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ABSTRACT 

The research described in this thesis deals with chromosome identification and gene 

mapping. In contrast to results from literature, in this study only three chromosomes (1, 2 

and 12) could unambiguously be identified in mitotic cells using conventional staining, and 

four (1, 2, 3 and 4) in case of Giemsa C-banding. With both methods the chromosomes 1 

and 2 could unambiguously be identified and are homologous to the chromosomes 1 and 2 

as identified by pachytene analysis. Reliable chromosome identification in potato can be 

achieved by pachytene analysis. 

It was found in this study by using non-radioactive in situ hybridization that one basic 

chromosome of the potato contains rRNA genes. In contrast to a report in the literature 

about detection of one chromosome with gene(s) for patatin using a cDNA clone, hybridiza

tion with a genomic DNA clone used in this study detected more than one basic chromoso

me carrying genes related to patatin. 

The bivalents in 5. phureja Juz. et Buk. were morphologically very similar to those of S. 

tuberosum L. ssp. tuberosum Hawkes cv. Gineke as identified by pachytene analysis. An 

interchange in S. phureja is described and the involvement of the chromosomes 3 and 12 in 

this interchange could clearly be demonstrated by pachytene analysis and the meiotic 

behaviour in F, hybrids. Trisomie descendants selected in the first selfed generation of the 

interchange heterozygote were primary trisomie being homozygous for the interchange or 

tertiary trisomie. 

Meiotic behaviour in 11 primary trisomies was investigated and female transmission of the 

extra chromosome determined. Triple synapsis of pachytene chromosomes was often found 

in the euchromatic parts of the chromosomes. In this study a significant correlation 

between the relative chromosome or euchromatin length and the coefficient of realization 

of a trivalent at metaphase I was found in the primary trisomies of the potato. In spite of 

this result no relationship could be established between female transmission and the length 

of the extra chromosome. 

By means of half-tetrad analysis the map distance relative to the centromere could be 

estimated of each of three dominant genes involved in resistance to potato viruses X and Y 

and to pathotype Ro1 from Globodera rostochiensis, and of the recessive gene for yellow 

leaf-margin. The gene for yellow margin was localized on chromosome 12 and that for 

topiary on chromosome 3 by means of trisomie analysis. 
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VOORWOORD 

De verschijning van dit proefschrift vormt de afsluiting van het project " Cytogenetisch 

onderzoek in aardappel". Fundamenteel cytogenetisch onderzoek in aardappel werd aan 

het eind van de jaren 60 geïnitieerd door o.a. Dr. Ir. W. Lange (Stichting voor Plantenver

edeling, SVP, in 1990 opgegaan in het Centrum voor Plantenveredelingsonderzoek, CPO, 

en in 1991 in het Centrum voor Plantenveredelings- en Reproduktieonderzoek, CPRO-DLO). 

De gezamenlijke interesse van IVP- (Instituut voor Plantenveredeling, Landbouwuniversiteit, 

Wageningen) en SVP onderzoekers in de toepassing van "trisomen" voor gen-localisatie in 

aardappel en het verblijf van deze onderzoekers op dezelfde "campus" leidde er in 1970 

toe dat de werkgroep "Trisomie in aardappel" werd opgericht. Deze werkgroep onder 

leiding van mijn promotor, co-promotor en Dr. Ir. W. Lange begeleidde grotendeels het 

onderzoek zoals beschreven in dit proefschrift. Het practische werk werd uitgevoerd bij de 

SVP en het CPO in de periode tussen 1968 en 1991. 

Aan de totstandkoming van dit boekje hebben velen een bijdrage geleverd. Zonder 

anderen te kort te willen doen, wil ik enkele personen met name noemen. Mijn promotor 

Dr. Ir. J.G.Th. Hermsen ben ik veel dank verschuldigd voor de samenwerking gedurende een 

lange periode. Uw milde wijze van kritiek leveren op de manuscripten was er altijd op 

gericht de schrijver overeind te houden en bepaalde teksten ten onder te laten gaan. 

Hiervan ging een stimulerende invloed uit en dit heeft zonder twijfel tot verbetering van de 

kwaliteit van de meest recent geschreven- publicaties geleid. Mijn co-promotor Dr. M.S. 

Ramanna ben ik zeer erkentelijk voor de leerzame discussies, gevoerd tijdens de uitvoering 

van het onderzoek en de geuite positieve kritiek op de manuscripten. / shall never forget 

your enthousiasm and your shouts of surprise when viewing another pachytene configura

tion, not earlier found by me. Your extreme kindness and patience as well as your sincere 

interest in the subject was the basis for a protacted and good connection whereof I express 

my heartfelt thanks. Vele oud-SVP medewerkers hadden invloed op mijn ontwikkeling als 

assistent en later als onderzoeker in het veredelingsonderzoek. Mijn eerste activiteiten 

werden begeleid door de helaas te vroeg overleden Ir. Nico van Suchtelen geassisteerd door 

zijn rechterhand Ing. Wietze Bouma (periode 1964-1967). In die periode werd onderzoek 

verricht aan dihaploide aardappelen en de schimmel Phytophthora infestans, veroorzaker 

van de aardappelziekte. Mijn eerste chromosoom-preparaten vervaardigde ik onder de 

bezielende leiding van Ing. GJ. Speckmann, waarvoor ik hem van harte bedank. Aan mijn 

wetenschappelijke vorming heeft Dr. Ir. W. Lange een belangrijk aandeel gehad. Gedurende 

een reeks van jaren was hij mijn directe begeleider, die mij o.a. de beginselen bijbracht van 



het schrijven van wetenschappelijke artikelen. Wouter had bijna altijd wel een oplossing bij 

de hand als de resultaten niet geheel overeen kwamen met wat we verwachtten. Op deze 

plaats wil ik hem graag bedanken voor de jarenlange en prettige samenwerking. 

Bij de uitvoering van het onderzoek werd ik geassisteerd door Maria Gut-Simicek, 

Jacqueline de Haas-Buurman, Greet Kuiper, Wietske van der Molen, Karin Nelson en 

Marleen de Vries en werden de stagiaire Frans de Bruin, de KUN-studenten Theo van der 

Lee en A.H.M. Vermeer en de LU-studente Ellen Wisman door mij begeleid. De inzet van 

allen heb ik zéér gewaardeerd, in het bijzonder die van Greet Kuiper die in een zeer 

woelige periode van fusies van instituten en opheffing van afdelingen toch de moed erin 

hield en de zoveelste variant van het protocol voor in situ hybridisatie uitprobeerde. Dr. H.J. 

Huizing, Dr. A.F. Krens en Drs. G.J.A. Rouwendal wil ik bedanken voor de practische 

adviezen gegeven in de laatste fase van het onderzoek, evenals Mevr. Dr. J. (Coosje) 

Hoogendoorn voor het kritisch lezen van de meest recente manuscripten en Drs. Paul Keizer 

voor het uitvoeren van enkele statistische analyses. 

Collega-medewerkers van SVP, CPO en CPRO die op één of andere wijze een bijdrage 

hebben geleverd aan dit proefschrift wil ik hierbij van harte bedanken. Voor het vele 

typewerk kon ik rekenen op de ondersteuning van de afdeling tekstverwerking van het 

CPRO-DLO. Alle medewerksters van harte bedankt, met name Mevr. Ans Corver en Mevr. 

Jannie Kramp die eveneens (met een 'beetje' hulp van Robert van Loo) de "lay out" 

verzorgden en een bijzondere prestatie hebben geleverd. 

Het ontwikkelen en afdrukken van de originele (micro)-foto's werd uitgevoerd door Peter 

Stad en zijn naaste medewerkers van de TFDL-DLO Centrale fotodienst. Hartelijk dank voor 

de geleverde diensten en de bijzondere kwaliteit. 

Tot slot bedank ik Betsie, aan wie ik dit proefschrift opdraag en Inge, Rien en Herbert voor 

het geduld dat jullie met me moesten hebben tijdens mijn biologie studie en de periode 

daarna en de tolerantie die jullie opbrachten als ik weer eens verstek liet gaan t.a.v. het 
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GENERAL INTRODUCTION 

The cultivated potato Solanum tuberosum L. ssp. tuberosum Hawkes, and its relatives 

belong to the subgenus Potatoe (G. Don) D'Arcy, section Petota of the genus Solarium 

(Hawkes, 1990). Cultivars of this important food crop are predominantly tetraploid 

(2n=4x=48) and belong to the taxonomie series Tuberosa. This series also includes the 

cultivated diploid (2n=2x=24) primitive species 5. phureja Juz. et Buk. and S. stenotomum 

Juz. et Buk., both with genome formula AA (Hawkes, 1958). The cultivated potato 

encompasses the two subspecies andigena (Juz. et Buk.) Hawkes and tuberosum both with 

genome formula AAA'A'according to Matsubayashi (1991). It is believed on taxonomie 

grounds that the tetraploid potato arose through hybridization of the primitive species S. 

stenotomum with a wild diploid species, e.g. 5. sparsipilum (Bitt.) Juz. et Buk.. Further 

evolution took place with at least two other wild species, 5. acaule Bitt. and 5. 

megistacrolobum Bitt., bringing genes for frost resistance into the cultivated gene pool 

(Hawkes, 1988). Interspecific hybridization, including species from different series, resulted 

in a polyploid series. Alternatively, Matsubayashi (1991) on the basis of tuber characters 

concluded that 5. phureja might have crossed with 5. stenotomum giving rise to ssp. 

andigena. S. phureja has been described as a cultivated diploid species derived from 5. 

stenotomum by gene mutations and selections (Hawkes 1988; Matsubayashi 1991). It 

shows a close similarity to andigena in pachytene morphology (Matsubayashi, 1991). 5. 

tuberosum ssp. tuberosum is generally felt to have evolved by long-day adaptation and 

selection from 5. tuberosum ssp. andigena. However, some differences have been pointed 

out for cytoplasmic factors (non-chromosomal genes in mitochondria and chloroplasts) of 

ssp. tuberosum on the one hand and ssp. andigena, S. phureja and 5. stenotomum on the 

other (Grun, 1979; Hosaka et al., 1984). Some cytoplasmic sensitive factors cause 

abnormalities of the reproductive organs due to an interaction with different dominant 

nuclear genes. For example, the diploid hybrids between 5. tuberosum ssp. tuberosum and 

S. phureja described in this thesis showed various kinds of flower abnormalities and were 

mostly male sterile. 

The basic chromosome number of potato is assumed to be 12 on the basis of 

chromosome behaviour in dihaploids and monohaploids from 5. tuberosum (Chavez and De 

Sosa, 1972; Van Breukelen et ai, 1975, 1977) and monoploids (2n=x=12) from the diploid 

species 5. verrucosum Schlechtd. (Irikura, 1976). According to Kawakami and Matsubayashi 
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(1957), and Matsubayashi (1981), S. tuberosum is rather a segmental allotetraploid than an 

autotetraploid. Two reasons in particular led to this conclusion. Firstly, the meiotic behaviour 

and fertility of some dihaploid tuberosum clones are remarkably variable and consequently 

these clones are meiotically unstable as compared to certain natural diploid species 

(Matsubayashi, 1960; Yeh ef a/., 1964., Sosa and Sosa, 1971). Secondly, structural 

differences occur, such as heteromorphic short arms of the nucleolar chromosome in some 

andigena dihaploids (Yeh and Peloquin, 1965), loops between paired chromosomes in 

tuberosum dihaploids (Ramanna and Wagenvoort, 1976) and, sporadically unpaired 

segments in bivalents (Matsubayashi, 1991). In spite of this, regular meiosis and good pollen 

fertility were observed in many diploid hybrids even from crosses between species from 

different taxonomie series. This suggests, that differences exist at the genie level rather than 

at the chromosomal level (Swaminathan and Howard, 1953; Howard, 1960; Matsubayashi 

and Misoo, 1979; Matsubayashi, 1983; Peloquin et al., 1983; and others). Therefore, other 

workers consider 5. tuberosum an autotetraploid rather than an allotetraploid. 

Tetrasomic inheritance, a high degree of heterozygosity of cultivars, and the high number 

of small and morphologically very similar chromosomes, seriously hamper genetic and 

cytogenetic research in this crop. Consequently, methods were developed for the 

production of dihaploids from tetraploid tuberosum and andigena clones. This has been 

accomplished via crosses between the autotetraploids and pollinator clones of 5. phureja, 

where dihaploids are thought to originate from unfertilized eggs through pseudogamy. The 

dihaploids can be detected using the seedling marker hypocotyl colour (Peloquin and 

Hougas, 1959) or the more efficient seed marker embryo-spot (Hermsen and Verdenius, 

1973). A second cycle of pseudogamous haploid induction accomplished by crossing 

dihaploids with the same pollinator clones gave rise to monohaploids (Van Breukelen ef al., 

1975, 1977; Uijtewaal et al., 1987). Mono(hap)ploids are a very useful tool for karyotyping 

the potato genome. However, recently it has been suggested that some of these dihaploids 

could not be of parthenogenetic origin since aneuploid cells and 5. p/iure/a-specific DNA 

sequences have been detected in these plants using cytological and molecular methods 

including randomly amplified polymorphic DNA (RAPD)(Clulow ef al., 1991; Waugh ef al., 

1992). It is felt that dihaploids also can arise by interspecific pollination followed by normal 

double fertilisation and preferential elimination of 5. phureja chromosomes during early 

stages of embryo development. At present, it has not yet been shown whether 

chromosomes from S. tuberosum are also eliminated during the early growth stages of the 

tuberosum-phureja hybrids. 
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Identification of somatic chromosomes of the potato by conventional staining is difficult 

because their size is small and the morphology of the twelve basic chromosomes is very 

similar. Although Pijnacker and Ferwerda (1984) developed a Giemsa C-banding technique 

for identification of somatic chromosomes, accurate identification of the chromosomes 5-12 

is difficult, if not impossible. In tomato, a species closely related to potato, chromosome 

identification can be performed on pachytene chromosomes (Barton, 1950; Ramanna and 

Prakken, 1967). Morphological traits such as chromosome size, arm ratio, proportion of 

chromatic parts and presence and size of achromatic parts of the chromosomes were used 

for identification. Similarly, the morphology of the pachytene chromosomes of diploid 5. 

tuberosum ssp. andigena (Yeh and Peloquin, 1965) and of diploid 5. tuberosum ssp. 

tuberosum (Ramanna and Wagenvoort, 1976) has been described. Recently, Lapitan et ai, 

(1989) karyotyped the somatic chromosomes of tomato by in situ hybridization of a satellite 

162 bp telomeric DNA repeat to metaphase chromosomes. Variation in the spatial and 

quantitative distribution of this repeat, created distinct patterns on most of the 

chromosomes, which along with other morphological characteristics such as chromosome 

length and arm length ratio, allowed the identification of each of the 12 mitotic 

chromosomes of the tomato. Assignment of somatic chromosomes, identified by the 

telomeric repeat, to the previously established linkage groups was accomplished via in situ 

hybridization to mitotic spreads of primary trisomies. However, this repeat is lacking in 

potato. 

In diploid potatoes chromosomal interchanges and inversions are rare, as has appeared 

from cytological investigations of a vast number of different interspecific hybrids during 

several decades. In the diploid hybrids regular chromosome pairing at pachytene, diakinesis 

and metaphase I was most commonly observed (Magoon ef a/., 1958a, 1958b; Dvofâk, 

1983). The interchange described in this thesis originated spontaneously in 5. phureja. 

Trisomies contain one chromosome in addition to the diploid complement and have been 

a useful tool for assigning genes or linkage groups to chromosomes in a variety of species. 

The trisomie method of identifying chromosomes with their respective linkage groups has 

also been successfully applied in several crops, such as maize (McClintock and Hill, 1931), 

tomato (Rick and Barton, 1954; Rick et ai., 1964); Antirrhinum (Rudorf-Lauritzen, 1958) 

barley (Tsuchiya, 1959); spinach (Janick etal., 1959); perennial ryegrass (Lewis et ai, 1980), 

rice (Iwata etal., 1984); and others. Gene dosage effects could be detected when trisomies 

were compared to normal individuals (Tanksley, 1984; Young ef a/., 1987). In potato, 

trisomies (2n=2x+1=25) were isolated from parthenogenetic aneuhaploid offspring 
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following 4x-2x crosses (Hermsen et al., 1970; Wagenvoort and Lange, 1975) or from the 

progeny of 3x-2x crosses (Wagenvoort and Lange, 1975). In triploid (2n=3x=36) and 

tetraploid plants having more than two homologues of each chromosome type, aneuploid 

gametes are produced due to the formation of multivalents at metaphase I and 

consequently may give rise to 2:1 or 3:1 disjunctions at anaphase I. Among genotypes of 

triploid S. tuberosum the mean frequency of trivalents per metaphase I cell varied from 

4.70 to 8.38 (Lange and Wagenvoort, 1973) and in tetraploid 5. tuberosum the frequency 

of trivalents + quadrivalents varied from 1.48 to 5.24 (Cadman, 1943; Lamm, 1945; 

Swaminathan 1954a,b). Trisomies of the potato have been produced at a high frequency in 

the USA and in the Netherlands, using triploids of Solanum species or species hybrids (Vogt 

and Rowe 1968; Lam and Erickson 1970, 1971a; Lee et al., 1972; Kessel and Rowe 1974; 

Kessel et al., 1975; Lee and Rowe, 1975; Wagenvoort and Lange, 1975). Although the 

meiotic behaviour of many of these intraspecific and interspecific trisomies was studied 

(Hermsen et al., 1970, 1973; Lee and Rowe, 1975, and others), a possible relationship 

between the coefficient of realization of a trivalent (CRT) at metaphase I and the relative 

chromosome length or the relative euchromatin length of the chromosome at pachytene 

could not be detected previously since the identity of the extra chromosome was unknown. 

For the same reason a possible relationship between CRT and the transmission of the extra 

chromosome through the female gametes could not be established. 

The trisomies described in this thesis were produced from triploid-diploid crosses 

(Wagenvoort and Lange, 1975). The triploids originated mainly from 4x-2x crosses using 

cultivar Gineke and its selfincompatible dihaploid G609 (JGTh Hermsen, personal 

communication). The diploid male parents in the triploid-diploid crosses were the 

selfcompatible dihaploid G254, also from Gineke, and a hybrid from the cross G609 x 

G254. Both methods of aneuhaploid production in potato - the tetraploid-diploid crosses 

and the triploid-diploid crosses - yielded aneuploid populations that were highly variable as 

to plant morphology, vitality and fertility. Following a scheme for backcrossing and 

inbreeding with trisomies from Gineke and clones obtained through inbreeding of 

selfcompatible dihaploids of the same variety, some trisomie types could be distinguished on 

the basis of plant morphology in the seedling stage (Wagenvoort and Lange, 1980). All 

trisomies identified through pachytene analysis by Wagenvoort and Ramanna (1979) proved 

to be primaries, containing a complete chromosome in triplicate. 

Primary trisomies provide the most effective means of associating linkage groups and 

genes with their respective chromosomes through the modified genetic ratios for genes 
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located on the triplicate chromosome. Since there are three homologous chromosomes 

instead of two, the genetic ratio for genes on these chromosomes, the so-called "critical 

ratio", differs from the 3:1 or 1:1 ratios found in F2 and BC, from a normal diploid that is 

heterozygous for a recessive gene. Basic information for the use of primary trisomies in 

genetic and breeding research has been reported by Burnham (1962), Hermsen (1970) and 

Khush (1973). Romagosa (1982) specifically determined family size needed for isolation of 

all primary trisomie types and Romagosa and Leiva (1982) estimated the population size 

needed for primary trisomie analysis. In potato four monogenic recessive traits have so far 

been localized by means of trisomie analysis, namely a (albinism) on chromosome 12 by 

Lam and Erickson (1971b), v (virescens) on chromosome 12 by Hermsen et al. (1973), ym 

(yellow margin) on chromosome 12 by Wagenvoort (1982) and tp (topiary) on chromosome 

3 by Wagenvoort (1988). Linkage analyses have yielded ten small linkage groups: Nx{tbr), 

Nx{chc), Ny(chc), Na(tbr) and Ndtbr), all dominant genes for hypersensitivity to the potato 

viruses X, Y, A, and C respectively (Cockerham, 1970); B, I, F, Ow and Pf, all dominant 

genes affecting tissue specific expression of anthocyanin (Dodds and Long, 1956; De Jong 

and Rowe, 1972; De Jong 1987); E (red colour in sprouts, stems, inflorescences and tuber 

periderm) and M (restriction of tuber periderm pigmentation to areas around the eyes) 

(Howard, 1966); dr (droopy) and 5 (gametophytic incompatibility) (Simmonds, 1966); v 

(virescens) and t (S-bearing translocation ) (Hermsen, 1978); Ld (pollen lobedness) and Tr 

(tetrad sterility) (Abdalla and Hermsen, 1971); Prx-2 and Prx-3 (Quiros and McHale, 1985); 

ldh-1 and Sdh-1 and Pgdh and Dia- 7,(Douches and Quiros, 1988); Got-1, ds1 (desynapsis) 

and cr (crumpled) (Jongedijk et al., 1990). One of these linkage groups was assigned to a 

specific chromosome by trisomie analysis and five by restriction fragment length 

polymorphism (RFLP) analysis (Bonierbale et ai, 1988; Van Eck et al., 1993). The remaining 

four groups have not been localized so far. In addition, genes encoding for other isozymes, 

anthocyanins, morphological and physiological traits or resistance genes along with more 

than 1000 molecular markers with unknown coding capacity have been mapped on the 

potato genome (Bonierbale et al., 1988; Gebhardt era/., 1989, 1991, 1993; Barone et al., 

1990; Ritter et al., 1991; Leonards-Schippers, 1992; Leonards-Schippers et al., 1992; Van 

Eck et al., 1993, Tanksley et al., 1992, Kreike et al., 1993). A non-radioactive method for 

detection of hybridization signals on Southern blots using biotinylated probes or probes 

labelled with digoxigenin proved to be satisfactory and reliable. This technique appears to 

be much quicker than the common method using radioactive labelling (Jacobs et al., 1990; 

Allefs et al., 1990). Finally, approximate gene-centromere map distances have been 
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Fig. 1. Relative map distance to the centromere for various isozyme marker loci and for 

some morphological and resistance genes on the chromosomes 1, 2, 3, 4, 5, 7, 10, 11 and 

12. ldh-1, Sdh-1, Prx-3, Pgm-2, Got-2, Pgi-1, loci of various isozymes; D, a basic gene for 

brownish and red colour in stems and inflorescences, according to the notation of Van Eck 

et al. (1993); y, yellow tuber flesh, H1and , gene from Solanum andigena conferring 

resistance to Globodera rostochiensis, pathotype Ro1; Rl, gene conferring vertical resistance 

to Phytophthora infestans; Rx2ad, gene from 5. acaule conferring extreme resistance to 

potato virus X; Gro1spg, gene from S. spegazzinii, conferring resistance to pathotype Ro1 

from G. rostochiensis; B, gene for tissue-specific expression of anthocyanin; P, gene for the 

production of purple anthocyanin; ym, gene for yellow margin. The position of ym on the 

arm of chromosome 12 also involving the markers Pgi-1 and Rxand is questionable as no 

linkage with these markers has been reported, ym might also be situated on the other arm 

of chromosome 12. It is expected that Rxand from 5. andigena conferring extreme resistance 

to potato virus X corresponds to Rx1and, reported in the literature. 

established via half-tetrad analysis for a variety of isozyme marker loci and some 

morphological traits and resistance genes. Fig. 1 shows diagramatically nine chromosomes 

of the potato involving markers with known relative distance to the centromere. Some 

other markers or genes not localized in the same mapping populations were placed on 

these chromosomes based on the use of closely linked common reference markers reported 

in the literature. Comparisons between potato RFLP maps derived from different genetic 

backgrounds revealed conservation of märker order, but a significant reduction of map 

length was observed in interspecific compared to intraspecific crosses (Gebhardt et al., 

1991). It has to be noted that the map presented by Gebhardt ef. a/., (1989) shows a 

difference in marker order for the PAL loci on chromosome 9 compared to the map by 

Gebhardt ef a/., (1991). 

Two quantitative trait loci (QTLs) involved in resistance to Globodera rostochiensis (Kreike 

ef a/., 1993) were mapped on the chromosomes 10 and 11 and 19 QTLs involved in 

resistance to Phytophthora infestans on the chromosomes 2, 3, 4, 5, 6, 9 and 12 (Leonards-

Schippers, 1992). The investigations on trisomies described in this thesis were originally 

initiated to establish a complete series of primary trisomies at the diploid level in 5. 

tuberosum ssp. tuberosum. These studies included (i) production of aneudihaploids and 

identification of the 12 possible trisomies using pachytene analysis (ii) assessment of fertility. 
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plant morphology and transmission rates of the extra chromosome in single and double 

trisomies. 

Outline of research 

The aim of the present research was to demonstrate homology of pachytene chromosomes 

with somatic chromosomes of the potato, to map recessive genes by trisomie analysis, to 

determine the gene-centromere map distances of recessive and dominant genes by half-

tetrad analysis and finally to explore the use of a series of trisomies in identifying the 

chromosomes involved in an interchange in 5. phureja. 

Chapter 1 describes the identification of mitotic chromosomes using conventional 

staining, Giemsa C-banding and in situ hybridization. The identification of the pachytene 

chromosomes of 5. phureja and those involved in the interchange is reported in chapter 2. 

Meiosis in plants carrying the interchange and in some I, plants obtained from an 

interchange heterozygote is described in chapter 3. 

Chapter 4 deals with the meiotic behaviour of 11 primary potato trisomies and its 

consequences for the female transmission of the extra chromosome. 

The estimation of relative distances to the centromeres of three genes involved in 

resistance to the potato viruses X and Y and to nematodes, and of the gene ym by means 

of half-tetrad analysis is described in the chapters 5 and 6 respectively. 

Finally, the chapters 7 and 8 report the successful localization of the recessive genes ym 

(yellow margin) and tp (topiary) respectively, using trisomie analysis. 
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CHAPTER 1 

Chromosome identification of potato trisomies (2n=2x+1=25) by con

ventional staining, Giemsa C-banding and non-radioactive in situ 

hybridization. 

With : G.J.A. Rouwendal, G. Kuiper-Groenwold and H.P.J, de Vries-van Hulten 

Summary 

Identification of the potato chromosomes 1 (the longest one), 2 (the carrier of the nucleolar 

organizer, NOR) and 12 (the shortest one) is possible at mitosis using a combined Feulgen-

haematoxylin staining or a Giemsa C-banding technique. In two aneuploids containing 27 

chromosomes, three specimens of chromosome 1 were found through conventional staining. 

Variation of the length of the NORs and the size of the satellite of homologues or 

homoeologues of chromosome 2 was observed in various cytotypes. In what was identified by 

means of pachytene analysis as trisomies of chromosome 2 of interspecific origin, involving 5. 

tuberosum L. ssp. tuberosum Hawkes and 5. phureja Juz. et Buk., only two specimens of 

chromosome 2 could be identified using the Giemsa C-banding technique. However, in six 

different interspecific chromosome 2-trisomics, three chromosomes per cell were found to 

show a hybridization signal by non-radioactive in situ hybridization with heterologous rDNA 

from pea. The high polymorphism of chromosomes observed after Giemsa C-banding made 

it impossible to bring the identity of the mitotic chromosomes in accordance with the results 

from pachytene identification in cells containing one triplicate chromosome. The number of 

chromosomes responding to the sequences of the tuber protein patatin varied betwen 0 and 

8, but was inconsistent when in situ hybridization was applied with a genomic DNA clone as 

large as 6.1 kilobases. Therefore, the results of this study suggest that more than one of the 

12 basic potato chromosomes contain patatin genes. 

Keywords: biotin/digoxigenin labelled probe, rRNA genes, NORs, chromosome polymorphism, 

potato trisomies. 
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Introduction 

Identification of somatic chromosomes of the potato is difficult because of their small size and 

very similar morphology. Pre-treatment of plant tissues with chemicals such as 8-

hydroxyquinoline or a-bromonaphthalene leads to mitotic metaphases with condensed 

chromosomes, which can be visualized by conventional staining as small blocks of 

heterochromatin. For research purposes, it is important to karyotype somatic cells, e.g. by 

banding techniques or via in situ hybridization. The urgent need for such techniques has been 

prompted by the finding of numerical and structural chromosome mutations in callus and 

suspension cultures as well as in plants regenerated from protoplasts (Creissen and Karp, 1985; 

Pijnacker ef al. 1986a, 1986b; Pijnacker and Ferwerda, 1987; Pijnacker and Sree Ramulu, 

1990). The finding of chromosome elimination in triploid cells of hybrids between S. tuberosum 

L. ssp. tuberosum Hawkes and 5. phureja Juz. et Buk., which incidentally may give rise to 5. 

tuberosum dihaploids with aneuploid cells still containing some DNA from 5. phureja (Clulow 

ef al. 1991) further emphasizes the importance of reliable karyotyping. In situ hybridization 

using species-specific DNA probes might have the potential to identify each chromosome by 

specific banding and offers the opportunity to study chromosome elimination. Mok et al. 

(1974) attempted to identify the somatic chromosomes of potato through a modified Giemsa 

staining technique. In their opinion the banding pattern resulted from natural condensation of 

heterochromatin after denaturation of DNA. They observed at prophase, one to five "bands" 

per chromosome and claimed to be able to identify all twelve basic chromosomes. Using the 

same technique, Lee and Hanneman (1976) identified in Giemsa-stained somatic cells from 

trisomies of 5. chacoense, the extra chromosomes that were previously identified at pachytene. 

The technique of Mok ef al. (1974), could not be reproduced in our laboratory. Another 

constraint of this technique is that the centromeres of prophase chromosomes are not visible. 

Later on Pijnacker and Ferwerda (1984) developed a Giemsa C-banding technique for the 

identification of somatic metaphase chromosomes. 

