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Abstract 

Diemen, P.M. van, 1994. Pasteurella mu/toc/da-toxin induced atrophic rhinitis in piglets. 

PhD thesis, Department of Animal Husbandry, Wageningen Agricultural University, P.O.Box 338, 

6700 AH Wageningen, The Netherlands. 

Progressive atrophic rhinitis (AR) is a complex of disease symptoms caused by infection with 

toxigenic Pasteurella multocida. Environmental and animal factors contribute to the severity of 

the disease. Their impact and relationship with severity of disease are inadequately understood 

and remain to be quantified in their effects. In this thesis, two areas of interest in atrophic rhinitis 

have been studied. A challenge model with Pasteurella multocida derived toxin (Pm-T) to mimic 

the disease was developed. Next, the impact of some aspects of climatic environment and the 

relationship with the severity of AR on health and metabolism of piglets were studied. Further

more, investigations on the role of the immune system in atrophic rhinitis have been conducted 

with emphasis on mechanisms underlying the apparent lack of conventional (classic) immune 

responses to Pm-T. The Pm-T challenge resulted mainly in a lower food intake with concomitant 

lower weight gain, and in a reduced heat production caused by decreased activity of the pigs. 

Immunological features of Pm-T suggest T cell involvement in the pathogenesis of AR. Though 

the immune responses during AR remain far from understood, it is hypothesized that AR has 

autoimmune like features, with Pm-T triggering T cells to initiate destruction of nasal bony tissue. 

Omslag: Wim Valen 

Drukwerk: Ponsen & Looijen BV, Wageningen 
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STELLINGEN 

1 De in de praktijk genoemde verbeteringen van het stalklimaat ter controle van de 

ernst van een AR-uitbraak, worden waarschijnlijk grotendeels veroorzaakt door 

verminderde kolonisatie mogelijkheden van AR pathogène Pasteurella multocida op 

de neusslijmvliezen. 

W.J. Smith. CEC report (1983): 151-162; R.F.W. Goodwin. Vet.Rec. 123 (1988): 566-568; Dit proefschrift. 

2 De multi-factoriële aetiologie van AR in het varken kan, onafhankelijk van het 

infectieuze agens, met het ontwikkelde Pm-T challenge model bestudeerd worden. 

Dit proefschrift. 

3 De opmerking van McCaw dat: "AR acts as the 'canary in the coal mine' for 

production environments and management practices that do not meet the needs of 

the pig. Turbinate atrophy and nasal deviation are easily seen by owners, whereas 

increased severity of pneumonia and poor pig performance are often not recognized." 

negeert de gevolgen van subklinische AR. 

M.B. McCaw. The Compendium 16 (Dec 1994): 1615-1618. 

4 Koude en tocht hebben geen invloed op de ernst van met Pm-T geinduceerde AR 

symptomen. 

Dit proefschrift. 

5 Een challenge met Pm-T leidt niet tot een detecteerbare humorale immuunrespons. 

Het gebruik van serologische diagnostiek, het vaststellen van antilichamen tegen Pm-

T, als enkelvoudig bewijs dat het dier in contact geweest is met Pm-T, lijkt dan ook 

voor de praktijk ongeschikt. 

Dit proefschrift. 

6 Door zijn gedrag aan te passen kan een varken, binnen zekere fysiologische grenzen, 

de gevolgen van (met Pm-T induceerde) subklinische AR beperken. 

Dit proefschrift. 

7 Ondanks dat er vaccins zijn die in de praktijk het 'probleem' AR binnen de perken 

houden, behoeven de mechanismen waardoor de specifieke neusafbraak bij AR 

ontstaat verdere opheldering. 



8 Variatie in reaktie op Pm-T tussen biggen onder gelijke condities lijkt eerder regel dan 

uitzondering; dit suggereert de bijdrage van een genetische component aan het 

ziektebeeld. 

9 De negatieve publieke opinie over dier-experimenteel onderzoek blijkt om te slaan, 

indien - zoals in het geval AR - het klinisch en subklinisch beeld zichtbaar (te maken) 

is (kromme neuzen; conchae atrofie). 

10 De grootste tragiek van wetenschappelijk onderzoek is door budgettaire perikelen een 

intrigerende hypothese niet te kunnen toetsen. 

11 Als 'proefkonijn' participeren in een (koffie)proef leidt tot koffieleut en koffiedik 

kijken. 

12 Niets is zo moeilijk als het zetten van de laatste punt . 

P.M. van Diemen 

Pasteurella mu/toc/da-toxin induced atrophic rhinitis in piglets 

Wageningen, 24 april 1995 
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The Pig 

In England once, there lived a big, and wonderfully clever pig 

to everybody it was plain that piggy had a massive brain 

he worked out sums inside his head, there was no book he had not read 

he knew what made an airplane fly, he knew how engines worked and why 

He knew all this, but in the end, one question drove him round the bend 

he simply couldn't puzzle out, what life was really all about 

what was the reason for his birth, why was he placed upon this earth 

his giant brain went round and round, alas, no answer could be found .. 

Till suddenly one wondrous night, more in a flash, he saw the light 

he jumped up like a belly dancer, and yelled, by gum, I've got the answer 

They want my bacon slice by slice, to sell at a tremendous price 

they want my tender juicy chops, to put in all the butcher shops 

they want my pork to make a roast, and that's the part that cost the most 

they want my sausages in strings, they want my chitterlings 

The butcher shop, the carving knife, that is the reason for my life ! 

(Uit: Dirty Beasts, Martin Butler) 
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AR atrophic rhinitis 

Pm+ toxin-producing Pasteurella multocida strains 

Pm-T Pasteurella multocida derived toxin 

Bb Bordetella bronchiseptica 

VCA ventral conchae atrophy 

DCA dorsal conchae atrophy 

cBS change in brachygnathia superior 

TPR turbinate perimeter ratio 

TAR turbinate area ratio 

DL Dutch Landrace pigs 

GY Groot York (Large White) pigs 

AHS Animal Health Services 

UCT upper critical temperature 

LCT lower critical temperature 

ELISA enzyme-linked immunosorbent assay 

LST lymphocyte stimulation test 

SI stimulation index 

PBL peripheral blood leucocytes 

APC antigen-presenting cell 

MHC major histocompatibility complex 

TCR T cell receptor 

App Actinobacillus pleuropneumoniae 

KLH keyhole limpet haemocyanin 

TT tetanus toxoid 

OA ovalbumin 
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GENERAL INTRODUCTION 

In today's pig production, upper respiratory tract infections, such as Pasteurella 

multocida which leads to atrophic rhinitis (AR), are common and insidious diseases of 

swine. They are often considered causes of decreased rate of gain, inefficient feed 

conversion, and increased time to market, although these parameters do not absolutely 

correlate with the severity of lesions. 

The severity of observed clinical, pathological or anatomical deformations specific in 

AR, might be attributable to a number of factors including virulence of the microbial 

agents, differences in immune status, condition, age-related and possibly genetic 

susceptibility of the pig (De Jong, 1985; Rutter, 1985). Aerial conditions, management 

factors and hygiene are involved in the epidemiology of the disease (Robertson et al., 

1990). Therefore, AR is considered to be a disease with a multifactorial etiology. 

Although above mentioned factors are reported to be of importance, the impact of most 

of them and their relation with severity of AR are as yet inadequately understood and 

remain to be quantified in their effects. 

Environmental factors play an important role in the health and production of 

livestock. Incidence and severity of disease can be related to fluctuating ambient 

temperature and sometimes increased air velocity (Verhagen et al., 1987; Kreukniet et al., 

1990). The thermoregulatory demand of an animal related to a climatic condition affects 

partitioning of energy (metabolism) within an animal, and possibly the reaction of that 

animal to an invading pathogen. Coldness and draught wil l increase maintenance 

requirement (heat production) so that less energy is available for body weight gain 

(Verstegen et al., 1987). Also, when an animal experiences disease, the maintenance 

requirement will be increased at the cost of efficiency of production (Verstegen et al., 

1987). This increase is, among others, due to an increased energy demand of the immune 

system and fever (Baracos et al., 1987). Results with regard to effect of atrophic rhinitis 

on productivity mention no or little reduction in daily gain up to a 15% reduction in 

growth rate (Rutter, 1985). Whereas information on the effects of AR on food intake and 

partitioning of energy (heat production, efficiency and digestibility) is lacking. 

It has been demonstrated that a single environmental stimulus, e.g. cold air, 

effectively reduced resistance to disease-causing organisms in pigs, like Actinobacillus 

pleuropneumoniae (App) (Verhagen, 1987), and transmissible gastroenteritis (TGE) virus 

(Shimizu et al., 1978). Climatic stress can alter humoral as well as cell mediated 

immunity (Shimizu et a/., 1978; Kreukniet et al., 1990; Scheepens, 1991). Good 

environmental management may reduce morbidity and mortality rate of a disease. This, 

11 



J_2 Chapter 1 

however, requires knowledge of the pathogenic process(es) leading to disease, and more 

specifically of the (immune) responses of animals to invading pathogens. 

It is acknowledged that toxin producing strains of Pasteurella multocida (Pm*) cause 

the pathogenic processes of atrophic rhinitis, leading to age-related irreversible 

destruction and reabsorption of nasal bony tissues in pigs (De Jong and Nielsen, 1990; 

Foged et a/., 1992). Sera from severely affected pigs in field outbreaks lack toxin-

neutralising antibodies. Also, experimental infections with intranasally applied toxigenic 

Pm or Pm-T generally lead to sporadic and low humoral immune responses to Pm-T as 

estimated by biological and immunological tests (Rutter, 1988; Foged etal., 1992). This 

suggests that Pm-T does not initiate a (protective) humoral response. On the other hand, 

little is known about the role of the cellular immune response in AR. The pathogenic 

effects caused by Pm+ and Pm-T are known, but the mechanisms underlying pathogenesis 

of atrophic rhinitis, the mode of action, need to be clarified. 

