Goitre in Ethiopia

BY ZEWDIE WOLDE-GEBRIEL AND TESHOME DEMEKE*

Ethiopian Nutrition Institute, PO Box 5654, Addis Ababa, Ethiopia

AND CLIVE E. WEST† AND FRITS VAN DER HAAR

Department of Human Nutrition, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands

(Received 5 August 1991 - Accepted 21 January 1992)

A stratified goitre survey was conducted on 35635 schoolchildren and 19158 household members in all Regions of Ethiopia except Eritrea and Tigrai. The gross goitre prevalence (mean of male and female values) among schoolchildren and household members was 30·6 and 18·7% respectively, while that of visible goitre was 1·6 and 3·2% respectively. Prevalence was higher in females (27·3% in household members and 36·1% in schoolchildren) than in males (10·1% in household members and 25·1% in schoolchildren) and increased with age more in females than in males. The prevalence rates at higher altitudes were higher than those at lower altitudes in both schoolchildren and household members. Using an epidemiological model the consequences of iodine deficiency, including cretinism and maternal wastage, have been estimated.

Goitre: Iodine: Cretinism

Iodine deficiency disorders (IDD) encompass a variety of conditions including goitre, mental disorders and milder psychomotor defects, abortions, stillbirths, and increased perinatal and infant mortality. Goitre was known to the Hindus as early as 2000 BC, to the Egyptians by 1500 BC, and in Western Europe in the 1st century AD (Langer, 1960). In Ethiopia there is a lack of historical documentation on the occurrence of goitre, as is the case for many other diseases. Nevertheless, early travellers in the country and physicians during the Italian invasion of Ethiopia in the Second World War reported cases of goitre in various parts of the country (Kelly & Snedden, 1960). More recent studies demonstrated that goitre is one of the nutrition diseases of public health significance in certain areas of the country (Interdepartmental Committee on Nutrition for National Defence, 1959; Demonstration and Evaluation Team, 1965; Popov, 1967; Hofvander, 1970; Miller et al. 1976). The primary objective of the present study was to estimate the prevalence of goitre throughout the country. A second objective was to estimate the prevalence of other manifestations of IDD based on epidemiological models relating the prevalence of these manifestations to that of goitre.

MATERIAL AND METHODS

Sampling

The study was conducted in the period between March 1980 and July 1981. Data on the population of urban and semi-urban areas, altitude, and agroecological zones were obtained from the Central Statistical Authority, Mapping Authority, and Ministry of

- * Present address: Ministry of Health, PO Box 1234, Addis Ababa, Ethiopia.
- † For reprints.

Agriculture respectively. All Administrative Regions of the country were studied except Eritrea and Tigrai which were excluded for security reasons. First-stage stratification was based on the population of the urban and semi-urban areas while subsequent stratification was based on Administrative Region and altitude, since 89% of the population of the country live in areas more than 1400 m above sea level (Kloos *et al.* 1988). Schoolchildren and household members were studied.

In towns where there was more than one government primary school, one was selected in consultation with the educational authorities in order to ensure that those selected for the survey of schoolchildren were representative of all sectors in the area. All children present on the day of examination were included. Through such a procedure, a total of 35635 schoolchildren (19159 boys and 16476 girls) were enrolled in the study.

In the household survey, a total of 19158 subjects (7649 males and 11509 females) were examined in forty-two urban and semi-urban settings. The study sites were in thirty-eight provinces with a population of over 19 million out of the total of eighty-five provinces in the country which has a population of 50 million (Office of the Population and Housing Census Commission, 1984). All households in smaller semi-urban settings or in two 'kebeles' (urban dwellers' associations) in larger towns were registered by personnel employed for the purpose. From this list of households, 160 households were selected at random. All members of the selected households were requested to come to one central area, usually the kebele office or the local health institution for physical examination. The enumerators went to the houses when subjects did not report on time. Despite this effort, it was not easy to contact all adult males because of their preoccupation with their daily routine and reluctance to undergo health examination. A predesigned questionnaire was used to register members of households, their ages, sex, relationship to head of household, goitre grade and duration of stay in the area. On the same questionnaire, data on staple diet, frequency of consumption of kale (Brassica carinata), availability and type of latrine and source of drinking-water were also collected to determine whether there was any relationship between these variables and the occurrence of goitre. Consumption of goitrogens in foods including kale and faecal contamination of drinking water are putative goitrogenic factors (Gaitan, 1980).

Physical examination

The physical examination of all subjects was carried out by two of the authors (Z. W.-G., T. D.). Goitre classification was compared and standardized at the start of examinations at each new study site and at regular intervals throughout the survey. The thyroid gland was examined and graded according to techniques recommended by Perez et al. (1960) and modified by DeLange (1974) where grade 0 corresponds to no goitre, IA is palpable but not visible, IB is goitre easily visible with the neck extended, II is visible without extension of the neck, and III is large goitre visible from a distance. When the goitre grading was in doubt, the lower stage was always chosen. In the present study, gross goitre included stages IA, IB, II and III while visible goitre included stages II and III. Whenever nodular goitre was diagnosed, this was noted along with the goitre grade.