In tomato, a species closely related to potato, chromosomes can be identified both in 

somatic cells and at pachytene stages. Based on the size, arm ratios, proportion of chromatic 

and achromatic parts, all 12 pairs of somatic chromosomes of the tomato were identified by 

Ramanna and Prakken (1967). Because of the highly similar morphology of tomato and potato 

chromosomes, the same traits were used for the characterization of the pachytene 

chromosomes of diploid (2n=2x=24) 5. tuberosum L. ssp. andigena Hawkes (Yeh and Peloquin, 

1965) and that of diploid 5. tuberosum ssp. tuberosum (Ramanna and Wagenvoort, 1976) and 
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S. phureja (Wagenvoort, 1988). Successful pachytene analysis, however, requires skill, patience 

and experience, and is very time-consuming. The trisomies of the potato identified by 

Wagenvoort and Ramanna (1979), are expected to be ideal tools for establishing morphological 

concurrence between pachytene and somatic chromosomes identified by Giemsa C-banding 

or by in situ hybridization. However, the number of the chromosomes in pachytene and that 

resulting from the analysis of mitotic cells using banding methodologies may not be identical. 

If a comparison of the two systems of chromosome characterization is desired, i.e. the Giemsa 

C-banding technique or in situ hybridization on the one hand and chromosome identification 

at pachytene on the other, it is essential to use the same trisomies for both approaches. If the 

outcome of identification of chromosomes in a mitotic and a meiotic plate of the pachytene 

of a trisomie plant is identical, two situations are expected. Probing with a known 

chromosome-specific DNA clone or Giemsa C-banding, will reveal three chromosomes per cell 

with a hybridization signal or a specific C-banding pattern in the critical trisomie and two in 

the non-critical situation. If non-identical numbering of mitotic and meiotic chromosomes is 

occurring, only two hybridization signals will be observed and an other trisomie than expected 

on the basis of the pachytene analysis will show three chromosomes with a hybridization spot. 

The two situations are diagramatically visualized (see diagram). 

1.Identical numbering 

a,d =critical;b,c=non-critical 

The diagram shows two situations: (i) 

identical numbering of mitotic and meiotic 

chromosomes. In the critical situation (a) 

three chromosomes and in the non-critical 

situation (b) only two chromosomes will 

show a hybridization signal if a known 

chromosome-specific DNA clone is used, (ii) 

If non-identical numbering is occurring, an 

other trisomie than expected on the basis of 

the pachytene analysis will show three 

chromosomes with a hybridization spot. 
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Tandemly repeated DNA sequences such as the ribosomal genes (rDNA) have been 

successfully detected on the chromosomes through in situ hybridization in a large number of 

plant species including maize (Phillips et al. 1979; Mascia et al. 1981), cereals (Hutchinson et 

al. 1981; Mukai ef al. 1990, 1991; Leitch and Heslop-Harrison, 1992), legumes (Ellis et al. 

1988; Skorupska etal. 1989; Grifforef al. 1991), tomato (Zabel ef al. 1986; Ganal ef al. 1988; 

Lapitan ef al. 1991), potato (Visser et al. 1988) and others. In plant cytogenetics, the use of 

biotin-labelled probes was introduced by Rayburn and Gill (1985). Unique sequences of human 

chromosomes as small as 1 kilobase (kb) are detectable with a non-isotopic in situ hybridization 

technique (Garson et al. 1987). In plants, the legumin gene of the pea, as large as 13.5 kb, 

is the smallest unique target sequence which until now has been detected on metaphase 

chromosomes by in situ hybridization using a non-radioactive labelled probe and the light 

microscope (Simpson ef al. 1988). 

It was attempted to detect moderately repetitive DNA sequences coding for the tuber protein 

patatin through non-radioactive in situ hybridization. Patatin in potato is encoded by 

approximately 10-15 genes per basic genome (Park et al. 1983; Mignery et al. 1988; Twell and 

Ooms, 1988). 

In this paper we report the identification of the triplicate mitotic chromosomes in trisomies 

(already identified before by pachytene analysis) and other cytotypes, after conventional 

staining, Giemsa C-banding and in situ hybridization. 

Material and methods 

Plant material 

The monohaploids (2n=x=12) used in this study to identify somatic chromosomes were induced 

using trisomies (2n=2x+1=25) of 5. tuberosum ssp. tuberosum cv. Gineke by the 5. phureja 

haploid inducer IVP35. The latter was kindly provided by Prof. Dr. J.G.Th. Hermsen, Agricultural 

University, Wageningen, the Netherlands. In addition, the following material was investigated: 

aneuploids (2n=25,26,27), triploids (2n=36) and several trisomies. The origins of trisomies were 

as follows: chromosome 3 and 12-trisomic from the cultivar Gineke; chromosome 2 and 5-

trisomic derived from interspecific hybrids of 5. tuberosum x S. phureja and the multiple 

Solanum species hybrids involving tuberosum - chacoense - yungasense (chromosome 5-

trisomic) and tuberosum - maglia - microdontum - stenotomum (chromosome 10-trisomic). The 

trisomie for chromosome 10 was kindly provided by Dr. R.E. Hanneman Jr. University of 

Wisconsin, Madison, USA. The extra chromosomes of the trisomies were identified by 
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pachytene analysis or were expected to be identical by descent to the extra chromosomes in 

related identified trisomies. 

Probes used for in situ hybridization 

Two different clones were used for in situ hybridization. One of them was the pea ribosomal 

RNA gene fragment which consisted of a 4.0 kb Eco R, fragment subcloned in pAcyc 184 

which had been derived from a phage selected from an EMBL3 genomic library of Pisum 

sativum cv. Rondo (J.P. Nap, personal communication). The other clone, B106 is a 6.1 kb Bam 

H, fragment containing an entire class II patatin gene; it originated from a genomic lambda 

clone designated /»2PAT1 in pUC18 (see Nap etal. 1992). 

Conventional staining of somatic chromosomes 

Root tips of young potato plants were pretreated with 0.002 M 8-hydroxyquinoline for 4-24 

hours at 4°C and fixed in acetic acid alcohol (1:3,v/v). After hydrolysis in N HCl at 60°C for 

6-8 minutes, the roots were stained with Feulgen (leuco-basic fuchsin). Squashing was carried 

out in a mixture of nine parts haematoxylin (2%) and one part iron alum (0.5%) both in 50 

% propionic acid (Henderson & Lu, 1968), the haematoxylin solution being well ripened. 

Giemsa C-banding 

Root tips of young plants were pretreated in 0.002 M 8-hydroxyquinoline or in saturated ct-

bromonaphthalene for 4-6 h at 4°C and fixed in cold acetic acid alcohol (1:3,v/v). Maceration, 

preparation of slides (chromosome spreading and air drying) and C-banding were performed 

according to the method of Pijnacker and Ferwerda (1984). To achieve more consistent 

C-banding, slides were immersed in 0.2 M HCl for 1 h at room temperature before the barium 

hydroxide step (L.P. Pijnacker, Groningen University, personal communication). Chromosome 

spreads used for in situ hybridization were made as described for the Giemsa C-banding 

technique. 

Labelling of plasmid DNA 

Plasmid DNA was either labelled with biotin-11dUTP or biotin-21dUTP using a nick translation 

kit from Bethesda Research Laboratories (BRL), or it was labelled with digoxigenin-11 dUTP 

using a random primer labelling kit from Boehringer Mannheim. The extent of labelling of the 

probe was checked by spotting labelled plasmid DNA on nitrocellulose and visualizing the 

labelled plasmids according to the descriptions of the manufacturers. 
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In situ hybridization with chromosome spreads 

Hybridization and detection of biotinylated plasmid DNA 

In situ hybridization with biotinylated probes was performed following the protocol described 

by Garson et al. (1987) for human chromosomes, with slight modifications. The slides were 

treated with 100 ug ml'1 RNase A in 2xSSC (1xSSC is 0.15 M NaCI, 0.015 M sodium citrate) 

for 1 h at 37°C and sealed with rubber solution (Lero) during this treatment. Then they were 

dehydrated sequentially in an ethanol series of 70%, 96% and 100% (5 min. each step) and 

air dried. Thirty pi of hybridization mixture was added to each slide and covered with a 4.84 

cm2 cover slip and sealed with Lero. The hybridization mixture contained 50 % deionized 

formamide, 10 % dextran sulphate, 2xSSC, 0.1 mM EDTA, 0.05 mM Tris-HCI, at pH 7.5, 100 

ug ml"1 herring sperm DNA, and 1 ug ml"1 biotinylated plasmid DNA. Denaturation of the probe 

and the chromosomal DNA was carried out simultaneously by incubating the slides on the 

metallic bottom of an incubator (Heraeus) for 5-10 min. at 80°C. Slides were then incubated 

overnight (about 16 h) in a humidified box (plastic container faced inside with filter paper) and 

placed in an incubator at 40-42°C. After hybridization the cover slips were discarded by 

incubating the slides in 2xSSC and washed consecutively in 2xSSC (30 min. at room 

temperature), 0.1 x SSC (30 min. at 42°C) and 2xSSC (15 min. at room temperature). The 

slides were then placed in TNM-A blocking reagent (0.1 M Tris-HCI, at pH 7.5, 0.1 M NaCI, 2 

mM MgCI2, 0.05% Triton X-100, 3% bovine serum albumin) for 15 min. at room temperature. 

Hybridized probe was detected by incubating the slides for 20 min. with 1 ug ml'1 streptavidin 

conjugated alkaline phosphatase (BRL) in TNM-A followed by 3 washes (5 min. each) in TNM 

(TNM-A without bovine serum albumin) and once in alkaline (pH 9.5) buffer (0.1 M Tris-HCI 

at pH 9.5, 0.1 M NaCI, 50 mM MgCI2). For coloration, 30 pi substrate solution (330 pg ml"1 

NBT and 165 ug ml"1 X-phosphate in alkaline buffer) was added to each slide. In contrast to 

the protocol of Garson ef al. (1987), no levamisole was added for the inhibition of any residual 

endogenous alkaline phosphatase activity. Colour development was performed in the dark and 

terminated after 2-4 h by washing for 5 min. in 20 mM Tris-HCI, pH 7.5, 5 mM EDTA. Finally 

slides were mounted in Aquamount (Gurr, BDH) and metaphases viewed under phase contrast 

illumination. 

Alternatively, the hybridized biotinylated probe was detected through streptavidin conjugated 

horseradish peroxidase (BRL). In this case the protocol followed the above mentioned 

description up to and including the blocking step. After blocking, 1 ml TNM-A containing 2 pi 

streptavidin horseradish peroxidase (0.02 mg streptavidin horseradish peroxidase per ml TNM-A) 
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was added to each slide for 20 min., followed by three washes (5 min. each) in TNM solution. 

The colour reaction was performed by incubating the slides for 2-10 min. in 5% solution of 

diaminobenzidine tetrahydrochloride (DAB from BRL) and 0.05% (v/v) H202 in pH 7.5 buffer 

to which 68 mg imidazole was added, preceded by a short rinse in pH 7.5 buffer (0.05 M Tris-

HCI). The colour reaction was terminated by placing the slides in running tap water for 30 min. 

Finally, the slides were dehydrated successively in an ethanol series of 70%, 96% and 100%, 

5 min. each step, and air dried. Slides without cover glasses were viewed with phase contrast 

illumination or more successfully using reflection contrast microscopy. 

Hybridization and detection of digoxigenin labelled plasmid DNA 

Digoxigenin labelled plasmid DNA was added to the hybridization mixture containing 5xSSC, 

5% (w/v) blocking reagent from Boehringer, 0.1% (w/v) N-lauroylsarcosine, Na salt, 0.02% 

(w/v) SDS and 50% (v/v) de-ionized formamide. RNase treatment, denaturation , hybridization 

and post-hybridization washes were performed as described for the detection of the 

biotinylated probes. The slides were blocked in 5% blocking reagent in pH 7.5 buffer (100 mM 

Tris-HCI, 150 mM NaCI) and incubated in an anti-digoxigenin alkaline phosphatase conjugate 

(dilution 1:5000 in pH 7.5 buffer) for 30 min. at 37°C followed by three washes (10 min. 

each) in pH 7.5 buffer. A rinse of 5 min. in alkaline buffer (100 mM Tris HCl pH 9.5, 100 mM 

NaCI, 50 mM MgCI2) preceded the addition of 30 pi substrate solution having the same 

composition as that used for the biotinylated probes. 

Results 

Conventional staining of chromosomes 

The chromosomes 1, 2 and 12 could be identified in the monohaploid unambiguously in the 

somatic cells, because chromosome 1 is the longest and chromosome 12 the shortest 

chromosome of the complement and chromosome 2 carries the weakly stained secondary 

constriction (nucleolar organizer, NOR) and a darkly stained satellite (Fig. 1). Table 1 presents 

the results of the identification of the chromosomes 1 and 2 in various cytotypes using the 

Feulgen-haematoxylin staining. These chromosomes are illustrated in the Figs. 2 and 4. Another 

landmark for the identification of chromosome 1 is the structure of this chromosome in cells 

with less condensed chromosomes. It exhibits large blocks of heterochromatin at both sides of 

the centromere and has a less condensed and therefore less stained euchromatic region at the 

distal end of the long arm. Attempts were made to identify the trisomie for chromosome 1, 
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since this trisomie type is lacking in our primary trisomies series (Wagenvoort & Ramanna , 

1979). Three specimens of chromosome 1 were identified in five cells from aneuploids, 

however containing 27 chromosomes (Fig. 3). One of the three specimens of chromosome 1 

identified in these aneuploids with 27 chromosomes was nearly metacentric whereas the other 

specimens were sub-metacentric. This difference in centromere position is not easy to explain. 

In these cells variation of the length of the NORs and the size of the satellite were also 

observed. The size of the satellite varied even among homologues in the same cell (cf. the 

satellites of the chromosomes from three different cells shown in the Figs. 4a-c). A mitotic cell 

from a monohaploid, in which the satellite of chromosome 2 is absent, is shown in Fig. 5. The 

presence of chromosome 2 in triplicate could be unambiguously ascertained in cells of the 

double trisomie since three chromosomes per cell showed a darkly stained satellite (Fig. 4c). 

Giemsa C-banding of chromosomes 

Table 2 presents the results of the Giemsa C-banding of chromosomes from intra- and 

interspecific trisomies. The chromosomes of the two intraspecific trisomies have been arranged 

according to their length and specific banding pattern as described by Pijnacker and Ferwerda 

(1984). Because the banding pattern was unsatisfactory, a proper identification of all 

chromosomes was impossible. Chromosomes in the same numbering position are therefore not 

necessarily concurrent. According to our classification both trisomies contain three specimens 

of the chromosome designated with f (Figs. 6f and 7f). It is however not certain whether these 

chromosomes are identical to chromosome 6 described by Pijnacker and Ferwerda (1984). Two 

unsatellited chromosomes 2 are shown in Fig. 6b. Polymorphism for the band on the short arm 

of chromosome 4 was observed in all five cells analysed in the other trisomie. One of the two 

homologues of chromosome 4 showed a wide band, whereas the other had a very weak band 

(Fig. 7d). Polymorphism for the chromosomes 1, 2 and 4 was found. In the cell shown in Fig. 

8, from a chromosome 2-trisomic one specimen of chromosome 1 (in the centre), probably 

from S. tuberosum ssp. tuberosum, had an interstitial band in the short arm and no telomeric 

bands. The homoeologous chromosome, probably from S. phureja also showed an interstitial 

band and weakly stained telomeric bands on the short arm. Only two instead of three 

specimens of chromosome 2, and one instead of two specimens of the chromosomes 3 and 

4 could be identified in this C-banded cell. The remaining chromosomes could not be 

identified. In another chromosome 2-trisomic, also two instead of three chromosomes with 

banded satellites were observed (Fig. 9). In addition, polymorphism for the interstitial band in 

the short arm of chromosome 4 occurred in this trisomie. Chromosome 10 could not be 
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recognised in an interspecific chromosome 10-trisomic which was previously identified at 

pachytene. 

In situ hybridization 

Identification of chromosome 2 in trisomies using heterologous rDNA 

Table 3 shows the results of the in situ hybridizations using ribosomal DNA and a patatin gene 

probe. The biotinylated and hybridized rDNA probe could unambiguously be detected on the 

NORs of two nucleolar chromosomes by the horseradish peroxidase enzyme reaction (Fig. 10). 

Similarly, the same probe detected the hybridization spot on the NOR at the distal end of each 

chromatid of the two specimens of chromosome 2, but in this case following the alkaline 

phosphatase enzyme reaction (Fig. 11). Visualization of the spots created by the horseradish 

peroxidase enzyme reaction was also possible by using reflection contrast microscopy (Fig. 12). 

With this visualization procedure, three spots were clearly detected in interphase nuclei from 

an interspecific trisomie for chromosome 2. These spots represent the NOR regions of the three 

specimens of chromosome 2 (Fig. 13). The nucleolar chromosome was also detected through 

the hybridization of the digoxigenin labelled rDNA probe and the enzyme linked immunoassay 

for detecting the hybridized rDNA (Fig. 14). Fig. 14 shows a cell in which two chromosomes 

show major hybridization spots representing the nucleolar chromosomes whereas two other 

chromosomes show minor spots. Using this method, two hybridization spots per cell were 

found in 24 out of 36 cells analysed but chromosomes with minor spots were found in only 

a few cells. No differences in sensitivity regarding the detection of the NORs were found, 

independent of ligand or visualization method used. In six different interspecific chromosome 

2-trisomics (identity based on pachytene analysis) cells were found with three chromosomes 

showing a hybridization signal when the heterologous rDNA probe from pea was used (Fig. 

15). This result emphasizes the strength of the in situ hybridization technique for chromosome 

identification since in one out of the six trisomies analysed the Giemsa C-banding technique 

failed to identify all three nucleolar chromosomes. 

Detection of the number of chromosomes carrying patatin genes 

Incubation in a soluble complex of alkaline phosphatase and mouse monoclonal anti-alkaline 

phosphatase antibody (APAAP, diluted 1:20 in pH 7.5 buffer) was included preceding the 

colour reaction in order to test the possibility of amplification of the hybridization signal at low 

copy sequences (small targets) such as those of patatin. Amplification of the signal was 
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doubtful when rDNA was labelled with digoxigenin and detection of the hybridized probe with 

an anti-digoxigenin alkaline phosphatase conjugate was carried out combined with an 

incubation in APAAP. Up to eight chromosomes per cell showed spots when B106 labelled with 

digoxigenin was used and the signal amplified by APAAP (Fig. 16). The same maximum number 

of spots per cell were found by simultaneous in situ hybridization with rDNA and B106, both 

labelled with digoxigenin. No amplification with APAAP was used in the simultaneous 

hybridization of which the results are shown in the Figs. 17 and 18. Two chromosomes from 

the prometaphase plate show more than one spot (Fig. 17). However, in 10 out of 13 cells 

from two other trisomies, maximally two and three chromosomes per cell were detected 

carrying a spot (Figs. 19 and 20). 

Discussion 

The results show that identification of the chromosomes 1,2 and 12 at mitosis is possible, 

though only in monohaploid cells and with Feulgen - haematoxylin staining, or with the Giemsa 

C-banding technique. Since chromosome 1 is the longest of the complement and its structure 

in somatic and meiotic cells is highly similar, it corresponds with the pachytene bivalent 1. 

A prerequisite for an accurate identification of this chromosome in somatic cells is that less 

condensed chromosomes are available. It is less certain that the shortest chromosome in 

somatic cells corresponds with the pachytene bivalent 12. In meiotic cells at pachytene this 

chromosome is not always the shortest of the complement. Variation for the length of the 

NORs of homologues or homoeologues of chromosome 2 as well as the presence of a satellite 

on this chromosome was found in various cytotypes in this study. The nucleolar organizer 

chromosomes from two clones, designated IVP35 and IVP48 from S. phureja, were not 

recognizable using the C-banding technique (Pijnacker and Ferwerda, 1984). The absence of 

a satellite on chromosome 2 (NOR was visible) in one of the Gineke monohaploids studied 

suggests that one of the four nucleolar chromosomes of Gineke is an unsatellited chromosome. 

However, in view of a report by Clulow era/. 1991, who found aneuploid cells in dihaploids 

of 5. tuberosum ssp. tuberosum, the presence of an unsatellited chromosome from 5. phureja 

in the monoploid plant from Gineke is another possibility since IVP35 was used for induction 

of monoploid plants from trisomies. Distinction between the two types of chromosome 2 by 

in situ hybridization using a species specific probe may elucidate the provenance of the 

chromosomes 2. 

In trisomie interspecific hybrids including original trisomies from 5. tuberosum ssp. tuberosum 

43 



and S. phureja (IVP35) only two specimens of chromosome 2 were found using the Giemsa C-

banding technique. This result coincides with that reported by Pijnacker and Ferwerda (1984), 

who found unsatellited specimens of chromosome 2 in IVP35. These authors could reliably 

identify the chromosomes 1-4, 7, 11 and 12 using unbanded Giemsa stained chromosomes. 

The same authors identified directly all 12 metaphase chromosomes after C-banding but the 

chromosomes 3-12 do not necessarily coincide with the chromosomes as identified through 

pachytene analysis. Polymorphism for the C-band of chromosome 2 and differences in Giemsa 

C-banding pattern of chromosomes suspected to be the numbers 1, 3, 4, 5, 8, 9, 11 and 12 

compared to that established for monohaploid Gineke has been found by Puite etal. (1986), 

Pijnacker et al. (1987), De Vries et al. (1987) and Jacobsen et al. (1989). The polymorphic 

chromosomes found in this study made it impossible to establish a correlationship between the 

morphology of somatic chromosomes and pachytene bivalents. Furthermore, from the present 

study the chromosomes 5-12 could not be reliably identified using the Giemsa C-banding 

technique. 

Ribosomal RNA genes have been found to be highly variable both in copy number and in 

intergenic spacer length, even among somatic cells of individual plants (Rogers and Bendich, 

1987). The difference in length of the NORs found among the trisomies in this study shows 

that the variation occurs in potato as well. The heterologous rDNA probe also hybridized to the 

NORs of triploid (2n=3x=27) sugar beet, cv. Monohil (Wagenvoort, unpublished results). 

Successful in situ hybridization of the heterologous rDNA probe from pea indicated that in 

potato and sugar beet the transcribed units of the rRNA genes are highly conserved. The 5S 

rRNA genes represent another highly conserved family of repeated sequences consisting of 

tandem copies of a repeating unit. However, the 5S rRNA genes are not closely linked to the 

genes coding for the large ribosomal RNA species. In Vicia faba, rye, wheat and Triticum 

tauschii, the 5S DNA loci and the rDNA loci are found on the same chromosomes (Knälmann 

and Burger, 1977; Appels etal. 1980; Dvorak etal. 1989; Mukai etal. 1990; Lagudah etal. 

1991). In other species such as maize, pea and tomato 5S DNA occurs in chromosomes other 

than those carrying the NOR (Mascia etal. 1981; Ellis etal. 1988; Lapitan etal. 1991; Heslop-

Harrison etal. 1992). The 5S rRNA genes of tomato were assigned to a region of chromosome 

1 using RFLPs and a single hybridization signal was localized by in situ hybridization on the 

short arm of this chromosome close to the centromere (Lapitan et al. 1991). Comparative 

mapping studies between tomato and potato revealed that the RFLP maps of tomato and 

potato are very similar (Bonierbale ef ai. 1988, Gebhardt et al. 1991). If the 5S rRNA genes 

from the potato also reside on chromosome 1 an additional cytogenetic marker for this 
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chromosome would be available for chromosome identification. 

The results obtained with the patatin probe were highly inconsistent regarding the number 

of chromosomes per cell showing a hybridization signal. This number varied from zero to eight 

using the genomic probe B106 and labelling with digoxigenin. This DNA clone contains an 

entire class II patatin gene and an intergenic region. All sequenced patatin genes show a high 

degree of homology (>90%) in their coding sequences (Ganal et al. 1991). However, with 

respect to their chromosomal position there is no consensus in the literature. Gebhardt ef al. 

(1989) mapped the patatin genes to linkage group 2 (later on assigned to chromosome 2 by 

Gebhardt era/. 1991) and to linkage group 7 (later on assigned to chromosome 8 by Gebhardt 

era/. 1991) using the genomic clone pgT5 containing a patatin gene. Ganal ef al. (1991), 

however, mapped all patatin genes, both the class I and class II genes, to the distal end of 

chromosome 8 using a full length cDNA clone designated pGMOL In addition these authors 

found a single copy of the class I specific promoter region on chromosome 3 of potato. Later 

on Gebhardt ef al. (1991 ) localized the patatin genes on the chromosomes 4 and 8 and could 

not reproduce their previous localization on chromosome 2. The results of the present study 

do not elucidate the question whether one or more chromosomes are carrying patatin genes 

since our results were highly inconsistent. It seems that hybridization with a genomic clone, 

whether in situ (this paper) or on blots (Gebhardt ef al. 1989 and 1991 ) may detect more sites 

in the genome related to patatin than using a cDNA clone (Ganal ef al. 1991). A number of 

patatin pseudogenes have been found and sequenced. Recently, it has been shown by Nap ef 

al. (1992) that such pseudogenes contain regions with long direct repeats that in themselves 

are also highly repetitive. In addition, the remnants of previously active patatin genes also may 

account for the high number of chromosomes marked by in situ hybridization with the patatin 

probes in this study. 

Biotin and digoxigenin labelling was found to be a rapid, consistent and reliable technique 

to detect highly repeated sequences on the relative small chromosomes of potato. Its value for 

physical mapping of low copy or unique DNA sequences in these plant species has yet to be 

established. However, another approach may be to use pachytene chromosomes: As pachytene 

chromosomes are much less contracted than somatic chromosomes, mapping efficiency and 

accuracy may be expected to increase substantially using this type of chromosomes as shown 

already by Shen ef al. (1987) and Albini and Schwarzacher (1992) for maize and rye pachytene 

chromosomes respectively. Whether this is also the case for potato remains to be investigated. 
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Figs. 1, 3, 5, (Feulgen-haematoxylin staining), 10 and 12. Cytotypes of Solanum tuberosum ssp. 

tuberosum cv. Gineke. Figs. 8 and 9. Interspecific trisomies including S. tuberosum ssp. 

tuberosum and 5. phureja. Fig. 11. Interspecific trisomie including the species 5. tuberosum ssp. 

tuberosum, S. chacoense and 5. yungasense. Fig. 1. Metaphase from a monohaploid. The 

chromosomes 1, 2 and 12 are identifiable but the identity of the chromosomes 3 and 4 based 

on their size is not certain. Fig. 3. Metaphase from an aneuploid with 27 chromosomes. Three 

specimens of chromosome 1 and two of chromosome 2 are identifiable. Fig. 5. Metaphase of 

a monoploid with an unsatellited chromosome 2; NOR arrowed. Chromosome 3 shows a 

massive long arm. The identity of chromosome 4 is not certain. Fig. 8. C-banded chromosomes. 

Two specimens of each of the chromosomes 1 and 2 and one specimen of each of the 

chromosomes 3 and 4 are identifiable. Fig. 9. C-banded chromosomes. Two specimens of 

chromosome 2 arrowed. Note that one specimen of chromosome 4 (indicated by small arrow) 

has a wide band on the short arm. Fig. 10. Metaphase from intraspecific chromosome 3-

trisomic. Two specimens of chromosome 2 show spots on the NORs. In situ hybridization (ISH) 

with biotinylated rDNAfrom pea and detection of the hybridized probe by the peroxidase-DAB 

reaction. Spots on each chromatid of one chromosome arrowed. Viewed with phase-contrast 

illumination. Fig. 11. Same probe as in Fig. 10, but interspecific chromosome 5-trisomic and 

detection with the alkaline-phosphatase reaction. Fig. 12. The same cell as shown in Fig. 10, 

but in mirror image and viewed with reflection contrast microscopy. Bar represents 10 urn. 
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Figs. 13-19 and 20. Interspecific trisomies including S. tuberosum ssp. tuberosum and S. 

phureja and, intraspecific trisomie from cv. Gineke respectively. Fig. 13. Interphase nuclei from 

chromosome 2-trisomic. Three spots are visible, representing the NORs of the nucleolar 

chromosomes. ISH with biotinylated rDNA and detection by the peroxidase-DAB reaction and 

viewed with reflection contrast microscopy. Fig. 14. Metaphase from chromosome 5-trisomic. 

Two chromosomes with major spots on the NORs (large arrows) and two chromosomes with 

minor spots (small arrows). ISH with rDNA labelled with digoxigenin and detection by an anti-

digoxigenin alkaline phosphatase conjugate. Fig. 15. Metaphase from chromosome 2-trisomic. 

Three specimens of chromosome 2 show' a spot on the NORs. ISH with biotinylated rDNA and 

detection by an streptavidin-alkaline phosphatase conjugate. Fig. 16. Metaphase from 

chromosome 2-trisomic. Eight spots are visible. ISH with the patatin probe, designated B106, 

labelled with digoxigenin. Detection of the hybridized probe by an anti-digoxigenin alkaline 

phosphatase conjugate and amplification of the signal by APAAP. Figs. 17 and 18. 

Prometaphase and metaphase respectively from chromosome 5-trisomic. Simultaneous ISH with 

rDNA and B106 labelled with digoxigenin. Detection of the hybridized probe by an anti-

digoxigenin alkaline phosphatase conjugate. Two chromosomes in Fig. 17 show more than one 

spot per chromosome (arrowed). Figs. 19 and 20. Metaphase from interspecific chromosome 

5-trisomic and intraspecific chromosome 3-trisomic respectively. ISH with B106 labelled with 

digoxigenin. Detection of the hybridized probe by an anti-digoxigenin alkaline phosphatase 

conjugate. Three and two chromosomes show a hybridization spot respectively. Bar represents 

10 urn. 
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Figs. 2 and 4 (Feulgen-haematoxylin staining), and 6 and 7 (Giemsa C-banding). Cytotypes of 

5. tuberosum ssp. tuberosum cv. Gineke. Fig. 2. Specimens of chromosome 1 in non-critical 

trisomie (a, b), in triploid (c), and in non-critical double trisomie (d). Fig. 4. Specimens of 

chromosome 2 in non-critical trisomie (a), note the double satellite of one of the chromosomes; 

in triploid (b), and in double trisomie critical for one of the chromosomes (c), note the shorter 

long arm of one of the three specimens. Figs. 6 and 7. Chromosomes of two not yet identified 

trisomies were arranged according to their length and their specific C-banding pattern. Because 

the banding pattern was unsatisfactory, chromosomes in the same position are therefore not 

necessarily identical. The chromosomes in Fig. 6 are overstained and cannot be properly 

identificated. It is, therefore, uncertain whether the extra chromosome in these trisomies 

designated f is identical to chromosome 6 according to the description by Pijnacker and 

Ferwerda (1984). Note the wide band in the short arm of one of the specimens of 

chromosome 4 (Fig. 7d). Bar represents 10 urn. 
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CHAPTER 2 

Spontaneous structural rearrangements in Solanum phureja Juz. et Buk. 