Considering the above mentioned problem areas, the objectives of the present 

research were, first, to develop a challenge model to mimic atrophic rhinitis, which 

would allow investigations on AR (Pm-T) in a broad field of interest (e.g. breed 

differences, productivity, behaviour, immune responses). And second, to study the effects 

of AR (Pm-T) on immune parameters, energy metabolism (heat production), and 

performance of weaned piglets, by means of this model. Moreover, pathogenesis 

ultimately leading to specific, irreversible nose bone destruction was explored. 

In Chapter 2, a review is given of literature concerning state of knowledge on 

atrophic rhinitis. The economic relevance, the multiple etiology of AR and the control 

strategy in the Netherlands are briefly described. Environmental and animal factors which 

are thought to contribute to the severity of the disease symptoms are discussed and effects 

of Pasteurella multocida toxin are summarized. Gaps in knowledge are pointed out. 

In the third Chapter, development of the challenge model to induce subclinical AR 

in pigs is described. With this model, the impact of environmental temperature and the 

relationship with the severity of AR on health and metabolism of piglets were studied in 

climatically controlled respiration chambers. 

Chapter 4.1 describes the effects of induced moderate atrophic rhinitis on energy 

metabolism and performance of piglets under two different climatic conditions. The 

effects on level and changes in heat production and activity under the same conditions 

are described in Chapter 4.2. Visa versa, the effects of exposure to adverse climatic 

conditions on severity of atrophic rhinitis-like symptoms are studied (Chapter 4.1). 
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In Chapter 5, the role of the immune system in AR - particularly the immunological 

aspects of Pasteurella multocida toxin - is studied. First, specific immune responses to 

Pm-T and Pm-T induced conchae atrophy were compared with AR immunity, initiated 

with a vaccine. Serum antibody titres and in vitro lymphoproliferation to Pasteurella 

mu/toc/da-derived toxin and toxoid were studied (Chapter 5.1). In the successive Chapter 

5.2, the effects of intranasally administered Pasteurella multocida toxin on the cellular 

and (T cell dependent) humoral immune responses of piglets were studied by means of 

an antigen cocktail containing Keyhole Limpet Haemocyanin (KLH), Ovalbumin (OA) and 

Tetanus Toxoid (TT). In Chapter 5.3, two pilot studies are depicted. Through 

immunosuppressant treatment and through returning Pm-T-stimulated T cells to the pig, 

an attempt was made to establish T cell involvement in the pathogenic process of AR. 

In the General Discussion (Chapter 6), the major findings of the previous Chapters 

are discussed. Though as yet not understood, several features of Pm-T indicate the 

involvement of the immune system in the pathogenesis of AR. Literature in support of 

experiments that have led to the hypothesis that 'AR is a disease with autoimmune-like 

features, with Pm-T triggering T cells to destroy nose tissue' is incorporated. 

Subsequently, consequences and implications of the proposed concept are outlined and 

discussed. 
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ABOUT ATROPHIC RHINITIS IN PIGLETS - A REVIEW 

P.M. van Diemen 

Wageningen Agricultural University, Department of Animal Husbandry, 

P.O.Box 338, 6700 AH Wageningen, The Netherlands 

Abstract 

The present state of knowledge on atrophic rhinitis is presented. Environmental and animal 
factors which are thought to attribute to the severity of the disease symptoms are discussed. The 
economic relevance, the multiple etiology of AR and the control strategy in the Netherlands are 
briefly described. The toxigenic effects of Pasteurella multocida toxin are summarized and 
attention is given to the role of the immune system in atrophic rhinitis. Lines for future research 
are suggested. 

Key words: Atrophic rhinitis, Pasteurella multocida toxin, climatic environment, immunity, 
piglets 

INTRODUCTION 

'Was ist die Schnuffelkrankheit der Schweine?'. With this question, in 1829, Franque 

asked attention for a disease in pigs which he called 'Schnuffelkrankheit'. He described 

this disease as gradually arising, beginning with inflammation of the nasal mucous 

membrane, followed by deformation of the muzzle. At this point, affected animals 

breathed audible, might have bleeding noses, and stopped growing or lost weight, thus 

causing considerable economic losses. He suggested that the disease was transmitted 

from parents to offspring and affected preferably short nosed pigs. He stressed that its 

character and cause should be studied as soon as possible. 

Since then, much research has been conducted on the infectious origin and much has 

been learned about the etiology of 'Schnuffelkrankheit' or atrophic rhinitis (AR). Infectious 

atrophic rhinitis is a world wide spread disease of the upper respiratory tract of pigs 

(Pedersen and Nielsen, 1983). Pathologically, AR is characterized by a chronic rhinitis 

resulting in interference with remodelling and deformation of the bony structures 

underlying the nasal mucosa of a young, rapidly growing pig (Done, 1983). Anatomically 

it is characterized by deformity of snout and by tooth malapposition and possibly growth 

retardation (Done, 1983). It is acknowledged that toxin producing strains of Pasteurella 

multocida cause these progressive and generally irreversible turbinate lesions. The 

17 
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severity of conchal damage is highly variable both within and between affected farms (de 

Jong, 1985; Rutter, 1985). At the 10th International Pig Veterinary Society Congress in Rio 

de Janeiro, Brazil, 1988, the definition of progressive atrophic rhinitis (AR) as a disease 

caused by infection with toxigenic Pasteurella multocida (Pm*), was accepted (de Jong 

and Nielsen, 1990). The clinical diagnosis of progressive AR is confirmed by the 

detection of Pm + . Thus herds harbouring Pm + , even though only slight or subclinical 

disease is present, can be identified. 

In addition to the above mentioned infectious cause of atrophic rhinitis, 

environmental and animal factors are said to contribute to the severity of the disease 

symptoms. An infection with Pm+ can be present for some time before clinical disease 

symptoms occur. 

This review briefly describes the economic relevance, the multiple etiology of AR and 

the combating strategy in the Netherlands. Furthermore, the toxigenic effects of 

Pasteurella multocida toxin are summarized and its possible influence on bone 

metabolism is discussed. Moreover, attention is given to the role of the immune system 

in atrophic rhinitis, and known effects of climatic environmental factors on health and 

performance of pigs are outlined. 

ECONOMIC RELEVANCE OF ATROPHIC RHINITIS 

The direct and indirect costs of disease are an important economic factor in today's 

intensive pig industry. Atrophic rhinitis undoubtedly causes economic losses through 

retarded growth rates, medication costs, extra labour and inability to sell (breeding-)stock, 

although these parameters do not absolutely correlate with the severity of lesions. 

However, exact figures for economic significance are difficult to obtain and depend on 

the extent of observation and recording. The severity of the disease in pigs and 

concomitant productivity losses on commercial units are highly variable. Results with 

regard to effects of AR on productivity losses vary from no or little reduction in daily gain 

to a 10-1 5% reduction in growth rate (Rutter, 1985). De Jong (1985) stated that especially 

severely affected animals showed a (5-20%) reduction in growth. However, no 

unequivocal definition of AR or of an AR-affected herd was used. Thus, other disorders 

of the nose may blur the estimation of economic significance of AR. Various factors, 

including other microorganisms, may also cause rhinitis as opposed to atrophic rhinitis 

(Rutter, 1985). The relation between growth performance and AR can only be elucidated 

if the latter is clearly defined. 

Growth retardation can be caused by a lower food intake, a lower availability of 

nutrients and/or by an increased maintenance requirement (heat production) of exposed 
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(affected) animals (Verstegen et al., 1987). Smith (1983) stated that pigs with AR may 

convert food to meat as good as their contemporaries, but because of a depressed food 

intake, their rate of daily gain is also depressed. If a quantitative relation between degree 

of turbinate lesions and individual food intake or maintenance requirement could be 

demonstrated, this would be of tremendous help to estimate the economic impact of AR. 

Also factors affecting the estimation of economic significance of AR may have a 

different impact in different areas or herds. These are, among others, incidence of 

clinically affected pigs, inspection/combatting policy, intensity of treatments and 

vaccinations (Nielsen, 1983). Indirect economic losses, due to subclinical disease levels 

e.g. growth retardation, can occur too. When the conchal bones are damaged, part of the 

filtering system of the upper respiratory tract is damaged. Finally, lungs become more 

susceptible to secondary infections, like /\pp-infections or (enzootic) pneumonia due to 

e.g. mycoplasmata. In most affected pig herds, also other problems, like diarrhoea, are 

present (de Jong, 1983). 

COMBATING STRATEGIES IN THE NETHERLANDS 

Most disease combating strategies for pigs in The Netherlands are focussed on the top 

breeders. By making the breeding farms free of diseases, the production flow, through to 

multipliers and fatteners wil l be low(er) risk. 

Since 1980, atrophic rhinitis is combated under the auspices of the Regional Animal 

Health Services (AHS). After at least 6 months of checkups on the presence of clinical 

symptoms of various diseases, among which AR, a breeding farm could receive a 'Health 

Certificate' (de Jong, 1985). Animal health certification is part of a national animal health 

care programme to improve the health status of the cattle, poultry and swine production 

sector (Anonymous, 1987). After establishing the role of the toxigenic Pasteurella 

multocida (Pm + ) in AR in the mid-eighties, a check for the presence of Pm+ was included 

in the monitoring programme and 'Pm+-free' Certificates are currently issued. 

Bacteriological checks are made routinely by taking samples of the nose mucosa (nose 

swabs) of piglets between the 4 and 10 weeks of age and of pigs of 3 to 6 months old. 

Additional sampling of the tonsils might be useful in minimizing the proportion of false 

negatives (increasing the sensitivity), especially when the number of Pm+ bacteria may 

be relatively low in the carriers (de Jong et al., 1994). 

In Table 1, the number of farms with and applicants for the 'Pm+-free' Certificate 

through the monitoring programme of AHS in The Netherlands are given. Since 1989, 

nearly all breeding herds participate in the monitoring system. Due to this programme, 
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the prevalence of infection in breeding herds harbouringthe toxigenic Pm is less than 1 % 

at present (Voets et al., 1994). 

