

The Performance of ISLAMIC BANKS

Under an Interest Rate System in Indonesia

How do Islamic Banks Operate with Interest Based Instruments?

Editor Prof. Dr. Raja Masbar, M.Sc

The Performance of ISLAMIC BANKS

Under an Interest Rate System in Indonesia

How do Islamic Banks Operate with Interest-Based Instruments?

DR. BISMI KHALIDIN

The Performance of ISLAMIC BANKS

Under an Interest Rate System in Indonesia

How do Islamic Banks Operate with Interest-Based Instruments?

Editor: Prof. Dr. Raja Masbar, M.Sc

THE PERFORMANCE OF ISLAMIC BANKS

Under an Interest Rate System in Indonesia

How do Islamic Banks Operate with Interest-Based Instruments?

Penulis:

Dr. Bismi Khalidin

ISBN: 978-602-50648-8-3

Editor:

Prof. Dr. Raja Masbar, M.Sc

Desain Sampul:

Syah Reza

Tata Letak:

Abidin Nurdin

ISBN 978-602-50648-8-3

Diterbitkan atas Kerjasama:

Sahifah

Gampong Lam Duro, Tungkop Kecamatan Darussalam Kabupaten Aceh Besar, Provinsi Aceh Kode Pos 23373 Telp. 081360104828 Email: sahifah85@gmail.com

Fakultas Syari'ah dan Hukum UIN Ar-Raniry

Jl. Syeikh Abdur Rauf Kopelma Darussalam Banda Aceh Cetakan Pertama, Januari 2018

Hak cipta dilindungi Undang-undang Dilarang memperbanyak karya tulis ini dalam bentuk dan dengan cara apapun tanpa izin tertulis dari Penerbit

ACKNOWLEDGMENT

All praises be to Allah, the Lord of the Worlds, the most Merciful, and prayers and peace be upon His Servant and Messenger, Muhammad. Thanks for all His Blessings and Guidances where without which this work cannot be finished.

I would like to express many thanks to my dissertation promotor, Prof. Dr. Raja Masbar, for his invaluable and continual attention, guidance and support during the process of writing this dissertation. I am also thankful to Dr. M. Shabri Abd. Majid and Dr. Hafas Furqany, co-promotors, who have been a source of encouragement and support. I will never forget their help and understanding to me. As well, I am grateful to the examiners for their suggestions and corrections, they are Dr. Mirza Tabrani, Dr. T. Zulham, Dr. Hafasnuddin, Dr. Aliamin. I am particularly indebted to Prof. Salina binti Kassim for her invaluable corrections and english-editing.

Also, my appreciation goes to the Head of Doctoral Program in Economics of Syiah Kuala University, Prof. Dr. Raja Masbar, and professors and staffs at the Program. Besides, I would like to thank the Dean of Faculty of Economics and Business, Syiah Kuala University, Dr. Mirza Tabrani, MBA and his staffs at the faculty. I would also like to thank the Rector of Syiah Kuala University, Prof. Dr. Ir. Samsul Rizal, M. Eng.

I would like to thank the Dean of Faculty of Shariah and Law UIN Ar-Raniry and the Rector of UIN Ar-Raniry Darussalam Banda Aceh, for their permission to me for pursuing study at the doctor's level, as well as for their supports. I would also appreciate to my colleagues. These include Prof. Dr. Nazaruddin, Dr. Khairuddin, Dr. Ridwan Nurdin, Dr. Muhammad Yasir Yusuf, Dr. Azharsyah, Dr. Nevi Hasnita, Iqbal M. Sh, Ayumiati M. Si, Bukhari Ali MA, Edi Dharmawijaya, Yenny Sri Wahyuni MH, and others. My appreciation also goes to my staffs in the Shariah Economic Law Department (HES), such as Muhammad Iqbal MM, Faisal Fauzan M. Si, Manfaluthy MH and Musfirah.

I would particularly like to express my most sincere appreciation to my mother in the heaven, Syamsiah Gade and my father, Khalidin Ubit, for their endless prayer and unconditional love to their son. I am also grateful to my brothers and sister, Suryani, Hamdani, Muhammad Nasir, the late Amiruddin, and to my sister in law, Mariani, for her financial support at the last stage of the dissertation process.

Also, I am thankful Nur Rahmah Is who has supported the author particularly during finishing this dissertation.

Finally, my special thanks go to my beloved wife, Mariana Abdullah, for her endless love, patience, understanding and tireless support, and our lovely childreen, Fathimah Az-Zahra Bismi, Muhammad Ziaulhaq Bismi and Muhammad Rizqy Aulia Bismi, for their love and encouragement, without which this dissertation would not have been finished.

Only to Allah, the most Merciful, we seek for guidance and wisdom.

Darussalam, Juni, 2018

Bismi Khalidin

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	
TABLE OF CONTENTS vi	
CHAPTER I: INTRODUCTION	1
1.1. Background of the	e Research 1
1.2. Questions of the F	Research 12
1.3. Purposes of of the	e Research 13
1.4. Significance of the	e Research 14
CHAPTER II : LITERATURE REVIE	W 19
2.1. Theoretical Frame 2.2. Previous Research	
2.3. Hypothesis 51	
CHAPTER III: RESEARCH METHO	DD 63
3.1. Research Scopes	63
3.2. The Data 65	
3.3. Econometric Mod	lels and Statistical Method 66
3.4. Definitions of the	Operated Variables 76
CHAPTER IV: RESULTS AND DISC	CUSSION 79
4.1. Syariah Level of Is	lamic Banks in Indonesia 79
4.2. The Profitability o	f Islamic Banks in

Indonesia 85

- 4.3. The Deposit of Islamic Banks in Indonesia 96
- 4.4. The Financing of Islamic Banks in

Indonesia 128

CHAPTER V: CONCLUSION AND RECOMMENDATION 160

5.1. Conclusions 160

5.2. Recommendations 164

REFERENCES 168

APPENDIXES 176

ABOUT THE AUTHOR 393

CHAPTER I INTRODUCTION

1.1. Background of the Research

An Islamic bank is a bank that utilizes Islamic principles in its operation. It is also defined as the financial institution relying on the principle of Profit and Loss Sharing (PLS) with the entrepreneurial partners in its relevant banking activities (Nienhaus, 1983:31). One of the important things distinguishing Islamic banks from conventional ones is that the Islamic banks are prohibited to utilize the variable of interest rate in their operations, such as financing, deposit and the likes, since it is assumed that the variable is regarded as riba and the riba itself is clearly prohibited either by the Holy Quran or the Hadith¹.

¹ The term "interest" is actually not cited in either the Holy Quran or the Hadith of the Prophet Muhammad (peace be upon Him). The both primary sources of Islamic law cite only the term "riba" instead. Method of *Istimbath* employed by the majority of Muslim scholars in declaring the prohibition of interest rate is *qiyas*, the method that ranks the fourth among the primary sources of Islamic law, after the Holy Quran, the Hadith and Ijma'. Concerning the prohibition of interest rate, they argue that causes or *illat* within riba, which is as the basis of its prohibition, also exist within the variable. Therefore, it is regarded to be the same as riba, which is forbidden in Islam. In addition, the prohibition of interest is not exlusive to Islam, but common to all three Abrahamic faiths (Ariss, 2010:102)

The absolute prohibition of riba mentioned by the Holy Quran is basically a command to establish an economic system free from all kinds of exploitation. Such the prohibition is to establish equity between the financiers and entrepreneurs, since, according to Islamic economics, it is considered injustice if the financier is assured of a positive return without sharing the risk (Ahmad, 2015:5). Both the Holy Quran and the Hadith clearly declare the prohibition of riba, one of them is as mentioned in the verse 275 of Al-Baqarah, as the following:

... Allah permitted trade and forbidden riba ...

In addition to the above verse, concerning the prohibition of riba, the Prophet Muhammad SAW also declares through His Hadith that He curses those who do or involve in the riba-related activities, as the following Hadith below.

Instead of interest rate, Islamic banking employs profitloss sharing (PLS) system in its operation. PLS is broadly defined a contractual arrangement between two or more transacting parties, allowing them to pool their resources to invest in a project to share in profit and loss. According to most Islamic scholars, two modes of financing are regarded PLS financing, namely *Mudharabah* and *Musyarakah* (Dar & Presley, 2000). Furthermore, PLS paradigm is considered as a unique feature of Islamic banking, which is predominantly based on mudharabah and musyarakah concepts of Islamic contracting (Chong & Liu, 2009:126). Islamic banking must avoid itself in using interest rate as the basis of its operation directly or indirectly, and must adopt free-interest system². Islamic banking is equity rather than fixed-interest, which is based upon PLS system towards the liability and asset side of a bank's balance sheet (Zaheer et al., 2011:6). Additionally, free-interest is considered as one of the very fundamental characteristics of Islamic banking. Hence, products provided by the banking, either financing, saving or others, must be free from interest rate. Such the characteristic is also the core distinction between Islamic and conventional banking.

Nevertheless, based upon basic characteristics of banking, interest rate has strong relationship with banking industry, which means that interest rate can induce the performance of the banking itself. In addition, interest rate is regarded as the core yardstick of the banking's operations and performance, such as deposit, credit and etc. Moreover, interest rate, under conventional banking system, is a cost of fund, either demand for or supply of fund. Interest rate is the most important item in the conventional banking, or the other word, the conventional banking cannot work without interest rate.

Besides, concerning monetary policy, interest rate is also viewed as the most important instrument in executing

² Some Islamic scholars argue that the main reason Islamic banks more stable than their counterpart, conventional banks, is that they are not affected by the fluctuations on interest rates (Kassim et al., 2009). Such the thought, according to the writer, is acceptable, since one of the motives for money demand is speculation, and the speculation itself is, according to Keynes, influenced by the variable of interest rate. In addition, it is known that speculative activities usually occasion instabilities in the economy, sometimes they cause economic crisis indeed.

monetary policy (Kiaee, 2007:3). Additionally, Kuttner and Mosser (2002) argue that there are six channels of monetary policy transmission mechanisms; one of them is the interest rate channel. According to them, the process of monetary policy to obtain its goals starts with the transmission of open market operations to market interest rate. Not only does in banking and monetary areas, but also interest rate plays the important role in other parts of the economy and finance. In short, interest rate is an inevitable variable in banking industry as well as all aspects of the economic and finance world.

How is Islamic banking? Do such the thought and the reality above also prevail in Islamic banking? How Islamic banks can avoid themselves from the influence of interest rate? Whether Islamic banks can develop and operate without utilizing interest rate or not, while the interest rate is the important part of banking industry, Islamic banks themselves are part of the banking industry as well. It is very important to note that Islamic banking, although adding the term "Islamic", is absolutely part of banking industry. Therefore, it is questionable that banking, including Islamic banking, can avoid itself from the influence of interest rate since the rate is the important part of the banking.

For Islamic banks, applying the interest rate system in their operations contravenes the core principles of Islamic banking. According to El Hawary, et al. (2004:5), Islamic banking and finance (IBF) adheres to four important principles, viz. risk-sharing, materiality, no exploitation and no financing of sinful activities. Such the four are the cornerstone for all activities of Islamic banking. Moreover, risk-sharing is the most important principle for Islamic banking, and it is

considered as the trade-mark of the banking. Such the principle forbids applying the variable of interest rate which is regarded as ribawi-categorized activities.

It is interesting to be noted, based upon several researches, that the practice of Islamic banking in some Islamic countries are not as expected, which means the practice of those Islamic banking are not pure Islam in terms of the influence of interest rate. It means that Islamic banking in several Islamic countries are influenced indirectly by interest rate. Hakan and Gulumser (2011) conducted a research exploring the influence of interest rate on Islamic banking in Turkey. The research, with using data from 2005 to 2009 and applying the VECM method, finds an unbelievable result where the Islamic banking in Turkey are visibly influenced by interest rates.

The impact of interest rate towards Islamic banking also happens in Malaysia, one of the Islamic countries initiating firstly the operation of Islamic banking in the world. In Malaysia, according to Chong and Liu (2009), the deposits of Islamic banking in Malaysia are not interest-free, but are closely pegged to conventional banking' deposits. Moreover, it concludes that only small portion of financing of the Malaysian Islamic banking is strictly PLS system based, whereas such the system is a must for Islamic banking since it is the cornerstone of the operation of Islamic banking.

In addition to the above, another research exploring the influence of interest rate towards Islamic banking was done by Yap and Kader (2008:113). By using the data from the Malaysian banking industry, 1999 - 2007, their research found the influence of interest in Islamic banking of Malaysia.

Besides, it shows a rise in the base lending rate would induce customers to obtain financing from the Islamic bank and vice versa. Also, still according to their research, Islamic banking in the dual system is exposed to interest risks despite operating on interest-free principle. In short, based upon experiences from the both Islamic countries, the variable of interest rate has effects directly or indirectly towards the performance of Islamic banking.

How are the Islamic banks in Indonesia³? Are those banks also being influenced by interest rate as Malaysia's or Turkey's? Can the banks can avoid themselves from the involvement of interest rate in determining their performance? Have the Indonesian Islamic banks applied the free-interest and PLS principles totally as expected? Can the Islamic banks implement the principle of free-interest in the midst of the existing conventional monetary system which still employs the variable of interest rate? Such the questions are among the important ones related to the operation of Islamic banking in

³Islamic banking system was firstly introduced and implemented in Indonesia in 1991 when the first Islamic bank, Bank Muamalat Indonesia (BMI), was established and one year later, in 1992, the bank was operated. However, there were some rural Islamic banks established and operated during the time, one of them was such as Bank Perkreditan Rakyat Syariah (BPRS) Hareukat Lambaro Aceh Besar, Aceh. The Islamic bank was established and operated in 1991, which is also considered as the first Islamic bank operating in Aceh. Another rural Islamic bank established in the year was such as BPRS Berkah Amal Sejahtera in Bandung, West Java. Since the years, particularly after the 1997/1998 Asian Financial Crisis, the system started to be considered as well as paid more attention in the country by either decision makers or banking practitioners. Consequently, due to such the phenomenon, a number of conventional banks opened their units or channels towards an Islamic principle-based system. In addition, several BUS typed-Islamic banks were also established during the time.

Indonesia, particularly in relating to the influence of interest rate towards the performance of Islamic banking.

Concerning Indonesia, the country that has the most Muslim population and one of the initiators for the establishment of Islamic banking in the world, is paying more attention towards the development of Islamic banking. Breakthroughs and regulations encouraging the banking have been done either by the government or the society. The issuing of the Islamic Banking Act of 21 in the year 2008 is an evidence of the great attention and acknowledgment from the government, because it is the starting point for developing the Islamic banking industry in the future. In addition, the issuing of such the law indirectly provides the same right and position for the Islamic banking to operate as its existing counterpart, the conventional banking.

As 2015, there are 197 Islamic banks in Indonesia, which consists of 12 Islamic Commercial Bank (BUS), 22 Islamic Business Unit (UUS) and 16 Islamic Rural Banks (BPRS). Concerning the offices, as 2015, there are 2,747 offices of Islamic banks operating currently in Indonesia, which consists of 1990 BUS, 311 UUS, and 446 BPRS. In addition to the number of Islamic banks and their offices, the performance of the Islamic banking, such as assets, deposits and financing, is considered to grow significantly year by year, as shown in the table below.

Table : 1.1.

Selected data on the Indonesian Islamic Banks, 2005-2015

(Billion Rupiah)

Voor Assots		D	Deposits		DI	EVA	Financing				
Year	Assets	Dep	W-dd	W-sd	M-td	BI	FIN	Musy	Mudh	PLS	Mura
2005	20,880	15,582	2,045	4,371	9,166	3,180	15,232	1,899	3,124	5,023	9,487
2006	26,722	20,672	3,416	6,430	10,826	3,641	20,445	2,334	4,062	6,396	12,624
2007	36,538	28,012	3,750	9,454	14,807	4,540	27,944	4,406	5,578	9,984	16,553
2008	49,555	36,852	4,238	12,471	20,143	5,189	38,199	7,411	6,205	13,616	22,486
2009	66,090	52,271	6,202	16,475	29,595	10,393	46,886	6,597	10,412	17,009	26,321
2010	97,519	76,036	9,056	22,908	44,072	16,393	68,181	8,631	14,624	23,255	37,508
2011	145,467	115,415	12,006	32,602	70,806	27,127	102,655	10,229	18,960	29,189	56,365
2012	195,018	147,512	17,708	45,072	84,732	26,713	147,505	27,667	12,023	39,690	88,004
2013	242,276	183,534	18,523	57,200	107,812	31,946	184,122	39,874	13,625	53,499	110,565
2014	272,343	217,858	18,649	63,581	135,629	43,412	199,330	49,387	14,354	63,741	117,371
2015	296,262	231,175	21,186	68,594	141,329	41,051	212,996	60,713	14,820	75,533	122,111

Sources: Bank of Indonesia (BI) and the Financial Services Authority (OJK)

The table shows a significant increase of the performance of Islamic banking in Indonesia during the selected periods. From 2005 to 2015, the increase of assets, deposits and financing of Islamic banking is about 13 times. For instance, the number of assets of Islamic banking, as shown in the table, is 20,880 billion rupiah in 2005, which grows up about 296,262 billion rupiah in 2015. Besides, the number of deposits in 2005 is 15,582 billion rupiah, increasing in 2015 about 231,175 billion rupiah. Also, the increase of financing of the banking is the same as the both previous variables, in which the financing in 2005 is about 15,232, which rises in 2015 about 212,996 billion rupiah.

With respect to the quantity, such as its growth, the Islamic banks in Indonesia are considered significantly. Nevertheless, it is likely questionable in terms of the quality of operation, particularly about complying with the principles of Islamic banking. For example, it is expected that PLS financing exceeds all kinds of financing in the Indonesian Islamic banks, but, the fact shows that Murabahah financing is the leading one, which is more fifty percent of the Islamic banks' financing total, while the financing is questionable, by some, due to its close relationship with interest rate.

Besides, the table 1.2 below is likely to show the same phenomenon as explained in the above. The table presents profit sharing rates utilized in the Islamic banking in Indonesia. The writer views that both tables implicitly indicate that the Islamic banks are not fully to follow the Islamic banking principles, the risk-sharing principle in particular. Both tables indirectly show the existence of interest rates towards them as well. For instance, all rates for either deposits or financing, as shown in the table below, employed by the Islamic banking seems to be the same as interest rates of conventional banking.

Table: 1.2.

Profit Sharing Rates of Islamic Banks in Indonesia
Sources: Bank of Indonesia (BI) and the Financial Services Authority (OJK)

YEAR -	PROFIT SHARING RATES OF ISLAMIC BANKS							
	WDD	WSD	MTD-01	MUDH	MUSY	MURA		
2005	1.16	3.96	7.86	12.75	8.46	13.05		
2006	1.27	3.72	8.96	13.73	10.25	12.09		
2007	1.07	3.32	7.63	16.93	11.23	14.66		
2008	1.18	3.61	8.22	19.38	11.37	14.92		
2009	0.96	2.76	6.92	19.11	11.72	16.07		
2010	1.2	3.06	6.9	17.39	14.52	15.3		
2011	2.04	3.21	7.14	16.05	13.64	14.72		
2012	0.92	2.37	6.06	14.9	13.44	13.69		
2013	0.65	5.7	6.6	14.4	12.45	13.18		
2014	0.64	3.57	7.8	20.69	13.61	15.43		
2015	1.18	4.33	7.45	12.21	11.35	13.36		

Actually, it is indeed important and relevant to examine the relationship between interest rate and Islamic banking, particularly in Indonesia. This is because, one side interest rate is an important part of banking industry where Islamic banking itself is part of the industry, but the other side, interest rate is banned to use in Islamic banking's operation. In addition, due to as an Islamic country, the existence and the practice of Islamic banking in Indonesia are regarded to be very important because it is the country that has the most Muslim population in the world. Moreover, the country is regarded as one of the Islamic countries initiating the establishment of Islamic banking in the world. A research to explore the existence and the relationship between interest rate and the Indonesian Islamic banking are extremely essential accordingly.

Currently, there are various researches that have been done by Islamic scholars regarding Islamic banking throughout the world, including in Indonesia. Nevertheless, researches exploring the relationship between Islamic banking and interest rate are still lack. Two researches as mentioned above, such as Hakan and Gulumser's and Chong's are the instances of research investigating the relationship between Islamic banking and interest rate. In addition, the research exploring between Islamic banking and interest rate has also been undertaken in Indonesia, such as Kasri's and Izhar's.

However, researches specifically exploring the impact of interest rate towards Islamic banking comprehensively are nearly rare, particularly in the Indonesian Islamic banks. Hakan & Gulumser's (2011) research is to explore the impact of interest rate on Islamic banking in Turkey, but the research is very simple, only two variable of Islamic banking investigated, viz. deposits and financing (loan). Chong's

research on Islamic banking in Malaysia is the same as the Hakan & Gulumser's working in terms of the simplicity, in which the research focuses on deposit side only.

Moreover, even though the research conducted by Kasri & Kassim (2009) is to explore on Islamic banking in Indonesia, nonetheless, it focuses on the determinants of saving side only, not specific to explore the impact of interest rate towards the saving or other variables of Islamic banking in Indonesia. Izhar's research is too simple as well. The research only employs data from Bank Muamalat Indonesia (BMI) whereas the bank only has 20-25 percent of shares of the Indonesian Islamic banking industry.

With respect to the practice of Islamic banks in Indonesia, it is hypothesized, according to the writer, that Islamic banks in Indonesia are the same with what had happened in Turkey or Malaysia in terms of adopting or influencing of interest rate in the operation. As well, benchmark strategy⁴, which is dominantly applied by the banks, indicates that Islamic banking is influenced by interest rate directly or indirectly. Nevertheless, such the hypothesis

⁴ The Benchmark strategy is the new strategy currently employed by the Indonesian Islamic banking industry. The strategy is usually utilized in Murabahah product (mark-up-based product) in which the marginal profit determined for the product is based from the benchmark of the cost fund in money market, where the cost of fund itself accords and follows to interest rate. According to the writer's view, the benchmark strategy is the adoption of interest rate indirectly. The writer argues that the yardstick in determining the marginal profit in Murabahah product is the price of the product itself in the good market, such as rate of inflation or Costumer Price Index or Producer Price Index, or the likes, not in the money market, since Murabahah is that the banks sell a product to a costumer, not sell the money.

needs to be proven comprehensively in order to know their validities, whether true of false.

Therefore, it needs to a research that examines the relationship between interest rates and Islamic banking comprehensively particularly in Indonesia. The involvement of interest rates directly or indirectly towards the performance of Islamic banking is a thing that must be eluded, while free-interest is the principle to which the banking must adopt. The free-interest principle or no-ribawi is a truly specific character of Islam itself. Thus, it is really important to undertake a research observing the Islamicity of the Islamic banking's operation in terms of such the popular variable, viz. interest rate. Due to the research, the answers as well as the solutions will be gotten, so as the Islamic banking in Indonesia will be more Islamic, also better and stronger at least the same as its counterpart, conventional banking.

1.2. Questions of the Research

This research is generally aimed to seek out the relationship between the variable of interest rate and the performance of the Islamic banking in Indonesia. It is widely known that, under conventional banking system, the variable of interest rate plays the important role towards the performance of banking. This is because that the variable influences and determines the volume of money in the economy, which induces the bank's policies in supply of and demand for funds and determines the performance of banking accordingly. Such the phenomenon theoretically prevails in the interest-based banking system, to which commonly so-called conventional banking. For conventional banking, interest rate is considered

as the most important variable and an inevitable one for the banking.

Does the above phenomenon also prevail in the Islamic banks in Indonesia? Or the other word, whether the variable of interest rate also impacts on the performance of the Islamic banks, or whether such the variable also contributes in determining the performance of the Indonesian Islamic banks, so do the conventional ones. Do the Indonesian Islamic banks avoid themselves from the influences of interest rate directly or indirectly, since the variable is absolutely prohibited in Islam? If so, how are "Islamic" Islamic banks in Indonesia? Such the questions are the important part of this thesis's research. Hence, the research questions of this thesis can be stated completely as the followings:

- a) How far does the practice of the Indonesian Islamic banks comply with the principles of Islamic Economics?
- b) How are the effects of interest rates towards the profitability of Islamic banks in Indonesia?
- c) How are the effects of interest rates towards the deposits of Islamic banks in Indonesia?
- d) How are the effects of interest rates towards the financing of Islamic banks in Indonesia?

1.3. Purposes of the Research

It is important to be noted that the adoption of Islamic values and principles for an Islamic bank in its operation is absolutely essential rather than the bank only complies with banking regulations. To what extend an Islamic bank implements such the Islamic values and principles is a yardstick to measure "islamicity" of the Islamic bank itself. In this regards, the main purpose of the research is to know how "Islamic" Islamic banks in Indonesia are. Or the other word, it is to know islamicity level of the Indonesian Islamic banking' practices in terms of complying with Islamic values and principles, the free-interets principle in particular.

In addition, it is widely known that interest rate is the important term in the banking world and Islamic banking itself is part of it. It is impossible that a bank (a conventional bank) can operate without interets rate variable, meanwhile the variable is prohibited in the practice of Islamic banking. Although interest rate is the important variable in the banking world, Islamic banking must avoid itself from the influence of interest rate directly or inderectly. Therefore, the second purpose of the research is to identify the effects of interest rates towards the performance of Islamic banks, which consists profitability, deposit and financing, in Indonesia.

1.4. Significance of the Research

Not only does conventional banking but also Islamic banking plays the important role towards the Indonesian economy currently. Since their establishment, Islamic banking has been regarded to contribute gradually to the development of the economy in the country. In spite of the fact that the shares of Islamic banking in the economy are still under five percent approximately⁵, the existence of the banking is considered to determine the economic condition of the country.

⁵ As 2015, the amount of financing provided by the Indonesian Islamic banks is 212,996 billion rupiah, which is about 3.57 percent of total

Moreover, after the Act of Islamic Banking (the Act No. 21 Year 2008), being issued, the existence of Islamic banking industry has been increased. It means that the existence of Islamic banking under the Indonesian law starts to improve. Besides, the rights for operation according to Islamic banking systems are provided widely by the government. Such the phenomenon obviously indicates that its role, in terms of the Indonesian economy, enlarges and extends than it does previously. In the other word, the Islamic banking is considered to have the same rights and roles as the conventional banking, in terms of the involvement towards the development of the Indonesian economy.

Due to the importance as well as the existence of Islamic banking towards the Indonesian economy particularly in the current time, the study on Islamic banking is regarded very important. The results of the research is supposed to be an essential information regarding the development of Islamic banking in Indonesia, and they could be used by the government, Islamic banking practitioners and others, as considerations and thoughts in making policies as well as issuing regulations concerning the Islamic banking. The more important information collected and the more research undertaken on Islamic banking, the better of the Islamic banking industry in the future. Such the research of Islamic banking is viewed very significant to be conducted accordingly.

As stated earlier, this research is to explore the effects of interest rate towards the performance of Islamic banks in

credits of the national banking industry, where the total credits of the industry is 5,968,650 billion rupiah.

Indonesia. Examining regarding the effects of interest rate towards the Islamic banking could be considered as a significant novelty in the Indonesian banking industry, for the Islamic banking world of Indonesia in particular. This is because that the research goes into the serious problem of Islamic banking, which is to investigate the influences or the involvement of interest rate either directly or indirectly towards the Islamic banking. Such the study is deemed essential because one side interest rate is the inevitable variable in banking system, but the other side it is banned in Islam.

Basically, there have been saveral researches done concerning the effects of interest rate towards Islamic banking. Nevertheleass, this research is very expected to offer moral novelty aspects. This research will focus on the impact of interest rate towards Islamic banking comprehensively. Hakan & Gulumser's work is to seek for the impact of interest rate towards Islamic banking generally, but this research exploring its impacts in Islamic banking in details, such as in deposit, financing and profitability. This kind of the research is very important since it will inform us which the important aspects of Islamic banking being influenced by interest rate are.

Also, according to the scope and period of the research, this research is regarded more representative and complete. Although either Kasri's or Izhar's is on Islamic banking in Indonesia, their research is very simple. Kasri's investigation is only in saving side, but this research includes the core variable of Islamic banking, viz. profitability, financing and saving. As well, what Izhar did is very simple since he just used the data from Bank Muamalat Indonesia only, and it is difficult to consider that his findings will represent all Islamic banks in

Indonesia. This research will utilize more data on Islamic banks in Indonesia over ten years. To employ more data will give the result more representative and closer to the truth.

Another significance is that the research investigates the shariah level of Islamic banking in terms of applying of the Islamic banking principles, particularly applying the risk-sharing principles and avoiding from the influence of interest rate. Such the both, to apply the risk-sharing principles and to avoid from the influence of interest rate directly or indirectly, are the most important thing that must be undertaken within the operations of Islamic banking, since the both are amongst the most important trade-marks of Islamic banking. Moreover, the implementation of the both is considered the initial motivation and cause in establishing Islamic banks in the world. Therefore, this research is viewed very essential because it examines such the considerably important problem.

Furthermore, this research indirectly addresses the public's hesitation towards the practices of Islamic banking particularly the involvement and the existence of interest rate in them. It is inescapable that one of the public doubts upon the Indonesian Islamic banking is the people argues that the operations of Islamic banks are implicitly the same as their counterpart, the conventional banks. Why some of the public argue such that and why they are pessimistic concerning the Islamic banking is because, at least, that there have not been comprehensive information due to lack of research about the problem. Consequently, it is important to make a research for answering such the public's problem. This research is expected to present comprehensive information as needed and to explain clearly such the problem, since hesitation and incredulity of the

public, if not eliminated, will affect negatively to the development of the banking themselves.

Last but not least, this research is necessary since it will give solutions and breakthrough for the development of Islamic banking in Indonesia for the future time. It is widely known that in spite of the fact that the Islamic banking is growing significantly year by year in Indonesia, its share is still far below the conventional banking, which is about 3-5 percent, while the age of the bank lasts nearly three decades. Such the phenomenon is a crucial problem for Islamic banking itself. This research is expected to contribute solutions and breakthroughs for developing the banking, and make the banking better and stronger in the future accordingly.

CHAPTER II LITERATURE REVIEW

2.1. Theoretical Framework

2.1.1. General Concepts on Islamic Banking System

2.1.1.1. Definition and History of Islamic Banking

Islamic banking is defined as banking that employs Islamic principles and rules in its activities and operations. All activities undertaken by the banking, such as saving, financing and the likes, must accord with and base upon Islam. Thus, Islamic banks in performing their roles as the financial institution must comply not only the common banking regulations but also the values as well as the principles of Islam. Or the other word, the operations of Islamic banks must accord with the principal sources of Islam, viz. the Holy Quran and the Hadith¹.

¹ Basically, islamicity level of an Islamic bank depends extremely on to what extend the bank implements the principles and the rules from the both Holy sources of Islam, not only merely by adding the name "Islam" before it instead. It is unavoidable that Islamic banks are criticized by some including Muslim themselves in terms of the currently unsatisfactory operations of the banks, which is regarded that the banks are the same as their counterpart, conventional banks. Moreover, some of Muslim judge that Islamic banks just change their name only into "Islam", which means that Islamic banks have not applied the values and the principles of Islam perfectly.

One of the Holy Quran verses regarded as the principles of banking operations under Islamic economics is the following verse:

O ye who believe, devour not usury, doubled and multiplied, but fear Allah, that ye may (really) prosper (Ali Imran : 30)²

The above verse is the one that declares the prohibition of riba. Such the prohibition is judged as the fundamental principle of Islamic banking. Nevertheless, the prohibition of riba prevails to all activities of human being life. Besides, the verse interdicts those who claim themselves as "mukmin" to have riba or to employ riba in their activities. It indirectly states that the mukmims must be far from riba or must avoid themselves from riba-related economic activities.

It is widely known that the term frequently discussed concerning the operations of Islamic banking and its differentiation with conventional banking is the issue of interest rate. Even though it is still debatable concerning the similarity between riba and interest (Kasri & Kassim, 2009:4), Islamic banking must abstain itself from using interest rate directly or indirectly. This is because that interest rate is viewed as riba or the characteristics of interest rate are the same as riba, where riba itself is prohibited by both the Holy Quran and the Hadith of the Prophet Muhammad SAW.

According to the prohibition of riba, Allah SWT also said in the other verse of the Holy Quran, as the following.

20

² Translated by Abdullah Yusuf Ali in "The Meaning of The Holy Quran", published by Amana Corporation, USA.

يايها الذين امنوا اتقوا الله وذروا ما بقي من الربا ان كنتم مؤمنين (البقرة ٢٧٨)

O ye who believe, fear for Allah and leave the remains of riba, if you are truly believers (Al-Baqarah 278).

In principle, the verse of Al-Baqarah 278 is the same as the verse of Ali Imran 130 in terms of the strictly prohibition of riba. The both verses corroborate one to another in terms of the banning of riba. In addition, there are several other verses in the Holy Quran as well as the Hadith of the Prophet affirming that riba is forbidden.

Actually, the prohibition of riba is not specific in the banking world only. Such the prohibition covers all economy and finance-related daily activities. Besides, either the Holy Quran or the Hadith does not mention the term "interest rate", the both only state the term "riba". This means that fundamentally Islam bans all economic and financial activities containing ribawi either directly or indirectly, either named as "interest rate" or not. In the other word, although a banking activity or product, for instance, is not termed "riba" or "interest rate", the characteristics of the activity or the product are the same as riba, such the activity or product is prohibited in Islam, since it constitutes riba.

Because it is categorized as riba, interest rate is absolutely prohibited to employ in the Islamic banks' activities; the banks utilize profit-loss sharing system instead. In essence, profit-loss sharing system, well-known as PLS, is a trade-mark of Islamic banking. The PLS system constitutes the specific characteristics of Islamic banking, which replaces the existence of riba or interest rate commonly employed by conventional banking. Accordingly, to adopt PLS system and

to avoid from riba or interest rates are the inevitable principles of Islamic banking's operation.

Initially, motivation and wishes of a number of the Muslim scholars and societies in Islamic countries in order to be far from riba or interest system is the starting point for establishing Islamic banking in the world. They really want to the establishment of Islamic banks to replace their counterpart, conventional banks, applying ribawi system. The banks are expected to operate according to the Islamic principles.

The term "Islamic Banking" has actually existed in academic writings long time ago, but practically it was introduced and emerged into the surface when Islamic principles-based banks were established throughout the world, particularly in the early of the twentieth century. The term became more well-known since the Organization of Islamic Conference (OIC) initiated an Islamic bank in the world, so-called Islamic Development Bank (IDB).

The bank considered to apply firstly free-interest system in the world is Mit Ghambr Savings Bank in Egypt (Memon, 2007:5). In spite of the fact that the bank did not name itself as "Islamic bank" by adding the term "Islam" or "syariah", Muslim scholars are likely to claim that it is the first Islamic bank in the world. Unfortunately, due to some reasons the bank was closed down in 1971. In the same year, however, another Islamic bank was built, which is the Nasser Social Bank. The bank was established in Egypt as well.

Four years later particularly in 1975, two big Islamic banks were established in Jeddah and Dubai respectively. The first is Islamic Development Bank (IDB), established in Jeddah, Saudi Arabia. The bank, which is an inter-

governmental institution, aims at raising the economic and social development of its member countries. The second is Dubai Islamic Bank (DIB), established in Dubai, United Arab Emirates, which is considered the first major Islamic commercial bank (Chachi, 2005: 19).

After the establishment of such the both Islamic banks, IDB and DIB, other Islamic banks started to be established in Islamic countries throughout the world. The both banks were considered as the motivators for the Muslim society in building Islamic banks. Pakistan, Malaysia, Iran and some other Islamic countries initiated to build Islamic banks in their own countries. Consequently, many Islamic banks existed³.

At the global level, however, a number of Islamic countries were faster than Indonesia in terms of establishing and implementing of Islamic banking system, such as Egypt, Pakistan and Malaysia. In addition, other Islamic countries such as Iran, Pakistan and Sudan have established Islamic banks in their own country before Indonesia did. Moreover, only Islamic banks were permissible in the countries. Furthermore, in August 2004, the Islamic Bank of Britain became the first bank considered by a non-Muslim country to engage in Islamic banking (Chong and Liu, 2009:125). Currently, Islamic banking rises significantly throughout the world, and nearly acceptable as one of the official banking system as well.

³ Indonesia is regarded to be late in establishing an Islamic banking if compared with its neighbour, Malaysia. Moreover, the regulation arranging specifically about Islamic banking system were issued lately, viz. in 2008. The act, so-called Undang Undang Perbankan Syariah, likely needs to be revised because it cannot develop the banking significantly as expected.

As a result, concerning the practices of Islamic banking system in the Islamic world, it could be categorized into three types. The first is the countries that implement the system totally; they are two Islamic countries, Iran and Sudan. The second is the countries that adopt Islamic banking system gradually and they have avoided separate legal and regulatory system, such as Pakistan, Egypt and Saudi Arabia. The third are the countries that have officially separate legal and regulatory system for Islamic banks; they are such as Malaysia and Indonesia (Nomani, 2003:38).

2.1.1.2. Principles of Islamic Banking

It is widely known that Islam arranges all activities related to human being's life, including economic and financial affairs. According to Islam, banking is part of financial activities to which Islam arranges as well as has the specific rules. In addition, banking-related activities are considered part of Islamic activities, which is, surely different with other banking systems in the world. Therefore, although Islamic banking is part of the banking industry in which conventional banking is also part of it, Islamic banking has its specific principles. In short, the principles adhered in Islamic banking are different with those in its counterpart, conventional banking.

Because Islamic banking is part of Islam, and source of Islam itself is the Holy Quran and the Hadith, the principles of Islamic banking are from the both holy sources. Islamic scholars have examined principles of Islamic banking which are taken and based from the Holy Quran and the Hadith. Although there are differences between them, they are the same in principal. El-Hawary et al. (2004:5) divides the

principles of Islamic banking into four categories as the following.

- 1) Risk-Sharing; this principle means that financial transactions of Islamic banking must reflect a symmetrical risk distribution.
- Materiality; this principle means that all financial transactions must have material finality or a real economic result.
- 3) No-Exploitation; this principle means that individuals who involve in the Islamic banking transactions are prohibited to exploit one to another.
- 4) No-Financing of Sinful Activities; this principle means that all either financial and non-financial transactions are banned to be used for producing banned goods and for doing banned services by the Holy Quran.

Basically, Islamic banking or Islamic finance is founded fundamentally on the prohibition of riba. The main propose of Islamic banking and finance is to provide an Islamic alternatives to the conventional system based on riba (Rahman, 2007:123) and Islamic financing itself is working within the sharia framework following certain restriction (Hanif, 2011:172).

The elimination of riba is central to reorganization of financial system on the basis of Islamic principles (Khan, 1989:3). This is the central focus of economic and financial activities, particularly banking industry in Islam. But, it is important to note that not only riba is prohibited but also some other activities are banned, such as gharar, which constitutes part of the Islamic principles of Islamic banking. In this

regards, such the principles can be explained by details as the followings (Ahmad & Hassan, 2015:16)⁴:

- a) Any predetermined payment over and above the actual amount of principal is prohibited.
- b) The lender must share in the profits or losses arising out of the enterprise for which the money was lent
- c) Making money from money is not Islamically acceptable
- d) Gharar (deception) and Maisir (gambling) are also prohibited
- e) Investments should only support practices or products that are not forbidden or even discouraged by Islam.

Not only does conventional but also Islamic banking constitutes part of the banking industry. Due to as part of the banking industry, Islamic banking is a financial institution in which the roles as well as the goals are the same as other financial institutions. As the financial institution, the principal goal of Islamic banking is similar to its counterpart of conventional banking, which is to achieve profit as much as possible. Nevertheless, Islamic banking must take into consideration the Islamic principles regarding achieving such the profit. This means that as long as the Islamic banking does not violate the Islamic principles of banking, it is acceptable to gain the profit level as high as possible.⁵

⁴ Cited from Nida'ul Islam Magazine, "Principles of Islamic Banking", issue No.10, November-December 1995.

⁵The reality shows that a number of Islamic banks currently operating in Indonesia are from conventional banks in which they are units of the conventional banks, which is so-called UUS (Unit Usaha Syariah). They are such as Bank Syariah Mandiri from Bank Mandiri, BRI Syariah

2.1.1.3. Index of Shariah Compliance (ISC) of Islamic Banking

As defined, Islamic banks are the banks applying Islamic principles within their operations. In addition, Islamic banks, the Indonesian Islamic banks for instance, not only must operate according to banking rules due to as part of banking industry, but also must implement the Islamic rules in their activities. Hence, the banks will be called as the Islamic banks as long as they can fulfill such the both rules. Nevertheless, the implementation of Islam based-rules of banking is the yardstick for the Islamic banks, which means that they cannot be regarded as the Islamic banks if the values and rules of Islam are far from their operations. In short, the more the Islamic values are applied by the banks, the more Islamic the banks are.

However, it is quite difficult to measure the level of islamicity or Index of Shariah Compliance (ISC) of an Islamic bank. This is because that the term "Islam" or "syariah" is an abstract word to which there are several definitions provided by Islamic scholars. Besides, the term has a general meaning, either qualitatively or quantitatively. Thus, there is no a specific measure to compute the islamicity level of something, including the islamicity level of an Islamic bank. In addition, the popular term that constitutes the specific feature of Islamic banks is the variable of interest rate and the existence of the rate is still debatable among Islamic scholars. Nevertheless, some researches have made quantitative-based measurement

from BRI, BNI Syariah from BNI, and others, except Bank Muamalat Indonesia, to which firstly established as a commercial Islamic bank.

methods in computing islamicity level of an Islamic bank, such as by using syariah maqashid index and others⁶.

Index of Shariah Compliance (ISC) of an Islamic bank, one of them, can be determined by computing the implementation of Islamic principles of banking within its operation. According to Hawary, et al. (2004:5), there are four principles of Islamic banking considered as the trade-marks of the banking, viz. risk-sharing (RS), materiality (M), no exploitation (E_n) and no financing of sinful activities (FS_n). If Index of Shariah Compliance (ISC) of Islamic banks is counted by measuring the number of such the principles implemented by the banks, in the mathematical form, the index could be written as the following.

$$ISC = f(RS, M, E_n, FS_n)$$
 (2.1)

The first principle of risk-sharing defines that products offered by Islamic banks must base upon the risk-sharing system⁷. Moreover, such the principle is actually the main characteristics of Islamic banking as well as the absolute differentiation from conventional banking. Currently, there are two types of financing categorized as risk-sharing based products, i.e. Mudharabah (Mudh) and Musyarakah (Musy). The both products could be regarded as the measure of

⁶ Several researches have been done to explore the islamicity level of an Islamic bank, some of them are by using syariah maqashid index. For this research, the write names "Index of Shariah Compliance" or ISC. Technically, syariah maqashid index and index of shariah compliance are the same, the differentiation is in terms of the indicators or standards employed for such the indexes.

⁷ Fundamental principle of Islamic finance is the risk and profitsharing feature of transactions, prohibition of interest or riba, gambling or maysir and excessive uncertainty or gharar (Karim, et al, 2012: 669)

islamicity level of Islamic banking in terms of the first principle⁸.

PLS system is a unique feature of Islamic banking (Chong, 2009: 126). The system is the primary characteristics of the banking as well. Moreover, it is the key distinction between Islamic and conventional banks. Because only two categories of financing accord with the PLS system, the identity will be as the following:

$$Fin_{pls} = Fin_{mudh} + Fin_{musy}$$
 (2. 2)

Where;
$$Fin_{iB} = Fin_{pls} + Fin_{non-pls}$$
 (2.3)

 $Fin_{pls} > Fin_{non-pls}^9$

The formulas (2.2) and (2.3) are the quantitatively measured-indicators to compute the compliance level of Islamic banks. The equation (2.3) indicates that there are in general two categories of financing undertaken by Islamic banks, namely PLS and Non-PLS based Financings. The both also consist of a number of financings.

⁸ Legally, Islamic banks must not concentrate their financing only the both types of financing, mudharabah and musyarakah, which means that it also is acceptable to finance other products such as murabahah, ijarah and the likes. Nevertheless, the both types of financing are the specific features of Islamic banking.

 $^{^9}$ Fin_{non-pls} denotes types of financing beyond PLS system. There are several products of financing ordered by Islamic banks that do not base upon PLS system, such as murabahah, ijarah, BBA and others. Fin_{pls} > Fin_{non-pls} means that the amount of financing for PLS-based schemes is expected to be more than for Non-PLS-based products. A pragmatic shift in Islamic banking and finance is the almost complete move from supposedly Profit and Loss Sharing (PLS) banking to a sales-based and debt-based system (Saeed, 2004).

Due to the assumption that the better Islamic banks are those implementing the PLS system in their operations, ISC is positively related to the number of PLS financings. The more PLS financing, the more ISC of Islamic banks and which in turn the less Non-PLS financing. Or the other word, the more Non-PLS financing, the less ISC of Islamic banks as well as the less PLS Financing. Therefore, the level of ISC is could be written as follows:

$$ISC_{index} = f(Fin_{pls}, Fin_{non-pls})$$
 (2.4)

In addition to the above variables, the level of ISC is also determined the existence and the influence of interest rate towards Islamic banks. This is because that Islamic banks must be far from the variable of interest rate, either directly or indirectly. Financing provided by Islamic banks must avoid from interest rate. In addition, profitability earned by the banks must not also be influenced by interest rate. As well, the profit sharing rate is not allowed to follow interest rate.

In short, the variable of interest rate must be free within the operations of Islamic banks. It is widely known that there are two very important characteristics of Islamic banks, i.e. free-interest rate and PLS-based system. The both characteristics are also considered as the trade-mark of Islamic banking. In this regards, the level of ISC can also be computed by the both, free-interest and PLS-based financing.

$$ISC = f(Fin_{pls}, i_{-td})$$
 (2. 5)

where : $i_{\text{-td}}$ means interest rate-towards dependence

The equation (2.5) reveals the level of ISC index¹⁰ is determined by the amount the PLS-based financing, viz. mudharabah and musyarakah, and dependence level of interest rate towards their operations, which is at least in three schemes; financings, profitability and profit sharing rates. Such the dependence level towards interest rate can be measured by computing coefficient correlation between them.

2.1.1.4. Profit Sharing Rate, Islamic Banking and Islamic Monetary Policy

Monetary policy is the policy that has strong relationship with interest rate and banking. In addition to another policy, i.e. fiscal policy, monetary policy aims at achieving economic stability and growth concurrently. Such the goals are achieved by organizing the volume of money in the economy with its prominent tool, namely "interest rate" and the banking itself is the place of the money collected. To control as well as to organize the volume of money in the economy, monetary policy utilizes its monetary instruments employing dominantly interest rate as the yardstick¹¹. Therefore, interest rate, banking and monetary policy are the three important variables in the economy that influence one to another.

 $^{^{10}}$ Nevertheless, by theory, ISC index is not limited to the both terms (Fin_{pls}, i_{-td}), which means that there are several terms could be used as the indicators to compute the index. As explained in the earlier, there are four important characteristics of Islamic banking and finance.

¹¹ According to some macroeconomics literatures, there are several monetary instruments employed by the monetary policy in getting stabilization of money supply in the economy, which in turn to achieve the policy's goals. They are well-known: open market operation, discount rate and reserve requirement. The both former are based upon interest rate, the other latter is not.

The phenomenon as explained above is what prevails in the existing economy system or monetary policy. In some Islamic economic literatures, it is called conventional economics or conventional monetary policy. As to Islamic economics, monetary policy is also regarded as the important part of such the economic system. In general, monetary policy, such as characteristics, features, under Islamic economics literatures is the same as with conventional monetary policy. The differentiation between the both lies in using the variable of interest rate or not, where Islamic monetary policy bans utilizing interest rate.

Instead of the variable of interest rate, monetary policy under Islamic economic system employs the variable of profit sharing rate¹². Moreover, profit sharing rate is used as the yardstick in economic and financial activities. For instance, profit sharing rate is to replace interest rate that usually used by conventional banks. In this regards, there are several variables and terms found in Islamic banking literatures, such as musyarakah, mudharabah and the likes, which adopt the variable of profit sharing rate. Profitability, financings and deposits, the three important terms of the Islamic banks operations, employ the rate of profit sharing as the conventional banks do towards interest rate.

Islamic monetary policy in attaining its objectives must employ the tools and instruments that are far from interest rate. Such the monetary policy has to utilize, in the face of the

¹² Profit sharing rate or rate of return in Islamic bank defines as how much money will be received by depositors from their deposit in Islamic bank for one year. The rate is equivalent with conventional bank's interest rate (Anwar & Watanabe, 2010: 170)

objectives, the free-interest-based variables or instruments. Iran is an Islamic country has adopted and implemented monetary policy by replacing interest rate with profit sharing rate (Kiaee, 2007). The experience of the county has proven that profit sharing rate can substitute the position of interest rate in arranging the volume of money in the economy, which eventually reaches the economic stability and growth. The scenario of such the policy monetary, theoretically and practically, from the beginning to the end, is the same as what prevails in interest rate-monetary policy.

The first instrument under Islamic monetary policy as experienced by Iran is musyarakah certificate (Kiaee, 2007:11). The certificate is to replace the role of the conventional monetary instrument of open market operation. It is known, through the open market operation, a central bank buys and sells certificates with interest rate as the yardstick, and the bank can control the volume of the money in the economy. Musyarakah certificate, according to the Iran's experience, works as the open market operation in terms of controlling the money. However, the selling and buying of certificates without using interest rate as the conventional instrument does.

The second instrument is controlling profit rate of commercial banks. This monetary instrument is similar to discount rate instrument of conventional monetary policy, but it applies the variable profit rate not interest rate. It is widely acceptable that banking industry is a financial institution that has the important role towards the supply of money in the economy, since the money the people hold is from the institution. In this regards, the central banks can control the

volume of money by controlling or managing commercial banks with the discount rate instrument¹³.

Under Islamic monetary policy, arranging the volume of money can be done by the central banks through controlling profit rate of commercial banks. The rate of profit will influence the wishes of commercial banks to borrow money from the central banks, which in turn will induce the number of money in such the commercial banks. When monetary authorities want to reduce the volume of money in the economy, they increases the profit rate of commercial banks, and the banks borrowing from the central banks will decrease, and the supply of money in the economy reduces accordingly.

The other instruments, according to the Iran's experience, are legal reserve, special deposits to central bank and credit celling. These instruments do not use interest rate and their roles are the same as the previous instruments, in particular to achieve the goals of monetary policy themselves. Actually, in principal, whatever instruments, either those have been experienced by Iran or others, are acceptable to be the monetary tools or instruments under Islamic economics as long as they do not oppose to Islamic economic principles. Concerning monetary policy, which is dominantly related to the money, monetary instruments must be far from the variable interest rate directly or indirectly.

¹³ The instrument of discount rate is the rate or the price burdened to commercial banks that loan money from the central banks. It is akin to interest rate between commercial banks and the people. The people have to pay the rate (in the form of interest rate) due to borrowing money form the banks. The commercial banks have to pay the rate (in the form of discount rate) to the central banks if they borrow money from them.

2.1.2. Reviews on Interest Rate

2.1.2.1. Definition and Theories of Interest Rate

Interest rate is generally defined as the cost to hold the money. The rate is also regarded as the yield for the money owners because they borrow it to the others¹⁴. As an illustration, those who borrow the money must pay in the form of fee to the money owner at the certain rate, and those who lend the money will get the fee from the borrower. Such the kind of fee is named as the interest rate. Interest rate is also called the bridge or link between income and capital. It is also defined as the per cent of premium paid on money at one date in terms of money to be in hand one year later (Fisher, 1974:13).

Interest rate is also named as the fee in which borrowers pay to lenders due to using their funds (Case, 2012:213). There are several ways to borrow the funds, firms and governments, for instance, borrow the funds by issuing bonds, and those who purchase the bonds will be paid in the form of interest rate by them. In addition, the rate is determined as the price paid by borrowers to lenders for the use of resources during the specific time (Fabozzi, et al, 1998). It is also called as the price of money, if such the money is used as the capital, interest rate is called as the price of capital or the cost of capital. Therefore, the rate constitutes the important variable in determining

¹⁴ Interest rate is also considered as a variable which is created by supply and demand intersection of money resources and it is not regarded as a monetary instrument. But it has a vast capability for re-allocation of resources which can act an important role in the economy. (Bidabad, 2011:235)

individuals whether they save the money in the banks or invest them in the markets.

With respect to the price level or inflation, interest rate is divided into two categories, nominal interest rate and real interest rate. The nominal interest rate is the rate received by the borrowers without considering inflation rate or the price level, while the real interest rate is the rate that has included the inflation rate. In the other word, the real interest rate is the differences between the nominal interest rate and the inflation rate (Mankiw, 2010). If π , i and r denote the inflation rate, the nominal interest rate and the real interest rate respectively, such the relationship can be written as the following:

$$r = i - \pi \tag{2.6}$$

The equation (2.6) also means that the nominal interest rate (i) is the total of real interest rate and inflation rate, while the inflation rate itself is the differences between nominal interest rate and real interest rate. Look at the following equations.

$$i = r + \pi \tag{2.7}$$

$$\pi = i - r \tag{2.8}$$

The equations (2.6), (2.7) and (2.8) indicate implicitly that interest rate has strong relationship with the level of price and the level itself will determines the level of profit. Thus, interest rate indirectly impacts upon the level of profit and which in turn influences investors to invest or not their funds in the economy. The lower interest rate, the higher profit gained and the more money invested in the economy, and vice versa, the higher interest rate, the lower profit and the lesser investment.

Concerning its theory, there are several theories describing the existence of interest rate in the economy and banking. The earlier theory exploring on interest rate is the one proposed by the classical economists, which is so-called the classical theory of interest. The latter is the theory proposed by John Maynard Keynes, which is so-called the Keynesian theory of interest rate. The theory of interest rate under the classical school is commonly called *loanable funds*, while under the Keynesian is called *liquidity preference*. The both theories are the primary or fundamental theory of interest rate in the economics literature; nonetheless, there are also other theories on the rate proposed by economists.

According to the school's theory, interest rate is determined by two factors, i.e. demand for capital and supply of capital. Demand for money occurs when individuals need to money to invest in the economy, while supply of capital happens as individuals to save the money in the banks. Consequently, high or low rate of interest, according to the Classical, is determined by such the investment and saving rates.

Keynes views that interest rates behave due to a reaction of changes in the supply of and the demand for money rather than in the supply and demand for savings. Interest rate, according to the theory, is an opportunity cost of holding money in which the people may convert money into bonds. Accordingly, if interest rate is high, opportunity costs increase

¹⁵ The author views, in principle, that both theories are the same in terms of the existence of interest rate which related to the money as well as the economy. In addition, definitions provided by them in general indicate the similarities in which they argue that interest rate is a fee or price or cost for using the funds.

and the people are decreasing wish to hold money instead of profitable bonds. One of the important things regarding Keynes's theory towards interest rate is that it is assumed that the supply of money in the economy is not affected by interest rate. The institutions that play roles in controlling such the money supply are governments and central banks.

With respect to monetary policy, interest rate is regarded as the important tool to organize and control the volume of money in the economy. To fluctuate the rate of interest will induce for increasing or decreasing the supply of money, which in turn impact to the economy. For instance, when the economy is in downturn condition which needs to more investment activities, usually the monetary authorities reduce interest rate¹⁶. This will persuade investors to do investment more due to low price of money, the economy will increase accordingly

Another is when the rate of inflation is high, which is worried to give a negative effect to the economy, such as reducing real income. The policy issued is to increase interest rate. When the rate is high, the supply of money in the economy will reduce, either from investors or households. Investors prefer not to invest because the cost of capital is high, which lessens the profit they get. Households also prefer to

¹⁶ However, the level of investment is not solely influenced by the variable of interest rate only, several variables are also as the considerations for doing investment. But, the rate is the most dominant one instead. Interest rate is the cost of capital must be paid or considered by investors who want to invest and not only cost of capital considered by the investors. Political situations, expected-returns and the likes are among such the considerations. This is because that investment is not only determined by economic-related factors but also by political and social-related ones.

save their money rather than to consume as well. Hence, the supply of money in the economy will decline and finally the level of inflation will decrease.

2.1.2.2. The Existence of Interest Rates towards Banking

It is broadly recognized that banking is an important institution in the economy. It is somewhat similar to a heart for a body to pump blood to all organs, if no heart or no blood-pump activities, the body will die. The economy will live and develop well in a country if the banking industry runs healthily. Based upon some countries, the failure of the economy usually begins with the bankruptcy of financial markets, viz. banking industry. Indonesia is the sharp instance of such the mentioned phenomenon particularly when the country was attacked by the crisis in 1997/1998. It is known that the important cause making the crisis heavier than other countries is that the Indonesian banking sector also suffered from the crisis. In short, banking is an unavoidable institution towards the economy.

In playing its roles towards the economy, one of the very important variables is interest rate. Interest rate is known as the inevitable variable in the banking world. Studies on interest rate are commonly related to banking, and vice versa, discussions regarding banking also include the studies of interest rate. Interest rate and banking are the both elements in the economics and finance literatures, which have strong relationship one to another. The reality always shows that the former will effect on the performance of the latter, and the latter will change the former.

What causes the both elements have strong relationship each other is that the variable of interest rate is regarded as the price of money and the banking itself is the place at which the price of money determined. The banking (a bank) is the place at which individuals sell and buy the money with the price of interest rate. Moreover, the variable of interest rate is judged as the important tool for banks to encourage individuals to place their money in them. The rate is the reason by which investors consider to borrow money from the banks as well.

As to banking industry, it is widely known that there are two popular types of interest rate, viz. the rate for saving or deposit and the rate for credit. The both rates play the important role towards the operation as well as the development of banks. The number or level of profit to which banks gain extremely depends upon such the both rate. The rates are the considered-indicators for the people to save or not as well as to borrow or not.

In addition, the banking's interest rates are as the bridge to bring monetary policy towards the real economy¹⁷. It is known that monetary policy's goal is to achieve the economic stability and growth and such the goal is reached by organizing and controlling the volume of money in the economy. Discount rate, for instance, is one of the important monetary instruments that extremely relates to the banking's interest rate in controlling money supply in the economy. To boost and to lower "discount rate" will influence banks in determining their rates and finally will effect on the supply of money by them.

¹⁷ In terms of monetary policy, there are three roles of interest rate. The first is as an instrument variable directly linked to the ultimate policy goals. The second is as an instrument variable employed to pursuit an intermediate target. The third is as an information variable (Friedman, 2000).

However, concerning Islamic banking system, the variable of interest rate does not exist in Islamic banks and it is replaced by the variable of profit sharing rate. The rate of profit sharing plays all the roles of interest rate as well. Besides, the profitability gained is determined by the profit sharing rate as interest rate under conventional banks. Moreover, the rate is as the main factor influencing individuals to deposit as well as to borrow money from Islamic banks. In short, all roles commonly played by interest rate under conventional banks are conducted by profit sharing rate under Islamic banks¹⁸.

2.1.2.3. Interest Rate under Islamic Banking System

The term "interest rate" is the one to which dominantly discussed in Islamic economics literatures, since it is one of the most important variables in the economy and banking. In addition, interest rate is the core element that differentiates between Islamic economics system and others. The variable is the prominent element that makes a distinction between Islamic and conventional banking systems as well. In short, the element usually used as the standard in determining whether Islamic or not for a banking and financial system is the variable of interest rate.

¹⁸ It is important to be noted that technically the roles of interest rate in terms of banking operations are the same as profit sharing rate, but the characteristics of them are very different. The existence of interest rate under conventional banks is the same as the existence of profit sharing rate under Islamic banks. As well, with respect to monetary policy, in which the policy extremely relies on the variable of interest rate in carrying out its roles, the variable of profit sharing rate is to plays the roles of interest rate in achieving the goal of monetary policy. It means that profit sharing rate could be as the yardstick for monetary instruments in undertaking the policy's roles, such as controlling money supply in the economy and others.

It is important to be noted that the adoption and implementation of a free-interest banking system is the primary motivation for the establishment of Islamic banks firstly in the world. Nevertheless, there is still debatable amongst Islamic scholars regarding the existence of interest rate. They are in the same opinion in terms of the riba prohibition because it is clearly declared either by the Holy Quran or the Hadith. The majority of the scholars argue that the variable of interest rate is prohibited in Islam, because it constitutes the element of riba, and riba itself is banned in Islam

Why Islamic scholars are in different views regarding the acceptability of interest rate is because that there are several definitions among them about riba. They differ to define the term "riba" itself. The technical meaning of riba has been a controversial issue particularly since the development of modern banking (Nomani, 2003:38). Concerning the acceptability of interest rate, part of Islamic scholars argues that everything called "interest rate" or related to the rate is not permissible. Nevertheless, the other part, moderate ones, judge that only excessive or high interest rate is regarded as riba and prohibited, but low interest rate is not considered as riba and allowable¹⁹.

Some scholars argue that interest rate is prohibited in loans, but not in deferred sale contracts. They claim that there are two types of prices for the contracts, the immediate cash price and the deferred price. They judge that the time has share

¹⁹ This means that the prohibition of interest rate does not lay in the interest rate itself, but it is subject to high or low of the rate. The writers does not investigate which the views true are.

in the price, which means that interest rate likely exists in the form of such the two prices. Therefore, according to them, interest rate is not only permissible in sale transactions, but it is a duty (Al-Masri, 2004:40).

In Indonesia, Muslim scholars who are joined in the two great Islamic organizations, Muhammadiyah and Nahdhatul Ulama (NU), have the same assessments towards the existence of interest rate. Their views are divided into three categories: *haram*, *makruh* and *mubah*. Nevertheless, concerning riba, the both great organizations absolutely agree that it is *haram* or prohibited in Islam, but what is the truly riba is different among them. Moreover, the differentiation in defining the term "riba" is the core basis that induces them to vary in determining acceptability or unacceptability of interest rate.

In the other word, those who argue that riba is the same as interest rate, the rate is haram, and vice versa, for those who argue that riba is not the same as interest rate, the rate is not haram, the rate is only makruh or mubah. It is important to be noted that the term "interest rate" is not mentioned in either the Holy Quran or the Hadith of the Prophet Muhammad SAW. The both sources of Islamic law only mentions the term "riba". This is one of the reasons that Islamic scholars varies in the view of interest rate of conventional banking.

2.1.3. Determinants of Profitability, Deposit and Financing under Islamic Banking Perspectives

2.1.3.1. Determinants of Profitability in Islamic Banking

Profitability is considered as the important term in the banking literatures. The term is usually used as the indicator of the performance of a bank as well. With respect to profitability measures, there are several types of financial ratios could be employed to determine the bank's profitability. Two of them are Return on Assets (ROA) and Return on Equity (ROE), to which regarded as the both important yardsticks for measuring profitability in banking. Such the ratios prevail in determining the profitability of Islamic banking as well.²⁰

Owing to as commercial institutions, theoretically either conventional or Islamic banks has the same concept concerning profitability, which is at least the primary goal of such the institutions is to achieve profit as much as possible. Nonetheless, the differentiation between them lies on the basis of the variables inducing the profitability itself, where the interest-based variables or determinants are not acceptable as the profitability measures under Islamic banking principles. In a word, variables containing or related to the variable of

²⁰ ROA is Return on Assets, which is also called "net income to total assets", and ROE is Return on equity, which is also called "net income to total equity". ROA is the ratio between net income and average total assets, that is, net income is divided by average total assets. ROE is the ratio between net income and total average equity, that is, net income is divided by total average equity. However, due to some reasons, this research only employs ROA to measure profitability of the Indonesian Islamic banks. This is because that this research just investigates the influences of interest rate only towards the profitability performance of the banks, thus, only ROA is regarded enough.

interest are banned to be employed as the determining terms of profitability in Islamic banks.

Concerning profitability determinants, variables determining profitability of a bank can be divided into two categories, viz. internal and external variables. The internal variables consist of financial and non-financial statements, to which are controlled by the bank management itself. Meanwhile, the external variables are the ones that cannot be controlled by the management, such as inflation rate, government policies, taxes, competition and scarcity of capital (Ali et al., 2012:88). Hence, internal as well as external variables are at the same position to determine the profitability of a bank, depending upon the strength of the variables themselves.

For simplicity, the profitability could be written as the following:

$$\pi = f(V^i, V^x) \tag{2.9}$$

$$\label{eq:Where: Vi} Where: \ V^i \neq V^x; \quad V^i = (X_1, \ X_1, \ X_1, \ ... X_m) \ \ \text{and} \ \ V^x = (Y_1, \ Y_1, \ Y_1, \ ... Y_n)$$
 ... $... Y_n)$

The symbol " π " indicates rate of profit or the number of profit earned by a bank, while V^i and V^x mean internal and external variables respectively. The equation (2.9) states that there are generally two kinds of variables that determine the banking's profitability, the first are those that can be controlled by the banks themselves, and the second are those that cannot be controlled.

Haron and Azmi (2004:3-4) argue that internal variables are also divided into two parts, i.e. financial statement variables and non-financial statement variables.

According to him, the financial statement variables constitute those that related to the management of the balance sheet and income statement, whereas non-financial statement variables are the ones that have an indirect relationship with items in the financial statements, including the number of branches, status of branches, location and size of branches and banks.

Among the mentioned variables, one of the key variables that affect the profitability of banks is interest rate because the rate is the benchmark in obtaining their profit. It is in line with the research conducted by Molyneux and Thornton (1992) on the variable determining the profitability in a number of banks in European countries, which reveals that there are three variables that have positive relationship significantly towards the profitability, one of them is interest rate. Thus, profitability model of banks could be written as the below:

 $\pi = f(i)$; because π is represented by ROA,

Therefore:

$$ROA = f(i)$$
 (2.10)

Because the interest rate is excluded from Islamic banking system and it is replaced by the variable of profit sharing rate (PSR) instead, thus, the model for the Islamic banking profitability will be:

$$ROA = f(PSR)$$
 (2.11)

The model (2.11) is the one that accords with the principles of Islamic banking because the profitability of Islamic banks must not be influenced by the variable of interest rate. Due to as the barred-term under the principles, Islamic banks have to avoid utilizing interest rate when determining

their profitability and must dodge themselves from the rate's influencing. However, a number of experiences taking place throughout Islamic countries implementing Islamic banking system, show that such the profitability of the banks is also influenced by the variable of interest rate²¹.

In this regards, the profitability of Islamic banks will be determined by the following two variables:

$$ROA = f(PSR, i)$$
 (2. 12)

In addition to the mentioned variables, another determinant is liquidity of the banks. It is reasonable that liquidity has relationship towards profitability since the liquidity is the device in achieving the profitability. Bourke (1989) claimed that liquidity of banks has a positive relationship with their profitability. This view is in line with the research by Haron and Azmi (2004) where it found that liquidity, one of the internal factors, has highly correlation with the income and profitability of Islamic banks. In addition, Masood et al. (2009) also resulted as the above in which their findings indicate the profitability of banks is determined by operational efficiency, earning assets to deposits, CAR, GDP and financial development.

²¹The phenomenon, according to the writer, is caused by the reality that interest-based banks have been dominantly operating in Islamic countries. For instance, Indonesia and Malaysia, even though the both countries are considered as the Muslim countries and Islamic banks have been being operated in the countries for several decades, the shares of Islamic banks are still under about 5-10 percent. Currently, only two Islamic countries in the world have been adopting Islamic banking system totally, viz. Iran and Sudan. For the both countries, all elements and equipment related to adopting and implementing Islamic banking system have been Islamized, such as monetary policies.

Briefly, both deposit and financing are considered as the most important variables in determining the profitability of banks, either conventional or Islamic banks. Both depositing (saving) and financing are the common activities of banking industry instead. Therefore, profitability model of Islamic banking will be as the following:

$$ROA = f(PSR, i, Fin, Dep)$$
 (2.13)

Actually, there are other variables that also influence the bank's profitability. Economic and monetary variables such as inflation, economic growth, exchange rate and the likes constitute among the variables that determine the profitability of banks either Islamic and conventional banks.

2.1.3.2. Determinants of Deposits in Islamic Banking

Not only do conventional banks but also Islamic banks have the role to collect funds from the public. Moreover, the role of collecting the funds from the public is considered an essential task for Islamic banks. It is widely known that the funds from the public are the main source of capital for either Islamic or conventional banks. The funds collected from the public are usually called "the third party-fund" or generally named as deposits or saving. Such the funds are very important for the banking industry because they usually cover about two-third of the total of banking's capital.

According to the Classical and Neo-Classical Economics, deposit or saving is a function of the rate of interest. In addition, John Maynard Keynes (1936), the founder of the Keynesian school, views that, in the long run, changes of interest rates will effect towards the people's saving

propensity. In addition, Milton Friedman (1957), as known as the neo-classical economist, also argues the importance of interest rate in terms of the public saving. Thus, level of deposits in a banking industry is influenced by the variable of interest, for simplicity it could be written as the following.

$$Dep = f(i)$$
 (2. 14)

Nonetheless, Islamic banking is prohibited to employ the variable of interest rate, the banking is suggested to use the variable of profit sharing rate (PSR) instead, so deposit in Islamic banking is a function of the rate of profit sharing. The variable i is replaced by the variable PSR.

$$Dep_{iB} = f (PSR)$$
 (2. 15)

Model (2.15) above is the truly model of deposit under Islamic economics perspective, which means that the Muslim society must consider PSR as the yardstick of their deposits the banking industry or financial markets, instead of interest rate. This model is to assume firstly that interest rate is the same as riba, or constitutes the ribawi activities, and secondly that the Muslim society follows and performs perfectly Islamic banking system as expected and ordered.

However, currently the majority of Islamic countries have implemented dual banking system, conventional and Islamic banking systems, in which the interest rates as well as profit sharing rates are also utilized simultaneously by their banking industry. Among of the countries are such as Indonesia, Malaysia and other Islamic countries. Usually, for such the countries, not only profit sharing rate but also interest rate will influence the level of deposits in Islamic banks (Haron & Ahmad, 2000). Therefore, in this case, deposits in Islamic

banking are determined by PSR of Islamic banks and interest rate of conventional banks (CBR).

$$Dep_{IB} = f (PSR, CBR)$$
 (2. 16)

The model (2.16) constitutes the model of Islamic banking deposits in terms of the empirical side, not the theoretical side, since the theory of Islamic banking does not include the variable of CBR. PSR is the rate determined by Islamic banks towards the funds deposited by the public in the Islamic banks, while CBR is the rate determined by conventional banks towards the fund placed by the public in the conventional banks. Technically they are the same, but principally they are different one to another. The former, PSR, is accepted in Islam, while the latter, CBR, is banned.

In addition to the both popular variables, the deposit in Islamic banking is also influenced by macroeconomic variables. It is rational that deposits are influenced by macroeconomics-based terms, since Islamic banking is part of the banking industry and the industry itself is the inevitable part of the economy, which has strong relationship one to another. One of the important macroeconomic variables determining the level of deposits is inflation. Inflation is usually defined as an increase of several prices of goods and services in the selected regions and periods.

Concerning the relationship between inflation and saving, there are several channels where inflation will affect on the saving behavior. The first is that greater uncertainty will raise savings, the second is that inflation can persuade saving through its impact on real wealth (Haron & Azmi, 2005). Besides, if the incomes are not indexed, unanticipated inflation will influence unanticipated cuts in the real income and finally

such the phenomenon will decrease the saving rates (Deaton, 1991). Nevertheless, in the long run, in the condition of superneutrality of money in the ultimate sense, the variable inflation cannot impact towards savings level (Heer & Suessmuth, 2006).

In Islamic economics, inflation is a naturally economic phenomenon that happens in the economy, which is also regarded to influence the saving level in Islamic banks. The phenomenon of increased price, according to Islamic economics, constitutes as the normative occurrence in which it is acceptable if there are changes of the people's behavior in terms of saving level. Therefore, the saving or deposit level of Islamic banks could be drawn as follows.

$$Dep_{IB} = f (PSR, CBR, P)$$
 (2. 17)

Last but not least, the important variable which is also considered to give effect towards the Islamic banking's deposit is income. It is widely known that saving is the function of income, since the individuals who want to save their money in banks due to surplus income. The more money or income they have, the greater possibility to save or to deposit in the banks, or vice versa. In this regard, economic growth effects positively towards the deposit level of Islamic banks (Abduh and Sukmana, 2011). Because income or economic growth is considered as the term inducing saving level, thus, the Islamic banking's deposit model will finally be as the below.

$$Dep_{iB} = f (PSR, CBR, P, GNP)^{22}$$
 (2. 18)

51

²² Yusoff and Wilson (2005:47), through their research, finds that gross domestic product, rate of return to depositors, the consumer price

In general, currently there are three kinds of deposits theoretically in Islamic banks, which are the same as what prevails in conventional banks. They are current account deposits of al-wadiah, deposits account deposits of al-wadiah and investment account deposits of mudharabah. Besides, investment account deposits of mudharabah comprise two categories, viz. general investment deposits and specific investment deposits (Ali, 2012).

2.1.3.3. Determinants of Financing in Islamic Banking

In addition to organize deposits from the public as the main sources of funds, Islamic banks also undertake financing activities to which considered as the most important role of the banks. As a commercial institution, the goal of financing in Islamic banking system is the same as conventional banking's, which is to acquire profit as much as possible. Nevertheless, the ways as well as the strategies employed by the Islamic banks in terms of gaining the profit are enormously different with their counterpart, conventional banks, in which they must accord to the principles of Islam.

One of the core financing principles under Islamic banking system is free-interest based, which means that the determinants of the financing must be free from the variable of interest rate²³. Therefore, interest rate which is regarded as the

index (CPI) are considered as the important factors or variables to explain the deposits in the Islamic banks in Malaysia

²³ The prohibition of interest rate is the general principle of Islamic banking, which also prevails in financing activities of the banking. The cause for the prohibition of interest rate is the same as in other terms of Islamic banking, in which interest rate is considered as riba or the rate constitutes part of riba-related activities. Therefore, financing activities of Islamic banks must evade from the variable of interest rate.

dominant variable is replaced by the variable of profit sharing rate. In the other word, profit sharing rate is the core variable in determining the volume of financing of Islamic banking, as interest rate does under conventional banking. Financing under Islamic banking system must concentrate on products related to the risk-taking and profit loss sharing principles²⁴. Mudharabah and musyarakah are the most important products of Islamic banks because they accord to the Islamic banking principles²⁵.

On account of free-interest, the term "credit" is not mentioned in Islamic banking literatures, the term "financing" is well-known to replace the position of it instead. Technically, the term "financing" is the same as "credit" to which determined by interest rate as the core variable and credit itself is the other name of supply of money. Because supply of money is determined by the variable of interest rate, therefore, credit is the function of interest rate.

$$Cred = f(i)$$
 (2. 19)

As stated earlier, under Islamic banking literature, the term "credit" is replaced by the term "financing" and the variable "interest rate" is replaced by "profit sharing rate", so, financing under Islamic banking system can be written as the following:

$$Fin = f (PSR)$$
 (2. 20)

²⁴ In the theoretical framework, Islamic finance differs significantly from conventional finance, where one of them is that shariah-compliant finance does not allow for the charging of interest payments (Beck, 2013: 433)

²⁵ Nevertheless, basically other kinds of financing products are acceptable to be adopted and implemented by Islamic banks as long as such the products do not oppose with the Islamic law.

Islamic scholars argue that there are two financing types or products that accord to PLS-based in which the variable of profit sharing rate as the yardstick, viz. Mudharabah and Musyarakah. The both kinds of product are actually as the symbol of Islamic banking. Thus, the model of financing is the following:

$$Fin_{(mudh, musy)} = f(PSR)$$
 (2. 21)

Where:

 $Mudh + musy \le Fin$

PSR > 0

The model above (2.21) is the pure model of financing as expected in Islamic banking and finance. Although Islamic banks have several types of financing, such as mudharabah, musyarakah, murabahah, bai' bitsaman 'ajil²⁶, or the likes, which means the financings are not PLS-based ones only, the variable of interest rate must be free from them. Concerning the Indonesian experience, financing products offered generally by Islamic banks in Indonesia consist of six schemes, namely murabahah, ba'i salam, ba'i istisna, ijarah, murabahah and musyarakah (Adnan, 2007:221). The Islamic banks must avoid themselves from the existence of the rate directly or indirectly.

²⁶ Bai Bitsamin Ajil (BBA) is a sales contract whereby the bank purchases the asset required by the customer at the market price and then sells it to the customer at a mark-up price (Kader & Leong, 2009:190). Technically, the financing product of murabahah is the same as BBA, nevertheless the Indonesian Islamic banks dominantly use the term "murabahah" rather than BBA.

For instance, murabahah financing, such the financing which does not make up the PLS typed-financing but the mark-up typed one, has to absolutely be far from the existence as well as the influence of interest rate. Based upon experiences throughout Islamic countries, the murabahah financing is the dominant one adopted by Islamic banks including in Indonesia. Even though murabahah financing is not PLS-based but mark-up based, the financing must avoid from the influence of interest rate. Such the model as follows:

$$Fin_{(mura)} = f(PSR)$$

Where:

 $Fin_{mura} = Fin_{mark-up}$

 $Fin_{mudh} + Fin_{musy} = Fin_{pls}$

Fin mark-up < Fin pls

In contrast, several experiences show that the variable of interest rate has the effects towards the performance of Islamic banks. Kadir and Leong (2009, 189) found that any increase in the base lending rate would induce customers to obtain financing from Islamic banks and vice versa.

Hence, if assumed that the variable of interest rate exists towards the Islamic banking financing, the financing determinants will be as follows:

$$Fin = f (PSR, CBR)$$
 (2. 22)

The above model implicitly reveals that the number of financing offered is not only determined by profit sharing rate but also interest rate. This means that the fluctuation of interest rate is the consideration in determining financing of Islamic banks. In addition, if the people or the customers are motivated

by the profit aim, theoretically, fluctuations in the variable of interest rate would bring to a shifting effect between Islamic and conventional banks (Yap, 2008)

2.2. Previous Researches

Researches about Islamic banking have been done since some decades ago and a hundred of the results have been published. Various problems related to the banking have been explored, either those related to the law perfectives or others. In addition, not only do qualitative-based researches but also quantitative-based ones have been undertaken throughout the world. Moreover, the currently modern methods, such as statistical and econometric models, have also been utilized to examine such the researches. Among the researches are those examining its relationship in terms of economic and monetary sides, such as the variable of interest rate.

As stated previously in the chapter one that there are three important questions will be answered or investigated in this research. The first is about the islamicity level of Islamic banks' operation in Indonesia. The writer views that there is nearly rare research investigating specifically the problem. However, several researches that related to the problem have been done and published. Because the yardstick of such the islamicity is the volume of PLS financing and the interest dependency, one of the researches related to the problem is what has been done by Chong and Liu (2009).

The research, exploring Islamic banks in Malaysia, reveals that the volume of PLS financing is only a negligible portion, while the essential financing of Islamic banking is the PLS financing. In addition, it is known, in theory, Islamic banks must avoid themselves from the existence of interest

rate, however, the fact shows that Islamic deposits are not interest-free. Besides, the research of Hakan and Gulumser (2011) is in line with such the above result.

According to the performance of Islamic banks, Haron's (2004) is one of the important researches that explores the performance of Islamic banks and the variables influencing them, in which it inspects the variables determining profitability of Islamic banks. The research, by using the econometric method of VAR and the data from several selected Islamic banks in the world, results that the variables determining the profitability of Islamic banks are divided into two categories, viz. internal and external variables. influence variables that have significant towards profitability of Islamic banks, according to the research, consist of inflation, assets structure, liquidity, volume of deposit and money supply.

It is in line with the Al-Jarrah's research. The research is to explore the profitability of the Yordanian banks during the 2000-2006 periods, which reveals that inflation and money supply are the most important external variables determining the profitability of the banks (Al-Jarrah, 2010). In addition, the internal variables considered to influence the profitability are such as the loans to total assets ratio, the operating expenditures ratio, the capital structure, the deposit ratio and non-operating expenditures ratio. Nevertheless, according to Zeitun (2012:53), inflation has negative correlation with the bank's profitability.

Another research in terms of the profitability determinants is what Akhtar did in the Islamic banks of Pakistan. With the period of 2006-2009, the research shows the

profitability has a long-term correlation with the bank size, ratio of debt equity, assets, NPLs ratio, CAR and operating efficiency (Akhtar et al, 2011:128). Besides, by employing the Generalized Least Square (GLS) and the data from foreign and local Islamic banks in Malaysia for three years (2007-2009), Idris's research (Idris et al., 2011:1) includes capital adequacy, credit risk, liquidity, bank size and management of expenses, nevertheless, only the bank size is positively significant in determining the profitability.

Also, a narrow-scope research has also been done in terms of exploring the determinant variables influencing the profitability of an Islamic bank, which is such as what Izhar and Usutay did in the Indonesian Islamic banks. With the data from Bank Muamalat Indonesia, an Islamic bank operating firstly in Indonesia, during 1996-2001, it is found that profit in the bank has been dominantly gener./,lated from the activities of financing, not the activities of service. The research also concludes that there is the positive relationship between inflation and profitability. However, it reveals that three sources of funds are negatively related with profitability of such the Islamic banks (Izhar & Usutay, 2007)

According to the effects of interest rate towards the performance of Islamic banks, there is a research conducted by Hakan and Gulumser (2011:1) which shows that Islamic banks in Turkey are visibly influenced by interest rates. The research is to utilize the data period of December 2005 to July 2009 with Vector Error Correction (VEC) as the method of analysis. The research concludes that any changes in the interest rates will affect both the deposits and the loans of conventional as well as Islamic banks in Turkey.

Besides, another research in terms of the rate's effect towards Islamic banks nearly has the same result. The research done by Yap and Kader (2008) is to investigate the impact of interest rate changes on the performance of Islamic and conventional banks in terms of demand for deposits and financing. The research, employing monthly data from 1999 to 2007 of the Malaysian Islamic banks, finds that there is a shifting effect on financing in the Islamic banks, in which a rise in the base lending rate would induce customers to obtain financing from the Islamic bank and vice versa. Moreover, the research concludes that Islamic banks in the dual system are exposed to interest rate risks despite operating on interest-free principles.

Concerning the determinants of deposits, there are several researches undertaken previously to explore the factors or variables influencing the deposits of Islamic banks. One of them is what Rachmawati and Samsulhakim did in the Indonesian Islamic banks. Rachmawati et al. (2004) found that the number of the mudharabah deposits scheme in the Indonesian Islamic banks does not depend on income and interest rate, but depend upon the rate of profit sharing and the number of the Islamic banks' offices branch.