1. Chromosome identification at pachytene stage1 

Summary 

Meiosis was studied from pachytene onwards in two clones of Solanum phureja Juz. et Buk. 

At pachytene the bivalents of Solanum phureja appeared to be morphologically very similar to 

those of Solanum tuberosum L ssp. tuberosum Hawkes cv. Gineke. Cross-shaped quadrivalent 

configurations at pachytene confirmed the presence of a heterozygous interchange. From the 

configurations at pachytene it was identified that the short arm of chromosome 3 and possibly 

one of the arms of chromosome 12 was involved in the interchange. 

In addition, several abnormalities were observed: these included the occurrence of loops in 

euchromatic and heterochromatic parts, non-homologous pairing and centromere associations 

between different bivalents. 

Key words: Solanum phureja Juz. et Buk., interchange, inversion loop, chromosome 

identification, trisomies, pachytene. 

'Slightly revised version of the paper published in Euphytica S: 159-167 (1988). 
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Introduction 

In diploid potatoes chromosomal interchanges and inversions are rare, as it is evident from the 

experience of several decades in which a vast number of different interspecific hybrids have 

been produced and investigated cytologically. In the diploid hybrids, regular chromosome 

pairing at pachytene, diakinesis and Ml were most commonly observed (Magoon et al. 1958a, 

1958b; DvoTâk 1983). Irregularities, such as multiple associations, univalents, delayed 

separation of bivalents, bridges with or without fragments, etc., have been seldom, suggesting 

that structural differences between chromosomes are not common (For a review, see Magoon 

era/. 1962). 

The widely accepted opinion that tuberous Solanum species cannot be distinguished by gross 

structural differences has been discussed by several authors especially those who studied the 

pachytene stage of meiosis. Van Breukelen era/. (1976) studied meiotic chromosome pairing 

in monohaploids of Solanum tuberosum L. ssp. tuberosum Hawkes, cv. Gineke through the 

occurrence of bivalent, trivalent and quadrivalent-like structures. In dihaploids of cultivar Gineke 

looplike configurations could be observed in 8-20% of the bivalents (Ramanna & Wagenvoort 

1976). Quadrivalents as well as univalents were rather common in almost all clones of 

dihaploids derived from the tetraploid cultivar Atzimba (5. tuberosum ssp. tuberosum with 5. 

demissum Lindl. in its pedigree), (Sosa & Sosa 1971). 

Comparison of pachytene complements revealed the existence of very clear differences in the 

fine structure of apparently homologous chromosomes of different Solanum species belonging 

to the section Petota (Gottschalk 1954; Gottschalk & Peters 1955, 1956; Peters 1954). 

Gottschalk also described the structure of nine heteromorphic bivalents of the interspecific 

hybrid 5. stenotomum Juz. et Buk. x 5. ajuscoense Buk., and observed very clear structural 

differences between the homologous chromosomes. These differences result in the formation 

of heteromorphic bivalents showing unpaired loops. Pachytene studies of Hermsen & Ramanna 

(1976) have revealed the existence of small structural differences between some of the 

chromosomes in the F, hybrids of 5. verrucosum Schlechtd. x 5. bulbocastanum Dun. The same 

authors found in an F, hybrid between two diploid Mexican species, viz. 5. pinnatisectum Dun. 

x 5. bulbocastanum a thick block of heterochromatin, adjacent to the centromere on the long 

arm of chromosome 11 of S. bulbocastanum. In F, hybrids between 5. verrucosum and 5. 

commersonii Dun. trivalents and quadrivalents were found at metaphase I and diakinesis of 

meiosis (Matsubayashi & Misoo 1979). These authors suggest the presence of a detectable 

structural differentiation between the chromosomes of the two species. 
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Two entirely different chromosome complements are brought together in the allotetraploid 

species 5. antipoviczii Buk. (Gottschalk 1972). In one of the complements of this species very 

big heterochromatic blocks were observed which could not be found in the cultivated potato 

and its close relatives. 

Marks (1968) showed that a hybrid between two diploid Solanum species, viz. 5. morel-

liforme Bitt. et Muench and 5. darum Corn, was heterozygous for a chromosomal interchange 

and possibly for two inversions. 

The cited literature suggest that structural differences between chromosomes of Solanum 

species are more common than generally is suspected. Although such structural differences can 

be detected during late prophase and metaphase I stages, they can be more convincingly 

demonstrated by pachytene analysis. Detection and identification of interchanges in diploid 

Solanums is especially important in view of localizing the position of centromeres in the linkage 

groups of this crop plant. 

In the course of a research programme on unreduced gametes in 5. phureja, multivalents at 

metaphase I of microsporogenesis were found in two siblings of this species. This paper reports 

part of the results of a cytological study (mainly pachytene) of these two clones and of some 

diploid and trisomie descendants. The remaining results (chromosome associations at diakinesis 

and later meiotic stages) will be published in a second paper (Wagenvoort, 1994). 

Material and methods 

The diploid clones S. phureja 75-1136-1931 and 5. phureja 75-1136-1936 (abbreviated 1931 

and 1936) were selected by Dr. B. Maris, (former SVP, Wageningen, the Netherlands) in the 

course of a study concerning an adaptation programme with 5. phureja. The pedigree of the 

two clones is shown in Fig. 1. The PI numbers mentioned in this figure refer to seed samples 

described in the Inventory of Tuber-bearing Solanum species. Bulletin 533, from the Inter-

Regional Potato Introduction Project, IR-1, edited by R.E. Hanneman, Jr and J.B. Bamberg, 

Sturgeon Bay, Wl, USA. 

For meiotic studies young flower buds were fixed for 48 h or more in a freshly prepared 3:1 

mixture of ethanol (96%) and propionic acid (99%) saturated with ferric acetate. The anthers 

were stained in alcoholic hydrochloric acid carmine for 16-24 h at 60°C according to the 

method of Snow (1963) and squashed in a drop of 45% acetic acid. The methods used to 

study mitotic chromosomes were the same as described by Wagenvoort & Lange (1975). Pollen 

grains were stained in a mixture of 100 ml lactophenol and 8 ml 1% acid fuchsin in water 
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(Sass 1964). 

Fig. 1. Pedigree of the clones 1931 and 1936 of S. phureja used in this study. 

PI 225670 

PI 225675 

PI 243462 

PI 283127 

PI 225673 > 

69-168-26 -\ 

69-205-470. 

67-8-12 > 

71-278-7 

72-518-2 * . 

75-1136-1931 

75-1136-1936 

Clone 72-518-2 was selected in a spontaneous offspring of clone 67-8-12. 

Results 

Meiosis was studied from pachytene stage and onwards in the clones designated 1931 and 

1936 and in some diploid {In = 2x = 24) and trisomie (2n = 2x + 1 = 25) descendants. The 

occurrence of 10 bivalents + 1 quadrivalent in about 70% of the PMCs at Ml pointed to the 

presence of a heterozygous interchange in both clones of S. phureja (Wagenvoort, 1994). 

The clones 1931 and 1936 were male fertile and had a pollen stainability of 42% and 50% 

respectively. Although 5. phureja is considered to be a self-incompatible diploid species, clone 

1936 produced seeds after self ing. Three out of 475 plants of the first inbred generation were 

trisomies. No aneuploids were found among 79 full sibs of the cross 1936 x 1931. 

The morphology of the pachytene chromosomes of 5. phureja did not differ from that of 

the chromosomes of S. tuberosum ssp. tuberosum. The latter have been identified and 

described by Ramanna & Wagenvoort (1976) using dihaploid 5. tuberosum ssp. tuberosum cv. 

Gineke. Features, such as size, positions of chromomeres and centromeres, size of telomeres, 

lengths of heterochromatic and euchromatic parts, used for chromosome identification in S. 

tuberosum ssp. tuberosum also holds good for the identification of individual pachytene 

bivalents in 5. phureja. 

Identification of the interchange chromosome 
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Fig. 2. shows individual pachytene bivalents of the chromosomes 1(a), 2(b), 9(c), 4(d), 7(e), 

10(f), 5(g), 8(h), 11(i), probably 4 or 6 (j), a bivalent (k) which presumably consists of 

chromosome 12 plus the interchange chromosome. No bivalent for a normal chromosome 3 

was found. On the basis of chromosome morphology it was concluded that the interchange 

chromosome had originated from the exchange of the short arm of chromosome 3 or a part 

of it, with possibly a part of one of the arms of chromosome 12. Evidence for the involvement 

of the short arm of chromosome 3 was acquired from some heteromorphic bivalents as shown 

in Fig. 3 (illustrations a and f) and from quadrivalent configurations as shown in the Figs. 4a 

and 4b. Although the bivalent shown in Fig. 2k is similar to a normal bivalent of chromosome 

12, it is most likely that this configuration has originated through the association of a normal 

chromosome 12 and the interchange chromosome 123. The formation of a completely paired 

bivalent in this case could have resulted through non-homologous association. 

The involvement of chromosome 12 in the interchange was difficult to prove by analysis of 

the bivalent and quadrivalent configurations observed at pachytene stage alone. However, by 

crossing a series of primary trisomies with the clones having the interchange chromosomes as 

pollen parents, F, trisomies including the interchange chromosomes were produced and 

analysed at metaphase I of meiosis. In such trisomie + interchange cytotypes the formation of 

a quinquevalent is expected if the critical trisomie is involved. Indeed, in F, plants from trisomies 

for the chromosomes 3 and 12, and 1931 or 1936, chain quinquevalents were observed at 

metaphase I (Wagenvoort, 1994). 

The configuration shown in Fig. 3a represents the pairing between an interchange 

chromosome 123 and a normal chromosome 3. The interchange chromosome 123 probably 

equals a normal chromosome 12 in length. The very large loop in the euchromatic part of this 

configuration belongs to the long arm of chromosome 3. The bivalent illustrated in Fig. 3f 

clearly shows the three distinct chromomeres on the short arm of chromosome 3. The 

morphology of this bivalent is abnormal with respect to chromosome 3 of the karyotype of 

dihaploid 5. tuberosum ssp. tuberosum cv. Gineke. 

Some cross-shaped configurations were observed and analysed. The point of exchange of 

the four chromosome arms is clearly visible in the quadrivalent shown in Fig. 4a. Unfortunately 

a proper identification of the breakpoint of the chromosomes involved in this interchange was 

hampered by the fact that the positions of the centromeres remained unclear. For chromosome 

3 the breakpoint must have been very close to the centromere or in the centromere itself. From 

this configuration it is obvious that the breakpoint in chromosome 12 also is situated in the 

heterochromatic part of the chromosome, near to the centromere. The quadrivalent shown in 
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Fig. 4b is difficult to interpret. It resembles the one shown in Fig. 4a with respect to the 

lengths of the four different chromosome arms. The big loop in the euchromatic part of the 

longest chromosome arm (that of chromosome 3) is rather the result of non-homologous 

association than inversion heterozygosity. 

Abnormalities of chromosome association 

The loop indicated by two small arrows in the bivalent of Fig. 3f and in one of the bivalents 

of Fig. 3c resulted from association of two chromosomes with different lengths. This type of 

abnormal chromosome pairing was observed in other bivalents (Fig. 3a, 3d) and in the 

multivalent configuration, shown in Fig. 3b, too. They resemble the configurations, described 

by McClintock (1933), which were the result from deficiencies involving internal segments of 

chromosomes. In this case it is not clear whether the loops result from deletion or duplication 

of internal segments. 

Another abnormality is the occurrence of a small heterochromatic segment in the distal 

euchromatic part of the long arm of this bivalent (Fig. 3f). An interruption of the hetero

chromatic part of the long arm by a relatively large region of euchromatin (see Fig. 3e, 

between the small arrows) is another example of gross structural differences between a 

chromosome of this particular clone of 5. phureja and its homeologous chromosome of the 

complement of dihaploid Gineke. 

True loops were observed in the euchromatic parts of certain bivalents (Figs. 3g and 4e). The 

chromosomes shown in the Figs. 3g and 4e are morphologically similar. The loop is situated 

in the euchromatic part of the long arm of chromosome 4 or chromosome 6. The chromomere 

on the short arm of the bivalent shown in Fig. 3g points to chromosome 6, whereas the length 

of the short arm of this bivalent is more concurrent with the length of the short arm of 

chromosome 4 than with that of chromosome 6. However, the chromomeres found in both 

configurations, just behind the loop on the euchromatic part of the long arm, is a characteristic 

feature of chromosome 4 rather than of chromosome 6. The loops indicate to heterozygosity 

for an inversion, which can give rise to the occurrence of bridges at anaphase I of meiosis, with 

or without a fragment. In both clones 1931 and 1936, such irregularities at anaphase I have 

been observed indeed (Wagenvoort, 1994). A bivalent with a loop in the heterochromatic part 

of the long arm (Fig. 3h) could not be identified. 

The quadrivalent configuration shown in Fig. 4d occurs frequently in other PMCs. This 

configuration does not represent an interchange multivalent but is rather the result of the 

occurrence of centromere associations at pachytene. Such configurations occur in normal 
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diploid plants in considerable frequencies (De Jong & Stam 1984). 

Fig. 4c shows a phenomenon earlier reported in primary trisomies of diploid S. tuberosum 

ssp. tuberosum by Wagenvoort & Ramanna (1979). They revealed that in primary trisomies very 

frequently all three homologous chromosomes were found to be paired for a considerable part 

of their length. From Fig. 4c it is clear that a distal euchromatic part of a bivalent involving 

chromosomes with a median centromere position has been associated with an internal 

euchromatic part of a second bivalent involving chromosomes with submedian centromeres. 

It clearly demonstrates the possibility of full non-homologous pairing of four chromosomes 

without partner exchange. 

Discussion 

The cross-shaped configurations found at pachytene of the microsporogenesis in the two 

Phureja siblings, 1931 and 1936, clearly confirm the occurrence of a heterozygous interchange 

in these clones. These pachytene configurations are comparable with those described by Marks 

(1968) who observed similar figures in an F, hybrid between 5. morelliforme and 5. darum. 

There was a striking similarity between the morphology of the chromosomes of S. phureja 

and that of dihaploid S. tuberosum ssp. tuberosum cv. Gineke. The abnormalities, such as non

homologous association of certain chromosome regions, the occurrence of loops, and the 

pairing of more than two chromosomes without partner exchange, as observed in the meiosis 

of dihaploids of cv. Gineke, also were seen in the phureja clones studied. Although these 

irregularities, especially the occurrence of quadrivalent-like configurations, hampered an 

accurate identification of the chromosomes, a careful analysis of some multivalents at 

pachytene could be performed. The true quadrivalents shown in the Figs. 4a and 4b were not 

subject to misinterpretation because of the certainty with which the exchange points (indicated 

by small arrows) of the four chromosomes could be detected. The interference of the 

phenomenon of non-homologous association of chromosomes with the identification 

necessitates the analysis of a large number of configurations at pachytene stage, as stated by 

Ramanna & Wagenvoort (1976). 

The loops, found in the clones 1931 and 1936 of 5. phureja differed with respect to the 

position in the chromosomes from those observed in diploid 5. tuberosum ssp. tuberosum. In 

the latter, loops in the euchromatic parts of the chromosomes rarely occurred (Ramanna & 

Wagenvoort 1976). 

Gill et al. (1980) showed that breakages in tomato chromosomes that gave rise to 
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interchange chromosomes occurred more frequently in centromeric and heterochromatic 

regions than in euchromatic parts of the chromosomes. Also in maize there are more 

interchanges reported with breakages in the centromeres compared with the euchromatic 

regions of the chromosomes (Jancey & Walden 1972). The breakages in the heterochromatic 

regions of both chromosome 3 and 12, involved in the interchange in 5. phureja seem to be 

in agreement with the non-random distribution of breakage points in the chromosomes of 

tomato and maize. 

The phenomenon of the occurrence of centromere associations at pachytene and diplotene 

has been reported for Beta by De Jong & Stam (1984). From meiotic studies in B. vulgaris and 

in several monosomic additions of a chromosome of B. patellaris or B. procumbens to the 

diploid genome of B. vulgaris, these authors concluded that the centromere associations do not 

disturb chromosome pairing and meiotic transmission. The observations in 5. phureja 

concerning a regular chromosome pairing are in accordance with the conclusion of De Jong 

& Stam. 

This report is the first in describing an intraspecific interchange in a tuberous diploid Solanum 

species, complete with the identification of the chromosomes involved. Such interchanges could 

be most useful for the localization of genes to specific arms as well as for the localization of 

centromeres on the linkage maps. 
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Fig. 2a-h. Eleven pachytene bivalents of 5. phureja. Chromosome 1(a), 2(b), 9(c), 4(d), 7(e), 

10(f), 5(g), 8(h), 11(i), probably 4 or 6 (j), a bivalent (k) which presumably consists of 

chromosome 12 plus the interchange chromosome. The centromeres are indicated by large 

arrows. Important chromomeres of the chromosomes 4(d) and 5(g) which are helpful for 

identification are indicated by small arrows. 

Magnification: Illustrations a and c-k, about x 3240. Illustration b, about x 2025. For description 

of individual bivalents, see Ramanna & Wagenvoort (1976). 
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Fig. 3. Showing bivalents (a en c-g), a multivalent (b) of S. phureja and a bivalent (h) of a 

diploid hybrid between 5. tuberosum ssp. tuberosum and 5. phureja. 

Illustration a. This configuration is assumed to be the result of pairing between an interchange 

chromosome 123 and a normal chromosome 3. Note the three distinct chromomeres on the 

short arm of chromosome 3 (small arrows) which also are shown in illustration f. 

Illustration b. A three-armed multivalent showing 'fold-back pairing' of a heterochromatic part 

(indicated by two small arrows) of a chromosome. This type of non-homologous association 

also is shown in the illustration a and d. 

Illustration c. In one of the bivalents a loqp-like structure (two small arrows) is shown. 

Illustration d. Note the thick knob of heterochromatin, due to non-homologous pairing and 

the short interruption of the heterochromatic part (arrow-head) of this bivalent. 

Illustration e. One of the bivalents shows an interruption of the heterochromatin by an 

euchromatic part (between the small arrows) of the bivalent. 

Illustration f. A bivalent configuration of chromosome 3. Note the three distinct chromomeres 

(small arrows), the non-homologous association of heterochromatin (two small arrows) and the 

small heterochromatic part (small arrow) in the euchromatic region of the long arm of this 

chromosome. 

Illustration g. The bivalent configuration showing the loop in the euchromatic region (small 

arrow) probably represents chromosome 4 or 6. For further explanation see text. 

Illustration h. This bivalent shows a loop in the heterochromatic part of the long arm. 

Magnification: Illustrations a-f, about x 3240. Illustration g and h, about x 2025. 
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Fig. 4. Illustration a. A quadrivalent configuration is shown including two normal chromosomes 

and two interchange chromosomes. Note the exchange point indicated by a small arrow. 

Illustration b. This configuration represents a real quadrivalent. Note the loop-like structure in 

the euchromatic part of the long arm. 

Illustration c. A distal euchromatic part of a bivalent has been associated with an internal 

euchromatic part of a second bivalent, resulting in a three-armed configuration. 

Illustration d. This configuration resulted from the non-homologous association of centromeres 

of two bivalents. It is assumed to be a pseudo-quadrivalent. 

Illustration e. A bivalent of probably chromosome 4 or 6 showing a loop in the euchromatic 

part of the long arm. 

Magnification: Illustrations a-e, about x 3240. 

71 



CHAPTER 3 

Spontaneous structural rearrangements in Solanum phureja Juz. et Buk. 

2. Meiotic behaviour and identification of interchange chromosomes using 

primary trisomies. 

Summary 

Meiosis was studied in two diploid (2n = 2x = 24) siblings of Solanum phureja, Juz. et Buk., 

and in eleven disomic and two trisomie descendants. The diploid siblings carry the same 

heterozygous interchange and either one or two inversions. The frequency of quadrivalents at 

diakinesis/metaphase I in these clones was 0.56 and 0.62 per pollen mother cell. In two plants 

from the first inbred generation (I,) this frequency was about the same, but in some other I, 

plants and a full sib the frequency was substantially lower and varied from 0.00-0.16. Most 

quadrivalents, 78-83%, were rings. A variety of quadrivalent configurations at diakinesis and 

metaphase I was observed giving rise to balanced and unbalanced gametes. The absence of 

ring quadrivalents in trisomie descendants of one of the siblings implied that tertiary trisomies 

or primaries being homozygous for the interchange were present in the I, generation. 

Regular chromosome distribution (12-12)̂ at anaphase I occurred in 46.5 and 73.2 % of the 

pollen mother cells studied in the two original clones. Irregularities, such as 11-13 distribution, 

lagging chromosomes, and a bridge and fragment were detected on average in 2.7, 3.3 and 

32.5% respectively of the anaphase I cells analysed. 

In hybrids from crosses between six primary trisomies as females with the interchange 

heterozygote, the involvement in the interchange of the chromosomes 3 and 12 was clearly 

demonstrated. 

Key words: Solanum phureja, interchange heterozygote, paracentric inversion, chromosome 

identification, compensating trisomie, meiosis. 
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Introduction 

In the first paper in this series (Wagenvoort, 1988) the results of pachytene analysis in two 

siblings of Solanum phureja Juz. et Buk., being heterozygous for the same interchange, were 

reported, showing the involvement in the interchange of the short arm of chromosome 3 and 

possibly one nearly full arm of chromosome 12. The regions between the breakpoints and the 

centromere were assumed to be too small to allow chiasma formation, although the 

occurrence of chiasmata in these regions cannot be ruled out. Chiasma formation in all 

homologous chromosome arms will result in a ring quadrivalent. However, if in one out of the 

four pairs of chromosome arms of a quadrivalent no chiasma is formed, a chain quadrivalent 

will result. In addition, chromosome loops were found at pachytene and the preliminary 

observation of the incidence of a bridge and a fragment at anaphase I (AI) in both clones 

indicated heterozygosity for a paracentric inversion in chromosome 4 and/or chromosome 6. 

Trisomies were found in the first inbred generation (I,) of one of the siblings, whereas the 

I, segregated aberrantly for the morphological marker ym (yellow margin). The incidence of 

segregation of ym, previously localised on chromosome 12 (Wagenvoort, 1982), together with 

the presence of an interchange involving presumably one arm of chromosome 12, stimulated 

further cytogenetical analysis of this material. 

Background considerations 

An interchange heterozygote producing an asymmetrical quadrivalent at metaphase I (Ml) of 

meiosis can give rise to a 3:1 disjunction of the chromosomes at AI. As a result, four types of 

n+1 gametes can be formed, two of which contain an interchange chromosome in addition 

to the normal complement (C + D in Fig. 1 ), whereas the other two carry the interchange com

plement with a normal chromosome extra (A and B in Fig. 1). Figure 1 (modified from Khush, 

1973) includes the eight different trisomies expected in selfed progeny of an interchange 

heterozygote, assuming (1) that only n+1 female gametes are incorporated, (2) that only 

euploid male gametes are viable, carrying either two normal or two interchange chromosomes, 

(3) that progeny arising from fusion of n+1 female with functional male gametes is viable. 

Fig. 1. Functional n (pollen) and n+1 (eggs) gametes produced by an interchange heterozy- • 

gote (the putative chromosomes being involved in the interchange are the chromosomes 3 and 

12) and the 2n+1 zygotes expected in its selfed progeny (Modified from Kush, 1973). 

74 



Viable n+1 
female gametes 

from 3:1 
disjunction 

Functional male gametes 

T 
chr.12(B) + chr.3(CD) 

3 12 
chr.12 + chr. 3 

D C 

n + chr. 12 2n + chr. 12 

• • D C 

2n + chr. 12 

F 
I EC DZ3C 

• • ^•nc 

DZ3C 
• c c 
• D C 

n + chr. 3 2n + chr. 3 2n + chr. 3 

3C 
• • D C 
I txT 

n + chr. 12V 2n + chr. 12v 2n + chr. 12v 

U & 

• • D C 3C • D C 
HC 

• 1 • D C 

n + chr. 3 
12 

2n + chr. 3 
12 

2n + chr. 3 
12 



These eight trisomies are expected to consist of two types each of - primary trisomie 

interchange heterozygote (Fig. 1; 1 and 3) - primary trisomie interchange homozygote (Fig. 1; 

2 and 4) - tertiary trisomie (Fig. 1; 5 and 7) - tertiary trisomie interchange heterozygote (Fig. 

1; 6 and 8). A tertiary trisomie in which the extra chromosome consists of one complete arm 

of one chromosome and one complete arm of the other chromosome can be used for 

determining arm location and approximate distance from the centromere of genetic markers 

as the genetic ratios are modified only for genes located in one chromosome arm. In such a 

tertiary trisomie test, the recessive gene to be located, has been previously associated with a 

specific chromosome by the primary trisomie test (Wagenvoort, 1982). 

The involvement of chromosome 12 in the interchange in S.phureja could not be detected 

unambiguously by direct chromosome identification at pachytene. Therefore, a series of primary 

trisomies as females were crossed with the interchange heterozygote. Two types of each 

primary trisomie and compensating trisomie (identical with the trisomies shown in Fig. 1; 1 and 

3) are expected in the critical (extra chromosome involved in the interchange) situation of the 

F, progeny, assuming that only balanced male gametes are functional (Table 1). Compensating 

trisomies (individuals in which one chromosome is missing but is compensated for by two other 

modified chromosomes, Khush, 1973), also referred to as translocation trisomies by Sybenga 

(1975), will result from the fusion of balanced male gametes containing two interchange 

chromosomes and n+1 female gametes. In the non-critical situation two types of each, primary 

trisomie and primary trisomie interchange heterozygote, are expected when only balanced 

gametes are functional. Unbalanced gametes are expected to be hardly or not at all functional. 

To distinguish the different types of F, trisomies and to discriminate between the critical and 

non-critical situation, it is necessary to study chromosome association at Ml. Table 1 presents 

the possible chromosome configurations and their combinations per pollen mother cell (PMC) 

occurring in the different types of trisomies. In case of the critical situation, the compensating 

trisomies are able to form a chain of five chromosomes at Ml of meiosis. Thus the occurrence 

of a quinquevalent at Ml identifies the chromosome involved in the interchange, being similar 

to the extra chromosome of the primary trisomie used in the cross. Only the compensating 

trisomie might have a ring quadrivalent + a univalent at Ml instead of the quinquevalent. 

For the morphological marker ym, 34.16-36.08% crossing-over between the locus and the 

centromere was estimated with the aid of a half-tetrad analysis by Jongedijk et ai (1991). The 

relatively large distance of ym to the centromere together with the fact that the breakpoint 

of the interchange was situated in the heterochromatic part of chromosome 12, near to the 

centromere (Wagenvoort, 1988), led to the view that there is no tight linkage between ym and 
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the breakpoint of the interchange. In a testcross population from Tt Ymym x tt ymym (Tt = 

interchange heterozygote and tt = plant without interchange) the ratio of plants forming biva

lents only vs plants forming one quadrivalent is expected to be 1:1, no matter whether ym or 

Ym is on the interchanged chromosome arm. However, within the group of phenotypically 

normal plants (Ymym) the ratio will approach 1:2 (Ym on the interchanged chromosome arm) 

or 2:1 (ym on the interchanged chromosome arm), based on the crossing-over percentages 

mentioned above. 

Aim of research 

The experiments described in this paper aimed at answering the following questions: 

(i) Is chromosome 12 indeed involved in the interchange? 

(ii) If so, is the gene ym located on the interchanged or the non-interchanged arm of 

chromosome 12? 

(iii) Which of the two alleles is on the interchanged chromosome arm? 

(iv) Are the trisomies found in the I, of one of the siblings primary or tertiary trisomies? 

In order to answer these questions, meiosis was studied in the two siblings and in several of 

their descendants. In addition, the chromosomal identification of the interchange in Solanum 

phureja using a series of primary trisomies of mainly S.tuberosum L. ssp. tuberosum Hawkes, 

and the various types of quadrivalents involving the interchange are reported and discussed. 

Materials and methods 

The siblings S.phureja 75-1136-1931 and S.phureja 75-1136-1936, for the sake of brevity 

designated 1931 and 1936, were used in this study. Their pedigree has previously been 

described by Wagenvoort (1988). Both diploid (2n=2x=24) clones were heterozygous for an 

interchange between chromosome 3 and possibly chromosome 12, for the morphological 

marker ym and presumably for one or two inversions (Wagenvoort, 1988). Self ing 1936 and 

crossing 1936 x 1931 yielded the I, and the F, generation respectively. In order to determine 

whether chromosome 12 was involved in the interchange, the diploid interchange heterozygo

tes, 1936 and I, plant 73 were crossed as males to the primary trisomies for the chromosomes 

3, 4, 7, 9, 10 (Wagenvoort and Ramanna, 1979) and 12 (Hermsen etal., 1973). Use was also 

made of the 5. phureja clone Ym 76-1 -15, a recessive mutant for yellow margin (Wagenvoort, 

1982). F, trisomies were selected by chromosome counting in the root tips of seedlings. 

Chromosome association at diakinesis/MI was studied in twelve F, trisomies. 
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The siblings 1931 and 1936 were crossed to the mutant yellow margin, and their progenies 

assessed for yellow margin and for interchange heterozygotes. 

The methods used for the study of mitotic and meiotic chromosomes were the same as 

described by Wagenvoort & Lange (1975) and Wagenvoort (1988) respectively. Meiosis was 

studied from diakinesis onwards in 1931 and 1936, in ten disomic and two trisomie 

descendants selected in the first inbred generation (I,) of 1936, and in one F, plant of the cross 

1936x1931. 

