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Abstract 

Brus, D.J., 1993. Incorporating models of spatial variation in sampling 
strategies for soil. Doctoral thesis, Wageningen Agricultural University, 
Wageningen, The Netherlands, (xii) + 211 pp. 

The efficiency of soil sampling strategies can be increased by incorporating 
a spatial variation model. The model can be used in the random selection of 
sample points i.e. in the sampling design, or in spatial estimation (prediction). 
In the first approach inference is based on a sampling design, in the second 
on a probabilistic model. The advantages and disadvantages of these two 
approaches, referred to as the design-based and model-based approach, are 
dealt with from a theoretical and a practical point of view. Estimation by random 
sampling stratified by soil map unit, and kriging are taken as examples of the 
two approaches in several case studies. 

The commonly accepted belief in geostatistical literature that the design-based 
approach is not valid in areas with autocorrelation is incorrect. Furthermore, 
the claimed optimality of the model-based approach is questionable. The two 
approaches use different criteria for assesment of the quality of estimates, 
consequently optimum estimation has a different meaning in each approach. 

In a regional survey with small observation density (1 observation per 25 ha), 
estimates of values at points were generally not significantly improved by soil 
map stratification (cc=0.10), neither by estimation with variograms as in kriging. 
Stratified random sample estimates of values at points were as accurate as 
those provided by kriging. 

In the model-based approach the quality of the estimates depends on the 
quality of the model. To avoid this, a new approach for spatial estimation is 
proposed, the model-assisted approach, making use of non-ergodic variograms. 
This approach incorporates the sampling error of the non-ergodic variogram 
in the kriging error, making the estimation variance estimates always valid. A 
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set of new methods is presented for unbiased and robust estimation of the non-
ergodic variogram and its sampling error. 

Many factors determine the efficiency of an approach that incorporates spatial 
variation models, making the decision process rather complicated. A simple 
decision-tree is presented with seven questions related to the aim of the survey 
(local or global estimation, criteria for assessment of the quality of the 
estimates), the constraints (available budget and sampling costs) and prior 
information (soil map). 

Additional index words: sampling strategy, soil map, phosphate saturation, 
spatial variation, model-based inference, design-based inference, model-
assisted inference, kriging, stratified random sampling, non-ergodic variogram, 
bootstrap, robustness, unbiasedness. 
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Chapter 1 

General introduction 



General introduction 

Motives 

In recent years the need for soil survey information with quantified accuracy 
has grown considerably. Although soil maps exist for all parts of the world, the 
quality of these soil maps, expressed by the spatial variability of soil properties 
within map units and map purity, is seldom quantified. Moreover, soil maps 
focus on information relevant to land evaluation, i.e. for assessment of the land 
suitability for several land use types. They usually lack information on soil 
properties relevant to environmental protection studies. Consequently, often 
additional data have to be collected in the field. This thesis deals with statistical 
methods for collecting soil data (sampling) and for calculating estimates of 
areal means and values at points from the data (spatial estimation). By applying 
statistical methods the accuracy of these estimates can be quantified. 

Collecting soil data is generally rather expensive, especially if laboratory 
measurements of soil physical and soil chemical properties are needed or 
measurements of difficult to determine properties such as characteristics of 
the frequency distribution of the water table. Therefore, it is important that 
efficient sampling strategies are developed; strategies giving maximum 
accuracy of the estimates at the lowest costs. One way of increasing the 
efficiency is to incorporate models of spatial variation in the sampling strategy. 
At the highest level, two approaches can be distinguished: (i) incorporation in 
the sampling design (sampling plan), where the model is used in the random 
selection of sample points and (ii) incorporation in the estimator, where the 
model is used in calculating the estimates from a sample. 

An example of the first approach, dealt with in this thesis, is estimation by 
random sampling stratified by soil map unit. A soil map can be considered as 
a discrete model of spatial variation of the soil. By soil map stratification we 
hope to obtain more homogeneous subareas, the means of which can be 
estimated more accurately than the mean of the whole area for a given sample 



size. This is an attractive approach for the Netherlands because there is a soil 
map at the scale of 1:50 000 for the whole of it and more detailed soil maps 
(scale 1:10 000) for large parts of it. Samples are selected from the strata by 
some chance mechanism such that all elements have a nonzero probability 
of inclusion in the sample, specified by the sampling design of that stratum (see 
below). These inclusion probabilities are used in the inference, i.e. in calculating 
the estimates. To estimate the values at points the estimated mean of a map 
unit is used as the estimator for all points within that map unit. Following 
Särndal et al. (1992) such inference will be referred to as design-based. 
However, there is a widespread belief in geostatistical literature that design-
based inference is not valid if data are autocorrelated. This would severely 
restrict the applicability of this approach, because soil data often show autocor­
relation, also within map units. 

An example of the second approach, dealt with in this thesis, is kriging (Journel 
and Huijbregts, 1978). Kriging uses a probabilistic (geostatistical) model to 
describe spatial variation. An important part of this model is the variogram. It 
describes spatial dependence as a function of the lag vector separating two 
points. This model is believed to be a more natural and adequate description 
of spatial dependence than a soil map, which neglects spatial autocorrelation 
within map units. Kriging is qualified as optimal in the sense that its estimates 
are unbiased and have minimum variance. As opposed to the previous 
approach, inference is based on the model. Following Särndal et al. (1992) 
such inference will be referred to as model-based. 

Purpose 

The main purpose of this thesis is to elaborate on the merits of the design-
based and model-based approach for incorporation of spatial variation models 
in sampling strategies, from a theoretical and a practical point of view. 
Important questions dealt with are: 
(i) Is design-based inference indeed invalid in areas with autocorrelated data? 

(Chapter 2) 
(ii) Are kriging estimates also optimal in the sense of classical sampling 

theory (Chapters 2 and 4) and what is the worth of the calculated kriging 



variance as a measure of estimation variance? (Chapter 7) 
(iii) Can estimates of global means (Chapter 3) and of values at points 

(Chapter 4) be improved by soil map stratification, and how strong is this 
effect? How strong is the effect of estimation with variograms on the 
accuracy of estimates at points? (Chapter 4) How strong is the effect of 
soil map stratification plus estimation with variograms on the accuracy of 
estimates at points? (Chapter 4) 

(iv) Which approach gives the most accurate estimates of values at points: 
estimation by random sampling stratified by soil map, or kriging? (Chapter 

4) 
(v) Does it pay to revise a soil map before using it in spatial estimation? 

(Chapter 5) 
(vi) What decision-rules can be used for choosing between the two 

approaches? (Chapters 2-7) 

Definitions and scope 

In this thesis, the survey region is considered as a finite population of soil auger 
cores, which implies that the number of different possible sampling locations 
is finite. This is because the main body of sampling theory is formulated in 
terms of finite populations. Results and conclusions presented in this thesis 
also hold if the population is assumed to be infinite. Sampling is the selection 
of a subset of elements from the population. Note that a sample refers to a 
set of elements and not to a single element. The probability of selection of any 
subset (sample) is determined by the sampling design. The elements in the 
sample are observed; the target variables are measured for each element in 
the sample. Unless otherwise stated, I assume that the variables are measured 
without error. The values of the target variables are used to calculate an 
estimate of the population parameters (e.g. means, totals) or the values at 
points and of the accuracy of these estimates. The combination of sampling 
design and formula used to calculate an estimate (estimator) is referred to as 
a sampling strategy. 

The location of the soil auger cores is defined in two dimensions only. Variation 
of soil properties with depth is incorporated in the definition of the target 



variable. Furthermore, I will focus on soil surveys at a regional scale with 
sampling densities varying from 1 to 10 observation points per 25 ha. Most 
of the soil properties observed are relevant to the problem of phosphate 
leaching from agricultural soils to the groundwater and surface water, which 
is a considerable environmental problem in the Netherlands. Important 
questions in this context are: 
- how much phosphate can be sorbed by the soil in a block of a given size 

or at a given point before it leaches to the groundwater? 
- what is the mean degree of phosphate saturation of a block or at a point? 
- what is the fraction of the area saturated with phosphate? 

Outline of this thesis 

Chapter 2 outlines the perspectives and concepts of design-based and model-
based inference of population parameters. The meaning of unbiased and 
minimum variance estimates obtained by these two types of inference, are 
compared. I deal with the relative merits of the two approaches and with rules 
for choosing. In a case study, stratified simple random sample estimates 
(stratified by a 1:50 000 soil map) of areal fractions saturated with phosphate 
and their accuracies are compared with those obtained by kriging, for blocks 
of various size. 

In Chapter 31 calculate the gain in precision of estimates of the global means 
of various phosphate sorption characteristics by using a 1:50 000 soil map and 
a land use map for stratification in simple random sampling. The precision with 
a simple random sample (without stratification) of the same size is taken as 
a point of reference. This is done in two areas with contrasting historical 
phosphate loads. Three stratifications are evaluated, namely by land use, soil 
map unit and by both, in combination with three methods of allocating numbers 
of sample points to the strata. 

Chapter 4 assesses the effect of soil map stratification on the accuracy of 
estimates of four soil properties at points. Six estimation methods are 
examined: global mean, moving average, nearest neighbour, inverse squared 
distance, Laplacian smoothing splines and ordinary point kriging. I compare 



the efficiency of the variogram and the 1:50 000 soil map as spatial variation 
models by comparing the accuracy of estimates at points obtained by unstra-
tified kriging with that obtained by using the means of soil map units as 
estimators. Also the effect of the combination of both models is assessed by 
calculating the accuracy of estimates by kriging within three soil map units 
(stratified kriging). 

The first sheets of the Soil Map of the Netherlands at the scale of 1:50 000 
are possibly out-of-date and as a result are poor models of spatial variation. 
We might think of first revising the soil map and then using the revised map 
for stratification in spatial estimation. The alternative would be to leave the map 
unchanged and to spend all the money collecting additional data at points. In 
Chapter 5 the efficiency of four strategies for updating soil maps is compared: 
(i) revision, (ii) upgrading, (iii) revision plus upgrading and (iv) upgrading by 
two-phase sampling. In revision all funds are used for model improvement, 
whereas in upgrading and upgrading by two-phase sampling all funds are used 
for sampling. In revision plus upgrading the funds are distributed between the 
two activities. The efficiency is assessed for design-based estimation of the 
global mean and the values at points. 

Kriging directly provides an estimate of the accuracy of the estimates, the 
kriging variance. However, the mean kriging variance often differs considerably 
from the empirical mean squared error of estimation: generally it is an 
underestimate. In this thesis I analyze the causes of this discrepancy and show 
how it can be eliminated by using non-ergodic variograms in kriging, i.e. 
variograms describing spatial dependence in the area actually sampled only 
(Isaaks and Srivastava, 1988). In Chapter 6 I propose a new set of sampling 
strategies for the estimation of these non-ergodic variograms. An important 
advantage of these strategies is that they yield unbiased and robust estimates 
of the sampling error of the estimated variogram. 

Chapter 7 shows that incorporation of this sampling error in the error of 
estimates obtained by kriging eliminates the main cause of the discrepancy 
between the mean kriging variance and the mean squared error of estimation. 
Thus, a new approach for incorporation of spatial variation models in sampling 



strategies emerges, the model-assisted approach. I explain how the role of the 
model differs fundamentally between the model-based and model-assisted 
approach. 

Finally, the main results and major conclusions of this thesis are presented 
in Chapter 8. In this chapter I also present a decision-tree for choosing between 
the design-based, model-based and model-assisted approach. 

Notation 

Variables such as soil properties, and model parameters will be printed in 
italics. To distinguish between fixed and random variables, random variables 
will be underlined. Symbols for matrices and vectors will be printed in bold face 
italics. 

References 

Isaaks, E.H. & Srivastava, R.M. 1988. Spatial continuity measures for probabilistic and 
deterministic geostatistics. Mathematical Geology 20, 313-341. 

Journel, A.G. & Huijbregts, C.J. 1978. Mining Geostatistics. Academic Press, London. 
Särndal, C-E, Swensson, B. & Wretman, J. 1992. Model assisted survey sampling. 

Springer-Verlag, New York. 
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Chapter 2 

Design-based versus model-based estimates 
of spatial means. Theory and application in 

environmental soil science 



Environmetrics 4, 123-152 (1993) 

with Jaap J. De Gruijter 



Design-based versus model-based estimates of 
spatial means. Theory and application in 
environmental soil science 

The perspectives and concepts of the classical sampling or design-based approach 
and the geostatistical or model-based approach are compared. We show that un-
biasedness and minimum variance in the design-based approach is quite different 
from that in the model-based approach and that design-based strategies are always 
valid, whether or not there is spatial autocorrelation. Model-based predictions of spatial 
means will generally not have the desirable property of unbiasedness in the design-
based sense. Model-based strategies contain a risk arising from biased selection of 
sample points and they do not allow the accuracy of predictions to be assessed 
objectively, i.e., based on the sample data alone. Model-based strategies are useful 
for local estimation i.e. for many small blocks and points, provided that there are 
enough data to estimate the variogram. In a case study on phosphate saturation, 
design-based and model-based estimates of the areal fractions saturated with phos­
phate were similar, but with smaller blocks the differences between the estimates 
provided by the two approaches, increased to magnitudes of practical importance. 
KEY WORDS: sampling strategy; spatial dependence; unbiasedness; phosphate 
saturation. 

Introduction 

Since about 1960 random sampling designs have been successfully applied 

in soil geography, especially to estimate spatial means and variances of 

areas. For estimation of the values at points, these strategies seemed to 

be not very successful due to the large internal variance of the soil map 

units, whose estimated means were used as estimators (Morse and Thorn-

burn, 1961; Webster and Beckett, 1968; Beckett and Webster, 1971; 

Marsman and De Gruijter, 1986). Since 1980 numerous papers have recom­

mended kriging as a better technique for local estimation of soil properties. 

See for instance Burgess and Webster (1980), Burgess et al. (1981), 

Webster (1985) and Oliver et al. (1989). Kriging uses a probabilistic model 
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describing spatial autocorrelation or related quantities as a function of the 
lag vector separating two points and this model is believed to be a more 
natural and adequate description of spatial autocorrelation than a soil map 
which neglects spatial autocorrelation within map units. Kriging is qualified 
as optimal in the sense that its estimations are unbiased and have minimum 
variance. Kriging is also used for global estimation (block kriging), so there 
are two rather different approaches for estimating means of soil properties 
in areas, referred to as the design-based and the model-based approach. 
However, there is a rather wide-spread belief in the literature on applied 
geostatistics that design-based strategies are not valid in areas with 
autocorrelated data (see e.g. Russo and Bresler, 1981 ; Olea, 1984; Dahiya 
et al., 1985; Yfantis et al., 1987; Barnes, 1988; Burrough, 1991). 

The purpose of this paper is: 
- to make clear that classical sampling theory and design-based strategies 

are valid with autocorrelated data; 
- to draw the attention of soil scientists to the different meanings of 

unbiasedness and minimum variance in model-based and design-based 
sampling strategies; 

- to work out a case study to see whether differences in design-based 
estimates and model-based predictions of spatial means (areal fractions) 
are relevant to practice; 

- to elaborate the relative merits of the two methods and to develop rules 
for choosing between them. 

We estimated the fractions of square areas saturated with phosphate by 
stratified simple random sampling as an example of the design-based ap­
proach and by indicator block kriging as an example of the model-based 
approach. In stratified simple random sampling we used an existing soil map 
for stratification, which is a way of using an a priori model of spatial structure 
in the sampling design. In indicator block kriging, spatial structure was 
modelled by a single variogram for the entire area. Separate variograms for 
the soil map units might have given better results but it is usually impossible 
to estimate them well in practice for lack of data. We preferred to stick to 
methods that are practicable. Moreover it was not the purpose of our study 

12 



to determine which method gives the 'best' estimates. The true spatial 
means must be known for this. Also, one should either select the design-
based or the model-based definition of 'best estimate' or choose a hybrid 
definition. 

Hansen et al. (1983) discussed the use of models in sample surveys of finite 
populations in general. They chose the design-based quality criteria and they 
showed that small mistakes in the estimated parameters of a regression mo­
del describing the relation between the target variable and an auxiliary 
variable, may lead to substantial bias of the predicted population mean and 
statements about the sampling errors of those estimates may be very mis­
leading. As the model is never known exactly, they preferred design-based 
estimators. This raises the question of whether kriging behaves similarly to 
regression. In this context the paper of Borgman and Quimby (1988) is very 
interesting. They discussed the advantages and disadvantages of classical 
random sampling and geostatistical sampling and they stated that probably 
the greatest shortcoming of the geostatistical approach is the difficulty in 
knowing when various model assumptions are acceptable or not acceptable. 

Design-based and model-based sampling strategies 

To clarify the differences between the design-based and model-based ap­
proach in spatial sampling we give an example of sampling soil profiles from 
a hypothetical area A with known values of property z at all points in this 
area (Fig. 2.1a). The soil profiles are the sampling units. Let us assume that 
variable z has only two possible values, 0 and 1, and that we want to esti­
mate the spatial mean of z within A, defined as: 

mA=±Yz(x} (2.1) 
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where: 
mA = true spatial mean of z in A; 
N = total number of soil profiles (possible sampling locations) in A 

(population size); 

z(x,) = value of z at location x„ where x, is the vector of co-ordinates of 

point /'. 

4 * • 

• • • • 

* 1 2 

3 « • 

• * 
• • • 

.« « 

« » • 

• * * 

• • • • 

# » 
• • • • 

» • 

• Sample point Value of z (x) 

Fig. 2.1 Repeated sampling in the design-based 
approach (a, b, c) and in the model-based 
approach (a, d, e). In the design-based 
approach the population is fixed and the 
sampling locations are random. In the model-
based approach the sampling locations are 
fixed and the population is random. The 
populations of a, d and e are realizations of 
a 'distance model' (see Text), with true 
proportions of 0.30, 0.32 and 0.47 
respectively 
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For convenience, we assume that N is finite in Equation (2.1) and following 
equations, which implies that the number of different possible sampling lo­
cations is finite. If the population size is assumed to be infinite, then sums 
should be replaced by integrals, but this has no influence on the results. 

The spatial mean of a variable with 0 and 1 as possible values equals the 
proportion of the area with z = 1. To estimate this we selected n locations 
and measured property zon the soil profiles there. The values obtained will 
be indicated as z{x). Either z or x, could be random. 

The design-based approach 
In the design-based approach the n locations are selected randomly. Figure 
2.1a shows a simple random sample with n = 25. At a given location the 
value of z is assumed to be fixed, but unknown. Although these values are 
fixed, the locations are selected randomly, and so we denote the data by 

m-
The probability of selection for any given subset of soil profiles is determined 
by the sampling design p. These probabilities are known and are the key 
to describing the sample-to-sample variation of a proposed estimator 
(Särndal et ai, 1992). Summing the selection probabilities of all subsets with 
soil profile /' in it, gives the inclusion probability of profile /'. In the Horvitz-
Thompson estimator or rc-estimator (Särndal et al., 1992) the values of the 
soil profiles are divided by their inclusion probabilities. For the spatial mean 
this results in the following estimator: 

1 n Z(X) 
m=lT^ZL (2.2) 

~A NU «, 

where: 
mA = estimated spatial mean of area A; 
n = sample size; 
7i = inclusion probability of soil profile /'. 
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With simple random sampling (Cochran, 1977), for instance, the probability 
of selection of any subset of size n is equal, or in other words all con­
figurations of n points have equal probability. From this it follows that the 
inclusion probability of a soil profile is equal for all profiles and equals n/N, 
the sampling fraction. This results in the following estimator of the spatial 
mean: 

A n AX) n A 

^ 4 E — - E 1 * ^ (2-3) 

Note that with this design all points get equal weight. 

Once a sample has been taken and the spatial mean has been estimated, 
one may wonder what would happen if another sample is taken from the 
area using the same design. This is what is done in the design-based 
approach; not in reality, but in the mind. Repeated sampling according to 
the design-based approach is illustrated in Figure 2.1a-c, showing three 
simple random samples of size 25. The three samples came from different 
locations, and so the estimated value from Equation (2.3) also differed from 
sample to sample: 0.32 (= 8/25), 0.36 (= 9/25) and 0.32 for Figure 2.1 a, 2.1 b 
and 2.1c respectively. So the estimation errors (the difference between 
estimated and true mean) were 0.02, 0.06 and 0.02. Although usually only 
one sample is taken from an area, in the design-based approach the mean 
and variance of the estimator over repeated sampling under a given design 
p plays an important role. This type of mean and variance is indicated as 
the p-expectation, Equation (2.4), and the p-variance or sampling variance, 
Equation (2.5), and are defined as: 

s=1 

and 
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o%âlA) = EpMA-Ep(!ÎlA)}2] (2-5) 

where: 
EP(JÈA) = expectation of estimated spatial mean of A over repeated 

sampling under design p; 
p(s) = selection probability of sample s; 
S = number of possible samples under design p; 
mAs = spatial mean of A estimated by sample s; 
oD Q!U) = sampling variance of estimated spatial mean of Sunder design 

The jt-estimator of the sampling variance of the mean of a fixed size 
sampling design is equal to (Särndal et al., 1992, p. 45): 

ç2(rfL) = - L E f ^i^äi^l - m* (2.6) 
"p A 2/V2/=iy=i Hi K nJ 

where: 
7i/y = probability that both of the soil profiles / and j will be included in the 

sample. 

With simple random sampling this sampling variance equals (Särndal et al., 
1992, p. 46): 

P
 A n N n 

where: 
vA = estimated spatial variance of A: 
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E^/)-m/ (2.8) 

~A n-1 

Given a design p, we look for an estimator such that its p-expectation is 
equal to the true value of the spatial mean: 

Ep(mA) = mA (2.9) 

In other words the estimation error over all possible realizations of the 
sampling design p should be zero. If this equality holds the estimator is 
called p-unbiased. Cochran (1977, p. 22) showed that the estimator of the 
spatial mean of Equation (2.3) is p-unbiased with simple random sampling. 
Apart from p-unbiasedness, another desirable property of the estimator is 
that its Mean Squared Error (MSEp) is minimal: 

MSEp^Ep{(mA~mA)2} (2.10) 

If an estimator is p-unbiased, its MSE is equal to its sampling variance (Eq. 
2.5), otherwise MSE will exceed the sampling variance. 

Finally, the inclusion probabilities need not be equal for all soil profiles to 
be able to obtain unbiased estimates of the spatial mean. A well known ex­
ample of a sampling design with unequal inclusion probabilities is stratified 
simple random sampling with optimum allocation. For a well defined design 
the inclusion probabilities are known and Equations (2.2) and (2.6) can be 
used to estimate the spatial mean and its sampling variance. 

The model-based approach 
In the model-based approach the actual population from which we take the 
sample is considered to be just one population out of an infinite set of 
possible populations having in common that they are realizations from the 
same A/-dimensional joint distribution £. Consequently, this approach is also 
referred to as the superpopulation approach (Cassel et al., 1977). One may 
think of these realizations as areas in which the same soil forming processes 

18 



have led to a more or less similar spatial pattern. So, in the model-based 
approach each soil profile (location) is not associated with one fixed value, 
as in the design-based approach, but with different possible values, each 
with a defined probability of occurring, thus forming a random variable. The 
actual value found at a given location / is interpreted as the realized 
outcome of the random variable z{x). (Note the change in underlining.) 
Therefore, the true spatial mean is also assumed to be random: 

m=lVz{x) (2.11) 
—A N fa' ' 

As the spatial mean is random we shall use the word 'prediction' instead 
of estimation. We shall use the superscript ~ in symbols for predicted var­
iables. This approach is termed 'model-based' because its essential tool is 
a model describing the A/-dimensional joint distribution t, of the variables 
z(x). (Often the symbol £, is attached to the model.) In practice, this is 
usually done by characterizing the mean and variance of z(x) and the covar-
iance of z{x) and z{x-j for any /and;'. Populations are viewed as realizations 
from Ç. Figure 2.1a, d and e, for instance, show three realizations from a 
'distance model' with true spatial means (proportions) of 0.30,0.32 and 0.46 
respectively. A distance model can be described by (Matérn, 1960, p. 37-
39,49): 

ç 
I 
c=1 

z(x) = £ f ( x r x j (2-12) 

where: 
Xç = vector of co-ordinates of the cth centre (random); 
C = number of centres (random). 

In Figure 2.1a, 2.1d and 2.1e the centres are produced by a Poisson 
process with intensity X = 6. For f(x,) we took simply: 
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f(X;) = 1 if 8 . (x,) < D 
' -miir " (2.13) 

f(x;) = 0 otherwise 
where: 
ôroî Xy) = smallest distance of point xt to the centres; 
D = predetermined, fixed distance. 

Thus z[x) = 1 if at least one centre is within distance D from x,. 

In reality one can observe only a single realization from %, and so the mean 
and variance of z{x) are unknown. To circumvent this difficulty the random 
process is assumed to be ergodic i.e., its statistics can be determined from 
a single realization (Papoulis, 1965, p. 327). In practice it is often assumed 
that the covariance of z(x^ and z(Xy) depends only on the distance and direc­
tion separating x, and xy. Half the variance of {z(x) - z{Xj)} is referred to as 
the semivariance, which is often modelled instead of the covariance. 

This spatial covariance or semivariance is used in predicting. The spatial 
mean of a block is predicted by: 

^ = i>,Z(*;) f2"14) 
;=1 

where: 
A,, = weight attached to the rth point. 

In general these weights will be different for different points. This is also true 
for a simple random sample! Let us see how these weights are calculated 
in this approach. 

As in the design-based approach interest is in the mean and the variance 
of the predictor over repeated sampling. However, repeated sampling has 
a different meaning now and is possible only in theory: the sample is taken 
at the same locations but in different hypothetical areas from the same joint 
distribution \. This is illustrated by the vertical row of maps in Figure 2.1 (a, 
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d and e). These figures show that the values at some sampling locations 
differ between the three realizations, hence the predicted spatial means will 
also be different. The mean and variance of the predicted value is referred 
to as the ^-expectation, Equation (2.15), and ^-variance, Equation (2.16). 
Cassel et al. (1977, p. 82) defined these in terms of Lebesgue integrals 
(Papoulis, 1965, p. 141): 

Ek{mA) = fmA<X, (2.15) 
RN 

and 

cl(mA) = E^-E^tf] = j{mA-E^(m A)M (2.16) 
RN 

where: 
E* = expectation over realizations from distribution Ç (model mean); 
o*2 = variance over realizations from distribution Ç; 
RN = /V-dimensional Euclidian space of possible realizations from the 

distribution Ç. 

To find an optimal predictor for mA, the prediction error (the difference 
between the predicted value and the true value) of each realization is con­
sidered. The mean error over realizations of the model Ç should be zero (Ç-
unbiasedness) and the Mean Squared Error should be minimal (minimal 
MSEf): 

Minimize E^{(mA - mA)2^ ( 2 1 7 ) 

subject to Ei(m_A - [RA)=0 

In Equation (2.17) the true spatial mean, mA, is inside the brackets because 
this quantity is random too. The optimal weights are obtained by solving the 
equations: 
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n _ 

E'kp(xj,xj) + y = C(x;,A) V / = 1 ton 
;=1 (2.18) 

n 

EV 
7=1 

where: 
C(x,-,Xy) = covariance of z{x) and z(xy); 
y = Lagrange multiplier; 
C{Xj,A) = mean covariance of z(x^ and A defined as: 

Cix^^lYCix^) (2.19) 

The ^-variance of the predicted spatial mean equals: 

of(m„) = C(A,A) + EEC(x,,xy) - 2£X,- C(Xj,A) = 
/=1 /-1 M (2.20) 

_ n _ 

C(A4) - E h c(*i<A) - N> 

where: 
C(>4,/\) = mean covariance of z{x) in A, defined as: 

^ A ) = 1 £ EC(x,xy) (2.21) 
Ar /=1 y=1 

The Best Linear Unbiased Predictor of mA and its variance can also be ob­
tained as Generalized Least Squares solutions of the corresponding regres­
sion problems, avoiding the use of a Lagrange multiplier (Corsten, 1989): 

mA = ^c-^)-U'c-^+dStAc-^z-H^c-^rU'c^z] (2.22) 

where: 
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Cs = matrix with covariances between sample points; 
CSA = vector with mean covariances between each sample point and all 

points in A 

The covariance function of the distance model of Figure 2.1 is known 
(Matérn 1960, p. 38): 

C(x,xy) = e - 2 ^ 2 { e w _ i } (2.23) 

where: 
r = radius of the circles; 
X = intensity of the Poisson proces; 
A(r,h) - area of the intersection of two circles with radius rand the centres 

h = |x, - X/\ apart. 

Using this function, the optimal predictions were 0.38, 0.34 and 0.46 for 
Figure 2.1 a, 2.1 d and 2.1 e respectively. So the prediction errors were 0.08, 
0.02 and -0.01. Notice the small error of Figure 2.1 e despite the large pre­
dicted value (0.46). This is because the true mean of Figure 2.1e was also 
large compared to that of Figure 2.1a (0.47). In practice the covariance 
function is unknown and should be estimated from sample data as well. 

Dependent or independent? 
In literature on applied geostatistics it is often stated that classical sampling 
theory is inapplicable to spatial sampling of soil properties because this 
theory assumes data to be independent. We shall show that this view is 
incorrect and we shall make clear that in the design-based approach inde­
pendence is not assumed but created by the sampling design. 

Stochastic dependence or independence is not a property of any population 
or region (De Gruijter and Ter Braak, 1990, 1992). It can be a property of 
a set of variables. Two random variables are independent if (Papoulis, 1965, 
p. 40): 
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P(v,w) = P(v) P(W) (2-24) 

where: 
P(v,w) = probability that the first random variable takes the value v and 

the second random variable takes the value w, 
P(v) = probability that the first random variable takes the value v, 
P(w) = probability that the second random variable takes the value w. 

