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VOORWOORD 
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CHAPTER 1 

GENERAL INTRODUCTION AND OUTLINE OF THE THESIS 



GENERAL INTRODUCTION 

The bacteriocin nisin, produced by several naturally occurring Lactococcus lactis strains, is a 

promising alternative for sodium nitrate to prevent the outgrowth of clostridial spores in Gouda 

cheese. In the past, researchers at the Netherlands Institute for Dairy Research (NIZO) encountered 

two major obstacles in their efforts to design nisin-producing starter cultures. One was that the 

natural nisin-producers usually were bacteriophage-sensitive and lacked the appropriate industrial 

characteristics. The other was that bacteriophage-resistant starter strains were very sensitive to nisin. 

It was known that nisin production and immunity could, together with the ability to utilize sucrose, 

be transferred to other L. lactis strains in a conjugation-like process. It was therefore decided to 

introduce nisin production and/or nisin immunity in industrial starter strains by natural transfer of 

the genetic material responsible for these traits. 

OUTLINE OF THE THESIS 

The aim of the research described in this thesis was to identify and characterize the genetic 

element carrying the information for nisin biosynthesis and sucrose proficiency, the nisin-sucrose 

element. The thesis has the following outline. Chapter 2 describes our current knowledge of nisin 

genetics and the recent advances in the protein engineering of nisin. The cloning and analysis of 

several parts of the nisin-sucrose element of L. lactis strain NIZO R5 are described in the next two 

chapters. Chapter 3 deals with the prenisin gene, nisA, and its surrounding region, which includes 

the insertion sequence 1S1068. In Chapter 4, the organization and transcription of the sucrose (sac) 

operon and the characterization of the gene for sucrose-6-phosphate hydrolase are described. The 

different parts of the nisin-sucrose element were used as DNA probes to investigate the nature and 

location of this element (Chapter 5). It was shown that the nisin-sucrose element of L. lactis NIZO 

R5 is a large (70 kb), conjugative transposon, designated Tn5276. Chapter 6 describes the isolation 

and analysis of the genes that encode the transposition functions of Tn5276. The experiments 

leading to a model for excision and insertion of Tn5276 are described in Chapter 7. Chapter 8 deals 

with the distribution and evolution of nisin-sucrose elements in L. lactis. The thesis is completed 

with the summary and concluding remarks (Chapter 9) and a Dutch summary (Chapter 10). 



CHAPTER 2 

GENETICS AND PROTEIN ENGINEERING OF NISIN 

Peter J.G. Rauch, Oscar P. Kuipers, Roland J. Siezen 

and Willem M. de Vos 

This chapter will appear in "Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics 

and Applications" (L. de Vuyst and EJ. Vandamme, Eds.) Elsevier, London, In press 
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FIG. 1. The primary structures of nisin A and nisin Z. Dha, Dhb, Ala-S-Ala, and Abu-S-Ala indicate 
dehydroalanine, dehydrobutyrine, lanthionine, and B-methyllanthionine residues, respectively. 

1. Introduction 

Of the bacteriocins produced by lactic acid bacteria, nisin (Fig. 1) is the best characterized 

representative. Nisin is a 34-amino acid (aa) polypeptide (Gross & Morell, 1971) produced by a 

number of, usually atypical, Lactococcus lactis subsp. lactis strains (Hirsch, 1953; De Vos et al., 

1992). Two natural variants of nisin are known, nisin A (Gross & Morell, 1971) and nisin Z 

(Mulders et al, 1991), which differ in a single amino acid residue at position 27 (Asp in nisin A 

and His in nisin Z; Fig. 1). The structural genes for nisin A and nisin Z (nisA and nisZ, 

respectively) have been found to differ by a single mutation (see section 3.1). The two nisin 



variants appear to have the same biological activities, but nisin Z seems to have other diffusion 

properties than nisin A (De Vos et al, 1992). Nisin is the most prominent member of the group 

of bacteriocin-like peptides called lantibiotics (Schnell et al, 1988). Lantibiotics are ribosomally 

synthesized antimicrobial polypeptides, produced by gram-positive bacteria, that contain the 

thioether amino acids lanthionine and 3-methyl-lanthionine (see Jung (199la,b) for recent reviews). 

On the basis of their different types of ring structures and their differences in molecular weights, 

the lantibiotics have been classified into the two subgroups type A and type B, nisin being a type 

A lantibiotic. Other members of this group include subtilin (Gross & Kiltz, 1973) produced by 

Bacillus subtilis, epidermin (Allgaier et al., 1985, 1986) and Pep5 (Kellner et al., 1989), both 

produced by Staphylococcus epidermidis, and the L. lactis subsp. lactis bacteriocin Iacticin 481 

(Piard, 1992; Piard et al, 19926). 

Nisin has found wide application as a food preservative owing to its antimicrobial activity against 

a broad range of gram-positive organisms, including food pathogens such as Clostridium and 

Listeria species, its non-toxicity and its instability at neutral pH and during passage through the 

intestine (Delves-Broughton, 1990; Molitor & Sahl, 1991). Recently, it was reported that nisin 

shows a bacteriocidal effect towards Salmonella species and other gram-negative bacteria when 

used in combination with chelating agents (Blackburn et al, 1989; Stevens et al, 1991). This is 

in agreement with the finding that cells of Escherichia coli become sensitive to nisin when their 

outer membrane is disrupted (Kordel & Sahl, 1986). 

The primary target of nisin action is the cytoplasmic membrane and pore formation by nisin in 

intact cell membranes and artificial lipid bilayers has been demonstrated (Sahl et al, 1987; Benz 

et al, 1991). However, the effectivity of nisin appears to be dependent on the membrane lipid 

composition (Gao et al, 1991). NMR structural analyses of nisin have been published (Goodman 

et al, 1991; Lian et al, 1992; Van de Ven et al, 1992). These studies, in combination with 

structural analyses of nisin in lipophilic environments and further biophysical experiments on the 

interaction between nisin and membranes, may lead to elucidation of the molecular mechanism of 

pore formation. 

This chapter is concerned with the two main subjects of nisin genetic research: firstly, the nisin 

gene cluster and its use in protein engineering and secondly, the conjugative transposon carrying 

the nisin gene cluster. 



2. Nisin biosynthesis and immunity 

The first indication that nisin biosynthesis occurs through the posttranslational modification of 

a ribosomally synthesized precursor (designated prenisin (De Vos et al., 1991); see Fig. 2) came 

from the observations of Hurst (1966) and Ingram (1969) that inhibitors of ribosomal protein 

synthesis block nisin production. Ingram (1969, 1970) proposed that the formation of the 

lanthionines and 3-methyllanthionines occurs through dehydration of serine and threonine residues, 

respectively, followed by sulphide ring formation between the resulting dehydroalanine and 

dehydrobutyrine residues and appropriately located cysteine residues. On the basis of these 

mechanisms the structure of the nisin precursor polypeptide was postulated (Ingram, 1970). Twenty 

years later, the sequencing of the structural genes for nisin A and Z (see section 3) has now 

confirmed the proposed structure of the nisin precursor and therefore supports the putative mode 

of synthesis. 

Another aspect of nisin production is self-protection or immunity of the producer. A characteristic 

feature of bacteriocins is the existence of specific immunity peptides, which protect the producer 

strains against the lethal action of their own products. Good examples are the colicins produced by 

certain E. coli strains. The lethal action of colicins E2 and E3 on the producer organism is 

prevented by stoichiometric complex formation with immunity proteins in the cytoplasmic 

membrane (Bowman et al, 1971). In the case of the channel-forming colicins (A, B, El, la, lb, 

and N) it has been proposed that immunity at least partly arises from a specific interaction between 

the immunity protein and the colicin translocation apparatus that transports the bacteriocin across 

the outer membrane into the periplasm (Song & Cramer, 1991). 

PRENISIN 

-23 -10 -1 1 10 20 34 
MSTKDFNLDLVSVSKKDSGASPRITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK 

A " nisin leader peptide >\A pronisin part • 
cleavage site 

FIG. 2. The amino acid sequence of prenisin (nomenclature according to De Vos et al, 1991). 



Little is known about the basis of immunity to nisin. Early experiments by the group of Hurst 

pointed toward an active process changing the cell configuration of the producer (Hurst & Kruse, 

1970). This process was initiated with the onset of nisin production, since the producer was 

sensitive to nisin when active nisin was not yet produced (Hurst & Kruse, 1972). There are 

indications that there is a relation between the expression of the nisA gene and the level of 

immunity (Rauch et al, 1991). It was found that the immunity to nisin of the non-nisin producing 

L. lactis subsp. lactis NIZO R5 mutant NIZO R520, in which the small nisA transcript (see section 

3) was not detected, was strongly reduced. A L. lactis subsp. lactis NIZO R5 mutant (NIZO R512) 

producing a low amount of nisin appeared to have an intermediate level of immunity. These results 

were confirmed by recent experiments that show similar effects in strains producing mutant nisins 

(Kuipers, O.P. et al, unpublished data). Probably, the production of (pre)nisin is required for a high 

level of nisin immunity, e.g. directly as an immunity protein or indirectly by interaction with an 

immunity protein or as an effector in a regulation pathway. 

The genes encoding the E. coli colicins and their respective immunity proteins are always in 

close proximity to each other (see e.g. Mankovich et al, 1986). For the lactococcins produced by 

certain L. lactis strains it has been shown that the genes for production of and immunity to the 

bacteriocin constitute operons (Van Belkum et al, 1991; Van Belkum, 1992a J))- For the lantibiotic 

Pep5 an open reading frame (ORF) has been identified that may encode an immunity protein (Reis 

& Sahl, 1991). This ORF is located immediately upstream from the Pep5 structural gene pepA and 

could encode a 69-aa polypeptide. Secondary structure predictions have indicated that the protein 

might be membrane-associated. No proteins with amino acid sequence similarity were found in the 

protein data bases. Experiments with deletion mutants suggest that immunity to Pep5 requires 

expression of both the putative immunity gene and the pepA gene. Although no comparable ORFs 

have been found thus far in other lantibiotic gene clusters, the dependency of immunity to the 

lantibiotic on the expression of the lantibiotic structural gene is analogous for Pep5 and nisin. 

In view of the importance of immunity in the production of known nisin species and engineered 

mutants, it is essential that studies directed toward elucidation of the immunity mechanism be 

conducted in the near future. 



3. The nisin gene cluster 

3.1 Structural genes for nisin A and nisin Z 

The isolation and sequence determination of the structural gene for nisin A was first reported by 

Buchman et al. (1988). Three other groups independently isolated the structural gene for nisin A 

(now generally designated nisA; De Vos et al, 1991) from different nisin-producing L. lactis subsp. 

lactis strains (Kaletta & Entian, 1989; Dodd et al, 1990; Rauch & De Vos, 1992a). All groups 

employed a similar strategy, using oligonucleotide probes based on the proposed structure of the 

nisin precursor (Ingram, 1970) to screen genomic libraries or isolated DNA of different nisin-

producing L. lactis subsp. lactis strains. Only one nucleotide difference was encountered when the 

sequences of the different nisA genes were compared (a silent mutation in L. lactis subsp. lactis 

6F3 [Kaletta & Entian, 1989]). The gene for nisin Z was also isolated and sequenced (Mulders et 

al., 1991). The His27Asn substitution in nisin Z with respect to nisin A was accounted for by a 

C to A transversion in the nucleotide sequence. Nisin Z was found to be widely distributed: 14 out 

of 26 L. lactis subsp. lactis strains analyzed for the presence of either gene contained the nisZ gene 

(De Vos et al., 1992), while the existence of another L. lactis subsp. lactis strain containing the 

nisZ gene has been independently reported (Graeffe et al., 1991). 

The nisin precursor derived from the nisA gene nucleotide sequence is a 57-aa peptide consisting 

of a 23-aa leader peptide segment and a C-terminal 34-aa peptide segment (Fig. 2) that is identical 

to the precursor proposed by Ingram (1970). This demonstrates that mature nisin is indeed 

synthesized by modification of a ribosomally synthesized precursor molecule. The ORF is preceded 

by a consensus lactococcal ribosome binding site (De Vos, 1987). The genes for several other type 

A lantibiotic precursors have also been cloned and sequenced. These are the genes for the 

precursors of epidermin (Schnell et al, 1988), subtilin (Banerjee & Hansen, 1988), gallidermin 

(Schnell et al, 1989), Pep5 (Kellner et al, 1989) and lacticin 481 (Piard et al, 1992a). A 

comparison of all precursors deduced from the nucleotide sequences, except that of lacticin 481, 

was carried out by Jung (1991a,6). The prediction profiles of the secondary structure, flexibility, 

hydropathy and hydrophilicity, as well as the helical-wheel plots of the precursors showed a 

number of similarities. All leader sequences are predicted to be very hydrophilic and strongly 

charged and they possibly fold into an amphiphilic ot-helix in a lipophilic environment. In contrast, 

9 



nisA nisB nisT 

FIG. 3. Open reading frames identified thus far in the nisin gene cluster of L. lactis subsp. lactis NIZO R5 
(Kuipers, O.P. et al., unpublished data). 

the prolantibiotic sequences are more lipophilic and their secondary structures show a preference 

for B-turns and are predicted to lack a-helices. Also, the processing sites for cleavage of the leader 

sequence, which are located in a predicted well-accesible, hydrophilic turn, are conserved (Jung, 

1991a,6). The structural conservations in the leader sequences, together with the fact that the leader 

sequences do not show the characteristics of prokaryotic signal peptides of secreted proteins (Von 

Heijne, 1985), point toward a role for the leader sequence in lantibiotic biosynthesis and/or 

secretion through a dedicated system (see also section 3.2). 

3.2 Organization of the nisin A gene cluster 

Examination of the nucleotide sequences of the regions upstream and downstream from the nisA 

gene published thus far revealed the presence of a complete ORF and the start of a third one 

downstream of the nisA gene (Buchman et al, 1988; Dodd et al, 1990; Rauch et al, 1990; Horn 

et al, 1991; Steen et al, 1991; Rauch & De Vos, 1992a). 

The nisB ORF found downstream from the nisA gene in L. lactis subsp. lactis ATCC 11454 

(Steen et al, 1991) is preceded by a potential ribosome binding site and could encode a 851-aa 

protein. This deduced protein has been predicted to contain many amphipathic a-helices and a C-

terminal transmembrane helix. It has been reported to show homology to some membrane-

associated proteins from chloroplasts (Steen et al, 1991). However, nucleotide sequence data 

obtained in our laboratory (Kuipers, O.P. et al, unpublished data) from the region downstream 

from the nisA gene (Fig. 3) show that the corresponding ORF in L. lactis subsp. lactis NIZO R5 

is longer than that reported previously (Steen et al, 1991). The nisB ORF from L. lactis subsp. 

lactis NIZO R5 encodes a protein with homology to the proteins encoded by the spaB and epiB 

10 



ORFs found in the subtilin gene cluster (Klein et al, 1992) and epidermin gene cluster (Schnell 

et al., 1992), respectively. The proteins that could be derived from the spaB and epiB ORFs 

showed no sequence similarity to already known proteins (Klein et al., 1992; Schnell et al., 1992), 

while their involvement in lantibiotic biosynthesis has been established by inactivation and 

complementation studies (Augustin et al., 1992; Klein et al., 1992). This lack of similarity to 

known proteins is not unexpected, since lantibiotic biosynthesis involves modification reactions 

performed by still unknown enzymes. In L. lactis subsp. lactis MZO R5, the nisB ORF is 

immediately followed by another ORF, nisT (Kuipers, O.P. et al., unpublished data; Fig. 3), which 

shows homology to the multi-drug-resistance (MDR)-type family of translocator proteins (Higgins 

et al., 1986). Similar ORFs have been found in the subtilin and epidermin gene clusters (Chung 

et al., 1992; Klein et al, 1992; Schnell et al., 1992). It is not clear whether the ORF in the subtilin 

gene cluster that corresponds to nisT is essential for subtilin production: Klein et a/.(1992) reported 

that mutants with a disrupted ORF still produced active subtilin, although the viability of the cells 

was affected, possibly by the accumulation of intracellular subtilin. However, Chung et al. (1992) 

found that disruption of the ORF resulted in the loss of the ability to produce active subtilin. 

It has been shown that approximately 8 kb of genetic information, containing at least six genes, 

is necessary to produce active epidermin in the heterologous host S. carnosus (Augustin et al., 

1992): the epidermin structural gene epiA, three ORFs (epiB, epiC and epiD) showing no homology 

to known proteins and two ORFs (epiP and epiQ) that, on the basis of similarity to known proteins, 

have been proposed to encode the leader peptidase and a regulator protein (Schnell et al, 1992). 

The present sequence data show that all of the genes identified thus far in the subtilin and nisin 

gene clusters have counterparts in the epidermin gene cluster. Therefore, it may be anticipated that 

the gene clusters for nisin and other lantibiotics have similar sizes and numbers of genes. 

3.3 Transcription of the nisin gene cluster 

Although we now know that the genes involved in lantibiotic biosynthesis are arranged in 

clusters, it is still not clear whether these clusters constitute operons. In the case of epidermin and 

subtilin there are however indications that the lantibiotic genes are coordinately transcribed 

(Augustin et al, 1992; Klein et al, 1992; Schnell et al, 1992). 

11 



Biologically active nisin appears in the extracellular medium of cells that are in the late 

logarithmic growth phase and continues to be produced during stationary phase (Hurst & Paterson, 

1971; Buchman et ai, 1988), although low amounts of nisin may be detected in the early 

logarithmic phase (Hurst & Paterson, 1971). A w'sA-specific transcript, with a size of approximately 

265 nucleotides and a half-life of 7-10 min., is already present in the early logarithmic phase 

(Buchman et ai, 1988). Similar results were found by De Vuyst and Vandamme (1992), who 

proposed that the late appearance of active nisin is the result of the delayed expression of the 

maturation enzymes. This would mean that the transcription of the nisA gene and of the genes for 

the biosynthetic enzymes are regulated independently. Support for this hypothesis awaits further 

transcriptional studies on the nisin biosynthesis genes. 

Buchman et al. (1988) have determined the 5'- and 3'-ends of the nwA-specific transcript in L. 

lactis subsp. lactis ATCC 11454. They found the 5'-end to be "ragged", located at two different 

positions. They also could not find an identifiable promoter nor a rho-independent terminator 

upstream from the nisA gene. These data were taken to indicate the processing of the small 

transcript from a larger polycistronic messenger (Buchman et ai, 1988). Subsequent primer 

extension studies by Steen et al. (1991) indicated that this polycistronic mRNA was transcribed 

from a promoter that is located over 4 kb upstream from the nisA gene in L. lactis subsp. lactis 

ATCC 11454. Primer extension mapping of the 5'-end of the ««A-specific mRNA of L. lactis 

subsp. lactis NIZO R5 (Kuipers, O.P., unpublished data) revealed a single position of the 5'-end 

corresponding to the G residue exactly between the two 5'-end nucleotides proposed by Buchman 

et al. (1988). This start site of the msA-specific mRNA is preceded in the DNA by a sequence 

(CTGATT-Njo-TACAAT) that only partly resembles the consensus L. lactis promoter sequence 

(TTGACA-N17-TATAAT; De Vos, 1987; Van der Vossen et ai, 1987). Deviation from consensus 

promoter sequences is not unusual among regulated genes. 

Analyses of the genetic element carrying the nisA gene in different strains (Horn et ai, 1991; 

Gireesh et ai, 1992; Rauch & De Vos, 1992a; see section 4.2) argue strongly against the 

possibility that a polycistronic mRNA starts more than 4 kb upstream from the nisA gene, as 

proposed by Steen et al. (1991). 

Transcript mapping using SI nuclease showed that the nisA mRNA at its 3'-end is followed in 

the DNA sequence by an inverted repeat (Buchman et ai, 1988). This inverted repeat is not 

followed by the stretch of T's that is characteristic of a rho-independent terminator (Rosenberg & 
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Court, 1979). Therefore, the 3'-terminus of the nisA transcript has been proposed to be either the 

result of termination by a rho-dependent process, or processing of a larger transcript (Buchman et 

al., 1988). No such inverted repeat was found upstream from the nisA gene, which would be in 

agreement with a transcription start site in the region immediately upstream from the nisA gene. 

The nisB gene immediately follows the inverted repeat downstream from the nisA gene. It is not 

preceded by an obvious promoter sequence, which suggests that transcription of nisB is the result 

of read-through from the nisA gene. According to Steen et al. (1991), in L. lactis subsp. lactis 

ATCC 11454 nisB is followed by an inverted repeat and a stretch of T-residues that is 

characteristic of a rho-independent terminator (Rosenberg & Court, 1979). The start of the ORF 

downstream from nisB is preceded by a putative ribosome binding site and by potential promoter 

sequences in L. lactis subsp. lactis ATCC 11454 (Steen et al, 1991). In L. lactis subsp. lactis 

NIZO R5 the nisT gene is not separated from the nisB gene by a terminator-like sequence nor 

preceded by potential promoter sequences (Kuipers, O.P. et al., unpublished data). 

Northern blot analyses and transcript mapping of nisB and of other distal genes will be needed 

to clarify the possible heterogeneity of the transcription of nisin gene clusters and to study their 

regulation. 

4. The nisin-sucrose conjugative transposon 

4.1 Description of nisin-sucrose conjugative elements 

The first investigations concerned with the genetics of nisin biosynthesis were carried out by 

Kozak et al. (1974). They found that stable nisin-negative clones spontaneously occurred in 

populations of some nisin-producing strains. More importantly, they also found that the frequency 

of stable loss of nisin production could be elevated by applying plasmid-curing techniques. This 

genetic instability of nisin production was also inferred from curing experiments in other 

laboratories (LeBlanc et al., 1980; Gasson, 1984; Gonzalez & Kunka, 1985; Steele & McKay, 

1986; Tsai & Sandine, 1987). 

The linkage of nisin production to sucrose fermenting ability was already suggested four decades 

ago when it was found that twelve nisin-producing strains tested were all able to ferment sucrose 

(Hirsch & Grinsted, 1951). Meanwhile, it has been shown that sucrose-proficient L. lactis subsp. 
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lactis takes up sucrose, with concomitant phosphorylation, via the phosphoenolpyruvate-dependent 

phosphotransferase system and that three sucrose-specific proteins are induced when cells are 

grown on sucrose: a sucrose-specific uptake protein Enzyme II, a sucrose-6-phosphate hydrolase 

and a fructokinase (Thompson & Chassy, 1981; Thompson et al., 1991). The sucrose operon 

encoding these proteins has been partly characterized (Rauch & De Vos, 19926). There were two 

strong indications for the genetic linkage of nisin production and sucrose fermenting ability. Firstly, 

in the curing experiments, loss of the ability to ferment sucrose was always accompanied by the 

loss of nisin production (LeBlanc et a\; iQgrj; Gasson, 1984; Gonzalez & Kunka, 1985; Steele & 

McKay, 1986; Tsai & Sandine, 1987). Secondly, the ability to ferment sucrose and nisin production 

could be transferred together in a conjugation-like process from a number of nisin-producing, 

sucrose-fermenting L. lactis subsp. lactis strains to several L. lactis subsp. lactis strains, including 

var. diacetylactis (Gasson, 1984; Gonzalez & Kunka, 1985; Steele & McKay, 1986; Broadbent & 

Kondo, 1991; Rauch & De Vos, 1992a), and to a number of L. lactis subsp. cremoris strains 

(Steele & McKay, 1986; Broadbent & Kondo, 1991; Rauch, P.J.G., unpublished data). Tsai and 

Sandine (1987) described the conjugal transfer of nisin production and sucrose fermentation to 

Leuconostoc dextranicum, but it was later reported that those results could not be reproduced 

(Sandine, W.E., communication at the Second Symposium on Lactic Acid Bacteria, Wageningen, 

The Netherlands, 22-25 September 1987). 

These curing and conjugation experiments provided evidence for the existence of nisin-sucrose 

conjugative elements. In contrast, they did not yield conclusive information on the nature of these 

elements. In all cases possible nisin-sucrose plasmids were identified: a 29 MDa plasmid in L. 

lactis subsp. lactis ATCC 11454 (LeBlanc et al., 1980; Gonzalez & Kunka, 1985; Steele & McKay, 

1986), a 30 MDa unstable plasmid in transconjugants derived from several wild-type nisin-

producers (Gasson, 1984), and a 17.5 MDa plasmid in L. lactis subsp. lactis 7962 (Tsai & Sandine, 

1987). However, these plasmids were never established to carry the genetic information for nisin 

production or sucrose fermentation by subsequent transfer or gene probing studies. In addition, 

plasmid-free strains have been found that produce nisin (Fuchs et al., 1975; Davey & Pearce, 

1982). Finally, nothing is known about the effect of techniques that induce plasmid loss, such as 

the elevation of growth temperature, on chromosomally located genetic elements. 

Steele and McKay (1986) thoroughly studied the conjugation process. Transduction and 

transformation were ruled out as modes of genetic transfer and it was shown that the genetic 

14 



element was capable of conjugal transfer to a recipient deficient in host-mediated homologous 

recombination (Rec). The latter finding pointed toward a non-chromosomal origin of the element, 

unless a different recombination system was used. It was not possible to transfer the capacity to 

produce nisin and ferment sucrose by transformation with plasmid DNA from the donor L. lactis 

subsp. lactis ATCC 11454. However, the nisin-sucrose element exhibited bilateral plasmid 

incompatibility with certain lactose plasmids. Steele and McKay (1986) interpreted their results as 

indicative of a plasmid nature of the nisin-sucrose genetic element, although they did not rule out 

the involvement of an element exhibiting both plasmid and transposon characteristics. 

Curing and conjugation studies have also demonstrated the presence of genetic information for 

reduced bacteriophage sensitivity (Gonzalez & Kunka, 1985; Murphy et al, 1988; Gireesh et al, 

1992; Rauch, P.J.G., unpublished data) and N5-(carboxyethyl)ornithine (W'-CEO) synthase 

(Donkersloot & Thompson, 1990) on the nisin-sucrose element. Preliminary hybridization studies 

were reported suggesting DNA sequence homology between the reduced bacteriophage sensitivity 

determinant of the nisin-sucrose element of L. lactis subsp. lactis ATCC 11454 and the reduced 

bacteriophage sensitivity determinant from the L. lactis subsp. cremoris UC653 plasmid pCI750 

(Steele et al., 1989). The physical linkage of genes involved in sucrose fermentation and N5-CEO 

synthase production was confirmed by oligonucleotide hybridization studies (Thompson et al, 

1991). However, the gene for JV5-CEO synthase appeared not to be present on all nisin-sucrose 

elements (Thompson et al., 1991). This is in line with the existence of natural nisin-sucrose 

elements with different architectures (Rauch et al., 1991; see section 4.2). 

4.2 Identification of nisin-sucrose transposons 

With the use of DNA probes, a new strategy was adopted to locate and isolate the nisin gene 

locus (Buchman et al, 1988; Kaletta & Entian, 1989; Dodd et al., 1990, Rauch & De Vos, 

1990,1992a). While this led to the cloning and analysis of the nisA gene and its surrounding region, 

as described in section 3, it was also the approach that ultimately led to the identification of the 

nisin-sucrose genetic element. 

The study of Buchman et al. (1988), although valuable for the gaining of insight into nisin 

biosynthesis, did not yield any information about the nature of the nisin-sucrose genetic element, 

since the nisA gene was detected in a total genomic library of L. lactis subsp. lactis ATCC 11454. 
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Kaletta and Entian (1989) found their oligonucleotide probes for the nisA gene to hybridize only 

to restricted plasmid DNA of L. lactis subsp. lactis 6F3 (the undigested plasmid DNA sample was 

nearly immobile on agarose gels) and not to digested chromosomal DNA of this strain. Dodd et 

al. (1990) however found a strong indication for the chromosomal location of the nisA gene in a 

nisin-producing transconjugant (FI5876), derived from a mating between L. lactis subsp. lactis 

NCFB 894 and MG1614. They found that the nisA gene was preceded in this strain by an IS 

element, termed 1S904. In L. lactis subsp. lactis NIZO R5, an IS element was found at the same 

location (Rauch et al., 1990) that was almost identical to IS904 and hence has been designated iso-

IS904 (Rauch & De Vos, 1992a). Part of such an IS element at a similar position had already been 

found in L. lactis subsp. lactis ATCC 11454 (Buchman et al., 1988). Dodd et al. (1990) showed 

by hybridization that in a nisin-producing transconjugant the chromosome of the plasmid-free 

recipient L. lactis subsp. lactis MG1614 had gained a segment of DNA that contained the IS904 

copy and the nisA gene. Also, IS9CW was located at, or close to, the terminus of the sequences 

acquired by the transconjugant. This terminus has been designated the left end of the nisin-sucrose 

element. A chromosomal location of the nisin-sucrose elements in L. lactis subsp. lactis strains Kl 

and ATCC 11454, although without extensive examination, was also postulated (Donkersloot & 

Thompson, 1990; Thompson et al, 1991). 

Pulsed Field Gel Electrophoresis (PFGE) experiments have provided definite proof for a 

chromosomal location of the nisA gene in a wild-type strain (Hansen, 1990; Steen et al., 1991), in 

transconjugants (Horn et al, 1991) and in wild-type strains and their transconjugants (Rauch & De 

Vos, 1990,1992a; Gireesh et al., 1992). It was shown that the natural nisin-producing strains L. 

lactis subsp. lactis ATCC 11454 (Hansen, 1990; Steen et al, 1991; Gireesh et al, 1992) and L. 

lactis subsp. lactis NIZO R5 (Rauch & De Vos, 1990,1992a) contained the nisA gene and the gene 

for sucrose-6-phosphate hydrolase sacA (in the case of NIZO R5) on large restriction fragments. 

After transfer of the nisin-sucrose elements to different recipients (Rauch & De Vos, 1990,1992a; 

Horn et al, 1991; Gireesh et al, 1992), the size of certain restriction fragments was enlarged in 

transconjugants when compared to the recipients. Hybridization experiments showed that this was 

the result of the insertion of the nisin-sucrose elements into the recipient chromosome. The 

estimated size of the nisin-sucrose elements derived from these experiments is 68-70 kb. 

The nisin-sucrose element from L. lactis subsp. lactis NIZO R5 integrates into at least five 

different sites on the chromosome of L. lactis subsp. lactis MG1614 (Rauch & De Vos, 1992a), 
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although there is a strong preference for a certain site (termed site 1 or insertion hot spot): in all 

transconjugants studied the element had inserted into this site and insertion into secondary sites was 

only found in transconjugants containing multiple copies of the element. Transconjugants containing 

multiple copies of the nisin-sucrose element from L. lactis subsp. lactis ATCC 11454 have also 

been observed (Gireesh et al., 1992). This element was found to move to other sites in the 

chromosome upon transconjugant subculturing. For the nisin-sucrose element from L. lactis subsp. 

lactis NIZO R5, the only instability phenomenon observed is its loss from transconjugants 

containing multiple copies, resulting in single-copy-containing transconjugants (Rauch, PJ.G., 

unpublished data). Integration of nisin-sucrose elements into different sites, but not in multiple 

copies, was also reported by Horn et al. (1991). 

A chromosomal location of the nisA gene (Rauch & De Vos, 1990,1992a; Horn et al., 1991; 

Steen et al., 1991; Gireesh et al., 1992) and of the gene for sucrose-6-phosphate hydrolase sacA 

(Rauch & De Vos, I992a,b) left open two possibilities for the nature of the nisin-sucrose genetic 

elements: they could be plasmids that preferably integrate into the chromosome (episomes) or 

transposons. There are two known mechanisms for integration of plasmids (episomes) into the 

chromosome. One mechanism is host-mediated homologous recombination between sites on the 

plasmid and on the chromosome. It appears that this is also the mechanism by which the 

conjugative transposon Tn97<5 integrates into the chromosome of L. lactis subsp. lactis MG1363 

during intraspecific conjugation (Bringel et al., 1991). The other possible mode of plasmid 

integration is a mechanism, in which site-specific recombination occurs between attachment (att) 

sites on the plasmid and on the chromosome, mediated by plasmid-encoded proteins. This 

mechanism is used by several plasmids from actinomycetes (see e.g. Brown et al., 1990). Several 

observations argue against an integrative plasmid nature of the nisin-sucrose element and are in 

favor of a transposon nature. Firstly, transfer of nisin-sucrose elements has been shown to be 

independent of host-mediated homologous recombination (Steele & McKay, 1986; Rauch & De 

Vos, 1992a). In addition, as mentioned above, nisin-sucrose elements integrate into a number of 

sites on the recipient chromosome. Both mechanisms of plasmid integration would result in 

insertion at a single site or at a very limited number of sites, while integration at several sites by 

definition is a characteristic of transposons (Campbell et al., 1979). Further evidence came from 

the comparison of the nucleotide sequences of the left and right junctions of the element in the L. 

lactis subsp. lactis MG1614 insertion hot spot to the nucleotide sequence of this site before 
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insertion of the element (Fig. 4; Horn et al, 1991; Rauch & De Vos, 1992a). The TTTTTG 

hexanucleotide found in the insertion hot spot prior to integration and found flanking the nisin-

sucrose element after integration is too short to be used in host-mediated homologous 

recombination or to be considered a plasmid attachment site. Finally, the observation that no 

hybridization signals have been obtained with element-specific probes in total DNA separated by 

PFGE (Hansen, 1990; Rauch & De Vos, 1990,1992a; Horn et al, 1991; Gireesh et al., 1992), rules 

out the existence of replicative, episomal intermediates. 

The analyses of the ends of the nisin-sucrose elements also questioned the nisA transcription data 

reported by Steen et al. (1991) for L. lactis subsp. lactis ATCC 11454. A mRNA starting more 

than 4.5 kb upstream from the nisA gene would start from outside the nisin-sucrose element, 

making expression of nisin production dependent on the location of the element in the genome. 

Furthermore, with the exception of the putative transposase ORFs of \S904F\so-\S904 (see section 

4.3), no ORFs are present upstream from the nisA gene in the region sequenced thus far. Possibly, 

this region has a completely different organization in L. lactis subsp. lactis ATCC 11454 than the 

nisin-sucrose elements described by Horn et al. (1991) and Rauch & De Vos (1992a). This would 

however be in contradiction with the fact that the nisA gene has been found to be also located close 

to one end of the nisin-sucrose element of L. lactis subsp. lactis ATCC 11454 (Gireesh et al, 

1992). 

It has been shown that the transfer of nisin-sucrose elements is insensitive to DNase (Gonzalez 

& Kunka, 1985; Steele & McKay, 1986; Rauch & De Vos, 1992a), does not involve a transducing 

phage (Gonzalez & Kunka, 1985; Steele & McKay, 1986) and can occur in the absence of any 

plasmid DNA (Steele & McKay, 1986; Rauch & De Vos, 1992a). Together with the results 

described above this shows that the nisin-sucrose elements conform to the definition of a 

conjugative transposon, i.e. a specific DNA segment that can repeatedly insert into a few or many 

sites in a genome, encodes additional functions unrelated to insertion function, and has the capacity 

to promote its own transfer in the absence of any plasmid or bacteriophage (Campbell et al, 1979; 

Clewell & Gawron-Burke, 1986). The L. lactis subsp. lactis NIZO R5 transposon has been 

designated Tn527<5 (Rauch et al, 1990; Rauch & De Vos, 1992a) and the transposon described in 

L. lactis subsp. lactis FI5876, Tn5301 (Horn et al, 1991). The nisin-sucrose elements in L. lactis 

subsp. lactis Kl and ATCC 11454, although at that time not characterized as transposons, have 

been designated Tn5306 and Tn5307, respectively (Thompson et al, 1991). 
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T165.1 AATAAGCCTTGTGTT TTTTTG ATACACATATAAAGTGCGTTTTA TAAAAATATAATGGAAA TTTTTG CTTTCCATACTTTTAGGATTCACT 

MG16K AATAAGCCTTGTGTT TTTTTG CTTTCCATACTTTTAGGATTCACT 

FIG. 4. Nucleotide sequences of the termini of the nisin-sucrose element from L. lactis subsp. lactis NIZO 
R5 and junction regions in the donor and transconjugants in comparison with that of the insertion hot spot 
(taken from Rauch & De Vos, 1992a). A: Nucleotide sequence of the left and right termini of the nisin-
sucrose element from L. lactis subsp. lactis NIZO R5 inserted into the insertion hot spot of L. lactis subsp. 
lactis MG1614. Element-specific sequences are underlined. The hexanucleotide direct repeat TTTTTG is 
underlined twice. Perfect and imperfect 17-bp direct repeats present in the left and right ends, respectively, 
are represented by arrows. The first 22 nucleotides of iso-IS904 (Rauch et al., 1990) are indicated in bold 
face. B: Comparison of element junctions in NIZO R5 and a transconjugant (T165.1) hot spot with that of 
the hot spot in L. lactis subsp. lactis MG1614. See (A), for indications of specific sequences. Sequence 
identity between the regions flanking the element in the different strains is indicated (I). 
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FIG. 5. Physical and genetic map of Tn5276. Tn5276 is represented by a black bar. Smaller bars indicate 
the positions of the nisin gene cluster (nis), the sucrose regulon (sac) and the transposition genes (xis int). 
Restriction enzyme abbreviations: K, Kpnl; N, Neil; S, Sstll. 