Results 

Average seed set in five berries from 1936 selfed was 114 seeds, whereas 183 seeds were 

found in one berry from crossing 1936 with 1931. The average seed set in 53 different crosses 

within S. phureja was 237 ± 131.3 (M. Wagenvoort, unpublished results). 

Chromosome association at diakinesis/MI 

The results of meiotic analysis at diakinesis and Ml in the interchange are presented in Table 

2 and Fig. 2. Chromosome association generally was regular. A rather high frequency of 

quadrivalents per PMC was found in the diploid clones 1931 and 1936, viz. 0.62 and 0.56, 

respectively. Quadrivalents were also observed in four out of ten I, plants from 1936 and in the 

F, plant from the cross 1936 x 1931. The frequency of quadrivalents in two I, plants was of 

the same order of magnitude as that found in 1931 and 1936. In the I, plants 134 and 138 

and in the F, plant, this frequency was substantially lower. 

At diakinesis six different quadrivalent configurations were observed (Figs. 2a-2f). Adjacent 

and alternate ring quadrivalents (Figs. 2i and 2j), alternate chain quadrivalents (Fig. 2k) in 

addition to cells with twelve bivalents (Fig. 2I) were observed at Ml. About 83 and 79% ring 

quadrivalents were found in 18 PMCs from 1931 and 59 PMCs from 1936 respectively. 

Therefore, ring quadrivalents tend to occur more frequently than chain quadrivalents. However, 

an accurate quantitative estimation of the frequency of adjacent and alternate types could not 

be made, mostly due to stickiness. Some other rarely occurring configurations were found such 

as an U-shaped quadrivalent (Fig. 2m), a ring quadrivalent with possibly one extra chiasma (Fig. 

2n) and an adjacent type of orientation with either co-orientation of all four chromosomes to 

one pole or co-orientation of two centromeres to opposite poles (the ones positioned nearest 

to the poles) and the other two not co-orientated (Fig. 2o). 

The non-interchanged chromosomes of 1931 and 1936 were regularly associated, 

79 



Table 2. Chromosome association at diakinesis/MI of meiosis in two S. phureja siblings (1931 
and 1936) heterozygous for an interchange between the putative chromosomes 3 and 12, in 
an F, hybrid plant, and in ten disomic and two trisomie I, descendants. I, = selfed progeny from 
1936. F, = 1936 x 1931. V = quinquevalent; IV = quadrivalent; III = trivalent; II = bivalent; I = 
univalent. 

Plant No. 

1931 
1936 

Disomic I, 

55 
73 
79 
134 
138 
162 
258 
268 
323 
396 

Trisomie I 

82 
237 

Number 
of cells 

50 
179 

plants from 1936 

8 
22 
21 
36 
25 
13 
50 
168 
21 
31 

plants from 1936 

25 
17 

Configurations/cell (range) 

V 

-
-

-
-
-
-
-
-
-
-
-
-

0.08 
0.17 

IV 

0.62 
0.56 

0.62 
0.50 
-
0.11 
0.16 
-
-
-
-
-

0.08 
0.05 

III 

. 
-

-
-
-
-
-
-
-
-
-
-

0.28 
0.11 

II 

10.72 (9-12) 
10.85(9-12) 

10.50(8-12) 
11.00(10-12) 
12.00 -
11.78(10-12) 
11.68(10-12) 
12.00 -
12.00 -
12.00 -
12.00 -
12.00 -

11.24(9-12) 
10.23(10-12) 

I 

0.08 (0- 2) 
0.07 (0- 2) 

0.50 (0- 4) 
-
-
-
-
-
-
-
-
-

0.96 (0- 3) 
3.05 (0-25) 

Disomic F, plant from 1936 x 1931 

680 22 - 0.14 - 11.73(10-12) 

Table 3. Chromosome distribution at AI of meiosis in two interchange heterozygotes (1931 and 
1936) of S. phureja. L=lagging chromosome; b=bridge; f=chromosome fragment; II ds=bivalent 
separating with delay. 

Plant No. 

1931 

1936 

Number 
of cells 

143 

224 

Distribution (%) 

12-12 11-13 

46.2 2.8 

73.2 2.7 

11-12+17 
11-11+2L 

3.5 

3.1 

11-11 

25.2 

10.7 

+b 11-11+b+f 

20.3 

8.5 

10-12/11-11 
+ llds 

2.0 

1.8 
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forming mostly bivalents. In some cells two univalents occurred, which in view of their position 

on the metaphase plate, resulted from precocious separation of a rod bivalent. 

I, plant 55 had a univalent frequency of 0.50 and a maximum of four univalents per cell. 

Six out of the ten diploid I, plants had twelve bivalents in all the cells studied (Table 2). The 

nature of these plants could not be elucidated cytologically since both interchange 

homozygotes and plants carrying only standard chromosomes may form twelve bivalents. 

Fig. 2g shows twelve bivalents at diakinesis. A heteromorphic bivalent could be recognized in 

an incidental case (Fig. 2h). Such bivalent may originate from association of a normal and an 

interchange chromosome. 

In the trisomie descendants of 1936 besides quadrivalents, bivalents and univalents also 

quinquevalents and trivalents (Figs. 3a and 3b) were observed. The frequency of quadrivalents 

in the trisomie I, plants 82 and 237 was 0.08 and 0.05, respectively (Table 2). This frequency 

of quadrivalents was low compared to that found in 1936. All quadrivalents found in both I, 

trisomies were chains, pointing to tertiary trisomy or to primaries being homozygous for the 

interchange. The trisomie I, plant 237 had in one cell up to 25 univalents and an average of 

3.05 univalents per cell (Table 2). 

Chromosome distribution at AI and some later stages 

The distribution of chromosomes at AI is presented in Table 3 and in Fig. 3 c-h. The high 

frequency at AI of a bridge or a bridge and fragment (Fig. 3g and 3h) was notable. These 

abnormalities were found in 1931 and in .1936 in 45.5 and 19.2% respectively of the AI cells 

analysed (Table 3). In one PMC in 1936; a ring bivalent was still present at second prophase 

(Fig. 4a). In a single cell a chromatid bridge was observed at All/Til (Fig. 4b). A double bridge 

and fragments were observed in one AI cell in 1931 (Fig. 4c). In the trisomie I, plant 82, a 

regular 12-13 distribution (Fig. 4d) was observed in five AI cells. Fig. 4e shows a 11-12 

distribution and two scattered chromosomes at telophase I in the same trisomie. Both in the 

I, plants 82 and 237 a bridge and fragment were observed in some AI cells. 

Chromosome identification of the interchange 

Results from meiotic analysis (diakinesis/AI) in trisomie F, plants from the cross of six primary 

trisomies (3, 4, 7, 9, 10, 12) x interchange heterozygote are presented in Table 4. In trisomie 

F, plants from chromosome 3 and chromosome 12-trisomics chain quinquevalents (Figs 5a-c) 

were found. This result strongly indicates the involvement of the chromosomes 3 and 12 in the 

interchange as expected from the results of pachytene analysis (Wagenvoort, 1988). 
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An asymmetrical Y-shaped trivalent was found at Ml in a trisomie F, plant from the 

chromosome 3-trisomic (Fig. 5d). Two trisomie F, plants, one from the chromosome 7-trisomic 

and one from the chromosome 12-trisomic (Fig. 5e) had a high number of univalents in some 

cells. A ring quadrivalent together with a trivalent was observed at Ml in PMCs from two 

trisomie F, plants from the chromosome 9-trisomic (Fig. 5f) and in PMCs from one trisomie F, 

plant from the chromosome 4-trisomic. A trivalent was the highest chromosome association 

observed in four trisomie F, plants from the chromosome 12-trisomic and in one trisomie F, 

plant from the chromosome 10-trisomic. No ring quadrivalents were observed in 119 PMCs 

from two other trisomie F, plants from the chromosome 12-trisomic and in 29 PMCs from a 

trisomie F, plant from the chromosome 3-trisomic. 

Verification of chromosome arm position of the gene ym 

The number of normal and mutant plants in both F,s from the cross Tt Ymym x ttymym fitted 

the expected ratio 1:1 (%2=1.03 and 1.21 respectively and P« 0.30). Table 5 presents the 

results of a study of meiosis in twenty F, plants. Fifteen normal plants segregated 6:9, six plants 

producing 12 bivalents only, and nine plants forming a quadrivalent at Ml, which indicates their 

heterozygosity for the interchange. The five mutants analysed segregated 1:4 (Table 5). The 

observed ratio 6:9 fits the expected ratio 1:2 (x2=0.3, P= 0.70-0.50) and deviates significantly 

(X2=4.8, P=0.05-0.02) from the ratio 2:1. Therefore, it corroborates the view that there is no 

tight linkage between ym and the breakpoint of the interchange. Furthermore, it allows the 

conclusion that the dominant allele Ym is located on the interchanged arm of chromosome 12. 

Discussion 

The relatively high frequency of quadrivalents, viz. 0.62 and 0.56 per cell, estimated for 1931 

and 1936 in this study, was similar to that found in the diploid interspecific hybrids between 

5. morelliforme and 5. darum (Marks, 1968) and between 5. verrucosum and 5. commersonii 

(Matsubayashi & Misoo, 1979). Such frequencies demonstrate the occurrence of structural 

differentiation within a diploid species and in diploid interspecific hybrids of Solanum. 

Orientation of multiple chromosome associations 

According to Rickards (1983) three orientation types can in general be distinguished in 

chromosome multiples: (i) Alternate orientation, (ii) Adjacent orientation; (iii) Amphitelic 
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orientation, in which sister chromatid centromeres of at least one chromosome in an otherwise 

alternate or adjacent orientation are oriented to opposite poles rather than syntelically oriented 

to the same pole. Sybenga (1984) stated that within a population of configurations with 

alternate orientations up to six types may be distinguished, but that this has no biological 

significance. 

In this study a full quantitative estimation of adjacent and alternate orientation of 

quadrivalents could not be made but some generally occurring types of orientation could be 

interpreted qualitatively. The nature of the U-shaped quadrivalent (Fig. 2m) observed in the 

interchange of S. phureja might be explained as an adjacent orientation of a chain quadrivalent 

(1/2/1 configuration) or a flattened three dimensional ring quadrivalent. The observed 

spectacle-shaped configuration at diakinesis is difficult to interpret. It is suggested that the two-

armed frying pan quadrivalent (Fig. 2e) has four chiasmata, but one of the four is an interstitial 

chiasma and two non-interchanged arms are unbound. Asymmetry of some ring quadrivalents 

was observed, e.g. in the configurations shown in the Figs. 2i & 2j. Chromosome morphology 

of these quadrivalents is similar, and in both configurations a small and a large region of 

heterochromatin is directed to one pole, representing two non-homologous centromeres. Thus 

the quadrivalent shown in Fig. 2i represents an adjacent-1 orientation because this is the only 

possible type of adjacent orientation with two non-homologous centromeres parallel across the 

spindle. The asymmetrical quadrivalents in 5. phureja resulted from association of unequal sized 

chromosomes, originating from an interchange between chromosome 12, the shortest of the 

complement with median centromere, and chromosome 3, one of the four longest 

chromosomes with submedian centromere. 

Pollen stainability, seed set and orientation of multiples 

Pollen grains with unbalanced chromosome complements usually abort. Pollen stainability in 

theS. phureja genotypes 1931 and 1936, was 42 and 50% respectively (Wagenvoort, 1988), 

suggesting abortion of the products of adjacent orientation. Also cytogenetically unbalanced 

embryo sacs in plants usually produce abortive seed; hence the percentage seed set in these 

plants relative to that in normal plants provides an indirect measure of the frequency of 

alternate orientation in female meiosis (Rana 1965; Soriano, 1957). The low seed set observed 

in 1936 suggests that alternate and adjacent orientation occur with approximately the same 

frequency. However, this conclusion must be interpreted cautiously with respect to pollen 

abortion in view of the incidence of a paracentric inversion in 1931 and 1936 as well. 

Inversions will give rise to pollen abortion due to duplication and deficiency in crossing-over 
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chromatids whereas embryo sac abortion will be low or absent (Burnham, 1962). 

Characterization of I, and F, trisomies 

Tertiary and primary trisomies from selfed progenies of interchange heterozygotes have been 

obtained in several species. For a literature review may be referred to Khush (1973) and Schulz-

Schaeffer (1980). Tertiary trisomies of the tomato were used in determining position of 

centromere and arm location of markers (Khush & Rick, 1967) and those in barley were 

important for use in hybrid seed production (Ramage & Tuleen 1964; Ramage, 1965). More 

recently tertiary trisomies were also produced in Pennisetum americanum L. by Singh et al. 

(1982), and in rye by De Vries (1983). Based on chromosome association at Ml it was 

concluded that the trisomies found in the progeny upon selfing of 1936 are tertiaries or 

primaries homozygous for the interchange. 

The incidence of a ring quadrivalent together with a trivalent at Ml in PMCs of certain trisomie 

F, plants obviously characterizes these trisomies as primary trisomie interchange heterozygotes. 

The absence of ring quadrivalents in trisomie F, plants from the chromosome 3-trisomics and 

chromosome 12-trisomics suggests the incidence of tertiary trisomies. However, the low fre

quency of quadrivalents made it impossible to elucidate the nature of these trisomies 

unambiguously. F, trisomies in which a trivalent was observed as the highest chromosome 

association, were identified as primary trisomies. Thus, among the trisomie F, plants, derived 

from the cross primary trisomie x interchange heterozygote, compensating trisomies, primary 

trisomies and primary trisomies interchange heterozygotes were identified in this study. The 

frequency of three trisomies among 475 I, plants (0.63%) found by Wagenvoort (1988) was 

significantly (x2 = 8.90, P<0.01) lower than expected on the basis of chromosome distribution 

at AI, six of the 224 AI cells (2.68%) in 1936 having an 11-13 distribution (Table 3). Since at 

the male side only n gametes are assumed to be functional, this points to non-viability of some 

n+1 female gametes. 

The incidence of bridges and fragments at AI was expected from the analysis of the 

pachytene stage (Wagenvoort, 1988) where true loops were seen in chromosome 4 and/or 

chromosome 6 indicating heterozygosity for a paracentric inversion. A bridge and a fragment 

at AI imply a chiasma in the inversion segment of the bivalent. When one of the two 

chromatids involved in an interstitial chiasma is also involved in the loop chiasma, the bridge 

is transformed into a loop at AI which turns into a chromatid bridge at second anaphase 

(Sybenga, 1975). Such a transformation may account for the bridge observed at All in this 
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study. Two chiasmata in the inversion and one in the proximal segment may lead to the 

presence of a double bridge and fragments at AI (Sybenga, 1975). This configuration was 

observed in one AI cell from 1931. However, the incidence of a paracentric inversion in two 

non-homologous chromosomes would also adequately explain the double bridge and 

fragments and therefore should not be precluded. 

The interchange heterozygote found in 5. phureja. was not associated with any 

morphological aberration. 

This report is the first in describing the use of a series of primary trisomies to identify the 

chromosomes involved in structural deviations in potato chromosomes. 
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Fig. 2a-h. Chromosome association at diakinesis in PMCs of the diploids 1931 (c, f, g) and 

1936 (a, b, d, e, h) both heterozygous for an interchange between the putative chromosomes 

3 and 12. (a) Asymmetrical ring quadrivalent (IV), (b) Figure - eight IV, (c) Spectacle shaped IV, 

(d) Frying pan IV, (e) Two-armed frying pan IV, (f) Linear chain IV, (g) Twelve bivalents (II), (h) 

heteromorphic II {arrow-head). Figure 2i-o. Chromosome association at Ml in PMCs of 1936. 

Quadrivalents indicated by arrows, (i) Adjacent ring IV, (j) Alternate ring IV, (k) Alternate chain 

IV, (I) 12 II, (m) U-shaped IV, (n) ring IV with possibly one extra chiasma, and (o) adjacent type 

of orientation of ring IV (explanation in text). 

Bars represent 10 urn. Scale on Fig. 2g applies also to Figs. 2a, 2b, 2d and 2e; scale on Fig. 2i 

applies also to Figs. 2c and 2f. 
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Fig. 3. Chromosome association at diakinesis in PMCs of trisomie I, plant 82 (a, b) and Al 

chromosome distribution in PMCs of 1936 (c-f and h) and 1931 (g). 

(a) 10 II + chain quinquevalent (V, arrow), (b) 11 II + one III (arrow), (c) 12-12 distribution, (d) 

11-13 distribution, (e) One laggard (arrow-head) + ll-like structure (with delayed separation 

(arrow)) in cell with 23 chromosomes, (f) Delayed separating II (arrow), (g) Bridge (arrow), (h) 

Bridge (arrow) + fragment (small arrow). 

Bars represent 10 urn. 
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CHAPTER 4 

Meiotic behaviour of 11 primary potato trisomies (2n=2x+1=25) and its 

consequences for the transmission of the extra chromosome 

Abstract 

Meiosis was studied in 11 primary trisomies (2n=2x+1=25) from diploid Solanum tuberosum 

L. ssp. tuberosum Hawkes (2n=2x=24) and from interspecific Solanum hybrids. The three 

homologous chromosomes were associated in a trivalent in 90% of more than 175 pollen 

mother cells analysed at pachytene. Trivalents showing a two by two pairing and partner 

exchanges at pachytene along with incomplete triple synapsis were frequently observed. Fold-

back pairing, predominantly observed in the heterochromatic parts of the chromosomes, 

occurred in 28.3% of the trivalents analysed. Non-homologous association of chromosome 

segments was observed in 29.1% of the trivalents. Up to six telomeres were associated 

homologously in 46.2% of the trivalents. Genotypic differences with respect to trivalent 

formation at metaphase I occurred in almost all the trisomie types, and was significant for the 

trisomies for the chromosomes 4, 7, and 9. The coefficient of realization of a trivalent (CRT) 

at metaphase I in the 11 primary trisomies varied from 0.20 to 0.80, and was positively 

correlated with the absolute length of the extra chromosome (r = 0.61, P < 0.05) and with 

the absolute as well as the relative length of the euchromatic segments of the extra 

chromosome (r = 0.70, P < 0.05). There was no apparent relationship between the CRT and 

the distribution pattern at anaphase I or anaphase II. The rate of female transmission of the 

extra chromosome varied from 10.0 to 45.0% among different trisomies, and differed signifi

cantly also within the trisomies for the chromosomes 4, 7, and 9. 

Key words: primary trisomies, meiosis, non-homologous chromosome association, telomere 

pairing, triple synapsis, female transmission, Solanum. 
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Introduction 

Trisomies of the diploid potato have previously been produced at a high frequency, using 

triploids of Solanum tuberosum L. ssp. tuberosum Hawkes (Wagenvoort and Lange 1975). All 

trisomies identified at pachytene by Wagenvoort and Ramanna (1979) proved to be primaries, 

containing one complete chromosome in triplicate. Einset (1943) pointed out, that in maize the 

probability of chiasma formation and hence the frequency of trivalents at metaphase I (Ml) 

increases with increasing length of the triplicate chromosomes. To check this statement for the 

primary trisomies of the potato the total length and the length of the euchromatic segments 

were measured of each of the chromosomes from a complete pollen mother cell at pachytene 

of which all chromosomes could be reliably identified. From these data were calculated the 

relative length of each chromosome (absolute chromosome length divided by absolute genome 

length) as well as the relative lengths of the euchromatic segments of each chromosome 

(absolute length of the euchromatic segments of the chromosome divided by the absolute 

length of the euchromatic segments of the genome). As the complete data from a single cell 

were available, both the absolute and the relative lengths of the potato chromosomes were 

compared to those of the tomato chromosomes, as determined by Barton (1950) from 10 

camera lucida drawings. Furthermore, chromosome association at Ml was analysed in previously 

identified trisomies in order to study the possible relationship between the coefficient of 

realization of a trivalent (CRT) at Ml and the absolute chromosome length. In tomato, the 

chiasma frequency is expected to be higher in the euchromatic segments than in the 

heterochromatic segments of the chromosomes (Khush and Rick, 1968). As the euchromatic 

and heterochromatic segments of the potato chromosomes can be distinguished at pachytene, 

the CRT at Ml was also related to the relative euchromatin lengths of the chromosomes. 

Wagenvoort and Lange (1980) found no relationship between chromosome length at 

pachytene and the rate of female transmission of the extra chromosome. A genetic control of 

the transmission rate was suggested. The relationship could however have been disturbed by 

the action of lethal genes causing seedling death. As new data regarding the rate of female 

transmission of the extra chromosome in additional genotypes (F, and backcross trisomies) 

became available, the relationship between chromosome length at pachytene and the rate of 

female transmission of the extra chromosome could be re-examined in genetically more diverse 

genotypes. 

In this paper the meiotic behaviour of 11 different primary trisomies and new data regarding 

the rate of female transmission of the extra chromosome are reported. The possible 
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relationships between the absolute length as well as the relative length of euchromatin of each 

chromosome and the CRT at Ml are discussed. Finally, the relation between chromosome 

length at pachytene and rate of female transmission of the extra chromosome is re-examined 

and compared with data from literature. 

Materials and methods 

Plant material 

Trisomies for the chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 11 and 12 were derived from triploid 

S.tuberosum ssp. tuberosum (cf Wagenvoort and Lange, 1980) whereas the trisomie for 

chromosome 10, coded V1063.8, had a complex hybrid origin, involving the species S.maglia, 

S.microdontum, S.stenotomum, S.phureja and S.tuberosum ssp. tuberosum. The latter trisomie 

was obtained from Dr. R. E. Hanneman Jr., Madison, USA. The rate of female transmission of 

the extra chromosomes 2, 3, 4, 5, 7, 8, 9, 11 and 12 was determined using the original 

trisomies as well as trisomie F, hybrids between seven original trisomies (4, 5, 6, 7, 9, 11 and 

12) and S. phureja. In addition, the rate of female transmission of the extra chromosomes 3, 

4, 6, 7 and 11 was also determined using trisomie F, hybrids from crosses between the 

corresponding original trisomies and S.infundibuliforme, whereas for the extra chromosomes 

4, 9, and 10 trisomie F, plants were used from crosses of the corresponding original trisomies 

with the PVY immune diploid clone H76-76-5 (obtained from Dr. G. Wenzel, Grünbach, 

Germany). 

Cytology 

The method for studying the chromosomes in meiosis was the same as described by 

Wagenvoort and Ramanna (1979). Chromosome length measurements were made from 

photomicrographs, using a divider and ruler. The coefficient of realization of a trivalent (CRT) 

in a trisomie was defined as the mean frequency of trivalents at Ml. 

Statistics 

Significance of correlation coefficients (r) was tested by calculating F = [(n-2)r2]/(1-r2), and using 

the F-distribution on 1 and (n-2) degrees of freedom, where n is the sample size (Mead and 

Curnow 1983). Significant differences between two proportions with respect to the occurrence 
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of trivalents were tested by calculating x2(i>: 

N(ad-bc)2/(a+b)(a+c)(b+d)(c+d) using a one tailed test, where in a sample of (a+b) items, a 

contains a trivalent and b does not, and in a second sample of (c+d) items, c contains a 

trivalent and d does not. N=a+b+c+d. When entries were smaller than five, Yates1 correction 

(see Clarke 1982) which reduces the value of (ad-bc) numerically by 1/2 N before squaring, was 

applied. 

Results 

Pachytene 

In a part of the pollen mother cells (PMCs) the extra chromosome could not be analysed as 

these cells showed entangled chromosomes. In about 90% of the PMCs observed the extra 

chromosome was bound in a trivalent. Out of 159 PMCs analysed, representing 11 of the 12 

possible trisomie types, 158 showed the association of the three homologous chromosomes 

in a trivalent. Only a single PMC from the trisomie for chromosome 12 had three univalents. 

Fig. 1 shows 11 bivalents and the trivalent configuration for chromosome 7 in a complete cell 

at pachytene in which all bivalents could be identified. Trivalents were frequently observed to 

show a two by two pairing along with partner exchanges (Fig. 1, chromosome 7). In addition, 

many trivalents showed triple synapsis, i.e. association of three homologous chromosomes over 

a considerable part of their length (Fig. 2). Fold-back pairing of the univalent part of the triva

lent configuration was predominantly observed in the heterochromatic parts of the 

chromosomes and occurred in 28.3% of the trivalents analysed. Non- homologous association 

of chromosome segments was observed in 29.1 % of the trivalents analysed. This phenomenon 

occurred in the heterochromatic and euchromatic parts of the chromosomes in 24.7 and 4.4%, 

respectively, of the trivalents. The duplicate chromosomes were nearly always associated 

completely as bivalents. 

The frequencies of homologous association of the telomeres and the centromeres of the 

trivalents were established. In 8.9% of the 158 trivalents analysed, four telomeres of the 

trivalent configuration were associated, whereas in the remaining trivalents association of five 

or six telomeres occurred. The association of three centromeres was observed in 11.4% of the 

trivalents, whereas in 88.6 % of the trivalents only two centromeres were associated. 

Polymorphism for the completely heterochromatic short arm of the nucleolar chromosome 

(chromosome 2), was observed in one trisomie derived from 5. tuberosum ssp. tuberosum cv. 
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Gineke, and in the trisomie for chromosome 10. Fig. 3 shows a heteromorphic bivalent of 

chromosome 2 in a trisomie for chromosome 3, derived from the Gineke-material. The 

difference in length between the two homologous chromosome arms in this trisomie was small. 

However, in the trisomie for chromosome 10, genotype V1063.8, the difference in length 

between the two short arms was much greater than in the Gineke trisomie (Fig. 4). The 

occurrence of a heteromorphic bivalent for chromosome 2 in V1063.8 is probably due to the 

hybrid origin of this trisomie. In a trisomie for chromosome 2, also S.tuberosum ssp. 

tuberosum, derived from an other genotype than cv. Gineke, no polymorphism for the short 

arm of chromosome 2 could be observed (cf. Figs. 2 and 3). 

Table 1 presents the results of the chromosome measurements of a single PMC at pachytene 

of a trisomie for chromosome 7 of the potato and, for comparison, data on tomato 

chromosomes collected by Barton (1950). Chromosome identification was based on landmarks 

such as the position of specific chromomeres, arm lengths, the lengths of euchromatic and 

heterochromatic segments, and secondary constrictions. Chromosome 6 was longer than 

chromosome 5, and chromosome 10 was the shortest chromosome of the complement, 

instead of chromosome 12. Since the chromosomes were initially numbered according to their 

absolute lengths, the deviations from the normal complement are probably due to differences 

in condensation between chromosomes in a single cell. The genome length on the basis of the 

lengths of the chromosomes of the single cell was 355.4 urn of which 70% consisted of 

euchromatin. As the data from a single cell were available, the relative lengths of the potato 

chromosomes were compared to those of the tomato (Lycopersicon esculentum). The correla

tion coefficient r for the absolute lengths of the potato (Table 1) and tomato (data not shown) 

chromosomes was 0.94 (P < 0.001), whereas the correlation coefficient r for the relative 

lengths of the euchromatic segments of the potato and tomato chromosomes was 0.97 (P < 

0.001). 

Chromosome association at Ml 

At Ml the extra chromosome was included in a trivalent or remained separate as a univalent. 

The mean number of trivalents (III), bivalents (II) and univalents (I) per PMC in the eleven 

primary trisomies are presented in Table 2. Most of the PMCs had 11 11 + 1 III, 12 II + 1 I or 11 

II + 3 I (Figs. 5-7). The trivalent configurations were either Y shaped (Fig. 8) or of the chain-

type, e.g. V shaped (Fig. 9) or linear (not shown). Trichiasmate "frying pan" trivalents (Fig. 5) 

occurred only rarely. Significant differences in trivalent frequency occurred between several 

trisomie types. In the trisomies for the chromosomes 4, 7, and 9 significant differences in 
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trivalent frequency were found between the genotypes of the same trisomie. The CRT of the 

eleven primary trisomies varied from 0.20 (trisomie for chromosome 10) to 0.80 (trisomie for 

chromosome 2). The mean CRT estimated from 1634 PMCs over all trisomie types was 0.48. 

Regular bivalent pairing of the duplicate chromosomes was common in almost all trisomies. 

In some trisomies a higher number of univalents was found indicating some desynapsis. 

Distinction between ring bivalents and rod bivalents was possible only in some cases, and was 

dependent on the contraction of the chromosomes. A relatively high frequency of ring 

bivalents was observed in certain genotypes of the trisomies for the chromosomes 3 and 4 

(Table 2). However, the variation within a trisomie type was as large as between different 

trisomies. Consequently, a possible relationship between the frequency of ring bivalents and 

a particular triplicate chromosome could not be established. 

The CRT at Ml, estimated for each trisomie type, was positively correlated with both the 

absolute length of the extra chromosome (r = 0.61, P < 0.05) and the absolute and relative 

length of the euchromatic segments of the extra chromosome (r = 0.70, P < 0.05). 

Chromosome distribution at AI and All 

In 369 out of 407 AI cells the extra chromosome moved to one of the poles, resulting in a 12 

: 13 distribution (Table 3 and Fig. 10). In the remaining 10% of the cells an 11 :14 distribution 

(Fig. 11), or delayed separation of bivalents (Fig. 12) or lagging of chromosomes (Fig. 13) was 

observed. A maximum of five lagging chromosomes was observed in certain genotypes of the 

trisomies for the chromosomes 8 (Fig. 14) and 12. Occasionally lagging chromosomes separated 

precociously. There was no apparent relationship between the CRT and the distribution pattern 

at AI. 

In most trisomies, a regular distribution of the chromosomes at All was observed, e.g. 33 

PMCs from the trisomie for chromosome 10 showed a 12-12-13-13 distribution (Fig. 15). The 

only aberration observed in the trisomies for the chromosomes 3 and 9, was the occurrence 

of fused spindles at Mil (Fig. 16), leading to a 25-25 distribution at All in 20 of 27 cells 

analysed. In three All cells a 24-26 distribution was found. 