The next question is what makes the variables random, or in other words, 
what is the source of stochasticity? In the design-based approach this is 
the sampling process. The locations are selected at random. If the locations 
x,and xyare selected at random and independently then the corresponding 
variables z{x) and z(x) are mutually stochastically independent (De Gruijter 
and Ter Braak, 1990). We noticed that this is hard to understand for some 
model-based thinkers. Therefore we illustrate it by an experiment, which is 
not a proof and superfluous for those who are familiar with design-based 
sampling. The experiment consists of taking a simple random sample with 
replacement of size two from area A of Figure 2.1 a, repeating it 1000 times 
and counting the number of times we have equal values at the two points 
(both zeros or ones). Large or small numbers indicate dependency of var­
iables: positive dependency for large and negative dependency for small 
numbers. Assuming independence the expected number equals 1000{p2 + 
(1-p)2}, where p is the probability of getting value 1 which is equal to the 
areal proportion with value 1. In Figure 2.1a p equals 0.3 and therefore the 
expected number is 580. The realized number was 578. One may conceive 
this number as an estimate of the expected number if data are independent. 
The 95% confidence interval of this estimate equals [547,608] which covers 
the expected value, and so this experiment indicates that the two variables 
are independent. 

In the model-based approach stochasticity is introduced in a completely 
different way, namely via the model Ç. In this approach not the sampling 
locations but the model-realizations are drawn at random and independently 
from each other. The sampling locations stay where they are. To illustrate 
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this we executed an experiment for the points marked 1 and 2 in Figure 
2.1a. We drew 1000 realizations of the distance model and counted the 
number of times with equal values at both points which was 804, so much 
larger than the expected and realized number in the previous experiment. 
The 95% confidence interval of this prediction is [778,827]. However, in this 
approach one has many realizations and therefore the expected number 
over all model-realizations should be calculated. The mean of the areal pro­
portions with value 1 overall model-realizations (^-expectation of areal pro­
portion) is known and therefore also the probability of getting a 1. It is equal 
to 0.35. From this it follows that, assuming independence, the expected 
number is 545. The 95% confidence interval does not cover this value. 
Therefore independence is not likely for points 1 and 2 in Figure 2.1a. 
Remember that these points were selected at random and independently 
from each other. We repeated this experiment for points 3 and 4 of Figure 
2.1a. The counted number is 539 with a 95% confidence interval of [508, 
570] covering the expected number, so that independence is likely for points 
3 and 4. 

In conclusion, values measured at points selected randomly and independ­
ently from each other are independent in the design-based approach and 
at the same time can be dependent in the model-based approach. 

Smoothing 
Let us now suppose we want to estimate z or predict z at all points in A or 
the mean of z or z of m subareas (blocks) of A. For any point or block indi­
vidually, the estimate should be p- or ^-unbiased and the p- or Ç-variance 
should be minimal. On the other hand, one may also be interested in the 
quality of the estimates of the point- or block values as a whole. For exam­
ple, one may wish that the spatial variance of the estimated values is close 
to that of the true values. Although simulation of random fields is the appro­
priate way to reach this, one may wonder how 'bad' results are if values are 
estimated or predicted optimally one by one. 
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In the design-based approach, the spatial variance of the true block-means, 
Equation (2.25), and of the estimated block-means, Equation (2.26), are 
defined as: 

VA^b)^lJ:Nb(mb-mAf (2.25) 
N 0=1 

and 

Mm b ) - - lEA/ b (m b -m/ (2-26) 
N 0=1 

where: 
vA{mb) = spatial variance of true block-means in A; 
vA(mb) - spatial variance of estimated block-means in A; 
mb = spatial mean of block b; 
rnb = estimated spatial mean of block b; 
B = number of blocks; 
Nb = number of soil profiles (possible sampling locations) in block b. 

Note that in Equations (2.25) and (2.26) possible differences in block size 
are taken into account. 

Although the true block-means are unknown, the spatial variance of these 
true block-means can be estimated by: 

Um* 'ZA-JJZ"»**
 (2"27) 

N b=1 

where: 
vA(mb) = estimated spatial variance of true block-means; 
vA = estimated spatial variance of A; 
vb = estimated spatial variance of block b. 

In terms of variance components Equation (2.27) states that the estimated 
between-block variance of true block-means equals the estimated total var­
iance minus the estimated pooled within-block variance. The spatial variance 
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of estimated block-means will be larger than that of the true block-means 
due to sampling errors. Therefore, in the design-based approach we have 
the reverse effect of smoothing. We quantified this effect by the relative 
variance, defined as the ratio of the variance of estimated block-means to 
the estimated variance of the true block-means: 

rv - ^ i = i - (2-28) 
vA(mb) 

In the design-based approach the relative variance will be larger than 1. 

In the model-based approach the spatial variance of true and predicted 
block-means are defined in a similar manner. The only difference is that the 
true spatial means are random. Therefore, the spatial variance of true block-
means is random too: 

vA(mb)^£Nb(mb-mA)2 (2-29) 

In the model-based approach the spatial variance of predicted block-means 
will be smaller than the estimated spatial variance of true block-means due 
to the well-known smoothing effect (Journel and Huijbregts, 1978, p. 451). 
So the relative variance, rv, Equation (2.28), will be smaller than 1. 

Smoothing may be reduced by using a limited number of sampling points 
in the neighbourhood of the block (Journel and Huijbregts, 1978, p. 451), 
but the choice of a neighbourhood is not part of the theory, hence it remains 
arbitrary. 

Case study 

To illustrate the differences in procedure and to see whether the differences 
between estimated and predicted means are relevant to practice, we used 
the data of a 'real-world' project on the susceptibility of soils to leaching of 
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Agricultural land 

Forest, heath 

Build-up area (Putten) 

Sample point 
2 km 

Fig. 2.2 Stratified simple random sample from the study area Schuitenbeek 

phosphate (Breeuwsma etal., 1989). Phosphate leaching to groundwater 
and surface water is a considerable environmental problem in large parts 
of the Netherlands. We estimated the areal fraction saturated with phosphate 
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by taking a stratified simple random sample from the area (Fig. 2.2). For 
the purpose of this study, we used the same data to predict this areal frac­
tion by indicator block kriging. 

Study area 
The study area Schuitenbeek is 25 km north of Wageningen, near the village 
of Putten. It is part of the central coversand area. There is intensive livestock 
farming here and as a result there is a large surplus of manure. Only part 
of it is taken away. More phosphate is applied in manure than crops can 
take up, and this may lead to the soils becoming saturated with phosphate 
(Breeuwsma and Schoumans, 1987). 

The study area is 8 km x 8 km, showing a great diversity in soil types, typi­
cal for coversand areas. Plaggepts, Plaggeptic Haplaquods and Typic Hapl-
aquods (Soil Survey Staff, 1975) on coversand ridges alternate with Typic 
Humaquepts in shallow valleys and in the lower areas between coversand 
ridges. In the east, Entic Haplorthods and Typic Haplohumods occur on the 
coversand belt of an ice-pushed ridge formed during the Saalien glaciation 
and on the ice-pushed ridge itself, consisting of coarse, fluviatile sediments 
with gravel. The largest part of the ice-pushed ridge is covered with forest. 

Areal fraction saturated with phosphate 
Van der Zee (1988) showed that the concentration of phosphate in water 
at the top of the saturated zone after a long period of leaching depends 
largely on the areic mass of P205 sorbed by soil (P) and the maximum areic 
mass of P205 which can be sorbed by that soil (Pmax). In this study Pand 
Pmax (both in kg P205 per m2) were defined for the volume of soil above the 
mean highest water table (Wmm; m below surface). Pmax was determined 
indirectly by measuring the oxalate-extractable aluminium and iron content 
in soil horizons above Wmin and using these contents in the following regres­
sion equation (Breeuwsma and Silva, 1992): 
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Pmax = £(4.6+0.39 Mox/)ô /P/ 0.71 (2.30) 
/=1 

where: 
4.6 and 0.39 = regression parameters (mol kg"1, dimensionless); 
L = number of horizons above Wmin; 
Mml = oxalate-extractable aluminium + iron content of soil horizon 

/(mol kg"1); 
5, = for/= 1... L-1: thickness of soil horizon/; for l=L: thickness 

of Lth horizon above Wmin (m); 
p; = volumic mass of soil horizon / (kg rrf3). 
0.71 = conversion coefficient (kg P205 mol-1). 

We measured p, by taking volumetric samples by a gouge auger. 

The ratio of P and Pmax, referred to as the relative mass of phosphate sor-
bed by soil (Pre|), was used as a measure of phosphate saturation of the 
soil. 

The areal fraction saturated with phosphate (Ac) is defined as the proportion 
of the area in which the relative mass of phosphate (Pre() of soil profiles 
exceeds a critical value c (Van der Zee et ai, 1990). 

We took 0.25 as a critical Pre|-value, which is mentioned in the protocol 
"Phosphate-saturated Soils", an official document specifying a standardized 
sampling design (Van der Zee et ai, 1990). To make our study more gener­
al, we also used 0.35 and 0.45 as critical values. These values appear to 
be the 16th, 33th and 53th percentiles, respectively, of the frequency distri­
bution of the Pre|-values in the area. 

Design-based approach: stratified simple random sampling 
Forest and heath were excluded from the sampling frame because we want­
ed to estimate the areal fraction saturated with phosphate, Ac, of agricultural 
land only. The agricultural area was stratified according to the map units 
of an existing soil map at a scale of 1:50 000. We expected the map units 
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to have different mean Pmax and therefore possibly also different mean Ac. 
This expectation was based on observed differences in Wmm and a strong 
correlation between Wmm and Pmax (Brus et al., 1992). Map units supposed 
to have an approximately equal Pmax were grouped together. By stratifying 
according to soil map unit we expected to increase the efficiency of the 
sampling. To get separate estimates of 2 km x 2 km blocks, we also strati­
fied according to 2 x 2 km blocks. Groups of map units within blocks were 
used as strata. 

We allocated 222 points proportionally to the areal extent of the strata but 
with a minimum of two. The spatial mean, Equation (2.31 ), and its sampling 
variance, Equation (2.32), were estimated by (Cochran, 1977 p. 91): 

H 

Q-A 

and 

qjtj • ± E «î£ (2-32) 
AT h=1 nh 

where: 
mh = estimated spatial mean of stratum h; 
Nh = area of stratum h; 
vh = estimated spatial variance of stratum h; 
H = number of strata; 
nh = number of sample points in stratum h. 

To estimate the Ac, first the Pre,-values at the sample points were transfor­
med according to: 

'c = 1 l f Pre\ * c (2.33) 
ic = 0 otherwise 
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Model-based approach: indicator block kriging 
Several model-based techniques can be used to predict the proportion of 
the area with Pre, > c: disjunctive kriging, multigaussian kriging, indicator 
kriging and probability kriging. We used indicator block kriging (IK) because 
in this technique Pre|-values are transformed likewise (Eq. 2.33) and only 
these transformed values are used in predicting. In doing so, results are 
comparable. Using indicator block kriging, the indicator value at a given 
location is interpreted as a random variable which has a Bernouilli distrib­
ution with ^-expectation (Journel, 1983, p. 451): 

E£c(x)} = 1 Prob[z(x)>c] + 0 Prob[z(x)<c] = 3 4 ) 

Prob[z(x)>c] = 1-F(c) 

Equation (2.34) shows that the expected value of the indicator variable can 
be interpreted in terms of probability of Pre,-values. 

Ac is predicted as the spatial mean of the indicator variable. This mean has 
^-expectation: 

N M (2.35) 

(for stationarity of z(x):) 1 -F(c) 

Analysis of spatial structure 
We first analyzed the data for a trend in Pre, by regression taking the xand 
y coordinate and their second-order terms as predictors. Only 1.5 % of the 
spatial variance of Pre, could be explained by a linear trend and 6.6 % by 
a second order polynomial. Therefore we assumed stationarity in the mean, 
which means that EJz(x)} is equal for all /'. Besides for Pre[ this also holds 
for all indicator variables because these are simply transformations of Pre,. 
In this case the semivariance equals half the ^-expectation of the squared 
differences: 

32 



T(xhxj) = l o f ^ x , ) - ^ } = ̂ [{z(x)-z(x)n (2.36) 

Moreover we assumed that the semivariance is finite and depends only on 
the lag xr x- in other words the intrinsic hypothesis. We further assumed 
isotropy, so that x, - Xj could be represented by a scalar h. 

To estimate the semivariances y{h), data pairs were grouped into 25 groups, 
according to their separating distance, and we calculated the means of the 
distances and of the squared differences of the pairs in each group. Figure 
2.3 shows the sample variograms. To these we fitted spherical models: 

y(h) = Cn + q {^!- l(^)3} for 0<h<a 0 1 2a 2a 
y(h) = c0 + cA for h>a 
y(/7) = 0 for h=0 

(2.37) 

where: 
a = range; 
c0 = nugget variance; 
CQ+C^ = sill. 

The indicator variables have a Bernoulli distribution with expectation p = 1 -
F(c). If two Bernoulli variables are independently and identically distributed, 
their squared difference is also Bernoulli distributed with expectation r = 
2p(1-p). The variance of the mean of n squared diffences equals r{1-r)/n. 
The reciprocal value of this variance was used as a weight in iterative fitting 
of the variogram model, using the fitted value as an estimate of r. 

We modelled the indicator variograms for the three critical values of Prel 

independently of one another. Journel and Posa (1990) recommend other­
wise because of order relation problems that might arise by fitting independ­
ently. We encountered no such problems, however, and fitted independently 
to ensure comparability with the design-based strategy. 
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Fig. 2.3 Indicator variograms for three critical values of the relative mass of 
phosphate (a: 0.45, b: 0.35 and c: 0.25) with estimated parameters of 
spherical model: c0 = nugget, c0 + c^ = sill, a = range 

For i025 the estimated sill was much larger than the theoretical maximum. 
This was caused by a slight increase in the semivariance beyond several 
kilometers (Fig. 2.3c). Therefore we used the design-based estimate of AQ 25, 
as an estimate of 1-F(0.25), to calculate the sill = F(0.25) [1-F(0.25)]. Next 
we estimated the parameters c0 and a of the spherical model under the con­
straint that c0 + C) was equal to the calculated sill. 

The fitted models (Fig. 2.3) showed the following features: 
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1. The variograms reached a clear sill. For /0 45 the sill equalled 0.250, which 
is in agreement with the fact that 0.45 was close to the median of Prel 

(Fig. 2.3a). Moreover, this estimated sill value supported the assumption 
of stationarity. 

2. The contribution of the nugget to the total variance increases from /0 45, 

'o35 t 0 'o25: t n e r a t i o c ( / s i " w a s 3 7 %> 7 1 % a n c l 83°/° respectively. This 
is known as the déstructuration effect (Journel and Posa, 1990). 

3. The range a increased in the same direction. From a theoretical point 
of view, one expects a constant range. The increase of a can possibly 
be explained by the positive correlation of the estimates of the range and 
nugget-effect. 

Prediction 
As the ^-expectation can be derived from the variogram (Journel, 1983), 
simple kriging can be applied instead of ordinary kriging (Journel and Huy-
bregts, 1978, p. 559). For the spatial mean of an indicator variable the sim­
ple kriging predictor is (ASCE, 1990): 

;=1 /=1 ;=1 

The simple kriging predictor is ̂ -unbiased for all XJS, i.e. the weights need 
not necessarily sum to 1. Therefore the weights giving minimum Ç-variance 
can be obtained by solving Equation (2.18) after dropping the Lagrange 
multiplier and the last equation (sum of weights equal to 1 ). The ̂ -variances 
of these predictions can be calculated by Equation (2.20). To estimate the 
mean Ç-covariance of a data point and a block, C(Xj,A) (Eq. 2.19), and the 
mean Ç-covariance of a block, C(A,A) (Eq. 2.21 ) the blocks were discretized 
into a square grid of points at mutual distances of 500 m for the total area, 
250 m for the 4 km x 4 km blocks and 200 m for the 2 km x 2 km blocks, 
respectively. 

We used all data, so n = 222 for all blocks. This means that for the 2 km 
x 2 km and the 4 km x 4 km blocks points outside the blocks were also us­
ed. To fit the variogram and to krige, we wrote our own program in the Gen-
stat language (Genstat 5 Committee, 1987). 
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Results 

The areal fractions saturated with phosphate (Ac) of the agricultural land 
within - the total area; - within the four 4 km x 4 km blocks; - within the six­
teen 2 km x 2 km blocks, estimated by STSI and predicted by IK, were com­
pared. 

Total area 
From Table 2.1 we can see that the STSI estimates and IK predictions of 
the >4cof the total area were very similar. The standard errors of the IK pre­
dictions were slightly larger than those of the STSI estimates. It should be 
noted however that the design of the sample was not optimal for IK, i.e. the 
standard errors would have been somewhat smaller if the data points had 
been equally spaced. 

Table 2.1 Areal fractions saturated with phosphate (Ac) of the total area estimated 
by stratified simple random sampling {STSI) and predicted by indicator block 
kriging (IK) for three critical values of the relative mass of phosphate (0.45, 
0.35, 0.25). Between brackets: standard error; sample size is 222 

Sampling strategy 

STSI 
IK 

Estimated/predicted areal fraction 

0.45 0.35 

0.441 (0.040) 0.659 (0.038) 
0.466 (0.047) 0.664 (0.046) 

0.25 

0.861 (0.030) 
0.841 (0.035) 

4 km x 4 km blocks 
Table 2.2 shows the results for the 4 km x 4 km blocks. Except for c = 0.45, 
the mean absolute difference between the estimated and predicted Acwas 
larger than that of the total area (Table 2.4). As opposed to the total area, 
the IK standard errors were smaller than the STSI standard errors. The STSI 
standard error increased more than that of IKdue to a decrease in the num­
ber of observations inside the estimation units. 
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Fig. 2.4 Scatter plot of the areal fractions saturated with phosphate (Ac) estimated 
by stratified simple random sampling (STSI) and predicted by indicator block 
kriging (IK) for three critical values of the relative mass of phosphate (0.25, 
0.35, 0.45). a: 4 km x 4 km blocks, b: 2 km x 2 km blocks 

In Figure 2.4a the >4c's estimated by STSI have been plotted against those 
predicted by IK. The slope of the imaginary lines through the points, for a 
given critical Pre|-value, is much smaller than 1. This shows that only small 
differences between blocks were predicted by IK compared with those esti­
mated by STSI. Nevertheless, for c = 0.25 and 0.35 positive correlations 
existed between the estimated and predicted Ac(r= 0.99 and 0.97 respec­
tively). For c = 0.45 the correlation coefficient was very small: 0.07. 

2 km x 2 km blocks 
Table 2.3 shows the results for the 2 km x 2 km blocks. The mean absolute 
differences were much larger than that of the 4 km x 4 km blocks (Ta­
ble 2.4). The mean standard errors from STSI were much larger than those 
from IK. 
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rig. 2.5 Areal fractions saturated with phosphate (>4C) of 2 km x 2 km blocks 
estimated by stratified simple random sampling and predicted by indicato 
block kriging for three critical values of the relative mass of phosphate (0.25 
0.35. 0.45) 



Table 2.4 Mean absolute difference between STSI estimated and IK predicted areal 
fractions saturated with phosphate (Ac) of blocks for three critical values of 
the relative mass of phosphate (0.25, 0.35, 0.45) 

Block 

Total area 
4 km x 4 km blocks 
2 km x 2 km blocks 

Difference (-) 

0.45 

0.025 
0.017 
0.161 

0.35 

0.005 
0.052 
0.123 

0.25 

0.020 
0.058 
0.110 

Figures 2.4b and 2.5 show that also for the 2 km x 2 km blocks differences 
between IK predicted block-means were much smaller than between STSI 
estimated block-means. This was affirmed by the values of the smoothing para­
meters: 0.04, 0.11 and 0.09 for IK and 2.04, 5.40 and 3.11 for STS/for c = 
0.25,0.35 and 0.45 respectively. We found similar results for the spatial means 
of the relative mass of phosphate, Fre, (Brus and De Gruijter, 1993). Neverthe­
less, the STSI estimates and //(predictions were strongly correlated: r= 0.927, 
0.932 and 0.790 for c= 0.25,0.35 and 0.45, respectively. For STSI the value 
for the upper right block is missing because there were no sampling points in 
this block. However, it was possible to obtain this value by IK. 

Discussion1 

Case study 
The results show that STSI and IK produced different estimates and predic­
tions, respectively, of the areal fractions saturated with phosphate (Ac). These 
differences were so small for the total area that they could be ignored for practi­
cal purposes. The small differences arise from the large number of sampling 
points used in estimation and prediction. In general, the more observations one 
makes, the smaller the differences one may expect between any two strategies. 

1This section will be published in Brus, D.J. & De Gruijter, J.J. 1993. Does kriging 
really give unbiased and minimum variance predictions of spatial means?. Journal of 
Soil Science 44, no. 4. 
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Fig. 2.6 Mean sum of weights of points inside and outside 4 km x 4 km blocks (a) and 
2 km x 2 km blocks (b), for indicator block kriging (IK) and stratified simple 
random sampling (STSI). 0.45, 0.35, 0.25: critical values of the relative mass 
of phosphate 

The difference between block-means estimated by STSI and predicted by IK 
increased with decreasing block size. This can be explained by the increasing 
differences between the STSI weights and IK weights attached to the data 
points. In /Kdata points outside the block were also used for prediction, where­
as in STSI these points have zero weight. In IK points inside the block had the 
larger weights, but the sum of the weights of external points was considerable. 
Figure 2.6 shows these sums for the 4 km x 4 km and the 2 km x 2 km blocks. 
Going from 0.45 to 0.25, the sum of the weights of the internal points de­
creased, which is due to the increase of the nugget-variance (Fig. 2.3). For 
the 2 km x 2 km blocks the sums of the weights of internal points were some­
what smaller because they had fewer internal points. 
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Although p-unbiasedness is not part of the quality criterion used in IK, one may 
wonder whether the IK predictions are still p-unbiased with the design used. 
We first consider the case of the ordinary kriging predictor (Journel and 
Huijbregts, 1978, p. 563) combined with any design. The p-expectation of the 
ordinary block kriging predictor, conditional on the realization actually sampled 
is equal to: 

Eptg = £p<£ V<^)} = £ i E A ) EPtyxp+<f&f*xy\ (2-39) 

where: 
|OK = ordinary block kriging predictor; 
Op2{ki,z(j$} = sampling covariance of the weight A,- and zQç). 

The weights, A,-, are now stochastic because the locations x; are. 

If (i) only points in the block are used for prediction, and (ii) all points have an 
equal probability of being included in the sample, then £p{z(x,)} equals the true 
spatial mean mA. Moreover, EEp(Aj) = EJ£X,) = 1 > so: 

n 
. 2 ƒ % > - E I W Ep{z{x)),c2

p{Xrz(x))] - mS£ÉE$!)UYt<%Lt*M$ 
/-I /=i /-i 

= ^ P ( £ A ^ ° P M ^ } = A7v£ a% ,,z(x)} 
M M M (2.40) 

So even if requirements (i) and (ii) are met, the ordinary block kriging predictor 
is p-unbiased only if the sum of the covariances of ̂  and zfô) is 0, which will 
generally be not the case, except when a pure nugget model has been accept­
ed. For a pure nugget model the covariances are 0 for all /, regardless the con­
figuration of points, because A,= 1/n for all /'. The above reasoning also holds 
for the simple kriging predictor which is used in indicator kriging, but then an 
extra requirement is needed to achieve p-unbiasedness, namely the ̂ -expecta­
tion of the spatial mean (which is assumed to be known in advance) should 
be equal to the true spatial mean. 
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It follows from the discussion above that the IK predictor is not p-unbiased for 
the 4 km x 4 km blocks and the 2 km x 2 km blocks, regardless of the design 
and the covariance term, because the predictor also uses external sampling 
points. For the total area, the strategy (STSI,lK) is notp-unbiased because the 
inclusion probability of the sampling points was not equal for all the points. 

Choice of sampling strategy 
The choice of the strategy should depend amongst others on what criterion 
of quality is required and on the sampling costs. 

Quality criteria 
Regarding the quality criterion there are two important questions to be answer­
ed: (i) are criteria required based on p-expectations or on ^-expectations?2 

and (ii) what is most important, to obtain an estimate as close as possible to 
the true spatial mean (minimum estimation variance) or to obtain an unbiased 
and robust estimate of the estimation variance? 

Question (i). We believe Ç-unbiasedness is a weak criterion. This can be 
shown by the following example. Suppose, one selects locations with a prob­
ability inversely proportional to Prefvalues thought likely from prior information. 
No theoretical objections can be made because in the model-based approach 
there are no restrictions on the selection of the sampling locations. If the prior 
estimate and the true value of Prel are positively correlated, then there would 
be a strong tendency to under-estimate the mean of Prel or Ac. Such misleading 
predictions are still ^-unbiased. The reason for this is that the sampled area 
is just one realization from the model and larger values would occur at the 
same locations in other realizations. 

With respect to the criterion minimum ̂ -variance, it is important to realize that 
a small ^-variance does not necessarily imply a small sampling variance for 

2Quality criteria can also be based on both expectations, i.e both the sampling loca­
tions and the model-realizations from which the sample is taken, vary. We minimize the 
expected p-variance or expected MSEp, E^E^ln^-m^2). This can be done subject to 
three unbiasedness conditions: p-unbiasedness, Ç-unbiasedness and pÇ-unbiasedness. 
For further details we refer to Cassel et al. (1977) and Särndal (1978). 
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the area sampled. For reasonably large samples (and as a result a precise 
estimate of the ̂ -variance), a small ̂ -variance means that in most of the model-
realizations the sampling variance will be small too (Hansen et al., 1983; 
Domburg et al. in press). 

If p-unbiasedness is chosen as a criterion, design-based sampling strategies 
are the only option. 

Question (ii). In the model-based approach several subjective assumptions 
are made about the spatial structure, e.g., about stationarity, isotropy and 
model type of variogram, that influence the results directly (Englund, 1990). 
The quality of the estimate of the ^-variance of the predictor depends on the 
quality of the model of the spatial structure. In the design-based approach no 
such assumptions are made. As shown above, the idea that spatial data are 
assumed to be uncorrelated in the design-based approach is a misunderstan­
ding. Several subjective decisions are made in the design-based approach 
either, e.g. in choosing the stratification criteria, the number of strata and the 
size of clusters (in cluster sampling). However, these are accounted for in the 
inference, still allowing for p-unbiased and robust estimation of the sampling 
variance of the estimator, independent of the spatial structure of the population. 

If the true model is known, model-based predictions will be closer to the true 
value in situations with clear spatial autocorrelation between the data points. 
However, in practice the true model is unknown. This introduces an extra error 
which should be added to the ̂ -variance. Moreover, models of spatial structure 
can also be used in design-based strategies, for example by soil map stratifica­
tion. This has the advantage that p-unbiased and robust estimates of the sam­
pling variance can still be obtained. The efficiency of variograms and soil maps 
as models of spatial structure for estimation of spatial means should be further 
compared in future. 

In conclusion, we recommend a design-based strategy if a p-unbiased and 
robust estimate of the estimation variance is essential, e.g. if a risk analysis 
is to be made. If it is most important to obtain an estimate as close as possible 
to the true value only and no (unbiased and robust) estimate of the estimation 
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variance is needed, also model-based strategies are suitable. However, we 
doubt whether (estimated) variograms are better models of spatial structure 
than soil maps and lead to smaller errors indeed in soil surveys at a regional 
scale. 

The subjectivity in the choice of the model (and the selection of the sampling 
locations) as such is a drawback of the model-based approach because it 
makes the survey results vulnerable to criticism (Borgman & Quimby, 1988). 
Objectivity may be especially important if results are used in legal or regulatory 
activities as in the case study described above. 

Sampling costs 
Besides the quality criterion, the choice of the sampling strategy should be 
determined by the available budget. If there are many blocks and measurement 
costs per sampling point are large it is rarely feasible to sample each block 
adequately resulting into inaccurate design-based estimates of the mean. In 
this case model-based strategies seem to be advantegeous. However, quite 
a few sampling points are needed to estimate the model. According to Webster 
& Oliver (1992) a variogram computed from a sample of 150 points will gen­
erally be satisfactory and one from 225 data will usually be reliable. In general 
these sample sizes would enable the means of several blocks (5-10) to be 
estimated adequately using a design-based strategy. 

Conclusions 

Model-based and design-based sampling strategies resulted in different esti­
mates of the areal fractions of land saturated with phosphate. There were only 
slight differences for the total area, but the differences between the estimates 
provided by the two approaches increased with decreasing block size to practi­
cally relevant magnitudes. This is because of the increasing difference in the 
number of sampling points used in prediction or estimation. In kriging points 
outside the block are used, and the total weight of these points, which depends 
on the variogram, the block size and the configuration of the data points, was 
considerable in the case described here. 
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Strong smoothing was obtained from the model-based method, i.e., the spatial 
variance of the predicted values was much less than that of the true values, 
whereas the design-based method produced the reverse. 

In general model-based strategies will not produce p-unbiased predictions of 
the spatial mean. Moreover, the quality of the estimate of the variance of the 
predictor remains unknown and depends on the quality of the model of the 
spatial structure. 

If enough funds are available to take a sample from each block we recommend 
design-based sampling strategies, because they ensure p-unbiasedness. If the 
number of blocks is large relative to the affordable sample size, model-based 
strategies are suitable. 
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Chapter 3 

Improving design-based estimation of 
spatial means by soil map stratification. 

A case study of phosphate saturation 



Geoderma, in press 



Improving design-based estimation of spatial 
means by soil map stratification. A case study 
of phosphate saturation 

The usefulness of soil maps and maps of land use was evaluated to estimate the 
spatial means of several phosphate sorption characteristics in two areas with contras-
tive historical phosphate loads. The maps were used to stratify the areas for random 
sampling. This is a way of incorporating knowledge of spatial structure into a design-
based sampling strategy. Three stratifications were evaluated, viz. by land use, soil 
map unit and by both, in combination with three methods of allocating sample points 
to the strata: proportional, optimum and near-optimum. The efficiency of various 
stratified simple random sampling designs was calculated from data of one sample 
from each area. 

