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Stellingen 

1. De term isozym wordt vaak ten onrechte gebruikt waar allozym wordt bedoeld. 

R. Messeguer et al. (1991). Theor. Appl. Genet. 82: 529-536. 
H. Tanaka et al. (1990). Agric. Biol. Chem. 54: 1947-1952. 

De uitkomst van een PCR-reactie is niet alleen afhankelijk van de aanwezigheid van de 
"target" nucleotidensequentie op de gebruikte DNA-matrijs, maar wordt mede bepaald 
door de concurrentie van eventuele nevenprodukten om polymerasemolekulen. 

3. De conclusie van Kaneko et al. dat celwanden van tabak een zure fosfatase bevatten dat 
uit acht verschillende subunits is opgebouwd, is niet gerechtvaardigd. Veeleer tonen 
hun resultaten aan, dat het verkregen fosfatasepreparaat nog onzuiver is. 

Kaneko et al. (1990). Phytochemistry 2£: 2883-2887. 

Het is onwaarschijnlijk, dat de eiwitband met pi = 4.37, beschreven door Günther et ai, 
zure fosfatase-11 (APS-11) van tomaat representeert. 

Günther et al. (1988). Electrophoresis 2: 618-620. 

5. Voor de betrokkenheid van de aryl hydrocarbon (Ah) receptor bij het carcinogene effect 
van dioxinen en polyhalogeenbifenylen bestaat onvoldoende bewijs. 

A. Poland en J.C. Knutson (1982). Ann. Rev. Pharmacol. Toxicol. 22: 517-554. 
S. Safe (1990). CriL Rev. Toxicol. 21: 51-88. 
R£. Keenan et al. (1991). J. Toxicol. Environ. Health 24: 279-296. 

6. Het blinde vertrouwen van veel consumenten in de heilzame eigenschappen van 
natuurlijke voedingsmiddelen is ongenuanceerd, en gaat voorbij aan de gevaren 
verbonden aan geregelde consumptie van toxische componenten, die van nature in deze 
Produkten aanwezig kunnen zijn. 
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Uit het oogpunt van verantwoord milieubeleid verdient het aanbeveling 
polychloorbifenylen (PCBs) voor toxicologisch onderzoek uit afgewerkte 
transformatorvloeistof te winnen. 

Het afbreken van de ontwikkeling van de menselijke persoonlijkheid naar zijn eigen, 
unieke voltooiing is in elk levensstadium, zowel prenataal als postnataal, een 
onherstelbare misdaad. 

9. De afbeelding op de jubileumpostzegel, uitgegeven bij het 75-jarig bestaan van de 
Landbouwuniversiteit, geeft een verkeerde indruk van de biologische bestrijding van 
witte vlieg met parasitaire sluipwespen. 

10. De zogenaamde post-promotionele depressie kan voorkomen worden door aansluitend 
aan de verdediging van het proefschrift met een nieuw promotie-onderzoek te beginnen. 

Stellingen behorende bij het proefschrift 
"Acidphosphatase-11, 

a molecular marker tightly linked to root-knot nematode resistance in tomato" 

doorJac M.MJ.G. Aarts, te verdedigen op vrijdag 14 mei 1993 te Wageningen. 
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SUMMARY 

Root knot nematode resistance in tomato is a genetic trait which is determined by a single 

dominant gene (Mi) on chromosome 6 of tomato. Information about the mRNA or protein 

product is completely lacking, which precludes the cloning of Mi by conventional strategies 

based on gene expression. However, an acid phosphatase-1 allozyme marker (Aps-11) is 

known, which shows tight genetic linkage to the root knot nematode resistance trait. With a 

view to isolating Mi nucleotide sequences by a positional cloning approach, we have developed 

a molecular probe for the Aps-11 gene, using the polymerase chain reaction (PCR) and a pair of 

primers, corresponding to amino acid sequence information from the protein encoded by the 

Aps-11 gene. 

The Aps-11 gene product (APS-11) was purified from hydroponic tomato roots and 

tomato suspension cells using conventional low pressure column chromatographic techniques. 

The most striking purification was achieved by concanavalin A (Con A)-Sepharose 4B affinity 

column chromatography, which constituted the fourth step in our purification procedure and 

produced virtually pure APS-11. Unfortunately, however, this step caused contamination of the 

APS-11 preparation with Con A released form the column. Therefore, a final Mono Q-FPLC 

purification step was added to remove the Con A-contamination. The resulting APS-11 

preparation was homogeneous in denaturing and non-denaturing Polyacrylamide gel 

electrophoresis. In addition, the purified protein showed co-electrophoresis and co-elution with 

the APS-11 enzymatic activity in non-denaturing PAGE and gel filtration column 

chromatography, respectively, thereby demonstrating its APS-11 identity. The yield of our 

purification protocol was a few (ig of APS-11 protein per kg of tomato suspension cells or 

roots. No major loss of APS-11 activity was observed in any of the purification steps, 

indicating that the low yield attained is truly reflecting the very low expression level of the 

Aps-11 gene. 

The purified APS-1l preparation was treated with CNBr and trypsin to produce APS-1J 

peptides. Following purification by HPLC, amino acid sequence analysis of two CNBr and 

seven trypsin cleavage products revealed 61 residues of APS-11 amino acid sequence. 

The amino acid sequence information from two APS-1l peptides consisting of 8 and 14 

amino acids respectively, allowed the synthesis of PCR primer pools to direct the amplification 

of a 2.4 kb Aps-11 fragment using a genomic DNA template. Crucial for the effectivity of these 

pools was the limitation of the number of different primers used to account for codon 

degeneracy. Restriction of the complexity of the primer pools was achieved by incorporating 

deoxyinosine or the most probable nucleotide(s) at ambiguous codon positions in the 5' part of 

the primers. On the other hand, efficient primer elongation was assured by including in the 

primer pool every possible combination of the three 3'-terminal codons. The 2.4 kb fragment 
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was only amplified from a genomic template carrying the Aps-11 allele and was not found in 

using a template that carried the Aps-13 or Aps-1+ allele. Moreover, the 2.4 kb amplification 

product was found to reveal RFLPs between a pair of nematode resistant and sensitive nearly 

isogenic lines, which only differed for the Aps-11 IMi region. The specific amplification under 

the direction of the particular Aps-1 allele from which the primers had been derived and its 

genetic map position provide evidence showing, that the 2.4 kb PCR product represents the 

Aps-11 target fragment. Using cDNA as a template and the same primers that directed the 

synthesis of the 2.4 kb genomic PCR product, a 490 bp Aps-11 fragment was obtained. An 

overlapping Aps-11 cDNA sequence of 550 bp was amplified using the same upstream primers 

but a different pool of downstream primers corresponding to a peptide that turned out to 

represent the C-terminus of APS-11. The amount of these cDNA-directed amplification 

products synthesized in 30 cycles of PCR was so low, that their production was only detectable 

by Southern blot hybridization using the 2.4 kb genomic PCR product as a probe, which 

provides another demonstration of the very low expression level of the Aps-11 gene. 

In addition to the 2.4 kb genomic Aps-11 sequence, another PCR product of about 115 

bp was obtained using a different pair of primers and either a genomic or a cDNA template. 

This product was found to comprise several related nucleotide sequences of similar size. 

Because of the poor performance of the cloned products as a probe, it was not possible to 

establish their genetic map position by RFLP analysis. 

Screening of a cDNA library with the 2.4 kb putative Aps-11 sequence identified two 

clones of related nucleotide sequences, one of which apparently represented an Aps-11 cDNA 

clone, as it encoded three APS-1l peptides (together 30 amino acids) in the orientation predicted 

by the PCR results. 

The nucleotide sequence of this Aps-11 cDNA clone revealed a stretch of 69 residues of 

tomato APS-1l amino acid sequence starting from the C-terminus, and showed that peptide VII 

is the C-terminal tryptic peptide. Another stretch of putative APS-11 amino acid sequence was 

deduced from the nucleotide sequence adjacent to the upstream primer in the 2.4 kb genomic 

PCR product, and comprised 56 amino acids sequence information starting with peptide IX at 

the N-terminal end. The amino acid sequence of tomato APS-11 elucidated so far, did not 

present major sequence homology with the sequences of any other (acid) phosphatase in the 

GenBank or EMBL data bases. A striking sequence homology was found, however, with a 

vegetative storage protein from soybean, VSP-ß, that accumulates to very high levels in leaves 

after depodding of the plants. 

The detection of an Aps-1 ̂ related cDNA clone using the 2.4 kb genomic Aps-11 

sequence as a probe, and furthermore, the sequence heterogeneity among the 115 bp PCR 

product points to the existence of a family of Aps-11 -related nucleotide sequences within the 

tomato genome. Upon comparison of four different nucleotide sequences present in the 115 bp 

PCR product with the Aps-11 cDNA sequence, it was found, that one of them corresponded 
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with the Aps-11 sequence. Neither of the other three, nor the Aps-i^-related cDNA clone 
showed a higher homology at the amino acid level with soybean VSP-ß than with tomato 
APS-11, which argues against one of these sequences representing the tomato homologue of 
soybean VSP-ß. 

In the isolation of an Aps-11 cDNA clone, we have shown that it is possible to design 
highly specific degenerate PCR primer pools. Therefore, whenever going from protein to gene, 
we recommend to try PCR first in order to obtain a highly selective probe, before turning to 
library screening using degenerate oligonucleotides. Furthermore, since an Aps-11 cDNA clone 
is available now, a possible starting point or a useful landmark has been provided for a 
chromosomal walk towards the nematode resistance gene Mi. 
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Chapter 1 

General introduction 



ROOT-KNOT NEMATODES 

History and significance 

Nematodes (Nematoda) or round-worms constitute a class of vermiform animal species which 
include a number of major plant pathogens. Among those, the root-knot nematodes 
(Meloidogyne spp.) are regarded as particularly harmful to agriculture. 

The first description of a plant-parasitic nematode dates from 1743 when Needham 
reported his observations of nematodes in blighted wheat kernels [Needham, 1743; Dowler and 
Van Gundy, 1984]. Root-knot nematodes were mentioned explicitly in 1855 by Berkeley in 
England as 'vibrios forming excrescences on cucumber roots' [Berkeley, 1855]. Initially, root-
knot nematodes were named Anguillula marioni by Cornu [1879]. Later they were 
independently referred to as Heterodera radicicola Müller [Müller, 1884], H.javanica Treub, 
Meloidogyne exigua Göldi [Göldi, 1887], A. arenaria Neal [Neal, 1889], Tylenchus arenarius 
Cobb, A. vialae Lavergne, Heterodera marioni (Cornu) Marcinowski [Marcinowski, 1909], 
Oxyurus incognita Kofoid and White, and Caconema radicicola Cobb [Cobb, 1924]. Finally, 
Chitwood [1949] revised the genus Meloidogyne Göldi 1887 to include all root-knot nematode 
species. Nowadays, the four major root-knot nematode species are referred to as M. incognita 
(Kofoid and White) Chitwood or southern root-knot nematode, M. hapla Chitwood or northern 
root-knot nematode, M. javanica (Treub) Chitwood or Javanese root-knot nematode, and M. 
arenaria (Neal) Chitwood or peanut root-knot nematode. 

The four most prevalent root-knot nematode species, M. incognita, M. hapla, M. 
javanica, and M. arenaria, all together show a world-wide distribution and a very broad host 
range [Sasser, 1977; 1980; Sasser et al., 1983; Sasser and Carter, 1985], including a diversity 
of economically important crop species such as potato, wheat, rice, peanut, cotton, tomato, 
beans and other leguminous vegetables [Nickle, 1984; Fassuliotis, 1985]. Together they are 
responsible for extensive crop losses, estimated as high as 5% of total agricultural production 
world-wide [Sasser et al., 1983; Sasser and Carter, 1985]. However, the estimations made 
thus far may still be too low, since they mosdy refer to the losses directly attributable to root-
knot nematodes, and they do not take into account the collateral damage and the unnoticed crop 
losses [Sasser etal., 1983; Mai, 1985]. 

Interaction with the host plant 

Root-knot nematodes owe their name to the nodule-like structures formed on the surface of 

infected roots. These so-called root-knots or galls contain the adult females, which are 
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sedentary and deposit eggs enclosed in a gelatinous egg sac at their posterior end, the side of 

the body that is usually placed at the surface of the root. 

Following embryogenesis, the juvenile molts once within the egg. Subsequent egg 

hatching occurs spontaneously without any stimulus from plant roots [Hussey, 1985; Perry, 

1987; Idowu and Fawole, 1990]. The resulting second-stage juveniles are mobile and 

constitute the infective stage. They migrate in the soil and are generally attracted by plant roots. 

As to what extent roots attract root-knot nematodes, little or no difference was found between 

host and non-host plants [Lownsbery and Viglierchio, 1961; Hussey, 1985], or between 

resistant and susceptible cultivars of a particular host plant species [Riggs and Winstead, 1959; 

Fassuliotis et al., 1970; Reynolds et al., 1970; Griffin and Waite, 1971; McClure et al., 1974; 

Griffin and Elgin, 1977; Hadisoeganda and Sasser, 1982; Herman et al., 1991; Schneider, 

1991]. When the juvenile has contacted a suitable plant root, the cortex is penetrated either 

directly behind the root cap, or at the branching points of lateral roots, at the penetration sites of 

other juveniles, or at wounded surfaces. Subsequently, the juveniles migrate intercellularly 

towards the region where the vascular tissue differentiates, and then start feeding, preferably on 

cells of the primary phloem or adjacent parenchyma. From this point on, the course of the 

development is dependent on the compatibility of the interaction between the root-knot 

nematode and the plant genotype. 

Compatible interaction 

In a susceptible host, a few cells adjacent to the head of the feeding nematode enlarge to 
become so-called 'giant cells'. These putative feeding cells develop characteristic ingrowths of 
the cell wall by which they increase the surface of the plasmalemma to facilitate the transport of 
solutes to the nematode [Jones and Northcote, 1972; CS. Huang, 1985]. Giant cells are 
multinucleate and most probably formed by repeated endomitosis without subsequent 
cytokinesis as shown by scanning electron microscopy [Jones and Payne, 1978; CS. Huang, 
1985]. Concurrent with giant cell formation, hyperplasia and hypertrophy occur in the 
surrounding tissues, giving rise to the root gall characteristic of Meloidogyne infection. 

After having established a parasitic relationship within the plant root and feeding for 
3 - 8 weeks, the second molt takes place and the stylet and median bulb of the esophagus 
disappear. Sufficient metabolic reserves have been stored at this stage to allow two additional 
molts without any further feeding. This yields the adult (fifth) stage, in which the stylet and the 
median bulb are regenerated. Soon after the second-stage juvenile has established a parasitic 
relationship, the genital primordium starts growing, resulting in the differentiation of males and 
females. Females first become flask-shaped during their development, but after the fourth molt, 
the adult females restart feeding and assume a pear shape. The females remain sedentary within 
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the root, where they may live and reproduce for an extended period of three months or more 
[Heald and Orr, 1984]. The males, on the other hand, evolve a vermiform body shape by 
molting within the cuticle of the second stage. After the last molt, the adult males (fifth stage) 
burst out of the cuticle. Unlike the adult females, the adult males do not resume feeding and 
retain their motility so they can leave the root in search of a female. 

Although the ability to generate male individuals has been preserved in the four common 
root-knot nematode species, males are not necessary for reproduction. M. incognita, M. 
arenaria and M. javanica reproduce exclusively by mitotic parthenogenesis, whereas in M. 
hapla, facultative meiotic parthenogenesis occurs in some races and obligatory mitotic 
parthenogenesis in others. Egg masses containing 300 - 1000 single-celled eggs are deposited 
surrounded by a gelatinous matrix. This gelatinous egg sac is secreted by the rectal glands of 
the female and sticks to the posterior body end, which is located at the root surface. Depending 
on the climate and host species, the life cycle can be completed within four to six weeks, 
resulting in the development of three to five generations in a single growing season. 

The activity of the nematode causes a general dysfunction of the root system with poor 
mineral and water uptake as a main effect. This may result in mineral deficiency symptoms and 
wilting of the plant during hot periods [Hussey, 1985]. In case of a severe infestation, death 
of the infected plants can be the ultimate consequence [Johnson and Fassuliotis, 1984; 
Minton, 1984]. 

For the sake of a prolonged parasitic relationship, the nematodes probably benefit from 
maintaining a certain balance between their reproduction rate and the exploitation of the host 
plant, rather than from killing their host. This might be the reason why the nematode population 
shows adaptation of its sex ratio in response to high population density [Davide and 
Triantaphyllou, 1967a] and other stress conditions such as unfavourable temperature [Laughlin 
et al., 1969], poor plant nutrition [McClure and Viglierchio, 1966; Davide and Triantaphyllou, 
1967b] and retarded plant growth [Davide and Triantaphyllou, 1968; Orion and Minz, 1971]. 
Such conditions were found to increase the proportion of males. From an agricultural point of 
view, the self-restraint of the nematode population is favourable, since the female nematodes 
cause most of the crop damage and determine the reproduction rate. 

Incompatible interaction 

In a resistant plant, several defensive mechanisms, acting at different stages of the host-parasite 
interaction, may be implicated in the resistance response [Graham and Graham, 1991; 
Keen, 1992]. 

As a first defence, root exudates of some plant species contain compounds which are 
repellant or lethal to root-knot nematodes. In cucumber, for example, certain varieties contain 
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the bitter (Bi) gene, a dominant gene involved in the production of cucurbitacins, triterpenoid 
compounds, which are toxic to various insects and repel nematodes. Excised roots from bitter 
cucumber lines were found to attract significantly fewer M. incognita nematodes than roots 
from non-bitter isogenic lines [Haynes and Jones, 1976]. Besides, there is the well-known 
example of the nematicidal root exudates of marigold (Tagetes erecta L.) [Alam et al., 1975], 
which contain a high concentration of a-terthienyl [Uhlenbroek en Bijloo, 1958]. Although 
aborted giant cells and dead juveniles and females have frequently been observed in the roots of 
marigold, the role of a-terthienyl as a nematicide in soil remains unclear. No inhibition of the 
nematode infestation has been observed during co-cultivation of susceptible tomato plants with 
marigold [Hackney and Dickerson, 1975; J.-s. Huang, 1985]. 

If the nematode has succeeded in entering the plant root, post-infectional defence 
mechanisms are activated. In a localized area adjacent to the nematode hypersensitive necrosis 
occurs [Dropkin, 1969; Kaplan et al., 1979; Nelson et al., 1990; Ho et ai, 1992]. This so-
called hypersensitive reaction is considered an important defence response of essentially 
unknown mechanism that is associated with an incompatible host-pathogen interaction. Cells 
surrounding the necrotic region often show an increased deposition of callose in their cell walls 
[Bleve-Zacheo et al., 1982]. The hypersensitive reaction is accompanied by a range of other 
inducible responses discussed below. 

There is a considerable amount of evidence suggesting that nematode resistance 
involves elevated levels of phenolics [Hung and Rohde, 1973; Singh and Choudhury, 1973], 
sometimes associated with higher activities of enzymes such as phenylalanine ammonia lyase 
(PAL) [Brueske, 1980] and ß-glycosidase, which are known to play a role in the accumulation 
of these toxic compounds [Creasy and Zucker, 1974; J.-s. Huang, 1985]. In contrast to the 
phenolic compounds, which are constitutively formed, phytoalexins [Paxton, 1980], another 
class of inhibitory compounds, are only produced upon infection. It has been suggested that 
accumulation of phytoalexins also contributes to the resistance against root-knot nematodes 
[Veech and McClure, 1977; Veech, 1978; Kaplan et ai, 1980]. 

Another defence reaction often associated with hypersensitive necrosis was investigated 
by Zacheo et al., [1982]. They showed that peroxidase activity increased and superoxide 
dismutase activity decreased in nematode-resistant tomato plants upon infection with M. 
incognita, whereas the opposite occurred in susceptible plants. This suggests, that resistant 
tomatoes generate superoxide and singlet O2 to inhibit pathogen development. Other data, 
however, are in contradiction with these results [Ganguly and Dasgupta, 1979]. 

Increased synthesis of hydroxyproline-containing proteins has also been implicated in 
nematode resistance through the reduced plasticity of the cell wall, possibly resulting in the 
suppression of hypertrophy [Giebel and Stobiecka, 1974]. 

The effect of the defence responses discussed above may be that the invaded nematodes 
feel urged to migrate out of the root [Reynolds et al., 1970; Griffin and Elgin, 1977; Herman et 
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al., 1991] or even that they are killed within the root before a parasitic relationship has been 

established [J.-S. Huang, 1985; Schneider, 1991]. 

The actual importance of the defensive factors suggested remains yet unclear. Molecular 

cloning of the genes controlling the resistance to root-knot nematodes would provide a first and 

essential step towards an understanding of the mechanism of the resistance. 

BREEDING FOR RESISTANCE AGAINST ROOT-KNOT NEMATODES 

Introduction 

Transfer of hereditary resistance against root-knot nematodes from resistant germ-plasm of 
closely or distantly related wild species into adapted crop cultivars would offer an effective and 
environmentally harmless means to control the root-knot nematode problem [Sasser et al., 
1983]. Therefore, several crop plant species and related wild species have been screened for 
inherited resistance against root-knot nematodes [Fassuliotis, 1985]. To date, useful resistant 
germ-plasm has been described for a number of crops including tomato (JLycopersicon 
esculentum Mill.) [Bailey, 1941], potato (Solanum tuberosum L.) [Mendoza and Jatala, 1985], 
sweet potato (Ipomoea batatas (L.) Lam.) [Jones et al., 1980], wheat (Triticum aestivum L.) 
[Roberts et al., 1982], soybean (Glycine max (L.) Merr.) [Boquet et al., 1975], common bean 
(Phaseolus vulgaris L.) [Omwega et al., 1990], eggplant (Solanum melongena L.) [Fassuliotis 
and Dukes, 1972; Fassuliotis and Bhatt, 1982], cantaloupe (Cucumis melo L.) [Fassuliotis, 
1970,1977a, 1977b] and okra (Abelmoschus esculentus (L.) Moench.) [McLeod et al., 1983]. 
Introduction of root-knot nematode resistance into crop cultivars has only been accomplished 
till now through conventional breeding procedures [Tanksley et al., 1989; Melchinger, 1990], 
for instance in tomato [Medina-Filho and Tanksley, 1983], tobacco [Clayton, 1958; Slana et 
al., 1977; Barker, 1978; Schneider, 1991], wheat [Kaloshian et al., 1989a; 1989b; 1991], 
common bean [Omwega et al., 1990], soybean [Boquet et al., 1975], and alfalfa [Reynolds, 
1955; Stanford et al., 1958; Goplen and Stanford, 1959; Goplen et al., 1959; O'Bannon and 
Reynolds, 1962; Nigh, 1972; Peaden et al., 1976; Hartman et al, 1979], and in some other 
crop species [Fassuliotis, 1985; Sasser and Kirby, 1979]. However, classical plant breeding is 
very time-consuming and not generally applicable, as natural incompatibility barriers may 
preclude the exploitation of germ-plasm holding inherited resistance against root-knot 
nematodes. For example, the African horned cucumber, Cucumis metuliferus Naud., 
represents a potential root-knot resistance source for cultivated cucumbers and other 
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Cucurbitaceae, but interspecific hybridization with C. melo failed because of the inviability of 
the immature hybrid embryo [Fassuliotis, 1977b]. Beside C. metuliferus, there is no other, 
compatible resistance source known. 

Recombinant DNA technology offers an alternative possibility for the introduction of 
hereditary pathogen resistance into susceptible crops [Barton and Brill, 1983; Clark et al., 
1991], as it has the potential of circumventing incompatibility barriers. To date, however, this 
approach is hampered by a general lack of knowledge about the molecular basis of disease 
resistance. Although its feasibility remains to be proven, 'genetic engineering' using DNA 
technology seems the most promising approach if there is no compatible, resistant germ-plasm 
available. Therefore, a study of plant genes and gene products conferring root-knot nematode 
resistance is desirable. 

As yet, the research into pathogen resistance of plants would greatly benefit from model 
systems. Apart from the possible impact on agriculture, a molecular analysis of root-knot 
nematode resistance in plants may provide such a profitable model, useful to tackle more 
complicated resistance mechanisms, thereby contributing to our general understanding of the 
defence against plant pathogens. 

In this introduction, we shall further focus on the resistance against root-knot 
nematodes which has been found in a wild tomato species, Lycopersicon peruvianum (L.) Mill. 
[Bailey, 1941; Romshe, 1942; Ellis, 1943], as the resistance is genetically simple and well-
defined. Furthermore, an acid phosphatase-1 allozyme marker (Aps-11) is known which is 
tightly linked to the resistance trait, allowing a 'positional cloning' strategy to gain access to the 
resistance gene (page 25). 

Breeding for root-knot nematode resistance in tomato 

Bailey [1941] was the first to describe the occurrence of L. peruvianum plants 'more tolerant to 
root knot'. Using embryo culture, Smith [1944] surmounted the inviability of the L. 
esculentum xL. peruvianum (P.I. 128657) hybrid embryo, allowing the transfer of the 
resistance into commercial tomato varieties by repeated backcross breeding. In fact, all 
currently available nematode-resistant tomato cultivars derive from a single Fi plant from this 
original cross [Watts, 1947; Medina-Filho and Tanksley, 1983]. 