Female transmission of the extra chromosome 

New data regarding the rate of female transmission of the extra chromosome were gathered 

with 36 genotypes representing the trisomies for the chromosomes 2-12. They are presented 

in Table 4 together with earlier data from Wagenvoort and Lange (1980). The average rate of 

female transmission of the extra chromosome was 22.2%, but varied considerably (10-45%) 
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among different trisomies. Also the variation between genotypes within trisomies was generally 

large; P (x2 homogeneity) < 0.001 for the trisomies for the chromosomes 4, 7 and 9. The 

average rate of female transmission of the original trisomies for chromosome 4 differed 

significantly from that of the trisomie F, hybrids. This higher rate of female transmission in the 

trisomie F, hybrids from chromosome 4 was not found for trisomie F, hybrids of other trisomie 

types. 

Discussion 

In a primary trisomie, assuming two major points of pairing initiation (one at either end of each 

chromosome), random chromosome association will lead to a trivalent frequency at pachytene 

of 67%. The occurrence of higher frequencies may be due to : (i) pairing initiation at more 

than two major points, or (ii) preferential pairing between specific chromosomes at one end 

and the other two at the other end (Sybenga 1975). Although the pachytene analysis led to 

biased frequencies, the high trivalent frequency (90%) observed in the present study, indicates 

that one or both statements made by Sybenga (1975) may hold true for the potato trisomies. 

Furthermore, the triple synapsis of homologous chromosomes observed over long segments of 

the chromosomes also contributed to the high trivalent frequency at pachytene in certain 

trisomies. The association of five or six telomeres per configuration, may be attributed to this 

type of synapsis occurring in about 90 % of the trivalents. The association of three centromeres 

of the trivalent was observed in only 11 % of the PMCs analysed and therefore, it is not 

known whether the centromere plays a role in the increase of the trivalent frequency. The 

formation of trivalents in diplotene and Ml of autotriploids of the potato (Lange and 

Wagenvoort 1973) showed that crossing over can occur between all three homologues. 

Previous observations on meiosis of other triploid species have suggested that if three 

homologues are present, in general they will occur at pachytene as a pair and a single 

univalent (Newton and Darlington 1929; Darlington and Mather 1932; McClintock 1933; 

Sybenga 1975). These authors concluded that "only two homologous chromosomes can pair 

at one time at any one site" and that pairing partner exchanges between homologues allow 

the formation of trivalents in triploid and trisomie individuals. In the early thirties, however, 

triple synapsis at pachytene had already been observed with a light microscope in triploid 

Hyacinthus orientalis (Belling 1931), in diploid and triploid Gossypium species (Skovsted 1933), 

and in Nicotiana tabacum (Olmo 1934), and more recently in trisomies of diploid Solanum by 
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Wagenvoort and Ramanna (1979). Initial electron microscopic studies in lily confirmed the view 

of the two by two pairing of chromosomes, in that the synaptonemal complex of trivalents is 

formed by only two lateral elements (Moens 1968). However, in a later study in lily, the same 

author reported that the association between three homologues at pachytene can be as 

intimate as that between any two homologues, and the phenomenon was referred to as 

"partner fusion" (Moens 1969). Evidence for triple synapsis by the formation of a double 

synaptonemal complex consisting of three lateral elements and two central elements in 

trivalents of triploid chicken was first published by Comings and Okada (1971). The occurrence 

of triple and even quadruple synapsis in tetraploid Solanum tuberosum observed by Stack 

(1982) using electron microscopy confirmed the observations made in trisomies by Wagenvoort 

and Ramanna (1979). In the primary trisomies of the potato such associations were often found 

in the euchromatic parts of the chromosomes. Triple synapsis may be considered as a more 

general feature of chromosome association in trisomie and autotriploid plants. 

The results obtained in the present study show the frequent occurrence of fold-back pairing 

of heterochromatic segments in the univalent parts of trivalent configurations. This type of 

pairing is similar to that in autotriploid Allium, where the third chromosome of each 

homologous group, which is precluded from homologous pairing, forms extensive fold-backs 

(Loidl and Jones 1986). Whether the fold-backs in the primary trisomies of the potato reflect 

the occurrence of small duplications or are the result of real non-homologous association is 

unknown. Non-homologous association in the heterochromatic parts of the chromosomes was 

described earlier by Ramanna and Wagenvoort (1976) and Wagenvoort (1988). 

The results obtained in the present study show a significant correlation between the relative 

chromosome or euchromatin length and the CRT of the primary trisomies of the potato. These 

data are at variance with those of Lee and Rowe (1975), who concluded that the frequency 

of trivalent formation was not affected by the length of the extra chromosome of secondary 

trisomies of S.chacoense. In tomato, the degree of trivalent pairing in late meiotic prophase 

was found to be correlated with pachytene chromosome length (Rick and Barton, 1954). Sree 

Ramuluefa/. (1977) found a positive correlation between metaphase chromosome length and 

the frequency of trivalent formation in two trisomies from Lycopersicon peruvianum. Thus, it 

seems that chromosome length and CRT at Ml are correlated both in potato and tomato. 

The occurrence of fused spindles at Mil, leading to a 25-25 chromosome distribution at All 

is genetically equivalent to first division restitution, whereas the 24-26 chromosme distribution 

is genetically equivalent to second division restitution. The latter is caused by the omission of 

the second division along with an aberrant cytokinesis. 
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No relationship could be established between female transmission and the length of the 

extra chromosome in the primary trisomies of the potato (Wagenvoort and Lange 1980, this 

study). This was in agreement with the findings reported by Lee and Rowe (1975), and Lam 

and Erickson (1971) for trisomies in S.chacoense and in other plant species, such as 

Lycopersicon esculentum, (Rick and Barton 1954), Lolium perenne (Meiger and Ahloowalia 

1982), and Oryza sativa (Khush et al. 1984). Thus, although the observation by Einset (1943) 

that in maize trisomies transmission of the extra chromosome is a function of chromosome 

length, while also Chen and Grant (1968) found such a relation for trisomies in Lotus peduncu-

latus, this could not be confirmed for the primary trisomies of the potato in spite of the 

significant correlation between chromosome length and the CRT at Ml. Therefore, the low 

transmission of the extra chromosome in the primary trisomies of the potato must have been 

caused by other factors. Such factors may be differential seed germination, seed weight, 

seedling viability, as was recently suggested by Premachandran and Sarkar (1991) for 

transmission of the female gametes of triploid maize. If, indeed, differential seedling viability 

influences female transmission, it is desirable that care should be taken to determine female 

transmission in the total progeny of each trisomie under investigation, or at least in a 

representative sample of the progeny. 

Acknowledgements 

The author is indebted to Karin Nelson, Jacqueline de Haas-Buurman and Greet Kuiper for 

technical assistance and counting number of chromosomes. Thanks are further due to Drs. W. 

Lange, K. Sree Ramulu and J. Hoogendoorn (CPRO-DLO) and to Prof. Dr. J.G.Th. Hermsen and 

Dr. M.S. Ramanna (Wageningen Agricultural University, the Netherlands) for their critical 

comments on the manuscript. 

References 

Barton, D. W. 1950. Pachytene morphology of the tomato chromosome complement. Am. J. 

Bot. 37: 639-643. 

Belling, J. 1931. Chiasmas in flowering plants. University of California Publications in Botany, 

16:311-338. 

Chen, C. C. and W. F. Grant, 1968. Trisomie transmission in Lotus pedunculatus. Canad. J. 

Genet. Cytol. 10: 648-654. 

109 



Clarke, G. M. 1982. Statistics and Experimental Design. The Camelot Press Ltd., Southampton, 

GB, pp 68-69. 

Comings, D. E., and Okada, T.A. 1971. Triple chromosome pairing in triploid chickens. Nature, 

231: 119-121. 

Darlington, C. D. and Mather, K. 1932. The origin and behaviour of chiasmata. III Triploid 

Tulipa. Cytologia, 4: 1-15. 

Einset, J. 1943. Chromosome length in relation to transmission frequency of maize trisomies. 

Genetics, 28: 349-364. 

Khush, G. S. and Rick, C. M. 1968. Cytogenetic analysis of the tomato genome by means of 

induced deficiencies. Chromosoma 23: 452-484. 

Khush, G. S., Singh, R. J., Sur, S. C, and Librojo, A. L. 1984. Primary trisomies of rice: origin, 

morphology, cytology and use in linkage mapping. Genetics, 107: 141-163. 

Lam, S. L., and Erickson, H. T. 1971. The nucleolar trisomie and trisomie transmission in a 

diploid potato. Heredity, 62: 375-376. 

Lange, W., and Wagenvoort, M. 1973. Meiosis in triploid Solanum tuberosum L. Euphytica, 22: 

8-18. 

Lee, H. K., and Rowe, P. R. 1975. Trisomies in Solanum chacoense: Fertility and cytology. Amer. 

J. Bot. 62: 593-601. 

Loidl. J., and Jones, G. H. 1986. Synaptonemal complex spreading in Allium. I. Triploid A 

sphaerocephalon. Chromosoma 93: 420-428. 

Mead, R., and Curnow, R. N. 1983. Statistical Methods in Agriculture and Experimental 

Biology, Chapman and Hall, London, New York, p 138. 

Meiger, E. G. M., and Ahloowalia, B. S. 1982. Trisomies of ryegrass and their transmission. 

Theor. Appl. Genet. 60: 135-140. 

Moens, P. B. 1968. Synaptinemal complexes of Lilium tigrinum (triploid) sporocytes. Can. J. 

Genet. Cytol. 10: 799-807. 

Moens, P. B. 1969. The fine structure of meiotic chromosome pairing in the triploid, Lilium 

tigrinum. J. Cell Biology, 40: 273-279. 

McClintock, B. 1933. The association of non-homologous parts of chromosomes in the mid 

prophase of meiosis in Zea mays. Z. Zellforsch, u. mikro. Anat. 19: 191-237. 

Newton, W. C. F. and Darlington, C. D. 1929. Meiosis in polyploids. I. Triploid and pentaploid 

tulips. J. Genet. 21: 1-15. 

Olmo, H. P. 1934. Prophase association in triploid Nicotiana tabacum. Cytologia, 5: 417-431. 

Premachandran, M. N., and Sarkar, K. R. 1991. Chromosome length in relation to transmission 

110 



of extra chromosomes in maize. Cytologia 56: 249-252. 

Ramanna, M. S., and Wagenvoort, M. 1976. Identification of the trisomie series in diploid 

Solanum tuberosum L, Group Tuberosum. I. Chromosome identification. Euphytica, 25:233-

240. 

Rick, C. M., and Barton, D. W. 1954. Cytological and genetical identification of the primary 

trisomies of the tomato. Genetics, 39: 640-666. 

Skovsted, A. 1933. Cytological studies in cotton. I. The mitosis and the meiosis in diploid and 

triploid Asiatic cotton. Annals of Botany 47: 227-251. 

Sree Ramulu, K., Carluccio, F., de Nettancourt, D., and Devreux, M. 1977. Trisomies from 

triploid-diploid crosses in self-incompatible Lycopersicon peruvianum. I. Essential features of 

aneuploids and of self-compatible trisomies. Theor. Appl. Genet. 50: 105-119. 

Stack, S. 1982. Two-dimensial spreads of synaptonemal complexes from solanaceous plants. 

I. The technique. Stain Technology, 57: 265-271. 

Sybenga, J., 1975. Meiotic Configurations. Springer Verlag, Berlin, Heidelberg, New York, p 

157. 

Wagenvoort, M. 1988. Spontaneous structural rearrangements in Solanum tuberosum ssp. 

phureja: 1. Chromosome identification at pachytene stage. Euphytica Supplement: 159-167. 

Wagenvoort, M., and Lange, W. 1975. The production of aneudihaploids in Solanum 

tuberosum L. Group Tuberosum (the common potato). Euphytica, 24: 731-741. 

Wagenvoort, M., and Ramanna, M. S. 1979. Identification of the trisomie series in diploid 

Solanum tuberosum L. Group Tuberosum. IL Trivalent configurations at pachytene stage. 

Euphytica, 28: 633-642. 

Wagenvoort, M., and Lange, W. 1980. Fertility, plant morphology, and transmission rates of 

the extra chromosome in single and double trisomies of Solanum tuberosum L. Group 

Tuberosum. Euphytica, 29: 281-293. 

111 



4> 
« 

# • 

% 



Fig. 1. A complete cell at pachytene of a trisomie for chromosome 7 showing one trivalent and 

11 bivalents. The numbers 1-12 refer to the chromosome numbers. 

Fig. 2. A trivalent of a trisomie for chromosome 2 showing triple synapsis over nearly the entire 

length of the long arm. 

Fig. 3. A part of the nucleolar chromosome of a trisomie for chromosome 3 showing little 

difference in length of the satellites. 

Fig. 4. A heteromorphic bivalent of a trisomie for chromosome 10 showing size differences of 

the satellites. 

Bars represent 10 um. 
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Fig. 10. Anaphase I of a trisomie for chromosome 12, showing a 12-13 distribution. 

Fig. 11. Anaphase I of an F, trisomie from a trisomie for chromosome 10, showing an 11-14 

distribution. 

Fig. 12. Anaphase I of an F, trisomie from an unidentified trisomie, showing delayed separation 

of a bivalent. 

Fig. 13. Anaphase I of a trisomie for chromosome 4, showing a 12-12 distribution and one 

lagging chromosome. 

Fig. 14. Anaphase I of a trisomie for chromosome 8, showing a 10-11 distribution and four 

lagging chromosomes, three of them dividing precociously. 

Fig. 15. Anaphase II of an F, trisomie from a trisomie for chromosome 10, showing a 12-12-13-

13 distribution. 

Fig. 16. Metaphase II of an F, trisomie from a trisomie for chromosome 6, showing two PMCs 

with 25 chromosomes due to fused spindles formation. 

Bars represent 10 urn. 
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CHAPTER 5 

Gene-centromere mapping in potato by half-tetrad analysis: 

map distances of H1, Rx and Ry and their possible use for ascertaining the 

mode of 2n-pollen formation1 

With: Ewa Zimnoch-Guzowska 

Abstract 

Diploids from the tetraploid potato varieties 'Alcmaria' and 'Pansta' and from the tetraploid 

CPRO-DLO genotypes Y66-13-610 and Y66-13-636 were used in half-tetrad analyses to 

estimate the gene-centromere map distances of the genes Rx, Ry and H,. Employing tetraploid 

progeny from 2x (second division restitution)-4xtestcrossesthe gene-centromere map distance 

of H,, conferring resistance to pathotype Ro, of Globodera rostochiensis was estimated to be 

16.3 centimorgans (cM). For Rx, conferring extreme resistance to potato virus X (PVX), a map 

distance of 33.9 cM was estimated. The gene Ry conferring extreme resistance to potato virus 

Y (PVY), was estimated to be located 14.2 cM from the centromere. Using the estimated map 

distance for Rx, it was attempted to determine the mode of 2n-pollen formation in four diploid 

interspecific hybrids, including the species Solanum tuberosum, Solanum chacoense, Solanum 

yungasense, and Solanum phureja, by half-tetrad analysis in tetraploid progeny from 4x-2x 

testcrosses. The mean frequency of 8.7% nulliplex plants for fix was outside the range of the 

95% confidence intervals, for both first division restitution and second division restitution In 

pollen. 

Key words: nematode resistance, potato virus X resistance, potato virus Y resistance. In eggs, 

gene-centromere mapping, Solanum. 

1 Slightly revised version of the paper, published in Genome (1992) 35: 1-7 
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Introduction 

The concept of breeding potatoes at the diploid level (2n=2x=24) and the use of In gametes 

to restore the tetraploid chromosome number was originally described by Chase 1963 and has 

since been worked out by, for instance, Peloquin (1982) and Hermsen (1984a, 1984b). 

In diploid potatoes, several meiotic restitution mechanisms resulting in In gametes have been 

found. The two basic types are described as first division restitution (FDR) and second division 

restitution (SDR). If crossing-over does not occur, FDR gametes retain the parental genotypes 

and can preserve intralocus and interlocus interactions present in the diploid genotype. 

Furthermore, the transfer of more or less intact chromosome sets to the tetraploid progeny 

should maximize heterotic potential. In contrast, SDR breaks up the parental genotype and may 

lead to homozygosity (Mendiburu et al. 1974; Peloquin 1982; Hermsen 1984a, 1984b). 

Ramanna (1979) stated that it is not always possible to predict on the basis of a certain meiotic 

abnormality during microsporogenesis alone that either FDR or SDR will occur. 

Taylor (1978) concluded that tetraploid parthenogenetic progeny of Solanum tuberosum ssp. 

andigena obtained from 4x-2x crosses resulted from SDR In female gametes. 

On the basis of a sequential study of the embryo-sac development, typical for the female 

gametophyte in Solanum, Jongedijk (1985) suggested that under normal synaptic conditions, 

SDR 2n egg cells should prevail and the occurrence of FDR In eggs be an exception. In certain 

diploids SDR 2n eggs occur exclusively (Stelly and Peloquin 1986a, 1986b; Douches and Quiros 

1988). Because of the occurrence of a single restitution mechanism in the diploid parent, the 

2x-4x cross is advantageous in gene-centromere mapping studies. In potato, a number of loci 

has been mapped by establishing the map distance to the centromere through 4x-2x, 2x-4x 

and 2x-2x crosses. Table 1 presents a summary of data from the literature. We were especially 

interested in the genes Rx, Ry and Hu conferring extreme resistance to the potato viruses X 

(PVX) and Y (PVY) and to pathotype Ro, of Globodera rostochiensis, respectively. Rx and H,, 

both from S. tuberosum ssp. andigena, are on different chromosomes (H.T. Wiersema, 

unpublished). No relationship has been established so far between Rx and Ry and between Ry 

and H,. If these genes are located close to the centromere, they should provide a means for 

discriminating between FDR and SDR In pollen, because the half-tetrad analyses (HTAs) will 

provide nonoverlapping confidence intervals (CIs) for the frequencies of nulliplex plants in the 

case of FDR or SDR (Mendiburu and Peloquin 1979). This paper reports on the estimation of 

the gene-centromere map distances of the genes Rx, Ry and H, by means of HTA. The 

possibility to use Rx for genetic identification of FDR and SDR 2n-pollen formation is tested. 
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Table 1. Data from the literature concerning gene-centromere map distances of 22 genes 
estimated via HTA in 4x-2x, 2x-Ax and 2x-2x potato progeny. 

Gene 
Symbol* 

P 
Y 

ym 

Np 
Ea 
Eb 
Ro 
EM 
D 
Got-1 

Got-2 
Pgm-2 
Sdh-1 
Aps-1 
Prx-3 
ldh-1 
Adh-1 
Pgi-1 
6Pgdh-3 
Mdh-1 
Tpi-1 
ds-1 

Average map 
distance 
(cM)t 

13.0a 
16.7a,b,c 

33.3a,b 

22.5a 
21.7a 

8.8a 
12.2a 
13.4a 
47.6a 

2.7a,c 

5.3c 
2.0a 
8.3a 

13.5a 
18.0a 
18.4a 
15.8a 
26.0 
30.1a 
33.5 
25.0b 
23.7 

Range (cM) 

-
13.0-20.9 

31.7-34.9 

-
-
-
-
-
-

0.9 - 4.4 

-
-
-
-
-
-
-
-
-
-
-
-

Reference(s) 

Mendiburu and Peloquin 1979 
Mok et al. 1976; Veilleux and Lauer 
1981; Stelly and Peloquin 1986a; 
Douches and Quiros 1987; 
Jongedijk et al. 1991 
Jongedijk étal. 1991; 
M. Wagenvoort, in preparation 
Mok 1981 (original not seen) 
Mok 1981 (original not seen) 
Mok 1981 (original not seen) 
Masson 1985 
Masson 1985 
Masson 1985 
Douches and Quiros 1987; 
Jongedijk et al. 1991 
Jongedijk et al. 1991 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1987 
Douches and Quiros 1988 
Jongedijk et al. 1991 

*P, purple colour in various organs and tissues of the potato; V, yellow tuber flesh; ym, yellow 
margin; Ro, round tubers; EM, closely linked genes responsible for red tuber colour and 
restriction of pigmentation, respectively; D, a basic gene for brownish and red colour in stems 
and inflorescences; Np, Ea and Eb, protein markers; ds-1, desynapsis; Gof-7, Got-2, Pgm-2, 
Sdh-1, Aps-1, Prx-3, ldh-1, Adh-1, Pgi-1, 6Pgdh-3, Mdh-1 and Tpi-1, various isozymes. For a 
detailed description of the isozymes see Quiros and McHale (1985) and Jongedijk et al. (1991). 
t a, b, and c following values represent 4x-2x, 2x-4x, and 2x-2x potato progeny, respectively. 
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Material and methods 

Plant material 

Table 2 lists the origin of the diploid clones used in the HTAs and their ability to produce In 

gametes. In all diploid clones the extreme resistance to PVX traces back to S, tuberosum ssp. 

andigena and that to PVY to Solanum stoloniferum. In the diploids, derived from the cv. 

Alcmaria and the CPRO-DLO genotypes Y66-13-610 and Y66-13-636, the resistance to 

pathotype Ro, of Globodera rostochiensis is conferred by the dominant gene W, from 5. 

tuberosum ssp. andigena. In the gene symbols the origin of the genes has been omitted, thus 
Rx=Rxand. etc. Both parents of the cv. Pansta are resistant to pathotype Ro,. In the female 

parent the resistance is caused by H„ whereas in the male parent polygenes from Solanum 

vernei are involved. The 4x progeny from 2x-4x crosses of 2x-Pansta pi 3 were found to be 

either completely susceptible or resistant. Each genotype was tested in duplicate through a so-

called pot test. Because no intermediate types of resistance were found, we have assumed that 

only a major gene (presumably H,) is present in 2x-Pansta pi 3. All diploid clones used in the 

HTAs were heterozygous for the resistance genes, whereas all tetraploids susceptible to PVX, 

PVY, or nematodes had the nulliplex condition. 

Screening for resistance to PVX 

From each genotype, two plants of the first clonal generation were inoculated mechanically 

with strain X5 of PVX, provided by the Research Institute for Plant Protection (IPO-DLO), 

Wageningen. From the second clonal generation two plants per genotype, derived from the 

two inoculated clones of the former generation, were selected visually for resistance to PVX. 

In addition, an ELISA test was performed on tubers from 50 genotypes of the third clonal 

generation, which genotypes had been identified as resistant to PVX based on the two previous 

cycles of selection. The aim of this test was to elucidate whether tolerant plants were present 

among the group of plants assumed to be resistant. In the ELISA test two plants per genotype 

were tested, of which one plant was reinoculated to evaluate the presence of escapes after the 

first inoculation. Seedlings from 4x-2x crosses were treated as follows. Young seedlings were 

twice inoculated mechanically with PVX (isolate from cv. Osa) with a 2-day interval. Screening 

for resistance was done three to six times, in a combination of a visual and a serological test. 

Subsequently, the first and second clonal generation were screened in the same manner. 

Infected tobacco plants were used as a positive control. A third test was performed using 

plants identified as resistant in the second clonal generation. Infected scions of tobacco were 

122 



l_l 

o 
Ol 

E 

c 
o 

•g 

o . 

ai 
CL. 
> N 

•*-f o 
c 
ai 
CD 

T3 
c 
(TJ 
to 
ai 

• * - » 
ai E 
03 
en 
C 

rM 
ai 
i_i 

"O 
O 

JU 
tv 

"O 
c 
03 

X 
c 
l/l 
ai 
c _o 
u 

"O 

o . 
TD 
M— 
O 
c 

' g i 

Ö è« 
rsi T3 

-° o ro >; 
I - O: 

n 

Ol 
U 
O 
n 
ai 
c 

(VI 

ai 
en 
r m 
cc 

<. 

c 
^ 1 

"5 
Q 

c 
rvi 

ai 
O) 
c 
03 

cc 

'vï' 
ai 

os 
2 

ai 

>-. ü c 
ai 

c 
' a i 

ai 
"O 
o 

U 

oo ro oo t v u-> oo 
i— LT) <— 

i i i i i i 
O (NI oo ^ o « -

a . 
> 
LO 
ai 
E 
i_ 
o 

i/i o o 
C: T3 "O 
03 

: § 

cd 

00 LTI lO <x> «— IX) LJ 

m j v | v oó rvj O iJ 
r\i «— Q 

c 
O 

^ O O IX) 
a i öS I N ^ 

(NI « - ^f 

| v i - l û O 
I N 0 O Ó 6 

o i n i D - -
uS ici r v co' 

c 

E 

ro 
c 
o 
l/l 
L_ 

ai 
O-

b b 

af «e i ^ c c c c 

' X X X 

><" * * V;" * ? x " * " * " * " *•" x " r-~ 
c c c c c c c c c c c c c c c c c c Q c ^ -

tzr .03 ,Q3 

x rcs TO 2 ra 

l ) h - _ <-> ^ £ £ 
V K I— < < Q_ Q_ 
x . x . . . . 

'S-, i— C? ^ > > > > f 2 T C , l — >- <_i u <_i u 

x ^ y 'S o 5̂ 'S 

i i 1 ~ ' ^ - ' f c . _ 0 _ 0 _ 0 _ 0 
x x ** x . S - . S - . S - . S -

1— 1 1 o . Q O Q Û 

O IX) 
<— rn 
<X> IX) 
m rn 

i i 
IX) 1X1 
WD IX) 
>- >-
ai ai c c 
o o 
u u 
iS iS 
<tf -sf 

O O 
"O "O 
o o 
.9- °-
Q Q 

"O 

_S ai ai 
x ? o " § 
~ l_l l-l 

=5 03 03 w c c 
o ai ai ai 

na
-tu

be
 

ed
 a

nd
i 

ed
 an

d;
 

su
m

 c
lo

 

ai y y o Dl c c > = 

T3 > > -O c "a -g 3 
<t < < P= 
* >< >k * 

v t v t v t vi" 

gj ai 
™ ' c 

§ 5 

a l ' 
4P 4P 

ai ai 

o o 
CL. CL. 

00 

IX) o o 
co co m o 
en lO rvi (vi 

i i i i 
<J\ i— (VI (VJ 

rv oo co co 

Q Q Q Q 

- D . - Q . r o co 

X— .03 f0 

<^ 1X1 
- = - = U3 rv 
" - " - I O rv co 

o ID fVI (NI co 

03 03 

E E 
L-l >-l 

< < 

ro 
ro ro v t 

rv rsi i n 
v t v t ^ t 
r o rsi >— 

00 « - rsi ^i 
£ ' l u I Û . 
ro ix> ixi r : 

cC >- > co 

i v r o 
rv oo 

* V; >< i< 
rsi rsi rsi rsi (vj rsi 

X ) T3 

< < < 

03 _ 
c ra ro 2 . 
E N t .Ç? 

i u m U > 

c 
(V| 
ai 

. a 

- o 
ai 
E 

E 
3 . 

rvi 
(VI 

ai 
4-* 
ai 
E 
03 

T3 
O) 

x : 

c 
03 
O) 

1 
O) 

1 
c' »o 
Q x 

c 
ai 

o 
O-

is 
O o 

* - O 

O o-i 
CL ' 

c 
(IJ 
E 
ai 
3 
03 
ai 
b 
ai 

(vï U 
'S ia, 

th
e 

m
od

e 
P,

 S
.p

hu
r 

ai 
E . 
03 l/l 

C S 

• ^ rvl 
" a c 
ai -
03 ?"• 

.i s 
ai i -
" o. 
O) a -
> w 
•* "o 
c ai 
ai ai 

— co 
o M-
CL o 

S i 
ai ~,-

ai gj 
c to 

i_ io 
ai 2 

"° I 
~ U-, O) 
>/i . . = 
LO . » CL 
o ai ™ 
ï-. "> P 
o ^ c 
v a i >< 

(VJ p •** 
^S 03 * 
Vt 4^ (NI 

"O - T 3 
S i U « 
3 E 3 

LO £ l/l 
ai o ai 
C O C 

o S o 
u ai u 
•5 "§75 
'o "-: o 
9-10 9-

u ts ai 

http://-D.-Q.ro


grafted onto potato rootstocks (three plants per genotype). Two nongrafted plants per 

genotype were used as a negative control. The presence or absence of PVX in the potato plants 

was detected serologically in two samples. The serological detection of PVX was additionally 

done on tuber progeny from graft inoculated plants. 

Screening for resistance to PVY 

From each genotype, two plants of the first clonal generation were inoculated mechanically 

with strain PVY0, provided by the IPO-DLO, Wageningen. Screening for resistance was done 

by visual selection. From the second clonal generation again two plants per genotype, derived 

from the inoculated two clones of the former generation, were selected visually for resistance 

to PVY. 

Screening for resistance to nematodes 

For testing nematode resistance plants were grown in pots filled with loam and inoculated with 

a volume unit of about 30 cysts per pot (pathotype Ro,). About 8 weeks after inoculation the 

number of cysts on the root ball of each plant was determined. Plants containing roots without 

cysts were assumed to be resistant. 

Cytological methods and method of estimating gene-contromere map distances 

Tetraploid testcross progeny were selected by establishing the mean number of chloroplasts 

in stomata or by counting the number of chromosomes in root-tip meristems (Wagenvoort and 

Lange 1975). Chromosome behaviour in meiosis was studied as described by Wagenvoort and 

Ramanna (1979). For estimating gene-centromere map distances we used the 2x-4x cross 

instead of the reciprocal cross, as was advocated by Mendiburu and Peloquin (1979). These 

authors assumed single-exchange tetrads (SETs) only, and consequently in that case the 

proportion of SETs is a linear function of the map distance between the locus in question and 

the centromere. The heterozygous diploids used in this study were assumed to have SDR In 

egg cells, because they had normal synapsis at meiosis. FDR at the female side predominantly 

occurs under desynaptic conditions because of the successive type of cell wall formation at 

megasporogenesis (Jongedijk 1985). If double or higher order crossovers do not occur, the 

gene-centromere map distance in the case of SDR can be calculated with the formula: 

(0.50 - frequency of nulliplex progeny) x 100 cM (Mendiburu and Peloquin, 1979). In the case 

of FDR the gene-centromere map distance = 2 (frequency of nulliplex progeny) x 100 cM. Once 

the gene-centromere map distance is known, it can be used to deduce the mode of 2n-gamete 

124 



formation in In pollen producing diploids. Binomial confidence intervals were calculated using 

the expression: 

p-2 pq „ -, pq 
y\ N \ N 

giving approximate 95% limits to p, where p and c/ are the frequencies of susceptible and 

resistant plants, respectively, and N is the total number of plants (Clarke 1982). 