The phosphate sorption characteristics were: (i) the areic mass of P205 sorbed by 
soil, i.e the mass of P205 per m2 actually sorbed by soil above a reference depth; 
(ii) the maximum areic mass of P205 sorbed by soil, i.e the areic mass which can 
potentially be sorbed by soil above a reference depth; (iii) the relative mass of phos­
phate sorbed by soil, i.e. the ratio of (i) and (ii); (iv) the areal fraction of soil saturated 
with phosphate, i.e. the fraction of an area with a relative mass of phosphate sorbed 
by soil larger than a critical value. 

For the maximum areic mass of P205 and the areic mass of P205 sorbed by soil, 
stratification by soil map unit will be worthwhile in both areas. For the relative mass 
of phosphate sorbed by soil and the areal fraction of soil saturated with phosphate 
there will be a gain only where the historical phosphate load is small. The gain for 
the areal fraction of soil saturated with phosphate depends strongly on the critical 
value of the relative mass of phosphate sorbed by soil. This gain may be further in­
creased by stratifying also according to land use. 

Introduction 

Eutrophication of the surface water is serious in the Netherlands and agri­
culture is a principal cause. Agricultural soils in the Netherlands, especially 
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in the sandy districts, are intensely manured. The Surplus phosphate not 
taken up by plants accumulates in the soil by sorption, and because the 
sorption capacity is limited the soil gradually becomes saturated. As a result, 
phosphate leaches to groundwater and surface water (Van der Zee, 1988). 
To prevent further degradation of the environment, manuring in susceptible 
areas is regulated by the 'Regulation of phosphate-saturated Soils' which 
is included in the Soil Conservation Law. 

To assess the susceptibility of phosphate leaching or the actual degree of 
phosphate saturation of a given area, the soil must be surveyed. The sam­
pling strategy, i.e. sampling design plus estimator, is important. Sampling 
strategies can be divided into model-based and design-based strategies. 
(Cassel etal., 1977; De Gruijter and Ter Braak, 1990). We concluded else­
where (Brus and De Gruijter, 1993) that if probability sampling is feasible 
and enough funds are available to take a sample of a pre-determined, mini­
mum size from each block, design-based strategies are better because: (i) 
their estimates are model-free and therefore more robust; (ii) there are no 
subjective decisions on sampling locations; (iii) it makes use of quality-
criteria based on expectations over realizations of the sampling design (p-
expectations) which are fnore relevant to practice than the model-based 
criteria based on expectations over realizations of the stochastic model 
describing spatial structure (^-expectations). 

A model of spatial structure can be both an advantage and a disadvantage 
for spatial sampling and estimation. If the model is correct, sampling can 
be more efficient. In design-based sampling strategies information about 
spatial structure can be used to divide an area into more homogeneous sub-
areas, strata. Thus, knowledge of spatial structure is incorporated in the 
sampling design, whereas in model-based strategies it is used in prediction. 
Stratification as a way of using knowledge of spatial structure, has some 
important advantages. Estimates keep their robustness, and p-unbiasedness 
and minimum p-variance can be used as criteria of quality. 

The purpose of this study was to assess the increase in precision of esti­
mates of the spatial mean of various phosphate sorption characteristics by 
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using a soil map and a land use map as models of spatial structure for strat­
ification. Several sampling designs with different stratification-types or alloca­
tion-types were compared, but only one random sample was taken. 

Data collection 

Survey areas 
Data were collected in two separate areas in the eastern part of the Province 
of Overijssel: Bentelo and Ootmarsum (Hack-Ten Broeke et al., 1990). Only 
the agricultural parts of the areas were sampled. These cover 1233 ha and 
2252 ha in Bentelo and Ootmarsum, respectively. Much more manure is 
produced in Bentelo than in Ootmarsum and so its phosphate load is larger. 
Moreover the water table in Bentelo is nearer to the surface and therefore 
the maximum mass of phosphate that can be sorbed by soil before phospha­
te leaches to the water table is smaller. Based on the comparatively large 
phosphate load and shallow water table we expected more of the area of 
Bentelo to be satuarated with phosphate. 

Target variables 
We estimated the sampling variance of the mean of three phosphate sorp­
tion characteristics: (i) the maximum areic mass of P205 sorbed by soil 
(Pmax); (ii) the areic mass of P205 sorbed by soil (P); (iii) the relative mass 
of phosphate sorbed by soil (Prei). Pmax was measured indirectly via the 
oxalate-extractable iron and aluminium content: 

^max = 0.5 Mox 8 p 0.71 (3.1) 

where: 
0.5 = regression parameter (-); 
MM = oxalate-extractable aluminium + iron content of soil (mol kg"1); 
5 = depth of soil profile (m); 
p = volumic mass of soil (kg m"3); 
0.71 = coefficient to convert the dimension from mol P per m2 to kg P205 

per m2 (kg mol"1). 
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There is a strong correlation between Pmax and Mox (Schoumans et al., 
1987; Van der Zee, 1988). 

For 8 we took the mean highest water table (Wmm) or 1 m if Wmm is larger 
than 1 m. This depth corresponds to the one used in the protocol 'Phos­
phate-saturated Soils', an official document specifying, for example, a stan­
dardized sampling design (Van der Zee et al., 1990). 

Analogous to Pmax, P was calculated by: 

P = Pox 5 p 0.71 (3.2) 

where: 
Pox = oxalate-extractable P205 content of soil (mol kg"1). 

For the measurement of Mox and Pox we took one bulk sample of the soil 
profile to the depth defined above. For p means of soil horizons, measured 
in previous soil surveys, were used (Hoekstra & Poelman, 1982). 

The relative mass of phosphate sorbed by soil (Pre,) is the ratio of P and 
P 
' max 

Prei = - j A - (3-3) 
' m a x 

In addition to the sampling variance of these spatial means, we estimated 
the sampling variance of the areal fraction of soil saturated with phosphate 
(Ac) defined as the fraction of the area with a Pre,-value greater than or equal 
to a given critical value (c). For ewe took 0.25, 0.35 and 0.45; the first one 
is being used in the protocol 'Phosphate-saturated Soils'. 

Actual sampling design 

Stratification 
The two areas were stratified using a soil map, land use map and a map 
of drainage. For Bentelo only the first two maps were used. The existing 
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1:50 000 soil map (Stichting voor Bodemkartering, 1979; Ebbers & Van het 
Loo, 1992) was used. Previous studies showed clearly different Pmax for 
some of the units of this map (Brus et al., 1992). Soil map units supposed 
to have an approximately equal Fmax were grouped together (Table 3.1, Fig. 
3.1a). 

Table 3.1 Clustering of units of 1:50 000 soil map into strata for Bentelo and 
Ootmarsum 

Bentelo 

No. Map units 

1 ABv(\\\), pZg23(ll), pZg23(\\\) 

2 Hn21(\\\), Hn21(V), Hn21(V*), Hn2^x{V), cHn21(V*), pZn23(lll) 
3 Hn21(VI), cHn23(VI), Hn21(lll/V/VI), Hn21(lll/VI), Hn21(V/VI) 
4 /cpZ£r23(lll), kpZg23(\\\*), /rpZg(23x(lll) 
5 zEZ21(VI), zEZ23(VI) 
6 zEZ21(VM), zEZ23(VII), zEZ21(VI/VII) 

Ootmarsum 

No. Map units 

1 ABv(\\), ABvF{\\), ABv{\\\), ABv(\\N), pZg23(lll), pZg23(V), pZg23t(V), pZg23x(V), 
pZg23(VI) 

2 Hn21(V), Wn21(V*), Hn21fF(v), Hn21t(\f), Hn21x(V*), Hn23(V), Hn23(W), 
Hn23t(V), Hn23x(V), gHn21t(V), gHn30t(V), mHn23x(V), pZn21(V*) 

3 fcEZ23f(V), bEZ23t(V\) 
4 KT(V), KXiy), KT(VI) 
5 cHn21(VI), cHn23(VI), Hn21(VI), Hn23{V\), Hn23x(V\), gHn23x(V\), 

Hn2MKT(\IN\), Hn21/Hn21x(V/VI/VII) 
6 cHn21(VII), cHn21(VII*), cHn23(VII), Hn21(VII), H/T21(VIP), gHn21(VII), 

gHn23{V\\), gHn23(V\\*), gHn30(V\\), gHn30(\/\\*), srV21(VII*), fifV30(Vir), 
Wd21(VII*), gWd21(VII*), gHd2VgHn23x(V\\/V\l*) 

7 6EZ23(VII*), /jEZ23t(VN*), zEZ21(VII*), zEZ23(VII), zEZ23(VII*) 

57 



rem 

Z?77\ 

Humaquept 
Humaquept, topsoil clay 
Haplaquod, shallow water table 
Haplaquod, deep water table 
Plaggept, moderately deep water table 
Plaggept, deep water table 

4> 

1772 Grassland 
E23 Arable land 

Fig. 3.1 Generalized soil map (a) and land use map (b) of Bentelo used for 
stratification (After Hack-Ten Broeke et ai, 1990) 



There are only two kinds of land use: grassland and arable land (Fig. 3.1b). 
Maize is the main arable crop and the land is heavily manured. By stratifying 
according to land use we hope to reduce the variance in P. Only the soil 
map units with a shallow water table (unit 1 to 4 of Table 3.1 ) of Ootmarsum 
were divided according to drainage. The aim was to obtain separate esti­
mates of Ac within these wet areas. Combining the subdivisions from the 
maps produced 12 strata in Bentelo and 26 strata in Ootmarsum. 

In Bentelo 66 profiles were sampled, in Ootmarsum 116. This corresponds 
with a density of one sample point per 19 ha. 

Allocation 
In Bentelo the sampling points were allocated in proportion to the area of 
the strata with a minimum of two (see Table 3.3 p. 65, column right-hand 
side). The minimum of two points per stratum was required to obtain un­
biased estimates of the variance within strata. In Ootmarsum proportional 
allocation would have resulted in small sample sizes and imprecise esti­
mates for the strata in the wet areas. These soils are relatively vulnerable 
to phosphate leaching to the water table. It was especially important there­
fore, to obtain precise estimates of Ac here and so they had twice the num­
ber of sample points as they would have had with proportional allocation. 
Otherwise, points were allocated in proportion to size (area) of the strata, 
with a minimum of two. 

Data analysis 

Studied sampling designs 
To calculate the increase in precision of estimates of the spatial mean by 
stratification, we estimated the sampling variance of the spatial mean for 
nine sampling designs (Table 3.2). 

In proportional allocation the sample size of a stratum is proportional to its 
size (area). In optimum allocation, in addition to differences in size, dif-
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Table 3.2 Analysed sampling designs 

Code Stratification Allocation 

SI 
UP 

uo 
S/P 
S/NO 
S/0 
LS/P 
LS/NO 
LS/O 

no 
land use map 
land use map 
soil map 
soil map 
soil map 
land use + soil 
land use + soil 
land use + soil 

map 
map 
map 

-
proportional 
optimum 
proportional 
near-optimum 
optimum 
proportional 
near-optimum 
optimum 

ferences in spatial variation within the strata are also taken into account. 
For optimum allocation, a stratum with the same size (relative area) but with 
a larger internal spatial variation, receives more sample points. 

If the size or variance of a stratum is very small, its optimum sample size 
may be zero or one. For such strata we would get no estimates of the spatial 
mean and therefore we would be unable to obtain unbiased estimates of 
the spatial mean of the total area. One sample point in each stratum would 
suffice, but then we would not be able to calculate unbiased estimates of 
the sampling variance of the spatial mean. Therefore, we calculated the 
sampling variance of the mean for near-optimum allocation, i.e. optimum 
allocation with a minimum of two points in each stratum. 

Estimation of sampling variance of mean under non-executed sampling 
designs 
To estimate the sampling variance of the global means for the nine designs, 
we need take only one sample, as I shall show. The sampling variance is 
estimated in two steps: 
(i) estimation of the spatial variance of the phosphate sorption charac­

teristics within the total area and within the strata used in the non-
executed designs; 

(ii) estimation of the sampling variance. 
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Estimation of the spatial variance (step i) is simple because the 'new' strata 
are combinations of strata used in the executed sampling design. In Bentelo 
the strata of the executed sample are the same as those of the LS/P and 
LS/NO designs. We used the procedure followed by Marsman and De 
Gruijter (1986): 

vt(z) = mt(z
2) - {mt(z))2

 + ôp
2{mt(z)) (3.4) 

where: 
vt(z) = estimated spatial variance of characteristic z inside the new 

stratum t, 
nitiz2) = estimated spatial mean of z2 of the new stratum t, 
mt(z) = estimated spatial mean of z of the new stratum t, 
âp2{mt(

z)} = estimated sampling variance of the estimator mt under the 
—p 

executed sampling design p. 

This equation can also be used to estimate the spatial variance inside the 
total area, vA(z), which we need for the simple random sampling design. A 
similar procedure was used by Cochran for the specific case of estimating 
the sampling variance of the mean of a simple random sample given the 
results of a stratified simple random sample (Cochran, 1977, p. 136). The 
components of Equation (3.4) can be estimated by the usual estimators for 
stratified simple random sampling as follows. The means of z and z2 in a 
new stratum t (mt) were estimated by: 

H 

I 
h=1 

mt=Zwhmh <3-5> 

where: 
H = number of (original) strata inside the new stratum t, 
Wh = weight of stratum h calculated as the proportion of the area of 

stratum h inside the new stratum t, 
mh = estimated spatial mean of stratum h. 

The sampling variance of the estimated mean of a new stratum t under the 
executed sampling design p can be estimated by (Cochran, 1977, p. 92): 
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H H 

à2lm) = £ < à2
p(mh) » E ^ d -fh) 0-6) 

where: 
âp2(mh) = estimated sampling variance of the sample mean of (original) 

stratum h under the executed sampling design p; 
vh = estimated spatial variance of stratum h; 
nh = sample size of stratum h; 
fh = sampling fraction of stratum h. 

The sampling fractions are close to zero for all strata so that the last term 
of Equation (3.6) can be dropped. If the spatial variance vh is expressed in 
terms of proportions, Equation (3.6) becomes: 

«%<£)-- ivfh^^V-fh) (3-7) 
/i=1 "h 

where: 
g_h = estimated proportion of (original) stratum h. 

Once the spatial variances within the new strata of the non-executed designs 
or within the total area are known, the sampling variances of the mean can 
be estimated simply for a given sample size and, with stratified simple ran­
dom sampling, for a given allocation of the sample points to the strata. For 
proportional and optimum allocation the sampling variance can be estimated 
without calculating the sample sizes of the strata, whereas for near-optimum 
allocation these sample sizes have to be calculated first. 

For simple random sampling the variance of the mean is simply: 

â 2 ( m j = Z l ( 1 - / ) « Z d (3-8) 
n n 

-A' 

where: 
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ôp
2(mA) = estimated sampling variance of the estimated mean of the total 

area under the new design p. 

For stratified simple random sampling (STSI) we have: 

à2(m ) = TW2 =1 (3.9) 
-pv_y £, ^ 

where: 
T = number of new strata; 
nt = sample size of the new stratum t. 

Proportional allocation 
Using proportional allocation, we substitute: 

nt = n W, (3.10) 

in Equation (3.9). The sampling variance reduces to: 

à2(m ) =-TW,v (3.11) 

Cochran (1977, p. 100) shows that if terms in 1//V, are negligible then: 

T 

n M 
a W , = <4 - - E W, (mt-mA)2 (3-12) 

Optimum allocation 
For a fixed total sample size the sampling variance of the mean is minimized 
if (Cochran, 1977, p. 98): 
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n n W'S< n "> 8* 
n, = n = n T T (3.13) 

Y,Wtst £ / V f s f 
f=i /=1 

where: 
sf = spatial standard deviation within a new stratum t. 

Substituting this in Equation (3.9), gives the minimum sampling variance 
of the mean for a fixed sample size: 

Éwt8f (3.14) 
ç?(mA) = ±1 

P A n 

However, in practice this minimum cannot be achieved for two reasons. 
Firstly, the allocation is based on estimates of the spatial variance within 
the strata. These estimates might be biased, for example if they are based 
on data from outside the study area. But even if we have unbiased esti­
mates, the estimation error will not be zero. The second reason is that the 
calculated sampling variance is based on non-integer numbers of sample 
points in the strata. 

Relating the variance for optimum allocation to that of simple random sam­
pling gives: 

4rs/(op) = <4 - -J- £ Wt (mrmA)2 - 1 £ Wt (srsA)2 (3.15) 

Near-optimum allocation 
First we established the near-optimum sample sizes of the strata by calcu­
lating the optimum sample sizes. Strata with initially less than two points 
received two. The remaining sample points were allocated optimally to the 
other strata. The sampling variance of the mean was finally estimated using 
Equation (3.9). 
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Results and discussion 

Sample sizes of strata 
The distribution of the 66 sample points in Bentelo over the strata for the 
different types of allocation is given in Table 3.3. The proportional sample 
sizes do not depend on the target variable, but the optimum sample size 
does. For example, stratum 4 of Bentelo should have nine points to optimize 
the estimation of the mean Pmax, but it should have only three points to 
optimize the estimation of the mean P. This means that the best allocation 
for a given variable may not be best for another. However, the optimum 
sample sizes for the six variables were positively correlated (Table 3.4). In 
general, the correlation coefficients were fairly large (> 0.7). 

Table 3.3 Distribution of sample points over LS-strata for different types of allocation 
for Bentelo. pr = proportional allocation; op = optimum allocation; no = 
near-optimum allocation; ex = executed allocation 

Stra­

tum 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Number of sample points 

Pr 

4 

1 

9 

6 

17 

8 
7 

4 

1 

2 

4 

3 

P 
max 

3 

0 

9 

9 

11 

4 

8 

5 

3 

5 
7 

2 

P 

7 

0 

11 

3 

16 

4 

5 

3 

4 

3 

7 

3 

op 

Prel 

6 

1 

11 

6 

18 

8 

8 

3 

1 

0 

2 

2 

A).25 

7 

0 
14 

9 

19 

0 

9 

8 

0 

0 

0 

0 

A).35 

5 

0 

11 

8 

15 

7 

8 

6 

2 

0 

0 

4 

A).45 

5 

0 

10 

8 

16 

6 

8 

4 

2 

0 

4 

3 

P 
max 

3 

2 

9 

9 

10 
4 

8 

5 

3 

4 

7 

2 

P 

6 

2 

11 

3 

15 

4 

5 

3 

4 

3 

7 

3 

no 

^re, 

6 

2 

11 

6 

16 

7 

7 

3 

2 

2 

2 

2 

A).25 

6 

2 

11 

7 

16 

2 

7 

7 

2 

2 

2 

2 

ex 

A).35 A).45 

5 

2 

11 

7 

14 

6 

7 

5 

2 

2 

2 

3 

5 

2 

10 

7 

15 

5 

7 

4 

2 

2 

4 

3 

4 

2 

9 

6 

16 
7 

7 

4 

2 

2 

4 

3 
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Results for Ootmarsum were similar. The optimum sample sizes were also 
strongly correlated with the proportional sample sizes. This is to be expected 
because the optimum sample size is directly related to the size of the strata 
(Eq. 3.12) and because the variance within the strata also increases with 
increasing size. 

For LS-stratification the optimum sample size for estimating Ac of several 
strata will be zero because their estimated spatial variance was zero. Using 
this stratification, the relative precision of estimates of >4cfor near-optimum 
allocation will be notably less than that for optimum allocation. 

Relative precision 
We used the ratio of the estimated sampling variance of a simple random 
sample to that of the strategy under consideration as a measure of the rela­
tive precision: 

à2
ol(m J 

Ô2, = ~SI A (3.16) 
" ^ ô2(mj 

— p v — A ' 

From Equations (3.8), (3.10) and (3.13) it is obvious that the relative preci­
sion for proportional and optimum allocation is independent of the sample 

Table 3.4 Correlation coefficients for sample size of LS-strata for optimum and 
proportional allocation for Bentelo. n = proportional sample size; n = 
optimum sample size 

%(Pmax) 

"op(P) 

V P r e l ) 
nop(A).25) 
nop(A).35) 
nop(^0.45) 

1 

0.77 

0.85 

0.98 

0.85 

0.93 

0.97 

"pr 

1 

0.72 

0.72 

0.78 

0.72 

0.82 

P 
max 

1 

0.85 

0.77 

0.77 

0.86 

P 

1 

0.87 

0.95 
0.97 

frei 

% 

1 

0.92 

0.90 

A).25 

1 

0.96 

A).35 

1 

^0.45 
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Sampling design 

^ s ^0.35 ^ 3 A0A5 
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Fig. 3.2 Relative precision of the estimated spatial mean of six soil properties of 
Bentelo, for nine sampling designs; Pmax: maximum areic mass of P205 

sorbed by soil, P: areic mass of P205 sorbed by soil, Pre(: relative mass of 
phosphate sorbed by soil, Ac: areal fraction of soil saturated with phosphate 

for c as critical level of P, rel 

A035 VZA AQi 

UP L/O SIP S/NO S/O LS/P LS/NO LS/O 

Sampling design 

SI UP UO SIP SINO S/O LS/P LS/NO LS/O 

Sampling design ,81Co3 

Fig. 3.3 Relative precision of the estimated spatial mean of six soil properties of 
Ootmarsum, for nine sampling designs; Pmax: maximum areic mass of P205 

sorbed by soil, P: areic mass of P205 sorbed by soil, Prel: relative mass of 
phosphate sorbed by soil, Ac: areal fraction of soil saturated with phosphate 
for c as critical level of P, rel 
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size n. However, the relative precision for near-optimum allocation depends 
on n. As n increases, the relative precision for near-optimum allocation ap­
proaches that of optimum allocation. The relative precision is presented in 
Figures 3.2 and 3.3. 

Land use map stratification 
In general, the relative precision of designs with land use stratification was 
close to 1. So in general land use stratification will not be worthwile. Only 
in Ootmarsum we expect a small gain for Pand A0A5 (Fig. 3.3). The gain 
for Pcan be explained by differences in historical phosphate-load of grass­
land and arable land. In Bentelo these differences were much smaller as 
a result of crop rotation and intense manuring of both land use types in re­
cent years. 

So/7 map stratification 
For Pmax and Pthe relative precision of designs with soil map stratification 
was considerable larger than 1 in both areas (Figs 3.2 and 3.3). For optimum 
allocation the relative precision was considerably larger than for proportional 
allocation. From this we can conclude that the spatial means and spatial 
standard deviations of Pmax and Pof soil map units differ considerably (Eqs. 
3.12 and 3.15). This can partly be explained by the strong correlation be­
tween Pmax and Wmm (correlation coefficients for Bentelo 0.85 and for 
Ootmarsum 0.80) and between P and soil map unit in Ootmarsum. In 
Bentelo the gain for P was smaller than in Ootmarsum perhaps because 
recent manuring of all soil evened out differences between soil map units. 

Given the design, for Pre, (the ratio of Pand Pmax) the relative precision was 
smaller than that of Pand Pmax in both areas and for all designs. In Bentelo 
the relative precision was even close to 1 (e.g. 1.07 for S/O-design), where­
as those of Pand Pmax for this design were 1.45 and 2.22 respectively. This 
can possibly be explained by the moderate correlation of P and Pmax in 
Bentelo (correlation coefficient: 0.68). 

Given the critical Pre|-value (c) for all designs, the relative precision for Ac 

in Ootmarsum was larger than that in Bentelo. This is consistent with the 
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relatively large gain in precision for Prel in Ootmarsum. For Ac the relative 
precision differed markedly for c. For example, in Ootmarsum (Fig. 3.3) the 
relative precision for c = 0.45 was 1.81 for the S/O design, whereas it was 
1.15 for c = 0.35, for the same design. In Ootmarsum 0.45 was at the margin 
of the frequency distribution of Pre,: there were only few points with Pre, > 
0.45 and these points were concentrated inside a few strata. In other words, 
for c = 0.45 there were many strata with very small Ac and therefore a very 
small internal spatial variance, and few strata with a larger Ac and spatial 
variance. By taking these differences in proportions and variances into ac­
count when allocating, considerable gain in precision may be expected. Ana­
logous to this, the gain for c= 0.25 in Bentelo can be explained: there were 
only few points with Pre, < 0.25. 

Stratification according to land use map and soil map 
In Ootmarsum the relative precision for designs with land use plus soil map 
stratification was larger than for designs with soil map stratification only 
(given the type of allocation), especially for Pand A045. This is consistent 
with the result that for these characteristics land use stratification would also 
be worthwile. For Pthe gain will approximately equal the sum of the single 
gains; for Ac the gain is greater. 

Conclusions 

1. Soil map stratification improved the estimation of the spatial means of 
the maximum areic mass of P205 sorbed by soil (Pmax) and the areic 
mass of P205 sorbed by soil (P) in Bentelo and Ootmarsum. 

2. For the relative mass of phosphate sorbed by soil (Pre,) and the areal 
fraction of soil saturated with phosphate (>4C) soil map stratification pro­
duced an increase in precision only in Ootmarsum, where historical phos­
phate load is small. This gain can be increased further by stratifying ac­
cording to land use. 

3. For Ac gain depends mainly on the critical value of Prei (c). If c is close 
to the margin of the frequency distribution of Prei, strata are homogeneous 
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and a gain in precision may be expected, especially with optimum allo­
cation. 
In many cases, optimum and near-optimum allocation will give better re­
sults than proportional allocation. This stresses the importance of knowing 
the internal variance of map units. 
The optimum sample sizes of the strata were different for the six charac­
teristics. Therefore, for a soil survey with more than one target variable 
we should either select one of them as being the most important or make 
some compromise (Cochran, 1977, p. 119). Another simple solution is 
to allocate proportionally. 
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Stratification by soil map units to improve 
estimates of spatially varying soil properties 

m • m at points 

A specially designed case study investigated the effect of soil map stratification on the 
accuracy of estimates of four soil properties at points. Six estimation methods were ex­
amined, using different weighting functions: global mean, moving average, nearest neigh­
bour, inverse squared distance, Laplacian smoothing splines and ordinary point kriging. 
The soil properties estimated were thickness of A1 horizon, maximum areic mass of 
phosphate sorbed by soil, mean highest water table and mean lowest water table. 

The performance of the methods was measured by estimating the spatial means of 
squared and absolute error (quality criteria not conditional on the sample of test points) 
by a stratified simple random sample of test points. The mean squared error was very 
large in proportion to the spatial variation in the total area for all methods and properties. 

Differences between methods were small. In general, no statistically significant strat­
ification or weighting effects on the quality of estimates were found. The effect of weight­
ing plus stratification was generally not significant either, except for kriging and inverse 
squared distance weighting. Weighting with inverse squared distance was as satisfactory 
as weighting by ordinary point kriging. However, the latter was superior near data points. 
Also, when combined with soil map stratification, kriging was more reliable in the sense 
that it estimated all properties well. Estimates obtained using the means of six soil map 
units were better than those obtained from unstratified kriging and as good as kriging 
within three map units. 

Introduction 

Conventional soil maps show the spatial pattern of multivariate soil classes, 

defined in terms of many soil properties such as presence or absence of diag­

nostic soil horizons, texture, organic carbon content, depth to water table. The­

se properties are assumed to be strongly correlated, so that the spatial pattern 

of the classes is not too intricate to be mapped on a single map. Such maps 

can be used in many applications, ranging from landuse suitability studies (Van 
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Lanen et al., 1992) to soil protection studies (Breeuwsma et al., 1986). For 
this, thematic maps showing the spatial pattern of single soil properties, rele­
vant to the problem under consideration, are derived from the general-purpose 
map. However, these thematic maps are not always sufficiently accurate. The 
inaccuracy is caused by: 
- the imperfect correlation between the properties. As a result, the bound­

aries on the general-purpose map are a compromise. These compromise 
boundaries may differ considerably from the boundaries of the target pro­
perty depicted on the thematic map; 

- the abrupt change of the value of the target variable at the boundaries of 
the map units, whereas in reality lateral changes will often be more gradual; 
spatial autocorrelation within soil map units is neglected. 

Giltrap (1978) and Burgess & Webster (1980a,b) were the first to propose to 
map soil properties by kriging to overcome these problems. In kriging use is 
made of a variogram which describes spatial autocorrelation as a continuous 
function of the lag vector h separating two points. However, kriging ignores 
sharp boundaries which do exist in reality. Further, it is unrealistic to assume 
that the variogram is similar for all soil classes. 

Stein et al. (1988) and Voltz & Webster (1990) addressed this shortcoming by 
combining soil map classification and kriging. They used the soil map to stratify 
the survey area, and then they interpolated the soil properties in each stratum 
by kriging, using data from that stratum only. Stein et al. (1988) used separate 
variograms for groups of map units, whereas Voltz & Webster (1990) used a 
single pooled variogram within map units, because separate variograms would 
require too many data. Stratified kriging using a pooled variogram gave a 7% 
decrease of mean square error of prediction in an area with sharp boundaries 
between map units. Stein era/. (1988) and Voltz & Webster (1990) did not 
select the test points by probability sampling and were therefore unable to 
quantify the accuracy of their results and to test the statistical significance of 
the decrease. 

