. The incidence angle of direct solar radiation at a 

horizontal surface by definition namely equals the solar zenith angle. 

Notation1 

8S' = Incidence angle of direct solar radiation at inclined surface 
S = Surface inclination angle or slope 
6S = Solar zenith angle or incidence angle of direct solar radiation at 

horizontal surface 
$g = Solar azimuth angle 
A - Surface azimuth angle or aspect 
$ = Latitude of surface 
S - Declination of sun 
H = Hour angle 
1 All angles are expressed in units of radians [rad] 
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APPENDIX D. 

DERIVING ANISOTROPY FACTORS FROM RADIANCE DISTRIBUTION FUNCTIONS 

D.I. Background Solar Skv Radiance 

Several authors have described the background diffuse shortwave radiation 

field by a fictitious radiance distribution linear in the cosine of the zenith 

angle [e.g., Steven and Unsworth, 1979; 1980; Arnfield, 1982]: 

K[6] = K[0] * (1 + bk * cos[6]) * (1 + bk)_1 <==> 

K[/i] = K[l] * (1 + bk * fi) * (1 + bk)-« ; ix = cos[0] (Dl) 

In these equations K[0] and K[l] denote the radiance from the zenith and 

not the mean radiance from the entire spherical solid angle, which Olyphant 

[1986b] incorrectly assumed. The total amount of background solar sky 

radiation reaching an unobstructed horizontal surface is the hemispherical 

integration of the radiance distribution function: 

2n n/2 
r r 

Kdif - K[9] * sin[9] * cos[6] * d8 * d* 

0 0 

= 2JT * K [ M ] * n * dp 

= 2n * K[l] * (1 + bk)_ 1 * (1 + bk * n) * n * d/i 

= 2ir * K[l] * (1 + bk)_ 1 fi2/2 + bk * A«3/3 i: 
= jr * K[l] * (1 + bk * 2/3) * (1 + bk)_1 (D2) 

The anisotropy factor for background solar sky radiation is by definition 

the ratio of the equivalent flux density from a particular solid angle to the 

total amount of diffuse radiation reaching an unobstructed horizontal surface 

[Dozier and Frew, 1989]: 

-1 fl^/i] = * * KM * Kdif 

= (1 + bk * n) * (1 + bk * 2/3)"1 (D3) 
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It can be seen from the above equation that the anisotropy factor becomes 

unity when p equals 2/3, i.e. when 6 equals arccos[2/3] » 48.2°. The 

equivalent flux density from this representative angle equals the total 

hemispherically integrated amount of diffuse sky radiation. 

D.2. Atmospheric Emittance 

Unsworth and Monteith [1975] presented a radiance distribution function for 

incoming longwave radiation in terms of the apparent (or equivalent) 

emissivity and the zenith optical water path of the atmosphere, i.e. the 

effective water vapor amount scaled for the pressure effect (by a square root 

correction as determined by (B6) and (B12)): 

, - l i € e [ 9 ] = a + b, * ln[w e * c o s " 1 ^ ] ] <==> 

es[(i] = a + b, * ln[w e * / f 1 ] (D4) 

In these equations the secant approximation is used to account for the 

relative path length for water vapor because of its easy integrability. The 

atmospheric emissivity is consequently given by the hemispherical integration 

of the apparent emissivity of each solid angle, which follows the derivation 

of (D2): 

1 
r 

esky s 2 * ee[Ml * M * d/* 

1 
r 

= 2 * (a + b, * (ln[we] - ln[/i])) * /i * d/* 

= 2 * (a + b, * ln[we] ) * H2/2 

- 2 * b, * /i2/2 * (ln[/i] - 1/2) 

= a + b, * ln[we] + b,/2 = a + b, * (1/2 + ln[we) ) (D5) 

The anisotropy factor for atmospheric emittance is defined as the ratio of 

the apparent emissivity to the atmospheric emissivity: 

0|[M] = ee[M] * Êsky'1 

= (a + b, * (ln[we] - Inlfi})) * (a + b, * (ln[wj + 1/2)) -1 (D6) 
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It can be seen from this equation that the representative angle for the 

incoming longwave radiation field (the angle for which the anisotropy factor 

becomes unity) is determined by setting ln[/x] equal to -1/2, i.e. 6 equal to 

arccos[exp[-l/2]] « 52.7°. 

Since esky can easily be determined with reasonable accuracy from the screen 

level vapor pressure and/or air temperature and the mean fractional 

cloudcover, (D5) can be used for the convenient elimination a and we from 

(D6): 

a = £sky - b, * (1/2 + ln[we]) ==> (D7) 

Ul») - £sky - *>l * (1/2 + ln[Mj) — > (D8) 

ß,[/i] = 1 - b, * e8ky
l * (1/2 + ln[/i]) (D9) 

Until this point basically the method proposed by Unsworth and Monteith 

[1975] has been followed. However, they stated that (D8) "clearly does not 

represent the variation of the emissivity at very large (zenith, R.Ü.) angles, 

since it fails to predict that emissivity tends to unity as 6 approaches 90°". 

The reason for this deviation is that the secant approximation for the 

relative path length for water vapor (which has been the basis for the 

derivation of (D5)-(D9)) neglects the curvature of the earth and its 

atmosphere. Instead of approaching unity for large zenith angles, the apparent 

emissivity as determined by (D8) tends to infinity. Brunt [1932] inferred from 

his measurements of the angular distribution of incoming longwave radiation 

that "... just above the horizon, we should expect to find the amount of 

radiation practically independent of vapor pressure, since a horizontal 

cylinder of the atmosphere will always contain enough water vapor to radiate 

effectively as a black body ... ". Although setting the apparent emissivity 

equal to unity for 6 equal to TT/2 radians may lead to a slight overestimation 

of the radiance at large zenith angles because the screen level air 

temperature will generally be higher than the mean temperature of the 

radiating layer, below inversions (which occur frequently in snow covered 

mountainous terrain, particularly during the snowmelt season) it leads to an 

underestimation because the screen level air temperature is lower than the 

mean temperature of the radiating layer [Unsworth and Monteith, 1975]. It is 

therefore assumed that the approximation that ee[n/2] equals unity represents 

the average atmospheric conditions with reasonable accuracy. This makes it 

possible to eliminate the remaining empirical coefficient (bj) and derive a 

standard longwave radiation distribution that is solely a function of the 

atmospheric emissivity. Hence, it is obvious that the secant approximation for 

the relative path length for water vapor has! to be abandonned in favor of an 

expression that is more accurate at large zenith angles. 

The following empirical formula has the same functional form as Rodgers' 

[1967] expression for the relative path length for ozone [Lacis and Hansen, 

97 



1974], which allows easier integration than the form of Kasten's [1966] 

formula: 

Mw = 1 U 0 ] * ((M^O] 2 - 1) * M 2 + 1) -1/2 (D10) 

For the purpose of computing the absorption of solar (shortwave) radiation 

in the atmosphere by water vapor, the maximum relative path length (M^O]) has 

a value of about 75. However, emission of radiation by water vapor occurs in 

the thermal (longwave) region of the electromagnetic spectrum, where no 

appreciable refraction takes place. Hence, M ^ O ] in (D10) will most likely 

have a lower value than 75, although the influence of its magnitude on the 

computation of the atmospheric emissivity is small (equation (D12)). 