Heterozygosity at the Rx locus in diploid pollen parents and seed parents employed in half-

tetrad analysis was checked by 2x-2x testcrosses. Segregation of the genes Ryand H, was not 

evaluated at the diploid level because from the present genotypes no suitable offspring was 

available. However, tetraploid testcross progeny segregated for these genes, indicating 

heterozygosity of the diploid parents. In the case the diploids were homozygous, the tetraploid 

testcross progeny would not segregate irrespective of the incidence of SDR or FDR. 

Results 

Evidence for the formation of In eggs by SDR in one diploid was obtained from segregation 

of the P locus in the progeny from the cross (2x-Pansta pi 3) x (And 83-2242-887). The P locus 

is responsible for the purple colour in various organs and tissues of the potato. From progeny 

evaluated for sprout colour, it could be deduced that 2x-Pansta pi 3 was heterozygous for P, 

whereas And 83-2242-887 had the simplex condition. Thus the cross was Pp x Pppp. Assuming 

chromosome assortment in the tetraploid and using the map distance of P, viz., 13 cM, 

estimated by Mendiburu and Peloquin (1979), the predicted frequency of nulliplex plants is 

18.5% in the case of SDR In eggs. The ratio 73:25 found for purple sprouts to red sprouts did 

not deviate significantly from the expected ratio 80:18 at P=0.05. With respect to Rx, all diploid 

populations segregated in accordance with the expected 1:1 ratio of resistant to susceptible 

except the offspring of 2x-Alcmaria pi 8 (Table 3). The deviating ratio found in this population 

could be due to lethal or sublethal factors occurring in 2x-Alcmaria pi 8, because 29.5% of the 

seeds sown did not germinate. 
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About 300 plants from 2x-4x progeny appeared to be tetraploids (2n=4x=48). No triploids 

were found, pointing to a strong triploid block operating in the 2x-4x crosses. Some triploids 

were found in the offspring of 4x-2x crosses. 

Estimation of the gene-centromere map distance of the gene H, 

Table 4 presents the pooled numbers of resistant and susceptible clones of four families derived 

from 2x-4x crosses. Three heterozygous diploids and four male parents, nulliplex for H,, were 

used for establishing these families. In total 65 plants (33.7%) out of 193 were susceptible. To 

test the homogeneity for segregation of H, across the four families their ratios for resistant to 

susceptible were compared with the ratio 128:65 of the pooled data (Table 4). All were 

homogeneous: P(%2 homogeneity)> 0.05. The calculated gene centromere map distance of Hu 

based on the mean frequency of nulliplex plants and calculated from the pooled data, was 

16.3 cM with a 95% CI of 9.5-23.1 cM. This CI was derived from the CI for the percentage 

of nulliplex plants. 

Estimation of the gene-centromere map distance of the genes Rx and Ry 

Table 4 presents the pooled numbers of resistant and susceptible clones of seven tetraploid 

families segregating for Rx and two tetraploid families segregating for Ry. Four diploids 

heterozygous at the Rx locus and one diploid heterozygous at the Ry locus were used for 

establishing these families. Homogeneity tests revealed no significant differences between seven 

populations: P {%2 homogeneity) > 0.05" for segregation of both Rx and Ry. About 16% of the 

273 clones investigated for resistance to PVX were susceptible. The calculated gene-centromere 

map distance of Rx, based on the mean frequency of nulliplex plants and calculated from the 

pooled data was 33.9 cM with a 95% CI of 29.5-38.3 cM. Compared to H„ the gene Rx is 

sited more distally on the chromosome. 

In total 53 tetraploid clones were screened for resistance to PVY. The percentage of nulliplex 

progeny was 35.8%, which estimates the gene-centromere map distance for Ry at 14.2 cM 

with a 95% CI of 1.0-27.4 cM. 

The mode of 2n-pollen formation in four diploid interspecific hybrids 

From the map distance of Rx estimated by the 2x-4x cross (33.9 cM), the frequency of 

susceptible plants in progeny of reciprocal (4x-2x; see Table 2) crosses may be predicted. In the 
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case of FDR and SDR In pollen the 95% CIs of the percentages of susceptible plants under the 

assumption of SETs only would be 14.8-19.2 and 11.7-20.5%, respectively. These CIs were 

calculated on the basis of the observed 16.1% susceptible plants in the Ax families, derived 

from the 2x-Ax crosses, and using the formulas of Mendiburu and Peloquin (1979). Because 

these CIs largely overlap, a HTA aimed at discriminating between FDR and SDR 2n-pollen 

formation is useless. To ascertain whether the assumption of SETs is correct, Ax progeny from 

Ax-2x crosses were evaluated. Table 5 presents the segregation of Rx in Ax progeny from Ax-2x 

crosses involving diploid interspecific hybrids. The Ax-2x crosses resulted in a total of 781 plants 

of which 68 (8.7%) plants were susceptible to PVX. The frequency of nulliplex plants falls 

outside the range of the predicted 95% CIs of both FDR and SDR 2n pollen. In addition, the 

results (not shown) of cytological analyses of the four diploids involved in the Ax-2x crosses 

could not fully elicit the mode of 2n-pollen formation in the four hybrids. 

Discussion 

The purpose of the study was to assess the gene-centromere map distances of the genes Rx, 

Ry and H, and their possible use in discriminating between FDR and SDR gametes. The position 

of both H, and Ry was estimated to be relatively close to the centromere. If the model of 

Mendiburu and Peloquin (1979), assuming SETs only, is accepted, H, and Ry should be valuable 

markers to discriminate between FDR and SDR via a HTA. Unfortunately, for these genes, 

progeny of Ax-2x (Table 2) crosses were not available. The position of Rx, relative to the 

centromere, is unfavourable because with a map distance of 33.9 cM the expected frequency 

of nulliplex plants in progeny of 2x-Ax or reciprocal crosses is the same, irrespective of the 

occurrence of FDR or SDR. 

Ross and Langton (1974) found 13.3% susceptible plants in a HTA with the gene Rx from 

Solanum acaule using a 2x-Ax cross. These authors considered it unlikely that all resistant 

progeny had resulted from crossing over between the centromere and Rx and, therefore, 

concluded that the In eggs were produced via FDR. However, FDR in normal synaptic eggs is 

less likely. The putative FDR restitution mechanisms in synaptic clones reported by Conicella et 

al. (1991) and Werner and Peloquin (1991), in our view, hardly have any significance. 

If only SDR and SETs occurred in the diploid clones used by Ross and Langton (1974), the 

calculated map distance would have been 36.7 cM which is within the 95% CI for SDR 

estimated in this study. This might suggest that the genes for extreme resistance to PVX in 5. 

andigena and 5. acaule are allelic. However, recently Ritter et al. (1991 ) reported that the genes 
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for extreme resistance to PVX in 5. andigena and 5. acaule mapped to the distal end of 

chromosome 12 and an intermediate site on chromosome 5, respectively. For this reason, these 

genes are not allelic. 

The frequency of 8.7% nulliplex plants found in the Ax progeny of the Ax-2x crosses was 

neither within the predicted range of 14.8-19.2% for FDR nor within the predicted range of 

11.7-20.5% for SDR. Several hypotheses can be put forward to explain this discrepancy. 

Double or higher order crossovers between the Rx locus and the centromere might occur. 

In the absence of chiasma interference, which implies a Poisson distribution of chiasmata, the 

proportion of nulliplex plants no longer would be a linear function of the map distance 

(Jongedijk et al. 1991). In addition, map distances exceeding the theoretical limit of 33.3 cM 

would rarely be detected. However, for one gene (D, Table 1) a map distance beyond 33.3 cM 

was reported, possibly as a result of positive chiasma interference favouring the formation of 

single exchanges. If random multiple exchange tetrads (METs) occur and In gametes are 

produced by SDR only, the expected frequency of nulliplex plants would range between 16.7 

and 50% (Jongedijk etal. 1991). The 8.7% nulliplex plants found in this study was not within 

this range, so the hypothesis of a gametic pool originating from random METs and SDR 2n 

gametes only was rejected. 

In the case of random METs and 2n gametes, produced by FDR only, the mean number of 

chiasmata formed between Rx and its centromere (x) can be calculated with the formula fDR 

(nulliplex) = l „ e-x-x7n!.1/6.[1-(-1/2)n] (Jongedijk et al. 1991). By substituting the observed 

frequency of nulliplex plants (8.7%) in the given formula, it was estimated that x is about four, 

suggesting that the Rx locus is not actually linked to its centromere. However, it seems unlikely 

that the assumption of random METs and FDR only holds true. Firstly, random METs in 

combination with SDR could not be responsible for the 16.1% nulliplex plants found in the 

offspring of the 2x-4x cross. Secondly, a difference in chiasma formation in male and female 

meiosis is unlikely, as Jongedijk and Ramanna (1989) and Jongedijk et al. (1991) found 

consistent absence of sex differences in overall chiasma frequencies and chiasma distribution 

among chromosomes in potato. There is also cytological evidence from a study of Stack and 

Anderson (1986) that double and higher order crossovers do not occur frequently in another 

Solanaceae viz., the tomato (Lycopersicon esculentum), where they found only one to three 

recombination nodules per synaptonemal complex (SC) during pachytene. Because of the 

striking structural resemblance of chromosome arm lengths and distribution of heterochromatin 

between tomato and potato chromosomes at pachytene (Gottschalk and Peters 1955), the low 

frequency of recombinations (0.5-1.5 per chromosome arm) found in tomato might also occur 
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in potato. Recently, M.W. Bonierbale (personal communication) found that double and higher 

order crossovers are rare in a hybrid population segregating for restriction fragment length 

polymorphisms. Therefore the hypothesis of a gametic pool originating from random METs and 

FDR In gametes only was rejected. 

The chiasma frequency could be lower in the diploid hybrids used in the Ax-2x crosses (Table 

2) than in the diploids used in the 2x-Ax crosses. FDR In pollen is assumed to occur in three 

diploid hybrids used in the Ax-2x crosses since fused spindles and (or) parallel spindles were 

observed at second metaphase of meiosis. Although the frequency of these spindle orientation 

types did not correspond well with the frequency of dyads in two of three clones (data not 

shown), the incidence of predominantly FDR In pollen was expected since no other cytological 

aberrations were found. If no crossovers have occurred between Rx and the centromere, all 

FDR 2n gametes are expected to be Rxrx. However, in the case of a single crossover between 

the locus in question and the centromere, the frequency of heterozygous gametes is reduced 

to 50%, and the frequency RxRx and of rxrx gametes would be 25%. Thus, it can be 

calculated that a frequency of SETS of 34,8%, being 33% lower than in the diploids used in 

2x-Ax mapping, would be sufficient to explain the 8.7% nulliplex plants found in the offspring 

of the 4x-2x cross. Douches and Quiros (1988) also suggested that genomic differentiation 

between S. tuberosum and S. chacoense could account for the reduced recombination levels 

found in the species hybrids. 

Using 2x-Ax crosses gene-centromere map distances have been estimated for three marker 

loci. Since the diploid seed parents are likely to form 2n eggs by SDR only, these estimates are 

probably reasonable in case of Ry and /-/,. As to Rx, the 33.9-cM map distance indicates that 

this locus segregates independently from its centromere. Another conclusion might be that 

reduced recombination rates due to genomic differentiation may seriously defeat attempts to 

determine the mode of 2n-pollen formation in diploid clones genetically, even if marker loci 

that are located close to their centromeres are used. HT As using the Ax-2x cross are less 

valuable to predict the frequency of susceptible plants as well as to estimate the gene-

centromere map distance because both FDR and SDR restitution mechanisms might 

simultaneously occur in the same diploid clone (Ramanna 1979). The Ax-2x cross is more useful 

in HTAs if desynaptic diploid clones are involved, as was demonstrated by Jongedijk ef ai 

(1991). 
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CHAPTER 6 

Spontaneous structural rearrangements in Solanum phureja Juz. et Buk. 

3. Gene-centromere mapping of ym (yellow margin) by half-tetrad analysis 

and variable expression of Fp (spectacle). 

Summary 

A diploid (2n = 2x = 24) interchange heterozygote of Solanum phureja Juz. et Buk. produced 

In pollen by fused, 'tripolar' and/or parallel spindles at second metaphase of meiosis, giving 

rise to predominantly first division restitution 2n pollen. A relative map distance of 31.7 

centimorgan was estimated by a half-tetrad analysis (HTA) for the distance between ym 

(yellow margin) and the centromere which was similar to the distance estimated for the non-

interchange situation. In diploid progenies from diploid testcrosses, segregation for spectacled 

tubers fitted the hypothesis of control by heterozygosity (genotype IF) at the /-locus and the 

presence of the basic pigmentation genes R or P. A remarkable shortage of spectacles was 

found in Ax progenies from both 2x x 2x and Ax x 2x crosses probably due to non-expression 

of the genes involved. This made HTA-mapping of the gene F impossible. 

Key words: Solanum phureja Juz. et Buk., interchange heterozygote, 2n pollen, gene-

centromere mapping, gene expression 
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Introduction 

In diploid (2n=2x=24) potatoes, several meiotic restitution mechanisms which can give rise to 

2n gametes have been found. Considering the genetic consequences, two distinct modes of 

2n gamete-formation are distinguished: first division restitution (FDR) and second division 

restitution (SDR). Basically FDR In gametes include non-sister chromatids, whereas SDR In 

gametes comprise sister chromatids. Once the mode of 2n-gamete formation has been 

determined cytologically, the so-called half-tetrad analysis (HTA), which takes advantage of 2n-

gamete formation in the diploid parent in 4x-2x or 2x-2x matings, can be used to map single 

genes with respect to the centromere (Mendiburu et al., 1974). Ramanna (1979) stated that 

it is not always possible to predict on the basis of a certain meiotic abnormality during 

microsporogenesis alone whether FDR or SDR will occur. In potato, a number of loci have been 

mapped by establishing the map distance to the centromere through 4x-2x, 2x-4x, and 2x-2x 

crosses. A summary of relative map distances of morphological characters and isozymes 

reported in the literature has been composed by Wagenvoort & Zimnoch-Guzowska (1992). 

The morphological marker ym (yellow margin) was mapped 34.16 centimorgans (cM) relative 

to the centromere via 4x-2x crosses, and 36.08 cM via 2x-4x crosses, (Jongedijk et ai, 1991). 

The diploid parents used in these HTAs were synaptic and produced In pollen by FDR or In 

eggs by SDR. 

The diploid clones of Solanum phureja Juz. et Buk. designated 1931 and 1936 are 

heterozygous for an interchange between chromosome 3 and possibly chromosome 12, for 

one or two paracentric inversions, and also for the marker ym (Wagenvoort, 1988). In these 

clones the dominant allele Ym was assigned to the interchanged arm of chromosome 12. 

Clone 1936 produced seeds after selfing. Trisomies (2n=2x+1=25) were found in the first 

inbred generation of 1936 and were identified as tertiary trisomies or primaries being 

homozygous for the interchange (Wagenvoort, 1994). 

In order to establish the genetic constitution of both the normal chromosomes 3 and 12 and 

the interchanged chromosomes 3'2 and 123 concerning the loci 5 (gametophytic incompatibility) 

and ym and with respect to the breakpoints (T) of the interchange, it was necessary to 

ascertain the recombination rate of ym in the interchange heterozygote. If this recombination 

value could be compared with the estimate made by Jongedijk et al., 1991, who used a 

different approach, inferences regarding the degree of interference, if any between ym and 

the centromere, could be drawn. In that case the relative map distance of ym to the 

centromere estimated in the interchanged chromosome can be used in further genetic analysis 
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of progenies of 1931 and 1936. Thus, 4x x 2x testcrosses were performed for mapping the 

monogenic recessive gene ym by HTA using the genotypes 1931 and 1936. 

Dodds & Paxman (1962) showed that in cultivated diploid potatoes the spectacle pattern 

(failure of pigmentation around the eyes of an otherwise pigmented potato tuber) is controlled 

by heterozygosity at the /-locus, expressed only in the presence of the basic pigmentation genes 

R or P. The /-locus is genetically independent of the loci R and P (Dodds & Long, 1956). 

Together with R or P only combinations of the alleles / and f are spectacle; the other 

combinations are either self-coloured (uniformly coloured) (//, //) or white (/';', /7P, WXDodds and 

Paxman, 1962). The distance between the / locus and the centromere is not known. The 

genetics of spectacle in diploid potatoes and somatic segregation of the spectacle pattern in 

tetraploid 5. tuberosum L. ssp. andigena Juz. et Buk. has later been studied by Simmonds 

(1969, 1973). This author suggested that / is a compound locus such that l=lsp, P"=iSp and 

i=isp. Simmonds could not detect the double dominant ISp but found one heterozygote (Isp 

isp) with self-coloured tubers and a rather consistent shortage of spectacles in several diploid 

families suggesting that such heterozygotes may be fairly frequent. Furthermore, Howard 

(1967) concluded that variability of spectacle expression depends upon the presence of the 

gene M, sofar found only in the tetraploid potatoes. 

In this paper the relative distance of ym to the centromere in the interchange situation is 

estimated and the occurrence of chiasma interference and the mode of 2n-gamete formation. 

In addition, it was attempted to map fp with respect to the centromere since in our study 

normal segregation for spectacle was observed in diploid populations. 

Materials and methods 

Plant material 

In Table 1 the origin is listed of the diploid and tetraploid clones used in test-crosses and in 

HTA-mapping. Also included in Table 1 are their respective tentative genotypes, based on 

phenotype and the presence or absence of segregation in the diploid and tetraploid progenies 

(Table 3) for the traits yellow margin and tuber pigmentation. The diploid mutant for yellow 

margin, viz. Ym76-1-15 was selected from 5. phureja (Wagenvoort, 1982). From this clone a 

tetraploid (2n=4x=48) was produced through tissue culture using the method by Roest & 

Bokelmann (1976). The two diploid desynaptic clones designated M6 and SY7, produce FDR 

In egg cells, and were kindly supplied by Dr. M. Masson, Evry, France. These clones were 

previously selected by the group of Dr. S.J. Peloquin (University of Wisconsin, Madison, USA), 
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from the progeny of the cross W5295.7 x W5337.3, both parents being hybrids between S. 

phureja (2n=2x=24) and S. tuberosum dihaploids (2n=2x=24). 

Crosses were made on plants grafted onto tomato root stocks and on plants grown on 

bricks in a temperature-conditioned glasshouse. 

Heterozygosity at theym-locus in the diploids 1931 and 1936 was checked in the first inbred 

generation of 1936 and in an F, progeny of both clones. Segregation for spectacle (IF) was 

checked in diploid offspring of white x spectacle and reciprocal crosses within 5. phureja. 

Testcrosses (2x x 2x and 4x x 2x) for F were carried out using two tetraploid cultivars of S. 

tuberosum L. ssp. tuberosum Hawkes and two diploid hybrids between S. phureja and 2x 

S. tuberosum ssp. tuberosum as female and 1,268 as male parent. The /-locus in the diploid 

species is equivalent to the D-locus in tetraploid S. tuberosum ssp. tuberosum and ssp. 

andigena (Howard, 1970). The dominant gene D causes a brown-reddish colour in the stem, 

the leaf petioles and the inflorescences, and is along with another dominant gene R 

(anthocyanin production) responsible for deeply red colouring of the phelloderm of the tubers 

(Howard, 1970). The P-locus is responsible for the biosynthesis of purple pigments in various 

plant parts. The inheritance of anthocyanin pigmentation in the cultivated potato has recently 

been reviewed by De Jong (1991 ). According to Dodds & Long (1956), the effect of / is limited 

to the tuber whereas, in the tetraploid scheme, D is considered to have an effect throughout 

the whole plant (De Jong, 1991). In this paper the notation of Dodds & Long (1956) is used 

for the gene which is responsible for the tuber-specific expression of the genes R and P in 

diploid and tetraploid potatoes. A iiii-R genotype has white skinned tubers. The two cultivars, 

Bintje and Civa, are expected to be nulliplex at the /-locus as both have white tubers and 

purple and red pigments in the sprouts respectively. Progeny of testcrosses of Bintje x 5. 

phureja (recessive for the P-locus) segregated for purple hypocotyl colour in ratios (data not 

shown) pointing to Bintje being duplex P at the P-locus. Seedlings of testcrosses of Civa had 

uncoloured hypocotyls, this cultivar was considered to be nulliplex at the P-locus. If there is no 

crossing-over between F and the centromere and only FDR 2n pollen is functional, all 

pigmented tubers in the Ax progenies (the crosses being //' x IF and I'm x IF respectively) are 

expected to be spectacled. If there is always one cross-over, the ratio of self-coloured:spectade: 

white in the 4x mapping population will approach 1:2:1. 

Cytological methods and method of estimating gene-centromere map distance 

Ploidy level of 4x-2x progenies and of plants from tissue culture was determined by counting 

the number of chloroplasts in the stomatal guard cells after staining with iodine-potassium 
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iodine. Whenever in doubt the number of chromosomes was counted in root meristems 

according to the method described by Wagenvoort & Lange (1975). Study of various stages of 

meiosis in the diploids were carried out as described by Wagenvoort & Ramanna (1979) in 

order to ascertain the mode of male and female 2n-gamete formation. 

For estimating the map distance of ym to the centromere in the interchange situation the 

4x-2x cross was used since 1931 and 1936 produced 2n gametes only at the male side. 

Mendiburu & Peloquin (1979) assumed only single-exchanges to occur in potato. Under that 

assumption the proportion of single-exchange tetrads is a linear function of the map distance 

between the locus in question and the centromere. In case of FDR the gene-centromere map 

distance = 2 (frequency of nulliplex progeny) x 100 cM (Mendiburu & Peloquin 1979). The 

binomial confidence interval was calculated using the expression 

p-2 
\J A/ \ 

pq 
N 

giving approximately 95% limits to p, where ]5 and £ are the frequencies of plants with and 

without the trait, respectively, and N is the total number of plants (Clarke 1982). 

Results 

Half-tetrad analysis with ym 

The diploid clones 1931, 1936 and 1,268 were studied at Mil and later stages of meiosis in 

order to trace the mode of 2n-pollen formation. In Table 2 the frequencies of fused spindles 

and parallel spindles at Mil are presented along with the distribution of the chromosomes at 

All/Til and the dyad, triad and tetrad frequencies at the sporad stage. The relative contribution 

of fused spindles to the pool of big pollen grains in the clones 1931, 1936 and 1,268 was 

52.9, 66.7 and 85.0 % respectively, whereas the dyad frequency exceeded the frequency of 

fused spindles. Triads were found in 3-5 % of the PMCs analysed at the sporad stage. They 

will give rise to SDR or FDR In pollen depending on whether either one of the equational walls 

has failed to form or the reductional wall is partly formed respectively (Ramanna, 1974). In 

1,268, where parallel spindles were nearly lacking, there was a close correspondence between 

the frequencies of fused spindles at Mil and dyads at the sporad stage (Table 2; Figs. 1 and 2). 
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In Fig. 2 a region of an anther is shown in which only dyads occur. Variation in the frequency 

of dyads occurred within and between anthers of the same plant. Therefore, it was reasonable 

to conclude that fused spindles predominantly contributed to the pool of In pollen of 1,268 

and consequently gave rise to FDR In pollen. For 1931 and 1936 fused as well as parallel 

spindles probably contributed to the pool of In pollen, also giving rise to FDR In pollen. 

The Ax mutant for yellow margin was crossed to 1931 and 1936, the crosses being 

ymymymym x Ymym. The triploid offspring of these Ax-2x crosses segregated for ym in 20 

normal versus 26 mutant, which was consistent with the expected ratio 1:1 (x2 = 0.78, P > 

0.30). In the tetraploid offspring the ratio 249 normal to 47 mutant was found. In the case of 

FDR 2n pollen all mutants originate from crossing-over between ym and the centromere. Using 

the formula Mendiburu & Peloquin (1979) a map distance of 31.7 cM was calculated with a 

95% binomial confidence interval of 27.5-35.9 cM. 

Test-crosses with f. 

In microsporogenesis of M6 and SY7 normal chromosome pairing at pachytene (Fig. 3) and 

predominantly univalents at diakinesis (Fig. 4) and Ml (Fig. 5) were found. After Ml the 

chromosomes orientated and divided mitotically (Fig. 6) forming restitution nuclei. This 

chromosome behaviour in microsporogenesis of M6 and SY7, indicated pseudo-homotypic 

division by Gustafson (1935), confirmed that these clones were desynaptic and had the ability 

to produce viable FDR In pollen. SDR In gametes would be unviable owing to genetical 

unbalance. The In eggs produced by these clones are also expected to be of the FDR type 

because the recessive gene responsible for desynapsis in these clones equally affects 

microsporogenesis and megasporogenesis (Jongedijk & Ramanna, 1988). Some Telophase I cells 

were found with a 12-12 chromosome distribution. Not a single PMC was found in both clones 

showing chromosome orientation as in a regular second Metaphase. Cells with four groups of 

n = 12 chromosomes along with cells containing two groups of 2n = 24 chromosomes were 

found (Fig. 7). 

Tubers from 1,268 were spectacled red and those from 1,258, F,640, M6, SY7, Bintje and 

Civa were entirely unpigmented. In the progenies from the diploid testcrosses, 1,258 x 1,268 

and 1,268 x F,640 the ratios found for white:self-coloured:spectacle fitted the expected ratios, 

calculated on the basis of the assumed genotypes (Table 3). In Ax progenies from the crosses 

between M6, SY7, Bintje and Civa, used as female parents and 1,268 as male parent, the 

frequency of spectacles among the plants with pigmented tubers is expected to vary from 
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66.6-100%, depending on the rate of crossing-over of fp. However, a remarkable shortage of 

spectacles was found in these Ax progenies (Table 3). In the offspring of the cross between 

Bintje and 1,268, spectacles were not at all observed among the 55 plants with self-coloured 

tubers. Out of these 55 plants, 12 had red tubers and 43 plants had purple tuber skin varying 

from reddish-purple to flecked light purple. In addition, all plants of the Ax progenies had 

round tubers suggesting that 1,268 is homozygous for a single dominant gene controlling 

round tuber-shape, since Bintje and Civa themselves produce tubers with oval and long-oval 

shape respectively. 

Discussion 

Parallel orientation of Mil spindles may, but need not necessarily result in 2n-pollen formation 

(cf. Mok & Peloquin, 1975; Ramanna, 1979; Wagenvoort, 1986). Parallel spindles found in 

1931 and 1936 in this study may have partly contributed to the pool of 2n-pollen, indicated 

by the strong correlation between the occurrence of fused/parallel spindles, and dyads (Table 

2). 

The relative distance of ym (31.7 cM) to the centromere as found in this study was similar 

to that (viz. 34.16 cM) reported by Jongedijk etal. (1991) who in the 4x-2x testcross used the 

same Ax mutant and a synaptic diploid clone not carrying an interchange. The similarity of the 

map distances of ym assessed in both studies suggests that crossing over in 1931 and 1936 

was not influenced by the presence of the interchange. This outcome also demonstrates that 

the position of the locus relative to the centromere has not been changed much owing to the 

interchange. Therefore, this map distance can be used in further genetic analysis of progenies 

from 1931 and 1936. 

The cytological observations in M6 and SY7, made in this study, partly correspond to those 

by Douches and Quiros (1988). With respect to the desynaptic condition of clone M6, no 

difference was found with the results by Douches and Quiros (1988). However, fused spindles 

orientation at Telophase II was reported by these authors but not observed in the present 

study. Meiotic stages of the second division were hardly seen and when PMCs in these stages 

were recognized as such, they showed non-reduction, i.e. the formation of (un)-balanced 

tetrads. Therefore, it seems more likely that the FDR In pollen in these clones is caused by 

desynapsis combined with pseudo-homotypic division than with fused spindles. 
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The shortage of spectacles in the Ax progenies of the 2x x 2x and Ax x 2x crosses might 

support Howard's (1967) opinion that expression of spectacle in cultivated tetraploid potatoes 

depends upon action of the pigment-restricting gene M. In the varieties Bintje and Civa this 

gene might be recessive. In cultivated diploid potatoes patterns that resemble the effect of M 

do occur but are rare according to Simmonds (1969). The same author concluded that 

expression of spectacle is largely dependent upon unidentified internal physiological factors and 

much less upon external environment (Simmonds, 1973). On the other hand, spectacle in the 

cultivated diploids is due to an allele at the /-locus and not to a gene similar to M (Dodds & 

Paxman, 1962). The possibility that the shortage of spectacles in the Ax progenies is due to 

differential expression of the gene f at the 2x and Ax level, rather than to action of gene M, 

would however, fit a genetical effect rather than an effect of internal physiological factors 

which somehow affects the pigment-producing enzyme system. In the present study the low 

and variable expression of spectacle made it impossible to determine the gene-centromere map 

distance of P. A similar case of apparent differential expression at the 2x and Ax level was 

found for the gene Me (metribuzin tolerance) by H. de Jong, Agriculture, Canada (Personal 

Communication). It therefore appears that for certain genes there may be differential 

expression at different ploidy levels. This, in turn, would have implications for a breeding and 

selection programme on the diploid level. Many breeders today develop superior diploid parents 

which will eventually contribute to superior tetraploid progeny. However, the underlying 

assumption of this procedure is that genes are expressed at various ploidy levels. Although this 

may be true for many characteristics (Keijzer-van der Stoel et al., 1991), the results discussed 

here indicate that it may not be true for all cases. 

The relative map distance of ym was successfully estimated by half-tetrad analysis and the 

mode of 2n-pollen formation by cytological analysis. The interchange apparently had no effect 

on the distance to the centromere. This map distance can be used for the placement of the 

gene on a gene map in potato. 
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Fig. 1. PMCs from 1,268 showing fused spindles at Mil. 

Fig. 2. Dyads at the tetrad stage in 1,268. 

Fig. 3. Two PMCs from SY7 showing complete synapsis at pachytene. 

Fig. 4. PMC from M6 showing desynapsis at diakinesis. 

Fig. 5. PMC from M6 showing 24 univalents at Ml. 