One serious drawback of kriging is the large number of observation points 
needed to estimate the variogram (Webster and Oliver, 1992). If kriging is im-
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practicable, more empirical estimation methods such as nearest neighbour, 
moving average, inverse squared distance or splines may be attractive. Using 
a density of observation points of 1.5 per ha, Van Kuilenburg et al. (1982) 
found that the estimates of moisture supply capacity in a coversand area by 
inverse squared distance weighting and ordinary point kriging were almost 
equally accurate and those of nearest neighbour were statistically significantly 
worse. Laslett et al., (1987) compared the performance of several estimation 
methods at a field scale with a grid spacing of 10 m. They found very small 
differences in the accuracy of estimates of pH by inverse squared distance, 
ordinary point kriging and Laplacian smoothing splines. Bregt (1992) compared 
the estimation methods local mean, global mean, inverse distance and kriging 
at several grid densities ranging from 8 to 200 observations of the depth to 
the pyritic layer per km2. He found no statistically significant differences be­
tween local mean, inverse distance and kriging at any density. 

AH these heuristic estimation methods may be combined with soil map strat­
ification as in kriging and this is what we did in this study, which had four main 
aims: 
- to assess the effect of soil map stratification on the accuracy of estimates 

at points for six estimation techniques (global mean, moving average, near­
est neighbour, inverse squared distance, Laplacian smoothing splines and 
ordinary point kriging); 

- to assess the effect of the estimator on the accuracy of estimates; 
to draw attention to the true spatial mean of the estimation error as a criteri­
on to assess the performance of estimation methods, because this criterion 
is not conditional on the sample of test points, and to stress the importance 
of quantifying the precision of an estimate of this spatial mean of estimation 
error; 
to see whether the precision of the estimated spatial mean of estimation 
error can be increased by stratifying the sample of test points according 
to distance to observation point and soil map unit. 

The global mean and ordinary point kriging methods have the advantage that 
the mean estimation error can be obtained directly by applying theory. Test 
points are not needed. We compared these theoretically derived estimation 
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errors with those obtained from the test points. 

In our study the soil map was used for stratification only. By doing this, not 
all information embodied in the soil map is used. Heuvelink & Bierkens (1992) 
and Van Meirvenne et ai (1993) showed how estimates of the mean of map 
units can be combined with estimates obtained by kriging and stratified kriging. 
We included estimation from representative profile descriptions as a separate 
estimation technique. 

Survey region & data collected 

Data were collected from a representative, weakly undulating coversand area 
around the village of Wesepe (north-east of Deventer), in the Province of Over­
ijssel, The Netherlands (Figure 4.1). The study covered a rectangular area, 
6 km from east to west and 8 km from north to south, with a great variety of 
soil types. The main soil type is Typic Haplaquod (Soil Survey Staff, 1975) with 
water table classes ranging from III (wet) to VII (dry) (Van der Sluijs & 
De Gruijter, 1985). On top of the coversand ridges, Plaggepts and Plaggeptic 
Haplaquods with deep water tables occur. The valleys are dominated by Typic 
Humaquepts. Here and there these Humaquepts are strongly enriched by iron 
(bog iron ore) and have a clay cover of less than 40 cm. 

Soils were sampled by auger at 188 observation points and 96 test points. The 
observation points form a square grid of 12 x 16 points, 500 m apart, with four 
missing points (non-soil). To test the accuracy of the estimation methods, we 
selected test points by a stratified simple random sampling design (see Esti­
mation error). 
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Fig. 4.1 Study area with location of observation points and test points 



We measured the following soil properties: 
- thickness of mollic or umbric or plaggen epipedon (d(A1), in cm); 
- maximum areic mass of P205 sorbed by soil above Wmin (Pmax, in kg per 

m2); 
- mean highest water table (Wmin, in cm below surface); 
- mean lowest water table ( Wmax, in cm below surface). 

The spatial means and standard deviations of these properties within the map 
units are shown in Table 4.1. 

Table 4.1 Spatial mean (m) and spatial standard deviation (s) of soil properties inside 
total area {A) and inside groups of soil map units estimated from the stratified 
simple random sample of test points (pZg..., see Fig. 4.1) 

Soil map 

unit 

Total area (A) 

pzg 
HnS 
Hn6 
cHn 
zEZ 
R 

d(A1) ( 

m 

29 
25 
23 
26 
36 
51 
27 

cm) 

s 

18 
7.2 
10 
28 
12 
21 
4.7 

P 
' max 

m 

2.1 
2.5 
1.2 
1.6 
2.8 
3.3 
1.7 

(kg m 2 ) 

s 

1.5 
2.2 
0.5 
1.0 
1.4 
1.4 
0.6 

W 
"mm 

m 

62 
40 
45 
59 
80 
134 
54 

(cm) 

s 

44 
14 
16 
29 
44 
79 
22 

W 
" m a x 

m 

132 
99 
120 
133 
157 
207 
119 

(cm) 

s 

48 
15 
17 
32 
52 
76 
23 

Pmax was calculated by the following regression equation (Van der Zee et 
al., 1990): 

Pmax = E 0-5 Moxl ô, p, 0.71 (4.1) 

where: 

/=i 
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0.5 = regression parameter (-); 
Mmi = oxalate-extractable aluminium + iron content of soil horizon / 

(mol kg"1); 
ô, = thickness of horizon / as far as lying above Wmin, or if Wmin > 1 m, 

as far as lying within 1 m (m); 
p, = volumic mass of horizon / (kg m"3); 
L = number of horizons; 
0.71 = conversion coefficient (kg mol"1). 

We measured Moxt and p, of all horizons at each point. 

Both Wmin and Wmax were estimated in the field, mainly on the basis of hydro-
morphic characteristics in the soil profile (see Van der Sluijs & De Gruijter, 
1985 for definitions and estimation technique). Both estimates were corrected 
for systematic measurement error by measuring the water table depth at 21 
points and simultaneously at reference points with known l/S/min and Wmax. These 
measurements were done at a time the water table reached Wmin or Wmax at 
the reference points. The depths of the water table at the 21 points on these 
day were used as errorless measurements of Wmin and Wmax when calibrating 
the field estimates by regression analysis. 

Volumic mass of soil (p,) was measured by taking volumetric samples with a 
gouge auger. These measurements were calibrated against those from samples 
taken with rings. To this end two samples were taken from 30 horizons, 10 cm 
apart, and one gouge auger sample was taken in the middle (Visschers en 
Marsman, 1991). 

Estimation methods 

The soil properties were estimated at the test points by six main estimation 
methods: global mean (GM), moving average (N3), nearest neighbour (A/1), 
inverse squared distance (ISD), Laplacian smoothing splines (LSS) and ordi­
nary point kriging (OK). All methods were used without stratification (e.g. OK-0) 
and within three strata (e.g. OK-3). The global mean estimation method was 
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also used within six strata (GM-6). Including the representative profile descrip­
tion method (RF), this gives fourteen estimation methods. 

On the basis of expert knowledge from previous studies we clustered the origi­
nal soil map units into three or six strata. The clustering varied with the soil 
property. 

Representative profile description (RF) 
In conventional soil survey, a representative soil profile description is given 
for each map unit. The values of the soil properties derived from this descrip­
tion should be close to the mean or the median and can be used as estimators 
for all points within this map unit. In general, such estimates of the mean are 
biased and introduce a systematic error. 

Global mean (GM-0, GM-3, GM-6) 
In GM-O, a p-unbiased estimate of the spatial mean of the whole study area 
(mA) is used as an estimator. This method would be appropriate if there were 
no spatial autocorrelation in the area. This is not very realistic and this method 
was incorporated for reference purposes only. In GM-3 and GM-6 the estimated 
means of three {GM-3) and six (GM-6) soil map units (mu) are used as estima­
tors. 

Moving average (A/3-0, A/3-3) 
The value at a test point is estimated as the unweighted mean of the three 
nearest observation points. In A/3-0 no stratification was applied. In A/3-3 there 
were three strata and the mean of the three nearest points in the stratum of 
the test point was used as an estimator. 

Nearest neighbour (A/1-0, A/1-3) 
The value at the nearest observation point is used as an estimator. In A/1-3 
there were three strata, and the value at the nearest point in the same stratum 
as the test point was used. 

Inverse squared distance (ISD-0, ISD-3) 
In this method the value at a test point is estimated as a weighted average 
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of the values at the observation points. The weights are proportional to the 
inverse of the squared distance: 

*•/ = —, [£ - V 1 (4-2) df M df 

where: 
dj = distance from test point x0 to observation point xr 

In ISD-3 only the observation points in the same map unit as the test point 
were used. 

Laplacian smoothing splines (LSS-0, LSS-3) 
By smoothing splines in two dimensions the following quantity is minimized: 

n~1 £ WxPy) -Hxpy)? + « ff[(ô2f/ôx2)2 +2(52f/8x5y)2
+(ô

2f/8y2)2]dxdy (4-3) 

where: 
z(x„y) = value at observation point /'; 
f(x„y,) = value of the spline function at observation point /'; 
a = non-negative parameter. 

The first term measures the goodness-of-fit to the data, the second term is a 
measure of the rate of change of slope and therefore a measure of roughness 
of the estimation surface. The parameter a reflects the relative importance of 
these two terms; in this study it was determined by cross-validation. For further 
details, see Wahba & Wendelberger (1980) and Hutchinson & Gessler (1993). 
In LSS-3 Equation (4.3) is minimized for the observation points in the same 
map unit as the test point. 

Ordinary point kriging (OK-0, OK-3) 
As in inverse squared distance, the predicted value is a weighted average of 
the values at the observation points. In kriging use is made of a stochastic 
model \ describing the joint distribution of the variables z(x,) to calculate the 
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weights (Journel & Huijbregts, 1978). The covariance function is an important 
part of this model. It describes the relation between the covariance of the val­
ues measured at two points and h, where h is the lag vector between the two 
points. In practice, instead of the covariance, one often models the semi-
variance, which is defined as half the variance of \z{x) - z^x)}. 

The optimal weights are obtained by solving the equations: 

n 

Y,W*pt) + ¥ = i,*P*o) V / = 1 ton 
/-1 (4.4) 

n 

7=1 

where: 
^x„x) = semivariance of z{x) and z(xy); 
\\t = Lagrange multiplier; 
Yto.Xo) = semivariance of zf^x) and the random variable z at the test point 

x0. 

By adding the test points in variogram estimation, we obtained estimates of 
the semivariance at short distances (< 500 m). Nonlinear models were fitted 
in Genstat by maximizing the likelihood according to the modified Newton meth­
od. We used the inverse of the numbers of pairs as weights. In OK-3, we esti­
mated semivariances and fitted models for the strata separately. Figure 4.2 
and Table 4.2 show the results. For c/(A1 ) there was clear anisotropy, for the 
other properties this was not significant. For all properties, the variograms for 
the three strata were clearly different. The difference in sill was most striking, 
but the range, nugget and model-type also differed. For example, we fitted pure 
nugget models to the sample variogram of Pmax in stratum pZgr (Humaquepts), 
whereas spherical models without nugget were fitted for stratum cHn, zEZ 
(plaggeptic Haplaquods, Plaggepts). 
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Fig. 4.2 Sample variograms and fitted models for d(A1), Pmax, Wmin and Wmax for total 
area (left-hand side) and for soil map units (right-hand side). For values of 
parameters, see Table 4.2 
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Table 4.2 Type and parameter values of variogram models 

Soil property 

No stratification 
d(A1) 

P 
max 

w 
" m m w 

max 

With stratification 
d(A1) 

P 
max 

mm 

w 
'max 

Stratum 

-

-
-
" 

pZg, Hn 
cHn 
zEZ 
PZg 
Hn 
cHn, zEZ 
wet 
mod.wet 
dry 
wet 
mod. wet 
dry 

Model 

spherical + nugget 
anisotropic 
spherical + nugget 
spherical + nugget 
spherical + nugget 

spherical + nugget 
spherical + nugget 
spherical + nugget 
pure nugget 
linear 
spherical 
pure nugget 
spherical 
spherical 
exponential 
spherical + nugget 
spherical 

c0 

81 

1.06 
283 
340 

125 
101 
281 
1.88 
0.68 
-
242 
-
-
236 
649 
-

c 

260 

0.77 
1626 
2401 

60 
179 
253 
-
0.079 
1.80 
-
715 
4174 
124 
325 
5844 

a(km) 

1.050-0.220 

1.026 
0.859 
0.921 

0.735 
0.772 
1.780 
-

0.338 
-
0.293 
0.851 
1.09 
1.64 
0.941 

Estimation error 

As measures of estimation accuracy we used the spatial means of the squared 
error (m^e2)) and of the absolute error (mA(\e\)). Unlike the Mean Squared 
Error (MSE) and Mean Absolute Error (MAE) which are usually defined as the 
arithmetic means of the errors at test points, mA(e2) and m„(|e|) are not con­
ditional on the sample of test points. Van Kuilenburg et al. (1982) were the first 
who proposed to use mA(e2) as a measure of estimation accuracy. The spatial 
mean of squared error is defined as: 
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mA(ez)=±£{z(x)-z(x)}2 (4.5) 

where: 
N = total number of possible sampling locations in A. 

The definition of mA( |e|) is simply obtained by substituting the absolute error 
in Equation (4.5). 

Empirical estimation 
These spatial means were estimated by a stratified simple random sample 
(STSI) of test points. The two stratification criteria we used were the distance 
to the observation points, and the soil map units (Fig. 4.1 ). It is well known that 
the estimation error is related to the distance to the observation points. There­
fore we expected this stratification to yield more precise estimates of the spatial 
mean of the estimation error. We distinguished two strata using this distance 
criterion: close to the nearest observation point (< 100 m) and further away 
from the nearest observation point (> 100 m). 

In previous studies it was shown that the spatial variance of our soil properties 
(c/(A1), Wmin, Wmax and Pmax) within soil map units differed statistically signif­
icantly (Marsman and De Gruijter, 1986; Brus era/., 1992). Given the sample 
size, the mean estimation error in map units with a large internal variance will 
generally also be relatively large. Therefore we also stratified according to soil 
map unit. The units of the 1:50 000 soil map were clustered into six groups. 
Combining the two distance strata with the six map strata resulted in a total 
of twelve strata. The test points were allocated as follows: 
- to the map unit strata, proportionally to their area; 
- to the strata 'close to observation points' and 'distant from observation 

points', 1/4 and 3/4 of the points of a map unit respectively. 

In stratified simple random sampling the spatial mean of the squared error is 
estimated by: 
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n„ 

H H pz(x)-z(xf (46) 
my) =E w

hmy) - E K- „ 

where: 

H = number of strata; 

Wh = weight of stratum h calculated as the proportion of the area of 

stratum h; 

m^e2) = estimated spatial mean of the squared error of stratum h. 

The sampling variance of the estimated mean under any stratified simple ran­

dom sampling design p can be estimated by (Cochran, 1977; p. 92): 

» 2 » = E ™t à2
p

{mhW = E w' — (1 -Q (4-7) 

where: 

ôp{mh(e
2)} = estimated sampling variance of the sample mean of the squar­

ed error of stratum h; 

me2) = estimated spatial variance of the squared error in stratum h; 

nh = sample size of stratum h; 

fh = sampling fraction of stratum h. 

The sampling fractions are close to zero for all strata, so the last term of Equa­

tion (4.7) can be dropped. These sampling variances can be used to calculate 

confidence intervals of z^,(e2). The confidence interval of the square root of 

the estimated spatial mean of squared errors can be calculated by taking the 

square root of the upper and lower bounds of the confidence intervals of /£?„(e2). 

Relative precision of estimated spatial mean of error 

The strategy (Sl,z) consisting of the simple random sampling design (S/) and 

the unweighted sample mean (z) is often taken as a reference when consid­

ering alternative strategies for estimating the spatial mean. Let p denote some 

other design, with the same sample size to ensure a fair comparison, and m^ 
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the estimator of the spatial mean for that design. The relative precision of this 
strategy (p.mj defined as: 

ô2,(D 
Ô2(p,mA) = -=?— (4-8) 

—p*—A' 

expresses how well strategy (p.mj performs compared to the reference strat­
egy {Sl,ï). For the sampling design p we took STSI with proportional allocation, 
STSIp„ and the estimator of Equation (4.6), and STSI with optimum allocation, 
STSIop (Särndal et al., 1992). The relative precision for proportional and 
optimum allocation are independent of the sample size n: 

#JSTSipi,mA) - U*2) 
£ MW 2 ) 

à*JSTSiop,mA) - -A 2>2) 
(4.9) 

E wjyr 

where: 
s^e2) = estimated spatial standard deviation of the squared error in stratum 

h. 

The estimation surface of a given soil property differs between methods, and 
consequently so does the surface of estimation errors. From this it follows that 
the mean and variance of estimation error of the strata depend on the soil pro­
perty Interpolated and on the estimation method. As a result, the relative preci­
sion may differ for each combination of soil property and estimation method. 

Deriving estimation errors from theory 
In GM and OK an estimate of the spatial mean squared error can be derived 
directly, without test points, from theory. In GM-0, mA(e2) is equal to the spatial 
variance of z within the total area, vA(z), plus the squared difference between 
the estimated and the true global mean of z (Brus et al., 1992). In GM-3 and 
GM-6, mA(e2) equals a weighted average of the mu(e

2) of the map units. As the 
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true spatial means of z are unknown, the difference between estimated and 
true mean is unknown. To avoid this problem we consider the expectation of 
the estimation error at points over all realizations of the sampling design. Each 
realization, i.e. each set of observation points, gives an estimate of the spatial 
mean of z in A and consequently an estimate of the value at a point / in A. The 
expectation of this error due to the difference between estimated spatial mean 
and true spatial mean of z is 0. Therefore, we estimated the spatial mean of 
the p-expected, squared errors, mA{Ep(£)} over repeated sampling of obser­
vation points. (Note that the errors are stochastic, not the true spatial mean.) 
For GM-0 this spatial mean equals: 

mA{Ep(z?)) = [EjmJ,z)}-mA(z)f+o
2

p{mA(z)} + vA(z) (4.10) 

As stated before, the first term equals zero. The second term, the sampling 
variance of the estimated mean of z in A, ap

2{mA(z)}, and the third term, the 
spatial variance of zin A, vA(z), should be estimated from the sample. However, 
we used a systematic sampling design, and in that case the model of spatial 
correlation must be known so that the sampling variance and spatial variance 
can be estimated. To circumvent this, we estimated the sampling variance and 
spatial variance by their simple random sample estimators. These estimates 
are generally conservative, i.e. the sampling variance and spatial variance are 
overestimated (Särndal et al., 1992, p. 80). From this it follows that the estimate 
of the spatial mean of Ep(e

2) is conservative too. 

Using OKthe variance of the prediction error at point x0 can be calculated by: 

c#z(x0)-z(x0)} = J2\, Y(x,,x0) (4-11) 

As indicated by the subscript £, this kriging variance denotes the variance over 
realizations of a stochastic model £, and therefore differs entirely from the sam­
pling variance (Brus and De Gruijter, 1993). The spatial mean of this kriging 
variance (m„(o>2)) equals: 
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mA(<% = mA{E^)} = Ejm^)} (4-12) 

Thus because mA(c2) is calculated over all realizations from Ç, it will generally 
be unequal to mA(e2). One should be aware of this when comparing these two 
quantities. 

Results and discussion 

General results 
Tables 4.3 and 4.4 show the square root of the estimated spatial means of the 
squared errors (Vm^e2)) and of the absolute errors (m„( |e |)) respectively. Most 
striking is the very large values (at least approximately 80 %) of Vrô^e2) in pro­
portion to the spatial standard deviation in the total area for all methods and 
properties. Apparently, a large part of the spatial variation remained within the 
map units and in between the observation points. This raises the question of 
whether a quality criterion based on the error of estimates at points is realistic, 
given the scale of the soil map and the density of the observation points. Soil 
surveyors generally agree that 1:50 000 soil maps should not be used for esti­
mation at points, or for estimating the means of small (< 5 ha) plots. 

The small differences between methods in Vrâ^e2) and in z^,(|e|) are very 
remarkable too, especially when related to the wide 90% confidence intervals. 
This already suggests there are only few statistically significant differences 
between methods (see hereafter). Despite this, we ranked the methods from 
best (rank 1) to worst (rank 14). The tables show that GM-6 and OK-3 were 
ranked low (< 4) and A/1 -0 was ranked high (> 13) for the squared error as well 
as the absolute error. GM-6 performed better than OK-0, although not signif­
icantly: the difference in Vm/,(e

2) and their 90% confidence intervals were 1.2 
± 3.0,0.05 ± 1.3,2.8 ± 6.2 and 4.7 ± 7.5 for af(A1 ), Pmax, Wmin and Wmax respec­
tively. This shows that the soil map is as good a model of spatial variation or 
even better than the variogram. The ranking for the squared error differed only 
marginally from that for the absolute error; therefore we will focus on the squar­
ed error. 
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We also calculated the spatial mean of the squared errors for the strata 'close 
to observation points' and 'distant from observation points' (Fig. 4.3). The re­
sults for the stratum 'close to observation points' may reveal the performance 
of the estimation methods in finer grids. However, situations are not completely 
identical, because in finer grids there is stronger spatial autocorrelation between 
the test point and all observation points and between the observation points 
themselves. The Vm^e2) in the stratum 'close to observation points' (hereafter 
referred to as close) was markedly smaller than 'distant from observation 
points' (hereafter referred to as distant), especially for Pmax, lVmin and Wmax. This 
suggests that it is justified to assume spatial autocorrelation and to use distan­
ce to observation points in estimating. This was underlined by the relatively 
inaccurate estimates of Wmin and Wmax by GM-0. All other methods gave signif­
icantly (a = 0.10) more accurate estimates of these properties. Figure 4.3 also 
makes clear that the relatively inaccurate estimates of Wmin and Wmax by A/1 -0 
in the total area resulted from the poor performance of this method in the strat­
um distant. 

For Pmaxthe differences between methods in the stratum close were large com­
pared to the stratum distant and to the total area. GM-3, GM-6, LSS-3, OK-0 
and OK-3 performed best, with very small mutual differences, and performed 
significantly (a = 0.10) better than A/1-0, A/1-3, ISD-0 and ISD-3. This can be 
explained by the large nugget of the variogram of Pmax (Table 4.2), and conse­
quently the spiky surface of this property. Interpolators, such as ISD and A/1, 
going through the data, give too much credence to these spikes and conse­
quently yielded inaccurate estimates near observation points. OK is also an 
interpolator, but the kriged surface is discontinuous at the observation points 
because the nugget is non-zero, which explains its relatively good performance. 

We will now go into the weighting effect before and after stratification, the strat­
ification effect and the effect of weighting plus stratification. Figures 4.4 and 
4.5 show the differences in Vm (̂e2) and their 90% confidence intervals for pairs 
of methods. 
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Weighting and stratification effect 
To find out more about the performance of the methods we assessed the ef­
fects of (i) the weighting function, (ii) the stratification, and (iii) the weighting 
function plus stratification on the spatial mean of squared error. These effects 
can be traced by comparing pairs of estimation methods. For the weighting 
effect we compared N3-0, A/1-0, ISD-0, LSS-0 and OK-0 with GM-O. Any linear 
estimator can be written as X'z where X' is the transpose of the vector with 
weights attached to the observation points and z is the vector with the values 
of the soil property at the observation points. In all methods except GM the 
weights vary and are a function of the locations of the observation points and 
the test point. In GMaW observation points are assigned an equal weight. Com­
paring the accuracy of the other methods with GMtherefore yields the effects 
of weighting. 

For the stratification effect we compared GM-3 and GM-6 with GM-O, A/3-3 with 
A/3-0, A/1-3 with A/1-0 and so on. The combined effect of stratification and 
weighting can be assessed by comparing A/3-3, A/1 -3, ISD-3, LSS-3 and OK-3 
with GM-O. 

The weighting effect may also be assessed by comparing A/3-3, A/1-3, ISD-3, 
LSS-3 and OK-3 with GM-3. This yields the weighting effect after stratification, 
which may differ notably from the weighting effect before stratification. It shows 
whether estimates can be improved (with respect to GM-3) by using a weight­
ing function within map units. We quantified these effects by the differences 
in the estimated roots of the spatial means of squared errors, Vm^e2). The 
sampling variance of these differences were approximated by Taylor extension 
(see Appendix). 

Weighting effect 
In general, there was no significant weighting effect1: the differences in Vm^e2) 
were small, whereas the 90% confidence intervals of these differences were 
wide. Only ISD weighting had a significant, positive effect on estimates of l/Vmln 

1A significant effect means that the difference in square root of the estimated spatial 
mean of the squared error differed statistically significantly from zero at a = 0.10. 
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and Wmax. Despite this, we can draw some cautious conclusions. ISD weighting 
and OK weighting seem to be the most reliable in the sense that these weight­
ing functions slightly decreased the Vm (̂e2) for all properties, whereas the other 
weighting functions showed a worsening for one or more properties. For all 
properties the spatial means of squared errors were increased to a greater or 
lesser degree by A/1 -weighting. Therefore this weighting function seems to be 
unsuitable. 

As opposed to the total area, in the stratum close there was a large, significant 
and relevant effect on the estimates of Wmin and Wmax for all weighting func­
tions. This can be explained by the strong spatial correlation of these properties 
(small nugget effect; Fig. 4.2). The differences between the weighting functions 
were small. OK weighting also had a significant positive effect on Pmax, whereas 
ISD weighting had no significant effect on the quality of the estimates of this 
property. Therefore, ISD weighting seems to perform slightly worse than OK 
weighting in this stratum, which underlines the already mentioned poor 
performance of interpolators near observation points. 

Stratification effect 
Figure 4.4 shows that generally no significant stratification effect could be tra­
ced from the sample of test points. Only for A/1 estimates of Wmax and Wmin was 
there a significant, positive effect which can be explained by the poor perform­
ance of A/1 weighting without stratification (see previous section). Nevertheless, 
for all properties and all methods, soil map stratification slightly reduced 
Vm^e2). 

How to read Figs 4.4 and 4.5: for example, the weighting effect of moving average 
estimation (A/3) of the thickness of the A1-horizon (c/(A1)) is -1.2 cm (symbol A on the 
lefthand side at the top of Fig. 4.4) which means that Vm^e2) obtained by global mean 
estimation (GM-0) minus Vm^e2) obtained by AG-0estimation is -1.2 cm. A/3-0 performs 
worse than GM-0. The 90% confidence interval of this difference covers the value 0, 
therefore this weighting effect is not significant at a = 0.10. 
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For the stratum close the decrease in Vm^e2) due to stratification was generally 
smaller than for the total area (Fig. 4.5). For ISD estimates of Pmax and Wmin 

there was even a significant negative effect. Stratification may increase the 
distance of the test point from the nearest observation point. In situations with 
gradual transitions between map units, this increase may involve a reduction 
in correlation if the distance is less than the range of the variogram. As a result, 
estimation methods assigning large weights to the nearest observation points 
may yield less accurate estimates. In contrast for GMthe decrease in Vnye2) 
of Wmax, Wmin and Pmax due to stratification in the stratum close was much larger 
than in the total area. 

Combined effect of weighting and stratification 
Unexpectedly, there was no significant combined effect of weighting and strat­
ification for most properties and estimation methods either (Fig. 4.4). There 
were significant, positive effects on estimates of Wmax and Wmin by ISD-3 and 
OK-3 only. For of(A1) and Pmax the decrease in Vm^e2) obtained by OK-3 was 
nearly significant (a = 0.10), whereas ISD-3 clearly showed no significant effect 
for these properties. Again, OK appeared to be the most reliable method. An 
explanation for this is that in OKa model of spatial autocorrelation is estimated 
from the data, whereas, for example, ISD implicitly makes use of a postulated, 
spatial autocorrelation model not estimated from the data. This model may dif­
fer markedly from the true model. However, the sample of observation points 
often fails to meet the requirements for accurate estimation of the variogram 
(too few samples or inadequate configuration) and consequently OK often re­
quires additional data. 

For the stratum close there was a significant, positive combined effect for all 
weighting functions on estimates of W^ and Wmin (Fig. 4.5). The good perform­
ance of LSS-3 is remarkable: it showed a significant, positive combined effect 
for P W and W 
" " " rmax> " 'max a l ,XJ " m m ' 

Weighting effect after stratification 
There was a relatively small but significant, positive weighting effect after strat­
ification for OKand ISD on estimates of Wmin and Wmax (Fig. 4.4). For Pmax, the 
decrease in Vm^e2) brought about by weighting after stratification was small 
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for all weighting functions and significant only for OK For of(A1) all weighting 
functions except OK led to an increase of V/fj^e2). To sum up: OK weighting 
was the best. It led to a decrease of Vm^e2) for all properties, whereas the 
other weighting functions increased the Vm^e2) of one or more properties. 

For the stratum close, application of the interpolators ISD and /V1 after strat­
ification had a significant, negative effect on estimates of c/(A1) and Pmax (Fig. 
4.5). 

Estimates of expected error derived from theory 
For GM-0, GM-3 and GM-6, the estimated spatial mean of p-expected squared 
error, /ftt{Ep(e2)}, was smaller than mje2), except for WmM estimated by GM-0 
and GM-6 (Table 4.5). However, because of the large standard error of mA(e2) 
these differences were not significant. For OK-0 and OK-3, the estimated spa­
tial mean of the kriging variance (mA(o2)) which is equal to the estimated spa­
tial mean of ̂ -expected squared errors, mA{Ep(z

2)}, was less than mj^e2) in all 
cases (Table 4.6). Again, these differences were not significant because of the 
large standard error of m^e2). Note the small standard errors of mA(a2). 