Gilbert and McGuire [1955; 1956] established, that the resistance present in tomato 
lines derived from L. peruvianum P.I. 128657 was determined by a single major, dominant 
locus, to which they assigned the symbol Mi, an acronym taken from the first letters of the 
root-knot nematode Meloidogyne incognita. Although some conflicting data have been reported 
as to the number of genes involved [Watts, 1947; Frazier and Dennett, 1949; Barham and 
Sasser, 1956] later reports confirm the monogenic nature of the resistance [Barham and 
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Winstead, 1957a; 1957b; Winstead and Barham, 1957; Thomas and Smith, 1957], or suggest a 
block of genes acting as a unit [Harrison, I960]. The Mi locus was mapped on chromosome 6 
at position 44 [Gilbert, 1958; see also Koornneef and Zabel, 1990]. Mi confers resistance to 
the prevalent pathotypes of M. incognita, M. arenaria, M. javanica and M. incognita acrita 
[Barham and Winstead, 1957a], but not to M. hapla [Hadisoeganda and Sasser, 1982; Ammati 
et al., 1985; Sidhu and Webster, 1981; Johnson and Fassuliotis, 1984]. Resistance breaks 
down, however, at temperatures above 28 °C [Dropkin, 1969; Ammati et al., 1986]. Another 
complication emerged, as carefully performed infectivity tests, using a well-characterized 
nematode inoculum cultured from a single egg mass, convincingly demonstrated the existence 
of a minority of Mi-compatible populations within species taken as completely Mi-incompatible 
[Triantaphyllou and Sasser, 1960; Netscher, 1970; 1977; Sikora et al., 1973; Viglierchio, 
1978; Bost and Triantaphyllou, 1982; Hadisoeganda and Sasser, 1982; Prot, 1984; Ammati et 
al., 1985; Roberts and Thomason, 1986; 1989; Fargette and Braaksma, 1990; Roberts etal., 
1990]. 

Mi is considered the only locus involved in root-knot nematode resistance of tomato 
cultivars by some authors [Medina-Filho and Tanksley, 1983]. Genetic data suggest, however, 
that genes for resistance other than Mi are present in at least a few resistant cultivars [Sidhu and 
Webster, 1975; 1981]. According to these data, the cultivar Small Fry-1, for example, would 
not possess Mi, but a different gene for resistance, LMiRi, that is located on chromosome 6 at 
a genetic distance of 5.65 map units form the Mi locus [Sidhu and Webster, 1975]. Recent 
molecular analyses [Klein-Lankhorst et al., 1991a; Messeguer et al., 1991a; Ho et al., 1992; 
Zabel et ai, unpublished results; Williamson et ai, unpublished results], on the other hand, do 
not reveal any heterogeneity of the Mi chromosomal region among nematode-resistant cultivars. 
Therefore, it seems unlikely that the genetic constitution of the chromosomal region 
encompassing Mi would differ within the group of resistant tomato cultivars. More likely, the 
resistant tomato cultivars carry the same gene(s) for resistance at this chromosomal region, the 
more so, as in all cases the resistance derives from the same L. peruvianum P.I. 128657 gene 
source [Smith, 1944; Medina-Filho and Tanksley, 1983]. Consequently, if genes for resistance 
other than Mi exist within or outside the Mi chromosomal region of any tomato cultivar, then 
both Mi and these additional resistance genes should have originated from L. peruvianum P.I. 
128657. In conclusion, the possibility should be kept in mind, that the root-knot nematode 
resistance trait designated by the single symbol Mi, is in fact governed by (two) tightly linked 
genes commonly appearing as a single dominant locus. 

Resistance to root-knot nematodes apparently different from Mi has not only been 
reported for some commercial tomato cultivars derived from L. peruvianum P.I. 128657, but 
also for other accession numbers within the L. peruvianum complex [Ammati et ai, 1985; 
1986; Roberts etal., 1990]. These accessions carried a type of resistance unlike Mi, which was 
active against M. hapla (L. peruvianum Ace. No. 270435 and var. glandulosum C. H. Mull. 
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Ace. Nos. 126440 and 126443) or retained its effectiveness at 32 °C (L. peruvianum Ace. Nos. 
270435, 129152 and LA2157, and var. glandulosum Ace. No. 126443). The number of genes 
involved and their possible allelic or linkage relationship with Mi are yet unclear. The 
introgression of these resistances into adapted tomato cultivars is getting under way [Cap et ai, 
1991; Scott et al., 1991]. Unfortunately, root-knot nematode populations which can circumvent 
these new types of resistance have already been found as well [Roberts et al., 1990]. No high 
resistance level was found in other Lycopersicon species [Bailey, 1941; Medina-Filho and 
Tanksley, 1983; Ammati et al., 1985], although a more recent screening for resistance against 
M. incognita and M.javanica [Lobo etal., 1988] indicated a certain level of resistance in some 
genotypes of L. peruvianum and, in addition, in certain genotypes of L. pennellii, L. 
parviflorum, L. chmielewskii, L. pimpinellifolium and L. hirsutum. 

Mi AS A FAVOURABLE MODEL FOR STUDYING NEMATODE 
RESISTANCE IN PLANTS 

In view of its monogenic, dominant character [Gilbert and McGuire, 1955], the nematode 
resistance trait conferred by the Mi locus presents an attractive model system for studying 
nematode resistance of plants at the molecular level. Besides, there is a wealth of genetic and 
biochemical information available about tomato, and elaborate classical and molecular genetic 
linkage maps [Tanksley and Mutschler, 1990; Koornneef and Zabel, 1990; Klein-Lankhorst et 
al., 1991a; 1991b] as well as an efficient transformation procedure [Horsch etal., 1985; Fillatti 
et al., 1987; Koornneef et al., 1987; Hille et al., 1989; Davis et al., 1991]. In addition, a 
variety of genetic tools have been constructed including morphology marker [Tomato Genetics 
Stock Center, 1991] and chromosome substitution lines [Rick, 1969; Weide et al., 1993], 
trisomies [Rick and Barton, 1954; Rick et al., 1964] and pairs of nearly isogenic lines (NILs) 
that differ only in the Mi region on chromosome 6 of tomato [Klein-Lankhorst et al., 1991a]. 
Recently, other useful genetic tools have become available, as a number of recombinants 
carrying a crossing-over in the M chromosomal region were identified [Ho etal., 1992]. 

Most tomato cultivars holding Mi have retained the acid phosphatase-1 allele Aps-11, 
that has been carried along on the introgressed chromosomal segment from the L. peruvianum 
donor genome during the breeding program [Rick and Fobes, 1974; Medina-Filho and 
Tanksley, 1983]. Linkage between the Mi and Aps-1 loci is so tight that the Aps-11 allele has 
proven to be a convenient and reliable isozyme marker for nematode resistance [Medina-Filho 
and Tanksley, 1983]. Since no product of the Mi gene is known, nor of any other plant disease 
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resistance gene as a matter of fact, Mi is not amenable to isolation through conventional cloning 

strategies, which are based on gene expression. Instead, since its map position has been 

established, molecular access to the Mi locus might be gained in a so-called 'positional cloning' 

approach, further specified below, which involves a chromosomal walk between two closely 

flanking molecular markers. Obviously, the Aps-11 gene is a serious candidate as a marker to 

be isolated for this purpose. Its genetic distance to Mi of less than 1 cM [Medina-Filho, 1980] 

suggests a physical distance in the order of 500 kb, which is within the reach of current 

long-range cloning and mapping strategies [Burke et al., 1987; Collins, 1988; Poustka and 

Lehrach, 1988; Rommens et al., 1989]. Moreover, the Aps-11 gene itself is accessible to 

cloning by conventional methods based on the encoded protein product [Paul and Williamson, 

1987]. 

APPROACHES TO THE MOLECULAR CLONING OF THE Mi GENE. 

Molecular gene cloning strategies are mostly based on knowledge of the (m)RNA or protein 

product of the gene in question. Techniques using antibodies against the encoded protein 

[Huynh et al., 1985; Snyder et al., 1987; Sambrook et al., 1989] and oligonucleotides 

corresponding to nucleotide sequence [Miyada and Wallace, 1987; Sambrook et al., 1989] or 

amino acid sequence information [Ohtsuka et al., 1985; Lathe, 1985; Wood et al., 1985; Devlin 

et al., 1988; Sambrook et al., 1989] have now become well-established, making the molecular 

cloning of a gene encoding a known product to a standard practice for molecular biologists. 

On the other hand, when information about the product of a gene is lacking, as is the 

case for Mi, there is a much longer way to go, usually via a nearby flanking marker which has 

previously been identified by genetic analysis and is by itself amenable to molecular cloning 

using conventional methods. Subsequently, cloned sequences from the chromosomal region 

including the gene of interest can be obtained by a chromosomal walk starting with the clone of 

the closely linked sequence. Since its acid phosphatase-11 protein product (APS-11) has been 

identified [Rick and Fobes, 1974] and a protocol for its purification has been described [Paul 

and Williamson, 1987], the closely linked Aps-11 gene meets the requirements to be cloned as 

a candidate starting point for chromosome walking towards Mi. Subsequently, the Mi target 

gene has to be identified among the restricted number of candidate sequences present within the 

region of the chromosomal walk. 

This approach is often referred to as 'reversed genetics' [Orkin, 1986; Goodfellow, 

1987; 1989; Rommens et al, 1989], since the nature of the gene product will only be revealed 
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in the end by inference from its genetic code, rather than the other way round. In a sense, this 

implies indeed a reversal of the usual order of events in classical or 'forward genetics' [Berg, 

1991], namely, the previously known gene product giving entrance to its DNA code. But on 

the other hand, it is a disputable extension of the original definition of 'reversed genetics' by 

Charles Weissmann [Berg, 1991], who conceived the term for 'an approach wherein DNA 

regions are modified at predetermined positions and the effects of these interventions are scored 

in vivo or in vitro, in contradiction to classic genetics, where deviant phenotypes are first 

isolated, and the lesion giving rise to them is identified subsequently' [Müller et al., 1978]. 

Thus, 'reversed genetics' was originally attributed to the experimental path from a defined 

deoxyribonucleotide sequence to the corresponding phenotypic characteristic. Therefore, it is 

inconsequent to use the same term for a gene cloning strategy. 'Positional cloning' [McKusick, 

1991a; Camerino and Goodfellow, 1991; Wicking and Williamson, 1991] and 'map-based 

cloning' [Tanksley et al., 1989] have been proposed as more appropriate alternatives for 

'reversed genetics' in this illegitimate sense. In this thesis, 'positional cloning' rather than 

'reversed genetics' will be used to designate a gene cloning strategy essentially involving a 

chromosomal walk starting from a nearby molecular genetic marker. 

Below, the different steps of the 'positional cloning' approach will be explained first. 

Thereafter (page 30), some alternative strategies for product-independent gene cloning will be 

discussed. Although most of the other methods for product-independent gene cloning have 

only limited applicability, some were conceivable for the cloning of Mi. 

'Positional cloning' 

Linkage analysis 

In general, the gene to be isolated by 'positional cloning' is tracked down to a restricted 
chromosomal region using segregation studies, cytological analysis of chromosome 
abnormalities such as deletions, and a diversity of other genetic mapping techniques, including 
RFLP analysis of animal somatic cell hybrids or plant chromosomal substitution- and nearly 
isogenic lines (NILs). When the approximate map position of the gene of interest has been 
determined, flanking markers, preferably on both sides of the target gene, are established, if 
not yet available. Essentially any tightly linked DNA sequence which is polymorphic and 
clonable is useful as a marker for the 'positional cloning' approach. 

Nowadays, a variety of polymorphic DNA markers are exploited in physical mapping 
and chromosome walking, including defined gene loci such as allozymic markers, and 
anonymous DNA markers like RFLPs [Botstein et al., 1980; Wyman and White, 1980; 
Beckmann and Soller, 1983; Tanksley et al, 1989], VNTRs (Variable Number of Tandem 
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Repeat) [Nakamura et al, 1987] and SSLPs (Simple Sequence Length Polymorphism) [Tautz 
and Renz, 1984; Tautz et al., 1986; Tautz, 1989; 1990] also referred to as STRs (Short 
Tandem Repeat) [Rossiter and Caskey, 1991]. A recently developed method for in vitro 
amplification of specific DNA fragments, the polymerase chain reaction (PCR) [Saiki et al., 
1985; 1988; Mullis étal., 1986; Mullis and Faloona, 1987; Ehrlich et al., 1988], promises to 
be highly useful for developing new types of molecular markers [Evans, 1991; Rose, 1991]. 
PCR owes its extraordinary potential to the ability to detect different types of DNA 
polymorphisms, including those giving rise to random amplified polymorphic DNA (RAPD) 
[Williams et al., 1990; Welsh and McClelland, 1990] and the polymorphisms caused by 
variation in number of tandemly repeated sequence units [Beckmann and Soller, 1990; D'Ovido 
et al., 1990; Rossiter and Caskey, 1991]. Therefore, taking full advantage of the PCR could 
greatly increase the number of reliable and highly polymorphic molecular markers to be used in 
linkage analysis [Billings et al., 1991; Rossiter and Caskey, 1991]. 

Most examples of genes approached by a chromosomal walk starting from a nearby 
marker are found among the genes for human hereditary diseases. The RB locus, determining 
retinoblastoma, an inheritable tumour of the eye, was found to be tightly linked to an allozymic 
marker, esterase D [Yunis and Ramsay, 1978; Ward et ai, 1984; Sparkes et al., 1983, 1984], 
which could be cloned using oligonucleotide and antibody probes generated on the basis of the 
purified esterase D protein [Lee and Lee, 1986; Squire et al., 1986]. Unfortunately, 
chromosome walking from the esterase D gene towards the RB locus was hampered by the 
occurrence of highly repetitive sequences between the two loci [Lee et al., 1987a]. Eventually, 
the RB locus was reached using another tightly linked starting point, the anonymous genomic 
DNA clone H3-8 [Friend et al., 1986; 1987; Lee et al, 1987a; 1987b; Fung et al, 1987]. 
Other human genes which were mapped in the vicinity of hereditary disease loci include those 
encoding the ß-subunit of follicle-stimulating hormone (FSHB), erythrocyte catalase (CAT) 
and a cell surface antigen (MIC1) near the Wilms' tumour locus [Kao et al, 1976; Van 
Heyningen et al, 1985; Glaser et al, 1986, 1987], the growth hormone GH1 gene near the 
hyperkalemic periodic paralysis (HYPP) locus [Fontaine et al, 1990] and the creatine kinase 
gene (CKMM) close to the locus of myotonic dystrophy [Yamaoka et al, 1990]. 

In addition, tightly linked anonymous DNA markers have been established for all these 
disease genes. Such markers were also essential in mapping the genes for Duchenne muscular 
dystrophy [Francke etal, 1985; Monaco etal, 1985; Kunkel et al, 1985,1986; Van Ommen 
et al, 1986; Koenig et al, 1987], chronic granulomatous disease [Francke et al, 1985; 
Baehner et al, 1986; Royer-Pokora et al, 1986], cystic fibrosis (Tsui et al, 1985; White et 
al, 1985; Wainwright étal, 1985] and many others [Orkin, 1986; McKusick, 1991b; Rossiter 
and Caskey, 1991; Wicking and Williamson, 1991]. 
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Long-range chromosome walking and restriction mapping 

Once DNA markers have been identified and ordered around the target gene, a chromosomal 

walk can be started from the nearest flanking markers. Usually, the distance in basepairs to be 

traversed down to the target gene will be quite long, even if the genetic linkage is very tight, 

that is in the order of only a single map unit. This holds true, in particular, for the genomes of 

higher eukaryotes like mammals and flowering plants, in which the physical size of the map 

unit is in the megabase range [Lewin, 1990], because the frequency of crossing-over is 

relatively low. This implies, that mostly several thousands of kb have to be traversed, which is 

quite impracticable using the conventional chromosome walking techniques, that allow steps 

of, on average, only 25 kb [Marx, 1985; Poustka and Lehrach, 1986; Collins, 1988; Sambrook 

et al., 1989]. 

Indeed, 'positional cloning' would have been unfeasible without the variant 

chromosome walking techniques recently developed, permitting 'jumps' over hundreds of 

kilobases at a time. The essential part of these chromosome 'jumping' or 'hopping' techniques 

is the circularization of large (> 100 kb) DNA fragments by ligating their ends together and 

subsequently cloning the joined ends, which are located hundreds of kb apart on the DNA 

strand along which jumping is performed [Collins and Weissman, 1984; Poustka and Lehrach, 

1986; 1988; Poustka et al, 1986; 1987; Smith et al., 1987a; Collins et al, 1987; Collins, 

1988]. A complete set of such junction probes is called a jumping library. The use of rare 

cutters like Not I to generate the large DNA fragments [Qiang and Schildkraut, 1984; 1987; 

O'Connor et al., 1984] permits the jumping library to be applied in conjunction with a 

complementary linking library, consisting of clones just spanning the ends of contiguous large 

restriction fragments represented in the jumping library [Smith et al., 1987a; Poustka and 

Lehrach, 1986; Poustka et al., 1986; Buiting et al., 1988; Pohl et al., 1988; Ito and Sakaki, 

1988; Wallace et al., 1989; Brockdorff et al., 1990; Saito et al., 1991]. Alternate screening of 

the linking and jumping library, respectively using as a probe the jumping or the linking clone 

identified in the previous step, will result in 'jumping' from a given large restriction fragment to 

an adjacent one. In this way, a coarse physical map of the passed chromosomal region is drawn 

and the target gene is approached in long strides rather than by shuffling along overlapping 

cosmids like in conventional chromosome walking. 

The construction of jumping libraries becomes more difficult and expensive with 

increasing jump size, since an increasing average length of the DNA fragments to be 

circularized requires a directly proportionally higher input of very high molecular weight DNA, 

whereas the ligation volume and hence the amount of DNA ligase has to be increased even as 

the 3/2 power of the average size of the jump [Collins, 1988]. Because of these technical 

limitations, the average jump size of current jumping libraries is usually in the range of 100 -

200 kb [Collins et al., 1987; Richards et al., 1988], although larger jumps have been reported 
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[Poustka et al., 1987]. Complementary to chromosome jumping, cloning of large DNA 
fragments of several hundred kb into yeast artificial chromosomes (YACs) offers a tool for 
crossing and mapping extensive chromosomal regions [Burke et al., 1987; Ward and Jen, 
1990]. 

The new long-range cloning and mapping strategies are assisted by methods to 
manipulate high molecular weight DNA molecules without shearing and by recent 
modifications of conventional agarose gel electrophoresis allowing the separation of very large 
DNA fragments [Smith and Cantor, 1987; Smith etal., 1988]. These electrophoresis methods, 
which are capable of separating DNA molecules up to 10 Mb [Anand, 1986; Snell and Wilkins, 
1986; Vollrath and Davis, 1987; Smith etal., 1987b; Orbach etal., 1988], have now evolved 
into a number of variants, such as pulsed field gel electrophoresis (PFGE) [Schwartz et al., 
1983; Schwartz and Cantor, 1984], field-inversion gel electrophoresis (FIGE) [Carle et al., 
1986; Van Daelen etal., 1989], and contour-clamped homogeneous electric field (CHEF) gel 
electrophoresis [Chu etal., 1986]. 

Long-range chromosome walking and mapping techniques have already been 
successfully applied in the molecular cloning of a number of human hereditary disease genes. 
Using chromosome jumping, a long-range restriction map was constructed of 280 kb of 
genomic DNA from the cystic fibrosis (CF) chromosomal region [Collins et al., 1987; 
Rommens et al., 1989], which subsequently allowed the identification and molecular cloning of 
the complete CF cDNA sequence [Riordan et al., 1989]. Long-range restriction mapping was 
found indispensable in producing a physical map of the giant Duchenne muscular dystrophy 
(DMD) locus which spans at least 2 Mb of DNA [Burmeister and Lehrach, 1986; Van Ommen 
et al., 1986; Kenwrick et al., 1987; Monaco and Kunkel, 1987; Koenig et al., 1987]. 
Kenwrick et al. (1988) used chromosome jumping to move at least 80 kb from within a large 
intron sequence in the DMD gene to a region adjacent to an exon of the gene. YAC cloning 
[Bonetta et al., 1990] and chromosome jumping [Gessler et al., 1990] have assisted in the 
construction of a physical map of the region on human chromosome 11 spanning the Wilms' 
tumour locus, which resulted in the identification of transcripts possibly involved in 
predisposition to, or the development of this tumour [Bonetta et al., 1990; Huang et al., 1990]. 

These examples demonstrate that it is nowadays practicable to traverse a physical 
distance in the lower Mb range with these long-range chromosome walking techniques and 
YAC vectors at hand. This implies that in higher eukaryotes, a linked molecular marker at a 
genetic distance of 0.5 - 1 cM from the target gene provides a reasonably close starting point 
for a cloning attempt using the 'positional cloning' approach. In the tomato genome, the 
distance between Aps-11 and Mi has been estimated within this range [Medina-Filho, 1980] 
and therefore, Aps-11 is considered suitable to start for Mi. 

28 



Identification of the target gene 

The final step in 'positional cloning' involves the identification of the target gene among the 

cloned sequences contained within the closest flanking markers. On the basis of the observation 

that many genes are subjected to evolutionary conservation [Lewin, 1990], a preliminary 

selection among the candidate sequences could be achieved by screening for cross-

hybridization with genomes of other species, of which the more distandy related ones are 

particularly indicative. Although this is not at all a conclusive test, it may be useful as a first 

selection [Monaco et al., 1986; Rommens et al., 1989], the more so as it is easily performed by 

Southern analysis of a 'zoo-blot' in case of an animal gene, or a 'botanic garden-blot' in case of 

a plant gene. As to a putative Mi sequence, conservation will most likely be found in other 

solanaceous plants. In particular, it should be considered as evidence of the correct sequence, 

when strong conservation is found in those species, that possess a certain level of resistance to 

root-knot nematodes, as for example in certain potato cultivars and wild Solanum spp. 

[Mendoza and Jatala, 1985], and in some tobacco cultivars and wild Nicotiana spp. [Barker 

and Lucas, 1984]. 

Unfortunately, it is impossible to give a general and never-failing protocol for further 

selection. However, the following tests, in one combination or another, are likely to allow the 

identification of a single candidate gene in the end: 

(i) In case of a vertebrate [Bird, 1986; Cedar, 1988] or a higher plant [Antequera and Bird, 

1988; Brown, 1989; Messeguer et al., 1991b], a true gene sequence is often preceded at 

the 5' side by a CpG island. This is a stretch of DNA in which CpG dinucleotides are 

abundant and non-methylated [Bird, 1986]. As a consequence, the restriction enzyme Hpa 

II, which cleaves at non-methylated CCGG tetramers, will cut up a CpG island in bits and 

pieces. Therefore, CpG islands are also referred to as HTF (Hpa II tiny fragment) islands 

[Bird et ai, 1985]. 

(ii) The selected nucleotide sequence should contain an open reading frame, 

(iii) The expression of the candidate gene, as revealed for example by northern blot analysis, 

should exhibit the expected tissue specificity in accordance with the phenotypic trait 

controlled by the target gene. In the case of Mi, the internal root tissues, especially the 

vascular and cortical parenchyma and the primary phloem, are the most likely sites of 

expression, 

(iv) A comparison of the versions of the putative target sequence present in genomes carrying 

different alleles of the target gene should consistently reveal polymorphisms. Accordingly, 

the candidate Mi sequence should be variant or absent in nematode-susceptible tomato 

cultivars. 
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(v) Segregation studies should demonstrate absolute co-segregation of the various alleles of 

the candidate gene with the phenotype they are supposed to confer. Thus, the putative Mi 

sequence should co-segregate with the root-knot nematode resistance trait. 
(vi) Complementation of a null mutant following direct or vector-mediated transformation 

[Rogers and Klee, 1987; Goodfellow et al., 1988; Hille et al., 1989; Hooykaas et al., 
1989; Clark et al., 1991] should ultimately allow the identification of a single candidate 

sequence. To prove its identity as the target gene, the transferred nucleotide sequence 

should convey the phenotype of the target gene upon expression in the null mutant. 

For the cystic fibrosis (CF) gene, such an endeavour has been accomplished. The CF gene was 

found to encode a protein involved in CI" ion secretion and called the cystic fibrosis 

transmembrane conductance regulator (CFTR) [Riordan et al., 1989; Hyde et al., 1990; 

Wainwright, 1991]. Transformation of CF airway-cells using a vaccinia virus-CFTR construct 
resulted in the healing of the defect in the permeability for CI- ions in these cells [Rich et al., 
1990], as might be expected for an authentic wild type CF cDNA sequence. Similar results 

were obtained by transformation of pancreatic tumour cells from a CF patient using a 

recombinant retrovirus carrying a CFTR construct [Drumm et al., 1990]. As efficient 

transformation procedures have been developed for tomato [Horsch et al., 1985; Fillatti et ai, 

1987; Koornneef et ai, 1987; Hille et al., 1989; Davis et al., 1991], it should accordingly be 

possible to verify the identity of a putative Mi sequence by complementation of a susceptible 
tomato variety. 

Alternative strategies with spécifie applications 

In addition to 'positional cloning', which is, in principle, generally applicable, several other 
product-independent gene cloning strategies have been developed, most of them serving more 
specific applications. As some of them represent a conceivable strategy for cloning Mi as well, 
this section will discuss the reasons why these methods were considered less preferable as 
compared to 'positional cloning'. 

Gene tagging 

By introducing DNA constructs that will integrate into the genome, it is possible to tag genes 

with a 'marker sequence' by insertional mutagenesis. The integrating DNA species applied for 

'gene tagging' in plants comprise constructs on the basis of the Ti plasmid from the plant-

pathogenic bacterium Agrobacterium tumefaciens [Koncz etal., 1989; Feldmann et al., 1990], 

and various transposable elements [Wienand et al., 1982] like the Ac-Ds (Activator-
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Dissociation), Mu (Mutator) and Spm/En (Suppressor-mutator, also known as Enhancer) 

elements of maize [Fedoroff, 1989; Döring, 1989] and the Tam3 element of Antirrhinum majus 

[Sommer et al., 1985; Coen et al., 1989]. Using the cloned insertion mutagen as a probe in 

Southern blot analysis of a population segregating for the insertion mutation, it is possible to 

identify a junction fragment showing exclusive co-segregation with the mutant phenotype. 