The derivation of the revised anisotropy factor for atmospheric emittance 

on the basis of (D10) and the assumption that ee[jr/2] equals unity basically 

follows that of (D4)-(D9): 

ee[Ml 

-sky 

= a + bj * ln[we * M,,] ==> 

1 

= 2 * (a + bj * (ln[we] + lnl^])) * y. * d/i 

(Dil) 

= a + bi * ln[we] + 2 * b, l n ^ ] * n * d/i 

= a + b, * ln[we * M ^ O ] ] 

1 

- b, * lnnM^JO]2 - 1) * /i2 + 1] * n * d/i 

/i' = (M^O] 2 - 1) * /i2 + 1 ==> d/i' = 2 * (M^O] 2 - 1) * /i * d/i 

esky = a + b, * ln[w e + M^O]] 

==> 

- b, * (2 * (M^O] 2 - I ) )" 1 

»vor 
l n [ / i ' ] * d/i' 

/ i ' * l n [ / i ' ] - / i ' 
J l 

= a + b, * ln[w e + M^O]] 

- b, * (2 * (M^O] 2 - 1 ) ) -

= a + b, * ln[w e + M^O]] 

+ b, * ( 1 / 2 - ( 1 - ^ [O] - 2 )" 1 * l n l M ^ O ] ] ) 

= a + b, * ( ( 1 / 2 - (M^O] 2 - I)"1 * l n l M ^ O ] ] ) + ln [w e ] ) (D12) 

98 



= a + b, * (0.5 + ln[wj) ==> (D5) 
a - £»ky - bl * (0.5 + ln[wj) ==> (D7) 

€e[Ml = «sky - bl * (°-5 - ln[Mwl) ==> (°13) 
£

e[°] - «sky - bl * (°-5 - Int^tO]]) = 1 <=-> 
bl = (1 - «sky) * (IntlMO]] - 0.5)'1 =-> (D14) 

«etMl - «Ay - («sky - 1) * (0.5 - lntM^) * (0.5 - lntM^O]])"1 (D15) 

n,[M] = 1 - (1 - 63k/1) * (0.5 - lnfi^)) * (0.5 - lnfM^O]])-1 (D16) 

Since (D12) approximately equals (D5), it may be concluded that the 

hemispherical integration of (D10) is not significantly different from that 

of the secant approximation for the relative path length for water vapor. 

However, application of (D10) will yield more accurate values for the apparent 

emissivity at large zenith angles and moreover, it is necessary in order to 

be able to derive bj as a function of cglcy (equation (D14)). The only empirical 

coefficient remaining in the formulation of the anisotropy factor for 

atmospheric emittance (D16) consequently is the atmospheric emissivity, which 

can be determined from (B16) (as a function of the scaled water vapor amount) 

or (B17) (as a function of vapor pressure and air temperature) and the mean 

fractional cloudcover. Application of typical values for egky (roughly ranging 

between 0.6 and 1 as can be gathered from table Bl.) yields values for a (from 

(D7)) and b( (from D(14)) that fall within the ranges mentioned by Unsworth 

and Monteith [1975], which are based on extensive measurements. 

Notation 
K = Background solar sky radiance [Wm̂ sr"1] 
6 = Zenith angle [rad] 
bk = Coefficient for background solar sky radiance distribution [-] 
H = Cosine of zenith angle [-] 
Kdif = Background solar sky radiation [Wm"2] 
$ = Azimuth angle [rad] 
flk = Anisotropy factor for background solar sky radiance [-] 
ee = Equivalent emissivity [-] 
a,bj = Coefficients for equivalent emissivity distribution [-] 
we - Effective (scaled) zenith path water vapor content of atmosphere 

[kgm-2] 
€sky = Effective atmospheric emissivity [-] 
0] = Anisotropy factor for atmospheric emittance [-] 
M,̂  = Relative path length for water vapor [-] 
H' = Integration variable [-] 
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APPENDIX E. 

DEVELOPED SOFTWARE 

E.l. Microsoft QuickBASIC Computer Program FACTORS 

program: 
objective: 

conversion FACTORS 
computing sky view factor (Vd) and terrain 
configuration factor (Vt) for infinitely long V-
shaped valley as functions of different radiance 
distributions (anisotropy factors Omega) and site 
elevations above valley floor 

interface: parameters defined in program; 
output to terminal screen 

author: Remko Uijlenhoet 
date: August 2, 1989 

'BEGIN FACTORS 

* definitions and declarations * 

CONST pi# = 3.141592654# 
CONST rad = pi / 180 
CONST A = 0 * rad 
CONST Dsite = 0 

CONST S = 60 * rad 
CONST S2 = 60 * rad 
CONST Yridge = 100 
CONST Yridge2 = 100 
CONST stepphiO = pi / 18 

CONST stepZO = pi / 18 

CONST stepYO = 100 

CONST startphi = 0 
CONST stopphi = 2 * pi 
CONST startZ = 0 
CONST startY = 0 
CONST stopY = Yridge 
COMMON SHARED Y 

• * 

» * 
• * 
• * 

' * 
• * 

• * 
' * 
• * 

• * 

• * 

' * 
• * 

• * 
• * 

• * 

• * 

• * 
• * 
• * 
» * 

pi ["J 
radians per degree [rad/deg] 
slope azimuth [rad] 
horizontal distance from site to 

slope base [m] 
slope inclination [rad] 
inclination of facing slope [rad] 
ridge top elevation [m] 
elevation of facing ridge top [m] 
initial azimuthal integration 

increment [rad] 
initial zenith integration increment 

[rad] * 
initial increment of site elevation * 

[m] * 
azimuth at start of integration [rad] * 
azimuth at end of integration [rad] * 
zenith at start of integration [rad] * 
lowest site elevation [m] * 
heighest site elvation [m] * 
site elevation [m] * 

DECLARE FUNCTION ARCTAN (xl, x2) 
DECLARE FUNCTION HfunctionA (phi) 
DECLARE FUNCTION HfunctionB (phi) 
DECLARE FUNCTION Omegak (Z, phi, mc) 
DECLARE FUNCTION Omega1 (Z, phi, mc) 
DECLARE FUNCTION PSIfunction (phi) 
DECLARE FUNCTION reduce (angle, interval) 
DECLARE FUNCTION simpson (stepno%, stepmax%) 
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'* main program * 

CLS 
PRINT " Y 
PRINT " Vdlc 
PRINT " [m] 
PRINT " [-] 

VdHm 
Vt" 

[-] 
[-]" 

Vdiso 

[-] 

Vdko 

[-] 

Vdkc 

[-] 

Vdlo 

t-1 

stepphimax% = 2 * CINT((stopphi - startphi) / (2 * stepphiO)) 
stepphi • (stopphi - startphi) / stepphimax% 
IF stopY > startY THEN 

stepYmax% = CINT((stopY - startY) / stepYO) 
stepY = (stopY - startY) / stepYmax% 

ELSE 
stepYmax% = 0 

END IF 
Y - startY 

'* (1) compute conversion factors for all site elevations (Y) 
'* from startY to stopY with increment stepY 

FOR stepYno% - 0 TO stepYmax% 
Hmean = 0 
Vdiso = 0: Vdko = 0: Vdkc = 0: Vdlo = 0: Vdlc = 0 
Vt = 0 
phi « startphi 

'* (1.1) perform integration over all azimuth angles (phi) 
'* from startphi to stopphi with increment stepphi 