The spontaneous and induced loss of nisin production by nisin-producing strains described in 

early studies possibly is a result of excision and loss of the transposon. Such spontaneous loss has 

also been described for the conjugative transposon 1xi916 from Enterococcus faecalis (Gawron-

Burke & Clewell, 1982). Low-frequency excision of Tn916 in a circular form has been proposed 

to be part of its mechanism of conjugative transfer (Gawron-Burke & Clewell, 1982; see also 

section 4.3). The incompatibility phenomenon described by Steele and McKay (1986) cannot be 

easily explained. It has been suggested that the element combines transposon and plasmid features 

(Steele and McKay, 1986). One could think of a mechanism that is similar to that described for 

the Streptomyces coelicolor element SLP1"1', where a genetic locus (imp for inhibitor of 

maintenance of SLP1 plasmids) inhibits maintenance of the element as an extrachromosomal 

replicon but also the maintenance of SLPl-derived plasmids (Grant et al, 1989). Alternatively, the 

transposon could contain plasmid-derived replication regions that are inactive but still show 

incompatibility. 

4.3 Characterization of the nisin-sucrose transposon Tn5276 and its transposition mechanism 

The ends of 1x6276 (Rauch & De Vos, 1992a) and 1x6301 (Horn et al, 1991) are identical for 

over 250 bp and since 1x6276 has been studied most extensively, we will focus on this element. 

A physical map of 1x6276 has been constructed on which the nisin and sucrose gene clusters have 

been located (Fig. 5; Rauch & De Vos, 1992a). A physical map of the L. lactis subsp. lactis 
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ATCC 11454 nisin-sucrose element has also been published (Gireesh et al., 1992). The maps of 

the two elements appears to be identical for the restriction enzymes used in both studies. However, 

the map of the L. lactis subsp. lactis ATCC 11454 element clearly differs from the physical map 

of this region published by Steen et al. (1992). A possible movement of the element to another 

location in the chromosome in the Pit" derivative of L. lactis subsp. lactis ATCC 11454 used by 

Gireesh et al. (1992) cannot completely account for this difference. The mapping of the nisin and 

sucrose gene clusters within the left one third of Tn5276 (Rauch & De Vos, 1992a) has left 

approximately 50 kb for the genes encoding its remaining established properties: conjugal transfer, 

transposition (excision and insertion) and reduced phage sensitivity. Thompson et al. (1991) have 

located the gene for A -̂CEO synthase (ceo) within 7 kb from the sucrose genes on Tn5306. 

The nisA gene is preceded by almost identical copies of an IS element QS904) in several strains. 

1S904 belongs to the IS5 family of insertion sequences (see Dodd et al. (1990), Rauch et al. (1990) 

and Prere et al. (1990) for recent compilations). From the location of IS904, at or close to the left 

end of the nisin-sucrose element, Dodd et al. (1990) initially inferred a role for the IS element in 

transposition of the nisin-sucrose element. Indeed, the presence of the putative transposase ORF 

upstream from the nisA gene has tempted more researchers to speculate on a role for it in 

transposition of the nisin-sucrose element (Buchman etal., 1988; Thompson et al., 1991). However, 

the possibility that this IS element is part of a composite transposon was excluded by the later 

finding that it is separated from the left end of the transposon by approximately 250 bp (Horn et 

al., 1991; Rauch & De Vos, 1992a) and by the fact that a second 1S904 copy could not be found 

near the right end of Tn5301 (Horn et al., 1991) and not at all in Tn527<5 (Rauch & De Vos, 

1992a). A comparative study of a large number of the left end regions of nisin-sucrose elements 

in our laboratory (Rauch et al., 1991) has excluded the role of a IS904 copy at the position 

upstream from nisA in transposition since nisin-sucrose elements were found in several wild-type 

strains that are capable of conjugative transfer while not containing an IS904 copy upstream from 

nisA. This study also showed that the presence of a sequence identical or similar to the left end of 

Tn5276 upstream from the nisA gene was essential for conjugative transposition. Rearrangements 

involving homologous recombination between copies of IS904 and resulting in the disappearance 

of the left end from its original location are possibly responsible for rendering some nisin-sucrose 

elements non-transposable, thereby fixing them at the position taken in the last transposition event 

(Rauch et al, 1991). 
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When trying to elucidate the mechanism of excision and insertion of a transposon, a first step 

is to analyze the nucleotide sequence of its ends. Like the ends of the known conjugative 

transposons Tn97<5 (Clewell et al., 1988) and Tn754J (Caillaud & Courvalin, 1987), the extremities 

of TnJ276 are AT-rich and contain several direct repeats (Fig. 4; Rauch & De Vos, 1992a). In 

contrast to the ends of ln916 and Tnl545, which contain homologous, inverted repeats, the termini 

of Tn5276 are asymmetric. The ends do not show any similarity to the ends of known transposons, 

although they share their asymmetry with the ends of Tn554 from Staphylococcus aureus (Murphy 

et al., 1985). 

When examining the ends of Tn5276 in different transconjugants, small sequence diversities in 

the junction regions were found (Rauch, P.J.G., unpublished results) reminiscent of the variability 

of the ends of Tn976 and Tnl545 generated by their unique transposition mechanism (Caparon & 

Scott, 1989; Poyart-Salmeron et al., 1990). This pointed toward a similar mechanism of 

transposition for Tn5276 and Tn916/1545. Since in the latter transposons the genes for the 

transposition proteins are present near one end of the element, corresponding genes were looked 

for near the right end of Tn5276. Indeed, two ORFs were found the deduced proteins of which, in 

analogy to related systems termed Xis and Int, showed homology in relevant parts to the 

transposition proteins described for Tn976 and Tnl545 (Fig. 5; Rauch, PJ.G., unpublished results). 

Both ORFs have been shown to be functional genes in E. coli and a covalently closed circular form 

of Tn5276, which probably serves as a transposition intermediate, has been detected in vivo in L. 

lactis (Rauch, P.J.G., unpublished results). Thus, while the nature of the nisin-sucrose genetic 

element remained unknown for decades, recent progress has shown that this element is the first 

conjugative transposon described in L. lactis, which uses a mechanism of transposition that is 

similar to that of the Tn9i<5 family. 

5. Protein engineering of nisin 

Major goals in nisin research are the elucidation of the mechanism of biosynthesis of this peptide 

and the functional role and structure of the uncommon amino acid residues and the improvement 

of the antimicrobial and physico-chemical properties of nisin. Insight in these topics is required to 

allow for tailoring nisin for specific uses. One might think of nisin species with a higher 

antimicrobial activity against food pathogens such as certain Listeria and Clostridium strains or of 
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SEPARATION OF NISIN A AND NISIN Z BY REVERSED-PHASE HPLC 
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FIG. 6. Separation of nisin A and nisin Z by reversed-phase HPLC. 

nisins with increased solubility and stability at elevated pH values that enlarge the possibilities for 

applications. 

One of the most powerful approaches for the study of the topics mentioned is the use of protein 

engineering. Protein engineering of nisin and other lantibiotics enables the study of features in the 

primary translation product that are required for the cascade of post-translational modification 

reactions and subsequent translocation and cleaving processes. Moreover, it enables the tailoring 

of nisin to specific applications. 

5.1 Development of an expression system for nisin genes 

To be able to apply the protein engineering strategy in the case of nisin it is a necessity to 

develop expression systems for structural (mutated) nisin genes. Systems for (over)expression of 

the nisA gene have recently been developed in E.coli and resulted in the production of inactive 

prenisin (Mulders, J.W.M. et al., unpublished observations; De Vuyst et al., 1992). To produce the 

fully matured nisin species, the presence is required of genes encoding the necessary proteins for 

biosynthesis, immunity and processing. It has now been shown for epidermin biosynthesis that at 
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least six genes present in a putative operon structure, comprising about 6.5 kb, are required for 

these processes (Augustin et al, 1992; Schnell et al., 1992). For nisin biosynthesis it was shown 

that a 9.0-kb Pstl fragment, including the nisA gene and several downstream ORFs, was able to 

complement the non-nisin-producing transconjugant L. lactis subsp. lactis NIZO T520 (Kuipers 

et al., 19916). The most straightforward way, however, to express nis genes was to use a plasmid-

free nisin A-producing L. lactis subsp. lactis strain that was transformed with a small multi-copy 

plasmid containing the L. lactis lac promoter followed by the nisZ gene (Kuipers et al., 19916). 

The engineered lactococci were found to secrete both nisin A and nisin Z, which could be fully 

separated by reversed-phase HPLC (Fig. 6). By using this system and a PCR-based mutagenesis 

approach (Kuipers et al., 1991a) several nisZ genes that were altered by site-directed mutagenesis, 

could be expressed and subsequently the maturated products were purified and characterized. 

5.2 First engineered nisin species 

One of the most intriguing features of nisin and other lantibiotics is the presence of dehydrated 

and lanthionine residues. Some of the unique properties of nisin have been attributed to these 

features. It has been found for instance that dehydrated residues in vitro can react with sulfhydryl 

containing reagents and it has been postulated that in vivo they might react with the sulfhydryl 

groups of membrane proteins of germinated bacterial spores (Morris et al., 1984; Buchman and 

Hansen, 1987). This would point to a direct functional role of dehydrated residues in the 

mechanism of nisin action. Moreover, it has been shown by several groups studying lantibiotic 

degradation products (Chan et al., 1989; Hansen et al, 1991; Rollema et al., 1991), or chemically 

synthesized fragments (Wakamiya et al., 1991) that residue Dha-5 in nisin and subtilin is critical 

for antimicrobial activity. In contrast, residue Dha-33 in nisin has been shown not to be essential 

for activity, since the degradation products [Ser"]nisin A and (l-32)nisin A both retain almost full 

antimicrobial activities (Rollema et al., 1991; Chan et al., 1992; Lian et al., 1992). By making 

synthetic nisin A analogues it has been shown that Dhb-2 is also important for the maintenance of 

antimicrobial activity (Wakamiya et al., 1991). 

To study the role of residue Dha-5 in more detail, the effect of a mutation at this position was 

investigated recently. By site-directed mutagenesis a Thr-codon was introduced in the nisZ gene 

instead of the Ser-codon at position 5 (Kuipers et al., 1992), to see whether dehydration would take 

24 



place and, if so, what would be the effect on further biosynthesis and on antimicrobial activity. 

NMR studies showed that the Thr present at position 5 in nisin Z was fully converted to Dhb, since 

no nisin Z species could be found that still contained the unmodified Thr residue. The [Dhb-5]nisin 

Z displayed a two- to ten-fold lower bacteriocidal activity than nisin Z on the indicator organisms 

Micrococcus flavus, Streptococcus salivarius subsp. thermophilus and Bacillus cereus (Kuipers et 

al., 1992). This shows that a dehydrated residue at position 5 indeed contributes to antimicrobial 

activity, since in nisin degradation products or synthetic analogues in which residue 5 was saturated 

the activity was decreased at least fifty-fold (Chan et al., 1989; Rollema et al, 1991; Wakamiya 

et al., 1991; Lian et al., 1992). It can not be ruled out that the unsaturated residue at position 5 is 

directly involved in the bacteriocidal mechanism of nisin and subtilin by reacting with free 

sulfhydryl groups of cell-wall proteins, since the less reactive Dhb residue would then indeed be 

expected to cause lower antagonistic activity. The Ala-5 substitution in nisin Z affected the 

biosynthesis of the mutant, because no nisin Z species containing this mutation could be isolated 

from the supernatant of the expression strain (Kuipers et al., 1992). Possibly, mutant precursor nisin 

Z in some stage of modification accumulates in the cell and further modification is hampered. It 

can be postulated that a double bond between Coc and CB at position 5 induces a conformation that 

is required to allow lanthionine formation between residues 3 and 7. 

In another study using site-directed mutagenesis, it was attempted to introduce the third 3-methyl-

lanthionine ring of subtilin (Gross, 1975) into nisin Z to investigate the possibility and effect of 

introducing a fourth dehydrated residue in nisin Z (Kuipers et al., 1991ft; Kuipers et al., 1992). For 

this purpose, the codons for Met-17 and Gly-18 in nisZ were replaced by codons for Gin-17 and 

Thr-18. Following expression of the mutated gene in L. lactis subsp. lactis, it was found during RP-

HPLC purification that two new species were present in the supernatant, both displaying 

antimicrobial activities. Characterization of these two species by 'H-NMR spectroscopy showed that 

the main mutant produced (~ 90%) contained a Dhb residue at position 18, whereas a smaller 

amount (~ 10%) of mutant nisin contained a Thr residue at this position. This result demonstrates 

that, although some of the mutant nisin molecules escape dehydration at position 18, this does not 

prevent their further maturation and secretion. Although nisin A-producing L. lactis subsp. lactis 

strains are sensitive to subtilin, the introduction of the third ring of subtilin into nisin Z obviously 

does not inhibit the producer strain. The antimicrobial activity of subtilin against nisin-producing 

L. lactis subsp. lactis strains must therefore reside in some other part of subtilin. The Dhb-18-
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containing species showed similar activities as nisin Z towards three different indicator strains 

(Kuipers et al., 1992), indicating that an additional dehydrated residue at position 18 in nisin Z 

does not enhance or reduce antimicrobial activity. On the other hand the nisin mutant containing 

Thr-18 (and Gin-17) was about fourfold less active against two of the indicator strains and twice 

as active against Micrococcus flavus than wild-type nisin Z. The change in relative sensitivities of 

these strains to the Thr-18 containing mutant could be due to either differences in membrane 

phospholipid composition of the three indicator strains, or to different membrane potentials, which 

is known to affect the pore forming capacity of nisin (Gao et al., 1991). These results show that 

it is possible to overproduce wild-type and mutant nisins in L. lactis subsp. lactis, to introduce or 

exchange dehydrated residues in nisin by protein engineering and to construct modified nisins with 

altered antimicrobial activity and host selectivity. 

Other mutations that can be considered in nisin Z are the introduction of polar and charged 

residues at different positions in an attempt to increase the solubility at neutral and higher pH 

values. Furthermore, the introduction of a fluorescent probe, i.e. a Trp-residue, at different positions 

in nisin Z, will enable the study of the behaviour of nisin interacting with phospholipids at the 

lipid-water interface. It might also be possible to engineer additional lanthionines in nisin or, in 

contrast, to remove one or more lanthionines from nisin, to gain insight in the biosynthetic 

requirements and to enlarge the understanding of structure-function relationships in lantibiotics. 

Moreover, protein engineering of nisin offers the perspective of introducing uncommon amino acid 

residues in other lantibiotics than nisin and possibly even in unrelated peptides. The purpose of this 

would be either to introduce desired properties in these molecules, such as increased stability by 

substituting disulphide bridges for lanthionines in a known peptide, or to create completely new 

peptides, which might have desirable properties for application in the agro-food or pharmaceutical 

industry. 

6. Concluding remarks 

The nisin-sucrose elements have proven to be very intriguing genetic elements: large conjugative 

transposons that do not confer antibiotic resistances, but encode seemingly non-related properties 

like nisin production, sucrose fermentation, reduced bacteriophage sensitivity and in some cases 

the production of unusual amino acids. Despite these unique properties, Tn5276 has been shown 
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to encode proteins belonging to a group of enzymes (Argos et al., 1986) involved in the excision 

and integration of several classes of mobile genetic elements. These elements range from 

integrative plasmids (found in actinomycetes; Brown et al., 1990), to transposons (e.g. Tn554; 

Murphy et al., 1985), conjugative transposons and bacteriophages (including bacteriophage lambda; 

Hoess et al, 1980). Campbell and Botstein (1983) have speculated that bacteriophages like lambda 

evolved by the joining together of different modules, DNA fragments encoding specific functions. 

This would be an attractive hypothesis for the origin of Tn527<5 and other nisin-sucrose elements. 

Among the challenges for future nisin research (De Vos, 1992) is the elucidation of the 

biosynthesis at the molecular level. Investigations of the genes involved in the biosynthetic 

processes is already being carried out in several laboratories and is expected to yield insights in 

the requirements for and regulation of nisin biosynthesis. Overexpression of biosynthetic genes in 

E. coli, L. lactis and other hosts, and subsequent purification of the gene products, will enable the 

biochemical characterization of proteins and enzymes involved in biosynthesis. These proteins may 

include dehydratases, translocator proteins, immunity proteins, regulatory proteins, leader proteases 

and possibly enzymes involved in lanthionine formation. These proteins might find application also 

outside the field of lantibiotic biosynthesis, e.g. for increasing the stability of other proteins and 

peptides by introducing uncommon amino acids, or for the development of dedicated secretion 

systems for homologous and heterologous proteins. 

Protein engineering can be used for the study of biosynthetic processes (e.g. mutations in the 

leader peptide, mutations affecting dehydrated residues and lanthionine-forming residues), and, in 

addition, for the improvement of certain properties of nisin, such as chemical stability and solubility 

at neutral pH values. Moreover, it can be attempted to improve the antimicrobial activity and 

specificity of nisin by random and site-directed mutagenesis. For the latter purpose a better 

understanding of the mode of action of nisin in relation to the properties of target organisms is 

crucial. 

7. References 

Allgaier, H., Jung, G., Werner, R.G., Schneider, U. & Zahner, H. (1985). Elucidation of the structure of e 
pidermin, a ribosomally synthesized tetracyclic heterodetic polypeptide antibiotic. Angew. Chem. Int. Ed. 
Engl., 24, 1051-1053. 

Allgaier, H., Jung, G., Werner, R.G., Schneider, U. & Zahner, H. (1986). Epidermin: sequencing of a 
heterodet tetracyclic 21-peptide amide antibiotic. Eur. J. Biochem., 160, 9-22. 

27 



Argos, P., Landy, A., Abremski, K., Egan, J.B., Haggard-Ljungquist, E., Hoess, R.H., Kahn, M.L., Kalionis, 
B., Narayana, S.V.L., Pierson, L.S., Sternberg, N. & Leong, J.N. (1986). The integrase family of site-
specific recombinases: regional similarities and global diversity. EMBO J., 5, 433-440. 

Augustin, J., Rosenstein, R., Wieland, B., Schneider, U., Schnell, N., Engelke, G., Entian, K.-D. & Gotz, F. 
(1992). Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus 
epidermidis. Eur. J. Biocftem., 204, 1149-1154. 

Banerjee, S. & Hansen, J.N. (1988). Structure and expression of a gene encoding the precursor of subtilin, 
a small protein antibiotic. J. Biol. Chem., 263, 9508-9514. 

Benz, R., Jung, G. & Sahl, H.-G. (1991). Mechanism of channel-formation by lantibiotics in black lipid 
membranes. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, 
pp. 359-372. 

Blackburn, P., Polak, J. Gusik, S. & Rubino, S.D. (1989). Nisin compositions for use as enhanced, broad 
range bacteriocins. International patent application number PCT/US89/02625; international publication 
number W089/12399. 

Bowman, CM., Sidikara, J. & Nomura, M. (1971). Specific inactivation of ribosomes by colicin E3 in vitro 
and mechanism of immunity in colicinogenic cells. Nature, 48, 133-137. 

Bringel, F., Van Alstine, G.L. & Scott, J.R. (1991). A host factor absent from Lactococcus lactis subspecies 
lactis MG1363 is required for conjugative transposition. Mol. Microbiol., 5, 2983-2993. 

Broadbent, J.R. & Kondo, J.K. (1991). Genetic construction of nisin-producing Lactococcus lactis subsp. 
cremoris and analysis of a rapid method for conjugation. Appl. Environ. Microbiol., 57, 517-524. 

Brown, D.P., Idler, K.B. & Katz, L. (1990). Characterization of the genetic elements required for site-specific 
integration of plasmid pSE211 in Saccharopolyspora erythraea. J. Bacteriol., 172, 1877-1888. 

Buchman, G.W. & Hansen, J.N. (1987). Modification of membrane sulfhydryl groups in bacteriostatic action 
of nitrite. Appl. Environ. Microbiol., 53, 79-82. 

Buchman, G.W., Banerjee, S. & Hansen, J.N. (1988). Structure, expression, and evolution of a gene encoding 
the precursor of nisin, a small protein antibiotic. J. Biol. Chem., 263, 16260-16266. 

Caillaud, F. & Courvalin, P. (1987). Nucleotide sequence of the ends of the conjugative shuttle transposon 
Tnl545. Mol. Gen. Genet., 209, 110-115. 

Campbell, A. & Botstein, D. (1983). Evolution of the lambdoid phages. In Lambda II, ed. R.W. Hendrix, J.W. 
Roberts, F.W. Stahl & R.A. Weisberg. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New 
York, pp. 365-380. 

Campbell, A., Berg, D.E., Botstein, D., Lederberg, M., Novick, R.P., Starlinger, P. & Szybalski, W. (1979). 
Nomenclature of transposable elements in prokaryotes. Gene, 5, 197-206. 

Caparon, M.G. & Scott, J.R. (1989). Excision and insertion of the conjugative transposon Tn9i6 involves a 
novel recombination mechanism. Cell, 59, 1027-1034. 

Chan, W.C., Bycroft, B.W., Lian, L.-Y. & Roberts, G.C.K. (1989). Isolation and characterization of two 
degradation products derived from the peptide antibiotic nisin. FEBS Lett., 252, 29-36 

Chan, W.C., Bycroft, B.W., Leyland, M.L., Lian, L.-Y., Yang, J.C. & Roberts, G.C.K. (1992). Sequence-
specific resonance assignment and conformational analysis of subtilin by 2D NMR. FEBS Lett., 300, 56-62. 

Chung, Y.J., Steen, M.T. & Hansen, J.N. (1992). The subtilin gene of Bacillus subtilis ATCC 6633 is encoded 
in an operon that contains a homolog of the hemolysin B transport protein. J. Bacteriol., 174, 1417-1422. 

Clewell, D.B. & Gawron-Burke, C. (1986). Conjugative transposons and the dessimination of antibiotic 
resistance in streptococci. Annu. Rev. Microbiol., 40, 635-659. 

Clewell, D.B., Flannagan, S.E., Ike, Y., Jones, J.M. & Gawron-Burke, C. (1988). Sequence analysis of termini 
of conjugative transposon Tn916. J. Bacteriol., 170, 3046-3052. 

Davey, G.P. & Pearce, L. (1982). Production of diplococcin by Streptococcus cremoris and its transfer to 
nonproducing group N streptococci. In Microbiology, ed. S. Schlessinger, American Society for 
Microbiology, Washington D.C., pp. 221-224. 

Delves-Broughton, J. (1990). Nisin and its uses as a food preservative. Food Technol., 4, 100-117. 

28 



De Vos, W.M. (1987). Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev., 46, 281-
295. 

De Vos, W.M. (1992). Future prospects for research and application of nisin and other bacteriocins. In 
Bacteriocins of Lactic Acid Bacteria, ed. D. Hoover & L. Steenson. Academic Press, New York. In press. 

De Vos, W.M., Jung, G. & Sahl, H.-G. (1991). Appendix: definitions and nomenclature of lantibiotics. In 
Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 457-464. 

De Vos, W.M., Mulders, J.W.M., Siezen, R.J., Hugenholtz, J. & Kuipers, O.P. (1992). Properties of nisin Z 
and the distribution of its gene, nisZ, in Lactococcus lactis. Appl. Environ. Microbiol. In press. 

De Vuyst, L. & Vandamme, E.J. (1992). Influence of the carbon source on nisin production in Lactococcus 
lactis subsp. lactis batch fermentations. J. Gen. Microbiol., 138, 571-578. 

De Vuyst, L., Contreras, B., Sablon, E., Bosman, F., & Vandamme, E.J. (1992). Expression of the structural 
prenisin gene (nisA) of a nisin A producing Lactococcus lactis subsp. lactis strain in Escherichia coli and 
isolation of prenisin. Submitted for publication. 

Dodd, H.M., Horn, N. & Gasson, M.J. (1990). Analysis of the genetic determinant for production of the 
peptide antibiotic nisin. / . Gen. Microbiol., 136, 555-566. 

Donkersloot, J.A. & Thompson, J. (1990). Simultaneous loss of ^-(carboxyethyljornithine synthase, nisin 
production, and sucrose fermenting ability by Lactococcus lactis Kl . / . Bacteriol., 172, 4122-4126. 

Fuchs, P.G., Zajdel, J. & Dobrzanski, W.T. (1975). Possible plasmid nature of the determinant for production 
of the antibiotic nisin in some strains of Streptococcus lactis. J. Gen. Microbiol., 88, 189-192. 

Gao, F.H., Abee, T. & Konings, W.N. (1991). Mechanism of action of the peptide antibiotic nisin in 
liposomes and cytochrome c oxidase-containing proteoliposomes. Appl. Environ. Microbiol., 57,2164-2170. 

Gasson, MJ. (1984). Transfer of sucrose fermenting ability, nisin resistance and nisin production in 
Streptococcus lactis 712. FEMS Microbiol. Lett., 21, 7-10. 

Gawron-Burke, C. & Clewell, D.B. (1982). A transposon in Streptococcus faecalis with fertility properties. 
Nature, 300, 281-284. 

Gireesh, T., Davidson, B.E. & Hillier, A.J. (1992). Conjugal transfer in Lactococcus lactis of a 68-kilobase-
pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl. Environ. 
Microbiol., 58, 1670-1676. 

Gonzalez, C.F. & Kunka, B.S. (1985). Tranfer of sucrose-fermenting ability and nisin production phenotype 
among lactic streptococci. Appl. Environ. Microbiol., 49, 627-633. 

Goodman, M., Palmer, D.E., Mierke, D., Ro, S., Nunami, K., Wakamiya, T., Fukase, K., Horimoto, S., 
Kitazawa, M., Fujita, H., Kubo, A. & Shiba, T. (1991). Conformation of nisin and its fragments using 
synthesis, NMR and computer simulations. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. 
ESCOM, Leiden, The Netherlands, pp. 59-75. 

Graeffe, T., Rintala, H., Paulin, L. & Saris, P. (1991). A natural nisin variant. In Nisin and Novel Lantibiotics, 
ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 260-268. 

Grant, S.R., Lee, S.C., Kendall, K. & Cohen, S.N. (1989). Identification and characterization of a locus 
inhibiting extrachromosomal maintenance of the Streptomyces plasmid SLP1. Mol. Gen. Genet., 217, 324-
331. 

Gross, E. (1975). Subtilin and nisin: the chemistry and biology of peptides with alpha,beta-unsaturated amino 
acids. In Peptides: Chemistry, Structure and Biology, ed. R. Walter & J. Meienhofer. Ann Arbor Science 
Publishers, Ann Arbor, Mich., pp. 31-42. 

Gross, E. & Kiltz, H. (1973). The number and nature of a,B-unsaturated amino acids in subtilin. Biochem. 
Biophys. Res. Commun., 50, 559-565. 

Gross, E. & Morell, J.L. (1971). The structure of nisin. / . Am. Chem. Soc., 93, 4634-4635. 
Hansen, J.N. (1990). Structure, expression and evolution of the nisin gene locus in Lactococcus lactis. 

Program Abstr. 3rd Int. ASM Conference on Streptococcal Genetics. American Society for Microbiology, 
Washington, D.C., abstr. 15, p. 12. 

Hansen, J.N. (1992). The molecular biology of nisin and its structural analogs. In Bacteriocins of Lactic Acid 
Bacteria, ed. D. Hoover & L. Steenson. Academic Press, New York. In press. 

29 



Hansen, J.N., Chung, Y.J., Liu, W., & Steen, M.T. (1991). Biosynthesis and mechanism of action of nisin and 
subtilin. In Nisin and Novel Lantibiolics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 
287-302. 

Higgins, C.F., Hiles, ID., Salmond, G.P.C., Gill, D.R., Downie, J.A., Evans, IJ., Holland, I.B., Gray, L., 
Buckel, S.D., Bell, A.W. & Hermodson, M.A. (1986). A family of related ATP-binding subunits coupled 
to many distinct biological processes in bacteria. Nature, 323, 448-450. 

Hirsch, A. (1953). The evolution of the lactic streptococci. J. Dairy Res., 20, 290-293. 
Hirsch, A. & Grinsted, E. (1951). The differentiation of the lactic streptococci and their antibiotics. J. Dairy 

Res., 18, 198-204. 
Hoess, R.H., Foeller, C., Bidwell, K. & Landy, A. (1980). Site-specific recombination functions of 

bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and 
Xis. Proc. Natl. Acad. Sci. USA, 77, 2482-2486. 

Horn, N., Swindell, S., Dodd, H. & Gasson, M. (1991). Nisin biosynthesis genes are encoded by a novel 
conjugative transposon. Mol. Gen. Genet., 228, 129-135. 

Hurst, A. (1966). Biosynthesis of the antibiotic nisin by whole Streptococcus lactis organisms. J. Gen. 
Microbiol., 44, 209-220. 

Hurst, A. & Kruse, H. (1970). The correlation between change in absorbancy, calcium uptake, and cell-bound 
nisin activity in Streptococcus lactis. Can. J. Microbiol., 16, 1205-1211. 

Hurst, A. & Kruse, H. (1972). Effect of secondary metabolites on the organisms producing them: Effect of 
nisin on Streptococcus lactis and enterotoxin B on Staphylococcus aureus. Antimicrob. Agents Chemother., 
1, 277-279. 

Hurst, A. & Paterson, H.G. (1971). Observations on the conversion of an inactive precursor protein to the 
antibiotic nisin. Can. J. Microbiol., 17, 1379-1384. 

Ingram, L.C. (1969). Synthesis of the antibiotic nisin: formation of lanthionine and B-methyl-lanthionine. 
Biochim. Biophys. Acta, 184, 216-219. 

Ingram, L.C. (1970). A ribosomal mechanism for synthesis of peptides related to nisin. Biochim. Biophys. 
Acta, 224, 263-265. 

Jung, G. (1991a). Lantibiolics: a survey. InNisin and Novel Lantibiolics, ed. G. Jung & H.-G. Sahl. ESCOM, 
Leiden, The Netherlands, pp. 1-34. 

Jung, G. (19916). Lantibiotica - ribosomal synthetisierte Polypeptidwirkstoffe mit Sulfidbriicken und a,B-
didehydroaminosauren. Angew. Chemie, 103, 1067-1218. 

Kaletta, C. & Entian, K.-D. (1989). Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and 
posttranslational processing of its peptide product. J. Bacteriol., 171, 1597-1601. 

Kellner, J., Jung, G., Josten, M., Kaletta, C , Entian, K.-D. & Sahl, H.-G. (1989). Pep5, a new lantibiotic: 
structure elucidation and amino acid sequence of the propeptide. Angew. Chem. Int. Ed. Engl., 28, 616-619. 

Klein, C , Kaletta, C , Schnell, N. & Entian, K.-D. (1992). Analysis of genes involved in biosynthesis of the 
lantibiotic subtilin. Appl. Environ. Microbiol., 58, 132-142. 

Kordel, M. & Sahl, H.-G. (1986). Susceptibility of bacterial, eukaryotic and artificial membranes to the 
disruptive action of the cationic peptides Pep5 and nisin. FEMS Microbiol. Lett., 34, 139-144. 

Kozak, W., Rajchert-Trzpil, M. & Dobrzariski, W.T. (1974). The effect of proflavin, ethidium bromide and 
elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Streptococcus 
lactis. J. Gen. Microbiol., 83, 295-302. 

Kuipers, O.P., Boot, H J. & de Vos, W.M. (1991a). Improved site-directed mutagenesis method by PCR. Nucl. 
Acids Res., 19, 4558. 

Kuipers, O.P., Yap, W.M.G.J., Rollema, H.S., Beerthuyzen, M.M., Siezen, R.J. & de Vos, W.M. (19916). 
Expression of wild-type and mutant nisin genes in Lactococcus lactis. In Nisin and Novel Lantibiolics, ed. 
G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 250-259. 

Kuipers, O.P., Rollema, H.S., Yap, W.M.G.J., Boot, H.J., Siezen, R.J. & de Vos, W.M. (1992). Engineering 
dehydrated residues in the antimicrobial peptide nisin. J. Biol. Chem. In press. 

30 



LeBlanc, D.J., Crow, V.L. & Lee, L.N. (1980). Plasmid mediated carbohydrate catabolic enzymes among 
strains of Streptococcus lactis. In Plasmids and Transposons, Environmental Effects and Maintenance 
Mechanisms, ed. C. Stuttard & K.R. Rozee. Academic Press, Inc., New York, pp. 31-41. 

Lian, L.-Y., Chang, W.C., Morley, S.D., Roberts, G.C.K., Bycroft, B.W. & Jackson, D. (1992). NMR studies 
of the solution structure of nisin A. Biochem. J., 283, 413-420. 

Mankovich, J.A., Hsu, C. & Konisky, J. (1986). DNA and amino acid sequence analysis of structural and 
immunity genes of colicins la and lb. J. Bacteriol., 168, 228-236. 

Molitor, E. & Sahl, H.-G. (1991). Applications of nisin: a literature survey. In Nisin and Novel Lantibiotics, 
ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 434-439. 

Morris, S.L., Walsh, R.C. & Hansen, J.N. (1984). Identification and characterization of some bacterial 
membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J. Biol. Chem., 259, 
13590-13594. 

Mulders, J.W.M., Boerrigter, I.J., Rollema, H.S., Siezen, R.J. & de Vos, W.M. (1991). Identification and 
characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem., 201, 581-584. 

Murphy, E., Huwyler, L. & Bastos, M.C.F. (1985). Transposon Tt\554: complete nucleotide sequence and 
isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J., 4, 3357-3365. 

Murphy, M.C., Steele, J.L., Daly, C. & McKay, L.L. (1988). Concomitant conjugal transfer of reduced 
bacteriophage sensitivity mechanisms with lactose- and sucrose-fermenting ability in lactic streptococci. 
Appl. Environ. Microbiol., 54, 1951-1956. 

Piard, J.-C. (1992). Lacticin 481, a novel lantibiotic produced by Lactococcus lactis subsp. lactis CNRZ 481. 
In Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications, ed. L. de Vuyst & E.J. 
Vandamme. Elsevier, London. In press. 

Piard, J.-C, Kuipers, O.P., Rollema, H.S., Desmazeaud, M.J. & de Vos, W.M. (1992a). Genetic 
characterization of lacticin 481, a novel lantibiotic produced by Lactococcus lactis subsp. lactis CNRZ 481. 
Submitted for publication. 

Piard, J.-C, Muriana, P.M., Desmazeaud, M.J. & Klaenhammer, T.R. (19926). Purification and partial 
characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis CNRZ 
481. Appl. Environ. Microbiol., 58, 279-284. 

Poyart-Salmeron, C , Trieu-Cuot, P., Carlier, C. & Courvalin, P. (1990). The integration-excision system of 
the conjugative transposon Tnl545 is structurally and functionally related to those of lambdoid phages. Mol. 
Microbiol., 4, 1513-1521. 

Prere, M.-F., Chandler, M. & Fayet, O. (1990). Transposition in Shigella dysenteriae: isolation and analysis 
of 1S911, a new member of the IS5 group of insertion sequences. J. Bacteriol., 172, 4090-4099. 

Rauch, PJ.G. & de Vos, W.M. (1990). Molecular analysis of the Lactococcus lactis nisin-sucrose conjugative 
transposon. Program Abstr. 3rd Int. ASM Conference on Streptococcal Genetics. American Society for 
Microbiology, Washington, D.C, abstr. A/46, p. 23. 

Rauch, PJ.G. & de Vos, W.M. (1992a). Characterization of the novel nisin-sucrose conjugative transposon 
Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol., 174, 1280-1287. 

Rauch, PJ.G. & de Vos, W.M. (1992&). Transcriptional regulation of the Tn5276-located Lactococcus lactis 
sucrose operon and characterization of the sacA gene encoding sucrose-6-phosphate hydrolase. Gene, 121, 
55-61. 

Rauch, PJ.G., Beerthuyzen, M.M. & de Vos, W.M. (1990). Nucleotide sequence of 1S904 from Lactococcus 
lactis subsp. lactis strain NEO R5. Nucleic Acids Res., 18, 4253-4254. 