Subsequent cloning of this junction fragment would yield cloned sequences from the target 

gene, which, in turn, should allow the isolation of a clone of the uninterrupted allele. 

Examples of genes from higher plants that have been cloned by the 'tagging' approach 

using transposable elements include the pallida anthocyanin biosynthesis locus of Antirrhinum 

[Martin et al., 1985] and a number of maize genes, like the bronze anthocyanin biosynthesis 

loci bzl [Fedoroff et al., 1984] and bz2 [McLaughlin and Walbot, 1987], the chalcone 

synthetase gene c2 [Wienand et al., 1986] and the carotenoid biosynthesis locus y I [Buckner et 

al., 1990]. Furthermore, Arabidopsis thaliana genes controlling trichome formation [Marks and 

Feldmann, 1989; Herman and Marks, 1989] and floral development [Yanofsky et al., 1990], 

have been isolated through tagging with the T-DNA sequence from the Agrobacterium 

tumefaciens Ti plasmid [Veiten and Schell, 1985; Feldmann et al., 1990]. 

Using the transformation procedure available for tomato [Horsch et al., 1985; Fillatti et 

al., 1987; Koornneef et al, 1987; Hille étal., 1989; Davis étal, 1991], the Ac transposable 

element from maize, has been introduced into tomato and found to be transpositionally active 

within the tomato genome [Yoder et al., 1988]. Also the introduction of T-DNA sequences into 

tomato is no problem. Tagging of the Mi gene with a transposable element or a T-DNA 

insertion would therefore be feasible. However, isolation of a T-DNA-tagged Mi mutant would 

require the generation and screening for susceptibility in a root-knot nematode infection assay 

of hundred thousands of T-DNA-transformed plants. Use of an engineered heterologous 

transposable element [Haring et al., 1991] might reduce the number of transformants needed to 

identify an Mi insertional mutant, but even then many thousands of plants have probably to be 

screened. The transposable element has to be delivered in the vicinity of the Mi target gene, to 

begin with, since these elements preferentially transpose to genetically linked sites [Van Schaik 

and Brink, 1959; Greenblatt, 1968; 1984; Chen et al., 1987]. Transposed Ac elements in 

tobacco, for example, were found inserted mostly within 2 cM from the original integration site 

[Jones et al., 1990], and similar preference for linked integration was found in tomato [Belzile 

et al., 1989]. Although convenient RFLP [KLein-Lankhorst et al., 1991a; Messeguer et al., 

1991a], RAPD [Klein-Lankhorst et al., 1991b], allozyme (Aps-1) and morphological (e.g. yv) 

markers [Rick and Fobes, 1974; Medina-Filho, 1980] are available for rapidly establishing 

linkage to Mi, much effort will still be needed to find a transformant with a copy of the 

introduced transposon linked to Mi. The number of progeny plants of such a transformant to be 

screened in order to identify a possible Mi insertional mutant is expected to be large as well. It 

is true that this number may be reduced by using a construct containing the transposable 
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element inserted in an antibiotic resistance gene, allowing at any rate the selection of those 
progeny plants in which the transposable element has moved from its integration site and 
therefore is active [Baker et al., 1987; Rommens et al., 1991]. Even then, probably tens of 
thousands of progeny plants have to be tested for root-knot nematode resistance [Haring et al., 
1991]. 

Indeed, all current examples of successful 'gene tagging' in plants involve genes 
controlling morphological traits which are readily visible and easily selectable. Even in those 
cases, phenotypic screening of large numbers of plants required a lot of manpower and 
extensive greenhouse facilities. As considerably more effort would be needed to perform an 
assay for root-knot nematode resistance on a large number of plants, cloning of Mi by 'gene 
tagging' seems rather impracticable. 

Genomic subtraction 

If there is a deletion mutant of the target gene available, then the method of Straus and Ausubel 
[1990], called 'genomic subtraction', is feasible. This procedure involves the subtraction 
(removal) of those nucleotide sequences that are common in the wild type and mutant genomes 
from the total of wild type sequences, thus leaving over the genomic sequences from the wild 
type that are deleted in the mutant. The authors demonstrate the feasibility of this approach by 
cloning sequences corresponding to a deletion covering the lys2 gene of yeast spanning ty4000 
th of the genome. 

As to Mi, this method is currently not practicable due to the absence of a suitable Mi 
deletion mutant. Besides, considerable technical difficulties are to be expected, as the tomato 
genome (0.91 - 1.0 x 109 bp) [Arumuganathan and Earle, 1991] is much more complex than 
the yeast genome (1.3 x 107 bp) [Lewin, 1990] employed in the model study [Straus and 
Ausubel, 1990]. 

Differential cDNA library screening 

When pairs of isogenic variants of the organism are available which differ in the expression of 

a certain hereditary trait, differential screening of a cDNA library [Sambrook et al., 1989] 

offers an alternative approach to isolate the gene(s) responsible for that trait. cDNA clones 

representing mRNA sequences that are specifically expressed in association with the relevant 

phenotype are then selected by duplicate hybridization, using cDNA probes copied from 

mRNA of each of both variants respectively. However, genotypes which are (nearly) isogenic, 

except for the target gene, are difficult to construct and therefore, differential screening is 

mainly applied in those cases where the mRNA populations to be compared are readily 
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available, as in isolating groups of tissue-specific and conditionally or developmentally 

regulated genes. As an additional limitation, the method only works for the subset of genes 

encoding mRNA that is abundantly expressed in one of both variants used for comparison, and 

present at a substantially lower level or completely absent in the other. 

Although nearly isogenic nematode-resistant and susceptible lines of tomato have been 

described [Klein-Lankhorst et al., 1991a; Messeguer et al., 1991a], differential cDNA library 

screening for isolating the Mi gene is yet not attractive. First, the level of expression of the Mi 

gene is unknown, and besides, the possibility should be considered that the Mi gene is not 

constitutively expressed, but is induced upon infection by root-knot nematodes. This implies, 

that nematode-challenged tomato plants are to be subjected to the differential screening in order 

to have the best theoretical chance of success. However, nematode infection will induce 

expression of a number of pathogenesis-related genes, producing the physiological changes 

generally observed upon pathogen attack, like, for example, increased phenylalanine ammonia 

lyase (PAL) activity [Brueske, 1980]. cDNA clones representing these genes will appear 

positive in addition to an eventual Mi clone upon differential library screening. Anyhow, 

supplementary selection will be needed, as this method will likely identify several other non-

isogenic cDNA sequences due to the imperfect quality of the available Mi/Mi and mi/mi 

isogenic lines. 

Recently, Ho et al. [1992] showed the potential of a related approach in identifying 

sequences associated with the Mi region. By screening a pair of nearly isogenic lines with 

random clones from a cDNA library, a number of M-linked cDNA clones were identified, one 

of which (LC379) even happened to map in the Mi region of 'Motelle', at present the tomato 

cultivar carrying the smallest L. peruvianum introgressed region. 

Evaluation 

Whereas the alternative strategies for cloning Mi mentioned above suffer from a combination of 
either the absence of prerequisites, from uncertainties about their efficacy, or from an excessive 
amount of effort required, there are several arguments in support of the 'positional cloning' 
approach. These arguments include the availability of a clonable allozyme marker, Aps-11, 
which is tightly linked to Mi, the rapidly increasing experience with long range chromosome 
walking (page 27), and the feasibility of the positional cloning approach under comparable 
experimental conditions, as demonstrated by the successful application in the molecular cloning 
of the complete cystic fibrosis (CF) cDNA and other human hereditary disease gene sequences 
(page 28). 

For these reasons, cloning of Aps-11 nucleotide sequences was considered as a 
constructive step towards the cloning of the Mi gene. 
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INTRODUCTION 

In tomato (Lycopersicon esculentum Mill.) the nematode resistance locus Mi is tightly linked to 
the acid phosphatase-1 locus Aps-1 [Rick and Fobes, 1974; Medina-Filho, 1980; Medina-Filho 
and Tanksley, 1983]. Most nematode-resistant cultivars carry the Aps-11 allele, encoding an 
electrophoretically variant allozyme (APS-11) [Rick and Fobes, 1974; Medina-Filho and 
Tanksley, 1983]. Since no products of Mi expression are known, which could give access to 
the Mi gene at the molecular level, the APS-1 * allozyme is of interest as an alternative entrance. 
Through amino acid sequence information from the encoded protein, the Aps-11 gene may be 
cloned. Given a total map size of 1600 cM for tomato [Ganal et al. cited in Messeguer et al., 
1991], a haploid genome size of 975 megabase pairs (cv. VFNT cherry [Arumuganathan and 
Earle, 1991]) and a genetic distance between the Aps-1 and Mi loci of 0.894 cM [Medina-Filho, 
1980], an Aps-11 clone would provide a marker at an estimated distance of 540 kb from Mi, 
which is sufficiently close to serve as a starting point for long-range chromosome walking 
techniques [Burke et al., 1987; Collins, 1988]. Besides, an Aps-11 clone would provide a 
molecular probe for convenient nematode resistance genotyping. 

As a first step towards cloning Aps-11 nucleotide sequences, the encoded APS-11 

protein was purified, using the method described by Paul and Williamson [1987] as a guide
line. 

MATERIALS AND METHODS 

Materials 

All chemicals were analytical grade. DEAE-Sephacel, Con A-Sepharose, Sephacryl S-200 HR 
and the Mono Q FPLC-column were purchased from Pharmacia LKB Biotechnology, Uppsala, 
Sweden; hydroxylapatite was from Bio-Rad, Richmond, California, protein molecular weight 
standards were from Sigma, St. Louis, Missouri, and DIAFLO YM5 ultrafiltration membranes 
from Amicon, Lexington, Massachusetts. 
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Plants and cell cultures 

The nematode resistant (Mi/Mi, Aps-l^Aps-l1) tomato line providing roots for protein 

extraction were obtained by consecutive selfings of 83M (De Ruiter Seeds, Bleiswijk, The 

Netherlands), an L, esculentum line segregating for Mi and Aps-1 [Klein-Lankhorst et al., 

1991]. Three weeks old seedlings were transferred from gravel to Steiner nutrient solution and 

grown on hydroponics. After 1 month, the roots were harvested and stored frozen at -80 °C. 

Cell suspension cultures were derived from L2-14. This is a plant, selected among the 

progeny that arose from the selfing of L2, a hybrid L. peruvianum x L. esculentum tomato line, 

the genome of which is 75% L. peruvianum [Thomas and Pratt, 1981]. The cells were cultured 

at 25 °C in the dark in 1 litre flasks containing 400 ml medium [DuPont et al., 1985] under 

vigorous shaking. Every 10 - 14 days, one tenth of the suspension was subcultured and the 

remaining cells were harvested by filtration through a Büchner funnel. Cells were stored frozen 

at -80 °C. The average yield was 100 - 200 g cells per litre of suspension culture. 

Acid phosphatase isozyme analysis 

Acid phosphatase (APS) isozyme analysis throughout the protein purification was routinely 
performed by cellulose acetate membrane (CAM) electrophoresis. Eluate fractions were 
stamped five times on a cellulose acetate membrane (SM12200, Sartorius, Göttingen, 
Germany), that had been saturated with the electrophoresis buffer (0.3 M borate buffer 
pH 8.3) and had been mounted in a Sartophor SM16539 CAM electrophoresis unit (Sartorius, 
Göttingen, Germany). Electrophoresis was performed for 30 min at 250 V and 4 °C. The 
membrane was then immediately stained for acid phosphatase activity by soaking overnight at 
30 °C under agitation in a staining mixture, freshly prepared by first dissolving 1 mg/ml Fast 
Black K salt (Serva, Heidelberg, FRG) in 50 itiM NaAc pH 5.5, 10 mM MgCh, and 
subsequently adding 0.03% (w/v) ß-naphtyl acid phosphate (Sigma, St. Louis, Missouri, 
USA) immediately before use. 

APS isozyme analysis was also performed by APS activity staining of proteins 
separated by non-denaturing Polyacrylamide gel electrophoresis (see below), in particular when 
levels of APS-11 activity below the detection limit of CAM electrophoresis were to be expected. 

Polyacrylamide gel electrophoresis (PAGE) 

SDS-PAGE was performed, using a modified Laemmli [1970] discontinuous buffer system. 
The separating gel (10 x 14.5 x 0.15 cm) contained 12.5% (w/v) acrylamide, 0.1% (w/v) 
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N,N'-methylenebisacrylamide, 375 mM Tris-HCl pH 8.8 and 0.1% (w/v) SDS. The stacking 
gel contained 3.9% (w/v) acrylamide, 0.1% (w/v) N,N'-methylenebisacrylamide, 125 mM 
Tris-HCl pH 6.8 and 0.1% (w/v) SDS. Electrophoresis was performed at a constant voltage of 
40 - 175 V in 50 mM Tris, 384 mM glycine, 0.1% (w/v) SDS (pH 8.6). 

For non-denaturing PAGE, SDS was omitted from the gel and from the electrophoresis 
buffer described above. A 10% (w/v) acrylamide/0.12% (w/v) N,N'-methylenebisacrylamide 
separating gel and a 3.9% (w/v) acrylamide / 0.1% (w/v) N,N'-methylenebisacrylamide 
stacking gel were used and electrophoresis was performed at 4 °C for 4 - 6 hours at a constant 
voltage of 150 V or overnight at 70 V. Subsequently, the gel was equilibrated for 2x15 min 
with staining buffer (50 mM NaAc pH 5.5, 10 mM MgCl2) and stained for APS activity 
overnight at 30 °C as described above. 

Proteins separated by PAGE were silver-stained essentially as described by 
Morrisey [1981]. 

Purification of acid phosphatase-11 

The purification procedure described below is a modified version of the scheme developed by 
Paul and Williamson [1987], that is applicable to both roots and suspension cells. The whole 
procedure was carried out at 0 - 4 °C. 

Step 1. Protein extraction 

Frozen tomato roots or suspension cells were powdered in liquid nitrogen using a mortar and 

pestle or a Waring blender. The frozen homogenate was added to extraction buffer (100 mM 

Tris-HAc pH 8.0, 100 mM KAc, 10% (v/v) glycerol, 2 mM ethylene diamine tetraacetic acid 

(EDTA), 0.1 mM phenylmethylsulfonyl fluoride (PMSF), 5 mM dithiothreitol (DTT), 250 mM 

Na-ascorbate) at 4 °C, to which 0.5 g Polyclar AT (insoluble polyvinylpyrrolidone) per g fresh 

weight was added. For roots, 4 ml extraction buffer per g fresh weight was sufficient, but for 

cells 5 - 6 ml buffer per g fresh weight was needed. After stirring for 1 hour at 4 °C, cell debris 

and Polyclar AT were removed from the crude extract by centrifugation at 28,000 x g for 30 

min. The resulting pellets were re-extracted with 2 ml extraction buffer per g fresh weight using 

a blender, and clarified by centrifugation as above. The first and second extracts were pooled. 
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Step 2. (NH4)2 SO4 fractionation 

A 40 - 75% (NH4)2SC>4 fraction was prepared from the crude extract by adding solid 
(NH4)2S04. Precipitation was allowed to proceed for at least 1 hour at 4 °C, under continuous 
stirring. Precipitates were collected by centrifugation at 28,000 x g for 1 hour and dialysed 
extensively against TGKEDP buffer (100 mM Tris-HAc pH 8.0, 10% (v/v) glycerol, 100 mM 
KAc, 2 mM EDTA, 5 mM DTT, 0.1 mM PMSF). 

Step 3. DEAE-Sephacel column chromatography 

The dialysate obtained in step 2 was loaded on a DEAE-Sephacel column (5.3 cm2 x 30 cm), 

pre-equilibrated with TGKEDP. (Protein prepared from 750 g of fresh roots or from 1600 g of 

fresh suspension cells could be applied at once without overloading the column). After washing 

the column with at least five column volumes of the same buffer, a linear 100 - 350 mM KAc 

gradient made up in 1100 ml TGKEDP buffer was applied at a flow rate of 54 ml/hr. Fractions 

(5 ml) were collected and tested for APS activity using CAM electrophoresis. Those containing 

the bulk of APS-1 l activity were pooled. 

Step 4. Hydroxylapatite (HAP) column chromatography 

The pool of eluate fractions obtained in the previous step was concentrated by ultrafiltration 
through a DIAFLO YM5 membrane, dialysed against HAP adsorption buffer (10 mM NaPi 
pH 7.6, 10% (v/v) glycerol, 5 mM DTT, 0.1 mM PMSF) and loaded on a HAP column (2 
cm2 x 15 cm) equilibrated with HAP adsorption buffer. After washing the column with HAP 
adsorption buffer, a 500 ml linear 10 - 160 mM NaPj (pH 7.6) gradient containing 5 mM DTT 
and 0.1 mM PMSF was applied at a flow rate of 16 ml/hr. Fractions (3 ml) were collected and 
those containing most of the APS-1 ! activity were pooled. 

Step 5. Concanavalin A (Con A)-Sepharose column chromatography 

Pooled HAP eluate fractions were concentrated by ultrafiltration through a DIAFLO YM5 
membrane and dialysed against Con A adsorption buffer (25 mM Tris-HCl pH 7.4, 50 mM 
NaCl). 

The dialysate was then loaded in portions of 0.5 ml on a freshly prepared Con A-
Sepharose column (0.5 cm2 x 4 cm), pre-equilibrated with Con A adsorption buffer. To allow 
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optimal adsorption, there was an interval of 15 min between each portion and a pause of 1 hour 
after the last portion during which column flow was interrupted. 

Loosely bound proteins were washed through the column with Con A washing buffer 
(40 mM Tris-HCl pH 7.4, 200 mM NaCl). A variable proportion (mostly less than 50%) of 
the APS-11 activity eluted during this high salt wash. The tailing part of this broad APS-11 

peak was collected, as it was sufficiently free from contaminants to be purified completely by 
the final mono Q FPLC step. After washing with about 10 column volumes of Con A washing 
buffer, bound APS-11 was eluted with Con A elution buffer (40 mM Tris-HCl pH 7.4, 200 
mM NaCl, 1% (w/v) a-D-methylglucoside). As soon as the column bed was filled up with 
elution buffer, flow was interrupted for 1 hour to allow complete desorption [Muller and Carr, 
1984] and subsequent elution in a smaller volume. Elution was then continued at a flow rate of 
20ml/hr. 

Step 6. Mono Q FPLC 

The collected Con A wash fractions and the Con A eluate were pooled, diluted twice with Mono 
Q adsorption buffer (100 mM Tris-HCl pH 8.0) to adjust the NaCl concentration to 100 mM 
and subsequently loaded on a pre-equilibrated Mono Q FPLC column. After washing the 
column with Mono Q adsorption buffer, the adsorbed fraction was eluted with a 55 ml linear, 
two-stage 0 - 400 mM KAc gradient in 100 mM Tris-HCl pH 8.0. The first section of the 
gradient from 0 - 100 mM KAc was covered during the first 5 ml. The remaining part of the 
gradient, from 100 - 400 mM KAc, lasted 50 ml. Fractions (0.75 ml) were collected and the 
A28O of the eluate was continuously monitored using a Pharmacia Monitor UV-M 
spectrophotometer unit (sensitivity range adjusted to A = 0 - 0.005). Those A28O peak fractions 
containing APS-1 ! activity but no APS-2 activity, as determined by CAM-electrophoresis and 
non-denaturing PAGE, were pooled. This purified APS-11 preparation was concentrated by 
ultrafiltration and used for amino acid microsequencing as described in chapter 3. 
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RESULTS 

Purification of tomato acid phosphatase-11 

The acid phosphatase-1 allozyme (APS-11) encoded by the Aps-11 allele was purified from 

both tomato roots and suspension cells as described in detail in Materials and Methods. In using 

the purification procedure of Paul and Williamson [1987] as a guide-line, no major divergences 

were met, except for the Con A-Sepharose column chromatography step and the lower yield 

attained, as specified below. The procedure described here represents a modified and extended 

version of the Paul and Williamson [1987] protocol and involves the consecutive steps shown 

in Fig. 1. The chromatographic behaviour of APS-11 on the various types of columns used, is 

summarized in Fig. 1 as well. 

tomato competitive applied competitor concentration 
roots / suspension cells component 

1 of elution 
" eluens adsorption 

crude extract APS 11 APS-2 

t 
40-75%(NH4)2SO4 

fractionation 

| 

DEAE - Sephacel KAc 100 mM 230 mM 215 mM 

HAP NaPi 10 mM 50-80mM 35-65mM 
(hydroxylapatite) 

Con A - Sepharose a-D-methylglucoside — 1% 1% 
(concanavalin A) 

MonoQ(FPLC) KAc 100mM1) 270 mM 220 mM 

1) NaCl 

Fig. 1. Flow chart summarizing the purification procedure and chromatographic properties of 

tomato APS-11. 

The bulk of contaminating APS isozymes was removed by DEAE-Sephacel column 

chromatography. APS-11 and a portion of the APS-2 activity were adsorbed to the DEAE-

Sephacel column at 100 mM KAc, whereas a genetically uncharacterized APS activity passed 

through almost completely (Fig. 2). By applying a flat KAc gradient (100 - 350 mM), a 
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considerable portion of the adsorbed APS-2 activity was resolved from the APS-11 activity; 
APS-2 eluted at 215 mM and APS-11 at 230 mM (Fig. 2). Further purification was achieved 
(Fig. 3) by chromatography on hydroxylapatite (HAP). Again, APS-2 eluted at a slightly 
lower salt concentration (varying between 35 and 65 mM NaPj) than APS-1 ! (median of peak 
between 50 and 80 mM NaPO- The last traces of APS-2 were finally removed by the Mono Q 
FPLC step. APS-2 eluted at about 220 mM KAc and APS-11 at about 270 mM KAc (not 
shown). 

•£ r 

flow through K-acetate gradient 
+ 

wash (100-400 mM) 

APS-2 

APS-11 

2 3 4 5 6 7 8 9 101112 13 14 15 16 171819202122 

Fig. 2. Separation of tomato APS isozymes by DEAE-Sephacel column chromatography. (NH4)2S04-

fractionated proteins from 100 g of tomato (Aps-^IAps-l1) roots were prepared (input) and separated by ion 

exchange chromatography using a DEAE-Sephacel column (2 cm2 x 23 cm). Protein extraction, (NH^SCV 

precipitation, loading of the sample and washing of the column were performed according to Materials and 

Methods. Subsequently, bound proteins were eluted with a 180 ml 100 - 400 mM linear K-acetate gradient in 

TGKEDP buffer pH 8.0. Column wash and gradient eluate were collected in 3 ml fractions and a 50 ul sample 

of every third fraction was analysed by non-denaturing PAGE and subsequent APS activity staining, as was 0.5% 

of the input (lane 1). Only relevant fractions of the flow through and wash (lanes 2 - 9) and of the K-acetate 

gradient (lanes 10 - 22) are shown, arranged from left to right in consecutive order of elution. 
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The Con A-Sepharose column chromatography step accounted for the largest 
purification. Upon application of the enzyme preparation at 50 mM NaCl, most of the APS-1l 

activity was bound to the column. In contrast, virtually all protein contaminants appeared in the 
flow through or were removed in the subsequent washing step using a 200 mM NaCl buffer 
(Fig. 4). During washing, a proportion (usually less than 50%) of the adsorbed APS-11 

activity was gradually released from the column in a broad peak, trailing behind the 
contaminants. The tail of this peak, representing almost pure APS-1i, was collected for further 
purification together with the tightly bound fraction, which needed the competition of a-D-
methylglucoside to become released (Fig. 4). 

In our hands, column 'bleeding' caused contamination of the APS-11 preparation with 
relatively large amounts (up to 10 |Xg/ml) of Con A (Fig. 4). As a result, SDS-PAGE analysis 
of the purified APS-11 preparation using standard sized (10 cm) 12.5% Polyacrylamide gels, 
was rather deceptive. Due to its similar migration rate in SDS-PAGE, one of the contaminating 
Con A-associated polypeptides precluded the identification of the apparent APS-11 subunit. 
Only upon using extra long (30 cm) 15% Polyacrylamide gels, we were able to visualize the 
APS-1l subunit (Fig. 4, lane 9, 10), which migrated at a slightly higher rate than the Con A 
contaminant. 

In the final Mono Q FPLC purification step, the Con A contaminants were completely 
removed by the 100 mM KAc wash, yielding a highly purified APS-11 enzyme preparation that 
was directly amenable to amino acid sequence analysis. 