FOR stepphino% = 0 TO stepphimax% 
deltaphi = Simpson(stepphino%, stepphimax%) 
deltaphi = deltaphi * stepphi / (2 * pi) 
H = HfunctionB(phi) 
Hmean = Hmean + deltaphi * H 
PSI = PSIfunction(phi) 
IF Y >= Yridge THEN 

slope = 0 
ELSE 

slope = S 
END IF 
factorA = TAN(slope) 
termVdA = SIN(H) A 2 
termVdB = H - SIN(H) 
termVtA = SIN(PSI) 

COS(phi - A) 

COS(H) 
, , _ - termVdA 

termVtB = PSI - SIN(PSI) * COS(PSI) - termVdB 
intphiVdiso = termVdA + factorA * termVdB 
intphiVt = termVtA + factorA * termVtB 
Vdiso = Vdiso + deltaphi * COS(slope) * intphiVdiso 
Vt = Vt + deltaphi * COS(slope) * intphiVt 
stopZ = H 
IF stopZ - startZ > 0 THEN 

IF stopZ - startZ < stepZO THEN 
stepZ = (stopZ - startZ) / 2 

ELSE 
stepZ = stepZO 

END IF 
stepZmax% = 2 * CINT((stopZ - startZ) / (2 * stepZ)) 
stepZ = (stopZ - startZ) / stepZmax% 
intphiVdko = 0: intphiVdkc = 0 
intphiVdlo = 0: intphiVdlc = 0 
Z = startZ 
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(1.1.1) perform integration over all zenith angles * 
(Z) from startZ to stopZ with increment stepZ * 

FOR stepZno% = 0 TO stepZmax% 
deltaZ = simpson(stepZno%, atepZmax%) * stepZ 
factorB = SIN(2 * Z) 
intZVdko = Omegak(Z, 
intZVdkc = Omegak(Z, phi, 
intZVdlo = Omegal(Z, phi, 
intZVdlc = Omegal(Z, phi, 
intphiVdko = intphiVdko + 
intphiVdkc = intphiVdko + 
intphiVdlo = intphiVdlo + 
intphiVdlc = intphiVdlo + 
Z - Z + stepZ 

NEXT stepZno% 

+ factorA 
phi, 0) * 

(1 - COS(2 
factorB 

1) * factorB 
0) * factorB 
1) * factorB 
deltaZ * intZVdko 
deltaZ * intZVdkc 
deltaZ * intZVdlo 
deltaZ * intZVdlc 

Z)) 

Vdko = Vdko + deltaphi 
Vdkc = Vdkc + deltaphi 
Vdlo = Vdlo + deltaphi 
Vdlc = Vdlc + deltaphi 

END IF 
phi = phi + stepphi 

NEXT stepphino% 
VdHm = SIN(Hmean) 

COS(slope) 
COS(slope) 
COS(slope) 
COS(slope) 

intphiVdko 
intphiVdkc 
intphiVdlo 
intphiVdlc 

### "; Y; PRINT USING " 
PRINT USING " 
PRINT USING " 
Y = Y + stepY 

NEXT stepYno% 
Vdinfinite - COS((S + 
Vtinfinite = 1 - Vdinfinite 

VdHm; Vdiso; Vdko; Vdkc; Vdlo; 
Vdlc; Vt 

S2) / 2) A 2 

PRINT " 
PRINT M " 
PRINT " Vdinfinite [-]: "; 
PRINT USING " #.###### "; Vdinfinite 
PRINT " Vtinfinite [-]: "; 
PRINT USING " #.###### "; Vtinfinite 
IF S2 = 0 THEN 

dummyA = COS(S / 2) A 2 
dummyB = SIN(S) - S * COS(S) - pi * SIN(S / 2) 
VdkoSOC = dummyA + 2 * 
VdkcSOC = dummyA + 2 * 
PRINT " VdkoSOC [-]: 
PRINT USING " #.###### 
PRINT " VdkcSOC [-]: 
PRINT USING " #.###### 

END IF 
END'FACTORS 

bko * dummyB / 
bkc * dummyB / 

VdkoSOC 
». 
VdkcSOC 

((2 * bko 
((2 * bkc 

k 2 
+ 3) 
+ 3) 

* Pi) 
* Pi) 
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******************************************************************* 
'* function: ARCTANgent * 
'* objective: computing arctangent of quotient of xl and x2; * 
'* resulting value between -pi/2 and pi/2 * 
******************************************************************* 
FUNCTION ARCTAN (xl, x2) 
IP x2 • 0 THEN 

ARCTAN - SGN(xl) * pi / 2 
ELSE 

ARCTAN - ATN(xl / x2) 
END IF 
END FUNCTION'ARCTAN 
******************************************************************* 
'* function: HfunctionA, horizon function A * 
• * objective: computing zenith angle of local horizon of * 
'* infinitely long slope in V-shaped valley as * 
'* function of azimuth (phi), surface azimuth (A) and * 
'* inclinations of facing slopes (S, S2) * 
******************************************************************* 
FUNCTION HfunctionA (phi) 
IF COS(phi - A) <= 0 THEN 

Hfunction » ARCTAN(-1, TAN(S) * COS(phi - A)) 
ELSE 

Hfunction = ARCTAN(1, TAN(S2) * COS(phi - A)) 
END IF 
HfunctionA = reduce(Hfunction, pi) 
END FUNCTION'HfunctionA 

******************************************************************* 
'* function: HfunctionB, horizon function B * 
'* objective: computing zenith angle of local horizon of point at * 
'* slope in V-shaped valley as function of azimuth * 
'* (phi), surface azimuth (A) and inclination (S), * 
'* site elevation (Y), ridge top elevations of facing * 
'* slopes (Yridge, Yridge2) and HfunctionA * 
******************************************************************* 
FUNCTION HfunctionB (phi) 
Ha = HfunctionA(phi) 
phi2 = reduce(phi + pi, 2 * pi) 
Ha2 = HfunctionA(phi2) 
IF COS(phi - A) <= 0 THEN 

IF Y >= Yridge THEN 
HfunctionB = pi / 2 

ELSE 
HfunctionB - Ha 

END IF 
ELSE 

IF Y >= Yridge2 THEN 
HfunctionB = pi / 2 

ELSEIF S = 0 THEN 
dummyA = Dsite / (Yridge2 * COS(phi - A)) 
HfunctionB = ATN(TAN(Ha) + dummyA) 

ELSE 
dummyA = Yridge2 / (Yridge2 - Y) 
dummyB = Y / (Yridge2 - Y) 
HfunctionB = ATN(dummyA * TAN(Ha) + dummyB * TAN(Ha2)) 

END IF 
END IF 
END FUNCTION'HfunctionB 
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• ****************************************************************** 
'* function: Omegak * 
'* objective: defining anisotropy factor for background solar sky * 
'* radiance as function of zenith (Z), azimuth (phi), * 
'* fractional cloudcover (mc) and surface albedo * 
•* (albedo) * 
******************************************************************* 
FUNCTION Omegak (Z, phi, mc) 
SHARED bko, bkc 
CONST albedo = .17 
bko = -.87 
bkc = 2 * (1 - albedo) / ( 1 + 2 * albedo) 
mu = COS(Z) 
Omegako - (1 + bko * mu) / (1 + bko * 2 / 3) 
Omegakc = (1 + bkc * mu) / (1 + bkc * 2 / 3) 
Omegak = (1 - mc) * Omegako + mc * Omegakc 
END FUNCTION'Omegak 