Table 1 - Survey2 of the Dutch Animal Health Services, Monitoring programme 'Pm +-free'. Number of 
breeders and applicants. 

1988 1989 1990 1991 1992 1993 

'Pm+-free' certificate 
(infected) 

'applicant' for certificate 
(infected) 

Total 'Pm"""-free + applicant' 

Total 'Health Certificate' 

% 'Pm+-free + applicant' 

97 
(5) 

-

97 

1420 

7 

440 
(4) 

198 
(4) 

638 

1398 

45 

423 
(3) 

190 
(5) 

613 

1369 

45 

493 

(1) 

224 
(2) 

717 

1375 

53 

487 
(3) 

300 
(3) 

787 

1342 

58 

596 
(2) 

233 

(-) 
829 

1115 

74 

"decrease mainly caused by business termination of small herds and rearing herds. 

Since 1992, breeding herds without an AR history, but which vaccinate against AR, 

can obtain a 'Pm+-checked' Certificate3. This monitoring programme is similar to the 

'Pm+-free' programme on the understanding that herds vaccinate. By taking nose and 

tonsil swab samples of piglets between 4 and 10 weeks of age, however, Pm+-positive 

herds might be missed because of maternal protection. The sampling of older animals (eg 

sows and 3 to 6 month old pigs) and additional sampling of the tonsils of sows meant for 

culling might be useful in minimizing the number of false negative herds (de Jong and 

Braamskamp, 1994; de Jong et a/., 1994). 

On multiplier and fattening farms, nevertheless, atrophic rhinitis is still a persistent 

problem (Voets et al., 1994). By means of vaccinating pregnant sows with a vaccine 

consisting of ß bronchiseptica, and toxigenic P multocida and/or Pm-toxoid, disease 

symptoms and concomittant economical losses can be controlled (Voets et al., 1994). 

Preliminary research to the Pm+-status of offspring born to herds in which sows are 

vaccinated over 3 years, indicated, however, that one third of the fattening pigs (4-6 

months old) harbours the toxigenic P multocida (Smelt, 1989). The findings of Wallgren 

et al. (1994) suggested that pigs aged 6-12 months should be target animals when 

screening for presence of Pm+ on herd level, at least in herds vaccinated against AR. 

Thus, the infectious cause did not resolve by longterm vaccinations. Moreover, this 

means that when the vaccination regime is not well executed, a clinical outbreak still 

may follow. 

aLandelijk overzicht PM+ regelingen 1992, 1993. Stichting Gezondheidsdienst voor Dieren and 
personal communication MF de Jong, AHS East Netherland, Deventer, The Netherlands. 
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MULTIPLE ETIOLOGY 

The occurrence of AR as a serious (economic) problem was in several countries (e.g. 

France, Ireland, The Netherlands) associated with the rapid increase of the number of 

animals per herd in the seventies (de Jong, 1983; Kobisch and Madec, 1983; O'Connor, 

1983). Several reports state that atrophic rhinitis is more severe under conditions of bad 

ventilation and poor management. In particular high stocking densities and continuous 

throughput in farrowing houses and weaner accomodation have been identified as 

important contributing factors (de Jong, 1983; Smith, 1983). Mass or number of (dust) 

particles present as inspirable aerosols, and the presence of large numbers of viable 

bacteria may compromise the local defence mechanism of the upper respiratory tract in 

the pig and facilitate colonization by Pm+ (Robertson et al., 1990). It is recognized that 

Pm+ causes more severe turbinate lesions in pigs of which the nasal mucosa is irritated 

mechanically (dry air, ammonia, dust e.g.) or by infectious agents like Bordetella 

bronchiseptica (Pedersen and Elling, 1984; de Jong and Akkermans, 1986; Rutter, 1988; 

Chanter, 1990). After aerial environmental and managerial defects, which contribute to 

the spread of AR, were identified, the prevalence decreased by implementing combating 

strategies, and through improvements of housing, ventilation and management 

(O'Connor, 1983; Schöss, 1983; Robertson et al., 1990; de Jong, 1992). 

The multiple etiology of atrophic rhinitis may have caused part of the diversity 

encountered in the assessment of economic loss per fattened pig or herd. For instance, 

Smith (1983) discussed that nutrition may have an indirect effect on the severity of AR. 

Piglets with acute rhinitis may have a poor appetite because of loss of taste and sense of 

smell (Smith, 1983). Feeding strategy (wet feeding, 'ad lib' feeding) may be able to 

reduce sustained growth damage. 'Ad libitum' feeding appeared to reduce the growth 

damage by 50% compared with a restricted feeding strategy (Paridaans et al., 1981 ). The 

relation between individual rate of food intake, feeding strategy and severity of AR 

deserves further investigation in order to diminish economic losses in case of disease 

outbreaks. 

Next to virulence of the microbial agents, the severity of observed clinical, 

pathological or anatomical deformations might be attributable to a number of more 

general noninfectious (husbandry) factors (Smith, 1983). The factors include differences 

in immune status (poor maternal immunity), poor condition, nutritional deficiencies, and 

an age-related and possibly genetically linked predisposition of the pig to AR, since breed 

and individual differences do occur (Smith, 1983; Martineau et al., 1988; de Jong, 1992). 

Experimental work revealed that aerial conditions, management factors and hygiene are 

involved in the epidemiology of the disease (Smith, 1983; Robertson et al., 1990). The 
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noninfectious factors may enhance the severity of any infectious disease, including AR. 

Although above mentioned factors are reported to be of importance, the impact of most 

of them and their relationships with severity of atrophic rhinitis are as yet inadequately 

understood and remain to be quantified in their effects. One of the possible approaches 

regard multivariate observational-analytic epidemiological studies (Martin et a/., 1987). 

Another approach is to study AR by means of experimental induction of the disease 

under field-like conditions. 

PASTEURELLA MULTOCIDA TOXIN AND BONE METABOLISM 

The mode of action of the Pm-T on the cartilaginous and osseous tissue of the nose 

is not known. Other osseous tissues, e.g., long bones and costochondreal junctions, do 

not appear to be significantly affected by the toxin (Rutter, 1988). In order to explain the 

apparently specific resorption of nasal turbinates in AR, the natural development of these 

structures and of other bones has been compared (Martineau-Doizé and Martineau, 1986; 

Dominick and Rimler, 1988; Martineau-Doizé et a/., 1990). The natural turnover of bone 

in the ventral turbinates resulted in a complete renewal within the first two weeks of the 

piglets life (Martineau et al., 1982). The bones in which the natural remodelling process 

was most active, were the bones most affected by AR. A marked consistency between the 

age-dependent susceptibility to AR and the growth rate of bones of the snout was 

observed (Martineau-Doizé and Martineau, 1986). 

In 3-week old gnotobiotic piglets intranasally inoculated Pm-T stimulated osteoclastic 

osteolysis and inhibited osteogenesis in turbinates by causing degeneration and death of 

osteoblasts (Dominick and Rimler, 1988). This suggested that the toxin upsets the balance 

between bone formation and resorption in favour of a net resorption (Chanter, 1990). The 

amount of toxin current, however, is dependent on the number of Pm-germs grown on 

the mucosals and on the level of toxin produced by the Pm-strain. Both growth and toxin 

production level fluctuate strongly. Therefore, the bacterial products (e.g. Pm-T) in the 

nasal mucosa might act directly on osteoclast precursors (Dominick and Rimler, 1988; 

Martineau-Doizé et al., 1990). But the influence can also be indirect via other cells or 

through mediators produced by immune cells (Martineau-Doizé et al., 1990; Pedersen 

and Elling, 1984). 

On the other hand, Pm-T can increase numbers of pre-osteoclasts and osteoclasts in 

mouse fetal long bones in vitro (Kimman et al., 1987), and can increase resorption 

activity and numbers of osteoclasts in rat long bones in vivo (Martineau-Doizé et al., 

1993). These results, combined with the observation that Pm-T is able to induce 

osteoclast-like cell differentiation from mouse bone marrow precursor cells (Martineau-
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Doizé and Jutras, 1994) shows that Pm-T can act systemically in rodents. The specific 

preference for the nasal turbinates might be explained by the structure and the high 

natural turnover of the bony tissue. 

Differences in susceptibility of the nasal bone tissue and receptors on cells may 

explain differences found between breeds, lines (Martineau et a/., 1988) or individuals, 

in the same fashion as breeds can differ in immune responses (Meeker et a/., 1987; Joling 

et a/., 1993). The age-related susceptibility as mentioned before in connection with the 

mechanism(s) by which nose damage develops in pigs needs further research. 

EFFECTS OF PASTEURELLA MULTOCIDA TOXIN 

Several studies have shown that the Pasteurella multocida derived toxin (Pm-T) is 

merely responsible for the pathogenic processes of AR (de Jong and Akkermans, 1986; 

Foged et al., 1987; Rutter, 1988; Chanter, 1990). The Pm-T initiates nose damage 

whether applied intranasally, intramuscularly, intraperitoneallyor parenterally (Martineau 

et al., 1982; de Jong and Akkermans, 1986; Dominick and Rimler, 1986; Frymus et al., 

1986; Foged et al., 1987; Chanter, 1990). 