Estimation of IDD rates

Cretinism was estimated from an epidemiological model based on existing data from Asian countries, Zaire and Ecuador (Clugston *et al.* 1987; Hetzel *et al.* 1990). The symbols used have been modified for the sake of clarity:

$$c_g = \exp(b_0 + b_i g + b_{ii} g^2) / [1 + \exp(b_0 + b_i g + b_{ii} g^2)],$$

where c_g is prevalence (proportion) of cretinism estimated from the prevalence of gross goitre, g is prevalence (proportion) of gross goitre, $b_0 - 9.3939$, b_i 15.796, and $b_{ii} - 8.8026$.

The rates (proportion of live births) of reproductive losses namely, neonatal death, stillbirth and miscarriage/infertility were estimated as follows:

$$l_n = m_n c_q$$

where m_n is multiplier for l_n , c_g is prevalence (proportion) of cretinism estimated from the prevalence of gross goitre, l_i is rate of neonatal death $(m_i \ 0.602)$, l_{ii} is rate of stillbirths $(m_{ii} \ 0.656)$, and l_{iii} is rate of miscarriage/infertility $(m_{iii} \ 0.883)$.

Mild developmental handicaps, namely developmental delays, psychomotor defects and reduced mental performance, were estimated by multiplying prevalence of cretinism by three (Clugston et al. 1987; Hetzel et al. 1990). The calculations were carried out using the prevalence of goitre from the household survey since similar data were used in deriving the equations. The goitre rates for both sexes together were calculated by taking the mean of the rates for males and females. The 1990 population projection was based on the 1984 census of Ethiopia (Office of the Population and Housing Census Commission, 1984) while the crude birth rates were from the 1984 Regional census (Office of the Population and Housing Census Commission, 1989). The national crude birth rate used in the calculations was a weighted mean of the regional rates taking into account the number of household members examined in each region.

Statistics

Chi square test and multiple regression analysis were used for determining the significance of differences and correlations respectively.

RESULTS

School survey

The prevalence of goitre among schoolchildren at the different study sites by administrative regions of Ethiopia is shown in Table 1. The prevalence (mean of rates for boys and girls) of gross goitre among schoolchildren was 30.6% while that for visible goitre was 1.6% (Table 1). The prevalence of goitre was higher in schoolchildren living at higher altitudes than those at lower altitudes. The prevalence predictions have not been normalized for altitude. The slope (s) and intercept (i) of the linear regression of gross goitre (%) on altitude (m) (means with their standard errors) are: $(n\ 41, r\ 0.37, s\ 0.0114$ (se 0.0046), $i\ 6.03$ (se 9.37)).

More girls were found to have goitre than boys (Tables 1 and 2). The difference between the sexes became more pronounced with age (Table 2). In boys the prevalence dropped from about 25% for those 18 years of age and younger to less than 10% for those 19 years of age and older. In girls, the prevalence continued to increase with age from 20% in girls 0–5 years to more than 42% in those 19 years of age and over. The sex (male:female) ratio for gross goitre was 1:1·3 for the age-group 6–12 years, 1:1·6 for 13–18 years, and 1:5·3 for those above 19 years of age. From among those with visible goitre, twenty-one (5·7%) had nodular goitre.

Household survey

In the household survey an overall gross goitre prevalence of 10·1% in males and 27·3% in females (mean of rates for males and females 18·7%) was found (Table 3). Visible goitre prevalence was 0·34% in males and 5·9% in females (mean of males and females 3·1%). The rate of visible goitre was lower than 4% in males in all regions, while in females a rate as high as 32·9% was seen in Gondar town. Of those subjects with visible goitre, only thirty-one, 4·4%, had nodular goitre which was seen at fifteen of the study sites. Assuming that the sample population is representative for the whole country, 2·5 million males and 6·8 million females would have goitre while 85000 males and 1·5 million females

Table 1. Prevalence of goitre in schoolchildren studied at various sites in Ethiopia