******************************************************************* 
'* function: Omega1 * 
'* objective: defining anisotropy factor for atmospheric * 
'* emittance as function of zenith (Z), azimuth (phi), * 
'* fractional cloudcover (mc) and clear sky effective * 
'* atmospheric emissivity (eskyo) * 
******************************************************************* 
FUNCTION Omegal (Z, phi, mc) 
CONST MwO = 75, kl = .22, eskyo = .7 
esky = (1 + kl * mc * mc) * eskyo 
bl = (1 - esky) / (LOG(MwO) - .5) 
mu = COS(Z) 
Mw = MwO / SQR((MwO A 2 - l ) * m u A 2 + l) 
Omegal = 1 - bl * (.5 - LOG(Mw)) / esky 
END FUNCTION'Omegal 

******************************************************************* 
'* function: PSIfunction * 
'* objective: computing zenith angle of eunray parallel to slope * 
'* in V-shaped valley as function of azimuth (phi), * 
'* surface azimuth (A) and inclination (S), site * 
'* elevation (Y), ridge top elevation of facing slope * 
'* (Yridge2) and HfunctionB * 
******************************************************************* 
FUNCTION PSIfunction (phi) 
Hb = HfunctionB(phi) 
IF COS(phi - aspect) <« 0 THEN 

PSIfunction = Hb 
ELSE 

IF Y >= Yridge THEN 
PSIfunction = pi / 2 

ELSE 
dummyA = ARCTAN(-1, TAN(S) * COS(phi - A)) 
PSIfunction = reduce(dummyA, pi) 

END IF 
END IF 
END FUNCTION'PSIfunction 

******************************************************************* 
'* function: reduce * 
'* objective: reducing value of angle to value between 0 and * 
'* interval * 
******************************************************************* 
FUNCTION reduce (angle, interval) 
modulus = INT(angle / interval) 
reduce = angle - modulus * interval 
END FUNCTION'reduce 
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'****************************************************************** 
'* function: simpson * 
'* objective: computing coefficients for numerical integration * 
'* according to Simpson's 1/3 rule from number of * 
'* integration steps already performed (stepno%) and * 
'* total number of integration steps (stepmax%) * 
'****************************************************************** 
FUNCTION simpson (stepno%, stepmax%) 
IF stepno% = 0 OR stepno% = stepmax% THEN 

simpson = 1 / 3 
ELSEIF 2 * INT(stepno% / 2) <> stepno% THEN 

simpson - 4 / 3 
ELSE 

simpson = 2 / 3 
END IF 
END FUNCTION'simpson 
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E.2. Microsoft QuickBASIC Computer Program RBM 

program: 
objective 

interface 

• *********** 
• * 
• * 
• * 

• * 
• * 
• * 

• * 

'* author: 
'* date: 
• * * * * * * * * * * * 

'BEGIN RBM 

******************************************************* 
RBM, Radiation Budget Module * 
computing diurnal variation in radiation balance * 
of obstructed point at inclined surface * 
input from data-file RBMIN.DAT on current directory;* 
remaining parameters defined in main module; * 
output to data-file RBMOUT.DAT on current directory * 
and/or to terminal screen * 
Remko Uijlenhoet * 
July 7, 1989 * 

******************************************************* 

'* parameter definitions * 

CONST pi# = 3.141592654# 
CONST rad# = pi / 180 
CONST deg# - 2 * pi / 1440 
CONST month = 4, day = 10, 

CONST lat = 33.075 * rad 
CONST Ion = 111.983 * rad 
CONST aspect = 0 * rad 
CONST slope = 0 * rad 
CONST hsite =358 
CONST a * .1 
CONST atrn = a 
CONST e = .95 
CONST etrn = e 
CONST mc = 0 
CONST askyo = .1 
CONST askyc = .5 
CONST asky = (1 - mc) * askyo 

CONST kl = .22 

CONST cloudlw - 1 + kl * mc * 

CONST ksa = .39, ksb = .38 
CONST ks = ksa + ksb * mc 
CONST cloudsw = 1 - ks * mc 

CONST Aoc = .02 
CONST Awe = .07 

CONST trans = .75 

CONST dt = 20 
CONST dH = deg * dt 
CONST length% = 1000 
CONST muHrise# = -.014539 

CONST accuracy = .01 
CONST countmax = 100 
CONST g = 9.81 
CONST kelvin = 273.15 
CONST kw = .00044 

CONST lapse = .0065 
CONST Rd = 287.04 
CONST sigma = 5.6697E-08 

CONST SO = 1365 

* pi M * 
* radians per degree [rad/deg] * 
* radians per minute [rad/min] * 

year = 1989 
date of measurements [m;d;y] * 
site latitude [rad N] * 
site longitude [rad W] * 
slope azimuth angle [rad] * 
slope inclination angle [rad] * 
site altitude [m] * 
average surface albedo [-] * 
average terrain albedo [-] * 
average surface emissivity [-] * 
average terrain emissivity [-] * 
mean fractional cloudcover [-] * 
effective clear sky albedo [-] * 
effective overcast sky albedo [-] * 
mc * askyc 
effective sky albedo [-] * 

* longwave cloudcover correction * 
* coefficient [-] * 
mc '* longwave cloudcover 
* correction [-] 
* shortwave cloudcover correction 
* coefficients [-] 
* shortwave cloudcover correction 
* [-] 
* average absorptivity of ozone [-] 
* average absorptivity of water 
* vapor [-] 
* average zenith path atmospheric 
* transmissivity [-] 
* simulation time step [min] 
* angular equivalent of dt [rad] * 
* array length [-] * 
* cosine of solar zenith angle at * 
* apparent sunrise [-] * 
* iteration accuracy [%] * 
* maximum number of iterations [-] * 
* gravitational acceleration [m/s2] * 
* freezing temperature of water [K] * 
* water vapor density decay * 
* coefficient [/m] * 

lapse rate [K/m] * 
gas constant of dry air [J/kg/K] * 
Stefan-Boltzmann's constant * 

[W/m2/K4] * 
solar constant [W/m2] * 
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'* array declarations * 

OPTION BASE 1 
DIM dummyA(length), 
DIN dummyE(length), 
DIM dummyI(length), 

DIM Hm(length) 

DIM Ktotm(length) 
DIM Rnm(length) 
DIM Ta(length) 
DIM Ts(length) 
DIM TsB(length) 
DIM Tc(length) 
DIM ea(length) 

DIM KtotmB(length) 

DIM RnmB(length) 
DIM TcB(length) 

DIM Ko(length) 
DIM Kdir(length) 
DIM Kdif(length) 
DIM Ksct(length) 

DIM Kbck(length) 
DIM Ktrn(length) 
DIM Ktot(length) 
DIM Kn(length) 
DIM Lsky(length) 
DIM Ltrn(length) 
DIM Lsfc(length) 
DIM Rn(length) 
DIM asfc(length) 

dummyB(length), dummyC(length), dummyD(length) 
dummyF(length), dummyG(length), dummyH(length) 
dummyJ(length), dummyK(length), dummyL(length) 

dummy variables [?] * 
hour angle at measurement [rad] * 
measurements: * 

global radiation [W/m2] * 
net radiation [W/m2] * 
air temperature [K] * 
soil temperature 1 [K] * 
soil temperature 2 [K] * 
canopy temperature [K] * 
vapor pressure [Pa] * 

corrections! * 
corrected global radiation * 
[W/m2] * 
corrected net radiation [W/m2] * 
corrected canopy temperature [ K ] * 

simulations [W/m2]: 
extraterrestrial radiation 
direct insolation 
diffuse sky radiation 
radiation scattered downward 

from direct beam * 
backscatter from atmosphere * 
reflection from adjacent terrain* 
global radiation * 
net shortwave radiation * 
emission from atmosphere * 
emission from adjacent terrain * 
surface emission * 
net radiation * 
instantaneous surface albedo [-]* 