Table 4.5 Estimated spatial mean of squared error, M^)< and of p-expected squared 
error, mJEpfe2)}, for estimation methods global mean (GM-0) and means of 
map units (GM-3, GM-6); between brackets: standard error of estimates 

GM-0 

GM-3 

GM-6 

d(A1) ( 

M^) 

334 

(123) 

274 

(135) 

278 

(136) 

cm2) 

MEJë)) 

334 

227 

219 

Pmax (kg2 m"4) 

M?) 
22.8 

(6.0) 

20.6 
(7.1) 

19.8 

(6.9) 

MEp(i)} 

16.3 

13.6 

12.0 

Wmin (cm2) 

M?) 
1900 

(564) 

1503 

(333) 

1193 

(244) 

MEp(e
2)} 

1896 

1073 

1021 

Wma* (cm2) 

M*2) 

2325 

(549) 

1991 

(418) 

1445 

(281) 

MEp(i)} 

2995 

1599 

1519 
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Table 4.6 Estimated spatial mean of squared error, m^e2), and of kriging variance, 
nitlo*), for ordinary point-kriging (OK-0) and stratified ordinary point-kriging 
(O/C-3); between brackets: standard error of estimates 

d(A1)(cm2) Pmax (kg2 m"4) Wmin (cm2) Wmax (cm2) 

m,(e2) dU°& dh(^) &(<*%) dU*h dUod M^) duty*) 

OK-0 321 250 21.3 15.7 1467 1086 1827 1418 
(111) (3.7) (6.5) (0.04) (404) (14) (367) (21) 

OK-3 268 203 20.0 13.0 1164 876 1524 964 
(139) (5.9) (7.1) (0.5) (319) (112) (330) (79) 

Relative precision of estimated spatial mean of squared error. 
Figure 4.6 shows the relative precision of the estimated spatial mean of squar­
ed error under stratified simple random sampling using the previously described 
strata and proportional or optimum allocation. It shows that for proportional 
allocation the gain in precision was negligible, except for the combinations GM-
6/l/Vmin and GM-6/Wmsx. Apparently, only for these combinations were the differ­
ences of the mean of squared errors between strata large enough to be exploit­
ed in stratified sampling. However, for optimum allocation a considerable gain 
may be expected in all cases. This means that in particular the variance of the 
squared error varied considerably between the strata. For the absolute errors 
the gain for optimum allocation was somewhat smaller, and for proportional 
allocation there was a small gain too. 

For optimum allocation one needs a prior estimate of the standard deviation 
of the squared error within strata, which might be a problem in practice. How­
ever, one may expect relatively large standard deviations further away from 
observation points and in more heterogeneous map units. 

p-unbiasedness of estimates at points 
Table 4.7 shows that for all methods the spatial mean of errors differed from 
zero for most properties; however, this difference was not significant in most 
cases (a = 0.05). The value is related to the sample of observation points. For 
other systematic samples this value is likely to be different. Therefore the ex-
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Table 4.7 Estimated spatial mean of error for four soil properties; between brackets: 
standard error; * value differs significantly from zero (a = 0.05) 

Estimation 
method 

RP 

GM-0 
GM-3 
GM-6 

A/3-0 
A/3-3 

A/1-0 
A/1-3 

ISD-0 
ISD-3 

LSS-0 
LSS-3 

OK-0 
OK-3 

Estimated spatial mean of error 

d(A1) 

-0.7(1.9) 

2.1 (1.8) 
-1.9(1.8) 
-2.0(1.8) 

-0.6(2.1) 
-1.7(2.1) 

-0.4 (2.3) 
-0.3 (2.2) 

-1.2(1.9) 
-0.5(1.9) 

-2.5 (2.0) 
-1.8(1.8) 

-1.3(1.9) 
-1.2(1.8) 

P 
' max 

-

-0.09 (0.15) 
-0.09 (0.15) 
-0.07 (0.15) 

0.06 (0.16) 
0.00 (0.15) 

-0.02 (0.19) 
-0.09 (0.18) 

-0.01 (0.16) 
-0.05 (0.16) 

-0.06 (0.16) 
-0.09 (0.15) 

-0.03 (0.16) 
-0.09 (0.15) 

W 
" m m 

5.5 (4.4) 

-4.8 (3.9) 
-4.8 (4.3) 
-3.8 (3.9) 

-3.4 (4.1) 
-3.7 (4.1) 

-4.3 (5.2) 
-3.6 (3.8) 

-3.9 (3.9) 
-4.0 (3.9) 

-4.7 (4.1) 
-4.9 (4.2) 

-3.2 (4.1) 
-3.6 (3.9) 

W 
" m a x 

-7.4 (5.4) 

-9.2 (4.1)* 
-10.4 (4.8)* 
-7.7 (4.1) 

-7.8 (4.4) 
-8.7 (4.4) 

-9.2 (6.1) 
-6.0 (4.3) 

-8.2 (3.9)* 
-8.8 (4.1)* 

-9.3 (4.6)* 
-11.5 (4.5)* 

-8.3 (4.5) 
-9.7 (4.2)* 

pectation of this spatial mean or spatial mean of expected error, overall possi­
ble samples under design p is of special importance. We define an estimator 
of values at points as being p-unbiased if: 

mA(Ep[L]) = E ^ e ) ] = 0 (4.13) 

It is easy to see that Equation (4.13) holds for GM. The other estimation meth­
ods make use of a linear estimator, so we have to estimate the p-expectation 
of the spatial mean of linear combinations. If (i) only points in the area A are 
used for estimation and (ii) all points have an equal probability of being 
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included in the sample, then E^zij^)} equals the true spatial mean mA. More­
over, ££ „&) = Ep(£XJ) = 1, so: 

Ep[mA(L)] =Ep[±i; (thqZUc)) -z(x)] -
N^ tr 

N n 

- ^ E E Ep[^} Ep[z(x)) +o%z(x)} -z(x) = (4.14) 

^ E m * + [ E ^ , z ( x ) } ] -z(xy) = l £ f <#A, 4*.)} 
'V;=1 (-1 /VyV| M ' 

where: 
a/f^zCx,)} = sampling covariance of the weight Xy and zQç). 

Note that the weights \q are stochastic because the locations of the observation 
points Xj are stochastic. So even if requirements (i) and (ii) are met, the linear 
estimator is p-unbiased only if the mean sum of the covariances is 0. If obser­
vation points are selected with unequal probability of inclusion, for example 
by stratified random sampling with non-proportional allocation, GM still pro­
duces p-unbiased estimates at points, because this inequality is taken into 
account in the estimator. In contrast, all other methods will produce p-biased 
estimates at points, because they ignore the differences in probabilities of 
inclusion. 

Conclusions 

How to compare estimation methods 
The spatial mean of estimation error is a more useful criterion for evaluating 
the performance of estimation methods than the Mean Squared Error of 
estimates at test points because it is not conditional on the sample of test 
points. 

- Design-based sampling strategies have good potential for calculating confi­
dence intervals of differences in the spatial mean of estimation error and 
for testing the statistical 'significance of these differences. 
Stratification of the test sample by distance to observation point and soil 
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map unit will result in smaller standard errors of the spatial mean of squar­
ed error only if sample points are allocated approximately optimally to the 
strata. 

Results of comparison 

General results 
For all methods the root of the spatial mean of squared error is very large 
in proportion to the spatial standard deviation in the total area (at least 
approximately 80 %). For surveys at scale 1:50 000, a quality criterion 
based on estimates of means of blocks instead of values at points might 
be more realistic. 

- The differences in the root of the estimated spatial mean of squared error 
between methods were small, especially when related to their large stan­
dard errors. Only few of these differences were statistically significant at 
a = 0.10. 

- In circumstances comparable to those under study, the global means of 
soil map units produce estimates at points as accurate as kriging within 
groups of soil map units. For the global mean method one needs no vario-
gram, so the costs of sampling will generally be less. 

Weighting effect 
No significant weighting effect on the root of the estimated spatial mean 
of squared errors (^mA(e2)) is to be expected if the grid distance exceeds 
approximately half the range of the property estimated. In finer grids the 
weighting effect will increase; however, for interpolators like inverse squar­
ed distance (ISD) this increase will be limited when estimating properties 
with a noisy spatial variation. 

- Weighting according to ordinary point kriging (OK) and inverse squared 
distance (ISD) weighting performed best and were generally equivalent; 
however, the former seemed to be more reliable in the sense that it is less 
dependent on the spatial variation (variogram) of the property estimated. 
One advantage of ISD over OK\s that no variogram needs to be estimated 
and therefore it is a good alternative in the case of coarse sampling grids 
which make it impossible to estimate the variogram accurately. 
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Stratification effect 
- Soil map stratification will generally have no statistically significant effect 

on Vrn^e2) in circumstances comparable to those in this study. The strat­
ification effect depends on the density of the sampling grid and diminishes 
with increasing density, except when distance is not applied in weighting, 
as in the global mean method (GM-3, GM-6). 

Weighting plus stratification effect 
In general, there is unlikely to be a statistically significant effect on Vm4(£

2) 
due to weighting plus stratification in circumstances comparable to those 
we studied. Only stratified O/Cand stratified /SD will increase the accuracy 
compared with the global mean method, for properties with strong spatial 
autocorrelation such as the mean highest water table and mean lowest 
water table. 

- Stratified OK"is more reliable than stratified ISD and provides more accu­
rate estimates. This superiority increases with increasing density of the 
sampling grid. 

Weighting effect after stratification 
For 1:50 000 soil maps and a grid distance of 500 m, the weighting effect 
after stratification will generally be small and not significant because no 
spatial autocorrelation remains within some units, whereas in others the 
grid distance is generally too long. 
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Appendix 

Taylor approximation of sampling variance of the difference in roots of 
estimated spatial mean of squared error 
The variance of a function ƒ of xcan be approximated by (Kendall & Stuart, 
1977; p. 247): 

o ^ f & M f ' l E ^ } ] 2 ^ (4A.1) 

where: 
f'(£p(x)) = value of the first derivative of f at Elx). 
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In our case f(x) is Vxand xis m^e2). From Equation (4A.1) it follows that the 
sampling variance of Vrn^e2) can be approximated by: 

, , -, , < olim (E2)} 
cïijm (E2) M n }2o2{m (e2)}=l P~A (4A.2) 

The sampling variance of {Vm^e2.,) - Vrf̂ ,(ez
6)} equals the sampling variance 

of Vm^(£2
a), plus the sampling variance of ^mA(t2b), minus twice the sampling 

covariance of V/ft^e^) and Vm (̂e2
6)- The approximations of the two sampling 

variances are given by Equation (4A.2); the sampling covariance can be ap­
proximated by: 

Optym^a) ,\jmA(4) ) - 1
 O - ^ E 2 ) , ^ 2 ) } (4A.3) 

4^(4)^(4) 
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Strategies for updating soil survey information: 
a case study to estimate phosphate sorption 
characteristics 

To support future decisions on alternative strategies for updating soil survey informa­
tion, the efficiency of four strategies, revision, upgrading, revision plus upgrading and 
upgrading by two-phase sampling, has been studied. Revision results in a new soil 
map. Upgrading gives statistical information about means and variances within map­
ping units of the soil map. 

The merits of these strategies were measured in terms of the increase in accuracies 
of the spatial estimates of the values at unvisited points and of the spatial means of 
a study area of several soil characteristics. Point values were estimated by assigning 
an estimate of the mean value to any point in a given mapping unit. In the first 
strategy, the estimator was derived from the representative profile description ofthat 
mapping unit. In the other strategies, the estimator was derived from the statistical 
sample. 

Although the mapping units of the revised map were more homogeneous for some 
characteristics, the point estimates using the values of the representative profile de­
scriptions, were no more accurate. This was due to the bias of this estimator, which 
rules out the reduction in spatial variance. If revision was followed by sampling, this 
bias could be eliminated. As a result, for some characteristics the point estimates 
became more accurate than those based on the original map. 

Estimates of the spatial means of the study area via upgrading by two-phase sampling 
were more accurate, for all characteristics, than via revision plus upgrading. Using 
the estimates of the spatial variance within the mapping units of the original map for 
allocation was apparently more effective than reducing the variance itself. 
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Introduction 

In the 1950s the former Soil Survey Institute of the Netherlands (now part 
of the Winand Staring Centre) began to map the soil systematically, at a 
scale of 1:50 000. During 1990, the last hectares were surveyed, and it is 
expected that all map sheets will be published by 1992. However, some soil 
characteristics have changed since the survey began, for example the 
groundwater regime as a result of artificial drainage, and the thickness of 
peat layers as a result of oxidation. Moreover, recent mapping is more detail­
ed, i.e. there are more delineations. This is a result of surveyors' experience 
and a changing view on the permitted complexity of the map. Also, mapping 
was predominantly concerned with delineating soil classes defined in terms 
of many soil properties relevant to agricultural landuse, whereas nowadays 
users are also interested in properties related to soil conservation. 

Consequently soil scientists in the Netherlands, and also in the USA, began 
to discuss alternative strategies for updating soil survey information (Mars-
man & De Gruijter, 1983; Brown, 1985; Arnold, 1988; Bouma, 1988; Wilding, 
1988). Some scientists suggest that parts of the soil map assumed by them 
to be out of date, should be revised, while others regard the benefits of such 
revisions for practical applications as often not worth the investment. They 
prefer to leave the map unchanged and to quantify the variation within the 
units of the existing soil map by statistical sampling. Adding statistical infor­
mation to an existing soil map in order to enhance its usefulness, will be 
referred to as upgrading. 

In this study, four strategies for updating soil maps are compared with regard 
to costs and merits for spatial estimation of several soil properties, i.e. re­
vision, upgrading, revision plus upgrading, and upgrading by two-phase sam­
pling. 

Only one of these strategies was actually carried out in the present case 
study viz. revision plus upgrading. However, as explained later (in the sec­
tion Data collection and analysis), the results from this strategy have been 
used to calculate the merits of the other three strategies. 
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This paper describes the strategies, how to measure the efficiency of these 
strategies, the case study, and data collection and analysis. Finally, the re­
sults are presented and discussed, and some conclusions drawn. 

Strategies for updating 

As mentioned in the Introduction, we compared four strategies for updating. 
This section describes these strategies. 

Revision 
The original soil map is only revised. This can be done to a varying degree: 
we can take all the differentiating characteristics into account (multi-purpose 
revision) or only those relevant to a specific application (single purpose re­
vision). In doing so, we might change the classification of delineations, 
change their boundaries, or both. By revising a soil map we are attempting 
to increase its cartographic purity and the homogeneity of its mapping units. 
The revision carried out in this case study is described below (see Case 
study). 

Upgrading 
This strategy leaves the map unchanged, and therefore its purity and homo­
geneity. A probability sample is taken from the mapping units to give statis­
tical estimates of the means and variances of soil characteristics within 
these mapping units. Revision does not give such estimates. In this case 
a stratified simple random sample is taken, using the units of the original 
map as strata and allocating the sample points proportional to the size of 
the units. 

Revision plus upgrading 
Revision is followed by stratified sampling, now using the mapping units of 
the revised map as strata. This results in statistical estimates of the means 
and variances of soil characteristics within the mapping units of the revised 
map. 
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Upgrading by two-phase sampling 
We take a stratified simple random sample from the mapping units of the 
original map in two phases. In the first phase, a limited number of sample 
points is allocated proportionally to the mapping units. This preliminary 
sample is used to estimate the variances within the mapping units. These 
estimates are then used in the second phase to allocate the remaining 
sample points in such a way that the total sample is distributed optimally 
over the strata. By allocating the points proportional to the size and the in­
ternal variance of the strata, the sampling variance of the global mean is 
minimized, assuming equal costs per point (Cochran, 1977, p. 98). 

Efficiency 

The efficiency of a strategy is determined by its merits and its costs. 

Merits 
The merits of updating were evaluated in terms of the improvement of spatial 
estimates. We did so both for estimating values at unvisited points and for 
spatial means. It is obvious that the accuracy of these estimates depends 
amongst others on the method to estimate the values at points and means. 

Estimation of point values 
The method of estimation adopted was to assign an estimate of the mean 
value of a given mapping unit to any unvisited point in that unit. This proce­
dure worked fairly well for some properties. (Van Kuilenburg et al., 1982). 
We propose the spatial mean of squared errors, mA{e2), as the measure of 
accuracy for a deterministic estimator function i(x): 
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mA(s2) = ±-Y{z(x)-z(xfi2 (5.1) 

where: 
N = total number of soil profiles (possible sampling locations) in A 

(population size); 
z{x) = estimated value of the property at point x-, 
z{x) = true value of the property at point x-, 
A = area to which z(x) is applied and where the accuracy is to be eval­

uated. 

In our specific case, since z(x) is constant within a mapping unit u, with 
value mu, the mu(e

2) in u reduces to: 

mu(s
2) = (mu-mu)

2
 + _ L £ { z ( x , . ) - m / (5-2) 

where: 
mu = true spatial mean of z in u; 
Nu = total number of soil profiles (possible sampling locations) in u. 

The last term in Equation (5.2) is defined as the spatial variance of z in u, 
which we denote by vu, so: 

mu(e
2) = (mu-mu)

2 + vu (5.3) 

For a given mapping unit the spatial variance vu is fixed and mu(e
2) would 

be minimized by choosing mu equal to the true mean mu. Of course mu is 
unknown and has to be estimated by sampling. This introduces sampling 
variation and the estimator may now be considered as random and, there­
fore, denoted by mu. Now that mu is stochastic, the errors are stochastic 
too. Assuming that a random sampling design p is used, we can take the 
statistical expectation E of the e2s over realizations of the sampling process 
defined by p and the spatial mean of these expected errors: 
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mjEJé)} = Ep{(mu-mf) + vu (5.4) 

The first term on the right hand side of Equation (5.4) represents the Mean 
Squared Error (MSE) of estimating mu under design p, and can be broken 
down into the squared bias and the variance: 

MSE(m) = Ep{(mu-mf} = {Ep(mu-mu))
2
 + Ep[{mu-Ep(m)V] (5.5) 

Denoting the sampling variance under p by ap and substituting Equation 
(5.5) in Equation (5.4), we obtain: 

mjEJé)) = {Ep(m)-mf + o
z
p{m) + vu (5.6) 

With unbiased estimators the first term cancels and: 

mu{Ep(L
2)} = olim) + vu (5.7) 

For revision, we have no statistical estimates of the spatial means. We have 
used the representative profiles descriptions and prior information about 
aluminium and iron content of soil horizons to estimate the spatial means. 
These estimates might be biased, in which case the first term of Equation 
(5.6) is not equal to zero. On the other hand, since the estimator is a fixed 
value, the second term of Equation (5.6) can be dropped. 

The spatial mean of the p-expected, squared error for the whole area A, 
mA{Ep(e?)}, can be calculated as the weighted sum of the /TJu{Ep(e

z)}s, using 
the proportions of the total area in the mapping units (Wu) as weights: 

mA{Ep{^)} = £ Wu mu{Ep&)) (5.8) 
u=1 

where: 
U = number of mapping units. 
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Estimation of spatial means 
The means of the soil properties are estimated by a stratified simple random 
sample using the mapping units of the original map (for upgrading) or those 
of the revised map (for revision plus upgrading) as strata. The means over 
the entire area are estimated as averages of the sample means in the strata, 
weighted with the proportions of the total area in the mapping units. The 
sampling variance of these means is a measure of accuracy of these estim­
ates. For upgrading and revision plus upgrading, sample profiles are alloca­
ted proportionally to the strata. The sampling variance of the mean 
(Cochran, 1977, p. 93) can be estimated by: 

1 H 

Ô2 (m ) = - Y Wh v (5.9) 
-STSI(pi)KmA' n £-> h *-h 

" n=1 

where: 
^sTsi(pr) = est imated sampling variance under proportional al location; 
H = number of strata; 
n = total sample size; 
Wh = weight of stratum h measured as the relative area of stratum 

h; 
vh = estimated spatial variance within stratum h. 

Upgrading with two-phase sampling implies optimum allocation to the strata. 
In that case, the sampling variance of the mean (Cochran, 1977, p. 99) can 
be estimated by: 

H 

4n**ÖV 4 [£ W" &f <5'10> 

where: 
ç?sTsi(op) = estimated sampling variance under optimum allocation. 

As with estimation at points, for revision we used the representative profile 
descriptions of the mapping units to calculate the spatial means of the study 
area. The accuracy of this biased estimate is calculated in terms of the ab-
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solute value of the difference between this estimate and an unbiased esti­
mate of the spatial mean. 

Costs 
The costs of revision depend on its type and thoroughness. If field work is 
carried out, the main factor is the density of the augerings. The costs of 
upgrading depend on sample size and on the costs of measuring the soil 
characteristics. We assumed that the total costs were equal to the meas­
urement costs per sample profile, times the sample size. For revision plus 
upgrading, we simply added the costs of revision and of the statistical samp­
le. The costs of upgrading in two phases were calculated in the same way 
as for upgrading. The costs of revision and upgrading are summarized in 
Table 5.1. 

Table 5.1 The costs of revision and upgrading. Components common to revision and 
upgrading (e.g. measurement of water table to calculate systematic 
measurement error of the mean highest water table, Wmm) were omitted. 

Revision 
1 Re-survey of 5020 ha 
2 Describing profiles 
Upgrading 
1 Sampling 

a Phosphate sorption char. 
b Wmin 

2 Laboratory analysis 

Days 

72 
10 

6 p.p.d. 
17p.p.d. 
-

Cost (Dfl) 

50 400,00 
7 000,00 

116,65 p.p. 
41,20 p.p. 

167,50 p.s. 

p.p.d. = points per day; p.p. = per point; p.s. = per sample 

Case study 

The use of the soil map and the soil conditions in the study area are impor­
tant factors governing the merits and costs of the four strategies. This sec­
tion also describes the way in which we revised the original soil map and 
the result of this revision. 
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Use of the soil map and definition of phosphate sorption characteristics 
We chose the problem of phosphate leaching from agricultural soils as an 
example of soil map use. Leaching of phosphate to groundwater and surface 
water is an environmental problem in large parts of The Netherlands. In 
areas with intensive animal husbandry, the application rates of manure ex­
ceed the phosphorus crop uptake (Van der Zee, 1988), which may lead to 
saturation of the soil with phosphates (Breeuwsma & Schoumans, 1987). 
Policy makers need to know how susceptible the soils are to phosphate 
leaching, the degree of phosphate saturation and where phosphate-saturated 
soils occur. 

The degree of phosphate saturation of a soil profile is determined by the 
amount of manure applied and by its capacity to adsorb the phosphates. 
In non-calcareous sandy soils, a strong correlation exists between the max­
imum mass of P205 sorbed by soil (Pmax) and oxalate-extractable aluminium 
and iron content (Schoumans et al., 1987; Van der Zee et al., 1987, 1988; 
Van der Zee & Van Riemsdijk, 1988), which, in turn, are correlated with soil 
type and soil horizon (Breeuwsma et al., 1986, Breeuwsma & Schoumans, 
1987; Schoumans et ai, 1989). The Pmax of a column of soil, given its dia­
meter, increases as the depth to which it is calculated, is increased. As we 
were interested in the leaching of phosphates to the groundwater, it seemed 
rational to take the depth to the water table as a reference depth. This depth 
is also indicated on soil maps. Soil maps may therefore be expected to be 
suitable when estimating Pmax. 

In contrast to Pmax which is a function of soil type only, other phosphate 
sorption characteristics such as the actual mass of phosphate sorbed by 
soil are determined also, or primarily, by human activities such as manuring. 
Hence, the usefulness of soil maps as a tool for spatial estimation may be 
different for these characteristics. 

The following phosphate sorption characteristics were considered: maximum 
areic mass of P205 sorbed by soil above the mean highest water table, Pmax 

(kg m"2), maximum volumetric mass of P205 sorbed by soil above the mean 
highest water table, P^ax (kg m"3), areic mass of P205 sorbed by soil above 

121 



the mean highest water table, P (kg m"2), the relative mass of phosphate 
sorbed by soil above the mean highest water table, Prei (-), and the areal 
fraction saturated with phosphate (Pre) > c), Ac (-). 

The maximum areic mass of P205 sorbed by soil, Pmax, was calculated by 
the following regression equation (Breeuwsma & Silva, 1992): 

L 
Pmax = E {4.6+0.39 MoxJ) Ô, p, 0.71 (5.11) 

/=1 

where: 
Mox ! = oxalate-extractable metal (aluminium and iron) content of horizon 

/(mol kg"1); 
6, = thickness of horizon / as far as lying above mean highest water 

table, Wmin (m) (For a definition of Wmin, see Van der Sluijs & De 
Gruijter, 1985); 

p, = volumic mass of horizon / (kg m"3); 
L = number of horizons; 
0.71 = constant to convert the dimension of Pmax from mol P per m2 to kg 

P205 per m2 (kg mol"1). 

The maximum volumetric mass of P205 sorbed by soil, P ^ , has been de­
fined as: 

Pmax = ^ L (5.12) 
mm 

The areic mass of P205 sorbed by soil, P, has been calculated by: 

L 
p = E P/8,p,0.71 (5.13) 

where: 
P, = oxalate-extractable phosphate content of horizon / (mol kg"1). 

The relative mass of phosphate sorbed by soil, Pre,, has been defined as: 
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Prei = -ß— (5.14) 
"max 

The areal fraction saturated with phosphate, Ac, has been defined as the 
fraction of the area in which Pre, of the soil profiles exceeded a given critical 
value. In this study we used 0.35 as a critical value (Breeuwsma et al., 
1989). 

Study area 
In 1988 the authorities of the National Waterboard and of the province of 
Gelderland asked the DLO-Winand Staring Centre (SC-DLO) to study the 
problem of phosphate leaching in an area of about 5020 ha in the centre 
of the Netherlands. It covers the catchment of the Schuitenbeek which de­
bouches into a narrow lake between the reclaimed Usselmeerpolders and 
the mainland. Large concentrations of nutrients in this lake, thought to come 
from bordering agricultural land, cause rapid growth of algae in summer. 

The study area lies on Sheet 32-East of the Soil Map of the Netherlands 
at a scale of 1:50 000 (Stichting voor Bodemkartering, 1965). It was sur­
veyed in 1959 and 1960. The resulting map was thought to be of little value 
because of alterations in the groundwater regime since 1960 and the occur­
rence of soil associations with a large variation in relevant soil character­
istics. Paradoxically, these qualities made the map well suited to this case 
study. 

The landscape of the area is intricate comprising ridges of coversand and 
intervening valleys. Dominant soil types are Typic Haplaquods, Typic Hum-
aquepts, Typic Udipsamments and Plaggepts (Soil Survey Staff, 1975). The 
dominant landuse on these soils is grassland for permanent pasture. Approx­
imately 14% of the agricultural land is used for growing maize for silage. 
Twenty-nine percent of the study area is covered by heath and forest. 

Revision of soil map of study area 
Some 40 new observations per km2 were made to revise the original map. 
Both the original and the revised soil maps were made from records ob-
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tained by free survey (Steur, 1961 ), i.e. surveyors chose observation points 
and delineated soil boundaries in the field by observing landscape features 
such as geomorphology and vegetation. 

The revision resulted in a completely new soil map. Figure 5.1 shows that 
the revised map is far more detailed than the original one: there are more 
mapping units (68 versus 22) and many more delineations. 

Original soil map 1 : 50 000 Revised soil map 1 : 50 000 
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Fig. 5.1 Sample areas of the original (1965) and the revised (1990) soil map 1:50 000 
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Data collection and analysis 

We estimated all mA{Ep(e
2)}s and sampling variances of the means for the 

four strategies of updating by taking only one stratified simple random samp­
le of size 283. This sample was used to estimate the spatial variances within 
the mapping units of the revised map and within those of the original map. 
These variances were then used to calculate the mA{Ep(£?)}s (Eqs 5.6 -5.8) 
and sample variances of the mean (Eqs 5.9 and 5.10), to be expected from 
the other strategies. (In statistical terms, the mapping units of the original 
and revised map are combinations of "domains" within strata. Further details 
of the estimation of means and variances within domains from a stratified 
simple random sample are given in the Appendix). 

We used a twofold stratification: geographical and pedological. A square 
grid with cells of four km2 was superimposed over the area, and the mapping 
units of the revised soil map were grouped, by reducing the seven ground­
water depth classes into two and grouping map units at the subgroup level 
(De Bakker and Schelling, 1989). Each group of mapping units within a cell 
was treated as a stratum for sampling. To each stratum we allocated first 
two points. The remaining sample points were allocated proportionally to 
the size of the strata. The points were distributed fairly evenly, but the mini­
mum rule (invoked to guarantee unbiased estimates of the sampling vari­
ances) led to substantial variation in density within the strata. 

Since phosphate leaching occurs primarily in the agricultural part of the area, 
we also estimated the variances of the phosphate sorption characteristics 
within the agricultural parts of the mapping units. To estimate the spatial 
variance within mapping units, or within the agricultural part of mapping 
units, their areas within each stratum must be known. These values were 
obtained from an overlay of the strata-map, the two soil maps and a landuse 
map derived from the topographical map 1:25 000. The overlay was obtained 
from ARC/INFO (Environmental Systems Research Institute, 1987). 
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Results 

Phosphate leaches only from agricultural soils, and so we present here the 
results of the agricultural part of the area. The results of the total area (agri­
cultural land + heath and forest) were similar. 

The efficiency of the revision strategy was compared with that of upgrading 
and the efficiency of revision plus upgrading was compared with that of up­
grading in two phases. The first two strategies are the alternatives if only 
relatively limited funds are available. The last two strategies can be used 
if more funds are available (Table 5.1). We compared the accuracies of esti­
mates at equal costs (the alternative is to compare costs at equal accu­
racies). For the first and second strategies this was done for one value, viz. 
the costs of revision as described above (Table 5.1 : Dfl 57,400). This corre­
sponds with a sample size of 202. For the mean highest water table, Wmm, 
the equivalent sample size was 1394 profiles because in this case there are 
no costs for laboratory analysis. 

We compared revision plus upgrading and upgrading in two phases at sever­
al cost levels, ranging from the costs of revision plus 50 sample profiles to 
the costs of revision plus 500 sample profiles. 

Revision vs. upgrading 
Revision alone does not give estimates of the point values and spatial 
means of P, Pre, and Ac. These characteristics are not only determined by 
natural conditions, but especially by human activities, so it is pointless to 
use the descriptions of the representative profiles as an estimator for these 
characteristics. As such, this a disadvantage of revision. 