Ali et al. (2012) tested Rate of Return (ROR), Gross Domestic Product (GDP) and Inflation Rate (INF) towards Investment Deposits in Malaysia. The result of the research confirms that ROR has strong correlation with the deposits, in which their correlation is positive. However, the other variables, GDP and INF do not have correlation with the deposits. In addition, Saleh (2015:14) undertook a research exploring the factors determining deposits of five Islamic

banks in Kedah Malaysia. The research employing the monthly data from 2000 to 2010, resulted that the rate of profit, interest rate and production growth have significantly correlated towards deposits of such the Islamic banks.

Another study examining such the research is also conducted by Haron and Ahmad (2000). The result of their research shows that there is negative relationship between the interest rate of conventional banks and the volume of funds deposited in interest free deposit facilities. In addition, Almejysh and Rajha (2014:179) conducted research investigating the deposit's determinants in the Islamic banks in Saudi Arabia. The result reveals that there are five important factors affecting the people to choose Islamic banks, they are quality of service, the location of branches, geographical spread, the Bank's reputation and fame, and the ratio of dividends to investment accounts.

Cevik and Charap (2011) did such the research exploring Islamic banks in two Islamic countries, viz. Malaysia and Turkey. With using the monthly data from January 1997 to August 2010, the study concludes that conventional bank deposit rates and PLS return exhibits long-run co-integration and the time varying volatility of conventional bank deposit rates and PLS returns is correlated and is statistically significant. In addition, the pairwise and multivariate causality tests show that conventional bank deposit rates Granger cause returns on PLS accounts.

Concerning the variable of financing in Islamic banking, Kader and Leong (2009) have invistigated the impacts of interest rate towards upon the volume of financing in Islamic banks in Malaysia. The research, by employing the

data of the Malaysian banking industry from May 1999 to June 2007 and the tools such as VAR, Granger Causality and IRF, concludes that the financing of residential property of Islamic banks (RPF_{is}) seems to respond positively to shocks in RPF of conventional banks and the base lending rate (interest rate). This conclusion indicates that the customers of Islamic banks are profir motivated and their decisions in obtaining BBA financing are induced by the substitution effect based on the movement of the rate BLR. Moreover, when interest rate rises, the BBA financing is more popular, and when it falls, the customers prefer conventional loans rather than Islamic financing. In short, the research results that Islamic bank financing in the dual system is exposed to interest rate risks despite operating on interest free principle.

Another research conducted by Yusoff et al. (2001: 67) indicates the same result as mentioned above. By using Granger Causality test and the data from the Islamic banks in Malaysia, the research indicates that there is a relationship between interest rate and the amount of loan in the Islamic banks in Malaysia. Furthermore, the research finds that the Islamic loan growth of merchant banks are significantly positive towards the growth of overnight Klibor, in which the Granger Causality test shows that fluctuations in loan rates causes fluctuations in loan supply.

2.3. Hypothesis

Based upon theories and researches exploring the experiences of Islamic banks in a number of Islamic countries and including some researches about the existence of interest rate variable in the Islamic banks in Indonesia, there are some hypothesis towards this research. The first hypothesis is that

the Indonesian Islamic banks have not utilized optimally the fundamental principles of Islam. This means that the both foremost principles of Islamic banking, viz. the adoption of PLS system and free-interest based, have not been applied perfectly by the Islamic banks in Indonesia.

The second hypothesis states that the variable of interest rate has relationship with the profitability of Islamic banks in Indonesia. Or the other word, the profitability of the Indonesian Islamic banks are influenced by interest rate in addition to other variables, which means that interest rate plays the role in determining the profitability of such the Islamic banks.

The third hypothesis is that the volume of deposits in the Islamic banks is influenced by the variable of interest rate. This means that interest rate has relationship towards the number of deposits saved in the Indonesian Islamic banks. Furthermore, the fourth is the same as the previous hypothesis as explained before in terms of the relationship with the variable of interest rate. The fourth hypothesis exactly states that the variable of interest rate plays the role in determining the volume of financing supplied by the Islamic banks.

CHAPTER III RESEARCH METHOD

3.1. Research Scopes

As stated previously, the primary objective of this research is to identify the effects of interest rate towards the performance of Islamic banks in Indonesia. More specifically, this research explores the influences of interest rate concerning the performance of the Indonesian Islamic banks. The terms "interest rate" and "Islamic banks" are the both intensively examined in the research. In short, the relationship between the variable of interest rate and the performance of the Indonesian Islamic banks is the core scope of the research. In addition, the factors affecting such the performance of the banks are the important scope of the research.

Hence, exploration on interest rate, its existence as well as its effect, towards the performance of Islamic banks in Indonesia is the core scope of the research. The second scope is about the shariah level of Islamic banks' operations in Indonesia with respect to utilizing the fundamental principles of Islamic Banking. It means to what extend the Indonesian Islamic banks operate with the principles of Islamic banking. Nevertheless, owing to that there are many terms could be used as the indicators in determining the level, this research limits only two criteria, viz. the influence of interest rates and the PLS-based financing stucture.

As to interest rate, the rate used in the research is the one prevails in the Indonesian conventional banks. Interest rate for deposits as well as interest rate for credits is part of the research's discussion. Such the rates will be examined their existence towards the performance of Islamic banks in Indonesia. Due to the assumption that some conventional bank's instruments is regarded to affect on the performance of Islamic banks, such the instrumens consitute the scope of the research, in which they are considered as independent or explanory variables.

Concerning the performance of Islamic banks, there are three central variables that make up the scope of the research to which explored deeply, namely profitability, deposits and financing. The indicator employed to measure profitability of the Islamic banks is only Return on Assets (ROA). This is because of the assumption that the ratio represents the bank's profitability. According to deposits of Islamic banks, the scope of the term is devided into three categories, which is the same as what prevails in conventional banks, namely is wadiah demand deposits, wadiah saving deposits and mudharabah time deposits.

With respect to financing of the banks, the scope of financing under the research consists of musyarakah, mudharabah and murabahah. Such the types are dominantly financed by Islamic banks throughout the world, including in Indonesia. It is important to be noted that there are a number of types or schemes of financing currently undertaken by the Indonesian Islamic banks, for this research only three of them are examined. Thus, the scope of financing under the research covers only musyarakah, mudharabah and murabahah.

3.2. The Data

The monthly time series-based data will be used in this research. They last ten years, or 120 observations. The data period is from 2006 to 2015. Such the data are obtained from two formal institutions in Indonesia, namely Bank Indonesia (BI) and the Financial Service Authority (OJK). The former institution, Bank Indonesia, provides the data related to economic and monetary ones, such as interest rate, inflation and others, while the later, OJK, offers the data on banking, either conventional or Islamic one.

There are three kinds of data used in the research, viz. Islamic banks, conventional banks and Indonesian economic data. The data on Islamic banks consists of assets, deposits, financing, profit sharing rate in deposits, profit sharing rate in financing, Non-Performing Financing (NPF), etc. The data on deposits in Islamic bank will be also divided into some categories, such as wadiah demand deposits (giro wadiah), wadiah saving deposits (tabungan wadiah) and mudharabah time deposits (deposito mudharabah). In addition, the data on financing is also divided into three categories, viz. mudharabah, musyarakah and murabahah financing.

Furthermore, the data related to conventional banks are such as interest rate for deposits and interest rate for credit. Interbank money market rate (IMMR) is also part of the data on conventional banking, since it constitutes the variable of interest rate to which examined in this research. Owing to that Islamic banks are not only influenced by conventional banks-related terms, the key data on the economy will be included in the research, such as inflation and Gross Domestic Product (GDP).

3.3. Econometric Models and Estimation Methods

3.3.1. Econometric Models

In general, there are 14 models utilized in this research. Such the models, which are divided into two categories, are to answer four problems of the research as mentioned previously in the chapter one. The first category is the analytical model that aims at measuring the shariah's compliance rate of the Islamic banks' operations in Indonesia or the islamicity level of the banks. In short, this category is to know how Islamic the Indonesian Islamic banks are. Such the category employs only one model, which is named Index of Shariah Compliance (ISC).

The second category is econometric models aiming at exploring the influence of interest rate on the performance of the Indonesian Islamic banks. The models under the category are to examine the impacts of interest rate concerning the existence of Islamic banks. Besides, the models are to inspect the dominant variables inducing the banks. This category splits such the impacts into three divisions of Islamic banks, i.e. profitability, deposits and financin Furthermore; they are also divided into some components according to what prevails and are implemented currently by the banks.

3.3.1.1. Models to measure the shariah level of Islamic banks

As explained in the chapter two, it is somewhat difficult to measure the rate or the level of shariah of an Islamic bank. This is because that the term "shariah" has a general meaning. Besides, it has numerous prespectives, which induces differences in determining its definition one to another, which

in turn Islamic scholars vary towards the word. In this regard, to measure the level of shariah of Islamic banks, it needs to make several assumptions and spesifications, which determines the specific definition and model of the term under this research accordingly¹.

For this research, there are four core assumptions underlying the model measuring the level of shariah compliancy of an Islamic bank, they are as the following.

- 1) The trade-marks of Islamic banking are valued from the two important conditions, the first: free interest-based operations directly or indirectly, the second : Risk-Sharing System (PLS-Based Operation)²;
- 2) Only two core indicators are estimated, where others are assumed constant (default);
- 3) Avoiding from the interest is more important than PLS-based Financing Distribution;
- 4) The better Islamic banks are those that are free from the influence of interest rate, directly or indirectly.

¹ According to the writer's view, it is likely no research examining the shariah level of Islamic banks by using the Index of Shariah Compliance (ISC) as done by this research. However, a number of researches have been done related to the index. One of them is the research of Antonio's et al (2012). Their research is to investigate the Islamic banks in terms of maqashid shariah by using the Maqashid Index.

² Islam prohibits all types of interest. Participation in the financing of a businesses is possible only on the basis of a profit-loss sharing system (Hasan, 1985:13). Hasan (1985:13) also views that the PLS-based financing is more profitable to financiers in the long run than the interest-based financing.

The authour names the model utilized to measure the shariah level of compliance of Islamic banks as "Index of Shariah Compliance or (ISC)". The model is as the following:

$$ISC = IITD + IPLS_{BFS}$$
 (3. 1)³

IITD is counted by the succeeding formula, as follows:

$$IITD = 1/2 \times \sum VI_i \tag{3.1a}^4$$

$$VI_i = LD \times ITD_{score}$$
 (3. 1b)

where :
$$LD = 1 - PC$$
 (3. 1c)

Concerning Risk-Sharing System or PLS-Based Operations, the model for measuring it is as the followings:

$$IPLS_{BFS} = (PLSFinTot / FinTot) \times PLS_{score}$$
 (3. 1d)

While:

FinTot = PLSFinTot + Non-PLSFinTot; and

ITD $_{score} = (0.6)$ or 60 % and PLS $_{score} = (0.4)$ or 40%

 $ITD_{score} + PLS_{score} = 1$

Valued-Instruments (VI) of the Islamic banks which are included in the model (3.1a) consist of

 VI_1 : Profit Sharing Rates in Financing (PSR_{fin})

³ The index of ISC is determined by two conditions taking place in Islamic banks, which is the dependence of the banks towards interest rates and the financing structure provided by the banks based upon the PLS system.

⁴ The sum of the valued-instruments is divided by two, (a half times $\sum VI_i$), since two instruments are valued or included in the measure, viz. PSR of financing and PSR of deposits.

VI₂: Profit Sharing Rates in Deposits (PSR_{dep})

Where:

ISC : Index of Shariah Compliance

IITD : Index of Interest-towards Dependence

IPLS_{BFS} : Index of PLS-Based Financing Structure

ITD : Interest-towards Dependence

LD : Level of Dependence

PC : Pearson Correlation

PLSFinTot : PLS-based Financing in Total

FinTot : Total Financing

VI : Valued-Instruments

3.3.1.2. Models to examine the impacts of interest rate towards the performance of Islamic banks.

1). Profitability

For this research, there is only one indicator used to measure profitability of Islamic banks in Indonesia; viz. the financial ratio of Return on Assets (ROA)⁵. The financial ratio is regarded to represent the banks' profitability. ROA is a ratio

⁵ Bashir (2003:36) examines the profitability determinants of Islamic banks in the Middle East, where he uses three financial ratios of banking as the dependent variables, viz. ROA, ROE and BTP/TA (Ratio of Before Tax profit to Total Assets)

to measure profitability in terms of the banking's assets. The profitability model employed is the following:

ROA = f (IBDepTot, IBFinTot, PSR_{dep}, PSR_{fin}, IMMR, CPI, IPI) (3.2)

Where:

ROA : Return on Assets

IBDepTot : Deposits of Islamic Banks in Total

IBFinTot : Financing of Islamic Banks in Total

PSR_{dep} : Profit Sharing Rate of Deposits

PSR_{fin}: Profit Sharing Rate of Financing

IMMR : Interbank Money Market Rate

CPI : Consumer Price Index

IPI : Industrial Production Index

2). Deposits

Six models are utilized to scan the influence of interest rate and other variables towards the deposits of the Indonesian Islamic banks. This is done since that there are several types of deposits of the banks prevailing in Indonesia, such as giro wadiah (wadiah demand deposits), tabungan wadiah (wadiah saving deposits) and deposito mudharabah (mudharabah time deposits), while deposito mudharabah itself also consists of some models depending its terms.

The first model aiming at identifying the effects of interest rate towards the Islamic banks' deposits is the model of giro wadiah. It is assumed that giro wadiah is influenced by five important variables, where two of them are profit sharing

rate of wadiah demand deposit and the conventional banking's rate of demand deposit. Thus, the model for such the type of deposit is as the following.

$$WadSav = f(PSR_{wadsav}, IMMR, CBR_{dd}, CPI, IPI)$$
(3.3)

Where:

WadSav

 PSR_{wadsav}

CBR_{dd}:

CPI: Consumer Price Index

IPI: Industrial Production Index

The second model is to identify the influence of interest rate on *tabungan* wadiah or so-called wadiah saving deposits. Such the model is technically the same with the previous one, model (3.3), but this second model includes the variable of profit sharing rate (PSR) prevailing in wadiah saving deposits, and the conventional banking's rate is replaced by the rate of saving deposits of conventional banking. The other three variables in the giro wadiah model are also included in the wadiah saving deposits model. The model is as written below.

 $MudhSav : f(PSR_{mudhsav}, IMMR, CBR_{sd}, CPI, IPI)$

(3.4)

Where:

TabWad : Wadiah Saving Deposits in Total

 $PSR_{tabwad} \ : Profit \ Sharing \ Rate \ in \ Wadiah \ Saving \\ Deposits$

 $CBR_{sd} \quad : Conventional \quad Banking's \quad Rate \quad of \quad Saving \\ Deposit$

The next one is the model for mudharabah time deposits (Mudharabah Deposits). The model is divided into three sub-models, which depends on its period of the deposits. This is done in order to identify the effects of interest rate towards the deposits in detail. The models are "MudhDep01" for one month-period, "MudhDep03" for three month-period and "MudhDep12" for one year-period. They are the followings:

 $\label{eq:mudhDep03} \mbox{ MudhDep03} : f(PSR_{MudhDep03}, \mbox{ IMMR}, \mbox{ CBR}_{td03}, \mbox{ CPI}, \\ IPI) \qquad \qquad (3.6)$

 $\label{eq:mudhDep12} MudhDep12 : f(PSR_{MudhDep12}, IMMR. CBR_{td12}, CPI, IPI) \qquad \qquad (3.7)$

Where:

MudhDep01

MudhDep03

MudhDep12

 $PSR_{MudhDep01} \\$

 $PSR_{MudhDep03}$

 $PSR_{MudhDep12}$

CBR_{td01}

CBR_{td03}

CBR_{td12}

The last two models is the one that explores the influence of interest rates towards the amount of deposits of Islamic banks in general. Such the models are to examine the rate's effect upon all types of deposits of the Islamic banks. For those models, the variable considered to represent the conventional rate is Interbank Money Market Rate or IMMR. The models are as mentioned below.

$$MudhDepTot = f(PSR_{mudhdep}, IMMR, CPI, IPI)$$
 (3.8)

$$IBDepTot = f(PSR_{dep}, IMMR, CPI, IPI)$$
 (3. 9)

Where:

IBDepTot: Total of Deposits in Islamic banks

3). Financing

There are five econometric models used to determine the effects of interest rate upon financing of Islamic banks in Indonesia. Such the models are sorted according to the types of financing which are currently operated by the Islamic banks in Indonesia. The first model is the one for musyarakah financing, which assumes that the musyarakah financing is influenced by five elements. They are profit sharing rate of musyarakah financing, conventional bank's interest rate, Interbank Money Market Rate, inflation and Economic Growth. The model for financing musyarakah is as the following:

MudhFin =
$$f(PSR_{mudh}, CBR_{wc}, IMMR, CPI, IPI)$$

(3.10)

Where:

MusyFin: Total of Musyarakah Financing

PSR_{musy}: Profit Sharing Rate in Musyarakah Financing

 $CBR_{wc} \quad : \quad Conventional \quad Banking \mbox{'s} \quad Rate \quad of \quad Working \label{eq:cbr}$

Capital

IMMR

CPI:

IPI:

The second model is the one for mudharabah financing. In principle, the model used for the financing is nearly the same as the musyarakah one. It means that such the model also includes the variable of profit-sharing rate (PSR), but for mudharabah-based PSR, the rate is different with the musyarakah's rate. Therefore, the model for analysing mudharabah financing is as mentioned below.

MusyFin = $f(PSR_{musy}, CBR_{I}, IMMR, CPI, IPI)$ (3.11)

Where:

MudhFin: Total of Mudharabah Financing

PSR_{mudh}: Profit Sharing Rate in Mudharabah Financing

Another kind of financing provided by the Indonesian Islamic banks is murabahah. The model for it is as the following.

MuraFin= f(PSR_{mura}, CBR_{wc}, IMMR, CPI, IPI)

(3.12)

Where:

MuraFin: Total of Financing in Murabahah Financing

PSR_{mura}: Profit Sharing Rate in Murabahah Financing

CBRwc : Conventional Banking's Rate of Working

Capital

Due to that the core category of financing under Islamic banking system is PLS-based financing, it is regarded most essential to examine such the kind of financing. The model for the type of financing is as follows.

 $PLSFin = f(PSR_{pls}, CBR_{wc}, IMMR, CPI, IPI)$

(3.13)

Where:

FinPLSTot: Total of PLS-based Financing

PSR_{pls} : Profit Sharing Rate of PLS-based Financing

The last model is the one aiming at examining the rate's effects upon the total or all types of financing undertaken by the Islamic banks. The model is

IBFinTot =f (IBDepTot, PSR_{fin}, IMMR, CPI, IPI)

(3.14)

Where:

IBFinTot:

3.3.2. Estimation Methods

There are a number of estimation methods utilized in this research. One of them is Vector Auto Regression (VAR) model. VAR model is the model that dominantly used in analysing data in the research. In addition to VAR model. This research may be utilized, for some cases, Vector Error Correction Model (VECM). Besides, as a part of VAR-based analysis, Impulse-Response Function (IRF) and Variance Decomposition (VD) will be employed in the research. Through the both statistical methods, the condition as well as the relationship among the variables will be clearly known.

It is known that the data before being analysed by VAR method must be stationary. Thus, it needs to be tested by using Augmented Dickey-Fuller (ADF) and Phillips-Peron (PP). The both will test the unit root of data. As well, to examine the relationship between variables, the research will apply the Granger Causality Test.

Furthermore, Ordinary Least Square (OLS) is also the important tool to analyze data of the research. Also, a basic statistical tool, i.e. Pearson Correlation, is also employed in the research particularly to examine the correlation between interest rate and Islamic banking variables. Moreover, several descriptive statistics terms are considered important in this research.

3.4. Definition of the Operated Variables

In order to avoid misinterpretation of variables cited in this research, the writer views that some of them are needed to be defined clearly and precisely. The selected variables are the followings.

- 1. Profit Sharing Rate (PSR); the term "profit sharing rate" is the rate prevails under Islamic banking system. It is also known as the rate for the Profit-Loss Sharing (PLS)-based banking services. The position of the rate in Islamic banks is similar to interest rate in conventional banks.
- 2. PSR_{girwad} means the profit sharing rate ordered by Islamic banks for individuals' saving of wadiah demand deposits. PSR_{tabwad} is the rate ordered by Islamic banks for individuals' saving of wadiah saving deposits. PSR_{mudh} is the rate ordered by Islamic banks for individuals' saving of mudharabah time deposits. The three rates are with respect to the deposit side.
- 3. PSR_{mudh} and PSR_{musy} are the profit sharing rates determined by Islamic banks for investors who borrow money for financing mudharabah and musyarakah products respectively, while PSR_{mura} for murabahah product. PSR_{mudh}, PSR_{musy} and PSR_{mura} are the three rates with respect to the financing side.
- 4. Interest Rate; the term "interest rate" means the rate prevails commonly in economic and financial literatures. In the other word, interest rate is the rate usually used in conventional banks or conventional economic and monetary system. The rate is such as CBR (Conventional Banking Rate), IMMR (Interbank Money Market Rate).
- 5. The Performance of Islamic Banks; this means the condition of Islamic banks during the selected periods due to interest rate's impact. Such the performance mentioned limits to three important variables, namely profitability, deposits and financing.

- 6. ISC or Index of Shariah Compliance is an index to measure the islamicity level of Islamic banks. The index by using only two indicators that are considered as the trademark of Islamic banking, viz. free-interest rate and PLS-based financial structure, computes to what extent Islamic banks operate according to Islamic economics principles.
- 7. "PLS-based Finances" means the financing type carried out by Islamic banks with implementing profit-loss sharing principles and they are two financings, i.e. Mudharabah Financing (MudhFin) and Musyarakah Financing (MusyFin).

CHAPTER IV RESULTS AND DISCUSSION

4.1. Shariah Level of Islamic Banks in Indonesia

As explained in the preceding chapter, Index of Shariah Compliance (ISC) is the index to measure Islamic banks' activities with respect to the implementation of shariah principles. The index aims at capturing to what extent Islamic banks comply with the Islamic law. Two instruments considered as the core indicators in computing such the level are the Interest-towards Dependence (ITD) and the financing structure based upon profit-loss sharing (PLS_{BFS}) system¹.

Such the PSR of Islamic banks consits of PSR for deposits and PSR for financing. The model excludes the profitability, level of deposits and level of financing². In addition, the statistical tool employed to calculate the

¹ Financing on the basis of interest has been declared and considered by the Muslim scholars as an illegitimate mode of finance from an Islamic point of view (Anwar, 2003:62)

² There are actually several Islamic banking instruments or variables could be used as the indicators to examine the shariah level of Islamic banks, such as profitability, deposit, financing and others. However, this research constrains the PSRs only because the authority in determining the rates is the banks themselves only. It is different with deposist as well as financing, the both are determined by not only the banks but also the customers.

correlation between profit sharing rates, either for deposits or for financing, and interest rate is the Pearson Correlation.

Concerning the ISC index, the index is determined by the mentioned indicators, viz. ITD and PLS_{BFS}. The index will be high automatically if the correlation between the PSR rates and the interets rates is low, and vice versa. In addition, the index will rise as the ratio of PLS financing to the total financing increases. It is important to be noted, as described, the portion between the both is different, where ITD and PLS_{BFS} are 60 percent and 40 percent respectively.

As stated, there are two types of profit sharing rate involved to measure the dependence of Islamic banks towards interest rates, and the following is the table displaying the correlation between PSR for deposits and interest rates³.

Table : 4.3.

Correlations PSR for Deposit and Interet Rates

	Pearson Correlation Coefficient between PSR for Deposits and Interest Rates						
	PSR _{dep}	PSR _{wadsav}	PSR _{mudhsav}	$\mathbf{PSR}_{\mathbf{MudhDep}}$	PSR _{MudhDep01}	PSR _{MudhDep03}	PSR _{MudhDep12}
IMMR	0.49	-0.16		0.52			
CBR_{dd}		0.26					
CBR _{sd}			0.01				
CBR_{td01}					0.62		
CBR_{td03}						0.63	
CBR_{td12}							0.67

³ Two kinds of interest rates used to measure such the Index of Shariah Compliance (ISC), Interbank Money Market Rate (IMMR) and Conventional Banking Rates (CBR) for all types.

The table above indicates that almost all profit sharing rates of deposits significantly correlate with interest rates either IMMR or CBRs. In addition, as shown by the table, the profit sharing rates of Islamic banks for mudharabah deposits are significantly correlation with CBRs and the coefficients are over sixty percent⁴. Moreover, PSR determined by Islamic banks for the total deposits has also relationship significantly and positively with the interest rate of IMMR, which is about 49 percent.

What's more, such the positive correlation also happens in the total mudharabah deposits. It is known that the term "mudharabah" is the trade-mark of the operation of Islamic banks, but, the PSR of the term is also influenced by the interest rate, where its correlation with the IMMR is 52 percent⁵.

The second type of PSR utilized as the indicator to calculate the ISC index is the PSR for financing. Determining such the PSR is absolutely the authority of the banks themselves. IMMR as well as CBR are also used to represent the variable of interest rate. The table 4.4 below, however, is a bit different with the preceding table, where some of the PSRs

⁴ The author views that it is allowable and reasonable if Islamic banks adopt and apply forms or strategies implemented currently by conventional banks, such as types or modes of deposits. Nonetheless, it is unacceptable that the Islamic banks follow or be influenced by interest rates of conventional banks directly or indirectly. This is, according to the author, likely one of the causes encouraging part of the Muslim society, in Indonesia in particular; argue that Islamic banks are the same as conventional banks.

⁵ For detail, look at the Pearson correlation results in the appendix

correlate negatively with the interest rates instead. However, the profit sharing rate for the total financing correlates positively and significantly with the CBR of working capital.⁶ For detail, examine the following table.

Table : 4.4.

Correlations PSR for Financing and Interet Rates

	Pearson Correlation Coefficient between PSR for Financing and Interest Rates						
	PSR _{fin}	PSR _{pls}	PSR _{mudh}	PSR _{musy}	PSR _{mura}		
IMMR	.152		606	484	251		
CBR_{wc}	.680		.420				
CBR _I		.223		653			
CBR_c					.408		

The both previous tables are to disclose the Pearson Correlation between the profit sharing rates of both deposit and financing in the Islamic banks in Indonesia. The correlation average amongst them is 0.17, as shown in the table 4.4, which means that the LD (Level of Dependence) is 0.83, because LD = 1- PC. Therefore, IITD or Index of Interest-towards

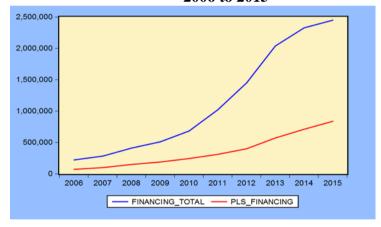
⁶ It is widely known that there are three types of interest rates for the conventional banks' credit; they are interest rates for working capital, investment and consumption. A type of PSR is analyzed to seek for its correlation with the specific interest rate not all types of interest rates as mentioned. In this regards, Mudharabah, Musyarakah and Murabahah Financings are examined their correlation with interest rates for working capital, investment and consumption respectively.

Dependence is 49.80. Such the numeral, which is 49.80, is considered as the shariah level of Islamic banks in terms of free-dependence towards interest rates and it is one of the two indicators to measure the Index of Shariah Compliance (ISC) of the Islamic banks in Indonesia.

The second indicator is the ratio of the PLS-based financing to the total Islamic banks' financing. As described in the chapter three, the PLS is the trade-mark of an Islamic bank. Hence, in addition to the free-dependence towards interest rate, the Index of Shariah Compliance (ISC) of Islamic banks is measured regarding the level of such the financing ratio. The table below displays the PLS financing ratio to the financing in total provided by the Islamic banks in Indonesia during ten years, 2006 to 2015.

Table: 4.5.

Ratio of PLS-Based Financing in Islamic Banks


2006 to 2015Sources: Bank of Indonesia (BI) and the Financial Services

Year	IBFinTot	PLSFin	PLSFin (%)	IPLS _{bfs}
2006	216,676	68,558	31.64	12.66
2007	282,300	96,881	34.32	13.73
2008	406,841	148,811	36.58	14.63
2009	508,087	184,301	36.27	14.51
2010	682,496	242,412	35.52	14.21
2011	1,019,209	310,641	30.48	12.19
2012	1,448,461	395,940	27.34	10.93
2013	2,037,350	568,122	27.89	11.15
2014	2,326,936	710,104	30.52	12.21
2015	2,445,758	833,865	34.09	13.64

Authority (OJK)

Based upon the above table, the total financing in the Islamic banks during the period boosts significantly. Over ten years, the financing improves more than ten times or a thousand percent. Such the fact is also followed by the PLS-based financing, in which the type of financing also grows up significantly⁷. However, according to the table, the ratio of the PLS financing is only one-three at most, exactly 32.46 percent per month⁸. By the curve, as displayed by the figure 4.1., it clearly shows the differentiation between the both lines, the red line is for the PLS Financing and the blue line is for the total financing.

Figure : 4.1.
PLS-Based Financing in Islamic Banks
2006 to 2015

⁷ The PLS-based financing consists of two kinds of financing, mudharabah and musyarakah. The both financing are actually the essential ones for Islamic banks instead of murabahah or others. Moreover, in Pakistan, the murabahah financing is allowed 40 percent of the total financing at most.

⁸ The phenomenon is the same as the research's finding by Chong and Liu (2009:125) in the Malaysian Islamic banking industry.

Concerning the shariah index, the ISC index is the sum of the both indexes, namely IITD and IPLS_{BFS}. The table 4.5 below describes the ISC index and the other two indexes.

Table: 4.6
Index of Shariah Compliance

No	Variables -	Index of Syariah Compliance (ISC)				
	v ar tables	Value	1-PC	Score	Index	
1	IITD	0.17	0.83	60%	49.80	
2	IPLS _{BFS}	32.46	-	40%	12.98	
			Total		62.78	

The table indicates that the ISC index of the Islamic banks is 62.78. This means that, based upon the determined criteria and assumptions as mentioned before, the Islamic banks in Indonesia comply with the shariah principles is 62.78 percent, or two-three approximately.

4.2. The Profitability of Islamic Banks in Indonesia

Islamic banks, as their counterpart, consider that the profitability is as the main purpose of their operation. This is because that the banks constitute part of business institutions. With respect to the strategy, either Islamic or conventional banks are the same in terms of the profitability. The technical concepts of the term between them are similar as well. However, variables that determine the profitability level or rate between them are very different. Obviously, in the Islamic

banking system, interest rate or any kind of the rates do not constitute as the profitability determinant. It is different with their counterpart, conventional banks, the variable of interest rate is considered as the core determinants.⁹

As explained in the chapter three, there are seven core variables included within the profitability model, namely model 3.2. This means that such the seven variables are expected to impact on the profitability of Islamic banks in Indonesia¹⁰. Such the variables are total deposits (IBDepTot), total financing (IBFinTot), profit sharing rate (PSR) either in deposits (PSR_{dep}) or in financing (PSR_{fin}), interest rate of interbank money market (IMMR), consumer price index (CPI) and industrial production index (IPI).

Obviously, to include the later two variables, CPI and IPI, is because that, by theory, profitability is also determined by the both variables. Moreover, a number of researches also indicate the importance of the variables to the profitability. However, this section is to examine specifically the existence or the influence of interest rate to the Islamic banks' profitability in Indonesia. The rate is represented by

⁹ Any effects of interest rate are expected to be far from the operations of Islamic banks as well. Actually, the core prohibition of interest rate is not merely in the term "interest" itself, but it is due to the prohibition of riba. Owing to the fact that interest rate is regarded to be similiar with riba, the rate is prohibited accordingly. This means that every thing or activities done by Islamic banks, even named with not interest but in principal they are the same as riba, consitutes riba and they are prohibited.

¹⁰The important consideration in choosing as well as determining such the seven variables, as described previously in the chapter two, is the previous researches and theories on Islamic banking.

the interbank money market rate (IMMR) only¹¹, and macroeconomic variables by CPI (for inflation rate) and IPI (for economic growth).

Concerning profitability, the term used to be as the yardstick is the financial ratio of ROA (Return on Assets). This study employs only one variable, that is, ROA and the variable is regarded to represent such the profitability notwithstanding not perfectly. The following is the one disclosing the ROA figure of the Islamic banks in Indonesia from 2006 to 2015.

Figure : 4.2.

Return on Assets (ROA) of Islamic Banks 2006 to 2015

The figure above displays the profit level of Islamic banks in the form of ROA ratios. At glance, it likely indicates

¹¹ There are actually several rates could be used to represent interest rate in examining such the profitability because the core goal of the research is to explore the influence of interest towards the profitability. Nevertheless, the author limits to the interest rate of IMMR only.

that there is no a significant increase in the profit level of Islamic banks in Indonesia. Nevertheless, it is important to be noted, based data from Bank Indonesia (BI) and the Financial Service Authority (OJK), that the profit level of Islamic banks grows up year by year, within the last ten years in particular.

4.2.1. Unit Root Test

The first step must be done regarding employing the VAR method is to examine a unit root of data, in which the data has to be stationary and it is the principal condition of the method. Either endogenous or exogenous variables must be stationary before being analyzed by the VAR method. For this research, examining the unit root is done by two test tools; they are the Augmented Dickey-Fuller test (ADF) and Phillips-Perron test (PP)¹².

Table : 4.7.
Unit Root Test Results for Model 3.2

	No	Variables	A	DF Test	PP Test		
	110	variables -	At Level	First Difference	At Level	First Difference	
	1	ROA	-2.4195	-10.6054	-2.0703	-14.5470	
	2	IBDepT ot	3.1857	-9.2890	2.8599	-9.7007	
	3	IBFinTot	1.5511	-10.2100	1.3714	-10.3002	
	4	PSR_{dep}	-2.5417	-14.5131	-2.8918	-15.9195	
	5	PSR_{fin}	-1.6578	-15.4908	-2.0775	-15.3188	
	6	IMMR	-2.9837	-10.2137	-2.9970	-10.1778	
_	7	IPI	-9.2953		-24.2128		
tes	8	CPI	-2.3569	-11.2260	-2.3800	-11.2281	

the data has a unit root or not. In principal, the both tests are the same, but for some cases they are different. Thus, in order to get a perfect result, the both tests are utilized in this research.

Note: The significance level of both ADF and PP test results presented in the table above is 1 percent.

The table above displays that all variables are not stationary at level except IPI (Industrial Production Index). All variables both endogenous and exogenous ones are stationary at the first difference. In addition, the level of significance of the unit root test above, either by ADF or PP, is chosen at 1 percent, which means that the result is strong significant.

4.2.2. Granger Causality Test

The granger causality test is the most important step, after stationarity test, in analyzing data in the frame of VAR method. The test aims at determining the independence or dependence between variables. A variable considered as the subject or the object could be known by testing the causality between them. In the other word, whether a variable induces another or a variable is being influenced by the other is identified by doing the granger causality test.

One thing, according to the VAR method, before undertaking the granger causality test is to determine an optimal lag. There are usually five statistical criterions considered in selecting the optimal lag as shown by the table below. Based on the table, the optimal lag is chosen at the first lag, because four of the five criterions indicate the lag. The criterions are HQ, SC, AIC and FPE. The other, LR, shows the fifth one as the optimal lag.

Table: 4.8.

VAR Lag Order Selection Criteria for Model 3.2

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-3.669.181	NA	4.55e+18	6.566.394	6.585.812	6.574.273
1	-2.843.501	1.518.661	5.65e+12*	52.06252*	53.81013*	52.77158*
2	-2.798.638	7.610.723	8.08e+12	5.240.425	5.570.529	5.374.359
3	-2.752.707	7.135.803	1.16e+13	5.272.690	5.758.136	5.469.651
4	-2.696.091	7.986.844	1.44e+13	5.285.877	5.926.666	5.545.865
5	-2.624.141	91.22244*	1.44e+13	5.271.680	6.067.812	5.594.696
6	-2.581.185	4.832.487	2.62e+13	5.309.260	6.260.734	5.695.303
7	-2.506.131	7.371.417	2.99e+13	5.289.520	6.396.337	5.738.591
8	-2.412.786	7.834.277	2.88e+13	5.237.119	6.499.279	5.749.217

^{*} indicates lag order selected by the criterion

The subsequent table is the result of granger causality test for model 3.2 as stated in the chapter three. All variables displayed in the table are regarded as the ones that persuade the profitability of Islamic banks, or as the profitability determinants of Islamic banks in Indonesia. For detail, see the following result.

Table : 4.9
Granger Causality Test for Model 3.2

No	Null Hypothesis	F-Statisctic	P-Value
1	IBDEPTOT does not Granger Cause ROA	6.06632	0.0152*
2	IBFINTOT does not Granger Cause ROA	5.94057	0.0163*
3	PSRDEP does not Granger Cause ROA	1.06475	0.3043
4	PSRFIN does not Granger Cause ROA	0.74355	0.3903
5	IMMR does not Granger Cause ROA	0.00070	0.979
6	CPI does not Granger Cause ROA	0.01250	0.9112
7	IPI does not Granger Cause ROA	0.19942	0.656

Note: *, ** and *** denotes the level of significance statistically at 1%, 5% and 10% respectively

Based upon the above table, it is consistent with the finding of Haron and Azmi (2004) in terms of the existence of deposits towards the profitability of Islamic banks. However, it is different with respect to inflation, where inflation rate, which is represented by CPI, has not correlation with the ROA of Islamic banks in Indonesia.

The most important information given by the table above is that there is no correlation between interest rate and the profitability of Islamic banks. As shown by the table, the interest rate of IMMR does not correlate with the ROA of Islamic banks. It can be concluded by the data presented, where its P-Value is 0.979 (97.9 percent), or statistically, it receives the null-hypothesis.

4.2.3. Impulse Response Function (IRF)

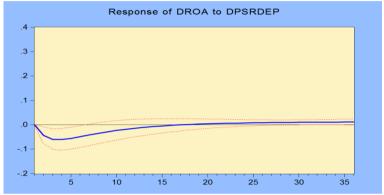
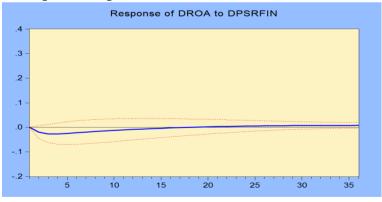
It is consistent with the Granger causality test result presented in the table 4.8, the following figure displays that profit sharing rates do not correlate with the profit ratio of ROA. Neither PSR_{dep} nor PSR_{fin} does not has a relationship with such the ratio of profit. P-Values of PSR_{dep} and PSR_{fin}, as displayed by the table, are 0.3043 (30.43 percent) and 0.3903 (39.03 percent), indicating that there is no significancy between the variables¹³.

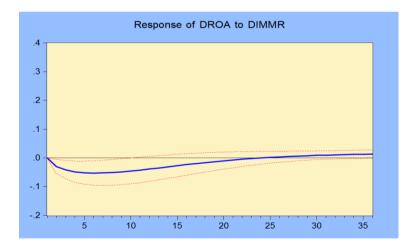
However, as shown by the figure below, there is a negative response of ROA to PSR_{dep} in the early periods,

 $^{^{13}}$ The both P-Values are more than 10 percent, meaning that either PSR_{dep} or PSR_{fin} does not has a causality among them. Similarly, the existence of the ROA is free from the influence of such the profit sharing rates, or the rates have no effects to the profit ratio.

which endures 15 periods approximately. In addition, the same response also happens in PSR_{fin} . Nonetheless, although they are the same in terms of their responses, the shock shown by PSR_{dep} is bigger than PSR_{fin} . ¹⁴

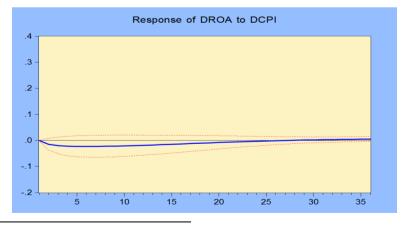
Figure : 4.3.
Impulse Response Function (IRF) for Model 3.2


Figure : 4.4.
Impulse Response Function (IRF) for Model 3.2

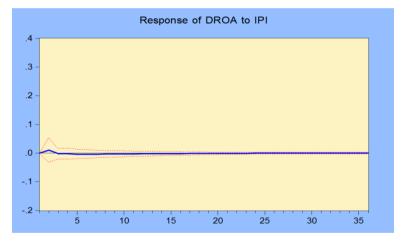
¹⁴ The details of responses or shocks shown by ROA to exogenous variables in numerals could be seen in the Variance Decomposition tables presented in the appendix of the research.

The most important correlation to be known is the correlation between ROA and IMMR because it is the core of this research. As stated in the chapter one, the research aims at investigating the effects of interest rate to the profitability of Islamic banks, or to investigate the influence of interest rate to such the profitability. Based upon the granger test, there is absolutely no correlation between them, since the P-Value of causality is nearly 100 percent (97.9 percent).


Figure : 4.5.
Impulse Response Function (IRF) for Model 3.2

In spite of the fact that there is no significant correlation between ROA and IMMR, the response displayed by the figure is reasonable. The figure shows that the response of ROA is negatively in the early periods, which remains about 23 periods. When the interest rate of IMMR increases, the profit ratio of Islamic banks decreases. Such the phenomenon is realistic because when the interest rate of IMMR grows up, the number of deposits in Islamic banks will reduce due to a deposit-flight¹⁵, and when the deposits decrease, the ROA will goes down accordingly. This phenomenon is consistent with the case happening in the responses of the total deposits of Islamic banks to the rate of IMMR.

The both following figures uncover the responses of ROA to macroeconomic conditions, for which represented by two core economic variables, i.e. inflation and economic growth. Both inflation rate and economic growth do not influence on the profit ratio of ROA in the Indonesian Islamic banks. However, in the early periods, the ratio gives a very little response to CPI, which continues 25 periods approximately.


Figure : 4.6.
Impulse Response Function (IRF) for Model 3.2

¹⁵ See the relationship between IMMR and the Islamic banks' deposits in the IRF's figures in the appendix

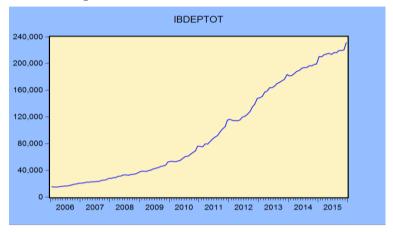
The same case also happens in the other economic variable, IPI. IPI, Industrial Production Index, to which regarded as the indicatior of economic growth, has no impact on the profitability of Islamic banks in Indonesia. As shown in the figure 4.7, it is in line with what disclosed by the granger causality test where there is no causality amongst the variables. The line of response, as shown by the figure, is parralel with the line of IPI. There is no a substantial shock given by the ROA to IPI as well.

Figure : 4.7.
Impulse Response Function (IRF) for Model 3.2

Concerning the results explained above, particularly the causality between the profitability and the both core

¹⁶ This could be seen in the table of granger causality test. The table displays that P-Value of the causality between ROA and IPI is 0.656. This means that the numeral is more than the accepted limit, which is 0.01 or 10 percent. Therefore, it is concluded that there is no correlation between them, or IPI does not influence on ROA.

macroeconomic variables, it is widely known that CPI and IPI are among the profitability determinants in banking industry. However, the Islamic banks' data show that the both variables do not have a significant correlation with the profitability. Some other researches also confirm the same results with what have been found by this research.

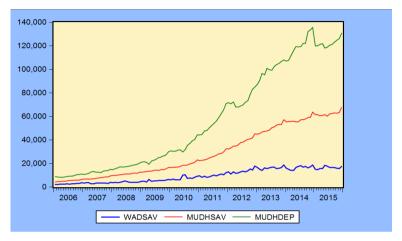

4.3. The Deposits of Islamic Banks in Indonesia

It is widely known that the most important source of fund for a banking industry is from the public. This means that the people play an important role in determining the existence of the industry. The bankruptcy of banks enormously depends upon the source of fund from the people as well. Such the reality also prevails in an Islamic banking industry where the banks also rely on the sources of fund from the people. The Indonesian Islamic banking industry, like its counterpart, relies on the money deposited by their customers or usually known as depositors.

In general, there are three foremost sorts of deposits currently operated by Islamic banks in Indonesia, viz. Wadiah Saving, Mudharabah Saving and Mudharabah Deposit. Such the three is similar technically with conventional banks, in which the banks also have three types of deposits; they are demand deposit, saving deposit and time deposit. Accordingly, the number of deposit in Islamic banks increases significantly year by year, during the last ten years in particular. The figure below portrays the growth of such the deposits.

Figure : 4.8.

Deposits of Islamic Banks 2006 to 2015


Source: Bank of Indonesia (BI) and the Financial Service Authority (OJK)

As stated, the deposits of Islamic banks are categorized into three sorts, wadiah saving, mudharabah saving and mudharabah deposit. However, the majority of people place their money in the form of mudharabah deposits 17. The figure below displays the three types of deposits currently adopted by the Islamic banks in Indonesia.

¹⁷ It is important to be noted that the mudharabah deposit to which the majority of people save their money is akin with the deposit system applied by conventional banks. It means such the deposits are also divided into some terms, 1-month, 3-month, 6-month, 12-month and more. Nevertheless, in this research, the author examines only three terms of the deposits, 1-month, 3-month and 12-month, since it is assumed that the terms are enough and can represent all kinds of them.

Figure : 4.9.

Types of Deposits of Islamic Banks 2006 to 2015

Source: Bank of Indonesia (BI) and the Financial Service Authority (OJK)

The figure above clearly shows that more than a half of the third-party fund in the Islamic banks is in the form of mudharabah deposit, which are about 50 to 60 percent. The second and the third are mudharabah saving and wadiah saving respectively, where mudharabah saving is 20 to 30 percent and wadiah saving is 10 to 20 percent approximately. In addition, the table indicates that the number of mudharabah deposit rises significantly particularly since 2010, and it is slightly similar with mudharabah saving. Nevertheless, the number of deposit in wadiah saving does not show the significant growth.

4.3.1. Unit Root Test

As described previously, the first step must be done regarding the VAR method is to test a unit root of data. The method requires stationarities of data in order to obtain the valid results. Currently, there are several statistical instruments used to test such the stationarity. For the deposits, there are, the same as profitability, two types of the tests utilized, they are Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP).

Based upon the data presented in the tables below, all of data are not stationary at level except Mudharabah Deposit (MudhDep), Profit Sharing Rate of Wadiah Deposit (PSR $_{wadsav}$) and Conventional Banking Rate of Demand Deposits (CBR $_{dd}$). However, some of them are stationary at the second difference, such as Conventional Banking Rate for three-month (CBR $_{td03}$). All of the data presented in the both tables (table 4.10 and table 4.11) are significant at 1 percent. For detail, look at the tables below.

Table : 4.10.

Unit Root Test Results for the Selected Endogenous

Variables

		ADF Test		PP Test		
No	Variables	At Level	First Difference	At Level	First Difference	
1	WadSav	-0.4685	-8.9834*	-0.6279	-18.7356*	
2	MudhSav	-2.3055	-11.5831*	2.2680	-12.4701*	
3	MudhDep	1.1490	-9.8866*	1.0464	-9.9252*	
4	MudhDep01	-0.1420	-10.0793*	0.1293	-19.2457*	
5	MudhDep02	-0.8943	-8.3224*	-0.7855	-7.8346*	
6	MudhDep03	-2.5676	-9.8646*	-3.4650	-14.4741*	

Note: *, **, and *** denotes the level of significance statistically at 1%, 5% and 10% respectively

The table above contains the dependent or endogenous variables and the next table is for independent or exogenous variables. The unit root test result of IBDepTot has been presented in the previous table of profitability.

Table : 4.11.

Unit Root Test Results for the Selected Exogenous
Variables Determining Deposits in the Islamic Banks

		ADF Test		PP Test		
No	Variables	At Level	First Difference	At Level	First Difference	
1	PSR _{wadsav}	-3.6679		-3.5734		
2	PSR _{mudhsav}	-2.8445	-12.1454*	-2.8360	-12.1672*	
3	$PSR_{MudhDep}$	-2.7272	-9.5187*	-2.5126	-15.9150*	
4	CBR_{dd}	-3.9275		-3.8501		
5	CBR _{sd}	-2.3854	-10.2410*	-2.5374	-10.5508*	
6	CBR_{td01}	-2.1440	-3.9038*	-3.2147	-5.4253*	
7	CBR_{td03*}	-3.3295	-10.0751*	-2.9742	-10.6798*	
8	CBR _{td12}	-1.5350	-3.8544*	-1.6356	-7.1803*	

Note: CBRtd03 is stationary at the second difference

There are seven models examined in this research in terms of the deposits of Islamic banks in Indonesia, from model 3.3 to model 3.9 as displayed in the chapter three. The variables of the models are wadiah saving (WadSav), Mudharabah Saving (MudhSav), Mudharabah Deposit (MudhDep), Mudharabah Deposist one-month (MudhDep01), Mudharabah Deposist three-month (MudhDep03), Mudharabah Deposist twelve-month (MudhDep12) and Total Deposits (IBDepTot).

^{*, **,} and *** denotes the level of significance statistically at 1%, 5% and 10% respectively

4.3.2. Granger Causality Test

The Granger Causality test is the test that aims at investigating the relationship between variables in a model. In addition, the test is to determine whether variable in a model is dependent or independent. The test is also considered as the most important part of the VAR method. Nevertheless, to determine the optimal lag must be done before such the Granger Causality test.

According to the lag, based upon the data presented, four statistical criterions indicating that the optimal lag is at the first lag. The criterions are FPE (Final Prediction Error), AIC (Akaike Information Criterion), SC (Schwarz Information Criterion) and HQ (Hannan-Quin Information Criterion). Therefore, the optimal lag is chosen at the first lag.

Table : 4.12.

Lag	LogL	LR	FPE	AIC	\mathbf{SC}	HQ
0	-2.045.209	NA	5.46e+09	3.661.088	3.673.224	3.666.012
1	-1.636.988	7.727.048	5831388.*	29.76764*	30.49581*	30.06308*
2	-1.618.576	3.320.738	6576881.	2.988.528	3.122.026	3.042.692
3	-1.600.620	3.078.146	7508319.	3.001.107	3.195.285	3.079.891
4	-1.583.623	2.762.054	8771668.	3.015.397	3.270.257	3.118.802
5	-1.556.534	4.160.093	8626847.	3.011.667	3.327.207	3.139.692
6	-1.542.485	2.032.011	10820678	3.031.223	3.407.444	3.183.868
7	-1.510.157	43.87396*	9920341.	3.018.137	3.455.039	3.195.402
8	-1.492.586	2.227.801	12027648	3.031.403	3.528.985	3.233.288

^{*} indicates lag order selected by the criterion

VAR Lag Order Selection Criteria for Model 3.3

The table below is the result of Granger Causality test for the first model of the Islamic banks' deposits, that is, Wadiah Saving (WadSav). The saving is similiar to Demand Deposits of Conventional Banking. There are five variables assumed to impact such the saving, they are Profit Sharing Rate (PSR_{wadsav}) of the saving, Interbank Money Market Rate (IMMR), Consumer Price Index (CPI) and Industrial Production Index (IPI) and Conventional Banking Rate of Demand Deposits (CBR_{dd}). 18

The result shows that neither banking- nor economic-based variables influence the level of saving. P-Values of the variable from PSR_{wadsav} to CBR_{dd} , as shown by the table 4.13. are not significant, which means that all variables included in the model do not influence on the level of wadiah saving. In the other word, the depositor do not regard the rate of profit sharing determined by Islamic banks when they save the money. Moreover, the type of saving is also free from the influence of interest rates, either IMMR or CBR.

Table : 4.13.

Granger Causality Test for Model 3.3

No	Null Hypothesis	F-Statisctic	P-Value
1	PSRWADSAV does not Granger Cause WADSAV	0.32124	0.572
2	IMMR does not Granger Cause WADSAV	1.94442	0.1659
3	CPI does not Granger Cause WADSAV	0.11198	0.7385
4	IPI does not Granger Cause WADSAV	0.68126	0.4108
5	CBR_DD does not Granger Cause WADSAV	0.03722	0.8475

¹⁸ See model 3.3 in the chapter three. CPI is to represent the rate of inflation and IPI for the economic growth, since it is known that price as well as economic growth levels are among the variables inducing a banking industry. By theory, the both variables are considered as the determinants for a banking industry.

Besides, according to the table above, macroeconomic variables included in the model do not give effect upon the number of wadiah saving in the Islamic banks of Indonesia. Rate of inflation as well as economic growth level do not impact to the saving.

The second type of deposits examined in this research is Mudharabah Saving (MudhSav). The type is like saving deposits in conventional banks. The number of independent variables expected to influence the level of deposit is the same as the previous type, WadSav, five variables. They are PSR, IMMR, CBR_{sd}, CPI and IPI¹⁹. The table below confirms that the optimal lag is the first lag in which four criterions indicates the lag.

Table: 4.14.

VAR Lag Order Selection Criteria for Model 3.4

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2.301.811	NA	5.34e+11	4.119.305	4.131.441	4.124.229
1	-1.708.785	1.122.513	21017376*	31.04973*	31.77790*	31.34517*
2	-1.686.924	39.42780*	22288409	3.110.579	3.244.076	3.164.743
3	-1.672.941	2.397.152	27315509	3.130.251	3.324.430	3.209.036
4	-1.658.196	2.396.036	33221316	3.148.564	3.403.423	3.251.968
5	-1.638.439	3.034.137	37243182	3.157.926	3.473.466	3.285.951
6	-1.620.899	2.536.935	43891138	3.171.249	3.547.470	3.323.894
7	-1.594.349	3.603.308	44612327	3.168.480	3.605.381	3.345.745
8	-1.570.029	3.083.378	47948483	3.169.695	3.667.277	3.371.580

^{*} indicates lag order selected by the criterion

¹⁹ CBR_{sd} is Conventional Banking Rate for saving deposits, the interest rate for saving deposit employed by conventional banks. Such the variable is included in the model in order to explore the influence of the rate towards the level of Mudharabah Saving, whereas it is known that the kind of deposits is similiar to saving deposits in conventional banks.

Table 4.15 displays the results of granger causality test for model 3.4, the model in which Mudharabah Saving (MudhSav) is regarded as the dependent variable. The table declares that there are three variables that have relationship with MudhSav significantly, viz. Profit Sharing Rate, IMMR and CBRsd

Table : 4.15.

Granger Causality Test for Model 3.4

No	Null Hypothesis	F-Statisctic	P-Value
1	PSRMUDHSAV does not Granger Cause MUDHSAV	3.93370	0.0497
2	IMMR does not Granger Cause MUDHSAV	4.00619	0.0477
3	CPI does not Granger Cause MUDHSAV	0.38187	0.5378
4	IPI does not Granger Cause MUDHSAV	0.51108	0.4761
5	CBR_SD does not Granger Cause MUDHSAV	3.03770	0.0852

Profit sharing rate (PSR) of mudharabah saving, according to the table, has a significant relationship with the number of fund deposited in the form of mudharabah saving. Besides, the saving is also influenced by the both interest rates, IMMR and CBR_{sd}. This means that the existence of the saving depends on the rates. According to the other two macroeconomic variables, the test shows that mudharabah saving is not induced by such the variables, either CPI or IPI. This phenomenon also means that the people or the depositors who place their money in the form of the saving are not induced by inflation and economic growth.

The third model regarding the deposits is model 3.5. The model is to examine the mudharabah deposits for one

month (MudhDep01)²⁰. The model is to explore the effects of interest rates on the number of the deposit and its profit sharing rate. The model examines other variables that have the effects upon the deposits as well. Based upon the table below, the optimal lag is at the first one, since four criterions, FPE, AIC, SC and HQ, show such the lag.

Table: 4.16.

VAR Lag Order Selection Criteria for Model 3.5

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-1.962.071	NA	1.25e+15	5.179.134	5.197.535	5.186.488
1	-1.667.039	5.357.161	1.38e+12*	44.97471*	46.26274*	45.48947*
2	-1.631.310	59.23397*	1.41e+12	4.498.185	4.737.392	4.593.784
3	-1.599.538	4.765.868	1.65e+12	4.509.310	4.858.920	4.649.031
4	-1.574.252	3.393.681	2.38e+12	4.537.505	4.997.518	4.721.348
5	-1.549.519	2.928.903	3.73e+12	4.567.155	5.137.571	4.795.121
6	-1.514.092	3.635.877	4.80e+12	4.568.664	5.249.483	4.840.752
7	-1.480.574	2.910.838	7.39e+12	4.575.193	5.366.416	4.891.404
8	-1.431.522	3.485.248	9.10e+12	4.540.847	5.442.473	4.901.180

^{*} indicates lag order selected by the criterion

In addition, the table below is the results of granger causality test for the model 3.5. There are no variables have relationship with the mudharabah deposits for one month, including its PSR rates as well as CBR rates.

²⁰ It is known that the deposit system in Islamic banking is the same as its counterpart, conventional banking particularly in categorizing deposit with several terms. It means that there is also available deposits with terms, such as 1-month, 3-month or more, in Islamic banking system. It is likely that Islamic banks in Indonesia follow the system operated by conventional banks.

Table : 4.17.

Granger Causality Test for Model 3.5

No	Null Hypothesis	F-Statisctic	P-Value
1	PSR_MUDHDEP01 does not Granger Cause MUDHDEP01	0.34652	0.5577
2	IMMR does not Granger Cause MUDHDEP01	0.02679	0.8704
3	CBR_TD01 does not Granger Cause MUDHDEP01	0.00006	0.9936
4	CPI does not Granger Cause MUDHDEP01	0.02245	0.8813
5	IPI does not Granger Cause MUDHDEP01	2.15662	0.1459

The next model is the model that inspects the mudharabah deposits for three months (MudhDep03). The table 4.18 shows the optimal lag for the granger causality test of the model is at the second lag. That the second lag is chosen as the lag optimal is that three statistical criterions signify the lag; they are FPE, AIC and HQ.

Table: 4.18.

VAR Lag Order Selection Criteria for Model 3.6

	Lag	LogL	LR	FPE	AIC	SC	HQ
_	0	-1.886.400	NA	1.71e+14	4.979.999	4.998.399	4.987.352
	1	-1.534.430	6.391.030	4.20e+10	4.148.499	42.77303*	4.199.976
	2	-1.472.848	1.020.964	2.18e+10*	40.81178*	4.320.385	41.76777*
	3	-1.437.514	53.00116*	2.32e+10	4.082.931	4.432.541	4.222.652
	4	-1.402.845	4.652.938	2.62e+10	4.086.434	4.546.447	4.270.277
	5	-1.384.032	2.227.843	4.79e+10	4.131.663	4.702.079	4.359.629
	6	-1.354.934	2.986.356	7.29e+10	4.149.826	4.830.646	4.421.915
	7	-1.310.010	3.901.331	8.30e+10	4.126.341	4.917.564	4.442.552
	8	-1.267.819	2.997.747	1.22e+11	4.110.050	5.011.676	4.470.384

^{*} indicates lag order selected by the criterion

As to the relationship between the variables within the model, the table 4.19 shows that there are no variables except IMMR that impact on the number of fund deposited in Islamic

banks in the form of the 3-month mudharabah deposit. This also prevails in the rate of profit sharing, in which the deposit is not influenced by the rate.

Table : 4.19.
Granger Causality Test for Model 3.6

No	Null Hypothesis	F-Statisctic	P-Value
1	PSR_MUDHDEP03 does not Granger Cause MUDHDEP03	0.09700	0.7563
2	CBR_TD03 does not Granger Cause MUDHDEP03	0.39654	0.5307
3	IMMR does not Granger Cause MUDHDEP03	5.76734	0.0186
4	CPI does not Granger Cause MUDHDEP03	0.50688	0.4786
5	IPI does not Granger Cause MUDHDEP03	0.91574	0.3415

The granger causality test result above demonstrates that P-Value of the variables is not significant at 1 percent or below than five percent except the interest rate of IMMR. This means that only the rate of IMMR has the effect upon the fluctuation of the deposits. Concerning CPI and IPI, the existence of the both variables are the same as the previous model in which they have no influence towards the deposit.

The tables 4.20 and 4.21 are the ones related to the model 3.7. Such the model is the same as the model 3.6 where there are five independent variables included in the model; they are PSR, IMMR, CBR, CPI and IPI. The third lag is considered as the optimal lag for the model in testing the granger causality between the variables since three of the criterions indicate such the lag.

Table: 4.20.

VAR Lag Order Selection Criteria for Model 3.7

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-1.876.678	NA	1.32e+14	4.954.415	4.972.815	4.961.768
1	-1.650.899	4.099.659	9.00e+11*	4.454.998	45.83802*	45.06474*
2	-1.620.034	51.17208*	1.05e+12	4.468.509	4.707.716	4.564.108
3	-1.587.745	4.843.224	1.21e+12	4.478.277	4.827.887	4.617.998
4	-1.558.944	3.865.509	1.59e+12	4.497.220	4.957.233	4.681.063
5	-1.522.017	4.372.925	1.81e+12	4.494.781	5.065.197	4.722.747
6	-1.477.920	4.525.695	1.85e+12	4.473.474	5.154.294	4.745.562
7	-1.428.633	4.280.238	1.88e+12	4.438.507	5.229.729	4.754.718
8	-1.362.892	4.671.027	1.50e+12	43.60243*	5.261.868	4.720.576

^{*} indicates lag order selected by the criterion

Concerning the relationship between the selected variables and the type of deposit of mudharabah 1-year, the table indicates that the selected independent variables included in the model do not impact on the number of mudharabah deposit 1-month. The table discloses that profit sharing rate, which is usually used as the yardstick for the depositors who place their money in Islamic banks, does not persuade the number of the deposit as well. This also prevails in the variables of interest rate, either IMMR or CBR.

Such the fact could be seen in the granger causality test results presented by the table 4.21 below. Obviously, it shows that the P-Values of the variables are not statistically significant, which means that the mudharabah deposit is not swayed by the five selected variables. For detail, look at the table below

Table : 4.21.

Granger Causality Test for Model 3.7

No	Null Hypothesis	F-Statisctic	P-Value
1	PSR_MUDHDEP12 does not Granger Cause MUDHDEP12	0.54236	0.4636
2	CBR_TD12 does not Granger Cause MUDHDEP12	0.03437	0.8534
3	IMMR does not Granger Cause MUDHDEP12	0.46801	0.4959
4	CPI does not Granger Cause MUDHDEP12	0.02802	0.8675
5	IPI does not Granger Cause MUDHDEP12	1.59851	0.2098

The last three tables describes on the condition of deposits in Islamic banks concerning their terms, one, three and twelve months. The next table is to reveal such the total deposits. Investigating of the deposit in total is considered enormously essential in order to know the effects of the variables in general. According to the lag, based on the table of order selection criteria, the optimal lag is at the second lag as there are three of five indicators or criterions show it. The criterions are LR, FPE and AIC.

Table: 4.22. VAR Lag Order Selection Criteria for Model 3.8

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2.415.732	NA	4.08e+12	4.322.736	4.334.872	4.327.660
1	-1.836.616	1.096.184	2.06e+08	3.333.244	34.06060*	33.62788*
2	-1.811.385	45.50622*	2.06e+08*	33.32831*	3.466.328	3.386.995
3	-1.793.794	3.015.576	2.36e+08	3.346.061	3.540.240	3.424.846
4	-1.773.602	3.281.237	2.61e+08	3.354.647	3.609.506	3.458.051
5	-1.751.752	3.355.608	2.82e+08	3.360.271	3.675.811	3.488.295
6	-1.737.542	2.055.390	3.52e+08	3.379.538	3.755.759	3.532.183
7	-1.711.394	3.548.592	3.61e+08	3.377.489	3.814.391	3.554.754
8	-1.695.282	2.042.763	4.49e+08	3.393.361	3.890.943	3.595.246

^{*} indicates lag order selected by the criterion

With respect to the correlation among variables, the following granger causality test reveals that two of the four independent variables sway the total mudharabah deposits. The both variables are PSR of the deposit and interest rate of IMMR. But, the other macroeconomic variables, CPI and IPI, have no correlation with the deposit. The facts, as described, could be resulted from the table of causality test. The table demonstrates the significance of PSR and IMMR towards the deposit not for the other two variables.

The table exposes that the number of mudharabah deposit is affected by the rate of profit sharing and the rate of interest. The both variables significantly influence the deposit²¹. The P-Value of PSR_{mudhdep} as shown in the table below is 0.0402 or 4.02 percent and IMMR is 0.0838 or 8.38 percent. Due to still under the accepted limit, PSR and IMMR are regarded to have correlation with the number of deposit, or the both independent variables sway to the deposit.

Table : 4.23.

Granger Causality Test for Model 3.8

	No	Null Hypothesis	F-Statisctic	P-Value
. • .	1	PSRMUDHDEP does not Granger Cause MUDHDEP	4.30707	0.0402
sig wh	wh 2	IMMR does not Granger Cause MUDHDEP	3.04160	0.0838
the has	3	CPI does not Granger Cause MUDHDEP	0.13606	0.7129
soc Be	4	IPI does not Granger Cause MUDHDEP	0.16066	0.6893

Value limit is used under ten percent.

The last model in the terms of the deposit in Islamic banks is the total deposits. The deposits includes wadiah saving, mudharabah saving and mudharabah deposit for all terms. The model aims at inspecting the determinants of such the deposit. In particular, the model's objective is to know the influence of interest rate toward the total Islamic deposits. Similar to the preceding model of mudharabah deposit (model 3.8), the variables expected to affect the total deposits in Islamic banks are four variables, they are profit sharing rate (PSR), interest rate (IMMR), inflation (CPI) and economic growth (IPI).

In addition, based upon the table 4.24 below, the optimal lag for the model 3.8 is the first lag. This is because that four of five criterions signify such the lag. The criterions are FPE, AIC, SC and HQ.

Table: 4.24.

VAR Lag Order Selection Criteria for Model 3.9

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2.413.797	NA	3.94e+12	4.319.280	4.331.416	4.324.204
1	-1.780.162	1.199.380	75184307*	32.32433*	33.05249*	32.61977*
2	-1.759.029	3.811.581	80773572	3.239.337	3.372.835	3.293.501
3	-1.748.506	1.803.856	1.05e+08	3.265.190	3.459.368	3.343.974
4	-1.734.123	2.337.308	1.29e+08	3.284.148	3.539.007	3.387.552
5	-1.707.333	41.14216*	1.27e+08	3.280.951	3.596.491	3.408.976
6	-1.696.629	1.548.227	1.70e+08	3.306.480	3.682.701	3.459.125
7	-1.670.598	3.532.717	1.74e+08	3.304.640	3.741.541	3.481.904
8	-1.646.557	3.048.049	1.88e+08	3.306.352	3.803.935	3.508.237

^{*} indicates lag order selected by the criterion

It is the same with the prior model, mudharabah deposit, there are only two independent variables have a correlation with the dependent variable, the total deposits. The variables are PSR_{dep} and IMMR.

Table : 4.25.
Granger Causality Test for Model 3.9

No	Null Hypothesis	F-Statisctic	P-Value
1	PSRDEP does not Granger Cause IBDEPTOT	9.47163	0.0026
2	IMMR does not Granger Cause IBDEPTOT	3.77550	0.0544
3	CPI does not Granger Cause IBDEPTOT	0.11317	0.7372
4	IPI does not Granger Cause IBDEPTOT	0.00136	0.9706

Based upon the table of granger causality test above, P-Values of PSR_{dep} and IMMR are 0.0026 (0.26 percent) and 0.0544 (5.44 percent) respectively. This means that the both variables are significant because their P-Values are less than 10 percent. Nevertheless, because their P-Values higher than the accepted limit, the other two variables, CPI and IPI, are not significant, where CPI = 0.7372 (73.72 percent) and IPI = 0.9706 (97 percent). This information denotes that the both variables have no correlation with the number of deposits in Islamic Banks.

Therefore, it is important to be noted that the rate of profit sharing is an important determinant of deposits in Islamic banks. The interest rate of IMMR is regarded as the core variable determining the deposits as well. Such the reality

is based upon models examined before. Nearly all models of deposit disclose that PSR and IMMR have a significant correlation with the types of deposit. However, two other important variables, according to the tables of the granger causality test results, have no a significant correlation with the deposits.²²

In addition to the types of deposit as explained above, it is also interesting to explore the relationship between profit sharing rates of the deposits and interest rates of conventional banks. The table 4.25 directly indicates that there is a relationship between them, which means that profit sharing rates (PSR) of deposits are influenced by interest rates of conventional banks. However, two of them are free from such the influence, they are PSR_{wadsav} and PSR_{mudhsav}, in which the both are not influenced by either IMMR or CBR.

The table of the granger causality test between PSR and interest rates indirectly uncovers the behavior of the Indonesian Islamic banks particularly in the face of interest rates. The table indicates that the rates of profit sharing, excluding Wadiah Saving (WadSav) and Mudharabah Saving (MudhSav), are swayed by the current interest rates, either IMMR or the conventional banks' rates themselves. This means that the

²² However, the granger causality tests does not display the direction of such the correlation, whether positive or negative. The direction among the variables could be seen in the figure of Impulse Response Function. Besides, the detail of movement of dependent variables towards independent variables, period by period, is displayed in Variance Decomposition Tables. Such the tables could been examined in the appendix of this research.

Islamic banks, in determining their profit sharing rates for the deposits, directly or indirectly follow the interest rates.

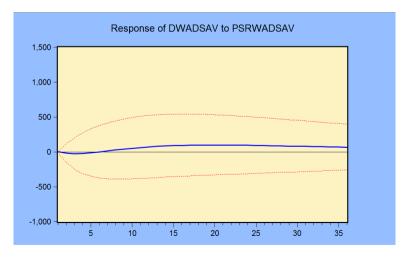
Table : 4.26.

Granger Causality Test for Interrelationship Between

Profit Sharing Rate and Interest Rate

No	Null Hypothesis	F-Statisctic	P-Value
1	IMMR does not Granger Cause PSR_WADSAV	0.19473	0.6598
2	CBR_DD does not Granger Cause PSR_WADSAV	0.08877	0.7665
3	IMMR does not Granger Cause PSR_MUDHSAV	0.01066	0.918
4	CBR_SD does not Granger Cause PSR_MUDHSAV	1.87232	0.175
5	IMMR does not Granger Cause PSR_MUDHDEP01	3.21224	0.0769
6	CBR_TD01 does not Granger Cause PSR_MUDHDEP01	8.85092	0.0039
7	IMMR does not Granger Cause PSR_MUDHDEP03	6.86107	0.0105
8	CBR_TD03 does not Granger Cause PSR_MUDHDEP03	13.6866	0.0004
9	IMMR does not Granger Cause PSR_MUDHDEP12	4.10442	0.0461
10	CBR_TD12 does not Granger Cause PSR_MUDHDEP12	9.81891	0.0024
11	IMMR does not Granger Cause PSRMUDHDEP	8.33556	0.0046
12	IMMR does not Granger Cause PSRDEP	7.42306	0.0074

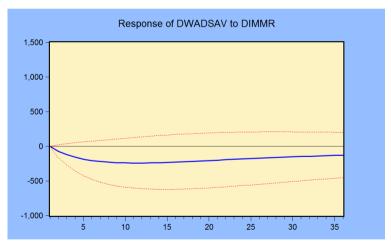
The profit sharing rates of the total deposits (PSR_{dep}) and the mudharabah deposits ($PSR_{mudhdep}$), as shown by the table, have strong relationship with the interest rate of IMMR. The table displays that P-Values of the correlation between the variables, are 0.0046 (0.46 percent) and 0.0074 (0.74 percent) respectively. This means that the relationship between them is extremely strong.


Moreover, not only does IMMR but also other conventional banking rates have correlation with the deposits. All types of CBR, as indicated by the granger causality test result, influence the rates of profit sharing of Islamic banks deposits, except Wadiah and Mudharabah Savings.

4.3.3. Impulse Response Function (IRF)

As presented by the table of granger causality test above, the profit sharing rate of wadiah saving (PSR_{wadsav}) does not influence to the number of wadiah saving in the Indonesian Islamic banks. The interest rate of IMMR has no effect to the kind of deposits as well. Moreover, based upon the test, not only do the both variables, but also other macroeconomic ones have no effects on the Islamic deposit in the form of wadiah saving. Look at the following figures.

Figure : 4.10.


Response of WadSav to PSR_{wadsav}

The figure above clearly uncovers that there is no a significant response towards the rate of profit sharing by the wadiah saving. Depositors who place the money in Islamic banks in the form of wadiah do not care about the profit sharing rate provided by the banks. However, it is different with the interest rate of IMMR, where the deposit of wadiah has a response to the interest rate. Notwithstanding insignificant²³ between the variables, the wadiah saving responds negatively to the interest rate, which means that the number of savings will goes down as the interest rate grows up.

Figure : 4.11.

Response of WadSav to IMMR

Such the occurance above is parallel with the other type of deposits, such as mudharabah saving (MudhSav). The IRF for the deposit accords with the data presented by the granger

²³ The result of the test shows that the correlation between WadSav and IMMR is nearly significant in which its P-Value is 16 percent, where six percent is more than the accepted limit.

test. The table of IRF uncovers that the variable of MudhSav responds negatively to either IMMR or CBR_{sd}. The both interet rates absolutely influence the existence of the saving. Therefore, there is a deposit-flight in the Islamic banks when the interet rates are high. In the other word, when the interest rates are upsurge, the number of deposit is decline.

Such the above finding is similar to the research's result found by Zainol and Kassim (2010:72). Their research, using the Malaysian banking industry data from 1997 to 2008, indicates that there is a deposit-flight from the Islamic banks to the conventional banks due to an increased interest rate. The research, employing the VAR method and Impulse Response Function (IRF), finds that there is a relationship between interest rate and the amount of deposit in the Islamic banks.

For detail, look at the following figures.

Figure : 4.12.

Response of MudhSav to IMMR

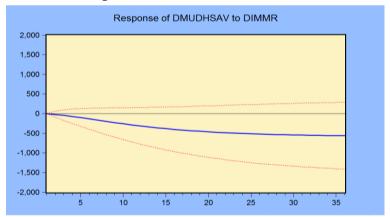
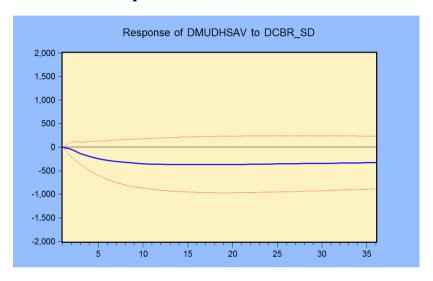
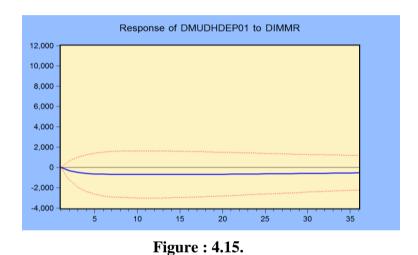



Figure : 4.13.


Response of MudhSav to CBR_{sd}

The next is the IRF for the mudharabah deposit. As explained previously, such the deposit is devided into several terms and this research only inspects three of them. Concerning the first type of deposit (MudhDep01), it is in line with what has been exposed by the granger test table stating no one of the independent variables is significantly correlated with the deposit, that the figure below clearly shows that there is no a significant response of the deposit towards the variables, such as IMMR, CPI and IPI. For instance, although the variable of MudhDep01 responds to IMMR in all periods, its response is very small. It also happens in other two variables, CPI and IPI.

Figure : 4.14.

Response of MudhDep01 to IMMR

Response of MudhDep01 to CPI

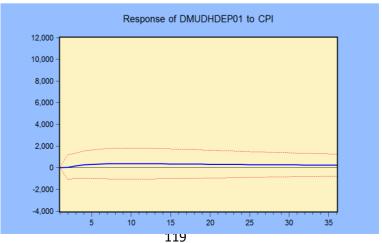
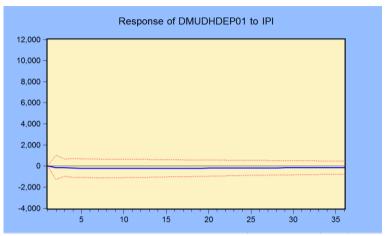
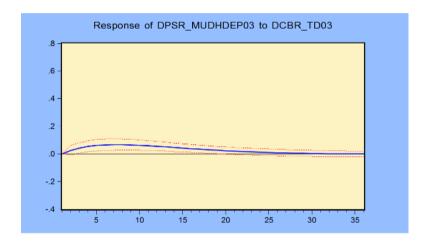
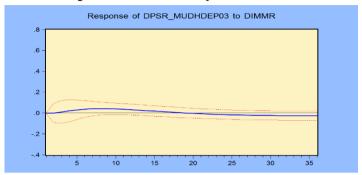



Figure : 4.16.
Response of MudhDep01 to IPI


The figures 4.15 and 4.16 above explain the response of the mudharabah deposits of one-month to CPI and IPI.²⁴ The former figure obviously illustrates that there are no response of such the deposit to the inflation rate of CPI. The same occurrence also happens in the next figure of IPI. The figure displays that the response line is parallel with the period line and there is no a significant shock or response throughout the periods.

²⁴ The results of granger causality test for all types of deposit, from the model 3.3 to the model 3.9, show that CPI and IPI are not significant. This means that the economic variables such as inflation and economic growth do not impact on the deposits. In this regards, figures describing responses of deposits to the both variables are not attached all in this research.

Statistically, as presented by the granger causality test, PSR_{mudhdep03} is not significant to CBR_{td03}. However, similar to the other types of deposit, the rate of profit sharing responds positively to the interest rate. The response of such deposits to another interest rate, IMMR, is the same as well.

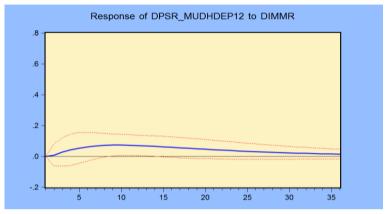

Figure : 4.17.

Response of PSR_{mudhdep03} to CBR_{td03}

The positive response of the PSR to CBR lasts approximetely 25 periods. Due to a positive correlation between the Islamic banks' rate and the conventional banks' rate, it is concluded that the behaviours of Islamic banks are influenced by their counterpart, the conventional banks. The figure below also reveals such the positive response, nevertheless the former's is stronger than the later's.

Figure : 4.18. Response of PSR_{mudhdep03} to IMMR

The last type of the Islamic banks' deposits is the 12-term mudharabah deposits (MudhDep12). Concerning its PSR, based on the granger causality test, the profit sharing rate of deposit correlates significantly to the interest rates.²⁵ For a detailed explainantion, look at the both following figures.

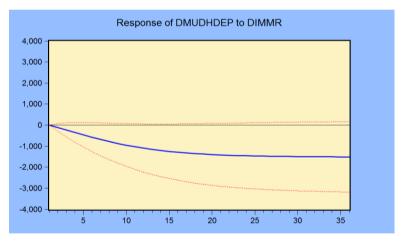

Figure : 4.19.
Response of PSR_{mudhdep12} to CBR_{td12}

²⁵ As disclosed by the table, that interest rates either IMMR or CBR are significantly correlated to the profit sharing rate of the deposit. Their correlation is positive, which means that when the interest rates increase, the profit sharing rate also follows such the increase, and vice versa.

Figure : 4.20.

Response of PSR_{mudhdep12} to IMMR

The both figures above show the strongly positive response of the mudharabah deposit to either IMMR or CBR. The response are over 35 periods. The phenomenon as indicated by the figures is consistent with what presented by the granger causality test before. In addition, it indirectly describes the behaviours of Islamic banks in determining their profit sharing rates, in which the Islamic banks follow and consider the conventional banks' rates. Similiarly, the banks are swayed by the interets rates directly or indirectly. Accordingly, the higher or the lower the conventional banks' rate, the higher or the lower the Islamic banks' profit sharing rates.

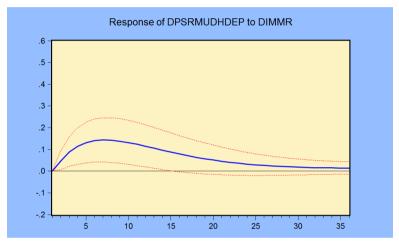

The following figure is the figure that explains the response of the total mudharabah deposits to the interest rate of IMMR. As displayed by the table, there is a negative correlationship between the deposit and the rate of IMMR, which means that as the rate escalates, the number of the

deposit goes down, and vice versa, as the rate decreases the number of deposit grows up. In the other word, the higher the interest rate, the less the deposits.

It is in line with what happened in sevaral types of deposits before. One of the important things to be underlined is that there is a deposit-movement in the Islamic banks. Such the phenomenon indirectly describes the behaviours of depositors in saving their money in Islamic banks, in which they are influenced by the conventional banks' of interet rates.

Figure : 4.21.

Response of MudhDep to IMMR

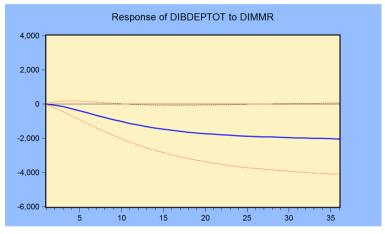


Not only does MudhDep but also PSR_{mudhdep} has a significant correlation with the interest rate of IMMR. However, it is different with MudhDep, PSR_{mudhdep} correlates with the rate positively. The figure 4.22 below also shows that the PSR responds quickly to the interest rate, and its response

endures more than 25 periods. Based upon the phenomenon shown by the figure, the profit sharing rate of the mudharabah deposit is influenced by IMMR.

Figure : 4.22.

Response of PSR_{mudhdep} to IMMR

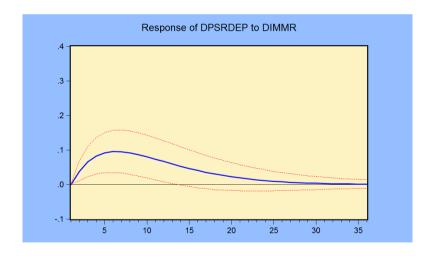


The next figure (figure : 4.23) is to display the response of IBDepTot to the interest rate of IMMR²⁶. It is consistent with the granger test that IBDepTot correlate significantly with IMMR. The figure discloses that the total deposits in Islamic Banks responds negatively to the rate of IMMR. This

²⁶ IBDepTot, as defined previously, is the total deposits in the Islamic banks. It is the sum of all kinds of deposit. The figure is to display the variable towards the rate of IMMR only not CBR, on account of the fact that there is no availability the rate in one figure. It is known that, in conventional banks, the rate of CBR has any types and terms, such as CBR for demand deposit and others.

concludes that when the conventional rate increases, the number of deposit in Islamic banks reduces.