		ا	1	%	1.6	90	0.0	1.9	0.5	19-3	1:3	8.3	0.5	1.5	0.0	4.2	8.5	1.8	0.0	2.1	ĺ	0.5	3.2
	ale	Visible	TICI A	u	7	0	0	6	S	51	9	27	3	4	0	22	121	7	0	7	1	_	6
	Female	350	989	%	57.7	17.1	11.9	0.09	18.7	78.4	25.7	57.5	61.1	54.0	42.8	64.3	75.2	42.0	4·4 4·4	34.2	1	3.7	21.4
evalence		Gross	5	u	252	58	65	288	116	207	115	188	336	142	68	340	1107	166	5	116	1	18	09
Goitre prevalence		Visible	2101	%	0.5	0-0	0-0	0-4	0-0	9.8	0·1	5.6	0.5	0.3	0.0	2.4	5.8	0.3	0.0	9.0		0.0	0.4
	ıle	Visi	Ter .	и	-	0	0	7	0	4	_	=	_	_	0	12	40	_	0	7		0	2
	Male	Gross	990	%	36-0	11.1	5.5	53.0	13.5	57.5	7.0	45.8	20.7	34.7	24.9	48.4	62.2	31.5	4.3	18.3	1	3.7	10.7
		ځ	5	и	204	49	34	236	70	295	54	176	261	134	64	237	887	101	9	65	İ	18	52
	7	nued	Female	и	437	340	544	480	621	264	448	327	550	263	208	529	1472	395	114	339	1	485	281
		Examined	Male	и	999	443	619	445	520	513	292	384	515	386	229	490	1427	321	140	355	-	492	487
			Altitude	(II)	2835	1780	170	2420	1970	1430	2090	2200	1690	2640	1720	2850	2250	1890	2030	1790	920	1690	520
				No.* Study site	Bekoji	Dierra	Assab	Adaba	Ghinir	Felegeneway	Gidole	Burie	Chagnie	Injibara	Tis-Abay	Debarek	Gondar	Koladuba	Alemaya	Bedessa	Idora†	Jijiga	Gambella
				No.	-	7	3	4	S	9	7	∞	6	10	Ξ	12	13	14	15	16	17	18	19
				Region	Arssi		Assab	Bale		Gamo-Gofa		Gojjam				Gondar			Hararge			Illubabor	

8·0	0.3	<u>:</u>	6.0	0.0	0-0	2:3	6.5	0.5	3.4	6.3	0.5	0.5	90	1.0	0.0	0.0	<u>1</u> .	1.2	00	2.7	5.5	1.7	2.2
5	33	4	7	0	0	7	17	-	6	-	_	1	0	5	0	0	4	-	0	6	∞	∞	368
33.8	18.2	29.3	34·3	10.4	6.0	36.8	43.7	20.7	8.99	18.4	7.5	40·1	0.6	14.5	19.8	2.5	49.3	47.7	21.3	32.9	59.4	33.3	36·1
216	159	108	569	37	7	114	115	87	151	29	32	11	10	71	35	7	140	41	\$	135	189	161	5945
8·0	9	0.0	0-0	0-0	0-0	1.6	2.1	0.0	9.0	0.5	00	0:4	8·0	0.0	0.0	0.0	<u>•</u>	6.4	0.0	Ξ	<u>1</u> .	0.5	6.0
5	0	0	0	0	0	7	9	0	7	-	0	33	7	0	0	0	ĸ	19	0	5	5	_	177
24.8	11.6	18.2	19.4	4.4	0.0	23.8	23.8	9.5	45.4	2.9	1.9	33.5	11:4	9.5	10.0	8.0	31.8	6.95	15.2	26.3	47.9	18·1	25·1
156	95	70	991	16	0	101	89	84	145	27	∞	140	59	24	27	33	26	169	43	116	171	9/	4804
639	872	368	785	355	221	310	263	420	566	365	424	192	111	491	177	285	284	98	254	410	318	483	16476
629	816	385	854	361	243	425	286	988	342	404	417	418	254	570	569	397	305	297	282	441	357	421	19159
2025	1770	1800	2120	1500	1015	2090	2510	2125	2520	3060	1850	1820	2100	1760	2790	1320	1680	2030	460	1990	2470	2685	
20 Gore	21 Agaro	22 Bonga	23 Ambo	24 Ataye	25 Awash	26 Butajira	27 Chancho	28 Emdibir	29 Gohatsion	30 Mehalmeda	31 Mojo	32 Sheboka	33 Boditi	34 Dilla	35 Hagereselam	36 Yavello	37 Assosa	38 Guye	39 Assaita	40 Haik	41 Lalibela	42 Wereillu	Total
Kefa		Shoa										Sidamo					Wellega		Wollo				

* No. indicated in Fig. 1 on the map to show study sites. † School survey not conducted.