Fig. 6. PMC from M6 showing mitotic division of chromosomes after orientation at Ml. 

Fig. 7 PMC from SY7 showing cells with 4 groups of chromosomes and one cell with 2 

groups of chromosomes. 
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CHAPTER 7 

Location of the recessive gene ym (yellow margin) on chromosome 12 of 

diploid Solanum tuberosum by means of trisomie analysis1 

Summary 

Ten out of twelve primary trisomies of diploid 5. tuberosum were crossed as females with a 

recessive mutant for yellow margin (ym ym) obtained from 5. phureja. All primary trisomies 

used proved to be homozygous dominant. Trisomie plants from all ten F,'s were backcrossed 

with the mutant and trisomies from eight F/s were crossed also with a heterozygous F, plant 

from the chromosome 10-trisomic. 

In both BC, and half sib progeny of each trisomie type the mutant plants were easily 

identified because of their typical small roundish leaflets with yellow or reddish margins. The 

observed segregation ratios for normal to mutant were tested against the expected non-critical 

ratios and against various expected critical ratios. 

From the results of these tests it is concluded that the gene ym is most probably located on 

chromosome 12 of the potato. A hypothesis of linkage between ym and a gene lx for lethality 

is put forward. It is concluded that lx is not identical with a previously detected recessive gene 

l2 which is responsible for yellow cotyledons and lethality. 

Key words: Solanum tuberosum - trisomies - gene location - yellow margin - lethality 

1Slightly revised version of the paper published in Theor. Appl.Genet. 61:239-243 (1982). 
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Introduction 

In the genus Solanum only a few cases of gene location by trisomie analysis have been 

reported. A gene a for albinism was located on the long arm of chromosome 12 of 

5. chacoense by Lam and Erickson (1971), who used a di-isotrisomic of that species. Hermsen 

etal. (1973) associated gene v for chlorophyl deficiency with chromosome 12 of S. tuberosum. 

The latter chromosome 12 was numbered according to the identification of Yeh and Peloquin 

(1965) and is different from the chromosome 12 of S. chacoense reported by Lam and Erickson 

(1971). These authors used their own numbering of pachytene chromosomes of 5. chacoense 

(Lam and Erickson 1968). Lee and Rowe (1975) reported the association of the genes P and 

Ac with unknown iso-chromosomes of 5. chacoense. 

The P locus controls the production of delphinidin in both flowers and tubers. Ac is 

concerned with the acylation of anthocyanins with p-coumaric acid (Harborne 1960). Lee and 

Rowe also located one of the two genes Gl,, and Gl2 on the long arm of chromosome 9. 

The genes Gl, and Gl2 were found to control the glucosylation of rutin (Harborne 1962). G/, 

is linked with Ac. The gene off (deformed flower), which in sensitive cytoplasm df is expressed 

as the character 'short anther' (Grun 1970; Grun etal., 1962) was associated with trisomie V 

1682.3 by Lee and Ruhde (1976). The extra chromosome of this trisomie was not identified. 

As soon as 11 of the 12 possible types of primary trisomies were available (cf. Wagenvoort and 

Ramanna 1979), crosses between these trisomies and plants which carried several marker genes 

were made. 

In this paper the location of a recessive gene ym (yellow margin) is reported and the possible 

linkage with a gene lx for lethality is discussed. 

Materials and Methods 

Pedigrees of all 5. tuberosum material (trisomies, dihaploids and inbred clones) used in this 

study have been described earlier (Wagenvoort and Ramanna 1979; Wagenvoort and Lange 

1980). The chromosome 10-trisomic which had an interspecific hybrid origin, was obtained 

from Dr. R.E. Hanneman Jr., Madison, Wisconsin, USA. The mutant for yellow margin was 

selected from the diploid species 5. phureja. Seeds of this species were kindly supplied by 

Dr. B. Maris (former SVP, Wageningen). A crossing scheme for the production of the BC,'s of 

crosses between F, trisomies (Ym ym or Ym Ym ym) and the mutant parent, and for the 

production of the half sibs of crosses between F, trisomies and a heterozygous (Ym ym) F, plant 
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from the chromosome 10-trisomic, is presented in Fig. 1. Trisomie F, plants of crosses between 

trisomies and the mutant were tentatively selected morphologically and their possible trisomy 

was checked in root tip cells. 

Chromosome 3-trisomic up to and including chromosome 12-trisomic xym ym 

trisomie F, pi x ym ym trisomie F, pi x Ym ym 

I I 
ßC/s half sibs 

Fig. 1. Crossing scheme for the production of BC/s and half sibs of crosses between F, 

trisomies (Ym ym or Ym Ym ym) and the mutant parent and a heterozygous (Ym ym) F, plant 

from the chromosome 10-trisomic respectively. 

Both the BC, and half sib progenies were assessed for the proportion of mutant plants and 

the observed ratios were tested for goodness of fit to the expected critical and non-critical 

ratios. In general random chromosome association was assumed. 

The methods for studying the chromosomes in mitosis and meiosis were the same as 

described by Wagenvoort and Lange (1975) and Wagenvoort and Ramanna (1979). Male 

fertility was estimated by staining the,pollen with lactophenol - acid fuchsin (Sass 1964). 

Results and Discussion 

The feature of yellow margin is generally characterized by small roundish leaflets with yellow 

or reddish margins. In some populations, however, the mutants showed variation with respect 

to the size of the leaflets. Fig. 2 shows three leaves: two are of the mutant phenotype, but 

only the leaf at the right shows the typical small roundish leaflets in combination with the 

yellow leaf margin. Originally the mutant was found in two families of crosses between normal 

plants of S. phureja, whose families segregated 65:28 and 78:21 for normal to mutant. The 

observed ratios fit the expected ratio 3:1, indicating that for both families the parental plants 

were heterozygous for the ym locus. A homozygous recessive plant was selected from one of 

these populations. This plant had a pollen stainability of 80-90%. Meiosis appeared to be 
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regular and no In gametes were observed in second metaphase or anaphase. 

F, plants from trisomies x mutant never showed the mutant character, indicating that the 

original trisomies are homozygous for the dominant allele Ym. The segregation ratios of normal 

versus mutant plants in the BC, generation are summarized in Table 1. The observed ratios 

were tested against the non-critical ratio 1:1 and against the critical ratios 2:1 (if f=0) and 3:1 

(if f=0.25), where f is the female transmission of the extra chromosome. For many trisomies 

a female transmission of 25% is a good estimate (cf. Wagenvoort and Lange 1980). The first 

test revealed that the observed ratios fitted the non-critical ratio 1:1 except in the chromosome 

11-trisomic x ym ym (Table 1). But in this case the deviation from 1:1 was an excess of 

mutants, which does not point to trisomie inheritance at all. 

Table 1. Segregation of normal versus mutant (ym ym) plants in ten BC, progenies of crosses 

between F, trisomies (Ym ym or Ym Ym ym) and the mutant parent (ym ym), as well as tests 

for goodness of fit to 1:1 (expected non-critical ratio), to 2:1 (expected critical ratio, if f=0.0) 

and to 3:1 (expected critical ratio if f=0.25), where f is the female transmission of the extra 

chromosome 

Trisomie 

chromosomes 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Normal 

39 

24 

46 

9 

72 

35 

47 

24 

4 

22 

Mutant 

36 

32 

44 

8 

75 

28 

46 

35 

13 

20 

Xl : l 

0.12 

1.14 

0.04 

0.06 

0.06 

0.78 

0.01 

2.05 

4.76* 

0.09 

X2:1 

7.26* 

14.29* 

9.80* 

1.44 

20.69* 

3.50 

10.89* 

17.93* 

14.24* 

3.86* 

X3:1 

21.16* 

30.86* 

27.39* 

4.41* 

53.08* 

12.70* 

29.68* 

37.07* 

24.02* 

11.46* 

* Significant at a probability level of P= 0.05 
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The second test is the most severe because with f=0 the difference between critical and non-

critical ratio is the smallest. Populations of at least 131 plants are needed for a reliable 

distinction between 1:1 and 2:1. This number was reached only for the chromosome 7-

trisomic. It is expected that any significant deviation in this test will also be significant in tests 

to ratios that are based on higher f-values. The observed ratios in the F,'s involving the 

trisomies for the chromosomes 6 and 8 fitted both 1:1 and 2:1 but deviated significantly from 

3:1, whereas all other F,'s fitted neither 2:1 nor 3:1. So with the assumption of f=25% none 

of the observed ratios were critical. 

Table 2. Segregation of normal versus mutant (ym ym) plants in nine half sib progenies of 

crosses between eight F, trisomies Ym ym or Ym Ym ym) and a male fertile F, plant from the 

chromosome 10-trisomic (supposed genotype Ym ym), as well as tests for goodness of fit to 

3:1 (expected non-critical ratio), to 5:1 (expected critical ratio, if f = 0.0) and to 7:1 (expected 

critical ratio if f=0.25), where f is the female transmission of the extra chromosome 

Trisomie Normal 

chromosomes 

3 

4 

5 

6 

7 

9 

11 

12 

12 

107 

6 

21 

12 

200 

13 

8 

31 

115 

Mutant 

28 

7 

8 

15 

64 

8 

4 

9 

15 

X3:1 

1.31 

5.77* 

0.10 

13.44* 

0.08 

1.92 

0.44 

0.13 

12.56* 

%5:1 

1.61 

12.94* 

2.49 

29.40* 

10.91* 

6.94* 

2.40 

0.98 

2.67 

X7:1 

8.38* 

20.32* 

6.03* 

45.76* 

33.28* 

12.58* 

4.76* 

3.66 

0.07 

* Significant at a probability level of P = 0.05 

Table 2 presents the ratios observed in the half sib progenies and the chi-squares calculated 

on the basis of 3:1, 5:1 and 7:1. The ratios observed in the progenies involving trisomies for 

the chromomsomes 4 and 6, as well as that in one population of the chromosome 12-trisomic 
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deviated significantly from the expected non-critical ratio 3:1. For the chromosome 4 and 

chromosome-6 trisomies, however, the deviation observed was an excess of mutants, as was 

the case in the BC, from the chromosome 11-trisomie (Table 1). These deviations cannot have 

been brought about by trisomie inheritance, for in that case a large surplus of normal plants 

would be expected. Therefore, only the significance for the chromosome 12-trisomic may point 

to trisomie inheritance. This was corroborated by the results of testing against the two critical 

ratios. Only the two populations from the chromosome 12-trisomic showed non-significance 

both with f=0 and f=0.25. This result led to the tentative conclusion that the gene ym might 

be located on chromosome 12. 

Additional evidence for this conclusion was obtained by counting the number of 

chromosomes of some normal as well as mutant plants from both the BC, and half sib 

progenies. The results of this analysis are presented in Table 3. 
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Table 3. Results of cytological analysis of parts of the groups of normal and mutant plants of 

both BC, and half sib progenies of crosses between F, trisomies (Ym ym or Ym Ym ym) and 

the mutant parent (ym ym) or a male fertile F, trisomie of the chromosome 10-trisomic 

(supposed genotype Ym ym), respectively 

Trisomie 

chromo

somes 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

12 

BC, 

Normal 

Disomic 

2 

3 

3 

1 

1 

29 

1 

16 

Trisomie 

3 

1 

0 

0 

2 

17 

2 

6 

Mutant 

Disomic 

8 

5 

10 

3 

0 

15 

34 

5 

8 

19 

Trisomie 

3 

0 

8 

2 

3 

4 

10 

2 

2 

0 

Half sib 

Normal 

Disomic 

129 

12 

(29)a 

81 

Trisomie 

51 

1 

2 

31 

Mutant 

Disomic 

44 

4 

1 

9 

10 

Trisomie 

17 

1 

1 

0 

0 

aThis number is based on morphological selection only 

The group of mutants will reveal the most relevant information: if the critical trisomie is 

involved and random chromosome assortment is assumed, all plants of this group will be 

disomic and consequently all trisomies in BC, as well as half sib progeny will show the normal 

phenotype; if, however, random complete chromatid assortment is assumed, one out of 15 

trisomies will be a mutant (Hermsen 1970). In the case of disomic inheritance both groups of 

normal and mutant plants will show about equal proportions of trisomies, the size being 

dependent on the f-value. Table 3 shows that the chromosome 12-trisomic and perhaps the 
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chromosome 4-trisomic, fulfil the criteria of trisomie inheritance: only these trisomies revealed 

a complete absence of trisomies in the groups of mutants. 

Although only five mutants were investigated cytologically from the chromosome 4-trisomic 

and these five appeared to be disomic, it seems rather unlikely that this trisomie is critical for 

theym locus because it was already rejected on the basis of segregation ratios in BC, and half 

sib progeny. Therefore, it can be concluded that the gene ym is most probably located on 

chromosome 12 of the potato. This chromosome is equal to the one on which Hermsen et al. 

(1973) located the gene v for virescens. The results in the BC, of the chromosome 12-trisomic 

need further discussion because two observed ratios were not in agreement with the above 

mentioned conclusion. First, the ratio 22:20 for normal to mutant (Table 1) deviated 

significantly (%2=7.46) from the expected critical ratio 2.5:1, calculated on the basis of the 

actual value of f=0.15. Second, the observed ratio 16 normal to 19 mutant in the group of 

disomies (Table 3) deviated significantly from the expected critical ratio 2:1(x2=6.21). To explain 

this phenomenon it can be hypothesized that in some populations the ratios were disturbed 

because of the activity of lethality genes. Dodds and Paxman (1962) suggested that the gene 

ym is linked to a recessive lethal in the repulsion phase. 

In the progeny of a cross between two normal plants of 5. phureja these authors found a 

segregation ratio for yellow margin which deviated significantly from the expected ratio 3:1. 

Hermsen et al. (1978) described three lethal genes viz /,(seed non-emerging from the soil), l2 

(yellow cotyledons) and l3 (tiny dwarf) in a dihaploid plant (G254) of cultivar 'Gineke'. These 

genes affect the germination rate of the seeds and may be present and segregating in the 

trisomies used in this study, as G254 was the male parent in the original 3x x 2x crosses, except 

for the chromosome 10-trisomic, which has another origin. 

Indeed, in seven BC, populations, as well as six half sib progenies, mutants for l2 occurred 

and were readily observable by their yellow cotyledons, segregation for l3 was not observed in 

any of the populations, and the occurrence of /, in the same populations was indistinct. The 

three populations of the chromosome 12-trisomic did not segregate for l2, but nevertheless in 

BC, only 42 plants out of 126 germinated seeds could be reliably assessed for the yellow 

margin character. This loss of seedlings was not due to the action of A,. Consequently it may 

be hypothesized that an unknown recessive gene for lethality (A,) is involved that is linked with 

ym. In the original population of 5. phureja, from which the homozygous recessive ym ym 

clone was selected, no seedlings died. Therefore, it can be presumed that one of the parents 

of this cross was heterozygous for /x, the cross being 
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Lx YrriyLx Ym 
Lx ym lx ym ' 

The genotype of the homozygous yellow margin clone, which was used to incorporate the 

gene ym into the original trisomies as well as to produce the BC, could have been 

Lx ym 
Ix y m 

If it is further assumed that the original chromosome 12-trisomic was duplex for Z, the 

genotype of the trisomie of the F, progeny of the chromosome 12-trisomic could have been 

Lx Ym 
Ix Ym 
Lx y m 

The cross for the production of the BC, then can be reproduced as 

Lx Ym 
Ix Ym yLx ym 
Lx ym Ix ym 

This situation will lead to segregation of lx in the BC, and consequently will disturb the 

segregation ratio of ym. The ratio in the group of trisomies however will not be influenced and 

thus remains 1:0 for normal to mutant because the F, trisomie is assumed to be duplex for Lx, 

which means that all the gametes with an extra chromosome contain at least one dominant 

allele. 

With this hypothesis the deviating ratios in the BC, of the chromosome 12-trisomic and the 

group of mutants can be explained satisfactorily. Since the size of the groups of plants was 

limited and the stage at which the seedlings died was not clearly established, the possible 

relationship between ym and lx should be studied more extensively. 

159 



Conclusions 

(i) The recessive gene ym is most probably located on chromosome 12 of the potato and 

presumably linked to a recessive lethal gene l„. 

(ii) The gene lx is not identical with l2. 
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Fig. 2. Three leaves of BC, plants: normal phenotype for the yellow margin character (left), 

mutant type (middle) and mutant type showing the yellow leaf margin in combination with the 

typical small roundish leaflets. 

162 



CHAPTER 8 

Chromosomal localisation of a recessive gene tp controlling the pleiotropic 

character topiary in Solanum* 

Summary 

Seven out of twelve possible types of primary trisomies of dihaploid Solanum tuberosum L. 

were crossed as females with a disomic recessive mutant for topiary (tp tp) identified in 5. 

infundibuliforme Phil. All primary trisomies used proved to be homozygous dominant. Trisomie 

plants from the seven F/s were crossed with a disomic heterozygous F, plant (supposed 

genotype Tp tp). In the half sib progeny of each trisomie type the mutant plants could be easily 

identified by the presence of typical lateral shoots, particularly at the cotyledonary nodes. The 

observed segregation ratios for normal to mutant were tested against the expected non-critical 

ratio 3:1 and against various critical ratios. It is concluded that the gene tp is most probably 

located on chromosome 3 of the potato. 

Key words: Solanum tuberosum L - potato - trisomies - gene location - topiary 

Revised version of the paper presented in Theor Appl Genet (1988) 75: 712-716 
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Introduction 

There has been increasing interest and activity in the field of somatic cell genetics and tissue 

culture of the economically important potato crop. Recently, significant progress has been 

made in somatic hybridization, including both tuber-bearing and non-tuber-bearing Solanum 

species (Gressel et al. 1984; Austin er al. 1985; Helgeson er al. 1986; Puite et al. 1986; De 

Vries et al. 1987). For a demonstration of the hybrid character of fusion products, specific 

markers for either parent are of significant value. However, the number of available 

morphological markers, i.e. genes mapped on chromosomes of the potato, is restricted to only 

a few cases. Furthermore, genetic transformation of the potato with the aid of Agrobacterium 

tumefaciens (Ooms and Lenton 1985; Burrellefa/. 1985) and Agrobacterium rhizogenes (Ooms 

er al. 1985, 1986) has been successful. Therefore, the construction of a genetic map of the 

potato is a necessity in regard to gene transfer in the near future. 

A gene for albinism (a) was located on the long arm of chromosome 12 of 

Solanum chacoense Bitt. by Lam and Erickson (1971), who used a di-isotrisomic clone of that 

species. Hermsen et al. (1973) associated gene v for chlorophyll deficiency with chromosome 

12 of 5. tuberosum L. The latter chromosome 12 was numbered according to the pachytene 

identification of Yeh and Peloquin (1965) and is different from chromosome 12 of S. 

chacoense reported by Lam and Erickson (1971). These authors used their own numbering of 

pachytene chromosomes of S. chacoense (Lam and Erickson 1968). 

Genes Gl, and Gl2 control the glucosylation of rutin (Harborne 1962). Gl, is linked with the 

gene Ac, which is involved in the acylation of anthocyanins with p-coumaric acid (Harborne 

1960). Lee and Rowe (1975) located either Gl, or Gl2 on the long arm of chromosome 9. For 

gene localisation studies in potato, trisomie analysis appeared to be useful. 

Wagenvoort and Ramanna (1979) established a nearly complete series of primary trisomies 

in diploid S. tuberosum. Eleven of the twelve possible types of primary trisomies are available 

and crosses between these trisomies and plants with some marker genes were made. In a 

previous paper, the location of a recessive gene ym, responsible for yellow margin, on 

chromosome 12 of diploid 5. tuberosum was described (Wagenvoort 1982). In this paper the 

location of a recessive gene tp (topiary) is reported. 

Materials and methods 

Pedigrees of the S. tuberosum material (trisomies for the chromosomes 2 through 11, except 
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for chromosome 10) used in this study have been described earlier (Wagenvoort and Ramanna 

1979; Wagenvoort and Lange, 1980). The chromosome 10-trisomic, which has an interspecific 

hybrid origin, was obtained from Dr. R.E. Hanneman Jr., Madison, Wisconsin, USA. The mutant 

for topiary was identified in the wild diploid species 5. infundibuliforme Phil, by Den Nijs et al. 

(1980). It is a pleiotropic character, which can easily be recognized in the seedling stage by 

profuse branching at the cotyledonary nodes. Seeds of this species were kindly supplied by Dr. 

A.P.M. den Nijs and originally came from the laboratory of Prof. S.J. Peloquin, Madison, 

Wisconsin, USA. Crosses were made between the 11 primary trisomies and the disomic mutants 

for topiary. Trisomie F, plants of crosses between trisomies and the mutant were tentatively 

selected morphologically and their possible trisomy was checked in root tip cells. These F, 

trisomies (Tp tp or Tp Tp tp) were crossed with a heterozygous (Tp tp) disomic F, plant from 

the chromosome 10-trisomic as male parent. Seven progenies from these crosses were checked 

for the character involved and in both groups of normal and mutant plants samples were taken 

and used for counting the number of chromosomes. 

Topiary seedlings were distinguished by the presence of excessive lateral branching, 

particularly at the cotyledonary nodes. Seedlings were assessed weekly for this character over 

a period of several weeks, starting when the plants were four weeks old. The observed ratios 

for normal to mutant plants were tested for goodness of fit to the expected critical and non-

critical ratios. In general, random chromosome association was assumed. For a reliable 

distinction between disomic and trisomie inheritance the size of the population was calculated 

with the formula: 

P l 1/2 _ XU2i **Ad.f. 

where 

n = the total number of plants 

M = the expected ratio dominant to recessive in the case of trisomie inheritance 

X = the expected ratio dominant to recessive in the case of disomic inheritance 

X2.,i d.f. = Chi-square for P = 0.05 and one degree of freedom, (see Romagosa 1982). 

The method used to study the chromosomes in mitosis was the same as described by 

Wagenvoort and Lange (1975). 
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Results and discussion 

The mutant for topiary found in the wild tuber-bearing diploid species 5. infundibuliforme 

develops lateral branches at nearly every node and shows a globular shape as it produces a 

dense growth of numerous slender stems. Stolons are absent or very short and the tubers are 

located in a tight cluster around the base of the stem. Fig. 1 shows three seedlings: the one 

on the left and the one in the middle have mutant phenotypes with numerous stems 

originating from nearly every node, whereas the seedling on the right shows only one stem as 

found in normal plants. In addition to these characters, earlier tuberization in the field and the 

appearance of knobby tubers were described by Den Nijs et al. (1980). These authors 

suggested that the topiary character could be the result of an altered cytokinin activity. This 

study focused on the first character only, viz. the presence of lateral branches. 

Although some older F, plants from trisomies x mutant developed some lateral branches, 

they never showed the typical dense growth and globular shape of the mutant. Therefore, it 

was concluded that the original trisomies were homozygous for the dominant allele Tp. 

Table 1 shows the segregation ratios of normal versus mutant plants in seven half sib 

progenies of crosses between F, trisomies and a male fertile F, disomic heterozygous for 

topiary. 

The observed ratios were tested against the non-critical ratio 3:1 and against the critical 

ratios 5.67:1 (if f = 0.10) and 9.91:1 (if f = 0.45), where f is the female transmission of the 

extra chromosome. The test against the non-critical ratio revealed that the ratios for the 

trisomies for the chromosomes 4, 6, 7, 9 and 10 fitted the expected value. For the 

chromosome 3-trisomic and the chromosomen-trisomie there was a significantly deviating 

ratio (Table 1). Both trisomies had an excess of normal plants, pointing to trisomie inheritance. 

However, a reliable distinction between disomic and trisomie inheritance can only be made if 

the population is sufficiently large. With f = 0.10 or f = 0.45, populations of at least 240 and 

80 plants, respectively, are needed for a reliable distinction. (See "Materials and methods".) 
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Table 1. Segregation of normal (Tp) vs mutant (tp tp) plants in half sib progenies of crosses 

between F, trisomies (Tp tp or Tp Tp tp), as well as tests for goodness of fit to 3:1 (expected 

non-critical ratio), 5.67:1 (expected critical ratio if f = 0.10) and 9.91:1 (expected critical ratio 

if f = 0.45) where f is the female transmission of the extra chromosome. 

Trisomie 

chromosomes 

3 

4 

6 

7 

9 

10 

11 

Normal 

408 

220 

31 

41 

274 

257 

50 

Mutant 

31 

55 

4 

15 

83 

65 

7 

X 3:1 

75.70* 

3.79 

3.73 

0.09 

0.53 

3.74 

4.63* 

Y 2 

X 5.67:1 

21.84* 

5.62* 

0.23 
* 

7.14 
18.35* 

* 
7.07 
0.52 

X 9.91:1 

2.34 

39.60* 

0.36 

21.96* 

83.48* 

45.03* 

0.88 

Significant at a probability level of P = 0.05 

The population sizes of the trisomies for the chromosomes 3, 4, 9 and 10 fulfilled these 

criterions. In the progenies of the trisomies for the chromosomes 9 and 10 the segregations 

for the topiary gene were in accordance with disomic inheritance. For both a low female 

transmission (f = 0.10) and a high female transmission (f = 0.45), the observed ratios deviated 

significantly from the expected critical ratios (Table 1). For this reason no chromosome counts 

were made in these progenies. The observed ratios for the chromosome 3-trisomic deviated 

significantly from 5.67:1 and fitted the expected value 9.91:1. In the chromosome 11-trisomic 

the observed ratios were in accordance with both expected ratios, but the population size was 

insufficient for a reliable test. Therefore, it was necessary to split up the populations into 

trisomies and disomies in order to test for normal versus mutant ratios within these two groups. 

In the case of trisomie inheritance and if random chromosome segregation is assumed, all 

mutants will be disomic and consequently all trisomies will show the normal phenotype. With 

random complete chromatid segregation, however, one out of 15 trisomies will be mutant 

(Hermsen 1970). 

The results of chromosome counts are presented in Table 2. For the chromosome 3, 6, 7 and 
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11-trisomies no trisomies were found among the mutants (Table 2). All trisomies under 

investigation had trisomie plants among the normal phenotypes. Fifteen out of 40 normal 

plants were trisomie for the chromosome 11-trisomie, in addition to no trisomies among the 

mutants. For this trisomie type a female transmission of 34% was estimated in this study. In 

the case of disomic inheritance, this transmission rate would lead to at least one of the four 

mutants being trisomie. However, possibly because of the small number of mutants 

investigated for the chromosome 11-trisomie, not a single trisomie was found among the 

mutants. The same probably holds true for the chromosome 6 and 7-trisomics. Therefore, it 

seems unlikely that the topiary gene is located on one of these three chromosomes. However, 

in the chromosome 3-trisomic among 45 normal plants 22 trisomies were found and no 

trisomies were found among 25 mutants (Table 2). In the last group nearly eight trisomies 

would be expected based on disomic inheritance and the actual female transmission of 31 %. 

Hence, it was concluded that the gene tp for topiary is most probably located on chromosome 

3 of the potato. 

Table 2. Results of cytological analysis of parts of the groups of normal and mutant plants of 

five progenies of crosses between F, trisomies {Tp tp or Tp Tp tp) and a male fertile F, disomic 

of the chromosome 10-trisomic (supposed genotype Tp tp). 

Trisomie 

chromosome 

Normal Mutant 

Disomic Trisomie Disomic Trisomie 

3 

4 

6 

7 

11 

23 

19 

19 

20 

25 

22 

16 

3 

7 

15 

25 

19 

2 

10 

4 

0 

14 

0 

0 

0 

The F, trisomies from the chromosome 3-trisomic used for the production of the half sib 

progenies were derived from the trisomie coded GNA77-61-6. Pachytene analysis of this 

trisomie clearly revealed the presence of a complete chromosome 3 as the extra chromosome. 
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Fig. 2 shows a trisomie configuration of chromosome 3 in GNA77-61-6. This chromosome has 

three distinct chromomeres in the achromatic part of the short arm. Meiotic studies in some 

F, trisomies revealed the presence of the short arm of chromosome 3, indicating that no 

univalent shift had taken place during transmission of the chromosome at meiosis. In the 

progenies studied at mitosis there were no indications of the occurrence of telos. For this 

reason, it seems justified to conclude that the extra chromosome in the F, plants of the 

chromosome 3-trisomic is indeed a complete chromosome 3, which carries the recessive gene 

for topiary. 

The results in the half sib progenies need further discussion because the progeny of the 

chromosome 3-trisomic segregates 408 normal:31 mutant which does not fit the ratio 389:50 

based on the actual female transmission of 31 % (X27.M=8.47 P<0.001). A shortage of mutants 

was also observed in five of the six half sib progenies, which were derived from the non-critical 

trisomies (%2 heterogeneity = 5.04, P = 0.50-0.30). In other progeny from the chromosome 3-

trisomic, f-values were estimated ranging from 31.4-48.9% (see chapter 4). Because some bias 

could have taken place at the estimation of f in this study, a higher f-value of the chromosome 

3-trisomic seems to be more realistic. If f is 0.45, the expected ratio for normal to mutant is 

399:40 fitting the observed ratio 408:31 (Table 1). Hence, with the assumption of a higher f-

value the results in the half sib progeny of the chromosome 3-trisomic can satisfactorily be 

explained. The shortage of mutants in the non-critical situations is more difficult to explain. In 

the six progenies analysed the percentage of non-viable seeds or seedlings non-emerging from 

the soil varied from 10.7 - 41.0%, (data not shown). Only in the progeny from the 

chromosome 10-trisomic mutants for the lethal gene l2 (yellow cotyledons) occurred. A model 

of two recessive genes (one linked to the topiary gene and the other independent) causing 

non-viability of the seeds or the young seedlings would adequately explain the shortage of 

mutants. However, loss of mutants was not found to occur in the BC, from the cross (S. 

chacoense x topiary) x topiary by Den Nijs et al. (1980). Therefore, the hypothesis put forward 

has to be tested further before it can be accepted for explaining the shortage of mutants. 