Figure : 4.23
Response of IBDepTot to IMMR


The above phenomenon also indicates that there is a deposit-flight from Islamic banks to conventional banks. Likewise, depositors who save their money in Islamic banks are influenced by conventional banking rate. In addition, IMMR has a significant correlation with PSR_{dep}, however, they correlate positively. The profit sharing rate, as displayed the figure below, responds immediately to the interest rate of IMMR, which remains for about 30 periods.

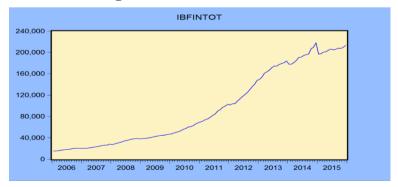
The last figure regarding the deposits of Islamic banking in Indonesia is the one displaying the relationship between PSR_{dep} and IMMR. PSR_{dep} is defined as the rate used for attracting people to place their money in Islamic banks. It is

techically the same as the interest rate in conventional banks, where the rate also aims at attracking the people to deposit their money.

It is consistent with other types of PSR's deposits where their existence is determined or swayed in the conventional banking's rate. The rate of profit sharing for the total deposits in Islamic banks is influenced by the interest rate of IMMR. This indirectly concludes that the Islamic banks' operation follows to the variables controlled by conventional banks. Look at the following figure.

 $\label{eq:Figure:4.24} Figure: 4.24$ Response of PSR_{dep} to IMMR

The positive response given by the profit sharing rate to the interest rate of IMMR, as presented by the figure, means that when the interest rate is high, the profit sharing rate rises. Moreover, the figure also shows the immidiate response of the profit sharing rate, and it endures about 30 periods.

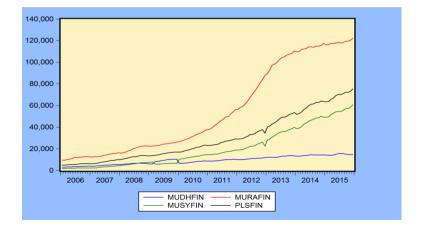

Accordingly, based upon the seven models examined in this chapter, it likely denotes the strong influence of interest rates to the existence of deposits in Islamic banks in Indonesia. Such the influence happens in the banks themselves or in the people. As to the banks, the influence lies in determining profit sharing rates for deposits, and as to the people, there is a deposit-flight when the interest rate is high.

4.4. The Financing of Islamic Banks in Indonesia

Financing activities are considered as the most important one in a banking industry. Not only do conventional banks but also Islamic banks view that the financings are the inevitable tasks of their banking operations. In addition, through the financing the banks can gain the profits as must as possible. The financing can develop as well as stabilize the economy in a country as well.

Concerning the Indonesian Islamic banks, the number of financing improves significantly year by year. The following figure displays the development of financing in the Islamic banks in Indonesia.

Figure: 4.25 Financing of Islamic Banks 2006 to 2015



The data above is the financing from Islamic Commercial Banks (BUS) and Islamic Business Units (UUS). During the periods, 2006-2015, the financing in the Islamic banks rises more than ten times. In 2006, the financing is Rp. 15.042 billion, and over ten years later, it improves at the extraordinary amount, where in 2015, the number of financing is Rp. 212.996 billion. However, such the quantity is still small if compared with the amount of credits distributed by conventional banks, which is about 3-5 percent.

In general, the types of financing in the Indonesian Islamic banks can be categorized into three primary types; they are the PLS-based Financings, the mark-up-based financings and the services-based financings. The first one is regarded the fundamental financing under the Islamic banking system, which consists mudharabah and musyarakah financings.

Figure: 4.26

Types of Financing of Islamic Banks 2006 to 2015

The figure shows that the murabahah financing is the most priority in the Islamic banks. Moreover, about sixty percent of the financing is allocated in the murabahah financing. For instance, as 2015, the total financing in the murabahah is Rp. 122.111 billion, while the PLS-based financing is only Rp. 75.533 billion, which is 57 and 35 percent approximately to the total financing in the Islamic banks in Indonesia. The mudharabah and musyarakah, which are regarded as the PLS-based financing, are Rp. 14.820 and Rp. 60.713 billion respectively.

Besides, it is important to be noted, the financing of Islamic banks is not only distributed in the real sector. The Islamic banks also involve in the financial markets. Moreover, some portion of their money are allocated to participate in the capital markets as done by their counterpart, conventional banks.

4.4.1. Unit Root Test

As done previously, the early step must be done before utilizing the VAR method is to test the stationarity data, because it is the primary requirement for the method. The following figure is to display the selected variables involved the models of financing²⁷.

 $^{^{27}}$ Some of them related to the financing models have been displayed in the preceding tables of unit root test results, such as IBFinTot, IBDepTot and others.

Table : 4.27.
Unit Root Test Results for the Selected Variables
Related to Financing in the Islamic Banks

No	Variables	ADF Test		PP Test		
110	variables	At Level	First Difference	At Level	First Difference	
1	MudhFin	-0.895458	-9.808397	-0.924591	-9.785618	
2	MusyFin	4.250998		4.189063		
3	MuraFin	-0.33043	-16.61599	0.785183	-6.824649	
4	PLSFin	3.883036		4.264873		
5	PSRfin	-1.657788	-15.49079	-2.077544	-15.31878	
6	PSRpls	-2.983118	-14.19364	-2.983118	-14.35916	
7	PSRmudh	-2.305917	-9.70335	-2.278776	-9.705742	
8	PSRmura	-2.455232	-15.67591	-3.201885	-15.87283	
9	CBRwc	-3.041379	-10.63866	-3.041379	-10.62235	
10	CBRi	-2.874181	-6.01756	-3.497449	-6.380234	
11	CBRc	-3.037414	-8.413617	-2.66436	-9.994722	

The figure displays that all variables except MusyFin and PLSFin are not stationary at level. They are stationary at the first difference. Moreover, the variable of MuraFin is stationary at the second difference, based upon the ADF test, but it is stationary at the first difference according to the PP test.

As described in the chapter III, there are five models employed in investigating the financings in Islamic banks, viz. MudhFin, MusyFin, MuraFin, PLSFin and IBFinTot. Two of the five dependent variables, as displayed by the table, are stationary at level, but the others are at the first difference. In addition, the significance level of the test is 0.01 (99 percen).

4.4.2. Granger Causality Test

To examine or to know causalities between variables in a model in the frame of the VAR method is done by exploiting the Granger Causality Test. The test is to know correlations amongst the variables and the direction between them. The test will display the level of relationship of the variables as well²⁸. Akin to the previous models, the models inspecting the relationship between financing and interest rates also decide the level of significance at 10 percent or 0.1.

The first model scrutinizing the existence of interest rates towards the Islamic banks' financing is the model 3.10. The model is to look over the mudharabah financing to which involved five independent variables, PSR_{pls} , IMMR, CBR_{wc} , CPI and IPI. That the CBR_{wc} is included in the model is because the financing is related to the type of credit using the conventional banking rate of CBR_{wc} .

The following is the table presenting the data that aims at deciding an optimal lag of the mentioned model. It is known that the initial step before testing causalities is to know the optimal lag. The lag is chosen due to the five statistical criterions as presented in the table.

Table: 4.28.

VAR Lag Order Selection Criteria for Model 3.10

	Lag	LogL	LR	FPE	AIC	sc	HQ
_	0	-2.161.851	NA	4.39e+10	3.869.377	3.881.513	3.874.301
	1	-1.682.622	907.1115*	13172824*	30.58254*	31.31071*	30.87798*
	2	-1.666.091	2.981.469	15364390	3.073.377	3.206.875	3.127.541
	3	-1.655.273	1.854.582	19924659	3.098.702	3.292.880	3.177.486
	4	-1.641.847	2.181.640	24810210	3.119.370	3.374.230	3.222.775
	5	-1.619.692	3.402.415	26647875	3.124.450	3.439.990	3.252.475
-	6	-1.606.907	1.849.237	34187293	3.146.263	3.522.484	3.298.908
	7	-1.591.916	2.034.577	42715586	3.164.135	3.601.037	3.341.400
n _	8	-1.575.091	2.133.185	52484131	3.178.733	3.676.315	3.380.618

^{**} indicates lag order selected by the criterion the correlation is stronger. The smaller the values, the stronger the correlations and vice versa.

For model 3.10, according to the table, the optimal lag is selected at the first lag because the statistical criterions indicate such the lag. The table clearly displays that all the statistical tools recommend the first lag as the optimal one, they are HQ, SC, AIC, FPE and LR²⁹. Therefore, the granger causality test examines the correlation between the variables at the first lag.

Table: 4.29.
Granger Causality Test for Model 3.10

No	Null Hypothesis	F-Statisctic	P-Value
1	PSRPLS does not Granger Cause MUDHFIN	0.37372	0.5422
2	IMMR does not Granger Cause MUDHFIN	0.56252	0.4548
3	CPI does not Granger Cause MUDHFIN	0.00005	0.9943
4	IPI does not Granger Cause MUDHFIN	0.34020	0.5608
5	CBR_WC does not Granger Cause MUDHFIN	0.00115	0.973

Based on the above table, there are no independent variables that have significant correlations with the financing of mudharabah (MudhFin), which includes the profit sharing rate itself. The P-Value displays 0.54, meaning that the error level is 54 percent whereas the allowable limit in this research is 10 percent (α = 0.1). Hence, PSR_{fin} is considered no significance with the Mudharabah Financing, or such the profit sharing rate does not influence the level of mudharabah financing in the Islamic banks in Indonesia.

²⁹ By theory, there are several statistical criterions could be used to determine an optimal lag for the granger causality test. However, the econometric software of Eviews operates only such the five criterions, viz. HQ, SC, AIC, FPE and LR.

Moreover, the variables of interest rate represented by IMMR and CBR have not correlation with the financing. The P-Values of IMMR and CBR are 0.4548 and 0.973 respectively, revealing insignificant correlations between them, which in turn declares that such the type of financing is free from the influence of interest rates, either IMMR or CBR. The other economic variables, such as inflation and economic growth, symbolized by Consumer Price Index (CPI) and Industrial Production Index (IPI) respectively, have no effects to the existence of the mudharabah financing as well.

The second form of financing under Islamic banking system is musyarakah. As explained before, musyarakah and mudharabah belong to the PLS-based financing. The model that analyzes the financing is model 3.11 (look at the chapter III). With regard to the optimal lag before testing the granger causality, the table below shows that the lag is at the first one. All five statistical criterions, similar to the previous model, direct on the first lag as the optimal one.

Table: 4.30.

VAR Lag Order Selection Criteria for Model 3.11

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2344.543	NA	1.15E+12	41.95612	42.07748	42.00536
1	-1757.087	1111.969*	49793736*	31.91227*	32.64044*	32.20771*
2	-1739.704	31.35252	57200336	32.04828	33.38326	32.58992
3	-1728.08	19.92704	73118224	32.28713	34.22892	33.07498
4	-1711.881	26.32317	86647640	32.4443	34.99289	33.47834
5	-1690.163	33.35145	93796365	32.50292	35.65832	33.78316
6	-1677.503	18.31301	1.21E+08	32.72326	36.48547	34.24971
7	-1656.692	28.24263	1.36E+08	32.79808	37.16709	34.57072
8	-1639.96	21.21441	1.67E+08	32.94571	37.92153	34.96456

^{*} indicates lag order selected by the criterion

The table below is the result of granger causality test done at the lag one. The result reveals that neither variable, except IMMR, has significant relationships to the musyarakah financing. The P-Value of the correlation between IMMR and MusyFin is 0.0875, meaning that the interest rate impacts on the level of financing. In the other word, financing provided by the Islamic banks in the form of musyarakah is swayed the rate of IMMR.

It is interesting, what revealed by the table, that the profit sharing rate of the musyarakah financing is insignificant correlation with the financing. The rate does not have an effect to the level of financing undertaken by the Islamic banks. The banks, with respect to the musyarakah financing to which actually regarded as the essential type of financing under the Islamic banking system, are influenced by the interest rate instead. In addition, the insignificance also prevails in CPI and IPI as disclosed by the result.

Table: 4.31.
Granger Causality Test for Model 3.11

No	Null Hypothesis	F-Statisctic	P-Value
1	PSRPLS does not Granger Cause MUSYFIN	0.04722	0.8284
2	IMMR does not Granger Cause MUSYFIN	2.96958	0.0875
3	CPI does not Granger Cause MUSYFIN	0.00844	0.927
4	IPI does not Granger Cause MUSYFIN	0.07811	0.7804
5	CBR_I does not Granger Cause MUSYFIN	2.72697	0.1026

The third kind of financing is murabahah. The financing is excluded from the PLS-based ones since it does not apply the profit-loss sharing system. Instead of the profit-loss sharing, the murabahah employs financing the mark-up system. Concerning the lag, the author chooses the first lag as the optimal one³⁰. Two of the five statistic creations signify the lag, SC and HQ. The table 4.32 below displays the results of the criterions

Table: 4.32.

VAR Lag Order Selection Criteria for Model 3.12

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2344.543	NA	1.15E+12	41.95612	42.07748	42.00536
1	-1757.087	1111.969*	49793736*	31.91227*	32.64044*	32.20771*
2	-1739.704	31.35252	57200336	32.04828	33.38326	32.58992
3	-1728.08	19.92704	73118224	32.28713	34.22892	33.07498
4	-1711.881	26.32317	86647640	32.4443	34.99289	33.47834
5	-1690.163	33.35145	93796365	32.50292	35.65832	33.78316
6	-1677.503	18.31301	1.21E+08	32.72326	36.48547	34.24971
7	-1656.692	28.24263	1.36E+08	32.79808	37.16709	34.57072
8	-1639.96	21.21441	1.67E+08	32.94571	37.92153	34.96456

^{*} indicates lag order selected by the criterion

The granger causality test result reveals that the number of murabahah financing correlates significantly to the interest rates. The financing has a relationship with the interest rates. The fact could be seen in the P-Values of the correlation presented in the table, where they indicate the significance

 $^{^{30}}$ Actually, the fifth lag is reasonable statistically to be chosen as the optimal lag because two of the five criterions indicate the lag, but the author prefers the first lag.

among them. Moreover, the values are under 0.01, which means that the correlation between them is strongly significant.

Table: 4.33.
Granger Causality Test for Model 3.12

No	Null Hypothesis	F-Statisctic	P-Value
1	PSRMURA does not Granger Cause MURAFIN	0.23210	0.6309
2	IMMR does not Granger Cause MURAFIN	27.46510	7.00E-07
3	CPI does not Granger Cause MURAFIN	2.55174	0.1129
4	IPI does not Granger Cause MURAFIN	0.05166	0.8206
5	CBR_C does not Granger Cause MURAFIN	7.72169	0.0068

The table above discloses that the both sorts of interest rate are significant with the murabahah financing. Such the fact means that the interest rates affect on the performance of financing. In the other word, the interest rates determine the murabahah financing level of the Islamic banks, either by the IMMR or the CBR_c³¹. Concisely, the interest rate, regarded as the conventional banking component, is considered as the important determinant influencing on the number of financing.

The next model is model 3.13, which scrutinizes on the total financing based upon the PLS system. This type of

 $^{^{31}}$ The reason to include the interest rate of CBR_c in the model for being analyzed to examine the relationship with the murabahah financing, is because the financing is likely similar to the credit for consumption in conventional banks. The interest rate for such type of credit is CBR_c . Therefore, this aims at finding whether the interest rate influences the financing or not.

financing is the accumulation of two other financings, mudharabah and musyarakah. The both financing, as explained, are categorized the PLS-based financing. In this model, the granger causality test is undertaken at the first lag because all the statistical criterions point out the lag as the optimal one. See the following table.

Table: 4.34.

VAR Lag Order Selection Criteria for Model 3.13

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2363.627	NA	1.61E+12	42.29691	42.41827	42.34615
1	-1749.577	1162.310*	43543907*	31.77815*	32.50632*	32.07359*
2	-1731.99	31.71839	49839999	31.91054	33.24551	32.45218
3	-1718.582	22.98477	61712365	32.11754	34.05933	32.90539
4	-1700.553	29.29717	70779904	32.24202	34.79062	33.27607
5	-1678.864	33.30797	76658229	32.30115	35.45655	33.5814
6	-1665.339	19.56292	97055678	32.50606	36.26827	34.03251
7	-1639.154	35.53777	99295463	32.48489	36.8539	34.25754
8	-1623.088	20.36877	1.24E+08	32.64443	37.62026	34.66328

^{*} indicates lag order selected by the criterion

As to the correlation, the result of the test unveils the same fact with the previous financing. The table shows a significant correlation with the interest rate as well. P-Values of the correlation with IMMR and CBR_{wc} are 0.069 and 0.0901, meaning the both numerals are within the accepted limit for significance. It is interesting to be noted that the profit sharing rate of the PLS financing has not correlation significantly with the financing itself. The financing correlates with the interest rate instead, whereas the interest rate is the element of conventional banks. For detail, see the table below.

Table: 4.35.
Granger Causality Test for Model 3.13

No	Null Hypothesis	F-Statisctic	P-Value
1	PSRPLS does not Granger Cause PLSFIN	0.10536	0.7461
2	IMMR does not Granger Cause PLSFIN	3.35344	6.96E-02
3	CPI does not Granger Cause PLSFIN	0.15422	0.6953
4	IPI does not Granger Cause PLSFIN	0.00080	0.9775
5	CBR_WC does not Granger Cause PLSFIN	2.94351	0.0901

The last model discussed regarding the financing of the Islamic banks is the total financing (IBFinToT). The optimal lag selected is the first lag since four of five statistical criterions specify the lag as the optimal one. Such the four are HQ, SC, AIC and FPE.

Table: 4.36.

VAR Lag Order Selection Criteria for Model 3.14

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-3555.672	NA	1.69E+20	63.60129	63.74693	63.66038
1	-2846.162	1330.332	1.01e+15*	51.57432*	52.59376*	51.98794*
2	-2821.621	43.38477	1.25E+15	51.77895	53.67219	52.54709
3	-2799.14	37.33473	1.61E+15	52.02036	54.7874	53.14303
4	-2757.172	65.19937	1.48E+15	51.91379	55.55464	53.391
5	-2707.681	71.58648*	1.22E+15	51.67287	56.18752	53.5046
6	-2677.524	40.38777	1.44E+15	51.77722	57.16567	53.96349
7	-2641.379	44.53589	1.58E+15	51.77463	58.03689	54.31543
8	-2602.828	43.3697	1.72E+15	51.72908	58.86514	54.62441

^{*} indicates lag order selected by the criterion

Based upon the granger causality test below, there are four independent variables that have a significant correlation with the financing. They are the deposits, PRS_{fin} , IMMR and CBR_{wc} . The number of financing in the Islamic banks is determined by the number of deposits. The both variables correlate positively, meaning the more the deposit in Islamic banks, the more financing done by the banks.

Table: 4.37.
Granger Causality Test for Model 3.14

No	Null Hypothesis	F-Statisctic	P-Value
1	IBDEPTOT does not Granger Cause IBFINTOT	4.20321	0.0426
2	PSRFIN does not Granger Cause IBFINTOT	0.17237	6.79E-01
3	IMMR does not Granger Cause IBFINTOT	7.70119	0.0064
4	CPI does not Granger Cause IBFINTOT	0.00076	0.978
5	IPI does not Granger Cause IBFINTOT	0.20678	0.6502
6	CBR_WC does not Granger Cause IBFINTOT	9.10262	0.0034

Besides, as disclosed by the table, the profit sharing rate (PSR_{fin}) has relationship significantly with the total financing. However, they correlate negatively.³² This means that the financing will reduce if the rate of PSR increases and vice versa. Hence, it is recommended that the Islamic banks have to make the profit sharing rate as low as possible in order to increase the financing level.

In addition, it is extremely important to examine the relationship between PSRs of the financing and interest rates of conventional banks. The granger causality test result reveals

³² The data displayed by the Pearson Correlation test is also consistent with the granger causality result. See table 7.3 in the appendix.

the fact that nearly all types of the financings' PSR correlate significantly with the interest rates, either IMMR or CBR. For instance, the variables of PSRFin and IMMR, the both variables correlate significantly, which means that the rate of PSR is influenced by the interest rate.

The PSR of murabahah financing shows the same fact as well. The P-Value of the correlation, as displayed by the table, is 0.0479, meaning that the relationship between them is significant. The interest rate of IMMR influences the financing level of murabahah. Moreover, the other specific interest rates correlate significantly with the PSR_{mura} , they are CBR_{wc} , CBR_i and CBC_c .

Table: 4.38.

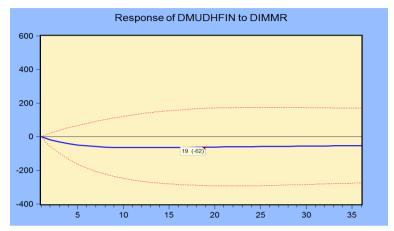
Granger Causality Test between PSRs and Interest Rates

No	Null Hypothesis	F-Statisctic	P-Value
1	IMMR does not Granger Cause PSRFIN	4.17927	0.0442
2	IMMR does not Granger Cause PSRMURA	4.03782	0.0479
3	CBR_WC does not Granger Cause PSRFIN	5.04222	0.0275
4	CBR_WC does not Granger Cause PSRMURA	3.981	0.0494
5	CBR_WC does not Granger Cause PSRMUSY	7.04394	0.0096
6	CBR_I does not Granger Cause PSRFIN	5.33365	0.0235
7	CBR_I does not Granger Cause PSRMURA	3.70665	0.0577
8	CBR_I does not Granger Cause PSRMUSY	7.59501	0.0072
9	CBR_C does not Granger Cause PSRMURA	2.73203	0.1023

In conclusion, the existence of the Islamic banks' financing is determined by interest rates of conventional banks. This implies that the Islamic banks' financing depend on the conventional banking rates. However, the rates do not

influence the financing directly because that there are no interest rates in the Islamic banks' operation. The interest rates sway the number of financing through the profit sharing rates of Islamic banks instead.

4.4.3. Impulse Response Function (IRF)

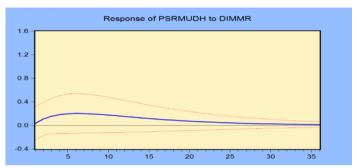

There are five endogenous variables examined in this section of IRF. As described, the IRF, which is regarded as the important component in the VAR method, aims at revealing the responses of endogeunos variables to the selected exogenous variables in the models. The variables to which displayed their responses are Mudharabah Financing (MudhFin), Musyarakah Financing (MusyFin), Murabahah Financing (MuraFin), PLS-based Financing (PLSFin) and Total financing (IBFinTot)³³.

The first figure displayed regarding the model 3.10 is the response between the mudharabah financing and the interest rate of IMMR. Eventhough the granger test indicates insignificant correlation³⁴, the variable of MudhFin responds negatively to the rate of IMMR. The means that when the rate improves, the level of mudharabah financing goes down.

 $^{^{33}}$ Basically, there are three types of financing currently applied by the Islamic banks in Indonesia; they are mudharabah, musyarakah and murabahah financings. The both former financings are categorized as the PLS-based financing. Nevertheless, there are five models or variables investigated, which includes the other two types of financing, viz. the PLS-based Financing (PLS_{fin}) and the total financing (IBFinTot).

 $^{^{34}}$ It is different with the result of the Pearson Correlation Test, in which it shows the both variables correlate significantly. Moreover, the level of significance of the correlation is 99 percent ($\alpha=0.01$). See the result in the appendix.

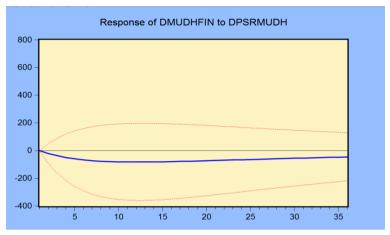
Figure : 4.27.
Response of MudhFin to IMMR



In addition, the figure above shows an interesting fact regarding the relationship between the mudharabah financing and the interest rate. Starting from the beginning period, the mudharabah financing responds negatively to the increase of IMMR. The number of the financing in mudharabah reduces as the rate of IMMR climbs. Such the fact is likely the same as the relationship between the interest rate and the credit level in conventional banks.

The author argues that the phenomenon is not because of a direct correlation between the financing and the rate of IMMR, but because of the strong relationship between the profit sharing rate of mudharabah financing (PSR_{mudh}) and IMMR itself. It means that the variable influencing the level of mudharabah financing is not the rate of IMMR but the profit sharing rate of mudharabah financing itself. This is because that the PSR_{mudh} is influenced by the IMMR, therefore the rate of IMMR sways indirectly to the mudharabah financing level.

The following figure is to display the PSR's response to IMMR

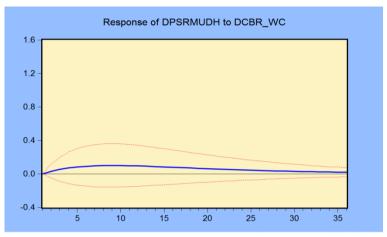

Figure : 4.28.
Response of PSR_{mudh} to IMMR

The figure above clearly shows the strong response of the Islamic banks' profit sharing rate of mudharabah financing (PSR_{mudh}) to the interest rate of IMMR. Moreover, the most crucial information to be known, as disclosed by the figure, is that the PSR of the financing is influenced by the conventional interest rate. As the rate of IMMR increases, the rate of PSR_{mudh} increases. Accordingly, the number of financing reduces because the rate of PSR_{mudh} is a negative correlation with MudhFin. The figure 4.29 proves the above explaination is reasonable.

Figure : 4.29.

Response of MudhFin to PSR_{mudh}

The variable of MudhFin, as shown by the figure, responds negatively to the variable of PSR_{mudh}, meaning when the rate improves the number of financing goes down.³⁵ It is reasonable that the mudharabah financing correlates negatively with its PSR, since it is known that the PSR could be regarded as the cost of capital. Hence, when the PSR increases, which means that the cost of capital improves, the investors (the financiers) reduce their wish to invest. As a result, the number of financing decreases.


It is in line with the figure 4.29 above, displaying the response of the PSR rate of mudharabah financing to IMMR, the PSR_{mudh} also responds positively to the interest rate of

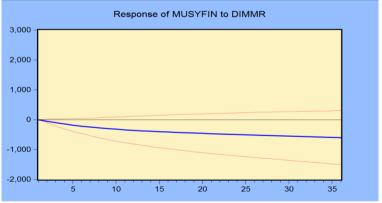
³⁵ In spite of not fully true, the correlation between profit sharing rate and financing in Islamic banks is the same as the correlation between interest rate and credit in conventional banks. As interest rate climbs, meaning the cost of capital increases, thus, the demand for credit will reduces. This is one of the theories of interest rate.

working capital (CBR_{wc}). It is known that the nature of mudharabah financing is nearly the same with working capital in conventional banks³⁶. Look at the figures of IRF below.

Figure : 4.30.

Response of PSR_{mudhfin} to CBR_{wc}

As demonstrated by the table above, the mudharabah financing responds positively to the CBR_{wc} . Such the response starts at the beginning of periods and remains along the period line, which is over 35 periods. This fact denotes that the interest rate of CBR_{wc} impacts on the profit sharing rate of the mudharabah financing.

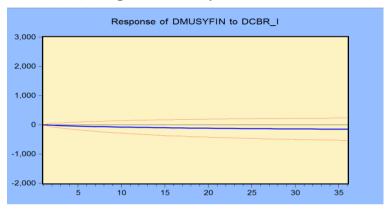

The second type of financing, which is also considered as the PLS-based financing, is the musyarakah financing. It is similar to the previous financing, the mudharabah, the

³⁶ It is the reason that the author examines the correlation between the profit sharing rate in the mudharabah financing with the interest rates for working capital in conventional banks.

musyarakah financing responds negatively to the interest rate of IMMR. The table of the granger test result is consistent with the figure describing the response of the financing to the rate. The test result shows that the musyarakah financing has a significant relationship with the rate, which is in line with the Pearson Correlation result.

The Pearson Correlation test³⁷ confirms that the musyarakah financing has the relationship with the interest rate of IMMR significantly and its direction is negative. The fact symbolizes that the financing is influenced by such the rate, which means that the number of financing will reduces when the rate improves.

Figure : 4.31. Response of MusyFin to IMMR

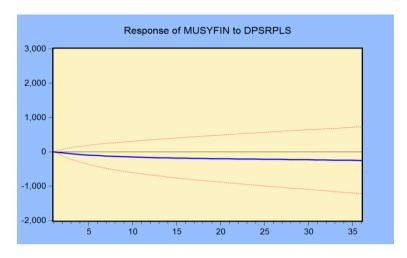

Moreover, not only is the rate of IMMR but also $CBR_{\rm i}$ is the important determinant of the Islamic banks' musyarakah

 $^{^{}m 37}$ See the result of Pearson Correlation test in the appendix of the research

financing. Likewise, the interest rate for investment has the significant effect on the number of musyarakah financing.

Figure : 4.32.

Response of MusyFin to CBRi

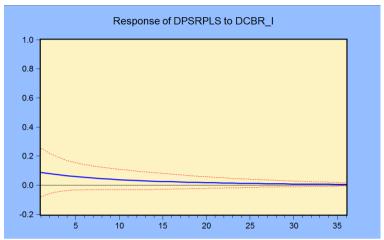


The negative response of the musyarakah financing to its profit sharing rate is the same as what has happened in the case of the mudharabah financing. It is reasonable if the financing level goes down when the profit sharing rate increases, since the rate is akin to the cost of capital. The investor will increase the demand for financing in Islamic banks as the profit sharing rate is low and vice versa, the will diminish financing wishes as the rate goes up ³⁸.

³⁸ The author views that the characteristics of musyarakah financing in terms of its profit sharing rate is the same as the relationship between investment levels and the rates of interest for credit. As known, when the conventional banks increase interest rates of credit, the level of investment will decrease automatically.

Figure : 4.33.

Response of MusyFin to PSR_{PLS}

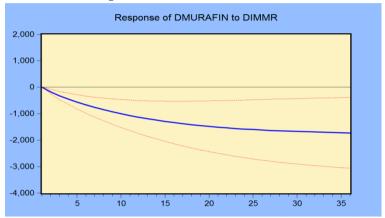


The author argues the reason why the musyarakah financing responds negatively to the interest rate is not owing to the rate merely. Such the negative response is caused by the profit sharing rate itself instead. It denotes that the variable affecting a decrease in the financing level is the PSR, whereas the PSR is influenced by the IMMR. Therefore, the IMMR impacts indirectly on the financing level.

The fact above is evidenced by the following figure displaying on the response of PSR_{PLS} to CBR_I. The profit sharing rate responds positively to the rate of CBR, meaning that when the interest rate rises, the profit sharing rate rises automatically. Look at the figure 4.34 below.

Figure : 4.34.

Response of PSR_{PLS} to CBR_i

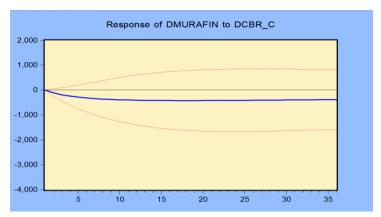

The third type of financing examined in this research in the murabahah. The financing is categorized as the mark upbased one. As displayed in the granger causality test, the murabahah financing correlates significantly with the interest rate of IMMR³⁹. This means that the rate influences significantly the number of murabahah financing. However, the direction of correlation between them is negative, which denotes that as the interest rate rises, the level of murabahah financing falls, and vice versa.

Such the relationship between them could be seen in the following figure. The response of murabahah financing, as shown by the figure, is negative to the rate of IMMR. The

³⁹ The significant relationship is also disclosed by the Pearson Correlation test. The test, see the appendix, shows that the significance level of the correlation is at 99 percent and the coefficient is 0.54 (54 percent).

negative response sets off from the first period and continues along the line of periods. The figure also discloses at the shock given by the murabahah financing to the IMMR is bigger than that of the both previous financings, namely the mudharabah and musyarakah.

Figure : 4.35.
Response of MuraFin to IMMR

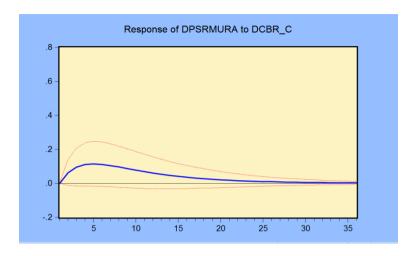


The author views that the reason to answer such the surprising fact is the same with what explained before. This means that the main factor inducing the decreased murabahah financing does not lie in the interest rate but in the profit sharing rate of murabahah financing instead. This is because that the PSR of murabahah financing follows such the rate of IMMR. Therefore, when the rate of IMMR increases, the PSR is also high, and the number of financing will reduces.

The following figure is in line with the preceding one. It also shows the negative response of the murabahah financing to the interest rate for consumption. Usually, the Islamic banks allocate the financing only for consumption-based activities.

Figure : 4.36.

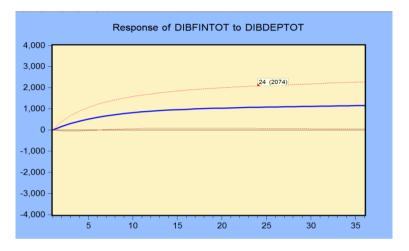
Response of MuraFin to CBRc



As elucidated, the core cause of the negative correlation between the murabahah financing level and the rate of IMMR is due to the PSR. The figure below is the one that evidence the truth of such the view. The quick response of PSR_{mura} to CBR_c denotes that the interest has an effect to the performance of the murabahah financing. The financing level depends upon the PSR_{mura} and the PSR_{mura} itself is swayed by the interest rate. Hence, the interest rate indirectly influences the number of murabahah financing⁴⁰. For detail, see the figure below.

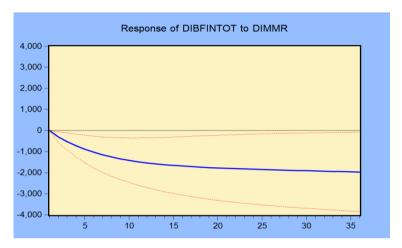
 $^{^{40}}$ It is akin to the PSR of mudharabah and musyarakah financings, the PSR $_{\rm mura}$ responds positively to the interest rate, which means when the interest rate improves; the PSR is also to improve. Thus, when the PSR rises, the number of financing will reduces because the PSR is the same as the interest of conventional banks, in which it is considered as the cost of capital. The higher the interest rate, the higher the profit sharing rate and the lower the murabahah financing level.

Figure : 4.37.


Response of PSR_{mura} to CBR_c

The last exploration is the total financing in the Islamic banks. The first variable that correlates with the total financing is the deposit. The granger causality test reveals that the both variables have a very significant relationship. The Pearson Correlation test shows the same result It is consistent with some other researches finding that the important determinant of financing is the deposit. The financing of Islamic banks, as indicated by the figure below, responds positively to the number of deposit. The more the number of deposit, the more the number of financing.

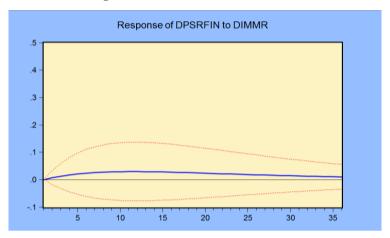
Figure : 4.38.


Response of IBFINTOT to IBDEPTOT

Nevertheless, the financing of Islamic banks correlates negatively and significantly with the interest rate of IMMR. The figure exhibits a negative shock or response to the rate. Moreover, it also denotes that the rate directly or indirectly has a very significant effect on the financing in the Islamic banks in Indonesia. The number of financing will decrease as the interest rate rises. It is line with data presented in the granger causality test. The P-value of the correlation is 0.0064, signifying that the both variables have a significant correlation.

Figure : 4.39.

Response of IBFINTOT to IMMR

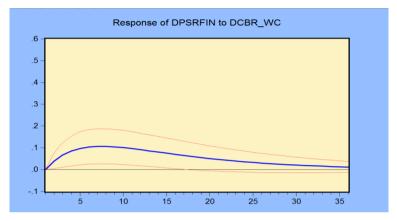


The author claims such the fact is because the Islamic banks follow the interest rate of IMMR in determining their profit sharing rate.⁴¹ The profit sharing rate in financing responds positively to the rate of IMMR, meaning the PSR of financing is influenced the conventional interest rate. The figure below illustrates the positive response of PSR_{fin} to the interest rate, starting from the first period and endures along the period line.

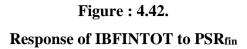
⁴¹ The author would view that the Islamic banks should not consider the interest rate in determining the profit sharing rate, notwithstanding as the benchmark. It is appropriate, according to the author, the Islamic banks consider to economic variables, such the inflation rate, economic growth and others. However, the data shows that the both variables have no effects to the performance of financing in the Indonesian Islamic banks.

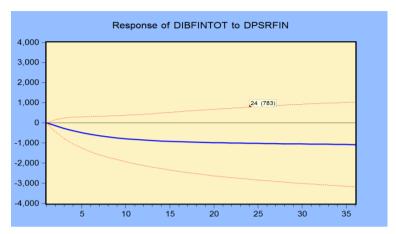
Figure : 4.40.

Response of PSR_{fin} to IMMR


Not only does to the interest rate of IMMR, but also the PSR_{fin} responds positively to the interest rate of CBR_{wc}^{42} . Moreover, the response of the PSR_{fin} to the rate is stronger and quicklier than what done to the $IMMR^{43}$. The both figures reveal that the interest rates, either IMMR or CBR_{wc} , impact on the number of financing in total. In the other word, the existence of such the interest rates determines the performance of financing in the Islamic banks in Indonesia.

 $^{^{42}}$ It is known that the CBR_{wc} is a type of interest rate for the working capital-credits in the conventional banking system. There are several kinds of interest rate for credits operated by the Indonesian banking industry, such as the interest rate for investment, consumption and working capital.


⁴³ See the figure 4.40.


Figure : 4.41.

Response of PSR_{fin} to CBR_{wc}

As described previously, the profit sharing rates in Islamic bank are the same as interest rates in conventional banks, in which the rates are also regarded as the cost of capital for financing. The rates play the same roles as interest rates of conventional banks as well. Consequently, when the profit sharing rates grow up, the financing levels go down automatically. The following figure proves the truth of such the fact. The figure shows that the number of financing responds negatively to the PSR_{fin.} Thanks to the negative response, when the PSR_{fin} improves because of the increased IMMR or CBR, the number of financing will diminishes.

In general, based upon the data presented in the previous tables and figures, the financing of the Islamic banks in Indonesia is influenced by the interest rates, either IMMR or CBR. All types of financing is negative correlation with the interest rate, where when the rates are high the number of financing jumps down. Such the fact prevails in the three types of financing, mudharabah, musyarakah and murabahah⁴⁴.

Besides, such the interest rates do not sway the number of financing directly, but through profit sharing rates of the

⁴⁴ Kader and Leong (2009:189) also find, through their research, the correlation between interest rate and the volume of financing of the Malaysian Islamic banks. By using the VAR method, the research concludes that any increase in the base lending rate would influence customers to ask for financing from Islamic banks and vice versa.

financing. This is because that the Islamic banks follow the fluctuation of the interest rates. Moreover, the PSR responds positively to the rates. Hence, as the interest rates rise, the PSR also improves for responding the rates, which induces the increase of capital due to the high PSR. The number of financing reduces accordingly.

CHAPTER V CONCLUSIONAND RECOMMENDATION

5.1. Conclusions

As expressed earlier, the central focus of the research is to look over the performance of Islamic banks in Indonesia particularly regarding the existence of interest rates towards the banks. The research aims to specifically examine the effects of the rates upon the existence of the Islamic banks, such as their profitability, deposit, financing and profit sharing rates. Furthermore, one of the most important goals of the research is to find out the shariah level of the banks' operation, which means to what extend the Islamic banks in Indonesia comply with the Islamic banking principles.

According to the shariah level, which is the first of the four questions, the research concludes that the shariah level of the Islamic banks is only 63 percent approximately, indicating that the banks conform with the principles of Islamic banking system less than two-third. Such the level is measured by the Index of Shariah Compliance (ISC). The Index is to compute two instruments or variables considered as the most fundamental characteristics of an Islamic bank, viz. the PLS-based financing structure (IPLS_{bfs}) and the free-dependence from the influence of interest rate (IITD). Such the both instruments are also known as the trade-mark of Islamic banking.

The instruments are scored 40 and 60 respectively according to the importance of them within the existence of

Islamic banking. The IPLS_{bfs} quantifies the ratio of PLS-based financing to the financing total and the IITD is the index to compute the dependence of Islamic banks to interest rates. The result indicates that only a small portion of financing in the Islamic banks is allocated in the form of PLS system, which is about 33 percent, whereas the form of financing is the most primary one under the Islamic banking system.

The second result is concerning the profitability. The finding indicates that the profitability of Islamic banks, represented by ROA, has a significant correlation with the deposit and financing. However, profit sharing rates, for either deposit or financing have insignificant correlation with the ratio of ROA. As to the interest rate, although there is statistically insignificant correlation between ROA and the rate, the ROA responds negatively to the interest rate of IMMR. This means that when the rate of IMMR increases, the ROA decreases and vice versa.

The result is in line with the phenomenon happening in the deposits, where when the IMMR increases; the deposit of Islamic banks reduces due to a flight-deposit from Islamic banks to conventional banks. Therefore, the ROA responds negatively to the interest rate because of a shock in the deposit level, in which the deposit is the important determinant for the profitability. The two other macroeconomic variables, such as inflation and economic growth represented by CPI and IPI, are similar to the interest rate, where they have no effects to the profitability.

The third exploration is regarding the deposits. The deposit level of Islamic banks in Indonesia rises significantly

year by year. The operation of deposits in Islamic banks, such as their forms or the number of kind and others, are the same as conventional ones. The amount of deposits in total is significantly correlated with the interest rate of IMMR. The interest rate has a negative relationship with the total of deposit, meaning when the rate is high the level of deposit goes down. The higher the interest rate, the lower the level of deposit.

Such the result also happens in other types of deposit except wadiah saving. The mudharabah deposit as well as the mudharabah saving correlate negatively with the rate of interest. The unexpected correlation is due to the profit motive-induced costumer behaviours. As the interest rate climbs, the depostiors remove their money from Islamic banks to conventional ones; therefore a flight deposit takes place owing to getting more profit in the conventional banks. This result is similar to the fact happening in the Malaysian Islamic banking industry.

Moreover, the influence of interest rate also prevails in the rates of profit sharing in the Islamic banks with a positive correlation. The profit sharing rates set by the Indonesian Islamic banks has positively relationship with the conventional banking rates, either IMMR or CBRs. This result in some way indicates that the Islamic's rate follows the conventional of interest rates, or in the other word, the Islamic banks in making their profit sharing rates are not free from the existence or the influence of interest rates.

The fourth is with respect to the financing of Islamic banks. Akin to the deposit, the interest rates, either IMMR or CBRs have strong correlation with the amount of financing in the Islamic banks in Indonesia. All types of financing except the mudharabah are influenced negatively by the interest rates. This means that as the rates increase, the number of financing diminishes accordingly. In the other word, the financing of the Islamic banks responds negatively to the interest rates of conventional banks.

Such the interesting fact is caused by the behaviour of the Islamic banks themselves particularly in the face of an increased interest rate. Obviously, the Islamic banks responds significantly to the fluctuation of interest rate in the financial market, which means while the interest rate in the money market rises, the banks also increase their profit sharing rates. Consequently, the number of financing will reduce due to the high profit sharing rates of the Islamic banks.

Concerning the macroeconomic variables, CPI and IPI, either deposit or financing has no correlation with them. The finding obliquely reveals that the conditions of economy, such as inflation or economic growth, does not effect on the people to place their money in Islamic banks. The conditions have no impact on the financing of the banks as well.

In addition to the results illustrated, the most important finding is that there is a strong correlation between Profit Sharing Rates (PSR) and Interest Rates. The research result finds that nearly all types of profit sharing rates made by the Indonesian Islamic banks have significantly correlation with the interest rates of the conventional banks. This indirectly discloses that the PSR, which is actually free from the

influence of conventional banks' terms, relies on the interest rates.

5.2. Recommendations

It is widely known that the very fundamental motive in establishing Islamic banks in the world is to avoid the Muslim people from the ribawi-induced financial activities. Specifically, the establishment of the banks aims at evading the people from involvements with conventional banks that utilize interest rates, while the rates are prohibited under the Islamic economic system. The prohibition of interest rate is basically due to the same with or regarded as riba and the riba itself is clearly banned by the Holy Quran and the hadith.

Hence, it is suggested that the authorities of Islamic banks in Indonesia, such as the managers, practitioners, or the likes, have to avoid the operation of the banks from the influences of interest rates directly or indirectly. They have to operate the banks to comply with the Islamic principles perfectly as underlined by the Holy Quran and the Hadith. This is the first recommendation.

The second recommendation is that the Islamic banks in determining their profit sharing rates must be free from the effect of interest rates. It is possibly acceptable that the Islamic banks consider the interest rate as the benchmark, but not to follow the rate fully and to avoid themselves from the influences of it. The Islamic banks should consider the price rate as the benchmark instead, in the murabahah financing in particular. The Islamic banks may not use the interest rate as the cornerstone for their profit sharing rates as well.

Besides, it is suggested that the Islamic banks have to priority in the PLS-based financings not the mark-up based ones. It is widely known that currently the financing of Islamic banks concentrates in the murabahah product whereas the product is based upon the mark-up system. Moreover, two-third of the financing total in the Islamic banks is in the product.

In addition, some argue that the current operation of the product is likely the same as the interest system of conventional banks¹. Therefore, it is appropriate that the Islamic banks in Indonesia concentrate their financing in the PLS-based ones, because it is the fundamental financing under Islamic banking system. This is the third recommendation.

The fourth recommendation is regarding the Muslim people's behaviours. Currently, part of the Muslim people blames the operation of Islamic banks in terms of the similarities with conventional banks. They argue that the Islamic banks also apply the nature of interest rates but with differed names and they assume that the banks are swayed by the interest rate. The fact displays that the people are also influenced by interest rate instead. This reality is evidenced by a flight-deposit from Islamic banks to conventional banks when the interest rate is high.

¹ Khan (2010:805) states that a preliminary investigation indicates that, three decades after its introduction, there remain substantial divergences between IBF's (Islamic Banking and Finance) ideals and its practices, and much of IBF still remains functionally indistinguishable from conventional banking.

Therefore, it is advised that the people must be free from the influence of interest rates in participating in the Islamic banks, either as the depositors, financiers or others. The people are suggested not to consider the rate of interest of conventional banks. They have to consider the profit sharing rates determined by Islamic banks instead.

REFERENCES

- Abduh, M., & Sukmana, R. (2011). Deposi Behaviour in Indonesia Islamic Banking: Do Crisis and Fatwa Matter? Unpublished Paper.
- Adnan, M. A., & Muhamad. (2007). Agency Problems in Murabahah Financing: The Case of Sharia (Rural) Banks Indonesia. *IIUM Journal of Economics and Management*, 15 (2), 219-243.
- Ahmad, A. U., & Hassan, M. K. (2015). Riba and Islamic Banking. *Journal of Islamic Economics, Banking and Finance*, 1-33.
- Akhtar, M. F., Ali, K., & Sadaqat, S. (2011). Factors Influencing the Profitability of Islamic Banks of Pakistan. *International Research Journal of Finance and Economics* (66), 125-132.
- Ali, S. A., Shafique, A., & Razi, A. (2012). Determinants of profitability of Islamic banks, A case study of Pakistan. *Interdisciplinary Journal of Contemporary Research in Business*, 3 (11), 86-99.
- Al-Jarrah, I. M., Ziadat, K. N., & El-Rimawi, S. Y. (2010). The Determinants of the Jordanian's Banks Profitability: A Cointegration Approach. *Jordan Journal of Business Administration*, 6 (2).

- Al-Masri, R. Y. (2004). Are All Forms of Interest Prohibited? J.KAU: Islamic Econ., 17 (1), 37-41.
- Almejyesh, S. S., & Rajha, K. S. (2014). Behavioral Determinants and Their Impact on Customer Savings Deposits in Islamic Banks in Saudi Arabia. *Journal of Islamic Banking and Finance*, 2 (1), 163-186.
- Antonio, M. S., Sanrego, Y. D., & Muhammad, T. (2012). An Analysis of Islamic Banking Performance: Maqashid Index Implementation in Indonesia and Jordania. *Journal of Islamic Finance*, 1 (1), 12-29.
- Anwar, M. (2003). Islamicity of Banking and Modes of Islamic Banking. *Arab Law Quarterly*, 18 (1), 62-80.
- Anwar, S., & Watanabe, K. (2010). Predicting Future Depositor's Rate of Return Applying Neural Network: A Case-study of Indonesian Islamic Bank. *International Journal of Economics and Finance*, 2 (3), 170-176.
- Ariss, R. T. (2010). Competitive conditions in Islamic and conventional banking: A global perspective. *Review of Financial Economics*, 19, 101-108.
- Bashir, A. H. (2003). Determinants of Profitability in Islamic banks: Some Evidence from the Middle East. *Islamic Economic Studies*, 11 (1).

- Beck, T., Kunt, A. D., & Merrouche, Q. (2013). Islamic vs. conventional banking: Business model, efficiency and stability. *Journal of Banking & Finance*, *37*, 433-447.
- Bidabad, B., Hassan, A., Ali, M. S., & Allahyarifard, M. (2011). Interest-Free Bonds and Central Banking Monetary Instruments. *International Journal of Economics and Finance*, *3* (3), 234-241.
- Bourke, P. (1989). Concentration and Other Determinants of Bank Profitability in Europe, North America and Australia. *Journal of Banking and Finance*, 65-79.
- Case, K. E., Fair, R. C., & Oster, S. M. (2012). *Principles of Macroeconomics*. Boston, USA: Prentice Hall.
- Cevik, S., & Charap, J. (2011). The Behavior of Conventional and Islamic Bank Deposit Returns in Malaysia and Turkey. *IMF Working Paper*, WP/11/156.
- Chachi, A. (2005). Origin and Development of Commercial and Islamic Banking Operations. *J.KAU: Islamic Econ.*, 18 (2), 3-25.
- Chong, B. S., & Liu, M. H. (2009). Islamic Banking: Interest-Free or Interest-Based? *Pacific-Basin Finance Journal* 17, 125-144.
- Dar, H. A., & Presley, J. R. (2000). Lack of Profit Loss Sharing in Islamic Banking: Management and Control Imbalances. *International Journal of Islamic Financial Services*, 2 (2).

- Deaton, A. (1991). Saving and Liquidity Constraints. *Econometrica*, 59 (5), 1221-1248.
- El Hawary, D., Grais, W., & I. Z. (2004). Regulating Islamic financial institutions: The nature of the regulated. *World Bank Policy Research Working Paper*.
- Fabozzi, F., Modigliani, F., & Ferri, M. (1998). Foundation of Financial Markets and institutions. (2 ed.). New York: Prentice Hall, Inc.
- Fisher, I. (1974). *The Theory of Interest*. Clifton: Augustus M Kelley.
- Friedman, B. M. (2000). The Role of Interest Rates in Federal Reserve Policy Making. *NBER Working Paper Series*, pp. 1-34.
- Hakan, E. E., & Gulumser, A. B. (2011). Impact of Interest Rates on Islamic and Conventional Banks: The Case of Turkey. *MPRA Munich Personal RePEc Archive*.
- Hanif, M. (2011). Differences and Similarities in Islamic and Conventional Banking. *International Journal of Business and Social Science*, 2 (2), 166-175.
- Haron, S. (2004). Determinants of Islamic Bank profitability. *Global Journal of Finance and Economics*, 1 (1).
- Haron, S., & Ahmad, N. (2000). The Effects of Conventional Interest Rates and Rate of Profit on Funds Deposited with Islamic Banking System in Malaysia.

- International Journal of Islamic Financial Services, 1 (4).
- Haron, S., & Azmi, W. N. (2005). Determinants of Islamic and Conventional Deposits in the Malaysian Banking System. *Working Paper Series* 007, pp. 1-28.
- Haron, S., & Azmi, W. N. (2004). Profitability Determinants of Islamic Banks: A Cointegration Approach. *KLBS Working Paper Series* 004, pp. 1-18.
- Hasan, Z. (1985). Determination of Profit and Loss Sharing Ratios in Interest-free Business Finance. *J. Res. Islamic Econ.*, 3 (1), 13-29.
- Idris, A. R., Asari, F. F., & Taufik, N. A. (2011). Determinant of Islamic Banking Institutions' Profitability in Malaysia. *World Applied Sciences Journal*, 12.
- Izhar, H., & Asutay, M. (2007). Estimating the Profitability of Islamic Banking: Evidence from Bank Muamalat Indonesia. *Review of Islamic Economics*, 11 (2), 17-29.
- Kader, R. A., & Leong, Y. K. (2009). The Impact of Interest Rate Changes on Islamic Bank Financing. International Review of Business Research Papers, 5 (3), 189-201.
- Karim, B. A., Lee, W. S., Karim, Z. A., & Jais, M. (2012). The Impact of Subprime Mortgage Crisis on Islamic Banking and Islamic Stock Market. *International*

- Congress on Interdisciplinary Business and Social Science 2012, (pp. 668-673).
- Kasri, R. A., & Kassim, S. (2009). Empirical Determinants of Saving in The Islamic Banks: Evidence From Indonesia. *J.KAU: Islamic Econ.*, 22 (2), 3-23.
- Kassim, S. H., Majid, M. S., & Yusof, R. M. (2009). Impact of Monetary Policy Shocks on the Conventional and Islamic Banks in A Dual Banking System: Evidence From Malaysia. *Journal of Economic Cooperation and Development*, 30 (1), 41-58.
- Khan, F. (2010). How 'Islamic' is Islamic Banking? *Journal of Economic Behavior & Organization*, 76, 805-820.
- Khan, W. M. (1989). Towards an Interest-Free Islamic Economic System. *JKAU: Islamic Econ*, *1*, 3-38.
- Kiaee, H. (2007, April 13). Monetary Policy in Islamic Economic Framework, Case of Islamic Republic of Iran. Retrieved from MPRA: http://mpra.ub.unimuenchen.de/4837, MPRA Paper No. 4837, posted 07. November 2007 / 04:15
- Kuttner, K., & Mosser, P. (2002, May). The Monetary Transmission Mechanism: Some Answers and Further Questions. Federal Reserve Bank New York (Economic Policy Review).
- Masood, O., Aktan, B., & Chaudhary, S. (2009). An Emperical Study on Banks Profitability in the KSA: A Co-

- integration Approach. African Journal of Business Management, 3 (8), 374-382.
- Memon, N. A. (2007). Islamic Banking: Present and Future Challenges. *Journal of Management and Social Sciences*, 3 (1), 1-10.
- Molyneux, P., & Thorton, J. (1992). Determinants of European Bank Profitability: A Note. *Journal of Banking and Finance*, 16 (6), 1173-1178.
- Nienhaus, V. (1403/1983). Profitability of Islamic PLS Banks Competing with Interest Banks: Problems and Prospects. J. Res. Islamic Econ., 1 (1), 31-39.
- Nomani, F. (2003). The problem of interest and Islamic banking in a comparative perspective: the case of Egypt, Iran and Pakistan. *Review of Middle East Economics and Finance*, *I*(1), 37–70.
- Rachmawati, E., & Syamsulhakim, E. (2004). Factors Affecting Mudaraba Deposits in Indonesia. *Working Paper in Economics and Development Studies*, No. 200404.
- Rahman, A. R. (2007). Islamic Banking and Finance: Between Ideals and Realities. *IIUM Journal of Economics and Management*, 15 (2), 123-141.
- Saleh, S. K. (2015). Determinant of Total Islamic Deposit in Kedah. *European Journal of Social Science Review*, 1 (3), 8-15.

- Yap, K. L., & Kader, R. A. (2008). Impact of Interest Rate Changes on Performance of Islamic and Conventional Banks. *Malaysian Journal of Economic Studies*, 45 (2), 113-134.
- Yusoff, L. M., Rahman, A. A., & Alias, N. (2001). Interest Rate and Loan Supply: Islamic Versus Conventional Banking System. *Jurnal £kollomi Malaysia 35*, 35, 61 68.
- Yusoff, R., & Wilson, R. (2005). An Econometric Analysis of Conventional and Islamic Bank Deposits in Malaysia. *Review of Islamic Economics*, 9 (1), 31-52.
- Zaheer, S., Ongena, S., & Wijnbergen, S. J. (2011, July). The Transmission of Monetary Policy through Conventional and Islamic Banks. *European Banking Center Discussion Paper No. 2011-018*, pp. 1-34.
- Zainol, Z., & Kassim, S. H. (2010). An Analysis of Islamic Banks' Exposure to Rate of Return Risk. *Journal of Economic Coorperation and Development*, 31 (1), 59-84.
- Zeitun, R. (2012). Determinants of Islamic and Conventional Banks Performance in GCC Countries Using Panel Data Analysis. *Global Economy and Finance Journal*, *5* (1), 53-72.

APPENDIXES

Table : 6.1. ADF Unit Root Test of ROA

_								
Series: ROA Workfile	: PROFITABILIT	Y OF ISLAMI	C BANKS::Profit.	= ×				
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr S	heet Graph				
Augmented Dickey-Fuller Unit Root Test on ROA								
Null Hypothesis: ROA has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)								
			t-Statistic	Prob.*				
Augmented Dickey-Fulle	er test statistic		-2.419543	0.1386				
Test critical values:	1% level		-3.486064					
	5% level		-2.885863					
	10% level		-2.579818					
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 10/26/16 Time: 1 Sample (adjusted): 200 Included observations:	ROA) 5:13 6M02 2015M1:	2						
Variable	Coefficient	Std. Erro	r t-Statistic	Prob.				
ROA(-1) C	-0.111747 0.173270	0.046185 0.078423		0.0171 0.0291				
R-squared	0.047652	Mean depe	ndent var	-0.007563				
Adjusted R-squared	0.039512	S.D. depen		0.264415				
S.E. of regression	0.259138	Akaike info	criterion	0.201110				
Sum squared resid	7.856869							
Cambiguare 10010 1.000000 Communication C.200100								
Log likelihood	-7.148432	Hannan-Qu		0.153755 0.200463 0.172722				
F-statistic	5.854186	Hannan-Qu Durbin-Wa		0.153755 0.200463				
_				0.153755 0.200463 0.172722				

Table : 6.2. ADF Unit Root Test of ROA

Series: ROA Workfile: PROFITABILITY OF ISLAMIC BANKS::Profi 💄 🗖 🗴												
View	Proc	Object	Properties	\prod	Print	Name	Freeze		Sample	Genr	Sheet	Graph
		Augn	nented Dic	kε	ey-Ful	ler Uni	t Root 1	Γe	est on D	(ROA)		
Nicell			D/DOM 5-									

Null Hypothesis: D(ROA) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	1% level 5% level	-10.60536 -3.487046 -2.886290	0.0000
	10% level	-2.580046	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(ROA,2) Method: Least Squares Date: 10/26/16 Time: 14:28

Sample (adjusted): 2006M04 2015M12 Included observations: 117 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(ROA(-1)) D(ROA(-1),2) C	-1.449712 0.264920 -0.010476	0.136696 0.090285 0.023738	-10.60536 2.934257 -0.441335	0.0000 0.0040 0.6598
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.603151 0.596188 0.256526 7.501832 -5.314744 86.63136 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.000427 0.403684 0.142132 0.212957 0.170886 2.007705

Table : 6.3. PP Unit Root Test of ROA

Series: ROA Workfile: PROFITABILITY OF ISLAMIC BANKS::Profit 💄 🗖 🗴										
View	Proc	Object	Properties	Print	Name	Freeze	Sample	Genr	Sheet	Graph
			Phillips-l	Perron	Unit Ro	oot Test	t on ROA			
Exog	Phillips-Perron Unit Root Test on ROA Null Hypothesis: ROA has a unit root Exogenous: Constant Bandwidth: 2 (Newey-West automatic) using Bartlett kernel									
							Adj. t	-Stat	Pre	ob.*

		Auj. I-olal	FIOD."
Phillips-Perron test sta	nillips-Perron test statistic		0.2571
Test critical values:	1% level	-3.486064	
	5% level	-2.885863	
	10% level	-2.579818	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.066024
HAC corrected variance (Bartlett kernel)	0.051855

Phillips-Perron Test Equation Dependent Variable: D(ROA) Method: Least Squares Date: 10/26/16 Time: 14:29

Sample (adjusted): 2006M02 2015M12 Included observations: 119 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
ROA(-1) C	-0.111747 0.173270	0.046185 0.078423	-2.419543 2.209430	0.0171 0.0291
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.047652 0.039512 0.259138 7.856869 -7.148432 5.854186 0.017080	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.007563 0.264415 0.153755 0.200463 0.172722 2.151171

Table : 6.4. PP Unit Root Test of ROA

View Proc Object Prop	erties Print Na	ame Freeze S	ample Genr !	Sheet Grap				
Philli	ps-Perron Unit	Root Test on	D(ROA)					
Null Hypothesis: D(ROA) has a unit root								
Exogenous: Constant Bandwidth: 15 (Newey-West automatic) using Bartlett kernel								
			Adj. t-Stat	Prob.*				
Phillips-Perron test sta	ntistic		-14.54700	0.0000				
Test critical values:	1% level		-3.486551					
	5% level		-2.886074					
	10% level		-2.579931					
*MacKinnon (1996) one-sided p-values.								
	Pacidual variance (no correction)							
Residual variance (no	correction)			0.068418				
Phillips-Perron Test Ed	e (Bartlett kerne	1)		0.068418 0.027987				
Phillips-Perron Test Ec Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20	quation (ROA,2) s 14:30 06M03 2015M1	2						
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time:	quation (ROA,2) s 14:30 06M03 2015M1	2	t-Statistic	0.027987				
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20 Included observations:	quation (ROA,2) 3 14:30 06M03 2015M1: 118 after adjus	2 etments Std. Error		0.027987				
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20 Included observations:	quation (ROA,2) s 14:30 06M03 2015M1:	2 stments	t-Statistic -12.47909 -0.361792	Prob. 0.0000				
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20 Included observations: Variable	quation (ROA,2) 5 14:30 06M03 2015M1: 118 after adjus Coefficient -1.146216 -0.008790	2 stments Std. Error 0.091851 0.024295	-12.47909 -0.361792	Prob. 0.0000 0.7182				
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20 Included observations: Variable D(ROA(-1)) C R-squared	Quation (ROA,2) 5 14:30 06M03 2015M1: 118 after adjus Coefficient -1.146216 -0.008790 0.573102	2 stments Std. Error 0.091851 0.024295 Mean depen	-12.47909 -0.361792 dent var	Prob. 0.0000 0.7182				
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20 Included observations: Variable D(ROA(-1)) C	quation (ROA,2) 5 14:30 06M03 2015M1: 118 after adjus Coefficient -1.146216 -0.008790	2 stments Std. Error 0.091851 0.024295	-12.47909 -0.361792 dent var ent var	Prob. 0.0000 0.7182				
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20 Included observations: Variable D(ROA(-1)) C R-squared	quation ((ROA,2) 5 14:30 06M03 2015M1: 118 after adjus Coefficient -1.146216 -0.008790 0.573102 0.569422	2 etments Std. Error 0.091851 0.024295 Mean depen S.D. depend	-12.47909 -0.361792 dent var ent var riterion	Prob. 0.0000 0.7182 -0.000339 0.402042				
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 20 Included observations: Variable D(ROA(-1)) C R-squared Adjusted R-squared S.E. of regression	quation (ROA,2) 8 14:30 06M03 2015M1: 118 after adjus Coefficient -1.146216 -0.008790 0.573102 0.569422 0.263813	2 stments Std. Error 0.091851 0.024295 Mean depen S.D. depend Akaike info c	-12.47909 -0.361792 dent var ent var riterion erion	Prob. 0.0000 0.7182 -0.000339 0.402042 0.189655				

Table : 6.5. ADF Unit Root Test of IBDEPTOT

View Proc Object Prope	Series: IBDEPTOT Workfile: PROFITABILITY OF ISLAMIC BANKS 💄 🗖 🗴								
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph									
Augmented Dickey-Fuller Unit Root Test on IBDEPTOT									
Null Hypothesis: IBDEPTOT has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)									
			t-Statistic	Prob.*					
Augmented Dickey-Full Test critical values:	1% level		3.185720 -3.486064	1.0000					
	5% level 10% level		-2.885863 -2.579818						
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(IBDEPTOT) Method: Least Squares Date: 10/26/16 Time: 14:43 Sample (adjusted): 2006M02 2015M12 Included observations: 119 after adjustments									
Included observations:	119 after adjus	tments							
			t-Statistic	Prob.					
Included observations:	119 after adjus	tments		Prob. 0.0019 0.0120					

Table : 6.6. ADF Unit Root Test of IBDEPTOT

Series: IBDEPTOT We	orkfile: PROFIT	ABILITY OF ISLA	AMIC BANKS	_ = x				
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph								
Augmented Dickey-Fuller Unit Root Test on D(IBDEPTOT)								
Null Hypothesis: D(IBDEPTOT) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)								
			t-Statistic	Prob.*				
Augmented Dickey-Fulle	er test statistic		-9.289010	0.0000				
Test critical values:	1% level		-3.486551					
	5% level		-2.886074					
	10% level		-2.579931					
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 10/26/16 Time: 1 Sample (adjusted): 200 Included observations:	BDEPTOT,2) 4:44 6M03 2015M1: 118 after adjus	2 tments	1011111					
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
D(IBDEPTOT(-1))	-0.911136	0.098088	-9.289010	0.0000				
С	1678.309	277.1484	6.055634	0.0000				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.426554 0.421610 2370.753 6.52E+08 -1083.400 86.28571 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	91.54237 3117.281 18.39661 18.44357 18.41567 1.915670					

Table : 6.7. PP Unit Root Test of IDDEPTOT

Series: IBDEPTOT Workfile: PROFITABILITY OF ISLAMIC BANKS:... 💄 🗖 🗶

View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph

Phillips-Perron Unit Root Test on IBDEPTOT

Null Hypothesis: IBDEPTOT has a unit root

Exogenous: Constant

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	2.859918	1.0000
Test critical values:	1% level	-3.486064	_
	5% level	-2.885863	
	10% level	-2.579818	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 5110798. HAC corrected variance (Bartlett kernel) 6192990.

Phillips-Perron Test Equation
Dependent Variable: D(IBDEPTOT)

Method: Least Squares Date: 10/26/16 Time: 14:45

Sample (adjusted): 2006M02 2015M12 Included observations: 119 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IBDEPTOT(-1) C	0.009573 903.9784	0.003005 354.3220	3.185720 2.551290	0.0019 0.0120
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.079818 0.071954 2279.948 6.08E+08 -1087.942 10.14881 0.001851	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	1815.462 2366.683 18.31836 18.36506 18.33732 1.887332

Table : 6.8. PP Unit Root Test of IDDEPTOT

f	Series: IBDEPTOT Wo	rkfile: PROFITA	ABILITY OF ISLA	MIC BANKS:.	= ×
	View Proc Object Proper			ample Genr S	heet Graph
Ш	Phillips-P	erron Unit Ro	ot Test on D(IB	DEPTOT)	
	Null Hypothesis: D(IBDE Exogenous: Constant Bandwidth: 5 (Newey-We			kernel	
				Adj. t-Stat	Prob.*
'	Phillips-Perron test statis	stic		-9.700663	0.0000
	Test critical values:	1% level		-3.486551	
		5% level		-2.886074	
		10% level		-2.579931	
	*MacKinnon (1996) one-	sided p-value	S.		
'	Residual variance (no co	rrection)			5525209.
	HAC corrected variance (Bartlett kerne	I)		7365913.
	Phillips-Perron Test Equ Dependent Variable: D(IE Method: Least Squares Date: 10/26/16 Time: 14 Sample (adjusted): 2006 Included observations: 1	3DEPTOT,2) 4:46 6M03 2015M1:			
ľ	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	D(IBDEPTOT(-1)) C	-0.911136 1678.309	0.098088 277.1484	-9.289010 6.055634	0.0000 0.0000
Г	R-squared	0.426554	Mean depend		91.54237
	Adjusted R-squared	0.421610	S.D. depende		3117.281
	S.E. of regression	2370.753	Akaike info cr		18.39661
	Sum squared resid	6.52E+08	Schwarz crite		18.44357
	Log likelihood F-statistic	-1083.400 86.28571	Hannan-Quin Durbin-Watso		18.41567 1.915670
	Prob(F-statistic)	0.000000	Duiviii-watst	ni stat	1.915070
١,					

Table : 6.9. ADF Unit Root Test of IBFINTOT

Series: IBFINTOT Wo	rkfile: PROFITA	ABILITY OF ISLA	MIC BANKS:	_ = x
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	heet Graph
Augmented	Dickey-Fuller (Unit Root Test	on IBFINTOT	
Null Hypothesis: IBFINT Exogenous: Constant Lag Length: 0 (Automati			2)	
			t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic		1.551117	0.9994
Test critical values:	1% level		-3.486064	
	5% level		-2.885863	
	10% level		-2.579818	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 10/26/16 Time: 1 Sample (adjusted): 200 Included observations: 1	BFINTOT) 5:17 6M02 2015M1:	2	t-Statistic	Prob.
variable	Coefficient	SIG. EITOI	t-Statistic	F100.
IBFINTOT(-1)	0.005949	0.003835	1.551117	0.1236
С	1104.991	445.9359	2.477914	0.0146
R-squared	0.020149	Mean depend	dent var	1663.479
Adjusted R-squared	0.011775	S.D. depende	ent var	2887.076
S.E. of regression	2870.028	Akaike info cr		18.77870
Sum squared resid	9.64E+08	Schwarz crite		18.82540
Log likelihood	-1115.332	Hannan-Quir	iii oiitoi.	18.79766
F-statistic	2.405964	Durbin-Watso	on stat	1.940516
Prob(F-statistic)	0.123574			

Table : 6.10. ADF Unit Root Test of IBFINTOT

Series: IBFINTOT Wo	orkfile: PROFITA	ABILITY OF ISLA	AMIC BANKS:	_ = x
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	heet Graph
Augmented D	ickey-Fuller U	nit Root Test o	n D(IBFINTOT)
Null Hypothesis: D(IBFII	NTOT) has a u	nit root		
Exogenous: Constant Lag Length: 0 (Automati	ic - based on S	IC, maxlag=12	2)	
			t-Statistic	Prob.*
			rotatione	F100.
Augmented Dickey-Fulle			-10.21002	0.0000
Test critical values:	1% level		-3.486551	
	5% level		-2.886074	
	10% level		-2.579931	
Dependent Variable: D(Method: Least Squares Date: 10/26/16 Time: 1 Sample (adjusted): 200 Included observations:	5:18 6M03 2015M1: 118 after adjus	tments	10000	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IBFINTOT(-1))	-0.948213	0.092871	-10.21002	0.0000
C	1589.644	308.0003	5.161178	0.0000
R-squared	0.473313	Mean depen		30.05932
Adjusted R-squared	0.468772	S.D. depend		3986.110
S.E. of regression	2905.291	Akaike info c		18.80326
Sum squared resid Log likelihood	9.79E+08 -1107.392	Schwarz crite Hannan-Quir		18.85022 18.82233
F-statistic	104.2445	Durbin-Wats		2.012626
Prob(F-statistic)	0.000000	Duibiii Wats	on stat	2.012020

Table : 6.11. PP Unit Root Test of IBFINTOT

View Proc Object Prope	erties Print Na	ame Freeze	Sample Gen	r Sheet Graj
Phillip	s-Perron Unit F	Root Test on	IBFINTOT	<u>, , , , , , , , , , , , , , , , , , , </u>
Null Hypothesis: IBFIN Exogenous: Constant Bandwidth: 4 (Newey-V			tt kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test sta Test critical values:	1% level 5% level 10% level		1.371419 -3.486064 -2.885863 -2.579818	ļ 1
*MacKinnon (1996) one	e-sided p-value	S.		
Residual variance (no o		I)		8098623 9752065
	uation (IBFINTOT) 15:18 06M02 2015M1 119 after adjus	2 stments		
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 200	uation (IBFINTOT) 15:18 06M02 2015M1	2	r t-Statis	9752065
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 10/26/16 Time: Sample (adjusted): 200 Included observations:	uation (IBFINTOT) 15:18 06M02 2015M1 119 after adjus	2 stments	1.5511	9752065 tic Prob.

Table : 6.12. PP Unit Root Test of IBFINTOT

Series: IBFINTOT Wo	rkfile: PROFITA	BILITY OF ISL	AMIC BANKS:	_ = ×
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr S	heet Graph
Phillips-	Perron Unit Ro	ot Test on D	(IBFINTOT)	
Null Hypothesis: D(IBFII Exogenous: Constant Bandwidth: 4 (Newey-W			tt kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test stat Test critical values:	istic 1% level 5% level 10% level		-10.30023 -3.486551 -2.886074 -2.579931	0.0000
*MacKinnon (1996) one	-sided p-value	S.		
Residual variance (no c HAC corrected variance		1)		8297652. 9803145.
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 10/26/16 Time: 1 Sample (adjusted): 200 Included observations:	BFINTOT,2) 5:19 6M03 2015M1:			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IBFINTOT(-1)) C	-0.948213 1589.644	0.092871 308.0003		0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.473313 0.468772 2905.291 9.79E+08 -1107.392 104.2445 0.000000	Mean depe S.D. depen Akaike info Schwarz cri Hannan-Qu Durbin-Wat	dent var criterion terion iinn criter.	30.05932 3986.110 18.80326 18.85022 18.82233 2.012626

Table : 6.13. ADF Unit Root Test of WadSav

Series: WADSAV Wor	rkfile: DEPOSIT:	S OF ISLAMIC B	ANKS::Profit	_ = ×
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	heet Graph]
Augmented	Dickey-Fuller	Unit Root Test	on WADSAV	
Null Hypothesis: WADS/ Exogenous: Constant Lag Length: 4 (Automati)	
			t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level		-0.468538 -3.488063 -2.886732 -2.580281	0.8921
*MacKinnon (1996) one-	-sided p-value	S.		
Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	0:35 6M06 2015M1:			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
WADSAV(-1) D(WADSAV(-1)) D(WADSAV(-2)) D(WADSAV(-3)) D(WADSAV(-4)) C	-0.008380 -0.358869 -0.357897 -0.268639 -0.277459 363.7136	0.017885 0.093394 0.096143 0.096208 0.093247 195.6046	-0.468538 -3.842515 -3.722555 -2.792289 -2.975537 1.859433	0.6403 0.0002 0.0003 0.0062 0.0036 0.0657
				0.0007

Table : 6.14. ADF Unit Root Test of WadSay

	<mark>∨</mark> s	eries: '	WADSA	V Workfile:	DEF	0	SITS OF	ISLAM	IC	BANKS	::Profit	ta	п х	
Ī	View	Proc	Object	Properties	Pri	nt	Name	Freeze	Ī	Sample	Genr	Sheet	Graph	I
ľ			Auame	nted Dicke	v-Fu	lle	r Unit F	Root Te	S	t on D(V)	/ADSA	(V)		٦

Null Hypothesis: D(WADSAV) has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-8.983449	0.0000
Test critical values:	1% level	-3.488063	
	5% level	-2.886732	
	10% level	-2.580281	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(WADSAV,2)

Method: Least Squares Date: 11/18/16 Time: 10:36

Sample (adjusted): 2006M06 2015M12 Included observations: 115 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(WADSAV(-1))	-2.277989	0.253576	-8.983449	0.0000
D(WADSAV(-1),2)	0.913853	0.206816	4.418669	0.0000
D(WADSAV(-2),2)	0.551616	0.151886	3.631775	0.0004
D(WADSAV(-3),2)	0.279701	0.092793	3.014245	0.0032
C	285.0228	99.91359	2.852692	0.0052
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.666602 0.654478 1019.493 1.14E+08 -957.2340 54.98396 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var terion tion n criter.	16.03478 1734.390 16.73450 16.85385 16.78295 2.097295

Table : 6.15. PP Unit Root Test of WadSav

Series: WADSAV Wo	rkfile: DEPOSIT	S OF ISLAMIC	BANKS::Profit	= ×
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr	Sheet Graph
Phillips	s-Perron Unit F	Root Test on	WADSAV	
Null Hypothesis: WADS Exogenous: Constant Bandwidth: 47 (Newey-			lett kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test stat			-0.627900	0.8591
Test critical values:	1% level		-3.486064	
	5% level 10% level		-2.885863 -2.579818	
	10% level		-2.379010	
*MacKinnon (1996) one	-sided p-value	S.		
Residual variance (no d HAC corrected variance		l)		1185420. 538721.3
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	WADSAV) 0:37 6M02 2015M1:			
Variable	Coefficient	Std. Erro	r t-Statistic	Prob.
WADSAV(-1) C	-0.018730 304.1283	0.018427 199.6574		
R-squared	0.008752	Mean depe	ndent var	128.8739
Adjusted R-squared	0.000280	S.D. depen	dent var	1098.190
S.E. of regression	1098.036	Akaike info		16.85710
Sum squared resid	1.41E+08	Schwarz cri		16.90381
Log likelihood F-statistic	-1000.997 1.033057	Hannan-Qu Durbin-Wat		16.87606 2.386758
	0.311539	Durbin-Wa	ISUII SIAL	2.300/38
Prob(F-statistic)	0.311539			

Table : 6.16. PP Unit Root Test of WadSav

Series: WADSAV Wor	rlefiler DEDOSIT	C OF ICLAMIC	DANIVC Drofit	
View Proc Object Prope		me Freeze	Sample Genr	· · · · ·
				Sneet Grap
Phillips-l	Perron Unit Ro	ot Test on D	(WADSAV)	
Null Hypothesis: D(WAD	OSAV) has a ur	nit root		
Exogenous: Constant	N/= = t = t = == = ti	-)in a Dant	lett keenel	
Bandwidth: 34 (Newey-V	west automati	c) using Bart	iett kernei	
			Adj. t-Stat	Prob.*
Phillips-Perron test stati	istic		-18.73556	0.0000
Test critical values:	1% level		-3.486551	
	5% level		-2.886074	
	10% level		-2.579931	
*MacKinnon (1996) one	-sided p-value	S.		
Residual variance (no c	orrection)			1148099.
Residual variance (no c HAC corrected variance		1)		1148099. 281897.8
	uation WADSAV,2) 0:38 6M03 2015M1	2		
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200	uation WADSAV,2) 0:38 6M03 2015M1	2	r t-Statistic	
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus	2 tments		281897.8
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	(Bartlett kerne uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus Coefficient	2 etments Std. Erro	-13.32890	Prob. 0.0000
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus Coefficient	2 stments Std. Erro 0.091655 100.0289	-13.32890 1.545460	Prob. 0.0000 0.1250
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus Coefficient -1.221660 154.5906	2 stments Std. Erro 0.091655	5 -13.32890 1.545460 ndent var	Prob. 0.0000 0.1250
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(WADSAV(-1)) C R-squared	uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus Coefficient -1.221660 154.5906	2 Std. Erro 0.091655 100.0289	5 -13.32890 1.545460 ndent var dent var	Prob. 0.0000 0.1250 15.83899 1712.10
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(WADSAV(-1)) C R-squared Adjusted R-squared	uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus Coefficient -1.221660 154.5906 0.604985 0.601579	2 Std. Erro 0.091655 100.0289 Mean depe S.D. depen	5 -13.32890 1.545460 ndent var dent var criterion	Prob. 0.0000 0.1250 15.83899 1712.101 16.82539
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: ' Variable D(WADSAV(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus Coefficient -1.221660 154.5906 0.604985 0.601579 1080.691 1.35E+08 -990.6982	2 Std. Erro 0.091655 100.0289 Mean depe S.D. depen S.D. depen Schwarz cr Hannan-Qu	1.545460 ndent var dent var criterion iterion uinn criter.	Prob. 0.0000 0.1250 15.83894 1712.101 16.82534 16.84444
Phillips-Perron Test Equal Dependent Variable: D() Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(WADSAV(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation WADSAV,2) 0:38 6M03 2015M1 118 after adjus Coefficient -1.221660 154.5906 0.604985 0.601579 1080.691 1.35E+08	2 Std. Erro 0.091655 100.0289 Mean depe S.D. depen Akaike info Schwarz cr	1.545460 ndent var dent var criterion iterion uinn criter.	281897.8 Prob.