					G	oitre gr	ade†						
A ===	NI-	0		I	A	I	В	I	I	I	II	Total	goitre
Age (years)	No. examined	n	%	n	%	n	%	n	%	n	%	n	%
Male	··				-								
0-5	19	14	73.7	5	26.3	0	0.0	0	0.0	0	0.0	5	26.3
6–12	13406	10002	74.6	2495	18.6	832	6.2	77	0.6	0	0.0	3404	25.4
13-18	5390	4023	74.6	901	16.7	369	6.8	92	1.7	5	0.1	1367	25.4
19+	344	316	91.9	20	5.8	5	1.5	3	0.9	0	0.0	28	8.1
Sub-total	19159	14355	74.9	3421	17.9	1206	6.3	172	0.9	5	0.0	4804	25.1
Female													
0-5	30	24	80.0	3	10.0	3	10.0	0	0.0	0	0.0	6	20.0
6-12	11724	7732	66.0	2587	22.0	1252	10.7	149	1.3	4	0.0	3992	34.0
13-18	4534	2667	58.8	1003	22.1	669	14.8	186	4.1	9	0.2	1867	41.2
19+	188	108	57-4	32	17.0	28	14.9	18	9.6	2	1.1	80	42.6
Sub-total	16476	10531	63.9	3625	22.0	1952	11.8	353	2.1	15	0.1	5945	36.1

Table 2. Distribution of goitre grades by age and sex amongst schoolchildren at various sites in Ethiopia*

would have visible goitre (data from Table 3). Prevalence did not differ between males and females in the 0–5 years age-range ($4\cdot1\%$ in both), but was significantly higher ($P < 0\cdot001$) in females than in males thereafter (Table 4). Of the males aged 13–18 years, 30% were found with goitre while 45% females of the same age-group had goitre. The sex difference was even more marked in the age-group 19 years and older where the prevalence in males had decreased to $6\cdot4\%$ while in females it had increased to $46\cdot0\%$. The sex ratio of goitre was $1\cdot0$ for under 5-year-old children $1:1\cdot2$ for the 6-12-year-olds, $1:1\cdot5$ for the 13-18-year-olds and $1:7\cdot2$ for the 19 years and above age-group.

As for the schoolchildren, the prevalence of goitre was higher in household members living at higher altitudes than in those at lower altitudes. The regression of gross goitre (%) on altitude (m) (means with their standard errors) was: $(n \ 41, r \ 0.41, s \ 0.0083)$ (se 0.0035), $i \ 3.52$ (se 6.41)).

There was a high correlation between gross goitre prevalence in schoolchildren and household members (r 0·897, P < 0·001). Data on gross goitre in household members were used to estimate other forms of IDD in the population of the areas surveyed. For the more severe forms in survivors, the rate of cretinism was estimated to vary from 0·09 to 16 per 1000 of the population. Assuming that the population surveyed was representative of the country, the number of cretins in Ethiopia in 1990 was estimated at 59000 (1·17 per 1000) while three times as many, 176000 persons (3·51 per 1000), may show some degree of developmental and neurological function impairment attributable to Iodine deficiency. The estimated annual national toll in 1990 (rates per 1000 live births) of reproductive losses attributable to Iodine deficiency were as follows: neonatal deaths 13600, stillbirths 14800, infertility/miscarriage 20000.

From the data collected on whether excreta was disposed of in a pit latrine, water-flushed toilet or in the open air, no relationship was seen with goitre size. Neither was a relationship seen with kale consumption, seasonally or all year round, or with the source of drinking water from pipe, well, spring or river.

^{*} For details of prevalence and sites, see Table 1 and Fig. 1.

[†] For details of classification, see p. 258.

Table 3. Prevalence of goitre in household members studied at various sites in Ethiopia

											Goitre prevalence	evalence			
			Domi	lation .		Toming	70		Male	le			Female	ale	
			r opu 19	1990	Birth	Lyan		Gross	SSC	Visi	Visible	Gross	SSO	Visible	ble
Region	No.	No.* Study site	Male	Female	rate 1990†	Male "	Female n	u	%	u	0%	u	%	u	%
Arssi	_	Bekoji	3141	3337	42.3	180	207	58	32.2	0	0.0	115	9.55	15	7.2
	7	Dierra	2729	3146	42.3	167	254	9	3.6	0	0.0	27	10.6	4	1.6
Assab	ĸ	Assab	18035	18036	39-3	157	290	6	2.7	0	0-0	36	12.4	0	0-0
Bale	4	Adaba	3487	4339	48.6	199	267	49	24.6	-	0.5	126	47.2	=	4.1
	S	Ghinir	5000	5202	48.6	230	345	18	7.8	0	0.0	52	15.1	9	1.7
Gamo-Gofa	9	Felegeneway	4464	4471	45.9	153	207	28	18·3	7	1.3	26	46.9	20	24.2
	7	Gidole	4554	5417	45.9	175	254	12	6.9	0	0.0	19	24.0	15	6-5
Gojjam	∞	Burie	4319	5388	41.3	194	310	99	28.9	9	3·1	158	51.0	42	13.5
	6	Chagnie	4530	5466	41.3	196	306	54	27.6		0.5	168	54.9	99	18·3
	10	Injibara	544	1231	41.3	160	284	25	15.6	0	0.0	127	7-44	7	2.5
	11	Tis-Abay	1477	1927	41.3	179	256	45	25-1	0	0.0	129	50.4	23	0.6
Gondar	12	Debarek	4214	5858	44.7	143	251	28	9.61	_	0.7	135	53.8	42	16.7
	13	Gondar	34915	46946	44.7	155	225	37	23.9	ĸ	1.9	127	56.4	74	32.9
	14	Koladuba	2943	5173	44.7	110	196	9	5.5	0	0.0	89	34·7	13	9.9
Hararge	15	Alemaya	3 788	4203	43.7	190	308	3	1.6	0	0.0	12	3.9	0	0.0
	16	Bedessa	4030	3869	43.7	191	244	S	5.6	0	0.0	42	17.2	2	2.0
	17	Idora	703	837	43.7	89	107	0	0.0	0	0.0	_	6.0	0	0.0
Illubabor	18	Jijiga	12897	14625	43.7	140	258	0	0.0	0	0.0	10	3.9	_	0·4
	19	Gambella	2788	2544	37.9	891	264	2	3.0	0	0.0	23	8.7	4	1.5