1 * common area declarations * 

COMMON 
COMMON 
COMMON 
COMMON 

COMMON 
COMMON 
COMMON 

COMMON 
COMMON 
COMMON 
COMMON 

SHARED 
SHARED 
SHARED 
SHARED 

SHARED 
SHARED 
SHARED 

SHARED 
SHARED 
SHARED 
SHARED 

anom AS DOUBLE '* 
clon AS DOUBLE '* 
cor AS DOUBLE '* 
dclon AS DOUBLE'* 

• * 
dec '* 
jday AS DOUBLE '* 
jdayreduced AS DOUBLE 

true anomaly [rad] 
true celestial longitude [rad] 
time correction [d] 
difference between true and mean 

celestial longitude [rad] 
declination [rad] 
Julian day number [d] 

'* reduced Julian day number 
[d] 

manom AS DOUBLE'* mean anomaly [rad] 
melon AS DOUBLE'* mean celestial longitude [rad] 
rv '* earth's radius vector [-] 
storeA, storeB '* storage variables [-] 
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* function and subroutine declarations * 

DECLARE FUNCTION albedo (Z, Tk, choice) 
DECLARE FUNCTION Ao (Z, D) 
DECLARE FUNCTION ARCCOS (x, y) 
DECLARE FUNCTION ARCSIN (x, y) 
DECLARE FUNCTION ARCTAN (x, y) 
DECLARE FUNCTION Aw (Z, ea, Ta) 
DECLARE FUNCTION coefficient (Kt) 
DECLARE FUNCTION horizon (phi) 
DECLARE FUNCTION julianday (month, day, year) 
DECLARE FUNCTION LOG10 (x) 
DECLARE FUNCTION reduce (angle, interval) 
DECLARE SUB average (inarray(), outarray(), ibegin, iend, 

sublength) 
DECLARE SUB factors (mc, VdK, Vdl, Vtrn) 
DECLARE SUB position (jday AS DOUBLE, dec, rv, eq) 
DECLARE SUB localriseset (Hlocal, azlocal, altlocal, Hguess) 
DECLARE SUB statistics (Carray(), Marray(), MBE, RMSE, NASH, 

ibegin, iend) 
DECLARE SUB time (angle, sign$, hour, min, sec) 

'* main program * 

* * (1) Input data from measurements-file "RBMIN.DAT" * 

OPEN "RBMIN.DAT" FOR INPUT AS #1 
t% = 1 
DO UNTIL EOF(l) 

INPUT #1, Hm(t%), Ktotm(t%), KtotmB(t%), Rnm(t%), RnmB(t%), Ta(t%), Ts(t%), 
TsB(t%), Tc(t%), TcB(t%), ea(t%) 

t% = t% + 1 
LOOP 
CLOSE #1 
Hstart = Hm(l) 
tmax = t% - 1 
dtin = (Hm(tmax) - Hm(l)) 
IF dtin < dt THEN 

FOR t% = 1 TO tmax 
dummyA(t%) = Ktotm(t%) 
dummyB(t%) = KtotmB(t%) 
dummyC(t%) = Rnm(t%) 
dummyD(t%) = RnmB(t%) 
dummyE(t%) = Ta(t%) 
dummyF(t%) = Ts(t%) 
dummyG(t%) = TsB(t%) 
dummyH(t%) = Tc(t%) 
dummyl(t%) = TcB(t%) 
dummyJ(t%) = ea(t%) 

NEXT t% 
sublength = CINT(dt / dtin) 
nmax - INT(tmax / sublength) 
ibegin = 1: iend = sublength * nmax 
'iend = tmax: ibegin = iend - sublength * nmax + 1 
Hstart = Hm(ibegin) * rad + dH / 2 
CALL average ( dummy A (), KtotmQ, ibegin, iend, sublength) 
CALL average(dummyB(), KtotmB(), ibegin, iend, sublength) 

, Rnm(), ibegin, iend, sublength) 
, RnmB(), ibegin, iend, sublength) 
, Ta(), ibegin, iend, sublength) 
, Ts(), ibegin, iend, sublength) 

TsB(), ibegin, iend, sublength) 
Ten. ibegin, iend, sublength) 

ibegin, iend, sublength) 
ibegin, iend, sublength) 

rad + dH / 2 

rad / ((tmax - 1) * deg) 

CALL average(dummyA( 
CALL average(dummyB( 
CALL average(dummyC( 
CALL average(dummyD( 
CALL average(dummyE( 
CALL average(dummyF( 
CALL average(dummyG( 
CALL average(dummyH( 
CALL average(dummyI( 
CALL average(dummyJ( 

END IF 

Tc(), 
TcB(), 
ea(), 
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'* (2) diurnal variation in instantaneous radiation * 
'* characteristics for dt minute intervals, starting when * 
'* hour angle equals Hstart * 

jday = julianday(month, day, year) 
jdayO = julianday(l, 1, year) 
D == jday - jdayO + 1 
CALL position(jday, dec, rv, eq) 
CALL factors(mc, VdK, Vdl, Vtrn) 
storeA = SIN(lat) * SIN(dec) 
storeB = COS(lat) * COS(dec) 
dummyA = SIN(slope) * COS(aspect) 
dummyB = SIN(slope) * SIN(aspect) 
storeC - storeA * COS(slope) + COS(lat) * SIN(dec) * dummyA 
storeD « storeB * COS(slope) - SIN(lat) * COS(dec) * dummyA 
storeE = -COS(dec) * dummyB 
HO = ARCCOS(-storeA, storeB) 
Hrise = -ARCCOS(muHrise - storeA, storeB) 
H = Hstart 
FOR n% - 1 TO nmax 

'* (2.1) instantaneous shortwave radiation characteristics * 

IF HO > 0 THEN 
mu = storeA + storeB * COS(H) 
dummyA = HO * storeA + storeB * SIN(HO) 
Kotot = SO * dummyA / (pi * rv A 2) 
IF mu > 0 THEN 

'* (2.1.1) direct solar radiation * 

Z = ARCCOS(mu, 1) 
refraction » .15 * (93.885 - Z / rad) Ä -1.253 
airmassO = 1 / (mu + refraction) 
Prel = (1 + lapse * hsite / Ta(n%)) * (-g / (lapse * Rd)) 
airmass = Prel * airmassO 
Ko(n%) = (SO / rv " 2) * mu 
Kdir(n%) = Ko(n%) * trans A airmass 
dummyA = mu * SIN(lat) - SIN(dec) 
dummyB = SIN(Z) * COS(lat) 
az = pi + SGN(H) * ARCCOS(dummyA, dummyB) 
IF Z < horizon(az) THEN 

boolean = 1 
IF Kdir(n% - 1) = 0 THEN 

nrise = n% 
Hguess = H - dH / 2 
CALL localriseset(Hlocal, azlocal, altlocal, Hguess) 
Hriselocal = Hlocal 
azriselocal = azlocal 
altriselocal = altlocal 