Table : 6.17. ADF Unit Root Test of MudhSav

Null Hypothesis: MUDHSAV has a unit root	Series: MUDHSAV W	Series: MUDHSAV Workfile: DEPOSITS OF ISLAMIC BANKS::Prof 💄 🗖 🗴								
Null Hypothesis: MUDHSAV has a unit root	View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph									
Loguenous: Constant Lag Length: 12 (Automatic - based on SIC, maxlag=12) L-Statistic	Augmented I	Augmented Dickey-Fuller Unit Root Test on MUDHSAV								
Augmented Dickey-Fuller test statistic	Exogenous: Constant									
Test critical values: 1% level -3.492523 -2.888669 10% level -2.581313 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12 Included observations: 107 after adjustments Variable Coefficient Std. Error t-Statistic Prob. MUDHSAV(-1) -0.008008 0.003473 -2.305529 0.0234 D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068822 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 S.E. of regression 526.1850 Akaike info criterion 15.49064 S.E. of regression 526.185				t-Statistic	Prob.*					
*MacKinnon (1996) one-sided p-values. *Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12 Included observations: 107 after adjustments **Variable Coefficient Std. Error t-Statistic Prob.** MUDHSAV(-1)	Augmented Dickey-Fulle	er test statistic		-2.305529	0.1721					
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12 Included observations: 107 after adjustments Variable Coefficient Std. Error t-Statistic Prob. MUDHSAV(-1) -0.008008 0.003473 -2.305529 0.0234 D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132	Test critical values:	1% level		-3.492523						
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12 Included observations: 107 after adjustments Variable Coefficient Std. Error t-Statistic Prob. MUDHSAV(-1) -0.008008 0.003473 -2.305529 0.0234 D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.53011 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-9)) 0.019540 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.65197 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.65197 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 SUm squared resid 25748971 Schwarz criterion 15.84036 F-statistic 21.93526 Durbin-Watson stat 2.257132										
Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12 Included observations: 107 after adjustments Variable Coefficient Std. Error t-Statistic Prob. MUDHSAV(-1) -0.008008 0.003473 -2.305529 0.0234 D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.06822 -0.280644 0.7796 D(MUDHSAV(-10)) -0.019146 0.06822 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 993.8536 SE. of regression 526.1850 Akaike info criterion 15.49064 SUm squared resid 25748971 Schwarz criterion 15.630241 Log likelihood 814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132		10% level		-2.581313						
Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12 Included observations: 107 after adjustments Variable Coefficient Std. Error t-Statistic Prob. MUDHSAV(-1) -0.008008 0.003473 -2.305529 0.0234 D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.06822 -0.280644 0.7796 D(MUDHSAV(-10)) -0.019146 0.06822 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-11)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 993.8536 SE. of regression 526.1850 Akaike info criterion 15.49064 SUm squared resid 25748971 Schwarz criterion 15.630241 Log likelihood 814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132	*MacKinnon (1996) one	-sided p-value	s.							
Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12 Included observations: 107 after adjustments										
MUDHSAV(-1) -0.008008 0.003473 -2.305529 0.0234 D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064918 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.0711770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190	Dependent Variable: D(MUDHSAV) Method: Least Squares Date: 11/18/16 Time: 10:41 Sample (adjusted): 2007M02 2015M12									
D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-10)) -0.019146 0.068022 -0.280644 0.7796 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.75	Variable	Coefficient	Std. Error	t-Statistic	Prob.					
D(MUDHSAV(-1)) -0.018112 0.063084 -0.287108 0.7747 D(MUDHSAV(-2)) 0.021952 0.063105 0.347865 0.7287 D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-10)) -0.019146 0.068022 -0.280644 0.7796 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.75	MUDHSAV(-1)	-0.008008	0.003473	-2.305529	0.0234					
D(MUDHSAV(-3)) 0.039854 0.063241 0.630191 0.5301 D(MUDHSAV(-4)) 0.066663 0.0633462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Ak	D(MUDHSAV(-1))	-0.018112	0.063084	-0.287108	0.7747					
D(MUDHSAV(-4)) 0.066663 0.063462 1.050430 0.2962 D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Log likelihood -814.7490 Hannan-Quinn	D(MUDHSAV(-2))	0.021952	0.063105	0.347865	0.7287					
D(MUDHSAV(-5)) 0.061126 0.063571 0.961537 0.3388 D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter.	D(MUDHSAV(-3))	0.039854	0.063241	0.630191	0.5301					
D(MUDHSAV(-6)) -0.074995 0.063946 -1.172797 0.2439 D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.65197 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84036 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.2	D(MUDHSAV(-4))	0.066663	0.063462	1.050430	0.2962					
D(MUDHSAV(-7)) 0.067578 0.064518 1.047424 0.2976 D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7679 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.63241 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132					0.3388					
D(MUDHSAV(-8)) -0.005401 0.064832 -0.083303 0.9338 D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.63241 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132										
D(MUDHSAV(-9)) 0.019540 0.065086 0.300210 0.7647 D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132										
D(MUDHSAV(-10)) -0.019146 0.068222 -0.280644 0.7796 D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132										
D(MUDHSAV(-11)) -0.032499 0.071770 -0.452814 0.6517 D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132										
D(MUDHSAV(-12)) 1.014975 0.074346 13.65197 0.0000 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132										
C 190.4711 110.6758 1.720982 0.0886 R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132										
R-squared 0.754071 Mean dependent var 571.0374 Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132					0.0000					
Adjusted R-squared 0.719694 S.D. dependent var 993.8536 S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132										
S.E. of regression 526.1850 Akaike info criterion 15.49064 Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132					571.0374					
Sum squared resid 25748971 Schwarz criterion 15.84035 Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132					993.8536					
Log likelihood -814.7490 Hannan-Quinn criter. 15.63241 F-statistic 21.93526 Durbin-Watson stat 2.257132					15.49064					
F-statistic 21.93526 Durbin-Watson stat 2.257132										
F100(F-3:dii3:iic) 0.000000			Durbin-Watso	on stat	2.257132					
	Prob(F-statistic) 0.000000									

Table : 6.18. ADF Unit Root Test of MudhSav

/iew Proc Object Proper	rties Print Na	me Freeze	Sample Genr	Sheet Grap					
Augmented Dic	key-Fuller Un	it Root Test o	n D(MUDHSA	V,2)					
Null Hypothesis: D(MUDHSAV,2) has a unit root									
Exogenous: Constant									
Lag Length: 10 (Automa	tic - based on	SIC, maxlag=	=12)						
			t-Statistic	Prob.*					
Augmented Dickey-Fuller test statistic -11.58312 0.0000									
Test critical values:	1% level 5% level		-3.492523 -2.888669						
	10% level		-2.581313						
	10 /0 16 (6)		-2.30 13 13						
*MacKinnon (1996) one-	-sided p-value	S.							
Augmented Dickey-Fulle		n							
Dependent Variable: D(I	MUDHSAV,3)								
Method: Least Squares	0.44								
Date: 11/18/16 Time: 10:44									
Sample (adjusted): 200	7M02 2015M1								
Sample (adjusted): 200 Included observations: 1	7M02 2015M1								
Sample (adjusted): 200	7M02 2015M1		t-Statisti	c Prob.					
Sample (adjusted): 200 Included observations: 1	7M02 2015M1: 107 after adjus	tments							
Sample (adjusted): 200 Included observations: 1 Variable	7M02 2015M1: 107 after adjus Coefficient	tments Std. Error	-11.5831	2 0.0000					
Sample (adjusted): 200 Included observations: 1 Variable D(MUDHSAV(-1),2)	7M02 2015M1: 107 after adjus Coefficient -10.89518	Std. Error	-11.5831; 9.67351;	2 0.0000 9 0.0000					
Sample (adjusted): 200 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786	Std. Error 0.940608 0.917431	-11.58312 9.673512 9.12885	2 0.0000 9 0.0000 8 0.0000					
Sample (adjusted): 200 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816	Std. Error 0.940608 0.917431 0.864053	-11.5831; 9.67351; 9.12885; 8.83061;	2 0.0000 9 0.0000 8 0.0000 1 0.0000					
Sample (adjusted): 200' Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-2),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304	Std. Error 0.940608 0.917431 0.864053 0.786843	-11.5831; 9.67351; 9.12885; 8.83061; 8.70703	2 0.0000 9 0.0000 8 0.0000 1 0.0000 4 0.0000					
Sample (adjusted): 200 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-3),3) D(MUDHSAV(-4),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535	-11.5831; 9.67351; 9.12885; 8.83061 8.70703; 8.78090;	2 0.0000 9 0.0000 8 0.0000 1 0.0000 4 0.0000 9 0.0000					
Sample (adjusted): 2001 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-3),3) D(MUDHSAV(-4),3) D(MUDHSAV(-5),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756	-11.5831: 9.67351: 9.12885: 8.83061 8.70703- 8.78090: 8.85256:	2 0.0000 9 0.0000 8 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000					
Sample (adjusted): 2001 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-2),3) D(MUDHSAV(-4),3) D(MUDHSAV(-5),3) D(MUDHSAV(-6),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259	-11.5831: 9.67351: 9.12885: 8.83061 8.70703: 8.78090: 8.85256: 9.22723	2 0.0000 9 0.0000 8 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 9 0.0000					
Sample (adjusted): 200' Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-2),3) D(MUDHSAV(-2),3) D(MUDHSAV(-4),3) D(MUDHSAV(-4),3) D(MUDHSAV(-5),3) D(MUDHSAV(-6),3) D(MUDHSAV(-7),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364	-11.5831: 9.67351: 9.12885: 8.83061: 8.70703: 8.78090: 8.85256: 9.22723: 9.90255:	2 0.0000 9 0.0000 8 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 9 0.0000					
Sample (adjusted): 2001 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-3),3) D(MUDHSAV(-4),3) D(MUDHSAV(-5),3) D(MUDHSAV(-5),3) D(MUDHSAV(-7),3) D(MUDHSAV(-7),3) D(MUDHSAV(-8),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013	-11.5831; 9.67351; 9.12885; 8.83061; 8.70703; 8.78090; 8.85256; 9.22723; 9.90255; 11.4902;	2 0.0000 9 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 9 0.0000 1 0.0000					
Sample (adjusted): 2001 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-3),3) D(MUDHSAV(-4),3) D(MUDHSAV(-5),3) D(MUDHSAV(-6),3) D(MUDHSAV(-7),3) D(MUDHSAV(-8),3) D(MUDHSAV(-9),3)	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623 1.855948	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013 0.161524	-11.5831; 9.67351; 9.12885; 8.83061; 8.70703; 8.78090; 8.85256; 9.22723; 9.90255; 11.4902; 14.4152;	2 0.0000 9 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 9 0.0000 1 0.0000 1 0.0000					
Sample (adjusted): 2001 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-3),3) D(MUDHSAV(-5),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-7),3) D(MUDHSAV(-8),3) D(MUDHSAV(-9),3) D(MUDHSAV(-10),3) C	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623 1.855948 0.966824 16.74118	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013 0.161524 0.067070 52.11494	-11.5831: 9.67351: 9.12885: 8.83061: 8.70703: 8.78090: 8.85256: 9.22723: 9.90255: 11.4902: 14.4152: 0.32123:	2 0.0000 9 0.0000 1 0.0000 4 0.0000 8 0.0000 8 0.0000 8 0.0000 9 0.0000 1 0.0000 1 0.0000 6 0.7487					
Sample (adjusted): 2001 Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-3),3) D(MUDHSAV(-5),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-7),3) D(MUDHSAV(-8),3) D(MUDHSAV(-9),3) D(MUDHSAV(-10),3) C R-squared	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623 1.855948 0.966824 16.74118	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013 0.161524 0.067070 52.11494 Mean deper	-11.5831: 9.67351: 9.12885; 8.83061: 8.70703; 8.78090; 8.85256; 9.22723; 9.90255; 11.4902; 14.4152; 0.32123;	2 0.0000 9 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 8 0.0000 1 0.0000 1 0.0000 1 0.0000 6 0.7487					
Sample (adjusted): 200: Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-3),3) D(MUDHSAV(-5),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-8),3) D(MUDHSAV(-9),3) D(MUDHSAV(-10),3) C R-squared Adjusted R-squared	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623 1.855948 0.966824 16.74118 0.962718 0.958401	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013 0.161524 0.067070 52.11494 Mean depension	-11.5831: 9.67351: 9.12885: 8.83061: 8.70703: 8.78090: 8.85256: 9.22723: 9.90255: 11.4902: 14.4152: 0.32123:	2 0.0000 9 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 8 0.0000 9 0.0000 1 0.0000 1 0.0000 1 0.0487 39.32710 2640.321					
Sample (adjusted): 200' Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-2),3) D(MUDHSAV(-2),3) D(MUDHSAV(-4),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-9),3) D(MUDHSAV(-10),3) C R-squared Adjusted R-squared S.E. of regression	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623 1.855948 0.966824 16.74118 0.962718 0.958401 538.5165	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013 0.161524 0.067070 52.11494 Mean depen Akaike info	-11.5831: 9.67351: 9.12885: 8.83061: 8.70703. 8.78090: 8.85256: 9.22723: 9.90255: 11.4905: 14.4152: 0.32123: Indent var criterion	2 0.0000 9 0.0000 8 0.0000 1 0.0000 4 0.0000 8 0.0000 8 0.0000 9 0.0000 1 0.0000 1 0.0000 6 0.7487 39.32710 2640.321 15.52086					
Sample (adjusted): 200' Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-1),3) D(MUDHSAV(-2),3) D(MUDHSAV(-2),3) D(MUDHSAV(-5),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-7),3) D(MUDHSAV(-8),3) D(MUDHSAV(-9),3) D(MUDHSAV(-10),3) C R-squared S.E. of regression Sum squared resid	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623 1.855948 0.966824 16.74118 0.962718 0.958401 538.5165 27550003	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013 0.161524 0.067070 52.11494 Mean depel S.D. depend Akaike info	-11.5831: 9.67351: 9.12885: 8.83061 8.70703 8.78090: 8.85256: 9.22723: 9.90255: 11.4902 14.4152 0.32123: ndent var dent var derion	2 0.0000 9 0.0000 8 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 9 0.0000 1 0.0000 1 0.0000 6 0.7487 39.32710 2640.321 15.52086 15.82062					
Sample (adjusted): 200' Included observations: 1 Variable D(MUDHSAV(-1),2) D(MUDHSAV(-2),3) D(MUDHSAV(-2),3) D(MUDHSAV(-4),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-6),3) D(MUDHSAV(-9),3) D(MUDHSAV(-10),3) C R-squared Adjusted R-squared S.E. of regression	7M02 2015M1: 107 after adjus Coefficient -10.89518 8.874786 7.887816 6.948304 6.073462 5.257621 4.366612 3.537392 2.693623 1.855948 0.966824 16.74118 0.962718 0.958401 538.5165	Std. Error 0.940608 0.917431 0.864053 0.786843 0.697535 0.598756 0.493259 0.383364 0.272013 0.161524 0.067070 52.11494 Mean depen Akaike info	-11.5831: 9.67351: 9.12885: 8.83061: 8.70703: 8.78090: 8.85256: 9.22723: 9.90255: 11.4902: 14.4152: 0.32123: indent var dent var dent var criterion terion inn criter.	2 0.0000 9 0.0000 1 0.0000 4 0.0000 9 0.0000 8 0.0000 9 0.0000 1 0.0000 1 0.0000					

Table : 6.19. PP Unit Root Test of MudhSav

Car a supplier of	LCI DEFECT	TO OF 101 A1 110	DANKS D. C						
Series: MUDHSAV W			BANKS::Profi	×					
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	Sheet Graph					
Phillips	-Perron Unit R	oot Test on M	UDHSAV						
Null Hypothesis: MUDHSAV has a unit root									
Exogenous: Constant									
Bandwidth: 1 (Newey-W	est automatic)	using Bartlett	kernel						
Adj. t-Stat Prob.*									
Phillips-Perron test stati	istic		2.268001	1.0000					
Test critical values:	1% level		-3.486064						
	5% level 10% level		-2.885863 -2.579818						
	10% level		-2.079016						
*MacKinnon (1996) one-	-sided p-value	S.							
Residual variance (no c				867236.0					
HAC corrected variance	(Bartlett kerne	I)		669961.7					
Phillips-Perron Test Equ									
Dependent Variable: D(I	MUDHSAV)								
Method: Least Squares Date: 11/18/16 Time: 1	0.45								
Sample (adjusted): 200		Date: 11/18/16 Time: 10:45							
Included observations:	Included observations: 119 after adjustments								
Variable			t-Statistic	Prob.					
Wariable MUDHSAV(-1)	119 after adjus	tments	t-Statistic 1.936080	Prob. 0.0553					
	119 after adjus Coefficient	std. Error		0.0553					
MUDHSAV(-1) C	Coefficient 0.008273 296.2698	Std. Error 0.004273 149.3864	1.936080 1.983245	0.0553 0.0497					
MUDHSAV(-1)	Coefficient 0.008273	Std. Error	1.936080 1.983245 dent var	0.0553 0.0497 532.6303					
MUDHSAV(-1) C R-squared Adjusted R-squared S.E. of regression	Coefficient 0.008273 296.2698 0.031043 0.022761 939.1808	Std. Error 0.004273 149.3864 Mean depen S.D. depend Akaike info c	1.936080 1.983245 dent var ent var riterion	0.0553 0.0497 532.6303 950.0553 16.54456					
MUDHSAV(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	Coefficient 0.008273 296.2698 0.031043 0.022761 939.1808 1.03E+08	Std. Error 0.004273 149.3864 Mean depen S.D. depend Akaike info c Schwarz crite	1.936080 1.983245 dent var ent var riterion	0.0553 0.0497 532.6303 950.0553 16.54456 16.59126					
MUDHSAV(-1) C R-squared Adjusted R-squared S.E. of regression	Coefficient 0.008273 296.2698 0.031043 0.022761 939.1808	Std. Error 0.004273 149.3864 Mean depen S.D. depend Akaike info c	1.936080 1.983245 dent var ent var riterion erion nn criter.	0.0553 0.0497 532.6303 950.0553 16.54456					

Table : 6.20. PP Unit Root Test of MudhSav

S 🔄	eries:	MUDHS	AV Workfi	le	: DEP	OSITS (OF ISLAN	И	IC BANK	S::Pro	fi	
View	Proc	Object	Properties	П	Print	Name	Freeze		Sample	Genr	Sheet	ſ

□ X

Null Hypothesis: D(MUDHSAV) has a unit root

Exogenous: Constant

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	-12.47011	0.0000	
Test critical values:	1% level	-3.486551	
	5% level	-2.886074	
	10% level	-2.579931	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 862460.9 HAC corrected variance (Bartlett kernel) 1158581.

Phillips-Perron Test Equation

Dependent Variable: D(MUDHSAV,2)

Method: Least Squares Date: 11/18/16 Time: 10:45

Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(MUDHSAV(-1)) C	-1.222752 647.7405	0.097927 99.15498	-12.48634 6.532607	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.573386 0.569708 936.6594 1.02E+08 -973.8199 155.9087 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	36.45763 1427.908 16.53932 16.58628 16.55839 1.846903

Table : 6.21. ADF Unit Root Test of MudhDep

١	Series: MUDHDEP Workfile: DEPOSITS OF ISLAMIC BANKS::Profi 🗖 🗴												
ĺ	View	Proc	Object	Properties		Print	Name	Freeze		Sample	Genr	Sheet	Graph
ĺ	Augmented Dickey-Fuller Unit Root Test on MUDHDEP												

Null Hypothesis: MUDHDEP has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful	1.148977	0.9977	
Test critical values:	1% level	-3.486064	
	5% level	-2.885863	
	10% level	-2.579818	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHDEP) Method: Least Squares

Date: 11/18/16 Time: 10:49

Sample (adjusted): 2006M02 2015M12 Included observations: 119 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MUDHDEP(-1) C	0.006001 688.4272			0.2529 0.0627
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011157 0.002706 2399.971 6.74E+08 -1094.047 1.320149 0.252909	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	1024.899 2403.224 18.42096 18.46767 18.43993 1.858344

Table : 6.22. ADF Unit Root Test of MudhDep

	Series: MUDHDEP Workfile: DEPOSITS OF ISLAMIC BANKS::Profi View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph										
	View	Proc	Object	Properties	Print	Name	Freeze	Sample	Genr	Sheet	Graph
ſ	Augmented Dickey-Fuller Unit Root Test on D(MUDHDEP)										

Null Hypothesis: D(MUDHDEP) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level	-9.886569 -3.486551 -2.886074	0.0000
	10% level	-2.579931	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHDEP,2)

Method: Least Squares Date: 11/18/16 Time: 10:50

Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(MUDHDEP(-1)) C	-0.923778 961.4546	0.093438 240.7432	-9.886569 3.993694	0.0000 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.457295 0.452617 2413.204 6.76E+08 -1085.494 97.74424 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	44.33898 3261.733 18.43210 18.47906 18.45117 1.998593

Table : 6.23. PP Unit Root Test of MudhDep

Series: MUDHDEP Workfile: DEPOSITS OF ISLAMIC BANKS::Profi... _ 🗆 🗶

View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph

Phillips-Perron Unit Root Test on MUDHDEP

Null Hypothesis: MUDHDEP has a unit root

Exogenous: Constant

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	1.046426	0.9969
Test critical values:	1% level	-3.486064	
	5% level	-2.885863	
	10% level	-2.579818	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 5663054. HAC corrected variance (Bartlett kernel) 6374889.

Phillips-Perron Test Equation

Dependent Variable: D(MUDHDEP)

Method: Least Squares

Date: 11/18/16 Time: 10:50

Sample (adjusted): 2006M02 2015M12 Included observations: 119 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MUDHDEP(-1) C	0.006001 688.4272	0.005223 366.2789	1.148977 1.879517	0.2529 0.0627
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011157 0.002706 2399.971 6.74E+08 -1094.047 1.320149 0.252909	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	1024.899 2403.224 18.42096 18.46767 18.43993 1.858344

Table : 6.24. PP Unit Root Test of MudhDep

Series: MUDHDEP Workfile: DEPOSITS OF ISLAMIC BANKS::Profi 🚊 🕱 🗴							
View Proc Object Prope	rties Print Na	ame Freeze Sa	mple Genr S	heet Graph			
Phillips-Perron Unit Root Test on D(MUDHDEP)							
Null Hypothesis: D(MUDHDEP) has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel							
			Adj. t-Stat	Prob.*			
Phillips-Perron test stat	tistic		-9.925248	0.0000			
Test critical values:	1% level		-3.486551				
	5% level		-2.886074				
	10% level		-2.579931				
*MacKinnon (1996) one	-sided p-value	S.					
Residual variance (no c	correction)			5724851			
Residual variance (no o	(Bartlett kerne	1)		5724851. 6104689.			
	uation MUDHDEP,2)	2					
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200	uation MUDHDEP,2)	2	t-Statistic				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	uation MUDHDEP,2) 10:51 16M03 2015M1 118 after adjus	2 etments	t-Statistic -9.886569 3.993694	6104689.			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(MUDHDEP(-1))	uation MUDHDEP,2) 10:51 16M03 2015M1 118 after adjus Coefficient -0.923778	2 stments Std. Error 0.093438 240.7432	-9.886569 3.993694	Prob. 0.0000			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	uation MUDHDEP,2) 10:51 16M03 2015M1 118 after adjus Coefficient -0.923778 961.4546	2 stments Std. Error 0.093438	-9.886569 3.993694	Prob. 0.0000 0.0001			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(MUDHDEP(-1)) C R-squared Adjusted R-squared S.E. of regression	uation MUDHDEP,2) 10:51 16M03 2015M1 118 after adjus Coefficient -0.923778 961.4546 0.457295 0.452617 2413.204	2 Std. Error 0.093438 240.7432 Mean depende S.D. depende Akaike info cri	-9.886569 3.993694 lent var ent var iterion	Prob. 0.0000 0.0001 44.33898 3261.733 18.43210			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(MUDHDEP(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation MUDHDEP,2) 10:51 16M03 2015M1 118 after adjus Coefficient -0.923778 961.4546 0.457295 0.452617 2413.204 6.76E+08	2 Std. Error 0.093438 240.7432 Mean depende S.D. depende Akaike info cri Schwarz crite	-9.886569 3.993694 lent var ent var iterion	Prob. 0.0000 0.0001 44.33898 3261.733 18.43210 18.47906			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(MUDHDEP(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	uation MUDHDEP,2) 10:51 16M03 2015M1 118 after adjus Coefficient -0.923778 961.4546 0.457295 0.452617 2413.204 6.76E+08 -1085.494	2 Std. Error 0.093438 240.7432 Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin	-9.886569 3.993694 lent var ent var iterion rion n criter.	Prob. 0.0000 0.0001 44.33898 3261.733 18.43210 18.47906 18.45117			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(MUDHDEP(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation MUDHDEP,2) 10:51 16M03 2015M1 118 after adjus Coefficient -0.923778 961.4546 0.457295 0.452617 2413.204 6.76E+08	2 Std. Error 0.093438 240.7432 Mean depende S.D. depende Akaike info cri Schwarz crite	-9.886569 3.993694 lent var ent var iterion rion n criter.	Prob. 0.0000 0.0001 44.33898 3261.733 18.43210 18.47906			

Table : 6.25. ADF Unit Root Test of MudhDep01

View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Augmented Dickey-Fuller Unit Root Test on MUDHDEP01						
Null Hypothesis: MUDHDEP01 has a unit root Exogenous: Constant						
Lag Length: 2 (Automatic - based on SIC, maxlag=11)						
			t-Statistic	Prob.*		
	-11-1-2-2-		0.444000	00101		
Augmented Dickey-Fulle Test critical values:	1% level		-0.141993 -3.513344	0.9404		
rest critical values.	5% level		-2.897678			
	10% level		-2.586103			
*MacKinnon (1996) one-						
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009	MUDHDEP01) 0:23 9M04 2015M1:	2				
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1	MUDHDEP01) 0:23 9M04 2015M1:	2				
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009	MUDHDEP01) 0:23 9M04 2015M1:	2	t-Statistic	Prob.		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8	MUDHDEP01) 0:23 9M04 2015M1: 31 after adjustr	2 ments	t-Statistic	Prob. 0.8875		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP01(-1) D(MUDHDEP01(-1))	MUDHDEP01) 0:23 9M04 2015M1: 81 after adjusti Coefficient	2 ments Std. Error				
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8 Variable	0:23 9M04 2015M1: 81 after adjustr Coefficient -0.003055 -0.118826 -0.409265	2 ments Std. Error 0.021514 0.104850 0.104668	-0.141993 -1.133297 -3.910133	0.8875 0.2606 0.0002		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP01(-1) D(MUDHDEP01(-1))	0:23 9M04 2015M1: 31 after adjustr Coefficient -0.003055 -0.118826	2 ments Std. Error 0.021514 0.104850	-0.141993 -1.133297	0.8875 0.2606		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP01(-1) D(MUDHDEP01(-2))	0:23 9M04 2015M1: 81 after adjustr Coefficient -0.003055 -0.118826 -0.409265	2 ments Std. Error 0.021514 0.104850 0.104668	-0.141993 -1.133297 -3.910133 1.383597	0.8875 0.2606 0.0002		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP01(-1) D(MUDHDEP01(-1)) D(MUDHDEP01(-2)) C	0:23 9M04 2015M1: 81 after adjusti Coefficient -0.003055 -0.118826 -0.409265 1685.499	2 ments Std. Error 0.021514 0.104850 0.104668 1218.201	-0.141993 -1.133297 -3.910133 1.383597	0.8875 0.2606 0.0002 0.1705		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP01(-1) D(MUDHDEP01(-2)) C R-squared Adjusted R-squared S.E. of regression	0:23 9M04 2015M1: 81 after adjusti Coefficient -0.003055 -0.118826 -0.409265 1685.499 0.175686	2 ments Std. Error 0.021514 0.104850 0.104668 1218.201 Mean depende S.D. depende Akaike info cr	-0.141993 -1.133297 -3.910133 1.383597 dent var ent var iterion	0.8875 0.2606 0.0002 0.1705		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP01(-1) D(MUDHDEP01(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	0:23 9M04 2015M1: 81 after adjusti Coefficient -0.003055 -0.118826 -0.409265 1685.499 0.175686 0.143570 4841.301 1.80E+09	2 ments Std. Error 0.021514 0.104850 0.104668 1218.201 Mean depende S.D. depende Akaike info cr Schwarz crite	-0.141993 -1.133297 -3.910133 1.383597 dent var ent var iterion rion	0.8875 0.2606 0.0002 0.1705 1002.370 5231.379 19.85588 19.97412		
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP01(-1) D(MUDHDEP01(-2)) C R-squared Adjusted R-squared S.E. of regression	0:23 9M04 2015M1: 81 after adjusti Coefficient -0.003055 -0.118826 -0.409265 1685.499 0.175686 0.143570 4841.301	2 ments Std. Error 0.021514 0.104850 0.104668 1218.201 Mean depende S.D. depende Akaike info cr	-0.141993 -1.133297 -3.910133 1.383597 dent var ent var iterion rion in criter.	0.8875 0.2606 0.0002 0.1705 1002.370 5231.379 19.85588		

Table: 6.26 ADF Unit Root Test of MudhDep01

	Workfile: DEPC)5[15 OF [SLA	MIC BANKS 200) 🗆 X			
View Proc Object Proper		· ·	Sample Genr S	· · ·			
Augmented Dickey-Fuller Unit Root Test on D(MUDHDEP01)							
Null Hypothesis: D(MUDHDEP01) has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=11)							
			t-Statistic	Prob.*			
Augmented Dickey-Fuller Test critical values:	r test statistic 1% level 5% level 10% level		-10.07929 -3.513344 -2.897678 -2.586103	0.0000			
Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHDEP01,2) Method: Least Squares Date: 11/21/16 Time: 10:24 Sample (adjusted): 2009M04 2015M12 Included observations: 81 after adjustments							
Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009	IUDHDEP01,: 0:24 0M04 2015M1:	2)					
Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009	IUDHDEP01,: 0:24 0M04 2015M1:	2)	t-Statistic	Prob.			
Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009 Included observations: 8	IUDHDEP01, 0:24 0M04 2015M1: 1 after adjustr	2) 2 ments	-10.07929 3.988311				

Table : 6.27. PP Unit Root Test of MudhDep01

	Working, DEF	JSITS OF ISLAN	IIC BANKS 20	🗆 X		
View Proc Object Prope	rties Print Na	ame Freeze S	ample Genr S	heet Graph		
Phillips-Perron Unit Root Test on MUDHDEP01						
Null Hypothesis: MUDHDEP01 has a unit root Exogenous: Constant Bandwidth: 23 (Newey-West automatic) using Bartlett kernel						
			Adj. t-Stat	Prob.*		
Phillips-Perron test stat Test critical values:	istic 1% level 5% level 10% level		0.129288 -3.511262 -2.896779 -2.585626	0.9662		
*MacKinnon (1996) one	-sided p-value	S.				
Residual variance (no d HAC corrected variance		l)		26301018 6085689.		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	MUDHDEP01) 10:25 19M02 2015M1:	2				
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200	MUDHDEP01) 10:25 19M02 2015M1:	2	t-Statistic	Prob.		
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	MUDHDEP01) 10:25 19M02 2015M1: 83 after adjusti	2 ments	t-Statistic -0.634545 1.344266	Prob. 0.5275 0.1826		

Table : 6.28. PP Unit Root Test of MudhDep01

Series: MUDHDEP01	Workfile: DEPO	OSITS OF ISLAM	IC BANKS 20	= :		
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	heet Grap		
Phillips-Perron Unit Root Test on D(MUDHDEP01)						
Null Hypothesis: D(MUDHDEP01) has a unit root Exogenous: Constant Bandwidth: 34 (Newey-West automatic) using Bartlett kernel						
			Adj. t-Stat	Prob.*		
Phillips-Perron test stat	istic		-19.24571	0.0001		
Test critical values:	1% level		-3.512290			
	5% level		-2.897223			
	10% level		-2.585861			
*MacKinnon (1996) one	-sided p-value	S.				
Residual variance (no correction) 26504301 HAC corrected variance (Bartlett kernel) 2272252.						
HAC corrected variance	(Bartlett kerne	1)		2272252.		
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 4	uation MUDHDEP01, 0:26 9M03 2015M1:	2)	t-Statistic	2272252.		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: (uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjusti Coefficient	2) 2 ments Std. Error		Prob.		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 4 Variable	uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjust Coefficient -1.085586	2) 2 ments Std. Error 0.111281	-9.755329	Prob. 0.0000		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: (uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjusti Coefficient	2) 2 ments Std. Error		Prob. 0.0000		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 4 Variable	uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjust Coefficient -1.085586	2) 2 ments Std. Error 0.111281	-9.755329 1.858307	Prob. 0.0000 0.0668		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 3 Variable D(MUDHDEP01(-1)) C R-squared Adjusted R-squared	uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjusti Coefficient -1.085586 1088.720 0.543292 0.537583	2) 2 ments Std. Error 0.111281 585.8665 Mean depende S.D. depende	-9.755329 1.858307 dent var	Prob. 0.0000 0.0668 22.93902		
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(MUDHDEP01(-1)) C R-squared Adjusted R-squared S.E. of regression	uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjust Coefficient -1.085586 1088.720 0.543292 0.537583 5212.188	2) 2 ments Std. Error 0.111281 585.8665 Mean depender S.D. depender	-9.755329 1.858307 dent var ent var iterion	Prob. 0.0000 0.0668 22.93902 7664.833 19.97948		
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 3 Variable D(MUDHDEP01(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjusti -1.085586 1088.720 0.543292 0.537583 5212.188 2.17E+09	2) 2 ments Std. Error 0.111281 585.8665 Mean depende Akaike info cr Schwarz crite	-9.755329 1.858307 dent var ent var iterion rion	Prob. 0.0000 0.0668 22.93902 7664.838 19.97948 20.03818		
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(MUDHDEP01(-1)) C R-squared Adjusted R-squared S.E. of regression	uation MUDHDEP01, 0:26 9M03 2015M1: 82 after adjust Coefficient -1.085586 1088.720 0.543292 0.537583 5212.188	2) 2 ments Std. Error 0.111281 585.8665 Mean depender S.D. depender	-9.755329 1.858307 dent var ent var iterion rion an criter.	Prob. 0.0000 0.0668 22.93902 7664.833 19.97948		

Table: 6.29. ADF Unit Root Test of MudhDep03

Series: MUDHDEP03 Workfile: DEPOSITS OF ISLAMIC BANKS 20... _

View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph

Augmented Dickey-Fuller Unit Root Test on MUDHDEP03

Null Hypothesis: MUDHDEP03 has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-0.894322	0.7854
Test critical values:	1% level	-3.513344	
	5% level	-2.897678	
	10% level	-2.586103	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHDEP03)

Method: Least Squares Date: 11/21/16 Time: 10:28

Sample (adjusted): 2009M04 2015M12 Included observations: 81 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MUDHDEP03(-1) D(MUDHDEP03(-1)) D(MUDHDEP03(-2)) C	-0.021020 0.106277 -0.353270 580.3625	0.023503 0.111175 0.111293 343.8530	-0.894322 0.955940 -3.174227 1.687821	0.3739 0.3421 0.0022 0.0955
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.133093 0.099318 1479.441 1.69E+08 -704.1359 3.940520 0.011366	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	259.7160 1558.877 17.48484 17.60308 17.53228 1.857017

Table: 6.30. ADF Unit Root Test of MudhDep03

Null Hypothesis: D(MUDHDEP03) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	-8.322384 -3.513344 -2.897678 -2.586103	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHDEP03,2)

Method: Least Squares Date: 11/21/16 Time: 10:29

Sample (adjusted): 2009M04 2015M12 Included observations: 81 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(MUDHDEP03(-1)) D(MUDHDEP03(-1),2) C	-1.260535 0.360513 311.6580	0.151463 0.110856 167.0009	-8.322384 3.252100 1.866205	0.0000 0.0017 0.0658
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.507566 0.494940 1477.541 1.70E+08 -704.5544 40.19849 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	56.06173 2079.065 17.47048 17.55916 17.50606 1.863676

Table : 6.31. PP Unit Root Test of MudhDep03

Series: MUDHDEP03	Workfile: DEPC	SITS OF ISLAM	IIC BANKS 20.	🗆 X
View Proc Object Proper	rties Print Na	me Freeze S	ample Genr S	Sheet Graph]
Phillips-F	Perron Unit Ro	oot Test on MU	DHDEP03	
Null Hypothesis: MUDHI Exogenous: Constant Bandwidth: 7 (Newey-W			kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test stati	stic		-0.785484	0.8178
Test critical values:	1% level		-3.511262	
	5% level		-2.896779	
	10% level		-2.585626	
*MacKinnon (1996) one-	sided p-value	S.		
Residual variance (no co	orrection)			2319455.
HAC corrected variance		I)		1551712.
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2001 Included observations: 8	MUDHDEP03) 0:29 9M02 2015M1:	2		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
MUDHDEP03(-1)	-0.022906	0.023745	-0.964685	0.3376
C	544.3960	345.0027	1.577947	0.1185
R-squared	0.011359	Mean depend	dentvar	254.3614
Adjusted R-squared	-0.000847	S.D. depende		1541.011
S.E. of regression	1541.663	Akaike info cr		17.54291
Sum squared resid	1.93E+08	Schwarz crite		17.60120
Log likelihood	-726.0309	Hannan-Quir	nn criter.	17.56633
F-statistic	0.930618	Durbin-Wats	on stat	1.761259
Prob(F-statistic)	0.337574			

Table : 6.32. PP Unit Root Test of MudhDep03

Series: MUDHDEP03	Workfile: DEPO	OSITS OF ISLAM	IIC BANKS 20	= :
View Proc Object Proper	ties Print N	ame Freeze S	ample Genr S	heet Grap
Phillips-Pe	erron Unit Roc	t Test on D(MI	JDHDEP03)	
Null Hypothesis: D(MUD Exogenous: Constant Bandwidth: 8 (Newey-We	-		kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test stati	stic		-7.834649	0.0000
Test critical values:	1% level		-3.512290	
	5% level		-2.897223	
	10% level		-2.585861	
*MacKinnon (1996) one-		S.		222245
Residual variance (no co	(Bartlett kerne	1)		2362100. 1332671.
	(Bartlett kerne	2)		
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009	(Bartlett kerne	2)	t-Statistic	
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1/ Sample (adjusted): 2009 Included observations: 8	(Bartlett kerne Jation MUDHDEP03, 0:29 9M03 2015M1 32 after adjust	2) 2 ments	t-Statistic -7.939659 1.368298	1332671.
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 16 Sample (adjusted): 2006 Included observations: 8 Variable D(MUDHDEP03(-1)) C	(Bartlett kerne Jation MUDHDEP03, 0:29 9M03 2015M1 82 after adjust Coefficient -0.924408	2) 2 ments Std. Error 0.116429 173.4930	-7.939659 1.368298	Prob. 0.0000 0.1750
Phillips-Perron Test Equ Dependent Variable: D(h Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009 Included observations: 8 Variable D(MUDHDEP03(-1))	(Bartlett kerne dation MUDHDEP03, 0:29 9M03 2015M1 82 after adjust Coefficient -0.924408 237.3900	2) 2 ments Std. Error 0.116429	-7.939659 1.368298 dent var	Prob. 0.0000 0.1750
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1(Sample (adjusted): 2009 Included observations: 8 Variable D(MUDHDEP03(-1)) C R-squared	(Bartlett kerne dation MUDHDEP03, 0:29 9M03 2015M1 32 after adjust Coefficient -0.924408 237.3900 0.440709	2) 2 ments Std. Error 0.116429 173.4930 Mean depend	-7.939659 1.368298 dent var ent var	Prob. 0.0000 0.1750 47.24390 2067.734
Phillips-Perron Test Equ Dependent Variable: D(N Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2008 Included observations: 8 Variable D(MUDHDEP03(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	District Remember (Bartlett kerner Remember 1988) (Bartlett ke	2 ments Std. Error 0.116429 173.4930 Mean depender S.D. depender Akaike info con Schwarz crite	-7.939659 1.368298 dent var ent var iterion	Prob. 0.0000 0.1750 47.2439 2067.734 17.56172
Phillips-Perron Test Equ Dependent Variable: D(h Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2008 Included observations: 8 Variable D(MUDHDEP03(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	Description (Bartlett kerner (Bartlett k	2) 2 ments Std. Error 0.116429 173.4930 Mean depend S.D. depend Akaike info ci Schwarz crite Hannan-Quir	-7.939659 1.368298 dent var ent var riterion rrion nn criter.	Prob. 0.0000 0.1750 47.24390 2067.734 17.56177 17.62042 17.58529
Phillips-Perron Test Equ Dependent Variable: D(N Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2008 Included observations: 8 Variable D(MUDHDEP03(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	District Remember (Bartlett kerner Remember 1988) (Bartlett ke	2 ments Std. Error 0.116429 173.4930 Mean depender S.D. depender Akaike info con Schwarz crite	-7.939659 1.368298 dent var ent var riterion rrion nn criter.	Prob. 0.0000

Table : 6.33. ADF Unit Root Test of MudhDep12

View Proc Object Proper	rties 🛮 🖟 Print 🖟 Na	ame Freeze S	ample Genr S	heet Grap
Augmented Di	ickey-Fuller U	nit Root Test o	n MUDHDEP1	2
Null Hypothesis: MUDHI	DEP12 has a	unit root		
Exogenous: Constant				
Lag Length: 2 (Automati	c - based on S	sic, maxiag=11)	
			t-Statistic	Prob.*
Augmented Dickey-Fulle	r test statistic		-2.567619	0.1039
Test critical values:	1% level		-3.513344	
	5% level		-2.897678	
	10% level		-2.586103	
*MacKinnon (1996) one-	-sided p-value	S.		
Augmented Dickey-Fulle	•			
Dependent Variable: D(I	•			
Dependent Variable: D(I Method: Least Squares	MUDHDEP12)			
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1	MUDHDEP12) 0:34			
Dependent Variable: D(I Method: Least Squares	MUDHDEP12) 0:34 9M04 2015M1:	2		
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009	MUDHDEP12) 0:34 9M04 2015M1:	2	t-Statistic	Prob.
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8 Variable	MUDHDEP12) 0:34 9M04 2015M1: 31 after adjusti Coefficient	2 ments Std. Error		
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8 Variable	MUDHDEP12) 0:34 9M04 2015M1: 81 after adjust Coefficient -0.218976	2 ments Std. Error 0.085284	-2.567619	0.0122
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP12(-1) D(MUDHDEP12(-1))	0:34 9M04 2015M1: 81 after adjust Coefficient -0.218976 0.085320	2 ments Std. Error 0.085284 0.108012	-2.567619 0.789914	0.0122
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8 Variable	MUDHDEP12) 0:34 9M04 2015M1: 81 after adjust Coefficient -0.218976	2 ments Std. Error 0.085284	-2.567619	0.0122 0.4320 0.0044
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP12(-1) D(MUDHDEP12(-2)) C	MUDHDEP12) 0:34 81 after adjuste Coefficient -0.218976 0.085320 -0.314946 1449.053	2 ments Std. Error 0.085284 0.108012 0.107446 644.7931	-2.567619 0.789914 -2.931197 2.247315	0.0122 0.4320 0.0044 0.0275
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP12(-1) D(MUDHDEP12(-1)) C R-squared	0:34 9M04 2015M1: 81 after adjusti Coefficient -0.218976 0.085320 -0.314946 1449.053 0.242215	2 ments Std. Error 0.085284 0.108012 0.107446 644.7931 Mean depend	-2.567619 0.789914 -2.931197 2.247315	0.0122 0.4320 0.0044 0.0275
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP12(-1) D(MUDHDEP12(-1)) C R-squared Adjusted R-squared	0:34 9M04 2015M1: 81 after adjusti Coefficient -0.218976 0.085320 -0.314946 1449.053 0.242215 0.212691	2 ments Std. Error 0.085284 0.108012 0.107446 644.7931 Mean depende S.D. depende	-2.567619 0.789914 -2.931197 2.247315 dent var	0.0122 0.4320 0.0044 0.0275 38.16049 3525.668
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP12(-1) D(MUDHDEP12(-2)) C R-squared Adjusted R-squared S.E. of regression	0:34 9M04 2015M1. 81 after adjusti Coefficient -0.218976 0.085320 -0.314946 1449.053 0.242215 0.212691 3128.337	2 ments Std. Error 0.085284 0.108012 0.107446 644.7931 Mean depend	-2.567619 0.789914 -2.931197 2.247315 dent var ent var iterion	0.0122 0.4320 0.0044 0.0275 38.16049 3525.665 18.9825
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1: Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP12(-1) D(MUDHDEP12(-1)) C R-squared Adjusted R-squared	0:34 9M04 2015M1: 81 after adjusti Coefficient -0.218976 0.085320 -0.314946 1449.053 0.242215 0.212691	2 ments Std. Error 0.085284 0.108012 0.107446 644.7931 Mean depend S.D. depende Akaike info cr	-2.567619 0.789914 -2.931197 2.247315 dent var ent var iterion rion	0.0122 0.4320 0.0044 0.0275 38.16049 3525.668
Dependent Variable: D(I Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8 Variable MUDHDEP12(-1) D(MUDHDEP12(-2)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	MUDHDEP12) 0:34 9M04 2015M1: 81 after adjusti -0.218976 0.085320 -0.314946 1449.053 0.242215 0.212691 3128.337 7.54E+08	2 ments Std. Error 0.085284 0.108012 0.107446 644.7931 Mean depende S.D. depende Akaike info cr Schwarz crite	-2.567619 0.789914 -2.931197 2.247315 dent var ent var iterion rion on criter.	0.0122 0.4320 0.0044 0.0275 38.16049 3525.665 18.9825

Table: 6.34. ADF Unit Root Test of MudhDep12

Series: MUDHDEP12 Workfile: DEPOSITS OF ISLAMIC BANKS 20... _

View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph

Augmented Dickey-Fuller Unit Root Test on D(MUDHDEP12)

Null Hypothesis: D(MUDHDEP12) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-9.864617	0.0000
Test critical values:	1% level	-3.513344	
	5% level	-2.897678	
	10% level	-2.586103	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUDHDEP12,2)

Method: Least Squares Date: 11/21/16 Time: 10:33

Sample (adjusted): 2009M04 2015M12 Included observations: 81 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(MUDHDEP12(-1)) D(MUDHDEP12(-1),2) C	-1.445120 0.420826 54.69378	0.146495 0.102714 359.8804	-9.864617 4.097078 0.151978	0.0000 0.0001 0.8796
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.595584 0.585214 3238.548 8.18E+08 -768.1189 57.43533 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.456790 5028.500 19.03997 19.12866 19.07555 2.017718

Table : 6.35. PP Unit Root Test of MudhDep12

Series: MUDHDEP12 Workfile: DEPOSITS OF ISLAMIC BANKS 20 $\ \ \ \ \ \ \ \ \ \ \ \ \ $
View Proc Object Properties Print Name Freeze Sample Genr Sheet Gra
Phillips-Perron Unit Root Test on MUDHDEP12
Null Hypothesis: MUDHDEP12 has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	ntistic	-3.465009	0.0114
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	

^{*}MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	10321161
HAC corrected variance (Bartlett kernel)	9186572.

Phillips-Perron Test Equation

Dependent Variable: D(MUDHDEP12)

Method: Least Squares Date: 12/09/16 Time: 16:34

Sample (adjusted): 2009M02 2015M12 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MUDHDEP12(-1) C	-0.272764 1757.608	0.075567 595.3494	-3.609573 2.952229	0.0005 0.0041
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.138564 0.127929 3252.077 8.57E+08 -787.9847 13.02902 0.000530	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	37.77108 3482.450 19.03578 19.09406 19.05919 1.803675

Table : 6.36. PP Unit Root Test of MudhDep12

			IIC BANKS 20.	
View Proc Object Prope	rties Print Na	ame Freeze S	ample Genr S	heet Graph
Phillips-Pe	erron Unit Roo	t Test on D(Ml	JDHDEP12)	
Null Hypothesis: D(MUE	HDEP12) has	a unit root		
Exogenous: Constant		->i D#		
Bandwidth: 28 (Newey-\	vest automati	c) using Bartie	tt Kernei	
			Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic		-14.47407	0.0001
Test critical values:	1% level		-3.512290	
	5% level		-2.897223	
	10% level		-2.585861	
*MacKinnon (1996) one	-sided p-value	s.		
,				
				40400700
Residual variance (no c HAC corrected variance		IS.		12123788 1530842.
HAC corrected variance	(Dartiett Kerrie	1)		1550042.
Phillips-Perron Test Eq				
Dependent Variable: D(MUDHDEP12,	2)		
		_,		
	0.00	-,		
Date: 12/09/16 Time: 1				
Date: 12/09/16 Time: 1 Sample (adjusted): 200	9M03 2015M1	2		
Date: 12/09/16 Time: 1 Sample (adjusted): 200	9M03 2015M1	2		
Date: 12/09/16 Time: 1 Sample (adjusted): 200	9M03 2015M1	2	t-Statistic	Prob.
Date: 12/09/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable	9M03 2015M1 32 after adjust Coefficient	2 ments Std. Error		
Date: 12/09/16 Time: 1 Sample (adjusted): 200 Included observations: 8	9M03 2015M1. 32 after adjust	2 ments	t-Statistic -9.098651 0.095683	0.0000
Date: 12/09/16 Time: 1 Sample (adjusted): 200 Included observations: (Variable D(MUDHDEP12(-1)) C	9M03 2015M1 32 after adjust Coefficient -1.017111 37.25080	2 ments Std. Error 0.111787 389.3151	-9.098651 0.095683	0.0000 0.9240
Date: 12/09/16 Time: 1 Sample (adjusted): 200 Included observations: 6 Variable D(MUDHDEP12(-1)) C R-squared	9M03 2015M1. 32 after adjusti Coefficient -1.017111 37.25080 0.508556	2 ments Std. Error 0.111787 389.3151 Mean depend	-9.098651 0.095683 dent var	0.0000 0.9240 -2.304878
Date: 12/09/16 Time: 1 Sample (adjusted): 200 Included observations: 6 Variable D(MUDHDEP12(-1)) C R-squared Adjusted R-squared	9M03 2015M1. 32 after adjusti Coefficient -1.017111 37.25080 0.508556 0.502413	2 ments Std. Error 0.111787 389.3151 Mean depend S.D. depende	-9.098651 0.095683 dent var ent var	0.0000 0.9240 -2.304878 4997.426
D(MUDHDEP12(-1))	9M03 2015M1. 32 after adjusti Coefficient -1.017111 37.25080 0.508556	2 ments Std. Error 0.111787 389.3151 Mean depend	-9.098651 0.095683 dent var ent var riterion	0.0000 0.9240 -2.304878

82.78546

0.000000

-785.0908 Hannan-Quinn criter.

Durbin-Watson stat

19.22090

2.014352

Log likelihood

Prob(F-statistic)

F-statistic

Table : 6.37. ADF Unit Root Test of PLSFin

View Proc Object Prope	erties Print Na	me Freeze	Sample G	enr :	Sheet	Grapi			
Augmente	d Dickey-Fuller	Unit Root Te	est on PL	SFIN					
Null Hypothesis: PLSFIN has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)									
			t-Statis	tic	Pro	ob.*			
Augmented Dickey-Full	er test statistic		3.8830	36	1.0	000			
Test critical values:	1% level		-3.4860	64					
	5% level		-2.8858						
	10% level		-2.5798	18					
*MacKinnon (1996) one Augmented Dickey-Full Dependent Variable: D Method: Least Squares	er Test Equatio (PLSFIN)								
Augmented Dickey-Full Dependent Variable: D(er Test Equatio (PLSFIN) 09:09 06M02 2015M1:	n 2							
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200	er Test Equatio (PLSFIN) 09:09 06M02 2015M1:	n 2	t-Sta	tistic	F	Prob.			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations:	er Test Equatio (PLSFIN) 09:09 06M02 2015M1: 119 after adjus Coefficient 0.013655	n 2 tments Std. Error 0.003516	3.883	3036	0	.0002			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations:	er Test Equatio (PLSFIN) 09:09 06M02 2015M1: 119 after adjus Coefficient	n 2 tments Std. Error	3.883	3036	0	.0002			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PLSFIN(-1) C R-squared	er Test Equatio (PLSFIN) 09:09 06M02 2015M1: 119 after adjus Coefficient 0.013655	n 2 tments Std. Error 0.003516 126.4449 Mean deper	3.883 1.535 ndent var	3036	0 0 593	.0002 .1273			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PLSFIN(-1) C R-squared Adjusted R-squared	er Test Equatio (PLSFIN) 09:09 06M02 2015M1: 119 after adjus Coefficient 0.013655 194.1863 0.114160 0.106588	n 2 tments Std. Error 0.003516 126.4449 Mean deper S.D. depen	3.883 1.535 ndent var dent var	3036	0 0 593 847	.0002 .1273 .9664			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PLSFIN(-1) C R-squared Adjusted R-squared S.E. of regression	er Test Equation (PLSFIN) 09:09 06M02 2015M1: 119 after adjus Coefficient 0.013655 194.1863 0.114160 0.106588 800.7677	n 2 tments Std. Error 0.003516 126.4449 Mean depension. Akaike info	3.883 1.535 ndent var dent var criterion	3036	593 847 16.2	.0002 .1273 .9664 .1898 22568			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PLSFIN(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation (PLSFIN) 09:09 06M02 2015M1: 119 after adjus Coefficient 0.013655 194.1863 0.114160 0.106588 800.7677 75023780	n 2 tments Std. Error 0.003516 126.4449 Mean depension. Akaike info Schwarz cri	3.883 1.535 ndent var dent var criterion terion	3036 5738	593 847 16.2	.0002 .1273 .9664 .1898 22568 27239			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PLSFIN(-1) C	er Test Equation (PLSFIN) 09:09 06M02 2015M1: 119 after adjus Coefficient 0.013655 194.1863 0.114160 0.106588 800.7677	n 2 tments Std. Error 0.003516 126.4449 Mean depension. Akaike info	3.883 1.535 ndent var dent var criterion terion linn criter.	3036 5738	0 0 593 847 16.2 16.2	.0002 .1273 .9664 .1898 27239 24465			

Table : 6.38. PP Unit Root Test of PLSFin

Series: PLSFIN Workfile	e: FINANCINO	G OF ISLAMIC B	ANKS::Profit	= ×						
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph										
Phillips-Perron Unit Root Test on PLSFIN										
Null Hypothesis: PLSFIN has a unit root Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel										
			Adj. t-Stat	Prob.*						
Phillips-Perron test statis	tic		4.264873	1.0000						
Test critical values:	1% level		-3.486064							
	5% level		-2.885863							
	10% level		-2.579818							
*MacKinnon (1996) one-s	sided p-value	S.								
Residual variance (no cor	rrection)			630451.9						
HAC corrected variance (F		I)		531424.4						
Phillips-Perron Test Equa Dependent Variable: D(Pl Method: Least Squares Date: 11/19/16 Time: 09 Sample (adjusted): 2006l Included observations: 11	LSFIN) :10 M02 2015M1;									
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
PLSFIN(-1)	0.013655	0.003516	3.883036	0.0002						
C	194.1863	126.4449	1.535738	0.1273						
Deguared	0.444460	Maan dar	dontune	E02.0664						
R-squared Adjusted R-squared	0.114160 0.106588	Mean dependence S.D. depende		593.9664 847.1898						
S.E. of regression	800.7677	Akaike info cr								
Sum squared resid										
·										
				16.22568 16.27239						
Log likelihood F-statistic	-963.4281 15.07797	Schwarz crite Hannan-Quir Durbin-Wats	n criter.	16.22568						
Log likelihood	-963.4281	Hannan-Quir	n criter.	16.22568 16.27239 16.24465						

Table : 6.39. ADF Unit Root Test of MudhFin

Series: MUDHFIN Workfile: FINANCING OF ISLAMIC BANKS::Pro X										
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph										
Augmented Dickey-Fuller Unit Root Test on MUDHFIN										
Null Hypothesis: MUDHFIN has a unit root										
Exogenous: Constant										
Lag Length: 0 (Automatic - based on SIC, maxlag=12)										
			t-Statistic	Prob.*						
Augmented Dickey-Full	er test statistic		-0.895458	0.7867						
Test critical values:	1% level		-3.486064							
	5% level		-2.885863							
	10% level		-2.579818							
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0	(MUDHFIN) 09:12	n								
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equatio (MUDHFIN) 09:12 06M02 2015M1: 119 after adjus	on 2 stments								
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200	er Test Equatio (MUDHFIN) 09:12 06:02 2015M1:	on 2	t-Statistic	Prob.						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equatio (MUDHFIN) 09:12 06M02 2015M1: 119 after adjus	on 2 stments	t-Statistic							
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equation (MUDHFIN) 09:12 06M02 2015M1: 119 after adjus Coefficient	2 stments Std. Error		0.3724						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable	er Test Equation (MUDHFIN) 09:12 06M02 2015M1: 119 after adjus Coefficient -0.010106	on 2 etments Std. Error 0.011286 112.7727 Mean depend	-0.895458 1.704362 dent var	0.3724 0.0910 98.44538						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable MUDHFIN(-1) C R-squared Adjusted R-squared	er Test Equation (MUDHFIN) 09:12 06M02 2015M1: 119 after adjus Coefficient -0.010106 192.2055	std. Error 0.011286 112.7727 Mean depende	-0.895458 1.704362 dent var	0.3724 0.0910 98.44538						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable MUDHFIN(-1) C R-squared Adjusted R-squared S.E. of regression	er Test Equation (MUDHFIN) 09:12 06M02 2015M1: 119 after adjus Coefficient -0.010106 192.2055 0.006807 -0.001682 456.9006	std. Error 0.011286 112.7727 Mean depender S.D. depender Akaike info cr	-0.895458 1.704362 dent var ent var iterion	0.3724 0.0910 98.44538 456.5169 15.10347						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable MUDHFIN(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation (MUDHFIN) 09:12 06M02 2015M1: 119 after adjust Coefficient -0.010106 192.2055 0.006807 -0.001682 456.9006 24424710	std. Error 0.011286 112.7727 Mean depender S.D. depender Akaike info crise	-0.895458 1.704362 dent var ent var iterion rion	0.3724 0.0910 98.44538 456.5169 15.10347 15.15018						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable MUDHFIN(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	er Test Equation (MUDHFIN) 09:12 06M02 2015M1: 119 after adjus Coefficient -0.010106 192.2055 0.006807 -0.001682 456.9006 24424710 -896.6566	std. Error 0.011286 112.7727 Mean depender S.D. depender Akaike info crister Hannan-Quir	-0.895458 1.704362 dent var ent var iterion rion nn criter.	0.3724 0.0910 98.44538 456.5169 15.10347 15.15018 15.12244						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable MUDHFIN(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation (MUDHFIN) 09:12 06M02 2015M1: 119 after adjust Coefficient -0.010106 192.2055 0.006807 -0.001682 456.9006 24424710	std. Error 0.011286 112.7727 Mean depender S.D. depender Akaike info crise	-0.895458 1.704362 dent var ent var iterion rion nn criter.	Prob. 0.3724 0.0910 98.44538 456.5169 15.10347 15.15018 15.12244 1.807099						

Table : 6.40. ADF Unit Root Test of MudhFin

Series: MUDHFIN Workfile: FINANCING OF ISLAMIC BANKS::Pr 🗖 🗴									
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Augmented Dickey-Fuller Unit Root Test on D(MUDHFIN)									
Null Hypothesis: D(MUDHFIN) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)									
			t-Statistic	Prob.*					
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level		-9.808397 -3.486551 -2.886074 -2.579931	0.0000					
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	MUDHFIN,2) 9:12 6M03 2015M1:	2							
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
D(MUDHFIN(-1)) C	-0.906641 89.90987	0.092435 43.15990	-9.808397 2.083181	0.0000 0.0394					
C 89.90987 43.15990 2.083181 0.0394 R-squared 0.453358 Mean dependent var dispendent									

Table : 6.41. PP Unit Root Test of MudhFin

Series: MUDHFIN Workfile: FINANCING OF ISLAMIC BANKS::Pr 🗖 🗴										
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph										
Phillips-Perron Unit Root Test on MUDHFIN										
Null Hypothesis: MUDHFIN has a unit root Exogenous: Constant Bandwidth: 3 (Newey-West automatic) using Bartlett kernel										
			4 4: 4 04-4	Db.*						
			Adj. t-Stat	Prob.*						
Phillips-Perron test stati			-0.924591	0.7774						
Test critical values:	1% level		-3.486064							
	5% level		-2.885863							
	10% level		-2.579818							
*MacKinnon (1996) one-	-sided p-value	S.								
Residual variance (no c	orrection)			205249.7						
HAC corrected variance		I)		232673.6						
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	MUDHFIN) 9:13 6M02 2015M1:									
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
MUDHFIN(-1)	-0.010106	0.011286	-0.895458	0.3724						
C (-1)	192.2055	112.7727	1.704362	0.0910						
R-squared	0.006807	Mean depend		98.44538						
Adjusted R-squared	-0.001682	S.D. depende		456.5169						
S.E. of regression	456.9006	Akaike info cr		15.10347						
Sum squared resid	24424710	Schwarz crite Hannan-Quin		15.15018						
Log likelihood F-statistic	-896.6566 0.801845	Durbin-Watso		15.12244 1.807099						
Prob(F-statistic)	0.801845	Durbin-watst	JII SIBI	1.007099						
	0.572501									

Table: 6.42. PP Unit Root Test of MudhFin

Series: MUDHFIN Wo	orkfile: FINANC	ING OF ISLA	MIC BANKS::Pr	= ×						
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr !	Sheet Graph						
Phillips-Perron Unit Root Test on D(MUDHFIN)										
Null Hypothesis: D(MUDHFIN) has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel										
			Adj. t-Stat	Prob.*						
Phillips-Perron test stati	stic		-9.785618	0.0000						
Test critical values:	1% level		-3.486551	0.0000						
	5% level		-2.886074							
	10% level		-2.579931							
*MacKinnon (1996) one-		S.								
Residual variance (no c				206545.2						
HAC corrected variance	(Baπleπ Kerne	1)		196114.8						
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations:	MUDHFIN,2) 8:41 6M03 2015M1:									
Variable	Coefficient	Std. Erro	r t-Statistic	Prob.						
D(MUDHFIN(-1)) C	-0.906641 89.90987	0.09243 43.1599		0.0000 0.0394						
R-squared	0.453358	Mean depe	endent var	0.974576						
Adjusted R-squared	0.448645	S.D. deper		617.3111						
S.E. of regression	458.3736	Akaike info		15.11005						
Sum squared resid	24372332	Schwarz cr		15.15701						
Log likelihood	-889.4929	Hannan-Q		15.12912						
F-statistic	96.20465	Durbin-Wa	tson stat	1.999206						
Prob(F-statistic)	0.000000									

Table : 6.43. ADF Unit Root Test of MusyFin

			N Workfile							
View	Proc	Object	Properties	Print	Name	Freeze	Sample	Genr	Sheet	Graph
		Augn	ented Dick	cey-Ful	ler Uni	t Root T	est on M	USYFI	N	

Null Hypothesis: MUSYFIN has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful		4.250998	1.0000
Test critical values:	1% level 5% level	-3.486551 -2.886074	
	10% level	-2.579931	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MUSYFIN)

Method: Least Squares Date: 11/19/16 Time: 09:15

Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MUSYFIN(-1)	0.020284	0.004772	4.250998	0.0000
D(MUSYFIN(-1))	-0.209773	0.093595	-2.241291	0.0269
C	190.5490	119.9407	1.588692	0.1149
R-squared	0.140337	Mean depend	lent var	498.6780
Adjusted R-squared	0.125386	S.D. depende	ent var	905.2038
S.E. of regression	846.5536	Akaike info cri	iterion	16.34532
Sum squared resid	82415095	Schwarz criter	rion	16.41576
Log likelihood	-961.3738	Hannan-Quin	n criter.	16.37392
F-statistic	9.386684	Durbin-Watso	n stat	1.958745
Prob(F-statistic)	0.000167			

Table : 6.44. PP Unit Root Test of MusyFin

Series: MUSYFIN Wo	rkfile: FINANCI	NG OF ISLAN	/IC BANKS::Pro	of 🗆 🗴					
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr	Sheet Graph					
Phillips-Perron Unit Root Test on MUSYFIN									
Null Hypothesis: MUSYFIN has a unit root Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel									
			Adj. t-Stat	Prob.*					
Phillips-Perron test stat	istic		4.189063	1.0000					
Test critical values:	1% level		-3.486064						
	5% level		-2.885863						
	10% level		-2.579818						
*MacKinnon (1996) one	-sided p-value	S.							
Residual variance (no c				722856.1					
HAC corrected variance	(Bartlett kerne	1)		576221.5					
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	MUSYFIN) 9:15 6M02 2015M1:								
Variable	Coefficient	Std. Erro	r t-Statisti	c Prob.					
MUSYFIN(-1)	0.016662	0.004520	3.686022	2 0.0003					
C	162.2712	119.8001	1.35451	7 0.1782					
R-squared	0.104044	Mean depe	ndent var	495.5210					
Adjusted R-squared	0.096386	S.D. depen		902.0177					
S.E. of regression	857.4454		criterion						
S.E. OF FEUTESSION		Akaike inio		16.36246					
Sum squared resid	86019875	Schwarz cr		16.36246 16.40916					
			iterion						
Sum squared resid	86019875	Schwarz cr	iterion uinn criter.	16.40916					
Sum squared resid Log likelihood	86019875 -971.5661	Schwarz cr Hannan-Qı	iterion uinn criter.	16.40916 16.38142					

Table : 6.45. ADF Unit Root Test of MuraFin

_			N Workfile										
View	Proc	Object	Properties		Print	Name	Freeze		Sample	Genr	Sheet	Gra	ph
		Auam	ented Dick	e	v-Full	er Unit	Root T	e	st on MI	JRAFII	N		

Null Hypothesis: MURAFIN has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-0.330430	0.9158
Test critical values:	1% level	-3.487550	
	5% level	-2.886509	
	10% level	-2.580163	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MURAFIN)

Method: Least Squares Date: 11/24/16 Time: 09:16

Sample (adjusted): 2006M05 2015M12 Included observations: 116 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MURAFIN(-1) D(MURAFIN(-1)) D(MURAFIN(-2)) D(MURAFIN(-3)) C	-0.000574 0.111234 0.265491 0.491976 171.4431	0.001738 0.084045 0.080735 0.085062 121.9455	-0.330430 1.323496 3.288438 5.783739 1.405900	0.7417 0.1884 0.0013 0.0000 0.1625
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.557931 0.542001 712.6881 56379608 -924.0505 35.02302 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	962.9655 1053.094 16.01811 16.13680 16.06629 2.075031

Table : 6.46. ADF Unit Root Test of MuraFin

_			N Workfile									
View	Proc	Object	Properties	Print	Name	Freeze		Sample	Genr	Sheet	Gra	ph
	-	Auamen	ted Dickey	-Fuller	Unit R	oot Tes	t	on D(MI	JRAFII	V.2)		

Null Hypothesis: D(MURAFIN,2) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-16.61599	0.0000
Test critical values:	1% level	-3.487550	
	5% level	-2.886509	
	10% level	-2.580163	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(MURAFIN,3)

Method: Least Squares Date: 11/24/16 Time: 09:17

Sample (adjusted): 2006M05 2015M12 Included observations: 116 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(MURAFIN(-1),2) D(MURAFIN(-1),3) C	-2.377124 0.532290 14.83631	0.143062 0.081178 66.63353	-16.61599 6.557050 0.222655	0.0000 0.0000 0.8242
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.835441 0.832529 717.6572 58198606 -925.8922 286.8422 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	7.525862 1753.665 16.01538 16.08660 16.04429 2.104967

Table: 6.47. PP Unit Root Test of MuraFin

Series: MURAFIN Wo	DIKING THANK			
View Proc Object Prope	erties Print Na	ame Freeze Sa	mple Genr S	heet Grap
Phillip	s-Perron Unit I	Root Test on M	URAFIN	
Null Hypothesis: MURA Exogenous: Constant Bandwidth: 9 (Newey-W			kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test stat	tistic		0.785183	0.9934
Test critical values:	1% level		-3.486064	
	5% level		-2.885863	
	10% level		-2.579818	
*MacKinnon (1996) one	-sided p-value	S.		
Residual variance (no d HAC corrected variance		I)		
	uation (MURAFIN) 09:20	2		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200	uation (MURAFIN) 09:20	2	t-Statistic	
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations:	uation (MURAFIN) 09:20 16M02 2015M1	2 stments Std. Error	t-Statistic	5910098.
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations:	uation (MURAFIN) 09:20 06M02 2015M1 119 after adjus	2 stments		Prob. 0.0125
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations: Variable MURAFIN(-1) C	uation (MURAFIN) 09:20 06M02 2015M1 119 after adjus Coefficient 0.005901 624.3033	2 stments Std. Error 0.002325 157.8221	2.537632 3.955740	Prob. 0.0125
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations: Variable MURAFIN(-1)	uation (MURAFIN) 09:20 16M02 2015M1 119 after adjus Coefficient 0.005901	2 stments Std. Error 0.002325	2.537632 3.955740 lent var	Prob. 0.0125 0.0007 946.6807
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations: Variable MURAFIN(-1) C R-squared	uation (MURAFIN) 09:20 06M02 2015M1 119 after adjus Coefficient 0.005901 624.3033	2 Stments Std. Error 0.002325 157.8221 Mean depend	2.537632 3.955740 lent var	Prob. 0.0125 0.0007 946.6807 1044.804
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations: Variable MURAFIN(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation (MURAFIN) 09:20 16M02 2015M1 119 after adjus Coefficient 0.005901 624.3033 0.052168 0.044067 1021.524 1.22E+08	2 Std. Error 0.002325 157.8221 Mean depende S.D. depende Akaike info cri Schwarz crite	2.537632 3.955740 lent var ent var iterion rion	Prob. 0.0125 0.0007 946.6807 1044.806 16.7126 16.75935
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations: Variable MURAFIN(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	uation (MURAFIN) 09:20 06M02 2015M1 119 after adjus Coefficient 0.005901 624.3033 0.052168 0.044067 1021.524 1.22E+08	2 Std. Error 0.002325 157.8221 Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin	2.537632 3.955740 lent var ent var iterion rion n criter.	Prob. 0.0125 0.0001 946.6807 1044.804 16.7126 16.75931 16.7316
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/24/16 Time: 0 Sample (adjusted): 200 Included observations: Variable MURAFIN(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation (MURAFIN) 09:20 16M02 2015M1 119 after adjus Coefficient 0.005901 624.3033 0.052168 0.044067 1021.524 1.22E+08	2 Std. Error 0.002325 157.8221 Mean depende S.D. depende Akaike info cri Schwarz crite	2.537632 3.955740 lent var ent var iterion rion n criter.	Prob. 0.0125 0.0001 946.6807 1044.804 16.71264 16.75935 16.7316

Table : 6.48. PP Unit Root Test of MuraFin

Series: MURAFIN Wo	rkfile: FINANC	ING OF ISLAM	IC BANKS::Pro.	×
View Proc Object Proper	ties Print Na	ame Freeze	Sample Genr S	heet Graph
Phillips-F	Perron Unit Ro	oot Test on D(MURAFIN)	•
Null Hypothesis: D(MUR Exogenous: Constant Bandwidth: 8 (Newey-We	•		t kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test statis	stic		-6.824649	0.0000
Test critical values:	1% level		-3.486551	
	5% level		-2.886074	
	10% level		-2.579931	
*MacKinnon (1996) one-	sided p-value	S.		
Residual variance (no co		I)		754798.3 1260915.
Phillips-Perron Test Equ Dependent Variable: D(N Method: Least Squares Date: 11/24/16 Time: 09 Sample (adjusted): 2006 Included observations: 1	MURAFIN,2) 9:21 6M03 2015M1:			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(MURAFIN(-1))	-0.447787	0.077416	-5.784183	0.0000
` c ` ″	434.7484	108.6203	4.002459	0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.223856 0.217165 876.2488 89066194 -965.9529	Mean depen S.D. depend Akaike info d Schwarz crit Hannan-Qui	lent var criterion erion nn criter.	13.99153 990.3582 16.40598 16.45294 16.42505
F-statistic	33.45677	Durbin-Wats	on stat	2.453417

0.000000

Prob(F-statistic)

Table : 6.49. ADF Unit Root Test of PSRDEP

 Se	eries: l	PSRDEP	Workfile:	PROFIT	ABILIT	Y OF ISL	Α	MIC BAI	NKS::P		пх
View	Proc	Object	Properties	Print	Name	Freeze	\prod	Sample	Genr	Sheet	Graph
		Augm	ented Dick	ey-Ful	ler Uni	t Root T	e	st on PS	RDEF)	
Null	Hypot	thesis: f	PSRDEP h	as a un	nit root						

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.541660 -3.486551 -2.886074 -2.579931	0.1084

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PSRDEP)

Method: Least Squares Date: 11/22/16 Time: 08:48

Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PSRDEP(-1) D(PSRDEP(-1)) C	-0.125719 -0.225551 0.625328	0.049463 0.089976 0.250899	-2.541660 -2.506788 2.492345	0.0124 0.0136 0.0141
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.131610 0.116508 0.319572 11.74454 -31.30427 8.714517 0.000299	Mean depende S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.006441 0.339991 0.581428 0.651869 0.610030 2.049689

Table : 6.50. ADF Unit Root Test of PSRDEP

, v v v	dile: PROFITAB	ILITY OF ISLAM	IIC BANKS::Pr.	= X
View Proc Object Prope			ample Genr S	
Augmented I	Dickey-Fuller U	nit Root Test	on D(PSRDEP)
Null Hypothesis: D(PSR Exogenous: Constant Lag Length: 0 (Automati	•		2)	
			t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic		-14.51312	0.0000
Test critical values:	1% level		-3.486551	
	5% level		-2.886074	
	10% level		-2.579931	
Dependent Variable: D(Method: Least Squares Date: 11/22/16 Time: 0 Sample (adjusted): 200)8:50)6M03 2015M1:	2		
Included observations:			t Statistic	Prob
Variable	118 after adjus Coefficient	std. Error	t-Statistic	Prob.
			t-Statistic	Prob. 0.0000
Variable	Coefficient	Std. Error		

Table : 6.51. PP Unit Root Test of PSRDEP

	ILLLA OF ISLAN	/IC BANKS::Pr.	F X
	· · · · · · · · · · · · · · · · · · ·	Sample Genr S	
		<u> </u>	
		kernel	
		Adj. t-Stat	Prob.*
tistic 1% level 5% level 10% level		-2.891848 -3.486064 -2.885863 -2.579818	0.0493
e-sided p-value	S.		
correction) e (Bartlett kernel	1)		0.105651 0.084866
	2		
119 after adjus	tments		
119 after adjus Coefficient		t-Statistic	Prob.
	tments	t-Statistic -3.157126 3.119455	Prob. 0.0020 0.0023
	tistic 1% level 5% level 10% level e-sided p-value (Bartlett kerne) (PSRDEP) 508:51	DEP has a unit root Vest automatic) using Bartlet Vest automatic) using Bartlet tistic 1% level 5% level 10% level e-sided p-values. correction) (Bartlett kernel) quation (PSRDEP) (08:51	DEP has a unit root Vest automatic) using Bartlett kernel Adj. t-Stat tistic -2.891848 1% level -3.486064 5% level -2.885863 10% level -2.579818 e-sided p-values. correction) e (Bartlett kernel)

Table : 6.52. PP Unit Root Test of PSRDEP

Series: PSRDEP Wor		me Freeze S	ample Genr S	Sheet Gran
	-Perron Unit Re		<u> </u>	Silect Olup
•		•	JILDEI /	
Null Hypothesis: D(PSF Exogenous: Constant	RDEP) has a ur	nit root		
Bandwidth: 11 (Newey-	West automati	c) using Bartlet	tt kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test sta	tistic		-15.91949	0.0000
Test critical values:	1% level		-3.486551	
	5% level		-2.886074	
	10% level		-2.579931	
*MacKinnon (1996) one	e-sided p-value	S.		
Residual variance (no o	e (Bartlett kerne	1)		0.105121 0.065321
•	uation (PSRDEP,2) 508:51 06:03 2015M1:	2		
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200	uation (PSRDEP,2) 508:51 06:03 2015M1:	2	t-Statistic	0.065321
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200 Included observations:	uation (PSRDEP,2) (08:51 08:51 118 after adjus	2 etments	t-Statistic	0.065321
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200 Included observations:	puation (PSRDEP,2) 08:51 06M03 2015M1: 118 after adjust	2 stments Std. Error		0.065321
Phillips-Perron Test Eq Dependent Variable: D Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200 Included observations: Variable	uation (PSRDEP,2) 08:51 06:03 2015M1: 118 after adjus Coefficient -1.287027	2 stments Std. Error 0.088680	-14.51312 -0.264825	Prob. 0.0000 0.7916
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRDEP(-1)) C	e (Bartlett kerne (psrdep,2) 08:51 06M03 2015M1: 118 after adjus Coefficient -1.287027 -0.007973	2 stments Std. Error 0.088680 0.030107	-14.51312 -0.264825 dent var	Prob.
Phillips-Perron Test Eq Dependent Variable: De Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRDEP(-1)) C R-squared Adjusted R-squared S.E. of regression	e (Bartlett kerne guation (PSRDEP,2) 08:51 06M03 2015M1: 118 after adjus Coefficient -1.287027 -0.007973 0.644859 0.641797 0.327007	2 stments Std. Error 0.088680 0.030107 Mean depend S.D. depende Akaike info cr	-14.51312 -0.264825 dent var ent var iterion	Prob. 0.0000 0.7916 -0.001102 0.546377 0.619132
Phillips-Perron Test Eq Dependent Variable: De Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRDEP(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	Coefficient -1.287027 -0.007973 0.644859 0.641797 0.327007 12.40428	2 Std. Error 0.088680 0.030107 Mean depender S.D. depender Akaike info con Schwarz crite	-14.51312 -0.264825 dent var ent var iterion	Prob. 0.0000 0.7916 -0.001102 0.546377 0.619132 0.666093
Phillips-Perron Test Eq Dependent Variable: De Method: Least Squares Date: 11/22/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRDEP(-1)) C R-squared Adjusted R-squared S.E. of regression	e (Bartlett kerne guation (PSRDEP,2) 08:51 06M03 2015M1: 118 after adjus Coefficient -1.287027 -0.007973 0.644859 0.641797 0.327007	2 stments Std. Error 0.088680 0.030107 Mean depend S.D. depende Akaike info cr	-14.51312 -0.264825 dent var ent var iterion rrion nn criter.	Prob. 0.0000 0.7916 -0.001102 0.546377 0.619132

Table: 6.53. ADF Unit Root Test of PSRWadSav

Series: PSRWADSAV Workfile: DEPOSITS OF ISLAMIC BANKS::Pr 💄 🗖 🗴						
View Proc Object Prope	rties Print Na	ame Freeze	Sample	Genr	Sheet	Graph
Augmented Dickey-Fuller Unit Root Test on PSRWADSAV						
Null Hypothesis: PSRWADSAV has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)						
			t-Stat	istic	Pre	ob.*
Augmented Dickey-Full	er test statistic		-3.667	7934	0.0	058
Test critical values:	1% level		-3.486			
	5% level		-2.885			
	10% level		-2.579	9818		
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	PSRWADSAV) 0:55 6M02 2015M1 119 after adjus	2 stments				
Variable	Coefficient	Std. Erro	r t-S	tatistic	- F	Prob.
PSRWADSAV(-1) C	-0.206617 0.223502	0.05633 0.06260		67934 70031	_	.0004
R-squared	0.103130	Mean depe	endent va	г	0.00	01849
Adjusted R-squared	0.095465	S.D. deper				37635
S.E. of regression	0.178454	Akaike info				92311
Sum squared resid	3.725949	Schwarz cr				45603
Log likelihood	37.24253	Hannan-Q				73345
F-statistic	13.45374	Durbin-Wa	ison stat		2.13	96331

0.000369

Prob(F-statistic)

Table : 6.54. PP Unit Root Test of PSRWadSav

Series: PSRWADSAV Workfile: DEPOSITS OF ISLAMIC BANKS::Pr 🗖 🗴						
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr !	Sheet Graph		
Phillips-Perron Unit Root Test on PSRWADSAV						
Null Hypothesis: PSRWADSAV has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel						
			Adj. t-Stat	Prob.*		
Phillips-Perron test stat	istic		-3.573423	0.0077		
Test critical values:	1% level		-3.486064			
	5% level		-2.885863			
	10% level		-2.579818			
Residual variance (no correction) 0.031310 HAC corrected variance (Bartlett kernel) 0.029348						
HAC corrected variance	(Bartlett kerne	1)		0.029348		
Phillips-Perron Test Eq Dependent Variable: D(uation PSRWADSAV) 10:56 16M02 2015M1:	2		0.029348		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200	uation PSRWADSAV) 10:56 16M02 2015M1:	2	t-Statistic			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	uation PSRWADSAV) 10:56 6M02 2015M1: 119 after adjus	2 etments	t-Statistic	Prob.		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	uation PSRWADSAV) 10:56 16M02 2015M1: 119 after adjus Coefficient	2 etments Std. Error		Prob. 0.0004		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRWADSAV(-1) C	uation PSRWADSAV) 10:56 16M02 2015M1: 119 after adjus Coefficient -0.206617 0.223502	2 stments Std. Error 0.056331 0.062605	-3.667934 3.570031	Prob. 0.0004 0.0005		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRWADSAV(-1) C R-squared	uation PSRWADSAV) 10:56 16M02 2015M1. 119 after adjus Coefficient -0.206617 0.223502 0.103130	2 stments Std. Error 0.056331 0.062605 Mean depen	-3.667934 3.570031	Prob. 0.0004 0.0005		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRWADSAV(-1) C R-squared Adjusted R-squared	uation PSRWADSAV) 10:56 16M02 2015M1: 119 after adjus Coefficient -0.206617 0.223502 0.103130 0.095465	2 etments Std. Error 0.056331 0.062605 Mean depen	-3.667934 3.570031 ident var lent var	Prob. 0.0004 0.0005 0.001849 0.187635		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRWADSAV(-1) C R-squared Adjusted R-squared S.E. of regression	uation PSRWADSAV) 10:56 16M02 2015M1: 119 after adjus Coefficient -0.206617 0.223502 0.103130 0.095465 0.178454	2 Std. Error 0.056331 0.062605 Mean depen S.D. depend Akaike info o	-3.667934 3.570031 ident var lent var criterion	Prob. 0.0004 0.0005 0.001849 0.187635 -0.592311		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRWADSAV(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation PSRWADSAV) 10:56 16M02 2015M1: 119 after adjus Coefficient -0.206617 0.223502 0.103130 0.095465 0.178454 3.725949	2 stments Std. Error 0.056331 0.062605 Mean depen S.D. depend Akaike info of Schwarz crit	-3.667934 3.570031 Ident var Jent var criterion erion	Prob. 0.0004 0.0005 0.001849 0.187635 -0.592311 -0.545603		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRWADSAV(-1) C R-squared Adjusted R-squared S.E. of regression	uation PSRWADSAV) 10:56 16M02 2015M1: 119 after adjus Coefficient -0.206617 0.223502 0.103130 0.095465 0.178454	2 Std. Error 0.056331 0.062605 Mean depen S.D. depend Akaike info o	-3.667934 3.570031 Ident var Jent var criterion erion inn criter.	Prob.		