	3.5	4.5	2.5	3.4	6.0	1.1	11.8	7.1	3.2	15.4	1.9	0.4	1.0	3.7	2.1	1.1	0.3	5.1	6.3	1.8	2.8	22·1	4:3	5.9
	13	15	7	=	7	ю	38	18	10	46	4	_	æ	∞	9	т	_	21	18	S	=	54	Ξ	229
	27.8	24:2	30.9	19.0	11.1	0.9	34:4	23.5	37.9	50.5	22.4	12.0	25.9	17·2	12.8	8.2	3.4	39.2	38.9	14.8	27.5	40.6	27.9	27·3
	103	80	82	62	24	16	Ξ	9	98	151	47	30	9/	37	37	22	10	162	112	42	109	66	72	3147
	8·0	0.4	9	<u>0</u>	0-0	0.0	1.6	0.0	0.0	0.5	0.0	9	0-0	0.0	0.0	90	0-0	0.4	0·4	0-0	% 0.8	0.0	0.0	0.3
	7	_	0	0	0	0	4	0	0	-	0	0	0	0	0	0	0	_		0	2	0	0	26
	7.5	2.5	0.6	12·7	2.3	0-0	8∙01	4.9	8.7	28.0	0.0	0.0	8.8	6.3	5.4	0.0	0.0	19:1	13:4	0.0	7.3	8.8	1.7	10.1
ont.)	21	S	13	27	æ	0	27	6	16	25	0	0	16	6	9	0	0	54	37	0	19	12	3	922
Table 3 (cont.)	371	331	275	326	217	566	323	255	308	299	210	250	293	215	288	569	596	413	288	284	397	244	258	11509
Ta	281	232	144	212	129	163	251	135	183	186	121	165	215	144	245	185	208	283	276	164	262	136	174	7649
	37.9	41.6	41.6	38.2	38.2	38.2	38.2	38.2	38.2	38.2	38.2	38.2	38.2	38.6	38.6	9.88	38.6	31.2	31.2	9.68	39.6	39.6	39.6	
	4346	10950	4005	10906	3013	2631	8 5 2 9	2008	1107	2177	2862	8967	1 798	2701	14092	1641	3533	2457	681	4139	3419	3382	3445	
	3 539	11325	3373	0996	2463	2349	7719	1466	840	1538	2406	7887	1350	2525	14322	1537	3573	2480	553	4005	2 582	2747	2715	
	20 Gore	21 Agaro	22 Bonga	23 Ambo	24 Ataye	25 Awash		_		_							36 Yavello	•		·	40 Haik	41 Lalibela	42 Wereillu	Total
	Kefa		Shoa										Sidamo					Wellega		Wollo				

* No. indicated in Fig. 1 on map to show study sites.

† Birth rate, number of live births per 1000 population per year (Office of the Population and Housing Census Commission (1989).

Table 4.	Distribution	of goitre	grades	by age	and se	x amongst	all	household	members at
			variou	s sites i	n Ethic	pia*			

					Goitre	grade	†						
		()	L	A	I	В	1	I	I	II	Total	goitre
Age (years)	No. examined	n	%	n	%	n	%	n	%	n	%	n	%
Male													
0-5	4079	3913	95.9	156	3.8	9	0.2	1	0.0	0	0.0	166	4.1
6-12	1951	1521	78.0	369	18.9	55	2.8	5	0.3	1	0.1	430	22.0
13–18	315	219	69.5	75	23.8	15	4.8	6	1.9	0	0.0	96	30.5
19+	1 304	1220	93.6	53	4.1	18	1.4	10	0.8	3	0.2	84	6.4
Sub-total	7 649	6873	89.9	653	8.5	97	1.3	22	0.3	4	0.1	776	10.1
Female													
0-5	4106	3938	95.9	159	3.9	4	0.2	0	0.0	0	0.0	168	4.1
6-12	2 2 6 5	1645	72.6	483	21.3	114	5.0	23	1.0	0	0.0	620	27-4
13-18	652	356	54.6	152	23.3	90	13.8	53	8.1	1	0.2	296	45.4
19+	4486	2423	54.0	823	18.3	640	14.3	503	11.2	97	2.2	2063	46.0
Sub-total	11 509	8362	72.7	1617	14.0	853	7.4	579	5.0	98	0.9	3147	27.3

^{*} For details of prevalence and sites, see Table 1 and Fig. 1. \dagger For details of classification, see p. 258.