Rauch, P.J.G., Beerthuyzen, M.M. & de Vos, W.M. (1991). Molecular analysis and evolution of conjugative 
transposons encoding nisin production and sucrose fermentation in Lactococcus lactis. In Nisin and Novel 
Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 243-249. 

Reis, M. & Sahl, H.-G. (1991). Genetic analysis of the producer self-protection mechanism ("immunity") 
against Pep5. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, 
pp. 320-331. 

31 



Rollema, H.S., Both, P. & Siezen, R.J. (1991). NMR and activity studies of nisin degradation products. In 
Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM, Leiden, The Netherlands, pp. 123-130. 

Rosenberg, M. & Court, D. (1979). Regulatory sequences involved in the promotion and termination of RNA 
transcription. Annu. Rev. Genet., 13, 319-353. 

Sahl, H.-G., Kordel, M. & Benz, R. (1987). Voltage-dependent depolarization of bacterial membranes and 
artificial lipid bilayers by the peptide antibiotic nisin. Arch. Microbiol., 149, 120-124. 

Schnell, N. Entian, K.-D., Schneider, U., Gotz, F., Zahner, H., Kellner, R. & Jung, G. (1988). Prepeptide 
sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide rings. Nature, 333, 276-278. 

Schnell, N., Entian, K.-D., Gotz, R, Horner, T., Kellner, R. & Jung, G. (1989). Structural gene isolation and 
prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiol. Lett., 58, 263-
268. 

Schnell, N., Engelke, G., Augustin, J., Rosenstein, R., Ungermann, V., Gotz, F. & Entian, K.-D. (1992). 
Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur. J. Biochem., 204, 57-68. 

Song, H.Y. & Cramer, W.A. (1991). Membrane topology of ColEl gene products: the immunity protein. J. 
Bacteriol., 173, 2935-2943. 

Steele, J.L. & McKay, L.L. (1986). Partial characterization of the genetic basis for sucrose metabolism and 
nisin production in Streptococcus lactis. Appl. Environ. Microbiol., 51, 57-64. 

Steele, J.L., Murphy, M.C., Daly, C. & McKay, L.L. (1989). DNA-DNA homology among lactose- and 
sucrose-fermenting transconjugants from Lactococcus lactis strains exhibiting reduced bacteriophage 
sensitivity. Appl. Environ. Microbiol., 55, 2410-2413. 

Steen, M.T., Chung, Y.J. & Hansen, J.N. (1991). Characterization of the nisin gene as part of a polycistronic 
operon in the chromosome of Lactococcus lactis ATCC 11454. Appl. Environ. Microbiol., 57, 1181-1188. 

Stevens, K.A., Sheldon, B.W., Klapes, N.A. & Klaenhammer, T.R. (1991). Nisin treatment for inactivation 
of Salmonella species and other gram-negative bacteria. Appl. Environ. Microbiol., 57, 3613-3615. 

Thompson, J. & Chassy, B.M. (1981). Uptake and metabolism of sucrose by Streptococcus lactis. J. 
Bacteriol., 147, 543-551. 

Thompson, J., Nguyen, N.Y., Sackett, D.L. & Donkersloot, J.A. (1991). Transposon-encoded sucrose 
metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to 7V5-
(L-l-carboxyethyl)-L-ornithine synthase in strain Kl. J. Biol. Chem., 266, 14573-14579. 

Tsai, H.-J. & Sandine, W.E. (1987). Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 
to Leuconostoc dextranicwn 181. Appl. Environ. Microbiol., 53, 352-357. 

Van Belkum, M. (1992a). Cloning, sequencing, and expression in Escherichia coli of IncB, a third bacteriocin 
determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl. Environ. Microbiol., 58, 572-577. 

Van Belkum, M. (1992ft). Lactococcins. In Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and 
Applications, ed. L. de Vuyst & E.J. Vandamme. Elsevier, London. In press. 

Van Belkum, M., Hayema, BJ., Jeeninga, R.E., Kok, J. & Venema, G. (1991). Organization and nucleotide 
sequence of two lactococcal bacteriocin operons. Appl. Environ. Microbiol., 57, 492-498. 

Van der Vossen, J.M.B.M., van der Lelie, D. & Venema, G. (1987). Isolation and characterization of 
Streptococcus cremoris Wg2 specific promoters. Appl. Environ. Microbiol., 53, 2452-2457. 

Van de Ven, F.J.M., van den Hooven, H.W., Konings, R.N.H. & Hilbers, C.W. (1992). NMR studies of 
lantibiotics: The structure of nisin in aqueous solution. Eur. J. Biochem., 202, 1181-1188. 

Von Heijne, G. (1985). Signal sequences. The limits of variation. J. Mol. Biol, 184, 99-105. 
Wakamiya, T., Fukase, K., Sano, A., Shimbo, K., Kitazawa, M., Horimoto, S., Fujita, H., Kubo, A., Maeshiro, 

Y. & Shiba, T. (1991). Studies on chemical synthesis of the lanthionine peptide nisin. In Nisin and Novel 
Lantibiotics, ed. G. Jung & H.-G. Sahl, ESCOM, Leiden, The Netherlands, pp. 189-203. 

32 



CHAPTER 3 

CLONING AND CHARACTERIZATION OF THE STRUCTURAL GENE 

FOR NISIN A, NISA, AND IS1068 

FROM LACTOCOCCUS LACTIS NIZO R5 

Peter J.G. Rauch, Marke M. Beerthuyzen, and Willem M. de Vos 

Parts of this chapter have been published in Nucleic Acids Research 18 (1990) 4253-4254 

and the Journal of Bacteriology 174 (1992) 1280-1287 



Abstract The structural gene for the precursor of nisin A, nisA, of Laclococcus lactis NIZO R5 was 

detected in a AEMBL3 library of total DNA in Escherichia coli. The nisA gene was subcloned and 

its nucleotide sequence was determined. The nisin A precursor deduced from the nisA gene nucleotide 

sequence is a 57-amino acid peptide consisting of a 23-amino acid leader peptide segment and a C-

terminal 34-amino acids peptide segment. This demonstrates that mature nisin A is synthesized in L. 

lactis NIZO R5 by modification of a ribosomally synthesized precursor molecule. Upstream from the 

nisA gene a region was found that exhibited all the characteristics of a member of the IS5 group of 

insertion sequences. Three copies of this element, termed IS1068, or strongly related elements are 

present in the genome of L. lactis NIZO R5. The organization and coding capacity of IS1068 and 

other members of the IS5 family are discussed. 

INTRODUCTION 

Nisin, produced by some Lactococcus lactis strains, is the most prominent member of the group 

of bacteriocins called lantibiotics (36); some of the other members are subtilin from Bacillus 

subtilis (14) and epidermin from Staphylococcus epidermis (1). Lantibiotics are ribosomally 

synthesized by gram-positive bacteria and contain the thioether amino acids lanthionine and 3-

methyllanthionine (see Fig. 1 in Chapter 2). Ingram (17, 18) proposed that the formation of these 

lanthionine rings in nisin A (15) occurs through dehydration of serine and threonine residues 

followed by sulphide ring formation between the resulting dehydroalanine and dehydrobutyrine 

residues and appropriately located cysteine residues. On the basis of these mechanisms, the 

structure of the ribosomally synthesized nisin A precursor was proposed (18). 

The cloning of the gene encoding the nisin A precursor could be the first step toward the 

localization and identification of the genetic element encoding and transferring nisin A production. 

Furthermore, it was expected that the genes encoding the proteins involved in nisin A biosynthesis 

and immunity would be clustered near the gene for the nisin A precursor. Thus, cloning of the gene 

for the nisin A precursor (or nisin A structural gene) was considered to be essential for the 

elucidation of nisin biosynthesis and nisin protein engineering. Using a 'reversed genetics' 

approach, the nisin A structural gene (nisA) was detected in a gene library of L. lactis subsp. lactis 

strain NIZO R5, a nisin A-producing and sucrose-fermenting wild-type strain from the strain 

collection of the Netherlands Institute for Dairy Research (NIZO). L. lactis NIZO R5 had been 

isolated from raw milk and used for evaluating the potential of nisin in industrial cheese making 
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(11). A similar approach has been used by others to clone the nisin genes of several other nisin A-

producing L. lactis strains (3, 5, 20). The nisA gene of L. lactis NIZO R5 has been used to isolate 

the nisZ gene encoding a variant nisin, nisin Z, which differs from nisin A in a single amino acid 

position (27). Next to the cloning and characterization of the L. lactis NIZO R5 nisA gene, the 

identification and characterization of a copy of an iso-IS904 element (5) is described in this 

chapter. This IS element, designated IS1068, was found to proceed the nisA gene of L. lactis NIZO 

R5.1S1068 belongs to the ISJ group of insertion sequences, a family of IS elements that is widely 

spread in both gram-positive and gram-negative bacterial genera. 

MATERIALS AND METHODS 

Strains, plasmids, and bacteriophages. The nisin A-producing and non-nisin-producing L. 

lactis strains used were NIZO R5 (11) and MG1614 (12), respectively. Escherichia coli strains TGI 

(13) and MB406 (obtained from Pharmacia LKB Biotechnology AB, Uppsala, Sweden) were used 

as hosts for M13mpl8 and M13mpl9 (47) and bacteriophage AEMBL3 (9), respectively. 

Growth and culture conditions. E. coli strains were grown in L broth-based medium as 

described previously (34). L. lactis strains were grown at 30°C in M17 broth (Difco Laboratories, 

Detroit, Mich.) containing 0.5% sucrose (NIZO R5) or glucose (MG1614). 

DNA manipulations and genomic library construction. Plasmid and bacteriophage DNAs 

were isolated from E. coli cells or lysates essentially by using established protocols (34). For the 

isolation of plasmid DNA from L. lactis NIZO R5 the methods of Anderson and McKay (2) and 

Vos et al. (45) were used. Total DNA was isolated from L. lactis strains by the addition of 4 

volumes of 50 mM Tris-HCl (pH 8.0)-5 mM EDTA-50 mM NaCl-0.5% sodium dodecyl sulfate 

to a protoplast suspension prepared as described previously (45) followed by phenol-chloroform 

extraction and ethanol precipitation. DNA fragments were recovered from agarose gels with a Gene 

Clean kit (Bio 101, Inc., La Jolla, Calif.). Standard cloning procedures were used throughout (34). 

The library of L. lactis NIZO R5 DNA was prepared in XEMBL3 by using the Packagene Lambda 

DNA packaging system (Pharmacia LKB). The NIZO R5 DNA cloned was a 15- to 25-kb fraction 

of partially Sai<3A-digested total DNA recovered from an agarose gel. 

Agarose gel electrophoresis, DNA transfer, and hybridization. Agarose gel electrophoresis 

was carried out using established protocols (34). GeneScreen Plus nylon membranes (Du Pont, 
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NEN Research Products, Wilmington, Del.) were used in all DNA transfers. Transfer, hybridization, 

and washing conditions were as recommended by the membrane manufacturer. 

DNA sequencing. Nucleotide sequences were determined by using the dideoxy-chain 

termination method (35) adapted for Sequenase version 2.0 (U.S. Biochemical Corp., Cleveland, 

Ohio) on fragments cloned into M13mpl8 and M13mpl9. The universal M13 primer and 

specifically synthesized primers were used and the sequence of both strands was determined. The 

sequence data were assembled with the use of the PC/Gene program version 5.01 (Genofit, Geneva, 

Switzerland). 

RESULTS AND DISCUSSION 

Cloning and nucleotide sequence analysis of the nisA gene. A region of low codon 

degeneracy (MGCNMKT, extending from position 17 to 23) in the proposed nisin precursor 

sequence (18) was chosen and, based on L. lactis codon usage (calculated from a compilation of 

all known L. lactis nucleotide sequences; W. M. de Vos, unpublished data), an oligonucleotide was 

designed and synthesized to be used in DNA hybridizations to detect the nisA gene. This 

oligonucleotide (5'-ATGGGTTGTAATATGAAAAC) was found to yield single hybridizing bands 

in restriction digests of total L. lactis N1ZO R5 DNA at a maximum temperature of 45°C. At this 

temperature, the oligonucleotide neither hybridized to the five plasmids present in L. lactis NIZO 

R5 nor to total DNA from the non-nisin-producing laboratory strain L. lactis MG1614 (12; data 

not shown). The hybridization of the nisA probe to total but not plasmid DNA isolated from L. 

lactis NIZO R5 indicated that the genetic element containing the nisA gene was located in the L. 

lactis NIZO R5 chromosome or was an extrachromosomal element that could not be isolated in 

conventional plasmid isolation procedures. A L. lactis NIZO R5 genomic library in AEMBL3 was 

screened by hybridization at 45°C to the nisA probe. One of 16 hybridizing clones (ANZ700) was 

characterized in detail and was found to carry a 20-kb insert (data not shown). A 1.7-kb Sau3A 

fragment hybridizing to the oligonucleotide probe was subcloned into M13mpl8 and mpl9 and the 

nucleotide sequence of the nisA gene of L. lactis NIZO R5 was determined. The nucleotide 

sequence (Fig. 1) contained an open reading frame (ORF) of which the 32-amino acids C-terminal 

part was identical to the nisin precursor postulated by Ingram (18). This demonstrates that mature 

nisin is indeed synthesized in L. lactis NIZO R5 by modification of a ribosomally synthesized 
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precursor molecule. The ORF is preceded by a consensus lactococcal ribosome binding site (4) and 

by a sequence (CTGATT-N20-TACAAT) that partly resembles the consensus L. lactis promoter 

sequence (TTGACA-N17-TATAAT [4,43]). The deviation from the consensus promoter sequence 

could point toward regulated transcription. The sequence of the nisA gene of L. lactis NIZO R5 

was found to be identical to those published just previously (3) or later (5, 20), except for a silent 

mutation in the nisA gene of L. lactis 6F3 (20). For further results of the analysis of this region in 

different L. lactis strains the reader is referred to Chapter 2. 

-35 

TTATTGTCGATAACGCGAGCATAATAAACGGCTCTGATTAAATTCTGAAGTTTGTTAGAT 6 0 

-10 
* * * * * * 

AC AATGATTTCGTTCGAAGGAACTAC AAAATAAATTATAAGGAGGC ACTC AAAATGAGTA 120 
nisA -» M S 2 

CAAAAGATTTTAACTTGGATTTGGTATCTGTTTCGAAGAAAGATTCAGGTGCATCACCAC 180 
T K D F N L D L V S V S K K D S G A S P 22 

GCATTACAAGTATTTCGCTATGTACACCCGGTTGTAAAACAGGAGCTCTGATGGGTTGTA 240 
K I T S I S L C T P G C K T G A L M G C 42 

T . . . . . 
ACATGAAAACAGCAACTTGTCATTGTAGTATTCACGTAAGCAAATAACCAAATCAAAGGA 300 
N M K T A T C H C S I H V S K - 57 

FIG. 1. Nucleotide sequence of the nisA gene of L. lactis NIZO R5. The deduced amino acid sequence 
of the nisin precursor is given below the nucleotide sequence; the amino acids of the leader sequence are in 
italics and residues that are modified in mature nisin are in bold face. In the nucleotide sequence, a potential 
promoter is overlined and a potential ribosome binding site is indicated by stars over the residues that are 
complementary to the 3 ' end of L. lactis 16S rRNA (23). The nucleotides in bold face represent the 
oligonucleotide used to detect the nisA gene. 

Nucleotide sequence analysis of 1S1068. Because the presence of an incomplete ORF upstream 

from the nisA gene of L. lactis ATCC 11454 had been reported (3), we determined the nucleotide 

sequence of part of the region upstream from the nisA gene of L. lactis NIZO R5 (Fig. 2). This 

sequence was found to contain a region that exhibited characteristics of an IS element. The element 

is 1245 basepairs (bp) long. Its termini are 39-bp imperfect inverted repeats. A 4-bp direct target 
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repeat (TTAT) was found. The element contains two large open reading frames of 96 (ORFA) and 

299 (ORFB) amino acids. The NIZO R5 IS-like element differs in 8 bp from the 1241-bp IS904 

found upstream from the nisA gene of L. lactis strain NCFB894 (5). Therefore, we initially referred 

to the L. lactis NIZO R5 IS-like element as an (iso-)ISSW element (31). However, in view of the 

differences in coding capacity to IS904 (see below) the IS-like element found upstream from the 

nisA gene of L. lactis NIZO R5 has now been designated IS/065 (registered with the Plasmid 

Reference Centre [22]). Recendy a L. lactis IS element QS1076) similar to IS904 (24 scattered 

mismatches) and IS1068 (22 scattered mismatches) has been described (16). The nucleotide 

sequence of IS1076 gives rise to one ORF comprising both IS1068 ORFs. 

Hybridization analyses using IS706S-specific oligonucleotides have shown that the genomes of 

L. lactis strains NIZO R5 and MG1614 contain three and seven copies, respectively, of 1S1068 or 

very related IS elements (data not shown; see Chapter 8 for more data on the presence of IS1068 

in the genomes of L. lactis strains). 

IS1068 belongs to the ISJ family of insertion sequences. On the basis of homology between 

ORFs and inverted repeats (Fig. 3) IS904, IS706S, and IS7076 belong to the IS5 family of insertion 

sequences. This family further includes IS2 (32), ISJ (41), IS750 (37), and IS3411 (19) from E. 

coli, IS600 (25) and IS977 (29) from Shigella dysenteriae, IS629 (26) from S. sonnei, IS57 (46) 

from Pseudomonas savastanoi, IS136 (or IS426; 42) from Agrobacterium tumefaciens, ISL7 (39) 

from Lactobacillus casei, IS476 (21) from Xanthomonas campestris pv. vesicatoria, 1S861 (33) 

from group B Streptococcus type III, IS6770 (40) from Mycobacterium tuberculosis, and ISR7 (30) 

from Rhizobium class IV. 

At least ten members of the IS5 family have been found to carry two major ORFs: a small 

upstream frame (ORFA) and a longer downstream frame (ORFB) shifted 1 nucleotide to the 5' end 

with respect to ORFA (-1 frameshift [8, 29]). In comparisons of the IS5 group members, both 

ORFAs and ORFBs were found to show significant similarities to each other. However, ORFB was 

found to be the better conserved of the two, especially in its carboxy-terminal region (8, 29). All 

ORFAs were found to contain a sequence (29) that could potentially form a helix-turn-helix DNA-

binding motif with significantly high scores calculated with the weight matrix of Dodd and Egan 

(5). ORFA of IS706S also contains such a motif (Fig. 2); its calculated score is 1196, while the 

scores reported for other ORFAs (29) range from 782 (ISS67) to 1961 (ISR7). This segment is 
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-10 

CTCTTAAGTGAGATAGTCTAAATAAATGAATTGATGT<X:ACCCCAAAAGTTAGACTTTTTATCCAGGTATTTATTGGAAAGGTTATAATAAACTAGACAC 100 

AAAGTTAAGAGAAATCGTGGAAAGGTTTATTATGGGAAGAAGAAAATTCGATAAACAATTTAAAAATTCTGCAGTAAAACTCATTCTTGAAGAGGGTTAC 2 0 0 

ORFA - » M G R R K F D K Q F K N S A V K L I L E E G Y 2 3 

TCTGTTAAAGAAGTCAGCCAAGAGCTTGAGGTTCATGCCAATCGCTGGGATAGTCTTTTK;AAGAAGTTGAAGAATATGGAGAAAGTGCTTTTCCAGGCA 3 0 0 

E V E E Y G E S A F P G 5 6 V K E V S Q E L E V H A N S L Y R W V Q 

ATGGGACAGCCCTAGCTGATGCCCAACATAAGATTAAATTGTTAGAGAAAGAAAATCGTTATCTTCAGGAGGAACTTGAACTTCTAAAAAAGTTCCAGGT 400 

N G T A L A D A Q H K I K L L E K E N R Y L Q E E L E L L K K F Q V 90 
ORFB - » T S K K V P G 91 

CTTCTTGAAGCGAAGCAAGTAAAACGTTITGAATTTCTCTTGAAACATCATGGGAAGATAAAAATTAAGCATGCAGTAAAAGTTCTTAAGGTTTCTCGCT 500 

F L K R S K - 96 
L L E A K Q V K R F E F L L K H H G K I K I K H A V K V L K V S R 124 

CAGGTTrCTATGAATACATGCATCGTCGTCCTTCAAAACAACAAGTGGAGAGAGAAATTCTCTCAGAGAAGATAAAAGCTGTCTTTCATGAGCATAAGGG 600 

S G F Y E Y M H R R P S K Q Q V E R E I L S E K I K A V F H E H K G 158 

ACGCTATGGTGCGGTTAGAATTACCAAGGTACTTCATAATACTGGTATTATGACCAACACGAAACGTGTTGGGAAACTGATGCACTTGATGGGACTTTAT 700 

R Y G A V R I T K V L H N T G I M T N T K R V G K L M H L M G L Y 191 

AGC . . . . . . 

GCCAAGGGAAGCCGATATAAATATAAACATTACAACAGAAAAGGCAGTTCGCTTTCAAGACCCAATTTAATTAATCAGATCTTTAAAGCAACAGCTCCTA 800 

A K G S R Y K Y K H Y N R K G S S L S R P N L I N Q I F K A T A P 224 

ATAAAGTATGGCTGGGAGACATGACCTATATCCCTACCAAAGAAGGTACCTTATACTTAGCCGTGAATATCGACGTTTTTTCACGTAAGATTGTAGGCTG 900 

N K V W L G D M T Y I P T K E G T L Y L A V N I D V F S R K I V G W 258 

• G -

GTCAATGTCTTCACGGATGCAAGATAAACTGGTGAGGGATTACTTCTTACAAGCTTGTGGGAAAGAACATCCTCAGCCTGGCTTGATTGTCCATACTGAT 1000 

S M S S R M Q D K L V R D Y F L Q A C G K E H P Q P G L I V H T D 291 

CAAGGGAGTCAATATACAAGCTCTCGTTATCAATCTACTCTTCGTCAAGTCGGTGCTCAATCTAGCATGAGTCGTAAAGGAAATCCCTATGACAATGCAA 1100 

Q G S Q Y T S S R Y Q S T L R Q V G A Q S S M S R K G N P Y D N A 324 

TGATGGAGTCTTrTTATAAGACGCTAAAGAGGGAGCTTATTAATGATGCTCATTTTGAGACAAGAGCTGAGGCTACTCAAGAAATATTTAAATACATTGA 1200 

L I N D A H F E T R A E A T Q E I F K Y I E 358 M M E S F Y K T L K R E 

GACCTATTACAATACAAAAAGGATGCATTCAGGTCTTGATTACAAGTCTCCAAAAGACTTTGAAAAATATAATTCTTAAATTCTCTTAACTCCGTGTCTA 13 00 

T Y Y N T K R M H S G L D Y K S P K D F E K Y N S - 383 

GTTTTTCGTTGACTTTCCATTATGCTTGGArnTrrATTGTTTAATTCCCTTTTTTGTATACAAGCTCGTATTCTTAACAAATAATTGGC^ 14 00 

FIG. 2. Nucleotide sequence of IS1068. The amino acid sequences deduced from ORFs A and B are given 
below the nucleotide sequence. The stretches of residues that correspond to the helix-turn-helix motif detected 
in the ORFAs of ISJ group members (29) and the domain in ORFB that shows similarity to retroviral 
integrases (8) are boxed. Amino acid numbering follows ORFAB as predicted by using the results obtained 
with IS911 (28). In the nucleotide sequence, potential ribosome binding sites are denoted by stars over the 
bases that are complementary to the 3 ' end of L. lactis 16S rRNA (23). The 32-bp imperfect repeat is 
underlined. The 4-bp target repeat and the frameshift motif (29) are doubly underlined. Nucleotide sequence 
differences to 1S904 (5) are indicated above the nucleotide sequence (-: nucleotide deletion). A possible -10 
sequence is overlined. 
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A: 
IS 629 HSDKGSQYVSLAYTQRLKBAGLLASTGSTGDSYDNAMAESINGLYKAK 
ISL1 HSDRGSQYTAKEVTKLVNQ.YHWQRSFSALGKPGDNAWSESFFAIMXKB 
1S1068 HTDQGSQYTSSRYQSTLRQVQAQSSMSRKGNPYDNAMMESFYKTLKRE 

Consensus HSDNGSQY-S--Y---
T Q GEF A F 

T T 

L-E-GIR-SMSA-GNSYDNA--ESFFG-LK-
Q LK AVGS DPWQ G T W VR 
D LT S 

B: 
TGTACTGCACCCATTTTGTTGGACG 
TQTACTGACCCCAAAAAGTTOGACA 
TGAACCGCCCCGGGAATCCTOGAGA 
TGAACCGCCCCGGGTTTCCTGGAGA 
TOAAGTQGTCAACAAAAACTGOCCA 
TGAAGTGGCACACTGAATTTGGCCA 
TGAGGTAGCCTGAGTTTAACQOACA 
TGAGGTOTACTGGCAATAGCGGACA 
TGACCTOCCCCCACTGAGCCGTACC 
TGACCTGCCCCCATCGT-CCGTACC 
TGAACTGCACCCCAAAAGTTAGACA 
TGTACTGACCCCCAAAAGTTGGACA 
TGAACCGCCCCGGGAATCCTOGAGA 
TGAACCGCCCCGGGTTTCCTGGAGA 
TGAACCGCCCCGGGTTTCTCGGAGA 
TGAACCGCCCCGGGTTTCTCGGAGA 
TGAACCGCCCCGGCATGTCCGGAGA 
TGAACCGCCCCGGTGAGTCCGGAGA 
tGGGTCTGTACTAGAATTTCGGACA 
tGGGAAGTCAACACTTTTTCGGACA 
TGGAAAGGTTATAATAAACTAGACA 
TGGAAAGTC AACG A - AAACTAGACA 

Consensus TGRRYYR-YYY YRGACA 
9 

IS150 

IS3411 

IS911 

IS600 

IS476 

IS861 

IS 629 

IS51 

IS6110 

ISL1 

IS1068 

L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 
L 
R 

IS2 

IS 3 

IS426 
( = IS136) 
ISR1 

L TGGATTTGCCCC-T-ATATT-TC-CAGACA 
R TAGACTGGCCCCCTGA-AT-CTC-CAGACA 
L TGATCTTACCCAGC-AATAG TGGACA 
R TGATCCTACCC ACGT AATA TGGACA 
L tjjaACTGCCCCCCATTTCGAC CGGACA 
R tggAGTGCACCCCATTTC-AC CGGACA 
L TGACGTGACCCCCTGAAACTCCTCCAGGAA 
R TGACGTGACCCCC-GTTTCTCATCCAGCCA 

Consensus TGRRYYR-YYY YRGACA 

FIG. 3. The IS5 group of insertion sequences. A: Alignment of the most highly conserved C-terminal 
segments of several ORFBs. An alignment of the complete ORFBs of all other group members has been 
published (8). The segment shown is similar to a domain conserved in retroviral integrases (8). The consensus 
sequence has been deduced from a compilation of ten IS5 group members (8). Amino acid residues fitting 
the consensus sequence are in bold face. B: Alignment of terminal inverted repeats. The consensus sequences 
(differing in gap length) were designed to fit the majority of inverted repeats of the IS5 group members. 
Nucleotides corresponding to the consensus sequences are shown in bold face. The small case nucleotides in 
the ISL7 and IS426 sequences were reported not to be part of the inverted repeats (39, 42), but have been 
added here to maximize similarity to the consensus. 

thought to be involved in the sequence-specific binding to the terminal inverted repeats of the IS 

element (29). A highly conserved region of the ORFBs was also found to exhibit a significant 

similarity to the integrase domain of retroviruses (8; Fig. 3). Additional characteristics that 

members of the IS5 group were found to share with retroviruses are the sequences of the ends (the 

important conserved terminal dinucleotides 5'-TG...CA-3' [28]) and the presence of a motif in the 

overlap region of ORFA and ORFB that possibly promotes translation^ frameshifting (29). For 
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IS9/7 it has been shown that translational frameshifting at this motif results in the production of 

an ORFAB fusion protein in a T7 expression system (28), while the production of IS9// ORFA 

and ORFB products was also observed (28). Trans-complementation assays strongly suggested that 

the ORFAB fusion protein is the IS9// transposase (28). Production of a transposase fusion protein 

has also been observed for IS/50 (44), and for the unrelated IS/ (7, 24, 38) and it may be a 

relatively common way of controlling transposition activity. In IS/065, ORFB is potentially coupled 

to ORFA by a -1 frameshift and ORFA contains a helix-turn-helix motif at a similar position as 

in other ORFAs (Fig. 2; 29). Furthermore, the nucleotide sequence around the potential frameshift 

point contains the frameshift-promoting motif mentioned above (Fig. 2). ORFA is present in 

IS1068, but absent in IS904 due to mutations at positions 146 and 285 (Fig. 2), which may have 

rendered 1S904 inactive. Regulation of transposition of IS/076 (16) apparently does not take place 

via expression of different proteins switched by translational frameshifting as possibly is the case 

for other members of the IS3 group, since this IS element contains only one large ORF. 

Transcription of the IS1068 coding regions may be initiated outside the element. No 

consensus lactococcal transcription initiation signals could be found at appropriate positions in the 

nucleotide sequence of IS/06S, except for a consensus TATAAT box upstream from ORFA in the 

left inverted repeat. Possibly, transcription of the IS/06S ORFs is initiated from outside the 

element. This would mean that transcription would only be possible in certain locations in which 

a -35 sequence would be provided at the appropriate spacing. This could be considered to function 

as a mechanism for modulating the IS copy number in the genome. In the case of IS/076R it has 

been proposed that a promoter for transcription of the transposase ORF was created by duplication 

of one terminal repeat (16). Alternatively, the sequence promoting initiation of transcription of the 

IS/ 068 ORFs could show low similarity to consensus sequences. This would be in agreement with 

the low level of transcription often found for ORFs of IS elements and with the fact that consensus 

promoter sequences are rarely found upstream from coding regions in IS elements (10). 
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SUMMARY 

The Lactococcus lactis sucrose operon was located on the conjugative transposon Tn527<5 and the nucleotide sequence 
of the sacA gene, encoding sucrose-6-phosphate hydrolase, and its surrounding regions was determined. Northern blot 
analysis showed that the sucrose operon contains two divergent transcriptional units of 3.2 and 3.6 kb, the expression of 
which is considerably higher in cells grown on sucrose than in cells grown on glucose. This was confirmed by primer ex
tension studies which demonstrated that transcription is initiated at two sucrose-inducible promoters with a back-to-back 
organization. The 3.2-kb transcriptional unit includes the sacB gene which most probably encodes the sucrose-specific 
enzyme II of the phosphotransferase system, and may contain the gene encoding fructokinase. The 3.6-kb transcriptional 
unit includes genes sac A and sacR. The protein encoded by the sacR gene is likely to be involved in the regulation of the 
sac operon expression, since its deduced N terminus is homologous to helix-turn-helix DNA-binding domains found in 
several regulatory proteins. 

INTRODUCTION 

In addition to their normal growth on lactose, some 
Lactococcus lactis strains can also utilize sucrose (LeBlanc 
et al., 1980). This ability can be conjugally transferred to 
other L. lactis strains, together with production of and 

Correspondence to: Dr. W.M. de Vos, NIZO, P.O. Box 20, 6710 BA Ede, 

The Netherlands. Tel. (31)8380-59558; Fax (31)8380-50400. 

Abbreviations: aa. amino acid(s); B., Bacillus; bp, base pair(s); EIPUC, 
sucrose-specific enzyme II; kb, kilobase(s) or 1000 bp; L., Lactococcus; 
oligo, oligodeoxyribonucleotide; nt, nucleotide(s); ORF, open reading 
frame; PTS, phosphotransferase system (see INTRODUCTION); RBS, 
ribosome-binding site; 5.. Streptococcus; sacA, gene encoding S6PH; sacB, 
gene encoding the putative EIP1"1; sacR, gene encoding a putative regu
lator of the sucrose system; S6PH, sucrose-6-phosphate hydrolase; tsp, 
transcription start point(s); V., Vibrio. 

immunity to the lantibiotic nisin (Gasson, 1984). Recent 
investigations have shown that in L. lactis NIZO R5 those 
traits are encoded by a 70-kb conjugative transposon, des
ignated Tn5276 (Rauch and De Vos, 1992). 

L. lactis imports sucrose by means of a phosphoenolpyru-
vate-dependent PTS (Thompson and Chassy, 1981). The 
product of this translocation is sucrose 6-phosphate, which 
is subsequently cleaved by a specific S6PH to glucose 
6-phosphate and fructose. Fructose is then converted to 
fructose 6-phosphate by an ATP-dependent fructokinase. 
The sucrose-PTS and S6PH activities have been shown 
to be coordinately induced during growth on sucrose 
(Thompson and Chassy, 1981), and a sucrose-inducible 
fructokinase has recently been reported (Thompson et al., 
1991b). 

Sucrose PTS and hydrolase genes have been cloned from 
several bacteria. In the Gram" bacteria, strongly related 
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sucrose gene clusters have been found in Salmonella 
typhimurium, Klebsiella pneumoniae and Salmonella 
thompson (Cowan et al., 1991), while Vibrio alginolyticus 
appeared to contain differently organized sucrose genes 
(Blatch and Woods, 1991). Regulation of transcription has 
only been studied in the Salmonella thompson system 
(Cowan et al., 1991), although (putative) repressor genes 
have been identified in the above-mentioned systems 
(Blatch and Woods, 1991; Cowan et al., 1991). For Gram + 

bacteria, sucrose uptake and utilization genes have only 
been isolated from Bacillus subtilis (Fouet et al., 1986; 1987; 
Debarbouille et al., 1990) and Streptococcus mutans (Haya-
kawa et al., 1986; Lunsford and Macrina, 1986; Sato and 
Kuramitsu, 1988; Sato et al., 1989). The regulation of the 
B. subtilis sucrose system is complex, involving two control 
circuits that probably act via transcription antitermination 
(Steinmetz et al., 1989; Debarbouille et al., 1990; Zukowski 
et al., 1990). In contrast, the regulation of the S. mutans 
sucrose genes has not been extensively characterized (Sato 
et al., 1991). 

We have studied the transcriptional organization of the 
Tn527(5-located sucrose operon in L. lactis NIZO R5 and 
characterized the S6PH gene, sacA. The results show that 
this sucrose operon includes two divergent transcriptional 
units and that transcription initiates at two back-to-back 
oriented, sucrose-dependent promoters. 

RESULTS AND DISCUSSION 

(a) Cloning and nt sequencing of the sac A gene and its 
flanking regions 

Since there is considerable aa sequence conservation 
between the sucrose hydrolases from different organisms 

(Gunasekaran et al., 1990), a DNA fragment containing 
the S6PH gene of S. mutans was used as a probe to detect 
the corresponding gene in L. lactis. A 0.8-kb £coRV-
HinAlll fragment from pVA1343 (Lunsford and Macrina, 
1986), containing the S. mutans S6PH gene, was hybrid
ized (at 50 °C) to Southern blots of digested total DNA 
from L. lactis strain NIZO R5 containing the nisin-sucrose 
transposon Tn5276 (Rauch and De Vos, 1992). Single hy
bridizing bands were found only with DNA of strain NIZO 
R5 and not with DNA of the sucrose-deficient L. lactis 
strain MG1614 (Gasson, 1983). A hybridizing 6.6-kb 
BamHI fragment was isolated from the chromosomal DNA 
of strain NIZO R5 and cloned in Escherichia coli JM83 
(Vieira and Messing, 1982) by using the low-copy-number 
vector pSHG576 (Takeshita et al., 1987). This resulted in 
plasmid pNZ755. A physical map of the BamHI fragment 
was constructed and, based on hybridization and prelim
inary sequence analysis, the putative S6PH-encoding gene 
was located on a Bcll-Thal fragment (Fig. 1). The complete 
sequence of 1800 nt including the Bcll-Thal fragment was 
determined on both strands by sequencing overlapping 
restriction fragments subcloned into M13mpl8 and 
M13mpl9 (Yanish-Perron et al., 1985), except for the re
gion 5' from the putative S6PH-encoding gene, which could 
not be stably maintained in M13-derived vectors. There
fore, the nt sequence of this region was determined using 
pNZ755 as a template. Similar instability was encountered 
when we tried to isolate clones containing the sucrose re
gion from a AEMBL3 library (Rauch and De Vos, 1992). 