Table : 6.55. ADF Unit Root Test of PSRMudhSav

/iew Proc Object Prope	View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph							
Augmented Dickey-Fuller Unit Root Test on PSRMUDHSAV								
Null Hypothesis: PSRMUDHSAV has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)								
			t-Statistic	Prob.*				
Augmented Dickey-Full	er test statistic		-2.844455	0.0552				
Test critical values:	1% level		-3.486064					
	5% level		-2.885863					
	10% level		-2.579818					
*MacKinnon (1996) one Augmented Dickey-Full Dependent Variable: D(er Test Equatio	n						
Augmented Dickey-Full	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1:	on /) 2						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1:	on /) 2	t-Statistic	Prob.				
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1: 119 after adjust Coefficient -0.129575	2 tments Std. Error 0.045554	-2.844455	0.0053				
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1: 119 after adjus Coefficient	on /) 2 ttments Std. Error						
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHSAV(-1) C R-squared	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1: 119 after adjust Coefficient -0.129575	2 std. Error 0.045554 0.159096	-2.844455 2.766172 dent var	0.0053 0.0066 0.001176				
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHSAV(-1) C R-squared Adjusted R-squared	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1: 119 after adjust Coefficient -0.129575 0.440088 0.064680 0.056686	std. Error 0.045554 0.159096 Mean dependers.D. depender	-2.844455 2.766172 dent var ent var	0.0053 0.0066 0.001176 0.435272				
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHSAV(-1) C R-squared Adjusted R-squared S.E. of regression	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1: 119 after adjus Coefficient -0.129575 0.440088 0.056686 0.422755	std. Error 0.045554 0.159096 Mean depender S.D. depender Akaike info ce	-2.844455 2.766172 dent var ent var riterion	0.0053 0.0066 0.001176 0.435272 1.132614				
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHSAV(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1: 119 after adjus Coefficient -0.129575 0.440088 0.056686 0.422755 20.91041	std. Error 0.045554 0.159096 Mean dependent S.D. dependent Akaike info conscious schwarz crite	-2.844455 2.766172 dent var ent var riterion	0.0053 0.0066 0.001176 0.435272 1.132614 1.179322				
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHSAV(-1) C R-squared Adjusted R-squared S.E. of regression	er Test Equation PSRMUDHSAN 10:57 16M02 2015M1: 119 after adjus Coefficient -0.129575 0.440088 0.056686 0.422755	std. Error 0.045554 0.159096 Mean depender S.D. depender Akaike info ce	-2.844455 2.766172 dent var ent var riterion erion nn criter.	0.0053				

Table : 6.56. ADF Unit Root Test of PSRMudhSav

Series: PSRMUDHSAV Workfile: DEPOSITS OF ISLAMIC BANKS: 💷 🗴						
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph						
Augmented Dickey-Fuller Unit Root Test on D(PSRMUDHSAV)						
Null Hypothesis: D(PSRMUDHSAV) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)						
			t-Statistic	Prob.*		
Augmented Dickey-Fulle	r test statistic		-12.14543	0.0000		
Test critical values:	1% level		-3.486551			
	5% level		-2.886074			
	10% level		-2.579931			
*MacKinnon (1996) one- Augmented Dickey-Fulle	•					
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1	PSRMUDHSAN 0:57 6M03 2015M1: 18 after adjus	/,2) 2 stments				
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006	PSRMUDHSA\ 0:57 6M03 2015M1:	/,2) 2	t-Statistic	Prob.		
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1	PSRMUDHSAN 0:57 6M03 2015M1: 18 after adjus	/,2) 2 stments	t-Statistic	Prob. 0.0000		
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1	PSRMUDHSA\ D:57 6M03 2015M1: 18 after adjus Coefficient	2 stments Std. Error				
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1))	D:57 6M03 2015M1: 18 after adjus Coefficient -1.119639	2 stments Std. Error 0.092186	-12.14543 0.004478	0.0000		
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1(Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared	D:57 6M03 2015M1: 18 after adjus Coefficient -1.119639 0.000180 0.559792 0.555997	2 Std. Error 0.092186 0.040111 Mean dependers.D. depender	-12.14543 0.004478 dent var ent var	0.0000 0.9964		
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1(Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared S.E. of regression	0:57 0:57 0:57 0:57 0:57 0:57 18 after adjus 0:67 0:67 0:7 0:7 0:7 0:7 0:7 0:7 0:7 0:	2 std. Error 0.092186 0.040111 Mean depender S.D. depender Akaike info ce	-12.14543 0.004478 dent var ent var riterion	0.0000 0.9964 8.47E-05 0.653899 1.193153		
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1(Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	0:57 6M03 2015M1: 18 after adjus Coefficient -1.119639 0.000180 0.559792 0.555997 0.435716 22.02244	2 std. Error 0.092186 0.040111 Mean depender S.D. depender Akaike info ce Schwarz crite	-12.14543 0.004478 dent var ent var riterion	0.0000 0.9964 8.47E-05 0.653899 1.193153 1.240113		
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1(Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0:57 6M03 2015M1: 18 after adjus Coefficient -1.119639 0.000180 0.559792 0.555997 0.435716 22.02244 -68.39600	2 stments Std. Error 0.092186 0.040111 Mean depender S.D. depender Akaike info con Schwarz crite Hannan-Quir	-12.14543 0.004478 dent var ent var riterion erion nn criter.	0.0000 0.9964 8.47E-05 0.653899 1.193153 1.240113 1.212220		
Augmented Dickey-Fulle Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1(Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	0:57 6M03 2015M1: 18 after adjus Coefficient -1.119639 0.000180 0.559792 0.555997 0.435716 22.02244	2 std. Error 0.092186 0.040111 Mean depender S.D. depender Akaike info ce Schwarz crite	-12.14543 0.004478 dent var ent var riterion erion nn criter.	0.0000 0.9964 8.47E-05 0.653899 1.193153 1.240113		

Table : 6.57. PP Unit Root Test of PSRMudhSav

View Proc Object Prope	rties Print Na	ame Freeze	Sample Genr S	Sheet Grap		
Phillips-Perron Unit Root Test on PSRMUDHSAV						
Null Hypothesis: PSRMUDHSAV has a unit root Exogenous: Constant Bandwidth: 3 (Newey-West automatic) using Bartlett kernel						
Adj. t-Stat Prob.*						
Phillips-Perron test stat	istic		-2.835969	0.0563		
Test critical values:	1% level 5% level 10% level		-3.486064 -2.885863 -2.579818	0.0000		
*MacKinnon (1996) one	-sided p-value	S.				
Residual variance (no correction) 0.175718 HAC corrected variance (Bartlett kernel) 0.174541						
		I)		0.175718 0.174541		
	uation PSRMUDHSA\ 10:58 6M02 2015M1	v) 2				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200	uation PSRMUDHSA\ 10:58 6M02 2015M1	v) 2	t-Statistic			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	uation PSRMUDHSA\ 0:58 6M02 2015M1. 119 after adjus	V) 2 stments		0.174541		

Table : 6.58. PP Unit Root Test of PSRMudhSav

Series: PSRMUDHSAV	Workfile: DEF	OSITS OF ISLA	AMIC BANKS::	🗆 >					
View Proc Object Proper	-		Sample Genr S						
	rron Unit Root	Test on D(PS	RMUDHSAV						
Null Hypothesis: D(PSRMUDHSAV) has a unit root Exogenous: Constant Bandwidth: 3 (Newey-West automatic) using Bartlett kernel									
Adj. t-Stat Prob.*									
Phillips-Perron test stati	stic		-12.16719	0.0000					
Test critical values:	1% level		-3.486551						
	5% level		-2.886074						
	10% level		-2.579931						
*MacKinnon (1996) one-	sided p-value	S.							
Residual variance (no co	orrection)		Residual variance (no correction) 0.186631						
······································									
HAC corrected variance	(Bartlett kerne	1)		0.181117					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1/ Sample (adjusted): 2006 Included observations: 1	nation PSRMUDHSA 0:58 6M03 2015M1	/,2) 2		0.181117					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006	nation PSRMUDHSA 0:58 6M03 2015M1	/,2) 2	t-Statistic	0.181117					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1/ Sample (adjusted): 2006 Included observations: 1	uation PSRMUDHSA 0:58 5M03 2015M1 118 after adjus	/,2) 2 etments	t-Statistic -12.14543						
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1	uation PSRMUDHSA 0:58 6M03 2015M1 18 after adjus Coefficient	/,2) 2 stments Std. Error		Prob. 0.0000					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C	pation PSRMUDHSA 0:58 6M03 2015M1 18 after adjus Coefficient -1.119639	/,2) 2 stments Std. Error 0.092186 0.040111	-12.14543 0.004478	Prob. 0.0000 0.9964					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1/ Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared	Description PSRMUDHSA 0:58 6M03 2015M1 18 after adjus Coefficient -1.119639 0.000180	/,2) 2 stments Std. Error 0.092186 0.040111 Mean deper	-12.14543 0.004478	Prob. 0.0000 0.9964 8.47E-05					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C	Diation PSRMUDHSA 0:58 6M03 2015M1 118 after adjus Coefficient -1.119639 0.000180 0.559792	/,2) 2 stments Std. Error 0.092186 0.040111	-12.14543 0.004478 indent var dent var	Prob. 0.0000 0.9964 8.47E-05 0.653899					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 1(Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared	Diation PSRMUDHSA 0:58 6M03 2015M1 118 after adjus Coefficient -1.119639 0.000180 0.559792 0.555997	/,2) 2 stments Std. Error 0.092186 0.040111 Mean deper	-12.14543 0.004478 ident var dent var criterion	Prob. 0.0000 0.9964 8.47E-05 0.653899 1.193153					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared S.E. of regression	Diation PSRMUDHSA 0:58 5M03 2015M1 118 after adjus Coefficient -1.119639 0.000180 0.5559792 0.555997 0.435716	2 stments Std. Error 0.092186 0.040111 Mean dependent of the state of	-12.14543 0.004478 ident var dent var criterion erion	Prob. 0.0000 0.9964 8.47E-05 0.653899 1.193153 1.240113					
Phillips-Perron Test Equ Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 10 Sample (adjusted): 2006 Included observations: 1 Variable D(PSRMUDHSAV(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	Distriction Distriction Distriction Distriction Distriction Distriction Coefficient -1.119639 0.000180 0.559792 0.555997 0.435716 22.02244	/,2) 2 stments Std. Error 0.092186 0.040111 Mean dependent of the control of the	-12.14543 0.004478 indent var dent var criterion erion inn criter.	Prob.					

Table : 6.59. ADF Unit Root Test of PSRMudhDep

Series: PSRMUDHDEP Workfile: DEPOSITS OF ISLAMIC BANKS:: 🗖 🗴							
View Proc Object Proper	ties Print Na	me Freeze	Sample Genr S	heet Graph			
Augmented Dickey-Fuller Unit Root Test on PSRMUDHDEP							
Null Hypothesis: PSRMUDHDEP has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)							
			t-Statistic	Prob.*			
Augmented Dickey-Fulle			-2.727165	0.0724			
Test critical values:	1% level		-3.486064				
	5% level		-2.885863				
	10% level		-2.579818				
Dependent Variable: D(F Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006	*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(PSRMUDHDEP) Method: Least Squares Date: 11/18/16 Time: 11:01 Sample (adjusted): 2006M02 2015M12 Included observations: 119 after adjustments						
Valiable	Coefficient	Std. Error	t-Statistic	Prob.			
PSRMUDHDEP(-1) C	-0.117169 0.795558	0.042964 0.297381		0.0074 0.0085			
R-squared 0.059768 Mean dependent var -0.004874							
Adjusted R-squared	0.051732	S.D. depen		0.536190			
S.E. of regression	0.522137	Akaike info		1.554889			
Sum squared resid Log likelihood	31.89733 -90.51592	Schwarz cri Hannan-Qu		1.601597 1.573856			
F-statistic	7.437432	Durbin-Wat		2.330702			
Prob(F-statistic)	0.007372	Durbin-Wat	Jon Jiai	2.550102			

Table : 6.60. ADF Unit Root Test of PSRMudhDep

Series: PSRMUDHDEP Workfile: DEPOSITS OF ISLAMIC BANKS:: 🗖 🗴 View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph						
Augmented Dickey-Fuller Unit Root Test on D(PSRMUDHDEP)						
Null Hypothesis: D(PSRMUDHDEP) has a unit root						
Exogenous: Constant						
Lag Length: 2 (Automatic - based on SIC, maxlag=12)						
			t-Statistic	Prob.*		
Augmented Dickey-Fuller	test statistic		-9.518721	0.0000		
Test critical values:	1% level		-3.487550			
	5% level		-2.886509			
	10% level		-2.580163			
Augmented Dickey-Fuller Test Equation Dependent Variable: D(PSRMUDHDEP,2) Method: Least Squares Date: 11/18/16 Time: 11:01 Sample (adjusted): 2006M05 2015M12 Included observations: 116 after adjustments						
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11	SRMUDHDE :01 M05 2015M1: 16 after adjus	P,2) 2 stments	t-Statistic	Proh		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006	SRMUDHDE :01 M05 2015M1:	P,2) 2	t-Statistic	Prob.		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable	SRMUDHDE :01 M05 2015M1: 16 after adjus Coefficient -1.886441	P,2) 2 stments Std. Error 0.198182	-9.518721	0.000		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2)	:01 :01 :05 2015M1: 16 after adjus : Coefficient -1.886441 0.533537	2 stments Std. Error 0.198182 0.148669	-9.518721 3.588759	0.000		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2) D(PSRMUDHDEP(-2),2)	:01 M05 2015M1: 16 after adjus Coefficient -1.886441 0.533537 0.238166	2 stments Std. Error 0.198182 0.148669 0.091248	-9.518721 3.588759 2.610111	0.000 0.000 0.010		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2)	:01 :01 :05 2015M1: 16 after adjus : Coefficient -1.886441 0.533537	2 stments Std. Error 0.198182 0.148669	-9.518721 3.588759	0.000 0.000 0.010		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2) D(PSRMUDHDEP(-2),2)	:01 M05 2015M1: 16 after adjus Coefficient -1.886441 0.533537 0.238166	2 stments Std. Error 0.198182 0.148669 0.091248	-9.518721 3.588759 2.610111 -0.429420	0.000 0.000 0.010 0.668		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2) D(PSRMUDHDEP(-2),2) C R-squared Adjusted R-squared	:01 M05 2015M1: 16 after adjus Coefficient -1.886441 0.533537 0.238166 -0.020023 0.661261 0.652187	P,2) 2 stments Std. Error 0.198182 0.148669 0.091248 0.046628	-9.518721 3.588759 2.610111 -0.429420	0.000 0.000 0.010 0.668		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2) C R-squared Adjusted R-squared S.E. of regression	:01 M05 2015M1: 16 after adjus Coefficient -1.886441 0.533537 0.238166 -0.020023 0.661261 0.652187 0.501648	P,2) 2 stments Std. Error 0.198182 0.148669 0.091248 0.046628 Mean dependence S.D. dependence Akaike info cr	-9.518721 3.588759 2.610111 -0.429420 dent var ent var iterion	0.0000 0.0100 0.6684 0.00275 0.85060 1.49203		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	:01 M05 2015M1: 16 after adjus Coefficient -1.886441 0.533537 0.238166 -0.020023 0.661261 0.652187 0.501648 28.18491	2 stments Std. Error 0.198182 0.148669 0.091248 0.046628 Mean dependence S.D. dependence Akaike info cr	-9.518721 3.588759 2.610111 -0.429420 dent var ent var iterion rion	0.0000 0.0100 0.6684 0.00275 0.85060 1.49203 1.58699		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2) D(PSRMUDHDEP(-2),2) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	:01 M05 2015M1: 16 after adjus Coefficient -1.886441 0.533537 0.238166 -0.020023 0.661261 0.652187 0.501648 28.18491 -82.53827	P,2) Std. Error 0.198182 0.148669 0.091248 0.046628 Mean depended S.D. depended Akaike info crischwarz crite Hannan-Quir	-9.518721 3.588759 2.610111 -0.429420 dent var ent var iterion rion	0.0000 0.0000 0.0100 0.6684 0.00275 0.85060 1.49203 1.58699 1.53058		
Dependent Variable: D(P: Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006 Included observations: 11 Variable D(PSRMUDHDEP(-1)) D(PSRMUDHDEP(-1),2) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	:01 M05 2015M1: 16 after adjus Coefficient -1.886441 0.533537 0.238166 -0.020023 0.661261 0.652187 0.501648 28.18491	2 stments Std. Error 0.198182 0.148669 0.091248 0.046628 Mean dependence S.D. dependence Akaike info cr	-9.518721 3.588759 2.610111 -0.429420 dent var ent var iterion rion	0.0000 0.0100 0.6684 0.00275 0.85060 1.49203 1.58699		

Table : 6.61. PP Unit Root Test of PSRMudhDep

/iew Proc Object Prope	rties Print Na	ame Freeze Sa	ample Genr S	Sheet Grapi			
Phillips-Perron Unit Root Test on PSRMUDHDEP							
Null Hypothesis: PSRMUDHDEP has a unit root							
Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel							
			Adj. t-Stat	Prob.*			
Phillips-Perron test stat	istic		-2.512593	0.1150			
Test critical values:	1% level		-3.486064				
	5% level		-2.885863				
	10% level		-2.579818				
*MacKinnon (1996) one	-sided p-value	S.					
	Desidual variance (no correction) 0.000045						
Residual variance (no c	orrection)			0.268045			
Residual variance (no c HAC corrected variance Phillips-Perron Test Equ	(Bartlett kerne	<u>-</u>		0.268045 0.220810			
HAC corrected variance	uation PSRMUDHDE 1:02 6M02 2015M1	P)					
Phillips-Perron Test Equal Dependent Variable: D() Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200	uation PSRMUDHDE 1:02 6M02 2015M1	P)	t-Statistic				
Phillips-Perron Test Equal Dependent Variable: D(IMethod: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	uation PSRMUDHDE 1:02 6M02 2015M1: 119 after adjus	P) 2 stments Std. Error		0.220810			
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations:	uation PSRMUDHDE 1:02 6M02 2015M1: 119 after adjus	P) 2 stments	t-Statistic -2.727165 2.675219	0.220810			
Phillips-Perron Test Equal Dependent Variable: D(I Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHDEP(-1) C	Uation PSRMUDHDE 1:02 6M02 2015M1 119 after adjus Coefficient -0.117169 0.795558	P) 2 stments Std. Error 0.042964 0.297381	-2.727165 2.675219	Prob. 0.0074 0.0085			
Phillips-Perron Test Equal Dependent Variable: D() Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHDEP(-1) C R-squared	uation PSRMUDHDE 1:02 6M02 2015M1: 119 after adjus Coefficient -0.117169	P) 2 stments Std. Error 0.042964	-2.727165 2.675219 dent var	Prob. 0.0074			
Phillips-Perron Test Equal Dependent Variable: D(IMethod: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHDEP(-1)	Uation PSRMUDHDE 1:02 6M02 2015M1: 119 after adjus Coefficient -0.117169 0.795558 0.059768	P) 2 stments Std. Error 0.042964 0.297381 Mean depend	-2.727165 2.675219 dent var	Prob. 0.0074 0.0085			
Phillips-Perron Test Equal Dependent Variable: D(IMMethod: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHDEP(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	Uation PSRMUDHDE 1:02 6M02 2015M1: 119 after adjus Coefficient -0.117169 0.795558 0.059768 0.051732	P) 2 stments Std. Error 0.042964 0.297381 Mean depende	-2.727165 2.675219 dent var ent var iterion	Prob. 0.0074 0.0085 -0.004874 0.536190			
Phillips-Perron Test Equipoper Method: Least Squares Date: 11/18/16 Time: 1 Sample (adjusted): 200 Included observations: Variable PSRMUDHDEP(-1) C R-squared Adjusted R-squared S.E. of regression	Uation PSRMUDHDE 1:02 6M02 2015M1: 119 after adjus Coefficient -0.117169 0.795558 0.059768 0.051732 0.522137	P) Std. Error 0.042964 0.297381 Mean dependence S.D. dependence Akaike info cr	-2.727165 2.675219 dent var ent var iterion rion in criter.	Prob. 0.0074 0.0085 -0.004874 0.536190 1.554889			

Table : 6.62. PP Unit Root Test of PSRMudhDep

Null Hypothesis: D(PSRMUDHDEP) Name Freeze Sample Genr Sheet Graph	Series: PSRMUDHDEP Workfile: DEPOSITS OF ISLAMIC BANKS: 🗖 🗴						
Null Hypothesis: D(PSRMUDHDEP) has a unit root	View Proc Object Propert	ties Print Na	me Freeze S	ample Genr S	heet Graph		
Exogenous: Constant Bandwidth: 15 (Newey-West automatic) using Bartlett kernel Adj. t-Stat Prob.*	Phillips-Perron Unit Root Test on D(PSRMUDHDEP)						
Phillips-Perron test statistic	Exogenous: Constant						
Test critical values:				Adj. t-Stat	Prob.*		
The image	Phillips-Perron test statis	stic		-15.91500	0.0000		
*MacKinnon (1996) one-sided p-values. Residual variance (no correction)	Test critical values:						
*MacKinnon (1996) one-sided p-values. Residual variance (no correction)							
Residual variance (no correction)		10% level		-2.579931			
Phillips-Perron Test Equation Dependent Variable: D(PSRMUDHDEP,2) Method: Least Squares Date: 11/18/16 Time: 11:02 Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments	*MacKinnon (1996) one-s	sided p-value	S.				
Phillips-Perron Test Equation	Residual variance (no co	rrection)			0.266811		
Dependent Variable: D(PSRMUDHDEP,2) Method: Least Squares Date: 11/18/16 Time: 11:02 Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments Variable Coefficient Std. Error t-Statistic Prob. D(PSRMUDHDEP(-1)) -1.242907 0.089585 -13.87400 0.0000 C -0.012361 0.047964 -0.257716 0.7971 R-squared 0.623972 Mean dependent var -0.002881 Adjusted R-squared 0.620731 S.D. dependent var 0.845942 S.E. of regression 0.520972 Akaike info criterion 1.550562 Sum squared resid 31.48375 Schwarz criterion 1.597523 Log likelihood -89.48317 Hannan-Quinn criter. 1.569630 F-statistic 192.4880 Durbin-Watson stat 2.109150 C Data	HAC corrected variance (Bartlett kerne	I)		0.133411		
Variable Coefficient Std. Error t-Statistic Prob. D(PSRMUDHDEP(-1)) -1.242907 0.089585 -13.87400 0.0000 C -0.012361 0.047964 -0.257716 0.7971 R-squared 0.623972 Mean dependent var -0.002881 Adjusted R-squared 0.620731 S.D. dependent var 0.845942 S.E. of regression 0.520972 Akaike info criterion 1.550562 Sum squared resid 31.48375 Schwarz criterion 1.597523 Log likelihood -89.48317 Hannan-Quinn criter. 1.569630 F-statistic 192.4880 Durbin-Watson stat 2.109150	Dependent Variable: D(P Method: Least Squares Date: 11/18/16 Time: 11 Sample (adjusted): 2006	SRMUDHDE :02 M03 2015M1:	2				
C -0.012361 0.047964 -0.257716 0.7971 R-squared 0.623972 Mean dependent var -0.002881 Adjusted R-squared 0.620731 S.D. dependent var 0.845942 S.E. of regression 0.520972 Akaike info criterion 1.550562 Sum squared resid 31.48375 Schwarz criterion 1.597523 Log likelihood -89.48317 Hannan-Quinn criter. 1.569630 F-statistic 192.4880 Durbin-Watson stat 2.109150	Variable	Coefficient	Std. Error	t-Statistic	Prob.		
Adjusted R-squared 0.620731 S.D. dependent var 0.845942 S.E. of regression 0.520972 Akaike info criterion 1.550562 Sum squared resid 31.48375 Schwarz criterion 1.597523 Log likelihood -89.48317 Hannan-Quinn criter. 1.569630 F-statistic 192.4880 Durbin-Watson stat 2.109150							
S.E. of regression 0.520972 Akaike info criterion 1.550562 Sum squared resid 31.48375 Schwarz criterion 1.597523 Log likelihood -89.48317 Hannan-Quinn criter. 1.569630 F-statistic 192.4880 Durbin-Watson stat 2.109150	R-squared	0.623972	Mean depend	dent var	-0.002881		
Sum squared resid 31.48375 Schwarz criterion 1.597523 Log likelihood -89.48317 Hannan-Quinn criter. 1.569630 F-statistic 192.4880 Durbin-Watson stat 2.109150							
Log likelihood -89.48317 Hannan-Quinn criter. 1.569630 F-statistic 192.4880 Durbin-Watson stat 2.109150							
F-statistic 192.4880 Durbin-Watson stat 2.109150							
			r rannan acan				
			Durbin-watst	on stat	2.109130		
		2.230000					

Table : 6.63. ADF Unit Root Test of PSRMudhDep01

Series: PSR_MUDHDEP01 Workfile: DEPOSITS OF ISLAMIC BAN 🗖 🗴						
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph						
Augmented Dickey-Fuller Unit Root Test on PSR_MUDHDEP01						
Null Hypothesis: PSR_MUDHDEP01 has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11)						
t-Statistic Prob.*						
Augmented Dickey-Fuller	test statistic		-2.861993	0.0543		
Test critical values:	1% level		-3.511262			
	5% level		-2.896779			
	10% level		-2.585626			
Augmented Dickey-Fuller Dependent Variable: D(P Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009 Included observations: 83	SR_MUDHDB :54 M02 2015M1;	EP01) 2	t-Statistic	Prob		
Variable	Coellicient	Std. Effor	t-Statistic	P100.		
PSR_MUDHDEP01(-1)	-0.181488	0.063413	-2.861993	0.0054		
С	1.204716	0.426841	2.822399	0.0060		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.091837 0.080625 0.594707 28.64780 -73.62570 8.191006 0.005356	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion in criter.	-0.002530 0.620236 1.822306 1.880591 1.845722 2.360862		
	5.00000					

Table : 6.64. ADF Unit Root Test of PSRMudhDep01

Series: PSR_MUDHDEP01	Workfile: DE	POSITS OF ISLA	AMIC BANKS	🗆 X		
View Proc Object Properties			nple Genr She			
Augmented Dickey-Fuller Unit Root Test on D(PSR_MUDHDEP01)						
Null Hypothesis: D(PSR_MUDHDEP01) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11)						
			t-Statistic	Prob.*		
Augmented Dickey-Fuller te	st statistic		-12.16046	0.0001		
Test critical values:	1% level		-3.512290			
	5% level		-2.897223			
	10% level		-2.585861			
Augmented Dickey-Fuller Te Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:54 Sample (adjusted): 2009M0 Included observations: 82 a	2_MUDHDEP 4 3 2015M12		t-Statistic	Prob.		
Valiable		Old. Ell'ol	· otatione			
D(PSR_MUDHDEP01(-1)) C	-1.295992 -0.010048	0.106574 0.066001	-12.16046 -0.152237	0.0000 0.8794		
R-squared	0.648933	Mean depen	dent var	-0.001829		
Adjusted R-squared	0.644545	S.D. depend		1.002402		
S.E. of regression	0.597633	Akaike info c		1.832408		
Sum squared resid	28.57320	Schwarz crite		1.891108		
Log likelihood F-statistic	-73.12871 147.8768	Hannan-Qui		1.855975 2.077691		
Prob(F-statistic)	0.000000	Durbin-wats	on stat	2.077091		

Table : 6.65. PP Unit Root Test of PSRMudhDep01

Series: PSR_MUDHDEP	01 Workfile:	DEPOSITS OF	ISLAMIC BAN	_ = X
View Proc Object Propert	-	7 11	Sample Genr S	
Phillips-Perron Unit Root Test on PSR MUDHDEP01				
Null Hypothesis: PSR_MUDHDEP01 has a unit root Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel				
			Adj. t-Stat	Prob.*
Phillips-Perron test statistic -2.630511 Test critical values: 1% level -3.511262 5% level -2.896779 10% level -2.585626			0.0910	
*MacKinnon (1996) one-sided p-values.				
Residual variance (no correction) HAC corrected variance (Bartlett kernel)				0.345154 0.279399
Phillips-Perron Test Equation Dependent Variable: D(PSR_MUDHDEP01) Method: Least Squares Date: 11/21/16 Time: 10:54 Sample (adjusted): 2009M02 2015M12 Included observations: 83 after adjustments				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
PSR_MUDHDEP01(-1) C	-0.181488 1.204716	0.063413 0.426841	-2.861993 2.822399	0.0054 0.0060
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.091837 0.080625 0.594707 28.64780 -73.62570 8.191006 0.005356	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.002530 0.620236 1.822306 1.880591 1.845722 2.360862

Table : 6.66. PP Unit Root Test of PSRMudhDep01

Series: PSR_MUDHDEP01	WOIKIIIE. DE			
View Proc Object Properties	Print Name	e Freeze Sam	ple Genr She	et Graph
Phillips-Perron	Unit Root Te	st on D(PSR_I	MUDHDEP01)	
Null Hypothesis: D(PSR_M Exogenous: Constant Bandwidth: 7 (Newey-West				
			Adj. t-Stat	Prob.*
Phillips-Perron test statistic			-12.67035	0.0001
Test critical values:	1% level		-3.512290	
	5% level		-2.897223	
	10% level		-2.585861	
Residual variance (no corre HAC corrected variance (Ba				0.348454 0.274346
	on R_MUDHDEP 5 3 2015M12			
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009M0	on R_MUDHDEP 5 3 2015M12		t-Statistic	
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009M0 Included observations: 82 a Variable D(PSR_MUDHDEP01(-1))	on R_MUDHDEP 5 03 2015M12 after adjustme Coefficient -1.295992	Std. Error 0.106574	-12.16046	Prob. 0.0000
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009MC Included observations: 82 a	on R_MUDHDEP 5 03 2015M12 ofter adjustme	ents Std. Error		Prob. 0.0000
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009M0 Included observations: 82 a Variable D(PSR_MUDHDEP01(-1)) C	on R_MUDHDEP 5 03 2015M12 after adjustme Coefficient -1.295992	Std. Error 0.106574	-12.16046 -0.152237	Prob. 0.0000 0.8794
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009M0 Included observations: 82 a Variable D(PSR_MUDHDEP01(-1))	on R_MUDHDEP 5 03 2015M12 offer adjustme Coefficient -1.295992 -0.010048	Std. Error 0.106574 0.066001	-12.16046 -0.152237 dent var	0.274346 Prob.
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009M0 Included observations: 82 a Variable D(PSR_MUDHDEP01(-1)) C R-squared	on R_MUDHDEP 5 03 2015M12 offer adjustme Coefficient -1.295992 -0.010048 0.648933	Std. Error 0.106574 0.066001 Mean depend	-12.16046 -0.152237 dent var ent var	Prob. 0.0000 0.8794
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009MC Included observations: 82 a Variable D(PSR_MUDHDEP01(-1)) C R-squared Adjusted R-squared	on R_MUDHDEP 5 33 2015M12 after adjustme Coefficient -1.295992 -0.010048 0.648933 0.644545	Std. Error 0.106574 0.066001 Mean dependers.D. depender	-12.16046 -0.152237 dent var ent var riterion	Prob. 0.0000 0.8794 -0.001829 1.002402 1.832408
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009MC Included observations: 82 a Variable D(PSR_MUDHDEP01(-1)) C R-squared Adjusted R-squared S.E. of regression	on R_MUDHDEP 5 03 2015M12 offer adjustme -1.295992 -0.010048 0.648933 0.644545 0.597633	Std. Error 0.106574 0.066001 Mean dependent S.D. dependent Akaike info co	-12.16046 -0.152237 dent var ent var riterion	Prob. 0.0000 0.8794 -0.001829 1.002402
Phillips-Perron Test Equation Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:5: Sample (adjusted): 2009M(Included observations: 82 a Variable D(PSR_MUDHDEP01(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	on R_MUDHDEP 5 03 2015M12 after adjustme -1.295992 -0.010048 0.648933 0.644545 0.597633 28.57320	Std. Error 0.106574 0.066001 Mean depend S.D. depende Akaike info ci	-12.16046 -0.152237 dent var ent var riterion rrion nn criter.	Prob. 0.0000 0.8794 -0.001829 1.002402 1.832408 1.891108

Table : 6.67. ADF Unit Root Test of PSRMudhDep03

Series: PSR_MUDHDEP	03 Workfile:	DEPOSITS OF IS	SLAMIC BAN	_ = ×
View Proc Object Property	ties Print Na	me Freeze S	ample Genr S	heet Graph
Augmented Dicke	y-Fuller Unit	Root Test on P	SR_MUDHDE	P03
Null Hypothesis: PSR_M Exogenous: Constant Lag Length: 0 (Automatic)	
			t-Statistic	Prob.*
Augmented Dickey-Fuller	test statistic		-2.384219	0.1493
Test critical values:	1% level		-3.511262	
	5% level		-2.896779	
	10% level		-2.585626	
Augmented Dickey-Fuller Dependent Variable: D(P Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009 Included observations: 8	SR_MUDHDI 1:56 M02 2015M1: 3 after adjusti	EP03) 2 ments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
PSR_MUDHDEP03(-1) C	-0.132119 0.926904	0.055414 0.393011	-2.384219 2.358470	0.0195 0.0208
R-squared	0.065577	Mean depend	dent var	0.001687
Adjusted R-squared	0.054041	S.D. depende		0.582547
S.E. of regression	0.566587	Akaike info cr		1.725430
Sum squared resid	26.00272	Schwarz crite		1.783716
Log likelihood	-69.60536	Hannan-Quin		1.748846
F-statistic Prob(F-statistic)	5.684500 0.019453	Durbin-Wats	on stat	1.952017

Table : 6.68. ADF Unit Root Test of PSRMudhDep03

Series: PSR_MUDHDEP03 [View Proc Object Properties Augmented Dickey-F	Print Name	Freeze	ple Genr She	et Graph St
Null Hypothesis: D(PSR_MI Exogenous: Constant Lag Length: 0 (Automatic - b	JDHDEP03) I	has a unit root		-03)
			t-Statistic	Prob.*
Augmented Dickey-Fuller te Test critical values:	st statistic 1% level 5% level 10% level		-10.08420 -3.512290 -2.897223 -2.585861	0.0000
Augmented Dickey-Fuller Te Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:56 Sample (adjusted): 2009M0 Included observations: 82 a	_MUDHDEP 3 3 2015M12			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PSR_MUDHDEP03(-1)) C	-1.083472 -0.015630	0.107443 0.062502	-10.08420 -0.250076	0.0000 0.8032
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.559692 0.554188 0.565980 25.62669 -68.66648 101.6910 0.000000	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	-0.013780 0.847667 1.723573 1.782273 1.747140 2.068013

Table : 6.69. PP Unit Root Test of PSRMudhDep03

/iew Proc Object Propert	ies Print Na	me Freeze	Sample Genr !	Sheet Grap
Phillips-Perr	on Unit Root	Test on PSR_	MUDHDEP03	· ·
Null Hypothesis: PSR_M Exogenous: Constant Bandwidth: 3 (Newey-We				
			Adj. t-Stat	Prob.*
Phillips-Perron test statis Test critical values:	1% level 5% level 10% level		-2.292011 -3.511262 -2.896779 -2.585626	0.1770
*MacKinnon (1996) one-s	sided p-value	S.		
Danidual variance (no co	rraction)			0.313286
		1)		0.287042
Phillips-Perron Test Equipopendent Variable: D(PMethod: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009	Bartlett kerne ation SR_MUDHDI	EP03)		
Phillips-Perron Test Equipopendent Variable: D(PMethod: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009	Bartlett kerne ation SR_MUDHDI	EP03)	t-Statistic	0.287042
Residual variance (no co HAC corrected variance (Phillips-Perron Test Equal Dependent Variable: D(P Method: Least Squares Date: 11/21/16 Time: 10 Sample (adjusted): 2009 Included observations: 8: Variable PSR_MUDHDEP03(-1) C	Bartlett kerne ation SR_MUDHDI ::56 M02 2015M1 3 after adjust	EP03) 2 ments	-2.384219	Prob. 0.0195

Table : 6.70. PP Unit Root Test of PSRMudhDep03

Series: PSR_MUDHDEP03 Workfile: DEPOSITS OF ISLAMIC BANKS 🗖 🗴
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph St
Phillips-Perron Unit Root Test on D(PSR_MUDHDEP03)
Null Hypothesis: D(PSR_MUDHDEP03) has a unit root Exogenous: Constant Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic	-10.36391	0.0000
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	

*MacKinnon (1996) one-sided p-values.

Phillips-Perron Test Equation

Dependent Variable: D(PSR_MUDHDEP03,2)

Method: Least Squares Date: 11/21/16 Time: 10:57

Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PSR_MUDHDEP03(-1)) C	-1.083472 -0.015630	0.107443 0.062502	-10.08420 -0.250076	0.0000 0.8032
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.559692 0.554188 0.565980 25.62669 -68.66648 101.6910 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.013780 0.847667 1.723573 1.782273 1.747140 2.068013

Table : 6.71. ADF Unit Root Test of PSRMudhDep12

Series: PSR_MUDHDEP12	11	I- II-				
View Proc Object Properties			ple Genr She	<u> </u>		
Augmented Dickey-Fuller Unit Root Test on PSR_MUDHDEP12						
Null Hypothesis: PSR_MUDHDEP12 has a unit root						
Exogenous: Constant Lag Length: 2 (Automatic - b	OIP on hasen	maylan-11)				
Lag Length. 2 (Natornatio		, maxiag=11)				
			t-Statistic	Prob.*		
Augmented Dickey-Fuller te			-1.468042	0.5447		
Test critical values:	1% level		-3.513344			
	5% level 10% level		-2.897678 -2.586103			
	.07010101		2.000 100			
*MacKinnon (1996) one-sid	ed p-values.					
Augmented Dickey-Fuller Te	est Equation					
Dependent Variable: D(PSR		12)				
Dependent Variable: D(PSF Method: Least Squares	R_MUDHDEP	12)				
Dependent Variable: D(PSR	R_MUDHDEP 7	12)				
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57	R_MUDHDEP 7 04 2015M12	·				
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0	R_MUDHDEP 7 04 2015M12	·	t-Statistic	Prob.		
Dependent Variable: D(PSF Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a	R_MUDHDEP 7 04 2015M12 ifter adjustme	ents	t-Statistic			
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1))	R_MUDHDEP 7 04 2015M12 ifter adjustme Coefficient -0.092260 -0.310025	Std. Error 0.062846 0.110253	-1.468042 -2.811956	0.1462 0.0062		
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1)) D(PSR_MUDHDEP12(-2))	R_MUDHDEP 7 14 2015M12 Ifter adjustme Coefficient -0.092260 -0.310025 -0.343612	Std. Error 0.062846 0.110253 0.106319	-1.468042 -2.811956 -3.231878	0.1462 0.0062 0.0018		
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1))	R_MUDHDEP 7 04 2015M12 ifter adjustme Coefficient -0.092260 -0.310025	Std. Error 0.062846 0.110253	-1.468042 -2.811956	0.1462 0.0062 0.0018		
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1)) C R-squared	7 04 2015M12 fiter adjustme Coefficient -0.092260 -0.310025 -0.343612 0.620745 0.226596	Std. Error 0.062846 0.110253 0.106319 0.442011 Mean depend	-1.468042 -2.811956 -3.231878 1.404366	0.1462 0.0062 0.0018 0.1642		
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1)) C R-squared Adjusted R-squared	7 04 2015M12 fiter adjustme Coefficient -0.092260 -0.310025 -0.343612 0.620745 0.226596 0.196463	9.062846 0.110253 0.106319 0.442011 Mean depend S.D. depende	-1.468042 -2.811956 -3.231878 1.404366 dent var	0.1462 0.0062 0.0018 0.1642 -0.008519 0.601841		
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1)) C R-squared Adjusted R-squared S.E. of regression	7 04 2015M12 fiter adjustme Coefficient -0.092260 -0.310025 -0.343612 0.620745 0.226596 0.196463 0.539492	9.062846 0.110253 0.106319 0.442011 Mean depend S.D. depend Akaike info co	-1.468042 -2.811956 -3.231878 1.404366 dent var ent var riterion	0.1462 0.0062 0.0018 0.1642 -0.008519 0.601841 1.651743		
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	7 A 2015M12 A 2015M12 A 2015M12 A 2015M12 A 2015M12 -0.092260 -0.310025 -0.343612 0.620745 0.226596 0.196463 0.539492 22.41095	Std. Error 0.062846 0.110253 0.106319 0.442011 Mean dependents D. dependents Akaike info conscious schwarz crite	-1.468042 -2.811956 -3.231878 1.404366 dent var ent var riterion	0.1462 0.0062 0.0018 0.1642 -0.008519 0.601841 1.651743 1.769987		
Dependent Variable: D(PSR Method: Least Squares Date: 11/21/16 Time: 10:57 Sample (adjusted): 2009M0 Included observations: 81 a Variable PSR_MUDHDEP12(-1) D(PSR_MUDHDEP12(-1)) C R-squared Adjusted R-squared S.E. of regression	7 04 2015M12 fiter adjustme Coefficient -0.092260 -0.310025 -0.343612 0.620745 0.226596 0.196463 0.539492	9.062846 0.110253 0.106319 0.442011 Mean depend S.D. depend Akaike info co	-1.468042 -2.811956 -3.231878 1.404366 dent var ent var riterion erion nn criter.	0.1462 0.0062 0.0018 0.1642 -0.008519 0.601841 1.651743		

Table : 6.72. ADF Unit Root Test of PSRMudhDep12

_				
Series: PSR_MUDHDEP12	Workfile: DEP	OSITS OF ISLAN	ИIC BANKS 20.	= X
View Proc Object Properties	Print Name	Freeze Samp	le Genr Sheet	Graph Stat
Augmented Dickey-F	uller Unit Roo	ot Test on D(P	SR_MUDHDEP	12)
Null Hypothesis: D(PSR_MU	DHDEP12) h	as a unit root		
Exogenous: Constant	•			
Lag Length: 1 (Automatic - ba	sed on SIC,	maxlag=11)		
			t-Statistic	Prob.*
Augmented Dickey-Fuller tes	t statistic		-10.51032	0.0001
Test critical values:	1% level		-3.513344	
	5% level 10% level		-2.897678 -2.586103	
	10% level		-2.580 103	
*MacKinnon (1996) one-side	u p-values.			
Augmented Dickey-Fuller Tes Dependent Variable: D(PSR_ Method: Least Squares Date: 11/21/16 Time: 10:58 Sample (adjusted): 2009M04 Included observations: 81 aft	MUDHDEP1			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PSR_MUDHDEP12(-1))	-1.743661	0.165900	-10.51032	0.0000
D(PSR_MUDHDEP12(-1),2)	0.378764	0.104352	3.629671	0.0005
C	-0.022136	0.060462	-0.366104	0.7153
R-squared	0.686342	Mean depend	dent var	0.007654
Adjusted R-squared	0.678299	S.D. depende	ent var	0.958189
S.E. of regression	0.543472	Akaike info cr		1.654656
Sum squared resid	23.03821	Schwarz crite		1.743339
Log likelihood	-64.01356	Hannan-Quir		
L-etatietic	0E 33030	Durbin-Mate	an etat	1.690237
F-statistic Prob(F-statistic)	85.33920 0.000000	Durbin-Wats	on stat	1.690237 2.003723

Table : 6.73. PP Unit Root Test of PSRMudhDep12

Series: PSR_MUDHDEP:	12 Workfile: I	DEPOSITS OF I	SLAMIC BAN	_ = ×
View Proc Object Propert	ies Print Na	me Freeze S	iample Genr S	heet Graph
Phillips-Perro	on Unit Root	Test on PSR_I	MUDHDEP12	
Null Hypothesis: PSR_MI Exogenous: Constant Bandwidth: 1 (Newey-We				
			Adj. t-Stat	Prob.*
Phillips-Perron test statis Test critical values:	1% level 5% level		-2.658979 -3.511262 -2.896779	0.0856
	10% level		-2.585626	
*MacKinnon (1996) one-s	sided p-value	s.		
Residual variance (no co HAC corrected variance (l		1)		0.319898 0.269081
Phillips-Perron Test Equations Dependent Variable: D(P Method: Least Squares Date: 11/21/16 Time: 11 Sample (adjusted): 2009 Included observations: 8	SR_MUDHDI :00 M02 2015M1:	2		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
PSR_MUDHDEP12(-1) C	-0.174836 1.202646	0.061570 0.433910	-2.839630 2.771649	0.0057 0.0069
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.090536 0.079309 0.572535 26.55150 -70.47210 8.063497	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Qui	ent var riterion erion	-0.016506 0.596685 1.746316 1.804601 1.769731

Table : 6.74. PP Unit Root Test of PSRMudhDep12

/iew Proc Object Properties Phillips-Perron U Null Hypothesis: D(PSR_MU Exogenous: Constant	Print Name		ple Genr She	
Null Hypothesis: D(PSR_MU Exogenous: Constant		st on D(PSR N	<u>. T T T </u>	
Exogenous: Constant		, -	•	
	DHDEP12)1	nas a unit root		
Bandwidth: 11 (Newey-West	automatic) u	ising Bartlett k	ernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test statistic			-13.65792	0.0001
Test critical values:	1% level		-3.512290	
	5% level		-2.897223	
	10% level		-2.585861	
*MacKinnon (1996) one-side	d p-values.			
Residual variance (no correc				0.330807
HAC corrected variance (Bart	tlett kernel)			0.156082
Dependent Variable: D(PSR_ Method: Least Squares Date: 11/21/16 Time: 11:01 Sample (adjusted): 2009M03 Included observations: 82 aff	3 2015M12			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
	4.004465			
D/PSR_MUDHDEP12(-1))	-1 261195	0.107893	-11 68932	
D(PSR_MUDHDEP12(-1)) C	-1.261195 -0.018177	0.107893 0.064339	-11.68932 -0.282519	0.0000
С	-0.018177	0.064339	-0.282519	0.0000
			-0.282519 dent var	0.0000 0.7783 0.006585
C R-squared	-0.018177 0.630724	0.064339 Mean depend	-0.282519 dent var ent var	0.0000
C R-squared Adjusted R-squared	-0.018177 0.630724 0.626108 0.582303 27.12614	0.064339 Mean depend S.D. depende	-0.282519 dent var ent var iterion	0.0000 0.7783 0.006588 0.952308 1.780436
C R-squared Adjusted R-squared S.E. of regression	-0.018177 0.630724 0.626108 0.582303	0.064339 Mean depend S.D. depende Akaike info cr	-0.282519 dent var ent var iterion rion nn criter.	0.0000 0.7783 0.006585 0.952305

Table : 6.75. ADF Unit Root Test of PSRFIN

Series: PSRFIN Workfile: PROFITABILITY OF ISLAMIC BANKS::Pr = X						
/iew Proc Object Prope			<u> </u>	heet Grap		
Augmented Dickey-Fuller Unit Root Test on PSRFIN						
Null Hypothesis: PSRFIN has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=12)						
			t-Statistic	Prob.*		
Augmented Dickey-Full	er test statistic		-1.657788	0.4500		
Test critical values:	1% level		-3.486551			
	5% level		-2.886074			
	10% level		-2.579931			
*MacKinnon (1996) one Augmented Dickey-Full	er Test Equatio					
	er Test Equatio (PSRFIN) 08:46 06M03 2015M1:	on 2				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200	er Test Equatio (PSRFIN) 08:46 06M03 2015M1:	on 2	t-Statistic	Prob.		
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equation (PSRFIN) 08:46 06:03 2015M1: 118 after adjus	on 2 tments	t-Statistic -1.657788			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equation PSRFIN) 08:46 06M03 2015M1: 118 after adjus Coefficient	on 2 stments Std. Error		0.1001		
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRFIN(-1)	er Test Equation (PSRFIN) 08:46 06M03 2015M1 118 after adjus Coefficient -0.065506	2 stments Std. Error 0.039514	-1.657788	0.1001		
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) D(PSRFIN(-1))	er Test Equation (PSRFIN) 08:46 06M03 2015M1 118 after adjus Coefficient -0.065506 -0.314853	2 stments Std. Error 0.039514 0.088671	-1.657788 -3.550816 1.648969	0.1001 0.0006 0.1019		
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) D(PSRFIN(-1)) C	er Test Equation (PSRFIN) 08:46 06M03 2015M1: 118 after adjus Coefficient -0.065506 -0.314853 0.847198	2 stments Std. Error 0.039514 0.088671 0.513775	-1.657788 -3.550816 1.648969	0.1001 0.0006 0.1019		
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) D(PSRFIN(-1)) C R-squared	er Test Equation (PSRFIN) 08:46 06M03 2015M1: 118 after adjus Coefficient -0.065506 -0.314853 0.847198	2 stments Std. Error 0.039514 0.088671 0.513775 Mean depen	-1.657788 -3.550816 1.648969 dent var ent var	0.1001 0.0006 0.1019 -0.001780 0.442291		
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) D(PSRFIN(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation (PSRFIN) 08:46 06M03 2015M1: 118 after adjust Coefficient -0.065506 -0.314853 0.847198 0.141711 0.126784 0.413304 19.64428	2 stments Std. Error 0.039514 0.088671 0.513775 Mean depend Akaike info ci	-1.657788 -3.550816 1.648969 dent var ent var riterion	0.1001 0.0006 0.1019 -0.001780 0.442291 1.095826 1.166267		
Augmented Dickey-Fullion Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) D(PSRFIN(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	er Test Equation (PSRFIN) 08:46 06M03 2015M1: 118 after adjust Coefficient -0.065506 -0.314853 0.847198 0.141711 0.126784 0.413304 19.64428 -61.65375	2 stments Std. Error 0.039514 0.088671 0.513775 Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quii	-1.657788 -3.550816 1.648969 dent var ent var riterion erion nn criter.	0.1001 0.0006 0.1019 -0.001780 0.442291 1.095826 1.166267 1.124428		
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) D(PSRFIN(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation (PSRFIN) 08:46 06M03 2015M1: 118 after adjust Coefficient -0.065506 -0.314853 0.847198 0.141711 0.126784 0.413304 19.64428	2 stments Std. Error 0.039514 0.088671 0.513775 Mean depend Akaike info ci	-1.657788 -3.550816 1.648969 dent var ent var riterion erion nn criter.	Prob. 0.1001 0.0006 0.1019 -0.001780 0.442291 1.095826 1.166267 1.124428 1.952003		

Table : 6.76. ADF Unit Root Test of PSRFIN

Series: PSRFIN Work	Series: PSRFIN Workfile: PROFITABILITY OF ISLAMIC BANKS::Pr 🗖 🗴						
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	heet Graph			
Augmented	Dickey-Fuller l	Jnit Root Test	on D(PSRFIN)	^			
Null Hypothesis: D(PSRFIN) has a unit root							
Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)							
Lay Length: 0 (Automatic - based on Sic, maxiay=12)							
			t-Statistic	Prob.*			
Augmented Dickey-Full	er test statistic		-15.49079	0.0000			
Test critical values:	1% level		-3.486551				
	5% level		-2.886074				
	10% level		-2.579931				
*MacKinnon (1996) one Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200 Included observations:	er Test Equation PSRFIN,2) 08:47 06M03 2015M1:	on 2					
Ilicidaed observations.	1 10 alter aujus	unenta					
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
D(PSRFIN(-1))	-1.348077	0.087024	-15.49079	0.0000			
C	-0.002193	0.038333	-0.057199	0.9545			
R-squared	0.674125	Mean depen	dent var	-0.000593			
Adjusted R-squared	0.671316	S.D. depend		0.726320			
S.E. of regression	0.416406	Akaike info c	riterion	1.102494			
Sum squared resid	20.11374	Schwarz crite		1.149455			
Log likelihood	-63.04715	Hannan-Quir		1.121561			
F-statistic	239.9647	Durbin-Wats	on stat	1.966441			
Prob(F-statistic)	0.000000						

Table : 6.77. PP Unit Root Test of PSRFIN

7 7					
View Proc Object Prop	erties Print Na	me Freeze Sa	mple Genr S	Sheet Graph	
Phillips-Perron Unit Root Test on PSRFIN					
Null Hypothesis: PSRF Exogenous: Constant Bandwidth: 1 (Newey-V			kernel		
			Adj. t-Stat	Prob.*	
Phillips-Perron test sta	tistic		-2.077544	0.2541	
Test critical values:	1% level		-3.486064		
	5% level		-2.885863		
	10% level		-2.579818		
*MacKinnon (1996) one	e-sided p-value	S.			
Residual variance (no	correction)			0.183179	
HAC corrected variance	(Bartlett kerne	n		0.131249	
		•,		0.131243	
Phillips-Perron Test Eq Dependent Variable: D Method: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200 Included observations:	uation (PSRFIN) 08:47 06:02 2015M1	2		0.131243	
Dependent Variable: Di Method: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200	uation (PSRFIN) 08:47 06:02 2015M1	2	t-Statistic	Prob.	
Dependent Variable: Domethod: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200 Included observations:	juation (PSRFIN) 08:47 06M02 2015M1: 119 after adjus	2 tments	t-Statistic		
Dependent Variable: D Method: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200 Included observations:	juation (PSRFIN) 08:47 06M02 2015M1: 119 after adjus	2 tments Std. Error		Prob.	
Dependent Variable: Domethod: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) C	uation (PSRFIN) 08:47 06M02 2015M1: 119 after adjus Coefficient -0.097071 1.256704	2 stments Std. Error 0.039989 0.519637	-2.427416 2.418428	Prob. 0.0167 0.0171	
Dependent Variable: Domethod: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRFIN(-1)	uation (PSRFIN) 08:47 06M02 2015M1: 119 after adjus Coefficient -0.097071	2 tments Std. Error 0.039989	-2.427416 2.418428 lent var	Prob. 0.0167	
Dependent Variable: Domethod: Least Squares Date: 11/23/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRFIN(-1) C R-squared	uation (PSRFIN) 08:47 06M02 2015M1: 119 after adjus Coefficient -0.097071 1.256704	2 stments Std. Error 0.039989 0.519637 Mean depend	-2.427416 2.418428 lent var	Prob. 0.0167 0.0171 -0.001008	

0.016731

-67.86477 Hannan-Quinn criter.

5.892349 Durbin-Watson stat

1.193164 2.566527

Log likelihood

Prob(F-statistic)

F-statistic

Table : 6.78. PP Unit Root Test of PSRFIN

Series: PSRFIN World	Series: PSRFIN Workfile: PROFITABILITY OF ISLAMIC BANKS::Pr 🗖 🗴						
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr	Sheet Graph			
Phillips-Perron Unit Root Test on D(PSRFIN)							
Null Hypothesis: D(PSRFIN) has a unit root Exogenous: Constant Bandwidth: 2 (Newey-West automatic) using Bartlett kernel							
			Adj. t-Stat	Prob.*			
Phillips-Perron test stati Test critical values:	stic 1% level 5% level 10% level		-15.31878 -3.486551 -2.886074 -2.579931	0.0000			
*MacKinnon (1996) one	-sided p-value	S.					
Residual variance (no c HAC corrected variance		l)		0.170455 0.182481			
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/23/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRFIN,2) 8:48 6M03 2015M1:						
Variable	Coefficient	Std. Erro	r t-Statistic	Prob.			
D(PSRFIN(-1)) C	-1.348077 -0.002193	0.087024 0.03833		0.0000 0.9545			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.674125 0.671316 0.416406 20.11374 -63.04715 239.9647 0.000000	Mean depe S.D. deper Akaike info Schwarz cr Hannan-Q Durbin-Wa	ident var criterion iterion uinn criter.	-0.000593 0.726320 1.102494 1.149455 1.121561 1.966441			

Table : 6.79. ADF Unit Root Test of PSR_{pls}

Series: PSRPLS Workfile: FINANCING OF ISLAMIC BANKS::Profita 🗖 🗴						
View Proc Object Prope	erties Print Na	me Freeze	Sample Genr S	heet Graph		
Augmented Dickey-Fuller Unit Root Test on PSRPLS						
Null Hypothesis: PSRPLS has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)						
			t-Statistic	Prob.*		
Augmented Dickey-Full			-2.983118	0.0394		
Test critical values:	1% level		-3.486064			
	5% level		-2.885863			
	10% level		-2.579818			
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0	(PSRPLS)	n				
Dependent Variable: D(Method: Least Squares	(PSRPLS) 09:19 06M02 2015M1:	2	t-Statistic	Prob.		
Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRPLS) 09:19 06M02 2015M1: 119 after adjus	2 tments	-2.983118	Prob. 0.0035 0.0036		
Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRPLS(-1)	PSRPLS) 09:19 06M02 2015M1: 119 after adjus Coefficient -0.137512	2 tments Std. Error 0.046097	-2.983118 2.973069	0.0035		
Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C R-squared Adjusted R-squared	(PSRPLS) 09:19 106M02 2015M1: 119 after adjus Coefficient -0.137512 1.936716 0.070684 0.062741	2 std. Error 0.046097 0.651420 Mean dependence	-2.983118 2.973069 Indent var dent var	0.0035 0.0036 0.002605 0.711520		
Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C R-squared Adjusted R-squared S.E. of regression	PSRPLS) 09:19 06M02 2015M1: 119 after adjus Coefficient -0.137512 1.936716 0.070684 0.062741 0.688837	2 std. Error 0.046097 0.651420 Mean depen S.D. depend Akaike info	-2.983118 2.973069 Indent vari dent vari criterion	0.0035 0.0036 0.002605 0.711520 2.109041		
Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	PSRPLS) 09:19 06M02 2015M1: 119 after adjus Coefficient -0.137512 1.936716 0.070684 0.062741 0.688837 55.51615	2 std. Error 0.046097 0.651420 Mean deper S.D. depend Akaike info of Schwarz crit	-2.983118 2.973069 Indent var dent var criterion erion	0.0035 0.0036 0.002605 0.711520 2.109041 2.155749		
Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C R-squared Adjusted R-squared S.E. of regression	PSRPLS) 09:19 06M02 2015M1: 119 after adjus Coefficient -0.137512 1.936716 0.070684 0.062741 0.688837	2 std. Error 0.046097 0.651420 Mean depen S.D. depend Akaike info	-2.983118 2.973069 Indent var dent var criterion derion derion derion	0.0035 0.0036 0.002605 0.711520 2.109041		

Table : 6.80. ADF Unit Root Test of PSR_{pls}

View Proc Object Prope	erties Print Na	me Freeze	Sample Genr S	heet Graph		
_	Dickey-Fuller U		<u> </u>			
Null Hypothesis: D(PSRPLS) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)						
			t-Statistic	Prob.*		
Augmented Dickey-Full	er test statistic		-14.19364	0.0000		
Test critical values:	1% level		-3.486551			
	5% level		-2.886074			
	10% level		-2.579931			
*MacKinnon (1996) one Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16. Time: (er Test Equatio (PSRPLS,2)					
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations:	er Test Equatio (PSRPLS,2) 09:20 06M03 2015M1: 118 after adjus	n 2 tments				
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200	er Test Equatio (PSRPLS,2) : : : : : : : : : : : : : : : : : : :	n 2	t-Statistic	Prob.		
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations:	er Test Equatio (PSRPLS,2) 09:20 06M03 2015M1: 118 after adjus	n 2 tments	t-Statistic -14.19364			
Augmented Dickey-Full Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations:	er Test Equatio (PSRPLS,2) 09:20 06M03 2015M1: 118 after adjus	on 2 tments Std. Error		0.0000		
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1))	er Test Equatio (PSRPLS,2) 09:20 06M03 2015M1: 118 after adjus Coefficient -1.267622	2 tments Std. Error 0.089309	-14.19364 -0.011891	0.0000 0.9905		
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared Adjusted R-squared	er Test Equatio (PSRPLS,2) 09:20 06M03 2015M1: 118 after adjus Coefficient -1.267622 -0.000756	2 tments Std. Error 0.089309 0.063538	-14.19364 -0.011891	0.0000 0.9905 -0.002797 1.136906		
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared Adjusted R-squared S.E. of regression	er Test Equatio (PSRPLS,2) i09:20 108M03 2015M1: 118 after adjus Coefficient -1.267622 -0.000756 0.634599 0.631449 0.690198	std. Error 0.089309 0.063538 Mean depender S.D. depender Akaike info of	-14.19364 -0.011891 dent var lent var criterion	0.0000 0.9905 -0.002797 1.136906 2.113126		
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equatio (PSRPLS,2) 19:20 16M03 2015M1: 118 after adjus Coefficient -1.267622 -0.000756 0.634599 0.631449 0.690198 55.25925	std. Error 0.089309 0.063538 Mean depens.D. depender S.D. depender Schwarz crit	-14.19364 -0.011891 Ident var lent var criterion erion	0.0000 0.9905 -0.002797 1.136906 2.113126 2.160087		
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared Adjusted R-squared S.E. of regression	er Test Equatio (PSRPLS,2) i09:20 108M03 2015M1: 118 after adjus Coefficient -1.267622 -0.000756 0.634599 0.631449 0.690198	std. Error 0.089309 0.063538 Mean depender S.D. depender Akaike info of	-14.19364 -0.011891 Ident var lent var criterion erion nn criter.	Prob. 0.0000 0.9905 -0.002797 1.136906 2.113126 2.160087 2.132194 2.056899		

Table : 6.81. PP Unit Root Test of PSR_{pls}

Series: PSRPLS Worl		7 1		T T		
View Proc Object Prope	erties Print Na	me Freeze S	ample Genr S	heet Grap		
Phillips-Perron Unit Root Test on PSRPLS						
Null Hypothesis: PSRP Exogenous: Constant Bandwidth: 0 (Newey-W			kernel			
			Adj. t-Stat	Prob.*		
Phillips-Perron test sta	tistic		-2.983118	0.0394		
Test critical values:	1% level		-3.486064			
	5% level		-2.885863			
	10% level		-2.579818			
*MacKinnon (1996) one	e-sided p-value	S.				
Residual variance (no	correction)			0.466522		
,						
Phillips-Perron Test Fo	(Bartlett kerne	1)		0.466522		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations:	uation (PSRPLS) 09:21	2				
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200	uation (PSRPLS) 09:21	2	t-Statistic			
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable	uation (PSRPLS) 09:21 109:41 119 after adjus	2 ttments	t-Statistic	0.466522 Prob.		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations:	uation (PSRPLS) 09:21 06M02 2015M1: 119 after adjust	2 trments Std. Error		Prob. 0.0035		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C	(Bartlett kerne (uation (PSRPLS) (9:21 (06M02 2015M1: 119 after adjus (Coefficient -0.137512 1.936716	2 trments Std. Error 0.046097 0.651420	-2.983118 2.973069	Prob. 0.0036 0.0036		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C	uation (PSRPLS) 09:21 06M02 2015M1: 119 after adjus Coefficient -0.137512	2 tments Std. Error 0.046097 0.651420 Mean depend	-2.983118 2.973069	Prob. 0.0036 0.0036		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C R-squared Adjusted R-squared	(Bartlett kerne (Juation (PSRPLS) (19:21 (19:21) (19:2	2 trments Std. Error 0.046097 0.651420	-2.983118 2.973069 Jent var	0.466522		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C	e (Bartlett kerne quation (PSRPLS) 09:21 06M02 2015M1 119 after adjus Coefficient -0.137512 1.936716 0.070684 0.062741	2 stments Std. Error 0.046097 0.651420 Mean depende S.D. depende	-2.983118 2.973069 Jent var ent var iterion	Prob. 0.0035 0.0036 0.711520 2.10904		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C R-squared Adjusted R-squared S.E. of regression	e (Bartlett kerne quation (PSRPLS) 09:21 06M02 2015M1: 119 after adjus Coefficient -0.137512 1.936716 0.070684 0.062741 0.688837	2 stments Std. Error 0.046097 0.651420 Mean depende S.D. depende Akaike info cr	-2.983118 2.973069 lent var ent var iterion rion	Prob. 0.0035 0.0036 0.002605 0.711520		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRPLS(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	Coefficient -0.137512 1.936716 0.070684 0.062741 0.688837 55.51615	2 stments Std. Error 0.046097 0.651420 Mean depend S.D. depende Akaike info cr Schwarz crite	-2.983118 2.973069 Ilent var ent var iterion rion n criter.	Prob. 0.0035 0.0036 0.711520 2.109041 2.155748		

Table : 6.82. PP Unit Root Test of PSR_{pls}

Series: PSRPLS Work						
View Proc Object Prope	erties Print Na	ame Freeze Sa	ample Genr S	Sheet Grap		
Phillips-Perron Unit Root Test on D(PSRPLS)						
Null Hypothesis: D(PSF Exogenous: Constant Bandwidth: 4 (Newey-W	•		kernel			
			Adj. t-Stat	Prob.*		
Phillips-Perron test stat	tistic		-14.35916	0.0000		
Test critical values:	1% level		-3.486551			
	5% level		-2.886074			
	10% level		-2.579931			
*MacKinnon (1996) one	e-sided p-value	S.				
Pacidual variance (ne correction) 0.469200						
Residual variance (no	correction)			0.468299		
Residual variance (no of HAC corrected variance	(Bartlett kerne	1)		0.468299 0.431428		
HAC corrected variance	uation (PSRPLS,2) 29:21 06M03 2015M1	2				
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200	uation (PSRPLS,2) 29:21 06M03 2015M1	2	t-Statistic			
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	uation (PSRPLS,2) 09:21 106M03 2015M1. 118 after adjus	2 etments	t-Statistic	0.431428 Prob.		
Phillips-Perron Test Eq Dependent Variable: Du Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	puation (PSRPLS,2) 09:21 06M03 2015M1 118 after adjust	2 stments Std. Error		Prob. 0.0000		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C	uation (PSRPLS,2) 09:21 06M03 2015M1 118 after adjus Coefficient -1.267622 -0.000756	2 stments Std. Error 0.089309 0.063538	-14.19364 -0.011891	Prob. 0.0000 0.9905		
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared	uation (PSRPLS,2) 09:21 106M03 2015M1 118 after adjus Coefficient -1.267622	2 stments Std. Error 0.089309 0.063538 Mean depend	-14.19364 -0.011891	Prob. 0.0000 0.9905		
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C	uation (PSRPLS,2) 09:21 06M03 2015M1 118 after adjus Coefficient -1.267622 -0.000756 0.634599	2 stments Std. Error 0.089309 0.063538	-14.19364 -0.011891 dent var	Prob. 0.0000 0.9905 -0.002797 1.136906		
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared Adjusted R-squared	e (Bartlett kerne quation (PSRPLS,2) 09:21 06M03 2015M1 118 after adjus Coefficient -1.267622 -0.000756 0.634599 0.631449	2 Std. Error 0.089309 0.063538 Mean depende S.D. depende	-14.19364 -0.011891 dent var ent var iterion	Prob. 0.0000 0.9905 -0.00279 1.136900 2.113120		
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared Adjusted R-squared S.E. of regression	e (Bartlett kerne quation (PSRPLS,2) 09:21 106M03 2015M1. 118 after adjus Coefficient -1.267622 -0.000756 0.634599 0.631449 0.690198	2 Std. Error 0.089309 0.063538 Mean depende S.D. depende Akaike info cr	-14.19364 -0.011891 dent var ent var iterion rion	Prob. 0.0000 0.9905 -0.002797 1.136906 2.113126 2.160087		
Phillips-Perron Test Eq Dependent Variable: Dr Method: Least Squares Date: 11/19/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRPLS(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	Quation (PSRPLS,2) 09:21 106M03 2015M1: 118 after adjus Coefficient -1.267622 -0.000756 0.634599 0.631449 0.690198 55.25925	2 stments Std. Error 0.089309 0.063538 Mean depend S.D. depende Akaike info cr Schwarz crite	-14.19364 -0.011891 dent var ent var iterion rion in criter.	0.431428		

Table : 6.83. ADF Unit Root Test of PSR_{mudhfin}

Series: PSRMUDH Workfile: FINANCING OF ISLAMIC BANKS 200 🗖 🗴							
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Augmented Dickey-Fuller Unit Root Test on PSRMUDH							
Null Hypothesis: PSRMUDH has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11)							
	t-Statistic Prob.*						
Augmented Dickey-Fulle	r test statistic		-2.305917	0.1726			
Test critical values:	1% level 5% level 10% level		-3.511262 -2.896779 -2.585626				
*MacKinnon (1996) one- Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 8	er Test Equation PSRMUDH) 8:28 9M02 2015M1: 33 after adjusti	on 2 ments					
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
PSRMUDH(-1) C	-0.132553 2.106820	0.057484 0.961587	-2.305917 2.190981	0.0237 0.0313			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	R-squared 0.061601 Mean dependent var Adjusted R-squared -0.085663 S.E. of regression 1.308090 Akaike info criterion 3.398815 Sum squared resid 138.5991 Schwarz criterion 3.457100 Log likelihood -139.0508 Hannan-Quinn criter. 3.422231						

0.023672

Prob(F-statistic)

Table: 6.84. ADF Unit Root Test of PSR mudbfin

Series: PSRMUDH Workfile: FINANCING OF ... _ = ×

View Proc Object Properties Print Name Freeze Sample Genr Sh Augmented Dickey-Fuller Unit Root Test on D(PSRMUDH)

Null Hypothesis: D(PSRMUDH) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-9.703350	0.0000
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PSRMUDH,2)

Method: Least Squares Date: 24/11/16 Time: 21:32

Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PSRMUDH(-1)) C	-1.081606 -0.092183	0.111467 0.149880	-9.703350 -0.615045	0.0000 0.5403
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.540639 0.534897 1.354208 146.7103 -140.2043 94.15501 0.000000	Mean depen S.D. depend Akaike info Schwarz crit Hannan-Qui Durbin-Wats	ent var criterion erion nn criter.	0.004634 1.985687 3.468398 3.527099 3.491966 2.013069

Table : 6.85. PP Unit Root Test of PSR_{mudhfin}

Series: PSRMUDH W	orkfile: FINANC	CING OF ISLAMI	IC BANKS 20	_		
View Proc Object Prope			ample Genr S			
Phillips-Perron Unit Root Test on PSRMUDH						
Null Hypothesis: PSRM Exogenous: Constant Bandwidth: 2 (Newey-W	UDH has a uni	t root				
			Adj. t-Stat	Prob.*		
Phillips-Perron test stat Test critical values:	1% level 5% level 10% level		-2.278776 -3.511262 -2.896779 -2.585626	0.1812		
*MacKinnon (1996) one	-sided p-value	S.				
Residual variance (no o		1)		1.669869 1.632437		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRMUDH))8:31)9M02 2015M1:					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
PSRMUDH(-1) C	-0.132553 2.106820	0.057484 0.961587	-2.305917 2.190981	0.0237 0.0313		

Table: 6.86. PP Unit Root Test of PSR_{mudhfin}

Series: PSRMUDH W	orkfile: FINANC	CING OF ISLAM	IC BANKS 20	_ = ×						
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph										
Phillips-Perron Unit Root Test on D(PSRMUDH)										
Null Hypothesis: D(PSRMUDH) has a unit root Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel										
	Adj. t-Stat Prob.*									
Phillips-Perron test stati Test critical values:	Phillips-Perron test statistic -9.705742 Test critical values: 1% level -3.512290 5% level -2.897223 10% level -2.585861									
*MacKinnon (1996) one	-sided p-value	S.								
Residual variance (no c HAC corrected variance		1)		1.789150 1.776825						
Phillips-Perron Test Equal Dependent Variable: D(I Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 8	PSRMUDH,2) 8:31 9M03 2015M1:									
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
D(PSRMUDH(-1)) C	-1.081606 -0.092183	0.111467 0.149880	-9.703350 -0.615045	0.0000 0.5403						
R-squared 0.540639 Mean dependent var 0.00463 Adjusted R-squared 0.534897 S.D. dependent var 1.98568 S.E. of regression 1.354208 Akaike info criterion 3.46839 Sum squared resid 146.7103 Schwarz criterion 3.52709 Log likelihood -140.2043 Hannan-Quinn criter. 3.49196 F-statistic 94.15501 Durbin-Watson stat 2.01306 Prob(F-statistic) 0.000000 Durbin-Watson stat 2.01306										

Table : 6.87. ADF Unit Root Test of PSR_{musyfin}

Series: PSRMUSY Wo	orkfile: FINANC	ING OF ISLAMI	C BANKS 200	🗆 ×				
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph								
Augmented I	Dickey-Fuller L	Init Root Test	on PSRMUSY					
Null Hypothesis: PSRM Exogenous: Constant	USY has a unit	root						
Lag Length: 1 (Automati	ic - based on S	IC, maxlag=11)					
			t-Statistic	Prob.*				
Augmented Dickey-Full	er test statistic		-2.097066	0.2464				
Test critical values:	1% level		-3.512290					
	5% level		-2.897223					
	10% level		-2.585861					
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(PSRMUSY) Method: Least Squares Date: 11/25/16 Time: 08:49 Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments								
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRMUSY) 08:49 19M03 2015M1: 82 after adjusti	2 ments						
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	PSRMUSY) 08:49 19M03 2015M1:	2	t-Statistic	Prob.				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRMUSY) 08:49 19M03 2015M1: 82 after adjusti	2 ments	t-Statistic	Prob. 0.0392				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRMUSY) 08:49 19M03 2015M1: 82 after adjusti Coefficient -0.135796 -0.293133	2 ments Std. Error 0.064755 0.107012	-2.097066 -2.739255					
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRMUSY(-1)	PSRMUSY) 08:49 09M03 2015M1: 82 after adjusti Coefficient -0.135796	2 ments Std. Error 0.064755	-2.097066	0.0392				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRMUSY(-1) D(PSRMUSY(-1))	PSRMUSY) 08:49 19M03 2015M1: 82 after adjusti Coefficient -0.135796 -0.293133	2 ments Std. Error 0.064755 0.107012	-2.097066 -2.739255 2.095970	0.0392 0.0076				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable PSRMUSY(-1) D(PSRMUSY(-1)) C	PSRMUSY) 18:49 19M03 2015M1: 82 after adjusti Coefficient -0.135796 -0.293133 1.730960	2 ments Std. Error 0.064755 0.107012 0.825851	-2.097066 -2.739255 2.095970	0.0392 0.0076 0.0393				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 3 Variable PSRMUSY(-1) D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression	PSRMUSY) 08:49 19M03 2015M1: 82 after adjusti Coefficient -0.135796 -0.293133 1.730960 0.175561	2 ments Std. Error 0.064755 0.107012 0.825851 Mean dependences.D.	-2.097066 -2.739255 2.095970 dent var ent var iterion	0.0392 0.0076 0.0393 0.005122 0.725594 2.064197				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 3 Variable PSRMUSY(-1) D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	PSRMUSY) 08:49 9M03 2015M1: 82 after adjusti Coefficient -0.135796 -0.293133 1.730960 0.175561 0.154689 0.667117 35.15857	2 ments Std. Error 0.064755 0.107012 0.825851 Mean dependence S.D. dependence Akaike info cr	-2.097066 -2.739255 2.095970 dent var ent var iterion rion	0.0392 0.0076 0.0393 0.005122 0.725594 2.064197 2.152248				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 3 Variable PSRMUSY(-1) D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	PSRMUSY) 08:49 9M03 2015M1: 82 after adjusts Coefficient -0.135796 -0.293133 1.730960 0.175561 0.154689 0.667117 35.15857 -81.63207	2 ments Std. Error 0.064755 0.107012 0.825851 Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin	-2.097066 -2.739255 2.095970 dent var ent var iterion rion in criter.	0.0392 0.0076 0.0393 0.005122 0.725594 2.064197 2.152248 2.099548				
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 3 Variable PSRMUSY(-1) D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	PSRMUSY) 08:49 9M03 2015M1: 82 after adjusti Coefficient -0.135796 -0.293133 1.730960 0.175561 0.154689 0.667117 35.15857	2 ments Std. Error 0.064755 0.107012 0.825851 Mean dependence S.D. dependence Akaike info cr	-2.097066 -2.739255 2.095970 dent var ent var iterion rion in criter.	0.0392 0.0076 0.0393 0.005122 0.725594 2.064197 2.152248				

Table : 6.88. ADF Unit Root Test of PSR_{musyfin}

Series: PSRMUSY W								
View Proc Object Prope	erties Print Na	ame Freeze	Sample Genr S	heet Grap				
Augmented Dickey-Fuller Unit Root Test on D(PSRMUSY)								
Null Hypothesis: D(PSRMUSY) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11)								
			t-Statistic	Prob.*				
Augmented Dickey-Full	er test statistic		-13.04098	0.0001				
Test critical values:	1% level		-3.512290					
	5% level		-2.897223					
	10% level		-2.585861					
*MacKinnon (1996) one Augmented Dickey-Full Dependent Variable: D(Method: Least Squares	er Test Equatio (PSRMUSY,2)							
Augmented Dickey-Full Dependent Variable: D(er Test Equatio (PSRMUSY,2) 08:50 09M03 2015M1	on 2						
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	er Test Equatio (PSRMUSY,2) 08:50 09M03 2015M1	on 2	t-Statistic	Prob.				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equation (PSRMUSY,2) 08:50 09M03 2015M1 82 after adjust Coefficient -1.360049	2 ments Std. Error 0.104290	-13.04098	0.000				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equation (PSRMUSY,2) 08:50 09M03 2015M1 82 after adjust Coefficient	on 2 ments Std. Error		0.000				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable	er Test Equation (PSRMUSY,2) 08:50 09M03 2015M1 82 after adjust Coefficient -1.360049	2 ments Std. Error 0.104290	-13.04098 0.079768	0.000 0.936				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared	er Test Equation (PSRMUSY,2) 08:50 09M03 2015M1 82 after adjust Coefficient -1.360049 0.006000 0.680086 0.676087	Std. Error 0.104290 0.075219 Mean depend	-13.04098 0.079768 dent var lent var	0.000 0.936 0.00268 1.19679				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression	er Test Equation (PSRMUSY,2) 08:50 09M03 2015M1 82 after adjust Coefficient -1.360049 0.006000 0.680086 0.676087 0.681136	Std. Error 0.104290 0.075219 Mean depend Akaike info of	-13.04098 0.079768 dent var lent var criterion	0.000 0.936 0.00268 1.19679 2.09397				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation (PSRMUSY,2) 08:50 09M03 2015M1 82 after adjust	2 ments Std. Error 0.104290 0.075219 Mean depend S.D. depend Akaike info of Schwarz crit	-13.04098 0.079768 dent var lent var criterion erion	0.000 0.936 0.00268 1.19679 2.09397 2.15268				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	er Test Equation (PSRMUSY,2) 08:50 19M03 2015M1 82 after adjust -1.360049 0.006000 0.680086 0.676087 0.681136 37.11573 -83.85315	2 ments Std. Error 0.104290 0.075219 Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Qui	-13.04098 0.079768 dent var lent var criterion erion nn criter.	0.000 0.936 0.00268 1.19679 2.09397 2.15268 2.11754				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equation (PSRMUSY,2) 08:50 09M03 2015M1 82 after adjust	2 ments Std. Error 0.104290 0.075219 Mean depend S.D. depend Akaike info of Schwarz crit	-13.04098 0.079768 dent var lent var criterion erion nn criter.	Prob. 0.000 0.936 0.00268 1.19679 2.09397 2.15268 2.11754 2.17172				

Table : 6.89. PP Unit Root Test of PSR_{musyfin}

Series: PSRMUSY Wo	orkfile: FINANC	ING OF ISLAM	IC BANKS 200.	= ×						
View Proc Object Prope	rties Print Na	ame Freeze	Sample Genr 9	Sheet Graph						
Phillips-Perron Unit Root Test on PSRMUSY										
Null Hypothesis: PSRMUSY has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel										
	Adj. t-Stat Prob.*									
Phillips-Perron test stat Test critical values:	Phillips-Perron test statistic									
*MacKinnon (1996) one	-sided p-value	S.								
Residual variance (no c HAC corrected variance		1)		0.466138 0.348240						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRMUSY) 8:52 9M02 2015M1:									
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
PSRMUSY(-1) C	-0.182620 2.319839	0.063312 0.806624	-2.884436 2.875984	0.0050 0.0051						
R-squared 0.093148 Mean dependent var 0. Adjusted R-squared 0.081952 S.D. dependent var 0. S.E. of regression 0.691121 Akaike info criterion 2. Sum squared resid 38.68947 Schwarz criterion 2. Log likelihood -86.09606 Hannan-Quinn criter. 2. F-statistic 8.319974 Durbin-Watson stat 2. Prob(F-statistic) 0.005022										

Table: 6.90. PP Unit Root Test of PSR_{musyfin}

Series: PSRMUSY W										
View Proc Object Prope	erties Print N	me Freeze	Sample Genr S	Sheet Grap						
Phillips-Perron Unit Root Test on D(PSRMUSY)										
Null Hypothesis: D(PSF Exogenous: Constant Bandwidth: 1 (Newey-W			t kernel							
	Adj. t-Stat Prob.*									
Phillips-Perron test stat	tistic		-13.26070	0.0001						
Test critical values:	1% level		-3.512290							
	5% level		-2.897223							
	10% level		-2.585861							
*MacKinnon (1996) one	e-sided p-value	s.								
Pacidual variance (ne correction) 0.450634										
Residual variance (no d	correction)			0.452631						
Residual variance (no o		1)		0.452631 0.413719						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	uation (PSRMUSY,2) 08:53 19M03 2015M1 82 after adjust	2 ments		0.413719						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	uation (PSRMUSY,2) 508:53	2	t-Statistic							
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	uation (PSRMUSY,2) 08:53 19M03 2015M1 82 after adjust	2 ments	t-Statistic -13.04098 0.079768	0.413719						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable	puation (PSRMUSY,2) 508:53 09M03 2015M1 82 after adjust Coefficient -1.360049	2 ments Std. Error 0.104290	-13.04098 0.079768	Prob.						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared	uation (PSRMUSY,2) (98:53 (9M03 2015M1 82 after adjust -1.360049 0.006000 0.680086 0.676087	2 ments Std. Error 0.104290 0.075219 Mean deper S.D. depend	-13.04098 0.079768 indent var dent var	Prob. 0.0000 0.9366 0.002683 1.196795						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression	e (Bartlett kerne quation (PSRMUSY,2) 58:53 9M03 2015M1 82 after adjust Coefficient -1.360049 0.006000 0.680086 0.676087 0.681136	2 ments Std. Error 0.104290 0.075219 Mean depen S.D. depend Akaike info d	-13.04098 0.079768 indent var dent var criterion	Prob. 0.0000 0.9366 0.002683 1.196795 2.093979						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	puation (PSRMUSY,2) 08:53 19M03 2015M1 82 after adjust -1.360049 0.006000 0.680086 0.676087 0.681136 37.11573	2 ments Std. Error 0.104290 0.075219 Mean depen S.D. depend Akaike info of Schwarz crit	-13.04098 0.079768 ndent var dent var criterion erion	Prob. 0.0000 0.9366 0.002683 1.196795 2.093979 2.152680						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	puation (PSRMUSY,2) :08:53 :09M03 2015M1 82 after adjust Coefficient -1.360049 0.006000 0.680086 0.676087 0.681136 37.11573 -83.85315	2 ments Std. Error 0.104290 0.075219 Mean depen S.D. depend Akaike info of Schwarz crit Hannan-Qui	-13.04098 0.079768 Indent var dent var criterion erion inn criter.	Prob. 0.0000 0.9366 0.002683 1.196795 2.093979 2.152680 2.117547						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(PSRMUSY(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	puation (PSRMUSY,2) 08:53 19M03 2015M1 82 after adjust -1.360049 0.006000 0.680086 0.676087 0.681136 37.11573	2 ments Std. Error 0.104290 0.075219 Mean depen S.D. depend Akaike info of Schwarz crit	-13.04098 0.079768 Indent var dent var criterion erion inn criter.	Prob. 0.0000 0.9366 0.002683 1.196795 2.093979 2.152680						