Table 5.2 presents the results of the estimation at points. It shows that the 
root of mA{Ep{^)} for Pmax and P^ax after upgrading would be almost equal 
to those after revision. Upgrading would lead to more accurate estimates 
of VVmin than revision. 
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Table 5.2 Root of estimated spatial mean of p-expected, squared errors of estimates 
at points of phosphate sorption characteristics and mean highest water 
table (Wmin) for revision and for upgrading (one phase). - = no estimate 

Upgrading Revision 
(one phase) 

2.113 
1.853 

49.7 

Table 5.3 Standard error of mean and error of estimated mean of phosphate sorption 
characteristics and mean highest water table (Wmm) for revision and for 
upgrading (one phase). - = no estimate 

Pmax (kg m ) 
C x ( k g m - 3 ) 
P (kg m"2) 

Pre,(%) 

Ac (%) 
Wmin (cm) 

2.105 

1.865 

0.610 

20.9 

48.2 

45.2 

Upgrading (one phase) Revision 
(standard error of mean (error of mean) 

Pmax (ko m ' 
Pmax (kg m-
P (kg m'2) 

Prel (%) 
Ac (%) 
Wmin (cm) 

<) 
J) 

0.150 

0.127 

0.042 

1.6 

3.3 

0.8 

0.152 
0.164 

1.8 

Table 5.3, presenting the results of the estimation of spatial means, shows 

that estimates of the spatial means of P^ax and Wmm after upgrading would 

be more accurate than those after revision. For Pmax these accuracies would 

be almost equal. 

Revision plus upgrading vs. upgrading with two phases of sampling 

Figure 5.2, which presents the results of the estimation at points, shows that 

revision plus upgrading would give more accurate estimates of Wmin than 

upgrading with two phases of sampling. If more than 60 to 75 profiles are 
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Fig. 5.2 Root of estimated spatial mean of p-expected, squared errors of estimates 
at points of phosphate sorption characteristics and mean highest water table 
(Wmin) for revision plus upgrading and for upgrading with two phases of 
sampling. Sample size is for second phase of upgrading-two phases, which 
equals total sample size for revision + upgrading 
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sampled, which means about one profile per mapping unit, those of P 
max 

and P^ax would also be more accurate. The estimates of P, Prel and Ac 

would be less accurate if a small sample is taken after revision, but with 
larger samples the accuracy would be almost equal to that after upgrading 
in two phases. 

Figure 5.3 shows the results for the estimation of spatial means. It shows 
that for all characteristics, upgrading with two-phase sampling would give 
more accurate estimates of the spatial means than revision plus upgrading. 

Discussion 

The results described above can be explained by the homogeneity of soil 
properties within the mapping units of the original map and within those of 
the revised map. From Equations (5.6), (5.8) and (5.9) we can see that the 
accuracy of the estimates can be increased by reducing the spatial variance. 
Only if this spatial variance is decreased (the homogeneity is increased), 
is revision potentially better than upgrading, and revision plus upgrading 
better than upgrading by two-phase sampling. Figure 5.4 shows the pooled 
spatial standard deviations within mapping units, calculated as the square 
root of the pooled spatial variances. The pooled standard deviation of Wmin 

was markedly reduced, those of Pmax and P^ax were also reduced, but those 
of P, Pre, and Ac were not. 

Estimates of point values 
Despite greater homogeneity of the mapping units of the revised map with 
respect to Wmm, Pmax and P^ax, the accuracy of estimates at points using 
the values of the representative profiles (as done in revision), was less for 
Wmin and almost equal for Pmax and P^ax (Table 5.2). This is due to the bias 
of this type of estimator, which overrides the reduction of the spatial variance 
(cf. Eq. 5.6). If, instead, we take the sample means as estimators, as done 
in revision plus upgrading, we eliminate the bias. As a result the estimates 
based on the revised map were more accurate than those based on the 
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original map (Fig. 5.2). Those of P, Prel and Ac (Fig. 5.2) were not more ac­
curate because the spatial variance was not reduced (Fig. 5.4). 

Estimation of spatial means 
Upgrading by two-phase sampling was better than revision plus upgrading 
for all characteristics (Fig. 5.3). We feel that this also holds for many other 
circumstances (other soil properties, other areas, other maps). Apparently, 
quantifying the spatial variance of map units is more effective than trying 
to reduce this variance by remapping. 

Increasing homogeneity 
In contrast to the phosphate sorption characteristics, l*Vmin is a differentiating 
characteristic, so increasing the homogeneity of this property was a direct 
aim of revision. Generally, differences in the rate of reduction of the pooled 
standard deviations of soil properties can be explained by the type and 
strength of the correlation between these properties and the properties used 
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to differentiate the mapping units. If the relation is linear and the correlation 
coefficient is large, reduction in the spatial variance within mapping units 
of the differentiating characteristic would lead to a similar reduction in spatial 
variance within mapping units of the properties to be estimated. 

With a linear relation, and only a weak correlation, spatial variance would 
not be reduced very much. If the relation is not linear, reduction depends 
on the type of relation. To see what the relationships are in this case, we 
plotted scatter diagrams of the phosphate sorption characteristics versus 
Wmm and calculated correlation coefficients (Fig. 5.5). This figure shows that 
Pmax and Wmm were strongly correlated (r= 0.854). Revision resulted in a 
marked reduction of the spatial variance within mapping units of Wmm, and 
so that of Pmax was also reduced. The relation of Pand Wmm was linear, 
but the correlation was only moderate (r= 0.414). Although Pwas also de­
fined by l/Vmin, the correlation was less strong because Pwas mainly deter­
mined by the amount of manure applied to the soil. This is why the pooled 
standard deviation of Pwas not reduced. Figure 5.5 shows that the relation 
between Pre[ and IÄ^min was not linear but more or less rational, i.e. the quo­
tient of two linear functions. The calculated correlation coefficient was only -
0.227. With such a relation, decreasing the variance of Wmin within mapping 
units does not automatically reduce the variance of Pre,. Since the pooled 
standard deviation of Prel was not reduced, neither was that of Ac. Although 
the correlation between P^ax and Wmm was very small ( r= - 0.045), the 
pooled standard deviation of P^ax was still reduced. This can probably be 
explained by the relation between P^ax and the classification unit. At sub­
group level the variance ratio is 8.4. Purity with respect to subgroup, was 
increased from 50% to 63% by revision. 

Conclusions 

If no funds are available for revision plus upgrading but only for one of them, 
we recommend upgrading in circumstances comparable to the present case 
study. Although revision leads to a decrease in variance within mapping 
units of differentiating characteristics and characteristics strongly correlated 
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Fig. 5.5 Scatter diagrams of the phosphate sorption characteristics versus the mean 
highest water table (lVmin) and correlation coefficients 

with them, estimates at unvisited points, using the values of the representa­
tive profiles of the revised mapping units as estimators, are less accurate 
than those using the estimated means of the original mapping units as esti­
mators. Also, revision gives biased estimates of the means of the study 
area, and gives no estimates at all of characteristics which need to be meas­
ured by laboratory anlysis of samples taken from the study area itself, such 
as the areic mass of P205 sorbed by soil. 

If funds for revision plus upgrading are available, the alternative is to take 
a large sample, split it up into two phases, and use the results of the first 
phase to allocate the sample profiles optimally in the second phase. In doing 
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this, estimates of the areal means of all characteristics are more accurate 
than for revision plus upgrading. For the estimates at points, revision plus 
upgrading is better than upgrading with two phases of sampling for charac­
teristics with increased homogeneity within mapping units. 

In 1988, the former Soil Survey Institute of the Netherlands began a nation­
wide sampling project, in which the Soil Map of the Netherlands at a scale 
1:50 000 is used for stratification. This sample gives estimates of the var­
iance within mapping units of several soil properties and characteristics, 
which can also be used to allocate sample profiles optimally in subsequent 
samples. This nationwide sampling then takes the place of the first phase 
of the fourth strategy (upgrading with two-phase sampling). As the relative 
variances within mapping units in the study area may differ from those in 
The Netherlands, the resulting allocation may not be optimal. 
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Appendix 

The mapping units of the original map and those of the revised map were 

not used as strata themselves. Therefore we needed to estimate spatial 

variances within domains (subpopulations) cutting across the strata 

(Cochran, 1977 pp. 142-143). In the present case, the problem is simple 

because the size of the subpopulations within the strata is known. 

We estimated spatial variances within domains (mapping units) using the 

procedure followed by Marsman and De Gruijter (1986): 
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vu(z) = mu(z
2) - {mu(z)}2 + à2

p{mu(z)} (5.A1) 

where: 
j/u(z) = estimated spatial variance of characteristic z within mapping 

unit u; 
m^z2) = estimated spatial mean of z2 in u; 
mu(z) = estimated spatial mean of z in u; 
ap

2{mu(z)} = estimated sampling variance of the estimator mu under 
sampling design p. 

The means of mapping units, cutting across the strata, were estimated 
according to: 

mu = E whu mhu (5.A2) 

where: 
H = number of strata; 
Whu = weight of stratum h, measured as the proportion of the total area 

in mapping unit u in stratum h; 
mhu = estimated spatial mean of z in the part of the area covered by both 

stratum h and mapping unit u, calculated as the unweighted mean 
of the values at the sample points in that part. 

The mean of z2 in u was estimated in the same way as the mean of z (Eq. 
5.16), except that the values were first squared. 

The sampling variance of the mean was estimated by: 

H v. 
à2

p(mu) - E <u ^ <5-A 3> 
/7=1 nhu 

where: 
vhu = estimated spatial variance in the intersection of h and u, estimated 

as the variance among sample points in that intersection; 
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nhu = number of sample points lying in both h and u. 

Measurement error 

Estimates of the variances of the phosphate sorption characteristics would 
be biased by measurement error if calculated directly from the 
measurements. An important source of error of the measurements of the 
phosphate sorption characteristics is the measurement of the mean highest 
water table (Wmm). Wmin was estimated mainly from visible profile 
characteristics. For profiles with an estimated l/Vmjn < 1.20 m these estimates 
were corrected for systematic measurement error by simultaneously 
measuring water tables at the observation points and at reference points 
with a known Wmm. We used these corrected values of Wm]n to calculate 
the Pmax, P^ax, P and Pre, for each sample point with Equations (5.1) to 
(5.4). To calculate Ac, we introduced a dummy variable: z, = 1 if Pre] of 
profile i > 35%; z,. = 0 otherwise. 

Estimates of the variances calculated from the values corrected for 
systematic measurement error, would still be biased by random 
measurement error. This bias equals the variance of the measurement error 
plus twice the covariance between measurement error and measured 
variable. Regressing the estimated Wmin of 32 sampling points on the real 
Wmm showed that the variance due to measurement error is 290 cm2, i.e. 
a standard error of 17 cm. This agrees closely with the standard error of 
16.3 cm found by Marsman & De Gruijter (1986). The variance of 
measurement error of Pmax was calculated by regressing the Pmax values 
calculated from the estimated Wmin on those calculated from the real VVmin. 
The same procedure was followed for P^ax, P and Pre,. 

To compare the usefulness of the original and revised soil map for 
estimating point values, the variances within mapping units were pooled for 
each map. The pooled variance within mapping units was calculated by 
subtracting the estimated bias due to random measurent error from the 
pooled variance as calculated from the measurements. 
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To estimate the variance within a given mapping unit, strata with only one 
sample point in that unit were clustered. Variances within units with less than 
two sample points in total, could not be estimated. Such units cover 1.4% 
of the original map, and 1% of the revised one. 
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Estimation of non-ergodic variograms and their 
sampling variance by design-based 
sampling strategies 

Design-based sampling strategies based on classical sampling theory offer unprecedent­
ed potentials for estimation of non-ergodic variograms. Unbiased and uncorrelated esti­
mates of the semivariance at the selected lags and of its sampling variance can simply 
be obtained. These estimates are robust against deviations from an assumed spatial 
autocorrelation model. The same holds for the variogram model parameters and their 
sampling (co)variances. Moreover, an objective measure for lack of fit of the fitted model 
can simply be derived. The estimators for two basic sampling designs, simple random 
sampling and stratified simple random sampling of pairs of points, are presented. The 
first has been tested in real world for estimating the non-ergodic variograms of three 
soil properties. The parameters of variogram models and their sampling (co)variances 
were estimated with 72 pairs of points distributed over 6 lags. 

KEY WORDS: statistical dependence, design-unbiasedness, lack of fit, confidence 
interval, dispersion matrix 

Introduction 

The variogram plays a central role in geostatistical prediction techniques such 
as kriging. It describes the spatial correlation within a region. Especially the 
variance of the prediction error is sensitive to the variogram. Therefore, it is 
important to develop efficient sampling strategies for estimating variograms, 
i.e. combinations of sampling designs and estimators that are as accurate as 
possible, given the budget for sampling and measurement. Besides maximum 
accuracy, it is of equal importance to get an estimate of this accuracy. In this 
context Shafer and Varljen (1990, p. 1787) stated: "Unfortunately, because of 
the presence of correlation, classical statistical theory cannot be applied to 
make inferences regarding the confidence limits of the variogram estimates". 
This view seems to be common among geostatisticians and prevented them 
from developing simple strategies giving direct estimates of these confidence 
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limits. 

Recently De Gruijter and Ter Braak (1990) have shown that the assumption 
that classical sampling theory is inapplicable in spatial sampling is false. We 
will show that this assumption is unfortunate as well, because classical sam­
pling theory offers unprecedented potentialities for variogram estimation. The 
aim of this paper is: 
- to draw the attention of geostatisticians to a new set of methods, based 

on classical sampling theory, for estimating the variogram and its accuracy; 
- to show that these new methods have important advantages over existing 

methods; 
- to illustrate the approach by working out two of the possible methods and 

by applying one of these in a real-world case study. 

We will first discuss non-ergodic variograms and their advantages over ergodic 
variograms, and we will briefly comment on existing methods to estimate vario­
grams. Then we describe and motivate the new approach and illustrate it with 
examples. Finally we present the application of one of possible methods in a 
case study. 

Sampling variance of non-ergodic variograms 

Joumel and Huijbregts (1978) made a distinction between theoretical vario­
grams and local variograms. In short the difference between these two is that 
the first is defined as an average over all realizations of the underlying stochas­
tic model and the second only over the realization actually sampled. The latter 
is not related to a stochastic model. The importance of this distinction was re-
emphasized by Srivastava (1987) and Isaaks and Srivastava (1988). Joumel 
and Huijbregts (1978) also stated that a distinction should be made between 
'fluctuation variance' and estimation variance of the variogram. Estimation var­
iance arises from repeated sampling of a single realization. However, even if 
one has a complete enumeration of an area, and as a result the estimation 
variance of the local variogram is zero, we still have fluctuation variance of the 
estimator of the theoretical variogram, that is variance between model-
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realizations. 

In this paper we will confine ourselves to estimation of the local variogram 
because we want to use it for inference of parameters of a single realization 
of the model. According to Isaaks and Srivastava (1988, p. 322) local vario-
grams give more reliable confidence intervals of predictions than theoretical 
variograms because "it captures the character of spatial variability unique to 
the domain over which it is defined". Isaaks and Srivastava use the term 'non-
ergodic variograms' as a synonym of 'local variograms'. We prefer the adjective 
'non-ergodic' to 'local' because it describes its essence better. For non-ergodic 
variograms the only source of variation is estimation variance, which we will 
refer to as sampling variance, the usual term for it in classical sampling theory. 

Following Journel (1985) and Isaaks and Srivastava (1988) we will use set 
theory to define non-ergodic variograms. Symbol A refers to a limited area (Fig. 
6.1). It is viewed as the set of all possible sample locations. As the number 
of different possible sample locations is finite, we consider A as a finite popula­
tion. N denotes the size of A. The subscripts +h and -h are used to denote 

AHA. AnA+h> 

Fig. 6.1 Translation of the area A (After Isaaks and Srivastava, 1988). Points x in A 
n A_h can be paired with points x + h in A n A+h and contribute to yA{h) 
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translations of A Set A+h is obtained by translating the set of locations within 
A by vector h. The set of locations within the intersections of A and translated 
sets (A_h and A+h) is of special importance. A point x within A n A_h is an ele­
ment of A (xe A), and can be paired with a point x + h, which is also an ele­
ment of A (x+ h e A). Point x+ h is in the intersection A n >A+/). Now, the non-
ergodic variogram, yA(h), is defined as (Isaaks and Srivastava, 1988): 

y*{h) = ÖAÏtt £ (4x)-2(X+/7))2 (6.1) 

where: 
z(x) = value of the target variable at location x, 
N{h) = size of A n A,h. 

Note that the locations that contribute to these functions depend on h, as with 
changing h, An A_h also changes. Now we will go into the estimation of this 
function. First we will review shortly the existing methods and comment on their 
suitability for the purpose. 

Existing methods 

Much work has already been done in developing efficient sampling designs 
and methods to compute confidence intervals of variograms. Here, we will 
review the literature only shortly. For a more extensive review, the reader is 
referred to Pettitt and McBratney (1993). 

Sampling designs 
Russo (1984) and Warrick and Myers (1987) proposed algorithms for optimizing 
configurations of sample points to estimate variograms. The distance classes 
and the number of pairs for each distance class are decided a priori. The algo­
rithms start with an initial configuration, for example a systematic or random 
configuration. Next the locations are slightly changed in such a way that the 
predefined distribution of distance classes is approximated as closely as pos­
sible and the variation of h within distance classes is minimal. Russo and Jury 
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(1988) showed that the optimized sampling configuration produced more accu­
rate estimates of the covariance function than the systematic sampling config­
uration. 

Zimmerman and Homer (1991) proposed a D-optimality criterion to optimize 
selection of additional sampling locations in order to estimate selected attributes 
of the ergodic variogram. These attributes were the ratio of nugget to sill, 
"compatibility"-determining attributes and anisotropy. 

Corsten and Stein (1993) compared several sampling configurations for vario­
gram estimation, including nested, systematic, simple random and transect 
sampling configurations. They concluded that: 
(i) the nested sampling designs produced relatively inaccurate estimates 

of variogram-parameters; 
(ii) prediction error variances with variograms estimated from nested sam­

pling designs were about twice those obtained with the other designs. 
In the next chapter we will further comment on the nested sampling design. 

Pettitt and McBratney (1993) proposed a staggered design on linear transects 
in three orientations as a new and suitable sampling design for estimation of 
the variogram. They used the D-optimality criterion to quantify the efficiency 
of staggered transects with different order of the distances between points on 
the transect. 

Confidence intervals 
Davis and Borgman (1979) derived the probability density function (p.d.f.) of 
the ergodic variogram estimator. However, this p.d.f. holds only for equally 
spaced observations from a one-dimensional, stationary Gaussian random 
function, which is rather specific. Davis and Borgman (1982) showed that for 
a stationary, second order random function, the quantity {j(h) - y(h)}/Gp{y{h)}, 
where ap\y{h)} is the sampling standard deviation of the estimated semivariance 
for lag h, is asymptotically standard normal distributed. 

McBratney and Webster (1986) and Taylor and Burrough (1986) calculated 
the accuracy of estimated variograms indirectlyby simulation of random fields. 
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This procedure was followed also by Russo and Jury (1987) and Corsten and 
Stein (submitted). However, this procedure produces confidence intervals of 
the ergodic variogram, showing uncertainty due to fluctuation variance (and 
sampling variance if one considers more realizations of the sampling design), 
whereas in this paper we are concerned with sampling variance of non-ergodic 
variograms. Morris (1991) estimated the minimum variance of the variogram 
by calculating the 'maximum equivalent uncorrelated pairs', assuming a con­
cave variogram. Again, the calculated minimum variance reflects fluctuation 
variance plus sampling variance of the theoretical variogram. 

To obtain confidence intervals of the non-ergodic variogram, Webster and 
Oliver (1992) simulated a single random field from an estimated variogram and 
sampled this realization many times according to several sampling designs. 
We consider this procedure as less appropriate for calculating confidence inter­
vals in real world situations because the non-ergodic variogram of the simulated 
realization will generally differ from that of the sampled area for two reason 
- the quality of the fitted model used in simulation depends strongly on the 

sample (size, design). Especially with small samples the fitted model may 
strongly deviate from the 'true' non-ergodic variogram. 
realizations from the same fitted model will have different non-ergodic vario­
grams. There is no guarantee that the non-ergodic variogram of the sim­
ulated field equals that of the fitted model. 

A second way of indirect estimation of confidence intervals of non-ergodic 
variograms is subsampling. Chung (1984) and Shafer and Varljen (1990) used 
the jackknife method. If data are dependent, this procedure becomes rather 
complicated (Davis, 1987). Gascuel-Odoux and Boivin (1993) used a simple 
subsampling procedure in which subsamples of points were randomly selected 
from the sample. However, a given point of the subsample is paired with all 
other subsample points, so squared differences are certainly correlated. By 
neglecting this dependency estimates of the sampling variance of the semi-
variance become biased. 

Muhoz-Pardo (1987) derived an expression for calculation of the sampling 

variance of the non-ergodic variogram. However, in this procedure the non-
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ergodic variogram must be known and therefore this procedure is of minor 
practical importance. 

A new approach: design-based sampling strategies 

Sampling designs 
A common belief among geostatisticians is that there is not a simple way of 
calculating confidence intervals of variograms because data are dependent 
but the dependency is unknown (it is this dependency which one wants to 
model). We agree with this for theoretical (ergodic) variograms with confidence 
intervals reflecting fluctuation variance plus sampling variance. However, for 
non-ergodic variograms we believe there is a way out of the problem. To clarify 
this we first have to stress that the meaning of statistical dependence is unclear 
without further specification of the source of stochasticity (De Gruijter and Ter 
Braak, 1990). This source is different for design-based and model-based sam­
pling strategies. In the design-based approach the sampling configuration is 
random and the model-realization is fixed, whereas in the model-based ap­
proach, the other way round, the model-realization is random and the sampling 
configuration is fixed. From this it follows that dependence has a different 
meaning in the design-based and model-based approach. Brus and De Gruijter 
(1993) showed that data which are dependent in the model-based approach 
still can be independent in the design-based approach and vice versa. For 
estimation of non-ergodic variograms the only relevant source of stochasticity 
is sampling variation. Therefore hereafter we use independence in the design-
based sense, which we denote by p-independence. 

In this paper we present a new approach for non-ergodic variogram estimation 
in which p-independence of squared differences is created by the sampling 
design. This offers the opportunity of simple derivation of the sampling variance 
of the variogram. This sampling variance can then be used to calculate confi­
dence intervals or to fit models. 

The past 50 years have shown large developments of classical sampling theo­
ry, leading to a great variety of design-based sampling strategies. Essentially 

149 



all these can be used for variogram estimation. There are two main differences, 
however, with the usual problems of spatial sampling. First, the population 
elements and sampling units consist of pairs of points instead of single points. 
In other words the population does not consist of all possible locations in area 
A but of the Cartesian product of A and itself: Ax A. Second, a function {yA{h)) 
has to be estimated instead of a single parameter. Efficient strategies for this 
choose a number of lag vectors h and a sample size for each of them. These 
choices can be made using theory of experimental design. Then for each h 
and sample size n(h), there is the question how to sample efficiently, which 
can be dealt with by classical sampling theory. In this paper we focus on the 
latter part of the problem. Thus the question under study is how to estimate 
the mean and its sampling variance of squared differences of all pairs of points 
with a given lag vector h. Given a design p, we are looking for estimators with 
an expected value over all realizations of the sampling process equal to the 
real value: 

W » ) > = Y„(/i) (6.2) 

In other words, the strategy (design + estimator) should be p-unbiased or 
design-unbiased. 

To illustrate the approach we show this for the two designs that many standard 
books (Cochran, 1977; Särndal et al., 1992) on sampling start with: simple 
random sampling {SI) and stratified simple random sampling (STSI). It is not 
our intention to propagate these two techniques as optimal solutions. They are 
just simple illustrations of how classical sampling theory can be applied for 
variogram estimation. After this we will shortly go into cluster sampling and two-
stage sampling which still have to be worked out for variogram estimation and 
finally we will comment on the above mentioned nested sampling design which 
at first sight may seem to be a suitable design-based strategy for variogram 
estimation. Finally we will discuss the advantages of the proposed methods 
in selection and fitting of variogram models and in determining the sampling 
variances and covariances of the estimated model parameters. 
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Simple random sampling of pairs of points 
In simple random sampling for a lag vector h, pairs of points separated by h 
are selected independently from each other and in such a way that the inclu­
sion probability is equal for all such pairs. A practical drawing technique is to 
take a simple random sample of points, i.e. points are selected at random and 
independently. These are the first points of the pairs to be selected. In the 
anisotropic case, i.e. if h is characterized by its length and its direction, there 
is only one possible second point. In other words the second point is selected 
simultaneously with the first one. If the second point of a pair falls outside the 
boundaries of the area, the first point of this pair is dropped as well. The whole 
procedure is done for several, predetermined lag vectors h. 

In the isotropic case h is characterized by its length only and consequently 
there are several possible second points. For each selected first point x, a 
counterpart is selected with random direction from x,and at distance h= \h\. 
If the selected second point falls outside the area, the first point is dropped, 
also if there are other second points (not selected) inside the area. In other 
words, for all first points, only once a second point is drawn. 

As the inclusion probabilty of all pairs of points, given h, is equal, the non-
ergodic semivariance for lag h can be estimated by taking the unweighted 
mean: 

n(h) 

^{h) - 2 n W S {^-Z{K>+h)}2 (6'3) 

where: 
n(h) = number of selected pairs of points. 

The estimator of the non-ergodic semivariance is equal to the one given by 
Isaaks and Srivastava (1988). However, we would like to stress that this esti­
mator is p-unbiased only under the design described above. If a different de­
sign is applied such as a stratified random design (see next section), with un­
equal inclusion probabilities, then the estimator is not p-unbiased. 

As the pairs are selected independently, the observed squared differences are 
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p-independent and the sampling variance of the estimated semivariance, 
èp2ÜC)}. can be simply estimated by the usual estimator (Cochran, 1977): 

n(h) 

vA0.5A*(h)} °-25 E ^ - ^ 2 ( * (6.4) 
o2«* Ah)} = ^ Z—L = ^ 
- P A n{h) n(Ai){n(/i)-1} 

where: 
vA{} = estimated spatial variance of the quantity between brackets within 

A; 
A2

;(Ai) = squared difference of the /th pair separated by lag h; 
mA{] = estimated spatial mean of the squared differences within A 

Stratified simple random sampling of pairs of points 
In stratified simple random sampling the population consisting of all pairs of 
points with a given lag vector h is first divided into disjoint subpopulations 
called strata. In practice this can be done by dividing the area A into sub-
regions. All pairs of points (with lag vector h) within a subregion, form a strat­
um. But, we also have pairs whose points lie in different subregions. These 
form additional strata, one for each pair of subregions. From each stratum a 
simple random sample of pairs of points with lag vector h is taken. This proce­
dure is followed for all selected lag vectors h. The stratification need not be 
equal for all vectors h. 

Stratification increases the accuracy of the estimated variogram if the strata 
are more homogeneous for the semivariance than the whole area: that is if 
the spatial means or variances of squared differences for a given lag h differ 
between strata. Stein et al. (1988) reported differences in ergodic semivariance 
of several soil properties between soil map units. In general if one has differ­
ences in spatial variance between strata there will also be differences in semi-
variance for lags larger than the range. Stratification produces gain for these 
lags. 

For stratified simple random sampling, the usual p-unbiased estimator of the 
non-ergodic semivariance is: 
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* (/I) = T ^ _ J _ V (zC?0-z(x.+/i)}
2 (6-5) 

XA y N(h) 2n//ï) éi w ' 

where: 
A//A») = size of /\ n A_h in stratum / (>4 n A h n /); 
A/(A») = size of A n A/,; 
/7//1) = size of the sample from stratum /. 

The ratio of A///») to N(h) equals the ratio of the area of A n A_h n /to the area 
of A n A,,, and acts as the stratum weight denoted by w{h). 

The sampling variance of the estimated semivariance can be estimated by: 

s?ßAw = E wîw " = °-25E "?o> ' p ^ x ^ ,v „ ^ Y M nX#i){nX#i)-1} 

(6.6) 
where: 
v) = estimated spatial variance within stratum /; 
m, = estimated spatial mean of stratum /. 

Other designs 
A great variety of other designs is available and in principle all of them may 
be used for variogram estimation. It is impossible to review them all and we 
mention only two classes of designs coming into scope if SI and STSI lead 
to prohibitive costs because the sampling units are scattered over a wide area. 
Solutions to this problem are cluster sampling and two-stage sampling. 

In cluster sampling the population is partitioned into subpopulations called 
clusters. A probability sample of clusters is selected and every population ele­
ment in the selected cluster is surveyed. Clusters can be selected according 
to various designs, for example by simple random sampling, resulting in simple 
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random cluster sampling (SIC). The clusters of pairs can have all kinds of con­
figurations. One example is an equilateral triangle with sides of length h. For 
each h several clusters are selected independently from each other with ran­
dom centres, and, for isotropic variograms, with random directions. The points 
at the vertices of the triangle form three pairs. These three pairs are not se­
lected independently and therefore the squared differences of these three pairs 
within a cluster are not p-independent. In this case the three squared differ­
ences are even logically correlated because each pair has one point in com­
mon with the two other pairs. However, the squared differences of pairs from 
different clusters are p-independent and consequently a robust and p-unbiased 
estimate of the sampling variance of the estimated mean of squared differences 
can simply be obtained (Särndal era/., 1992, p.129). 

Unless otherwise stated, the word "robust" in this paper is used to describe 
procedures for inference of semivariances, their sampling variances, variogram 
model parameters and their sampling variances and covariances that are in­
sensitive to deviations from an assumed spatial autocorrelation model. It is not 
related to assumptions on the frequency distribution of z(x) (robust to outliers) 
as in Cressie and Hawkins (1980) or to assumptions on the probability distri­
bution of the estimated semivariances. 