The nt sequence (Fig. 2) contains an ORF that could 
encode a 473-aa protein. The ORF is preceded by a po
tential RBS (Fig. 2) with a calculated free energy (Tinoco 
et al., 1973) for binding to the 3' end of L. lactis 16S rRNA 

K (B)K (B) 

sacB sacA sacR 
Fig. 1. Physical and genetic map of Tn527<5 and the 6.6-kb BamHI fragment containing part of the sucrose genetic region of L. lactis cloned in pNZ755. 
The Tn5276 map was taken from Rauch and De Vos (1992). The solid bars beiow Tn527<5 indicate the positions of the nis (nisin), sac (sucrose) and xis/int 
(transposition) gene clusters (Rauch and De Vos, 1992 and unpublished data). For convenience, the Tn5276 and pNZ755 maps are drawn in opposite 
orientations. The fragments used for the Northern hybridizations are indicated above the pNZ755 map (in parentheses). The position of the sequenced 
1.8-kb Bcll-Thal fragment is indicated in bold lettering. The thin arrows represent the location and size of the detected sucrose-specific transcripts of 
3.2 kb (left) and 3.6 kb (right). The other arrows represent the sucrose-regulated genes (partly based on unpublished sequencing results). Restriction en
zyme abbreviations: B, BamHI; C, Clal; E, EcoKV; H, Hindlll; K, Kpnl; L, Bell; N, Neil; S, Sstll; T, Thai; X, Xbal. Complete maps are shown for 
each contiguous DNA fragment except for the sites that are in parentheses. 
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L R L R T A C H A A G Q I N D R G V A N L I R A V Q K H N D I V G T D K L 
B e l l 

TGATCAATAACGCCAGTATCTrTrAGGACTAAACGTAGTCGTCTTCGCACAATC 

sacA - » M K W S T K Q R Y R T Y D S V S E S D L 

GAGAGrrrACGCAAACTGGCACTAAAATCTCCTTGGAAATCAAATTTTCATATTGAACCAGAAACTGGACTTCTTAATGATCCAAATGGATTC^ 

E S L R K L A L K S P W K S N F H I E P E T G L L N D P N G l F S Y F N E K W H L 

TTCTACCAACATTTTCCTTTTG<WCCAGTACATGCTTTAAAATCATGGGTACATC 

K T G L V L Y P D T K Y 61 F Y Q H F P F G P H G L K S W V H V S D D L V H F 

6 0 1 

1 0 1 

721 

141 

GATAATGCTGGAGTTTATTCTGGGTCCGCTTTGGCTTTTGAAAACTTC 

W V R T P Y Q L G A K D N A G V Y S G S A L A F E N F L F L I Y T G N H R G 

600 

1 00 

7 2 0 

1 40 

ATTGACAAAAATAATCAATTAGTCAAATTCACTGAACCACTAATTTATCCTGATTTTTCTCAAAC 

I D K N N Q L V K F T E P L I Y P D F S Q T T D H F R D P Q I F S F Q G Q 1 Y C 

TTAATTGGTGCTCAAAGCTCTCAAAAAAATGGTATAATCAAACTTTATAAAGCAATAGAAAAT 

L I G A Q S S Q K N G I I K L Y K A I E N N L T D W K D L G N L D F S K E K M G 

9 6 1 

2 2 1 

1 0 8 1 

261 

Y M I E C P N L I F I N G R S F C P Q Y D N I 

ATTGCGGATGACTTTACTACTGGCTCAAAAAATCAGCTAAAAAATGCAGGACAACTAATTAATTTGGATC 

I A D D F T T G S K N Q L K N A G Q L I N L | D E G F D C Y A T Q S F N A P D G S 

3 0 1 A Y A I S W L G L P E T S Y P T D K Y N V Q G V L S M K K L S I K D N K L Y Q 

960 

2 2 0 

1 0 8 0 

2 6 0 

1 2 0 0 

300 

1320 

340 

1 3 2 1 TATCCAGTTGAAAAAATGAAAGAATTAAGACAAATGGAACAAGATCTCTTACTAGCAGATAATAA 

3 4 1 Y P V E K M K E L R Q M E Q D L L L A D N N I I T S N S Y E L E V D F R Q Q T S 

1441 ACACTTCTATCTTTAATGACAAATGAAAAAGGGGATAGTGCACTTAAAGTTGAGATAGATAAAGAAAATAATACTATTAC^ 

3 8 1 T L L S L M T N E K G D S A L K V E I D K E N N T I T L I R N Y E K R L A H V K 

1 5 6 0 

4 2 0 

1S61 

4 2 1 

ATAGAAAAAATGAATGTATTTATTGATCAATCAATTTTTGAAATTTTTATTAAT 

I E K M N V F I D Q S I F E I F I N D G E K V L S D C R V F P N K N Q Y S I R S 

c 
Fig. 2. The nt sequence of the Tn5276-Iocated sacA gene and its surrounding region and the derived aa sequences of the encoded proteins. Sequencing 
of both strands was performed following the Sequenase protocol of Tabor and Richardson (1987) on fragments cloned into M13mpl8 and M13mpl9 
(Yanisch-Perron et al., 1985) with universal and insert-specific primers and using the double-stranded sequencing protocol of Hsiao (1991) on pNZ755 
and with synthesized primers. The aa corresponding to the N terminus of L. tactis Kl S6PH (Thompson et al., 1991a) are underlined, as are the aa de
duced from the start of the sacR gene that are identical to aa in the N terminus of the V. alginolyticus scr repressor (Blatch and Woods, 1991). The po
sition of the helix-turn-helix motif is indicated by connected bars. The aa deduced from the start of the sacB gene that are identical to aa in the N ter
minus of 5. mutans EIISUC (Sato et al., 1989) are overlined. The restriction sites from the map in Fig. 1 are indicated in bold face. Potential RBS are indicated 
by asterisks. The regions found to be conserved in seven /?-fructosidases (Gunasekaran et al., 1990) are boxed. The Cys of the putative active site, as 
proposed by Martin et al. (1987), is marked with a black triangle. The nt sequence has been given the GenBank accession No. M96669. 

(Ludwig etal., 1985) of -9.8 kcal/mol, which is in the 
range ( -8 to -14) usually found for L. lactis (De Vos, 
1987). The identity of the putative S6PH-encoding gene of 
L. lactis NIZO R5 was established by comparing the de
duced aa sequence to the recently published N-terminal 12 
aa of S6PH purified from L. lactis strain Kl (Thompson 
etal., 1991a; Fig. 2). There appeared to be only one dif

ference between the two sequences (position 4: Q in strain 
Kl, S in strain NIZO R5). The deduced aa sequence pre
dicts a molecular size for S6PH of L. lactis strain NIZO 
R5 of 54624 Da, a value that is close to that estimated for 
S6PH of L. lactis strain Kl (approx. 52 kDa; Thompson 
et al., 1991a). The S6PH-encoding gene of L. lactis NIZO 
R5 was designated sacA. So far, all attempts have failed to 
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(over)express the sacA gene using several expression sys
tems, including the T7 system (Studier et al., 1990), in order 
to visualize the expression product or determine the S6PH 
activity (Chassy and Porter, 1982). 

A comparison of the deduced aa sequence of the L. laclis 
NIZO R5 S6PH to that of the S. mutatis S6PH showed an 
overall aa identity of 51%, while the corresponding genes 
showed 57% identity in nt sequence. The S6PH enzymes 
belong to the group of /?-fructosidases, for which an exten
sive homology comparison has recently been published 
(Fig. 2; Gunasekaran et al., 1990). 

In the nt sequence 5' and 3' from sacA the starts of two 
ORFs were found (Fig. 2) with start codons that were pre
ceded by potential RBS with calculated free energies for 
binding to L. lactis 16SrRNAof -11.6 and -9.4 kcal/'mol, 
respectively. The ORF located 5' from and in opposite 
orientation to sac A was designated sacB and the ORF 
following sacA, with a GTG start codon overlapping the 
sacAstopcodon,wasdesignated5«c/?(see sectionsbandc). 

(b) Analysis of transcription of the sucrose operon and its 
regulation 

The activities of S6PH and the sucrose PTS are strongly 
induced during growth on sucrose (Thompson and Chassy, 
1981). To study the transcriptional organization of the sac 
genes and to analyze the control of their expression in L. 
laclis. Northern blot analysis and primer extension studies 
were performed using total RNA from cells grown on glu
cose and on sucrose. 

Northern blot analysis (Fig. 3) showed higher amounts 
of sacA-, sacB-, and .s</c7?-specific mRNA in cells grown on 
sucrose than in glucose-grown cells. However, the differ
ence in mRNA-levels between cells grown on sucrose and 
cells grown on glucose was larger for the sacB- and sacR-
specific mRNA than for the sacA -specific mRNA. Although 
some degradation of mRNAs was visible, as is often 
observed in bacterial systems (Newbury et al., 1987), the 
size of the major transcripts could be determined easily. 
The sacA probe and the sacR probe both hybridized to a 
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Fig. 3. Northern blot analysis of sac A (panel A), sacB (panel B) and sacR (panel R) gene expression in L. lactis NIZO R5. Cells were grown lo logarithmic 
phase on glucose (G) or sucrose (S) and 20 /ig of RNA, isolated as described (Van Rooijen and De Vos, 1990), glyoxalaied and separated on a dena
turing 1 °a agarose gel. The gel was either stained with ethidium bromide or, after blotting to a GeneScreen Plus membrane (NEN. Du Pont dc Nemours), 
hybridized to a 1.0-kb £VoRV-//mdIII fragment specific for sac A (A), a 0.6-kb EcoRV-Xbal fragment specific for sacR, a 1.1-kb Bamlil-Xbal fragment 
specific for sacB (B; see Fig. I). Blotting, hybridization and washing conditions were as recommended by the membrane manufacturer. Restriction frag
ments were labeled by nick translation (Sambrook ct al., 1989). As a size marker, the 0.24-9.5-kb RNA ladder from Gibco BRL was used. The posi
tions of the 23S (2.8-kb) and 16S (1.5-kb) rRNAs, and the estimated sizes of the sac A- and sacB- and sacR- specific transcripts (3.6 and 3.2 kb. respec
tively) are indicated. 

Fig. 4. Primer extension products of RNA transcribed from the sac A and sacB genes. Panels SACA and SACB show the primer extension products 
obtained for sacA and sacB, respectively. The relevant nt sequences are indicated and the determined isp are marked by asterisks. Lanes: A. G, C. T, 
sequencing reactions; G, primer extension using RNA from cells grown on glucose; S, primer extension using RNA from cells grown on sucrose; dash, 
RNA from cells grown on sucrose and no primer added to the primer extension reaction mixture. Primer extension (Van Rooijen and De Vos, 1990) was 
carried out using 15 ^g of total RNA, isolated from cells harvested in the logarithmic phase as described by Van Rooijen and De Vos (1990), and an 
amount of primer (5 pmol) that was in excess over the amount of specific messenger. The sequences of the oligos used are 5-TTTCCAAGGA-
GATTTTAGTGCCAGTTTGCG-3' (complementary to nt 370-399 in Fig. 2) and 5 '-CGCCAGTATCTTTTAGG-3'(nt 11-27 in Fig. 2) for sacA and 
sacB, respectively. Extension products were electrophoresed on a denaturing 6% polyacrylamide gel together with a sequencing reaction obtained using 
the same oligo primers on pNZ755 template DNA. 
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3.6-kb mRNA, which establishes the cotranscription of 
both genes. Transcription of the sacB gene was shown 
by the detection of a 3.2-kb sacA-specific transcript 
(Fig. 3). 

The tsp of the sacA and sacB genes, as determined by 
primer extension mapping (Fig. 4), appeared to be located 
in close proximity to each other (nt 155 and nt 34, respec
tively; Fig. 5). For both the sacA and the sacB gene se
quences corresponding to consensus L. lactis promoters 
(De Vos, 1987; Van der Vossen et al., 1987) were identified 
(Fig. 5). The divergent promoters are arranged back-to-
back (Beck and Warren, 1988). The intergenic region has 
an A+T-content (82%) that is considerably higher than 
that of the sacA gene (68%). It contains an extremely A+T-
rich (97%) sequence between the -35 regions of both pro
moters (nt 80-117; Fig. 5). 

Since the primer extension experiments were carried out 
with excess primer (Fig. 4), the differences in transcription 
levels of sacA and sacB between glucose- and sucrose-
grown cells should be reflected by the band intensities 
of the cDNA-products. Comparison of the cDNA-levels 
showed an increased level of transcription of the sac genes 
in cells grown on sucrose in comparison with that in 
cells grown on glucose and with the racB-specmc primer 
even no primer extension product was detected. These re
sults confirm the Northern blot experiments, which indicate 
that the sucrose operon is controlled at the transcriptional 
level. 

(c) Homology analysis of the sac A -flanking regions, in
cluding the sucrose operon promoter region 

The N-terminal part of the sacB gene product deduced 
from the nt sequence was found to show homology to the 
S. muians sucrose-specific enzyme II (Sato et al., 1989; 
56% identical aa in the first 40 residues and 59% identi
cal nt; Fig. 2). The latter protein in turn has been shown 

(Sato et al., 1989) to share homology with sucrose-
specificenzyme II from B. subtilis (Fouet et al., 1987) and 
that encoded by the S. typhimuriumjE. coli pUR400 plas-
mid (Ebner and Lengeler, 1988). Thus, it is likely that the 
sacB gene encodes the EIISUC of the L. lactis PTS. Consid
ering the homology between the L. lactis and the S. mutans 
sucrose systems, the size of the sacB gene for the EIISUC of 
L. lactis is expected to be approx. 2 kb. Recently, Thomp
son et al. (1991b) have proposed that the genes for fruc-
tokinase and EIISUC of L. lactis strain Kl are located close 
to each other. The size of the fructokinase gene, as calcu
lated from the molecular size of the sucrose-inducible fruc
tokinase purified from L. lactis strain Kl (33 kDa; Thomp
son et al., 1991b), is approx. 0.9 kb. These estimated sizes 
of the genes for EHSUC and fructokinase would fit the size 
of the mRNA transcribed from the sacB promoter (approx. 
3.2 kb) as a polycistronic messenger. Future gene probing 
and sequencing studies will have to show if indeed the sacB 
gene is followed by the gene for fructokinase. 

The sequence of 82 nt determined 3' from sacA, con
taining the start of the sacR gene, shows 70% identity to 
the sequence 3' from the 5. mutans S6PH-encoding gene 
(Sato and Kuramitsu, 1988). The N terminus deduced from 
the sacR gene shows homology (up to 50% identity in the 
first 27 aa) to the N-terminal parts of a group of regulatory 
proteins, the best known members of which are the E. coli 
GalR and Lad repressors (von Wilcken-Bergmann and 
Mailer-Hill, 1982) and the most recently described mem
bers of which are the repressor protein of the V. alginolyticus 
sucrose utilization system (Blatch and Woods, 1991), the 
CcpA protein involved in catabolite repression in B. subtilis 
(Henkin et al., 1991) and the Mall repressor protein of the 
E. coli maltose regulon (Reidl et al., 1989). These proteins 
contain an N-terminal helix-turn-helix motif, which in a 
number of regulatory proteins has been shown to be in
volved in the binding of operator DN A (Brennan and Mat-

20 40 - M -

CATAATTTTCTCCTCAAATAAAATGATTTCGCTTACAGAAGTTATTTTATCATTTTTTTGATATATGTCAAQCGTTTGCCACACTTTTTTT 
GTATTAAAAGAGGAGTTTATTTTACTAAAGCGAATGTCTTCAATAAAATAGTAAAAAAACTATATACAGTTCGCAAACGGTGTGAAAAAAA 

M ***** -4 
<- sacB -10 -35 

-35 -10 sacA s 

ATTrTTTATTTTTTTATACTTATTTATATTGAT'TTTTTTATAAAAAACGTTTATCATAAATATATATAATTTAGTAAATGAGGAAAAAAATG 
TAAAAAATAAAAAAATATGAATAAATATAACTAAAAAAATATTTTTTGCAAATAGTATTTATATATATTAAATCATTTACTCCTTTTTTTAC 

100 120 140 160 180 

Fig. 5. The nt sequence of the L. lactis sucrose operon intergenic region and comparison to the corresponding S. mutans region (Sato and Kuramitsu, 
1988). Relevant features of the L. lactis sequence are indicated: the RBS (asterisks), the promoter boxes (overlined), the tsp (black arrowheads) and the 
imperfect inverted repeat (facing arrows). Identical nt in the 5. mutans sequence are in bold face. In the comparison, gaps have been introduced for op
timal alignment and major gaps are shown (open triangle, 18-bp deletion in L. lactis sequence; underlined, 10-bp deletion in S. mutans sequence). 
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thews, 1989). Interestingly, a 16-nt sequence with an im
perfect dyad symmetry was found in the promoter region 
of the L. lactis sucrose operon (Fig. 5). This sequence is 
related to the (putative) operators recognized by the helix-
turn-helix motifs of this group of regulatory proteins (44-
69% identity to five operators and two putative operators 
compared by Rolfes and Zalkin, 1988). Similar putative 
operators were found in the upstream region of the V. 
alginolyticus scrR gene (Blatch and Woods, 1991). The find
ing of a helix-turn-helix motif in the proposed sacR gene 
product in conjunction with a suitable putative operator in 
the promoter region of the sucrose operon suggests that the 
sacR gene product is involved in the regulation of the L. 
lactis sucrose system. The simultaneous transcription of the 
sacA and sacR genes, that is induced in sucrose-grown 
cells, points toward an activator function of the sacR gene 
product, which is also compatible with the position of the 
putative operator with respect to both the sacA and the 
sacB promoter (Collado-Vides et al., 1991). Future expres
sion and binding studies are aimed at elucidating the role 
of the SacR protein in the transcriptional regulation of the 
L. lactis sucrose utilization system. 

When comparing the nt sequences of the promoter re
gions of the sucrose operons of L. lactis and S. mutatis 
(Fig. 5), regions of considerable nt similarity were found 
(overall 52% identical nt between the 180-bp L. lactis re
gion and the 193-bp S. mutans region). Strikingly, these 
regions comprised all promoter sequences and the putative 
operator. Together with the high percentages of nt sequence 
identity found thus far between the sucrose genes of both 
organisms (57-70%), this suggests that both systems have 
a common ancestor and that the sucrose genes in S. mutans 
are similarly regulated as reported here for the L. lactis 
sucrose genes. 

(d) Conclusions 
(1) A 6.6-kb Bam Hi-fragment containing a large part of 

the sac operon from the L. lactis conjugative transposon 
TnJ27<5 has been cloned in E. coli and partly sequenced. 

(2) The L. lactis sucrose operon includes two divergently 
oriented transcriptional units: one unit (3.6 kb) contains at 
least the sacA and the sacR genes, the latter probably in
volved in regulation of the system; the other unit (3.2 kb) 
includes the sacB gene, which most probably encodes the 
sucrose-transport protein EIISUC. 

(i) Transcription of the sucrose genes is induced in cells 
grown on sucrose when compared with that in glucose-
grown cells. 

(4) The two sucrose-dependent promoters have been 
mapped and are located, in a back-to-back orientation, 
within a 180-nt region that also contains a region of dyad 
symmetry to which a regulatory protein (possibly the sacR 
gene product) could bind. 
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A novel, chromosomally located conjugative transposon in Lactococcus lactis, TnJ276, was identified and 
characterized. It encodes the production of and immunity to nisin, a lanthionine-containing peptide with 
antimicrobial activity, and the capacity to utilize sucrose via a phosphotransferase system. Conjugal transfer 
of TD5276 was demonstrated from L. lactis NIZO R5 to different L. lactis strains and a recombination-deficient 
mutant. The integration of Tn527<5 into the plasmid-free strain MG1614 was analyzed by using probes based 
on the gene for the nisin precursor (nisA) and the gene for sucrose-6-phosphate hydrolase {sacA). The 
transposon inserted at various locations in the MG1614 chromosome and showed a preference for orientation-
specific insertion into a single target site (designated site 1). By using restriction mapping in combination with 
field inversion gel electrophoresis and DNA cloning of various parts of the element including its left and right 
ends, a physical map of the 70-kb To5276 was constructed, and the nisA and sacA genes were located. The 
nucleotide sequences of Ta5276 junctions in donor strain NIZO R5 and in site 1 of an MG1614-derived 
transconjugant were determined and compared with that of site 1 in recipient strain MG1614. The results show 
that the A+T-rich ends of Tn527<5 are flanked by a direct hexanucleotide repeat in both the donor and the 
transconjugant but that the element does not contain a clear inverted repeat. 

Gene transfer in gram-positive bacteria by bacterial mat
ing or conjugation is a natural process that has received 
increasing attention in recent years (8, 12, 29, 34). The 
mechanism of this process is unknown, but, like that in 
gram-negative bacteria, it requires intimate cell-to-cell con
tact, is insensitive to nucleases, and does not involve a 
transducing bacteriophage. Two kinds of conjugative ele
ments in gram-positive bacteria have been described: conju
gative transposons and conjugative plasmids. Conjugative 
transposons, which have only been found in streptococci 
and enterococci, confer resistance to antibiotics (29, 34). 
Some streptococcal transposons, such as Tn°/6 (8), can be 
conjugally transferred to other genera and have become 
important genetic tools. Conjugative plasmids have been 
identified in many genera, and most encode antibiotic resis
tances (29). 

Lactococcus lactis strains that are used in industrial dairy 
fermentations do not carry transmissable antibiotic resis
tance genes but can be used as hosts for conjugative trans
posons and plasmids (12). In addition, naturally occurring L. 
lactis strains harbor metabolic plasmids that are often con
jugative and are known to contain genes that code for the 
ability to ferment carbohydrates, production of proteinases, 
reduced sensitivity to bacteriophages, and production of and 
resistance to bacteriocins (12). Some of these plasmids can 
integrate into the chromosome of recombination-proficient 
L. lactis, as is the case with a large plasmid that encodes 
lactose metabolism and bacteriophage insensitivity and 
shows properties of an episome (47). 

For a long time, it has been assumed that a conjugative L. 
lactis plasmid encodes the production of nisin, the immunity 
to nisin, the ability to ferment sucrose via a phosphotrans
ferase system, and an unidentified mechanism conferring 
reduced sensitivity to isometric bacteriophages (16, 20, 30, 
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36). However, physical evidence for the presence of an 
actual plasmid carrying these functions has never been 
provided. Recent interest in the biosynthesis of nisin, a 
34-residue peptide containing lanthionine and dehydrated 
amino acids with antimicrobial activity (25), has resulted in 
the identification and sequence analysis of identical copies of 
the nisA gene (27) for the nisin precursor in L. lactis ATCC 
11454 (2) and in L. lactis 6F3 (27). Subsequent hybridization 
experiments with specific DNA probes indicated the pres
ence of the nisA gene on a large plasmid in L. lactis 6F3 (27) 
and on the chromosomes of L. lactis Kl (10) and L. lactis 
ATCC 11454 (48). Evidence in favor of a chromosomal 
location of the nisA gene was provided in the analysis of the 
nisin-producing and sucrose-fermenting transconjugant L. 
lactis FI5876, obtained from a mating between NCFB 894 
and MG1614 (9). In that study a junction fragment of 
chromosomal DNA and the nisA gene was identified. Fur
ther analysis of this junction fragment showed that it con
tained an additional copy, relative to the number in the 
recipient strain, of the insertion sequence 1S904, which is 
located upstream of the nisA gene (9). Part of the conflicting 
results on the genetic location of the nisA gene may be 
attributed to insensitive techniques or strain differences. As 
a consequence, no conclusive evidence exists with respect 
to the nature of the mobile genetic element that encodes 
nisin production and sucrose fermentation. It could be a 
conjugative plasmid, a conjugative episome, or a conjugative 
transposon. We characterized this mobile element in the 
starter strain L. lactis NIZO R5 and in nisin-producing and 
sucrose-utilizing L. lactis transconjugants. In this report we 
provide genetic and physical evidence for the existence of a 
novel, 70-kb conjugative transposon, designated Tn5276, 
that codes for nisin biosynthesis and sucrose fermentation 
and is capable of orientation-specific insertion at a preferen
tial site in the L. lactis chromosome and also insertion into 
secondary sites. 
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TABLE 1. L. lactis strains used in this study 

Strain 

NIZO R5 

MG1614 

MG1390 

T165.1-8 

MMS36 

MMS36S 

Relevant phenotype0 

and description 

Lac+ Suc+ Nip+ Nim+, multi-
plasmid strain 

Lac" Sue" Nip" Nim" Rif Strr; 
antibiotic-resistant, plasmid-
free derivative of NCDO 712 

Lac" Sue" Nip" Nim" Spcr; an
tibiotic resistant, plasmid-free 
derivative of NCDO 712 

Lac" Suc+ Nip+ Nim+ Rif Strr; 
plasmid-free, antibiotic-resis
tant transconjugants derived 
from matings between NIZO 
R5 (donor) and MG1614 (recip
ient) 

Lac+ Sue" Nip" Nim"; multi-
plasmid, recombination-defi
cient derivative of ML3 

Lac+ Sue - Nip" Nim - Strr; mul-
tiplasmid strain, antibiotic-re
sistant derivative of MMS36 

Reference 
or source 

14,33 

15 

17 

This study 

1 

This study 

a Abbreviations for bacterial phenotypes: Lac+ , lactose fermenting; Lac", 
lactose negative; Suc+ , sucrose fermenting; Sue", sucrose negative; Nip+, 
nisin producer; Nip", nisin nonproducer; Nim*, immune to nisin; Nim", 
sensitive to nisin; RiF, Strr, and Spcr, resistant to rifampin, streptomycin, and 
spectinomycin, respectively. 

(A preliminary account of part of this work was presented 
previously [40].) 

MATERIALS AND METHODS 

Bacterial strains, bacteriophages, and plasmids. The lacto-
coccal strains used in this study are listed in Table 1. The 
following L. lactis phages were used: <j>R5 (Netherlands 
Institute for Dairy Research collection), which is specific for 
strain NIZO R5, and the prolate phage <p763 (obtained from 
the National Collection of Dairy Organisms), which is spe
cific for strains MG1614 and MMS36S. Escherichia coli 
MC1061 (6), TGI (19), and MB406 (obtained from Pharmacia 
LKB Biotechnology AB, Uppsala, Sweden) were used as 
hosts for the pACYC184 derivative pNZ84 (52), M13mpl8 
and M13mpl9 (57), and bacteriophage XEMBL3 (13), re
spectively. 

Growth and culture conditions. E. coli strains were grown 
in L broth-based medium as described previously (44). L. 
lactis strains were routinely grown at 30°C in M17 broth 
(Difco Laboratories, Detroit, Mich.) containing 0.5% glu
cose, lactose, or sucrose. For nisin production and immunity 
assays, cells were grown in 10% reconstituted skimmed milk 
containing 1% glucose and 0.05% Casamino Acids. The 
ability to ferment sugars was tested on indicator agar based 
on Elliker broth (11) containing 0.004% bromocresol purple 
and 0.5% of the suitable sugar. When appropriate, media 
were supplemented with antibiotics in the following 
amounts: ampicillin, 50 u.g/ml; rifampin, 100 u-g/ml in liquid 
medium or 50 jig/ml in plates; streptomycin, 200 (ig/ml; 
spectinomycin, 100 ng/ml. 

Conjugal matings. Conjugal matings were carried out on 
milk agar plates as described previously (46) with a donor/ 
recipient ratio of 1:2 and conjugation times of 4 and 20 h. 
When appropriate, DNase I (20 u,g/ml) was included in the 
media. Transconjugants were initially selected for their 
capacity to ferment sucrose and for antibiotic resistance. 

The identity of putative transconjugants was confirmed by 
comparing their sensitivities to strain-specific bacterio
phages, their capacities to ferment lactose, their plasmid 
complements, and their sensitivities to mitomycin C (for 
MMS36S-derived transconjugants) with those of donor and 
recipient strains. Conjugation frequencies are expressed as 
number of transconjugant CFU per donor CFU. 

DNA manipulations. Plasmid and bacteriophage DNAs 
were isolated from E. coli cells or lysates essentially by using 
established protocols (44). Lactococcal plasmid DNA was 
isolated as described previously (55). Total DNA was iso
lated from L. lactis by the addition of 4 volumes of 50 mM 
Tris-HCl (pH 8.0)-5 mM EDTA-50 mM NaCl-0.5% sodium 
dodecyl sulfate to a protoplast suspension prepared as 
described previously (55) and then phenol-chloroform ex
traction and ethanol precipitation. DNA was digested with 
restriction enzymes (Gibco/BRL Life Technologies, Gaith-
ersburg, Md., and New England BioLabs Inc., Beverly, 
Mass.) as recommended by the manufacturers. DNA frag
ments were recovered from agarose gels with a Gene Clean 
kit (Bio 101, Inc., La Jolla, Calif.). Standard cloning proce
dures were used throughout (44). 

Agarose gel electrophoresis, DNA transfer, and hybridiza
tion. Agarose gel electrophoresis was performed as de
scribed previously (44). For field inversion gel electrophore
sis (FIGE), DNA was isolated and digested with restriction 
enzymes in agarose plugs (44), which were inserted into a 20-
by 20-cm 1% agarose gel in 0.5 x TBE (45 mM Tris-borate, 1 
mM EDTA). FIGE was carried out at 4°C with a Chromop-
ulse control unit (ICN Biomedicals, Inc., Amsterdam, The 
Netherlands) connected to a power supply. Unless indicated 
otherwise, FIGE run conditions were as follows: (i) for 
high-range separation (50 to 500 kb), 7 V/cm, a voltage ratio 
of 0.38, and pulses from 1 to 40 s, increasing at 1.5 s/h; (ii) for 
medium-range separation (10 to 50 kb), 7 V/cm, a voltage 
ratio of 0.66, constant 0.8-s pulse for 14 h and then an 
increase to 6 s at 0.8 s/h. A HindlU digest or concatemers of 
bacteriophage lambda DNA (New England BioLabs) or a 
5-kb ladder purchased from Bio-Rad Laboratories, Rich
mond, Calif., was used as size markers. 

GeneScreen Plus nylon membranes (Du Pont, NEN Re
search Products, Wilmington, Del.) were used in all DNA 
transfers; unless indicated otherwise, transfer, hybridiza
tion, washing, and deprobing conditions were as recom
mended by the manufacturer. DNA was transferred from 
FIGE gels by alkaline capillary blotting (43) after a 10-min 
UV light (302-nm wavelength) treatment. 

Design, construction, and use of DNA probes. The follow
ing DNA probes (Fig. 1) were used in the characterization of 
the Tn527<5 transposition process. 

(i) Nisin production (nisA probe). The nisA gene and 
flanking sequences were isolated from strain NIZO R5 
before the publication of the nisA gene sequence from strain 
ATCC 11454 (2) in the following way. A library of NIZO R5 
DNA, partially digested with Sau3A, was prepared in 
\EMBL3 by using a Packagene Lambda DNA packaging 
system (Pharmacia LKB) and then screened by using an 
oligonucleotide with the sequence 5'-ATGGGTTGTAATA 
TGAAAAC (nisA probe). Bacteriophage XNZ700 was found 
to carry a 20-kb insert that hybridized to the nisA probe. A 
1.7-kb 5au3A fragment from this insert was subcloned into 
M13mpl8-M13mpl9 and found to contain an iso-lS904 ele
ment (38) and a nisA gene with a sequence identical to the 
published sequences oinisA genes of other strains (2, 9, 27). 
It appeared from this analysis that the sequence of the nisA 
probe differed in one nucleotide from the corresponding nisA 
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FIG. 1. Physical and genetic map of Tn5276 in MG1614 transconjugant T165.1 and donor NIZO R5. Tn5276 is represented by a black bar, 
MG1614 DNA is represented by a thin line, and NIZO R5 DNA is indicated by a thick line. Some regions are enlarged to show more detail. 
Arrows indicate the positions and directions of iso-lS904 (the direction of the arrow indicates the direction of the putative transposase open 
reading frame [38]), nisA, and sacA. The positions of the oligonucleotide probes used in the restriction mapping (•) and the identification of 
the right end of Tn5276 in NIZO R5 (•) are indicated. Cloned fragments used for the isolation and sequencing of both Tn327<5 borders and 
of site 1 are indicated ( ). Complete restriction maps are shown for each contiguous DNA fragment, except for the Tthllll sites (t) in 
TnJ27f3. Other restriction enzyme abbreviations: A, Sad; B, Bgll; C, Seal; E, Eagl; H, Hindlll; K, Kpnl; M, BamHl; N, Neil; R, £coRI; 
S, SacII; T, Trt l l l l ; V, EcoRV. 

sequence (5'-ATGGGTTGTAACATGAAAAC). However, 
at a temperature of 45°C the nisA probe appeared to hybrid
ize specifically to m&4-containing sequences. 

(ii) Sucrose fermentation (sacA probe). The sucrose-6-
phosphate hydrolase (sacA) gene of strain NIZO R5, encod
ing a key enzyme in the sucrose phosphotransferase path
way, was cloned and sequenced (41). An oligonucleotide 
with the sequence 5'-GATCTCGTCCACTTTG (sacA probe) 
was deduced on the basis of the sacA gene sequence and 
used in hybridizations at a temperature of 46°C. 

(iii) IS904 element (1S904 probe). An insertion sequence 
was found upstream from the NIZO R5 nisA gene (38) that 
was almost identical in sequence and location to IS904 in 
strain FI5876 (9). An oligonucleotide with the sequence 
5'-AGCCGTGAATATCGAC (ISSW probe) was based on 
the nucleotide sequence of this iso-lS904 insertion sequence 
(positions 784 through 799 [38]) and used at a hybridization 
temperature of 46°C. 

(iv) Insertion site 1 (site 1 probe). The 3.2-kb HindlU insert 
of mpNZ773/l (see below) was used as a probe for the 
preferred site of insertion (designated site 1) of Tn5276 in the 
chromosome of strain MG1614. 

(v) Left and right junctions (L and R probes, respectively). 
As probes for the left and right junctions of Tn5276 in 
transconjugant T165.1 (Fig. 1), oligonucleotides with the 
sequences 5'-GTATGAACTAGGGCTG (L probe) and 5'-
AAACTGGCAAATCATGG (R probe) were used at hybrid
ization temperatures of 46 and 52°C, respectively. These 
oligonucleotides were based on the nucleotide sequence of 
MG1614 site 1 (147 nucleotides left and 85 nucleotides right 
of the site of integration, respectively). 

All oligonucleotide probes were end labeled, and the DNA 
fragment probes were labeled by nick translation with -y-32P-
and a-32P-labeled ATP as described previously (44). Oligo
nucleotides were synthesized on a Cyclone DNA synthe
sizer (MilliGen Biosearch Division, San Rafael, Calif.). 

Identification and cloning of insertion site 1 and Ta5276 
junctions, (i) Left junction in NIZO R5. A 1.4-kb EcoRV-
Hindlll fragment of XNZ700 that hybridized with the IS904 
probe was isolated and cloned into M13mpl9 digested with 
Hindi and Hindlll, resulting in mpNZ770/l. The insert 
containing the left junction of Tn5276 in NIZO R5 was then 
subcloned into M13mpl8, resulting in mpNZ770/2. 

(ii) Left junction in T16S.1. A 4.5-kb EcoRV-Sacl fragment 
of T165.1 DNA that hybridized to the nisA probe was cloned 
into M13mpl8 digested with Hindi and Sacl, resulting in 
mpNZ771 (Fig. 1). Then a 3.0-kb Scal-Sacl subfragment 
containing the Tn527<5 left border (Fig. 1) was cloned into 
M13mpl8 and M13mpl9, resulting in mpNZ772/l and 
mpNZ772/2, respectively. 

(iii) Insertion site 1 from MG1614. A 3.2-kb Hindlll 
fragment of MG1614 DNA containing integration site 1 was 
cloned in ffindlll-linearized M13mpl8, resulting in the con
structs mpNZ773/l and mpNZ773/2, with different insert 
orientations (Fig. 1). This Hindlll fragment was identified by 
hybridization to the 1.5-kb EcoRV-Scal fragment of the 
mpNZ771/l insert, containing only MG1614 DNA. 

(iv) Right junction in T165.1. A 4.6-kb Hindlll fragment of 
T165.1 DNA was identified by hybridization to the 3.2-kb 
Hindlll insert of mpNZ773/l and cloned into Mndlll-linear-
ized pNZ84, resulting in pNZ774/l. 

(v) Right junction in NIZO R5. A 1.0-kb £coRI fragment 
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from NIZO R5 DNA was identified by hybridization to the 
oligonucleotide (5'-CTAACCAAGAGACTAACC; hybrid
ization temperature, 48°C; Fig. 1) that matched the sequence 
of the right end of Tn5276. This 1.0-kb EcoRl fragment was 
cloned into £coRI-linearized M13mpl8 and M13mpl9, re
sulting in mpNZ775/l and mpNZ775/2, respectively. 