As the presence of other APS activities in the partially purified enzyme preparation 
precluded the APS-11 activity to be quantified separately, it was impracticable to evaluate the 
present purification procedure in terms of increase of specific APS-11 activity. Actually, the 
overall purification factor could only be assessed retrospectively from the yield of purified 
APS-1! protein. From 1.3 kg of roots, about 2 g of total protein was extracted, which yielded 
approximately 8 |Ag of purified APS-1 ̂  Assuming the final APS-1l preparation to be virtually 
pure (Figs. 5, 6), such a yield implies purification of up to 250,000-fold, dependent on and 
proportional to the actual recovery of APS-11 protein. However, only inaccurate estimates of 
the latter were attainable because of the other APS activities present. Nevertheless, it was 
apparent from these estimates, that no major loss of the APS-11 activity present in the original 
extract had occurred during any purification step. Since PCR experiments (see chapter 4) 
confirmed the low abundance of Aps-11 mRNA, the low yield of APS-1l protein attained is not 
likely to be due to inefficient extraction or loss, but rather to the low level of Aps-11 gene 
expression. 
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^ wash 

kD 

66 

45 

29 

910 

5 3 ^ 

APS-11 

Fig, 4. Purification of tomato APS-11 through its affinity for Con A-Sepharose. HAP-purified APS-11 (input) 

was prepared (step 1 - 4) from approximately 250 g of tomato roots and loaded on a Con A-Sepharose column 

(0.5 cm2 x 4 cm) as described in Materials and Methods. Proteins with low affinity for Con A were washed 

through the column using a high salt (200 mM NaCl) washing buffer. Glycoproteins with high affinity were 

subsequently eluted with high salt buffer containing 1% (w/v) a-D-methylglucoside. Relevant low and high 

affinity eluate fractions were analysed by SDS-PAGE of 50 \ü portions using a 15% (w/v) Polyacrylamide / 

0.09% (w/v) N,N'-methylenebisacrylamide gel (length 30 cm). The gel was stained for protein with silver. Lane 

1: 2% of the input; lanes 2-7: consecutive high salt (200 mM) wash fractions; lane 8: commercial Con A 

preparation (Pharmacia); lane 9 and 10: two high affinity eluate fractions containing low and high APS-11 

activity, respectively, as determined by CAM electrophoresis (not shown). Arrow: 31 kD polypeptide, associated 

with APS-11 activity; arrow-heads: Con A-associated bands. 
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Criteria for purity 

Three independent tests were performed to confirm the identity and the homogeneity of the 
protein that had been purified. 

First, gel electrophoresis under non-denaturing conditions showed, that the APS-11 

preparation consisted of a single homogeneous protein, co-migrating with the APS-11 activity 
(Fig. 5). 

£ purified APS-11 

& ^preparation 

APS-2 • 

APS-11 

staining: APS Ag 

Fig. 5. Co-electrophoresis of APS-11 activity with 

the protein which had been purified. APS-11 was 

purified from tomato roots as described in Materials 

and Methods, and portions (equivalent to 0.12 and 

1.2 g of fresh roots, respectively) of the Mono Q 

eluate (step 6) were analysed by non-denaturing 

PAGE, followed by APS activity staining (APS) and 

silver (Ag) staining (protein), respectively. A crude 

extract from tomato leaves (Aps-l^Aps-l1) was 

included as an APS isozyme marker. 

In a second test, an attempt was made to separate the APS-1 1 activity from the purified 
protein, using a separation principle that had not been applied in the purification procedure. To 
this end, the purified APS-11 preparation was applied to a Sephacryl S-200 HR gel filtration 
column and each fraction of the eluate was subjected to both activity and protein staining. As 
shown in Fig. 6, the elution profile of the APS-11 activity completely coincided with the 
protein profile, confirming the APS-1l identity of the purified protein. 

The third confirmation was obtained by SDS-PAGE analysis. As shown in Fig. 6, the 
APS-11 preparation consisted of a single 31 kD polypeptide - the apparent APS-1l subunit -
which, like the native protein, completely co-eluted with the APS-1l activity upon gel filtration 
on the Sephacryl S-200 HR column (Fig. 6). 

Sources of APS-11 and yields attained 

For reasons of economy, no APS-11 protein was sacrificed for a standard protein assay. 
Instead, yields of APS-11 were estimated on the basis of the amount of amino acids released 
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Fig. 6. Co-elution during gel filtration of APS-1 ' activity with the protein which had been purified. Mono Q 

FPLC-purified APS-1 • (prepared from 120 g of tomato roots according to step 1 - 6, Materials and Methods) was 

subjected to gel permeation chromatography using a Sephacryl S-200 HR column (0.79 cm2 x 46 cm). The 

column was eluted with 100 mM NH4HCO3 pH 8, 5 mM DTT. Portions of consecutive eluate fractions (0.5 

ml) were analysed for APS activity (top panel, 1 ill per fraction) and protein composition, using both non-

denaturing PAGE (middle panel, 25 id per fraction) and SDS-PAGE (bottom panel, 25 id per fraction). Proteins 

were visualized by silver staining (Ag). 
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upon complete acidic hydrolysis of a proportion of the APS-11 preparations. Per kg of fresh 
roots, the present purification protocol yielded approximately 6 |xg of purified APS-11. 
Suspension cells, on the other hand, yielded only about 2 |i.g of purified APS-11 per kg fresh 
weight and, hence, were a less favourable source for APS-11. However, these data were 
derived from single determinations, so that their significance remains to be established. 

Not only intracellularly, but also in the culture medium, APS-11 activity was readily 
detectable by native PAGE and subsequent APS activity staining, suggesting that the culture 
medium could serve as a convenient source of APS-1l protein. 

staining: 

APS-2 

APS-11 

APS Ag 

3 

Fig. 7. Yield of extracellular APS-11 attained 

from suspension cell culture medium. One week 

old L2-14 suspension cell cultures were filtered 

through a 0.22 urn filter (Millipore) and the cell-

free medium (7 litre) was concentrated by 

ultrafiltration using a DIAFLO YM5 membrane 

(Amicon). The concentrate was subjected to 

DEAE-Sephacel (step 3) and Con A-Sepharose 

(step 5) column chromatography as described in 

Materials and Methods, and the Con A 

contamination from the Con A-Sepharose column 

was removed by a TGKEDP wash, following a 

second adsorption of the preparation to a 

DEAE-Sephacel column (0.5 cm2 x 4 cm). The partially purified extracellular APS-11 was then eluted using 400 

mM KAc in the same buffer solution. Subsequently, the final preparation was loaded in duplicate (lanes 2 and 3) 

on a non-denaturing Polyacrylamide gel. After electrophoresis, the gel was sliced and lane 2 was stained for APS 

activity (APS) and lane 3 for protein using silver staining (Ag). Both parts of the gel were equilibrated with 

distilled water to eliminate the difference in swelling which had occurred during staining. An attempt was made 

to estimate the amounts of APS-11 activity and APS-11 protein by reference to the staining intensity of the 

respective bands. To allow for the detection of minute amounts of APS-11 protein by silver staining, a 

substantial proportion (10%) of the total preparation was loaded in lane 3. However, no clear APS-11 protein 

band was seen, whereas the very intense activity-stained APS-1 • band in lane 2 was produced by only 4% of the 

preparation. A crude extract of tomato leaves (Aps-l^Aps-l1) was used as an APS isozyme marker (lane 1). 

È 

In several attempts, up to 7 litres of culture medium were concentrated by ultrafiltration 

and subjected to a condensed version of the purification protocol developed for intracellular 

APS-11 as described before. After non-denaturing PAGE of the partially purified extracellular 
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APS-11 preparation and subsequent silver staining, a protein band was visible in the region of 

the gel where the APS-11 activity band was present (Fig. 7). This protein band, however, 

showed a slightly but significantly lower mobility than the APS-1l activity. Hardly any protein 

was visible exactly at the level in the gel corresponding to the centre of the APS-11 activity 

spot, even when the total APS-1l yield from 0.7 litres of medium was loaded into a single slot 

(Fig. 7, lane 3). Anyhow, the ratio between the intensities of the APS activity staining and the 

silver staining was much lower as compared to intracellular APS-1 ̂  This result was confirmed 

(not shown) by SDS-PAGE analysis of the extracellular APS-11 preparation and subsequent 

silver staining, as well as by AuroDye (Janssen Life Sciences Products, Beerse, Belgium) 

staining [Moeremans et al., 1985] of the native proteins following non-denaturing PAGE and 

subsequent electroblotting onto Immobilon membrane (Millipore, Bedford, Massachusetts). A 

plausible explanation for the difference between the extracellular and intracellular APS-11 

preparation as to the ratio of the staining intensities using APS activity staining and silver 

staining, is, that the the activity of the purified extracellular APS-1l was better preserved during 

purification, resulting in a higher specific activity for the extracellular APS-11 preparation as 

compared to the intracellular preparation. 

The use of suspension cell cultures enabled us to study the effect of phosphate 

starvation, which has been reported to induce excretion of some APS isozymes in tomato plants 

and suspension cells [Goldstein et ai, 1988a; 1988b]. However, preliminary experiments (not 

shown) indicated, that the concentration of phosphate in the culture medium did not affect the 

excretion of APS-11 activity by L2-14 suspension cells, although, indeed, a certain stimulatory 

effect of phosphate depletion was found on the activity in the medium of another, anonymous 

APS isozyme. 

These observations led us to the conclusion that culture medium of tomato suspension 

cells, although of comparatively simple protein composition, does not provide a practicable 

source of tomato APS-1l. 

DISCUSSION 

Acid phosphatases are ubiquitous in living organisms and have been isolated from numerous 

sources, including various plant species [Felenbok, 1970; Uehara et al., 1974; Chen et al., 

1975; Ninomiya étal., 1977; Shinshi and Kato, 1979; Kruzel and Morawiecka, 1982; Ferens 

and Morawiecka, 1985; Park and Van Etten, 1986; Basboa etal., 1987; Ching et al., 1987; 

Hefler and Averill, 1987; Paul and Williamson, 1987; Goldstein et al., 1988; Saluja et al., 
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1989; Kaneko et al., 1990]. They represent a heterogeneous group of proteins differing in 
molecular mass, subunit structure and carbohydrate content [Fujimoto et al., 1980; Lorenc-
Kubis, 1986; Ching et al., 1987; Paul and Williamson, 1987; Saluja et al., 1989]. With respect 
to the basic features of this class of enzymes, the tomato isozyme APS-11 does not differ 
significantly. Like most acid phosphatases studied to date, the tomato enzyme is a dimeric, 
glycosylated protein, that displays a 'relaxed' substrate specificity [Paul and Williamson, 
1987]. Given the great difficulty of isolating substantial amounts of the APS-1l allozyme from 
tomato and its common features, this enzyme would not have been of particular interest, if the 
corresponding gene was not closely linked to a disease resistance gene and a conceivable 
landmark gene in chromosome walking studies. 

The present protocol for the purification of APS-11 from tomato is a modified version of 
the procedure developed by Paul and Williamson [1987], extended with a Mono Q FPLC step. 
Only minor modifications were made except for the Con A-Sepharose column chromatography 
step. While these authors reported, that APS-11 displayed only a weak affinity for Con A in 
passing through the Con A-Sepharose column upon initial application, we observed the 
opposite (Fig. 4). This discrepancy may reflect a great variability in the extent of glycosylation 
and the sugar composition of the carbohydrate component of APS-1 ̂  depending on genetic or 
environmental factors. Another aspect that called for special attention, and has possibly gone 
unnoticed by Paul and Williamson [1987], was the 'bleeding' of the Con A-Sepharose column, 
resulting in contamination of the purified APS-11 preparation with substantial amounts of 
Con A (up to 10 ng/ml). As Con A-Sepharose column chromatography constituted the last step 
in the Paul and Williamson protocol [1987] and, in addition, Con A and APS-11 migrated 
similarly in SDS-PAGE gels, it is questionable, whether the apparent high yield of APS-11 (of 
the order of 1 mg/kg cells) reported by these authors, should not be attributed to a large extent 
to a contamination with Con A, in particular, as no major loss of APS-1l activity was observed 
throughout the present purification. Anyhow, the Mono Q FPLC step was found imperative to 
obtain an enzyme preparation, that met the purity criteria required for subsequent amino acid 
sequencing. 

In summary, a purification procedure for tomato APS-11 has been developed that 
provided a highly purified preparation suitable for amino acid microsequencing, as required by 
the present strategy for cloning Mi. 
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INTRODUCTION 

The acid phosphatase-11 (Aps-11) gene on chromosome 6 of tomato may provide a nearby 
starting point for a chromosomal walk towards the agronomically important nematode 
resistance gene Mi, which is estimated to be located at a distance of 540 kb from the Aps-11 

locus [Medina-Filho, 1980; Arumuganathan and Earle, 1991; Ganal et al. cited in Messeguer et 
al., 1991]. Molecular cloning of Aps-11 is feasible, since the encoded acid phosphatase-1 
allozyme (APS-11) has been purified [Paul and Williamson, 1987; Chapter 2] and methods for 
cloning nucleotide sequences encoding a known polypeptide gene product are currently 
available. For selection of the cloned sequence are then used specific antibodies [Huynh et al., 
1985; Snyder et al., 1987; Sambrook et al., 1989] or oligonucleotide probes, the sequence of 
which has been derived from the amino acid sequence of the target protein [Ohtsuka et al., 
1985; Lathe, 1985; Wood et al., 1985; Devlin et al., 1988; Sambrook et al., 1989]. 

With a view to cloning the Aps-11 gene, the purified APS-11 preparation described in 
the previous chapter was used to determine the amino acid sequences of parts of the Aps-11 -
encoded polypeptide chain. For that purpose, protein sequencing has been performed using 
purified peptides prepared by specific proteolytic cleavage [Aebersold et al., 1987; Prussak et 
al., 1989]. We did not use protein sequencing starting from the N-terminus, since N-terminal 
sequencing is often precluded by biosynthetic or artifactual block of the terminal amino group 
[Hunkapiller et al., 1983a; 1983b; Aebersold et al., 1987]. Given the low amount of purified 
protein available, no attempt was therefore made to sequence the N-terminus of APS-1 ̂  

MATERIALS AND METHODS 

Concentration of the purified APS-11 preparation by ultrafiltration 

The Mono Q-FPLC-purified APS-11 preparation resulting from step 6 of the purification 
protocol (chapter 2) was concentrated in portions by repeatedly using a single CENTRICON-10 
ultrafiltration device according to the instructions of the manufacturer (AMICON). After each 
centrifugation run, the sample reservoir, containing the concentrate of the previous 
ultrafiltration step, was filled up with dilute APS-1 • preparation and then the concentration step 
was repeated. This procedure allowed up to 21 ml of APS-1l preparation to be concentrated to 
40 - 120 \il. 
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To change the buffer of the final concentrate to 200 mM NH4HCO3 (pH 8), four 
additional cycles of 15-fold dilution and concentration with 200 mM NH4HCO3 (passed 
through a 0.22 |j.m filter) were performed in the same CENTRICON-10 unit The concentrated 
APS-11 preparation in approximately 100 u.1 of 200 mM NH4HCO3 was collected by 
centrifugation of the CENTRICON-10 unit in inverted position for 10 min at 3000 rpm in a 
bench top centrifuge. 

Preparation of APS-11 peptides 

For preparation of CNBr peptides, 100 pmole of Mono Q-FPLC-purified (step 6) APS-11 

prepared from roots, was concentrated by lyophilization and redissolved in formic acid. A 
crystal of CNBr was added and air was removed from the eppendorf reaction tube by flushing 
with nitrogen gas. The tube was capped air-tight and incubated overnight at 4 °C. 

To prepare tryptic peptides, 100 pmole (~3 |ig) of APS-11, purified from suspension 
cells (chapter 2), was concentrated into 100 |al 200 mM NH4HCO3 by ultrafiltration and 0.01% 
(w/v) SDS was added. Subsequently, the protein was digested with 1 |ig of HPLC-purified 
trypsin (Boehringer, Mannheim) at 37 °C for 16 hours. 

Peptides were separated by reversed-phase HPLC (Applied Biosystems, model 130A), 
using an AquaporeRP-300 column (2.1 x 30 mm) and a linear gradient of 0 - 70% (v/v) 
acetonitrile in 0.1% (v/v) trifluoroacetic acid (TFA) to elute the peptides. The effluent was 
monitored at 220 nm. 

Peptide sequencing 

HPLC-purified peptides which showed a symmetrical elution peak were lyophilized, 
redissolved in 30 |xl formic acid and bound to polybrene-pretreated, TFA-activated glass fibre 
filters. For sequencing of the peptides by automated Edman degradation, a pulsed-liquid phase 
sequencer was used (Applied Biosystems, model 477A). Sequencing was performed as 
described [Beyreuther et al., 1983]. 
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RESULTS 

Partial amino acid sequencing of tomato APS-11 

Because of the low amount of APS-1l protein available (chapter 2) and the risk of dealing with 

a protein that is blocked at its N-terminus, no attempt was made to determine the N-terminal 

amino acid sequence. Instead, amino acid sequencing of APS-11 was performed on peptides, 

generated by proteolytic cleavage and purified by reversed-phase HPLC. The first batch of 

APS-11, obtained from roots, was cleaved with CNBr and a second batch, purified from 

suspension cells, was cleaved by tryptic digestion. 

Two CNBr and seven tryptic cleavage products were recovered sufficiently pure and in 

adequate amounts to allow determination of their respective (partial) amino acid sequences 

(Table 1). Together, these peptides revealed 61 residues of amino acid sequence information 

from the APS-11 polypeptide chain. Assuming about 280 amino acid residues to be contained 

within a 31 kD polypeptide, this corresponds to approximately 22% of the APS-11 amino acid 

sequence. 

Table 1. Partial amino acid sequence of tomato APS-11. Deduced Met residues, preceding CNBr 

peptides I and II, are shown in parentheses. The CNBr peptides are boxed within the tryptic 

peptides where they are part of (VII and IX, respectively). 

1 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

(Met)-Tyr-Tyr-lie-Leu 

(Met)-Val - Gly- Pro • Gly - Tyr - Lys 

Phe-Val-Pro-Glu-Thr-Asn-Leu - ? - Asn-Arg 

lie • Val-Gly-Asn-Ser-Gly-Asp-Gln-Trp-Ser-Asp-Leu-Leu-Gly-(Arg) 

Leu-lie- Leu-Arg 

Val - Phe-Leu- Leu -Thr - Gly- Arg 

? - Phe - Lys - Leu - Pro-Asn-Pro-Met-Tyr-Tyr-He-Leu-(Arg) 
CNBr peptide 1 

Leu - Tyr - Gin - Glu - Val - Leu - Lys- Phe-^jj) 

Ala - Met -|Val - Gly • Pro - Gly - Tyr - Lys| 
CNBr peptide II 
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Among the seven tryptic peptides sequenced, two (VII and IX) were found to overlap 
(Table 1) the amino acid sequence established for the respective CNBr peptides (I and II). 
Since the CNBr and the tryptic peptides were derived from independent APS-11 preparations, 
isolated from two different sources, this observation lends support to the reliability of the 
established amino acid sequence information. 

DISCUSSION 

As a consequence of the low level of expression of the APS-11 protein, the purification 

protocol presented in chapter 2 resulted in a very dilute APS-1 ! preparation, which needed to be 

concentrated for microsequencing purposes into a volume applicable to a glass fibre filter. In 

fact, up to 21 ml had to be concentrated into about 100 |xl. At first, for the batch of APS-11 

protein isolated from hydroponic roots, we had chosen lyophilization to reduce the volume, as 

this method principally allows the sample to be redissolved in whatever suitable volume. After 

lyophilization however, the dehydrated APS-11 had become insoluble in trypsin digestion 

buffer. Therefore, the lyophilized APS-11 was only amenable to CNBr cleavage, as this 

reaction may be performed in formic acid, in which lyophilized APS-1l was readily soluble. 

Both CNBr peptides we found, were very short (4 and 6 amino acid residues, 

respectively) and together accounted for only a small fraction of the APS-11 polypeptide chain 

(a total of ±280 amino acid residues). As CNBr breaks peptide bonds on the carboxyl side of 

methionine [Gross, 1967] and this amino acid occurs relatively rarely in natural polypeptide 

chains [Nikodem and Fresco, 1979; Scott etal., 1988], large peptides are usually produced 

[Gross, 1967; Nikodem and Fresco, 1979; Scott et al., 1988; Plaxton and Moorhead, 1989]. 

Thus, the missing of the larger cleavage products would easily be accounted for, if APS-1 ' 

would contain only few methionine residues and the large cleavage products are not recovered, 

because the large peptides will resemble the complete denatured protein in being highly 

insoluble at moderate pH conditions. 

Fortunately, ultrafiltration proved a successful by-pass of the low solubility of 

lyophilized APS-11, making tryptic digestion feasible. Refilling the sample reservoir of the 

ultrafiltration unit with the dilute APS-1l preparation after each concentration step and repeating 

the concentration procedure allowed a reduction in volume from 21 ml to ±100 jLil. During this 

concentration procedure, the introduction of dust into the essentially dust-free Mono Q-FPLC-

purified APS-1l preparation was avoided by refilling the ultrafiltration unit in a sterile hood and 

using membrane-filtered ammonium bicarbonate exchange buffer. These precautions were 
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taken, because preliminary experiments had indicated, that the ultrafiltration membrane may 
become impermeable upon repeated use of the unit, probably by clogging of minute particles on 
the membrane surface. 

As a result, the purity level of the APS-11 preparation allowed up to 14 consecutive 
amino acid residues (peptide IV) to be determined with great certainty. The largest peptides, IV 
and VII, both contain a stretch of three amino acid residues (Asp - Gin - Trp and Met - Tyr -
Tyr, respectively) with only fourfold codon degeneracy. From such sequences oligonucleotides 
with comparatively small degeneracy can be derived. 

After the completion of this work Tanaka et al. [1990] confirmed that tomato APS-11 is 
N-terminally blocked in showing that treatment with pyroglutamylpeptidase renders tomato 
APS-11 amenable to Edman degradation, allowing the 14 N-terminal amino acid residues to be 
sequenced. The sequence determined by these authors did not overlap, however, with any of 
the APS-11 amino acid sequences described in this chapter. 

The presence of Lys residues in some of our tryptic APS-11 peptides (VII and VIII) 
showed that only incomplete digestion had been attained in spite of the rigorous digestion 
procedure applied. Recently, Erion et al. [1991] published similar experiments using high 
levels of trypsin and endoprotease Lys-C. They still found incomplete digestion of their 
APS-11 preparation, even when they added a ratio of more than 1:10 protease to APS-11 

(w/w), which lends support to our observation that tomato APS-11 shows a certain level of 
protease resistance. 

In summary, we conclude that APS-11 amino acid sequence information has been 
obtained, allowing the design of oligonucleotides useful in cloning the Aps-11 gene. 
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INTRODUCTION 

For the purpose of cloning Aps-11 nucleotide sequences, degenerate oligonucleotide pools, 
synthesized on the basis of the known APS-11 amino acid sequences (chapter 3), can be 
applied either as a probe to screen a cDNA library, or as primers to direct a polymerase chain 
reaction (PCR). The latter approach would appear more discriminatory, because amplification 
by PCR intrinsically involves co-operative annealing of two different oligonucleotide primers 
and thus combines the selectivity of both, whereas selection of positive clones from a cDNA 
library is based on the annealing of only one single oligonucleotide probe at a time. Moreover, 
cDNA library screening using degenerate pools of oligonucleotide probes under low-stringency 
hybridization conditions usually results in numerous false positives. Moreover, taking into 
account that the APS-11 protein is low abundant (chapter 2), identification of an Aps-11 cDNA 
clone would likely demand the screening of a very large number of clones. On the basis of 
these considerations, PCR-mediated amplification of Aps-11 nucleotide sequences was chosen. 

Oligonucleotide pools encompassing all possible nucleotide sequences encoding the 
parental amino acid sequence [Girgis et al, 1988; Mack and Sninsky, 1988; Hahn et al., 1989; 
Horikoshi et al, 1989; Larrick et ai, 1989a; 1989b; Nunberg et al., 1989; Wilks et al., 1989] 
as well as pools with restricted complexity [Knoth et ai, 1988; Lee et al., 1988; Wilks et al., 
1989; Patil and Dekker, 1990] have been applied as PCR primers. The number of different 
oligonucleotide sequences needed to obtain an effective primer pool can be restricted by 
incorporating the essentially unselective nucleotide deoxyinosine monophosphate (dIMP) at 
ambiguous positions [Knoth et al., 1988; Ehlen et al, 1989; Patil and Dekker, 1990] and 
besides, by choosing among the common deoxynucleotides on the basis of an 'educated guess' 
[Orlandi et al, 1989] as will be pointed out below. The latter approach, however, is carrying 
the risk that the target sequence will not be primed, in particular when applied to the 3' end of 
the primers [Sommer and Tautz, 1989]. 

In view of the experience that degenerate oligonucleotide pools generally show low 
specificity if used as a probe in library screening [Wood et al, 1985; Devlin et al, 1988], 
degenerate PCR primer pools may likewise direct the amplification of non-target fragments. 
This problem may be overcome by using shorter primers, which comprise only part of the 
parental APS-11 peptide. Such a primer design would allow the identification of the target 
fragment among any co-amplified sequences on the basis of the nucleotide sequences flanking 
the primers. In the correct amplification product, these flanking nucleotide sequences are 
expected to encode the additional amino acids known from the amino acid sequence analysis. 
On the other hand, the presence of target-related sequences within the template DNA may 
interfere with this strategy and hamper the final identification of the target fragment 
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In this chapter, the successful application of degenerate PCR primer pools of restricted 

complexity level for the amplification of an apparent Aps-l1 genomic sequence is described. 

The necessity to have other tests available complementary to the nucleotide and amino acid 

sequence match, is illustrated with the performance of Aps-l1 primer pools that were made 

shorter than the parental APS-1l peptide. 

MATERIALS AND METHODS 

Plants and cell cultures 

Seeds of commercial tomato cultivars and breeding lines containing different Aps-l alleles were 
kindly provided by several Dutch seed production companies. L. esculentum lines 83M71392 
and 83M71398 form a pair of nearly isogenic lines (NILs), differing only in the chromosome 6 
region containing the Aps-l and Mi loci [Klein-Lankhorst et al., 1991]. The nematode-sensitive 
line 83M71392 carries the Aps-l3 and mi alleles. The nematode-resistant line 83M71398 carries 
the Aps-l1 and Mi alleles introgressed from L. peruvianum. 