By biochemical and immunological methods Pm-T, a single protein, has been isolated 

from toxigenic Pasteurella multocida. During the logarithmic phase of growth it can be 

detected inside the bacterial cell (Nakai et al., 1985; Rutter, 1988). Towards the end of 

growth it is released into the medium (Rutter, 1988). The toxigenic effects are the same 

as those of a crude extract of Pm+ (Foged, 1992). These effects include a resorbing effect 

(Dominick and Rimler, 1988) on turbinate bones upon intranasal (de Jong et al., 1980; 

Dominick and Rimler, 1986) or parenteral application (de Jong, 1983; Rutter and 

Mackenzie, 1984; Frymus et al., 1986; Williams et al., 1990); a lethal and a 

dermonecrotic effect in many animal species including pigs (Rimler and Brogden, 1986; 

Cheville et al., 1988), mice (Nakai et a/., 1984; Rimler and Brogden, 1986; Foged et a/., 

1987), rats (Foged et al., 1987; Cheville et al., 1988), rabbits (Rimler and Brogden, 1986), 

goats (Baalsrud, 1987), guinea pigs (Foged et al., 1987) and turkeys (Rimler and Brogden, 

1986); a cytopathic effect in certain cell lines in vitro (Pennings and Storm, 1984); and 

a mitogenic effect in some cultured fibroblasts (Williams et al., 1986; Lax et al., 1990; 

Rozengurt et al., 1990). Also Pm-T promotes differentiation of osteoclast-like cells from 

proliferating mouse bone marrow cells (Martineau-Doizé and Jutras, 1994). Experiments 

based on neutralisation of the biological effects of Pm-T by a single monoclonal antibody 

(Mab), indicate that one active site on Pm-T is responsible for all these toxic activities 

(Foged, 1992). The signalling pathways leading to mitogenesis may be triggered to some 

extent by intracellular stimulation of protein phosphorylation (Rozengurt et al., 1990). 
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Treatment by heat, formaldehyde, or proteases lead to detoxification of Pm-T as assayed 

in biological tests (Foged, 1992). 

The characterisation and the genetic basis of the Pasteurella multocida toxin has been 

extensively reviewed by Foged (1992). Thus effects caused by Pm-T are known, but how 

these effects are caused needs to be clarified. 

IMMUNE RESPONSES TO ATROPHIC RHINITIS (Pm-T) 

Severely affected pigs in field outbreaks of AR lack toxin neutralising antibodies in 

their sera or show a very late and hardly detectable humoral response. Also experimental 

infections with toxigenic Pm or intranasally applied Pm-T generally lead to sporadic and 

low humoral immune responses to Pm-T as estimated by biological and immunological 

tests (Frymus et a/., 1986; Foged et al., 1987; Rutter, 1988). Clinical symptoms do not 

relate to a detectable humoral anti Pm-T immune response (Frymus et al., 1986; Nagy 

et al., 1986; Bording Jensen and Riising, 1988). This suggests that Pm-T does not initiate 

a (protecting) humoral response. Whether antibodies conferred protection to subsequent 

infection with Pm+ is unknown. 

Why such an immune response can not be measured is not clear. One possibility is 

that the Pm-T acts directly and locally, without involving the systemic immune system. 

Another possibility is that the immune response against Pm-T is undetectably low or 

insufficient. Both humoral and cellular immune responses to Pm-T need to be studied in 

more detail. 

The consequences of the lack of anti-toxin antibodies are diverse. First, antibodies 

should be protective against the pathogenic processes of AR. Second, sero-

epidemiological studies can not be performed, only visual examination of turbinate 

atrophy in snout sections from slaughtered pigs can be used. Third, effects of factors on 

specific immune responsiveness (antibodies) can not be measured. And fourth, the lack 

of antibodies can point at another 'type' of immune response. 

The Pm-T molecule is immunogenic, i.e. it has the ability to elicit an immune 

response. Several researchers (de Jong and Akkermans, 1986; Frymus et al., 1986; Nagy 

et al., 1986; Foged, 1988; Bording et al., 1990) showed that sera from animals 

immunised with sublethal doses of crude or purified Pm-T contained neutralising 

antibodies against Pm-T. Thus the common lack of anti Pm-T antibodies after in situ 

infection, is not directly attributable to its immunogenic properties. Done (1971) thought 

it possible that genetically susceptible pigs develop antibodies to their own conchal 

tissues. The bacteria might trigger the destruction of the conchae of some pigs. This 

process continues in the absence of bacteria, getting autonomous. Done (cited by Smith, 
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1983) detected large amounts of immunoglobulin in the conchal mucous membranes of 

AR cases, where bacteriological culturing results for AR pathogens were negative. Smith 

(1983) mentioned that a complex relationship between the immune system and the 

persistence of infection seemed present in some strains of pigs. 

Several (immuno)-pathological questions of how Pm-T initiates atrophic rhinitis need 

to be answered. First, where and how does the Pm-T enter the nose tissues? Secondly, 

which cells or receptors are involved? Interference of Pm-T with mucous tissue will 

induce an immune response probably different from that with a systemic antigen. And 

thirdly, does the Pm-T enter as such or is there something like a hapten carrier effect? 

Pm-T was reported to be an extremely potent mitogen for fibroblasts, cell-lines in 

vitro (Frymus et a/., 1986; Rozengurt et al., 1990) and for several cell types of different 

mammals (Rozengurt et a/., 1990; Williams et al., 1990). What the effect is of Pm-T in 

vivo on different tissues of the nose, for instance on mesenchymal cells which are 

progenitors of osteoblasts, is unknown. 

CLIMATIC ENVIRONMENT 

Animals need to maintain a steady state in their internal environment irrespective of 

their external surroundings (Curtis, 1983). Through thermoregulatory mechanisms animals 

actively regulate heat loss and heat production to preserve a constant body temperature. 

Environmental temperatures above the upper critical temperature (UCT) wil l cause 

hyperthermia. At that point heat loss to the surrounding environment is lower than heat 

production, thus causing body temperature to increase. Temperatures below the lower 

critical temperature (LCT) will cause hypothermia when maximum heat production is 

reached (Mount, 1979). The zone where no extra heat loss or production occurs is the 

zone of thermoneutrality (Figure 1). LCT depends on factors like body weight, group size, 

level of nutrition, age and numerous others (Verhagen, 1987). For instance pigs can 

reduce heat loss to the environment by huddling. Regulation of food intake may also 

contribute to maintain homeothermy, extra intake can meet the increased energy demand 

for maintenance requirement (heat production). 

Ambient temperature and increased air velocity are components of the climatic 

environment. Several studies described the effects of these components on health and 

performance of weaners and young fattening pigs (Close and Mount, 1978; Verhagen, 

1987; Scheepens, 1991). In general, exposure to an adverse climatic condition increases 

the maintenance requirement of the animals (Verstegen et al., 1987). This increase (heat 

production) is at the cost of energy deposited in body weight gain (Verhagen, 1987). 
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Especially increased air velocity resulted in reduced weight gain, due to a rise in the 

convective heat loss (Mount et a/., 1980). 
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Figure 1 - Relation between heat production, body temperature and environmental temperature. UCT: 
upper critical temperature; LCT: lower critical temperature. 

The thermoregulatory demand of an animal related to a climatic condition can affect 

the reaction of pigs to a pathogen. It has been demonstrated that a single environmental 

stimulus, e.g. cold air, effectively reduced resistance to disease-causing organisms in pigs, 

like Actinobacillus pleuropneumonias (App) (Verhagen, 1987), transmissible 

gastroenteritis (TCE) virus (Shimizu et a/., 1978) or killed Aujeszky's disease vaccine virus 

(Noyés et al., 1988). The immune response might be altered by climatic conditions too. 

Effects of climatic stress on immune function showed that both in vivo and in vitro 

responses of the pigs' immune system can be affected (Verhagen, 1987; Kreukniet et al., 

1990). In general, exposure to cold will increase serum antibody levels to invading 

antigens (e.g. App, Verhagen, 1987; TGE virus, Shimizu et al., 1978; sheep red blood 

cells, Blecha and Kelley, 1981). The cell mediated immune response will be enhanced 

after exposure to draught (Scheepens, 1991) or exposure to cold (Kelley, 1985). 

Verhagen (1987) indicated that increase in humoral immunity induced by adverse 

climatic conditions could be caused by the following mechanism. If the local resistance 

of pigs is lowered, a prolonged contact with and, in case of multiplication, a higher 
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exposure level to the pathogen can be the result. This hypothesis was supported by an 

impaired bactericidal activity of alveolar macrophages to Escherichia co//-infection in pigs 

kept at low ambient temperature (Curtis et al., 1976). 

In the respiratory tract there is a direct contact between the animal and its 

environment. During inspiration, air travels along branching passages where it is warmed 

and filtered on its way to the lungs. The conchal bone structures are part of this filtering 

system, and, owing to their large specific surface, prone to impairment by environmental 

conditions or colonization by microorganisms. Knowledge, however, of climatic 

environmental effects on the progression of atrophic rhinitis is lacking. Adverse conditions 

may seize upon the conchal mucous membrane causing an enhanced colonization of 

Pm+ and/or passage of the Pm-T through this membrane. In both concepts more toxin 

might reach the underlying bony tissues resulting in more severe disease symptoms. 

Another possibility is that the change in immunity level (antibody mediated) caused by 

exposure to cold might contribute to pathological lesions. This was speculated by Kelley 

et al. (1982) in infectious diseases of cattle, referring to certain hypersensitivity states. 

Cold stress-induced changes in immune events depend on the type of immune response, 

the nature of the environmental stressor and the length of exposure. The effects of 

environmental stressors on immune events, and certainly on infectious diseases are 

complex and poorly understood (Kelley et ai., 1982). The physiological mechanism(s) by 

which adverse environmental stimuli increase the susceptibility of animals to disease is 

unknown. 

CONCLUSION 

Atrophic rhinitis is a disease of which the severity is largely determined by its 

multiple etiology. By means of the health monitoring programme with 'Pm+-free' 

Certification, dominating noncontagious factors, and vaccinating pregnant sows, sustained 

economic damage caused by atrophic rhinitis can be controlled. Thus, for the intensive 

pig industry, AR is not considered to be a major problem anymore. Strategy of the 

European Community, however, is to reduce the use of vaccines to control contagious 

diseases. Therefore, quantification of endogenous and exogenous factors in AR and 

knowledge about immunity to AR are indispensable. For instance, the reason why only 

young pigs are sensitive to Pm-T to induce nasal breakdown, in contrast to adult pigs is 

unknown. Identification of immune responses to AR (Pm-T) might help to develop better 

diagnostic values and therapeutic approaches for disease intervention. 

A great deal of research into atrophic rhinitis from several angles of incidence has 

been conducted. But results of these studies are hard to compare because various and not 
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always reproducible challenge routes and agents were used to induce AR experimentally. 