DNA sequencing. The nucleotide sequences of DNA frag
ments cloned in M13mpl8 and M13mpl9 were determined 
from both strands by the dideoxy-chain termination method 
(45) adapted for Sequenase version 2.0 (U.S. Biochemical 
Corp., Cleveland, Ohio) with either the M13 universal 
primer or synthesized primers. In pNZ773, the nucleotide 
sequences of both strands were determined by using a 
double-stranded DNA sequencing method (21) adapted for 
Sequenase version 2.0 and synthesized primers. The se
quence data were assembled and analyzed using the PC/ 
Gene program version 5.01 (Genofit, Geneva, Switzerland). 

Determination of nisin production and immunity. Nisin 
production by L. lactis strains was determined by using an 
agar-diffusion bioassay with Micrococcus flavus DSM1719 
(50). Nisin immunity was determined by following the 
growth of L. lactis strains in milk containing 0.5% glucose, 
0.1% yeast extract, and various amounts of commercial nisin 
(Koch-Light Ltd., Haverhill, Suffolk, England). 

Nucleotide sequence accession numbers. The nucleotide 
sequences of the left and right junctions of Tn5276 in L. 
lactis T165.1 will appear in the EMBL and GenBank nucle
otide sequence data bases under accession numbers M84769 
and M84770, respectively. 

RESULTS 

Transfer of the conjugative nisin-sucrose element of NIZO 
R5. The capacity to ferment sucrose could be transferred in 
DNase-insensitive matings of L. lactis NIZO R5 and the 
plasmid-free and prophage-free strain L. lactis MG1614 (15) 
with frequencies that varied from 10~8 (20-h matings) to 10 -6 

(4-h matings) CFU per CFU of donor. Transconjugants 
obtained from different matings produced nisin, showed 
immunity to nisin, and were sensitive to recipient-specific 
phage <)>763 and resistant to donor-specific phage <)>R5. In 
addition, transconjugants were able to transfer the ability to 
ferment sucrose and produce nisin with similar frequencies 
to the differently marked recipient strain MG1390 (17) (data 
not shown). 

Transfer of the capacity to ferment sucrose was also 
studied in matings of NIZO R5 and a streptomycin-resistant 
derivative (MMS36S) of the recombination-deficient strain 
L. lactis MMS36, which is unable to mediate homologous 
recombination (more than 10" reduction of chromosomal 
transduction [1]). Sucrose-proficient and nisin-producing 
MMS36S transconjugants, which all showed high sensitivity 
to mitomycin C (42), were obtained with a frequency of 
transfer (3 x 10~9 CFU per donor CFU) that was only 
100-fold lower than the transfer frequency to MG1614 in a 
simultaneous experiment. Since rec-independent gene trans
fer is known to be reduced similarly in strain MMS36 (1), 
these data indicate that transfer of the conjugative sucrose-
nisin element is independent of homologous recombination. 

The nisin-sucrose element is a conjugative transposon, 
Tn527tf. The fates of the nis and sac genes for nisin biosyn
thesis and the sucrose phosphotransferase system, respec
tively, were followed in matings of NIZO R5 and MG1614. 
Since no plasmid DNA could be detected (data not shown), 
we isolated total DNA from overnight cultures of colony-
purified MG1614 transconjugants derived from a single mat-
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FIG. 2. Presence of nisA- and sac4-specific sequences in L. 

lactis transconjugants. Equal amounts of total DNA from six 
transconjugants from the mating between NIZO R5 and MG1614 
and from strain MG1614 were digested with EcoRI and separated by 
agarose gel electrophoresis. A Southern blot was hybridized first to 
the nisA probe (A) and, after deprobing, to the sacA probe (B). The 
lanes in panels A and B contain DNA from the following strains: 1, 
T165.1; 2, T165.2; 3, T165.4; 4, T165.5; 5, T165.6; 6, T165.8; 7, 
MG1614. The estimated sizes of hybridizing fragments are indicated 
in kilobases. The intensity of the bands in panel B reflects the 
number of sacA copies per chromosome. 

ing. Hybridization analysis (Fig. 2) indicated that both nisA-
and 5flo4-specific sequences were present in the DNA of the 
transconjugants but not in the recipient MG1614. These 
results also showed that several transconjugants (5 out of 12 
tested) had acquired two or three copies of both nisA and 
sacA. This was evident from the additional bands obtained 
with the nisA probe (Fig. 2A) and the intensity of the 
hybridizing bands obtained with the sacA probe (Fig. 2B). 
The analysis was repeated with transconjugants obtained 
from independent matings of strains NIZO R5 and MG1614, 
and similar hybridization patterns were obtained (data not 
shown). The presence of an identical number of copies of 
nisA and sacA in all transconjugants demonstrates that nisin 
production and sucrose fermentation are linked at the gene 
level. 

Since the transconjugants with multiple copies of the 
nisin-sucrose element contain £coRI fragments of a different 
size that hybridize to the nisA probe, the nisA gene must be 
close to one border of the element. This border has been 
designated the left border (Fig. 1). Since five different £coRI 
fragments hybridized to the nisA probe in the transconju
gants (Fig. 2A), the nisin-sucrose element is able to insert 
into at least five sites in the MG1614 genome. These results 
and the observation that nisin-sucrose transfer is nuclease 
insensitive and independent on homologous recombination 
(see above) led us to conclude that the nisin-sucrose element 
of NIZO R5 is a conjugative transposon (8) that has been 
designated Tn5276 (Fig. 1; registered with the Plasmid 
Reference Centre Registry [32]). 

Orientation-specific insertion of Tn5276 into a preferred site 
(site 1) in the MG1614 chromosome. All MG1614-derived 
transconjugants containing a single or multiple copies of the 
nisin-sucrose element share the 9.5-kb EcoRI fragment that 
hybridizes to the nisA probe (Fig. 2A). Similarly, digestion 
of DNA of these transconjugants with several other restric
tion enzymes always showed a single, unique fragment that 
hybridized to the nisA probe (data not shown). These results 
indicate a preferred site of insertion (designated site 1) for 
Tn5276 in the genome of L. lactis MG1614 and that insertion 
into this site is orientation specific. 

Tn5276 is a 70-kb element located in the chromosomes of the 
donor and transconjugants. To further analyze the location 
and the size of Tn5276, hybridizations to large DNA frag
ments were performed. DNA from the donor strain NIZO 
R5, the recipient strain MG1614, and transconjugants con-
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FIG. 3. Determination of size and location of the nisin-sucrose 

element. Undigested DNA from NIZO R5 (A, lane 1) and Smal 
digests (A, lane 2; B through D) and Eagl digests (E through G) of 
DNA from strains NIZO R5 (lanes 2), T165.5 (lanes 3), T165.6 (lanes 
4), and MG1614 (lanes 5) were separated by FIGE (the high-range 
regime was used except for panel A DNA, which was separated by 
using pulses from 1 to 60 s, increasing at 2.5 s/h). Southern blots 
were hybridized to the nisA probe (A, B, E), the sacA probe (C, F), 
and the site 1 probe (D, G). The estimated sizes of the hybridizing 
fragments are indicated in kilobases. 

taining a single copy (T165.5) or two copies (T165.6) of 
Tn5276 was digested with the infrequently cutting restriction 
enzymes Smal and Eagl. The resulting DNA fragments were 
separated by FIGE and hybridized to the Tn5276-specific 
probes and a site 1 probe, which was specific for the 
preferred site of integration. The results (Fig. 3) show that 
donor and transconjugant strains contain large Smal frag
ments that hybridize to both the nisA and sacA probes. The 
site 1 probe appeared to hybridize to the same Eagl and 
Smal fragments as the nisA and sacA probes in both 
transconjugants. The sizes of these fragments were invari
ably larger than those of the fragments of MG1614 DNA 
hybridizing to the site 1 probe. These results demonstrate 
that the nisin-sucrose element has been inserted into the 
chromosome of the transconjugants. Furthermore, the DNA 
of NIZO R5 that hybridizes to the nisA probe (and the sacA 
probe; data not shown) does not enter the gel without 
digestion and generates a 700-kb fragment after digestion 
with Smal (Fig. 3A, lanes 1 and 2), indicating that Tn527<5 is 
present as an integral part of the chromosomal DNA in this 
donor strain. 

The 12-kb Eagl fragment and the 200-kb Smal fragment of 
MG1614 are increased to 80 and 270 kb, respectively, after a 
single integration of Tn5276 as in T165.5 (Fig. 3). Since 
T165.5 can conjugally transfer Tn5276 in a second mating to 
MG1390 (17; data not shown), it is very likely that it contains 
a complete copy of the transposon. Therefore, Tn527<5 has a 
size of approximately 70 kb. 

In the digests of the DNA from transconjugant T165.6, 
containing two Tn5276 copies, the hybridizing Eagl and 
Smal fragments are another 70 kb larger, confirming the 
estimated element size. The hybridizing Eagl fragment in the 
MG1614 DNA is only 12 kb in size, so both Tn5276 copies 
have inserted in close proximity to each other in the chro
mosome of transconjugant T165.6. 

Physical and genetic map of Ta5276. A physical map of 
Tn5276 and its flanking regions after insertion into site 1 of 
MG1614 was constructed (Fig. 1) based on hybridizations of 
site 1- and element-specific probes to restriction fragments 
separated by normal gel electrophoresis or FIGE (medium-
or high-range separations) and subcloning and mapping of 
the left and right ends of the element. By using the restriction 
sites deduced from their nucleotide sequences, the orienta
tion and location of the nisA gene, the iso-lS904 element 
(38), and the sacA gene (41) could be determined (Fig. 1). By 
using the IS904 probe, it was found that Tn5276 in TS165.5 
contains only a single copy of iso-lS904. Also, in other 
MG1614 transconjugants the number of additional IS904 
copies was equal to that of Tn5276 (data not shown). The 
MG1614 chromosome contains at least seven copies of 
elements hybridizing to the IS904 probe (not shown), but 
there is no copy of IS904 in the 12-kb Eagl fragment that 
contains the hot spot site 1 and at least one secondary site 
(Fig. 3). 

Cloning and sequence analysis of the junction regions of 
Tn527<5 in the donor and the transconjugant. The left and 
right junction regions of Tn5276 inserted into site 1 of 
MG1614 (in transconjugant T165.1) were cloned, and the 
nucleotide sequences of relevant parts of the resulting con
structs, mpNZ771 and pNZ774 (Fig. 1), were determined. 
The results (Fig. 4A) show that Tn527<5 contains A+T-rich 
termini (76% A + T in the first 50 bp) without obvious 
inverted repeats. There is a perfect 11-bp repeat in the right 
end of Tn5276. There is a similar but less perfect repeat in 
the left end. The results also show that the left terminus is 
separated from the left end of the iso-lS904 copy by a region 
of 249 bp, the sequence of which differs considerably from 
that preceding the IS904 copy in FI5876 (9) (Fig. 4). This 
excludes the possible involvement of the iso-lS904 copy in 
the transposition of Tn5276. 

The nucleotide sequences of the Tn5276 junctions in site 1 
of transconjugant T165.1 were compared with those in strain 
NIZO R5 and with the sequence of site 1 from strain MG1614 
(Fig. 4B). In both the donor and the transconjugant, Tn5276 
is flanked by a direct repeat of the hexanucleotide with the 
sequence TTTTTG, which is present once in the integration 
site 1. In NIZO R5 this hexanucleotide is part of a larger, 
25-bp perfect direct repeat. Apart from this hexanucleotide 
sequence, there is no apparent homology between the ends 
of Tn5276 and target site 1. 

DISCUSSION 

In this report we describe a physical and genetic charac
terization of the L. lactis conjugative nisin-sucrose element 
from strain NIZO R5, a known nisin producer (14, 33), and 
its insertion into the chromosome of strain MG1614. The 
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TATGGAACGAGTTGGTCATAGAGATGAGTCAATCACTCTGAGGATTTATTCTCATATAAGTGGTACAATTAAAAATGAAATTAGTCAAAAATTGAACCAA 

150 200 
ATTAATCTCTAAAATAACTAACCAAGAGACTAACCAAGAATTAACCAAAGCAAAAAGAATCAT6AGGAAGATTACGGAATATCAATTTTTGAAATTCTTC 

250 . . . . 300 
TAAAAACTATTGTTAGAGACTTTTGAGGAAGAATAAGGAAGTATAAATAAAAATATAATGGAAATTTTTGCTTTCCATACTTTTAGGATTCACTTCTTTC 
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T 1 6 5 . 1 AATAAGCCTTGTGTT TTTTTG ATACACATATAAAGTGCGTTTTA TAAAAATATAATGGAAA TTTTTG CTTTCCATACTTTTAGGATTCACT 

HG1614 AATAAGCCTTGTGTT TTTTTG CTTTCCATACTTTTAGGATTCACT 

FIG. 4. Nucleotide sequences of Tn.5276 termini and junction regions in the donor and transconjugants in comparison with that of target 
site 1. (A) Nucleotide sequence of the left and right termini of Tn5276 and the junction regions in T165.1. Tn5276-specific sequences are 
underlined. The direct repeated hexanucleotide sequence TTTTTG is underlined twice. The perfect and imperfect 17-bp direct repeats present 
in the right and left ends, respectively, are indicated by arrows. The first 22 nucleotides of iso-lS904 (38) are indicated (boldface type). The 
nucleotide differences from the corresponding region in L. lactis strain FI5876 (9) (compared from position 79 in the left terminus) are 
indicated below the sequence ( • , absent in FI5876). (B) Comparison of Tn5276 junction regions in NIZO R5 and T165.1 with that of target 
site 1. Tn5276-specific sequences are underlined. The direct repeated hexanucleotide sequence TTTTTG in NIZO R5 and T165.1 is underlined 
twice. The direct repeat spanning the Tn5276 junctions in NIZO R5 is indicated by arrows. Sequence identity between the regions flanking 
Tn5276 in strains NIZO R5 and T165.1 (not including the TTTTTG sequences) is indicated ( J ). 

mode of transfer of the element from NIZO R5 appears 
analogous to that of nisin-sucrose elements in other L. lactis 
strains that are also insensitive to DNase (20), do not involve 
a transducing phage (20), and are not dependent on the 
host-mediated homologous recombination system (46). We 
show here that the nisin-sucrose element from L. lactis 
NIZO R5 is a 70-kb transposon, designated Tn5276, that 
conforms to the definition of a conjugative transposon; i.e., 
a specific DNA segment that can repeatedly insert into a few 
or many sites in a genome, encodes additional functions 
unrelated to insertion function, and has the capacity to 
promote its own transfer in the absence of any plasmid or 
bacteriophage (4, 8). A nisin-sucrose element, Tn5301, 
showing characteristics similar to those of Tn5276 has re
cently been described in L. lactis FI5876 (9) after submission 
of this manuscript. 

The novel conjugative transposon Tn5276 is chromoso-
mally located in both the donor NIZO R5 and its transcon
jugants. A physical map of the 70-kb TnJ276 was con
structed, and the genes for nisin biosynthesis and sucrose 
utilization via a phosphotransferase system were located 
(Fig. 1). Insertion of TnJ276 into at least five different 
chromosomal sites was found (Fig. 2), but there appears to 
be a preferential site for orientation-specific insertion of 
Tn5276 into the chromosome of MG1614. A similar prefer
ence of Tn5276 to insert in an orientation-specific way into a 
hot spot was found in at least one other, unrelated L. lactis 
strain (42). Preferential strain-dependent integration at spe
cific sites has also been found for other transposons. Tn554 
has a strong preference for orientation-specific insertion at a 
single site in the Staphylococcus aureus chromosome (des
ignated atfTn554 [28]). In addition, the conjugative Tn979 
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inserts into a single site in the chromosome of L. lactis 
MG1363Sm, which is related to MG1614 (22), whereas it 
inserts at different sites in the chromosome of L. lactis 
18-16S (23). Finally, Tn916 and Tn/545 integrate into sites 
showing some resemblance to the ends of these conjugative 
transposons, and two consensus sequences for integration 
sites have been deduced for these transposons (3, 5, 51). 
Similarly, we found that the regions flanking Tn5276 in the 
donor and transconjugants share sequence identity (19 out of 
35 bp are identical; Fig. 4B). 

In various cases multiple (up to three) copies of Tn5276 
were inserted into the chromosome of colony-purified 
MG1614 transconjugants (Fig. 2 and 3). The presence of 
more than one transposon copy in the recipient genome was 
also reported after conjugal transfer of Tn916 (8, 18) and for 
Tnl545 (56). The occurrence of multiple integration may be 
explained by transposition during replication. Alternatively, 
those insertions may be a consequence of multiple, consec
utive conjugation events. If this is the case, Tn5276, like 
Tn916 (37), should not show transposition immunity and the 
efficiency of those multiple conjugation events should be 
high. 

Tn5276 is a large conjugative transposon of approximately 
70 kb. Conjugative transposons of a similar size have been 
found in various streptococci and include the 67-kb Tn3951 
from Streptococcus agalactiae (26), the 65-kb Tn5253 from 
Streptococcus pneumoniae (53, 54), and Streptococcus pyo
genes Tn3701, which is larger than 50 kb (31). The large size 
of Tn5276 is compatible with the variety of functions it 
should encode; i.e., transposition, conjugal transfer, nisin 
biosynthesis (including posttranslational modification of the 
precursor), nisin immunity, sucrose fermentation via a phos
photransferase system, and reduced phage sensitivity. It was 
reported (10) that the production of N5-(carboxyethyl)orni-
thine synthase is also encoded by the nisin-sucrose element. 
However, several known nisin-producing L. lactis strains 
were found to produce no N5-(carboxyethy)ornithine syn
thase (49), indicating that not all nisin-sucrose transposons 
encode production of this enzyme. Heterogeneity within the 
group of nisin-sucrose transposons was recently shown by 
analyzing the architecture of nisin-sucrose elements of sev
eral wild-type L. lactis strains that differed from Tn5276~ in 
the number and orientation of iso-lS904 copies (39). 

The cloning and sequence analysis of the junction frag
ments of Tn5276 in the donor and recipients (Fig. 1 and 4) 
allows for its comparison with other known conjugative 
transposons that have been analyzed in detail, i.e., Tn°/6 (7) 
and Tnl545 (3). Similar to the ends of those transposons, the 
ends of Tn5276 are highly A + T rich and contain some direct 
repeats, one of which (in donor NIZO R5) spans the junction 
regions, as also has been found for some Tn976 insertions 
(7). However, in contrast to the termini of Tn916 and 
Tn/545, which contain homologous, imperfect inverted re
peats, the termini of Tn5276 are asymmetric and do not show 
significant inverted repeats. The absence of inverted repeats 
is unusual among mobile DNA elements but has also been 
found in Tn554 (35). Moreover, Tn5276 is flanked by a direct 
repeat of the hexanucleotide 111 TIG in both the donor and 
the transconjugants. No such repeats flank Tn°/6 or Tn/545, 
which are known to generate 6- or 7-bp nonidentical coupling 
sequences as a consequence of their unique excision-inser
tion mechanism (5, 51). The present sequence data do not 
allow us to conclude whether one (and, if so, which) of the 
TTTTTG copies is part of Tn5276 or whether a target site 
duplication has been generated upon the transposition pro
cess. However, by analyzing a circular intermediate of 

Tn5276, we very recently found that one of the TTTTTG 
sequences is part of Tn5276 and not a target repeat (42). 
Further studies that are presently being performed focus on 
the mechanism of Tn5276 excision and insertion and the 
genes involved in this process. 
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Abstract The 70-kb transposon Tn5276, originally detected in Lactococcus lactis NIZO R5 and 

carrying the genes for nisin production and sucrose fermentation, can be conjugally transferred to 

other L. lactis strains. Sequence analysis and complementation studies showed that the right end of 

Tn527<5 contains two genes, designated xis and int, that are involved in excision. The deduced 379 

amino acids int gene product shows high (up to 50%) similarity to various integrases, including that 

of the Tn976-related conjugative transposons. The putative xis gene product, like almost all known 

excisionase (Xis) proteins, is a small (68 residues), basic protein. Expression of the Tn5276" int gene 

resulted in the excision of the ends of Tn5276 in Escherichia coli, while expression of the Tn5276 

xis gene strongly stimulated this activity. The Tn5276 ends appeared to be circularized in the excision 

process and the excision site was reconstituted. 

INTRODUCTION 

The transposon Tn5276, originally detected in the chromosome of Lactococcus lactis NIZO R5 

(35, 36), can be conjugally transferred to other L. lactis strains. This 70-kb element carries the 

genetic determinants for a number of seemingly unrelated traits, including production of the 

lantibiotic nisin, sucrose fermenting ability and reduced bacteriophage sensitivity (39). It has been 

shown to integrate in one orientation into a preferred site (designated site 1) on the chromosome 

of L. lactis strain MG1614, a derivative of the plasmid-free strain MG1363, but also into several 

secondary sites (36). The ends of Tn527<5 are asymmetric and do not show any homology to the 

ends of known transposons. No target site duplication was found upon insertion of Tn527f5 (34,36). 

A similar element, Tn5507, has been described in a transconjugant derived from a mating between 

the wild-type nisin-producer L. lactis NCFB 894 and L. lactis MG1614 (19, 24). 

Before the identification of the L. lactis transposons Tn5276 and Tn5301, conjugative 

transposons were known as carriers of antibiotic resistance genes and they were originally identified 

in clinical isolates of several groups of streptococci (28). The 16.4-kb Tn916 and the 25.3-kb 

7nl545 were the first conjugative transposons to be described and they are the best-studied 

representatives of this group (for reviews see references 15 and 42). These two related elements 

possess nearly identical ends, which contain a terminal imperfect inverted repeat sequence (10,16). 

Unlike most transposons, they do not generate a target duplication upon insertion. The transposition 

system of these transposons is related to the excision-insertion system of lambdoid phages (12, 32, 

33). Excision and integration occur by reciprocal site-specific recombination between 
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nonhomologous DNA sequences of 5 or 6 bp (Tn976; 12, 42) or 6 or 7 bp (Tnl545; 32, 33). 

Excision results in the appearance of a free, nonreplicative, covalently closed circular (ccc) 

molecule, which may be the intermediate that is transferred during conjugation (43). After conjugal 

transfer to the recipient, the transposon inserts into a new target. Excision and integration of 

Tn/545 have been shown to be mediated by the transposon-encoded integrase (Int) protein, which 

is stimulated by the excisionase (Xis) protein in excision (32,33). The xis and int genes are located 

near the right end of Tnl545 (32). Tn9/6 contains essentially identical genes in the same location, 

but in Tn916 this has been termed the left end (17). The excisive and integrative activities of 

Tn916 Int have been shown to be required for conjugative transposition of Tn9i6 (44). Although 

it was at first reported that for conjugative transposition an active int gene was required in both 

donor and recipient (44), it has recently been shown that a functional int gene is required only in 

the donor (6). From these results it was concluded that Tn916 Int is not required for insertion of 

Tn916 into the recipient genome or that the Int protein is transferred from the donor to the recipient 

during conjugation. There are indications that at least one host factor is involved in excision of 

Tn976\ that is absent in L. lactis MG1363 (5, 7). 

Here we report the sequencing of two genes, designated xis and int, that are located near the 

right end of Tn527d. Expression of these genes in Escherichia coli resulted in the excision of the 

ends of TnJ276~ from a plasmid vector. A rejoined excision site and a circular molecule consisting 

of the excised 1x6276 termini were formed. The experiments also showed that expression of the 

int gene alone can promote excision of the 1x6276 ends in E. coli, but that this activity is strongly 

stimulated by simultaneous expression of the xis gene. The deduced amino acid sequence of the 

int gene shows overall similarity to the Int protein encoded by Tnl545 and to other proteins 

belonging to the group of site-specific recombinases. 

MATERIALS AND METHODS 

Strains, plasmids and growth conditions. The following E. coli hosts were used to propagate 

plasmids and bacteriophages: strain MC1061 (13) for pNZ774 (36), strain TGI (22) for M13mpl8 

and mpl9 (50), and strain HB101 (4) for all other plasmids. Growth conditions were as described 

elsewhere (41). Antibiotics were added at the following concentrations: ampicillin, 50 ug/ul; 

chloramphenicol, 35 ug/ul. 
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DNA techniques. Standard procedures were used for DNA isolation and manipulations (41), 

agarose gel electrophoresis (41), and Southern blot analysis (36). 

Hybridization probe. As probe for the left end of Tn5276 an oligonucleotide with the 

sequences 5'-GCTGTATAGTTTTGCTTTGG, designated Tn527d-L and complementary to position 

107-126 in the nucleotide sequence of the left end of Tn5276 (36), was used at a hybridization 

temperature of 52°C. 

Nucleotide sequencing. Subclones of pNZ774 in M13mpl8 and mpl9 were sequenced by the 

dideoxy chain termination method adapted for Sequenase version 2.0 (U.S. Biochemical Corp., 

Cleveland, Ohio) with either the M13 universal primer or synthesized primers. The sequence data 

were assembled and analyzed using the PC/Gene program version 6.6 (Genofit, Geneva, 

Switzerland). 

Plasmid constructions. The following plasmids were constructed to study the action of the xis 

and int gene products in E. coli (see Fig. 1). 

(i) Construction of pNZ780. A 1.7-kb Scal-HindlU fragment containing the left junction of 

Tn5276 in site 1 (0.6 kb of site 1 and 1.1 kb of the Tn5276 left end) was isolated from L. lactis 

T165.6 (36) and cloned into Smal- and //iwdlll-digested M13mpl9, resulting in mpNZ776. The 

insert of mpNZ776 was isolated by digestion with Hindlll, followed by filling in of the 3'-recessed 

ends with Large Fragment of DNA Polymerase I, deproteinization, and digestion with EcoRl. The 

right end of Tn527<5 was isolated as a 0.9-kb />vMlI-//i«din fragment from mpNZ775/2 (36), which 

contains the right junction of Tn5276 from L. lactis NIZO R5 cloned as a 1.0-kb EcoRI fragment 

in EcoRI-linearized M13mpl9 (0.9 kb of the Tn5276 right end and 0.1 kb of NIZO R5 DNA). The 

1.7-kb £coRI-blunt fragment (containing 1.1 kb of the left end) and the 0.9-kb />vMlI-//j>idIII 

fragment (containing 0.8 kb of the right end) were ligated into pUC19 (50) digested with EcoRI 

and Hindm (Fig. 1). 

(ii) Construction of pNZ781 and pNZ782. A 1.9-kb BipHI-fragment containing the xis and 

int genes (Fig. 1) was isolated from pNZ774 (36) and ligated into BspHI-digested pACYC184 (14). 

One of the resulting plasmids, designated pNZ781, contains the xis and int genes in a clockwise 

orientation with respect to the promoter of the TcR gene, while in the plasmid designated pNZ782 

these genes are in a counterclockwise orientation. 

(iii) Construction of pNZ783 and pNZ784. The xis gene was inactivated in pNZ781 by 

digestion with A/7IH followed by filling-in of 3'-recessed ends with Large Fragment of DNA 
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Polymerase I and religation, resulting in pNZ783. The int gene was inactivated in pNZ781 by 

partial digestion with EcdSl followed by filling in of recessed ends with Large Fragment of DNA 

Polymerase I and religation, resulting in pNZ784. 

Database searches. The EMBL (release 31.0), Swiss-Prot (release 22.0), and NBRF/PIR 

(release 27.0) databases were searched using the program FASTA (31) through the facilities of the 

CAOS/CAMM Center, Nijmegen, The Netherlands. 

RESULTS 

The nucleotide sequence of the xis and int genes located in the right end region of Tn5276. 

The homologous xis and int genes of the conjugative transposons Tn9id and Tn/545 are located 

at a comparable position near one of the ends (17, 32). When the recently reported nucleotide 

sequence of the right end of Tn5276 (36) was analyzed for the presence of open reading frames 

Tn5276 
KN 

nls 

ISlflSg nlsA 

Ikb 

xls/int 

.lkb 

xis int 

FIG. 1. Construction of pNZ780 consisting of pUC19 (50) containing the left (black) and right ends of 
lx\5276 (map was taken from 36). The solid bars below Tn5276 indicate the positions of the nisin (HIS; 36, 
39), sucrose (sac; 37) and transposition (xis/inl) gene clusters. Arrows indicate the positions and the directions 
of the putative transposase of the iso-lS904 element, IS1068 (34, 35), nisA (36), and sacA (37). The location 
of the Tn5276-L probe is indicated by the dot. Restriction enzyme abbreviations: B, BspYK; C, Seal; H, 
Windin; K, Kpnl; N, Neil; P, Pstl; R, EcoRl; S, Sstll; U, Pvull. 
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(ORFs), we found a 1.9-kb BspHI-fragment to contain the 3' end of an ORF that stopped 152 

nucleotides upstream from the hexanucleotide TTTTTG located at the terminus. The amino acid 

sequence deduced from this ORF contained a stretch of residues that fitted the consensus sequence 

of domain II of the integrase family of site-specific recombinases (2). Therefore, the complete 

nucleotide sequence of the 1.9-kb Bs/jHI-fragment was determined (Fig. 2) and found to contain 

two complete genes, designated xis and int (see below). Both genes start with ATG initiation 

codons that are preceded by potential lactococcal ribosome binding sites (18). A promoter-like 

sequence (18, 49) was found upstream from the xis gene and is located in the 3' part of another 

ORF, designated ORF1 (Fig. 2). The amino acid sequences deduced from ORF1 and the xis and 

int genes are shown in Fig. 2. The xis gene could encode a polypeptide of 68 amino acids with a 

predicted molecular weight of 8,292 (18, 49). The int gene could encode a polypeptide of 379 

amino acids with a predicted molecular weight of 44,621. An alternative GTG start codon for the 

int gene is located at position 648-650, but it is not preceded by a consensus lactococcal ribosome 

binding site. The int gene is not followed by an inverted repeat that could serve as a terminator of 

transcription. The region between the xis and int genes is almost identical in size (85 bp) to the 

corresponding 84-bp regions of Tn9/<5 and Tnl545, which have identical sequences (17, 32). 

Both the xis and the int gene are required for efficient excision of Tn5276 ends in E. coli. 

To assess the functionality of the Tn5276 xis and int genes, we determined whether their expression 

would result in excision of the ends of Tn5276 in E. coli. For this purpose the 1.29-kb Bsp¥H-

fragment containing both genes was cloned in two orientations in the low-copy-plasmid 

pACYC184, resulting in plasmid pNZ781 and pNZ782. Each of these plasmids was introduced into 

the recA E. coli strain HB101 harboring pNZ780, a compatible plasmid containing the left and right 

ends of Tn5276 (Fig. 1). Excision promoted by members of the integrase family is a strand 

exchange process in which the excision site is resealed and the excised DNA is circularized (40). 

Since pNZ780 contains 1.1 kb of the left end of Tn527<$ and 0.8 kb of its right end, Int-promoted 

excision of the termini of Tn5276 from pNZ780 would generate a 3.4-kb derivative of pNZ780 

lacking the Tn5276 ends and a 1.9-kb non-replicative covalently closed circular form of the Tn527<5 

ends. Analysis of total plasmid DNA indicated that all of the transformants (12 from each 

transformation) contained the expected 3.4-kb plasmid and low amounts of a 1.9-kb plasmid 

consisting of the Tn5276 ends, in addition to a low amount of intact pNZ780 (data not shown). 

Restriction enzyme digestions and hybridization analysis of the multiplasmid DNA from repre-
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BspHI . . . . . . . . . . 
TCAIOATTTrGAAAACTTTrATGGTTATAAAGTAGGCGAGTATTCATCAATTCAAGAACTTAATGAGTATGCGGAAAAATTGOAGGCAATTTCTGACATA 100 

ortl - » H D F E N F Y G Y K V G B Y S S I Q E L N E Y A E K L E A I S D I 

GATC ATTTAAAAGATTITCTTGAAATTTATAGCATTGATGATATTATCGGCAATAAAGATGACTTGGATTTTGTGGAAGCCGAAAATGATGAAGATTTGG 200 
D H L K D F L E I Y S I D D I I G N K D D L D F V E A E N D E D L 

CACAAGAATTAATTGAACAAATGGGCGGTTTAGAAGTTTTAAGTGTAGAAACGTTAC AAAGGTATTTTAACTTTGGTGCTTACGGTCGTGATTTAGCGAT 3 00 
A Q E L I E Q M G G L E V L S V E T L Q R Y F N F G A Y G R D L A I 

TGGTGATTATTCAAAAACAAGTCATGGATATATTAGAGATATTTAAAGTTTAAGTAAAGAGCAAGAAAAATCTTGCTCTATTTTTTGTTGGAGGAAAAAA 400 
G D Y S K T S H G Y I R D I -

ATGGAAGAAAATTATAAAGATAAACGGGGAATTTCAGAATTATTTGATGTACCTATAAAAACACTTAATAATGATTTAACTGAAATGAGACGGACTGAAT 500 
xis - » M E E N Y K D K R G I S E L F D V P I K T L N N D L T E M R R T E 33 

Tthllll • Afllll . . . . . . . 
TTAATGTTTATATATTACGACCAAOTCATAAACOTaTTTATATAAATGTCCAGGGTTATAAATCTTTTCTTGAATATAAGCAAAAAATAAGAGAAAGTAC 600 
F N V Y I L R P S H K R V Y I N V Q G Y K S F L E Y K Q K I R E S T 67 

******** 
AATTTAGAAAAAAGATAAAAGTAATATGC AG ATATG ATATAATATAAGTGCTGTATAGCTTTCTTTTATCTTTGGTAAAAGGAGG AAATATGTTTTATAA 700 

I - int -» M F Y K 4 

GC AACTTGATAGTGGAAAATATAG ATACTTTGAAAAATACTTTG ATGAAAAG AG AAATAAATGGCG AC AAGTAACGGTCACATTAAAATC AAAATC AAGG 800 
Q L D S G K Y R Y F E K Y F D E K R N K W R Q V T V T L K S K S R 37 

GTTGCTCAATCAGAAGCTAAAAATAGATTAGCAAGAAAAATAGAGCAATCAAAAAAAGTACCAACTGCTAACGAGATTCAGGAACAAATCGTTCAAAATA 900 
V A Q S E A K N R L A R K I E Q S K K V P T A N E I Q E Q I V Q N 70 

AGACGGTACAAGAAATTrATGAAGAATGGGTTGTAATTAGAAAACAAGATGTTAAGCCAGCAAGTTTTGTAGCGGAGCAAATTTCTTTAAAAGGATTTAT 1000 
K T V Q E I Y E E W V V I R K Q D V K P A S F V A E Q I S L K G F I 1 0 4 

EcoRI 
CGAAAAATTTTCAAAATATAAAGTCTCAGAAGTGACGACCGCAGATATACAAAGTTATTTAATGGAATTAGATATTGCOAATTCAACAAGAAAAAATCGC 1100 

E K F S K Y K V S E V T T A D I Q S Y L M E L D I A N S T R K N R 137 

. pvull . . . . 
AGAATTTACATTAGAATTirGTrCAAGTATGCTGAAMCATCGGGTATATTGATTCAAATCCAOOTOACAAAGTAGTATTACCTAAAGTAAGGTrGGAAA 1200 

R I Y I R I L F K Y A E N I G Y I D S N P A D K V V L P K V R L E 170 

TTGAAAC ATTAG AACG AGC AAATGAAAAATTTTTAAGTAAAG AAGAAATGAGTTCTGTTTTGATATTTTGC AAATCTTATAAAAAAAAT ATAAGATAC AC 1300 
I E T L E R A N E K F L S K E E M S S V L I F C K S Y K K N I R Y T 204 

TTTAGCTATGGAATTTATTTTCCTAACAGGATGTAGATTCGGTGAATTTGCTTCTATTCGTTATCAAGATGTTGATTTCAAAAATAGGTTACTAAGAATT 1400 

N R L L R I 2 3 7 L A M E F I F L T G C R F G E F A S I R Y Q D V D F K 

GACCACACTTTAGAATATCGTGTTGCAAAATATGATGATCGAGTTATTCAAAC ACCTAAAACGGTAGGTTCGATTCGTACAATTAGTTTAAGTAATCGTT 1 5 0 0 
D H T L E Y R V A K Y D D R V I Q T P K T V G S I R T I S L S N R 2 7 0 

GCTTGGAAATTATTGATTATTTCC AAAAAAACTGTTTAGATGATAAGTTTGTTTTTGTAAATGCGGTTGGTGGAATTTTC AGACAACCTGTATTTTATAA 1 6 0 0 
C L E I I D Y F Q K N C L D D K F V F V N A V G G I F R Q P V F Y K 3 0 4 

GTTTATTrGTGATAATTGTCAAAAAGTATTAGGAAATGAAAGAAAATACGGTATCCATTTATTGAGACATTCTCATGTATCATTACTTGTGGAACTTGGA 1 7 0 0 

F I C D N C Q K V L G N E R K Y G I H L L R H S H V S L L V E L G 3 3 7 

GTACCAATTAAAGCAATTATGGAACGAGTTGGTC ATAGAGATGAGTCAATCACTCTGAGGATTTATTCTCATATAAGTGGTACAATTAAAAATGAAATTA 1 8 0 0 

I S G T I K N E I 3 7 0 V P I K A I M E R V G H R D E S I T L R I Y S H 

B s p H I 
GTCAAAAATTGAACCAAATTAATCTCTAAAATAACTAACCAAGAGACTAACC AAGAATTAACCAAAGCAAAAAGAATCATOAGGAAGATTAGGGAATATC 1 9 0 0 
S Q K L N Q I N L -

AATTTrTGAAATTCTTCTAAAAACTATTGTTAGAGACTTTTGAGGAAGAATAAGGAAGTATAAATAAAAATATAATGGAAATTTTTTGCTTTCCATACTT 2 0 0 0 

FIG. 2. Nucleotide sequence of the right junction of TnJ276 in L. lactis T165.1 site 1. The amino acid 
sequences deduced from the ORFs are given below the nucleotide sequence. The amino acid stretches in the 
Int sequence that correspond to the consensus domains I and II of the Int-family of site-specific recombinases 
(2) are boxed. Potential ribosome binding sites are denoted by stars over the bases that are complementary 
to the 3 ' end of L. lactis 16S rRNA (27). Restriction sites are in bold face. A putative promoter sequence is 
overlined. The 11111G hexanucleotide flanking the right end of Tx6276 (26) is doubly underlined. 
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1 2 1 2 3 4 3 4 

B D 

FIG. 3. Detection of excision and circularization of Tn5276 ends in E. coli HB101 containing pNZ780 
and transformed with different plasmids containing the xis and int genes of Tn5276\ A,B: Transforming 
plasmids were pNZ781 (lane 1) and pNZ782 (lane 2). C,D: Transforming plasmids were pNZ783 (lane 3) 
and pNZ784 (lane 4). Plasmid DNA was isolated from overnight cultures of transformants, digested with 
EcoRV and Pstl, and electrophoresed on a 1.0 % agarose gel (panels B and C). Major bands are indicated 
in between the panels and include: the 6.1-kb £coRV-linearized pNZ781, pNZ782, pNZ783, or pNZ784, the 
3.6-kb and 1.7-kb Prfl-fragments from pNZ780 containing the Tn5276 ends, the 3.4-kb Ps/I-fragment resulting 
from pNZ780 without Tn527<5 ends, the Psfl-linearized 1.9-kb circle consisting of the excised Tn5276 ends. 
Subsequently, Southerns blot of the gels were hybridized to the oligonucleotide Tn5276-L specific for the left 
end of Tn5276 (panels A and D, respectively). Autoradiography of the blot shown in A was approximately 
five times longer than that of the blot shown in D. The probe hybridized to the 3.6-kb Ptfl-fragment of 
pNZ780 containing the Tn5276 left end and to the 1.9-kb circle consisting of the 1x6276 ends. Background 
hybridization to the 1.7-kb Ps/I-fragment from pNZ780 is indicated by the star. 

sentative transformants confirmed this (Fig. 3A,B). Total plasmid DNA was digested with Pstl that 

generates two fragments of 1.7 and 3.6 kb from pNZ780 (see Fig. 1) and with EcoRV to linearize 

pNZ781 or pNZ782. Upon staining of agarose gels on which the digested DNA was separated (Fig. 