END IF 
ELSE 

boolean = 0 
IF Kdir(n% - 1) > 0 THEN 

nset = n% 
Hguess = H - dH / 2 
CALL localriseset(Hlocal, azlocal, altlocal, Hguess) 
Hsetlocal = Hlocal 
azsetlocal = azlocal 
altsetlocal = altlocal 

END IF 
END IF 
'dummyA = COS(slope) * mu 
•mus = dummyA + SIN(slope) * SIN(Z) * COS(az - aspect) 
mus = storeC + storeD * COS(H) + storeE * SIN(H) 
Vdir = boolean * mus / mu 
Kdir(n%) = Vdir * Kdir(n%) 
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•* (2.1.2) diffuse sky radiation and global radiation 

D)) * Ko(n%) 

askyo) - 1) 

. THEN 
Ktot(n%) = cloudsw * K1 
Kt « Ktot(n%) / Ko(n%) 
Tk - coefficient(Kt) 
Kdif(n%) = Tk * Ktot(n%) 
Kdir(n%) = Ktot(n%) - Kdif(n%) 
Kbck(n%) = atrn * asky * Ktot(n%) 
Ksct(n%) = Kdif(n%) - Kbck(n%) 

END IF 
F = 1 - Tk A 2 
C s = l + F * m u A 2 * SIN(Z) A 3 
Css = 1 + boolean * F * mus * 2 * SIN(Z) A 3 
Ksct(n%) = VdK * (Css / Cs) * Ksct(n%) 
Kbck(n%) = VdK * Kbck(n%) 
Kdif(n%) = Ksct(n%) + Kbck(n%) 
Ktrn(n%) = Vtrn * atrn * Ktot(n%) 
Ktot(n%) = Kdir(n%) + Kdif(n%) + Ktrn(n%) 
asfc(n%) = albedo(Z, Tk, 1) 
Kn(n%) = (1 - asfc(n%)) * Ktot(n%) 

END IF 
ELSEIF HO <= 0 OR mu <= 0 THEN 

Ko(n%) - 0: Kdir(n%) = 0: Kdif(n%) = 0: Ksct(n%) = 0 
Kbck(n%) = 0: Ktrn(n%) = 0: Ktot(n%) * 0: Kn(n%) = 0 

END IF 

'* (2.2) instantaneous longwave radiation and net radiation * 
'* characteristics * 

•esky = .00000939# * Ta(n%) * 2 
'esky = 1 - .261 * EXP(-.000777 * (273 - Ta(n%)) A 2) 
'esky = .642 * (ea(n%) / Ta(n%)) A ( 1 / 7 ) 
esky = 1.08 * (1 - EXP(-(ea(n%) / 100) A (Ta(n%) / 2016))) 
'esky « .7 + .000000595* * ea(n%) * EXP(1500 / Ta(n%)) 
Lsky(n%) = Vdl * cloudlw * esky * sigma * Ta(n%) A 4 
Lsfc(n%) = e * sigma * TcB(n%) A 4 
Ltrn(n%) = Vtrn * etrn * sigma * TcB(n%) A 4 
Ln = e * (Lsky(n%) + Ltrn(n%)) - Lsfc(n%) 
Rn(n%) = Kn(n%) + Ln 
IF H <= 0 AND H + dH > 0 THEN 

nnoon = n% 
END IF 
H = H + dH 

NEXT n% 
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'* (3) assessment of model performance 

statistics(Ktot(), Ktotm(), MBE1, RMSEl, NASH1, nrise, nmax) 
statistics(Ktot(), KtotmB(), MBE2, RMSE2, NASH2, nrise, nmax) 

CALL 
CALL 
CALL statistics(Rn 
CALL statistics(Rn 
CALL average(Ko(), 
CALL average(Ktot( 
CALL average(Kdir( 
CALL average(Kdif( 
CALL average(Ksct( 
CALL average(Kbck( 
CALL average(Ktrn( 
CALL average(Kn(), 
CALL average(Lsky( 
CALL average(Ltrn( 
CALL average(Lsfc( 
CALL average(Rn(), 

), Rnm(), MBE3, RMSE3, NASH3, 1, nmax) 
), RnmB(), MBE4, RMSE4, NASH4, 1, nmax) 
dummyAQ, 1, nnoon, nnoon) 

dummyB(), 1, nnoon, nnoon) 
nnoon, 
nnoon, 
nnoon, 
nnoon, 
nnoon, 

1» 
If 
1, 
1, 
1» 

, dummyC() 
, dummyD() 
, dummyE(), 
, dummyF(), 
, dummyG(), 
dummyHO, 1, nnoon, nnoon) 
, dummyl(), 1, nnoon, nnoon) 
, dummyJ(), 1, nnoon, nnoon) 
, dummyK(), 1, nnoon, nnoon) 
dummyL(), 1, nnoon, nnoon) 

nnoon) 
nnoon) 
nnoon) 
nnoon) 
nnoon) 

'* (4) resulting data to output-file "RBMOUT.DAT" on current 
* * directory and/or to terminal screen 

CLS 
PRINT "simulation results:" 
PRINT 
PRINT "day number of year [-]: 
PRINT USING " #### "; D 
PRINT "solar declination [deg]: 
PRINT USING " ####.#### "; dec / rad 
PRINT "earth's radius vector [-]: 
PRINT USING " ####.#### "; rv 
CALL time(eq / rad, sign$, hour, min, sec) 
PRINT "equation of time [hr;min;sec]: 
PRINT sign$; hour; min; sec 
PRINT "extraterrestrial radiation [W/m2]: 
PRINT USING " ####.#### "; Kotot 
PRINT "hour angle at sunrise [deg]: 
PRINT USING " ####.#### "; Hrise / rad 
PRINT "half day length [deg]: 
PRINT USING " ####.#### "; HO / rad 
PRINT "start of simulation fdeg]: 
PRINT USING " ####.#### "; Hstart / rad 
PRINT "number of input time steps [-]: 
PRINT USING " #### "; tmax 
PRINT "input time step [min]: 
PRINT USING " ******** "; dtin 
PRINT "number of simulated time steps [-]: 
PRINT USING " #### "; nmax 
PRINT "time step number at sunrise [-]: 
PRINT USING " #### "; nrise 
PRINT "time step number at solar noon [-]: 
PRINT USING " #### "; nnoon 
PRINT 
PRINT "Press any key to continue" 
DO 

keystroke$ = INKEY$ 
LOOP UNTIL LEN(keystroke$) <> 0 
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CLS 
PRINT "simulated daily average radiation budget [W/m2]: 
PRINT 
PRINT "Ko: "j 
PRINT "Ktot: "i 

Kdir: 
Kdif: 

Ksct: 
Kbck: 

Ktrn: 

PRINT USING 
PRINT USING 
PRINT USING 
PRINT USING 
PRINT USING 
PRINT USING 
PRINT USING 

####.## 
####.## 
####.## 
####.## 
####.## 
****.** 
####.## 

dummyA(1) 
dummyB(1) 
dummyC(1) 
dummyD(1) 
dummyE(1) 
dummyF(1) 
dummyG(1) 

asfc 
dummyI(1) 
dummyJ(1) 
dummyK(1) 
dummyL(1) 