Fig. 1. Map of Ethiopia showing administrative regions and study sites.

DISCUSSION

Studies carried out in the past have demonstrated that IDD existed in Ethiopia (Interdepartmental Committee on Nutrition for National Defence, 1959; Kelly & Snedden, 1960; Demonstration and Evaluation Team, 1965; Popov, 1967, Hofvander, 1970; Miller et al. 1976) and that in certain pocket areas the prevalence may be as high as 71 % (Miller et al. 1976). However, the present study is the first which has been designed to provide a representative overview of the severity and extent of IDD in the country. The goitre prevalence in schoolchildren found in the present survey was 30.6% which is regarded as severe according to the classification of Hetzel (1987). This rate is not as high as that reported from other African countries, such as Tanzania with 47.8% (Kavishe, 1986). However, many surveys have not been as representative as the present survey which was stratified and covered the whole country. The present survey showed that, in schoolchildren in particular and in household members in general, the prevalence of goitre increased with age and reached its peak in the prepubertal and pubertal age in both sexes, but diminished in adulthood in males and plateaued after a slight decrease in females. These findings are in agreement with observations made elsewhere, such as in Sudan and Tanzania (Eltom et al. 1984; Kavishe, 1986). In the household study group of the present survey the sex ratio for goitre prevalence was 1:1.5 in subjects aged 13-18 years and 1:7.2 in those 19 years of age and over.

Studies from other areas of the world have suggested that goitre prevalence is associated with soils of Pre-Cambrian origin (Wilson, 1954; Thilly et al. 1972), suboptimal Iodine intake (Beckers & DeLange, 1980), excessive Iodine intake possibly leading to autoimmune thyroiditis (Mu et al. 1987), high Ca, Mg and F consumption (Langer, 1960; Day & Powell-Jackson, 1972; Gaitan, 1980), Se deficiency (Vanderpas et al. 1990), goitrogenic components in the diet (Ermans et al. 1980; Klopfenstein et al. 1983; Osman et al. 1983), bacterial contamination of drinking water (Gaitan, 1980) and malnutrition (Ingenbleek & Beckers, 1973; Ingenbleek & De Visscher, 1979; Gaitan et al. 1983). The results of the present study could find no associations with kale consumption, availability and type of latrine or source of drinking water, but a relationship was found with altitude.

There was a positive correlation between goitre prevalence and altitude amongst school-children as well as household members. The correlation was relatively stronger among the household members which may be related to a longer period of exposure to a fixed Iodine intake. In addition to the relationship between goitre prevalence and altitude, there was variation in prevalence within the same range of altitude among the different study sites, particularly in lowland areas. Thus, the prevalence in household members in Felegeneway which lies at an altitude of 1430 m was 33 % while it was less than 8 % at all the other sites below 1500 m. It is also noteworthy that next to Gondar the highest prevalence of visible goitre was observed here.

A possible explanation for goitre prevalence at high altitudes might be the leaching of Iodine from the highland areas, although no assessment of Iodine content of foods, water and soil was done during the present study. However, the Iodine content of salt from the Red Sea is low when compared with that from more open oceans (Interdepartmental Committee on Nutrition for National Defence, 1959, and a report by a World Health Organization consultant, P. Subrimanian, unpublished results). The Iodine content of food and soils from goitrous areas in Ethiopia has also been shown to be low (Z. Wolde-Gebriel and C. E. West, unpublished results). Some people in highland regions obtain their food from Iodine-rich areas and this will help to increase Iodine intake. Other factors such as goitrogens may reduce the availability of Iodine.

Assessment of schoolchildren is a simple and cheap method for determining the extent and magnitude of IDD in a community as children are readily accessible and representative.

In the areas we surveyed, the schoolchildren were from different socio-economic groups of society and ate at home and, thus, their general dietary pattern should reflect that of the community in which they live. In the present study the prevalence rate of goitre in schoolchildren reflected that in household members. Very low or zero rates of goitre were observed both in schoolchildren and household members in certain areas such as Alemaya, Jijiga, Awash and Yavello, while high prevalence rates were observed in both groups in other areas such as Gondar, Debarek, Tis-Abay and Felegeneway.