LA 1641 is a L. esculentum chromosome substitution line in which the L. esculentum 
chromosome 6 has been replaced by chromosome 6 from L. pennellii LA 716, except for the 
very distal end of the long arm encompassing RFLP marker TG193. This line has been 
developed from a L. esculentum x L. pennellii cross by Rick [1969]. A detailed molecular and 
genetic characterization of this substitution line has been accomplished (Weide et al., 1993). 
Both L. pennellii LA 716, and L. esculentum LA 1641 were obtained from Dr. CM. Rick, 
University of California, Davis, California. 

Plants were grown in a greenhouse at temperatures between 20 ° and 35 °C. For DNA 
extraction young, still expanding leaves were harvested, frozen in liquid nitrogen and stored at 
-80 °C. 

L2-14 cell suspension cultures were derived from a plant, selected among the progeny 
that arose from the selfing of L2, which is a hybrid L. peruvianum x L. esculentum line 
containing 75% L. peruvianum [Thomas and Pratt, 1981]. The cells were cultured at 25 °C in 
the dark in 11 flasks containing 400 ml medium [DuPont et al., 1985] under vigorous shaking. 
Every 10 -14 days one tenth of the suspension was subcultured; the remaining cells were then 
harvested by filtration using a Büchner funnel, and were stored frozen at -80 °C. The average 
cell yield was 100 - 200 g/1. 
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Synthesis of oligodeoxyribonucleotides 

Pools of oligodeoxyribonucleotides were synthesized on a Biosearch Cyclone model no. 8400 
DNA synthesizer using ß-cyanoethyl phosphoramidite chemistry. 

Construction of a cDNA library 

A cDNA library of root poly(A)+RNA was constructed essentially as described by Huynh et al. 

[1985]. If not specified, materials were purchased from Boehringer or GIBCO BRL. 

RNA was isolated from hydroponic roots of the nematode-resistant line 83M71398 

(Aps-P/Aps-l1, Mi/Mi) by extraction with phenol and precipitation from 2 M LiCl [De Vries et 

al., 1982]. The poly(A)-containing RNA fraction was purified by a single adsorption to 

oligo(dT)-cellulose (Type 2, Collaborative Research) and reverse transcribed using an 

oligo(dT)i2-i8 primer (Pharmacia) and avian myeloblastoma virus (AMV) reverse transcriptase 

(Life Science). Primers for second strand synthesis were generated by RNAase H treatment of 

the mRNAxDNA hybrid and the second cDNA strand was synthesized through replacement of 

the RNA strand using DNA polymerase I [Okayama and Berg, 1982; Gubler and Hoffman, 

1983]. The double-stranded cDNA was treated with T4 DNA polymerase and EcoRl linkers 

were ligated to the blunt ends using T4 DNA ligase (50 U/u.1, Boehringer). The linkers were cut 

with EcoRl and the released linker fragments removed by Bio-Gel A-50 (Bio-Rad) column 

chromatography. Phage A-gtll DNA was digested with EcoRl and treated with alkaline 

phosphatase from calf intestine (CIP) to prevent self-ligation. Then EcoRI-hnked cDNA and 

EcoRI-digested vector DNA were ligated and the ligation products packaged into phage 

particles using a commercial packaging mix (Promega). From a titration on the Escherichia coli 

Y1090 host strain in the presence of X-gal (5-bromo-4-chloro-3-indolyl-ß-D-galactoside), it 

was estimated that the unamplified library contained 1% of wild-type and 9 x 105 pfu of 

recombinant phages. Before screening, the library was amplified once by plating on E. coli 

Y1090. 

Library screening using degenerate oligonucleotide pools 

The amplified cDNA library was plated on NZCYM-agar (10 g/1 NZ-amine, 5 g/1 NaCl, 5 g/1 
yeast extract, 1 g/1 casamino acids, 2 g/1 MgSC«4 • 7 H2O, pH 7.5) at a density of 33,500 pfu 
per petri dish (diameter 17 cm) using E. coli Y1090 as a host. Plaques were grown for 6-8 
hours at 37 °C, and replicas were made in triplicate on HATF filter membranes (Millipore). 

84 



Phage DNA was released and bound to the membranes using standard procedures [Sambrook 

et ai, 1989]. 

Filters were prehybridized in 1 M NaCl, 1% (w/v) SDS, 10% (w/v) dextran sulphate 

for 2 hours at 65 °C. Subsequently, 10-20 ng/ml oligonucleotide probe was added, that had 

been labeled to a specific activity of 0.2-1.7 x 108 dpm/Hg using bacteriophage T4 

polynucleotide kinase and y-32P-dATP [Sambrook et al., 1989]. Hybridization was performed 

overnight at a temperature 15-40 °C below the Tm as calculated according to Lathe [1985]. The 

filters were washed in 6 x SSC (0.9 M NaCl, 0.09 M sodium citrate pH 7.0) at the same 

temperature during 15 min. 

Autoradiography was performed for 2-8 days at -80 °C using Kodak Xomat AR-5 film 

and an intensifying screen. 

Polymerase chain reaction (PCR) 

The reaction mixture for the amplification of tomato genomic DNA sequences contained 10 mM 
Tris-HCl pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.01 % (w/v) gelatin, 0.2 mM of each dNTP, 
2.5 U AmpliTaq (Perkin Elmer Cetus), 1 ng of genomic DNA and 4 jag of each of two 
appropriate primer mixtures in a 100 Hi reaction volume. The reaction mixture was overlaid 
with 100 ju.1 paraffin. In general, amplification was performed for 30 cycles through a regime of 
1 min template denaturation at 92 °C, followed by a 1 min primer annealing at 55 °C and a 3 min 
primer extension at 72 °C, using an automatic thermal cycler (PREM HI, Lep Scientific). As a 
positive control, we used a pair of perfectly matching [Chase and Williams, 1986] Adh-2 
primers (S'-GTCGACTACTGTAGGCCAA '̂ and 5'-ATCCAACATGAACCACG-3'), which 
had been found to direct the amplification of a 0.7 kb and a 476 bp tomato Adh-2 sequence, 
respectively with genomic and cDNA as a template. 

Amplification of Aps-11 mRNA sequences was performed as follows: After heating for 
3 min at 85 °C, L2-14 RNA (1 \ig) and 4 ng antisense Aps-11 primer pool IV.23a or VII.23a 
(Table 1) were allowed to anneal at 37 °C for 15 min in a volume of 10 nl containing 10 mM 
Tris-HCl pH 8.3, 250 mM KCl, 1 mM EDTA. Then, 15 nl of a mixture was added containing 
25 mM Tris-HCl pH 8.3, 16.7 mM MgCb, 8.3 mM DTT, 0.42 mM of each dNTP, 200 U of 
Moloney murine leukemia virus reverse transcriptase (Bethesda Research Laboratories) and 
20 U of RNasin, and cDNA was synthesized at 42 °C for 15-30 min. For subsequent 
amplification of Aps-11 cDNA sequences by PCR, the reaction mixture was adjusted to 10 mM 
Tris-HCl pH 8.3, 50 mM KCl, 2.5 mM MgCb, 0.01 % (w/v) gelatine and each dNTP was 
replenished with 1 |il of a 10 mM stock, resulting in a final reaction volume of 100 (J.1. Reaction 
conditions were similar as described for the amplification of genomic Aps-11 sequences, except 
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for a slower increase of temperature during primer extension, resulting from an additional 10 
sec of heating at 65 °C prior to the 3 min 72 °C step. 

PCR products were analysed by agarose gel electrophoresis, using 1.5% or 2.5% (w/v) 
agarose gels, and visualized by ethidium bromide (EtBr) staining. 

Southern blot analysis 

Genomic DNA from various tissues was isolated according to Murray and Thompson [1980] 
with the omission of the final CsCl - EtBr centrifugation step. Restriction enzyme-digested 
DNA (3 |Xg) was loaded on a 1% (w/v) agarose gel. After electrophoresis, restriction fragments 
were nicked by a 5 min treatment with short wave UV irradiation and blotted onto Gene Screen 
Plus membrane, as recommended by the manufacturer (DuPont). DNA was then cross-linked 
to the membrane by UV irradiation for 1 min, followed by baking at 80 °C for 1 hour. 

Hybridization was performed overnight in 50 itiM Tris-HCl pH 7.5, 1 M NaCl, 1% 
(w/v) SDS, 10% (w/v) dextran sulphate, 0.1 mg/ml salmon sperm DNA at 65 °C using 25 ng 
of the 2,4 kb PCR product, labeled (108-1010 dpm/^g) by random priming [Feinberg and 
Vogelstein, 1984], as a probe. Blots were washed at a final stringency of 0.5 x SSC (75 mM 
NaCl, 7.5 mM sodium citrate pH 7.0) at 65 °C. Autoradiography was performed at -80 °C for 
1-3 days using Kodak XAR film and an intensifying screen. 

Nucleotide sequence analysis 

DNA fragments to be sequenced were subcloned into pTZ18R or pTZ19R. Sequence analysis 
was performed according to the dideoxynucleotide chain-termination method [Sanger et al., 
1977], either using double-stranded template or single-stranded template DNA as described in 
the text. Single-stranded template DNA was prepared using M13K07 helper bacteriophages 
and an E. coli DH5a F' host strain as described by Vieira and Messing [1987]. 
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RESULTS 

Screening of a cDNA library using degenerate oligonucleotide pools 

The partial amino acid sequence of APS-11 (chapter 3) enabled us to develop oligonucleotide 
probes for the Aps-11 gene. Initially, degenerate oligonucleotide pools corresponding to 
APS-11 peptides II, III, IV and VII (chapter 3, Table 1) were synthesized which essentially 
contained all possible nucleotide sequences encoding the parental peptide. In order to limit the 
number of different oligonucleotide species per pool to at most 512, deoxyinosine (dIMP) was 
used at certain ambiguous positions within oligonucleotides corresponding to long amino acid 
sequences. Subsequently, the oligonucleotide pools were utilized as probes to screen a library 
of about 200,000 cDNA clones representing mRNA sequences from nematode resistant 
{Aps-111 Aps-11) tomato roots. A couple of initially positive clones were found, none of which, 
however, remained positive upon plaque purification. On the other hand, five positive Adh-2 
clones were readily identified upon screening 33,500 plaques, using a perfectly matching 17-
mer oligonucleotide probe corresponding to position 462 - 478 within the 5' part of the Adh-2 
coding region (1140 bp). This indicates that the negative result with the Aps-11 

oligonucleotides was not likely due to the mere absence of 5' mRNA sequences from the cDNA 
library, but rather reflected the extreme rareness of the Aps-11 mRNA and the technical 
difficulties inherent to library screening with complex oligonucleotide mixtures. 

The negative results obtained thus far using the degenerate Aps-11 oligonucleotide 
probes and the theoretical superiority of the PCR as compared to library screening prompted us 
to pursue the PCR approach for isolating Aps-11 nucleotide sequences. 

PCR using highly complex primer pools. 

In a first attempt to amplify Aps-11 nucleotide sequences by PCR, oligonucleotide primers were 
synthesized corresponding to (a part of) APS-11 peptides III, IV, VII and IX, in both 
orientations, using the same strategy to deal with codon degeneracy as applied in 
oligonucleotide probe design. Generally, this resulted in highly complex mixtures, containing 
up to 512 different primer species; some representative examples are included in Table 1 and 2. 
The amplification products synthesized under the direction of these complex primer pools were 
analysed by agarose gel electrophoresis and visualized by ethidium bromide (EtBr) staining. 

With most combinations of primer pools, a variety of amplification products was found 
using both genomic (some representative examples are shown in Fig. 1) and cDNA templates 
(not shown), especially with pools of the shorter primers, as for example the lis + Ilia primer 
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combination in Fig. 1. Most of these products were unlikely to represent the target fragment, 
since they were also present in the minus template control or in the unpaired primer reactions, 
that contained only one of both primer pools needed to produce the target fragment. The 
specificity attained with the complex primer pools was low, even though reaction conditions 
were used, 2.5 mM Mg2+ and 2.5 U/lOO l̂ Taq polymerase, demonstrated to be optimal in 
preliminary PCR experiments testing the influence of Mg2+ (Fig. 2) and Taq polymerase 
concentration (data not shown) and involving a pair of perfectly matching Adh-2 primers 
described in Materials and Methods. 

^ * £ Ä> * 

* * 

£ 
^ 

£ 
^ 

* * * 
? $ $ O «S 

- 9 4 3 

Fig. 1. PCR products amplified under the direction of highly complex 

Aps-11 primer pools using tomato genomic DNA (Aps-11/Aps-11) as a 

template. The combination of Aps-11 primer pools used in the amplification 

reaction is referred to with the Roman numerals of the parental APS-11 

peptides. The orientation of the primers is shown in superscript (s = sense; 

a= antisense). The maileer lane shows the size in base pairs of Saul M 

restriction fragments of pUC18 DNA. 

As subtractive comparisons of the paired primer reactions with the corresponding 

unpaired primer and minus-template controls did not indicate a single putative Aps-11 fragment, 

we have subjected the possible target fragments to RFLP analysis, using a pair of NILs holding 
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different Aps-1 alleles, to determine whether the product originated from the Aps-11 IMi 

chromosomal region. As far as tested, this additional selection did neither provide a clue to the 

presence of an Aps-11 target fragment among the pool of amplified products. Apparently, none 

of these primer pools, in any combination, was of practical use for the amplification of Aps-11 

nucleotide sequences. 

2+1 [Mg~] > 
1 2 3 4 5 6 7 Fig. 2. Effect of the Mg2+ concentration on the 

specificity of the amplification reaction directed 

by a pair of Adh-2 primers using tomato 

genomic DNA as a template. Twenty-five cycles 

of PCR were performed in the presence of 3.4 U 

of Taq polymerase (Amersham) and increasing 

amounts of Mg2+ ion: 1.5 mM (lane 1), 2.0 

mM (lane 2), 2.5 mM (lane 3), 3.0 mM 

(lane 4), 3.5 mM (lane 5), 4.0 mM (lane 6) 

and 5.0 mM (lane 7). Other reaction conditions 

were as described in Materials and Methods. The 

0.7 kb amplification product is the target 

fragment expected for Adh-2. Note the 

appearance of larger and smaller aspecific 

products at high Mg2+ concentrations. 

PCR using primer pools with reduced complexity 

In a second attempt to amplify Aps-11 nucleotide sequences, we redesigned the 5' region of the 
primers in order to obtain less complex primer mixtures. We continued to incorporate all 
possible nucleotide sequences encoding the three amino acids which determined the 3' terminus 
of the primers in order to ensure a perfect match at the 3' end, which is a prerequisite for 
efficient elongation [Sommer and Tautz, 1989]. In the 5' part of the primers, dIMP was used at 
ambiguous positions whereas, at certain twofold ambiguities, the most stabilizing common 
nucleotide was chosen (T at T/C ambiguities and G at G/A ambiguities, considering that a G-T 
mismatch is more stable than a G-I base pair [Jaye et al, 1983; Martin et al., 1985]). In case of 
amino acids for which codon usage in dicots [Murray et al., 1989] indicated possible strong 
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codon preference, we chose the most probable nucleotide(s), in particular within the 5' 
proximal region. Whenever possible, the primers were made shorter than the parental APS-11 

peptide to permit the identification of the target fragment among possible, co-amplified 
sequences on the basis of the colinear remainder of the amino acid sequence information. To 
facilitate cloning of the resulting PCR products, restriction sites were added to the 5' ends of 
the primers (Tables 1 and 2). 

Table 1. Degenerate PCR primer pools of high and reduced complexity level corresponding to the amino acid 

sequence of APS-1 ' peptides IV and VII. 

' 

sense 
DNA 

primers 
IV.41s 

primers^ 
UV.27sJ 

n = 8 

n = 6 

/Betrnise III"I 

NH2 •*• He- Val-Gly-Asn-Ser-Gly-Asp-Gln-Trp-Ser-Asp-Leu-Leu-Gly-Arg -»-COOH 
5' - ATT GTT GGT AAT TCT GGT GAT CAA TGG TCT GAT TTA TTA GGT CGT - 3' 

C C C C C C C G C C G G C C 
A A A A A A C T T C T T A A 

G G G G G C C G G 
AGT AGT A A AGA 

C C G G G 
5' - ATI GTI GGI AAI TTI GGI GAI CAI TGG TCI GAI TTI TTI GG- - 3' 

CC AG C C 
AA 
GG 

f 5' - GTA GGATCC ATI GTI GGI AAT ICI GGI GAT CAA TGG - 3'ï 
^ Sam HI G C G J 

im, -*• Phe-Lys-Leu-Pro-Asn-Pro-Met-Tyr-Tyr-He-Leu-Arg -»-COOH 
3' - AAA TTT AAT GGA TTA GGA TAC ATA ATA TAA AAT GCA - 5' 

G C C G G G G G G C G 
GAA T T T GAA T 

G C C G C 
T TTCT 
C C C 

3' - AAI TTI AAI GGI TTI GGI TAC ATI ATI TAI AAI GC - - S 
G G T 

3' - TTAGGATACATGATG TAI GAI TC- TTCGAA TCG - 5' 
G G Hin dill 

i 

n = 256 

n = 8 

anti-
sense 
DNA 

primera 
Vll.35a 

rprimers"\ 
Vll.23aj 

•* 

The code of the primers is composed of a Roman numeral indicating the APS-11 peptide from which it was 

derived, followed by the number of nucleotides corresponding to APS-11 amino acid sequence information and 

the orientation of the primer (s = sense; a = antisense); n indicates the number of different nucleotide sequences 

contained within the primer pool. The combination of primer pools which successfully directed the amplification 

of the Aps-11 target fragment is boxed. 

The adjustments thus made to the primer pools appeared to produce a decisive increase 
of the specificity of the PCR. When this alternative primer design was applied to the longest 
APS-11 peptides, peptides IV and VII, the combination of primers IV.27s and VII.23a 
(Table 1) was found to direct the amplification of a single major ±105 bp product with both a 
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genomic (Fig. 3) and a cDNA template (Fig. 4). Unlike the products amplified under the 

direction of the first generation of complex primer pools (Fig.l), the amplification of the ±105 

bp product was reproducible and exhibited the correct amplification characteristics. No product 

at all was detectable in the unpaired primer and minus-template controls (Figs. 3 and 4). 

template: - + + + - + + + 

Fig. 3. PCR products from a tomato (Aps-l'/Aps-l1) genomic template amplified 

under the direction of degenerate primer pools derived from APS-1 ' peptides IV and 

VII and designed with reduced complexity. The Aps-11 primer pools used in the 

amplification reaction are indicated with the Roman numerals of the parental APS-1 ' 

peptides. The orientation of the primers is shown in superscript (s = sense; a = 

antisense). Fragment sizes are shown in base pairs. 
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— 153 
— 105 
— 78/75 
— 46 / 36 

reverse transcriptase: -

template: -
+ ++++ + ++++++ 

leaf RNA root RNA 

Fig. 4. PCR products from a tomato (Aps-l'/Aps-l1) cDNA template amplified under the direction of degenerate 

primer pools derived from APS-1l peptides IV and VII and designed with reduced complexity. The Aps-11 primer 

pools used in the amplification reaction are indicated with the Roman numerals of the parental APS-11 peptides. 

The orientation of the primers is shown in superscript (s = sense; a = antisense). The primer combination which 

produced the Aps-11 target fragment is placed in a shaded box. The target fragment is absent when the opposite 

primer orientation is used (blank box) and in the unpaired primer controls. Fragment sizes are shown in base 

pairs. 

Sequence heterogeneity of the IV.27s/VII.23a-directed ±105 bp PCR product 

The origin of the rV.27s/Vn.23a-directed amplification product was investigated by direct 
nucleotide sequencing. To this end, the gel-purified PCR product was cloned into pTZ18R, 
using the restriction endonuclease cleavage sites added to the 5' ends of the primers (Table 1). 
Sequence analysis of four clones demonstrated, that the product was heterogeneous (Fig. 5), 
although all clones sequenced definitely represented a two-primer product of 115 or 116 bp 
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length. Therefore, this diversity is not likely to represent an irrelevant PCR artefact, but rather a 

family of related tomato nucleotide sequences. 

No. 

1 

2 

3 

4 

| | peptide IV 

Ile Val Gly Asn Ser Gly Asp Gin Trp Ser Asp Leu Leu Gly 

1 

2 

3 

4 

GGATCC 

GGATCC 

GGATCC 

GGATCC 

GTAGGATCC 

Mat Val Gly Asn Gly Gly Asp Gin Trp Ser Asp Leu Leu Gly Ser Ser Met 
ATQ GTG OGG AAT GGG GGG GAT CAA TGG AGT GAT CTG CT A GGC TCC TCT ATG 

MM Val Gly Asn 
ATQ GTG GGG AAT 

Mèr Val Gly Asn 
ATG GTG GGG AAT 

GCGGGG 
Ala 

Ala 
GCG 

Gly Asp Gin Trp Ser Asp Leu Leu Gly Ser Ser Ala 
GAT CAA TGG AGT GAT CTG TTA GGC TCC TCT GCA 

Gly Asp Gin Trp Ser Asp Leu 
GGG GAT CAA TGG AGT GAT TTG 

MM Val Gly Asn Gly Gly Asp Gin Trp 
ATG GTG GGG AAT GGG GGG GAT CAA TGG 

He 
ATC 

Gly 
GGA 

Gin Asn Val 
GAA AAT GTT 

Lys Lys Gly Arg Val Tyr Val Leu 
«AG AAA GGA AGA GTC TAC GTG CTA 

Bam HI 
ATI GTI GGI AAT l » GGI GAT CAA TGG 

G C G 

Phe 
peptide VII 

Lys Leu Pro Asn Pro Met Tyr Tyr Ile Leu COOH 
Arg Ser Phe 
CGC TCA TTC 

Lys Leu Pro Asn Pro Met Tyr Tyr Ile Leu 
AAG CTT CCA A-T CCT ATG TAC TAC ATC CTC 

Lys Leu 
AAG CTT 

Val Ile Trp 
GTC A1C TGG 

Pro Asn Pro Met Tyr Tyr M 
CCT AAT CCC ATG TAC TAC ATC CT 

AsnJ>ro Met Tyr Tyr Ile Leu 
AAC CCA ATG TAC TAC ATC CTC 

AAT CCT ATG TAC TAC ATI CTI 
C C 

A 

AGAAGCTT 

AGAAGCTT 

AGAAGCTT 

AGAAGCTTAGC 

H/ndlll 

Fig. 5. Nucleotide sequence heterogeneity of the IV.27s/VII.23a directed PCR product. The gel-purified 

amplification product was cloned into pTZ18R and found to contain nucleotide sequences 1-4 upon sequence 

analysis. The sequences were aligned to sequence 1, and to the PCR primers used and their parental APS-11 

peptides. Amino acid residues or nucleotides that each sequence had in common with sequence 1 were shaded. 

Arrows mark positions where the deoxyinosine in the PCR primer had caused another amino acid to be encoded 

by the cloned amplified sequence than the one present in the corresponding APS-11 peptide. Sequence 3 was 

found truncated at an internal cleavage site for the Hindlll restriction enzyme used in cloning. 

Although the sequences 3 and 4 (Fig. 5) could be sorted out on the basis of the 
mismatches with the expected APS-1l amino acid sequences, two nucleotide sequences, labeled 
1 and 2 in Fig. 5, remained obvious Aps-11 candidates in showing complete eolinearity with 
both known APS-11 amino acid sequences flanking the primer regions. 