If we take larger clusters, in each cluster pairs can be formed with different 
h's and the problem arises whether we should use all pairs or only the pairs 
separated by a specific h. For example, in a cluster consisting of a square with 
side h, four pairs exist separated by h and two separated by fo/2. For each 
type of pairs, the squared differences of pairs from different clusters are p-
independent, which makes it possible to get robust, p-unbiased estimates of 
the sampling variance of the estimated semivariance for both distances. How­
ever, within clusters each pair separated by h has its points in common with 
the pairs separated by /W2, making them logically correlated. Consequently 
jA(h) is correlated with %A(tvl2), and this makes it difficult to obtain robust p-
unbiased estimates of the variance of the estimated parameters of the fitted 
model. To avoid this problem we recommend to use only the pairs separated 
by h. 
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In general for a given sample size, the sampling variance under SIC will be 
larger than under S/due to the tendency for pairs in the same cluster to resem­
ble each other. This is the price to be paid for smaller sampling costs. If one 
has only a few, large clusters the increase in sampling variance might become 
inacceptable. In that case, it often pays to select more clusters and, in order 
to control the cost, to subsample within the selected clusters instead of sur­
veying all pairs within the cluster. Such designs are referred to as two-stage 
sampling. We may choose any design for the first stage as well as for the 
second. For example, suppose one wants to estimate the anisotropic semi-
variance for a given direction. We might then consider all pairs on a line with 
this direction as one primary sampling unit. In the first stage, a simple random 
sample of such units is selected with probabilities proportional to their size (i.e. 
number of pairs). In the second stage, within each selected primary unit a 
simple random sample of pairs is selected with equal probabilities. As this 
design is self-weighting, that is all pairs separated by h have equal inclusion 
probability, the estimator of the sampling variance remains relatively simple. 

We already mentioned the nested sampling design (Miesch, 1975; Oliverand 
Webster, 1986). Also in this design pairs are selected by some probability 
mechanism which makes some researchers believe that it produces p-unbiased 
estimates of the variance components (semivariance). However, in nested 
sampling the inclusion probabilities of the pairs generally differ. In the estimator 
this is not accounted for and as a result the estimates will not be p-unbiased. 
Moreover the inclusion probabilities of certain subsets of pairs can be zero for 
specific combinations of lag distances at succeeding stages. In that case the 
sample is not even a probability sample in the strict sense, and the results will 
be biased whatever estimator is used. Also squared differences are clearly 
correlated, making it difficult to estimate sampling variances. Finally, we have 
to stress that nested sampling is designed for estimating ergodic variance com­
ponents and this is the reason why the differences in inclusion probabilities 
are not taken into account. 

Fitting models 
The proposed methods have important advantages when fitting variogram 
models. These advantages are related to: 
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(i) selection of a model, 
(ii) estimation of the model parameters; 
(iii) estimation of the sampling variance and covariance of the estimated 

model parameters; 

Selecting a model 
An important advantage of the proposed design-based methods is that they 
offer the possibility of selecting objectively a model by testing lack of fit by a 
F-test. As we have p-independent repeat observations of A2(h) at given values 
of h, we can compare the variation within Ai-groups with the residual variation 
of the model under consideration. This is done by comparing the residual de­
viance of this model (C^od) to that of the model that contains the A)-groups as 
a qualitative predictor (£^roup). The test statistic Fis defined by: 

^ m o d - ^ g r o u p ^ ^ m o d " ^group) 

• ^ r o u p ' " 'group 

(6.7) 

where: 
dfmod = residual degrees of freedom of the model under consideration; 
o7group = residual degrees of freedom of the model with the Ai-groups as 

qualitative predictor. 

If the model is correct, F is close to 1, if the model is incorrect it will exceed 
1. The F-values can be used to accept or reject a model or to choose between 
alternative models objectively. 

Estimation of model parameters 
Generally the means of the squared differences, î^C»). are used to fit the mod­
el. However, to obtain correct estimates of the sampling variance and covar­
iance of the estimated model parameters, the individual squared differences 
must be used to fit the model. In addition, for selecting a model by testing lack 
of fit, one needs the individual squared differences, A2,{Ai) (see next section). 
Therefore we propose to use the individual squared differences in fitting. 
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The main advantage of the proposed sampling strategies for estimating vario-
gram model parameters is that p-unbiased and robust parameter estimates 
can simply be obtained because no assumptions need to be made on spatial 
autocorrelation of squared differences. In the proposed strategies, p-independ-
ence of squared differences is created by the sampling design. For example, 
in Maximum Likelihood estimation (ML) the loglikelihood can simply be written 
as a sum of the logarithm of the probabilities of the observations (Cressie, 
1991, p. 458). No assumptions need to be made on the spatial autocorrelation 
model for calculating the joint probabilities of the observations. 

The proposed strategies also provide p-unbiased estimates of the variance of 
the squared differences for a given h. The reciprocal values of these estimated 
variances can be used as weights in fitting. For small sample sizes the variance 
estimates will be rather inaccurate. In this case it is preferable to use these 
variance estimates to select an appropriate model describing the variance as 
a function of the expected (fitted) value, and to use these calculated weights 
in fitting (McCullagh and Neider, 1989). 

Estimating sampling (co)variance of model parameters 
The proposed methods also offer good potentials for quantifying the sampling 
variances and covariances of the estimated parameters of the selected model. 
These can be calculated as the inverse of the information matrix (Ross, 1990, 
p. 7). As the squared differences within a group, i.e. fora given h, and between 
the groups are p-independent, these estimates of the (co)variances are p-
unbiased and robust. This dispersion matrix with (co)variances is a more com­
prehensive measure of uncertainty about the variogram than the confidence 
intervals of the estimated semivariances at given values of h. 

Case study 

We estimated non-ergodic semivariances by simple random sampling of pairs 
of points (SI) in the Lickebaert polder, which lies in the western part of the 
Netherlands, near Rotterdam. For h, we took 1.5,4,12,32,90 and 250 m and 
random directions for all distances. This means that we estimated isotropic 
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variograms, so that yA(h) = yA(h). For each distance h, we selected 15 pairs. 
Pairs of which one or both points lie in 'non-soil' (e.g. ditch or farmyard) were 
removed from the dataset. The resulting numbers of pairs are presented in 
Table 6.1. The configuration is presented in Figure 6.2. 

We estimated non-ergodic semivariances for the bulk soil electrical conductivity 
(O, mS m"1), the mean highest water table ( Wmin; cm below surface) and the 
mean lowest water table ( Wmax; cm below surface). Figure 6.3 shows the esti­
mates and their 90 % confidence intervals assuming a normal distribution of 
y_A(h). Except for h = 1.5 and 4 m, the 90 % confidence intervals were rather 
wide due to a large sampling variance for these lags. Figure 6.3 clearly shows 
that, in general, the larger the estimated semivariance, the larger its sampling 
variance. For some lags the lower endpoints of the 90 % confidence intervals 
were slightly negative. This reflects that the normal distribution assumption for 
the semivariance is unrealistic, which can be explained by the relatively small 
values of n(h). 

We fitted spherical and exponential models to the estimates by ML assuming 
a gamma distribution and with variance proportional to the fitted value squared. 
We used Genstat for the computations (Genstat 5 Comittee, 1987). Table 6.2 
shows the results. The fitted spherical models are presented in Figure 6.3. 

To answer the question whether a spherical or an exponential model fits best, 
we executed a F-test for lack of fit, assuming a gamma distribution again. The 
results are shown in Table 6.3. For both the spherical and exponential models 
the F-values are below the critical value (for a = 0.05), which means that there 
is no significant lack of fit for both model types, for all variables. For C and 
Wmin the F-values for the spherical models were somewhat smaller than those 
of the exponential models, for Wmax these were nearly equal. This means that 

Table 6.1 Lag distance {h) in m and number of pairs (n(h)) of simple random sample 
of pairs in Lickebaert polder 

h 
n(h) 

1.5 
11 

4 
14 

12 
13 

32 
13 

90 
11 

250 
10 
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Fig. 6.2 Simple random sample of pairs of points within the Lickebaert polder. Points 
of a pair are connected by lines; a: 1.5 m pairs; b: 4 m pairs; c: 12 m pairs; 
d: 32 m pairs; e: 90 m pairs; f: 250 m pairs 



Table 6.2 Estimated parameters of spherical and exponential model for non-ergodic 
variogram of bulk soil electrical conductivity (C), mean highest water table 
(Wmin) and mean lowest water table (WmsJ; a = range (km), c = sill 

Spherical Exponential 
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Fig. 6.3 Estimated non-ergodic semivariances. a: bulk soil electrical conductivity, b: 
mean highest water table, and c: mean lowest water table. The bars show the 
90% confidence interval. The fitted models are spherical 
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Table 6.3 F-values of test for lack of fit of spherical and exponential model (for fitted 
parameters: see Table 6.2) 

Model C W^ W^ 

Spherical 0.867 0.495 0.240 

Exponential 1.235 0.566 0.226 

the spherical model fitted somewhat better, although not significantly. 

Table 6.4 shows the dispersion matrices of the estimated parameters of the 
spherical models under the assumption of gamma distributed squared differ­
ences. For all variables the parameters a and c are strongly correlated. This 
means that the 'slope' of the fitted line for h < a remains fairly constant. 

Table 6.4 Dispersion matrices (expressed as standard deviations and correlation 
coefficients) of parameters of spherical model of non-ergodic variogram for 
bulk soil electrical conductivity (C), mean highest water table ( Wmin) and mean 
lowest water table (Wmax) 

a 
c 

C 

76.5 

0.921 

a 
325 

c 

W • "min 

105 
0.879 

a 
106 

c 

W 
max 

114 
0.884 

a 
417 

c 

Discussion and conclusions 

In the presented methods S/and STSI, each of the 2n points is combined with 
only one other point to form a pair. This results in a set of n pairs. In most 
existing methods each point is combined with all other points to form a set of 
n(2n-1) pairs. At first sight this seems to be more efficient. However, one 
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should realize that the larger number of pairs is misleading because the pairs 
are correlated and as a result the decrease in sampling variance will be far 
less than expected on the basis of the numbers alone. Morris (1991 ) presented 
a method to account for this effect, by establishing a maximum equivalent num­
ber of uncorrelated pairs. He found considerable differences between the nomi­
nal number of pairs and the maximum equivalent number, especially for a trian­
gular configuration of points. Nevertheless, in general the maximum equivalent 
number will be larger than n. This advantage must be weighted, however, 
against the drawback that one still needs to postulate a variogram to obtain 
the sampling variance of the semivariances and model parameters. As this 
variogram is unknown (we want to estimate it) the estimates of the sampling 
variances are not robust. In short, the choice is between uncertain estimates 
of somewhat smaller sampling variances and certain (robust and p-unbiased) 
estimates of somewhat larger sampling variances. Depending on the circum­
stances it may be wise to choose the latter. 

We conclude that design-based sampling strategies based on classical sam­
pling theory offer strong potentials for variogram estimation which were up till 
now undiscovered. The p-independent observations of squared differences can 
be used to obtain p-unbiased and robust estimates of: 

the semivariance and its sampling variance at given values of h; 
- the variogram model parameters and their sampling variances and covar-

iances; 
- the variation within /i-groups needed in a F-test for lack of fit. 

We presented the estimators of the semivariance and its sampling variance 
for only two elementary designs. Other types of designs such as cluster sam­
pling and two-stage sampling which we dealt with very shortly, should be work­
ed out for variogram estimation and tested in the real world. The efficiency of 
designs for variogram estimation should be compared. Furthermore theory of 
experimental design may be used to optimize the choice of h and n(h). 

The proposed sampling strategies are applicable only in the pre-sampling sit­
uation, i.e. when data still have to be collected, and in the post-sampling sit­
uation when the probabilities of inclusion of the sample points are known. In 
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environmental soil science we often encounter the first situation because avail­

able data are insufficient or completely missing. If we already have data but 

the applied sampling design is unknown, the proposed strategies cannot be 

applied. This is the price to be paid for losing essential meta-information. 
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Incorporating the sampling error of 
non-ergodic variograms in kriging 
estimation errors 

The kriging variance of spatial predictions is in practice calculated from sample vario­
grams and does not account for uncertainty about the true variogram, leading to under-
estimations of the mean squared error. Moreover, ergodic variograms are defined over 
all model realizations and this too may cause a difference between the mean kriging 
variance and the mean squared error. The latter cause can be eliminated by using non-
ergodic variograms. Moreover, the error component in spatial estimates caused by un­
certainty about the variogram can be determined much more simply with non-ergodic 
variograms than with ergodic ones if pairs of points are selected at random and independ­
ently. In a case study, the strong underestimation of the mean squared error by the 
kriging variance was almost completely eliminated by adding the estimation variance 
due to sampling error of the non-ergodic variogram. 

Keywords: kriging variance, sampling variance, bootstrap, model-based inference, error 
propagation 

Introduction 

Spatial estimation techniques using a model of spatial variation (spatial conti­
nuity) such as kriging, are potentially more efficient than model-free techniques. 
Also, an estimate of the precision, the kriging variance, can be obtained direct­
ly, without test points with known values. However, the mean kriging variance 
(MKV) often differs considerably from the mean squared error of prediction 
(MSE) at test points. Laslett et al. (1987) reported percentages of underesti­
mation (I/) ranging from 30 - 77%. Bregt et al. (1991) found a percentage un­
derestimation of 70%. They adjusted the kriging variances by a factor 
MSB MKV to obtain more realistic kriging variance estimates. However this 
procedure is not founded on theory and one needs test points for it, eliminating 
an important advantage of kriging. Overestimations are reported too, see for 
instance Stein et al. (1988). 
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There are two main causes for the discrepancy between the mean squared 
error of prediction at test points and the mean kriging variance. The first cause 
is that in the geostatistical approach, the variogram is defined in terms of ex­
pected values over all possible realizations of a probability model (^-expec­
tations), i.e. ensemble averages (Isaaks and Srivastava, 1988). Such vario-
grams are referred to as ergodic or theoretical variograms. Suppose that the 
ergodic variogram is known. In areas where the realization is more erratic than 
average, the ergodic variogram will underestimate the mean squared error, 
whereas in areas where the realization is less erratic, the mean squared error 
will be overestimated. 

This problem can be avoided by modelling spatial structure within a determi­
nistic framework (Journel, 1985). Within this framework, the variogram is de­
fined over a single realization, i.e. a single finite and bounded domain. It is 
referred to as the non-ergodic or local variogram (Journel and Huijbregts, 1978; 
Srivastava, 1987; Isaaks and Srivastava, 1988). Realizations from the same 
ergodic variogram will have different non-ergodic variograms. Isaaks and 
Srivastava (1988) showed for the Wiener-Levy process that if the ergodic and 
non-ergodic spatial continuity functions are known, the non-ergodic covariance 
function gives more reliable confidence intervals of predictions than the ergodic 
variogram because "it captures the character of spatial variability unique to 
the domain over which it is defined". When we use estimated variograms esti­
mated from data sampled in the study area, this problem may become less 
serious. In that case the estimated ergodic variogram resembles to a greater 
or lesser degree the non-ergodic variogram of this area and consequently 
captures to a certain degree the features peculiar to the study area. 

A second cause for the above-mentioned difference is that the kriging variance 
does not account for the uncertainty about the variogram. Scatter diagrams 
of semivariance versus lag (variogram clouds) always show a wide spread, 
nevertheless the function fitted to the sample variogram is assumed to be an 
errorless estimate of the true variogram in subsequent kriging operations. This 
is clearly unrealistic. 

Gascuel-Odoux and Boivin (1993) analyzed the effect of the sample size (num-
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ber of sample points) on the estimation accuracy of: 
- the ergodic sample variogram (semivariance at several lags); 
- fitted functions (variograms); 
- predictions at points by kriging. 
They concluded that despite a large variance of the sample variogram, the 
estimation variance of fitted functions and kriging predictions was relatively 
small. 

Brus and De Gruijter (in prep.) introduced a set of relatively simple methods 
for design-unbiased (p-unbiased) estimation of the sampling variance of the 
non-ergodic variogram. In these methods, several lags are chosen and for each 
lag a probability sample (Särndal et al., 1992) of pairs of points is taken, sep­
arated by this lag. The question addressed in this paper is how the estimated 
sampling variance of the variogram can be used to eliminate the second cause 
of the discrepancy between the mean squared error and the mean kriging 
variance. 

The aim of this paper is: 
(i) to show how a probability sample of pairs of points can be used to incor­

porate the sampling error of the inferred non-ergodic variogram in the esti­
mation error of point kriging; 

(ii) to define a new measure of the estimation variance at points that accounts 
for uncertainty on the variogram, and to test its validity in a real-world case 
study. 

Incorporating sampling error of non-ergodic variogram 

Kriging with known non-ergodic variogram 
Let us assume first that for a property z the true non-ergodic variogram yA in 
area A is known. The kriging prediction of zin a prediction point x0 given the 
observations of z at the points xv x2,...xn can be written as: 
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z(x0) = t(X,z(x,)...z(xn),yA) = £ UX,yA)z{x) (7-1) 
;- i 

where: 
Xdenotes the set {x0, x,, x2,...xn}. 

The kriging variance is a function of X and yA only. The interpretation of the 
kriging variance in a deterministic setting of kriging is not immediately clear. 
In probabilistic kriging, using ergodic variograms, the kriging variance of an 
unbiased predictor is defined as the ̂ -expectation of the squared error of pre­
diction over all realizations of the model, given the locations of observation 
points and prediction point. However, non-ergodic variograms are defined over 
one realization of the model only, the one actually sampled. Journel (1985) 
defines a kriging error in a deterministic framework by shifting the configuration 
Xover A (Journel, 1985). All shifts have equal probability subject to the con­
dition that the entire configuration should lie in A. Each allowed shift, say T, 
induces a kriging error, say e: 

JLT = 1(Xrz(x^D-z(xn+T),yA) - z(x0+T) (7.2) 

where: 
Xj denotes the set {x0 + J , x, + T, x2 + T,...xn + 7}. 

The randomness of the shift produces randomness of the kriging error. As­
suming that the configuration X is negligibly small with respect to A, Journel 
(1985) derives that the expectation of e r= 0 if f is the usual kriging predictor. 
Moreover he shows that the variance of e r is given by the usual expression 
for the kriging variance. 

Kriging with estimated non-ergodic variogram 
In practice, yA has to be estimated by sampling. The estimated variogram will 
differ to some extent from the true variogram (wrong function type or values 
of parameters). This results in an additional error. Suppose that we have a 
probability (random) sample of pairs of points for several predetermined lag 
vectors h, say s, and that the location of the sampled pairs is independent of 

172 



the location of the configuration X. This sample can be used to obtain unbiased 
and robust1 estimates of (i) the semivariances at the lag vectors h and their 
sampling variances; (ii) the function (variogram) parameters and their sampling 
(co)variances. The fitted function (variogram) is used in point kriging: 

z(x0) = \{X,z{x,)...z(xn),%s) (7.3) 

From Equation (7.2) it follows that the true value z(x0) can be written as: 

z(x0) = f(X,z(x,)...z(xn),yA) - 80 (7.4) 

The estimation error is given by: 

i(x0)-z(x0) = 1(X,z{x,)...z(xn),yA,s) - 1(X,z(x,)-z(xn),yA)+e0 = TIS + e0 

(7.5) 
where: 
r|s = error component in spatial estimation resulting from estimation error of 

variogram by sample s. 

ris-errors can be generated by repeated sampling of pairs of points under the 
executed sampling design p for estimation of the variogram. 

Not knowing e0, Journel (1985) considers e0 as a realization of the random 
variable e^ which has, as stated above, approximately, mean 0, the variance 
being equal to the usual expression of the kriging variance. From that point 
of view, given z() and the configuration X, the estimation error is the sum of 
two components: 

z(x0)-z(x0) = n s + 8 r (7.6) 

Since the sample s and the shift Tare independent, the variance of the esti­
mation error (vat) equals the sum of the variances of m and er: 

Robust in this paper means insensitive to deviations from an assumed autocorrelation model. 
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varii(x0)-z(x0)} = v a i ^g + v a r ^ = a2
p + a2

K (7.7) 

o* will be referred to in short as the sampling variance, aK
2 as the kriging 

variance. 

The sum of these two variance components, Equation (7.7), can be minimized 
with respect to: 
(i) sampling design for estimation of variogram; 
(ii) variogram estimator; 
(iii) estimator of value at point. 
The kriging variance component is minimal for the kriging estimator (Journel, 
1985). Much work has still to be done on sampling designs and estimators 
minimizing the sampling variance component. 

Besides kriging variance and sampling variance caused by the sampling error 
of the variogram, still a third source of variation of the kriging estimator can 
be considered, viz. sampling variance due to repeated sampling of observation 
points. To simplify, we shall not consider this variation. In other words, in this 
paper inference is conditional on the sample of observation points. 

Model-assisted versus model-based inference 
The proposed kriging procedure using non-ergodic variograms and the new 
variance estimator, has some important advantages over the convential kriging 
procedure with ergodic variograms and the traditional kriging variance 
estimator: 

The validity of the variance estimates of the proposed kriging procedure 
does not depend on the correctness of the model. Even if the model used 
does not hold, the estimated variance (kriging variance plus the sampling 
variance) equals the variance calculated with the true model. Following 
Särndal et al. (1992, p. 227, 239) we will refer to such estimation proce­
dures as model-assisted. In probabilistic kriging the validity of the variance 
estimates is dependent on the validity of the model. If the model does not 
hold, the estimated kriging variance will differ from the kriging variance 
calculated with the true model. Such prediction procedures are referred 
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to as model-dependent (Hansen et al., 1983) or model-based (Särndal, 
1978; De Gruijter and Ter Braak, 1990). 
In model-based prediction the usefulness of the variance estimates de­
pends on the similarity between the ergodic variogram and the non-ergodic 
variogram of the area considered. If both variograms differ considerably, 
the estimated variance will seriously overestimate or underestimate the true 
variance, even if the true ergodic variogram is used. In model-assisted 
estimation this problem does not exist because there is only one variogram. 

Generating equiprobable sample variograms 
The sampling variance can be estimated by generating a set of equiprobable 
sample variograms from the sample, fitting variograms and then using these 
variograms one by one in spatial estimation. The sample variograms can be 
generated in various ways differing with respect to: 
(i) data used in simulation: the squared differences of the sampled pairs or 

the estimated variogram parameters; 
(ii) assumptions about the underlying distribution of the semivariances or vario­

gram parameters. 

Table 7.1 shows three plausible procedures which we shall describe shortly. 
With respect to (ii) we distinguish non-parametric procedures (no assumptions 
about shape of distribution) and parametric procedures. In fact these are the 
extremes of a continuum with semiparametric procedures in between (Cressie, 
1991). 

Table 7.1 Procedures for generating equiprobable sample variograms 

Squared difference 

Variogram parameters 

Non-parametric 

classical 
bootstrap 

Parametric 

parametric sample variogram 
uncertainty analysis 

variogram parameter 
uncertainty analysis 
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In the procedure classical bootstrap, the squared differences of the sampled 
pairs are used in generating equiprobable sample variograms and no assump­
tions are made about the distribution of the semivariances at a given lag vector 
h. The bootstrap is based on resampling of the data (Cressie, 1991 ). For vector 
h, it is supposed that the squared differences A2

V..A2„ are independent and 
identically distributed (i.i.d.) random variables with a cumulative distribution 
function F(h). In design-based sampling of pairs of points p-independence is 
created by the sampling design (Brus and De Gruijter, in prep.) Let us take 
as an example a simple random sample of pairs. In this design pairs of points 
separated by h are selected independently and such that the inclusion prob­
ability is equal for all such pairs (Brus and De Gruijter, in prep.) The sample 
size, i.e the numbers of pairs for h will be denoted by n{h). For approximation 
of the sampling distribution of variograms the classical bootstrap then proceeds 
as follows: 
(i) a simple random sample with replacement of size n(h) is drawn from A,2, 

/' = 1 to n(h); 
(ii) the sample data are used to estimate the semivariance and its sampling 

variance for lag h; 
(iii) steps (i) and (ii) are repeated for the other lags h; 
(iv) several variograms are fitted to the sample variogram and the best func­

tion is selected; 
(v) steps (i) to (iv) are repeated B times. 

In parametric sample variogram uncertainty analysis the squared differences 
are used too, but type and parameters of the distribution of the squared dif­
ferences for the lag vectors h are assumed to be known. For example, as­
suming normality of z, the squared difference of pairs separated by h follows 
a 2y(Ai)x1

2-distribution (Cressie and Hawkins, 1980). In variogram parameter 
uncertainty analysis the estimates of the variogram parameters and of their 
sampling variance and covariance are used in generating equiprobable vario­
gram functions and these parameters are assumed to be distributed according 
to a postulated joint density function. 

If little can be assumed about the underlying distribution of the variogram pa­
rameters, the classical bootstrap is attractive. An advantage of the bootstrap 
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and the parametric sample variogram uncertainty analysis is that uncertainty 
about the functional form of the variogram can be taken into account too. 

Case study 

Study area and data collection 
The described procedures to estimate the non-ergodic variogram and the esti­
mation variance at points were tested in a typical coversand area near the 
village of Wesepe, in the Province of Overijssel, the Netherlands. The area 
is rectangular, 3 km from east to west and 4 km from north to south and is the 
southwestern quarter of a 6 x 8 km study area where we compared the per­
formance of several estimation methods (Brus et al., in prep.). Soils were sam­
pled by auger at 415 observation points, 60 pairs of points for variogram esti­
mation and 100 test points (Figs 7.1 and 7.2). The 415 observation points form 
a square grid of 18 x 24 points, 166.7 m apart, with 17 missing points (build-up 
area). At each point we measured the maximum areic mass of P205 which can 
be sorbed potentially by soil above the mean highest water table (Pmax; kg m"2). 
For a definition of Pmax, see Brus et al. (1992). Pmax is an important property 
in studies on phosphate leaching which is a considerable environmental pro­
blem in the Netherlands. 

The soil map shows alternating stream valleys and coversand ridges in a N 
105° E direction. We used the data from the 6 x 8 km area to obtain a prior 
estimate of the range of an exponential variogram of Pmax in this direction and 
the direction perpendicular to it. (Table 7.2). These prior estimates were used 
to optimize the selection of the lag vector h2 in these two directions. Hereafter 
we denote the length of h by h. For exponential functions of type: 

yA(h) =00+0(1-6-*") (7-8) 

an exact locally D-optimum design of size n is independent of c0, c and n and 
given by (Rasch, 1990): 
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Fig. 7.1 Systematic sample of observation points and stratified simple random sample 
of test points 



4> O 100 500 m 

Fig. 7.2 Simple random samples of pairs of points for estimating the non-ergodic 
variogram. Points of a pair are connected by lines 



h, h2 hu 

n/3 n/3 n/3 

where: 
h, = lower boundary of the experimental region; 
hu = upper boundary of the experimental region, 

(7.9) 

and 

h = ^ hpxpj-h,/r0) - huexp(-hjr0) 
2 exp(-/7/r0) - exp( -Vo) 

where: 
r0 = prior estimate of r. 

This design is Z>optimal under the assumption of a constant residual variance, 
which is not realistic. However, we believe this design is a useful approxima­
tion. 

Table 7.2 shows the results. For the lower boundary of the experimental region, 
h„ we chose 5 m and for the upper boundary, hu, 1000 m. These are more or 
less arbitrary choices. We sampled 60 pairs, which implies (there are two direc­
tions and three distances) 10 for each lag. Each set of 10 pairs was selected 
by simple random sampling. 

Table 7.2 Prior estimates of range (r0) of exponential variogram in two directions and 
derived optimal lags (h„ h2, hu) in m. 

h, h '2 

/V15°E 184 5 185 1000 
W105°E 228 5 220 1000 
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Estimation of non-ergodic variogram 
As the inclusion probabilities of all pairs of points, given h, are equal, the non-
ergodic semivariance for lag h can be estimated by the unweighted mean: 

Î (h) = £ iz(x) -z(x,.+/i)P (7.11) 

and its sampling variance, ô/t^Ai)}, can be simply estimated by: 

w 
ÎM0.5AW o.25j2^(h)-mA{AHhW ( 7 1 2 ) 

0*$ (A))} = Z^ Zl— = » 
-p A n(h) n(h)in(h)-1} 

where: 
£,{} = estimated spatial variance of the quantity between brackets within 

A; 
A2,<Ai) = squared difference of the /th pair separated by lag h; 
m {̂} = estimated spatial mean of the squared differences within A. 

The inverse of these sampling variances were used as weights in fitting various 
functions for the variogram. Eight functions were used, namely all combinations 
of - exponential and spherical - with and without nugget - isotropic and iso­
tropic. For the anisotropic functions, the range was described by: 

r{e) = {r0
2cos2(e -<\>) + /i2sin2(9 -^)}1/2 (7.13) 

where: 
$ = preferential direction; 
/"„, = range in direction ty; 
r± = range in direction perpendicular to <(>; 
9 = direction of the lag vector. 

The parameter <|> was fixed to N105° E (derived from the soil map). We select­
ed the function with the smallest residual mean sums of squares. 
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Spatial estimation 
Values at points were estimated by local ordinary kriging (Journel and 
Huijbregts, 1978) with a neighbourhood of 20 points. The variogram fitted on 
the original sample was used to calculate the kriging variance of the estimated 
p 

max-

The classical bootstrap procedure was followed to estimate the sampling var­
iance caused by the sampling error of the non-ergodic variogram at test points: 
from each of the six samples of pairs, 10 pairs were resampled by simple 
random sampling with replacement. Next the eight functions, described above 
were fitted and the best function selected similarly. This procedure was re­
peated 100 times (B= 100). Using these 100 variograms in kriging resulted 
in 100 estimates at each test point. Given a test point, the variance of these 
estimates, referred to as the bootstrap variance, was used as an estimate of 
the sampling variance. 