Furthermore, the present study was conducted in semi-urban and urban areas where the inhabitants rely on food produced in the surrounding rural areas. Thus, the Iodine intake of the people surveyed may not be very different from that of those who live in the nearby surrounding areas. Since the sites sampled were evenly distributed throughout the country, we believe that the findings are representative.

Although an enlarged thyroid gland by itself does not affect a subject's health, except when the goitre is so large that it compresses the trachea, its aesthetic implications especially in girls has social implications in many rural areas. Thus, many goitrous women said that they found it difficult to find husbands and that those with large goitres did not aspire to university, after successfully passing their examination, out of fear of comments from others.

With regard to the other manifestations of IDD, excellent reviews on brain development and reproductive disorders in relation to Iodine deficiency and thyroid function have been prepared by Hetzel and his colleagues (Hetzel & Querido, 1980; McMichael et al. 1980). Relationships between Iodine deficiency and thyroid function on the one hand, and reproductive failures, poor educational performance and physical development on the other hand have been documented from many places. These developmental IDD are very important problems of public health significance but are generally neglected by health professionals and decision makers. Applying previously-developed epidemiological models to the results from the population studied, which is assumed to be representative of the whole country, it is estimated that there are 59000 cretins and 176000 cretinoids in Ethiopia. Classically, as predicted from the epidemiological model presented, cretinism is regarded as a problem in areas where the prevalence of goitre is more than 50%. From the present study we know that there are certain pocket areas with such high rates of prevalence and this could explain the existence of cretinism in such areas.

Thus, IDD would appear to be a serious threat to the health and well-being of the people residing in goitre-endemic areas. Cretins are social and economic burdens to the households and communities in which they live and to the nation as a whole. The estimates at least indicate the magnitude of the problem and highlight a very serious problem which deserves the attention of health professionals at the level of research, policy formulation and programme action, and a commitment to intervention from government. As far as research is concerned, efforts should be made to overcome the paucity of information on the impact of Iodine deficiency and Iodine supplementation on maternal welfare. As far as programmes are concerned, the salt iodination effort which has been initiated should be encouraged so that iodinated salt can reach all goitrous areas. In view of the difficult terrain and the poor transport, distribution and marketing infrastructure of the country, the use of iodized oil capsules in difficult and inaccessible areas should also be considered.

REFERENCES

Beckers, C. & DeLange, F. (1980). Etiology of endemic goiter: iodine deficiency. In *Endemic Goiter and Endemic Cretinism*, pp. 199–217 [J. B. Stanbury and B. S. Hetzel, editors]. New York: Wiley.

Clugston, G. A., Dulberg, E. M., Pandav, C. S. & Tilden, R. L. (1987). Iodine deficiency disorders in South East Asia. In *The Prevention and Control of Iodine Deficiency Disorders*, pp. 273-308 [B. S. Hetzel, J. T. Dunn and J. B. Stanbury, editors]. Amsterdam: Elsevier.