Often the challenge system was aimed at clinical disease to study effect of medication 

or vaccination. To study effects of environmental and animal factors on AR, an explicit 

definition and a reproducible challenge model for experimental induction of atrophic 

rhinitis is required. Such a model would allow investigations on AR (Pm-T) in a broad 

field of interest to be conducted. 

Preferably the induced disease symptoms should be moderate (subclinical), so that 

factors related to the mucosal system of the turbinates can be judged and animal welfare 

is not largely impaired. The model should approach infection route and disease 

symptoms of field infections, because then obtained results can be 'easily' translated to 

farm level. Then, the impact of immunological, genetic, production (metabolic) and 

environmental (social and climatic) factors, and their interactions on the severity of the 

disease might be quantified. Moreover, the mode of action, the mechanisms involved and 

the target receptors of the Pm-T can be studied in more detail. 

REFERENCES 

Anonymous (1987) Regelingen in het kader van de georganiseerde dierziektenbestrijding. Publication: 

Stichting Gezondheidszorg voor dieren [Central Animal Health Service Office], The Hague. (In Dutch). 

Baalsrud K) (1987) Atrophic rhinitis in goats in Norway. Vet Rec 121: 350-353. 

Blecha F, Kelley KW (1981) Effects of cold and weaning stressors on the antibody mediated immune 

response of pigs. / Anim Sei 53: 439-447. 

Bording A, Petersen S, Foged NT (1990) Immunological and pathological characterization of the Pasteurella 

multocida toxin and its derivatives. Proceedings 11 t h IPVS Congress, Lausanne, Switzerland: 62. 

Bording Jensen A, Riising H-J (1988) A preliminary evaluation of the use of the serum neutralization test 

as a serological method for measuring protection against AR. Proceedings 10"1 IPVS Congress, Rio de 

Janeiro, Brazil: 40. 

Chanter N (1990) Advances in atrophic rhinitis and toxigenic Pasteurella multocida research. Pig news and 

Information 11 : 503-506. 

Cheville NF, Ri m Ier RB, Thurston J R (1988) A protein toxin from Pasteurella multocida type D causes acute 

hepatic necrosis in pigs. Vet Pathol 25: 518-520. 

Close W H , Mount LE (1978) The effect of plane of nutrition and environmental temperature on the energy 

metabolism of the growing pig, 1. Heat loss and critical temperature. Br I Nutr 40: 413-421. 

Curtis SE (1983) Environmental management in animal agriculture. Iowa State University Press, Ames, 

Iowa, USA. 

Curtis SE, Kingdon DA, Simon J, Drummond JG (1976) Effects of age and cold on pulmonary clearance in 

the young pig. Am ) Vet Res 37: 299-301. 

Domin ickMA, Rimler RB (1988) Turbinate osteoporosis in pigs fol lowing intranasal inoculation of purified 

Pasteurella toxin: Histomorphometric and ultrastructural studies. Vet Pathol 25: 17-27. 

Dominick MA, Rimler RB (1986) Turbinate atrophy in gnotobiotic pigs intranasally inoculated with protein 

toxin isolated from type D Pasteurella multocida. Am I Vet Res 47: 1532-1536. 



About Atrophic Rhinitis in Piglets - A Review 2 9 

Done JT (1983) Atrophic rhinitis: pathomorphological diagnosis. In 'Atrophic rhinitis in Pigs' (eds Pedersen 

KB, Nielsen N O , Commission of the European Communities, Eur. 8643 EN Luxembourg: 3-12. 

Done JT (1971). Infectious atrophic rhinitis: rational control at the herd level. Proceedings XIX VV.V.A. 

Congress, Mexico (Cited by Smith, W.J. Infectious atropic rhinitis - non-infectious determinants) 

Foged NT (1992). Pasteurella multocida toxin, The characterisation of the toxin and its significance in the 

diagnosis and prevention of progressive atrophic rhinitis in pigs. PhD Thesis. APMIS supplementum 

no.25, vol . 100, Munksgaard, Copenhagen, Denmark. 

Foged NT (1988) Quantitation and purification of the Pasteurella multocida toxin by using monoclonal 

antibodies. Infect Immun 56: 1901-1906. 

Foged NT, Pedersen KB, Elling F (1987) Characterisation and biological effects of the Pasteurella multocida 

toxin. FEMS Microbiol Lett 43: 45-51. 

Franque LW (1829) Was ist die Schnuffelkrankheit der Schweine? Dtsch Z ges Tierheilkd 1: 75-77. 

Frymus T, Müller E, Schulte A, Kobatsch B, Ueberschär S, Petzoldt K (1986) Studies in conventional and 

gnotobiotic piglets on the pathogenicity and immunogenicity of a toxin from Pasteurella multocida 

involved in atrophic rhinitis. Proceedings 9lh IPVS Congress, Barcelona, Spain: 229. 

Joling P, Mok KS, Vries Reilingh G de, Wever PJM, Cornells RS, Oskam JPH, Henken AM (1993) An 

evaluation of immune competence in different swine breeds. Vet Quart 15: 9-15. 

Jong MF de (1992) (Progressive) Atrophic Rhinitis. In 'Diseases of Swine' (eds Leman AD, Straw BE, 

Mengeling WL, D'Allaire S, Taylor DJ), 7,h edition, Chapter 33, pp. 414-435. Wolfe Publishing Ltd. 

Jong MF de (1985) Atrophic rhinitis in pigs. Further investigations concerning diagnosis, pathogenesis, 

treatment and control and epidemiology. PhD Thesis, State University of Utrecht. Elinkwijk B.V., 

Utrecht, The Netherlands, (in Dutch with English summary). 

Jong MF de (1983) Treatment and control of atrophic rhinitis in the Netherlands. In: 'Atrophic rhinitis in 

Pigs' (Eds Pedersen KB, Nielsen NC), Commission of the European Communities, Eur. 8643 EN, 

Luxembourg: 136-146. 

Jong MF de, Akkermans JPWM (1986) Investigations into the pathogenesis of atrophic rhinitis in pigs: I. 

Atrophic rhinitis caused by Bordetella bronchiseptica and Pasteurella multocida and the meaning of 

a thermolabile toxin of Pasteurella multocida. Vet Quart 8: 204-214. 

Jong MF de, Braamskamp J (1994) Atrophic Rhinitis-Herdmonitoring; the investigation of toxinogenic 

Pasteurella multocida from the tonsils of culled sows collected in the slaughterhouse. Proceedings 13lh 

IPVS Congress, Bangkok, Thailand: 161. 

Jong MF de, Nielsen JP (1990) Definition of progressive atrophic rhinitis. Vet Rec 126: 93. 

Jong MF de, Kamp E, Bokken C (1994) Selecting sows harbouring AR toxigenic Pasteurella multocida by 

a PCR-test to eliminate progressive AR in a breeding herd. Proceedings 13lh IPVS Congress, Bangkok, 

Thailand: 167. 

Jong MF de, Oei HL, Tetenburg CJ (1980) AR-pathogenicity-tests for Pasteurella multocida isolates. 

Proceedings 6 lh IPVS Congress, Copenhagen, Denmark: 211. 

Kelley KW (1985) Immunological consequences of changing environmental stimuli. In: 'Animal Stress' (Ed 

Moberg CP), American Physiological Society, Bethesda, Maryland, USA: 193-223. 

Kelley KW, Greenfield RE, Evermans JG, Parish SM, Perryman LE (1982) Delayed-type hypersensitivity, 

contact sensitivity and PHA skin-test responses of heat-and cold-stressed calves. Am I Vet Res 43: 775-

779. 

Kimman TG, Löwik GWGM, van de Wee-Pals LJA, Thesing CW, Defixe P, Kamp EM, Bijvoet OLM (1987) 

Stimulation of bone resorption by inflamed nasal mucosa, dermonecrotictoxin-containingconditioned 

medium from Pasteurella multocida, and purified dermonecrotic toxin from Pasteurella multocida. 

Infect Immun 55: 2110-2116. 



3 0 Chapter 2 

Kobisch M, Madec F (1983) Economie significance of atrophie rhinitis in France. In: 'Atrophie rhinitis in 

Pigs' (Eds Pedersen KB, Nielsen NC), Commission of the European Communities, Eur. 8643 EN, 

Luxembourg: 43-45. 

Kreukniet MB, Visser W, Verhagen JMF, Verstegen MWA (1990) Influences of climatic treatments on 

systemic immunological parameters in pigs. Livest Prod Sei 24: 249-258. 

Lax AJ, Chanter N, Pullinger GD, Higgins T, Staddon, )M, Rozengurt E (1990) Sequence analysis of the 

potent mitogenic toxin of Pasteurella multocida. FEBS 277: 59-64. 

Martin SW, Meek AH, Wil leberg P (1987) Veterinary epidemiology: principles and methods. Iowa State 

University Press. Ames, Iowa, USA. 343 pages. 

Martineau-Doizé B, Caya I, Gagné S, Jutras I, Dumas G (1993) Effects of Pasteurella multocida toxin on 

the osteoclast population of the rat. ) Comp Path 108: 81-91. 

Martineau-Doizé B, Frantz JC, Martineau G-P (1990) Cartilage and bone lesions: An explantion of the 

severity of conchae atrophy induced by Pasteurella multocida, type D dermonecrotoxin. Proceedings 

11 l h IPVS Congress, Lausanne, Switzerland: 79. 

Martineau-Doizé B, Jutras I (1994) Effects of Pasteurella multocida toxin on osteoclast formation in long-

term culture of bone marrow cells. Proceedings 13 lh IPVS Congress, Bangkok, Thailand: 164. 

Martineau-Doize B, Martineau G-P (1986) Topography and differential growth of the nasal ventral concha 

(os canchae nasalis ventralis) of the pig from birth to six weeks of age. Am 1 Vet Res 47: 416-421. 

Martineau G-P, Broes A, Jong MF de, Martineau-Doize B (1982) Experimental reproduction of atrophic 

rhinitis wi th Pasteurella multocida on gnotobiotic and conventional piglets. Proceedings 7"1 IPVS 

Congress, Mexico City, Mexico: 88. 