As the candidate sequences 1 and 2 showed a poor performance as a probe in Southern 
blot hybridization, it was not possible to establish which of the two candidates represented the 
Aps-11 target sequence by RFLP analysis of a pair of NILs holding different Aps-1 alleles . 
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Amplification of a 2.4 kb genomic Aps-11 nucleotide sequence 

Another set of PCR primers tested was derived from Aps-11 peptides IV and IX (Table 2). In 
using as a template genomic DNA from the suspension cell line L2-14, carrying the Aps-11 

allele, the combination of primer pools K.23s and IV.23a directed the synthesis of a major 2.4 
kb amplification product (Fig. 6A, lane 3). This product was found neither in the single 
primer controls (Fig. 6A, lane 1 and 2) nor in the minus template control (not shown). 
Moreover, the 2.4 kb product was not formed when mixtures of primers in the opposite, 
apparently incorrect orientation were combined (Fig. 6A, lane 7), as might be expected for a 
correct amplification product 

Table 2. Degenerate PCR primer pools of high and reduced complexity level corresponding to the amino acid 

sequence of APS-11 peptides IV and IX. 

sense 
DNA 

primers 
IX.21s 

(primers^ 
I IX.23S J 

n = 256 

n = 8 

^ 

/f l lNiPWt 
fmmmmm 

H, —- Ala-Met-val-Gly-Pro-Gly-Tyr-Lys -»-co 3H 

5' - GCT ATG GTT GGT CCT GGT TAT AAA - 3' 
C C C C C C G 
A A A A A 
G G G G G 

5' - ATG GTT GGT CCT GGT TAT AAG - 3' 
c c c c c 
A A A A 
G G G G 

f5' - TAT CTGCAG GCI ATG GTI GGI CCI GGI TAT AA- - 3^ 
L Pstl C J 

tfllffWffimffilttlBF^FTk 

NH, —- Ile - Val-Gly-Asn-Ser 

W » - * « P » ^ 

Gly-Asp-Gln-Trp-Ser-Asp-Leu-Leu-Gly-Arg -» - C O O H 

3' - TAA CAA CCA TTA AGA CCA CTA GTT ACC AGA CTA AAT AAT CCA GCA - 5' 
G G G G G G G C G G C C G G 
T T T T T T GAAGAA T T 

C C C C C G G C C 
TCA TCA T T TCT 

G G C C C 

3' • TAI CAI CCI TTI AAI 
GG 
TT 
CC 

CCI CTI GTI ACC AGI CTI AAI AAI CC- - 5' 
TC G G 

h'- CTA GTT ACC IGI CTI GAI GAI CC- - - - TTCGAA TCG - 5'ï 
[ G C C Hindlll ) 

> 

n = 512 

n = 2 

anti-
sense 
DNA 

primers 
IV.41a 

primerai 
t IV.23a J 

J 

The code of the primers is composed of a Roman numeral indicating the APS-11 peptide from which it was 

derived, followed by the number of nucleotides corresponding to APS-11 amino acid sequence information and 

the orientation of the primer (s = sense; a = antisense); n indicates the number of different nucleotide sequences 

contained within the primer pool. The combination of primer pools which successfully directed the amplification 

of the Aps-11 target fragment is boxed. 
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template: 

Aps-1 alleles: 

sense primer: 

antisense primer: 

genomic DNA 

1 1 1 3 1 1 3 1 

- IX IX IX IX IV IV IV 

IV - IV IV IV IX IXIX 

1 2 3 4 5 6 7 8 9 
bß 

— 943 — 
— 585 — 

= M 1 258 = 

Fig. 6. Amplification products of a PCR directed by oligonucleotide primers corresponding to tomato APS-11 

peptides IV and IX. PCR reactions were primed with either the IV.27s/IX.24a or the reverse IX.23s/IV.23a 

primer combination, using as a template either genomic DNA (A), or cDNA reverse transcribed from L2-14 

(Aps-11) mRNA (B and C); IV and IX represent the primer pools in the sense orientation (IV.27s, IX.23s) or 

antisense orientation (IV.23a, IX.24a) as indicated above each lane. Two genomic templates (panel A) carrying 

the L. peruvianum Aps-11 allele (L2-14, lanes 3, 7 and 83M71398, lanes 5, 9), and one carrying the L. 

esculentum Aps-13 allele (83M71392, lanes 4,8), were tested as indicated. Appropriate single primer (A, lanes 

1, 2) and minus template controls were included, some of which are shown. None of the controls yielded any 

detectable amplification products. Panels B and C also illustrate (lanes 2) the amplification of a cDNA sequence 

related to the 2.4 kb genomic amplification product, using primers IX.23s in combination with a pool of 

primers (VII.23a, Table 1) corresponding to APS-11 peptide VII. cDNA-directed PCR products, which were 

undetectable by ethidium bromide staining following electrophoresis through a 2.5% gel (B), were detected by 

Southern blot analysis (C) using the 2.4 kb genomic PCR product (A) as a probe. Hind Ill-digested X DNA (A, 

lane 6) and Sa«3AI-digested pUC18 DNA (B, lane 3) were included as molecular size markers. 

To our surprise, synthesis of the 2.4 kb PCR product was allele-specific and dependent 

on the presence of the Aps-11 allele at the target locus in the template DNA. This was evident 

from experiments, using as a template genomic DNA from a pair of NILs, that only differed in 

the Aps-1 alleles (Aps-11/Aps-11 vs. Aps-131 Aps-13) and a small region of flanking DNA, 
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containing the Mi locus (Fig. 6A, lanes 5 and 9 vs. 4 and 8). Later experiments demonstrated, 
that also the Aps-1+ allele did not direct the synthesis of the 2.4 kb genomic PCR product nor 
of any other product, like the Aps-13 allele (data not shown). Apparently, on a heterologous 
Aps-13 or Aps-1+ template the annealing of one or both primers is impaired due to sequence 
divergency from the homologous Aps-11 template. The allele specificity of the IX.23s/IV.23a 
primer combination provides another piece of evidence indicating that the low specificity of the 
IV.27s/VIL23a primer pair is not the rule with carefully designed, degenerate PCR primer 
pools, but is rather a template-dependent phenomenon, determined by the presence of a family 
of target-related sequences within the template DNA, as will be argued in chapter 5. 

Unlike genomic DNA, cDNA reverse transcribed from L2-14 (Aps-11) mRNA was a 
poor template in the PCR primed by IX.23s and IV.23a. Whereas the 2.4 kb genomic target 
fragment was easily detectable by ethidium bromide staining following 30 cycles of PCR 
(Fig. 6A), the cDNA-directed amplification product could only be observed by Southern blot 
analysis (Fig. 6C, lane 1). Using the 2.4 kb genomic DNA-directed PCR product as a probe, 
a 490 bp sequence was detected. Priming of cDNA with oligonucleotide pool IX.23s in 
combination with primers corresponding to APS-1 * peptide VII, resulted in the synthesis of a 
550 bp PCR product, that again was only visible following Southern blot analysis (Fig. 6C, 
lane 2). The poor amplification of the Aps-11 mRNA sequences was not due to the quality of 
the cDNA preparation, but rather reflected the low abundance of the messenger RNA, as 
appeared from control experiments with oligonucleotide primers designed to allow the specific 
amplification of the alcohol dehydrogenase(Adft)-2 mRNA. In that case, the cDNA preparation 
directed the synthesis of an Adh-2 mRNA-specific PCR product of the proper size, that was 
readily stainable with EtBr following 30 cycles (data not shown). Taking into account the very 
low yield/of APS-11 protein, we conclude, that the Aps-11 gene in tomato is expressed at a 
very low level. 

Genetic map position of the amplified 2.4 kb genomic sequence 

To further verify the Aps-11 origin of the 2.4 kb PCR product, its chromosomal location was 
determined using restriction fragment length polymorphism (RFLP) analysis. To this end, a 
Southern blot of the pair of NILs (described above), and an L. esculentum chromosome 
substitution line (LA 1641) carrying chromosome 6 from L. pennellii was hybridized with the 
2.4 kb PCR product. If the 2.4 kb product represents an authentic Aps-11 sequence, then it 
should map on chromosome 6 and exhibit an L. pennellii-specïüc hybridization pattern in the L. 
esculentum chromosome 6 substitution line. Similarly, the 2.4 kb PCR product is expected to 
reveal RFLPs between the pair of NILs, that only differ in the Aps-1 /Mi region on 
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chromosome 6. These genetic predictions about the PCR product were met as shown in 
Fig. 7. The chromosomal region encompassing the amplified sequence, appeared to be highly 
polymorphic. Of 8 restriction enzymes tested, 6 produced an RFLP between the NILs and 
between L. esculentum and L. pennellii. Furthermore, by using the 2.4 kb genomic PCR 
product as a probe in library screening, a cDNA clone was isolated, which will be demonstrated 
to present an Aps-11 cDNA clone in chapter 5. Using the cDNA clone thus isolated as a probe 
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/wg. 7. Mapping of the 2.4 kb PCR product in the Aps-11/Mi region on 

chromosome 6 by RFLP analysis. Haelll-, Hindlll- and 7a?I-digested DNA from a 

pair of nearly isogenic, nematode resistant (r) (83M71398, Aps-l'lAps-11) and 

susceptible (s) (83M71392, Aps-13I Aps-13) tomato lines (NILs), the L. esculentum 

chromosome 6 substitution line (LA 1641) and its L. pennellii (LA 716) progenitor 

were subjected to Southern blot analysis using the 2.4 kb PCR product as a probe. 

in Southern blot analysis of a panel of commercial tomato cultivars carrying different Aps-1 
alleles, RFLPs between the Aps-11, Aps-13 and Aps-1* alleles were revealed, allowing these 
particular Aps-1 alleles to be recognized (Fig. 8) and suggesting that the 2.4 kb genomic PCR 
product is at least related to Aps-11. 

Altogether, these RFLP mapping data provide genetic evidence indicating, that the 2.4 
kb PCR product probably represents a portion of the Aps-11 gene located on chromosome 6. 
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cultivar: 

Aps-1 alleles: 

23.0 -

Ä Ä * ^ .*.„** a P N ^ 

3/3 1/1 p/p p/p 3/3 1/1 1/3 1/3 +/+ +/+ +/+ +/1 +/1 +/3 +/3 

3.6 

A 

Eco RI 

B 

EcoRV 

F/g. S. RFLP analysis of a panel of tomato cultivars and lines carrying different Aps-1 alleles. Genomic EcoRl 

(panel A) and EcoRV (panel B) restriction fragments of the indicated tomato genotypes were Southern blotted and 

hybridized with a cDNA clone (Chapter 5) corresponding to the 2.4 kb genomic Aps-11 sequence amplified under 

the direction of primers IX.23s/IV.23a (Fig. 6). The Aps-1 genotype is shown above each lane, + = Aps-1*, 

1 = Aps-11, 3 = Aps-13 and p = L. pennellii Aps-1 allele. The Aps-13 allele produces a specific EcoRl 

fragment of about 3.6 kb, which is absent from the Aps-1* and Aps-11 and L. pennellii Aps-lP alleles. The 

Aps-13 and L. pennellii Aps-lP alleles give rise to the upper, the Aps-1* allele produces the intermediate, and the 

Aps-11 allele the lower band of a triplet of EcoRV bands visible around 5.7 kb. 
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DISCUSSION 

To identify Aps-11 nucleotide sequences by using oligonucleotides synthesized on the basis of 
amino acid sequence information from the APS-11 protein, there are two obvious approaches, 
namely cDNA library screening and PCR. Theoretical considerations indicate that PCR is 
expected to be the more discriminatory alternative, as this method exploits the combined 
selectivity of two different oligonucleotides. In particular this will matter, if the involved gene is 
expressed at low level. The results obtained with both approaches confirmed our expectations 
about the superiority of the PCR. 

Exhaustive screening of about 200,000 cDNA clones with various oligonucleotides 
corresponding to APS-1l amino acid sequence information resulted in a lot of false positives, 
but no consistently positive clone was found. 

PCR, on the other hand, readily amplified a 2.4 kb fragment from the Aps-11 gene. The 
amount of product after only 30 reaction cycles was sufficient to allow easy visualization of the 
target fragment by ethidium bromide staining, using only 10% of the reaction mixture. 
Moreover, the amplification of the Aps-11 genomic fragment was specific, as no additional 
amplification products were visible. 

Crucial to the success of the PCR was the use of degenerate primer mixtures containing 
deoxyinosine incorporated at ambiguous codon positions. Deoxyinosine-containing 
oligonucleotides have been successfully applied in screening cDNA and genomic libraries 
[Ohtsuka et al., 1985; Takahashi et ai, 1985; Sambrook et al., 1989], but as yet only scarcely 
in priming PCR on cDNA [Knoth et al., 1988] or genomic DNA [Ehlen and Dubeau, 1989; 
Patil and Dekker, 1990]. The advantage of the use of deoxyinosine is probably that the 
sequence complexity of the degenerate primer pools is kept at a low level, so that the proportion 
of primers which is effective in priming the target sequence is increased. Incorporation at 
ambiguous positions of the nucleotide that is most probable on the basis of codon usage 
frequencies in dicotyledonous plants [Murray et ai, 1989], and choice of the most stabilizing 
nucleotide at some twofold ambiguities further contributed to restricting the complexity of the 
Aps-11 primer pools. Choosing a particular nucleotide among the ones which are possible, 
carries the risk, that the priming of the target sequence might be adversely affected or even 
totally abolished, especially when applied to the 3'-terminal region of the primers [Sommer and 
Tautz, 1989]. On the other hand, it may suppress aspecific priming, as the chances of an 
occasional incomplete match between the primers and non-target template sequences are 
diminished. As a consequence, less competition for polymerase molecules between aspecific 
amplification products and the target fragment will occur. In comparison with degenerate primer 
pools containing all possible nucleotide sequences encoding the parental amino acid sequence, 
these restrictive adjustments have the additional advantage of allowing a relatively long stretch 
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of amino acid sequence to be represented in the primers. This is considered beneficial, since the 
specificity of a primer generally increases with its length. Wilks et al. [1989] designed PCR 
primer mixtures on the basis of amino acid sequence motifs conserved within the protein 
tyrosine kinase family, and compared highly complex pools of relatively long primers with 
moderately complex mixtures of shorter primers. Their results as well as ours indicate, that the 
degenerate primer pools of moderate complexity and short length are the most effective ones. 

A perfect match of the three consecutive 3'-terminal nucleotides of a PCR primer was 
found to be prerequisite for efficient priming [Sommer and Tautz, 1989]. To make quite sure 
we therefore took care, that all possibilities for the three 3'-terminal codons were incorporated 
in our PCR primer pools. However, we have not checked whether such stringent precautions 
are necessary. This implies that, in general, the performance of the primer pools might still be 
improved by minimizing the number of positions at the 3'-end of the primers for which all 
possible nucleotides are incorporated into the pool, resulting in a further reduction of the 
complexity of the pool. 

The described adjustments to the degenerate Aps-11 primer pools produced a dramatic 
increase of their specificity. Amplification was not only found to be confined to the target locus, 
but the combination of primers IX.23s and IV.23a even showed specificity for amplifying 
nucleotide sequences of the particular allele (Aps-11) to which these primers had been directed. 
The heterologous Aps-1+ and Aps-13 alleles were not primed by one or both of these primer 
pools, as shown by the absence of any detectable PCR product. Degenerate oligonucleotide 
probes corresponding to amino acid sequence information from the protein product of the target 
gene are well-known for the high level of aspecific hybridization in library screening. Our 
results challenge this reputation in showing, that careful design of degenerate oligonucleotide 
pools can produce highly specific PCR primers, which might even possess allele specificity. 

The extent of the divergence between the Aps-1 alleles is unknown, but the allele 
specificity of the IX.23s/IV.23a primer combination and the high level of restriction fragment 
length polymorphism found in Southern blot analysis of the Aps-11, Aps-1+ and Aps-13 alleles 
indicate considerable differences between these alleles. Probably the differences are not 
confined to a single point mutation, although such a minor difference would yet be sufficient to 
explain the variation in electrophoretic mobility of the protein products of these alleles. 

Our results illustrate, that target-related sequences within the template may give rise to 
by-products in a PCR directed by degenerate oligonucleotide primer pools, a complication 
which may necessitate several independent tests to achieve unambiguous identification of the 
target fragment. In case of the IV.23s/VII.23a-directed PCR, amplification of several related 
nucleotide sequences occurred, two of which met, and thereby disqualified our first 
identification criterion, the colinearity with the determined APS-1! amino acid sequence of the 
nucleotide stretch following the primer regions of the PCR product. A second criterion, RFLP 
analysis of a pair of NILs holding different Aps-1 alleles, was made useless by the low quality 
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of cloned IV.23s/VII.23a-directed amplification products as a probe, which is possibly due to 
their small length and to the presence of mismatched G/C base pairs, incorporated in exchange 
for I/C pairs in the primer regions during molecular cloning. Finally, isolation of an Aps-11 

cDNA clone with the help of the 2.4 kb Aps-1 ̂ -specific PCR product allowed the 
discrimination of the Aps-11 target fragment through nucleotide sequencing of the region of the 
Aps-11 gene which had served as the template for the amplification of the IV.23s/VH.23a-
directed Aps-11 target fragment (Chapter 5). 

Williamson and Colwell [1991] recently reported the isolation of an Aps-11 cDNA clone 
from a cDNA library. Among the approximately 350,000 plaques screened, a single Aps-11 

cDNA clone was identified. Taken together, these data provide strong indications for the low 
expression level of the Aps-11 gene, which, in turn, could explain the low yield of purified 
APS-11 protein attained (chapter 2). The results of the PCR using cDNA as a template were 
consistent with the results obtained in cDNA library screening. The poor amplification of 
Aps-11 cDNA observed with primer IX.23s in combination with primers IV.23a and VII.23a in 
spite of the notorious amplifying power of the PCR presents a striking illustration of the 
extremely low concentration of thç, Aps-11 mRNA in tomato suspension cells. 

It is tempting to conclude from the comparison made in this chapter, that PCR is 
preferable whenever a gene is to be cloned on the basis of amino acid sequence information 
from the encoded protein, although we are aware of the limited value of an isolated example. 
Even when the isolation of a complete cDNA clone is the final objective, it may pay to prepare a 
PCR product first, as it allows the use of stringent hybridization conditions in subsequent 
library screening. When the available amino acid sequence information is sufficient for only a 
single primer, the PCR approach could still be pursued by using the 'anchored' variant 
[Frohman et al., 1988; Loh et al., 1989], in which a vector sequence or another 'anchor' 
sequence ligated to the template serves as the second primer. 

Until now, the isolation of nucleotide sequences corresponding to amino acid sequence 
information by means of the PCR amplification technique has rather been the exception. Model 
studies showing the feasibility of the approach have been reported [Knoth et al., 1988; Girgis et 
al., 1988] and, in addition, a few examples of its successful application. Lee etal. [1988] were 
among the first to employ degenerate PCR primer pools corresponding to amino acid sequence 
information. Both primer pools they used were derived from the N-terminal amino acid 
sequence of porcine liver urate oxidase and consisted of 32 different oligonucleotide sequences 
only containing the four common bases. The target fragment was easily identified by Southern 
blot analysis of the reaction mixture using an internal oligonucleotide probe which incorporated 
the most frequently used codons. Degenerate primer pools on the basis of N-terminal amino 
acid sequence information have also been employed to produce by PCR a perfectly matching 
probe for the gene encoding the yeast transcription factor TFIID, allowing the subsequent 
cloning of the gene [Hahn et ai, 1989; Horikoshi et al., 1989]. Furthermore, degenerate PCR 
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primer pools designed on the basis of common amino acid sequence motifs in the respective 

protein families have been applied in isolating nucleotide sequences from the feline herpesvirus 

thymidine kinase gene [Nunberg et al., 1989], from hepadna virus reverse transcriptase genes 

[Mack and Sninsky, 1988], immunoglobulin variable region genes [Larrick et al., 1989a; 

1989b; Orlandi et al., 1989] and protein tyrosine kinase genes [Wilks et al., 1989]. 

The results presented in this chapter add to these literature reports in showing, that the 

route from protein to gene via PCR, although time-consuming and indirect, is one of great 

security, in particular when the gene involved, encodes a low abundant mRNA. The more so, 

as careful translation of amino acid sequence information into oligonucleotide pools can 

produce highly specific PCR primers, as illustrated by the success of the simplifying 

adjustments made to our complex Aps-11 primer pools. 
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INTRODUCTION 

In the previous chapter it was described how amino acid sequence information from the 
APS-11 protein was used to design PCR primers which specifically primed tomato DNA 
carrying the Aps-11 allele and directed the amplification of a 2.4 kb genomic nucleotide 
sequence. This amplification product probably represented an Aps-11 sequence as judged from 
its genetic map position. In this chapter, the nucleotide sequence of parts of the 2.4 kb fragment 
will be presented, which provides conclusive evidence that the 2.4 kb fragment originates from 
the Aps-11 allele. 

The 2.4 kb fragment was found to possess the expected selectivity as a probe in the 
screening of a cDNA library, allowing the isolation of an Aps-11 cDNA clone and the 
subsequent determination of a partial Aps-11 cDNA sequence. The amino acid sequence 
deduced from the nucleotide sequence of this Aps-11 cDNA clone revealed a striking homology 
with a vegetative storage protein from soybean (Glycine max) [Mason etal., 1988; Staswick, 
1988; 1989a]. The co-amplification of target-related nucleotide sequences under the direction of 
the degenerate Aps-11 primer pools IV.27s and VII.23a described in the previous chapter is re
examined in the light of the protein homology found. 

MATERIALS AND METHODS 

cDNA library screening 

An amplified cDNA library in phage X,gtl 1 from tomato roots of the nematode-resistant nearly 
isogenic line (Aps-11/Aps-11, Mi/Mi) was constructed as described in chapter 4. The library 
was plated on NZCYM-agar (10 g/1 NZ-amine, 5 g/1 NaCl, 5 g/1 yeast extract, 1 g/1 casamino 
acids, 2 g/1 MgSÜ4 • 7 H2O, pH 7.5) at a density of 33,500 pfu per petri dish (diameter 17 
cm) using E. coli Y1090 as a host. Plaques were grown for 6-8 hours at 37 °C, and replicas 
were made in triplicate on HATF filter membranes (Millipore). Phage DNA was released and 
bound to the membranes using standard procedures [Sambrook et al., 1989]. 

The library was screened using as a probe the 2.4 kb PCR product that was amplified 
under the direction of degenerate Aps-11 primer pools IX.23s and IV.23a. The probe DNA 
was labeled to a specific activity of 3 x 108 dpm/^g by random primer labeling [Feinberg and 
Vogelstein, 1984] using oc-32P-dATP. 

Filters were prehybridized in 1 M NaCl, 1% (w/v) SDS, 10% (w/v) dextran sulphate 
for 2 hours at 65 °C, before 10-50 ng/ml of the 32P-labeled probe DNA was added. 
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Hybridization was allowed to proceed overnight at 65 °C. Subsequently, the filters were once 
washed in 6 x SSC (0.9 M NaCl, 0.09 M sodium citrate pH 7.0) at the same temperature 
during 15 min. Autoradiography was performed for 2-8 days at -80 °C using Kodak Xomat 
AR-5 film and an intensifying screen. 

Restriction mapping 

Genomic DNA was isolated from leaves essentially according to Murray and Thompson 
[1980], but with omission of the final CsCl - EtBr centrifugation step. Restriction enzyme-
digested DNA was prepared and analysed by agarose gel electrophoresis following standard 
methods as described in Sambrook etal. [1989]. 

Nucleotide sequence analysis 

Nucleotide sequence analysis was performed as described in Chapter 4. 

Database screening 

The amino acid sequences encoded by the nucleotide sequences stored in the EMBL and 
GenBank nucleic acid databases were screened for homology with APS-11 amino acid 
sequences using the TFASTA program, which performs a search according to Pearson and 
Lipman [1988]. The program was run on a VAX computer using the VMS operating system. 

RESULTS 

Nucleotide sequence data showing the Aps-11 origin of the 2.4 kb 
amplification product 

RFLP analysis had shown that the 2.4 kb amplification product, synthesized under the 
direction of primer pools DC.23s and IV.23a, met the genetic mapping requirements of an 
Aps-11 sequence (Chapter 4). Here, this indirect, genetic evidence is supplemented by an 
analysis of its nucleotide sequence. 
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First, the 2.4 kb PCR product (Chapter 4) was subcloned in pTZ18R. Seven subclones 

were partially sequenced (Fig. 1 A), yielding the nucleotide sequence of the termini and of four 

internal regions of the 2.4 kb PCR product (Fig. IB), together comprising about 61% of its 

IX.23s IV.23a 

a 
152 280 80 147 380 25 220 152[ 1 | 340 69 50 90 147103 

tt 

11 34 75 50 
bp 

0.0 

I— 

0.5 1.0 IS 2.0 2.4 kb 

a 
- * - i 

Fig. 1. Partial nucleotide sequence of the 2.4 kb genomic PCR product synthesized under the direction of 

degenerate Aps-11 primer pools DC.23s and rv.23a. 

A) The physical map determined by restriction analysis and nucleotide sequencing of the PCR product. 

Subclones of the indicated restriction fragments were partially sequenced according to the arrows, yielding the 

nucleotide sequence of the shaded regions. + = Hinälll site supposed to be contributed by primers IV.23a, but 

found to be absent. When originally present in the incorporated primer, then this site was apparently lost in the 

cloning procedure, as vector sequences followed after the 3'-terminal A residue of region f. 