Table : 6.91. ADF Unit Root Test of PSR_{murafin}

Series: PSRMURA W	011011101111111111111111111111111111111							
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr	Sheet Graph				
Augmented	Dickey-Fuller (Jnit Root Tes	t on PSRMUR/	A				
Null Hypothesis: PSRMURA has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=12)								
			t-Statistic	Prob.*				
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level		-2.455232 -3.486551 -2.886074 -2.579931	0.1292				
*MacKinnon (1996) one Augmented Dickey-Full	•							
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equation PSRMURA) 09:21 06M03 2015M1:	on 2						
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200	er Test Equation PSRMURA) 09:21 06M03 2015M1:	on 2	t-Statistic	Prob.				
Augmented Dickey-Fulli Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	er Test Equatio PSRMURA) 19:21 16M03 2015M1: 118 after adjus	on 2 stments	-2.455232 -3.309503	0.0156 0.0012				

Table: 6.92. ADF Unit Root Test of PSR_{murafin}

				RA Workfil										
Vie	wP	roc	Object	Properties		Print	Name	Freeze		Sample	Genr	Sheet	Gra	ph
		I	Augmen	ited Dickey	/-l	Fuller	Unit R	oot Tes	it	on D(PS	RMU	RA)		

Null Hypothesis: D(PSRMURA) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-15.67591	0.0000
Test critical values:	1% level	-3.486551	
	5% level	-2.886074	
	10% level	-2.579931	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PSRMURA,2)

Method: Least Squares Date: 11/19/16 Time: 09:22

Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PSRMURA(-1)) C	-1.358706 0.003376	0.086675 -15.67591 0.054932 0.061459		0.0000 0.9511
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.679322 0.676558 0.596706 41.30279 -105.4992 245.7340 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.000424 1.049210 1.822021 1.868982 1.841088 2.044708

Table : 6.93. PP Unit Root Test of PSR_{murafin}

Series: PSRMURA W	orkfile: FINANC	ING OF ISLAMI	C BANKS::Pro	🗆 X						
View Proc Object Prope		Y 17	ample Genr S	· · · · · · · · ·						
Phillips	S-Perron Unit R	Root Test on P	SRMURA							
Null Hypothesis: PSRMURA has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel										
	Adj. t-Stat Prob.*									
Phillips-Perron test stat	istic 1% level		-3.201885 -3.486064	0.0223						
	5% level 10% level		-2.885863 -2.579818							
*MacKinnon (1996) one	-sided p-value	S.								
Residual variance (no o		1)		0.361796 0.302520						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/19/16 Time: 0 Sample (adjusted): 200 Included observations:	PSRMURA) 19:22 16M02 2015M12									
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
PSRMURA(-1) C	-0.181278 2.608995	0.052734 0.760385	-3.437594 3.431152	0.0008 0.0008						
R-squared 0.091735 Mean dependent var 0.00210* Adjusted R-squared 0.083972 S.D. dependent var 0.63380\$ S.E. of regression 0.606614 Akaike info criterion 1.85481\$ Sum squared resid 43.05373 Schwarz criterion 1.901524 Log likelihood -108.3615 Hannan-Quinn criter. 1.873783 F-statistic 11.81705 Durbin-Watson stat 2.485469 Prob(F-statistic) 0.000814										

Table : 6.94. PP Unit Root Test of PSR_{murafin}

Series: PSRMURA Wo	rkfile: FINANC	ING OF ISLAN	ΛΙC ΒΔΝΚS:·Pr	🗆 X						
View Proc Object Proper		· ·	Sample Genr S	· ·						
Phillips-Perron Unit Root Test on D(PSRMURA)										
-										
Null Hypothesis: D(PSR	MURA) has a	unit root								
	Exogenous: Constant Bandwidth: 2 (Newey-West automatic) using Bartlett kernel									
	Adj. t-Stat Prob.*									
Phillips-Perron test stati	stic		-15.87283	0.0000						
Test critical values:	1% level		-3.486551							
	5% level		-2.886074							
	10% level		-2.579931							
*MacKinnon (1996) one-	sided p-value	S.								
Residual variance (no co	erroction)			0.350024						
HAC corrected variance		D		0.327054						
Phillips-Perron Test Equ Dependent Variable: D(f Method: Least Squares Date: 11/19/16 Time: 0: Sample (adjusted): 2000 Included observations: 1	PSRMURA,2) 9:24 6M03 2015M1: 18 after adjus	tments	+ Statistic	Drob						
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
D(PSRMURA(-1))	-1.358706	0.086675	-15.67591	0.0000						
С	0.003376	0.054932	0.061459	0.9511						
R-squared	0.679322	Mean deper	ndent var	-0.000424						
Adjusted R-squared	0.676558	S.D. depend		1.049210						
S.E. of regression	0.596706	Akaike info		1.822021						
Sum squared resid	41.30279	Schwarz crit	terion	1.868982						
Log likelihood	-105.4992	Hannan-Qu	inn criter.	1.841088						
F-statistic	245.7340	Durbin-Wat	son stat	2.044708						
Prob(F-statistic)	0.000000									

Table : 6.95. ADF Unit Root Test of IMMR

	DD05TTADU	TV 05 101 4 4 17	C DANKS D	
Series: IMMR Workfile	e: PROFITABIL	ITY OF ISLAMI	C BANKS::Pro	🗆 X
View Proc Object Proper	ties Print Na	me Freeze S	ample Genr S	heet Graph
Augmented	l Dickey-Fulle	r Unit Root Te	st on IMMR	
Null Hypothesis: IMMR h	as a unit root			
Exogenous: Constant				
Lag Length: 0 (Automatic	c - based on S	IC, maxlag=12	2)	
			t-Statistic	Prob.*
			0.000704	
Augmented Dickey-Fulle Test critical values:	1% level		-2.983731 -3.486064	0.0393
rest critical values.	5% level		-2.885863	
	10% level		-2.579818	
Augmented Dickey-Fulle Dependent Variable: D(II Method: Least Squares Date: 11/17/16 Time: 10 Sample (adjusted): 2006 Included observations: 1	MMR) 0:57 6M02 2015M12	2	t-Statistic	Prob.
	0.000044	0.000700	0.000704	0.0005
IMMR(-1) C	-0.088814 0.523051	0.029766 0.197654	-2.983731 2.646298	0.0035 0.0093
	0.020001	0.107004	2.040200	
R-squared	0.070711	Mean depen		-0.043277
Adjusted R-squared	0.062768	S.D. depend		0.621376
S.E. of regression	0.601559	Akaike info c		1.838080
Sum squared resid	42.33919	Schwarz crite		1.884788
Log likelihood F-statistic	-107.3658 8.902651	Hannan-Quir Durbin-Wats		1.857047 1.847662
Prob(F-statistic)	0.003467	Durbin-wats	un stat	1.04/002
1 100(1 -3tatistic)	0.003407			

Table : 6.96. ADF Unit Root Test of IMMR

Series: IMMR Workfile: PROFITABILITY OF ISLAMIC BANKS::Pro 👤 🗖 🗴										
View	Proc	Object	Properties	Print	Name	Freeze	Sample	Genr	Sheet	Graph
		Augm	ented Dick	ey-Full	er Unit	Root Te	est on D(IMMR))	
Exog	enou	s: Cons	D(IMMR) ha			maylag-	-12\			

Lag Length: 0 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-10.21368	0.0000
Test critical values:	1% level	-3.486551	
	5% level	-2.886074	
	10% level	-2.579931	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IMMR.2) Method: Least Squares Date: 11/17/16 Time: 11:01

Sample (adjusted): 2006M03 2015M12

Included observations: 118 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IMMR(-1)) C	-0.970702 -0.034849	0.095039 0.057521	-10.21368 -0.605860	0.0000 0.5458
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.473491 0.468952 0.622037 44.88390 -110.4050 104.3192 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.020678 0.853590 1.905170 1.952131 1.924237 1.918500

Table : 6.97. PP Unit Root Test of IMMR

Series: IMMR Workfi	le: PROFITABIL	ITY OF ISLAMI	C BANKS::Pro.	= ×				
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	heet Graph				
Phillips-Perron Unit Root Test on IMMR								
Null Hypothesis: IMMR has a unit root Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel								
Adj. t-Stat Prob.*								
Phillips-Perron test stat	istic		-2.996982	0.0380				
Test critical values:	1% level		-3.486064					
	5% level		-2.885863					
	10% level		-2.579818					
*MacKinnon (1996) one	-sided p-value	S.						
Residual variance (no c	correction)			0.355792				
Residual variance (no correction) 0.35579 HAC corrected variance (Bartlett kernel) 0.37291								
		''		0.572515				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations:	uation IMMR) 11:02 6M02 2015M1:	2		0.572515				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200	uation IMMR) 11:02 6M02 2015M1:	2	t-Statistic	Prob.				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations:	uation IMMR) 11:02 6M02 2015M1: 119 after adjus	2 etments	t-Statistic -2.983731					
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations:	uation IMMR) 1:02 6M02 2015M1 119 after adjus	2 stments Std. Error		Prob.				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	uation IMMR) 1:02 6M02 2015M1 119 after adjus Coefficient -0.088814 0.523051	2 stments Std. Error 0.029766 0.197654	-2.983731 2.646298	Prob. 0.0035 0.0093				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations: Variable IMMR(-1) C R-squared	uation IMMR) 11:02 6M02 2015M1: 119 after adjus Coefficient -0.088814 0.523051	2 stments Std. Error 0.029766 0.197654 Mean depend	-2.983731 2.646298 dent var	Prob. 0.0035 0.0093 -0.043277				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations: Variable IMMR(-1) C R-squared Adjusted R-squared	uation IMMR) 1:02 6M02 2015M1 119 after adjus Coefficient -0.088814 0.523051 0.070711 0.062768	2 stments Std. Error 0.029766 0.197654	-2.983731 2.646298 dent var ent var	Prob. 0.0035 0.0093				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations: Variable IMMR(-1) C R-squared	uation IMMR) 11:02 6M02 2015M1: 119 after adjus Coefficient -0.088814 0.523051	2 Std. Error 0.029766 0.197654 Mean depends.D. depende	-2.983731 2.646298 dent var ent var riterion	Prob. 0.0035 0.0093 -0.043277 0.621376				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations: Variable IMMR(-1) C R-squared Adjusted R-squared S.E. of regression	uation IMMR) 1:02 6M02 2015M1: 119 after adjus Coefficient -0.088814 0.523051 0.070711 0.062768 0.601559	2 stments Std. Error 0.029766 0.197654 Mean depend S.D. depende Akaike info co	-2.983731 2.646298 dent var ent var riterion	Prob. 0.0035 0.0093 -0.043277 0.621376 1.838080				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations: Variable IMMR(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation IMMR) 1:02 6M02 2015M1: 119 after adjus Coefficient -0.088814 0.523051 0.070711 0.062768 0.601559 42.33919	2 std. Error 0.029766 0.197654 Mean depend S.D. depend Akaike info ci	-2.983731 2.646298 dent var ent var riterion erion nn criter.	Prob. 0.0035 0.0093 -0.043277 0.621376 1.838080 1.884788				
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations: Variable IMMR(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	uation IMMR) 11:02 6M02 2015M1. 119 after adjus Coefficient -0.088814 0.523051 0.070711 0.062768 0.601559 42.33919 -107.3658	2 std. Error 0.029766 0.197654 Mean depend S.D. depend Akaike info co Schwarz crite Hannan-Quir	-2.983731 2.646298 dent var ent var riterion erion nn criter.	Prob. 0.0035 0.0093 -0.043277 0.621376 1.838080 1.884788 1.857047				

Table : 6.98. PP Unit Root Test of IMMR

Series: IMMR Workfile: PROFITABILITY OF ISLAMIC BANKS::Pro 💄 🗖 🗴						
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr S	Sheet Graph		
Phillip	s-Perron Unit I	Root Test on	D(IMMR)			
Null Hypothesis: D(IMMR) has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel						
			Adj. t-Stat	Prob.*		
Phillips-Perron test stat Test critical values:	istic 1% level 5% level 10% level		-10.17782 -3.486551 -2.886074 -2.579931	0.0000		
*MacKinnon (1996) one	-sided p-value	S.				
Residual variance (no correction) 0.380372 HAC corrected variance (Bartlett kernel) 0.337628						
nac corrected variance	(Bartlett kerne	l)		0.337628		
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations:	uation IMMR,2) I1:02 6M03 2015M1:	2		0.337628		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200	uation IMMR,2) I1:02 6M03 2015M1:	2	t-Statistic	0.337628		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations:	uation IMMR,2) 11:02 6M03 2015M1: 118 after adjus	2 tments				

Table : 6.99. ADF Unit Root Test of CBRDD

View Proc Object Prope	erties Print Na	me Freeze	Sample Genr S	heet Grap		
Augmented	l Dickey-Fuller	Unit Root Tes	t on CBR_DD			
Null Hypothesis: CBR_DD has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11)						
			t-Statistic	Prob.*		
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level		-3.927465 -3.511262 -2.896779 -2.585626	0.0029		
*MacKinnon (1996) one Augmented Dickey-Full Dependent Variable: Di	er Test Equation					
	er Test Equatio (CBR_DD) 11:06 09M02 2015M1:	on 2				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200	er Test Equatio (CBR_DD) 11:06 09M02 2015M1:	on 2	t-Statistic	Prob.		
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	er Test Equatio (CBR_DD) 11:06 09M02 2015M1: 83 after adjusti	on 2 ments	t-Statistic -3.927465 3.894430	Prob. 0.0002 0.0002		

Table : 6.100. ADF Unit Root Test of CBR_{DD}

Series: CBR_DD Wor									
	kfile: DEPOSITS	OF ISLAMIC BA	ANKS 2009-20	🗆 ×					
View Proc Object Prope	erties Print Na	me Freeze S	ample Genr S	Sheet Graph					
Phillips-Perron Unit Root Test on CBR_DD									
Null Hypothesis: CBR_DD has a unit root Exogenous: Constant Bandwidth: 3 (Newey-West automatic) using Bartlett kernel									
Dandwiden. 5 (146-46)-14765t automatic/ using Dantett keiner									
			Adj. t-Stat	Prob.*					
Phillips-Perron test stat	tistic		-3.850135	0.0036					
Test critical values:	1% level		-3.511262						
	5% level		-2.896779						
	10% level		-2.585626						
*MacKinnon (1996) one	s-sided p-value	S.							
Residual variance (no d				0.010040					
HAC corrected variance	(Bartiett Kerne	HAC corrected variance (Bartlett kernel) 0.009358							
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	(CBR_DD) 11:07 19M02 2015M1:								
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200	(CBR_DD) 11:07 19M02 2015M1:		t-Statistic	Prob.					
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	(CBR_DD) 11:07 19M02 2015M1 83 after adjust	ments	t-Statistic	Prob. 0.0002					
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	CBR_DD) 11:07 19M02 2015M1 83 after adjust Coefficient	Std. Error							

Table : 6.101. ADF Unit Root Test of CBR_{SD}

Series: CBR_SD Workfile: DEPOSITS OF ISLAMIC BANKS 2009-20 💄 🗖 🗶												
View	Proc	Object	Properties		Print	Name	Freeze		Sample	Genr	Sheet	Graph
	Augmented Dickey-Fuller Unit Root Test on CBR_SD											

Null Hypothesis: CBR_SD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-2.385391	0.1489
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CBR_SD)

Method: Least Squares

Date: 11/21/16 Time: 11:08

Sample (adjusted): 2009M02 2015M12 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CBR_SD(-1) C	-0.063987 0.131031	0.026824 0.062547	-2.385391 2.094909	0.0194 0.0393
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.065637 0.054102 0.101496 0.834409 73.12282 5.690088 0.019396	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watso	nt var terion rion n criter.	-0.015783 0.104358 -1.713803 -1.655518 -1.690387 2.276857

Table : 6.102. ADF Unit Root Test of CBR_{SD}

Series: CBR_SD Work	kfile: DEPOSITS	OF ISLAMIC E	ANKS 2009-20.	🗆 X			
View Proc Object Prope	erties Print Na	me Freeze	Sample Genr S	Sheet Graph			
Augmented Dickey-Fuller Unit Root Test on D(CBR_SD)							
Null Hypothesis: D(CBF	R_SD) has a ur	nit root					
Exogenous: Constant Lag Length: 0 (Automat	ic - based on S	SIC, maxlag=1	1)				
			t-Statistic	Prob.*			
Augmented Dickey-Full	er test statistic		-10.24098	0.0000			
Test critical values:	1% level		-3.512290				
	5% level		-2.897223				
	10% level		-2.585861				
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares	(CBR_SD,2)	n					
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	(CBR_SD,2) 11:08 19M03 2015M1: 82 after adjusti	2 ments	t Obsticija				
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200	(CBR_SD,2) 11:08 09M03 2015M1:	2	t-Statistic	Prob.			
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	(CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient -1.134799	2 ments Std. Error 0.110810	-10.24098	Prob. 0.0000			
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable	(CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient	2 ments Std. Error	-10.24098				
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(CBR_SD(-1))	(CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient -1.134799	2 ments Std. Error 0.110810	-10.24098 -1.551392	0.0000			
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(CBR_SD(-1)) C R-squared Adjusted R-squared	CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient -1.134799 -0.018146 0.567282 0.561873	2 ments Std. Error 0.110810 0.011696 Mean deper S.D. depend	-10.24098 -1.551392 indent var dent var	0.0000 0.1248 0.000122 0.158141			
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(CBR_SD(-1)) C R-squared Adjusted R-squared S.E. of regression	CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient -1.134799 -0.018146 0.567282 0.561873 0.104676	2 ments Std. Error 0.110810 0.011696 Mean deper S.D. depend Akaike info	-10.24098 -1.551392 Indent var dent var criterion	0.0000 0.1248 0.000122 0.158141 -1.651815			
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(CBR_SD(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient -1.134799 -0.018146 0.567282 0.561873 0.104676 0.876557	2 ments Std. Error 0.110810 0.011696 Mean deper S.D. depend Akaike info	-10.24098 -1.551392 Indent var dent var criterion erion	0.0000 0.1248 0.000122 0.158141 -1.651815 -1.593114			
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(CBR_SD(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient -1.134799 -0.018146 0.567282 0.561873 0.104676 0.876557 69.72441	2 ments Std. Error 0.110810 0.011696 Mean deper S.D. depend Akaike info	-10.24098 -1.551392 Indent var dent var criterion derion derion derion	0.0000 0.1248 0.000122 0.158141 -1.651815 -1.593114 -1.628248			
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: Variable D(CBR_SD(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	CBR_SD,2) 11:08 09M03 2015M1: 82 after adjusti Coefficient -1.134799 -0.018146 0.567282 0.561873 0.104676 0.876557	2 ments Std. Error 0.110810 0.011696 Mean deper S.D. depend Akaike info	-10.24098 -1.551392 Indent var dent var criterion derion derion derion	0.0000 0.1248 0.000122 0.158141 -1.651815 -1.593114			

Table : 6.103. PP Unit Root Test of CBR_{SD}

Series: CBR_SD Work	file: DEPOSITS	OF ISLAMIC BA	NKS 2009-2	_ = x			
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph							
Phillips-Perron Unit Root Test on CBR_SD							
Null Hypothesis: CBR_SD has a unit root Exogenous: Constant Bandwidth: 9 (Newey-West automatic) using Bartlett kernel							
			Adj. t-Stat	Prob.*			
Phillips-Perron test stati Test critical values:	stic 1% level 5% level 10% level		-2.537416 -3.511262 -2.896779 -2.585626	0.1105			
*MacKinnon (1996) one-	-sided p-value	S.					
Residual variance (no con HAC corrected variance		1)		0.010053 0.005675			
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8	CBR_SD) 1:08 9M02 2015M1:						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
CBR_SD(-1) C	-0.063987 0.131031	0.026824 0.062547	-2.385391 2.094909	0.0194 0.0393			
R-squared							

Table: 6.104. PP Unit Root Test of CBR_{SD}

Series: CBR_SD Workfile: DEPOSITS OF ISLAMIC BANKS 2009-20 💄 🗖 🗶											
View	Proc	Object	Properties	Print	Name	Freeze		Sample	Genr	Sheet	Graph
		PI	hillips-Perro	on Unit	Root	Test on	I	O(CBR_S	D)		

Null Hypothesis: D(CBR_SD) has a unit root

Exogenous: Constant

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-10.55078	0.0001
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.010690 HAC corrected variance (Bartlett kernel) 0.007898

Phillips-Perron Test Equation Dependent Variable: D(CBR_SD,2) Method: Least Squares

Date: 11/21/16 Time: 11:09

Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CBR_SD(-1)) C	-1.134799 -0.018146	0.110810 0.011696	-10.24098 -1.551392	0.0000 0.1248
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.567282 0.561873 0.104676 0.876557 69.72441 104.8777 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000122 0.158141 -1.651815 -1.593114 -1.628248 2.033811

Table : 6.105. ADF Unit Root Test of CBR_{TD01}

Series: CBR_TD01 Wo	orkfile: DEPOSI	15 OF ISLAMIC					
View Proc Object Prope			mple Genr S				
Augmented	Dickey-Fuller (Unit Root Test	on CBR_TD0	1			
Null Hypothesis: CBR_TD01 has a unit root Exogenous: Constant							
Lag Length: 2 (Automati	c - based on S	sic, maxiag=11)				
			t-Statistic	Prob.*			
Augmented Dickey-Fulle	er test statistic		-2.144029	0.2284			
Test critical values:	1% level		-3.513344				
	5% level		-2.897678				
	10% level		-2.586103				
*MacKinnon (1996) one	-sided p-value	S.					
Augmented Dickey-Fulle		on					
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8	CBR_TD01) 1:09 9M04 2015M1:	2					
Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200	CBR_TD01) 1:09 9M04 2015M1:	2	t-Statistic	Prob.			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable	CBR_TD01) 1:09 9M04 2015M1: 81 after adjustr	2 ments Std. Error 0.020618	t-Statistic	Prob. 0.0352			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1))	CBR_TD01) 1:09 9M04 2015M1: 81 after adjuste Coefficient -0.044205 0.227141	2 ments Std. Error 0.020618 0.099871	-2.144029 2.274353	0.0352 0.0257			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1)) D(CBR_TD01(-2))	CBR_TD01) 1:09 9M04 2015M1: 81 after adjuste Coefficient -0.044205 0.227141 0.342186	2 ments Std. Error 0.020618 0.099871 0.097312	-2.144029 2.274353 3.516374	0.0352 0.0257 0.0007			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1))	CBR_TD01) 1:09 9M04 2015M1: 81 after adjuste Coefficient -0.044205 0.227141	2 ments Std. Error 0.020618 0.099871	-2.144029 2.274353	0.0352 0.0257			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1)) C R-squared	CBR_TD01) 1:09 9M04 2015M1: 81 after adjusti Coefficient -0.044205 0.227141 0.342186 0.304680 0.344576	2 ments Std. Error 0.020618 0.099871 0.097312 0.144492 Mean depend	-2.144029 2.274353 3.516374 2.108626	0.0352 0.0257 0.0007 0.0382			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 3 Variable CBR_TD01(-1) D(CBR_TD01(-1)) C R-squared Adjusted R-squared	CBR_TD01) 1:09 9M04 2015M1: 81 after adjustr -0.044205	2 ments Std. Error 0.020618 0.099871 0.097312 0.144492 Mean depende S.D. depende	-2.144029 2.274353 3.516374 2.108626	0.0352 0.0257 0.0007 0.0382 -0.025062 0.245138			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1)) C R-squared Adjusted R-squared S.E. of regression	CBR_TD01) 1:09 9M04 2015M1: 81 after adjusti -0.044205 0.227141 0.342186 0.304680 0.344576 0.319039 0.202289	2 ments Std. Error 0.020618 0.099871 0.097312 0.144492 Mean depende S.D. depende Akaike info cri	-2.144029 2.274353 3.516374 2.108626 lent var	0.0352 0.0257 0.0007 0.0382 -0.025062 0.245138 -0.310117			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1)) D(CBR_TD01(-2)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	CBR_TD01) 1:09 9M04 2015M1: 81 after adjustr -0.044205 0.227141 0.342186 0.304680 0.344576 0.319039 0.202289 3.150904	2 ments Std. Error 0.020618 0.099871 0.097312 0.144492 Mean depende S.D. depende Akaike info cri Schwarz critei	-2.144029 2.274353 3.516374 2.108626 lent var int var iterion	0.0352 0.0257 0.0007 0.0382 -0.025062 0.245138 -0.310117 -0.191873			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1)) D(CBR_TD01(-2)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	CBR_TD01) 1:09 9M04 2015M1: 81 after adjustr -0.044205 0.227141 0.342186 0.304680 0.344576 0.319039 0.202289 3.150904 16.55975	2 ments Std. Error 0.020618 0.099871 0.097312 0.144492 Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin	-2.144029 2.274353 3.516374 2.108626 lent var ent var iterion rion n criter.	0.0352 0.0257 0.0007 0.0382 -0.025062 0.245138 -0.310117 -0.191873 -0.262676			
Dependent Variable: D(i Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations: 8 Variable CBR_TD01(-1) D(CBR_TD01(-1)) D(CBR_TD01(-2)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	CBR_TD01) 1:09 9M04 2015M1: 81 after adjustr -0.044205 0.227141 0.342186 0.304680 0.344576 0.319039 0.202289 3.150904	2 ments Std. Error 0.020618 0.099871 0.097312 0.144492 Mean depende S.D. depende Akaike info cri Schwarz critei	-2.144029 2.274353 3.516374 2.108626 lent var ent var iterion rion n criter.	0.0352 0.0257 0.0007 0.0382 -0.025062 0.245138 -0.310117 -0.191873			

Table : 6.106. ADF Unit Root Test of CBR_{TD01}

Series: CBR_TD01 Wo	rkfile: DEPOSI	TS OF ISLAMI	C BANKS 2009-2	2 🗆 ×				
View Proc Object Proper	ties Print Na	me Freeze	Sample Genr S	heet Graph				
Augmented Di	ckey-Fuller U	nit Root Test	on D(CBR_TD0)1)				
Exogenous: Constant	Null Hypothesis: D(CBR_TD01) has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=11)							
			t-Statistic	Prob.*				
Augmented Dickey-Fulle Test critical values:	r test statistic 1% level 5% level 10% level		-3.903848 -3.513344 -2.897678 -2.586103	0.0031				
Augmented Dickey-Fulle Dependent Variable: D(0 Method: Least Squares Date: 11/21/16 Time: 1' Sample (adjusted): 2009 Included observations: 8	CBR_TD01,2) 1:10 9M04 2015M1:	2						
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
D(CBR_TD01(-1)) D(CBR_TD01(-1),2) C	-0.401756 -0.348811 -0.001225	0.102913 0.099480 0.023346	-3.506334	0.0002 0.0008 0.9583				
R-squared 0.411690 Mean dependent var dependent var specified 0.011111 Adjusted R-squared 0.396605 S.D. dependent var dependent var specified 0.266355 S.E. of regression 0.206901 Akaike info criterion dependent var depe								

Table : 6.107. PP Unit Root Test of CBR_{TD01}

Conicar CDD TD01 W	LEI DEDOCT	TC OF ICLANIA	C DANIEC 2000				
Series: CBR_TD01 Workfile: DEPOSITS OF ISLAMIC BANKS 2009 //ew Proc Object Properties Print Name Freeze Sample Genr Sheet Graph							
			<u> </u>	Sneet Grap			
Phillips	-Perron Unit R	oot Test on C	BR_TD01				
Null Hypothesis: CBR_TD01 has a unit root Exogenous: Constant Bandwidth: 5 (Newey-West automatic) using Bartlett kernel							
			Adj. t-Stat	Prob.*			
Phillips-Perron test stat	istic		-3.214676	0.0226			
Test critical values:	1% level		-3.511262				
	5% level		-2.896779				
	10% level		-2.585626				
*MacKinnon (1996) one	-sided p-value	S.					
Residual variance (no d	correction)			0.057530			
HAC corrected variance	(Bartlett kerne	I)		0.164874			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	CBR_TD01) 11:10 19M02 2015M1						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
CBR_TD01(-1)	-0.082066	0.021697	-3.782371	0.0003			
С	0.537041	0.154934	3.466263	0.0008			
R-squared	0.150109	Mean deper	ndent var	-0.040241			
Adjusted R-squared	0.139616	S.D. depend		0.261758			
S.E. of regression	0.242798	Akaike info	criterion	0.030628			
Sum squared resid	4.775024	Schwarz crit		0.088914			
Log likelihood	0.728927	Hannan-Qu		0.054044			
F-statistic	14.30633	Durbin-Wats	son stat	1.110651			
Prob(F-statistic)	0.000296						

Table: 6.108. PP Unit Root Test of CBR_{TD01}

\triangle	Series:	CBR	TD01	Workfile:	DEPOSITS	OFI	SLAMIC	BANKS 20	09

View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph

_ 🗆 X

Phillips-Perron Unit Root Test on D(CBR_TD01)

Null Hypothesis: D(CBR_TD01) has a unit root

Exogenous: Constant

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-5.425262	0.0000
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.050788 HAC corrected variance (Bartlett kernel) 0.046310

Phillips-Perron Test Equation

Dependent Variable: D(CBR_TD01,2)

Method: Least Squares

Date: 11/21/16 Time: 11:11

Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CBR_TD01(-1)) C	-0.532905 -0.014738	0.096454 0.025521	-5.524965 -0.577491	0.0000 0.5652
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.276183 0.267136 0.228161 4.164594 5.831156 30.52524 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.007683 0.266520 -0.093443 -0.034742 -0.069875 2.362385

Table : 6.109. ADF Unit Root Test of CBR_{TD03}

Series: CBR_TD03 Workfile: DEPOSITS OF ISLAMIC BANKS 2009 💄 🗖 🗴									
View Proc Object Proper	ties Print Na	me Freeze S	ample Genr 9	Sheet Graph					
Augmented Dickey-Fuller Unit Root Test on CBR_TD03									
Null Hypothesis: CBR_T Exogenous: Constant	Null Hypothesis: CBR_TD03 has a unit root								
Lag Length: 1 (Automatic	- based on S	IC, maxlag=1	1)						
			t-Statistic	Prob.*					
Augmented Dickey-Fulle	r test statistic		-3.329529	0.0166					
Test critical values:	1% level		-3.512290						
	5% level		-2.897223						
	10% level		-2.585861						
*MacKinnon (1996) one- Augmented Dickey-Fulle Dependent Variable: D(C Method: Least Squares Date: 11/21/16 Time: 11 Sample (adjusted): 2009 Included observations: 8	r Test Equatio CBR_TD03) 1:11 0M03 2015M1:	n 2							
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
CBR_TD03(-1)	-0.030467	0.009150	-3.329529	0.0013					
D(CBR_TD03(-1))	0.809848	0.055141	14.68678	0.0000					
С	0.224687	0.069493	3.233246	0.0018					
R-squared	0.775426	Mean depen	dent var	-0.041220					
Adjusted R-squared	0.769741	S.D. depend		0.223073					
S.E. of regression	0.107042	Akaike info c		-1.595288					
Sum squared resid	0.905184	Schwarz crite	erion	-1.507237					
Log likelihood	68.40681	Hannan-Quir	nn criter.	-1.559937					
F-statistic	136.3888	Durbin-Wats	on stat	1.973328					
Prob(F-statistic)	0.000000								

Table : 6.110. PP Unit Root Test of CBR_{TD03}

<mark>∨</mark> Se	eries:	CBR_TD	03 Workfile	: DEPC	OSITS O	F ISLAN	/1]	C BANK	S 2009		п x
View	Proc	Object	Properties	Print	Name	Freeze		Sample	Genr	Sheet	Graph
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Augmented Dickey-Fuller Unit Root Test on D(CBR_TD03,2)											

Null Hypothesis: D(CBR_TD03,2) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-10.07510	0.0000
Test critical values:	1% level	-3.513344	
	5% level	-2.897678	
	10% level	-2.586103	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CBR_TD03,3)

Method: Least Squares Date: 11/21/16 Time: 11:13

Sample (adjusted): 2009M04 2015M12 Included observations: 81 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CBR_TD03(-1),2) C	-1.068951 0.007463	0.106098 0.012431	-10.07510 0.600341	0.0000 0.5500
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.562346 0.556806 0.111850 0.988319 63.51705 101.5077 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.004691 0.168011 -1.518939 -1.459817 -1.495219 2.094524

Table : 6.111. PP Unit Root Test of CBR_{TD03}

Series: CBR_TD03 Wo	orkfile: DEPOSI	TS OF ISLAMIC	BANKS 2009	🗆 X				
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph								
Phillips-Perron Unit Root Test on CBR_TD03								
Null Hypothesis: CBR_T Exogenous: Constant Bandwidth: 6 (Newey-W	kernel							
	Prob.*							
Phillips-Perron test stati	stic		-2.974173	0.0415				
Test critical values:	1% level		-3.511262					
	5% level		-2.896779					
	10% level		-2.585626					
*MacKinnon (1996) one-	-sided p-value	S.						
Residual variance (no co	orrection)			0.040772				
HAC corrected variance		I)		0.200401				
Phillips-Perron Test Equ Dependent Variable: D(6 Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8	CBR_TD03) 1:12 9M02 2015M1:							
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
CBR_TD03(-1)	-0.064281	0.015912	-4.039700	0.0001				
С	0.445159	0.123026	3.618422	0.0005				
R-squared	-0.043494							
Adjusted R-squared	dent var ent var	0.222675						
S.E. of regression	iterion	-0.313686 -0.255400						
	Sum squared resid 3.384090 Schwarz criterion							
Log likelihood	15.01796	Hannan-Quin		-0.290270 0.312047				
F-statistic 16.31917 Durbin-Watson stat 0.3								
Prob(F-statistic)	0.000121							

Table : 6.112. PP Unit Root Test of CBR_{TD03}

Series: CBR_TD03 Workfile: DEPOSITS OF ISLAMIC BANKS 2009 💄 🗖 🗶									
View Proc Object Prope	rties Print Na	ame Freeze S	ample Genr S	heet Graph					
Phillips-Po	erron Unit Roo	t Test on D(CE	R_TD03,2)						
Null Hypothesis: D(CBF Exogenous: Constant Bandwidth: 8 (Newey-W			kernel						
Adj. t-Stat									
Phillips-Perron test stat			-10.67978	0.0001					
Test critical values:	1% level		-3.513344						
	5% level		-2.897678						
	10% level		-2.586103						
*MacKinnon (1996) one-sided p-values.									
Residual variance (no c HAC corrected variance		I)		0.012201 0.007827					
	uation CBR_TD03,3) 1:13 9M04 2015M1	2							
Phillips-Perron Test Equ Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200	uation CBR_TD03,3) 1:13 9M04 2015M1	2	t-Statistic						
Phillips-Perron Test Equal Dependent Variable: D(Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 200 Included observations:	uation CBR_TD03,3) 1:13 9M04 2015M1 81 after adjust	2 ments	t-Statistic -10.07510 0.600341	0.007827					

0.000000

Prob(F-statistic)

Table : 6.113. ADF Unit Root Test of CBR_{TD12}

			_	12 Workfile							
ĺ	View	Proc	Object	Properties	Print	Name	Freeze	Sample	Genr	Sheet	Graph
ľ		Augmented Dickey-Fuller Unit Root Test on CBR_TD12									

Null Hypothesis: CBR_TD12 has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-1.535038	0.5111
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CBR_TD12)

Method: Least Squares Date: 11/21/16 Time: 11:14

Sample (adjusted): 2009M02 2015M12 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CBR_TD12(-1) C	-0.033762 0.244442	0.021994 0.171256	-1.535038 1.427348	0.1287 0.1573
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.028268 0.016272 0.258147 5.397845 -4.359008 2.356343 0.128671	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.014819 0.260274 0.153229 0.211514 0.176645 1.542535

Table : 6.114. ADF Unit Root Test of CBR_{TD12}

Series: CBR_TD12 Workfile: DEPOSITS OF ISLAMIC BANKS 2009 💄 🗖 🗶								
View Proc Object Proper	ties Print Na	me Freeze S	ample Genr S	heet Graph				
Augmented Did	key-Fuller Un	it Root Test or	D(CBR_TD12	2)				
Null Hypothesis: D(CBR_TD12) has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=11)								
t-Statistic								
Augmented Dickey-Fuller test statistic -3.854412 Test critical values: 1% level -3.514426 5% level -2.898145 10% level -2.586351								
*MacKinnon (1996) one- Augmented Dickey-Fulle Dependent Variable: D(0 Method: Least Squares Date: 11/21/16 Time: 1 Sample (adjusted): 2009 Included observations: 8	r Test Equatio CBR_TD12,2) 1:14 9M05 2015M1;	on 2						
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
D(CBR_TD12(-1)) D(CBR_TD12(-1),2) D(CBR_TD12(-2),2) C	-0.642787 -0.119090 -0.225962 -0.013834	0.166767 0.139700 0.110849 0.028579	-3.854412 -0.852474 -2.038475 -0.484065	0.0002 0.3966 0.0450 0.6297				
R-squared Adjusted R-squared S.E. of regression	0.425854 0.403190 0.254064	Mean depend S.D. depende Akaike info cr	ent var	0.001375 0.328871				

Table : 6.115. PP Unit Root Test of CBR_{TD12}

 S∈	eries:	CBR_TD	12 Workfil	e	DEPO	OSITS O	F ISLAN	41	C BANK	S 2009		□ X
View	Proc	Object	Properties		Print	Name	Freeze		Sample	Genr	Sheet	Graph
	Phillips-Perron Unit Root Test on CBR_TD12											

Null Hypothesis: CBR_TD12 has a unit root

Exogenous: Constant

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-1.635610	0.4600
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.065034
HAC corrected variance (Bartlett kernel)	0.102211

Phillips-Perron Test Equation Dependent Variable: D(CBR_TD12)

Method: Least Squares Date: 11/21/16 Time: 11:15

Sample (adjusted): 2009M02 2015M12 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CBR_TD12(-1) C	-0.033762 0.244442	0.021994 0.171256	-1.535038 1.427348	0.1287 0.1573
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.028268 0.016272 0.258147 5.397845 -4.359008 2.356343 0.128671	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.014819 0.260274 0.153229 0.211514 0.176645 1.542535

Table: 6.116. PP Unit Root Test of CBR_{TD12}

x

	_		_	12 Workfil									
ĺ	View	Proc	Object	Properties	Print	Name	Freeze	Γ	Sample	Genr	Sheet	Graph	Î

Phillips-Perron Unit Root Test on D(CBR_TD12)

Null Hypothesis: D(CBR_TD12) has a unit root

Exogenous: Constant

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*		
Phillips-Perron test sta	Phillips-Perron test statistic				
Test critical values:	1% level	-3.512290			
	5% level	-2.897223			
	10% level	-2.585861			

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.063808
HAC corrected variance (Bartlett kernel)	0.063147

Phillips-Perron Test Equation

Dependent Variable: D(CBR_TD12,2)

Method: Least Squares Date: 11/21/16 Time: 11:15

Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CBR_TD12(-1)) C	-0.780655 -0.014179	0.108597 0.028295	-7.188553 -0.501105	0.0000 0.6177
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.392445 0.384850 0.255740 5.232241 -3.525899 51.67529 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-0.001707 0.326068 0.134778 0.193478 0.158345 1.982713

Table : 6.117. ADF Unit Root Test of CBRwc

	∠ S∈	eries:	CBR_W	2 Workfile:	I	INAN	ICING (OF ISLAN	V	IC BANK	CS 2009	–	пх
ĺ	View	Proc	Object	Properties		Print	Name	Freeze		Sample	Genr	Sheet	Graph
ĺ			Augm	ented Dick	(e	y-Full	er Unit	Root T	e	st on CE	BR_W	С	

Null Hypothesis: CBR_WC has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-3.041379	0.0352
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CBR_WC) Method: Least Squares

Date: 11/25/16 Time: 09:09

Sample (adjusted): 2009M02 2015M12 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CBR_WC(-1)	-0.084979 1.036364	0.027941 0.350383	-3.041379 2.957798	0.0032 0.0041
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.102493 0.091413 0.198204 3.182078 17.57231 9.249984 0.003173	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	-0.027229 0.207936 -0.375236 -0.316951 -0.351821 2.384697

Table : 6.118. ADF Unit Root Test of CBRwc

	kfile: FINANCI	NG OF ISLAMIC	BANKS 2009	🗆 ×					
View Proc Object Prope	rties Print Na	me Freeze S	ample Genr S	Sheet Graph					
Augmented D	ickey-Fuller U	nit Root Test o	on D(CBR_WC	;)					
Null Hypothesis: D(CBR_WC) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11)									
t-Statistic Prob.*									
Augmented Dickey-Fulle	er test statistic		-10.63866	0.0001					
Test critical values:	1% level		-3.512290						
	5% level		-2.897223						
	10% level		-2.585861						
Augmented Dickey-Fuller Test Equation Dependent Variable: D(CBR_WC,2) Method: Least Squares Date: 11/25/16 Time: 09:10 Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments									
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	9:10 9M03 2015M1:								
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	9:10 9M03 2015M1:		t-Statistic	Prob.					
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	9:10 9M03 2015M1: 82 after adjustr	ments	t-Statistic -10.63866 -1.302079	Prob. 0.0000 0.1966					
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 3 Variable D(CBR_WC(-1))	9:10 9M03 2015M1: 82 after adjustr Coefficient -1.169242	Std. Error 0.109905	-10.63866 -1.302079	0.0000					
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 3 Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared	9:10 9M03 2015M1: 82 after adjustr Coefficient -1.169242 -0.029987	Std. Error 0.109905 0.023030 Mean depende	-10.63866 -1.302079 dent var	0.0000 0.1966					
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 3 Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared S.E. of regression	9:10 9M03 2015M1: 82 after adjustr Coefficient -1.169242 -0.029987 0.585881 0.580704 0.206862	Std. Error 0.109905 0.023030 Mean depender S.D. depender	-10.63866 -1.302079 dent var ent var iterion	0.0000 0.1966 0.001098 0.319463 -0.289439					
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 6 Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	9:10 9M03 2015M1: 82 after adjusti -1.169242 -0.029987 0.585881 0.580704 0.206862 3.423359	Std. Error 0.109905 0.023030 Mean depende S.D. depende Akaike info cr Schwarz crite	-10.63866 -1.302079 dent var ent var iterion rion	0.0000 0.1966 0.001098 0.319463 -0.289439 -0.230739					
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 6 Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	9:10 9M03 2015M1: 82 after adjusti -1.169242 -0.029987 0.585881 0.580704 0.206862 3.423359 13.86701	Std. Error 0.109905 0.023030 Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir	-10.63866 -1.302079 dent var ent var iterion rion nn criter.	0.0000 0.1966 0.001098 0.319463 -0.289439 -0.230739 -0.265872					
Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: 6 Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	9:10 9M03 2015M1: 82 after adjusti -1.169242 -0.029987 0.585881 0.580704 0.206862 3.423359	Std. Error 0.109905 0.023030 Mean depende S.D. depende Akaike info cr Schwarz crite	-10.63866 -1.302079 dent var ent var iterion rion nn criter.	0.0000 0.1966 0.001098 0.319463 -0.289439 -0.230739					

Table : 6.119. PP Unit Root Test of CBRwc

vr.		i- ii	I - I						
View Proc Object Prope		me Freeze	Sample Genr	Sheet Grap					
Phillip	s-Perron Unit F	Root Test on	CBR_WC						
Null Hypothesis: CBR_WC has a unit root									
Exogenous: Constant Bandwidth: 0 (Newey-W	/est automatic	using Bartle	tt karnal						
Danawidin. 0 (Newey-V	rest automatic,	dailig Dailie	u kemer						
Adj. t-Stat Prob.*									
Phillips-Perron test star	tistic		-3.041379	0.0352					
Test critical values:	1% level		-3.511262						
	5% level		-2.896779						
	10% level		-2.585626						
*MacKinnon (1996) one	e-sided p-value	S.							
Pacidual variance (no correction) 0.02023									
Residual variance (no correction) 0.0383									
HAC corrected variance Phillips-Perron Test Eq	(Bartlett kerne	1)							
HAC corrected variance	uation (CBR_WC) 09:11 19M02 2015M1 83 after adjust	2 ments		0.038338					
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	uation (CBR_WC) 09:11	2	t-Statistic	0.038338					
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable	uation (CBR_WC) 09:11 09M02 2015M1 83 after adjust Coefficient -0.084979	2 ments Std. Error	-3.041379	Prob. 0.003					
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations:	uation (CBR_WC) 09:11 09M02 2015M1 83 after adjust	2 ments Std. Error	-3.041379	Prob. 0.003					
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable	uation (CBR_WC) 09:11 09M02 2015M1 83 after adjust Coefficient -0.084979	2 ments Std. Error	-3.041379 2.957798	Prob. 0.0038 0.004					
Phillips-Perron Test Eq Dependent Variable: De Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable CBR_WC(-1) C R-squared Adjusted R-squared	uation (CBR_WC) 09:11 09M02 2015M1 83 after adjust Coefficient -0.084979 1.036364	2 ments Std. Erroi 0.027941 0.350383 Mean depe S.D. depen	-3.041379 2.957798 ndent var dent var	0.038338					
Phillips-Perron Test Eq Dependent Variable: De Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable CBR_WC(-1) C R-squared Adjusted R-squared S.E. of regression	uation (CBR_WC) 09:11 19M02 2015M1 83 after adjust Coefficient -0.084979 1.036364 0.102493 0.091413 0.198204	2 ments Std. Erroi 0.027941 0.350383 Mean depe S.D. depen Akaike info	-3.041379 2.957798 ndent var dent var criterion	Prob. 0.003; 0.004; -0.02722; 0.20793; -0.37523;					
Phillips-Perron Test Eq Dependent Variable: De Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable CBR_WC(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation (CBR_WC) 09:11 19M02 2015M1 83 after adjust Coefficient -0.084979 1.036364 0.102493 0.091413 0.198204 3.182078	2 ments Std. Error 0.027941 0.350383 Mean depe S.D. depen Akaike info Schwarz cri	-3.041379 2.957798 ndent var dent var criterion terion	Prob. 0.003; 0.004; -0.02722; 0.20793; -0.37523; -0.31695					
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/25/16 Time: () Sample (adjusted): 200 Included observations: Variable CBR_WC(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	uation (CBR_WC) 09:11 199M02 2015M1 83 after adjust Coefficient -0.084979 1.036364 0.102493 0.091413 0.198204 3.182078 17.57231	2 ments Std. Error 0.027941 0.350383 Mean depe S.D. depen Akaike info Schwarz cri Hannan-Qu	-3.041379 2.957798 ndent var dent var criterion terion linn criter.	Prob. 0.003; 0.004; -0.02722; 0.20793; -0.37523; -0.31695; -0.35182;					
Phillips-Perron Test Eq Dependent Variable: Do Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable CBR_WC(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation (CBR_WC) 09:11 19M02 2015M1 83 after adjust Coefficient -0.084979 1.036364 0.102493 0.091413 0.198204 3.182078	2 ments Std. Error 0.027941 0.350383 Mean depe S.D. depen Akaike info Schwarz cri	-3.041379 2.957798 ndent var dent var criterion terion linn criter.	Prob. 0.003; 0.004 -0.02722 0.20793 -0.37523 -0.31695					

Table : 6.120. PP Unit Root Test of CBRwc

Y Y Y	Series: CBR_WC Workfile: FINANCING OF ISLAMIC BANKS 2009 🗖 🗴									
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Phillips-Perron Unit Root Test on D(CBR WC)										
Phillips	-Perron Unit Ro	oot Test on D(C	BR_WC)							
Null Hypothesis: D(CBR_WC) has a unit root Exogenous: Constant Bandwidth: 3 (Newey-West automatic) using Bartlett kernel										
Adj. t-Stat Prob.*										
Phillips-Perron test sta	tistic		-10.62235	0.0001						
Test critical values:	1% level		-3.512290							
	5% level		-2.897223							
	10% level		-2.585861							
*MacKinnon (1996) one	e-sided p-value	S.								
Residual variance (no	correction)			0.041748						
HAC corrected variance	e (Bartlett kerne	l)		0.042564						
Dhilling Darron Toot Co	wation									
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 20(Included observations:	(CBR_WC,2) 6 09:11 09:M03 2015M1:									
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200	(CBR_WC,2) 6 09:11 09:M03 2015M1:		t-Statistic	Prob.						
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable	(CBR_WC,2) 09:11 09:M03 2015M1 82 after adjust	Std. Error								
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations:	(CBR_WC,2) 8 09:11 09:03 2015M1. 82 after adjust	ments	t-Statistic -10.63866 -1.302079	Prob. 0.0000 0.1966						
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 20(Included observations: Variable D(CBR_WC(-1)) C	(CBR_WC,2) 809:11 09:M03 2015M1 82 after adjust Coefficient -1.169242 -0.029987	Std. Error 0.109905 0.023030	-10.63866 -1.302079	0.0000 0.1966						
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 20(Included observations: Variable D(CBR_WC(-1)) C R-squared	(CBR_WC,2) 809:11 109:M03 2015M1 82 after adjust Coefficient -1.169242	Std. Error	-10.63866 -1.302079	0.0000						
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 20(Included observations: Variable D(CBR_WC(-1)) C	(CBR_WC,2) 809:11 09M03 2015M1 82 after adjusti Coefficient -1.169242 -0.029987 0.585881	Std. Error 0.109905 0.023030 Mean depend	-10.63866 -1.302079 dent var	0.0000 0.1966 0.001098						
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 20(Included observations: Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared	COBR_WC,2) 3 09:11 09M03 2015M1 82 after adjust Coefficient -1.169242 -0.029987 0.585881 0.580704	Std. Error 0.109905 0.023030 Mean depende	-10.63866 -1.302079 dent var ent var iterion	0.0000 0.1966 0.001098 0.319463						
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 20(Included observations: Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared S.E. of regression	COBR_WC,2) 3 09:11 09M03 2015M1 82 after adjust Coefficient -1.169242 -0.029987 0.585881 0.580704 0.206862	Std. Error 0.109905 0.023030 Mean dependence S.D. dependence Akaike info cr	-10.63866 -1.302079 dent var ent var iterion rion	0.0000 0.1966 0.001098 0.319463 -0.289439						
Dependent Variable: D Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 20(Included observations: Variable D(CBR_WC(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	COBR_WC,2) 309:11 09M03 2015M1 82 after adjust Coefficient -1.169242 -0.029987 0.585881 0.580704 0.206862 3.423359	Std. Error 0.109905 0.023030 Mean dependence S.D. dependence Akaike info creschwarz crite	-10.63866 -1.302079 dent var ent var iterion rion nn criter.	0.0000 0.1966 0.001098 0.319463 -0.289439 -0.230739						

Table : 6.121. ADF Unit Root Test of CBR_I

	Series: CBR_I Workfile: FINANCING OF ISLAMIC BANKS 2009 T 🗖 🗴											
ĺ	View	Proc	Object	Properties	Print	Name	Freeze	Sample	Genr	Sheet	Graph	
ĺ			Augr	nented Dic	key-Fı	ıller Un	it Root	Test on (BR_I			

Null Hypothesis: CBR_I has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ller test statistic	-2.874181	0.0529
Test critical values:	1% level	-3.514426	
	5% level	-2.898145	
	10% level	-2.586351	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CBR_I) Method: Least Squares Date: 11/25/16 Time: 09:31

Sample (adjusted): 2009M05 2015M12 Included observations: 80 after adjustments

		Std. Error	t-Statistic	Prob.
CBR_I(-1) D(CBR_I(-1)) D(CBR_I(-2)) D(CBR_I(-3)) C	-0.044858 0.182661 0.046750 0.307438 0.530112	0.015607 0.103141 0.104157 0.100873 0.186290	-2.874181 1.770989 0.448840 3.047784 2.845619	0.0053 0.0806 0.6548 0.0032 0.0057
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.360735 0.326641 0.069118 0.358301 102.8213 10.58058 0.000001	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var nt var terion ion n criter.	-0.018375 0.084231 -2.445533 -2.296656 -2.385844 2.166838

Table : 6.122. ADF Unit Root Test of CBR_I

Series: CBR_I Workfile	: FINANCING	OF ISLAMIC BA	ANKS 2009 T	_ = x
View Proc Object Proper			ample Genr S	heet Graph
Augmented I	Dickey-Fuller	Unit Root Test	on D(CBR_I)	
Null Hypothesis: D(CBR Exogenous: Constant Lag Length: 0 (Automatic			1)	
			t-Statistic	Prob.*
Augmented Dickey-Fulle	r test statistic		-6.017560	0.0000
Test critical values:	1% level		-3.512290	
	5% level		-2.897223	
	10% level		-2.585861	
*MacKinnon (1996) one-	sided p-value	S.		
Augmented Dickey-Fulle Dependent Variable: D(0		n		
Method: Least Squares				
Date: 11/25/16 Time: 09	9:32			
Sample (adjusted): 2009				
Included observations: 8	2 after adjusti	ments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CBR_I(-1))	-0.611077	0.101549	-6.017560	0.0000
C C	-0.011774	0.008917	-1.320506	0.1904
R-squared	0.311597	Mean depen	dent var	0.001341

S.D. dependent var

Akaike info criterion

Hannan-Quinn criter.

Durbin-Watson stat

Schwarz criterion

0.093779

-2.232625

-2.173925

-2.209058

2.176275

0.302992

0.078293

0.490385

93.53764

36.21102

0.000000

Adjusted R-squared

S.E. of regression

Log likelihood

Prob(F-statistic)

F-statistic

Sum squared resid

Table: 6.123. PP Unit Root Test of CBR_I

	IE: FINAINCING	OF ISLAMIC BA	NKS 2009 TO	×
View Proc Object Prope		7 17	ample Genr S	
	ps-Perron Unit		<u> </u>	
Null Hypothesis: CBR_I Exogenous: Constant Bandwidth: 6 (Newey-W	has a unit roo	t		
			Adj. t-Stat	Prob.*
Phillips-Perron test stat Test critical values:	istic 1% level 5% level 10% level		-3.497449 -3.511262 -2.896779 -2.585626	0.0104
Residual variance (no o		I)		0.005587 0.014712
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	CBR_I) 19:32	2		
Included observations:	83 after adjustr	ments		
Variable	83 after adjustr Coefficient	Std. Error	t-Statistic	Prob.
			t-Statistic -4.778909 4.639083	Prob. 0.0000 0.0000

8000000

Prob(F-statistic)

Table : 6.124. PP Unit Root Test of CBRI

		OF ISLAMIC BA		
View Proc Object Prope	erties Print Na	ame Freeze S	ample Genr S	Sheet Grap
Phillip	s-Perron Unit I	Root Test on D	(CBR_I)	
Null Hypothesis: D(CBF	R_I) has a unit	root		
Exogenous: Constant				
Bandwidth: 5 (Newey-W	/est automatic)	using Bartlett	kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test stat	tistic		-6.380234	0.0000
Test critical values:	1% level		-3.512290	
	5% level		-2.897223	
	10% level		-2.585861	
*MacKinnon (1996) one	-sided p-value	S.		
Residual variance (no d				0.005980
HAC corrected variance	(Bartlett kerne	I)		0.007880
Phillips-Perron Test Eq	uation			
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations:	(CBR_I,2) 09:33 09M03 2015M1:			
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	(CBR_I,2) 09:33 09M03 2015M1:		t-Statistic	Prob.
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations:	CBR_I,2) 09:33 09M03 2015M1: 82 after adjust	ments	t-Statistic	
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable	CBR_I,2) 09:33 09:03 2015M1: 82 after adjust Coefficient	Std. Error		0.0000
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable D(CBR_I(-1)) C	CBR_I,2) 09:33 19M03 2015M1 82 after adjust Coefficient -0.611077 -0.011774	Std. Error 0.101549 0.008917	-6.017560 -1.320506	0.0000 0.1904
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable D(CBR_I(-1)) C R-squared	CBR_I,2) 09:33 19M03 2015M1 82 after adjust Coefficient -0.611077 -0.011774 0.311597	Std. Error 0.101549 0.008917 Mean depen	-6.017560 -1.320506 dent var	0.0000 0.1904 0.001341
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable D(CBR_I(-1)) C R-squared Adjusted R-squared	CBR_I,2) 09:33 19M03 2015M1 82 after adjusti Coefficient -0.611077 -0.011774 0.311597 0.302992	Std. Error 0.101549 0.008917	-6.017560 -1.320506 dent var ent var	0.0000 0.1904
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable D(CBR_I(-1)) C R-squared Adjusted R-squared S.E. of regression	CBR_I,2) 09:33 19M03 2015M1 82 after adjust Coefficient -0.611077 -0.011774 0.311597	Std. Error 0.101549 0.008917 Mean depen S.D. depend	-6.017560 -1.320506 dent var ent var riterion	0.0000 0.1904 0.001341 0.093779 -2.232625
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable D(CBR_I(-1)) C R-squared Adjusted R-squared	CBR_I,2) 09:33 09M03 2015M1 82 after adjust Coefficient -0.611077 -0.011774 0.311597 0.302992 0.078293	Std. Error 0.101549 0.008917 Mean depen S.D. depend Akaike info c	-6.017560 -1.320506 dent var ent var riterion	0.0000 0.1904 0.001341 0.093779
Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: (Sample (adjusted): 200 Included observations: Variable D(CBR_I(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	CBR_I,2) 99:33 99M03 2015M1. 82 after adjust Coefficient -0.611077 -0.011774 0.311597 0.302992 0.078293 0.490385	Std. Error 0.101549 0.008917 Mean depen S.D. depend Akaike info c Schwarz crite	-6.017560 -1.320506 dent var ent var riterion erion nn criter.	0.0000 0.1904 0.001341 0.093779 -2.232625 -2.173925

Table : 6.125. ADF Unit Root Test of CBRc

8	✓ Se	eries:	CBR_C	Workfile: F	IN	ANCI	NG OF	ISLAMI	C	BANKS	2009 T		пχ
	View	Proc	Object	Properties		Print	Name	Freeze		Sample	Genr	Sheet	Graph
			Augn	nented Dic	ke	y-Ful	ler Uni	t Root 1	E	est on C	BR_C		

Null Hypothesis: CBR_C has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-3.037414	0.0356
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CBR_C) Method: Least Squares Date: 11/25/16 Time: 09:41

Sample (adjusted): 2009M03 2015M12 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CBR_C(-1) D(CBR_C(-1)) C	-0.166489 0.055725 2.292576	0.054813 0.108470 0.764713	-3.037414 0.513733 2.997955	0.0032 0.6089 0.0036
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.104629 0.081962 0.429771 14.59152 -45.57554 4.615813 0.012709	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var terion rion n criter.	-0.025488 0.448545 1.184769 1.272820 1.220120 1.983877

Table: 6.126. ADF Unit Root Test of CBR_c

Series: CBR_C Workfile: FINANCING OF ISLAMIC BANKS 2009 T... □ ▼

 View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph

 Augmented Dickey-Fuller Unit Root Test on D(CBR_C)

Null Hypothesis: D(CBR_C) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-8.413617	0.0000
Test critical values:	1% level	-3.513344	
	5% level	-2.897678	
	10% level	-2.586103	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CBR C,2)

Method: Least Squares Date: 11/25/16 Time: 09:42

Sample (adjusted): 2009M04 2015M12 Included observations: 81 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CBR_C(-1)) D(CBR_C(-1),2)	-1.295926 0.285917	0.154027 0.108459	-8.413617 2.636187	0.0000 0.0101
C	-0.032237	0.048817	-0.660375	0.5110
R-squared	0.544470	Mean depend	lent var	0.000864
Adjusted R-squared	0.532790	S.D. depende	ent var	0.640707
S.E. of regression	0.437941	Akaike info cr	iterion	1.222869
Sum squared resid	14.95980	Schwarz crite	rion	1.311552
Log likelihood	-46.52618	Hannan-Quin	n criter.	1.258450
F-statistic	46.61458	Durbin-Watso	on stat	2.000828
Prob(F-statistic)	0.000000			

Table : 6.127. PP Unit Root Test of CBRc

Series: CBR C Workfi	le: FINANCING	OF ISLAMIC B	2ANKS 2000 T	🗆 X
View Proc Object Proper		Y	ample Genr	· ·
		Root Test on	<u> </u>	sileet Grapii
Phillip	S-Perron Unit	ROOL TEST OIL	CBK_C	
Null Hypothesis: CBR_C	has a unit ro	ot		
Exogenous: Constant Bandwidth: 5 (Newey-W	act automatic)	using Bartlett	kernel	
Dandwidth. 5 (Newey-W	est automatic)	using Danieu	Keillei	
			Adj. t-Stat	Prob.*
Phillips-Perron test stati	stic		-2.664360	0.0846
Test critical values:	1% level		-3.511262	
	5% level		-2.896779	
	10% level		-2.585626	
*MacKinnon (1996) one-	sided p-value	S.		
Desidual variance (no e				0.470404
Residual variance (no co HAC corrected variance		D		0.178484 0.127813
	(Dartioti Horrio	.,		0.12.010
Phillips-Perron Test Equ	ıation			
Dependent Variable: D(0	CBR_C)			
Method: Least Squares				
Date: 11/25/16 Time: 09 Sample (adjusted): 2009		2		
Included observations: 8				
Variable	Coefficient	Std Error	t-Statistic	Prob.
valiable	Coemident	Std. Ellol	t-Statistic	F100.
CBR_C(-1)	-0.148650	0.051982	-2.859667	0.0054
C	2.047904	0.726079	2.820497	0.0060
P. cauarad	0.091701	Mean depen	dontvor	-0.024096
R-squared Adjusted R-squared	0.080488	S.D. depend		0.445982
S.E. of regression	0.427658	Akaike info c		1.162814
Sum squared resid	14.81418	Schwarz crite	erion	1.221099
Log likelihood	-46.25678	Hannan-Quir		1.186230
F-statistic	8.177694	Durbin-Wats	on stat	1.913277
Prob(F-statistic)	0.005392			

Table : 6.128. PP Unit Root Test of CBRc

Series: CBR_C Workf	file: FINANCING	OF ISLAMIC		
View Proc Object Prope	rties Print Na	me Freeze] [Sample Genr 9	Sheet Graph
Phillips	-Perron Unit R	loot Test on D	(CBR_C)	
Null Hypothesis: D(CBF Exogenous: Constant Bandwidth: 9 (Newey-W			t kernel	
			Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic		-9.994722	0.0000
Test critical values:	1% level		-3.512290	
	5% level		-2.897223	
	10% level		-2.585861	
*MacKinnon (1996) one	-sided p-value	s.		
Residual variance (no c	orrection)			0.198726
residual valiance (IIV C	on conon,			0.130720
HAC corrected variance		1)		0.078533
	uation CBR_C,2) 19:42 19M03 2015M1	2		
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200	uation CBR_C,2) 19:42 19M03 2015M1	2	t-Statistic	
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	uation CBR_C,2) 09:42 9M03 2015M1. 82 after adjust	2 ments	t-Statistic	0.078533
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations:	uation CBR_C,2) 19:42 19M03 2015M1 182 after adjust	2 ments Std. Error		0.078533 Prob. 0.0000
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(CBR_C(-1)) C	uation CBR_C,2) 19:42 19M03 2015M1 82 after adjust Coefficient -1.008064 -0.025684	2 ments Std. Error 0.111755 0.049914	-9.020281 -0.514552	Prob. 0.0000 0.6083
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(CBR_C(-1)) C R-squared	uation CBR_C,2) 19:42 19M03 2015M1 82 after adjust Coefficient -1.008064 -0.025684 0.504231	2 ments Std. Error 0.111755 0.049914 Mean deper	-9.020281 -0.514552	Prob. 0.0000 0.6083
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(CBR_C(-1)) C	uation CBR_C,2) 19:42 19M03 2015M1 82 after adjust Coefficient -1.008064 -0.025684	2 ments Std. Error 0.111755 0.049914	-9.020281 -0.514552 ident var Jent var	Prob. 0.0000 0.6083 -0.001220 0.637019
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(CBR_C(-1)) C R-squared Adjusted R-squared	uation CBR_C,2) 09:42 19M03 2015M1. 82 after adjust Coefficient -1.008064 -0.025684 0.504231 0.498034	2 ments Std. Error 0.111755 0.049914 Mean deper S.D. depend	-9.020281 -0.514552 ident var lent var criterion	Prob. 0.0000 0.6083 -0.001220 0.637019 1.270832
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(CBR_C(-1)) C R-squared Adjusted R-squared S.E. of regression	uation CBR_C,2) 19:42 19M03 2015M1. 82 after adjust Coefficient -1.008064 -0.025684 0.504231 0.498034 0.451325	2 ments Std. Error 0.111755 0.049914 Mean depen S.D. depend Akaike info o	-9.020281 -0.514552 ident var lent var criterion erion	0.078533
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: Variable D(CBR_C(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	uation CBR_C,2) 19:42 19M03 2015M1: 82 after adjust Coefficient -1.008064 -0.025684 0.504231 0.498034 0.451325 16.29557	2 ments Std. Error 0.111755 0.049914 Mean deper S.D. depend Akaike info (Schwarz crit	-9.020281 -0.514552 Ident var Jent var criterion erion inn criter.	Prob. 0.0000 0.6083 -0.001220 0.637019 1.270832 1.329532
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 11/25/16 Time: 0 Sample (adjusted): 200 Included observations: (Variable D(CBR_C(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	uation CBR_C,2) 19:42 19M03 2015M1. 82 after adjust Coefficient -1.008064 -0.025684 0.504231 0.498034 0.451325 16.29557 -50.10410	2 ments Std. Error 0.111755 0.049914 Mean deper S.D. depenc Akaike info of Schwarz crit Hannan-Qui	-9.020281 -0.514552 Ident var Jent var criterion erion inn criter.	Prob. 0.0000 0.6083 -0.001220 0.637019 1.270832 1.329532 1.294399

Table : 6.129. ADF Unit Root Test of CPI

Series: CPI Workfile: PROFITABILITY OF ISLAMIC BANKS::Profit $\ \ \ \ \ \ \ \ \ \ \ \ \ $						
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph						
Augmented Dickey-Fuller Unit Root Test on CPI						
Null Hypothesis: CPI has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)						
			t-Statistic	Prob.*		
Augmented Dickey-Fulle	r test statistic		-2.356921	0.1563		
Test critical values:	1% level		-3.486064			
	5% level		-2.885863			
	10% level		-2.579818			
Augmented Dickey-Fulle Dependent Variable: D(0 Method: Least Squares Date: 10/26/16 Time: 10 Sample (adjusted): 2000 Included observations: 1	CPI) 6:39 6M02 2015M1:	2	t-Statistic	Prob		
valiable	Coefficient	Stu. Elloi	t-oldustic	F100.		
CPI(-1)	-0.089886	0.038137		0.0201		
С	11.53076	4.978092	2.316301	0.0223		
R-squared	0.045327	Mean deper	ndent var	-0.132185		
Adjusted R-squared	0.037168	S.D. depend	dent var	6.037355		
S.E. of regression	5.924096	Akaike info		6.412597		
Sum squared resid	4106.104	Schwarz crit		6.459305		
Log likelihood	-379.5495	Hannan-Qu		6.431564		
F-statistic	5.555078	Durbin-Wat	son stat	1.993656		
Prob(F-statistic)	0.020089					

Table : 6.130. ADF Unit Root Test of CPI

	PROFITABILITY	OF ISLAMIC	BANKS::Profit	_ 🗆 X			
View Proc Object Proper	ties Print Na	me Freeze	Sample Genr S	heet Graph			
Augmented Dickey-Fuller Unit Root Test on D(CPI)							
Null Hypothesis: D(CPI) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)							
t-Statistic Prob.*							
Augmented Dickey-Fulle Test critical values:	1% level		-11.22595 -3.486551	0.0000			
	5% level 10% level		-2.886074 -2.579931				
Augmented Dickey-Fulle Dependent Variable: D(0 Method: Least Squares Date: 10/26/16 Time: 10 Sample (adjusted): 2006 Included observations: 1	CPI,2) 6:40 6M03 2015M1:	2					
Variable	Coefficient	Std. Error	t-Statistic				
D(CPI(-1))	-1.041504	0.092776	-11.22595	Prob.			
C C	-0.146114	0.560171	-0.260838	0.0000 0.7947			

Table : 6.131. PP Unit Root Test of CPI

Series: CPI Workfile:	PROFITABILITY	OF ISLAMIC B	ANKS::Profita	×		
View Proc Object Prope	erties Print Na	me Freeze S	ample Genr S	heet Graph		
Phillips-Perron Unit Root Test on CPI						
Null Hypothesis: CPI has a unit root Exogenous: Constant Bandwidth: 2 (Newey-West automatic) using Bartlett kernel						
			Adj. t-Stat	Prob.*		
Phillips-Perron test stat	tistic		-2.380001	0.1496		
Test critical values:	1% level		-3.486064			
	5% level		-2.885863			
	10% level		-2.579818			
*MacKinnon (1996) one	-sided p-value	S.				
Residual variance (no correction) 34.50508 HAC corrected variance (Bartlett kernel) 35.25188						
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 10/26/16 Time: 1 Sample (adjusted): 200 Included observations:	(CPI) 16:40 16M02 2015M1:					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
CPI(-1) C	-0.089886 11.53076	0.038137 4.978092	-2.356921 2.316301	0.0201 0.0223		
R-squared	0.045327	Mean depend	dent var	-0.132185		
Adjusted R-squared	0.037168	S.D. depende		6.037355		
S.E. of regression	5.924096	Akaike info cr		6.412597		
Sum squared resid	4106.104	Schwarz crite	rion	6.459305		
Log likelihood	-379.5495	Hannan-Quir		6.431564		
F-statistic	5.555078	Durbin-Wats	on stat	1.993656		
Prob(F-statistic)	0.020089					

Table : 6.132. PP Unit Root Test of CPI

View Proc Object Prope	Series: CPI Workfile: PROFITABILITY OF ISLAMIC BANKS::Profita = = ×					
The Tribe Object Frope	erties Print Na	me Freeze	Sample Genr S	heet Graph		
Phillips-Perron Unit Root Test on D(CPI)						
Null Hypothesis: D(CPI) has a unit root Exogenous: Constant Bandwidth: 2 (Newey-West automatic) using Bartlett kernel						
			Adj. t-Stat	Prob.*		
Phillips-Perron test star Test critical values:	1% level 5% level 10% level		-11.22811 -3.486551 -2.886074 -2.579931	0.0000		
*MacKinnon (1996) one	e-sided p-value	S.				
Residual variance (no o		1)		36.37930 35.99000		
Phillips-Perron Test Equation Dependent Variable: D(CPI,2) Method: Least Squares Date: 10/26/16 Time: 16:40 Sample (adjusted): 2006M03 2015M12 Included observations: 118 after adjustments						
Sample (adjusted): 200	06M03 2015M1					
Sample (adjusted): 200	06M03 2015M1		t-Statistic	Prob.		
Sample (adjusted): 200 Included observations:	06M03 2015M1: 118 after adjus	tments	-11.22595	Prob. 0.0000 0.7947		

Table : 6.133. ADF Unit Root Test of IPI

Series: IPI Workfile: PROFITABILITY OF ISLAMIC BANKS::Profita 🗖 🗴						
View Proc Object Proper	ties Print Na	me Freeze	Sample Genr S	heet Graph		
Augmented Dickey-Fuller Unit Root Test on IPI						
Null Hypothesis: IPI has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=12)						
			t-Statistic	Prob.*		
Augmented Dickey-Fulle	r test statistic		-9.295302	0.0000		
Test critical values:	1% level		-3.487046			
	5% level		-2.886290			
	10% level		-2.580046			
Augmented Dickey-Fulle	*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation					
Dependent Variable: D(IPI) Method: Least Squares Date: 10/26/16 Time: 15:36 Sample (adjusted): 2006M04 2015M12 Included observations: 117 after adjustments						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
IPI(-1)	-2.018749	0.217179	-9.295302	0.0000		
D(IPI(-1))	0.544017	0.159970	3.400740	0.0009		
D(IPI(-2))	0.164618	0.093189		0.0800		
С	1.014761	0.286596	3.540743	0.0006		
R-squared	0.699989	Mean depe	ndent var	-0.030684		
Adjusted R-squared	0.692024	S.D. depen		5.144132		
S.E. of regression	2.854768	Akaike info	criterion	4.969448		
Sum squared resid	920.9158	Schwarz cri		5.063881		
Log likelihood	-286.7127	Hannan-Qu		5.007787		
F-statistic	87.88414	Durbin-Wat	son stat	2.008902		
Prob(F-statistic)	0.000000					

Table : 6.134. PP Unit Root Test of IPI

Series: IPI Workfile: F	ROFITABILITY	OF ISLAMIC B	ANKS::Profita	= ×	
View Proc Object Prope	rties Print Na	me Freeze	Sample Genr S	Sheet Graph	
Phillips-Perron Unit Root Test on IPI					
Null Hypothesis: IPI has a unit root Exogenous: Constant Bandwidth: 11 (Newey-West automatic) using Bartlett kernel					
			Adj. t-Stat	Prob.*	
Phillips-Perron test state Test critical values:	istic 1% level 5% level 10% level		-24.21284 -3.486064 -2.885863 -2.579818	0.0000	
*MacKinnon (1996) one	-sided p-value	S.			
Residual variance (no c HAC corrected variance		1)		8.821153 1.786923	
Phillips-Perron Test Equ Dependent Variable: D(I Method: Least Squares Date: 11/17/16 Time: 1 Sample (adjusted): 200 Included observations:	IPI) 0:53 6M02 2015M1:				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
IPI(-1) C	-1.318812 0.637316	0.087764 0.277896	-15.02674 2.293364	0.0000 0.0236	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.658696 0.655779 2.995320 1049.717 -298.3943 225.8028 0.000000	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Qui Durbin-Wats	lent var criterion erion inn criter.	-0.005798 5.105337 5.048643 5.095351 5.067610 2.185716	

Table : 6.135.
Pairwise Granger Causality Test for Model 3.2

Group: UNTITLED Workfile: PROFITABILITY OF ISLAN			_ =
iew Proc Object Print Name Freeze Sample Sheet	Stats Spec	:]	
Pairwise Granger Causality Tests Date: 11/23/16 Time: 09:15 Bample: 2006M01 2015M12 .ags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
IBDEPTOT does not Granger Cause ROA	119	6.06632	0.0152
ROA does not Granger Cause IBDEPTOT		4.30746	0.0402
IBFINTOT does not Granger Cause ROA	119	5.94057	0.0163
ROA does not Granger Cause IBFINTOT		6.85473	0.0100
PSRDEP does not Granger Cause ROA	119	1.06475	0.3043
ROA does not Granger Cause PSRDEP		2.32337	0.1302
PSRFIN does not Granger Cause ROA	119	0.74355	0.3903
ROA does not Granger Cause PSRFIN		0.82329	0.3661
IMMR does not Granger Cause ROA	119	0.00070	0.9790
ROA does not Granger Cause IMMR		0.00084	0.9770
CPI does not Granger Cause ROA	119	0.01250	0.9112
ROA does not Granger Cause CPI		0.02117	0.8846
IPI does not Granger Cause ROA	119	0.19942	0.6560
ROA does not Granger Cause IPI		0.00032	0.9858
IBFINTOT does not Granger Cause IBDEPTOT	119	8.89015	0.0035
IBDEPTOT does not Granger Cause IBFINTOT		4.20321	0.0426
PSRDEP does not Granger Cause IBDEPTOT	119	9.47163	0.0026
IBDEPTOT does not Granger Cause PSRDEP		0.14693	0.7022
PSRFIN does not Granger Cause IBDEPTOT	119	0.10203	0.7500
IBDEPTOT does not Granger Cause PSRFIN		4.17398	0.0433
IMMR does not Granger Cause IBDEPTOT	119	3.77550	0.0544
IBDEPTOT does not Granger Cause IMMR		0.29017	0.5911
CPI does not Granger Cause IBDEPTOT	119	0.11317	0.7372
IBDEPTOT does not Granger Cause CPI		0.65979	0.4183
IPI does not Granger Cause IBDEPTOT	119	0.00136	0.9706
IBDEPTOT does not Granger Cause IPI		0.01052	0.9185
PSRDEP does not Granger Cause IBFINTOT	119	14.4442	0.0002
IBFINTOT does not Granger Cause PSRDEP		0.11245	0.7380

Table : 6.136.
Pairwise Granger Causality Test for Model 3.2

G Group: UNTITLED Workfile: PROFITABILITY OF ISLA	MIC BANKS:	:Profitability\	_ =	×
View Proc Object Print Name Freeze Sample Sheet	Stats Spec			
PSRDEP does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause PSRDEP	119	14.4442 0.11245	0.0002 0.7380	^
PSRFIN does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause PSRFIN	119	0.17237 4.32180	0.6788 0.0398	
IMMR does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause IMMR	119	7.70119 0.30096	0.0064 0.5843	
CPI does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause CPI	119	0.00076 0.63104	0.9780 0.4286	
IPI does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause IPI	119	0.20678 0.01129	0.6502 0.9156	
PSRFIN does not Granger Cause PSRDEP PSRDEP does not Granger Cause PSRFIN	119	1.00770 1.25554	0.3175 0.2648	
IMMR does not Granger Cause PSRDEP PSRDEP does not Granger Cause IMMR	119	7.42306 0.56437	0.0074 0.4540	
CPI does not Granger Cause PSRDEP PSRDEP does not Granger Cause CPI	119	0.05444 0.12443	0.8159 0.7249	
IPI does not Granger Cause PSRDEP PSRDEP does not Granger Cause IPI	119	0.04280 0.00074	0.8365 0.9783	
IMMR does not Granger Cause PSRFIN PSRFIN does not Granger Cause IMMR	119	0.32874 0.71242	0.5675 0.4004	
CPI does not Granger Cause PSRFIN PSRFIN does not Granger Cause CPI	119	0.00403 0.28588	0.9495 0.5939	
IPI does not Granger Cause PSRFIN PSRFIN does not Granger Cause IPI	119	3.48287 0.00348	0.0645 0.9531	
CPI does not Granger Cause IMMR IMMR does not Granger Cause CPI	119	0.42211 1.24166	0.5172 0.2675	
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	119	1.05917 0.14188	0.3055 0.7071	
IPI does not Granger Cause CPI CPI does not Granger Cause IPI	119	0.15940 0.08552	0.6904 0.7705	

Table : 6.137.
Pairwise Granger Causality Test for Model 3.3

G Group: UNTITLED Workfile: DEPOSITS OF ISLAMIC B.	ANKS::Pr	ofitability\	_ = x
View Proc Object Print Name Freeze Sample Sheet	Stats Sp	ec	
Pairwise Granger Causality Tests Date: 11/18/16 Time: 11:19 Sample: 2006M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSRWADSAV does not Granger Cause WADSAV	119	0.32124	0.5720
WADSAV does not Granger Cause PSRWADSAV		0.31275	0.5771
IPI does not Granger Cause WADSAV	119	0.68126	0.4108
WADSAV does not Granger Cause IPI		0.00730	0.9321
IMMR does not Granger Cause WADSAV	119	1.94442	0.1659
WADSAV does not Granger Cause IMMR		0.95513	0.3304
CPI does not Granger Cause WADSAV	119	0.11198	0.7385
WADSAV does not Granger Cause CPI		0.85177	0.3580
IPI does not Granger Cause PSRWADSAV	119	0.02771	0.8681
PSRWADSAV does not Granger Cause IPI		0.43342	0.5116
IMMR does not Granger Cause PSRWADSAV	119	0.19473	0.6598
PSRWADSAV does not Granger Cause IMMR		0.65642	0.4195
CPI does not Granger Cause PSRWADSAV	119	0.16222	0.6879
PSRWADSAV does not Granger Cause CPI		0.74716	0.3892
IMMR does not Granger Cause IPI	119	0.14188	0.7071
IPI does not Granger Cause IMMR		1.05917	0.3055
CPI does not Granger Cause IPI	119	0.08552	0.7705
IPI does not Granger Cause CPI		0.15940	0.6904
CPI does not Granger Cause IMMR	119	0.42211	0.5172
IMMR does not Granger Cause CPI		1.24166	0.2675

Table : 6.138.
Pairwise Granger Causality Test for Model 3.4.

/iew Proc Object Print Name Freeze Sample Sheet	Stats Spec		
Pairwise Granger Causality Tests Date: 11/18/16 Time: 16:20 Sample: 2006M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSRMUDHSAV does not Granger Cause MUDHSAV	119	3.93370	0.0497
MUDHSAV does not Granger Cause PSRMUDHSAV		1.63222	0.2039
IPI does not Granger Cause MUDHSAV	119	0.51108	0.4761
MUDHSAV does not Granger Cause IPI		0.00767	0.9304
IMMR does not Granger Cause MUDHSAV	119	4.00619	0.0477
MUDHSAV does not Granger Cause IMMR		0.34052	0.5607
CPI does not Granger Cause MUDHSAV	119	0.38187	0.5378
MUDHSAV does not Granger Cause CPI		0.84172	0.3608
IPI does not Granger Cause PSRMUDHSAV	119	0.11146	0.7391
PSRMUDHSAV does not Granger Cause IPI		0.04178	0.8384
IMMR does not Granger Cause PSRMUDHSAV	119	0.01066	0.9180
PSRMUDHSAV does not Granger Cause IMMR		0.71937	0.3981
CPI does not Granger Cause PSRMUDHSAV	119	1.14103	0.2877
PSRMUDHSAV does not Granger Cause CPI		0.95870	0.3296
IMMR does not Granger Cause IPI	119	0.14188	0.7071
IPI does not Granger Cause IMMR		1.05917	0.3055
CPI does not Granger Cause IPI	119	0.08552	0.7705
IPI does not Granger Cause CPI		0.15940	0.6904
CPI does not Granger Cause IMMR	119	0.42211	0.5172
IMMR does not Granger Cause CPI		1.24166	0.2675

Table : 6.139.
Pairwise Granger Causality Test for Model 3.5.