Martineau G-P, Denicourt M, Charette R, Lambert J (1988) Atrophic rhinitis and breed susceptibility. 

Proceedings 10"1 IPVS Congress, Rio de Janeiro, Brazil: 39. 

Meeker DL, Rothschild MF, Christian LL, Warner CM, Hil l HT (1987) Genetic control of immune response 

to Pseudorabies and atrophic rhinitis vaccines: I. Heterosis, general combining ability and relationship 

to growth and backfat. I Anim Sei 64: 407-413. 

Mount LE (1979) Adaptation to thermal environment: man and his productive animals. Edward Arnold, 

London. 

Mount LE, Start IB, Brown D (1980) A note on the effect of forced air movement and environmental 

temperature on weight gain in the pig after weaning. Anim Prod 30: 295-298. 

Nagy LK, MacKenzie T, Scarnell J (1986) Serum antibody values to Pasteurella multocida type D toxin and 

susceptibility of piglets to experimental challenge with toxigenic type D of Pasteurella multocida. 

Proceedings 9,h IPVS Congress, Barcelona, Spain: 224. 

Nakai T, Sawata A, Kume K (1985) Intracellular locations of dermonecrotic toxins in Pasteurella multocida 

and in Bordetella bronchiseptica. Am I Vet Res 46: 870-874. 

Nakai T, Sawata A, Tsuji M, Kume K (1984) Characterization of dermonecrotic toxin produced by serotype 

D strains of Pasteurella multocida. Am I Vet Res 45: 2410-2413. 

Nielsen NC (1983) Prevalence and economic significance of atrophic rhinitis. In: 'Atrophic rhinitis in Pigs' 

(Eds Pedersen KB, Nielsen NC), Commission of the European Communities, Eur. 8643 EN, 

Luxembourg: 35-42. 

Noyes EP, Jacobson L, Mendez A, Pijoan C (1988) Study of immunological parameters of pigs housed with 

cold air drafts or fluctuating temperatures. Proceedings 10"1 IPVS Congress, Rio de Janeiro, Brazil: 25. 

O'Connor PJ (1983) Atrophic rhinitis in the republic of Ireland. In: 'Atrophic rhinitis in Pigs' (Eds Pedersen 

KB, Nielsen NC), Commission of the European Communities, Eur. 8643 EN, Luxembourg: 46-51. 

Paridaans H, Voets MTh, Tielen MJM, Hendriks H, Paridaans L (1981). De economische betekenis van 

atrofische rhinitis op mestbedrijven. Bedrijfsontwikkeling 12: 795-799. (In Dutch). 



About Atrophic Rhinitis in Piglets - A Review 31 

Pederson KB, Ell ing F (1984) The pathogenesis of atrophic rhinitis in pigs induced by toxigenic Pasteurella 

multocida. I Comp Path 94: 203-214. 

Pedersen KB, Nielsen NC (1983) Preface. In 'Atrophic rhinitis in Pigs' (eds Pedersen KB, Nielsen NC), 

Commission of the European Communities, Eur. 8643 EN, Luxembourg: VII . 

Pennings AMMA, Storm PK (1984) A test in vera cell monolayers for toxin production by strains of 

Pasteurella multocida isolated from pigs suspected of having atrophic rhinitis. Vet Microbiol 9: SOS-

SOS. 

Rimler RB, Brogden KA (1986) Pasteurella multocida isolated from rabbits and swine: Serologic types and 

toxin production. Am ] Vet Res 47: 730-737. 

Robertson JC, Wilson D, Smith WJ (1990) Atrophic rhinitis: The influence of the aerial environment. Anim 

Prod 50: 173-182. 

Rozengurt E, Higgins T, Chanter N, Lax AJ, Staddon JM (1990) Pasteurella multocida toxin: Potent mitogen 

for cultured fibroblasts. Proc Natl Acad Sei 87: 123-127. 

Rutter JM (1988) Bacterial toxins as virulence determinants of veterinary pathogens, an overview. In 

'Virulence mechanisms of bacterial pathogens', (Ed Roth JA) Washington. Amer.Soc.Micro.: 213-227. 

Rutter JM (1985) Atrophic rhinitis in swine. Adv Vet Sei Comp Med 29: 239-279. 

Rutter JM, Mackenzie A (1984) Pathogenesis of atrophic rhinitis in pigs: A new perspective. Vet Rec 114: 

89-90. 

Scheepens CJM (1991) Effects of draught as climatic stressor on the health status of weaned pigs. PhD 

Thesis, State University of Utrecht, Utrecht, The Netherlands. 

Schöss P (1983) Atrophic rhinitis in West Germany. In 'Atrophic rhinitis in Pigs' (eds Pedersen KB, Nielsen 

NC), Commission of the European Communities, Eur. 8643 EN, Luxembourg: 61-64. 

Shimizu M, Shimizu Y, Kodama Y (1978). Effect of ambient temperatures on induction of transmissible 

gastroenteritis in feeder pigs. Infect Imm 2 1 : 747-752. 

Smelt H (1989) Oriënterend onderzoek met betrekking tot het aantonen van de infectie met de toxine-

vormende Pasteurella multocida bij fok- en mestvarkens. Report Animal Health Service, Zwolle and 

Agricultural University, Wageningen, The Netherlands. 35 pages. (In Dutch) 

Smith WJ (1983) Infectious atrophic rhinit is- Non-infectious determinants. In 'Atrophic rhinitis in Pigs' (eds 

Pedersen KB, Nielsen NC), Commission of the European Communities, Eur. 8643 EN, Luxembourg: 

151-162. 

Verhagen JMF (1987). Acclimation of growing pigs to climatic environment. PhD Thesis, Wageningen 

Agricultural University, Wageningen, The Netherlands. 

Verstegen MWA, Henken AM, van der Hel W (1987) Influence of some environmental, animal and feeding 

factors on energy metabolism in growing pigs. In Energy metabolism in farm animals (eds Verstegen 

MWA, Henken AM), pp. 70-86. Martinus Nijhoff Dordrecht, The Netherlands. 

Voets M, Kersten A, Ree JM de, Crauwels P, Stuurman D (1994) Efficacy and safety of an experimental AR-

vaccine under controlled conditions. Proceedings 13lh IPVS Congress, Bangkok, Thailand: 124. 

Wallgren P, Mattsson S, Rabe J, Lindblad M, Molander B, Wierup M (1994) Age distribution of pigs 

carrying toxin-producing Pasteurella multocida in herds affected with atrophic rhinitis. Proceedings 13lh 

IPVS Congress, Bangkok, Thailand: 122. 

Will iams PhP, Hall MR, Rimler RB (1990). Host response to Pasteurella multocida turbinate atrophy toxin 

in Swine. Can j Vet Res 54: 157-163. 

Will iams PhP, Hall MR, Rimler PB (1986) Effect of purified Pasteurella multocida turbinate atrophy toxin 

on porcine peripheral blood lymphocytes in vivo and in vitro. Proceedings 9lh IPVS Congress, 

Barcelona, Spain: 234. 



Chapter 3 

INTRANASAL ADMINISTRATION OF PASTEURELLA MULTOCIDA 

TOXIN IN A CHALLENGE-EXPOSURE MODEL USED TO INDUCE 

SUBCLINICAL SIGNS OF ATROPHIC RHINITIS IN PIGS 

P.M. van Diemen, M.F. de Jong, G. de Vries Reilingh, 

W. van der Hel and J.W. Schrama 

Published in: American Journal of Veterinary Research 55 (1994) 49-54 

Reproduced by permission of The 'American Veterinary Medical Association 



INTRANASAL ADMINISTRATION OF PASTEURELLA MULTOCIDA TOX IN I N A 

CHALLENGE-EXPOSURE MODEL USED TO INDUCE SUBCLINICAL SIGNS OF 

ATROPHIC RHINITIS IN PIGS 

PM van Diemen*, MF de Jongs, G de Vries Reilingh*, W van der Hel* and JW Schrama* 

*Wageningen Agricultural University, Department of Animal Husbandry, Wageningen, 

The Netherlands, and sAnimal Health Service, Deventer, The Netherlands 

Abstract 

A challenge-exposure model was developed for dose-dependent induction of subclinical 

(moderate) atrophic rhinitis (AR) in conventionally raised Dutch Landrace and Large White pigs, 

about 4 weeks old. Under favorable climatic and housing conditions, pigs were intranasally 

challenge-exposed with Pasteurella multocida-derived toxin (Pm-T) 3 days after pretreatment by 

inoculation with 1 % acetic acid. Pigs were challenge-exposed with 1 of the following Pm-T doses: 

0 (control), 5, 13, 20 or 40 fjg of Pm-T/ml of phosphate-buffered saline solution (PBS), 0.5 

ml/nostril/d on 3 consecutive days. Five weeks after challenge exposure, subclinical (moderate) 

AR status was defined as intermediate conchae atrophy (grade 2 for ventral conchae on a 0 to 4 

scale and grade 1 or 2 for dorsal conchae on a 0 to 3 scale, respectively) and perceptible 

difference in change in brachygnathia superior (cBS) between control and challenge-exposed pigs 

between the beginning and end of the study. All Pm-T-exposed pigs had nasal damage that was 

dose-dependent. The higher Pm-T doses resulted in higher ventral conchae atrophy and dorsal 

conchae atrophy scores. The cBS increased with applied Pm-T dose, resulting in significant (P < 

0.05) differences between controls (3.88 mm) and the 13-, 20-, and 40-fjg Pm-T-treated groups 

(7.77, 6.58 and 7.98 mm, respectively). In response to the applied dose, weight gain per week 

for Pm-T-exposed pigs was lower than that of controls after week 3 (P < 0.01). Difference from 

controls was 32, 54, 52, and 96 g/d/pig for 5-, 13-, 20-, and 40-fjg Pm-T-treated groups 

respectively, in the last 2 weeks. For Dutch Landrace and Large White pigs, intranasally 

administered Pm-T mimicked the pathogenic effect of in vivo infection with toxigenic Pm strains. 