PRINT " 
PRINT " 
PRINT " 
PRINT " 
PRINT " 
asfc = 1 - dummyH(l) / dummyB(l) 
PRINT "asfc [-]: "; : PRINT USING " ####.## 
PRINT "Lsky: "; : PRINT USING " ####.## 
PRINT "Ltrn: "; : PRINT USING " ####.## 
PRINT "Lsfc: "; : PRINT USING " ####.## 
PRINT "Rn: "; : PRINT USING " ƒ###.## 
PRINT 
PRINT "assessment of model performance:" 
PRINT 
PRINT 
PRINT 
PRINT "Ktot vs. Ktotm: "; : PRINT USING " ###.### 
PRINT "Ktot vs. KtotmB: "; : PRINT USING " ###.### 
PRINT "Rn vs. Rnm: "; : PRINT USING " ###.### 
PRINT "Rn vs. RnmB: "; :: PRINT USING " ###.### 

NASH4 
OPEN "RBMOUT.DAT" FOR OUTPUT AS #2 
H - Hstart 
FOR n% - 1 TO nmax 

PRINT #2, USING "####.##"; H / rad; Ta(n%); TcB(n%); ea(n%); Ko(n%); 
Ktot(n%); Ktotm(n%); Rn(n%); RnmB(n%) 

H = H + dH 
NEXT n% 
CLOSE 02 
END' RBM 

MBE [%] RMSE [%] NASH [%]" 

MBE1; RMSE1; NASH1 
MBE2; RMSE2; NASH2 
MBE3; RMSE3; NASH3 
MBE4; RMSE4; 
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I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

'* subroutine: albedo * 
'* objective: computing albedo of wheat field as function of * 
'* solar zenith angle (Z), ratio of diffuse to global * 
'* radiation (Tk) and albedo with sun in zenith * 
'* (albedoO) * 
******************************************************************* 
FUNCTION albedo (Z, Tk, choice) 
CONST Cd • .8 
albedoO = a 
IF choice = 1 THEN 

factor » 1 + 2.5 * (1.25 - Tk) * (1 - albedoO) * SIN(1.5 * Z) 
ELSEIF Choice = 2 THEN 

mu = COS(Z) 
factor = (1 + Cd) / (1 + Cd * mu) 

ELSE 
factor « 1 

END IF 
albedo • albedoO * factor 
END FUNCTION'albedo 

•it***************************************************************** 

'* function: Ao, ozone absorptivity * 
'* objective: computing absorptivity of ozone as function of * 
'* solar zenith angle (Z), day number of year (D) and * 
'* latitude (lat) and longitude (Ion) of site * 

FUNCTION Ao (Z, D) 
Mo = 35 / SQR(1224 * COS(Z) Ä 2 + 1) 
IF lat > 0 THEN 

cl = .15: c2 = .04: c3 = -30: c4 = 3 : c6 = 1.28 
IF Ion < 0 THEN 

c5 » 20 * rad 
ELSE 

c5 = 0 
END IF 

ELSE 
cl = .1: c2 = .03: c3 = 152.625: c4 = 2: c5 = -75 * rad 
c6 = 1.5 

END IF 
dummyA » cl + c2 * SIN(2 * pi * (D + c3) / 365.25) 
dummyB = (dummyA - .02 * SIN(c4 * (Ion + c5))) * SIN(c6 * lat) * 2 
o - .235 + dummyB 
'o = .31 + .1 * SIN(lat) 
dummyC = 1 + .042 * Mo * o + .000323 * (Mo * o) * 2 
Aovis = .02118 * Mo * o / dummyC 
dummyD = 1.082 * Mo * o / (1 + 138.6 * Mo * o) * .805 
Aouv = dummyD + .0658 * Mo * o / (1 + (103.6 * Mo * o) Ä 2) 
Ao = Aovis + Aouv 
END FUNCTION'Ao 
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'* function: ARCCOS, ARCCOSine * 
'* objective: computing arccosine of quotient of x and y; * 
'* resulting value within interval 0 <= ARCCOS <= pi * 
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ 

FUNCTION ARCCOS (x, y) 
IF y = 0 THEN 

dummyA = SGN(x) 
ELSE 

dummyA - x / y 
IF ABS(dummyA) > 1 THEN 

dummyA = SGN(dummyA) 
END IF 

END IF 
dummyB = ARCTAN(SQR(1 - dummyA "2), dummyA) 
IF dummyB < 0 OR dummyA = -1 THEN 

dummyB - dummyB + pi 
END IF 

ARCCOS = dummyB 
END FUNCTION'ARCCOS 

******************************************************************* 
• * function: ARCSIN, ARCSINe * 
'* objective: computing arcsine of quotient of x and y; * 
'* resulting value within interval -pi / 2 <= ARCSIN * 
'* <= pi / 2 * 
******************************************************************* 
FUNCTION ARCSIN (x, y) 
IF y = 0 THEN 

dummyA = SGN(x) 
ELSE 

dummyA = x / y 
IF ABS(dummyA) > 1 THEN 

dummyA = SGN(dummyA) 
END IF 

END IF 
ARCSIN = ARCTAN(dummyA, SQR(1 - dummyA A 2)) 
END FUNCTION'ARCSIN 

******************************************************************* 
'* function: ARCTAN, ARCTANgent * 
'* objective: computing arctangent of quotient of x and y; * 
'* resulting value within interval -pi / 2 <= ARCTAN * 
'* <= pi / 2 * 
******************************************************************* 
FUNCTION ARCTAN (x, y) 
IF y = o THEN 

ARCTAN - SGN(x) * pi / 2 
ELSE 

ARCTAN = ATN(x / y) 
END IF 
END FUNCTION'ARCTAN 
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******************************************************************* 
'* subroutine: average * 
'* objective: computing averages (outarray) of all subsets with * 
'* length sublength within element range ibegin until * 
'* iend of given data set (inarray) * 
******************************************************************* 
SUB average (inarray(), outarray(), ibegin, iend, sublength) 
outlength = CINT((iend - ibegin + 1) / sublength) 
FOR j% - 1 TO outlength 

outarray(j%) » 0 
istart = ibegin + (j% - 1) * sublength 
istop = ibegin - 1 + j% * sublength 
FOR i% - istart TO istop 

outarray(j%) = outarray(j%) + inarray(i%) 
NEXT i% 
outarray(j%) = outarray(j%) / sublength 

NEXT j% 
END SUB'average 

******************************************************************* 
'* function: Aw, water vapor absorptivity * 
'* objective: computing absorptivity of water vapor as function * 
'* of solar zenith angle (Z), vapor pressure (ea) and * 
'* air temperature (Ta) * 
>****************************************************************** 
FUNCTION Aw (Z, ea, Ta) 
Mw = 1 / (COS(Z) + .0548 * (92.65 - Z / rad) A -1.452) 
w = .622 * ea / (kw * Rd * Ta) 
dummyA - .5149 * LOG10(Mw * w) - .0345 * (LOG10(Mw * w)) A 2 
Aw = 10 * (-1.6754 + dummyA) 
END FUNCTION'Aw 

******************************************************************* 
'* function: coefficient * 
'* objective: determining ratio of diffuse to global radiation * 
'* from ratio of global to extraterrestrial radiation * 
'* (Kt) * 
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

FUNCTION coefficient (Kt) 
IF Kt <* .22 THEN 

coefficient = 1 - .09 * Kt 
ELSEIF Kt <= .8 THEN 

dummyA = .9511 - .1604 * Kt + 4.388 * Kt * 2 
coefficient = dummyA - 16.638 * Kt A 3 + 12.336 * Kt A 4 