B) (opposite page) Nucleotide sequences determined for the regions corresponding to the letter codes. The deduced 

amino acid sequence in the exon regions at the termini is shown up to the putative exon/intron junctions (arrow 

heads) as judged from the currently operational consensus sequence [Lewin, 1990]. The primers used in the 

amplification reaction were aligned with their annealing site to show the positions corresponding to 

deoxyinosine in the primers, where a cytidyl residue was incorporated irrespective of the nucleotide present in the 

original Aps-11 template sequence. As a consequence, an Arg residue (underlined) was encoded in the region 

corresponding to primers IV.23a instead of the Ser residue known to be present in APS-11 peptide IV from the 

amino acid sequence data (Chapter 3). The underlined nucleotides are aberrant from the partial Aps-11 cDNA 

sequence represented by clone A in Fig. 2, and were apparently determined by the primer incorporated into the 

particular PCR product cloned and sequenced here. 
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B 

pal 
IX.23S TATCTOCAOOCIATGGTiaOICCIGGITATAA 

C 

3 ! 5 ' -CGATGGTGGGGCCGGGGTATAAGATGGAGATTGATAGGGTTTCGGATGAG 50 
( A l a ) M « t V » l 0 1 y P r o < J l y T y r L y » ) l e t 0 1 u I l « A . p A r g V » l S . r A « p 0 1 u 
I peptide IX 1 

GCAGGAGAATATGCCAAAAGTGTTGATTTGGGAGATGATGGAAGAGATGT 100 
A l a G l y Q l u t y r A l a L y » S « r V a l A * p L « u G l y A B p A a j p 0 1 y A r g A a p V a 

GTGGATTTTTGATGTTGACGAAACTTTGCTTTCTAATCTTCCTTATTATT 150 
lT zp I l «PhaAf lpVa lA«pGluThr I j «uL«uS«rAa i iL«uPToTyrTyxS 

d: 

f: 

CTGATCATCGTTATGGGTATGATTGATTCTTCACTAAGTTTCTTTGTATT 200 
• r A » p H i « A r o T y r ( O l y ) •*•* 

TCTTGTTAAA-3' 210 

Ito. Hl 

-TTGATGTGTAACTGTCTAGGATCCTGAGGACCCACATTGGATCGGCTGTG 50 

GATTTGATACCACTGATAGGAAAAACAGATTAGAGAAGAAAAGTGAAAAT 100 

AGAGTAGACAAAGAAGTGGTGAATGTGAAAAAGAAAATGCTTGACTAATT 150 
Pul 

TCAACTATGCTGCAACTGCAG-3' 171 

CS 5 ' -TCTAAAGACTAGAACAAACCTAATCACAGTCTTAATCCATCATGTAAAAG 50 

GAGATAGATTGAGCATCATTTTTGGTTAATATCCATTTTGAAGGGGATTT 100 

TCTCTGTTTTACTTGGAATTATAGTTCCGCTTTCATATTTCTTTTTAGGC 150 

ATTATACTATGTGTAATAGTAAGCTAATGGTGATTTGTATTGATCTCAAT 200 

ATTGTAGATTGGAGGTATTTGATGATGTGGAATTTGATAAATGGGTTGAG 250 
Atari Hin UB 

AATGGAACGGCGCCAGCCTTGGGGTCCAGCTTGAAGCTT-3 • 289 

5 ' -CATCTGTGATCGTGATAAAAATGAAACATATATGAAACATTCAGAATGAA 50 

ATTTGTTTAAAACTAAATGTATGCTCTGAGTATGCTGCTCACTTACTTGT 100 

ATGTGCATATATTTGCTGCAAAATCATACTTCATTCAGTAGTTGCCAATG 150 

TTTTTCAATGTGTTTCTCCAATCACAATGTGATTCACATTGATGAGCATT 200 
jtfn A m i n 

GGCAAGTAGATCTAAGTAATGCATTTTTCATGTTGAATTGAACTTTACTG 250 
Pal 

TACTGCAG-3• 258 

5 ' -TGTTTCTCGTCTGACTCTGTAATCTCCATGGTTGTGCTTAGTATTCAGTA 50 
Afrol 

TTCAGCACATCTCTGTCTTTCCCAGTCTGGGACTCTGTGAATCTCCATGG 100 

TTGTGCTTACTACTTGAACACCTCTTGTTTTTTCCTAATCTGGACACAAA 150 
Era KV 

TCAGTGCTAATGTAACTACGATATCATGCCCGGGGAAATACTAACTACCC 200 

TCAAAC-3• 206 

-ATTACCAACCTGAAAGCCACAACCAGACACATAGCATTACACGTTTACGT 50 
Seal 

TACTGCTTTAACTTTTTTTTTAGTACTTGTTTTGCTTATGCTTCTTTTTG 100 

TTGCTATCTTCCAGTGTGTTGTTGAAAATTC AATCATAATTAGAAGAGGT 150 

TACTTTTGCCTTTTCACCATAGTGAAATTTTGACTAATGATTCTGATTCT 2 00 

T Kal «•» 
ATGCAGAGGCTCGGACGACCATGGCAAAACAGCAACAACCTATAAATCAG 2 50 

OlySarAspAspHlsGlyliyBThrAlaThrThrTyrLysSarO 

AGAGACGAAATGCGATGGTAGAAGAAGGTTTCCGCATAGTGGGCAACTCA 300 
luAroAroA.nAlaM»tVal01uGluGlyPh«AraIl»ValGlYA8nS«r 

| peptide IV • 
GGAGACCAA.TGG£GC.GAC.CT£CTC.GGA.-3 • 327 
QlyAspGlnTrpAxoAspLeraLauGly 
«1 peptide IV | 

3 ' -CTAGTTACCIQICTIQAIGAICCTTCOAATCC-5 • 
O C C tftedm 
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total length. The data did not indicate any nucleotide sequence heterogeneity among the 2.4 kb 

amplified material, and confirmed in this respect the conclusion drawn from restriction analysis 

(not shown). The nucleotide sequence of the 2.4 kb fragment linked up with the primer IV.23a 

was found to encode (Fig. IB) the successive amino acids of peptide IV not represented in the 

primer (COOH <-- Gly-Ser-Asn-Gly-Val-Ile --> NH2). Similarly, the expected G was found 

(Fig. IB) next to primer IX.23s, completing the codon for the C-terminal Lys residue of 

peptide IX. Taken together, these nucleotide sequence data are in accordance with the Aps-11 

origin of the 2.4 kb PCR product. 

Integration of the nucleotide sequence and restriction analysis data from the amplified 

2.4 kbAps-11 fragment produced the partial restriction map of the Aps-11 gene shown in 

Fig. 1. 

Isolation of an Aps-11 cDNA clone 

Subsequently, we used the 2.4 kb PCR product as a probe to screen a cDNA library. Among 

315,000 clones tested, two positives were found. Nucleotide sequence analysis demonstrated 

that one of them, clone A in Fig.2, perfectly matched with the probe except for the IV.23a 

primer region. This clone apparently contained the C-terminal part of the Aps-11 gene, as 

Fig. 2 (opposite page). Nucleotide sequence of two cDNA clones related to the 2.4 kb PCR product amplified 

under the direction of degenerate Aps-11 PCR primer pools IX.23s and IV.23a. 

Clone A corresponds to the downstream exon region of the 2.4 kb PCR product and encodes the complete amino 

acid sequence of APS-11 peptides IV, V and VII, as previously determined (Chapter 3). This clone was therefore 

considered to represent an Aps-11 cDNA clone. 

Clone B apparently encodes a protein with extensive homology to the putative product of clone A. However, 

clone B is unlikely to represent an Aps-11 cDNA clone, as the supposed protein product contains two amino acid 

residues (underlined) aberrant from the previously determined APS-11 amino acid sequences (Chapter 3), in the 

regions corresponding to either APS-1 • peptide IV and VII. 

The clones were aligned according to the position of the stop codon (***) in the reading frame. Identical 

nucleotides are connected by vertical lines to show the homology at the nucleic acid level (63.3% identical 

nucleotides within total overlap; 80.6% identity within the protein coding region). The homology between clone 

A and B apparently extended beyond the 5' end of clone A, as the additional nucleotide sequence present in clone 

B was found to encode amino acid sequences showing homology with APS-11 peptides VI and VIII at the 

indicated positions (aberrant amino acid residues encoded by clone B are underlined). 

Primers IV.27s and VII.23a were aligned with their presumed annealing sites in clone B to show that they could 

readily prime the corresponding nucleotide sequences within tomato cDNA and genomic DNA (see text). 
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cDNA clone : 

B : 1 5 • -AATTGGATCA 10 
IleGlySer 

-VIII --> < VI-
LeuTyrGlnOluValLeuLysPhe^* ValPheLeuIieu 

11 AGTTTGAAGCTTTATCAAGATGTTATGAGGCTAGGATTCAAAGCTTTCTTGTTG 64 
SerLeuLvsLeuTvrGlnAspValMetAraLeuGlvPheLvsAlaPheLeuLeu 

> 
ThrGlyArg 

EcoRl A : 1 5 ' -Q*ATTCT 7 

B : 65 ACTGGGCGCAGGGAAAGACACAGAATTGTTACAGTGGAGAATTTGATGAATGCT 118 
ThrGlyArgArgGluArgHisArglleValThrValGluAsnLeuMetAsnAla 

< V > 
QlyPheHisAspTrpHisI.ysLeuIleLeuArgGlySerAaciA8pHisQlyI.ys 

8 QQATTCCACQATTQQ<»CAAQCTCATTCTQAQAGGCTCOaACQACCATOaCAAA 61 
II II II I I I I I I I I I I I I I I I I I I I I II II II II I I I I I I I I I 

119 GGGTTTCAGGATTGGGACAAGCTCATATTGAGGGGATCAGAGGATCATGGCAAA 172 
GlyPheGlnAspTrpAspLysLeuIleLeuArgGlySerGluAspHisGlyLys 

ThrAlaTlirThrTyrLysSerGluArgArgAsnAlaMetValQluGluQlyPhe 
62 ACAGOUlCAACCTATAAATCAQAQAaACQAAATQCGATGQTAQAAGAAQGTTTC 115 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II II 
173 TCAGCCACAATTTATAAATCAGAGAAAAGAAATGAGATGGTAGAAGACGGCTTG 226 

SerAlaThrlleTyrLysSerGluLysArgAsnGluMetValGluAspGlyLeu 

< !V > 
ArglleValQlyAsnSerGlyAspQlnTrpSerAspLeuLeuQlySerSerMet 

116 CQCATAGTQaKyUkCTCAOQAQACCAQTGGAGTGATCTGCTAQGCTCCTCTATG 169 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

227 AGAAT AGCAGGCAACTCTGGAGATCAGTGGAGTGATCTGTTAGGCTCCTCTGCA 280 
ArglleàlaGlyAsnSerGlyAspGlnTrpSerAspLeuLeuGlySerSerAla 

X X 
ATIGTIGGIAATICIGGIGATCAATGG-3' .IV.27s 

C G C G 
5 ' -GTAGGATC 

< VII : > 
SerTyrArgSerPheLysLeuProAsnProMetTyrTyrlleLeu*** 

170 TCTTATCO<?rcATTCAAQCTTCCAAACCCQATQTATTACATTCTTTAAAGTAAC 223 
II I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I 

2 81 TCGATTCGTTCTTTCAAGCTTCCTAACCCAATGTACTACATTCCTTGACATCCC 334 
S e r l l e A r a S e r P h e L v s L e u P r o A s n P r o M e t T v r T v r l l e P r o * * * 

X X 
VII.23a 3'-TTAGGATACATGATGTAIGAITC 

G G T 
T TCGAATCG-5' 

224 TAATAG<WTTQQTAGTCCATQTTQATGCAACATQCCAATQATTATTTCTTTTCA 277 
I I I I I I I I I I I I I I I I I I II 

335 CAATATTTTTTCAGCTGCAAACAATGGAAACATACTTCATTGAACAAGAAATCT 388 

278 CTCTCTAATQQCTACCTTATAAACAATQGAACTQTAATTCTTGTAATCCCTTAA 331 
I I I I I I I 1 1 1 I 

389 ATGAATTAACTAATGTAACCATAGTCATAATGGTGTAGTTGTGCAAAAAAAAAG 442 
EccfRI 

A : 332 ACTQGATCATTQATQATTCAATTAATQTATQCCGTACCAGCAACAQGAATTC-3' 383 

B : 443 GAATTC-3 ' 448 
ECCfRl 
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APS-11 peptides IV (14 amino acids), V (4 amino acids) and VII (12 amino acids) (see 
Chapter 3) were found to be encoded within the reading frame shown in Fig. 2. Moreover, 
peptide VII, which turned out to represent the C-terminus of APS-11, and peptide IV were 
spaced within clone A in accordance with the difference in electrophoretic mobility between the 
corresponding cDNA-directed PCR products, indicating about 60 bp difference in length (see 
Chapter 4, Fig. 7C, lanes 1 and 2). Together, we consider these DNA sequencing results 
conclusive evidence as to the Aps-11 origin of the 2.4 kb PCR product and the corresponding 
cDNA clone A. 

Clone B, on the other hand, although obviously Aps-11-related (Fig. 2), is unlikely to 
represent an Aps-11 nucleotide sequence, as it encoded 2 amino acid residues aberrant from the 
known amino acid sequences of APS-11 peptides IV and VII, whereas clone A revealed a 
perfect match. In addition, clone B encoded amino acid sequences homologous, but not 
identical to APS-1l peptides VI and VIII in the region extending beyond the overlap with clone 
A, which also argued against clone B representing Aps-11. 

Amino acid sequence homology 

Decoding of the nucleotide sequence of the isolated Aps-11 cDNA clone revealed a total of 69 

amino acid residues of the C-terminal part of the APS-11 polypeptide chain (Fig. 2). In the 2.4 

kb amplified genomic Aps-11 fragment, a stretch of 154 nucleotides following primer IX.23s 

has been determined ending with a stop codon, which indicated that an exon/intron junction had 

been passed, presumably at the position indicated by an arrowhead in Fig. 1. Decoding of this 

supposed Aps-11 exon sequence yielded 48 residues of putative APS-11 amino acid sequence 

(Fig. 1) beside the 8 known residues of peptide IX. Three additional stretches of in total 24 

residues were already known from direct amino acid sequence analysis of APS-11 peptides IE, 

VI and VIE (Chapter 3). 

Upon screening nucleic acid data bases (EMBL, GenBank) with these partial APS-11 

amino acid sequences, some interesting homologies were found. For example, the peptide 

element Gly-Pro-Gly-Tyr-(Lys), which is part of the (overlapping) APS-11 peptide II and IX, 

occurs in alkaline phosphatases of rat [Misumi et al., 1988; Thiede et al., 1988], mouse [Terao 

and Mintz, 1987], bovine [Garattini et al., 1987] and human [Henthorn et al., 1986; Weiss et 

al., 1986; Berger et al., 1987; Kishi et al., 1989; Watanabe et al., 1989] origin and in the 

repressible acid phosphatase genes PH03 and PHOS from baker's yeast [Bajwa et al., 1984]. 

Except for this conserved peptide element, no other significant homologies with (acid) 

phosphatases were found. 

Surprisingly, however, a striking homology exists between tomato APS-11 and a 

putative vegetative storage protein (VSP) from soybean {Glycine max) [Mason et al., 1988; 
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Staswick, 1988; 1989a], in particular within the regions comprising peptides IV and VII. Over 

the 69 C-terminal amino acid residues readable from the cDNA clone so far, the highest level of 

homology (54% identity) was found with the ß-subunit of VSP (Fig. 3B). The tentative 

APS-1l amino acid sequence flanking peptide IX and deduced from the nucleotide sequence of 

the 2.4 kb PCR product was also aligned with VSP-ß (Fig. 3A). By introduction of a gap of 

two residues in the VSP-ß chain, a decreased but still significant level of homology (34% 

identity) was revealed in another region of the APS-1l amino acid chain, located more towards 

the N-terminus, suggesting that a considerable homology might be sustained throughout the 

APS-11 polypeptide chain. 

Co-amplification of Aps-i^-related nucleotide sequences under the direction of 
degenerate Aps-11 oligonucleotide primer pools 

As described in chapter 4, the Aps-11 primer pair rV.27s/Vn.23a directed the amplification of a 

set of variant, but related ±115 bp sequences from both genomic DNA and cDNA of tomato 

(Fig. 6 in Chapter 4). A comparison with the obtained partial Aps-11 cDNA sequence finally 

allowed the Aps-11 target sequence to be identified within the amplified 115 bp sequence 

family. Sequence 1 (Fig. 6 of Chapter 4) was found to exhibit complete accordance with the 

Aps-11 cDNA clone (A in Fig. 2), whereas sequence 2 (the other remaining Aps-11 candidate 

on the basis of colinearity with APS-11 amino acid sequence information) diverged from the 

Aps-11 cDNA clone at the nucleotide and amino acid sequence level. Therefore, sequence 1 

apparently represents the Aps-11 target sequence. 

The sequence heterogeneity of the 115 bp PCR product suggested the presence within 
the tomato genome of a diverse family of sequences related to Aps-11, which are all primed by 
the IV.27s/VH.23a oligonucleotides. Accordingly, the 2.4 kb Aps-11 sequence recognized, in 
addition to Aps-11 clone A, a different cDNA clone (B in Fig. 2) which appeared to 
correspond with anonymous sequence 2 of the 115 bp family (Fig. 6, Chapter 4). This 
suggests, that clone B is representative of the template which had actually directed the 
amplification of sequence 2. Accordingly, the nucleotide sequences found within clone B at the 
potential annealing sites for Aps-11 primers IV.27s and VII.23a showed in fact, that no more 
than two mismatches (indicated by x in Fig. 2) in the 5' part of each primer had to be tolerated 
in the amplification of sequence 2, mismatches which are known [Sommer and Tautz, 1989] to 
be less interfering with the amplification reaction than those in the 3' part. The sequence data 
from clone B support the theory of a high level of homology among the Aps-11 -related 
sequence family at the primer annealing sites explaining the co-amplification of non-target 
sequences under the direction of the IV.27s/VII.23a Aps-11 primers. 
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Furthermore, the high level of homology between the C-terminal part of tomato APS-1l 

and soybean VSP, which is believed to play a role as a vegetative storage protein for temporary 
nitrogen storage [Mason et ai, 1988; Staswick, 1989b; 1989c; Mason and Mullet, 1990], 
suggested thcc one of the A/w-i^-related PCR products might encode a tomato homologue of 
this soybean protein. However, alignment of the amino acid sequences possibly encoded by the 
co-amplified tomato sequences with the amino acid sequences of the VSP subunits, did not 
reveal any striking homologies in the relevant part between the primer regions. Moreover, the 
partial amino acid sequence (in the reading frame producing maximal homology) encoded by 
A/w-/^-related cDNA clone B was found even slightly less homologous (51%) to VSP-ß than 
the corresponding APS-1 ! amino acid sequence (54%). 

NH2I-
1 

VSP-ß: 
(254 amino acid residues) 

I- -I 
72 125 

—ICOOH 
254 

VSP-ß: * NH, 
APS-11: " " 2 -

-Tyr lie Aan|Qty 

- Ala Met Val 

I 

Glu Gin Phe Arg Ser Asp Ser LyaThr Val Aan Gin Gin AM Phe — 

Pro Gly Tyr Ly* Met Glu Ile Asp Arg |V«I 

1 
Ser Asp Glu Akt Gly — 

— Glu 

— PheTyr Ala 

Tyr Ala 

Ser Glu Arg Glu Val Hls Hls Asn — — [Asp 

Lys Ser Val Asp Leu Gly AspAsp Gly Arg Kap Val Trp 

Ile Phe » » W i e Gly -

Aap ten Dir 

— ValAspGki 

Val Leu Sar Asn 

Thr Leu Leu Ser Asn Leu 

Ile P*o Tyr Tyr 

ProTy» Tyr 

-US. 

COOH 

Fig. 3. Amino acid sequence homology between tomato APS-11 and soybean vegetative storage protein VSP-ß. 

APS-11 and VSP-ß amino acid sequences [Mason et al., 1988; Staswick, 1988; 1989a] were aligned as 

accomplished by the TFASTA database search computer program [Pearson and Lipman, 1988]. The 56 residues 

of APS-11 amino acid sequence encoded by the upstream exon of the 2.4 kb genomic PCR product revealed 34% 

identity with amino acids 72-125 of the VSP-ß polypeptide chain (panel A). The 69 C-terminal amino acids of 

APS-11 deduced from Aps-11 cDNA (clone A, Fig. 2) showed an even greater homology with the C-terminus of 

VSP-ß, comprising 54% identical residues between amino acids 185-254 of VSP-ß (panel B, opposite page). 
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DISCUSSION 

PCR under the direction of degenerate Aps-11 -targeted primer pools was found to amplify the 

synthesis of a 2.4 kb genomic DNA sequence (Chapter 4). Unlike the degenerate 

oligonucleotide pools corresponding to APS-11 amino acid sequence information, which 

performed very poorly in library screening (see Chapter 4), this amplification product served 

as a highly specific probe in the identifying an Aps-11 cDNA clone. 

B 
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(254 amino acid residues) 
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\ 
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We believe that the sequence of the isolated cDNA clone (A in Fig. 2), encoding 29 
amino acid residues colinear with the known APS-11 amino acid sequences, together with the 
circumstantial evidence given in the previous chapter fully confirm its identity as an Aps-11 

cDNA clone. Therefore, we conclude that our indirect approach, using PCR to go from protein 
to gene, was completely justified. 

Tomato APS-11 exhibits a surprising amino acid sequence homology with soybean 
vegetative storage protein VSP [Mason etal., 1988; Staswick, 1988; 1989a]. Whereas soybean 
VSP expression is regulated by many different factors [Staswick, 1990; Mason and Mullet, 
1990], such as developmental stage, sink removal (depodding), wounding, nitrogen nutrition, 
water deficit and jasmonic acid, no regulatory factors of tomato APS-1l expression are known 
so far. Tomato APS-11 is a low abundant protein and the expression of APS-11 in tomato 
suspension cells was found to be independent from the concentration of inorganic phosphate 
and on that ground, one might argue that APS-11 is not obviously involved in the phosphate 
metabolism of tomato. Thus, tomato APS-11 may serve other functions, and therefore, a 
regulated increase of APS-11 expression for the purpose of nitrogen storage under as yet 
unknown conditions cannot be totally excluded. The more so, as the example of patatin, a 
vegetative storage protein from potato exhibiting lipid acyl hydrolase activity [Andrews et al., 
1988], indicates that vegetative storage proteins can possess enzymatic activity. Similarly, a 
much higher acid phosphatase activity has recently been found in extracts of soybean leaves 
after induction of VSP expression by depodding (Staswick, personal communication). On the 
surface, such analogies may suggest functional similarity of tomato APS-11 with soybean 
VSP, but, on the other hand, they may just as well represent only the relicts of the evolution 
from a common ancestor, which has resulted in quite different biological functions. 

The co-amplification of A/w-î -related sequences which occurred during PCR under the 
direction of degenerate primer pools IV.23s and VII.23a indicated the existence of an Aps-11 -
related sequence family in the tomato genome. Accordingly, an Aps-11 -related cDNA clone (B 
in Fig. 2) was found, which hybridized with the 2.4 kb genomic Aps-11 amplification product 
and corresponded to one of the co-amplified Aps-11 related sequences (number 2 in Fig. 6 of 
Chapter 4). However, neither the DNA fragments co-amplified in the IV.23s/VH.23a-directed 
PCR, nor the Aps-ƒ ̂ -related cDNA clone B encoded an amino acid sequence that resembled the 
VSP amino acid sequence substantially more than APS-1l. Therefore, none of these Aps-11-
related sequences seems an obvious candidate to represent the homologous tomato (vegetative 
storage) protein. 
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Chapter 6 

General discussion 



THE PURIFICATION OF TOMATO APS-11 IN RETROSPECT 

With the final goal of isolating the root-knot nematode resistance gene Mi of tomato through a 
map-based cloning approach, nucleotide sequences from the tighdy linked Aps-11 gene were 
cloned [this thesis; see also Aarts et al., 1991]. As acid phosphatase proteins have been purified 
from a variety of organisms including many plant species [Felenbok, 1970; Uehara et al., 
1974a; Chen et al., 1975; Ninomiya et al., 1977; Shinshi and Kato, 1979; Fujimoto et al, 
1980; Kruzel and Morawiecka, 1982; Ferens and Morawiecka, 1985; Lorenc-Kubis, 1986; 
Park and Van Etten, 1986; Basboa et al., 1987; Ching et al., 1987; Hefler and Averill, 1987; 
Paul and Williamson, 1987; Goldstein etal., 1988; Saluja et al., 1989; Kaneko et al., 1990], it 
was anticipated that the purification of the enzyme encoded by the Aps-11 allele from tomato 
would be rather trivial. However, the extreme low abundance of the APS-11 protein turned out 
to pose a serious problem. As a result, much more effort than expected was needed to obtain a 
sufficient amount of protein for microsequencing (Chapter 3) of the APS-1l amino acid chain. 

Unlike lyophilisation, concentration of the purified APS-1l protein by ultrafiltration kept 
the protein soluble at moderate pH. Trypsin was found preferable to CNBr for generating 
APS-11 peptides (Chapter 3), as most of the CNBr cleavage products were lost during the 
subsequent HPLC purification step. Presumably, the majority of the cleavage products had 
become insoluble in the HPLC loading buffer as a result of irreversible denaturation during 
lyophilisation and exposure to formic acid. 

Recently, several reports appeared which describe the purification of the APS-11 protein 
of tomato [Tanaka et al., 1990; Aarts et al., 1991; Erion et al, 1991; Williamson and Colwell, 
1991] and the subsequent cloning of Aps-11 nucleotide sequences [Williamson and Colwell, 
1991; Erion et al, 1992; Tanaka et al, 1992]. These reports confirm our observation that 
APS-11 is a low abundant protein (0.005 to 0.01% of the total soluble protein in cv. VFNT 
suspension cells according to Erion et al [1991]), although either of the new purification 
protocols described results in a substantially higher yield of APS-11 protein (up to 50 |Xg/l 
VFNT suspension cells [Williamson and Colwell, 1991]) than ours (about 0.3 ng/1 L2-14 
suspension cells). These authors have used extraction buffers both with [Williamson and 
Colwell, 1991] and without [Erion et al, 1991; Tanaka et al, 1990] added detergent, as well as 
widely varying chromatographic techniques, suggesting that there is no technical reason for the 
observed discrepancy in yield. On the other hand, all of these purification protocols take the cv. 
VFNT, either suspension cells [Williamson and Colwell, 1991; Erion et al, 1991] or leaves 
[Tanaka et al, 1990], as the source of APS-11 protein, whereas we have used L2-14 
suspension cells and roots from the nematode resistant nearly isogenic line 83M, respectively. 
Since the only consistent divergence between our and their purification protocols is in the L. 
esculentum cultivar used, we believe that a genetically determined difference in the expression 
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level of APS-11 between the respective tomato cultivars is the most likely explanation for the 

higher yield attained with the VFNT cultivar. 