3B) the linearized 6.1-kb EcoRV fragments of pNZ781 (lane 1) or pNZ782 (lane 2) were readily 

detectable but only small amounts of the 1.7-kb and 3.6-kb Pstl fragments of pNZ780 were found. 

In contrast, large amounts of a 3.4-kb Pstl fragment representing the linearized derivative of 

pNZ780 lacking the Tn527<5 ends were present, indicating efficient excision. Finally, the excised 

and circularized ends of Tn5276 appeared in a Psd-digest as a 1.9-kb fragment. However, this 1.9-

kb Pstl fragment was present in low amounts and could only be detected after autoradiography of 
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blots hybridized to the left end-specific oligonucleotide probe Tn5276-L that also hybridized to the 

3.6-kb Pstl fragment of pNZ780 (Fig. 3A). The low amount of the 1.9-kb plasmid found in the 

transformants can be attributed to the non-replicative nature of this molecule. Since the same results 

were obtained with either pNZ781 or pNZ782 (Fig. 3B, lanes 1 and 2), the vector-located promoter 

is not involved in the expression of the expression of xis and/or int gene(s). 

To investigate if the xis and int genes are both required for excision of the Tn5276 ends in E. 

coli plasmids pNZ783 and pNZ784 were constructed that contained mutations in either of the 

genes. Each of the plasmids was introduced into E. coli HB101 harboring pNZ780 and the 

efficiency of excision was analyzed. Representative results are shown in Fig. 3C. When the int gene 

was disrupted, large amounts of the expected 3.6-kb and 1.7-kb Pstl fragments of pNZ780 were 

found in addition to linearized pNZ784 (Fig. 3C, lane 4). Moreover, no 1.9-kb Pstl fragment 

generated by excision and recircularization of the ends from pNZ780 was found after hybridizing 

the blot with the left-end probe Tn5276-L (Fig. 3D, lane 4). Disruption of the xis gene, as is the 

case in pNZ783, resulted in a considerable decrease in excision efficiency as compared with that 

in cells harboring pNZ781 or pNZ782 (Fig. 3B), since the majority of the pNZ780 molecules still 

contained the Tn5276 ends (Fig. 3C, lane 3). However, in the presence of pNZ783, a considerable 

amount of the 1.7-kb Pstl fragment could be detected, even in the stained digest. Thus, in the 

presence of the int gene alone (as in pNZ783) the ends of Tn527<5 in pNZ780 are excized and 

recircularized, but the additional presence of a functional xis gene (as in pNZ781 or pNZ782) 

strongly enhances the excision efficiency. 

When the xis gene was inactivated as in pNZ783, a higher amount of circular intermediate was 

found than with pNZ781 or pNZ782 containing intact xis and int genes (compare the 

autoradiographs in Fig. 3A and 3D and note the longer period of exposure in Fig. 3A). This could 

be explained by the inefficiency of the excision process in absence of functional Xis. In this case, 

pNZ780 molecules containing the Tn5276 ends will continuously be present and excision of the 

1.9-kb circle persists. In contrast, efficient Int-promoted excision in the presence of functional Xis 

(Fig. 3A,B) results in a rapid loss of the substrate (intact pNZ780). 

Since Int promotes insertion in the absence of Xis in other Xis-Int systems, the possible 

insertion of the 1.9-kb circle into new sites on the E. coli genome was investigated in transformants 

containing pNZ780 and pNZ783. Insertion into new sites was not observed, but reinsertion of the 

1.9-kb circle into the site of excision can not be excluded. 
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Features of Int and Xis amino acid sequences. Databases were searched for the presence of 

protein sequences that were similar to those deduced from ORF1 and the xis and int genes. No 

proteins with significant similarity to the amino acid sequence deduced from ORF1 were found. 

In addition, no proteins with significant similarity to the small 1x6276 Xis were found. However, 

Tn5276 Xis, like most known excisionases, is a short, basic protein (calculated pi of 9.71). 

Five proteins showing overall similarity to Int were detected in the databases (Fig. 4). The 

highest percentages of similar and identical residues were encountered in the C-terminal regions. 

An alignment of the C-terminal regions of these proteins and Tn5276 Int is given in Fig. 4. As the 

five other integrases, Tn5276 Int is a basic protein with a calculated pi of 9.99. 

Tn5276 MEFIFLTGCRFGEFASIRYQDVDFKNRLLRIDHTLEYRVAKYDDRVI 
L54a VBVQALTGMRIGELLALQVimVDLKNKTIAINGTIHRIKCNAGFGHK 
<j>ll TRLLFYS6LRIOEAIALQMKDYDKIKGEIDVNKKINLSNRKIEY 
Tnl545 ILILLKTGLRISBFGGLTLPDLDFENRLVNIDHQL-LRDTEIGY-YI 
pSAM2 IWALLTGARTEELRALTWDHVFLKGSPDVEPPQPPHIAVWRSVRRG 

• 
** * * *.* 

Tn5276 QTPKTVGSIRTISLSNRCLEII DYFQKNCLDD-KFVF 
L54a DTTKTAGSKRKIAINSRIANVLKKIMLENKKMQQWEPSYVDR-GFIF 
<|>11 -NLKKESSKGIIPVPNLIREMLKNMYNESSKRYKY FDEN-YFIF 
Tnl545 ETPKTKSGERQVPMVEEAYQAFKRVLANRKNDKRVEIDGYSD--FLF 
pSAM2 GDTKTRKSRRTLALPARCVEVLWQHFEDQGWERLAAGDKWEEHGLVF 

* * * * * * 
Tn5276 VNAVGGIFRQPVFYKFICDNCQKVLGNERK YGIHLLRHSHVSL 
L54a TTCQGNPMQGSRINKRLSSAAES-LNINKK VTTHTLRHTHISL 
<>11 GG--LEPIRYVTYSYHFKSVFPN-LKI HHLRHSYASY 
Tnl545 LNRKNYPKVASDYNGMMKGLVKKYNKYNEDKLPHITPHSLRHTFCTN 
pSAM2 SSAVGKPLDATNVRRAFRQALKDANGINADEW TPRELRHSFVSL 

• A 
* * ** * * * 

Tn5276 LVBLGVPIKAIMERVGHRDESITLRIYSHISGTIKNEISQKLNQINL 379 
L54a LAEMNISLKAIMKRVGHRDEKTTIKVYTHVTEKMDRELEQKLEKLVY 354 
(|)11 LINNGVDMYLLMELMRHSNITETIQTYSHLYTDKKHQAMSIFD 348 
Tnl545 YANAGMNPKALQYIMGHANIAMTLNYYAHATFDSAMAEMKRLNKEKQQERLVA 405 
pSAM2 LSDRGVPLEEISRLVGHSGTAVTEEVYRKQIRPVIQTGAWMDGIFKRGPAR 3 88 

FIG. 4. Amino acid sequence alignments of the C-terminal regions of, from top to bottom, the Int proteins 
of TnJ276, bacteriophage L54a (51), TW54J (32), bacteriophage 011 (52), and pSAM2 (32). Domains I and 
II (2) are in bold face. Asterisks indicate residues present in at least four sequences and similar residues (1-L-
V-M, D-E, R-K, Q-N, S-T, F-Y) present in at least four sequences are indicated by points. Triangles indicate 
the residues conserved in all known integrases (except in pSAM2 Int). 
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DISCUSSION 

Excision of the conjugative transposon 1x6276 from the donor replicon would be the first step 

of the transposition process, in analogy with the conjugative transposons Tn916 and Tnl545. Here 

we show that Tn5276 contains two juxtaposed genes, xis and int, at its extreme right terminus. The 

functionality of the xis and int genes was established by the observation that their expression 

resulted in excision of the 1x6276 ends in E. coli. Expression of only the int gene appears to result 

in excision of the Tn527<5 ends, but simultaneous expression of a functional xis gene enhances the 

excision efficiency. Two products are formed in the excision reaction: a deleted plasmid containing 

a religated excision site and a 1.9-kb covalently closed circular molecule consisting of the ends of 

Tn5276. Recently, we found that the nucleotide sequence of the joint of this 1.9-kb plasmid was 

identical to that found for the circular intermediate of 1x6276 in L. lactis (34, 38). These results 

strongly suggest that the xis and int genes code for proteins that are required for excision of 

1x6276 in L. lactis. 

1x6276 Xis and Int, each in different degrees, are similar to other proteins involved in excision 

and insertion of genetic elements. The Int-related family (2) is one of the two main groups of site-

specific recombinases. The homologous domains I and II (2) in the C-terminal regions of a large 

number of proteins that belong to the Int-related family have been aligned (1, 2, 3, 8, 32). These 

alignments showed that a histidine, a tyrosine and two arginine residues are conserved in all 

integrases, except for that of pS AM2. It has been shown that Tyr-342 in domain II of bacteriophage 

X Int is the residue that forms an O-phosphotyrosine bond with the 3'-phosphate of att at the site(s) 

of strand exchange (30). Thus, it is very likely that the C-terminal region of 1x6276 Int participates 

in strand transfer and that the active site is at the corresponding Tyr-359. 

A variety of excisionases have been identified thus far from different mobile elements. These 

elements are the lambdoid phages (26), several Streptomyces integrative plasmids (3, 8), the 

streptococcal conjugative transposons Tn976 (17) and Tx\1545 (32), and the bacteriophages L54a 

(51) and <(>11 (52), present as prophages in Staphylococcus aureus. The Tn5276 Xis protein shares 

with almost all of these excisionases its small size and high pi. The excisionases of bacteriophages 

L54a and <|>11 are acidic and represent a different class of excisionases (52). The basic character 

of the excisionases from the first class is thought to reflect their interaction with DNA. In the case 

of bacteriophage X, it has been shown that Xis in conjunction with the E. coli protein factor for 
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inversion stimulation (FIS) binds to sites in attR and enhances excision (9, 29,47). When X Xis 

binds the DNA at its recognition sites in X attR the DNA is bent (45). The formation or 

stabilization of this bend is thought to be required for excisive recombination of X. The 

involvement of FIS in X excision couples recombination to the growth phase of the host cell (47). 

Another host factor involved in X site-specific recombination is Integration Host Factor (IHF; 46). 

We cannot exclude the involvement of host factors in excision of Tn5276, since the possibility 

exists that E. coli IHF and FIS can substitute for similar lactococcal host factors. Several 

subsequences conforming to the proposed consensus E. coli IHF and FIS binding sites (23,25) can 

be found in the ends of 1x6276 (34). However, excision experiments in E. coli strains deficient in 

the production of IHF and FIS should be carried out to investigate the involvement of E. coli host 

factors in excision of the Tn527<5 ends from pNZ780. It was recently suggested that a host factor 

that is absent from L. lactis MG1363 is required for the conjugative transposition of Tn916 (5). 

This putative host factor is evidently not involved in transposition of Tn527<5, since we have shown 

that insertion of Tn5276 into the genome of a derivative of L. lactis MG1363 occurs via site-

specific recombination (36, 38) and not, as for Tn916 in L. lactis MG1363, through homologous 

recombination (5, 7). 

The requirement of host factors and Xis in the site-specific recombination reactions (excision 

and insertion) of the lambdoid phages serves as a means of controlling these reactions. Next to the 

control exercised by the host cell via the necessary host factors, the phages themselves control the 

direction of site-specific recombination (excision versus insertion) by the differential expression of 

the xis and int genes (for a review see reference 21). The organization of the xis and int genes of 

Tn5276 is similar to that of the corresponding genes in lnl545 (32) and Tn916 (17). In all cases 

the genes are located near one end of the element and the xis and int genes are separated by a 

region of 84 (Tn976 and lnl545) or 85 bp (Tn5276). The significance of this similarity in the 

organization of the xis and int genes is not yet known. Since the efficiency of excision is 

independent of the orientation of the xis and int genes in pACYC184 (Fig. 3B) it is possible that 

the promoter-like sequence found upstream from the xis gene (Fig. 2) is functional in E. coli. It 

remains to be elucidated whether this is also the case in L. lactis, whether differential expression 

of the xis and int genes occurs in L. lactis and, if so, how this is effected. 

The amino acid sequence of Tn5276 Int shows an overall (up to 50%) similarity to the Int 

proteins of conjugative transposons from Streptococcus (Jnl545 and Tn976), an integrative plasmid 
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from S. ambofaciens (pSAM2), and bacteriophages carried as a prophage in S. aureus (L54a and 

<|>11). In contrast to the overall similarity of the Int proteins (which is highest in their C-terminal 

regions), other features of these elements, like the structure of their ends, the amino acid sequence 

of their Xis proteins, their insertional behavior, and the requirements of host factors for their 

excision and insertion, differ strongly from each other. The question arises how these elements have 

acquired the genes for the homologous Int proteins. The joining together of distinct modules from 

different sources as proposed for the evolution of lambdoid phages (11) would be an attractive 

model for the evolution of Tn5276 and related transposons, since they carry the genes for a number 

of very different traits, like nisin production (36), sucrose fermentation (37), and in some cases the 

synthesis of N5-carboxyethyl-ornithine (20). Further investigation of Tn5276 could contribute to our 

knowledge of its origin and its evolutionary relationships with conjugative transposons, 

bacteriophages and plasmids. 
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Abstract Excision and insertion of the Laclococcus lactis nisin-sucrose conjugative transposon 

Tr\5276 occur by reciprocal site-specific recombination. Based on the nucleotide sequences of site-

specific recombination products in both L. lactis and Escherichia coli, we propose a model for 

excision and insertion of Tn5276 in conjugal transposition. Low levels of covalently closed, circular 

molecules were detected in different Tn5276-containing L. lactis strains and, since the nucleotide 

sequences of their joints were in agreement with the proposed model, they probably represent the 

intermediates transferred in conjugal matings. In contrast to the conjugative transposons TnPi6 and 

Tn/545, the regions involved in reciprocal strand exchange (overlap regions) in Tn5276 insertion and 

excision show a high degree of nucleotide sequence identity. Since in this respect Ta5276 resembles 

temperate bacteriophages, the recombining sites have been termed attachment sites. However, a single 

nucleotide difference in the overlap regions does not prevent efficient excision and insertion, as 

observed for conjugal transposition of Tn5276 to site 1 (now termed attBl) of L. lactis MG1614. The 

deduced Tn5276 attB site in L. lactis NIZO R5 was found to share a 25 bp region of sequence 

identity (termed core region) with attP in the Tn5276 circular form. Besides the known nucleotide 

sequence of L. lactis MG1614 attBl, the sequence of a second TnJ276 insertion site {attBl) could 

be deduced. These attB sites show only limited (52-60%) similarity to the core region. 

INTRODUCTION 

The 70 kb conjugative transposon Tn527<5, originally detected in Lactococcus lactis NIZO R5 

(Rauch et ah, 1990), encodes a variety of metabolic properties including the biosynthesis of the 

lantibiotic nisin (Rauch and De Vos, 1992a) and the transport and hydrolysis of sucrose (Rauch and 

De Vos, 1992b). Tn5276 has been shown to insert into several sites in the chromosome of the 

plasmid-free strain L. lactis MG1614 after conjugal transfer and insertion of multiple copies has 

been observed (Rauch and De Vos, 1992a). A preferential site, designated site 1, for Tn5276 

insertion into the L. lactis MG1614 chromosome has been identified (Rauch and De Vos, 1992a). 

A L. lactis element, termed Tn5301, with similar features has been described in L. lactis FI5876 

(Horn et al., 1991). 

We recently located two genes, xis and int, near the right end of Tn527d that are involved in 

excision of the element (Rauch and De Vos, 1993). The deduced 379 amino acids int gene product 

(Int) shows significant (up to 50%) similarity to various proteins belonging to the integrase family 

of site-specific recombinases. The putative xis gene product (Xis), like most other excisionases, is 
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a small (68 residues), basic protein. We found that in Escherichia coli excision of the Tn5276 ends 

required a functional int gene and resulted in the appearance of a circular molecule consisting of 

the TnJ276 ends. Additional presence of a functional xis gene resulted in a more efficient excision 

of the Tn527<5 ends. This is in agreement with the stimulating role of other Xis proteins in the 

excision reactions mediated by the corresponding Int proteins (Leong et al, 1986; Poyart-Salmeron 

et al, 1989; Brown et al, 1990; Ye et al, 1990). 

Site-specific recombinases promote reciprocal recombination between two limited DNA 

sequences. The recombination reaction involves a strand exchange mechanism that does not involve 

any net synthesis or loss of DNA and it has therefore been called conservative (Campbell, 1981). 

In almost all cases the recombining sites contain regions of perfect homology in which reciprocal 

strand exchange occurs. A well-studied example is bacteriophage X insertion, involving the 

bacteriophage attachment site attP and the chromosomal attachment site attB, which contain core 

regions of 15 bp with identical nucleotide sequences. Reciprocal strand exchange involves staggered 

cuts within this core region that generate a 7 bp overlap region (Mizuuchi et al, 1981). Sequence 

identity between overlap regions appears to be important for efficient recombination. 

Recombination between sites with non-identical overlap regions is inefficient (Hoess et al, 1982; 

Weisberg et al, 1983). However, the integrases of the streptococcal conjugative transposons Tn97<5 

and lnl545, which are identical to each other, have been shown to promote efficient site-specific 

recombination between non-homologous overlap regions in the excision and insertion of these 

elements (Caparon and Scott, 1989; Poyart-Salmeron et al, 1989, 1990). 

A circular form of Tn976 has been detected in an Escherichia coli strain transformed with a 

cosmid clone containing the transposon (Scott et al, 1988). This molecule was able to transform 

B. subtilis and the resulting strain could subsequently transfer tetracycline resistance to 

Streptococcus pyogenes. Therefore, this supercoiled molecule was considered to be the Tn976 

intermediate that is transferred in conjugal matings and analysis of recombination products of the 

circular form from E. coli was used to design a model for Tn9/<5 transposition (see Scott (1992) 

for a recent review). The trigger for the (yet unobserved) appearance of the circular intermediate 

in the conjugal donor has been proposed to be cell-to-cell contact (Scott, 1992). The first 

conjugative transposon of which a circular form has been detected in its original host is the Tn976-

related, tetracyline resistance-conferring 1x6381 from Enterococcus faecalis (Rice et al, 1992). 

Hybridization analyses showed that this 19 kb transposon, next to being present in the chromosome, 
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exists as a free, closed circle. The amount of circular form present in alkaline lysis preparations 

of E. faecalis strains containing the transposon could be elevated by exposure of these strains to 

subinhibitory levels of tetracycline. Exposure to tetracycline also resulted in an increase in the 

conjugal transfer frequency of Tn5381. This suggests that the trigger for the appearance and 

transfer of the circular form of Tn5381, which has not yet been shown to be the conjugal 

transposition intermediate, is exposure to tetracyline. 

Previous analysis of the nucleotide sequences of left and right junctions of Tn5276 in L. lactis 

NIZO R5 and in site 1 of a L. lactis MG1614-derived transconjugant showed that the ends of the 

transposon are asymmetric, do not contain a clear inverted repeat and are flanked by a 

hexanucleotide (TTTTTG) repeat in both sites. One half of this repeat was already present in site 

1 before insertion (Rauch and De Vos, 1992a). 

In this report we show the presence of a circular form of Tn5276 in L. lactis. In addition, 

recombination products of Tn527d in E. coli and L. lactis are analyzed and used to deduce the 

region in which strand exchange occurs in Tn5276 transposition. The results indicate that 

heteroduplexes can be formed in the recombination process and that the circular form of Tn5276 

detected in L. lactis is the conjugal transposition intermediate. 

RESULTS 

Analysis of different Tn5276 insertions: indications for a recombination event different 

from that in insertion of other conjugative transposons. A TTTTTG hexanucleotide repeat is 

present in the junction regions of Tn527<5 analyzed thus far, i.e. in its location in the wild-type 

strain L. lactis NIZO R5 and in site 1 of the L. lactis MG1614-derived transconjugant T165.1 

(Rauch and De Vos, 1992a). Furthermore, the TTTTTG hexanucleotide is present in site 1 before 

insertion. We have recently shown that Tn5276 excises through a site-specific recombination 

reaction mediated by a protein related to X Int (Rauch and De Vos, 1993). Thus, the halfs of the 

TTTTTG repeat possibly constitute the core regions of what might be called the left and right 

attachment sites of Tn5276 in its inserted state {attL and attR, respectively). Such presence of 

invariable core regions in Tn527<5 site-specific recombination would distinguish this transposon 

from the conjugative transposons Tn9i6 and Tn7J45. In the excision and insertion of the latter 
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transposons the recombining sites do not share common core regions (Caparon and Scott, 1989; 

Poyart-Salmeron et al, 1989; 1990). 

Transconjugant T165.4, which was isolated in an earlier study from a mating between L. lactis 

strains NIZO R5 and MG1614 (Rauch and De Vos, 1992a), contains two copies of Tn5276\ one 

in site 1, which we would now rather term attBl, and one in another location (designated attB2). 

We analyzed the junctions of the latter copy of Tn5276~ after their amplification by different 

polymerase chain reaction (PCR) methods. This showed that also in this case a TTTTTG 

hexanucleotide repeat was present (Fig. 1). 

If the TTTTTG hexanucleotides found in the Tn5276 junctions would constitute the core regions 

of Tn5276 attL and attR, the junction sequences of all insertions of Tn5276 in attBl of L. lactis 

MG1614 would be expected to be identical. However, when we determined the nucleotide sequence 

of the left junction of Tn527(J in attBl of the L. lactis MG1614-derived transconjugant T165.6 

isolated in an earlier study (Rauch and De Vos, 1992a), we found that it differed from the 

corresponding sequence in transconjugant T 165.1 (Rauch and De Vos, 1992a) in one position: the 

nucleotide 3' from the TTTTTG hexanucleotide was a C in T165.6 and an A in T165.1. Sequence 

variability of transposon ends is a feature of Tn97<5 and Tnl545 insertion. The single nucleotide 

variation found in the left junction of Tn5276 in attBl could, like the sequence variability of Tn916 

and Tnl545 junctions, be the result of the fact that the base at the variable position was part of the 

overlap region generated by the strand exchange reaction in insertion of Tn5276. This would mean 

that a heteroduplex with one mismatch was formed during this reaction. 

Tn5276 

...TTTCAACTTGTCAAATTTTTGATACA...GGAAATTTTTGATATTCAATAATTCA... 

FIG. 1. Nucleotide sequence of Tn5276 junctions after its insertion into attBl of L. lactis MG1614. The 
nucleotide sequence was determined from PCR amplification products containing the junctions of the copy 
of Tn5276 present in atlB2 in a derivative of transconjugant T165.4 (Rauch and De Vos, 1992a; see 
'experimental procedures'). The TTTTTG hexanucleotide repeat is doubly underlined. 

During insertion of Tn5276 into L. lactis MG1614 attBl heteroduplexes are formed. The 

transposition intermediates of Tn976 and Tn/545 very probably are non-replicating circles (Scott 

et al., 1988; Caparon and Scott, 1989; Poyart-Salmeron et al., 1989, 1990). We have shown that 

in excision of the Tn527<5 ends also a circular molecule is formed (Rauch and De Vos, 1993). 
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Based on the one-nucleotide variation found in the left junction of different Tn5276~ insertions in 

attBl, a model for excision of Tn5276 from its location in L. lactis NIZO R5 and insertion of the 

resulting circular intermediate into attBl of L. lactis MG1614 can be proposed (Fig. 2). The 

heteroduplexes formed in the overlap regions after insertion could either be resolved in the 

following replication round or be corrected by a mismatch repair system. If these heteroduplexes 

would be resolved in the replication round following the insertion of Tn5276, this would lead to 

the appearance of two types of progeny: one type with attL originating from the donor (attP; with 

an A at the mismatch position) and attR originating from the recipient (attBl; with a C at the 

mismatch position) and one type containing attL originating from the recipient (attBl) and attR 

attL Tn5276 attR 

AAATTTTTGATAC = = = AAATTTTTGATACA 
TTTAAAAACTATG = = = TTTAAAAACTATGT 

NIZO R5 
formation of synaptic complex 1 

• AAA TTTTTGAT ACA 
• TTT AAAAACTA TOT 

• AAA TTTTTGAT ACA 
= JPTT AAAAACTA TGT 

excision and conjugal transfer 1 

attP 
tn.5276 

-

GTTTTTTTG 
CAAAAAAAC 

attL 

= AAA TTTTTGAT ACA = = 
= TTT AAAAACTA TGT = = 

GTT TTTTTGCT TTC 
CAA AAAAACGA AAG 

* MG1614 
attBl 

ii 

A 
G 

lsertion 1 

TACA — = = AAATTTTTG 
ATGT — — = — TTTAAAAAC 

attR 
tr« 

C 
T 

im 

TTTC 
AAAG 

iconjugant 

FIG 2. A model for excision and insertion of Tn5276 in conjugal transfer from L. lactis NIZO R5 to L. 
lactis MG1614 (attBl). The triangles indicate the positions of the cuts that generate the overhanging ends. 
The exact positions of the cuts cannot be deduced from the nucleotide sequence data obtained thus far, but 
the positions generating the largest possible overlap region are shown. Also, the nucleotide sequence data do 
not allow us to determine whether 5'- or 3'-protruding ends are generated, but 5'- protruding ends have been 
chosen in analogy to other Int-related site-specific recombinases (Sadowski, 1986). The Tn5276-specific 
nucleotides (based on the assumed positions of the cuts) are in bold face. The heteroduplexes resulting from 
the insertion of the Tn5276 circle into attBl of L. lactis MG1614 are boxed. 
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originating from the donor (attP). Mismatch repair however would lead to the appearance of one 

type of progeny with unique junction sequences. Assuming that the repair mechanism would have 

no preference for certain mismatches, all four possible junction sequence combinations (containing 

an A or a C at the left and right end mismatch positions) would be expected to occur. 

To test the model proposed for insertion of Tn5276 into L. lactis MG1614 attBl after its 

excision and transfer from L. lactis NIZO R5 (Fig. 2), the left and right junctions of the transposon 

inserted into attBl were analyzed in a number of transconjugants. Since we wanted to analyze the 

appearance of different junction sequences in the progeny of an original transconjugant cell, strains 

NIZO R5 and MG1614 were mated according to the method of Broadbent and Kondo (1991), in 

which conjugation is performed directly on the selective plates. Cultures derived from the 

transconjugant colonies would contain all types of progeny, which could be individually analyzed 

in isolated colonies. First we analyzed the location of Tn527<5 in the DNAs isolated from liquid 

cultures of twelve original transconjugant colonies by hybridizing EcoRI-digests to an 

oligonucleotide probe specific for the left end of Tn527<5 (Fig. 3A). In all original transconjugant 

DNAs, Tn5276 was found in a number of locations. Three sites were occupied in all cases. The 

9.5 kb hybridizing EcoTQ. fragment in Fig. 3A corresponds to the insertion of Tn5276 in attBl 

(Rauch and De Vos, 1992a). The 5.8 kb hybridizing EcoRl fragment corresponds to the insertion 

of Tn5276 in attB2 (Fig. 1; Rauch and De Vos [1992a]). The hybridization signals were not of 

equal intensity within each sample, the attBl insertion signal always showing the highest intensity. 

A possible explanation for these hybridization results would be the presence of different, unequally 

represented populations of cells within each culture, each population containing Tn5276 in one or 

more different locations (with a majority of the cells containing 

Tn5276 in attBl). The presence of several populations with different Tn5276 insertion profiles 

could be explained in two ways. One explanation would be that the different populations originated 

from different mating events (within one colony). Alternatively, the original transconjugant cell 

contained multiple copies of Tn5276, but during the growth in culture, descendants of the original 

cell lost copies of Tn5276. 

We determined the nucleotide sequences of the left and right junctions of Tn5276 in attBl of 

six of these transconjugants by direct sequencing of PCR amplification products containing these 

regions. This approach eliminated the interference of PCR errors in the nucleotide sequence, which 

may occur when amplification products are cloned prior to sequence analysis. In all cases, the 

85 



1 2 3 4 5 6 

B 

11 
9.5 

5.8 

atth 

.GTGTTTTTTTQ 

Tn5276 attR 

TACAC. . .OQAAATTTTTG TTTCC. 

D 

PI 

P2 

P3 

RB 

•0 
,0 
>0 

'0 

. GTGTTTTTTTQ A TACAC. . . QGAAATTTTTG A TTTCC . . 

. GTGTTTTTTTQ C TACAC. . . OQAAATTTTTG C TTTCC . . 

. GTGTTTTTTTQ C TACAC. . . QGAAATTTTTG A TTTCC . . 

GGAAATTTTTO A TACAC. . . GQAAATTTTTG A TACAC. . 

0, 
0, 
0, 
0, 

attP 

. OQAAATTTTTG IAI TACAC. ,0, 

.OQAAATTTTTG 

-— ...QGAAATTTTTG 

TACAC. 

TACAC. 

. . . GGAAATTTTTO A TACAC 0, 

FIG. 3. Analysis of 1x6276 insertion into the chromosome of L. lactis MG1614 after conjugal transfer 
from strain NIZO R5 and of Tn5276 circular forms in different L. lactis strains. A: Tn5276 insertion profiles 
in L. lactis MG1614-derived transconjugants. Six representative transconjugants from a series of twelve 
(derived from a mating between L. lactis NIZO R5 and MG1614 using the method of Broadbent and Kondo 
[1992]) are shown. Transconjugant colonies picked directly from the mating plate were used to inoculate 
liquid cultures, which were grown overnight. Total DNAs were isolated from these cultures, digested with 
EcdRl and separated by agarose gel electrophoresis. A Southern blot was then hybridized to a probe specific 
for the left end of Tn5276\ The estimated sizes of hybridizing fragments are indicated in kilobases. The 
insertion sites corresponding to the hybridizing EcdRl fragments have been numbered in accordance with the 
assigned attB site numbers. B: Nucleotide sequences of Tn5276 junctions after insertion into L. lactis MG1614 
attBl. The junctions were PCR amplified using the total DNAs of the six transconjugants from panel A as 
templates. The nucleotide sequences shown here were found for all six transconjugants. Only one strand is 
shown. C: Nucleotide sequences of Tn5276 junctions in transconjugant progeny. Total DNAs were isolated 
from liquid cultures inoculated with progeny colonies derived from the first transconjugant in panel A. Three 
of these DNAs (that by hybridization analysis were shown to contain Tn527<5 in attBl and were termed PI, 
P2, and P3) were used to PCR-amplify the Tn5276 junctions and the nucleotide sequences of the amplification 
products were determined. The NIZO R5 junction sequences are form Rauch and De Vos (1992a). D: 
Nucleotide sequences of Tn5276 circle joints in different L. lactis strains. The total DNAs from panel C and 
total DNA from L. lactis NIZO R5 were used as templates for PCR amplification of the joints of the TnJ276 
circular form. The nucleotide sequences of the amplification products were determined. Nucleotides at the 
variable positions in the overlap regions are boxed and Tn5276-specific nucleotides (according to the model 
in Fig. 2) are in bold face in panels B, C, and D. 
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sequences of the left and right amplification products contained two different nucleotides (A and 

C) at the positions 3' from the TTTTTG hexanucleotides (Fig. 3B). The nucleotide sequence 

variation found in the Tn527<5 junctions concurs with the model in Fig. 2. 

There are two possible explanations for the fact that both an A and a C appear in the nucleotide 

sequences derived from single transconjugant colonies: firstly, the presence of two types of progeny 

resulting from resolution of the heteroduplexes through replication and secondly, the presence of 

transconjugants derived from different mating events (see above). Analysis of junction sequences 

in progeny colonies could discriminate between these possibilities. The left and right junctions of 

three progeny colonies containing TnJ276 in attBl (T165P1 through P3) were PCR-amplified and 

their nucleotide sequences were determined (Fig. 3C). Two of the three combinations of attL and 

attR sequences found (mismatch nucleotides A left / A right in T165P1 and C left / C right in 

T165P2) were not compatible with resolution of the heteroduplexes through replication. Thus, 

mismatch repair rather than replication was responsible for the correction of the mismatches. This 

would mean that the original transconjugant colonies contained progeny from different mating 

events. 

Mismatches in the overlap regions are also allowed in Tn5276 excision. Elsewhere, we have 

described how the expression of the xis and int genes of Tn5276 in trans in E. coli resulted in the 

excision of the Tn5276 ends contained in plasmid pNZ780 (Rauch and De Vos, 1993). When both 

a functional xis gene and int genes were present on the complementing plasmid (plasmid pNZ781), 

excision was very efficient. When only a functional int gene was present (plasmid pNZ783), 

excision still occurred but less efficiently. The left end of TnJ276 in pNZ780 was derived from the 

attBl insertion of Tn5276 in transconjugant T165.6 (with a C following the TTTTTG 

hexanucleotide) and the right end from strain NIZO R5 (with an A following the TTTTTG 

hexanucleotide). Therefore, heteroduplexes identical to those found to occur in Tn5276 insertion 

into strain MG1614 attBl should be formed in excision of the Tn5276 ends from pNZ780. 