ELSE 
coefficient = .165 

END IF 
END FUNCTION'coefficient 

'****************************************************************** 
'* subroutine: factors * 
'* objective: computing sky view factors for background solar * 
'* sky radiation (Vdk) and atmospheric emission (Vdl) * 
'* and terrain configuration factor (Vtrn) as function* 
'* of local topography and fractional cloudcover (mc) * 
******************************************************************* 
SUB factors (mc, VdK, Vdl, vtrn) 
VdK = 1 
Vdl = 1 
Vtrn = 0 
END SUB'factors 
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******************************************************************* 
'* function: horizon * 
'* objective: computing zenith angle of local horizon as function * 
'* of local topography and azimuth (phi) relative to * 
• * north * 
******************************************************************* 
FUNCTION horizon (phi) 
horizon » pi / 2 
END FUNCTION'horizon 
******************************************************************* 
'* function: julianday * 
'* objective: computing Julian day number from Gregorian calendar * 
'* date as defined by month, day and year number * 
******************************************************************* 
FUNCTION julianday (month, day, year) 
dummyA » 367 * (year - 1980) 
dummyA = dummyA - INT(7 * (year + INT((month + 9 ) / 12)) / 4) 
dummyB = SGN(month - 9) 
dummyC • ABS(month - 9) 
dummyD = INT((year + dummyB * INT(dummyC / 7)) / 100) 
dummyA = dummyA - INT(3 * (dummyD +1) / 4) 
dummyA = dummyA + INT(275 * month / 9) + day - .5 
julianday = dummyA + 2447689 
END FUNCTION'julianday 

******************************************************************* 
'* subroutine: localriseset * 
'* objective: computing hour angle (Hlocal), solar azimuth * 
'* (azlocal), and solar altitude (altlocal) at local * 
'* sun rise or set by means of iteration procedure * 
'* with initial guess for hour angle (Hguess) * 
******************************************************************* 
SUB localriseset (Hlocal, azlocal, altlocal, Hguess) 
muguess - storeA + storeB * COS(Hguess) 
Zguess « ARCCOS(muguess, 1) 
Zold = Zguess 
improve = 2 * accuracy 
count = 0 
DO UNTIL improve <= accuracy OR count = countmax 

dummyA = COS(Zold) * SIN(lat) - SIN(dec) 
dummyB = SIN(Zold) * COS(lat) 
azlocal = pi + SGN(Hguess) * ARCCOS(dummyA, dummyB) 
Znew - (Zold + horizon(azlocal)) / 2 
Hlocal = SGN(Hguess) * ARCCOS(COS(Znew) - storeA, storeB) 
altlocal = pi / 2 - Znew 
improve - 100 * ABS(Znew / Zold - 1) 
Zold = Znew 
count = count + 1 

LOOP 
IF count = countmax THEN 

Hlocal = Hguess 
dummyA = muguess * SIN(lat) - SIN(dec) 
dummyB = SIN(Zguess) * COS(lat) 
azlocal = pi + SGN(Hguess) * ARCCOS(dummyA, dummyB) 
altlocal = pi / 2 - Zguess 

END IF 
END SUB'localriseset 
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******************************************************************* 
'* function: LOGIO * 
'* objective: computing decimal logarithm of x * 

FUNCTION LOGIO (x) 
IF x > 0 THEN 

LOGIO « LOG(x) / LOG(IO) 
END IF 
END FUNCTION'LOGIO 

******************************************************************* 
'* subroutine: position, solar position * 
'* objective: computing solar position at local noon * 
'* from Julian day number (jday): declination (dec), * 
'* radius vector (rv) and equation of time (eq) * 
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUB position (jday AS DOUBLE, dec, rv, eq) 
CONST parA# » 6.23471229*, parB# = .01720197#, parC# « 4.88376619# 
CONST parD# • .017202791#, parE* « .016728, parF# » .409095 
jdayreduced - jday - 2444239 + Ion / (2 * pi) 
cor • 2.2E-08 * jdayreduced + .00059 
jdayreduced = jdayreduced + cor 
manom = parA + parB * jdayreduced 
melon = pare + parD * jdayreduced 
melon = melon - 2 * pi * INT(mclon / (2 * pi)) 
dclon = 2 * parE * SIN(manom) + 1.25 * parE * 2 * SIN(2 * manom) 
anom = manom + dclon 
clon * melon + dclon 
rv = (1 - parE A 2) / (1 + parE * COS(anom)) 
dec = ARCSIN(SIN(clon) * SIN(parF), 1) 
melon = melon - pi * INT(melon / pi) 
asce = ARCTAN(SIN(clon) * COS(parF), COS(clon)) 
asce = reduce(asce, pi) 
eq = melon - asce 
END SUB'position 

'* function: reduce * 
* * objective: reducing value of angle to interval 0 <= angle <= * 
' * interval * 
******************************************************************* 
FUNCTION reduce (angle, interval) 
MODULUS = INT(angle / interval) 
reduce = angle - MODULUS * interval 
END FUNCTION'reduce 
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'* subroutine: statistics * 
'* objective: computing mean bias error (MBE), root mean square * 
'* error (RMSE) and coefficient of determination * 
'* (NASH) of calculated data set (Carray) vs. * 
'* measured data set (Marray) from element ibegin to * 
'* element iend * 

SUB statistics (Carray(), Marray(), MBE, RMSE, NASH, ibegin, iend) 
DIM dummyA(l), dummyB(l), dummyC(l), dummyD(l) 
DIM CminusMarray(length), CminusMarraySQR(length) 
DIM MminusMarraySQR(length) 
sublength = iend - ibegin + 1 
CALL average(Marray(), dummyA(), ibegin, iend, sublength) 
FOR i% = ibegin TO iend 

CminusMarray(i%) - Carray(i%) - Marray(i%) 
CminusMarraySQR(i%) = CminusMarray(i%) A 2 
MminusMarraySQR(i%) = (dummyA(1) - Marray(i%)) * 2 

NEXT i% 
CALL average(CminusMarray(), dummyB(), ibegin, iend, sublength) 
MBE = 100 * dummyB(l) / ABS(dummyA(1)) 
CALL average(CminusMarraySQR(), dummyC(), ibegin, iend, sublength) 
RMSE - 100 * SQR(dummyC(l)) / ABS(dummyA(1)) 
CALL average(MminusMarraySQR(), dummyD(), ibegin, iend, sublength) 
NASH = 100 * (1 - dummyC(l) / dummyD(l)) 
END SUB'statistics 

' l e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

'* subroutine: time * 
'* objective: converting angular time (angle, [deg]) to * 
'* hours (hour), minutes (min) and seconds (sec) * 
******************************************************************* 
SUB time (angle, sign$, hour, min, sec) 
IF angle < 0 THEN 

sign$ = "-" 
ELSE 

sign$ » "+" 
END IF 
dummyA = ABS(angle) * 24 / 360 
hour = INT(dummyA) 
dummyB = (dummyA - hour) * 60 
min = INT(dummyB) 
dummyC = (dummyB - min) * 60 
sec = CINT(dummyC) 
IF sec = 60 THEN 

min = min + 1 
sec = 0 
IF min = 60 THEN 

hour = hour + 1 
min = 0 

END IF 
END IF 
END SUB'time 
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