The analysis of a complete Aps-11 cDNA [Erion et al., 1991; Williamson and Colwell, 

1991] and genomic clone [Erion et al., 1992] showed, that tomato APS-11 has 43% overall 

amino acid sequence homology with soybean VSP-ß [Mason et al., 1988; Staswick, 1988, 

1989], that the Aps-11 gene is comprised of three exons, like the soybean VSP gene, and that 

the intron/exon junctions occur at identical positions [Rapp et al., 1990]. In contrast, the 

homology with other (acid) phosphatases is only minimal [Chapter 5; Williamson and Colwell, 

1991]. Therefore, tomato APS-1l should be considered as a representative of a distinct class of 

plant acid phosphatases, in which soybean VSP would probably have to be included as well, 

since purified VSP from depodded soybean plants was recently found to exhibit acid 

phosphatase activity [Erion et al., 1991]. Other remarkable differences with some plant 

phosphatases is the extremely low pH optimum of tomato APS-11 (pH 3.5 - 4.0 according to 

Paul and Williamson, [1987]), and the lack of inhibition by phosphate ions [Tanaka et al., 

1991] [compare Uehara et ai, 1974b; Shinshi and Kato, 1979; Mizuta and Suda, 1980; Ferens 

and Morawiecka, 1985; Giordani et al., 1986]. In some other respects, however, tomato 

APS-11 [Chapter 2; Paul and Williamson, 1987] resembles various acid phosphatases from 

plant origin, such as in glycosylation [Shinshi and Kato, 1979; Fujimoto et al., 1980; Kruzel 

and Morawiecka, 1982; Park and Van Etten, 1986; Ching et al., 1987], (homo)dimer subunit 

structure [Uehara et al., 1974a; Shinshi and Kato, 1979; Park and Van Etten, 1986; Basboa et 

al., 1987; Lynn and Clevette-Radford, 1987] and relaxed substrate specificity [Uehara et al., 

1974b; Kruzel and Morawiecka, 1982; Ferens and Morawiecka, 1985; Park and Van Etten, 

1986]. 

FROM PROTEIN TO GENE VIA THE POLYMERASE CHAIN REACTION. 
AN EVALUATION WITH REGARD TO TOMATO Aps-11. 

The amino acid sequence information obtained from the APS-11 peptides was translated into 

degenerate oligonucleotide pools, which were applied as a probe in screening a cDNA library 

and, alternatively, as primers in the polymerase chain reaction (Chapter 4). After the design of 

the primer pools had been optimized, PCR readily allowed the amplification of a 2.4 kb 

genomic Aps-11 fragment, whereas a serious attempt to isolate a cDNA clone from a library 

failed. In comparing the two approaches, we feel, that the route via PCR is preferable, since it 

allows subsequent library screening using the amplified target sequence as a highly selective 
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probe. As expected, our 2.4 kb genomic amplification product readily identified an Aps-11 

cDNA clone encoding the C-terminal 69 amino acid residues of APS-11 (Chapter 5). 

Co-amplification of Aps-11 -related nucleotide sequences under the direction of 
degenerate primer pools (TV.27s and VII.23a), indicated the presence within the tomato genome 
of a family of Aps-11 -related nucleotide sequences, some of which were found to be 
transcribed (Chapter 5). Co-amplification of target-related nucleotide sequences might 
represent a problem that will often arise when using degenerate PCR primer pools. Quite 
stringent selection criteria may be required to enable the identification of the target fragment 
among the related by-products, as is illustrated by our preconceived selection criteria. These 
turned out insufficiently stringent, although they included, among others, the requirement of 
considerable nucleotide sequence colinearity with known APS-1l amino acid sequences. Even 
selection for the presence of 5 and 4 colinear codons adjacent to the respective PCR primers 
appeared to be insufficient to identify the Aps-11 target fragment. 

Maybe it is not merely a coincidence that the co-amplification of target-related sequences 
occurred with primers derived from the C-terminal region of APS-11, where the sequence 
homology with soybean VSP is particularly high, and did not occur in the amplification of the 
2.4 kb fragment, involving a primer (IX.23s) corresponding to an APS-11 region of lower 
homology level [Williamson and Col well, 1991]. Instead, this coincidence might indicate, that 
a tomato protein with extensive homology to soybean VSP is encoded by one or more of the 
co-amplified Aps-1 ̂ relaxed nucleotide sequences, though possibly at a lower level as compared 
to the homology between APS-1l and VSP (Chapter 5). 

Aps-11 AS THE GATEWAY TO Mi 

Now that the tightly linked Aps-11 allozyme marker has been turned into a starting point for 
chromosome walking towards the agronomically important root-knot nematode resistance gene 
Mi, it has become clear, which price in time and effort had to be paid for the molecular cloning 
of Aps-11. Therefore, an evaluation of the benefits of Aps-11 as an entrance to Mi, in the light 
of the input needed, is possible now and seems appropriate, the more so as considerable 
progress has recently been made in mapping RFLP [Klein-Lankhorst et al., 1991a; Messeguer 
et al, 1991; Ho et al., 1992] and RAPD [Klein-Lankhorst et al., 1991b; Dr. V. M. 
Williamson, personal communication] markers in the Mi chromosomal region. In addition, the 
physical distance between Aps-11 and Mi has to be reassessed in view of the suppression of 
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meiotic recombination apparently occurring in this chromosomal region [Loh et al., 1987; 

Messeguer <?f a/., 1991; Ho et al., 1992]. 

Medina-Filho [1980] reported the absence of any recombinant between Aps-1 and Mi in 

a population of 513 plants segregating for the Mi and Aps-1 loci. From these segregation data, 

the genetic distance between the Aps-1 and Mi loci was calculated to be less than 0.894 cM. 

Given a C-value of 975 Mb for tomato [Arumuganathan and Earle, 1991] and a genetic map 

comprising 1,600 cM [Ganal et al. cited in Messeguer et al., 1991], 1 cM corresponds, on an 

average, to approximately 600 kb in tomato. On the basis of this mean value, a physical 

distance between the Aps-1 and Mi loci of less than 540 kb is estimated from their genetic 

distance. On the other hand, in studying mitotic recombination within the Mi chromosomal 

region in tissue culture, Loh et al. [1987] found as much as 15 recombinants (29%) between 

the Aps-1 andyv loci among a population of 51 plants regenerated from tissue culture, 

suggesting that the low rate of recombination between Aps-11 and Mi observed during meiosis 

is not in proportion to the physical distance between these loci. As a consequence, the physical 

distance between Aps-11 and Mi would have been severely underestimated, the more so, since 

crossing-over occurs much less frequent during mitosis than during meiosis. Recently, 

Messeguer et al. [1991] compared the frequencies of recombination between a number of 

molecular and classical genetic markers around the Mi gene in a cross of a nematode-susceptible 

L. esculenturn genotype with L. pennellii, and in a second cross with the nematode-resistant 

VFNT Cherry tomato cultivar, containing L. peruvianum DNA in the Mi chromosomal region. 

Recombination between L. esculenturn DNA and L. peruvianum DNA in the Mi region was 

found to occur at least five times less than between L. esculenturn and L. pennellii DNA of that 

region. 

These results indicate that the physical distance between the Aps-1 and Mi loci may turn 

out to be much larger than the several hundreds of kilobases expected, and if so, Aps-11 might 

be too far away from Mi to serve as a practicable starting point for a chromosomal walk. 

Moreover, an RFLP marker, LC379 [Ho et al., 1992], and a RAPD marker, Rexl [Dr. V.M. 

Williamson, personal communication], have been mapped more close to Mi than Aps-11 and 

would therefore offer starting points that seem preferable to Aps-11. 

On the other hand, the exact position of LC379 and Rexl, whether proximal or distal to 

Mi, is still unknown. This implies that Aps-11 might still be important to determine the direction 

of a chromosomal walk, in particular, when both new markers map at the same side of Mi. In 

respect of the distance to Mi, LC379 and Rexl may seem more suitable indeed as a starting 

point than Aps-11, yet not as such, since both of them represent a polymorphism which was 

found by Southern blot analysis to be part of a repetitive sequence [Ho et al., 1992; Dr. V.M. 

Williamson, personal communication]. Therefore, single copy nucleotide sequences flanking 

these markers have to be isolated first, whereas Aps-11, as a single copy gene, is directly 
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applicable for starting a chromosomal walk. Anyhow, Aps-11 will serve, at least, as an 
additional useful landmark in the Mi chromosomal region. 

Taking a retrospective view, one could argue that the amount of effort needed to obtain 
amino acid sequence information from the APS-11 protein and to clone the Aps-11 gene has 
been outweighed by the relative ease by which tightly linked RAPD and RFLP markers could 
be established in the Mi region [Klein-Lankhorst et al., 1991a; 1991b; Messeguer et al., 1991; 
Ho et al., 1992]. At the onset of this research however, RFLP and PCR technology was just 
emerging, rendering the molecular cloning of the Aps-11 gene more appropriate. 

It is hard to predict on the basis of our present knowledge about the organization of the 
Mi chromosmal region, whether the distance from the more closely linked markers LC379 or 
Rexl to Mi will be traversable by current long-range chromosome walking techniques, the 
more so as these markers and Mi might still be far more apart than the 540 kb originally 
estimated for the distance from Aps-11 to Mi on the basis of the segregation data of Medina-
Filho [1980]. In theory, these techniques can cover very large distances, although this may 
require a great amount of effort. They even have the potential to traverse the 2500 kb or more, 
which is the estimated distance between Aps-11 and Mi according to the genetic data of 
Messeguer et al. [1991], and probably a more realistic approximation than that of Medina-Filho 
[1980]. But in practice, much will depend on the organization of repetitive nucleotide sequences 
in the Mi region. The availability of YAC clones comprising several hundred kilobases of 
tomato DNA will hopefully allow to cross chromosomal regions refractory to chromosome 
jumping. Recently, important progress was made towards a complete library of mainly large 
YAC clones, as Van Daelen et al. [personal communication] accomplished the construction of a 
partial tomato genomic library of YAC clones containing up to 700 kb of inserted DNA and 150 
kb on average. 

In summary, if these considerations imply, that Aps-11 does not represent any more the 
main gateway to Mi, it still offers a useful landmark along the route to the Mi gene. Hence, the 
cloning of Aps-11 nucleotide sequences described in this thesis might, eventually, contribute to 
the unraveling at the molecular level of a pathogen resistance response in the plant kingdom, a 
matter which is of great concern to agriculture, but so far only poorly understood. 
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Samenvatting 



SAMENVATTING 

Het wortelstelsel van tomateplanten (Lycopersicon esculentum Mill.) kan worden aangetast 
door wortelknobbelaaltjes (Meloidogyne spp.). Dit zijn kleine wormvormige organismen 
(0,4 -1,4 mm lang) welke in de bodem voorkomen en als parasieten leven op de wortels van 
vatbare planten. Infectie met wortelknobbelaaltjes gaat gepaard met de vorming van 
karakteristieke knobbeltjes op het worteloppervlak en belemmert het functioneren van het 
wortelstelsel. De opname van water en mineralen wordt verstoord, waardoor de planten kleiner 
blijven, sneller verwelken, vatbaarder worden voor infectie met andere pathogenen en minder 
opbrengst geven. Resistentie tegen wortelknobbelaaltjes is aanwezig in de wilde tomatesoort 
Lycopersicon peruvianum (L.) Mill, en werd in de cultuurtomaat ingekruist. 

De resistentie tegen wortelknobbelaaltjes in wilde en cultuurtomaten berust op de 
aanwezigheid van een enkel dominant gen, gelegen op chromosoom 6 en aangeduid met het 
symbool Mi. Het Mi gen blijkt genetisch nauw gekoppeld te zijn (0.89 cM) aan het Aps-11 allel 
van het zure fosfatase-1 gen. De schattingen van het aantal bp (baseparen, de "bouwstenen" van 
het DNA) gelegen tussen Aps-11 en Mi lopen uiteen van minder dan 5,5 x 105 tot 2,5 x 106 bp 
(Dit is minder dan 0,26% van de totale hoeveelheid DNA per tomategenoom, die 9,75 x 108 bp 
bedraagt). Een dergelijke afstand ligt binnen het bereik van recentelijk ontwikkelde technieken 
voor het isoleren van genen door middel van lange-afstands "chromosome walking". Hierbij 
worden vanuit een nauw gekoppeld, goed gedefinieerd startpunt (in dit geval het Aps-11 gen) 
opeenvolgende stukken DNA gekloneerd, totdat, zo "lopend" langs het chromosomale DNA, 
ook DNA-klonen met daarop het Mi gen zijn verkregen. Wanneer het Mi gen eenmaal is 
gekloneerd, kunnen op gemakkelijke wijze grote aantallen kopieën van het DNA van dit gen 
worden verkregen en kan voldoende Mi DNA worden geproduceerd om de werking van het 
gen te kunnen bestuderen. 

In het kader van het isoleren van M/-DNA via "chromosome walking" werd een Aps-11 

kloon geïsoleerd via het Aps-11 genprodukt (het APS-11 eiwit). Het Aps-11 genprodukt werd 
gezuiverd uit de wortels van op watercultuur gekweekte tomateplanten en ook uit in vitro als 
suspensie gekweekte cellen van tomaat. Hierbij werd gebruik gemaakt van conventionele lage-
druk kolomchromatografische technieken. De vierde zuiveringsstap, concanavaline A (Con A)-
Sepharose-kolomchromatografie, bleek bijzonder effectief en resulteerde in een vrijwel zuiver 
APS-1 ! preparaat. Tijdens deze stap raakte het APS-1l preparaat weliswaar verontreinigd met 
Con A, dat in kleine hoeveelheden losliet van de kolom, maar in de daaropvolgende en laatste 
Mono Q-FPLC stap werd de verontreiniging met Con A weer verwijderd. De beschreven 
zuiveringsprocedure resulteerde in een APS-11 preparaat dat zich bij polyacrylamidegel-
electroforese (PAGE) homogeen gedroeg, zowel onder denaturerende als niet-denaturerende 
condities. Bovendien bleek het gezuiverde eiwit co-elutie en co-electroforese te vertonen met de 
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APS-11 enzymactiviteit, wanneer het werd onderworpen aan respectievelijk gelfiltratie en 
polyacrylamidegel-electroforese onder niet-denaturerende omstandigheden. De opbrengst van 
de zuiveringsprocedure bedroeg slechts enkele microgrammen APS-11 per kg wortels of 
suspensiecellen. De oorzaak van deze lage opbrengst moet worden gezocht in het lage 
expressieniveau van het Aps-11 gen, aangezien bij geen van de zuiveringsstappen aanzienlijke 
verliezen aan APS-11 activiteit werden waargenomen. 

Het gezuiverde APS-11 eiwitpreparaat werd gesplitst in peptiden door behandeling met 
cyanogeenbromide (CNBr) of met trypsine. Na zuivering van de APS-11 peptiden met behulp 
van "high performance liquid chromatography" (HPLC) werd van twee CNBr peptiden en van 
zeven tryptische peptiden de aminozuurvolgorde geanalyseerd, waardoor in totaal 61 
aminozuren van de APS-11 polypeptideketen konden worden bepaald. 

Twee APS-11 peptiden van respectievelijk 8 en 14 aminozuren bevatten de meest 
geëigende aminozuursequentie-informatie voor de synthese van corresponderende 
oligonucleotidenmengsels voor toepassing als "primer" in de "polymerase chain reaction" 
(PCR). De PCR is een techniek waarmee een segment ("target fragment") van een bepaald stuk 
DNA enkele miljoenen malen gekopieerd ("geamplificeerd") kan worden met behulp van twee 
korte enkelstrengs DNA-fragmentjes (de zogeheten "primers") welke overeenkomen met 
sequenties aan de respectievelijke uiteinden van het te vermeerderen DNA-segment. 

Wanneer PCR-primers worden gebaseerd op de aminozuurvolgorde gecodeerd door het 
te amplificeren DNA-segment, dan moet bij het ontwerpen van de primers rekening worden 
gehouden met de degeneratie van de genetische code. In het algemeen zal om die reden met 
mengsels van PCR-primers worden gewerkt. Het bleek echter van doorslaggevend belang voor 
het effectief laten verlopen van de PCR reactie om het aantal verschillende 
nucleotidensequenties in een primer-mengsel beperkt te houden. Dit werd bereikt door op 
gedegenereerde posities in het 5'-gedeelte van de primers niet alle theoretisch mogelijke 
nucleotiden in te bouwen, maar of alleen het meest waarschijnlijke nucleotide, of 
desoxyinosinemonofosfaat (dIMP). Tevens werd een efficiënte verlenging gewaarborgd door 
elke mogelijke combinatie voor de drie 3'-terminale codons in het mengsel van primers op te 
nemen. 

Met behulp van aldus ontworpen primer-mengsels, gebaseerd op de aminozuurvolgorde 
van bovengenoemde APS-11 peptiden, kon in een PCR-reactie met genomisch DNA als matrijs 
een DNA-fragment met een lengte van 2.4 kilobasenparen (kb) worden geamplificeerd. Dit 2.4 
kb PCR-produkt werd alleen geproduceerd, indien DNA waarop het Aps-11 allel voorkomt, als 
matrijs werd gebruikt. Als de matrijs het Aps-13 of Aps-1+ allel bevatte werd geen enkel 
produkt gevormd. Bovendien detecteerde het 2.4 kb PCR-produkt restrictiefragment-
lengtepolymorfïsmen (RFLPs) tussen twee "nearly isogenic lines" (NTLs) van tomaat die alleen 
verschillen in het Aps-11/Mi gebied van chromosoom 6. Het gegeven dat het 2.4 kb produkt 
alleen werd gevormd indien een matrijs werd gebruikt die het Aps-1 allel bevatte waarvan de 
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primers waren afgeleid, alsmede de genetische positie op chromosoom 6, geven aan, dat het bij 
dit produkt hoogstwaarschijnlijk gaat om een Aps-11 nucleotidensequentie. Wanneer dezelfde 
primer-mengsels werden gebruikt in een PCR reactie met cDNA als matrijs werd een 490 bp 
Aps-11 fragment geamplificeerd. Er werd een overlappende cDNA sequentie van 550 bp 
gevonden, wanneer in combinatie met dezelfde "upstream primers" "downstream primers" 
werden gebruikt die correspondeerden met het C-terminale tryptische peptide van het APS-1l 

eiwit. De hoeveelheid die in 30 ronden PCR van het 490 bp en het 550 bp cDNA fragment 
werd geproduceerd was zo gering, dat deze alleen kon worden gedetecteerd door middel van 
Southern blot hybridisatie met het 2.4 kb genomische PCR-produkt als "probe". Dit geeft aan 
dat er slechts een geringe hoeveelheid mRNA voor APS-11 aanwezig was en vormt opnieuw 
een aanwijzing voor het lage niveau waarop het Aps-11 gen tot expressie komt. 

Naast de 2.4 kb Aps-11 sequentie werd met behulp van twee andere primer-mengsels, 
zowel met genomisch DNA als met cDNA als matrijs, ook een ±115 bp produkt verkregen. Dit 
tweede PCR-produkt bleek meerdere verwante nucleotidensequenties van nagenoeg gelijke 
lengte te bevatten. De genetische positie van deze nucleotidensequenties kon niet worden 
vastgesteld, doordat de klonen van deze sequenties slecht bleken te functioneren als "probe". 

Uit een cDNA-bank van tomaat, welke klonen van de eiwit coderende 
nucleotidensequenties bevat, werden aan het 2.4 kb PCR produkt homologe cDNA-klonen 
geïsoleerd. De geamplificeerde 2.4 kb Aps-11 sequentie werd daartoe radio-actief gemerkt en 
vervolgens konden via moleculaire hybridisatie met deze "probe" de Aps-11, en aan Aps-11 

verwante cDNA-klonen in de bank worden geïdentificeerd. 

Er werden twee cDNA-klonen met verwante nucleotidensequenties geïsoleerd. Een van 
beide was kennelijk een Aps-1 cDNA-kloon, aangezien in de nucleotidenvolgorde van deze 
kloon sequenties coderend voor drie APS-11 peptiden (peptide IV, VI en VII, te zamen 30 
aminozuren) werden aangetroffen. Deze Aps-11 cDNA-kloon codeerde voor 69 aminozuren 
van de APS-1l polypeptideketen inclusief de C-terminus, welke overeen bleek te komen met 
tryptisch peptide VII. 

Een ander deel van de APS-11 aminozuursequentie werd afgeleid uit de 
nucleotidensequentie volgend op de "upstream primer" in het 2.4 kb genomische Aps-11 

amplificatieprodukt. In dit gedeelte van de APS-11 polypeptideketen werden in totaal 56 
aminozuren opgehelderd inclusief peptide IX. 

De APS-1 ! aminozuurvolgorde voor zover die door ons werd bepaald, vertoonde geen 
significante homologie met andere (zure) fosfatases in de GenBank en EMBL databanken. Wel 
werd een opvallende aminozuursequentiehomologie gevonden met een vegetatief opslageiwit 
("vegetative storage protein"), VSP-ß, van sojaboon (Glycine max [L.] Merr.), dat zich 
ophoopt in de bladeren na het verwijderen van de peulen. 

De detectie van een aan Aps-11 verwante cDNA-kloon door de 2.4 kb genomische 
Aps-11 probe alsmede de heterogeniteit in nucleotidensequentie binnen het 115 bp PCR product 
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vormen aanwijzingen voor het bestaan van een familie van aan Aps-11 verwante 
nucleotidensequenties binnen het tomategenoom. Een van de vier gevonden 
nucleotidensequenties die deel uitmaakte van het 115 bp PCR produkt, bleek identiek te zijn aan 
115 bp van de Aps-11 sequentie. Geen van de overige drie sequenties, noch de aan Aps-11 

verwante cDNA-kloon, vertoonde op aminozuurniveau meer homologie met het VSP-ß van 
sojaboon dan met APS-11 van tomaat. Daarom is het onwaarschijnlijk, dat een van deze 
sequenties het homoloog van VSP-ß in tomaat representeert. 

De beschreven procedure voor het isoleren van een Aps-11 cDNA-kloon illustreert, dat 

het mogelijk is om gedegenereerde PCR-primer-mengsels te ontwerpen met een hoge graad van 

specificiteit. Wanneer een gen wordt gekloneerd via het gecodeerde eiwit lijkt het derhalve 

raadzaam om eerst te proberen of via PCR een kwalitatief hoogwaardige "probe" kan worden 

gegenereerd, alvorens men zijn toevlucht neemt tot het directe gebruik van deze minder 

selectieve oligonucleotidenmengsels als "probe". 

De Aps-11 cDNA-kloon, beschreven in dit proefschrift, vormt een belangrijk 

oriëntatiepunt bij "chromosome walking" naar het Mi locus van tomaat en kan daarmee 

bijdragen aan het kloneren van een agronomisch belangrijk nematodenresistentiegen. 
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Nawoord 

Promotie-onderzoek doen is zo nu en dan wel een eenzame, maar zeker geen eenmans-
aangelegenheid, ook al vermeldt de titelpagina van een proefschrift gewoonlijk slechts een 
auteur. Velen hebben mij bij het tot stand brengen van dit proefschrift ondersteund. Allereerst 
wil ik mijn ouders noemen, die mij hebben grootgebracht en hun belangstelling voor biologie 
en natuurwetenschappen overtuigend op mij wisten over te dragen. Hen wil ik op deze plaats, 
evenals mijn zus, hartelijk bedanken voor hun steun in velerlei opzicht en voor hun interesse in 
hetgeen ik allemaal aan het doen was. 

Vervolgens wil ik mijn promotor, prof. Ab van Kammen, van harte bedanken. Hij heeft 
mij in de gelegenheid gesteld om in een bijzonder collegiale groep wetenschappers promotie
onderzoek te doen. Niet op de laatste plaats is een dergelijk klimaat, denk ik, te wijten aan zijn 
eigen behulpzame houding. Tegenover mij kwam dit tot uiting in zeer persoonlijke, bijna 
vaderlijke aandacht, die mij steeds opnieuw enorm heeft gestimuleerd. 

Nog directer dan de promotor, is de co-promotor bij het werk van een promovendus 
betrokken. Bij hem berust namelijk de dagelijkse begeleiding van het onderzoek en van het 
schrijven van het proefschrift. Daarom wil ik mijn co-promotor, dr. Pim Zabel, heel in het 
bijzonder bedanken. Pim, ik vind dat je deze taak met zeer veel inzet hebt uitgevoerd. Geen 
moeite was je te veel. Bij problemen kon ik je altijd bellen, ook 's avonds en in het weekend. 
Mijn hartelijke dank hiervoor en ook voor het vele dat ik van je heb geleerd. En dan denk ik met 
name aan je waardevolle adviezen inzake het presenteren van de onderzoeksresultaten, zowel in 
woord als in geschrift. Met veel geduld en tot in de details heb je telkens opnieuw mijn teksten 
bijgeschaafd om ze maximale overtuigingskracht te geven en behalve dat, heb ik ook heel veel 
fraai Engels van je geleerd. Verder heb ik je aanstekelijke optimisme en je loyale houding bij 
tegenslagen altijd enorm gewaardeerd. 

Mijn collega's in het lab ben ik veel dank verschuldigd voor alle hulp en voor de goede 
sfeer, met name de (ex-)leden van de "tomatengroep", Els Hulsebos-Robanus Maandag, Rob 
Weide, Jacques Hille, Raymond van Daelen, Ellen Wisman, Ruud Verkerk, René Klein 
Lankhorst, Jan Hontelez, Tsvetana Liharska, en Monique van Wordragen, maar ook alle 
medewerkers van de overige onderzoeksgroepen. Ook wil ik Dr. Maarten Koornneef (vakgroep 
Erfelijkheidsleer, LUW) bedanken voor zijn bijdrage in de vorm van adviezen, discussies en 
plantemateriaal, en Corry Hanhart van diezelfde vakgroep, die me heeft geholpen bij het 
kweken van kilo's tomatecellen. 

Aan het hier beschreven onderzoek hebben ook een aantal studenten meegewerkt in het 
kader van hun doctoraalstudie: Harry Stomp, Elly Speulman, Inca Küsters en Henk van de 
Kamer. Hen wil ik bedanken voor hun bijdrage en voor de prettige samenwerking. 
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Peter van Druten ben ik veel dank verschuldigd voor fotografische assistentie, welke 
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