Validation 
We tested the validity of (i) the kriging variance and (ii) the kriging variance 
plus the bootstrap variance, as estimates of the estimation variance at points 
by the spatial mean of squared deviation ratio, mA(i): 

where: 
N = total number of soil profiles in area A (population size); 
z(x;) = estimated value of z at location x;; 
z(xy) = true value of z at location x-, 
a2, = estimated estimation variance at location x;. 

Ideally, the spatial mean of squared deviation ratio equals 1. We estimated 
mA(i) by a stratified simple random sample of test points. At these test points 
we measured Pmax, so the estimation error at these points is known. We used 
the distance to the observation points and soil map unit as stratification criteria. 
On the basis of the distance we distinguished test points close to the nearest 
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Observation point (< 50 m) and further away from the nearest observation point 
(> 50 m). It is well known that the estimation error is related to the distance 
to the observation points. The same holds for the soil map units. The spatial 
variance of soil properties differs considerably between the units of the Soil 
Map of The Netherlands at a scale of 1:50 000 (Marsman and De Gruijter, 
1986, Brus et al. 1992). Given the sample size and the configuration of ob­
servation points, the mean estimation error in heterogeneous map units will 
generally be relatively large. The test points were allocated approximately 
proportionally to the area of the strata with a minimum of three points per 
stratum. 

For a stratified simple random sample, the spatial mean of squared deviation 
ratio, mA(i), can be estimated by (Cochran, 1977 p. 91): 

mA(ö = E wh mhO - E rç4-Erw <7-15> 

where: 
H = number of strata; 
Wh = weight of stratum h measured as the relative area; 
m„(i) = est imated spatial mean of squared deviation ratio of stratum h; 
nh = number of test points (sample size) of stratum h; 
ff,, = squared deviation ratio of the /th point in stratum h. 

The sampling variance of this estimate can be estimated by (Cochran, 1977 
p. 92): 

&SmA) = E < $m - E w' - (1 -Q <7-16> 

where: 
&p(lhh) = estimated sampling variance of the sample mean of stratum h 

under sampling design p; 
y„ = estimated spatial variance of stratum h; 
fh = sampling fraction of stratum h. 
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The sampling fractions are close to zero for all strata so the last term of 
Equation (7.16) can be dropped. 

Results and discussion 
Figure 7.3 shows the non-ergodic sample variogram with the estimated semi-
variances at the six lags and their 90% confidence intervals. For the 5 m lags, 
these intervals were rather narrow, however for the larger lags, they were very 
wide. An isotropic spherical variogram with nugget fitted best to this sample 
variogram with the following estimated parameter values: nugget = 0.1625 kg2 

m"4, range = 438 m, sill = 2.135 kg2 m"4 (Fig. 7.3). This variogram was used 
to estimate the kriging variance at the 100 test points. 

Figure 7.4 shows a histogram of this kriging variance. It is well known that this 
kriging variance is completely determined by the variogram and the configu­
ration of observation points; the values at the observation points are of no 
influence. This explains the relatively large kriging variances of the test points 
in the stratum 'distant from observation points'. 

Figure 7.5 shows the first 25 variograms in direction N105° E obtained by the 
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Fig. 7.3 Non-ergodic sample variogram with 90% confidence intervals and fitted model 
(spherical with nugget, isotropic) 
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Fig. 7.6 Frequency of eight variogram model types 

bootstrap procedure. The variograms differed considerably, especially with 
respect to the sill and the range. This can be explained by the wide confidence 
intervals for the largest lags. 

Figure 7.6 shows the frequency of the function types. No function type was 
clearly dominant: there were about as many anisotropic as isotropic variograms 
and about as many spherical as exponential variograms. Variograms without 
nugget term slightly outnumbered those with nugget term. 

A histogram of the variance of the kriging estimates at the 100 test points, 
using these variograms is shown in Figure 7.7. On average, the bootstrap var­
iance was somewhat smaller than the kriging variance, but evidently not neg­
ligible. The distribution of the bootstrap variance was positively skewed. There 
was no clear relation between the bootstrap variance and the distance to the 
nearest observation point: test points in the stratum 'distant from observation 
points' covered the whole range of the histogram. In contrast to the kriging 
variance, the bootstrap variance was partly determined by the values at the 
observation point: large values corresponded with outliers of Pmax at nearby 
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Fig. 7.7 Histogram of bootstrap variance (estimated sampling variance) at 100 testpoints 

observation points. 

Using the kriging variance as an estimate of the estimation variance at points, 
the estimated spatial mean of squared deviation ratio was 1.43 (standard error: 
0.25). This means that the kriging variance underestimated the estimation 
variance at points. For the kriging variance plus the bootstrap variance, the 
estimated spatial mean of squared deviation equaled 1.06 (standard error: 
0.19). This means that on average the sampling variance as measured by the 
bootstrap variance was approximately one third of the kriging variance. 

General discussion and conclusions 

The role of the model in model-assisted estimation procedures is rather dif­
ferent from that in model-based procedures. In model-based procedures it 
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describes a process by which the data have been generated, whereas in 
model-assisted procedures it describes the finite population itself. In model-
based procedures it is assumed that the population was really generated by 
the model £, and inference is based on this assumption. In model-assisted pro­
cedures we hope that the model \ describes the finite population reasonably 
well, but inference is not conditioned on this. In variance estimators the sam­
pling error of the estimated model is taken into account. For spatial estimation 
by kriging this implies that the uncertainty about the variogram is taken into 
account when calculating the variance of kriging estimates. 

Probability samples of pairs of points in which pairs are selected independently, 
offer strong potentialities for incorporating the sampling error of the non-ergodic 
variogram in the variance of kriging estimates. For samples like these, the 
bootstrap is a suitable procedure. In a case study, the sum of the sampling 
variance and the kriging variance was on average an unbiased estimate of the 
variance of the error at test points. With 60 pairs (120 points), the sampling 
variance contributed considerably to the total estimation variance. 
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Chapter 8 

Major conclusions 



Major conclusions 

This chapter describes the main results of this research and draws some major 
conclusions. First, I will answer questions (i) to (v) in Chapter 1 (p. 4-5). The 
answer to the question as to what decision rules can be used for choosing 
between approaches for incorporation of spatial variation models (question vi) 
is presented in the form of a decision tree. This decision tree is based on all 
the chapters and therefore can be seen as a synthesis of this thesis. Finally, 
I will present some ideas for further research. 

Main results and conclusions 

Question (i): is design-based inference invalid in areas with autocorrelated 
data? 
Design-based inference is always valid, also in areas with autocorrelated data, 
i.e. dependent data in the model-based sense. These data can be at the same 
time independent in the design-based sense (Chapter 2). 

Question (ii): are kriging estimates also optimal in the sense of the classical 
sampling theory, and what is the worth of the calculated kriging variance? 
Optimal estimates in the model-based sense are not necessarily optimal in the 
design-based sense. Model-unbiased (^-unbiased) estimates can simultane­
ously be design-biased (p-biased). Kriging estimates of spatial means and val­
ues at points will generally be p-biased. Moreover, a small model variance (Ç-
variance) of the kriging estimator does not necessarily imply a small sampling 
variance (p-variance) of this estimator in the area sampled. For reasonably 
large samples a small ^-variance of the estimated spatial mean implies that 
the sampling variance of this estimator averaged over all model realizations, 
will be small too: Ep{cs*(rhA)} = E%{ Opim^} (Chapter 2). The same holds for 
estimates at points (Chapter 4). If the realization in the area sampled is more 
erratic than average, the kriging variance will underestimate the true estimation 
variance; if it is more erratic, it will be an overestimate. 

The kriging variance generally is an underestimate of the true estimation vari-
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ance because the uncertainty of the model (ergodic variogram) is not incorpo­
rated in it (Chapter 7). 

The uncertainty of ergodic variogram estimators is difficult to assess because 
the uncertainty is caused by fluctuation variance (variance between model 
realizations) besides sampling variance. This fluctuation variance is unknown 
because the model is unknown. Therefore, I prefer non-ergodic variograms: 
the uncertainty of their estimators can be assessed relatively simply because 
the only source of variation is sampling. Design-based sampling strategies, 
selecting pairs of points at random and independently from each other, are 
most suitable for obtaining robust and p-unbiased estimates of the sampling 
variances and covariances of the variogram parameters (Chapter 6). 

Probability samples of independently selected pairs of points are also partic­
ularly apt for assessing the error component in kriging estimates accruing from 
uncertainty about the non-ergodic variogram. The bootstrap is a convenient 
procedure for obtaining an estimate of the variance of this error component, 
because it is a model-free procedure in which uncertainty about variogram 
parameters and functional type of variogram can be taken into account 
(Chapter 7). 

The underestimation of the mean squared estimation error by the kriging var­
iance was eliminated by adding the bootstrap variance accounting for uncer­
tainty about the non-ergodic variogram, to the kriging variance (Chapter 7). 

Model-assisted spatial estimation by kriging with non-ergodic variograms is a 
promising alternative to model-based spatial estimation by kriging with ergodic 
variograms because: 
- the estimation variance estimates are always valid, i.e. they do not depend 

on the correctness of the model; 
- inference is conditioned on the realization of the ergodic model actually sam­

pled; the only source of stochasticity is sampling (Chapter 7). 
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Question (Hi): can estimates of global means (Chapter 3) and of values at 
points (Chapter 4) be improved by soil map stratification, and how strong is 
this effect? How strong is the effect of estimation with vasograms on the accu­
racy of estimates at points? (Chapter 4) How strong is the effect of soil map 
stratification plus estimation with variograms on the accuracy of estimates at 
points? (Chapter 4) 
Stratification of an area according to the clustered units of the 1:50 000 Soil 
Map of the Netherlands led to a considerable increase in precision of the 
design-based estimates of the global mean of the maximum areic mass of P205 

sorbed by soil (Pmax) and of the areic mass of P205 sorbed by soil (P). For the 
mean relative mass of phosphate sorbed by soil (Pre,) and the areal fraction 
saturated with phosphate (Ac), there was only gain in the area with small histor­
ical phosphate load. For Ac the gain was strongly dependent on the critical 
value of Prel (Chapter 3). 

Estimates at points provided by the estimation methods global mean, moving 
average, nearest neighbour, inverse squared distance, Laplacian smoothing 
splines and ordinary point kriging, were generally not significantly (a = 0.10) 
improved by 1:50 000 soil map stratification in a case study with a low density 
of the observations points (1 observation per 25 ha). The only exceptions to 
this were the estimates of the mean highest water table ( WmJ and of the mean 
lowest water table ( Wmax) provided by nearest neighbour estimation. This can 
be explained by the bad performance of this estimation technique without strat­
ification. 

For this observation density, kriging estimates of values at points were not 
significantly more accurate than estimates with the estimated global mean. In 
other words, in this case there was no significant effect of estimation with vario­
grams on the accuracy of estimates at points. On the other hand, estimates 
of Wmin and Wmax by stratified kriging with different variograms for the soil map 
strata, were significantly more accurate than those with the global mean esti­
mator. In other words, for these properties the combined effect of soil map 
stratification and estimation with variograms was significant (a = 0.10). For the 
thickness of the A1 horizon and the maximum areic mass of P205 this combi­
ned effect was nearly significant. (Chapter 4). 
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Question (iv): which approach gives the most accurate estimates of values at 
points: estimation by random sampling stratified by soil map, or kriging? 
(Chapter 4) 
In a regional survey with a low observation density, estimates at points with 
the means of map units as estimators were slightly more accurate than those 
provided by unstratified kriging. However, this difference was not significant 
(a = 0.10). In other words, the effect of soil map stratification in design-based 
estimation was as strong as the effect of estimation with variograms. Soil map 
stratification in design-based inference has the advantage of p-unbiased and 
robust estimates of the spatial means or the values at points and of their esti­
mation variances (Chapters 4 and 7). 

Question (v): does it pay to revise a soil map before using it in spatial esti­
mation? 
It generally does not pay to revise a soil map in order to obtain an improved 
model of spatial variation before using the model in spatial estimation. If re­
vision is followed by random sampling, then the revised model may become 
profitable for estimation of values at points (Chapter 5). 

Question (vi): what decision rules can be used for choosing between the two 
approaches? 
The answer to this question will be presented as a decision tree (Fig. 8.1). 

Choice of sampling strategy 

In Chapters 2-7 several factors were reviewed, that determine the efficiency 
of an approach to incorporate a spatial variation model. There are many factors 
involved and therefore the decision process can become rather complicated. 
This section deals with these factors more systematically and presents a deci­
sion tree to support these decisions. Although the model-assisted approach 
is very new, the potentials of this procedure are sufficiently clear to include 
it in the decision tree. 

The choice of a sampling strategy (sampling design plus estimator) is governed 
by (Domburg et al., 1993): 
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Table 8.1 Explanation of sampling strategies (see Fig. 8.1) 

No Sampling Inference 

1 

2 
3 

4 

5 
6 

7 
8 
9 
10 

11 
12 
13 
14 
15 

purposive 

purposive 
as 1, stratified 

as 2, stratified 

purposive: centred, regular grid 
observation points: centred, regular grid 
pairs of points: probability 
purposive: centred regular grid 
as 5, stratified 
as 6, stratified 
as 7, stratified 

probability 
probability 
probability 
as 11, stratified 
as 11, stratified 

16 as 12, stratified 
17 as 12, stratified 

18 stratified probability 

model-based 

sample mean 
model-based 

sample mean 

model-based 
model-assisted 

sample mean 
model-based 
model-assisted 
sample mean 

model-assisted 
model-assisted 
design-based 
model-assisted 
design-based or 
model-assisted 
model-assisted 
design-based or 
model-assisted 
design-based 

19 probability: regular grid with random direction and design-based 
starting point 

20 as 19, stratified design-based 
21 probability, not systematic design-based 
22 as 21, stratified design-based 
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aim of survey (local or global estimation; criterion for assessment of 
quality of estimates); 
constraints (accessibility; available budget and sampling costs); 
prior information (soil map). 

Figure 8.1 shows a decision tree consisting of seven questions related to the 
three factors mentioned above. Obviously more questions are relevant in this 
context, however I included only the questions dealt with in this thesis. I will 
briefly comment on these questions. 

Is it the aim to estimate locally? 
The aim of the survey strongly influences the choice of the sampling strategy. 
If the aim is to estimate the values at points or the means of many blocks, i.e. 
local estimation, model-based or model-assisted inference is preferable to 
design-based inference because: 
- estimates will be more accurate in certain circumstances; 
- for estimating at points, model-based and model-assisted estimates of the 

estimation variance vary continuously in space, which is generally more 
realistic than the discontinuous variation of the design-based estimation 
variance. 

To keep the decision tree as simple as possible, this question is incorporated 
in the base of the tree. 

Are p-unbiased estimates required? 
The answers to this and following question further specify the aim of the sur­
vey. The meaning of p-unbiasedness in local estimation differs from that in 
global estimation (see page 104): for estimation of values at points these esti­
mates are p-unbiased if the spatial mean of the p-expected errors equals 0. 
For global estimation each estimate of a block-mean should be p-unbiased 
separately. If this question is answered with yes, design-based strategies are 
the only option. For model-based and model-assisted inference, estimates will 
not be p-unbiased. 
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Are p-unbiased and robust estimates of the estimation variance required? 
If p-unbiased and robust estimates of the accuracy of the estimates are re­
quired, probability sampling combined with design-based or model-assisted 
inference is preferable because: 
- the design-based approach is model-free; 

uncertainty about the model is taken into account in model-assisted infer­
ence of the estimation variance. 

If p-unbiased and robust estimates of the estimation variance are not required, 
purposive sampling, for example by a centred, regular grid generally is superior 
to probability sampling because its estimation variance is generally smaller than 
that of a non-centred grid of equal configuration (strategies 5 -10). In addition 
estimation variance using model-based or model-assisted inference is generally 
smaller than with design-based inference if there is autocorrelation between 
neighbouring observation points (strategies 5, 6, 8, 9). 

Is probability sampling possible? 
If probability sampling is impossible, for example due to inaccessibility of large 
parts of the survey region, purposive sampling combined with model-based 
inference is the only alternative. In this case there is no suitable strategy if p-
unbiased estimates are required or if p-unbiased and robust estimates of the 
estimation variance are required. 

Is there a soil map of good quality? 
If there is a soil map of the survey region and the map units are more homo­
geneous for the property under study than the region as a whole, the efficiency 
of sampling strategies can be increased by incorporating the map in the sam­
pling design, for example by stratified random sampling or stratified purposive 
sampling. This stratification should be taken into account in the inference of 
estimates, also in model-based and model-assisted inference (stratified kriging). 

Will there be autocorrelation between neighbouring observation points? 
If the available budget is small and the sampling costs are high, the sampling 
density will be low. This density should be related to the range of the vario-
gram. For relatively low densities there will be no or only little autocorrelation 
between neighbouring observation points and no gain in accuracy can be ex-
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pected by using an autocorrelation model or variogram in spatial estimation. 
In this case, design-based inference is preferable (strategies 7,13,18). If there 
is no autocorrelation and no soil map of good quality local estimates will be 
very inaccurate. In this case the aim of the survey and the constraints (avail­
able budget) do not match. 

Can the autocorrelation model be estimated accurately? 
The presence of autocorrelation is one thing, an accurate model describing 
this autocorrelation is another. If the available budget is small and the sampling 
costs per observation point are high, the sampling design will be unsuitable 
for estimating the model (ergodic or non-ergodic variogram) accurately. Conse­
quently, the estimated model may strongly deviate from the true underlying 
model, probably leading to a large estimation error. Also, the sampling error 
of the model (variogram) will be large. In model-based inference, the sampling 
error of the ergodic variogram is not incorporated in the kriging error and as 
a result the kriging error will strongly underestimate the estimation variance. 
Therefore, in this case I recommend model-assisted inference because it incor­
porates the uncertainty about the non-ergodic variogram in the kriging error 
(strategies 6, 9, 12, 16, 17). 

Further research 

This thesis compares the efficiency of estimation by random sampling, stratified 
by soil map with that of kriging for surveys with low observation density. This 
comparison has to be extended to higher densities. To compare the efficiency 
of the two methods for estimating spatial means, sampling from simulated fields 
is a suitable procedure, because the true means are then known. 

Furthermore, this thesis presents only the first steps towards a new approach 
for incorporating a spatial variation model in spatial estimation: the model-
assisted approach. It avoids the main drawback of the model-based approach, 
namely the unreliability of the estimation variance estimates. Much work has 
still to be done on this: 
- the variance of model-assisted estimates was obtained by the bootstrap, 
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which is a rather laborious procedure. Variance estimators similar to those 
of the regression estimator with estimated regression coefficients, need 
to be derived; 
model-assisted spatial estimation was conditioned on the sample of obser­
vation points used in kriging. The variance estimate only accounts for the 
randomness of spatial variation and for the uncertainty about the variogram. 
Procedures and estimators also accounting for sampling variance of obser­
vation points have to be developed; 
the efficiency of sampling designs for estimation of the non-ergodic vario­
gram have to be compared; 
I used separate and independent samples for estimation of the non-ergodic 
variogram and for kriging. This might not be very efficient and it may be 
advantageous to use the sample for estimation of the variogram in kriging 
too. However, robust estimation of the estimation variance might then be­
come troublesome. In short, efficient and robust sampling strategies for 
simultaneous estimation of variogram and for kriging need to be developed 
in future. 

References 

Domburg, P., De Gruijter, J.J. & Brus, D.J. 1993. A structured approach to designing 
soil survey schemes with prediction of sampling error from variograms. 
Geoderma (in press). 

202 



Samenvatting 



Ruimtelijke-variatiemodellen in 
bemonsteringsstrategieën voor de bodem 

De efficiëntie van bemonsteringsstrategieën voor de bodem kan worden ver­
groot door gebruik te maken van voorinformatie over de ruimtelijke variatie van 
de bodemkenmerken. Deze ruimtelijke variatie kan worden beschreven met 
een model. Op het hoogste niveau kunnen twee benaderingen worden onder­
scheiden die van elkaar verschillen in de wijze waarop dergelijke modellen 
worden gebruikt: 
(i) bij het selecteren van bemonsteringslocaties volgens een bepaalde steek-

proefopzet; 
(ii) bij het berekenen van schattingen. 

Het hoofddoel van dit proefschrift is het analyseren van de voor- en nadelen 
van beide benaderingen vanuit theoretisch en praktisch oogpunt. Schatting door 
middel van een aselecte steekproef, waarbij de bodemkaart wordt gebruikt voor 
stratificatie van het onderzoeksgebied, diende als voorbeeld voor de eerste 
benadering. In deze benadering is de bodemkaart het model van de ruimtelijke 
variatie. De bemonsteringspunten worden binnen de kaarteenheden aselect 
gekozen. Wanneer een bodemkenmerk binnen de kaarteenheden minder sterk 
varieert dan in het totale gebied, dan zal over het algemeen een dergelijke 
gestratificeerde steekproefopzet een nauwkeurigere schatting van het gebieds­
gemiddelde opleveren dan een enkelvoudige aselecte steekproefopzet. 

De interpolatietechniek kriging diende als voorbeeld voor de tweede benader­
ing. Sinds 1980 staat deze interpolatietechniek bij bodemkundigen sterk in de 
belangstelling. In tegenstelling tot de vorige benadering wordt in deze bena­
dering bij het selecteren van de bemonsteringspunten geen gebruik gemaakt 
van een bodemkaart. Vaak wordt bemonsterd volgens een regelmatig grid. Het 
model van de ruimtelijke variatie wordt gebruikt bij het berekenen van de schat­
ting. Dit model lijkt in geen enkel opzicht op een bodemkaart. Het beschrijft 
de ruimtelijke variatie van het bodemkenmerk door middel van vergelijkingen. 
Een belangrijk onderdeel van dit stochastische model is de autocorrelatiefunctie 
of semivariogram. Een autocorrelatiefunctie is een functie die de correlatie van 
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een kenmerk, gemeten op twee punten, beschrijft als functie van de afstand 
en richting tussen deze twee punten. 

De keuze tussen de twee benaderingen is in de eerste plaats een keuze tussen 
de klassieke-steekproefbenadering en de geostatistische benadering. In de 
geostatistische literatuur komt men echter veelvuldig de opvatting tegen dat 
de klassieke-steekproefbenadering niet geldig is wanneer de gegevens auto­
correlatie vertonen. Ook wordt verondersteld dat de geostatistische benadering 
optimaal is. Als deze veronderstellingen juist zijn, dan bestaat er geen keuze­
probleem. In dit proefschrift laat ik zien dat de opvatting over het niet-valide 
zijn van de klassieke-steekproefbenadering op een misverstand berust. Ook 
maak ik duidelijk dat optimaliteit in de geostatistische benadering een andere 
betekenis heeft dan in de klassieke-steekproefbenadering. De twee bena­
deringen gebruiken namelijk verschillende criteria om de kwaliteit van de schat­
tingen te bepalen. Een optimale schatting in de ene betekenis hoeft niet opti­
maal te zijn in de andere betekenis. Conclusie: er is wèl een keuzeprobleem. 

De efficiëntie van de bodemkaart en het semivariogram als modellen van de 
ruimtelijke variatie zijn onderzocht voor het schatten van waarden op niet-
bezochte punten en voor het schatten van gebiedsgemiddelden. Dit is gedaan 
in vier dekzandgebieden, variërend in grootte van 1233 ha tot 4814 ha, met 
een steekproefdichtheid van één boring per 20 à 25 ha. In deze gebieden zijn 
met name bodemkenmerken gemeten die relevant zijn voor het onderzoek naar 
fosfaatuitspoeling op landbouwgronden. 

De nauwkeurigheid van de geschatte gebiedsgemiddelden van het fosfaatbin-
dend vermogen (FBV) en het huidige fosfaatgehalte van de bodem kon aan­
zienlijk worden vergroot door de Bodemkaart van Nederland, schaal 1:50 000 
te gebruiken voor stratificatie in een aselecte steekproef. Voor de gemiddelde 
fosfaatverzadigingsgraad en de fosfaatverzadigde oppervlakte leverde deze 
stratificatie alleen winst op in het gebied met een lage fosfaatbelasting. Voor 
de fosfaatverzadigde oppervlakte was de winst bovendien sterk afhankelijk van 
de kritische waarde van de fosfaatverzadigingsgraad. 

In een studie met één boring per 25 ha werd de nauwkeurigheid van de ge-
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schatte dikte van de A1 -horizont (c/(A1)), gemiddeld hoogste grondwaterstand 
(GHG), gemiddeld laagste grondwaterstand (GLG) en het fosfaatbindend ver­
mogen (FBV), op niet-bezochte punten niet significant groter door het gebied 
eerst te stratificateren met de 1:50 000 Bodemkaart van Nederland. Dit gold 
voor alle onderzochte interpolatietechnieken: gebiedsgemiddelde, lokaal ge­
middelde, Thiessen polygonen, inverse van gekwadrateerde afstand, Laplacian 
smoothing splines en kriging. De enige uitzonderingen hierop waren schatting­
en van de GHG en GLG door middel van Thiessen polygonen, wat verklaard 
kan worden door de zeer slechte schattingen met deze techniek zonder strati­
ficatie. 

Voor deze waarnemingsdichtheid waren de schattingen verkregen met kriging 
niet nauwkeuriger dan die met het gebiedsgemiddelde. Daarentegen leverde 
kriging binnen drie groepen van kaarteenheden wel nauwkeurigere schattingen 
op dan het gebiedsgemiddelde. Schattingen van cf(A1), GHG, GLG en FBV 
op punten door een aselecte steekproef, gestratificeerd met behulp van een 
bodemkaart waren iets nauwkeuriger (maar niet significant bij cx= 0.10) dan 
die met kriging. 

Bodemkaarten zijn soms verouderd, bijvoorbeeld door een daling van de grond­
waterstand. Sommigen stellen daarom voor om de bodemkaart eerst te re­
viseren en daarna de gereviseerde bodemkaart te gebruiken als model van 
de ruimtelijke variatie bij ruimtelijke interpolatie. Uit dit proefschrift blijkt dat 
deze aanpak over het algemeen niet efficiënt is. Het is efficiënter om de voor 
revisie benodigde middelen te gebruiken voor het bemonsteren van aselect 
gekozen punten. De metingen op deze punten kunnen dan worden gebruikt 
voor het schatten van waarden op niet-bezochte punten of van gebiedsgemid­
delden, waarbij de bestaande bodemkaart wordt gebruikt als model van de 
ruimtelijke variatie. Revisie van de bodemkaart is alleen efficiënt wanneer ook 
een aselecte steekproef wordt genomen en deze gegevens worden gebruikt 
voor het schatten van waarden op niet-bezochte punten, gebruikmakend van 
de gereviseerde bodemkaart. Dit geldt alleen voor bodemkenmerken die sterk 
gerelateerd zijn aan de bodemkaarteenheden zoals bijvoorbeeld de gemiddeld 
hoogste grondwaterstand. 
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Kriging levert behalve geschatte waarden op punten of geschatte gebiedsge­
middelden ook een schatting van de nauwkeurigheid van deze schattingen op: 
de kriging-variantie. Deze kriging-variantie is echter over het algemeen een 
onderschatting van de werkelijke variantie van de schattingsfout. Een belang­
rijke oorzaak hiervan is de verwaarlozing van de onzekerheid over het vario-
gram bij de bepaling van de schattingsfout. In dit proefschrift laat ik zien dat 
dit probleem opgelost kan worden door te interpoleren met een niet-ergodisch 
variogram in plaats van met een ergodisch variogram. Een niet-ergodisch 
variogram is gedefinieerd voor één realisatie van het stochastische model van 
de ruimtelijke variatie, namelijk die in het onderzochte gebied. Ergodische 
variogrammen zijn gedefinieerd voor alle realisaties van dit model. 

In dit proefschrift wordt een set van nieuwe methoden gepresenteerd die zeer 
goede mogelijkheden biedt voor zuivere en robuuste schatting van de steek-
proeffout van het niet-ergodische variogram en voor het opkrikken van de 
kriging-variantie met de variantie van deze schattingsfout. Op deze wijze kon 
de sterke onderschatting van de schattingsvariantie geheel worden geëli­
mineerd. De resultaten zijn de eerste stappen naar een geheel nieuwe bena­
dering in de ruimtelijke statistiek, de model-ondersteunde benadering. In deze 
benadering speelt het model een wezenlijk andere rol als in de geostatistische 
benadering. In de geostatistische benadering beschrijft het model een proces 
dat de gegevens in het studiegebied heeft gegenereerd, terwijl in de model-
ondersteunde benadering het model het studiegebied zelf beschrijft. In de geo­
statistische benadering wordt verondersteld dat de populatie werkelijk door dit 
proces is gegenereerd en de schattingen worden gebaseerd (geconditioneerd) 
op deze veronderstelling. In de model-ondersteunde benadering echter wordt 
verondersteld dat het model de populatie redelijk goed beschrijft, maar de 
schattingen worden hier niet op geconditioneerd. In variantie-schatters wordt 
de onzekerheid over het model immers meegenomen. 

De efficiëntie van de klassieke-steekproefbenadering, de geostatistische be­
nadering en de model-ondersteunde benadering wordt bepaald door een groot 
aantal factoren. De keuze tussen de drie benaderingen kan worden onder­
steund met de beslisboom van Hoofdstuk 8. In deze beslisboom zijn acht vra­
gen opgenomen die gaan over het doel van de inventarisatie, de criteria voor 
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de bepaling van de kwaliteit van de schattingen, de mogelijkheden voor 
aselecte bemonstering, de aanwezigheid van voorinformatie in de vorm van 
een bodemkaart, verwachte autocorrelatie tussen dichtbij elkaar gelegen 
bemonsteringspunten en de kwaliteit van het autocorrelatie-model. 
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