Also from this study it can be concluded that a series of primary trisomies in potato is a 

suitable tool for the localisation of recessive genes. Dominant genes also can be assigned to 

chromosomes with the aid of a series of primary trisomies. Such studies, however, take much 

more labour and time, compared with the location of a recessive gene. For the location of a 

dominant gene the backcross populations have to be larger to allow for a reliable distinction 

between disomic and trisomie inheritance. A second approach would be to properly estimate 
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the female transmission in each backcross progeny and to test the observed ratios based on 

the actual f-value. Only when the f-value is low can the ratios in the total populations be used 

for a reliable detection of the critical trisomies. With increasing rates of female transmission, 

the critical ratios shift towards the non-critical ratios (see Hermsen, 1970), and for higher f-

values a reliable distinction between disomic and trisomie inheritance is only practicable within 

the groups of disomies and trisomies separately. 
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Fig. 1. Three seedlings of the half sib progenies of crosses between F, trisomies (Tp tp) or (Tp 

Tp tp) and a male fertile F, disomic (supposed genotype (Tp tp). Two mutants (left and middle) 

for topiary clearly show the numerous slender stems originating from the nodes in the leaf 

axes. The normal plant on the right has one stem only and already shows the development of 

long stolons which can be seen extending across the pot. 

Fig. 2. A complete PMC of GNA 77-61-6 (chromosome 3-trisomic) at mid-pachytene stage of -

meiosis. The PMC contains one trivalent and 11 bivalents, as expected for a trisomie with 2n 

= 24 + 1 = 25. The trisomie configuration represents chromosome 3 and shows three 

chromomeres (arrows) on the achromatic part of the short arm. Some other bivalents, viz. 

chromosomes 2, 4, 5, 7 and 12 could also be identified with certainty. The centromeres are 

indicated by arrow heads. 

172 



»IP 

1 J i **» .• £ \ 

w Ä 4 



GENERAL DISCUSSION 

The cultivated potato Solanum tuberosum L. ssp. tuberosum Hawkes is considered by some 

researchers to be a segmental allotetraploid rather than an autotetraploid. Tetrasomic 

inheritance, a high degree of heterozygosity and the small and morphologically similar 

chromosomes seriously hamper genetic and cytogenetic studies in this important food crop. 

The development of methods to produce dihaploids and monohaploids not only enhanced the 

opportunities for analytic breeding but also created better tools for basic research. 

Several methods to identify chromosomes at mitosis have been proposed. For two 

techniques, viz. a modified Giemsa technique (Mok er al., 1974) and a Giemsa C-banding 

technique (Pijnacker and Ferwerda, 1984), the authors claimed that it is possible to identify the 

twelve basic chromosomes. Although both techniques were used in this study, we were not 

able to identify all 12 basic chromosomes. Polymorphism of the Giemsa C-banding pattern 

seems to be the main cause preventing the Giemsa C-banding technique to be generally 

applicable for chromosome characterization in somatic cells of the potato. 

An accurate knowledge of the meiotic behaviour in parents of crosses that were made to 

create a mapping population for trisomie or RFLP analysis, is essential for detecting causes of 

distorted genetic ratios in segregating populations. In addition, such knowledge is necessary 

for determining the female transmission of the extra chromosome in trisomies which in its turn 

must be known for calculating the expected genetic ratios. 

Half-tetrad analysis is a means to determine the gene-centromere map distance and takes 

advantage of the occurrence of numerically unreduced {In) gametes in diploid potato species 

or species hybrids. Genes or markers with known distances to the centromere may be used as 

reference markers when creating a genetic map of the potato. 

The research described in this thesis focuses on the perspectives for identification of meiotic 

and mitotic chromosomes using several cytological techniques and cytotypes, and deals with 

gene mapping by trisomie and half-tetrad analysis. Interchanges are rare in potato, but when 

available they can be very useful for chromosome arm location of genes. The available primary 

trisomies of 5. tuberosum ssp. tuberosum were used for the identification of the chromosomes 

involved in the interchange found in 5. phureja Juz. et Buk.. 

Several methods to identify somatic chromosomes were attempted (Chapter 1). In contrast 

to results reported in the literature, this study enabled the unambiguous identification of only 

three chromosomes (1, 2 and 12) in mitotic cells using conventional staining, and four (1, 2, 
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3 and 4) in case of Giemsa C-banding. It should be noted that by applying these techniques 

to certain cytotypes not all specimens of a specific chromosome were always identifiable. 

Polymorphism for the Giemsa C-banding pattern determined in various cytotypes in this study 

was the main cause preventing the detection of homology between pachytene and somatic 

chromosomes. The C-banding pattern varied between preparations, and this variation occurred 

within plants of the same species as well as in interspecific hybrids. It seems that induction of 

distinct C-banding is not feasible in the highly condensed and small chromosomes of the 

potato. Moreover, the preservation of the chromosomes throughout the entire procedure of 

C-banding was not always sufficient. Denaturation by the barium hydroxide step and successive 

re-association in a 2 x SSC (standard saline citrate concentration) buffer caused loss of DNA 

and/or chromosomal protein in some cells resulting in swollen chromosomes with poor 

morphology and weak banding. Both with conventional staining and Giemsa C-banding the 

mitotic chromosomes 1 and 2 could unambiguously be identified as being homologous to the 

pachytene chromosomes 1 and 2. A third method the so-called "in situ hybridization" was 

tried to identify somatic chromosomes and to determine the number of chromosomes carrying 

genes for the tuber protein patatin. This method combines both classical methods used in 

cytogenetics with powerful molecular biological techniques. By using in situ hybridization it was 

found in this study that one basic chromosome of the potato contains rRNA genes. Although 

the short arm of chromosome 2 is C-banding positive, except for the NOR (Pijnacker and 

Ferwerda, 1984), it was impossible to identify with Giemsa C-banding the three homologues 

of the nucleolar chromosome in mitotic cells from the trisomie for chromosome 2. In trisomies 

which were previously identified as trisomie for the nucleolar chromosome, the presence of 

three chromosomes with a signal of the hybridized rDNA probe was clearly demonstrated. The 

heterologous rDNA probe from pea also hybridized to the NORs of triploid sugar beet showing 

that the rRNA genes in potato, sugar beet and pea are highly conserved. 

The development of high resolution in situ hybridization will become increasingly important 

for the physical mapping of DNA sequences, including single genes, along chromosome arms. 

In this context in situ hybridization using more than one probe simultaneously is of interest, 

because in that case the hybridization spot of a localized probe marks the chromosome arm 

and the other probe(s) will localize the gene(s) of interest. 

Biotin and digoxigenin labelling was found to be a rapid, consistent and reliable technique 

to detect highly repeated sequences on the relatively small chromosomes of potato and sugar 

beet. Its value for physical mapping of low copy or unique sequences in these plant species has 

yet to be established. Success in localizing a low copy or single copy gene in chromosomal DNA 

176 



by in situ hybridization depends on several factors including the accessibility of the target DNA 

for interaction with the probe DNA, the specific activity and the amount of probe DNA, the 

absence of background hybridization and in particular the preservation of DNA throughout the 

entire procedure. 

In plants it appears that low mitotic indices and the presence of cell-wall material in 

chromosome preparations hamper hybridization of low copy number sequences to the 

chromosome and their detection. In addition the degree of coiling and condensation of plant 

chromosomes in mitosis varies from species to species and between preparations. The presence 

of cell wall material could be avoided in potato by using wall-degrading enzymes such as 

cellulase and pectinase. However, low mitotic indices in root tips were a serious problem in the 

quantitative analysis of the Giemsa C-banding pattern or after in situ hybridization. By using 

aphidicolin or hydroxyureum, both of which inhibit the activity of the enzyme DNA polymerase 

a giving rise to accumulation of cells at the transition phase between G1 and S of the cell 

cycle, mitotic indices could not be increased in root tips of the potato (M. Wagenvoort, 

unpublished data). 

Accurate chromosome identification in potato can be achieved by pachytene analysis 

(Chapter 2). At pachytene the bivalents of 5. phureja appeared to be morphologically very 

similar to those of 5. tuberosum ssp. tuberosum cv. Gineke. This result coincides with that of 

Matsubayashi (1991), who found a close similarity of pachytene morphology in 5. phureja and 

S. tuberosum L. ssp. andigena Juz. et Buk.. In addition, there are only trivial differences in the 

fine structure of the pachytene chromosomes of S. tuberosum L. and S. stenotomum Juz. et 

Buk. (Gottschalk, 1972). In the literature considerable controversy exists with respect to 

interpretation of morphology of pachytene chromosomes in potato and related tuber-bearing 

species of Solanum. The use of different features in identifying pachytene chromosomes mainly 

contributed to this discrepancy along with misinterpretation of the observed configurations. 

Comparison of the studies of pachytene chromosomes of 5. canasense Hawkes by Haynes 

(1964) and by Gottschalk and Peters (1956a) reveals very little similarity for most of the 

chromosomes. There is some agreement in the satellite (SAT) chromosome {chromosome 12 

according to Haynes (1964) and chromosome 1 according to Gottschalk and Peters (1956a)} 

with respect to heterochromatic regions but the location of the NOR and the total 

chromosome length are very different. 5. canasense belongs to the taxonomie series Tuberosa. 

However the morphology of its pachytene chromosomes differs greatly from that in other 

species of this series (Gottschalk and Peters, 1955). Also lack of agreement was established for 

the SAT chromosome when comparing the results of Haynes (1964) with the karyogram for 
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5. vernei Bitt. et Wittm. presented by Fiedler and Schreiter (1959). Furthermore, Lam and 

Erickson (1968) numbering the chromosomes of 5. chacoense Bitt. according to their total 

length, identified the third chromosome as the SAT chromosome. This chromosome was 

morphologically similar to chromosome 2 of both 5. tuberosum ssp. andigena and of S. 

tuberosum ssp. tuberosum described by Yeh and Peloquin (1965) and Ramanna and 

Wagenvoort (1976) respectively. Comparison of the pachytene chromosomes of S. darum Corr. 

with those of S.tuberosum ssp. andigena revealed that chromosome 2 is the SAT chromosome 

in both species and the chromosomes 11 and 12 of S. darum are similar to their counterparts 

in 5. tuberosum ssp. andigena (Marks, 1969). The remaining chromosomes were highly 

different for the two species. There are three outstanding features in the pachytene karyotype 

of 5. darum: (i) the almost completely chromatic short arm of chromosome 9 (ii) the large 

interstitial chromatic chromomeres in the long arms of the chromosomes 2 and 6 (iii) the 

characteristically large telomeres of the chromosomes 5 and 10. These features are unique for 

5. darum except for the chromomere in chromosome 2. Also Gottschalk and Peters (1956b) 

found very clear structural differences between the homologous chromosomes of a close 

relative of the diploid species 5. stenotomum and the amphidiploid 5. ajuscoense Buk.. In the 

species hybrid considerable differences of the total chromosome lengths were observed but 

these differences were restricted to the heterochromatic regions. The differences in 

chromosome length resulted in the formation of heteromorphic bivalents showing unpaired 

loops of different size within the heterochromatic zones comparable to loop formation due to 

deficiencies in the heterozygous condition. The loops found in pachytene chromosomes of 5. 

phureja in this study were present in both the heterochromatic and the euchromatic regions 

of specific chromosomes. Those formed in the euchromatic regions pointed to the presence 

of a heterozygous inversion which was clarified by the incidence of a bridge and fragment at 

anaphase I. Finally, in the allotetraploid species 5. antipoviczii Buk. one chromosome 

complement shows clear relations to S. tuberosum as far as chromosome structure is concerned 

and a second complement contains chromosomes with a very divergent structure. The 

formation of only bivalents at metaphase I confirms the allotetraploid nature of this species 

(Gottschalk, 1972). Both species, 5. ajuscoense and 5. antipoviczii are considered to be nearly 

identical to 5. stoloniferum Schlechtd. et Bché., which belongs to the taxonomie series 

Longipedicellata (Correll, 1962). All these examples show the variation in the fine structure of 

the pachytene chromosomes in different species of the section Petota of the genus Solanum. 

This may have an evolutionary meaning. It can be concluded, that although in potato the 

pachytene is very difficult to analyse pachytene analysis will deliver more reliable results than 
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mitotic karyotype analyses. It will also give a more detailed insight into the degree of homology 

of the chromosomes compared to metaphase I analyses. 

The structural differences in heterochromatin between homologous chromosomes, which are 

clearly discernable and analysable at pachytene may be responsible for the variation observed 

in the Giemsa C-banding pattern as it is generally thought that the C-bands are induced in the 

constitutive heterochromatin of the chromosomes. Therefore the value of the Giemsa C-

banding technique for chromosome identification in potato should not be overestimated. The 

main disadvantage of the pachytene stage is the difficulty to get well spread chromosomes 

amenable to analysis and this is due to the very low degree of chromosomal spiralisation. 

Interphase nuclei and pachytene chromosomes are thought to have advantages also in in situ 

hybridization since closely linked probe hybridization sites may be further apart than at 

metaphase where the chromatin is more condensed. A more efficient and accurate mapping 

should be obtainable by the combination of pachytene chromosomes and in situ hybridization 

and the use of an electron microscope. In this context a report by Lehfer ef ai. (1991) deserves 

some attention as these authors began to explore the potential of various in situ hybridization 

and probe labelling techniques on barley chromosomes at the detection level of both the light 

microscope and the electron microscope. Visualization of a 1.8 kilo-base pairs (kb) single copy 

probe on barley chromosome 7 was realized in interphase nuclei using streptavidin-gold 

complexes (diameter 15 nm) along with biotin labelled probes and high-resolution field 

emission scanning electron microscopy. It is worth noting that with this technique distinction 

between hybridized and non-hybridized signals is generally possible. The authors concluded that 

it is technically feasible to map single-copy DNA sequences on plant chromosomes. A novel 

"insert amplification/sandwich" technique for signal detection enabled them to localize 

successfully single-copy DNA fragments of 200 bp, and the authors expect that even smaller 

fragments might be detected at the ultrastructural level. 

The advantages of the production of physical maps of chromosomes is that also unlinked loci 

can be mapped and an estimate of the size of an alien insert can be obtained. 

In chapter 2 an intraspecific interchange in S. phureja is described and the involvement of 

the chromosomes 3 and 12 in this interchange could clearly be demonstrated by studying 

morphology of pachytene chromosomes and chromosome pairing behaviour during meiosis in 

trisomie F, hybrids. Such interchanges could be most useful for assigning genes to specific 

chromosome arms as well as for the localization of centromeres on the linkage maps. In the 

two siblings of 5. phureja carrying the same interchange a variety of quadrivalent 

configurations at diakinesis and metaphase I was found to occur giving rise to balanced and 
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unbalanced gametes. Trisomie progeny resulted from irregularities such as 11-13 distribution 

and lagging chromosomes at anaphase I. A bridge and fragment detected in some anaphase 

I cells indicated the presence of one or two heterozygous inversions. The occurrence of such 

abnormalities in fertile diploid clones strengthen the necessity to study meiosis when using such 

clones in genetic research. 

Trisomie descendants selected in the first selfed generation of the interchange heterozygote 

were primary trisomie and homozygous for the interchange, or tertiary trisomie, based on their 

phenotypes for yellow margin and the absence of ring quadrivalents at metaphase I of meiosis. 

Further distinction between the two trisomie types was impossible because the self-compatibility 

of the interchange heterozygote could not be satisfactorily explained. 

The meiotic behaviour of 11 primary trisomies was studied and the transmission of the extra 

chromosome through the female gamete determined (Chapter 4). Triple synapsis of pachytene 

chromosomes was often found in the euchromatic parts of the chromosomes. This 

phenomenon may be considered as a more general feature of chromosome pairing in trisomie 

and autotriploid plants. Consequently it may influence recombination events. 

The occurrence of deleterious récessives in diploid populations of S. tuberosum and in diploid 

relatives may seriously hamper genetic analysis of the potato. However, by using markers with 

co-dominant expression, such as RFLPs or isozymes, this handicap can be circumvented as the 

occurrence of skew ratios in the mapping population does not hinder the localization of the 

gene under investigation because of co-segregation with a molecular marker. 

In classical genetic and cytogenetic studies the establishment of a complete series of primary 

trisomies is essential to assign genes or linkage groups to specific chromosomes. In potato, 

however, an exceptional situation exists as it is claimed that the genetic content of potato 

chromosomes is nearly identical to that of tomato chromosomes, i.e. there is no evidence of 

chromosomal translocations differentiating the two species. This statement is somewhat 

conflicting in view of the above mentioned variation in pachytene morphology observed among 

species of the series Tuberosa to which also 5. sparsipilum (Bitt.) Juz. et Buk. belongs, one of 

the putative parents of 5. tuberosum. Nevertheless, the molecular map established for tomato 

could also be used to assign linkage groups to specific potato chromosomes. Yet, five 

inversions of marker order within the chromosomes 5, 9, 10, 11 and 12 are reported in the 

literature. These inversions appear to be paracentric and involve entire chromosome arms. 

Moreover, only one breakpoint can be identified per chromosome and occurs in regions of the 

genetic map at or near the centromere. The outcome of the research described in this thesis, 

where the breakpoints of the interchange in S. phureja also were localized close to the 
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centromere, coincides with the above mentioned results which were obtained by RFLP analysis. 

If the heterochromatin distal to the breakpoint was lost or converted to euchromatin upon 

transposition to the telomeric end of the chromosome, as suggested by some researchers, a 

nearly entire euchromatic chromosome arm would result. However, this is not in agreement 

with the observation that all potato chromosomes show heterochromatic regions on both arms 

as shown in this thesis and elsewhere. 

The average ratio kb/cM deviates greatly from estimates of physical distance. As the potato 

genome has fewer map units than tomato, the effective density of markers in potato is 

suggested by some researchers to be actually higher than in tomato (on average one marker 

per 1.2 and 0.7 cM in tomato and potato, respectively). However, the haploid DNA content 

of potato is approximately 1750 Mega-base pairs (Mbp) and that of tomato 1000 Mbp 

(Arumuganathan and Earle, 1991). This means that on average 1 cM « 2500 kb in potato 

and 750 kb in tomato. Therefore, it seems that the average physical map distance between 

two consecutive loci in potato is about twice as large as in tomato. From results reported in 

the literature it appeared that: (i) reduction in crossing over affects all potato chromosomes 

since each of the potato chromosomes has a reduced genetic length compared with the 

corresponding tomato chromosome. Some chromosomes (e.g. chromosome 2) are affected 

more than others (ii) the total map length decreases when different species are involved in a 

cross. In the latter case restricted recombination may be involved, but also recombinant 

gametes or zygotes may be preferentially eliminated by deleterious récessives. 

In this thesis the gene Rxandwas mapped 42 cM from the centromere by means of half-tetrad 

analysis. This estimate coincides with'the mapping of the gene Rx1 to the distal end of 

chromosome 12. For this reason it is most likely that the gene Rxand is concurrent with the gene 

Rx1. In this case no large difference exists between the two estimates carried out by RFLP and 

half-tetrad analysis. It is striking, that the R1 locus conferring hypersensitivity to all 

Phytophthora infestans races except race 1, maps precisely to the same genomic region on 

chromosome 5 of the potato (Leonards-Schippers et al., 1992) as the locus for extreme PVX 

resistance (Rx2) from 5. acaule Bitt. (Ritter era/., 1991) although different genetic stocks were 

used in the two mapping studies. On the other arm of the same chromosome Gebhardt ef 

a/., (1993) and Pineda et ai, (1993) mapped the gene H, for resistance to pathotype Ro1 of 

Globodera rostochiensis. Both research groups placed the gene H, on the distal end of the 

same arm of chromosome 5. This outcome of research is not in line with the map distance of 

17 cM which was estimated by half-tetrad analysis in this thesis. This discrepancy might show 

another example of restricted recombination when different species are involved in a cross. No 
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correlation has been reported between the presence of fi-genes, single or in combinations (Rl, 

R2, R3, and RA were involved) and the level of field resistance to late blight. The observed 

linkage between Rl and a locus for extreme PVX resistance is not in line with the outcome of 

a previous genetic study (Swiezyhski ef a/., 1974), where no correlation was found between 

the gene X from S. acaule, conferring extreme resistance to PVX, and the R-genes. 

It is noteworthy that a hypothesis has been reported (Leonards-Schippers ef a/., 1992) 

suggesting that allelism as well as tightly linked resistance gene-complexes might apply not only 

to different genes for race-specific resistance to the same pathogen, but also to genes for 

resistance to completely different pathogens, such as the fungus Phytophthora infestans, the 

virus X or the nematode G. rostochiensis. Moreover, it is remarkable that the potato gene Grol 

for resistance to pathotype Ro1 of G. rostochiensis and a gene for resistance to Fusarium 

oxysporum f.sp. lycopersici race 1 both were mapped to the same RFLP marker (TG20) on 

chromosome 7 of potato and tomato, respectively (Sarfatti ef a/., 1991). 

From the research described in this thesis it can be concluded that primary trisomies of the 

potato are a useful tool for gene localization and are very helpful in identifying the 

chromosomes involved in an interchange. 

Finally it is concluded that in situ hybridization is a very suitable technique in detecting the 

nucleolar chromosomes in trisomie and other cytotypes. This technique has good prospects for 

physical mapping of genes, although much work has to be done before single copy genes can 

be localized routinely on the pachytene chromosomes of potato. 
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SUMMARY 

The potato is an important arable crop in the Netherlands and other countries with a 

temperate climate. Potatoes are grown in the Netherlands for sale to the consumer, for the 

potato processing industry and for seed production, the larger proportion of which is being 

exported. Breeding of this important food crop is a long-term activity because varieties are 

highly heterozygous tetraploid clones, and in addition contain very small and morphologically 

similar somatic chromosomes. Therefore, it is not surprising that the potato is a subject not 

only for practical breeding, but also for fundamental research. The research described in this 

thesis deals with chromosome identification and gene mapping. 

Several methods to identify somatic chromosomes were attempted (Chapter 1). In contrast 

to results from literature, in this study only three chromosomes (1, 2 and 12) could 

unambiguously be identified in mitotic cells using conventional staining, and four (1, 2, 3 and 

4) in case of Giemsa C-banding. Both with conventional staining and Giemsa C-banding the 

chromosomes 1 and 2 could unambiguously be identified and are homologous to the 

chromosomes 1 and 2 as identified by pachytene analysis. 

It was found in this study by using in situ hybridization that one basic chromosome of the 

potato contains rRNA genes. In trisomies previously identified as trisomie for the nucleolar 

chromosome, the presence of three chromosomes with a signal of the hybridized rDNA probe 

was clearly demonstrated. In contrast-to a report in the literature about detection of one 

chromosome with gene(s) for patatin using a cDNA clone, hybridization with a genomic DNA 

clone used in this study detected more than one basic chromosome carrying genes related to 

patatin. 

Biotin and digoxigenin labelling was found to be a rapid, consistent and reliable technique 

to detect highly repeated sequences on the relatively small chromosomes of potato and sugar 

beet. 

Reliable chromosome identification in potato can be achieved by pachytene analysis (Chapter 

2). At pachytene the bivalents in 5. phureja Juz. et Buk. were morphologically very similar to 

those of S. tuberosum L. ssp. tuberosum Hawkes cv. Gineke. In the chapters 2 and 3 an 

interchange in 5. phureja is described and the involvement of the chromosomes 3 and 12 in 

this interchange could clearly be demonstrated by pachytene analysis (Chapter 2) and the 

meiotic behaviour in trisomie F, hybrids (Chapter 3). In the two siblings of 5. phureja carrying 

the same interchange a variety of quadrivalent configurations at diakinesis and metaphase I 
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was found to occur, giving rise to balanced and unbalanced gametes. Trisomie progeny 

resulted from irregularities such as 11-13 distribution and lagging chromosomes at anaphase 

I. A bridge and fragment observed in some anaphase I cells indicated the presence of one or 

two heterozygous inversions (Chapter 2). Trisomie descendants selected in the first selfed 

generation of the interchange heterozygote were primary trisomie being homozygous for the 

interchange or tertiary trisomie. 

Meiotic behaviour in 11 primary trisomies was investigated and female transmission of the 

extra chromosome determined (Chapter 4). Triple synapsis of pachytene chromosomes was 

often found in the euchromatic parts of the chromosomes. In this study a significant correlation 

between the relative chromosome or euchromatin length and the coefficient of realization of 

a trivalent at metaphase I was found in the primary trisomies of the potato. In spite of this 

result no relationship could be established between female transmission and the length of the 

extra chromosome. Therefore, care should be taken to determine female transmission in the 

total progeny of each trisomie under investigation, or at least in a representative sample of the 

progeny. 

By means of half-tetrad analysis the map distance relative to the centromere could be 

estimated of each of three dominant genes involved in resistance to potato viruses X and Y and 

to pathotype Ro1 from Globodera rostochiensis, and of the recessive gene for yellow leaf-

margin (Chapters 5 and 6). The gene for yellow margin was localized on chromosome 12 

(Chapter 7) and that for topiary on chromosome 3 (Chapter 8) by means of trisomie analysis. 
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SAMENVATTING 

De aardappel is een belangrijk akkerbouwgewas in Nederland en in andere landen met een 

gematigd klimaat. Aardappelen worden geteeld voor de consumptieverkoop, voor de 

verwerkende industrie en voor de produktie van pootgoed, waarvan het grootste deel wordt 

geëxporteerd. Veredeling van dit belangrijke voedselgewas is een lange-termijnactiviteit, omdat 

de rassen sterk heterozygote tetraploide klonen zijn en bovendien zéér kleine en morfologisch 

sterk op elkaar lijkende somatische chromosomen bevatten. Het is daarom niet verwonderlijk, 

dat niet alleen in de praktische aardappelveredeling, maar ook in fundamenteel onderzoek van 

de aardappel veel wordt geïnvesteerd. Het onderzoek, dat is beschreven in dit proefschrift, 

omvat chromosoomidentificatie en genkartering. 

Verscheidene methoden voor identificatie van somatische chromosomen werden beproefd 

(Hoofdstuk 1). In afwijking van resultaten vermeld in de literatuur, konden in ons onderzoek 

bij toepassing van conventionele kleuringen slechts drie chromosomen (1, 2 en 12) 

ondubbelzinnig worden geïdentificeerd in mitotische cellen en vier chromosomen (1, 2, 3 en 

4) bij toepassing van Giemsa C-bandering. De chromosomen 1 en 2 konden zowel met 

conventionele kleuring als met Giemsa C-bandering ondubbelzinnig worden geïdentificeerd en 

hun homologie met de pachyteenchromosomen 1 en 2 worden aangetoond. 

Er werd in dit onderzoek via in situ hybridisatie gevonden dat één basischromosoom van de 

aardappel rRNA genen bevat. In trisomen met het nudeolus-chromosoom in drievoud kon de 

aanwezigheid van drie chromosomen met een signaal van de gehybridiseerde rDNA probe 

duidelijk worden gedemonstreerd. In ons onderzoek kon door hybridisatie meteen genomische 

DNA kloon meer dan één basischromosoom worden gedetecteerd als drager van genen 

gerelateerd aan patatineproduktie. In de literatuur wordt echter melding gemaakt van 

hybridisatie met een cDNA-kloon, waarmee slechts één basischromosoom als drager van 

gen(en) voor patatineproduktie kon worden aangetoond. 

Biotine en digoxigenine labelling bleek een snelle, consistente en betrouwbare techniek te 

zijn om sterk repetitieve sequenties op de relatief kleine chromosomen van aardappel en 

suikerbiet zichtbaar te maken. 

Chromosoomidentificatie in aardappel via pachyteenanalyse is een betrouwbare methode 

(Hoofdstuk 2). In het pachyteen bleken de bivalenten van 5. phureja Juz. et Buk. morfologisch 

in hoge mate gelijk te zijn aan die van het ras Gineke van 5. tuberosum L. ssp. tuberosum 

Hawkes. In de hoofdstukken 2 en 3 wordt een chromosoomtranslocatie in 5. phureja 
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beschreven. De betrokkenheid van de chromosomen 3 en 12 bij deze translocatie kon duidelijk 

worden aangetoond door pachyteenanalyse (Hoofdstuk 2) en het meiotisch gedrag in trisome 

F,-hybriden uit de kruising van primaire trisomen x translocatieheterozygoot (Hoofdstuk 3). In 

de twee zusterplanten met dezelfde translocatie van S. phureja werden verscheidene 

quadrivalente configuraties waargenomen in de diakinese en de eerste metafase die leidden 

tot gebalanceerde en ongebalanceerde gameten. Onregelmatigheden, zoals een 11:13 

verdeling en achterblijvende chromosomen in de eerste anafase, resulteerden in trisome 

nakomelingen. Het voorkomen van een brug en een fragment in sommige anafase 1 cellen, 

duidde op de aanwezigheid van één of twee heterozygote inversies (Hoofdstuk 2). Trisome 

nakomelingen die werden gevonden in de eerste inteeltgeneratie van de heterozygote 

translocatie waren primaire trisomen en homozygoot voor de translocatie of tertiaire trisomen. 

Het meiotisch gedrag van 11 primaire trisomen werd onderzocht en de transmissie van het 

extra chromosoom via de vrouwelijke gameten bepaald (Hoofdstuk 4). Drievoudige paring van 

pachyteenchromosomen werd dikwijls gevonden in de euchromatische delen van de 

chromosomen. Verder werd een significante correlatie aangetoond tussen de relatieve 

chromosoom lengte of de lengte van het euchromatine enerzijds en de coëfficiënt van realisatie 

van een trivalent in de eerste metafase anderzijds. Ondanks dit resultaat kon geen verband 

worden vastgesteld tussen de vrouwelijke transmissie en de lengte van het extra chromosoom. 

De vrouwelijke transmissie dient daarom te worden bepaald in een voldoende grote en 

repesentatieve nakomelingschap van trisoom x diploid voor elke trisoom, die in onderzoek is. 

Van elk van drie dominante genen voor resistentie tegen de aardappelvirussen X en Y en 

tegen het pathotype Ro1 van Globodera rostochiensis en van het recessieve gen voor "yellow 

margin" (gele bladrand) kon de relatieve genetische afstand tot het centromeer worden 

bepaald via half-tetradenanalyse (Hoofdstukken 5 en 6). Het gen voor "yellow margin" werd 

gelocaliseerd op chromosoom 12 (Hoofdstuk 7) en dat voor "topiary" op chromosoom 3 

(Hoofdstuk 8) via trisomenanalyse. 
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