The optimal model to induce subclinical AR appeared to be 13 jjg of Pm-T/ml (0.5 ml/nostril/d) 

on 3 consecutive days. Our model should enable studies of exogenous and endogenous factors 

involved in development of AR, independent of the colonizing ability of the Pm strain used. 

Key words: Challenge-exposure model, Atrophic rhinitis, Pasteurella multocida-tox'm, Piglets 

INTRODUCTION 

Infective progressive atrophic rhinitis (AR) is a disease of the proximal respiratory tract 

that may affect young pigs. The disease is c l inical ly diagnosed by deformities of the snout 

and atrophy of the nasal conchae. Irreversible and complete disappearance of the 
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turbinates may be observed w i th in 2 to 3 weeks after infection w i th pathogenic 

Pasteurella multocida {Pm+) strains. 

Pasteurella mu/toc/da-derived toxin (Pm-T) may be one of the agents causing the 

pathogenic processes of AR, that lead to irreversible destruction and reabsorption of nasal 

bony tissues (Foged et al., 1987; Rutter, 1988; Chanter, 1990; de Jong, 1991 ). However, 

the mode of action and target receptors of the toxin are unknown. In natural infections 

via the mucosa of the respiratory system, the toxin appears to be a poor immunogen 

(Rutter, 1988). 

Severity of the disease in pigs and concomitant productivity losses in commercial 

units are highly variable (Rutter, 1985). Experimental work indicated that aerial condit ions 

and management factors are involved in the epidemiology of the disease (Robertson et 

a/., 1990), but relation between severity of disease and immunologic, genetic, metabolic 

and environmental factors are, as yet, inadequately understood. 

Most challenge-exposure models aim at cl inical status, and are used for toxigenic P 

multocida research, to establish pathogenic effects or to evaluate vaccines. Data available 

on experimental induct ion of AR are derived f rom young specific-pathogen-free (SPF) or 

gnotobiot ic pigs challenge-exposed w i th Pm+ or bacteria-free supernatants. The dose of 

Pm-T used is stated in micrograms per mil l i l i ter (//g/ml), mouse lethal dose (MLD50) or 

guinea pig skin test (GPST) units, whereas various routes of challenge exposure w i th or 

w i thout pretreatment were applied (Martineau et al., 1982; Dominick and Rimler, 1986; 

de Jong and Akkermans, 1986; Frymus et ai, 1986; Nakai et al., 1986; Foged et ai, 

1987; Chanter, 1990). Al l exposed pigs developed progressive and irreversible turbinate 

lesions to a certain degree on the basis of one of the grading systems at various stages 

after challenge exposure. According to de Jong and Akkermans (1986), SPF pigs up to 16 

weeks o ld had clear ventral conchae lesions w i th septum deviation 4 weeks after 

intranasal inoculation w i th pathogenic Pm+. 

To study effects of environmental and animal factors on AR and unravel some of the 

mechanisms involved, a standard challenge-exposure model for experimental induction 

of AR is required. Such model should approach infection route and cl inical signs of f ield 

infection in conventional ly raised pigs. But severity of signs of disease induced should 

be moderate (subclinical), so that factors related to the mucosal system of the turbinates, 

that may have a positive or negative effect on these signs can be studied. When the 

turbinates have disappeared completely, these effects are diff icult to investigate. 

For standardization of the model, Pm-T administration should be preferred over Pm* 

inoculat ion, because colonization of Pm* in the nasal mucosa is highly variable and 

dependent on irritation or damage of the nasal mucosa (Petersen and El I ing, 1984; 

Chanter, 1990; de Jong, 1991). Bordetella bronchiseptica infection is ubiquitous in most 
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commercial pig units and induction of mucosal lesions is dependent on maternal 

immunity to B bronchiseptica. After pretreatment with diluted acetic acid, all pigs will 

at least have a certain degree of mucosal irritation. This will contribute to standardization 

of a model with Pm+ cultures, as well as with Pm-T challenge exposure. The study 

reported here was designed to develop a challenge-exposure model - dose-dependent 

induction of subclinical (moderate) AR in conventionally raised pigs by intranasal 

administration of Pm-T. 

MATERIALS AND METHODS 

Pigs 

Thirty Dutch Landrace (DL) and 30 Large White (GY) pigs were obtained from 

commercial farms with a Pm+-free status (De Jong, 1985) issued by the Animal Health 

Service in The Netherlands. For practical reasons weaned pigs, about 4 weeks old, were 

studied. Pigs were assigned ad random to experimental groups by balancing body weight 

between groups. Littermates were distributed equally over experimental groups. At arrival, 

nasal swab specimens were obtained from all pigs for culture B bronchiseptica and 

toxigenic P multocida. 

Housing and feeding 

The study was carried out in 2 large identical climate-controlled chambers at the 

Agricultural University (Verstegen et al., 1987). In each of these chambers, 2 pens, 9 m2, 

were available. In each chamber, 1 breed group was housed, 15 pigs/pen. Thermoneutral 

environmental temperature for young pigs (25 C) was chosen. Relative humidity was 

maintained at 65 to 70%. Pigs were fed commercial pelleted food (16.7 kj gross energy/g, 

1 7% crude protein) ad libitum, using self-feeders, and had free access to water. 

Experimental design 

The experiment had a 2 x 5-factorial arrangement of treatments: 2 breeds and 5 Pm-T 

dose groups. After 4 days' acclimatization to the chambers, all pigs were intranasally 

administered 1 %-acetic acid (0.5 ml/nostril) diluted in phosphate-buffered saline solution 

(PBSs). Three days later, initial challenge exposure with purified Pm-Tb was performed. 

Pigs received either 0 (control), 5, 13, 20, or 40 //g of Pm-T/ml of PBSs, 0.5 ml/nostril/d 

on 3 consecutive days for Pm-T dose (TD) group TD0, TD5, TD13, TD20, and TD40, 

bPm-strain 5/05097-1, type D (batch 2-2-89, 123 yt/g/ml). Kindly provided by Dr E Rijke and Dr PK 
Storm, Intervet International BV, Boxmeer, The Netherlands. 
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respectively. Spraying was used instead of droplet application, because the latter caused 

vigorous sneezing and, hence, loss of toxin. Six pigs per breed per dose were studied. 

Two treatment groups and half of the control pigs of a breed were housed in a pen. The 

experiment lasted for 5 weeks after initial challenge exposure (Day 0). 

All pigs were weighed once a week. Blood samples were collected before treatment 

and at weekly intervals during the study. Antibody produced in vivo and specific for Pm-

T was determined by ELISA. Serial dilutions of serum were applied to Pm-T-coated wells 

of a microtitration-plate. After incubation for 1 hour at 37 C, the amount of Pm-T 

antibodies bound to the toxin was determined by incubation with a peroxidase-

conjugated goat anti-swine lgGc and a tetramethylbenzidine substrate. Color formation 

was stopped after 10 minutes. All absorbances were expressed relative to absorbance of 

a standard positive-control serum obtained from a vaccinated pig. 

Response characteristics 

Brachygnathia superior (BS) was measured in millimeters at the start (BSS) and at the 

end (BSe) of the study. Because BS is a breed-associated characteristic in herds without 

the disease (Rutter, 1985), the change in BS between start and end of the experiment was 

used in calculations (cBS = BS5 - BSe). Progression of AR was defined after necropsy by 

grade of conchae atrophy after cross-section of the snout 5 weeks after challenge 

exposure. The snout was sectioned between the first and second premolar teeth (Figure 

1). The method of grading described by De Jong (1985) was used; ventral conchae 

atrophy (VCA) was graded from 0 (no lesions) to 4 (total atrophy) and dorsal conchae 

atrophy (DCA) was graded from 0 to 3. That author defined grade 2 for either VCA or 

DCA as moderate atrophy. Mean score for both nostrils was used in calculations. 

Because DCA develops later than VCA in pigs affected with AR (De Jong, 1985), 

subclinical (moderate) AR status in this study, was defined as intermediate conchae 

atrophy (grade 2 for VCA and 1 or 2 for DCA) and perceptible difference in change in 

brachygnathia superior (cBS) between control and challenge-exposed pigs, 5 weeks after 

challenge-exposure. 

Statistical analysis 

Traits were statistically analyzed for effect of breed (B), Pm-T dose (TD) and their 

interaction (BxTD) using two-way ANOVA (SAS, 1985). Effects of litter, sex, and bacterial 

infection were not included in the model because results of preliminary analyses did not 

indicate effects on the traits. 

cGASw/lgGH+1, Kpl, Gaithersburg, MD, USA 
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Figure 1 - Cross-sections of snouts between the 
first and second premolar tooth. 
A - Left no lesions, right slight atrophy ventral 

scroll (No 84, TD0). 
B - Total atrophy, no bony structures left 

(No 57, TD40). 
C - Intermediate conchae atrophy, ventral and 

dorsal scrolls atrophied, dorsal conchae 
slightly atrophied (No 92, TD,,). 

TD0 = control; TD40 - 40 /yg of Pasteurella 
mu/toc/da-derived toxin (Pm-T)/ml; TD,3 —13 //g 
of Pm-T/ml. 

Except for BSS and initial body weight (BW;), wh ich were affected by litter, and for BW, 

wh ich was affected by sex. Also for these traits, litter and sex were not included in the 

model, because littermates were equally distributed over experimental groups. 

Weekly measurements, observations on weight gain, and antibody formation were 

dependent, and were, therefore, an animal effect. Thus, a t ime variable (weeks) was 

added to the aforementioned model for analyzing effects on these traits. Effects of B, TD , 

and their interaction were tested against animal effect, and weeks and potential 

interaction terms were tested against the overall error term. 