/iew Proc Object Print Name Freeze Sample Sheet Stats Spe	ec		
Pairwise Granger Causality Tests Date: 12/10/16 Time: 15:04 Sample: 2009M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSR_MUDHDEP01 does not Granger Cause MUDHDEP01	83	0.34652	0.5577
MUDHDEP01 does not Granger Cause PSR_MUDHDEP01		0.28068	0.5977
IMMR does not Granger Cause MUDHDEP01	83	0.02679	0.8704
MUDHDEP01 does not Granger Cause IMMR		0.15180	0.6979
CBR_TD01 does not Granger Cause MUDHDEP01	83	6.4E-05	0.9936
MUDHDEP01 does not Granger Cause CBR_TD01		14.3922	0.0003
CPI does not Granger Cause MUDHDEP01	83	0.02245	0.8813
MUDHDEP01 does not Granger Cause CPI		0.90448	0.3444
IPI does not Granger Cause MUDHDEP01	83	2.15662	0.1459
MUDHDEP01 does not Granger Cause IPI		0.10201	0.7503
IMMR does not Granger Cause PSR_MUDHDEP01	83	3.21224	0.0769
PSR_MUDHDEP01 does not Granger Cause IMMR		0.71222	0.4012
CBR_TD01 does not Granger Cause PSR_MUDHDEP01 PSR_MUDHDEP01 does not Granger Cause CBR_TD01	83	8.85092 11.8062	0.0039 0.0009

Table : 6.140.
Pairwise Granger Causality Test for Model 3.5.

G Group: MODEL03_PUREDATA Workfile: DEPOSITS OF ISLAMIC BA	NKS 20	09-2015::Untit	= 3	X
View Proc Object Print Name Freeze Sample Sheet Stats Spec				
CBR_TD01 does not Granger Cause PSR_MUDHDEP01 PSR_MUDHDEP01 does not Granger Cause CBR_TD01	83	8.85092 11.8062	0.0039 0.0009	٨
CPI does not Granger Cause PSR_MUDHDEP01 PSR_MUDHDEP01 does not Granger Cause CPI	83	0.24978 0.01263	0.6186 0.9108	
IPI does not Granger Cause PSR_MUDHDEP01 PSR_MUDHDEP01 does not Granger Cause IPI	83	1.17995 0.10254	0.2806 0.7496	
CBR_TD01 does not Granger Cause IMMR IMMR does not Granger Cause CBR_TD01	83	0.61886 0.01227	0.4338 0.9121	
CPI does not Granger Cause IMMR IMMR does not Granger Cause CPI	83	0.08424 0.98031	0.7724 0.3251	
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	83	0.00684 0.25088	0.9343 0.6178	
CPI does not Granger Cause CBR_TD01 CBR_TD01 does not Granger Cause CPI	83	0.70908 0.25931	0.4023 0.6120	
IPI does not Granger Cause CBR_TD01 CBR_TD01 does not Granger Cause IPI	83	0.64788 0.03257	0.4233 0.8572	
IPI does not Granger Cause CPI CPI does not Granger Cause IPI	83	0.02401 0.21640	0.8772 0.6431	
				۳

Table : 6.141.
Pairwise Granger Causality Test for Model 3.6.

View Proc Object Print Name Freeze Sample Sheet Stats Spe	ec		
Pairwise Granger Causality Tests Date: 12/10/16 Time: 15:14 Sample: 2009M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSR_MUDHDEP03 does not Granger Cause MUDHDEP03	83	0.09700	0.7563
MUDHDEP03 does not Granger Cause PSR_MUDHDEP03		0.00058	0.9809
IMMR does not Granger Cause MUDHDEP03	83	5.76734	0.0186
MUDHDEP03 does not Granger Cause IMMR		0.00997	0.9207
CBR_TD03 does not Granger Cause MUDHDEP03	83	0.39654	0.5307
MUDHDEP03 does not Granger Cause CBR_TD03		33.6317	1.E-07
CPI does not Granger Cause MUDHDEP03	83	0.50688	0.4786
MUDHDEP03 does not Granger Cause CPI		0.93145	0.3374
IPI does not Granger Cause MUDHDEP03	83	0.91574	0.3415
MUDHDEP03 does not Granger Cause IPI		0.16178	0.6886
IMMR does not Granger Cause PSR_MUDHDEP03	83	6.86107	0.0105
PSR_MUDHDEP03 does not Granger Cause IMMR		0.94325	0.3344
CBR_TD03 does not Granger Cause PSR_MUDHDEP03	83	13.6866	0.0004
PSR_MUDHDEP03 does not Granger Cause CBR_TD03		39.4035	2.E-08

Table : 6.142.
Pairwise Granger Causality Test for Model 3.6.

		titled\		X
View Proc Object Print Name Freeze Sample Sheet Stats Spec				
CBR_TD03 does not Granger Cause PSR_MUDHDEP03 PSR_MUDHDEP03 does not Granger Cause CBR_TD03	83	13.6866 39.4035	0.0004 2.E-08	*
CPI does not Granger Cause PSR_MUDHDEP03 PSR_MUDHDEP03 does not Granger Cause CPI	83	0.07003 3.28448	0.7920 0.0737	
IPI does not Granger Cause PSR_MUDHDEP03 PSR_MUDHDEP03 does not Granger Cause IPI	83	1.54132 0.17925	0.2180 0.6732	
CBR_TD03 does not Granger Cause IMMR IMMR does not Granger Cause CBR_TD03	83	0.58449 0.27794	0.4468 0.5995	
CPI does not Granger Cause IMMR IMMR does not Granger Cause CPI	83	0.08424 0.98031	0.7724 0.3251	
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	83	0.00684 0.25088	0.9343 0.6178	
CPI does not Granger Cause CBR_TD03 CBR_TD03 does not Granger Cause CPI	83	2.17353 0.06332	0.1443 0.8020	
IPI does not Granger Cause CBR_TD03 CBR_TD03 does not Granger Cause IPI	83	0.00977 0.02953	0.9215 0.8640	
IPI does not Granger Cause CPI CPI does not Granger Cause IPI	83	0.02401 0.21640	0.8772 0.6431	

Table : 6.143.
Pairwise Granger Causality Test for Model 3.7.

G Group: UNTITLED Workfile: DEPOSITS OF ISLAMIC BANKS 2009-	2015::Ur	ntitled\	- 0
View Proc Object Print Name Freeze Sample Sheet Stats Spec			
Pairwise Granger Causality Tests Date: 12/10/16 Time: 15:24 Sample: 2009M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSR_MUDHDEP12 does not Granger Cause MUDHDEP12	83	0.54236	0.4636
MUDHDEP12 does not Granger Cause PSR_MUDHDEP12		0.15003	0.6995
IMMR does not Granger Cause MUDHDEP12	83	0.46801	0.4959
MUDHDEP12 does not Granger Cause IMMR		1.70634	0.1952
CBR_TD12 does not Granger Cause MUDHDEP12	83	0.03437	0.8534
MUDHDEP12 does not Granger Cause CBR_TD12		2.01222	0.1599
CPI does not Granger Cause MUDHDEP12	83	0.02802	0.8675
MUDHDEP12 does not Granger Cause CPI		0.02421	0.8767
IPI does not Granger Cause MUDHDEP12	83	1.59851	0.2098
MUDHDEP12 does not Granger Cause IPI		0.00037	0.9847
IMMR does not Granger Cause PSR_MUDHDEP12	83	4.10442	0.0461
PSR_MUDHDEP12 does not Granger Cause IMMR		0.10792	0.7434
CBR_TD12 does not Granger Cause PSR_MUDHDEP12 PSR_MUDHDEP12 does not Granger Cause CBR_TD12	83	9.81891 15.2482	0.0024 0.0002

Table : 6.144.
Pairwise Granger Causality Test for Model 3.7.

G Group: UNTITLED Workfile: DEPOSITS OF ISLAMIC BANKS 2009-	2015::Un	titled\	_ 0	Χ
View Proc Object Print Name Freeze Sample Sheet Stats Spec				
CBR_TD12 does not Granger Cause PSR_MUDHDEP12 PSR_MUDHDEP12 does not Granger Cause CBR_TD12	83	9.81891 15.2482	0.0024 0.0002	*
CPI does not Granger Cause PSR_MUDHDEP12 PSR_MUDHDEP12 does not Granger Cause CPI	83	0.00893 5.04958	0.9250 0.0274	
IPI does not Granger Cause PSR_MUDHDEP12 PSR_MUDHDEP12 does not Granger Cause IPI	83	0.06357 0.29707	0.8016 0.5872	
CBR_TD12 does not Granger Cause IMMR IMMR does not Granger Cause CBR_TD12	83	0.63378 4.06333	0.4283 0.0472	
CPI does not Granger Cause IMMR IMMR does not Granger Cause CPI	83	0.08424 0.98031	0.7724 0.3251	
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	83	0.00684 0.25088	0.9343 0.6178	
CPI does not Granger Cause CBR_TD12 CBR_TD12 does not Granger Cause CPI	83	0.28538 0.22746	0.5947 0.6347	
IPI does not Granger Cause CBR_TD12 CBR_TD12 does not Granger Cause IPI	83	0.00326 0.01773	0.9546 0.8944	
IPI does not Granger Cause CPI CPI does not Granger Cause IPI	83	0.02401 0.21640	0.8772 0.6431	
				×

Table : 6.145.
Pairwise Granger Causality Test for Model 3.8.

riew Proc Object Print Name Freeze Sample Sheet St	tats Spec		
Pairwise Granger Causality Tests Date: 12/10/16 Time: 14:57 Sample: 2006M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prot
PSRMUDHDEP does not Granger Cause MUDHDEP	119	4.30707	0.040
MUDHDEP does not Granger Cause PSRMUDHDEP		0.97783	0.324
IPI does not Granger Cause MUDHDEP	119	0.16066	0.689
MUDHDEP does not Granger Cause IPI		0.01261	0.910
IMMR does not Granger Cause MUDHDEP	119	3.04160	0.083
MUDHDEP does not Granger Cause IMMR		0.48008	0.489
CPI does not Granger Cause MUDHDEP	119	0.13606	0.712
MUDHDEP does not Granger Cause CPI		0.56200	0.455
IPI does not Granger Cause PSRMUDHDEP	119	0.17255	0.678
PSRMUDHDEP does not Granger Cause IPI		0.00043	0.983
IMMR does not Granger Cause PSRMUDHDEP	119	8.33556	0.004
PSRMUDHDEP does not Granger Cause IMMR		0.16125	0.688
CPI does not Granger Cause PSRMUDHDEP	119	0.11549	0.734
PSRMUDHDEP does not Granger Cause CPI		0.84157	0.360
IMMR does not Granger Cause IPI	119	0.14188	0.707
IPI does not Granger Cause IMMR		1.05917	0.305
CPI does not Granger Cause IPI	119	0.08552	0.770
IPI does not Granger Cause CPI		0.15940	0.690
CPI does not Granger Cause IMMR	119	0.42211	0.517
IMMR does not Granger Cause CPI		1.24166	0.267

Table : 6.146.
Pairwise Granger Causality Test for Model 3.9.

G Group: UNTITLED Workfile: DEPOSITS OF ISLAMI	C BANKS::I	Profitability\	_ = ×
/iew Proc Object Print Name Freeze Sample She	et Stats S	Spec	
Pairwise Granger Causality Tests Date: 11/18/16 Time: 17:14 Sample: 2006M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSRDEP does not Granger Cause IBDEPTOT IBDEPTOT does not Granger Cause PSRDEP	119	9.47163 0.14693	0.0026 0.7022
CPI does not Granger Cause IBDEPTOT	119	0.11317	0.7372
IBDEPTOT does not Granger Cause CPI		0.65979	0.4183
IMMR does not Granger Cause IBDEPTOT	119	3.77550	0.0544
IBDEPTOT does not Granger Cause IMMR		0.29017	0.5911
IPI does not Granger Cause IBDEPTOT	119	0.00136	0.9706
IBDEPTOT does not Granger Cause IPI		0.01052	0.9185
CPI does not Granger Cause PSRDEP	119	0.05444	0.8159
PSRDEP does not Granger Cause CPI		0.12443	0.7249
IMMR does not Granger Cause PSRDEP	119	7.42306	0.0074
PSRDEP does not Granger Cause IMMR		0.56437	0.4540
IPI does not Granger Cause PSRDEP	119	0.04280	0.8365
PSRDEP does not Granger Cause IPI		0.00074	0.9783
IMMR does not Granger Cause CPI	119	1.24166	0.2675
CPI does not Granger Cause IMMR		0.42211	0.5172
IPI does not Granger Cause CPI	119	0.15940	0.6904
CPI does not Granger Cause IPI		0.08552	0.7705
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	119	1.05917 0.14188	0.3055

Table : 6.147.
Pairwise Granger Causality Test for Model 3.10.

G Group: UNTITLED Workfile: FINANCING OF IS	LAMIC BANK	KS::Profitabi	_ = ×
View Proc Object Print Name Freeze Sample	Sheet Stats	Spec	
Pairwise Granger Causality Tests Date: 11/19/16 Time: 11:11 Sample: 2006M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSRPLS does not Granger Cause MUDHFIN	119	0.37372	0.5422
MUDHFIN does not Granger Cause PSRPLS		2.16466	0.1439
IMMR does not Granger Cause MUDHFIN	119	0.56252	0.4548
MUDHFIN does not Granger Cause IMMR		0.33229	0.5654
CPI does not Granger Cause MUDHFIN	119	5.2E-05	0.9943
MUDHFIN does not Granger Cause CPI		1.40248	0.2387
IPI does not Granger Cause MUDHFIN	119	0.34020	0.5608
MUDHFIN does not Granger Cause IPI		0.02467	0.8755
IMMR does not Granger Cause PSRPLS	119	3.7E-05	0.9951
PSRPLS does not Granger Cause IMMR		0.20625	0.6506
CPI does not Granger Cause PSRPLS	119	0.03653	0.8488
PSRPLS does not Granger Cause CPI		1.39434	0.2401
IPI does not Granger Cause PSRPLS	119	2.43557	0.1213
PSRPLS does not Granger Cause IPI		0.04866	0.8258
CPI does not Granger Cause IMMR	119	0.42211	0.5172
IMMR does not Granger Cause CPI		1.24166	0.2675
IPI does not Granger Cause IMMR	119	1.05917	0.3055
IMMR does not Granger Cause IPI		0.14188	0.7071
IPI does not Granger Cause CPI	119	0.15940	0.6904
CPI does not Granger Cause IPI		0.08552	0.7705

Table : 6.148.
Pairwise Granger Causality Test for Model 3.11.

G Group: MODEL02_GC Workfile: FINANCING OF ISLA	AMIC B	ANKS::I	Prof	. 🗆 х
View Proc Object Print Name Freeze Sample Shee	tStats	Spec		
Pairwise Granger Causality Tests Date: 11/24/16 Time: 12:26 Sample: 2006M01 2015M12 Lags: 1				
Null Hypothesis:	Obs	F-Sta	tistic	Prob.
PSRPLS does not Granger Cause MUSYFIN MUSYFIN does not Granger Cause PSRPLS	119	0.04 3.75		0.8284 0.0549
IMMR does not Granger Cause MUSYFIN MUSYFIN does not Granger Cause IMMR	119	2.96 0.05		0.0875 0.8089
CPI does not Granger Cause MUSYFIN MUSYFIN does not Granger Cause CPI	119	0.00 0.76		0.9270 0.3836
IPI does not Granger Cause MUSYFIN MUSYFIN does not Granger Cause IPI	119	0.07 0.02		0.7804 0.8820
IMMR does not Granger Cause PSRPLS PSRPLS does not Granger Cause IMMR	119	3.7E 0.20		0.9951 0.6506
CPI does not Granger Cause PSRPLS PSRPLS does not Granger Cause CPI	119	0.03 1.39		0.8488 0.2401
IPI does not Granger Cause PSRPLS PSRPLS does not Granger Cause IPI	119	2.43 0.04		0.1213 0.8258
CPI does not Granger Cause IMMR IMMR does not Granger Cause CPI	119	0.42 1.24		0.5172 0.2675
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	119	1.05 0.14		0.3055 0.7071
IPI does not Granger Cause CPI CPI does not Granger Cause IPI	119	0.15 0.08		0.6904 0.7705

Table : 6.149.
Pairwise Granger Causality Test for Model 3.12.

G Group: MODEL03_GC Workfile: FINANCING OF ISLA	MIC B	ANKS:	Profit	_ 🗆 X
View Proc Object Print Name Freeze Sample Sheet	Stats	Spec		
Pairwise Granger Causality Tests Date: 11/24/16 Time: 16:42 Sample: 2006M01 2015M12 Lags: 1				
Null Hypothesis:	Obs	F-9	statistic	Prob.
PSRMURA does not Granger Cause MURAFIN MURAFIN does not Granger Cause PSRMURA	119		23210 19558	0.6309 0.2765
IMMR does not Granger Cause MURAFIN MURAFIN does not Granger Cause IMMR	119		7.4651 18268	7.E-07 0.6699
CPI does not Granger Cause MURAFIN MURAFIN does not Granger Cause CPI	119		55174 64446	0.1129 0.4237
IPI does not Granger Cause MURAFIN MURAFIN does not Granger Cause IPI	119		05166 01088	0.8206 0.9171
IMMR does not Granger Cause PSRMURA PSRMURA does not Granger Cause IMMR	119		20165 14059	0.6542 0.2877
CPI does not Granger Cause PSRMURA PSRMURA does not Granger Cause CPI	119		63996 10633	0.1069 0.7449
IPI does not Granger Cause PSRMURA PSRMURA does not Granger Cause IPI	119	_	01119 10083	0.1588 0.7514
CPI does not Granger Cause IMMR IMMR does not Granger Cause CPI	119		42211 24166	0.5172 0.2675
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	119		05917 14188	0.3055 0.7071
IPI does not Granger Cause CPI CPI does not Granger Cause IPI	119		15940 08552	0.6904 0.7705

Table : 6.150.
Pairwise Granger Causality Test for Model 3.13.

G Group: UNTITLED Workfile: FINANCING OF ISL	AMIC BAN	KS::Profita	_ = ×
View Proc Object Print Name Freeze Sample S	heet Stats	Spec	
Pairwise Granger Causality Tests Date: 11/19/16 Time: 13:58 Sample: 2006M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PSRPLS does not Granger Cause PLSFIN	119	0.10536	0.7461
PLSFIN does not Granger Cause PSRPLS		3.47484	0.0648
IMMR does not Granger Cause PLSFIN	119	3.35344	0.0696
PLSFIN does not Granger Cause IMMR		0.09027	0.7644
CPI does not Granger Cause PLSFIN	119	0.15422	0.6953
PLSFIN does not Granger Cause CPI		0.87973	0.3502
IPI does not Granger Cause PLSFIN	119	0.00080	0.9775
PLSFIN does not Granger Cause IPI		0.02305	0.8796
IMMR does not Granger Cause PSRPLS	119	3.7E-05	0.9951
PSRPLS does not Granger Cause IMMR		0.20625	0.6506
CPI does not Granger Cause PSRPLS	119	0.03653	0.8488
PSRPLS does not Granger Cause CPI		1.39434	0.2401
IPI does not Granger Cause PSRPLS	119	2.43557	0.1213
PSRPLS does not Granger Cause IPI		0.04866	0.8258
CPI does not Granger Cause IMMR	119	0.42211	0.5172
IMMR does not Granger Cause CPI		1.24166	0.2675
IPI does not Granger Cause IMMR	119	1.05917	0.3055
IMMR does not Granger Cause IPI		0.14188	0.7071
IPI does not Granger Cause CPI	119	0.15940	0.6904
CPI does not Granger Cause IPI		0.08552	0.7705

Table : 6.151.
Pairwise Granger Causality Test for Model 3.14.

G Group: UNTITLED Workfile: FINANCING OF ISLAMIC	C BANKS::P	rofitability\	_ = x
View Proc Object Print Name Freeze Sample Sheet	Stats Spe	c	
Pairwise Granger Causality Tests Date: 11/24/16 Time: 17:26 Sample: 2006M01 2015M12 Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
IBDEPTOT does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause IBDEPTOT	119	4.20321 8.89015	0.0426 0.0035
PSRFIN does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause PSRFIN	119	0.17237 4.32180	0.6788 0.0398
IMMR does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause IMMR	119	7.70119 0.30096	0.0064 0.5843
CPI does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause CPI	119	0.00076 0.63104	0.9780 0.4286
IPI does not Granger Cause IBFINTOT IBFINTOT does not Granger Cause IPI	119	0.20678 0.01129	0.6502 0.9156
PSRFIN does not Granger Cause IBDEPTOT IBDEPTOT does not Granger Cause PSRFIN	119	0.10203 4.17398	0.7500 0.0433
IMMR does not Granger Cause IBDEPTOT IBDEPTOT does not Granger Cause IMMR	119	3.77550 0.29017	0.0544 0.5911
CPI does not Granger Cause IBDEPTOT IBDEPTOT does not Granger Cause CPI	119	0.11317 0.65979	0.7372 0.4183
IPI does not Granger Cause IBDEPTOT IBDEPTOT does not Granger Cause IPI	119	0.00136 0.01052	0.9706 0.9185

Table : 6.152.
Pairwise Granger Causality Test for Model 3.14.

G Group: UNTITLED Workfile: FINANCING OF ISLAMI	C BANKS::Pr	ofitability\	_ 0	Χ
View Proc Object Print Name Freeze Sample Sheet	Stats Spec			
IPI does not Granger Cause IBDEPTOT IBDEPTOT does not Granger Cause IPI	119	0.00136 0.01052	0.9706 0.9185	A
IMMR does not Granger Cause PSRFIN PSRFIN does not Granger Cause IMMR	119	0.32874 0.71242	0.5675 0.4004	
CPI does not Granger Cause PSRFIN PSRFIN does not Granger Cause CPI	119	0.00403 0.28588	0.9495 0.5939	
IPI does not Granger Cause PSRFIN PSRFIN does not Granger Cause IPI	119	3.48287 0.00348	0.0645 0.9531	
CPI does not Granger Cause IMMR IMMR does not Granger Cause CPI	119	0.42211 1.24166	0.5172 0.2675	
IPI does not Granger Cause IMMR IMMR does not Granger Cause IPI	119	1.05917 0.14188	0.3055 0.7071	
IPI does not Granger Cause CPI CPI does not Granger Cause IPI	119	0.15940 0.08552	0.6904 0.7705	

Table : 6.153.
Pearson Correlation Coefficient with IMMR

		ROA	IBFinTot	PLSFin	MudhFin	MusyFin	MuraFin	IMMR
ROA	Pearson Correlation	1	483 ^{**}	567 ^{**}	404 ^{**}	593**	473 ^{**}	024
	Sig. (2-tailed)		.000	.000	.000	.000	.000	.794
	N	120	120	120	120	120	120	120
IBFinTot	Pearson Correlation	483 ^{**}	1	.987**	.953**	.982**	.998**	550**
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000
	N	120	120	120	120	120	120	120
PLSFin	Pearson Correlation	567 ^{**}	.987**	1	.949**	.998**	.982**	511 ^{**}
	Sig. (2-tailed)	.000	.000	0.0	.000	.000	.000	.000
	N	120	120	120	120	120	120	120
MudhFin	Pearson Correlation	404 ^{**}	.953**	.949**	1	.926**	.948**	606 ^{**}
	Sig. (2-tailed)	.000	.000	.000	10	.000	.000	.000
	N	120	120	120	120	120	120	120
MusyFin	Pearson Correlation	593 ^{**}	.982**	.998**	.926**	1	.977**	484 ^{**}
	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000
	N	120	120	120	120	120	120	120
MuraFin	Pearson Correlation	473 ^{**}	.998**	.982**	.948**	.977***	1	544 ^{**}
	Sig. (2-tailed)	.000	.000	.000	.000	.000	00	.000
	N	120	120	120	120	120	120	120
IMMR	Pearson Correlation	024	550 ^{**}	511 ^{**}	606 ^{**}	484 ^{**}	544 ^{**}	1
	Sig. (2-tailed)	.794	.000	.000	.000	.000	.000	
	Ń	120	120	120	120	120	120	120

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Table : 6.154. Pearson Correlation Coefficient with IMMR

		PSRdep	PSRwadsav	PSRmudhsav	PSRMudhDep	PSRfin	PSRpls	PSRmura	IMMR
PSRdep	Pearson Correlation	1	.166	.324**	.886**	066	282**	292**	.488**
	Sig. (2-tailed)		.070	.000	.000	.475	.002	.001	.000
	N	120	120	120	120	119	120	120	120
PSRwadsav	Pearson Correlation	.166	1	284**	.246**	151	106	.000	158
	Sig. (2-tailed)	.070		.002	.007	.102	.250	.999	.084
	N	120	120	120	120	119	120	120	120
PSRmudhsav	Pearson Correlation	.324**	284 ^{**}	1	025	323**	-,342**	386**	.125
	Sig. (2-tailed)	.000	.002		.786	.000	.000	.000	.175
	N	120	120	120	120	119	120	120	120
PSRMudhDep	Pearson Correlation	.886**	.246**	025	1	.070	240**	229 ^x	.522**
	Sig. (2-tailed)	.000	.007	.786	6-3	.452	.008	.012	.000
	N	120	120	120	120	119	120	120	120
PSRfin	Pearson Correlation	066	151	323**	.070	1	.700**	,770 ^{**}	.152
	Sig. (2-tailed)	.475	.102	.000	.452		.000	.000	.098
	N	119	119	119	119	119	119	119	119
PSRpIs	Pearson Correlation	282 ^{**}	106	342**	240***	.700**	1	.507**	087
	Sig. (2-tailed)	.002	.250	.000	.008	.000		.000	.345
	N	120	120	120	120	119	120	120	120
PSRmura	Pearson Correlation	292 ^{**}	.000	386 ^{**}	229 [*]	.770**	.507**	1	251**
	Sig. (2-tailed)	.001	.999	.000	.012	.000	.000		.006
	N	120	120	120	120	119	120	120	120
IMMR	Pearson Correlation	.488**	158	.125	.522***	.152	087	251**	1
	Sig. (2-tailed)	.000	.084	.175	.000	.098	.345	.006	
	N	120	120	120	120	119	120	120	120

^{**.} Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table : 6.155. **Pearson Correlation Coefficient with CBRs**

		PLSFin	MudhFin	MusyFin	MuraFin	CBRwc	CBRI	CBRc
PLSFin	Pearson Correlation	1	.948**	.999**	.970**	276 [*]	206	531 ^{**}
	Sig. (2-tailed)		.000	.000	.000	.011	.060	.000
	N	84	84	84	84	84	84	84
MudhFin	Pearson Correlation	.948**	1	.930**	.949**	289 ^{xx}	235 [*]	435 ^{**}
	Sig. (2-tailed)	.000		.000	.000	.008	.031	.000
	N	84	84	84	84	84	84	84
MusyFin	Pearson Correlation	.999**	.930**	1	.964**	272*	200	542 ^{**}
	Sig. (2-tailed)	.000	.000		.000	.012	.068	.000
	N	84	84	84	84	84	84	84
MuraFin	Pearson Correlation	.970**	.949**	.964**	1	407 ^{**}	340**	609 ^{**}
	Sig. (2-tailed)	.000	.000	.000		.000	.002	.000
	N	84	84	84	84	84	84	84
CBRwc	Pearson Correlation	276 [*]	289 ^{xx}	272 [*]	407 ^{**}	1	.970**	.720**
	Sig. (2-tailed)	.011	.008	.012	.000		.000	.000
	N	84	84	84	84	84	84	84
CBRI	Pearson Correlation	206	235 ^x	200	340 ^{**}	.970**	1	.714**
	Sig. (2-tailed)	.060	.031	.068	.002	.000		.000
	N	84	84	84	84	84	84	84
CBRc	Pearson Correlation	531**	435**	542**	609***	.720**	.714**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	
	N	84	84	84	84	84	84	84

^{**.} Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table: 6.156. **Pearson Correlation Coefficient with CBRs**

		PSRdep	PSRwadsav	PSRmudhsav	PSRMudhDep	CBRdd	CBRsd	CBRwc	CBRI	CBRc
PSRdep	Pearson Correlation	1	.191	.353**	.801**	.477**	.133	.490**	.510**	.190
	Sig. (2-tailed)		.081	.001	.000	.000	.229	.000	.000	.084
	N	84	84	84	84	84	84	84	84	84
PSRwadsav	Pearson Correlation	.191	1.	305 ^{xx}	.352**	.262*	.141	011	054	.167
	Sig. (2-tailed)	.081		.005	.001	.016	.200	.920	.627	.129
	N	84	84	84	84	84	84	84	84	84
PSRmudhsav	Pearson Correlation	.353**	305 ^{xx}	1	123	.015	261 ^x	038	.002	272 ^x
	Sig. (2-tailed)	.001	.005		.264	.893	.016	.733	.988	.012
	N	84	84	84	84	84	84	84	84	84
PSRMudhDep	Pearson Correlation	.801**	.352**	123	1	.528**	.376**	.631**	.631**	.465**
	Sig. (2-tailed)	.000	.001	.264		.000	.000	.000	.000	.000
	N	84	84	84	84	84	84	84	84	84
CBRdd	Pearson Correlation	.477**	.262*	.015	.528**	1	.258	.443**	.471**	.409**
	Sig. (2-tailed)	.000	.016	.893	.000	- 00	.018	.000	.000	.000
	N	84	84	84	84	84	84	84	84	84
CBRsd	Pearson Correlation	.133	.141	261 ^x	.376**	.258*	1	.748**	.704**	.835**
	Sig. (2-tailed)	.229	.200	.016	.000	.018	320	.000	.000	.000
	N	84	84	84	84	84	84	84	84	84
CBRwc	Pearson Correlation	.490**	011	038	.631**	.443***	.748**	1	.970**	.720**
	Sig. (2-tailed)	.000	.920	.733	.000	.000	.000	100	.000	.000
	N	84	84	84	84	84	84	84	84	84
CBRI	Pearson Correlation	.510**	054	.002	.631**	.471**	.704**	.970**	1	.714**
	Sig. (2-tailed)	.000	.627	.988	.000	.000	.000	.000		.000
	N	84	84	84	84	84	84	84	84	84
CBRc	Pearson Correlation	.190	.167	272 [*]	.465**	.409**	.835**	.720 ^{xx}	.714**	1
	Sig. (2-tailed)	.084	.129	.012	.000	.000	.000	.000	.000	
	N	84	84	84	84	84	84	84	84	84

^{**.} Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Table : 6.157.
Pearson Correlation Coefficient with CBRs

		PSRMudh Dep01	PSRMudh Dep03	PSRMudh Dep12	CBRtd01	CBRtd03	CBRtd12
PSRMudhDep01	Pearson Correlation	1	.900***	.495**	.624**	.651***	.724**
	Sig. (2-tailed)		.000	.000	.000	.000	.000
	N	84	84	84	84	84	84
PSRMudhDep03	Pearson Correlation	.900**	1	.495**	.590**	.632***	.697**
	Sig. (2-tailed)	.000		,000	.000	.000	.000
	N	84	84	84	84	84	84
PSRMudhDep12	Pearson Correlation	.495**	.495**	1	.294**	.336**	.674**
	Sig. (2-tailed)	.000	.000		.007	.002	.000
	N	84	84	84	84	84	84
CBRtd01	Pearson Correlation	.624**	.590***	.294**	1	.984**	.830**
	Sig. (2-tailed)	.000	.000	.007		.000	.000
	N	84	84	84	84	84	84
CBRtd03	Pearson Correlation	.651***	.632**	,336**	.984**	1	.855**
	Sig. (2-tailed)	.000	.000	.002	.000		.000
	N	84	84	84	84	84	84
CBRtd12	Pearson Correlation	.724**	.697**	.674**	.830**	.855**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	
	N	84	84	84	84	84	84

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Table : 6.158. Pearson Correlation Coefficient with CBRs

		PSRfin	PSRpls	PSRmudh	PSRmusy	PSRmura	CBRwc	CBRI	CBRc
PSRfin	Pearson Correlation	1	.647**	.720**	396**	.862**	.680**	.647**	.666**
	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.000
	N	83	83	83	83	83	83	83	83
PSRpls	Pearson Correlation	.647**	1	.816**	.305**	.496**	.255	.223*	.477**
	Sig. (2-tailed)	.000	***	.000	.005	.000	.019	.041	.000
	N	83	84	84	84	84	84	84	84
PSRmudh	Pearson Correlation	.720**	.816**	1	008	.616**	.420**	.398**	.359**
	Sig. (2-tailed)	.000	.000	7.0	.946	.000	.000	.000	.001
	N	83	84	84	84	84	84	84	84
PSRmusy	Pearson Correlation	396**	.305**	008	1	270 [*]	673**	653**	437 ^{**}
	Sig. (2-tailed)	.000	.005	.946		.013	.000	.000	.000
	N	83	84	84	84	84	84	84	84
PSRmura	Pearson Correlation	.862**	.496**	.616**	270 [*]	1	.424**	.372**	.408**
	Sig. (2-tailed)	.000	.000	.000	.013		.000	.000	.000
	N	83	84	84	84	84	84	84	84
CBRwc	Pearson Correlation	.680**	.255*	.420**	673***	.424**	1	.970**	.720 ^{**}
	Sig. (2-tailed)	.000	.019	.000	.000	.000		.000	.000
	N	83	84	84	84	84	84	84	84
CBRI	Pearson Correlation	.647**	.223*	.398**	653**	.372**	.970**	1	.714**
	Sig. (2-tailed)	.000	.041	.000	.000	.000	.000		.000
	N	83	84	84	84	84	84	84	84
CBRc	Pearson Correlation	.666**	.477**	.359**	437**	.408**	.720***	.714**	1
	Sig. (2-tailed)	.000	.000	.001	.000	.000	.000	.000	
	N	83	84	84	84	84	84	84	84

^{**.} Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

Table : 6.159.
Pearson Correlation Coefficient of Financing Variables

		iBFinTot	IBDepTot	PLSFin	MudhFin	MusyFin	MuraFin	PSRfin	PSRpls	PSRmura	IMMR	CPI	IPI
iBFinTot	Pearson Correlation	1	.997"	.987"	.953"	.982"	.998"	491"	218	161	550"	309"	002
	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.017	.080	.000	.001	.983
	N	120	120	120	120	120	120	120	120	120	120	120	120
IBDepTot	Pearson Correlation	.997"	1	.991"	.954"	.986"	.994"	495"	238"	154	564"	321"	004
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.009	.093	.000	.000	.968
	N	120	120	120	120	120	120	120	120	120	120	120	120
PLSFin	Pearson Correlation	.987"	.991"	1	.949"	.998"	.982"	443"	249"	135	511"	362"	006
	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.006	.142	.000	.000	.948
	N	120	120	120	120	120	120	120	120	120	120	120	120
MudhFin	Pearson Correlation	.953"	.954"	.949"	1	.926"	.948"	305"	021	.010	606"	430"	.000
	Sig. (2-tailed)	.000	.000	.000		.000	.000	.001	.816	.914	.000	.000	.992
	N	120	120	120	120	120	120	120	120	120	120	120	120
MusyFin	Pearson Correlation	.982"	.986"	.998"	.926"	1	.977"	467"	294"	164	484"	343"	007
	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.001	.074	.000	.000	.939
	N	120	120	120	120	120	120	120	120	120	120	120	120
MuraFin	Pearson Correlation	.998"	.994"	.982"	.948"	.977"	1	496"	225	181	544"	- 296	005
	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000	.013	.048	.000	.001	.953
	N	120	120	120	120	120	120	120	120	120	120	120	120
PSRfin	Pearson Correlation	491"	495"	443"	305"	467"	496"	1	.696"	.765"	.154	169	.035
	Sig. (2-tailed)	.000	.000	.000	.001	.000	.000		.000	.000	.093	.065	.705
	N	120	120	120	120	120	120	120	120	120	120	120	120
PSRpls	Pearson Correlation	218	238"	249"	021	294"	225	.696"	1	.507"	087	145	.047
	Sig. (2-tailed)	.017	.009	.006	.816	.001	.013	.000		.000	.345	.115	.610
	N	120	120	120	120	120	120	120	120	120	120	120	120
PSRmura	Pearson Correlation	161	154	135	.010	164	181	.765"	.507"	1	251"	288"	.043
	Sig. (2-tailed)	.080	.093	.142	.914	.074	.048	.000	.000		.006	.001	.642
	N	120	120	120	120	120	120	120	120	120	120	120	120
IMMR	Pearson Correlation	550"	564"	511"	606"	484"	544"	.154	087	251"	1	018	029
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.093	.345	.006		.844	.755
	N	120	120	120	120	120	120	120	120	120	120	120	120
CPI	Pearson Correlation	309"	321"	362"	430"	343"	296"	169	145	288"	018	1	.012
	Sig. (2-tailed)	.001	.000	.000	.000	.000	.001	.065	.115	.001	.844		.897
	N	120	120	120	120	120	120	120	120	120	120	120	120
IPI	Pearson Correlation	002	004	006	.000	007	005	.035	.047	.043	029	.012	1
	Sig. (2-tailed)	.983	.968	.948	.992	.939	.953	.705	.610	.642	.755	.897	
	N	120	120	120	120	120	120	120	120	120	120	120	120

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Table : 6.160. Variance Decomposition (VDC) for Model 3.2

	-		ile: PROFITABIL			tability\			- 0
Pro	oc Object Pri	nt Name Free	eze Estimate	Stats Impulse					
				Variance	Decomposition	on			
/arianc	e Decomposi	tion of DROA:							
Period	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	0.241993	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.293179	95.18106	0.538503	0.129228	2.263609	0.474634	1.050573	0.247345	0.115050
3	0.323773	89.27219	1.025424	0.140018	5.280642	1.073299	2.532343	0.576313	0.099773
4	0.345501	84.10077	1.298994	0.123220	7.710060	1.547682	4.212338	0.914736	0.092204
5	0.361911	79.94991	1.408427	0.133133	9.413551	1.884446	5.882783	1.232120	0.095627
6	0.374615	76.65716	1.427308	0.193117	10.50345	2.111592	7.480357	1.526970	0.100043
7	0.384622	74.01648	1.404753	0.303938	11.15192	2.261427	8.956717	1.799533	0.105231
8	0.392594	71.87185	1.368121	0.455215	11.50093	2.357839	10.28558	2.050577	0.103231
9	0.392594	70.11547	1.330756	0.433213	11.65661	2.417521	11.45126	2.279982	0.109094
10	0.404130	68.67305	1.298227	0.829894	11.69329	2.417321	12.44891	2.487365	0.113970
10	0.404130	00.07300	1.230221	0.029094	11.09329	2.401007	12.44091	2.407300	0.117388
/arianc	e Decomposi								
eriod	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	1928.360	1.404147	98.59585	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	2550.265	1.016802	92.63870	2.485970	1.131307	0.586809	1.234862	0.347105	0.558442
3	3040.264	1.148671	83.93644	5.705907	3.307927	1.601303	2.937825	0.867775	0.494150
4	3509.093	1.725386	74.29605	8.750489	5.775527	2.680680	4.856028	1.445887	0.469951
5	3983.759	2.707080	65.14330	11.04243	8.271324	3.683238	6.728040	2.002030	0.422560
6	4473.535	3.936540	56.99376	12.53682	10.60486	4.543507	8.495268	2.511572	0.377668
7	4979.673	5.260466	50.00017	13.34643	12.69764	5.252700	10.13897	2.969158	0.334474
8	5500.700	6.560780	44.11353	13.64072	14.51744	5.823037	11.66928	3.379736	0.295476
9	6034.049	7.766097	39.20585	13.57530	16.06562	6.275217	13.10009	3.750891	0.260932
10	6576.937	8.841080	35.12806	13.27451	17.36045	6.630579	14.44432	4.090169	0.230831
loriono	e Decomposi	tion of DIREIN	TOT:						
eriod	S.E.	DROA		DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
_	0070 507	5 440500		00.40570					
1	2670.567 3610.572	5.443583	2.070700	92.48572	0.000000	0.000000	0.000000	0.000000	0.000000
		8.201548	1.210219	88.74600	0.937320	0.179433	0.051485	0.040117	0.633875
3	4280.326	11.09962	0.921641	83.24041	3.219217	0.619507	0.192797	0.128674	0.578132
4	4862.388	13.51603	0.995911	76.72816	6.139246	1.207420	0.576546	0.283893	0.552796
5	5409.691	15.45344	1.295467	69.89651	9.237230	1.865236	1.252925	0.499994	0.499204
6	5945.765	16.91607	1.717597	63.24333	12.14152	2.525167	2.239433	0.770166	0.446723
7	6480.157	17.97047	2.193842	57.03657	14.67395	3.148867	3.496631	1.083145	0.396523
8	7016.692	18.68809	2.680791	51.40166	16.77160	3.716202	4.962552	1.427677	0.351423
9	7556.346	19.13928	3.153090	46.37044	18.44643	4.220063	6.565955	1.793029	0.311715
10	8098.704	19.38545	3.597253	41.92376	19.74568	4.660600	8.240138	2.169878	0.277245
									+
									,

Table : 6.161. Variance Decomposition (VDC) for Model 3.2

Var: V	AR_FORESTIM	IATES Workf	ile: PROFITABIL	ITY OF ISLAMI	C BANKS::Profi	tability\			- 0
/iew Pro	Object Pri	nt Name Fre	eze Estimate	Stats Impulse	Resids				
				Variance	Decomposition	on			
Variance	Decomposi	tion of DPSRI	DEP:						
Period	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	0.317218	1.144528	1.262136	2.275958	95.31738	0.000000	0.000000	0.000000	0.000000
2	0.393401	3.896478	0.931299	3.207848	91.05081	0.142081	0.438886	0.010191	0.322405
3	0.432830	6.145278	0.776529	3.677105	86.84853	0.294818	1.872282	0.101336	0.284123
4	0.459191	7.748889	0.690668	3.984873	82.61239	0.375048	4.007832	0.308807	0.271490
5	0.479207	8.739655	0.642128	4.176012	78.60599	0.398574	6.547069	0.635238	0.255334
6	0.495644	9.284580	0.617700	4.308851	74.96494	0.391047	9.140455	1.049421	0.243007
7	0.509602	9.532676	0.611255	4.411150	71.76143	0.373317	11.56381	1.513724	0.232643
8	0.521569	9.599687	0.618851	4.500529	69.01364	0.356384	13.69320	1.993463	0.224247
9	0.531802	9.564264	0.637110	4.585413	66.70136	0.344223	15.48744	2.462780	0.217414
10	0.540484	9.476907	0.662895	4.669366	64.78337	0.336978	16.95400	2.904590	0.211899
Variance	Decomposi	tion of DPSRI	FIN:						
Period	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	0.428889	0.113160	4.182895	0.040284	0.088083	95.57558	0.000000	0.000000	0.000000
2	0.561087	0.143889	3.917768	0.026593	0.725232	94.07957	0.293711	0.360984	0.452254
3	0.637787	0.164818	3.726467	0.038024	1.252519	92.71257	0.613549	1.024212	0.467838
4	0.688309	0.161822	3.566758	0.061534	1.661318	91.24820	0.910242	1.881951	0.508172
5	0.723315	0.151850	3.432585	0.105371	1.930800	89.92382	1.118022	2.815648	0.521905
6	0.748633	0.141971	3.319218	0.168742	2.094172	88.76525	1.236971	3.743140	0.530536
7	0.767532	0.135953	3.224350	0.250346	2.182781	87.78121	1.283533	4.607969	0.533859
8	0.782051	0.135062	3.145610	0.345645	2.223945	86.95376	1.282947	5.378305	0.534723
9	0.793491	0.139321	3.080644	0.449330	2.237108	86.26023	1.259030	6.040287	0.534048
10	0.802714	0.148206	3.027184	0.555985	2.235137	85.67752	1.230734	6.592659	0.532577
Variance	Decomposi	tion of DIMME	·						
Period	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	0.596018	0.032483	3.044669	3.736868	0.007503	0.454782	92.72369	0.000000	0.000000
2	0.816029	0.027099	3.403931	3.700485	0.244565	0.939547	91.46146	0.129488	0.093427
3	0.966847	0.028854	3.649064	3.562906	0.489427	1.496862	90.31671	0.372489	0.083685
4	1.077428	0.028556	3.850415	3.481092	0.643261	2.087880	89.16635	0.657009	0.085437
5	1.160669	0.026423	4.026660	3.434676	0.723475	2.661586	88.09599	0.945698	0.085489
6	1.223924	0.024188	4.187051	3.417464	0.752766	3.190705	87.12497	1.215997	0.086862
7	1.272200	0.022422	4.334054	3.418684	0.752712	3.659838	86.26619	1.457711	0.088386
8	1.309107	0.021181	4.468144	3.430680	0.738148	4.063863	85.52063	1.667329	0.090023
9	1.337347	0.020328	4.589150	3.447581	0.718485	4.403865	84.88367	1.845374	0.090523
10	1.358972	0.019716	4.697027	3.465435	0.699094	4.684745	84.34667	1.994422	0.092894
		III)

Table : 6.162. Variance Decomposition (VDC) for Model 3.2

				Varianc	e Decomposit	ion			
ariance	e Decomposi	tion of DIMME).						
eriod	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	0.596018	0.032483	3.044669	3.736868	0.007503	0.454782	92.72369	0.000000	0.000000
2	0.816029	0.027099	3.403931	3.700485	0.244565	0.939547	91.46146	0.129488	0.093427
3	0.966847	0.028854	3.649064	3.562906	0.489427	1.496862	90.31671	0.372489	0.083685
4	1.077428	0.028556	3.850415	3.481092	0.643261	2.087880	89.16635	0.657009	0.085437
5	1.160669	0.026423	4.026660	3.434676	0.723475	2.661586	88.09599	0.945698	0.085489
6	1.223924	0.024188	4.187051	3.417464	0.752766	3.190705	87.12497	1.215997	0.086862
7	1.272200	0.022422	4.334054	3.418684	0.752712	3.659838	86.26619	1.457711	0.088386
8	1.309107	0.021181	4.468144	3.430680	0.738148	4.063863	85.52063	1.667329	0.090023
9	1.337347	0.020328	4.589150	3.447581	0.718485	4.403865	84.88367	1.845374	0.091550
10	1.358972	0.019716	4.697027	3.465435	0.699094	4.684745	84.34667	1.994422	0.092894
ariance	e Decomposi	tion of DCPI							
eriod	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	5.781830	10.54641	0.003078	1.037431	1.451715	0.657879	0.033115	86.27037	0.000000
2	7.561399	8.362963	0.175150	2.035988	1.866660	2.532526	1.157836	83.82612	0.042754
3	8.752967	6.924118	0.317365	2.815527	2.337672	4.841892	3.162678	79.53357	0.067178
4	9.665479	5.946648	0.389867	3.304554	2.760197	7.246344	5.301819	74.95797	0.092598
5	10.39990	5.255966	0.411208	3.568766	3.097062	9.557288	7.245175	70.75085	0.113682
6	11.00267	4.752803	0.404676	3.680389	3.342249	11.68521	8.876786	67.12541	0.132473
7	11.50122	4.377167	0.386490	3.698676	3.509117	13.59232	10.18923	64.09795	0.149046
8	11.91471	4.091453	0.365770	3.664527	3.616295	15.27001	11.21723	61.61088	0.163830
9	12.25786	3.871030	0.346861	3.604377	3.681521	16.72549	12.00817	59.58556	0.176987
10	12.54256	3.699174	0.331345	3.534334	3.719091	17.97450	12.60861	57.94428	0.188666
ariance	e Decomposi	tion of IPI:							
eriod	S.E.	DROA	DIBDEPTOT	DIBFINTOT	DPSRDEP	DPSRFIN	DIMMR	DCPI	IPI
1	3.061137	0.564926	0.089016	1.331629	0.719850	0.221069	1.167951	0.014847	95.89071
2	3.249049	0.696010	0.177929	1.991977	1.207305	0.231286	1.533269	0.145881	94.01634
3	3.263629	0.691605	0.201246	1.980134	1.208830	0.229279	1.521239	0.163487	94.00418
4	3.267510	0.693246	0.215670	2.022413	1.243084	0.231874	1.522879	0.187142	93.88369
5	3.268190	0.692958	0.222168	2.030176	1.248273	0.233228	1.523903	0.198661	93.85063
6	3.268638	0.692792	0.225825	2.035955	1.250334	0.235377	1.526103	0.206711	93.82690
7	3.268920	0.692687	0.227874	2.037973	1.250337	0.237603	1.531278	0.211561	93.81069
8	3.269159	0.692612	0.229139	2.038910	1.250157	0.240096	1.537248	0.214688	93.79715
9	3.269368	0.692574	0.229957	2.039222	1.250154	0.242687	1.543487	0.216683	93.78524
10	3.269551	0.692556	0.230520	2.039288	1.250336	0.245304	1.549256	0.217996	93.77474

Table : 6.163. Variance Decomposition (VDC) for Model 3.3

			ITS OF ISLAMIC E				×
View Pro	c Object Pr	int Name Fre	eze Estimate S	tats Impulse	Resids		
		V	ariance Decom	position			
Variance	Decomposi	ition of DWAD	SAV.				
Period	S.E.		PSRWADSAV	DIMMR	DCPI	IPI	
1	1082.736	100.0000	0.000000	0.000000	0.000000	0.000000	
2	1514.267	98.59343	0.014320	0.253344	0.079964	1.058939	
3	1814.091	98.16895	0.032206	0.616447	0.174314	1.008082	
4	2054.696	97.53706	0.037998	1.075363	0.300411	1.049170	
5	2255.529	96.90753	0.035546	1.569996	0.441899	1.045026	
6	2429.149	96.25652	0.030699	2.074673	0.595810	1.042298	
7	2582.191	95.61004	0.029320	2.568392	0.757415	1.034830	
8	2719.191	94.97477	0.035453	3.039053	0.924007	1.026721	
9	2843.186	94.35826	0.051167	3.479197	1.093270	1.018103	
10	2956.381	93.76498	0.076907	3.885039	1.263470	1.009609	
Variance	e Decomposi	tion of PSRW	ADSAV:				
Period	S.E.	DWADSAV	PSRWADSAV	DIMMR	DCPI	IPI	
							:
1	0.180978	0.179885	99.82011	0.000000	0.000000	0.000000	
2	0.229897	0.311110	99.59671	0.016447	0.070378	0.005355	
3	0.255779	0.447411	99.29190	0.040263	0.213528	0.006898	
4	0.270955	0.581826	98.94537	0.060491	0.403453	0.008864	
5	0.280317	0.705829	98.59188	0.073334	0.618655	0.010299	
6	0.286277	0.815446	98.25320	0.078894	0.841008	0.011449	
7	0.290152	0.908997	97.94189	0.079544	1.057296	0.012276	
8	0.292713	0.986715	97.66352	0.078319	1.258595	0.012852	
9	0.294426	1.049895	97.41921	0.077989	1.439681	0.013228	
10	0.295586	1.100384	97.20741	0.080582	1.598164	0.013458	
							:
		tion of DIMMR					
Period	S.E.	DWADSAV	PSRWADSAV	DIMMR	DCPI	IPI	
							:
1	0.576898	0.048012	0.084166	99.86782	0.000000	0.000000	
2	0.765682	0.034769	0.927540	98.87197	0.000205	0.165513	
3	0.890708	0.113691	2.829151	96.90696	0.003291	0.146911	
4	0.984009	0.259170	5.161973	94.42250	0.016258	0.140100	
5	1.057749	0.460604	7.548623	91.81608	0.046088	0.128601	
6	1.117668	0.703630	9.778129	89.30355	0.096044	0.118645	
7	1.167124	0.980447	11.75481	86.98722	0.167571	0.109948	
8	1.208311	1.284969	13.44872	84.90358	0.259916	0.102816	
9	1.242825	1.613082	14.86562	83.05306	0.371052	0.097185	
10	1.271896	1.961516	16.02852	81.41894	0.498068	0.092950	١,
4		III				h	
1		***					

Table : 6.164. Variance Decomposition (VDC) for Model 3.3

iew Pro	c Object Pr	int Name Fre		tats Impulse	Resids	
		V	/ariance Decom	position		
		ition of DIMMF				
Period	S.E.	DWADSAV	PSRWADSAV	DIMMR	DCPI	IPI
1	0.576898	0.048012	0.084166	99.86782	0.000000	0.000000
2	0.765682	0.034769	0.927540	98.87197	0.000205	0.165513
3	0.890708	0.113691	2.829151	96.90696	0.003291	0.146911
4	0.984009	0.259170	5.161973	94.42250	0.016258	0.140100
5	1.057749	0.460604	7.548623	91.81608	0.046088	0.128601
6	1.117668	0.703630	9.778129	89.30355	0.096044	0.118645
7	1.167124	0.980447	11.75481	86.98722	0.167571	0.109948
8	1.208311	1.284969	13.44872	84.90358	0.259916	0.102816
9	1.242825	1.613082	14.86562	83.05306	0.371052	0.097185
10	1.271896	1.961516	16.02852	81.41894	0.498068	0.092950
/arianc	e Decomposi	ition of DCPI:				
Period	S.E.	DWADSAV	PSRWADSAV	DIMMR	DCPI	IPI
1	5.887902	0.916921	0.018722	0.000799	99.06356	0.000000
2	7.826826	0.542427	0.013356	0.491437	98.93023	0.022546
3	9.073238	0.460118	0.011249	1.403141	98.08388	0.041610
4	9.974043	0.609442	0.011450	2.547769	96.76424	0.067103
5	10.66545	0.934859	0.032457	3.786781	95.15219	0.093709
6	11.21706	1.388756	0.093303	5.019540	93.37733	0.121071
7	11.66900	1.930854	0.205527	6.180275	91.53549	0.147850
8	12.04639	2.528830	0.371546	7.229735	89.69643	0.173463
9	12.36583	3.157359	0.586254	8.148670	87.91026	0.197455
10	12.63884	3.797213	0.839646	8.931863	86.21167	0.219608
/arianc	e Decomposi	ition of IPI:				
Period	S.E.	DWADSAV	PSRWADSAV	DIMMR	DCPI	IPI
1	3.043974	1.487565	0.426592	0.568995	0.361991	97.15486
2	3.204630	1.507246	0.403927	0.571189	0.469242	97.04840
3	3.221390	1.499179	0.446504	0.574056	0.465443	97.01482
4	3.223799	1.504173	0.463769	0.573200	0.478540	96.98032
5	3.224301	1.505045	0.477890	0.574427	0.483039	96.95960
6	3.224611	1.508038	0.486558	0.575126	0.487432	96.94285
7	3.224820	1.510684	0.492752	0.576088	0.490224	96.93025
8	3.224993	1.513644	0.497100	0.576917	0.492335	96.92000
9	3.225134	1.516562	0.500293	0.577665	0.493852	96.91163
10	3.225252	1.519459	0.502672	0.578280	0.494983	96.90461
Choles	ky Ordering: E	WADSAV PSI	RWADSAV DIMM	IR DCPI IPI		

Table: 6.165. Variance Decomposition (VDC) for Model 3.4.

iew Pr	oc Object P	rint Name Free	eze Estimate !	Stats Impulse	Resids		
		,	Variance Deco	mposition			
/arian/	na Dacomnos	sition of DMUDI	TGV/\-				=
Period	S.E.		DPSRMUD	DIMMR	DCPI	IPI	
ciiou	0.2.	BINODITION	DI GIAMOD	Diminit			=
1	878.3497	100.0000	0.000000	0.000000	0.000000	0.000000	
2	1245.206	99.19541	0.210066	0.033644	0.190855	0.370022	
3	1535.608	98.43568	0.520916	0.100368	0.579429	0.363604	
4	1788.674	97.45827	0.881848	0.236012	1.037480	0.386386	
5	2019.649	96.40520	1.249102	0.443924	1.512624	0.389152	
6	2235.917	95.30947	1.607347	0.727488	1.966175	0.389522	
7	2441.721	94.20486	1.948688	1.080894	2.379478	0.386082	
8	2639.675	93.10935	2.271058	1.495498	2.743197	0.380894	
9	2831.489	92.03590	2.574578	1.960382	3.054656	0.374487	
10	3018.322	90.99299	2.860473	2.464203	3.314898	0.367435	
		(5555)					=
		sition of DPSRI		B	D.O.D.	ID.	
Period	S.E.	DMUDHSAV	DPSRMUD	DIMMR	DCPI	IPI	_
1	0.416383	0.418234	99.58177	0.000000	0.000000	0.000000	_
2	0.529695	0.531696	98.01971	0.539589	0.744212	0.164791	
3	0.593238	0.666518	95.73724	1.340597	2.106213	0.149437	
4	0.635612	0.768742	93.02364	2.202315	3.859846	0.145456	
5	0.666376	0.841404	90.29230	2.959860	5.768827	0.137609	
6	0.689916	0.885088	87.74575	3.554682	7.683168	0.131310	
7	0.708431	0.905737	85.48364	3.977428	9.507232	0.125964	
8	0.723218	0.909406	83.52954	4.248865	11.19052	0.121670	
9	0.735126	0.901943	81.86925	4.400357	12.71023	0.118226	
10	0.744762	0.888349	80.47083	4.464599	14.06075	0.115477	
							=
/ariano Period		sition of DIMMR	: DPSRMUD	DIMMR	DCPI	IPI	
enoa	S.E.	DIVIODHSAV	DPSRMUD	DIMINIR	DCPI	IPI	_
1	0.591665	6.897828	0.012307	93.08986	0.000000	0.000000	_
2	0.789695	7.358630	0.255268	92.29836	4.43E-05	0.087696	
3	0.919683	7.654616	0.791269	91,47274	0.004510	0.076861	
4	1.014651	7.920248	1.458878	90.52537	0.022322	0.073184	
5	1.087941	8.153007	2.170567	89.54658	0.062165	0.067679	
6	1.146263	8.364330	2.870192	88.57396	0.128311	0.063205	
7	1.193605	8.557554	3.528415	87.63251	0.222165	0.059360	
	1.232537	8.735898	4.130712	86.73505	0.342158	0.056185	
8				85.88827	0.484868	0.053568	
8	1.264841	8.901335	4.671956	00.00027			

Table : 6.166. Variance Decomposition (VDC) for Model 3.4.

iew Pro	oc Object Pr	int Name Free:	ze Estimate S	Stats Impulse	Resids		
		î V	/ariance Deco	mposition			
Variand	e Decompos	ition of DIMMR:					
Period	S.E.	DMUDHSAV	DPSRMUD	DIMMR	DCPI	IPI	
1	0.591665	6.897828	0.012307	93.08986	0.000000	0.000000	
2	0.789695	7.358630	0.255268	92.29836	4.43E-05	0.087696	
3	0.919683	7.654616	0.791269	91.47274	0.004510	0.076861	
4	1.014651	7.920248	1.458878	90.52537	0.022322	0.073184	
5	1.087941	8.153007	2.170567	89.54658	0.062165	0.067679	
6	1.146263	8.364330	2.870192	88.57396	0.128311	0.063205	
7	1.193605	8.557554	3.528415	87.63251	0.222165	0.059360	
8	1.232537	8.735898	4.130712	86.73505	0.342158	0.056185	
9	1.264841	8.901335	4.671956	85.88827	0.484868	0.053568	
10	1.291812	9.055425	5.152276	85.09517	0.645706	0.051427	
Variano	e Decompos	ition of DCPI:					1
Period	S.E.	DMUDHSAV	DPSRMUD	DIMMR	DCPI	IPI	
1	5.926536	2.518371	0.025144	0.092004	97.36448	0.000000	
2	7.867222	2.324067	0.138851	0.830661	96.69275	0.013673	
3	9.099891	2.164244	0.249364	1.991636	95.57506	0.019696	
4	9.973684	2.026282	0.331326	3.408691	94.20638	0.027323	
5	10.62686	1.909952	0.379143	4.966902	92.71003	0.033976	
6	11.13092	1.812802	0.398395	6.578179	91.17049	0.040128	
7	11.52806	1.732484	0.398064	8.180112	89.64379	0.045550	
8	11.84550	1.666566	0.387096	9.728421	88.16761	0.050307	
9	12.10190	1.612799	0.372776	11.19297	86.76703	0.054431	
10	12.31056	1.569178	0.360280	12.55419	85.45837	0.057990	
	e Decompos						
Period	S.E.	DMUDHSAV	DPSRMUD	DIMMR	DCPI	IPI	
1	3.063616	1.097109	0.423964	1.234309	0.368776	96.87584	
2	3.221536	1.072102	0.420662	1.253644	0.494632	96.75896	
3	3.237411	1.076549	0.419853	1.254464	0.492836	96.75630	
4	3.239380	1.075446	0.420195	1.253526	0.512340	96.73849	
5	3.239708	1.075844	0.420124	1.254369	0.520879	96.72878	
6	3.239874	1.075800	0.420228	1.254791	0.529078	96.72010	
7	3.239989	1.075831	0.420266	1.255771	0.534811	96.71332	
8	3.240083	1.075819	0.420300	1.256833	0.539282	96.70777	
9	3.240159	1.075805	0.420313	1.258052	0.542608	96.70322	
10	3.240222	1.075786	0.420313	1.259314	0.545101	96.69949	. [
Choles	ky Ordering: [OMUDHSAV DP	SRMUDHSAV	DIMMR DCPI	IPI		1

Table : 6.167. Variance Decomposition (VDC) for Model 3.5.

iew Pro	c Object P	rint Name Free		Stats Impulse Decomposit			
				Decomposit	1011		
		sition of DMUDH		DILLIE	DODD TOO	DODI	IDI
Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD01	DCPI	IPI
1	5351.661	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000
2	7539.209	99.51358	0.226527	0.113311	0.045710	0.061822	0.039046
3	9199.259	98.87283	0.577167	0.316116	0.113888	0.056253	0.063741
4	10581.01	98.29557	0.900472	0.498968	0.169428	0.047741	0.087825
5	11777.40	97.83287	1.163244	0.647487	0.209524	0.040938	0.105933
6	12837.99	97.47198	1.369524	0.765443	0.236975	0.035856	0.120227
7	13792.90	97.19074	1.529911	0.860570	0.255365	0.032028	0.131382
8	14662.37	96.96928	1.654723	0.939175	0.267470	0.029088	0.140262
9	15460.76	96.79245	1.752216	1.005865	0.275270	0.025000	0.147419
10	16198.72	96.64918	1.828694	1.063797	0.275270	0.020782	0.147419
10	10190.72	90.04910	1.020094	1.003797	0.200121	0.024939	0.155270
Varianc	e Decompos	ition of DPSR	MUDHDEP01:				
Period	S.E.	DMUDHDE		DIMMR	DCBR TD01	DCPI	IPI
onou	0.2.	BIIIOBI IBE	DI OIL_MO		BOBIT_1BU1		
1	0.569644	0.129608	99.87039	0.000000	0.000000	0.000000	0.000000
2	0.718607	0.082121	96.66009	0.000325	0.369598	0.927625	1.960246
3	0.772907	0.075097	95.80390	0.027442	0.993200	1.144458	1.955902
4	0.797449	0.077179	94.77701	0.116997	1.775993	1.199108	2.053715
5	0.809267	0.097072	93.71002	0.345627	2.557689	1.213119	2.076475
6	0.816269	0.142560	92.57211	0.715110	3.276193	1.209447	2.084582
7	0.821697	0.226382	91.41070	1.197060	3.891786	1.198448	2.075622
8	0.826896	0.358507	90.26991	1.736283	4.394120	1.184213	2.056963
9	0.832301	0.546693	89.18486	2.279664	4.787437	1.168882	2.030303
10	0.832301	0.795036	88.17567	2.785552	5.084754	1.108882	2.032461
10	0.837952	0.795030	88.1/30/	2.780002	5.084754	1.103071	2.005413
Varianc	e Decompos	ition of DIMMR:					
Period	S.E.	DMUDHDE		DIMMR	DCBR_TD01	DCPI	IPI
1	0.471984	9.376543	0.783377	89.84008	0.000000	0.000000	0.000000
2	0.599557	10.68763	3.436280	85.27933	0.398485	0.001551	0.196729
3	0.676417	11.17592	6.687272	81.11201	0.851560	0.018564	0.154677
4	0.729086	11.42803	9.458739	77.69556	1.231253	0.053266	0.133144
5	0.767092	11.53309	11.63520	75.12298	1.498027	0.087562	0.123144
6	0.794903	11.57757	13.27715	73.23392	1.676496	0.116710	0.118162
7	0.815377	11.59368	14.50059	71.85843	1.791486	0.139615	0.116210
8	0.830454	11.59931	15.40688	70.85709	1.864034	0.157113	0.115568
9	0.841544	11.60232	16.07639	70.12662	1.908804	0.170270	0.115596
10	0.849677	11.60629	16.56950	69.59248	1.935739	0.180088	0.115899
	2.010071			30.00240	1.000100	2.100000	3.110000

Table : 6.168. Variance Decomposition (VDC) for Model 3.5.

ew Pro	oc Object Pi	rint Name Free		tats Impulse			
			Variance	Decomposit	ion		
ariano	e Decompos	ition of DCBR_	TD01:				
eriod	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD01	DCPI	IPI
1	0.204530	0.004919	10.45014	5.777786	83.76716	0.000000	0.000000
2	0.280211	0.158538	6.419075	14.68229	77.75593	0.011971	0.972197
3	0.338106	0.748969	4.658862	23.23473	70.55258	0.009101	0.795756
4	0.389225	1.653618	5.134755	29.14167	63.39620	0.010182	0.663578
5	0.436012	2.853030	6.970581	32.72384	56.89505	0.019546	0.537958
6	0.478850	4.281293	9.358500	34.53363	51.34560	0.034782	0.446200
7	0.517847	5.900524	11.80080	35.14880	46.71417	0.051947	0.383758
8	0.553111	7.677208	14.03496	34.99569	42.88002	0.068430	0.343695
9	0.584878	9.583721	15.94893	34.36671	39.69832	0.082735	0.319588
10	0.613472	11.59354	17.51290	33.45466	37.03836	0.094264	0.306279
ariano	e Decompos	ition of DCPI:					
eriod	S.E.		DPSR_MU	DIMMR	DCBR_TD01	DCPI	IPI
1	1214.131	0.001092	8.554334	1.431794	0.446906	89.56587	0.000000
2	1236.588	0.021515	8.281540	4.495574	0.742383	86.45890	9.05E-05
3	1243,454	0.039887	8.244379	5.411837	0.785053	85.51137	0.007475
4	1246.926	0.067291	8.338767	5.759527	0.790310	85.03593	0.008178
5	1249.044	0.099067	8.461533	5.893365	0.789004	84.74810	0.008926
6	1250.506	0.135407	8.569426	5.946555	0.787337	84.55079	0.010481
7	1251.548	0.174668	8.650491	5.966064	0.786047	84.41087	0.011861
8	1252.317	0.215890	8.706777	5.971334	0.785087	84.30784	0.013072
9	1252.905	0.258077	8.743821	5.970631	0.784357	84.22909	0.014025
10	1253.375	0.300476	8.767143	5.967695	0.783782	84.16614	0.014765
ariano	e Decompos	ition of IPI:					
eriod	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD01	DCPI	IPI
1	2.898500	2.231403	1.836133	2.241011	0.694146	0.159299	92.83801
2	3.040345	2.200868	1.972732	2.270142	0.697008	0.178460	92.68079
3	3.052915	2.206485	1.956589	2.293729	0.699380	0.186737	92.65708
4	3.054388	2.204871	1.965180	2.292671	0.700298	0.186639	92.65034
5	3.054528	2.205777	1.965824	2.293499	0.700312	0.186860	92.64773
6	3.054566	2.206029	1.966313	2.293538	0.700773	0.186861	92.64649
7	3.054585	2.206590	1.966324	2.293798	0.701097	0.186870	92.64532
8	3.054603	2.207147	1.966303	2.294005	0.701426	0.186869	92.64425
9	3.054623	2.207804	1.966340	2.294232	0.701696	0.186867	92.64306
10	3.054644	2.208526	1.966453	2.294437	0.701922	0.186864	92.64180
					IR DCBR TD01	5.051.151	

Table : 6.169. Variance Decomposition (VDC) for Model 3.6.

Jar Var: U	NTITLED W	orkfile: DEPOSI	TS OF ISLAMIC	BANKS 2009-	2015::Untitled\		_ =	х
View Pro	Object	rint Name Free	ze Estimate S	itats Impulse	Resids			
			Variance	e Decompos	ition			
		ition of DMUDH						٨
Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD03	DCPI	IPI	
1	1345.755	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	
2	2088.425	84.58778	1.666647	11.22225	2.274254	0.076759	0.172303	
3	2556.484	77.26143	2.708628	15.28799	3.746940	0.064606	0.930398	
4	2906.978	73.14534	4.109812	16.77967	4.483589	0.245890	1.235701	
5	3193.873	71.05544	5.224780	17.36067	4.884710	0.298471	1.175925	
6	3442.345	69.69250	5.928434	17.77162	5.121414	0.293019	1.193012	
7	3660.846	68.58497	6.511480	18.16407	5.203313	0.288622	1.247548	
8	3853.842	67.74313	7.014819	18.51637	5.178966	0.293974	1.252737	
9	4026.106	67.08375	7.409719	18.85166	5.098600	0.301521	1.254758	
10	4180.947	66.49528	7.751972	19.19698	4.981932	0.309479	1.264352	
Variance	Decompos	ition of DPSR_	MUDHDEP03:					
Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD03	DCPI	IPI	
1	0.551534	5.422659	94.57734	0.000000	0.000000	0.000000	0.000000	
2	0.686641	5.471046	92.99599	0.219225	0.367853	0.010183	0.935708	
3	0.751941	6.067085	91.26986	0.203678	1.253527	0.406813	0.799042	
4	0.796003	6.662074	89.86670	0.207767	1.982867	0.558937	0.721659	
5	0.822711	6.847966	88.84931	0.297538	2.707697	0.581251	0.716242	
6	0.838455	6.823453	87.86192	0.423555	3.560244	0.640294	0.690536	
7	0.849233	6.727458	86.89504	0.547033	4.436554	0.718211	0.675703	
8	0.856911	6.614107	85.96098	0.685092	5.299477	0.776693	0.663652	
9	0.862852	6.532650	85.00713	0.826793	6.149542	0.828037	0.655851	
10	0.868015	6.511486	84.05645	0.954329	6.947309	0.876634	0.653794	
Variance Period	Decompos S.E.	ition of DIMMR: DMUDHDE		DIMMR	DCBR_TD03	DCPI	IPI	
1	0.440290	3.983272	5.869807	90.14692	0.000000	0.000000	0.000000	
2	0.510510	4.009799	8.694297	80.27694	4.662537	2.340466	0.015965	
3	0.579267	3.125815	14.33952	69.84298	7.909867	4.742961	0.038865	
4	0.638793	2.639094	20.20566	63.34984	9.375829	4.316502	0.113072	
5	0.690124	2.272581	24.93244	58.95375	9.782625	3.958177	0.100427	
6	0.736076	2.003091	29.15254	55.26289	9.741751	3.744109	0.095626	
7	0.776357	1.827706	32.90374	52.10603	9.516039	3.557214	0.089278	
8	0.809835	1.719963	35.96595	49.63237	9.208349	3.386940	0.086426	
		4.050007	20 50074	47.04407	0.070040	2.024627	0.000000	
9	0.838010	1.659837	38.50871	47.64497	8.870948	3.234637	0.080900	

Table : 6.170. Variance Decomposition (VDC) for Model 3.6.

ew Pro	c Object P	rint Name Free	ze Estimate S	itats Impulse	Resids		
			Variance	e Decompos	ition		
/arianc	e Decompos	ition of DCBR_	TD03:				
Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD03	DCPI	IPI
1	0.096697	0.261237	4.337291	0.906268	94.49520	0.000000	0.000000
2	0.186210	1.266920	9.791611	2.342663	86.25710	0.298035	0.043673
3	0.264477	0.798071	9.012066	5.891013	83.41622	0.832514	0.050112
4	0.332800	0.616753	6.983580	8.601290	82.19279	1.534213	0.071376
5 6	0.393309	1.252975	5.128685	10.28521	81.04143	2.178100	0.113600
	0.447931	2.675266	4.020185	11.17244	79.36627	2.586967	0.178876
7	0.498200	4.711440	3.766789	11.47275	77.00349	2.794514	0.251014
8	0.545061	7.154533	4.253360	11.34705	74.06038	2.862809	0.321864
9	0.588887	9.805234	5.270390	10.93563	70.76027	2.836921	0.391556
10	0.629673	12.50633	6.592260	10.35958	67.33331	2.751278	0.457245
/arianc	e Decompos	ition of DCPI:					
eriod	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD03	DCPI	IPI
1	1248.085	0.323003	0.409771	4.495006	3.788238	90.98398	0.000000
2	1278.070	0.349013	2.064096	5.359792	4.369218	87.85704	0.000838
3	1288.362	0.343760	2.404201	5.354480	4.485377	87.38729	0.024891
4	1293.244	0.398145	2.902591	5.422723	4.514109	86.73304	0.029395
5	1297.627	0.509793	3.336214	5.446869	4.514079	86.14824	0.044808
6	1301.072	0.622872	3.685904	5.443462	4.502745	85.69993	0.045092
7	1304.157	0.723284	4.018519	5.428919	4.486965	85.29619	0.046126
8	1306.511	0.800415	4.274641	5.413106	4.471629	84.98910	0.051113
9	1308.222	0.861177	4.460257	5.400020	4.460135	84.76698	0.051430
10	1309.575	0.909217	4.605399	5.388930	4.452637	84.59216	0.051658
	e Decompos						
Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD03	DCPI	IPI
1	2.705117	0.131135	3.335777	1.043645	0.157891	1.587975	93.74358
2	3.019795	0.105981	8.358903	0.893486	0.963060	1.285727	88.39284
3	3.107674	0.810086	8.771182	1.000221	0.925909	1.214714	87.27789
4	3.212353	0.771194	8.862268	1.005955	0.979872	1.216343	87.16437
5	3.219112	0.817824	9.103422	1.023362	0.995395	1.213427	86.84657
6	3.231218	0.837154	9.039288	1.044531	0.988268	1.244833	86.84593
7	3.236723	0.850249	9.106065	1.041008	0.999481	1.248694	86.75450
8	3.237156	0.850389	9.106317	1.044177	0.999299	1.251874	86.74794
9	3.238040	0.852541	9.101374	1.044521	0.998762	1.254329	86.74847
10	3.238394	0.857841	9.110481	1.044476	1.000057	1.254059	86.73309
		DMUDHDEP03					

Table : 6.171. Variance Decomposition (VDC) for Model 3.7.

2 4074.274 99.54122 0.268893 0.138718 0.038138 0.013026 3.73E-08 3 4402.587 98.78033 0.747986 0.348396 0.101277 0.015693 0.006510 4 4577.148 97.94798 1.262651 0.588163 0.171156 0.016593 0.013462 5 4679.216 97.18048 1.726072 0.820529 0.234614 0.017023 0.021278 6 4743.034 96.533334 2.105437 1.028492 0.287452 0.017181 0.028097 7 4784.781 96.01568 2.399142 1.205203 0.328979 0.017217 0.033786 8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017119 0.033786 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017159 0.041707 10 4845.950 95.08219 2.895009 1.560345 0.401042 0.017119 0.044298 Variance Decomposition of DIM	var: U	INTITLED W	/orkfile: DEPOSI	TS OF ISLAMIC	BANKS 2009-	2015::Untitled\		- 0
Variance Decomposition of DMUDHDEP12: Period DIMMOHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 3349.056 100.0000 0.000000<	View Pro	c Object P	rint Name Free	ze Estimate S	tats Impulse	Resids		
Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI				Variance	Decomposit	tion		
1 3349.056								
2 4074.274 99.54122 0.268893 0.138718 0.038138 0.013026 3.73E-08 3 4402.587 98.78033 0.747986 0.348396 0.101277 0.015496 0.006510 4 4577.148 97.94798 1.262661 0.588163 0.171156 0.016593 0.013462 5 4679.216 97.18048 1.726072 0.820529 0.234614 0.017023 0.021278 6 4743.034 96.53334 2.105437 1.028492 0.287452 0.017181 0.028097 7 4784.781 96.01568 2.399142 1.205203 0.328979 0.017215 0.033786 8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017197 0.033266 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017159 0.041707 10 4845.950 95.08219 2.895009 1.560345 0.401042 0.017119 0.044298 Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000 0.000000 0.000000 0.000000 0.000000	Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD12	DCPI	IPI
3 4402.587 98.78033 0.747986 0.348396 0.101277 0.015496 0.006510 4 4577.148 97.94798 1.262651 0.588163 0.171156 0.016593 0.013462 5 4679.216 97.18048 1.726072 0.820529 0.234614 0.017023 0.021278 6 4743.034 96.53334 2.105437 1.028492 0.287452 0.017181 0.028097 7 4784.781 96.01568 2.399142 1.205203 0.328979 0.017215 0.033786 8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017119 0.032786 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017119 0.044298 Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.00000 0.00000 0.00000 0.00000 0.00000 0.000	1	3349.056	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000
4 4577.148 97.94798 1.262651 0.588163 0.171156 0.016593 0.013462 5 4679.216 97.18048 1.726072 0.820529 0.234614 0.017023 0.021278 6 4743.034 96.53334 2.105437 1.028492 0.287452 0.017181 0.028097 7 4784.781 96.01568 2.399142 1.205203 0.328979 0.017215 0.033786 8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017197 0.038266 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017199 0.041707 10 4845.950 95.08219 2.895009 1.560345 0.401042 0.017119 0.044298 Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000 0.00000 0.00000 0.000		4074.274			0.138718		0.013026	3.73E-08
5 4679.216 97.18048 1.726072 0.820529 0.234614 0.017023 0.021278 6 4743.034 96.53334 2.105437 1.028492 0.287452 0.017181 0.028097 7 4784.781 96.01568 2.399142 1.205203 0.328979 0.017215 0.033786 8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017197 0.038266 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017119 0.041707 10 4845.950 95.08219 2.895009 1.560345 0.401042 0.017119 0.044298 Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000 0.00000 0.00000 0.00000 2 0.664136 0.686364 97.81609 0.047285 0.755228 0.065361 0.6296								0.006510
6 4743.034 96.53334 2.105437 1.028492 0.287452 0.017181 0.028097 7 4784.781 96.01568 2.399142 1.205203 0.328979 0.017215 0.033786 8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017197 0.038266 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017159 0.041707 10 4845.950 95.08219 2.895009 1.560345 0.401042 0.017119 0.044298 Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000 0.000000 0.000000 0.000000 2 0.664136 0.686364 97.81609 0.047285 0.755228 0.065361 0.629671 3 0.709129 1.243531 95.94155 0.321139 1.792306 0.081434 0.620040 4 0.731061 1.567424 93.72510 0.811360 3.173365 0.084039 0.638711 5 0.744361 1.699590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.399204 95.60917 0.087856 0.143992 0.2563296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.399209 95.63124 0.138877 0.145730 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.256223 8 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.2567446 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.2567243 10 0.8								0.013462
7 4784.781 96.01568 2.399142 1.205203 0.328979 0.017215 0.033786 8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017197 0.038266 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017119 0.041707 10 4845.950 95.08219 2.895009 1.560345 0.401042 0.017119 0.044298 Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000 0.038261 0.629671 <								
8 4812.951 95.61471 2.618719 1.350588 0.360518 0.017197 0.038266 9 4832.367 95.31034 2.779273 1.467592 0.383927 0.017159 0.041707 10 4845.950 95.08219 2.895009 1.560345 0.401042 0.017119 0.044298 Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000								
9								
Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000 0.000000 0.000000 0.000000 0.000000 2 0.664136 0.686364 97.81609 0.047285 0.755228 0.065361 0.629671 3 0.709129 1.243531 95.94155 0.321139 1.792306 0.081434 0.620040 4 0.731061 1.567424 93.72510 0.811360 3.173365 0.084039 0.638711 5 0.744361 1.699590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.07								
Variance Decomposition of DPSR_MUDHDEP12: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPl IPl								
Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.553331 0.244748 99.75525 0.000000 0.000000 0.000000 0.000000 2 0.664136 0.686364 97.81609 0.047285 0.755228 0.065361 0.629671 3 0.709129 1.243531 95.94155 0.321139 1.792306 0.084039 0.638711 4 0.731061 1.567424 93.72510 0.811360 3.173365 0.084039 0.638711 5 0.744361 1.6999590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077037 0.576007 10 0.796568 1.	10	4845.950	95.08219	2.895009	1.560345	0.401042	0.017119	0.044298
1 0.553331 0.244748 99.75525 0.000000 0.000000 0.000000 0.0000000 2 0.664136 0.686364 97.81609 0.047285 0.755228 0.065361 0.629671 3 0.709129 1.243531 95.94155 0.321139 1.792306 0.081434 0.620040 4 0.731061 1.567424 93.72510 0.811360 3.173365 0.084039 0.638711 5 0.744361 1.699590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2.000000 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.2567243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446	Variance	e Decompos	ition of DPSR_	MUDHDEP12:				
2 0.664136 0.686364 97.81609 0.047285 0.755228 0.065361 0.629671 3 0.709129 1.243531 95.94155 0.321139 1.792306 0.081434 0.620640 4 0.731061 1.567424 93.72510 0.811360 3.173365 0.084039 0.638711 5 0.744361 1.699590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMM	Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD12	DCPI	IPI
3 0.709129 1.243531 95.94155 0.321139 1.792306 0.081434 0.620040 4 0.731061 1.567424 93.72510 0.811360 3.173365 0.084039 0.638711 5 0.744361 1.699590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI <td>1</td> <td>0.553331</td> <td>0.244748</td> <td>99.75525</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td>	1	0.553331	0.244748	99.75525	0.000000	0.000000	0.000000	0.000000
4 0.731061 1.567424 93.72510 0.811360 3.173365 0.084039 0.638711 5 0.744361 1.699590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.00000 0.00000 0.		0.664136	0.686364	97.81609	0.047285	0.755228	0.065361	0.629671
5 0.744361 1.699590 91.36398 1.541278 4.680021 0.082957 0.632170 6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 1.0481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 <td< td=""><td></td><td>0.709129</td><td></td><td></td><td>0.321139</td><td>1.792306</td><td>0.081434</td><td>0.620040</td></td<>		0.709129			0.321139	1.792306	0.081434	0.620040
6 0.754974 1.704553 88.96099 2.444798 6.187330 0.080744 0.621591 7 0.765139 1.6862395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 1.0481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.0382233 0.131790 0.239716								0.638711
7 0.765139 1.662395 86.61318 3.451974 7.586355 0.078778 0.607318 8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 <								0.632170
8 0.775511 1.626023 84.39369 4.489207 8.821817 0.077528 0.591739 9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.00000 0.00000 0.00000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143392 0.255297								
9 0.786070 1.620445 82.35199 5.500568 9.873952 0.077037 0.576007 10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145730 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446								
10 0.796568 1.650659 80.51389 6.448732 10.74861 0.077174 0.560931 Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143392 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.138877 0.145700 0.256223 8 0.842570								
Variance Decomposition of DIMMR: Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.607917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Period S.E. DMUDHDE DPSR_MU DIMMR DCBR_TD12 DCPI IPI 1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.762938 3.506479 0.399204 95.60917 0.087856 0.143392 0.255296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.52	10	0.796568	1.650659	80.51389	6.448732	10.74861	0.077174	0.560931
1 0.481374 7.234525 0.369559 92.39592 0.000000 0.000000 0.000000 2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143392 0.255297 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.138577 0.145700 0.256623 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 <	Variance	e Decompos	sition of DIMMR					
2 0.615804 5.423961 0.359503 93.83553 0.019860 0.113188 0.247954 3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446	Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD12	DCPI	IPI
3 0.694908 4.302452 0.385367 94.90245 0.038223 0.131790 0.239716 4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446	1	0.481374	7.234525	0.369559	92.39592	0.000000	0.000000	0.000000
4 0.746749 3.745527 0.397277 95.40168 0.063311 0.140645 0.251561 5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446		0.615804			93.83553	0.019860	0.113188	0.247954
5 0.782938 3.506479 0.399204 95.60917 0.087856 0.143992 0.253296 6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446		0.694908	4.302452	0.385367	94.90245	0.038223	0.131790	0.239716
6 0.809016 3.433499 0.395681 95.65787 0.112317 0.145338 0.255297 7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446								0.251561
7 0.828223 3.440729 0.390229 95.63124 0.135877 0.145700 0.256223 8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446								0.253296
8 0.842570 3.480732 0.384733 95.57346 0.158553 0.145650 0.256872 9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446								0.255297
9 0.853399 3.529328 0.380039 95.50768 0.180276 0.145436 0.257243 10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446								0.256223
10 0.861638 3.574994 0.376419 95.44492 0.201043 0.145180 0.257446								0.256872
								0.257243
	10	0.861638	3.574994	0.376419	95.44492	0.201043	0.145180	0.257446
""	←		III					+

Table : 6.172. Variance Decomposition (VDC) for Model 3.7.