The nucleotide sequences of excision sites were determined by using pNZ780 molecules that 

had lost the Tn5276 ends through Int-mediated excision as templates. These pNZ780 molecules 

were derived from plasmid DNA preparations of two cultures each of E. coli HB101 harboring 

pNZ780 and either pNZ781 or pNZ783. These plasmid preparations contained four kinds of 

molecules: (i) pNZ81 or pNZ783 (5.4 kb), (ii) pNZ780 still containing the Tn5276 ends (5.3 kb), 

(iii) circularized Tn5276 ends (1.9 kb), and (iv) pNZ780 no longer containing the Tn5276" ends (3.4 
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kb). The latter class of plasmids was separated from the other plasmids present in the preparation 

by isolating them as 3.4 kb ZtamHI-linearized molecules. The 3.4 kb BamHl fragments were used 

directly as templates for nucleotide sequencing. In all cases both an A and a C residue (Fig. 4) 

were found to be evenly distributed at the position 3' from the TTTTTG hexanucleotide, as judged 

from band intensities in the nucleotide sequence ladders (data not shown). 

Joints of the circularized Tn527d ends present in the plasmid DNA preparation of E. coli 

HB101 containing pNZ780 and pNZ781 were cloned as 1.3 kb BglTl-Pstl fragments into M13mpl9 

digested with BamHl and Pstl and their nucleotide sequences were determined (Fig. 4). The 

atCL r " attR 
(from T165.6) (from NIZO R5) 

. .GCCTTGTGTT TTTTTO C T ACACATATAA. . .ATAATGGAAA TTTTTG A T ACACATACTC. . 

attB 
(excision sites) 

.GCCTTGTGTTTTTTTG A TACACATACTC. 

.GCCTTGTGTTTTTTTG C TACACATACTC. 

& 

. . .ATAATCGAAATTTTTQIAITACACATATAA. . . 
atCP 

(circle joints) + 

0, . . .ATAATGQAAATTTTTG C TACACATATAA. . . 

FIG. 4. Nucleotide sequence analysis of the products of excision of the Tn5276 ends in E. coli. A 
physical map of pNZ780 and the nucleotide sequences of the junctions of Tn5276 present in pNZ780 are 
shown. Below these sequences, the nucleotide sequences determined from M13mpl9 clones containing 
Tt\5276 circle joints (attP) and the sequences of excision sites (attB) determined from pNZ780 derivatives 
no longer containing the Tn5276 ends. The triangles indicate the positions of the cuts generated in the Int-
mediated excision as in Fig. 2. Tn5276-specific nucleotides (according to the model in Fig. 2) are in bold face 
and the variable nucleotide is boxed. Abbreviations in the physical map: B, BgKl; H, BamHl; P, Pstl. 
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TTTTTG hexanucleotide was present in all joints and was followed by either the C residue from 

attL (3 out of 6) or the A residue from attR (3 out of 6). Thus, the C and A residues were also 

evenly distributed over these excision products. Since the circle formed by the Tn5276 ends could 

not replicate, the presence of joints either containing the C residue or the A residue in the Ml3 

clones indicated that the heteroduplex proposed to be formed in the excision process was corrected 

by an E. coli mismatch repair system, either immediately after excision or after cloning of the joint. 

These results show that Tn5276 excision can be described by the model proposed above (Fig. 

2) and indicate that also in Tn5276 excision (in E. coli) formation of a heteroduplex with a 1 bp 

mismatch is tolerated. 

Detection and analysis of circular forms of Tn5276 in L. lactis. Pulsed Field Gel 

Electrophoresis experiments have shown that Tn527<5 is present as an integral part of the 

chromosome in L. lactis (Rauch and De Vos, 1992a). In hybridization experiments the circular 

form of Tn5276 could not be detected in L. lactis (Rauch and De Vos, 1992a). However, using 

PCR amplification of the circle joint, we were able to detect Tn5276 circular forms in L. lactis. 

Two amplification rounds (the second with the product from the first round as a template) were 

needed to obtain sufficient product for nucleotide sequencing. The nucleotide sequences of the 

amplification products were determined for strains NIZO R5, T165P1, T165P2, and T165P3 (Fig. 

3D) and were found to agree with the proposed model for Tn527<5 excision and insertion (Fig. 2). 

DISCUSSION 

This paper describes the analysis of Tn527<5 site-specific recombination through the analysis 

of the nucleotide sequences of its products both in vivo in L. lactis and in an artificial system in 

E. coli. 

The sequence variability of the Tn5276 site-specific recombination products showed that 

heteroduplexes are probably allowed in the overlap regions in Tn527<5 site-specific recombination. 

Heteroduplexes in the regions of strand exchange are a prominent feature of the models for 

excision and insertion of Tn976" and Tnl545 (Caparon and Scott, 1989; Poyart-Salmeron et al., 

1990). In site-specific recombination between sites with non-identical overlap regions mediated by 

the integrase of bacteriophages X, the partial heteroduplexes in the overlap region can limit or 

prevent branch migration from the first to the second exchange site (De Massy et al., 1989). As 
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a consequence, the location of the second single-strand exchange point is probably altered and 

formation of heteroduplex products is prevented. This results in the unequal segregation of the 

mismatched bases into the two recombination products (Weisberg et ai, 1983, Bauer et al., 1989). 

In contrast, the Tn5276 Int-mediated excision reaction in E. coli appeared to proceed efficiently 

in the presence of functional Tn5276 Xis (Rauch and De Vos, 1993). In addition, the mismatched 

bases were found to be evenly distributed over the recombination products in Tn527<5 excision and 

insertion. Both observations strongly suggest that the generation of a single basepair heteroduplex, 

as found in the Tn5276 overlap regions after its insertion into L. lactis MG1614 attBl, is no barrier 

for Tn5276 site-specific recombination. 

After insertion of Tn5276 into attBl of strain MG1614 heteroduplexes can be resolved through 

replication or corrected by a mismatch repair system. The results obtained here indicate that 

mismatch repair is responsible for correction of the mismatches. The appearance of different 

combinations of attL and attR sequences and of heterogeneous Tn5276 insertion patterns in the 

original transconjugant colonies indicate that transconjugant colonies appear containing progeny 

from separate mating events. It is conceivable that mating complexes (possibly mediated by 

aggregation proteins) are formed in which a number of donor and recipient cells are joined and 

different transfer events take place. In this respect one should bear in mind that L. lactis grows in 

chains and that chain-chain interaction may occur. 

In analogy to lambdoid phages and other genetic elements that site-specifically recombine with 

the bacterial genome, we termed Tn527<5 insertion sites attB sites and the joint of the circular 

intermediate part of the Tn5276 attP site. We do not know the size of the Tn5276 attachment sites; 

in analogy to X these sites should contain all regions involved in binding of proteins involved in 

the recombination process. The insertion profiles of different transconjugants (Fig. 3 A; Rauch and 

De Vos, 1992a) show that Tn5276 can insert into at least six sites in the genome of L. lactis 

MG1614, of which three sites (attBl, B2, and B3; 1, 2, and 3 in Fig. 3A) are used most often. Of 

these three sites, attBl is preferred. This insertional behavior probably reflects the need for the 

presence of specific sequences with sufficient similarity to the putative attP core region for Tn527<5 

insertion to occur. Using the model for excision of 1x6276 (Fig. 2), two Tn5276 attB sites, NIZO 

R5 attB and MG1614 attBl, can be deduced from the attL and attR sequences in L. lactis NIZO 

R5 (Rauch and De Vos, 1992a; Fig. 2) and the second site in L. lactis T165.4 (Fig. 1), respectively, 

and added to attBl of L. lactis MG1614 (Fig. 5). Remarkably, the Tn5276 insertion site found in 
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the wild-type strain L. lactis NIZO R5 shares a stretch of 25 bp with the 1x6276 attP site. In 

analogy to X, these regions in 1x^276 attP and L. lactis NIZO R5 attB could be termed the core 

regions of these attachment sites. The two L. lactis MG1614 attB sites attBl and attB2 share only 

13 and 15 bp with the attP core region, respectively. Apparently, regions outside the proposed core 

region are of importance for 1x6276 insertion, since L. lactis MG1614 attBl is preferred for 

insertion over attB2, despite its lower percentage of identity to attP and the presence of a mismatch 

in the overlap region. 

•Vu.5276 attP AAAAT 

NIZO R5 attB AATAG 

MG1614 attBl AATAA 

MG1614 attB2 TTTCA 

ATAATOOAAA TTTTTO A T ACACATA 

ATAATOOAAA TTTTTO A T ACACATA 

GCCTTGTGTT TTTTTO C T TTCCATA 

ACTTGTCAAA TTTTTO A T ATTCAAT 

TAAAG 

CTCAT 

CTTTT 

AATTC 

FIG. 5. Comparison of determined and deduced 1x6276 attP and attB sites. The sizes of the attP and attB 
sites (defined as the regions in which proteins involved in recombination bind) are unknown and only the parts 
relevant to the comparison are shown. The attP sequence is that present in the circular form of 1x6276 after 
excision from its location in L. lactis NIZO R5. NIZO R5 attB and MG1614 attB2 have been derived from 
the 1x6276 junction sequences in L. lactis NIZO R5 and the secondary insertion in L. lactis T165.4 (see Fig. 
1), respectively, using the model in Fig. 2. MG1614 attBl is L. lactis MG1614 site 1 (Rauch and De Vos, 
1992a). The 'core region', defined as the region of sequence identity between attP and NIZO R5 attB, is 
boxed. Nucleotides identical to attP in this region are in bold face. The outer and inner triangles indicate the 
maximal and minimal overlap regions, repsectively, generated by the Int-mediated single-strand cuts as based 
on the nucleotide sequences of Tn5276 site-specific recombination products. 

When the insertional behavior of 1x6276 is compared to that of other genetic elements that use 

Int-mediated site-specific recombination for insertion and excision into bacterial genomes, 1x6276 

appears to combine the properties of two different groups of mobile elements. Like lxt916 and 

1nl545,1x6276 can insert into several sites, which show only limited sequence similarity to the 

inserting transposon. However, in the cases examined thus far for 1x6276, the recombining sites 

contain overlap regions of (near) sequence identity, like in the case of the temperate bacteriophages 

and streptomycete integrative plasmids (Hoess et al., 1982; Weisberg et al., 1983; Brown et al., 

1990). 

Excision and insertion of 1x6276 are mediated by 1x6276 Int. In site-specific recombination 

reactions, a pair of single-stranded cuts is made and single-stranded (5' or 3') overhanging ends 

are generated, creating an overlap region. The members of the integrase family of site-specific 
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recombinases of which strand exchange has been examined generate 5' protruding ends of 6-8 

bases (Sadowski, 1986). For Tn97<5 and Tnl545, nucleotide sequencing data suggest overlap 

regions of 5 to 8 basepairs (Caparon and Scott, 1989; Poyart-Salmeron et al., 1989,1990). As was 

done for Tx\916 and Tnl545, possible positions of the cuts generated by Tn5276 Int can be 

postulated, based on the nucleotide sequences of recombination products (Fig. 2 and 5). The 

resulting overlap region could be 1 to 8 bp long (Fig. 5). Comparable to the experiments with 

Tn97<5 and lnl545, we presently cannot distinguish between the generation of 5' or 3' protruding 

ends in the overlap region. 

Using PCR amplification, we were able to show the presence of circular forms of Tn5276 in 

the wild-type strain L. lactis NIZO R5 and several L. lactis MG1614-derived transconjugants. 

Apparently, the circular forms were present in very low amounts, since they were not visible in 

hybridization analyses (Rauch and De Vos, 1992a) and two PCR amplification rounds were needed 

to obtain sufficient amounts of product for nucleotide sequencing. The nucleotide sequences of the 

amplification products were as predicted by the model for Int-mediated excision. This was also the 

case for the joints of the circles formed by the excised Tn5276 ends in the presence of a functional 

int gene (Fig. 4). Therefore, it is very likely that the circular forms of Tn5276 detected in L. lactis 

are the products of Int-mediated excision of Tn5276 and are the intermediates that are transferred 

in conjugal matings. It could not be determined whether the heteroduplex present in the circular 

form immediately after excision from one site was maintained or repaired. Low-level excision of 

Tn5276 might be responsible for the instability of nisin production reported for some strains 

(Kozak et al., 1974). Possibly, only the small fraction of cells containing Tn5276 in the free, 

circular form is 'conjugally competent'. For Tn5381 it has been shown that exposure to tetracycline 

raises both the level of free, circular form of the transposon and the frequency of conjugal transfer 

(Rice et al., 1992). This phenomenon is in line with the assumption that gram-positive, conjugative 

transposons can only be transferred from cells that contain their free, circular forms. Contact 

between a 'competent' donor cell and a recipient cell might then trigger the transfer of TnJ276 

between these cells (see also Scott, 1992), and possibly also between other cells in the strands 

containing them. The elucidation of the cell-to-cell transfer mechanism(s) of conjugative 

transposons will provide a challenge for future genetic research in gram-positive bacteria. 
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EXPERIMENTAL PROCEDURES 

Bacterial strains, plasmids and bacteriophages; microbiological techniques. The lactococcal 

strains used are referenced in the text or below. For PCR amplification of the Tn527<5 junctions in 

attB2 in L. lactis T165.4 (Rauch and De Vos, 1992a), a derivative (designated T165.4S2) was used 

that was obtained after repeated subculturing and that no longer contained the copy inserted into 

attBl. E. coli HB101 (Boyer and Roulland-Dussoix, 1969) was used as a host for pNZ780, 

pNZ781, and pNZ783 (Rauch and De Vos, 1993) and E. coli TGI (Gibson, 1984) as a host for 

M13mpl9 (Yanisch-Perron et al., 1985). 

Growth and culture conditions were as described (Rauch and De Vos, 1992a). The conjugal 

mating between L. lactis strains NIZO R5 (Galesloot and Pette, 1957) and MG1614 (Gasson, 1983) 

was performed as described by Broadbent and Kondo (1991). 

DNA amplification methods. All PCR reactions were carried out in reaction mixtures 

composed as described previously (Kuipers et al., 1991) and, unless indicated otherwise, with 

approximately 100 ng of L. lactis total DNA as a template. The oligonucleotide primers used are 

listed in Table 1. Except in the cases indicated, PCR was performed in 30 cycles, each cycle 

consisting of a denaturing step at 93°C for 1 min, a primer annealing step at a temperature 

dependent on the primers used (see below) for 1.5 min, and an extension step at 72°C for 2.5 min 

using a Biomed Thermocycler 60 (ICN Biomedicals, Inc., Amsterdam, The Netherlands). For 

purification, the amplification products were electrophoresed on 2% agarose gels and recovered as 

TABLE 1. Oligonucleotides used in this study 

Code Nucleotide sequence Location 

PL1 5'-GCTGTATAGTTTTGCTTTGG Tn5276 left end; complementary to nucleotides (nt) 107-126 
in Rauch and De Vos, 1992a) 

PL2 5'-GTATGAACTAGGGCTG left hand region of attBl; 5'-end 156 nt to the left of the 
TTTTTG hexanucleotide 

PR1 5'-CTAACCAAGAGACTAACC Tn527<5 right end; nt 118-135 in Rauch and De Vos (1992a) 
PR2 5'-AACTGGCAAATCATGG right hand region of attBl; 3'-end 86 nt to the right of the 

TTTTTG hexanucleotide 
IPL1 5'-GGTTGTTTGTTTCGGAAG TnJ276 left end; 5'-end located 5434 nt to the right of the 

TTTTTG hexanucleotide and 57 nt to the left of the nearest 
EcoRI site (Kuipers et al., 1993) 

SPR1 5'-AATCATGAGGAAGATTAGGG TnJ276 right end; nt 158-177 in Rauch and De Vos (1992a) 
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described previously (Rauch and De Vos, 1992a). Oligonucleotides were synthesized on a Cyclone 

DNA synthesizer (MilliGen Biosearch Division, San Rafael, Calif.). 

For the amplification of the left end right junctions of Tn5276 inserted into attBl of L. lactis 

MG1614-derived transconjugants, primer pairs PL1 and PL2 (annealing temperature 43°C; 270 bp 

product) and PR1 and PR2 (annealing temperature 41°C; 240 bp product) were used, respectively. 

For amplification of the joints of Tn527<5 circles, primers PL1 and PR1 (annealing temperature 

45°C; 250 bp product) were used. 

Inverse or circular PCR for the amplification of the left junction of Tn5276 in L. lactis 

T165.4S2 was carried out using a protocol based on the conditions described by Ochman et al. 

(1990). The protocol was as follows. Approximately 1 ug of total DNA was digested with EcoRI 

and after phenol extraction it was ethanol precipitated. After resuspension in 10 mM Tris.HCl, 1 

mM EDTA (pH8.0), approximately 10 ng of EcoRI-linearized total DNA was circularized through 

overnight ligation at 15°C in 50 ul of T4 ligation buffer (Gibco/BRL Life Technologies, 

Gaithersburg, Md.) using 1 Weiss unit of T4 DNA ligase (Gibco/BRL). From the ligation mixture, 

2 pi was used in a PCR amplification reaction using IPL1 and PL1 as primers (annealing 

temperature 47°C). The size of the resulting amplification product (approximately 300 bp) was as 

expected from the size (5.8 kb) of the EcoRI fragment containing the left junction of Tn527<5 

(Rauch and De Vos, 1992a) and the position of the Tn5276 EcoRI site closest to the left end (5.6 

kb from the n i l lG hexanucleotide; Kuipers et al, 1993). 

For the amplification of the right junction of Tn527<5 from total DNA of L. lactis T165.4S2, 

a modification of the PCR mediated by a single primer described by Parks et al. (1991) was used. 

Total DNAs from L. lactis MG1614 and L. lactis NIZO R5 served as negative controls. The 

procedure was as follows. Oligonucleotide SPR1 was used as a primer in standard reaction 

mixtures composed as described above. The PCR consisted of two stages. The first (low stringency) 

stage consisted of 20 cycles, which included a denaturing step at 93°C for 1 min, a primer 

annealing step at 30°C for 1.5 min, and two extension steps at 56°C (1 min) and 72°C (2.5 min). 

The second (high stringency) stage was identical to the first stage, except that the temperature of 

the annealing step was raised to 47°C. Under these conditions L. lactis NIZO R5 DNA failed to 

produce amplification products, while L. lactis MG1614 DNA produced a significant amount of 

an amplification product of approximately 700 bp, next to low amounts of smaller products. The 
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DNA of L. lactis T165.4S2, next to these products, gave rise to an amplification product of 

approximately 500 bp. 

DNA manipulations, agarose gel electrophoresis, DNA transfer, and hybridization. DNA 

manipulations and agarose gel electrophoresis were carried out as described previously (Rauch and 

De Vos, 1992a). DNA was transferred from agarose gels to GeneScreen Plus nylon membranes (Du 

Pont, NEN Research Products, Wilmington, Del.) also as described previously (Rauch and De Vos, 

1992b). Membranes were hybridized to an oligonucleotide probe specific for the left end of Tn5276 

(PL1; Table 1) at a hybridization temperature of 54°C. Hybridization and washing conditions were 

as recommended by the membrane manufacturer. 

DNA sequencing. Subclones in M13mpl9 were sequenced by the dideoxy chain termination 

method (Sanger et ah, 1977) adapted for Sequenase version 2.0 (U.S. Biochemical Corp., 

Cleveland, Ohio). Double stranded DNAs (pNZ780 derivatives and amplification products) were 

sequenced by the method of Hsiao (1991). When sequencing amplification products (isolated from 

agarose gels), 0.5% Non-idet P40 (Gibco/BRL) was added to all reaction mixtures and the amount 

of primer was raised to 10 pmol. Oligonucleotide primers specific for the regions to be sequenced 

were chosen from the list in Table 1. 
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Abstract The distribution, architecture, and conjugal capacity of nisin-sucrose elements in wild-type 

Lactococcus lactis strains were studied. Element architecture was analyzed with the aid of 

hybridizations to different probes derived from the nisin-sucrose transposon Tn5276 of L. lactis NIZO 

R5, including the nisA gene, the left and right ends, and IS/065 (formerly designated iso-IS904) 

located between the left end and the nisA gene. Three classes of nisin-sucrose elements could be 

distinguished in the thirteen strains investigated. Classes I and II consist of conjugative transposons 

containing a nisA gene and a nisZ gene, respectively. Representative conjugative transposons of these 

classes include Tn5276 (class I) from L. lactis NIZO R5 and Tn527« (class II) from L. lactis ILC11. 

The class II transposon found in L. lactis NCK400 and probably all class II elements are devoid of 

IS/06S-like elements, which eliminates the involvement of an iso-IS/068 element in conjugative 

transposition. Members of class III contain a nisZ gene, are non-conjugative and do not contain 

sequences similar to the left end of Tn5276 at the appropriate position. The class III element from 

L. lactis NIZO 22186 was found to contain an iso-IS/06# element, termed IS1069, at a position 

corresponding to that of IS/068 in Tn5276, but in an inversed orientation. The results suggest that 

an iso-IS/068-mediated rearrangement is responsible for the dislocation of the transposons left end 

in this strain. A model for the evolution of nisin-sucrose elements is proposed and the practical 

implications for transferring nisin A or nisin Z production and immunity are discussed. 

INTRODUCTION 

Interest in the structure, function, and application of the lantibiotic nisin, produced by a number 

of Lactococcus lactis strains, has led to the identification of conjugative transposons carrying the 

genetic information for nisin biosynthesis, sucrose fermentation, and other traits (for a review see 

29). The recently described transposons Tn5276 from strain NIZO R5 (27), TnJ30/ from strain 

NCFB 894 (15), and TnJ507 from strain ATCC 11454 (2, 11, 33) are all approximately 70 kb in 

size and show a similar organization. Upstream from the nisin structural gene, nisA, the transposons 

contain an identically orientated IS element, designated IS904 in Tn530/ (4) and IS/ 068 (formerly 

called IS904 or iso-lS904) in Tn5276 (26,27). The nucleotide sequence of IS1068 differs from that 

of 1S904 in eight positions and as a consequence has an increased coding capacity (25). The 

nucleotide sequences of the ends of Tn5276 and Tn530/ are identical and both contain a single 

copy of the IS element that is separated from the left end by approximately 250 bp (15, 27). In 

contrast to earlier suggestions (2, 4, 33), it is unlikely that this IS element is involved in 
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conjugative transposition since (i) the sites in which Tn5276 and Tn5307 were found to insert show 

no homology to the IS element, and (ii) exision of the ends of Tn527<5 was found to depend on the 

activity of int and xis genes that are located at the right end of Tn527d (28). 

Recently it was found that there are two natural variants of nisin, nisin A and nisin Z encoded 

by the nisA and nisZ gene, respectively (3, 22). Both variants contain dehydrated amino acids and 

lanthionine rings (13, 22), but they differ in a single amino acid (Asn instead of His in nisin Z at 

position 27). Due to this substitution, nisin Z shows larger inhibition zones in agar diffusion assays 

than nisin A (3). It was found that the nisA and nisZ genes are distributed equally among 23 

naturally occurring, sucrose-fermenting L. lactis strains (3). All conjugative transposons studied up 

to now code for the production of nisin A. Since conjugal transfer of the ability to produce nisin 

is of considerable significance in industrial strain improvements (1,8, 12), it was of interest to 

determine whether the production of nisin Z could also be conjugally transferred simultaneously 

with the capacity to ferment sucrose. Therefore, we compared the conjugative capacity of nisin Z-

and nisin A-producing strains and examined the organization of their nisin-sucrose elements. We 

found that the L. lactis nisin-sucrose elements are heterogeneous and can be grouped into three 

classes based on their architecture. A new iso-IS706<S element, designated 1S1069, was 

characterized in L. lactis NIZO 22186, which produces nisin Z (22). There appeared to be a strong 

correlation between the integrity of the extreme ends of the investigated elements and the ability 

to conjugally transfer sucrose fermentation and the production of nisin. 

MATERIALS AND METHODS 

Bacterial strains and culture and conjugation conditions. Escherichia coli TGI (10) was 

used as a host for M13-derived vectors. The L. lactis strains used are listed in Table 1. Conjugal 

matings and the identification of transconjugants were carried out as described previously (27). 

DNA manipulations and hybridizations. Bacteriophage and plasmid DNAs were isolated from 

E. coli essentially by using established protocols (30). Isolation of total L. lactis DNA was carried 

out as described previously (27). DNA was digested with restriction enzymes (Gibco/BRL Life 

Technologies, Gaithersburg, Md.) as recommended by the manufacturer and separated by agarose 

gel electrophoresis as described (30). DNA fragments were recovered from agarose gels with a 

USBioclean kit (U.S. Biochemical Corp., Cleveland, Ohio) or transferred to GeneScreen Plus nylon 
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membranes (Du Pont, NEN Research products, Wilmington, Del.) with the use of a VacuGene XL 

unit (Pharmacia LKB Biotechnology AB, Uppsala, Sweden) and using the alkaline blotting protocol 

supplied by the manufacturer. Hybridization, washing, and deprobing conditions were as 

recommended by the membrane manufacturer. 

As a probe for sequences homologous to the left end of Tn527<5 (Tn5276-L probe), an 

oligonucleotide with the sequence 5'-CCAAAGCAAAACTATACAGC (nt 107-126 in the sequence 

of the Tn5276 left end [27]) was used at a hybridization temperature of 54°C. As probes for 

IS706S-like sequences oligonucleotides with the sequences 5'-GAGCTGAGGCTACTCA (IS-I 

probe; nt 1165-1180 in Chapter 3, Fig. 2) and 5'-GGCATGAACCTCAAGC (IS-II probe; 

complementary to nt 224-239 in Chapter 3, Fig. 2) were used at a hybridization temperature of 

TABLE 1. L. lactis strains used in this study and classification of their nisin-sucrose elements 

Strain 

NIZOR5 
INRA2 
INRA3 
INRA5 
NZI 
ILC13 

ILC11 
ILCpSL5 
NCK400 

NIZO 22186 
ILC19 
ILC126 
ILCpSL20 

MG1614" 

Source 
(reference)* 

NIZO (6) 
INRA (3) 
INRA (3) 
INRA (3) 
UP (3) 
ILC(3) 

ILC(3) 
ILC(3) 
NCSU (14) 

NIZO (22) 
ILC(3) 
ILC(3) 
ILC(3) 

(7) 

Type of 
nisin geneb 

nisA 
nisA 
nisA 
nisA 
nisA 
nisA 

nisZ 
nisZ 
nisZ 

nisZ 
nisZ 
nisZ 
nisZ 

none 

Conjugative 
capacity* 

+ 
+ 
-
+ 
+ 
+ 

+ 
+ 
+ 

_ 
-
-
-

-

Classd 

I 
I 
I 
I 
I 
I 

II 
II 
II 

in 
in 
m 
in 

-

Lane no. 
in Fig. 1 

1 
3 
4 
5 
6 
8 

7 
11 
13 

2 
9 
10 
12 

-

* INRA, G. Limsowtin, Institut National de Recherche Agronomique, Jouy en Josas, France; 
UP, M. Nuti, University of Padua, Padua, Italy; ILC, G. Giraffa, Instituto Sperimentale Lattiero-
Caesiario, Lodi-Milan, Italy; NCSU, T. R. Klaenhammer, North Carolina State University, 
Raleigh, USA. 

b see ref. 3. 
c +, conjugative; -, non-conjugative: result of 3-10 independent conjugation experiments. 
d for definitions of classes see text. 
' plasmid-free, streptomycin- and rifampin-resistant strain used as recipient in conjugation 

experiments. 
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48°C. As a probe for the nisA or nisZ genes, an oligonucleotide with the sequence 5'-

ATGGGTTGTAATATGAAAAC (nis probe; 27) was used at a hybridization temperature of 45°C. 

Two different probes homologous to sequences at the right end of lr\5276 were used. One was an 

oligonucleotide with the sequence 5'-GGTTAGTCTCTTGGTTAG (Tn527<5-R probe; 

complementary to nt 118-135 in the nucleotide sequence of the Tn527<5 right end; 27) that was used 

at a hybridization temperature of 50°C. The other was the 2.3-kb Hindffl-EcoKl fragment from 

pNZ774 (27) located at the right end of Tn527d that was hybridized at 65°C. The latter probe was 

labeled by nick-translation using [oc-32P]ATP whereas all oligonucleotides were end-labeled with 

[y-32P]ATP as described (30). 

DNA sequencing. The nucleotide sequences of both strands of the iso-ISi06S element (1S1069) 

upstream from the nisZ gene of L. lactis NIZO 22186 and its surrounding regions were determined 

following the dideoxy-chain termination method (31) adapted for Sequenase version 2.0 (U.S. 

Biochemical Corp.) with overlapping restriction fragments cloned into M13mpl8 and M13mpl9 

(36) and using either the M13 universal primer or synthesized primers. Oligonucleotides were 

synthesized on a Cyclone DNA synthesizer (MilliGen Biosearch Division, San Rafael, Calif.). The 

sequence data were assembled and analyzed with the PC/Gene program version 5.01 (Genofit, 

Geneva, Switzerland). 

Polymerase Chain Reaction (PCR). PCR experiments were performed in reaction mixtures 

composed as described previously (19) containing approximately 100 ng of L. lactis total DNA as 

a template. The oligonucleotide primers used were nislO (5'-GGATAGTATCCATGTCTGAAC; 

complementary to bases 201-221 in the nucleotide sequence of the nisZ gene of L. lactis NIZO 

22186 [22]) in combination with either IS-I or IS-II. PCR was performed in 30 cycles, each cycle 

consisting of a denaturing step at 93°C for 1 min, a primer annealing step at 45°C for 1.5 min and 

an extension step at 72°C for 2.5 min, using a Biomed Thermocycler 60 (ICN Biomedicals, Inc., 

Amsterdam, The Netherlands). 

Nisin bioassays and differentiation. Supernatants of L. lactis strains were analyzed for the 

production of nisin by the agar diffusion assay with Micrococcus luteus as indicator (3). 

Differentiation between the production of nisin A and nisin Z was obtained by analyzing 

supernatant samples concentrated by hydrophobic interaction chromatography using reversed-phase 

HPLC as described (3, 22). 
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RESULTS AND DISCUSSION 

Conjugative transfer of sucrose fermentation and the production of nisin Z and nisin A. 

Nisin Z was initially found to be produced by L. lactis strain NIZO 22186, which also ferments 

sucrose (22). Numerous attempts to conjugally transfer the capacity to ferment sucrose and nisin 

Z production from strain NIZO 22186 to L. lactis MG1614 or other lactococcal strains failed (data 

not shown). In contrast, transfer of Tn5276 from L. lactis NIZO R5 specifying nisin A production 

was easily achieved under the same conditions (27). Therefore, other available nisin Z producers 

were screened for their capacity to conjugally transfer the ability to ferment sucrose to strain 

MG1614 (Table 1). Three out of seven L. lactis strains containing the nisZ gene were found to 

transfer the capacity to ferment sucrose and nisin production, with similar frequencies as Tn5276 

was transferred from strain NIZO R5 (108 to 10'6 colony forming units (CFU) per CFU of donor). 

A transconjugant obtained from the mating of strains ILC11 and MG1614 was studied in more 

detail and as expected produced nisin Z (data not shown). This and other studies (see below) 

indicated that also nisin Z production was encoded by a conjugative transposon, which also carried 

sucrose genes. The transposon present in L. lactis DLC 11 was designated Tn527S (registered with 

the Plasmid Reference Centre [20]). 

To determine whether conjugally inactive nisin-sucrose elements are only found among L. lactis 

strains carrying the nisZ gene, five nisin A producers other than strain NIZO R5, which carries 

Tn5276, were also tested for the capacity to transfer sucrose proficiency and nisin production 

(Table 1). Except for strain INRA 3, all nisin A producers contained nisin-sucrose elements that 

could be readily transferred in conjugal matings. 

A likely explanation for these results is that nisin-sucrose elements similar to Tn5276 or Tn527S 

were present in all strains, but that in some cases the transposon had lost its conjugative capacity. 

Heterogeneity between nisin-sucrose elements in L. lactis. To characterize the Tn5276- or 

Tn5278-like elements in the 13 studied strains at the DNA level, we hybridized HindEI digests of 

total DNAs to a probe for the nisA or nisZ gene (nis probe). The results (Fig. 1A) show that all 

strains contain at least one copy of a nis gene. From previous studies (26, 27) and the complete 

nucleotide sequence analysis of the 10-kb nis operon of Tn527<5 (18, 35) we know that the nisA 

gene is located on a 4.2-kb HincRIl fragment that is flanked by parts of 1S1068 (26, 27) and the 

nisT gene (18). In nisin A producers, this part of the nis operon is very well conserved at the 
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FIG. 1. Hybridizations of total DNAs from wild-type, nisin-producing L. lactis strains to Tn5276-specific 
probes. Total DNAs were digested with Hindlll and separated by agarose gel electrophoresis. A Southern blot 
was hybridized to the nis probe (A), IS-I probe (B), Tn5276-L probe (C), and Tn5276-R probe (D). The lanes 
contain DNA from the following strains: 1, NIZO R5; 2, NIZO 22186; 3, INRA 2; 4, INRA 3; 5, INRA 5; 
6, NZI; 7, ILC11; 8, ILC13; 9,1LC19; 10, ILC126; 11, ILCpSL5; 12, ILCpSL20; 13, NCK400. Lanes 7 and 
10 contain small quantities of undigested DNA. 

sequence level, as was found by comparing the Tn527<5 nis genes and their upstream region with 

those of ln5301 (15), Tn5307 (32), and L. lactis strain 6F3 (5). This explains why all nisin A 

producing strains contained an approximately 4.2-kb Hindlll fragment that hybridized with the nis 

probe. However, the nisin Z producers contained Hindlll fragments of either 4.7 kb (NIZO 22186) 

or approximately 9.6 kb (other strains) that hybridized to the nis probe (Fig. 1A), indicating that 

the organization of the region upstream from the nisZ gene is different from that preceding the nisA 

gene. 
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Distribution of IS1068-\ike elements and characterization of 1S1069 preceding the nisZ 

gene in L. lactis NIZO 22186. To study the organization upstream from the nisZ gene in the nisin 

Z producers, we first determined whether they contained an IS70<5S-like element by hybridization 

of their DNAs with the IS-I probe that is specific for iso-IS7068 elements and is located on the 

4.2-kb //indlll fragment also containing the nisA gene in Tn5276 and Tn5507 (4, 26, 27; Fig. 2). 

Similar experiments were done with the nisin A producers. The results (Fig. IB) showed that 

IS7068-like elements are abundant in most strains and that they have possible use as a way to 

differentiate strains by IS typing as previously suggested (9). Only the nisin A producers appeared 

to contain an iso-IS70<5S element upstream from the nisA gene, since the same 4.2-kb Hindlll 

fragment hybridized to the nis probe and the IS-I probe. However, to detect inverted IS70<5S-like 

elements upstream from the nis genes, the same digested DNAs were also hybridized to the 

IS7068-specific probe IS-II, which is complementary to sequences in between the Hindlll site in 

IS706S or IS904 and the left end of Tn5276 or Tn5507 (4,26,27; Fig. 1). The results (summarized 

in Fig. 2) showed that such an inverted IS7068-like element was present only upstream from the 

nisZ gene of strain NIZO 22186. To substantiate this further, the nucleotide sequence of the region 

hybridizing Hindlll fragments (kb)' 

T 9 ? t 
Tn527<5L IS-II IS-I nis 

-H/—7vm 
H n . H 

l_ 

IS nisA 

H 

•tfc 
H 

nisZ 
~H _ H 

III -" VWA I ' "\ 4.7 5.0 
22186 IS nisZ 

H 

III - I - ' " 1 ' \ - - 8.9 
II.C19, 126. pSI.20 

1 -, no hybridization or hybridization 
to HindlU fragment(s) elsewhere in the 
genome; x, can vary from strain to strain 
(dependent on location marked (*) HindlU 
site) but is identical within strains 

FIG. 2. Architecture of left end regions of nisin-sucrose elements and location of the probes used. Lengths 
of hybridizing fragments are from Fig. 1. H: HindlU site. 
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around the ///ndlll site upstream from the nisZ gene of L. lactis NIZO 22186 was determined (Fig. 

3). Indeed, this region contained an IS-like element that was very similar to IS1068 from Tn5276. 

We have designated this element 1S1069 (registered with the Plasmid Reference Centre [Lederberg, 

1987]). As expected, the orientation of 1S1069 was opposite to that of IS1068. More 

importantly,the nucleotide sequence of the region left of IS1069 was completely different from that 

of the corresponding region in NIZO R5 and only half of the TTAT target repeat that flanks IS904 

in Tn5301 (4) and 1S1068 in Tn527<5 (26) was found to border 1S1069 (Fig. 3B). Since this region 

constitutes the left end of Tn5276, we propose that IS-mediated rearrangements have dislocated or 

deleted the left end of the nisin-sucrose element of L. lactis NIZO 22186, that as a consequence 

has become defective since conjugative excision, the first step of its conjugal transposition, would 

be impaired. 