10 NUT 69

- Day, T. K. & Powell-Jackson, P. R. (1972). Fluoride, water hardness, and endemic goitre. Lancet i, 1135-1138. DeLange, F. (1974). Endemic Goitre and Thyroid Function in Central Africa. Monograph in Paediatrics. Basel: Karger.
- Demonstration and Evaluation Team (1965). Ethiopian health center program, its impact on community health in three towns. *Ethiopian Medical Journal* 5, Suppl., 1–87.
- Eltom, M., Hofvander, Y., Torelm, I. & Fellstrom, B. (1984). Endemic goitre in the Darfur region (Sudan). Acta Medica Scandinavica 215, 467-475.
- Ermans, A. M., Mbulamoko, N. M., DeLange, F. & Ahluwalia, R. (1980). Role of Cassava in the Etiology of Endemic Goitre and Cretinism. Ottawa: International Development Research Center.
- Gaitain, E. (1980). Goitrogens in the aetiology of endemic goitre. In *Endemic Goitre and Endemic Cretinism*, pp. 219–236 [J. B. Stanbury and B. S. Hetzel, editors]. New York: Wiley.
- Gaitan, J. E., Mayoral, L. G. & Gaitan, E. (1983). Defective thyroidal iodine concentration in protein-calorie malnutrition. Journal of Clinical Endocrinology and Metabolism 57, 327-333.
- Hetzel, B. S. (1987). An overview of the prevention and control of iodine deficiency disorders. In *The Prevention and Control of Iodine Deficiency Disorders*, pp. 7-31 [B. S. Hetzel, J. T. Dunn and J. B. Stanbury, editors]. Amsterdam: Elsevier.
- Hetzel, B. S., Potter, B. J. & Dulberg, E. M. (1990). The iodine deficiency disorders: nature, pathogenesis and epidemiology. World Review of Nutrition and Dietetics 62, 59-119.
- Hetzel, B. S. & Querido, A. (1980). Iodine deficiency, thyroid function, and brain development. In *Endemic Goitre* and *Endemic Cretinism*, pp. 461–472 [J. B. Stanbury and B. S. Hetzel, editors]. New York: Wiley.
- Hofvander, Y. (1970). Endemic goitre among children in the Ethiopian highlands. Ethiopian Medical Journal 8, 179-184.
- Ingenbleek, Y. & Beckers, C. (1973). Evidence for intestinal maladaptation of iodine in protein energy malnutrition. *American Journal of Clinical Nutrition* 26, 1323-1330.
- Ingenbleek, Y. & De Visscher, M. (1979). Hormonal and nutritional status: critical conditions for endemic goitre epidemiology? *Metabolism* 28, 9-19.
- Interdepartmental Committee on Nutrition for National Defence (1959). *Ethiopia-Nutrition Survey*. Washington, DC: US Government Printing Office.
- Kavishe, F. P. (1986). The prevalence and control of endemic goitre in Tanzania. In Towards the Eradication of Endemic Goitre, Cretinism and Iodine Deficiency. Scientific Publication no. 502, pp. 332–334 [J. T. Dunn, E. A. Pretell, C. H. Daza and F. E. Viteri, editors]. Washington, DC: PAHO/WHO.
- Kelly, F. C. & Snedden, W. W. (1960). Prevalence and geographical distribution of endemic goitre. In Endemic Goitre. WHO Monograph Series no. 44, pp. 27–333. Geneva: WHO.
- Kloos, H., Adugna, A. & Sahlu, E. (1988). The physical biotic and human environment in Ethiopia: The perspective of medical geography. In *The Ecology of Health and Disease in Ethiopia*, pp. 18-42 [Z. A. Zein and H. Kloos, editors]. Addis Ababa: Ministry of Health.
- Klopfenstein, C. F., Hoseney, R. C. & Leipold, H. W. (1983). Goitrogenic effects of pearl millet diets. Nutrition Reports International 27, 1039-1047.
- Langer, P. (1960). History of goitre. In Endemic Goitre. WHO Monograph Series no. 44, pp. 9-25. Geneva: WHO.
- McMichael, A. J., Potter, J. D. & Hetzel, B. S. (1980). Iodine deficiency, thyroid function, and reproductive failure. In *Endemic Goitre and Endemic Cretinism*, pp. 445-460 [J. B. Stanbury and B. S. Hetzel, editors]. New York: Wiley.
- Miller, D. S., Baker, J., Bowden, M., Evans, E., Holt, J., McKeag, R. J., Meinertzhagen, I., Mumford, P. M., Oddy, D. J., Rivers, J. P. W. R., Sevenhuysen, G., Stock, M. J., Kebebe, A., Wolde-Gebriel, Y. & Wolde-Gebriel, Z. (1976). The Ethiopia applied nutrition project. *Proceedings of the Royal Society, London* 194, 23–48.
- Mu, L., Derun, L., Chengyi, Q., Peiying, Z., Qidong, Q., Chunde, Z., Qingzhen, J., Huaixing, W., Eastman, C. J., Boyages, S. C., Collins, J. K., Jupp, J. J. & Maberly, G. F. (1987). Endemic goitre in central China caused by excessive iodine intake. *Lancet* ii, 257–258.
- Office of the Population and Housing Census Commission (1984). Population and Housing Census. Addis Ababa: OPHCC.
- Office of the Population and Housing Census Commission (1989). Population and Housing Census, Analytical Reports on the Various Administrative Regions. Addis Ababa: OPHCC.
- Osman, K. A., Basu, T. K. & Dickerson, J. (1983). A goitrogenic agent from millet (Pennisetum typhoides) in Darfur province, Western Sudan. Annals of Nutrition and Metabolism 27, 14-18.
- Perez, C., Scrimshaw, N. S. & Műnoz, J. A. (1960). Technique of endemic goitre surveys. In *Endemic Goitre*. WHO Monograph Series no. 44. pp. 369–383. Geneva: WHO.
- Popov, L. (1967). Medical study of goitre in Ethiopia. Ethiopian Medical Journal 6, 5-14.
- Thilly, C. H., DeLange, F. & Ermans, A. M. (1972). Further investigations of iodine deficiency in aetiology of endemic goitre. American Journal of Clinical Nutrition 25, 30-40.
- Vanderpas, J. B., Contempré, B., Duale, N. L., Goosseens, W., Bebe, N., Thorpe, R., Ntambue, K., Dumont, J., Thilly, C. H. & Diplock, A. T. (1990). Iodine and selenium deficiency associated with cretinism in northern Zaire. American Journal of Clinical Nutrition 52, 1087-1093.
- Wilson, D. C. (1954). Goitre in Ceylon and Nigeria. British Journal of Nutrition 8, 90-99.