Var: U	JNTITLED W	orkfile: DEPOSI	TS OF ISLAMIC	BANKS 2009-	2015::Untitled\		_ =	x
View Pro	oc Object P	rint Name Free	eze Estimate :	Stats Impulse	Resids			
			Variance	Decomposit	ion			
Varianc	e Decompos	ition of DCBR	TD12·					_
Period	S.E.		DPSR_MU	DIMMR	DCBR_TD12	DCPI	IPI	
1	0.236642	0.210135	5.870596	1.270678	92.64859	0.000000	0.000000	
2	0.336231	1.479723	3.149243	3.881612	91.48413	0.004324	0.000968	
3	0.419660	3.020452	4.360717	6.616465	85.98915	0.004721	0.008498	
4	0.495361	4.510008	6.857578	9.014033	79.59054	0.011356	0.016489	
5	0.564250	5.791155	9.461822	11.01180	73.68939	0.020761	0.025071	
6	0.626280	6.842029	11.76189	12.65026	68.68327	0.030645	0.031901	
7	0.681468	7.682982	13.66969	14.00012	64.57015	0.039887	0.037175	
8	0.730072	8.347815	15.21125	15.12312	61.22866	0.048102	0.041045	
9	0.772529	8.869664	16.44398	16.06792	58.51938	0.055220	0.043833	
10	0.809381	9.277361	17.42660	16.87092	56.31801	0.061311	0.045799	
Varianc	e Decompos	ition of DCPI:						
Period	S.E.		DPSR_MU	DIMMR	DCBR_TD12	DCPI	IPI	
1	1177.553	3.09E-05	0.982938	1.060054	3.280028	94.67695	0.000000	
2	1222.639	0.000951	6.344127	2.224821	3.074828	88.21153	0.143740	
3	1236.479	0.031804	7.915376	2.629309	3.011181	86.27177	0.140559	
4	1243.414	0.051398	8.594021	2.891289	3.002300	85.31563	0.145359	
5	1246.602	0.062291	8.854218	3.030301	3.026174	84.88203	0.144984	
6	1248.108	0.064784	8.940099	3.102218	3.069664	84.67837	0.144869	
7	1248.865	0.064717	8.958161	3.134674	3.121492	84.57626	0.144696	
8	1249.339	0.066068	8.954997	3.146471	3.175558	84.51231	0.144599	
9	1249.735	0.070746	8.949563	3.148470	3.227863	84.45879	0.144568	
10	1250.134	0.079024	8.948317	3.146870	3.276337	84.40488	0.144574	
Varianc	e Decompos	ition of IPI:						
Period	S.E.	DMUDHDE	DPSR_MU	DIMMR	DCBR_TD12	DCPI	IPI	
1	2.877803	1.315069	0.333213	2.392689	4.447686	0.231024	91.28032	
2	3.037114	2.393226	0.338213	2.454316	4.339066	0.232781	90.24240	
3	3.050364	2.397100	0.336111	2.453025	4.315593	0.236018	90.26215	
4	3.053316	2.483085	0.335566	2.455477	4.320564	0.236268	90.16904	
5	3.053894	2.507584	0.336498	2.454607	4.321276	0.236221	90.14381	
6	3.054332	2.527360	0.338463	2.454508	4.325008	0.236173	90.11849	
7	3.054618	2.538552	0.341404	2.454171	4.327924	0.236130	90.10182	
8	3.054852	2.546541	0.344648	2.453854	4.330837	0.236100	90.08802	
9	3.055041	2.552150	0.347906	2.453556	4.333340	0.236076	90.07697	
10	3.055196	2.556342	0.350954	2.453309	4.335520	0.236057	90.06782	
Choles	ky Ordering: I	DMUDHDEP12	DPSR_MUDH	IDEP12 DIMN	IR DCBR_TD12	DCPI IPI		-
4		III					+	1

Table : 6.173. Variance Decomposition (VDC) for Model 3.8.

		orkfile: DEPOSΓ		· · · · · ·		
/iew Pro	c Object P	rint Name Free		Stats Impulse	Resids	
		V	ariance Deco	mposition		
		ition of DMUDH				
Period	S.E.	DMUDHDEP	DPSR_MU	DIMMR	DCPI	IPI
1	2866.777	100.0000	0.000000	0.000000	0.000000	0.000000
2	4149.704	97.50157	0.668999	1.368897	0.126300	0.334230
3	5239.108	95.80852	0.951484	2.300696	0.304449	0.634847
4	6086.646	94.91847	0.969262	3.085562	0.482812	0.543899
5	6814.889	94.03542	0.974657	3.890073	0.574397	0.525447
6	7467.241	93.19589	0.982803	4.659944	0.629773	0.531587
7	8058.872	92.40503	0.984035	5.429523	0.676592	0.504823
8	8605.117	91.61932	0.969080	6.211257	0.717643	0.482694
9	9112.349	90.85055	0.944752	6.983363	0.752389	0.468945
10	9585.158	90.11403	0.914527	7.736151	0.782164	0.453125
Varianc	e Decompos	ition of DPSR_	MUDHDEP:			
Period	S.E.	DMUDHDEP	DPSR_MU	DIMMR	DCPI	IPI
1	0.499937	0.442061	99.55794	0.000000	0.000000	0.000000
2	0.617290	6.268610	89.54418	0.639893	1.231849	2.315469
3	0.681713	6.567653	86.16871	3.185762	2.026655	2.051217
4	0.719522	6.528566	83.67606	5.294334	2.659714	1.841323
5	0.744780	6.188039	81.44560	7.440656	2.942806	1.982902
6	0.762838	5.909718	79.23312	9.752274	3.086798	2.018093
7	0.776377	5.710597	77.23105	11.92529	3.152668	1.980395
8	0.787285	5.604220	75.40225	13.82580	3.177013	1.990718
9	0.796432	5.581833	73.76103	15.48412	3.172020	2.000999
10	0.804132	5.631333	72.36392	16.86508	3.149787	1.989886
Varianc	e Decompos	ition of DIMMR				
Period	S.E.	DMUDHDEP	DPSR_MU	DIMMR	DCPI	IPI
1	0.485875	8.954128	5.094978	85.95089	0.000000	0.000000
2	0.585895	7.128907	7.181360	85.33472	0.041037	0.313977
3	0.673757	6.844557	8.497642	83.95739	0.055816	0.644594
4	0.733900	6.608199	10.00272	82.78122	0.061191	0.546675
5	0.777969	6.658103	11.19087	81.58032	0.055364	0.515345
6	0.811114	6.705497	12.24412	80.47831	0.050950	0.521116
7	0.836034	6.739224	13.16145	79.55178	0.049195	0.498352
8	0.854469	6.774231	13.93000	78.76480	0.049682	0.481293
9	0.868192	6.800446	14.57656	78.09922	0.051687	0.472088
10	0.878355	6.812725	15.11543	77.55393	0.054858	0.463055
Variano	e Decompos	ition of DCPI:				
22.10	poo					

Table : 6.174. Variance Decomposition (VDC) for Model 3.8.

or Var: U	INTITLED W	orkfile: DEPOSI	TS OF ISLAMIC	BANKS 2009-2	015::Untitled\	- 0	3
/iew Pro	c Object P	rint Name Free	ze Estimate S	itats Impulse	Resids		
		١	/ariance Deco	mposition			
1	0.485875	8.954128	5.094978	85.95089	0.000000	0.000000	
2	0.585895	7.128907	7.181360	85.33472	0.041037	0.313977	
3	0.673757	6.844557	8.497642	83.95739	0.055816	0.644594	
4	0.733900	6.608199	10.00272	82.78122	0.061191	0.546675	
5	0.777969	6.658103	11.19087	81.58032	0.055364	0.515345	
6	0.811114	6.705497	12.24412	80.47831	0.050950	0.521116	
7	0.836034	6.739224	13.16145	79.55178	0.049195	0.498352	
8	0.854469	6.774231	13.93000	78.76480	0.049682	0.481293	
9	0.868192	6.800446	14.57656	78.09922	0.051687	0.472088	
10	0.878355	6.812725	15.11543	77.55393	0.054858	0.463055	
		ition of DCPI:					
Period	S.E.	DMUDHDEP	DPSR_MU	DIMMR	DCPI	IPI	
1	1196.205	0.020313	4.678383	2.889933	92.41137	0.000000	
2	1234.227	0.038008	6.313921	6.825923	86.81079	0.011357	
3	1263.419	0.204510	9.262275	6.754028	83.70790	0.071288	
4	1278.636	0.954489	10.39865	6.789412	81.73070	0.126741	
5	1285.525	1.172334	11.04545	6.718452	80.90139	0.162372	
6	1289.727	1.323318	11.39779	6.674865	80.42343	0.180594	
7	1292.233	1.381727	11.65326	6.649360	80.13311	0.182536	
8	1293.932	1.420733	11.81119	6.639624	79.93693	0.191518	
9	1295.052	1.447375	11.90627	6.646696	79.80844	0.191221	
10	1295.826	1.461343	11.96421	6.662284	79.72063	0.191532	
Variance	e Decompos	ition of IPI:					
Period	S.E.	DMUDHDEP	DPSR_MU	DIMMR	DCPI	IPI	
1	2.732299	0.299378	0.439792	0.623716	0.149601	98.48751	
2	3.002200	0.989204	0.733370	1.476852	0.132286	96.66829	
3	3.064433	0.950895	0.911073	1.640096	0.132217	96.36572	
4	3.149762	0.929146	0.929862	1.659898	0.135128	96.34597	
5	3.151962	0.965981	0.933593	1.687663	0.135027	96.27774	
6	3.162241	0.972166	0.944070	1.679075	0.134435	96.27025	
7	3.165945	0.969959	0.961647	1.689441	0.135292	96.24366	
8	3.166257	0.973317	0.962340	1.689749	0.135720	96.23887	
9	3.167182	0.976799	0.964277	1.688854	0.135655	96.23441	
10	3.167318	0.977237	0.968474	1.689353	0.135824	96.22911	
Cholesi	ky Ordering: I	DMUDHDEP DI	PSR_MUDHDE	P DIMMR DC	PLIPI		

Table : 6.175. Variance Decomposition (VDC) for Model 3.9.

var) Var: U	NTITLED W	orkfile: DEPOSI	S OF ISLAMIC	BANKS 2009-2	015::Untitled\	_ =	x
View Pro	Object P	rint Name Free	ze Estimate	Stats Impulse	Resids		
	, - /(Va	riance Decor	nposition			
	_						
		sition of DIBDEF			5.05		Ξ
Period	S.E.	DIBDEPTOT	DPSRDEP	DIMMR	DCPI	IPI	
1	2452.435	100.0000	0.000000	0.000000	0.000000	0.000000	•
2	3506.449	98.14426	0.590339	0.071759	0.339445	0.854201	
3	4325.184	96.72182	1.813028	0.313788	0.423384	0.727980	
4	5040.814	94.99818	3.069545	0.808815	0.455416	0.668048	
5	5695.374	93.21348	4.195729	1.526610	0.471143	0.593035	
6	6308.920	91.44344	5.114840	2.432176	0.479485	0.530059	
7	6891.900	89.74080	5.829399	3.469961	0.484521	0.475316	
8	7450.324	88.13048	6.364564	4.588184	0.487843	0.428924	
9	7987.805	86.62515	6.753664	5.741462	0.490245	0.389480	
10	8506.629	85.22929	7.028414	6.894283	0.492106	0.355908	
							4
Variance	Decompos	sition of DPSRD					
Period	S.E.	DIBDEPTOT	DPSRDEP	DIMMR	DCPI	IPI	
_	0.000005	4.757047	00.04000			0.000000	:
1	0.329205	1.757017 1.576253	98.24298	0.000000	0.000000	0.000000	
2	0.405518 0.439271	1.576253	96.00190 93.39037	1.338491 4.032429	0.055370 0.060138	1.027989 1.068407	
4	0.439271	1.448000	93.39037	7.178679	0.057153	1.068407	
5	0.458561	1.351275	90.26072 87.20944	10.27775	0.057153	1.152171	
6	0.471211	1.235013	84.54395	12.98280	0.054194	1.175562	
7	0.487154	1.200646	82.37972	15.18269	0.052316	1.185574	
8	0.492304	1.175688	80.70813	16.88357	0.051309	1.181624	
9	0.492304	1.157852	79.46284	18.15191	0.050986	1.176526	
10	0.499002	1.146082	78.56071	19.07062	0.050853	1.171740	
10	0.433002	1.140002	70.30071	13.07002	0.030033	1.17 17 40	
Variance	Decompos	sition of DIMMR:					
Period	S.E.	DIBDEPTOT	DPSRDEP	DIMMR	DCPI	IPI	
1	0.483269	2.865149	0.115527	97.01932	0.000000	0.000000	
2	0.633928	3.107464	0.224136	96.31360	0.082174	0.272628	
3	0.725191	3.211112	0.360000	96.06625	0.104690	0.257947	
4	0.784847	3.286407	0.477486	95.85458	0.117406	0.264117	
5	0.825295	3.343907	0.578752	95.69113	0.125071	0.261143	
6	0.853168	3.390841	0.660528	95.55932	0.130218	0.259096	
7	0.872562	3.429940	0.724671	95.45476	0.133789	0.256844	
8	0.886131	3.463059	0.773445	95.37216	0.136343	0.254995	
9	0.895659	3.491363	0.809623	95.30734	0.138201	0.253473	
10	0.902369	3.515710	0.835820	95.25663	0.139571	0.252268	
							*
<u> </u>						+	

Table : 6.176. Variance Decomposition (VDC) for Model 3.9.

		V	ariance Deco	mposition		
		ition of DIMMR:				
Period	S.E.	DIBDEPTOT	DPSRDEP	DIMMR	DCPI	IPI
1	0.483269	2.865149	0.115527	97.01932	0.000000	0.000000
2	0.633928	3.107464	0.224136	96.31360	0.082174	0.272628
3	0.725191	3.211112	0.360000	96.06625	0.104690	0.257947
4	0.784847	3.286407	0.477486	95.85458	0.117406	0.264117
5 6	0.825295	3.343907	0.578752	95.69113	0.125071	0.261143
7	0.853168 0.872562	3.390841 3.429940	0.660528 0.724671	95.55932 95.45476	0.130218 0.133789	0.259096 0.256844
8	0.886131	3.463059	0.773445	95.37216	0.136343	0.254995
9	0.895659	3.491363	0.809623	95.30734	0.138201	0.253473
10	0.902369	3.515710	0.835820	95.25663	0.139571	0.252268
/ariance	e Decompos	ition of DCPI:				
Period	S.E.	DIBDEPTOT	DPSRDEP	DIMMR	DCPI	IPI
1	1224.704	3.304613	2.184562	2.085001	92.42582	0.000000
2	1230.360	3.274308	2.168742	2.821786	91.72419	0.010973
3	1232.867	3.264355	2.170215	3.192586	91.35344	0.019405
4 5	1234.656	3.256126	2.174733	3.460414	91.08918	0.019542
6	1235.884 1236.728	3.250069 3.245678	2.179476 2.184378	3.641388 3.764405	90.90860 90.78471	0.020469 0.020826
7	1237.301	3.242697	2.188890	3.846525	90.70075	0.020620
8	1237.687	3.240889	2.192916	3.900695	90.64416	0.021141
9	1237.946	3.240065	2.196406	3.935790	90.60625	0.021492
10	1238.119	3.240064	2.199391	3.958050	90.58090	0.021598
	e Decompos					
Period	S.E.	DIBDEPTOT	DPSRDEP	DIMMR	DCPI	IPI
1	2.877273	0.016797	1.157727	1.037142	0.245972	97.54236
2	3.018586	0.017042	1.332859	1.044672	0.229746	97.37568
3	3.031249	0.018509	1.321747	1.065331	0.229516	97.36490
4 5	3.032789 3.032990	0.018509 0.018626	1.331530 1.332443	1.065105 1.070892	0.229383 0.229373	97.35547 97.34867
6	3.032990	0.018668	1.333201	1.074324	0.229373	97.34445
7	3.033070	0.018717	1.333299	1.077672	0.229353	97.34445
8	3.033171	0.018766	1.333291	1.080164	0.229347	97.33843
9	3.033202	0.018824	1.333265	1.082060	0.229342	97.33651
10	3.033224	0.018893	1.333259	1.083410	0.229339	97.33510
Choloci	or Ordoring: I	DIBDEPTOT DE	SEDDED DIMM	D DODLIDI		

Table : 6.177. Variance Decomposition (VDC) for Model 3.10.

iew	Proc Object	Print Name F	Freeze Estimate	Stats Impulse	Resids		
ievv	rioc Object	[Fillic] Nume [1	Variance De	<u> </u>	Kesius		
			variance be	composition			-
		osition of DMU					
Peri	od S.E.	DMUDHF	IN DPSRPLS	DIMMR	DCPI	IPI	
1	463.800	00 100.000	0.000000	0.000000	0.000000	0.000000	-
2	646.964				0.030002	0.115991	
3	781.830				0.074044	0.103016	
4	892.418	98.9508	7 0.427380	0.393585	0.128284	0.099882	
5	987.573	98.4921	1 0.658854	0.570707	0.185116	0.093210	
6	1071.94	14 98.0212	0.904449	0.745636	0.241253	0.087460	
7	1148.21	19 97.5582	9 1.154076	0.911239	0.294323	0.082070	
8	1218.13	97.1148	5 1.400661	1.064038	0.343175	0.077278	
9	1282.87	78 96.6974	6 1.639686	1.202561	0.387289	0.073009	
10	1343.30	96.3091	6 1.868354	1.326677	0.426589	0.069221	
							=
		position of DPS					
Peri	od S.E.	DMUDHF	IN DPSRPLS	DIMMR	DCPI	IPI	
1	0.68519	0 10.8140	0 89.18600	0.000000	0.000000	0.000000	-
2	0.89626				0.173939	0.742499	
3	1.01640				0.449868	0.717565	
4	1.09528				0.812419	0.746640	
5	1.14978	7.84683	E 00 E40E4				
			5 88.51351	1.683768	1.211570	0.744319	
6	1.18917				1.211570 1.618722	0.744319 0.741525	
6 7		7.39386	88.08385	2.162030			
	1.18917	70 7.39386 54 7.04925	8 88.08385 4 87.62285	2.162030 2.582122	1.618722	0.741525	
7	1.18917 1.21845	70 7.39386 54 7.04925 42 6.79991	8 88.08385 4 87.62285 0 87.16631	2.162030 2.582122 2.932952	1.618722 2.010184	0.741525 0.735594	
7 8	1.18917 1.21845 1.24074 1.25801	70 7.39386 54 7.04925 42 6.79991 16 6.63221	8 88.08385 4 87.62285 0 87.16631 1 86.73714	2.162030 2.582122 2.932952 3.213229	1.618722 2.010184 2.371492	0.741525 0.735594 0.729333	
7 8 9 10	1.18917 1.21845 1.24074 1.25801 1.27161	70 7.39386 54 7.04925 42 6.79991 16 6.63221 11 6.53301	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618	2.162030 2.582122 2.932952 3.213229	1.618722 2.010184 2.371492 2.694337	0.741525 0.735594 0.729333 0.723087	=
7 8 9 10 Varia	1.18917 1.21845 1.24074 1.25801 1.27161	7.39386 54 7.04925 42 6.79991 16 6.63221 11 6.53301	88 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR:	2.162030 2.582122 2.932952 3.213229 3.428124	1.618722 2.010184 2.371492 2.694337 2.975411	0.741525 0.735594 0.729333 0.723087 0.717277	=
7 8 9 10	1.18917 1.21845 1.24074 1.25801 1.27161	70 7.39386 54 7.04925 42 6.79991 16 6.63221 11 6.53301	88 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR:	2.162030 2.582122 2.932952 3.213229 3.428124	1.618722 2.010184 2.371492 2.694337	0.741525 0.735594 0.729333 0.723087	=
7 8 9 10 Varia	1.18917 1.21845 1.24074 1.25801 1.27161	70 7.39386 54 7.04925 52 6.79991 16 6.63221 11 6.53301 DOSITION OF DIM	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IN DPSRPLS	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR	1.618722 2.010184 2.371492 2.694337 2.975411	0.741525 0.735594 0.729333 0.723087 0.717277	=
7 8 9 10 Varia Perio	1.18917 1.21845 1.24074 1.25801 1.27161 ance Decompod S.E.	70 7.39386 54 7.04925 12 6.79991 16 6.63221 11 6.53301 DMUDHF 22 0.02539	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IN DPSRPLS	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR 98.35030	1.618722 2.010184 2.371492 2.694337 2.975411	0.741525 0.735594 0.729333 0.723087 0.717277	=
7 8 9 10 Varia Perio	1.18917 1.21845 1.24074 1.25801 1.27161 ance Decomp od S.E.	70 7.39386 54 7.04925 12 6.79991 16 6.63221 11 6.53301 DMUDHF 22 0.02539 54 0.01386	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IIN DPSRPLS 9 1.624304 8 2.394816	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR 98.35030 97.43584	1.618722 2.010184 2.371492 2.694337 2.975411 DCPI 0.000000	0.741525 0.735594 0.729333 0.723087 0.717277 IPI 0.000000	=
7 8 9 10 Varia Perid	1.18917 1.21845 1.24074 1.25801 1.27161 ance Decompod S.E. 0.59202 0.80415	70 7.39386 54 7.04925 52 6.79991 16 6.63221 11 6.53301 00sition of DIM DMUDHF 22 0.02539 54 0.01386 53 0.01020	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IN DPSRPLS 9 1.624304 8 2.394816 4 3.138188	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR 98.35030 97.43584 96.61775	1.618722 2.010184 2.371492 2.694337 2.975411 DCPI 0.000000 0.035799	0.741525 0.735594 0.729333 0.723087 0.717277 IPI 0.000000 0.119676	=
7 8 9 10 Varia Perio 1 2 3	1.18917 1.21845 1.24074 1.25801 1.27161 ance Decompod S.E. 0.59202 0.80415 0.94615	70 7.39386 64 7.04925 82 6.79991 86 6.63221 11 6.53301 DOUBLE 0.002539 64 0.01386 63 0.01020 18 0.00836	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IN DPSRPLS 9 1.624304 8 2.394816 4 3.138188 0 3.857805	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR 98.35030 97.43584 96.61775 95.80030	1.618722 2.010184 2.371492 2.694337 2.975411 DCPI 0.000000 0.035799 0.106765	0.741525 0.735594 0.729333 0.723087 0.717277 IPI 0.000000 0.119676 0.127097	=
7 8 9 10 Varia Perid 1 2 3 4	1.18917 1.21845 1.24074 1.25801 1.27161 ance Decompod S.E. 0.59202 0.80415 0.94615 1.04944	70 7.39386 64 7.04925 82 6.79991 86 6.63221 81 6.53301 DMUDHF 22 0.02539 64 0.01386 63 0.01020 88 0.00836 72 0.00756	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IN DPSRPLS 9 1.624304 8 2.394816 4 3.138188 0 3.857805 1 4.531939	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR 98.35030 97.43584 96.61775 95.80030 95.03236	1.618722 2.010184 2.371492 2.694337 2.975411 DCPI 0.000000 0.035799 0.106765 0.189015	0.741525 0.735594 0.729333 0.723087 0.717277 IPI 0.000000 0.119676 0.127097 0.144516	=
7 8 9 10 Varia Perio 1 2 3 4 5	1.18917 1.21845 1.24074 1.25801 1.27161 ance Decompod S.E. 0.59202 0.80415 0.94615 1.04944 1.12727	70 7.39386 64 7.04925 82 6.79991 86 6.63221 81 6.53301 DMUDHF 22 0.02539 84 0.01386 85 0.01020 88 0.00836 87 0.00958	88 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IN DPSRPLS 9 1.624304 8 2.394816 4 3.13818 0 3.857805 1 4.531939 0 5.153675	2.162030 2.582122 2.932952 3.213229 3.428124 5 DIMMR 98.35030 97.43584 96.61775 95.80030 95.03236 94.32011	1.618722 2.010184 2.371492 2.694337 2.975411 DCPI 0.000000 0.035799 0.106765 0.189015 0.273225	0.741525 0.735594 0.729333 0.723087 0.717277 IPI 0.000000 0.119676 0.127097 0.144516 0.154911	=
7 8 9 10 Varia Perio 1 2 3 4 5 6	1.18917 1.21845 1.24074 1.25801 1.27161 ance Decomp od S.E. 0.59202 0.80415 0.94615 1.04944 1.12727 1.18694	70 7.39386 64 7.04925 62 6.79991 16 6.63221 11 6.53301 DOSITION OF DIM DMUDHF 22 0.02539 64 0.01386 63 0.01020 88 0.00836 72 0.00756 64 0.00958 71 0.01736	8 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IIN DPSRPLS 9 1.624304 8 2.394816 4 3.138188 0 3.857805 1 4.531939 0 5.153675 9 5.719070	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR 98.35030 97.43584 96.61775 95.80030 95.03236 94.32011 93.66828	1.618722 2.010184 2.371492 2.694337 2.975411 DCPI 0.000000 0.035799 0.106765 0.273225 0.352652	0.741525 0.735594 0.729333 0.723087 0.717277 IPI 0.000000 0.119676 0.127097 0.144516 0.154911 0.163979	=
7 8 9 10 Varia Perio 1 2 3 4 5 6 7	1.18917 1.21845 1.24077 1.25801 1.27161 ance Decompod S.E. 0.59202 0.80415 0.94615 1.04944 1.12727 1.18694 1.23317	70 7.39386 64 7.04925 62 6.79991 61 6.63221 61 6.53301 DOSITION OF DIM DMUDHF 22 0.02539 64 0.01386 63 0.01020 68 0.00836 67 0.00958 61 0.00736 62 0.03422	88 88.08385 4 87.62285 0 87.16631 1 86.73714 3 86.34618 MR: IIN DPSRPLS 9 1.624304 8 2.394816 4 3.138188 0 3.857805 4.53139 0 5.153675 9 5.719070 3 6.227901	2.162030 2.582122 2.932952 3.213229 3.428124 DIMMR 98.35030 97.43584 96.61775 95.80030 95.03236 94.32011 93.66828 93.07443	1.618722 2.010184 2.371492 2.694337 2.975411 DCPI 0.000000 0.035799 0.106765 0.189015 0.273225 0.352652 0.424301	0.741525 0.735594 0.729333 0.723087 0.717277 IPI 0.000000 0.119676 0.127097 0.144516 0.154911 0.163979 0.170979	=

Table : 6.178. Variance Decomposition (VDC) for Model 3.10.

/iew Pro	c Object Pr	rint Name Freez		Stats Impulse	Resids		
		Va	ariance Decor	mposition			
Varianc Period	e Decompos S.E.	ition of DIMMR: DMUDHFIN	DPSRPLS	DIMMR	DCPI	IPI	_
1	0.592022	0.025399	1.624304	98.35030	0.000000	0.000000	=
2	0.804154	0.013868	2.394816	97.43584	0.035799	0.119676	
3	0.946153	0.010204	3.138188	96.61775	0.106765	0.127097	
4	1.049448	0.008360	3.857805	95.80030	0.189015	0.144516	
5	1.127272	0.007561	4.531939	95.03236	0.273225	0.154911	
6	1.186944	0.009580	5.153675	94.32011	0.352652	0.163979	
7	1.233171	0.017369	5.719070	93.66828	0.424301	0.170979	
8	1.269229	0.034223	6.227901	93.07443	0.486872	0.176573	
9	1.297514	0.063305	6.681799	92.53372	0.540255	0.180925	
10	1.319825	0.107321	7.083679	92.03976	0.584969	0.184268	
Varianc Period	e Decompos S.E.	ition of DCPI: DMUDHFIN	DPSRPLS	DIMMR	DCPI	IPI	
			5. 6.4. 26				=
1	5.741756	0.012461	0.114663	0.064826	99.80805	0.000000	
2	7.488230	0.511373	0.393254	0.638474	98.40269	0.054206	
3	8.595442	1.393136	1.310958	2.067555	95.13659	0.091762	
4	9.422642	2.504698	2.622389	3.932470	90.80095	0.139494	
5	10.09376	3.704706	4.099135	5.904767	86.10725	0.184138	
6	10.66101	4.896102	5.578230	7.768586	81.53152	0.225558	
7	11.14840	6.021685	6.960851	9.414066	77.34159	0.261807	
8	11.56885	7.054566	8.198267	10.80280	73.65147	0.292892	
9	11.93081	7.986714	9.274162	11.93855	70.48151	0.319061	
10	12.24097	8.820580	10.19097	12.84574	67.80183	0.340873	
Varianc	e Decompos	ition of IPI:					-
Period	S.E.	DMUDHFIN	DPSRPLS	DIMMR	DCPI	IPI	
1	3.044658	0.204945	0.079788	0.600365	0.291175	98.82373	
2	3.206190	0.255166	0.201785	0.580912	0.344404	98.61773	
3	3.221559	0.253332	0.215400	0.584639	0.341503	98.60513	
4	3.224135	0.260658	0.244800	0.583718	0.350282	98.56054	
5	3.224664	0.263659	0.262400	0.584155	0.354183	98.53560	
6	3.225075	0.266704	0.277903	0.584178	0.358468	98.51275	
7	3.225360	0.268853	0.289760	0.584299	0.361737	98.49535	[
8	3.225596	0.270581	0.299343	0.584378	0.364532	98.48116	Ŀ
9	3.225783	0.271910	0.306972	0.584461	0.366811	98.46985	
10	3.225934	0.272951	0.313105	0.584538	0.368690	98.46072	
Ohalaal	O-di [MUDUEN DE					= .

Table : 6.179. Variance Decomposition (VDC) for Model 3.11.

Period 1 88 2 11 3 19 4 11 5 20 6 22 7 22 8 20 9 20 10 30 Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	ecomposit S.E. 64.3597 231.574 522.934 777.406 009.972 227.981 435.642 635.565 829.489 018.629	nt Name Free V tion of MUSYF MUSYFIN 100.0000 99.67079 99.10670 98.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049 0.090494	nriance Decoi IN: DPSRPLS 0.000000 0.066127 0.181659 0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500	DIMMR 0.000000 0.193166 0.589688 1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	DCPI 0.000000 0.019543 0.064829 0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018 0.928930	IPI 0.000000 0.050372 0.057125 0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923 0.784527
Period 1 88 2 11 3 19 4 11 5 20 6 22 7 22 8 20 9 20 10 30 Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	S.E. 64.3597 231.574 522.934 777.406 009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	100.0000 99.67079 99.10670 99.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 100 of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	DPSRPLS 0.000000 0.066127 0.181659 0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	DIMMR 0.000000 0.193166 0.589688 1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.000000 0.019543 0.064829 0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.000000 0.050372 0.057125 0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
Period 1 88 2 11 3 19 4 11 5 20 6 22 7 22 8 20 9 20 10 30 Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	S.E. 64.3597 231.574 522.934 777.406 009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	MUSYFIN 100.0000 99.67079 99.10670 98.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.000000 0.066127 0.181659 0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	0.000000 0.193166 0.589688 1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.000000 0.019543 0.064829 0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.000000 0.050372 0.057125 0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
Period 1 88 2 11 3 19 4 11 5 20 6 22 7 22 8 20 9 20 10 30 Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	S.E. 64.3597 231.574 522.934 777.406 009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	MUSYFIN 100.0000 99.67079 99.10670 98.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.000000 0.066127 0.181659 0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	0.000000 0.193166 0.589688 1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.000000 0.019543 0.064829 0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.000000 0.050372 0.057125 0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
1 81 2 1: 3 1! 4 1: 5 2! 6 2: 7 2: 8 2! 10 3: Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1.	231.574 522.934 777.406 009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	99.67079 99.10670 98.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.000000 0.066127 0.181659 0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	0.000000 0.193166 0.589688 1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.000000 0.019543 0.064829 0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.050372 0.057125 0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
2 1: 3 1! 4 1' 5 2! 6 2: 7 2. 8 2! 9 2! 10 3: Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	231.574 522.934 777.406 009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	99.67079 99.10670 98.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.066127 0.181659 0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	0.193166 0.589688 1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.019543 0.064829 0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.050372 0.057125 0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
3 1! 4 11 5 2! 6 2: 7 2. 8 2! 9 2! 10 3! Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	522.934 777.406 009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	99.10670 98.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.181659 0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	0.589688 1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.064829 0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.057125 0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
4 11 5 21 6 22 7 22 8 21 9 23 10 33 Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	777.406 009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	98.36136 97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.328604 0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	1.113606 1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.127383 0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.069044 0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
5 21 6 2: 7 2- 8 21 9 2: 10 3/ Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	009.972 227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	97.51327 96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.489716 0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	1.716079 2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.202847 0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.078089 0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
6 2: 7 2: 8 2! 9 2! 10 3: Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 7 1. 8 1. 9 1. 10 1.	227.981 435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	96.61320 95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.654745 0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	2.358577 3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.286846 0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.086628 0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
7 24 8 21 9 21 10 31 Variance D Period 1 0, 2 0, 3 0, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10 1,	435.642 635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	95.69854 94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.816576 0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	3.014484 3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.376241 0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.094161 0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
8 21 9 22 10 33 Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1.	635.565 829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	94.79447 93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	0.970922 1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	3.665145 4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.468542 0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.100922 0.106934 0.112281 IPI 0.000000 0.771740 0.750923
9 21 10 30 Variance D Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1.	829.489 018.629 ecomposit S.E. 678443 873593 977907 042947 086009	93.91772 93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	1.115299 1.248500 PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	4.298154 4.905564 DIMMR 0.000000 0.273369 0.700369 1.234955	0.561898 0.654921 DCPI 0.000000 0.188751 0.503018	0.106934 0.112281 IPI 0.000000 0.771740 0.750923
10 30 Variance D Period 1 0, 2 0, 3 0, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10 1,	ecomposit S.E. 678443 873593 977907 042947 086009	93.07873 tion of DPSRP MUSYFIN 3.75E-05 0.001317 0.018238 0.047049	99.99996 98.76482 98.02745 97.00454	0.000000 0.273369 0.700369 1.234955	0.654921 DCPI 0.000000 0.188751 0.503018	0.112281 IPI 0.000000 0.771740 0.750923
Variance D Period 1	ecomposit S.E. 678443 873593 977907 042947 086009	3.75E-05 0.001317 0.018238 0.047049	PLS: DPSRPLS 99.99996 98.76482 98.02745 97.00454	DIMMR 0.000000 0.273369 0.700369 1.234955	DCPI 0.000000 0.188751 0.503018	IPI 0.000000 0.771740 0.750923
Period 1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	S.E. 678443 873593 977907 042947 086009	3.75E-05 0.001317 0.018238 0.047049	99.99996 98.76482 98.02745 97.00454	0.000000 0.273369 0.700369 1.234955	0.000000 0.188751 0.503018	0.000000 0.771740 0.750923
1 0. 2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1.	.678443 873593 977907 042947 086009	3.75E-05 0.001317 0.018238 0.047049	99.99996 98.76482 98.02745 97.00454	0.000000 0.273369 0.700369 1.234955	0.000000 0.188751 0.503018	0.000000 0.771740 0.750923
2 0. 3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	873593 977907 042947 086009	0.001317 0.018238 0.047049	98.76482 98.02745 97.00454	0.273369 0.700369 1.234955	0.188751 0.503018	0.771740 0.750923
3 0. 4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	.977907 .042947 .086009	0.018238 0.047049	98.02745 97.00454	0.700369 1.234955	0.503018	0.750923
4 1. 5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	.042947 .086009	0.047049	97.00454	1.234955		
5 1. 6 1. 7 1. 8 1. 9 1. 10 1.	.086009				0.928930	0.784527
6 1. 7 1. 8 1. 9 1. 10 1.		0.090494	95.92386			
7 1. 8 1. 9 1. 10 1.	.116189			1.789486	1.410707	0.785458
8 1. 9 1. 10 1.		0.146711	94.83953	2.315259	1.912905	0.785592
9 1. 10 1.	138167	0.215078	93.81882	2.778952	2.404837	0.782316
10 1.	154680	0.294411	92.89456	3.165983	2.866468	0.778574
	167378	0.383798	92.08234	3.473659	3.285441	0.774763
	.177320	0.482400	91.38319	3.707253	3.655824	0.771338
		tion of DIMMR:				
Period	S.E.	MUSYFIN	DPSRPLS	DIMMR	DCPI	IPI
	592249	0.228598	1.550855	98.22055	0.000000	0.000000
	809964	0.213859	2.446114	97.14514	0.071031	0.123859
	958747	0.214911	3.248053	96.19305	0.211544	0.132445
	.069008	0.219812	3.960384	95.28615	0.382851	0.150807
	153431	0.228864	4.564282	94.47764	0.567709	0.161509
	219057	0.241215	5.064469	93.77044	0.753340	0.170534
	270461	0.256686	5.469862	93.16345	0.932726	0.177275
_	310881	0.275083	5.792790	92.64800	1.101616	0.182516
	342729	0.296299	6.045915	92.21348	1.257798	0.186510
10 1.	.367850	0.320246	6.241303	91.84860	1.400296	0.189550
·						

Table : 6.180. Variance Decomposition (VDC) for Model 3.11

iew Pro		int Name Free	IANCING OF ISI	Stats Impulse			_		
Variance Decomposition									
Varianc	e Decomposi	ition of DIMMR	:				•		
Period	S.E.	MUSYFIN	DPSRPLS	DIMMR	DCPI	IPI			
1	0.592249	0.228598	1.550855	98.22055	0.000000	0.000000	•		
2	0.809964	0.213859	2.446114	97.14514	0.071031	0.123859			
3	0.958747	0.214911	3.248053	96.19305	0.211544	0.132445			
4	1.069008	0.219812	3.960384	95.28615	0.382851	0.150807			
5	1.153431	0.228864	4.564282	94.47764	0.567709	0.161509			
6	1.219057	0.241215	5.064469	93.77044	0.753340	0.170534			
7	1.270461	0.256686	5.469862	93.16345	0.932726	0.177275			
8	1.310881	0.275083	5.792790	92.64800	1.101616	0.182516			
9	1.342729	0.296299	6.045915	92.21348	1.257798	0.186510			
10	1.367850	0.320246	6.241303	91.84860	1.400296	0.189550			
Varianc	e Decomposi	ition of DCPI:					-		
Period	S.E.	MUSYFIN	DPSRPLS	DIMMR	DCPI	IPI			
1	5.800200	0.075344	0.059915	0.132016	99.73273	0.000000	•		
2	7.636036	0.124090	0.844583	0.309496	98.67695	0.044884			
3	8.820549	0.174675	2.641076	1.002804	96.10125	0.080193			
4	9.701572	0.226557	4.969865	1.978755	92.70119	0.123634			
5	10.40268	0.277325	7.458395	3.060399	89.03953	0.164354			
6	10.97990	0.326219	9.871216	4.129092	85.47160	0.201870			
7	11.46231	0.372959	12.08007	5.118360	82.19400	0.234612			
8	11.86755	0.417691	14.03047	5.997185	79.29207	0.262578			
	12.20796	0.460706	15.71207	6.756763	76.78445	0.286009			
9									

Table : 6.181. Variance Decomposition (VDC) for Model 3.12.

ew Pro	c Object Pr	int Name Free	ze Estimate S	tats Impulse	Resids	
		١	/ariance Decor	nposition		
		ition of DMURA				
eriod	S.E.	DMURAFIN	DPSRMURA	DIMMR	DCPI	IPI
1	952.8143	100.0000	0.000000	0.000000	0.000000	0.000000
2	1378.511	98.09502	0.293547	1.583069	0.008854	0.019510
3	1732.971	94.93843	0.635488	4.362806	0.050568	0.012707
4	2056.951	91.18151	0.898959	7.785003	0.125483	0.009041
5	2364.954	87.21469	1.066287	11.48710	0.224738	0.007185
6	2663.812	83.24918	1.152469	15.25715	0.334684	0.006516
7	2957.076	79.40856	1.178773	18.96239	0.443597	0.006688
8	3246.664	75.76188	1.164101	22.52369	0.542970	0.007360
9	3533.577	72.34499	1.123108	25.89578	0.627781	0.008340
10	3818.283	69.17231	1.066438	29.05597	0.695798	0.009484
arianc	e Decompos	ition of DPSRN				
eriod	S.E.	DMURAFIN	DPSRMURA	DIMMR	DCPI	IPI
1	0.587338	6.416287	93.58371	0.000000	0.000000	0.000000
2	0.716267	6.011363	91.33022	0.969787	1.603018	0.085615
3	0.785480	5.595633	87.70482	2.312867	4.310558	0.076126
4	0.832840	5.227012	83.79206	3.540752	7.367613	0.072559
5	0.868616	4.926658	80.26347	4.441534	10.30030	0.068044
6	0.896734	4.690684	77.31053	5.013583	12.92043	0.064771
7	0.919144	4.508244	74.92627	5.323485	15.17975	0.062252
8	0.937119	4.367813	73.02711	5.450595	17.09407	0.060412
9	0.951598	4.259632	71.51793	5.462882	18.70048	0.059075
10	0.963310	4.176018	70.31356	5.412013	20.04028	0.058131
arianc	e Decompos	ition of DIMMR	:			
eriod	S.E.	DMURAFIN	DPSRMURA	DIMMR	DCPI	IPI
1	0.593771	0.348368	0.130162	99.52147	0.000000	0.000000
2	0.793263	0.279017	0.137887	99.49049	0.000394	0.092210
3	0.924645	0.234605	0.331803	99.34480	0.003760	0.085027
4	1.020528	0.206055	0.594510	99.09157	0.022031	0.085833
5	1.094117	0.186997	0.871800	98.79310	0.064623	0.083476
6	1.152149	0.174016	1.139652	98.46970	0.134997	0.081633
7	1.198704	0.165100	1.388454	98.13373	0.232951	0.079766
8	1.236467	0.159050	1.615136	97.79226	0.355444	0.078105
9	1.267331	0.155113	1.819519	97.45069	0.498065	0.076609
10	1.292689	0.152797	2.002620	97.11348	0.655817	0.075282

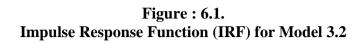
Table : 6.182. Variance Decomposition (VDC) for Model 3.12.

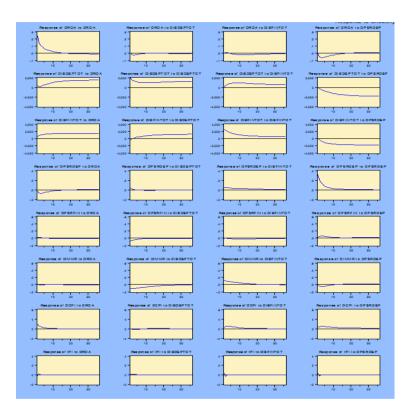
Var: U	INTITLED W	orkfile: FINANO	CING OF ISLAMI	C BANKS::Prof	itability\	_ 0	x
View Pro	c Object Pr	rint Name Free	eze] [Estimate] S	tats [Impulse]	Resids		
		V	ariance Decon	nposition			
		ition of DIMMR					^
Period	S.E.	DMURAFIN	DPSRMURA	DIMMR	DCPI	IPI	
1	0.593771	0.348368	0.130162	99.52147	0.000000	0.000000	
2	0.793263	0.279017	0.137887	99.49049	0.000394	0.092210	
3	0.924645	0.234605	0.331803	99.34480	0.003760	0.085027	
4	1.020528	0.206055	0.594510	99.09157	0.022031	0.085833	
5	1.094117	0.186997	0.871800	98.79310	0.064623	0.083476	
6	1.152149	0.174016	1.139652	98.46970	0.134997	0.081633	
7	1.198704	0.165100	1.388454	98.13373	0.232951	0.079766	
8	1.236467	0.159050	1.615136	97.79226	0.355444	0.078105	
9	1.267331	0.155113	1.819519	97.45069	0.498065	0.076609	
10	1.292689	0.152797	2.002620	97.11348	0.655817	0.075282	
		ition of DCPI:					
Period	S.E.	DMURAFIN	DPSRMURA	DIMMR	DCPI	IPI	
1	5.916996	0.709028	0.799256	0.005639	98.48608	0.000000	
2	7.831318	0.565028	1.832801	0.525419	97.06413	0.012622	
3	9.065612	0.477642	2.727793	1.521227	95.25438	0.018959	
4	9.958241	0.422837	3.394448	2.755375	93.40121	0.026131	
5	10.63789	0.387819	3.847021	4.093836	91.63933	0.031996	
6	11.17027	0.365515	4.130211	5.456318	90.01088	0.037074	
7	11.59453	0.351923	4.290050	6.795184	88.52153	0.041310	
8	11.93649	0.344653	4.364759	8.080645	87.16509	0.044856	
9	12.21424	0.342194	4.383379	9.293833	85.93279	0.047808	
10	12.44105	0.343528	4.366966	10.42283	84.81641	0.050262	
Variance	e Decompos	ition of IPI:					
Period	S.E.	DMURAFIN	DPSRMURA	DIMMR	DCPI	IPI	
1	3.061126	0.042171	0.129248	0.606701	0.129776	99.09210	
2	3.220849	0.039088	0.134373	0.676741	0.289789	98.86001	
3	3.237221	0.040812	0.139967	0.675643	0.293639	98.84994	
4	3.239214	0.041139	0.140979	0.675217	0.311522	98.83114	
5	3.239525	0.041375	0.141176	0.676400	0.318187	98.82286	
6	3.239654	0.041468	0.141172	0.677358	0.323709	98.81629	
7	3.239739	0.041527	0.141171	0.678950	0.327175	98.81118	
8	3.239808	0.041565	0.141189	0.680572	0.329702	98.80697	
9	3.239866	0.041595	0.141212	0.682240	0.331488	98.80346	
10	3.239914	0.041622	0.141231	0.683825	0.332783	98.80054	= =
Cholesi	ky Ordering: [DMURAFIN DP	SRMURA DIMM	R DCPI IPI			=
4		III				+	af

Table : 6.183. Variance Decomposition (VDC) for Model 3.13.

iew Pro	oc Object Pri	nt Name Free	ze Estimate 9	Stats Impulse	Resids	
		١	/ariance Deco	mposition		
Variand	e Decomposi	tion of PLSFIN	l:			
Period	S.E.	PLSFIN	DPSRPLS	DIMMR	DCPI	IPI
1	806.0308	100.0000	0.000000	0.000000	0.000000	0.000000
2	1150.329	99.55380	0.203030	0.218620	0.021601	0.002951
3	1424.580	98.72021	0.578507	0.630929	0.062033	0.008318
4	1665.251	97.66955	1.047126	1.155173	0.113119	0.015036
5	1885.899	96.51723	1.556092	1.734991	0.169344	0.022341
6	2093.105	95.33835	2.071785	2.332983	0.227122	0.029761
7	2290.548	94.17975	2.573786	2.925258	0.284210	0.037001
8	2480.496	93.06911	3.050481	3.497239	0.339276	0.043893
9	2664.449	92.02149	3.495969	4.040611	0.391584	0.050350
10	2843.462	91.04375	3.907957	4.551181	0.440781	0.056335
Varianc	e Decomposi	tion of DPSRE	ol S.			
Period	S.E.	PLSFIN	DPSRPLS	DIMMR	DCPI	IPI
1	0.680981	0.001377	99.99862	0.000000	0.000000	0.000000
2	0.880851	0.001506	98.80592	0.253921	0.176817	0.761837
3	0.989582	0.004404	98.13297	0.655578	0.467759	0.739293
4	1.058300	0.010377	97.19670	1.160218	0.861657	0.771048
5	1.104261	0.022089	96.21164	1.687994	1.307472	0.770809
6	1.136662	0.038987	95.22368	2.193714	1.773619	0.770002
		0.061531	94.29406	2.646030	2.232394	0.765985
7	1.160313	0.001331				0.704047
7 8		0.089588	93.45289	3.030330	2.665576	0.761617
	1.160313			3.030330 3.342803	2.665576 3.061679	0.761617
8	1.160313 1.178075	0.089588	93.45289			
8 9 10 Varianc	1.160313 1.178075 1.191696	0.089588 0.123107 0.161931 tion of DIMMR	93.45289 92.71515 92.08276	3.342803	3.061679 3.414940	0.757260 0.753343
8 9 10	1.160313 1.178075 1.191696 1.202313	0.089588 0.123107 0.161931	93.45289 92.71515 92.08276	3.342803	3.061679	0.757260
8 9 10 Variand Period	1.160313 1.178075 1.191696 1.202313 te Decomposit S.E.	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799	93.45289 92.71515 92.08276 : : : DPSRPLS 1.488134	3.342803 3.587027 DIMMR 97.64407	3.061679 3.414940 DCPI 0.000000	0.757260 0.753343 IPI 0.000000
8 9 10 Variand Period 1 2	1.160313 1.178075 1.191696 1.202313 te Decomposit S.E. 0.592276 0.809130	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799 0.818863	93.45289 92.71515 92.08276 : : : DPSRPLS 1.488134 2.343411	3.342803 3.587027 DIMMR 97.64407 96.65034	3.061679 3.414940 DCPI 0.000000 0.065138	0.757260 0.753343 IPI 0.000000 0.122250
8 9 10 Variand Period 1 2 3	1.160313 1.178075 1.191696 1.202313 te Decomposit S.E.	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799	93.45289 92.71515 92.08276 : : : DPSRPLS 1.488134	3.342803 3.587027 DIMMR 97.64407	3.061679 3.414940 DCPI 0.000000	0.757260 0.753343 IPI 0.000000
8 9 10 Variand Period 1 2 3 4	1.160313 1.178075 1.191696 1.202313 te Decomposit S.E. 0.592276 0.809130	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799 0.818863	93.45289 92.71515 92.08276 : : : : : : : : : : : : : : : : : : :	3.342803 3.587027 DIMMR 97.64407 96.65034	3.061679 3.414940 DCPI 0.000000 0.065138	0.757260 0.753343 IPI 0.000000 0.122250
8 9 10 Variance Period 1 2 3 4 5	1.160313 1.178075 1.191696 1.202313 te Decomposii S.E. 0.592276 0.809130 0.956878	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799 0.818863 0.813607	93.45289 92.71515 92.08276 : : : : : : : : : : : : : : : : : : :	3.342803 3.587027 DIMMR 97.64407 96.65034 95.74268	3.061679 3.414940 DCPI 0.000000 0.065138 0.194280	0.757260 0.753343 IPI 0.000000 0.122250 0.130559
8 9 10 Variand Period 1 2 3 4 5 6	1.160313 1.178075 1.191696 1.202313 te Decomposii S.E. 0.592276 0.809130 0.956878 1.066081	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799 0.818863 0.813607 0.814438	93.45289 92.71515 92.08276 : : : : : : : : : : : : : : : : : : :	3.342803 3.587027 DIMMR 97.64407 96.65034 95.74268 94.86741	3.061679 3.414940 DCPI 0.000000 0.065138 0.194280 0.350977	0.757260 0.753343 IPI 0.000000 0.122250 0.130559 0.148623
8 9 10 Variance Period 1 2 3 4 5	1.160313 1.178075 1.191696 1.202313 te Decomposii S.E. 0.592276 0.809130 0.956878 1.066081 1.149497	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799 0.818863 0.813607 0.814438 0.822688	93.45289 92.71515 92.08276 DPSRPLS 1.488134 2.343411 3.118877 3.818552 4.422118	3.342803 3.587027 DIMMR 97.64407 96.65034 95.74268 94.86741 94.07691	3.061679 3.414940 DCPI 0.000000 0.065138 0.194280 0.350977 0.519086	0.757260 0.753343 IPI 0.000000 0.122250 0.130559 0.148623 0.159198
8 9 10 Variand Period 1 2 3 4 5 6	1.160313 1.178075 1.191696 1.202313 The Decomposit S.E. 0.592276 0.809130 0.956878 1.066081 1.149497 1.214196	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799 0.818863 0.813607 0.814438 0.822688 0.835796	93.45289 92.71515 92.08276 DPSRPLS 1.488134 2.343411 3.118877 3.818552 4.422118 4.931749	3.342803 3.587027 DIMMR 97.64407 96.65034 95.74268 94.86741 94.07691 93.37768	3.061679 3.414940 DCPI 0.000000 0.065138 0.194280 0.350977 0.519086 0.686598	0.757260 0.753343 IPI 0.000000 0.122250 0.130559 0.148623 0.159198 0.168174
8 9 10 Variand Period 1 2 3 4 5 6 7	1.160313 1.178075 1.191696 1.202313 De Decomposii S.E. 0.592276 0.809130 0.956878 1.066081 1.149497 1.214196 1.264761	0.089588 0.123107 0.161931 tion of DIMMR PLSFIN 0.867799 0.818863 0.813607 0.814438 0.822688 0.825796 0.853069	93.45289 92.71515 92.08276 DPSRPLS 1.488134 2.343411 3.118877 3.818552 4.422118 4.931749 5.353765	3.342803 3.587027 DIMMR 97.64407 96.65034 95.74268 94.86741 94.07691 93.37768 92.77124	3.061679 3.414940 DCPI 0.000000 0.065138 0.194280 0.350977 0.519086 0.686598 0.847000	0.757260 0.753343 IPI 0.000000 0.122250 0.130559 0.148623 0.159198 0.168174 0.174927

Table : 6.184. Variance Decomposition (VDC) for Model 3.13.


ew Pro	c Object Pri	nt Name Free	ze Estimate S	stats Impulse	Resids	
1			Variance Deco			
arianc	e Decomposit	ion of DIMMR				
eriod	S.E.	PLSFIN	DPSRPLS	DIMMR	DCPI	IPI
1	0.592276	0.867799	1.488134	97.64407	0.000000	0.000000
2	0.809130	0.818863	2.343411	96.65034	0.065138	0.122250
3	0.956878	0.813607	3.118877	95.74268	0.194280	0.130559
4	1.066081	0.814438	3.818552	94.86741	0.350977	0.148623
5	1.149497	0.822688	4.422118	94.07691	0.519086	0.159198
6	1.214196	0.835796	4.931749	93.37768	0.686598	0.168174
7	1.264761	0.853069	5.353765	92.77124	0.847000	0.174927
8	1.304427	0.873734	5.698177	92.25144	0.996437	0.180213
9	1.335596	0.897258	5.975724	91.80973	1.133014	0.184271
10	1.360107	0.923188	6.196958	91.43645	1.256024	0.187381
	e Decomposit					
Period	S.E.	PLSFIN	DPSRPLS	DIMMR	DCPI	IPI
1	5.788326	0.026574	0.070086	0.118635	99.78471	0.000000
2	7.602268	0.040029	0.795160	0.358058	98.76161	0.045145
3	8.764155	0.051944	2.524044	1.177656	96.16501	0.081349
4	9.625065	0.064557	4.801797	2.320619	92.68674	0.126290
5	10.30972	0.077334	7.261234	3.586274	88.90632	0.168834
6	10.87413	0.090391	9.662914	4.837793	85.20059	0.208311
7	11.34685	0.103735	11.87227	5.997392	81.78363	0.242980
8	11.74485	0.117452	13.82931	7.028441	78.75204	0.272752
9	12.07979	0.131621	15.51985	7.920404	76.13030	0.297824
10	12.36072	0.146320	16.95507	8.677391	73.90253	0.318687
	e Decomposit					
Period	S.E.	PLSFIN	DPSRPLS	DIMMR	DCPI	IPI
1	3.044198	1.209090	0.160584	0.473764	0.284649	97.87191
2	3.206067	1.211794	0.348768	0.453789	0.332122	97.65353
3	3.221401	1.210700	0.363499	0.457295	0.329293	97.63921
4	3.223999	1.210472	0.401502	0.456559	0.337785	97.59368
5	3.224524	1.210115	0.421983	0.456896	0.341780	97.56923
6	3.224923	1.209883	0.439637	0.456893	0.346273	97.54731
7	3.225191	1.209689	0.452472	0.456946	0.349818	97.53108
8	3.225410	1.209538	0.462524	0.456967	0.352916	97.51805
9	3.225580	1.209417	0.470272	0.456993	0.355496	97.50782
10	3.225717	1.209320	0.476345	0.457017	0.357657	97.49966
holoe	ky Ordering: P	SEIN DESE	PLS DIMMR DO	'PI IPI		


Table : 6.185. Variance Decomposition (VDC) for Model 3.14.

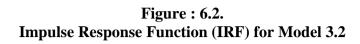

Var Var: I	RF_FINTOT \	Workfile: FINAN	NCING OF ISLAN	/IC BANKS::Pr	ofitability\		- 0	х
View Pro	c Object Pr	rint Name Free	eze Estimate S	itats Impulse	Resids			
			Variance	Decomposit	ion			
Varianc	e Decompos	ition of DIBFIN	ITOT:					٨
Period	S.E.		DIBDEPTOT	DPSRFIN	DIMMR	DCPI	IPI	
1	2798.908	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	
2	3857.628	98.44163	0.188115	0.139522	0.635344	0.103714	0.491678	
3	4598.940	96.46827	0.565734	0.469278	1.762813	0.274506	0.459401	
4	5209.602	93.67792	1.085549	0.931127	3.325605	0.516940	0.462855	
5	5745.737	90.41617	1.696485	1.486517	5.152572	0.804547	0.443709	
6	6238.847	86.88019	2.355701	2.092759	7.126187	1.121476	0.423687	
7	6704.221	83.25464	3.029731	2.717883	9.144295	1.451899	0.401552	
8	7150.684	79.66913	3.694496	3.337418	11.13494	1.784319	0.379692	
9	7583.101	76.21265	4.334107	3.934957	13.04934	2.110305	0.358648	
10	8004.298	72.93937	4.939040	4.500259	14.85812	2.424312	0.338899	
Varianc	e Decompos	ition of DIBDE	PTOT:					-
Period	S.E.		DIBDEPTOT	DPSRFIN	DIMMR	DCPI	IPI	
1	1948.273	0.420769	99.57923	0.000000	0.000000	0.000000	0.000000	
2	2625.593	2.201532	94.50448	0.492058	1.628380	0.606177	0.567376	
3	3165.708	6.245425	85.82578	1.440729	4.396366	1.555829	0.535868	
4	3684.953	10.97552	75.74587	2.512347	7.649588	2.586788	0.529884	
5	4201.377	15.28127	66.36219	3.533128	10.82140	3.510470	0.491536	
6	4717.099	18.81580	58.33161	4.427342	13.69486	4.277155	0.453241	
7	5228.314	21.56144	51.73116	5.187079	16.21318	4.891127	0.416017	
8	5731.781	23.63501	46.38024	5.826832	18.39768	5.377393	0.382851	
9	6225.204	25.17517	42.04919	6.367271	20.29192	5.762658	0.353787	
10	6707.360	26.30600	38.52663	6.827508	21.94139	6.069875	0.328595	
Varianc	e Decompos	ition of DPSRF	FIN:					
Period	S.E.	DIBFINTOT	DIBDEPTOT	DPSRFIN	DIMMR	DCPI	IPI	
1	0.428155	0.002722	4.753770	95.24351	0.000000	0.000000	0.000000	
2	0.556851	0.002325	4.853591	94.18620	0.190255	0.334577	0.433051	
3	0.631114	0.032080	4.919468	93.34360	0.410440	0.881611	0.412798	
4	0.680224	0.090684	4.918631	92.36043	0.637208	1.568658	0.424386	
5	0.714732	0.187841	4.881872	91.39293	0.820886	2.297486	0.418985	
6	0.740129	0.317241	4.825032	90.47887	0.951933	3.012632	0.414290	
7	0.759418	0.472841	4.760834	89.65084	1.030997	3.675851	0.408639	
8	0.774436	0.645680	4.696800	88.91877	1.067803	4.267517	0.403434	
9	0.786360	0.827420	4.637210	88.28235	1.074683	4.779632	0.398707	
10	0.795981	1.010662	4.584057	87.73452	1.063934	5.212257	0.394564	Ţ
1		III					+	.ii

Table : 6.186. Variance Decomposition (VDC) for Model 3.14.

□ Var: IRF_FINTOT Workfile: FINANCING OF ISLAMIC BANKS::Profitability\ □ □ x										
View Proc Object Print Name Freeze Estimate Stats Impulse Resids										
Variance Decomposition										
Variance		ition of DIMMR						٨		
Period	S.E.	DIBFINTOT	DIBDEPTOT	DPSRFIN	DIMMR	DCPI	IPI			
1	0.593743	4.702463	1.795076	0.335405	93.16706	0.000000	0.000000			
2	0.808068	4.826933	1.880461	0.842069	92.24968	0.091469	0.109384			
3	0.952692	4.855806	1.981639	1.379037	91.40878	0.259159	0.115578			
4	1.058544 1.138676	4.909386 4.967011	2.088876 2.198176	1.901754 2.379284	90.52091 89.67832	0.448578 0.638387	0.130494 0.138824			
5 6	1.138070	5.026523	2.198176	2.801465	88.90487	0.838387	0.138824			
7	1.248059	5.020523	2.409331	3.166180	88.21673	0.974686	0.145651			
8	1.285241	5.130817	2.506802	3.476376	87.61674	1.114406	0.154865			
9	1.314246	5.170800	2.597118	3.737167	87.10206	1.235099	0.157752			
10	1.336898	5.201457	2.679675	3.954544	86.66623	1.338232	0.159857			
Variance	a Dacomnos	ition of DCPI:						=		
Period	S.E.	DIBFINTOT	DIBDEPTOT	DPSRFIN	DIMMR	DCPI	IPI			
1	5.805536	1.255001	0.062720	0.281825	0.026820	98.37363	0.000000	-		
2	7.600281	1.835562	0.036616	1.786970	0.599569	95.71224	0.029047			
3	8.749159	2.291919	0.033693	3.918368	1.858835	91.84546	0.051729			
4	9.600246	2.578163	0.035640	6.300558	3.444815	87.56039	0.080431			
5	10.27606	2.721135	0.036069	8.670085	5.107702	83.35689	0.108115			
6	10.83158	2.759504	0.034389	10.87713	6.692703	79.50175	0.134523			
7 8	11.29566	2.731451	0.031876	12.85203	8.122194	76.10395	0.158491			
9	11.68596 12.01479	2.666691 2.586019	0.029869 0.029176	14.57505 16.05373	9.366722 10.42489	73.18181 70.70756	0.179864 0.198626			
10	12.29162	2.502713	0.029176	17.30881	11.30962	68.63386	0.214955			
Variance Decomposition of IPI:										
Period	S.E.	DIBFINTOT	DIBDEPTOT	DPSRFIN	DIMMR	DCPI	IPI			
1	3.051971	1.408949	0.206368	0.150140	1.068757	0.212731	96.95305			
2	3.220843	1.879444	0.215714	0.152894	1.160828	0.377614	96.21350			
3	3.236644	1.863206	0.243816	0.151419	1.153633	0.381846	96.20608			
4	3.239675	1.898310	0.256314	0.155344	1.155710	0.404643	96.12968			
5	3.240273	1.904945	0.264248	0.158405	1.155287	0.414103	96.10301			
6	3.240662	1.910434	0.268491	0.162439	1.155016	0.422046	96.08157			
7	3.240890	1.912486	0.270963	0.166318	1.154968	0.427193	96.06807			
8	3.241062 3.241192	1.913506 1.913893	0.272381 0.273221	0.170097 0.173566	1.155049 1.155286	0.430996 0.433750	96.05797 96.05028			
10	3.241192	1.913893	0.273221	0.173566	1.155609	0.435815	96.05028			
Cholesky Ordering: DIBFINTOT DIBDEPTOT DPSRFIN DIMMR DCPI IPI										
4		III					•	- ▼		
								-111		

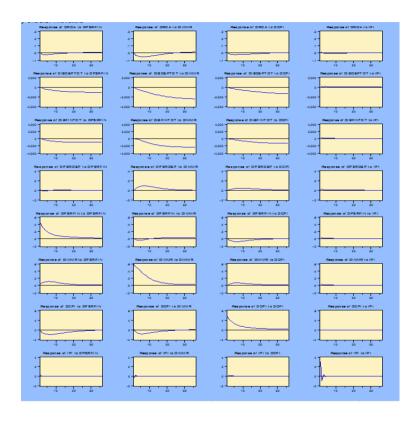
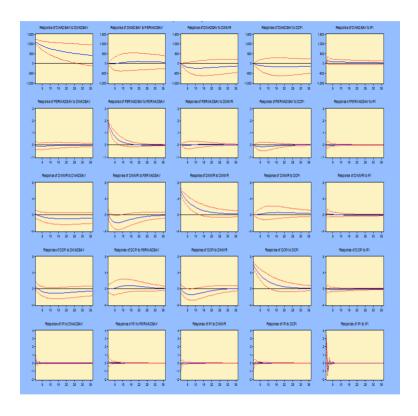
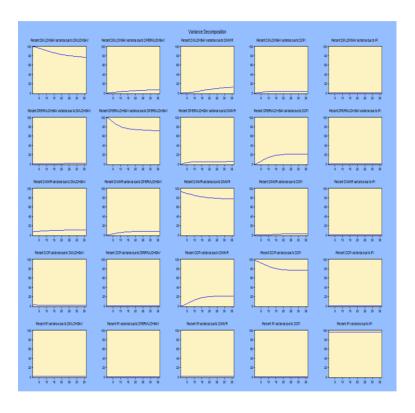
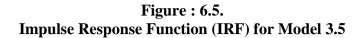
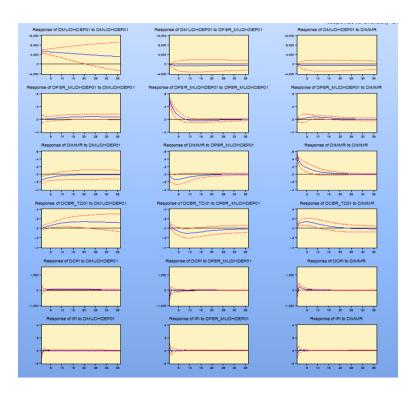
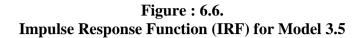
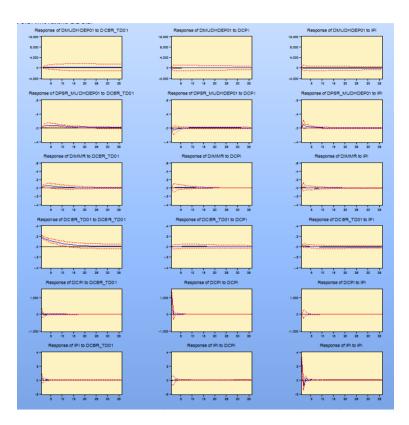
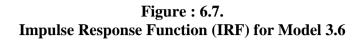
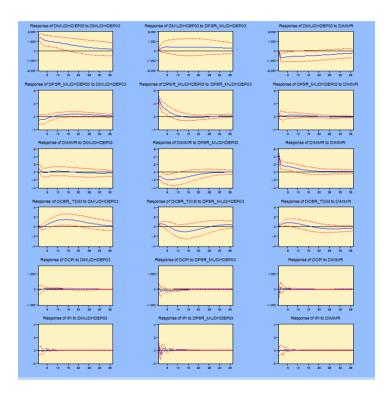


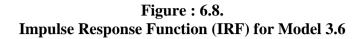
Figure : 6.3.
Impulse Response Function (IRF) for Model 3.3

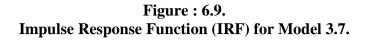






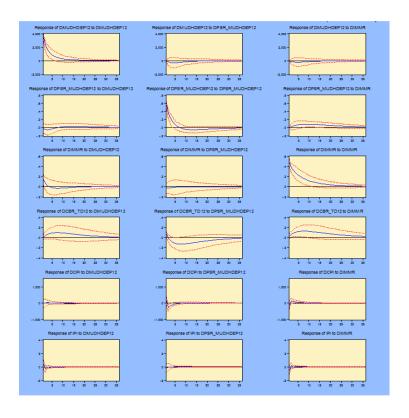

Figure : 6.4.
Impulse Response Function (IRF) for Model 3.4

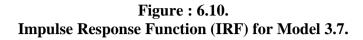


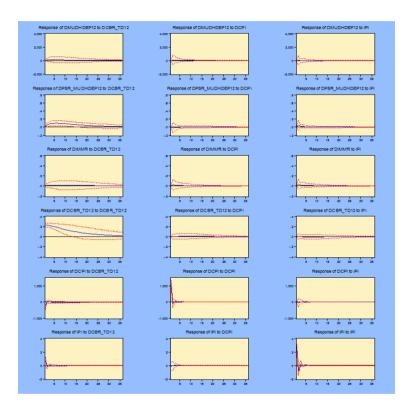


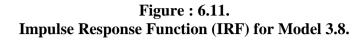


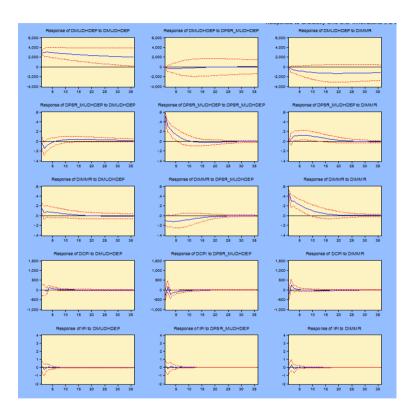


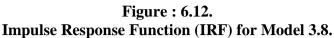


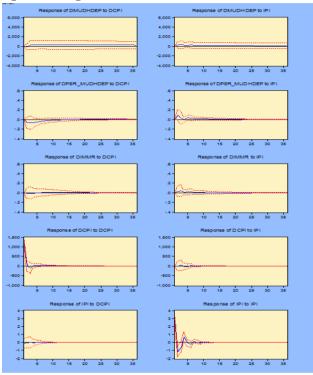


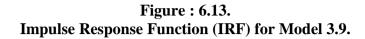


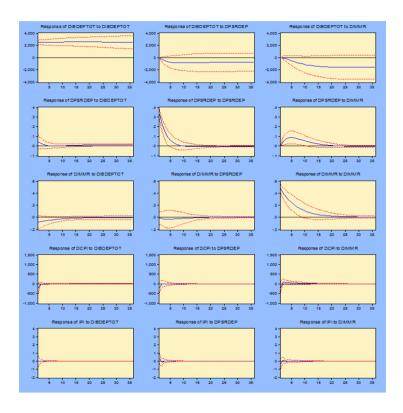


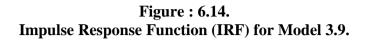


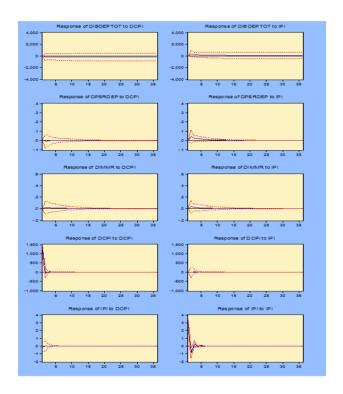


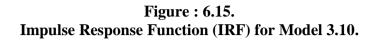


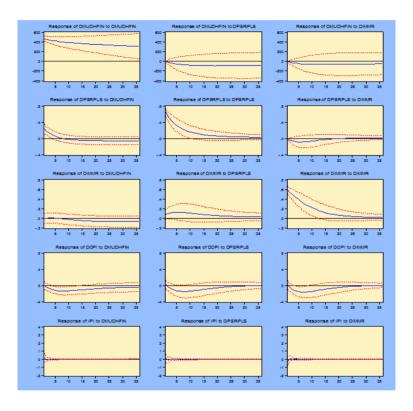


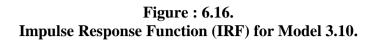


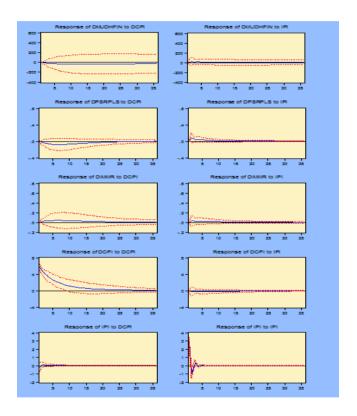


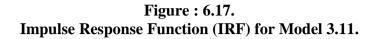


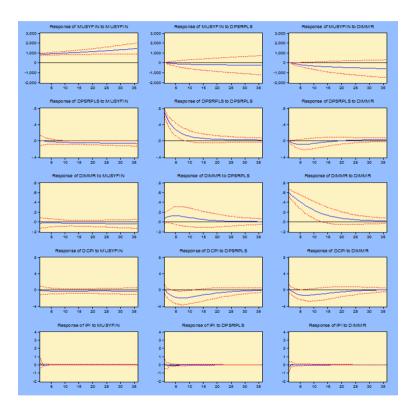


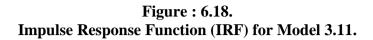


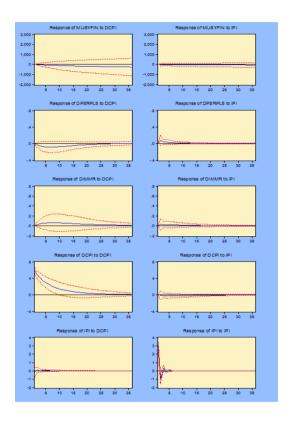


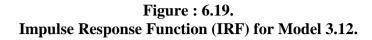


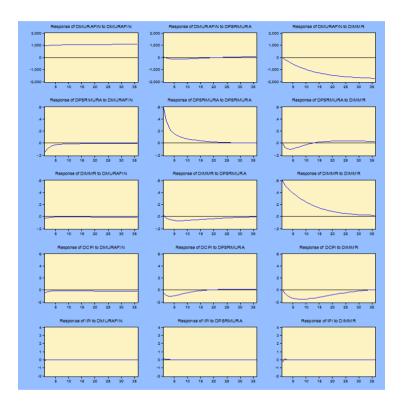
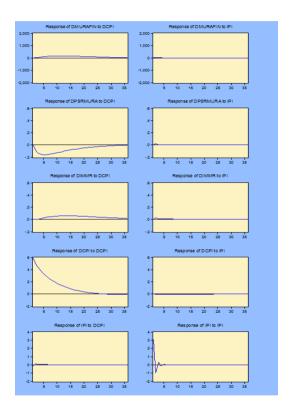
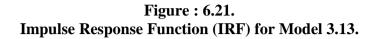
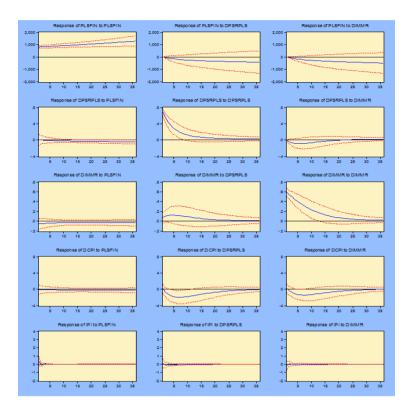
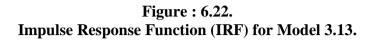


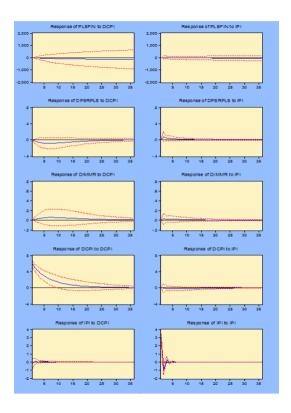


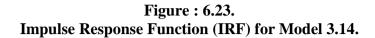


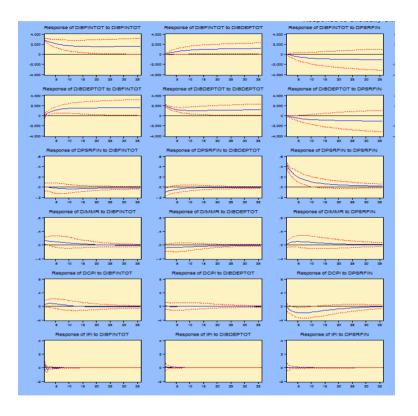


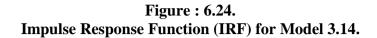


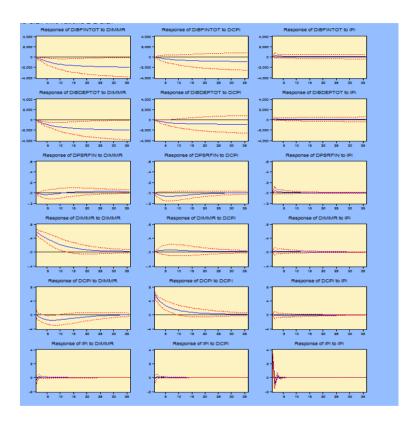






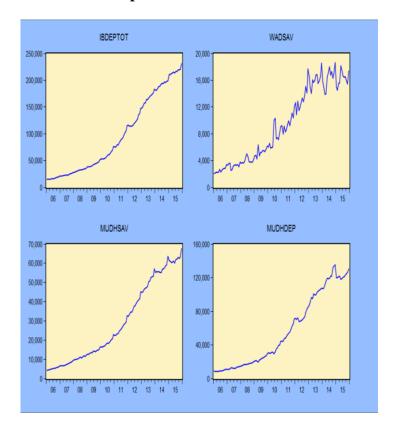

Figure : 6.20. Impulse Response Function (IRF) for Model 3.12.

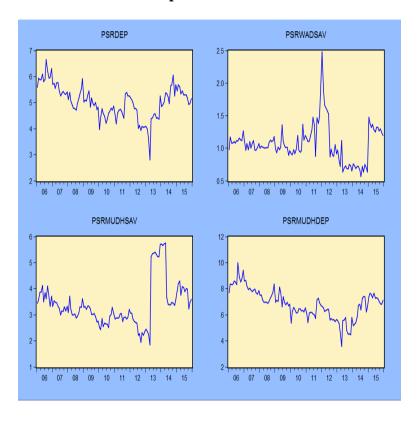


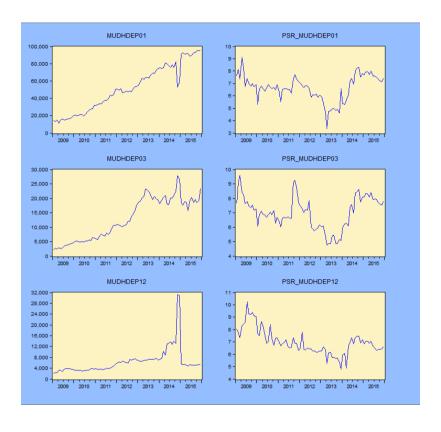






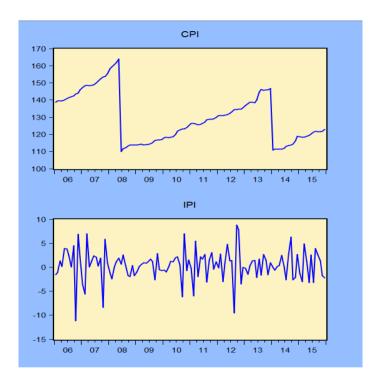





Graph: 6.1 Deposits of Islamic Banks

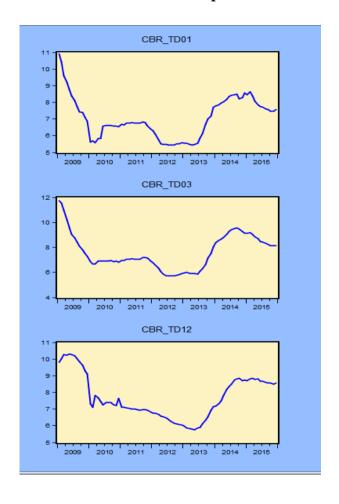
Graph: 6.2 PSRs of Deposits in Islamic Banks

Graph: 6.3 Mudharabah Deposits and the PSRs



Graph: 6.4 Interbank Money Market Rate (IMMR)

Graph: 6.5 Financings of Islamic Banks


Graph: 6.6 CPI and IPI

Graph: 6.7 CBR for Demand and Saving Deposits

Graph: 6.8 CBR for Time Deposits

ABOUT THE AUTHOR

Bismi was born in Dayah Caleue, Pidie, Aceh Province, in September 2nd, 1972. His mother and father are Syamsiah Gade and Khalidin Ubit. He started to study at elementary school, SD Negeri Caleue, in 1979. His high school level was done in the Yunior High School (SMPN) Plimbang (North Aceh), and the Senior High School (SMAN) Kota Bakti, in 1987 and 1990 respectively.

His undergraduate program was finished in Faculty of Syariah IAIN Ar-Raniry Banda Aceh in 1996 with cumlaude predicate. In 2002, He finished master's degree in Economics and Development Studies at Graduate School of Economics, Syiah Kuala University, Banda Aceh, Indonesia. In 2008-2009, he was a research student at McGill University, Montreal, Canada.

In 2009, he pursued study at the Doctoral Program of Faculty of Economics and Business, Syiah Kuala University and he finished the program in 2016. Currently, he is serving as a lecturer of Islamic Economics at Department of Shariah Economic Law, Faculty of Shariah and Law, State Islamic University (UIN) Ar-Raniry, Banda Aceh, where he has been appointed as a lecture at the faculty since 1997.