The here characterized 1S1069, located upstream from the nisZ gene in L. lactis NIZO 22186, 

is the fifth in a group of L. lactis IS-like elements that show high (94-99%) nucleotide sequence 

identity and belong to the 1S3 group of insertion sequences (4, 16, 26). However, the small 

differences on the nucleotide level result in important differences in the coding capacities of these 

elements. IS1068 and IS1069 from Tn5276 and L. lactis NIZO 22186, respectively, show an 

organization of ORFs that is similar to that found in most members of the IS3 group: a small 

ORFA potentially translationally coupled to a larger ORFB, together covering almost the complete 

IS element (Fig. 3A; 24). The ORFAB fusion protein probably is the active transposase and 

production of the transposase as a fusion protein possibly plays a role in the regulation of IS 

transposition activity (23). In 1S904 from Tn5507 several deletions with respect to ISJ068 and 

1S1069 result in the lack of coding capacity for the first 440 bp of the element and only one ORF 

is present (4). This suggests that IS904 is no longer transpositionally active. IS7076L and IS7076R 

from L. lactis Z270 (16) possess one large ORF covering the region that encompasses ORFA and 

ORFB in IS1068. Regulation of the transposition activity of the latter IS elements apparently is not 

effected through production of the transposase as a fusion protein. 

Relation between the architecture of nisin-sucrose elements and their conjugative capacity. 

The results concerning the organization of the nisin-sucrose element in NIZO 22186 suggest that 

in other non-conjugative strains rearrangements in the region upstream from the nisin structural 

gene or elsewhere have rendered the nisin-sucrose elements non-conjugative. To test this 

possibility, we studied the architecture of nisin-sucrose elements using probes specific for the left 
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S G F Y E Y M H R R P S K Q Q V E R E I L S E K I K A V F H E H K G 1 5 8 

• G 
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B 181068 
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2 2 1 8 6 AAGAAAACTATTTTAAGAAATOOAAAOTCAACOAAAAACT. • .AQTOTATTATAACCTTTCCATTATGCTTGGA'm'rTTATT > n i s A 

1 1S1069 ' 
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and right ends of Tn5276 (Figs. 1, 2C, and 2D) in the eight conjugative and the five non-

conjugative nisin producers. The results (summarized in Table 1 and Fig. 2) showed that three 

classes of nisin-sucrose elements could be distinguished, designated class I, II, and III. Class I (or 

the Tn527<5-like class) includes elements that contain a nisA gene and a left end region (including 

an iso-IS1068 element) that is similar or identical to that of Tn5276 of strain NIZO R5. All 

elements in this class are conjugative, except that of L. lactis INRA 3. The class II elements (or 

the Tn52Z8-like elements) contain a nisZ gene and do not contain a sequence that hybridizes to the 

1S1068 probes immediately upstream from this gene. However, elements of this class do contain 

a region that is similar or identical to the left end of Tn527<5 upstream from the nisZ gene and all 

of them are conjugative. The class II element-containing strain NCK400 is completely devoid of 

IS/0<5S-like sequences. This shows that iso-lS1068 elements are not involved in the conjugative 

transposition of nisin-sucrose elements. The elements in class III all contain a nisZ gene but this 

is not preceded in its close vicinity by a sequence hybridizing to the Tn5276-left end probe. This 

is compatible with the finding that all class III elements are non-conjugative. There are two groups 

of class III elements (Fig. 2). Strains ILC19, ILC126, and ILCpSL20 belong to one class and 

completely lack sequences with homology to the left end of Tn5276 (Fig. 1C). These strains also 

contain no IS/068-like element immediately preceding the nisZ gene as was found in the 

hybridization studies (Fig. IB) and using PCR amplification. In the latter experiments, amplification 

was sought using IS-I or IS-II as a left primer and a primer located downstream from the nisin 

structural gene (nislO) as a right primer. With DNA from strains NIZO R5 and NIZO 22186, where 

the distance between the IS element and the nis gene is approximately 750 bp, amplification 

products of the expected sizes were obtained (NIZO R5: 1.2-kb product with IS-I and nislO; NIZO 

FIG. 3. Nucleotide sequence of IS1069 and its surrounding region. A: Nucleotide sequence of ISI069. 
The amino acid sequences deduced from the ORFs of significant length present in the sequence are given 
below the nucleotide sequence. Potential ribosome binding sites are denoted by stars over the bases that are 
complementary to the 3 ' end of L. lactis 16S rRNA (21). The tfi'ndlll site is in bold face. A putative -10 
TATAAT box is underlined, as are the 32-bp imperfect inverted repeats of the IS element, and the potential 
frameshift promoting motif (AAAAAAG; 24). The amino acid numbering corresponds to ORFAB, generated 
by a frameshift similar to that found for IS911 (23). Nucleotides in the DNA sequence and amino acids in 
the deduced ORFs that are different in IS J 068 are given over the nucleotide sequence and below the amino 
acid sequences, respectively (amino acid differences are also boxed). B: Nucleotide sequences of the regions 
flanking IS1068 in TnJ276 and IS1069 in L. lactis NIZO 22186. The IS element sequence is in bold face. 
The 4-bp target repeat flanking IS1068 is underlined. 
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22186: 1.2-kb product with IS-II and nislO), while DNA from strains ILC19, ILCpSL20, and 

ILC126 did not yield any products with either primer combination (data not shown). Since the limit 

of the PCR amplification reaction in our hands is approximately 2.5 kb, these results indicate that 

there is no iso-lS1068 element present in approximately 2 kb of the region upstream from the nisZ 

gene in the DNA ofstrains ILC19, ILCpSL20, and ILC126. Strain NIZO 22186 is the only 

representative of the other group of class III elements (Fig. 2). It contains sequences that hybridize 

to the left end of Tn527<5 but these are not located at the appropiate position upstream from 1S1069 

and the nisZ gene. This supports the assumption presented above that an iso-lS1068 mediated 

rearrangement has occurred in strain NIZO 22186. This rearrangement might be an inversion of 

the region between two inversely oriented IS elements or deletion of the region between two 

directly repeated IS elements through homologous recombination. Alternatively, IS7069 might have 

inserted as part of a composite transposon. 

All strains were found to contain a region (or regions) that is (or are) similar or identical to the 

right end of Tn527d. Thus, all non-conjugative elements, with the exception of INRA 3, differ from 

the conjugative elements by lacking a sequence that is similar to the Tn527d left end at the 

appropriate location. As proposed for strain NIZO 22186, the absence of the left end presumably 

prevents excision and thereby conjugal transfer. Apparently, other causes underly the inability of 

strain INRA 3 to conjugally transfer sucrose proficiency. 

Evolution of the nisin-sucrose elements in L. lactis. Class II nisin-sucrose elements are 

conjugative transposons encoding nisin Z production. Since they do not contain iso-IS706S 

elements upstream from their nisZ genes (Figure 1), it is likely that these class II elements are 

closest to the original nisin-sucrose element. The G+C content of IS1068 (37.7%; 25) is close to 

the L. lactis G+C content of approximately 38% (17, 34), while the G+C contents of the region 

surrounding the IS element and of other regions of Tn527<5 average 30% (25). This suggests that 

IS1068 was not originally part of the transposon and that the transposons origin lies outside 

Lactococcus. The nisin Z producer L. lactis NCK400, which was isolated from vegetables (14) and 

is completely devoid of iso-IS706S elements, could be a primary lactococcal source of an original 

nisin-sucrose element, which then would belong to class II. The class I element would then have 

been generated from a class II element by insertion of an iso-IS706S element, resulting in elements 

such as Tn5276. Since all class I elements contain a nisA gene, early in the generation of the class 

I element also a nucleotide substitution resulting in nisin A production must have occurred. 
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Elements of class I and II were able to spread themselves into different strains. Class III elements 

appear to be descendants of class II elements that were fixed in their positions by rearrangements 

that dislocated or deleted the left end of the transposon. Thus, class III elements are no longer 

transposons. 

Unknown genetic elements related to Tn5276 might be present in the genomes of several 

L. lactis strains. In the DNA of some strains more than one band hybridized to the Tn5276-L and 

-R probes (Fig. 1C,D). Strain ILCpSL5 (Fig. 1, lanes 11) apparently contains two copies of its class 

II nisin-sucrose element. Two Hindlll fragments hybridized to the Tn5276-L probe (Fig. 1C) and, 

because there is no IS706S-like element between the left end and the nisZ gene in class II elements, 

these fragments also hybridized to the nis probe (Fig. 1A). The hybridization to the Tn5276-R 

probe showed two strong signals probably corresponding to the right ends of the two class II 

elements. In addition to these strong hybridization signals, two additional signals of lower intensity 

could be seen in the hybridizations with the left and right end probes. A possible explanation for 

this could be the presence of two genetic elements with ends that are similar to those of Tn5276. 

In several other strains additional weak or even strong hybridizations with the Tn527d-L probe 

and/or the Tn527<5-R probe were observed (Fig. 1C J>). IS-mediated duplications could possibly be 

responsible for the occurrence of additional hybridizations. Alternatively, the origin of strong 

additional hybridizations could be the presence of genetic elements that contain regions similar to 

the left or right end of Tn527<5. Preliminary experiments with L. lactis MG1614 indicate that a 

region is present in this strain that is very similar to the right end of Tn5276, including the genes 

responsible for excision (25). For a further knowledge of gene transfer and evolution in L. lactis 

it would be of interest to identify this and other cryptic elements that show similarity to parts of 

Tn5276. 

In conclusion, among a variety of non-conjugative nisin-sucrose elements, also nisin Z 

conjugative transposons have been found such as Tx\5278 in strain ILC11. This allows the 

construction of industrial strains that produce nisin Z and may have advantages in some 

applications (3). 
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CHAPTER 9 

SUMMARY AND CONCLUDING REMARKS 



The bacteriocin nisin, produced by several Lactococcus lactis strains, is a promising alternative 

for the use of sodium nitrate against spoilage by Clostridium butyricum in Gouda cheese 

manufacture. The production of nisin by the starter culture would be an attractive means of 

supplying the bacteriocin during the cheese making process. Since wild-type nisin-producers are 

not suitable for use as starter cultures, transfer of nisin production to industrial strains would be 

the obvious solution. Most wild-type nisin-producers are able to transfer the ability to produce the 

bacteriocin to other L. lactis strains in a conjugation-like process. In this process, also the ability 

to take up and ferment sucrose is transferred. The aim of the study described in this thesis was to 

identify and characterize the conjugative element carrying the genetic information for nisin 

production and for sucrose proficiency. 

Chapter 2 presents an overview of the current knowledge of nisin genetics and of the results 

obtained thus far in nisin protein engineering. Some attention is also paid to other aspects with 

which nisin research is concerned, namely nisin application, biosynthesis, immunity and mode of 

action. 

In Chapter 3, the isolation and the characterization of the structural gene for the nisin A precursor 

(nisA) of L. lactis strain NIZO R5 are described. Since the cloning and characterization of the L. 

lactis NIZO R5 nisA gene, the analysis of the nis region has advanced significantly and now the 

nucleotide sequence, transcriptional organization, and regulation of the complete nisin gene cluster 

of this strain are known (7,18). The nisA gene of L. lactis NIZO R5 was found to be preceded by 

an IS-like element that has been designated IS1068 and belongs to the ISi family of insertion 

sequences. 

Chapter 4 deals with the characterization of the sucrose region of the nisin-sucrose element. 

L. lactis imports sucrose by means of a phosphoenolpyruvate-dependent phosphotransferase system. 

The product of this translocation is sucrose 6-phosphate, which is subsequently cleaved by a 

specific sucrose-6-phosphate hydrolase to glucose 6-phosphate and fructose. Fructose is then 

converted to fructose 6-phosphate by an ATP-dependent fructokinase. All these activities have been 

shown to be induced during growth on sucrose (15, 16). We isolated a large part of the L. lactis 

NIZO R5 sucrose operon and determined the nucleotide sequence of the sacA gene, encoding 

sucrose-6-phosphate hydrolase, and its flanking regions. The sucrose operon was found to contain 

two divergent transcriptional units. Transcription initiated at two sucrose-inducible promoters with 

a back-to-back organization. One transcriptional unit includes the sacB gene. This gene most proba-
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SacR GaIR 

FIG. 1. Interaction of the Escherichia coli GaIR helix-turn-helix motif with the gal operator half site (after 
reference 8) and the proposed interaction between L. lactis SacR and its putative operator. 

bly encodes the sucrose-specific Enzyme II of the PTS, which is involved in uptake of sucrose with 

concomitant phosphorylation. The size of this transcriptional unit (3.2 kb) would also allow the 

presence of the gene encoding the sucrose-inducible fructokinase. The other transcriptional unit 

includes the genes sacA and sacR. The protein encoded by the sacR gene is likely to be involved 

in the regulation of sac operon expression, since its deduced N-terminus is homologous to helix-

turn-helix DNA-binding domains found in several regulatory proteins and the sucrose operon 

promoter region contains a sequence that is similar to the consensus operator postulated for this 

group of regulatory proteins (Fig. 1). 

The question remains what the nature of the regulation of the sucrose operon is and how it is 

effected at the molecular level. The simultaneous, sucrose-induced transcription of the sacA and 

sacR genes suggests an activator function for the sacR gene product. A comparison of the position 

of the putative operator with respect to both the sacA and the sacB gene to the positions of known 

and putative operators in Escherichia coli (3) also points in that direction. In order to learn more 

about the regulation of the sucrose operon, studies on the interaction between SacR and the putative 

operator will be necessary, next to nucleotide sequence analysis of the complete operon. Northern 

blot analysis of RNA from cells grown on a combination of glucose and sucrose showed that the 

operon was not induced under those conditions, suggesting a possible role for catabolite repression 

in regulation of the sucrose operon (9). 
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Chapter 5 describes the use of gene probes for the nisin and sucrose regions isolated from the 

nisin conjugative element of L. lactis NIZO R5, as reported in Chapters 3 and 4, to identify this 

element and to characterize it in more detail. The element was found to be a chromosomally 

located conjugative transposon, designated 7n5276. The transposon was found to insert at various 

locations in the chromosome of L. lactis MG1614, but showed a preference for orientation-specific 

insertion into a single target site (now designated atlBl). A physical map of the 70-kb Tn527<5 was 

constructed and the single copy of 1S1068 present on the transposon, the nisin gene cluster, and 

the sucrose operon were located. The ends of TnJ276 were found to be flanked by a direct 

hexanucleotide repeat in both the donor L. lactis NIZO R5 and in site 1 of a MG1614-derived 

transconjugant, but the Tn527<5 ends do not contain an inverted repeat, as is the case for most other 

transposons. 

The identification and molecular analysis of genes involved in excision (and probably insertion) 

of Tn5276 are described in Chapter 6. The right end of Tn5276 was found to contain two genes, 

designated xis and int, that are involved in excision. In E. coli, the int gene product alone can 

promote excision of the Tn527d ends, but its activity is strongly promoted by the xis gene product. 

The int gene product (Int) shows high (up to 50%) similarity to various integrases, including that 

of the Tn976-related conjugative transposons and that of bacteriophage X. The xis gene product, 

like almost all known excisionase (Xis) proteins, is a small, basic protein. Next to a number of 

direct or inverted repeats that might act as Xis or Int binding sites, several subsequences can be 

found in the ends of Tn527<5 that conform to the proposed consensus binding sites of two E. coli 

proteins that have been shown to be involved in bacteriophage X site-specific recombination, i.e. 

Integration Host Factor (IHF; 4) and Factor for Inversion Stimulation (FIS; 5). Site-directed 

mutagenesis of the Tn527<5 ends followed by studying their effect in the E. coli 1x6276 excision 

system in conjunction with studies using E. coli strains deficient in the production of IHF and FIS, 

could be instrumental in identifying the binding sites of Xis and Int and in studying the role of 

DNA bending in Tn5276 recombination. 

In Chapter 7 the transposition (or rather site-specific recombination) mechanism of Tn52 76 is 

analyzed in more detail. It was shown that the circular form of Tn5276 is present in a low 

percentage of the total cell population of Tn5276-containing L. lactis strains. In analogy to the 

related Tn97<5 (12), this circular form is expected to be the transposition intermediate. On the basis 

of the analysis of different Tn5276 recombination products, the regions involved in site-specific 
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recombination were identified. Tn527<5 appears to hold an intermediary position between the 

conjugative transposons Tn976 and Tnl545 on one hand and the temperate bacteriophages on the 

other hand: Tn5276 can insert into several sites, which, like for the other conjugative transposons, 

show only limited sequence similarity to the inserting transposon. However, the regions in which 

the strand exchange reaction takes place (the overlap regions) are of identical or almost identical 

sequence. Sequence identity between the overlap regions is a feature of site-specific recombination 

of the temperate bacteriophages, while in Tn916 and lnl545 site-specific recombination the 

recombining sites are generally not identical. 

It appears that the gram-positive conjugal transposons are related to the mobile DNAs of 

temperate bacteriophages (and integrative plasmids) rather than to 'classical' transposons, which 

often generate target site duplications in their insertion. Several questions concerning the conjugal 

transposition of Tn527<5 remain. How is the transposition intermediate transferred from one cell to 

another, how is this transfer initiated, and is there an interplay between conjugation and site-

specific recombination? The intercellular transfer of conjugative transposons in general is an 

unexplored territory. In this respect, the possible presence of descendants of several Tn5276 transfer 

events in one transconjugant colony deserves attention. For the related conjugative transposon 

Tn976 it has been shown that a contiguous region of approximately 9 kb is involved in conjugal 

transfer of the element, of which an approximately 4-kb segment (including the xis and int genes) 

is involved in transposition (2,13). It is therefore possible that further nucleotide sequence analysis 

of the right end of Tn5276 will reveal the presence of genes involved in conjugal transfer and, 

possibly, the regulation of both site-specific recombination and conjugal transfer. 

Finally, Chapter 8 is concerned with the distribution and evolution of nisin-sucrose elements. 

In an analysis of six nisin A- and seven nisin Z-producing wild-type strains isolated in the 

Netherlands (two strains), France (three strains), Italy (seven strains), and the Unites States of 

America (one strain), three classes of nisin-sucrose elements could be found: nisin A transposons 

(class I; usually conjugative; Tn5276-like; six members; Fig. 2), nisin Z transposons (class II; 

conjugative; three members) and nisin Z degenerate elements (class III; non-conjugative; four 

members). The experiments indicated that the class I elements have originated from the class II 

elements and thus that the nisZ gene is the ancestor of the nisA gene. The degenerate elements 

appeared to have been rendered transpositionally inactive by the loss of their left ends; they are no 

longer transposons. In the case of strain NIZO 22186, an IS-mediated rearrangement was probably 
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FIG. 2. Model for the evolution of the nisin-sucrose elements in L. laclis. Abbreviations: L and R, left 
and right ends; nisA, nisZ, sac, xis/int, schematic positions of nisin A or Z operon, sucrose operon, and 
transposition genes, respectively; hatched arrows, iso-lS1068 elements and their orientations. 

responsible for the loss of the elements left end. A tentative model for the evolution of the nisin-

sucrose elements in L. lactis is given in Fig. 2. The hybridization results also suggested that 

elements related to the nisin-sucrose transposons might be present in the Lactococcus genome. 

Where do the nisin-sucrose transposons (Fig. 3) come from and how have they evolved? The 

analyses described in Chapter 8 offer some clues. The G+C contents of all functional regions of 

IS NIS sue CEO RBS? TRAfTN 

FIG. 3. Possible genetic organization of the nisin-sucrose transposon Tn5276. Abbreviations: IS, IS1068; 
NIS, nisin A gene cluster; SUC, sucrose operon; CEO: AP-(L-l-carboxy-ethyl)-L-ornithine (A^-CEO) synthetase 
gene; RBS: reduced bacteriophage sensitivity gene(s); TRA/TN: genes involved in conjugal transfer and 
transposition. The sizes of NIS and SUC have been derived from nucleotide sequencing results (7, 18) and 
Northern blot analysis (Chapter 4), respectively. The position of CEO is from Thompson et al. (16), but its 
possible presence on Tn5276 has not yet been examined. The position of RBS is unknown. The size of 
TRAfTN has been presumed to be similar to the size of the corresponding region in Tn976 (13). According 
to this map, the function of approximately 30 kb of the transposon remains unknown. 
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Tn5276 analyzed at the nucleotide sequence level thus far range from 28.7 to 32.4% (9), while the 

G+C content of the L. lactis genome is 38% (6, 17). This suggests that the origin of the nisin-

sucrose transposons lies outside of the genus Lactococcus. Since the search for novel bacteriocins 

is a very active field, the possibility exists that nisin or its ancestor will be rediscovered in its 

original source. 

It has been found that plants provide a habitat for L. lactis subsp. lactis, but not for the other 

important lactococci (11). The plant environment is considered to be the most likely natural habitat 

from which Lactococcus has entered its present most important habitat (milk). Two observations 

point toward the possibility that the nisin-sucrose transposon has been acquired by Lactococcus in 

its original plant habitat. Firstly, all known wild-type nisin producers are from the subspecies lactis. 

Secondly, two of the traits encoded by the nisin-sucrose transposons appear to be more useful in 

a plant environment than in milk, i.e. sucrose proficiency and the production of A^-(L-1-

carboxyethyl)-L-ornithine (N5-CEO) reported to be encoded by the nisin-sucrose transposon lx\5306 

from L. lactis Kl (15). Sucrose is the most common disaccharide found in plants (1) and, as 

pointed out by Thompson (14), two regioisomers of N5-CEO are members of the octopine family 

of opines. These opines are found in crown gall tumor tissue formed in the symbiosis of 

Agrobacterium tumefaciens with its plant host, where one of their functions is that of chemical 

mediators between the bacterium and the plant cell (14). The role of A -̂CEO in the interaction 

between L. lactis and plants remains elusive at this moment. The other properties known to be 

encoded by the nisin-sucrose transposons, i.e. nisin production and reduced bacteriophage 

sensitivity, appear to present advantages in both the plant and the milk habitat and could be 

responsible for the preservation and continued transfer of the nisin-sucrose transposons in L. lactis 

in milk. 

As mentioned in Chapter 6, the joining together of DNA regions from different sources would 

be an attractive model for the evolution of Tn5276 and related transposons, since they carry the 

genes for a number of very different traits. Especially interesting in this respect is the presence on 

Tn5276 of the genetic information for reduced sensitivity to isometric phages (9). This reduced 

sensitivity could be speculated to be a remnant of a superinfection immunity mechanism. The genes 

responsible for this mechanism, together with the genes encoding the Tn5276 excision and insertion 

functions, could then have a bacteriophage origin. 
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The studies described in this thesis have led to the identification of the nisin-sucrose 

transposons and provided a detailed description of Tn5276 from L. lactis NIZO R5. In addition, 

it became apparent that several classes of nisin-sucrose transposons exist. During the course of this 

work, also mutants of the prototype Tn5276 were isolated that were impaired in nisin production, 

but were still immune to significant levels of nisin (10). The transposon of one of these strains ( 

NIZO R520) was conjugally transferred to a L. lactis subsp. cremoris strain (9). The 

transconjugants obtained were sucrose proficient and were immune to the same level of nisin as 

the donor strain. The possibility to generate strains that produce nisin A or nisin Z and/or are 

immune to nisin, now allows the development of new nisin-producing, industrial strains via 

conjugation and the prediction of their characteristics. 
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HOOFDSTUK 10 

SAMENVATTING 

DNA IN BEWEGING 



Natuurlijke overdracht van nisine produktie: een onbekend genetisch element Het DNA 

van bacterign is voortdurend in beweging. Binnen de eel vinden er bijvoorbeeld uitwisselingen van 

genetisch materiaal plaats tussen het chromosoom (bij melkzuurbacterien is dat ongeveer 2 miljoen 

baseparen groot) en in de eel aanwezige plasmiden - kleinere, cirkelvormige DNA-moleculen. Er 

kan echter ook uitwisseling van genetisch materiaal tussen bacteriecellen onderling plaatsvinden. 

Het natuurlijke proces waarbij erfelijk materiaal, en daarmee erfelijke eigenschappen, via 

verschillende soorten genetische elementen wordt overgedragen van de ene bacterie (de donor) naar 

de andere (de recipient) noemen we conjugatie (=verbinding). Een eigenschap die op deze manier 

van de ene melkzuurbacterie op de andere kan worden overgedragen is de produktie van het 

antimicrobieie eiwit nisine. Dit proefschrift beschrijft de ontdekking en nadere karakterisering van 

het genetische element van de melkzuurbacterie Lactococcus lactis subsp. lactis dat voor die 

overdracht verantwoordelijk is. 

We wilden graag meer weten over dit genetische element, omdat er voor de overdracht van 

nisine-produktie een zeer interessante praktische toepassing te bedenken is. Nisine is namelijk een 

goed bruikbaar natuurlijk conserveermiddel dat reeds in een aantal voedselprodukten, o.a. 

smeerkaas, wordt toegepast. Een veel voorkomende bacteriele besmetting in dit soort produkten is 

de boterzuurbacterie Clostridum tyrobutyricum. Ook bij de bereiding van Goudse kaas is besmetting 

met boterzuurbacterign, die als sporen via het veevoer in de melk terecht komen, een groot 

probleem. De uitgroei van deze sporen (met als gevolg een opgeblazen, stinkende kaas) wordt 

momenteel voorkomen door tijdens de kaasbereiding nitraat toe te voegen. Produktie van nisine 

door het bij de kaasbereiding gebruikte zuursel, d.i. het mengsel van melkzuurbacterien dat zorgt 

voor verzuring van de melk, zou de toevoeging van nitraat overbodig maken. Een aantal, ook in 

melk voorkomende, Lactococcus lactis subsp. lactis stammen produceert nisine om zich te 

verweren tegen andere bacterign in de concurrentiestrijd om beperkte voedselbronnen in hun 

leefmilieu. Deze van nature voorkomende stammen zijn echter vaak om verschillende redenen 

ongeschikt om er goede Goudse kaas mee te bereiden. Overdracht via conjugatie van nisine-

produktie naar melkzuurbacterien die wel goede Goudse kaas kunnen maken, zou daarvoor een 

oplossing kunnen zijn. 
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Isolatie van gedeeltes van het genetisch element. Toen de zoektocht naar het genetische 

element dat verantwoordelijk is voor de overdracht van nisine-produktie begon, wisten we er niet 

veel over. De aminozuurvolgorde, de zgn. primaire structuur, van nisine was bekend (Fig. 1). 

Nisine bestaat uit 34 aminozuren. Naast algemeen bekende aminozuren bevat nisine ook een aantal 

bijzondere aminozuren, die in de natuur niet zo vaak voorkomen (Fig. 1). Er waren sterke 

aanwijzingen dat de biosynthese van nisine plaats vindt doordat in een voorloper, die dan 

opgebouwd zou zijn uit de algemeen bekende aminozuren, een aantal aminozuren omgebouwd zou 

worden tot de bijzondere aminozuren die in nisine gevonden worden. Die modificatie van een 

voorloper zou dan waarschijnlijk uitgevoerd worden door speciale, nog onbekende enzymen. 

Wat we ook wisten, was dat bij de natuurlijke overdracht van nisine-produktie van de ene 

bacterie naar de andere ook de mogelijkheid om saccharose (suiker) als energiebron te gebruiken 

werd overgedragen. Alle bacterien die nisine produceren, zijn ook in staat om op saccharose te 

groeien als hen dat aangeboden wordt. Deze eigenschap kan zeer gemakkelijk op agarplaten worden 

aangetoond en is dan ook het kenmerk waarop in eerste instantie de nakomelingen van de 

conjugatieve overdracht worden geselecteerd. 

FIG. 1. Het nisine molecuul. De bolletjes stellen aminozuren voor. De bijzondere aminozuren zijn DHA 
(dehydroalanine) en DHB (dehydrobutyrine) en de residuen die zgn. thio-etherringen vormen (ALA-S-ALA: 
lanthionine; ABA-S-ALA: B-methyllanthionine). 

Het genetische element waarnaar we op zoek waren, bevatte dus de erfelijke informatie - de 

genen - voor de produktie van nisine en de opname en verwerking van saccharose. Bij deze 

eigenschappen zijn diverse eiwitten betrokken en er zijn dus ook meerdere genen die voor deze 

eigenschappen coderen (zie bijvoorbeeld voor de opname en verwerking van saccharose Fig. 2). 

Door nu deze genen op te sporen in het DNA van een nisine-producerende bacterie, zouden we dus 

op het spoor komen van het genetische element waarop ze zich bevinden. Gebruik makend van 

verschillende technieken hebben we een aantal van deze genen dan ook gei'soleerd uit het totale 
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DNA (plasmides en chromosoom) van de uit melk gei'soleerde nisine-producent L. lactis subsp. 

lactis stam NIZO R5. 

FIG. 2. De verwerking van saccharose door L. lactis. Minstens twee specifieke eiwitten zijn betrokken 
bij de verwerking van saccharose. Eiwit 1 zorgt dat de suiker de eel binnenkomt en eiwit 2 splitst de suiker. 
De ontstane moleculen worden opgenomen in de (algemene) stofwisseling. Bij het aanschakelen van de genen 
1 en 2 is waarschijnlijk nog een derde eiwit betrokken. 

Het genetische element is een groot transposon: Tn5276. Nu we een aantal van de genen in 

handen hadden die betrokken waren bij de produktie van nisine en de verwerking van saccharose, 

konden we deze gebruiken om het genetische element waarop ze gelegen zijn te identificeren. Er 

zijn twee soorten genetische elementen bekend die zichzelf via conjugatie van de ene eel naar de 

andere kunnen verplaatsen: conjugatieve plasmiden en conjugatieve transposons. Plasmiden zijn al 

kort genoemd, maar transposon is een nieuw begrip. Transposons zijn mobiele stukken DNA, die 

zich kunnen verplaatsen van de ene plek in het DNA van een organisme naar een andere plek. Bij 

normale transposons liggen die plekken in het DNA van 6en eel, maar bij conjugatieve transposons 

liggen die plekken in twee verschillende cellen (Fig. 3). 

Door nu met behulp van de genen die we in handen hadden het spoor van het conjugatieve 

element te volgen van de donor-eel naar de recipient-eel, konden we vaststellen dat het genetische 
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element dat nisine-produktie overdraagt een groot (ongeveer 70.000 baseparen) conjugatief 

transposon is. Er waren al conjugatieve transposons bekend die betrokken bleken bij de verkrijging 

van antibioticum-resistenties door ziekte-verwekkende bacterien. Het nisine transposon is echter een 

"onschuldig" transposon: het draagt geen antibioticum-resistentie over - een eigenschap die voor 

ziekte-verwekkende bacterien gunstig is - maar nisine-produktie - een eigenschap die 

melkzuurbacterien voordeel oplevert in hun strijd met andere melkzuurbacterien om beperkte 

voedselbronnen. Transposons worden altijd aangeduid met Tn gevolgd door een centraal 

geregistreerd nummer. Het nisine transposon heeft de aanduiding Tn5276 gekregen. We hebben de 

ligging van de genen die verantwoordelijk zijn voor nisine-produktie en saccharose-verwerking in 

kaart gebracht (zie Fig. 3 van het vorige hoofstuk). Tn5276 Week zichzelf op diverse plaatsen in 

het chromosoom van de gebruikte recipient te kunnen invoegen (inserteren), maar het had wel een 

voorkeur voor 6en bepaalde plaats. 

Het mechanisme van transpositie van Tn5276. In de beweging van een conjugatief transposon 

van een plek in de ene eel (de donor) naar een plek in de andere (de recipient), zijn verschillende 

stappen te onderscheiden (Fig. 3): 

1. Het transposon snijdt zichzelf uit het DNA van de donor (excisie). 

2. Het uitgesneden transposon gaat naar de recipient (conjugatie). 

3. Het transposon knipt het DNA van de recipient open en plakt zichzelf erin (insertie). 

Over de tweede stap in het proces, de conjugatie, weten we nog helemaal niets, behalve dat er 

nauw celcontact tussen de donor en de recipient voor nodig is en dat er op de een of andere manier 

een verbinding tussen de twee cellen wordt gevormd. Over de manier waarop de eerste en de derde 

stap van het proces worden uitgevoerd (het mechanisme van transpositie) zijn we wel een aantal 

zaken te weten gekomen. Het mechanisme van transpositie van Tn527d blijkt te lijken op het 

mechanisme waarvan de zogenaamde gematigde bacteriofagen zich bedienen om in en uit het 

chromosoom van een bacterie gaan. Bacteriofagen zijn de virussen van de bacterien. Gematigde 

bacteriofagen zijn in staat hun DNA in het chromosoom van een bacterie-gastheer te inserteren. Dat 

DNA kan daar vervolgens generaties lang onopgemerkt blijven (daarom heten deze bacteriofagen 

ook gematigd), maar dan plotseling onder invloed van omgevingsfactoren (stress) weer uit het 

chromosoom van de gastheer tevoorschijn komen (exciseren). Het DNA van de bacteriofaag wordt 

dan vervolgens vermenigvuldigd en ingepakt in eiwitmantels, waardoor er complete bacteriofagen 

ontstaan. Die nieuwe bacteriofagen breken vervolgens de gastheer-bacterie open, komen vrij in de 
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FIG. 3. Overdracht van een conjugatief transposon van donor naar recipient. 

omgeving en kunnen weer nieuwe gastheren infecteren die zich nietsvermoedend in de omgeving 

ophouden. Zoals gezegd, bedient Tn527d zich van een vergelijkbaar mechanisme om in en uit de 

chromosomen van melkzuurbacterien te springen. De tussenvorm (het intermediair) van Tn5276, 

dus de vorm die waarschijnlijk van de ene eel naar de andere eel beweegt, blijkt een cirkel te zijn, 

net als het (vrije) DNA van de gematigde bacteriofagen. 

Verschillende elementen in verschillende nisine producenten. Niet alle melkzuurbacterien 

die nisine produceren, kunnen die eigenschap ook overdragen op andere melkzuurbacterien. Dit 

bleek toen er bij het NIZO een Lactococcus lactis stam (NIZO 22186) ontdekt werd die een ander 

nisine maakte dan tot dan toe bekend was. Dit nieuwe nisine (nisine Z) verschilt in 6en aminozuur 

van het bekende nisine (nisine A; Fig. 1). Omdat nisine Z mogelijk betere eigenschappen had dan 

nisine A bij het gebruik ervan in de kaasbereiding, was men uiteraard erin gei'nteresseerd of de 

produktie van nisine Z ook op natuurlijke wijze overdraagbaar was. Dit bleek niet het geval voor 

stam NIZO 22186. Toen we dit verder uitzochten, bleek dat alle Lactococcus lactis stammen die 

nisine produceren Tn5276-achtige elementen bezitten, maar dat in sommige gevallen de structuur 

van die elementen zodanig veranderd is dat ze zichzelf niet meer uit het DNA kunnen snijden. 

Gelukkig werden er ook stammen gevonden die nisine Z produceren en de produktie ervan ook 

kunnen overdragen. Bij nader onderzoek van Tn5276-achtige elementen hebben we een aanwijzing 

gevonden dat deze elementen oorspronkelijk niet uit Lactococcus lactis afkomstig zijn. Bovendien 
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komen er mogelijk in Lactococcus lactis genetische elementen voor die iets weg hebben van 

Tn5276, maar niets met nisine-produktie of de verwerking van saccharose te maken hebben. 

Tot besluit. We zijn heel wat meer te weten gekomen over het genetische element dat zorgt 

voor de natuurlijke overdracht van nisine-produktie. Deze kennis zal gebruikt kunnen worden bij 

de pogingen om nisine-produktie over te dragen naar stammen die gebruikt worden in de 

kaasbereiding. Een aantal interessante vragen blijft echter nog onbeantwoord. Hoe vindt de 

overdracht van de transposon-cirkel van de ene eel naar de andere plaats? Zijn er inderdaad 

genetische elementen die op Tn5276 lijken en, zo ja, wat zijn dat voor elementen; zijn het 

bijvoorbeeld gematigde bacteriofagen? Wat was de voorvader van 1x6276 en waar kwam die 

voorvader eigenlijk vandaan? 

Het genetisch materiaal van organismen is continu aan veranderingen onderhevig. Het volgt 

daarbij niet alleen de langzame maar gestage weg van de evolutie door willekeurige mutaties, maar 

helpt zelf een handje mee, bijvoorbeeld met conjugatieve transposons - DNA in beweging. 
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