Pairwise comparisons were performed between experimental and control groups, 

using least-square mean differences at the overall 0.05 level of significance. Mutual 

relations between Pm-T dose and response characteristics and among the response 

characteristics were orthogonally fitted by polynomial regression (Snedecorand Cochran, 

1980). 
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RESULTS 

General 

At arrival, neither ß bronchiseptica nor toxigenic P multocida were detected in the 

GY pigs. Of 30 DL pigs, 13 were B bronchiseptica culture-positive and 6 of 30 were 

culture-positive for a non-toxigenic P multocida (Pm). At the end of the study, 6 G Y and 

18 DL pigs were culture-positive for B bronchiseptica and 10 DL pigs were culture-

positive for Pm". 

One GY pig allotted to the control group (TD0) died of complicated umbilical 

inflammation a week after arrival, and 1 DL pig allotted to dose group TD20 died without 

a clear cause 5 days after arrival. None of the pigs treated with Pm-T developed 

detectable serum titer of Pm-T antibodies. 

Body weight 

At 4 weeks of age, mean initial body weight (BWj) of GY pigs was 1.5 kg higher, 

compared with that of DL pigs (P < 0.001). The B\N, was similar between dose groups, 

and interaction between breed and dose groups was not detected (Table 1). Body weight 

gain over the experimental period (BWGexp) was found to be breed-dependent (P < 

0.001), resulting in a 6.5-kg difference in BW in favor of GY pigs. Significant effects of 

applied Pm-T dose or of interaction between breed and dose were not found (Table 1), 

but compared with controls, tendency toward lower BWGexp with dose was seen. 

Table 1 - Comparison of variables by dose group. Least-square means and significance level of initial body 
weight (BW;), brachygnathia superior (BSS), body weight gain over the experimental period (BWG0X()), ventral 
and dorsal conchae atrophy scores (VCA, DCA) and difference between BSS and BS, (cBS), using two-way 
ANOVA" 

Variable 

n 

BW, (kg) 
BSS (mm) 
BWGexp (kg) 

cBS (mm) 
VCA 
DCA 

0 

11 

7.69 
1.43 
18.3 

3.88a 

0.93a 

0.26a 

Dose Pm-T 

5 

12 

7.69 
1.19 
17.8 

5.69ab 

1.54ab 

0.58a 

13 

12 

7.70 
0.77 
17.6 

7.77bc 

1.88b 

0.75a 

Ot/g/ml) 

20 

11 

7.62 
1.21 
18.2 

6.58bc 

2.12bc 

0.88a 

40 

12 

7.70 
1.31 
17.4 

7.98c 

2.83c 

1.79b 

SEM 

-
0.371 
0.265 
0.884 

0.787 
0.202 
0.235 

Signi 

B 

-
< 0.001 
<0.001 
<0.001 

0.22 
0.012 

<0.001 

ficance level 

TD 

-
0.99 
0.48 
0.95 

0.004 
< 0.001 
< 0.001 

BxTD 

-
0.99 
0.56 
0.45 

0.68 
0.96 
0.63 

Model used Y, , - fj + B, + TD, + (BxTD),, + e; where Y - variable, B - breed, TD = dose of 
Pasteurella mu/tocida-derived toxin, (BxTD) = interaction between breed and Pm-T dose. 
abDifferent superscripts indicate pairwise significant (P < 0.05) difference. 
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Mean weight gain per week (BWGJ was significantly affected by breed and the 

interactions, breed xweek and dosexweek (P < 0.05). With regard to the applied dose, 

after week 3, weight gain per week of the Pm-T-exposed pigs was lower, compared with 

controls (Figure 2). Over the last 2 weeks, difference from controls in weight gain was 

32, 54, 52, and 96 g/d/pig for TD5, TD,3, TD20, and TD40, respectively. 

Response characteristics 

The DL pigs have a longer upper jaw than do CY pigs (P < 0.001), expressed in 

higher BSS (1.86 vs 0.50 mm). Neither significant difference among dose groups nor 

significant interaction between breed and dose groups was found for this initial 

characteristic (Table 1). The change in BS between start and end of the study (cBS) was 

only dose-associated; interaction between breed and dose group was not observed. The 

cBS (Figure 3) increased with applied dose of Pm-T (P < 0.05), and this relation was 

linear (Table 2). When control pigs were eliminated from analyses, significant relation 

was not found. 
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Figure 2 - Least-square mean body weight gain by 
dose group. - + - TD0 - control; - * - TD5 - 5 
A/g of Pm-T/ml; - • - TD13 - 13 /yg of Pm-T/ml; 
- • - TD20 - 20 fjg of Pm-T/ml; - » - TD40 - 40 
yt/g of Pm-T/ml. 

Figure 3 - Mean (± SEM) change in brachygnathia 
superior (cBS - BSS - BSe) for Large White (CY) 
and Dutch Landrace (DL) pigs in each Pm-T dose 
group. 
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In pairwise comparison, cBS was significantly (P < 0.05) different between control group 

TD0 and groups TD13, TD20, and TD40. Explanation was not found why the GY pigs of the 

TD20 group had divergently lower cBS. Without this group in the analyses, the relation 

between cBS and dose became a second-degree polynomial (r2 = 0.27). 

Conchae atrophy developed in all Pm-T-exposed pigs. One pig of each breed had 

maximal score (VCA 4 and DCA 3); both belonged to the TD40 group. Presence of ß 

bronchisept/ca or Pm" infection in DL pigs did not affect their VCA or DCA score. 

Conchae of DL pigs were significantly (P < 0.01) more affected than those of GY pigs 

(VCA, 2.09 vs 1.62; and DCA, 1.24 vs 0.47). Progression of AR signs (VCA and DCA) 

caused by intranasally administered Pm-T was dose-dependent (Table 1), the grade of 

atrophy increased linearly with the dose of Pm-T applied (Table 2). Interaction between 

breed and dose groups was not found. In pairwise comparison, ventral conchae in pigs 

of the higher dose groups were significantly (P < 0.05) more affected than those of 

control pigs (TD0). Dorsal conchae of pigs in group TD40 were significantly (P < 0.05) 

more atrophied than those of pigs of the other groups. 

Table 2 - Relation between response characteristics (VCA, DCA, cBS), applied Pm-T dose, and body weight 
gain over the experiment (BWGexp) or over the last 2 weeks (BWGw4, BWGw5). 

Relation 
Y t o X 

VCA to dose 
DCA to dose 
cBS to dose 

DCA to VCA 
VCA to cBS 
DCA to cBS 

BWGexp to VCA 
BWG,.xp to DCA 
BWGw4 to VCA 
BWGw5 to VCA 

Model used Y -

With controls 
Intercept 

1.194 
0.294 
5.065 

-0.187 
1.179 
0.283 

3.058 
2.297 
5.028 
5.067 

Intercept + ß,-X 
NS = not significant. 

ß, 

0.043 
0.036 
0.084 

0.152 
0.108 
0.091 

-0.070 
-0.084 
-0.338 
-0.364 

+ M 2 , 

ß2 

NS 
NS 
NS 

0.177 
NS 
NS 

NS 
NS 
NS 
NS 

where 

r2 

0.44 
0.26 
0.16 

0.68 
0.12 
0.07 

0.07 
0.09 
0.14 
0.11 

X and Y = 

Without controls 
Intercept 

1.373 
0.310 

-
-1.175 
1.719 
0.528 

3.251 
2.586 

-
-

variables ß, 

ß, 

0.037 
0.035 

-
1.043 
0.052 
0.067 

-0.069 
-0.093 

-
-

ß2 

NS 
NS 

-
NS 
NS 
NS 

NS 
NS 

-
-

2 = regression 

r2 

0.35 
0.20 

-
0.68 
0.03 
0.03 

0.08 
0.10 

-
-

coefficients 

Mutual relations between dose and response characteristics and among the response 

characteristics also were determined (Table 2). The DCA and VCA were highly related 

to each other (r2 = 0.68); DCA develops in association with the higher VCA grades. 

When devoid of controls, the linear relation with dose remained for VCA and DCA, but 

relation was not found between cBS and dose. The lower weight gain during week 4 and 



A challenge-exposure model to induce Atrophic Rhinitis 4 3 

week 5 (BWGw4 and BWCw5) in Pm-T-exposed pigs was linearly related with severity of 

VCA. Pigs with severe conchae atrophy had less growth, compared with pigs with low 

conchae atrophy scores. 

DISCUSSION 

In this study, all Pm-T-exposed pigs had nasal damage that was dose-dependent. The 

GY pigs had significantly lower VCA and DCA scores than did DL pigs (including 

controls), whereas DL pigs had less change in brachygnathia superior (except those in 

group TD20). Rutter (1985) reviewed conflicting findings in the relation between facial 

conformity and severity of AR. Others cited, may have been referring to various 

syndromes, because the infectious nature of AR was not known during their research. 

Presence of B bronchiseptica infection in half the DL pigs was not found to interfere with 

applied Pm-T doses, but might be the cause of some of the breed difference in VCA and 

DCA, because it has been reported that infection with B bronchiseptica could result in 

mild clinical manifestations (de Jong and Akkermans, 1986). Differences in susceptibility 

and sensitivity of the nasal bone tissue and receptors on cells may be explained by 

differences between breeds or lines (Martineau et al., 1988) in similar manner as breeds 

can differ in immune responses (Meeker et al., 1987). 

Notwithstanding a difference in degree differences in response characteristics were 

not found in the way the breeds reacted to the applied Pm-T dose. The same challenge 

dose can be used for both breeds. Dosage of 13 /jg of Pm-T/ml administered intranasally 

on 3 consecutive days met the requirements of a standard challenge-exposure model for 

experimental induction of moderate AR. At dosage of 13 /vg/ml, both breeds had 

intermediate grade of conchae atrophy (VCA, 1.75 and 2.0; and DCA, 0.33 and 1.16 for 

GY and DL pigs, respectively) and clear change in BS (cBS, 8.46 and 7.08 for GY and 

DL, respectively, Figure 3), all significantly different from values in controls. In the long-

nosed DL pigs, the applied 0.5-ml/nostril Pm-T solution may have spread over the longer 

conchae, rather than reaching the skull bones, whereas in GY pigs, the Pm-T might have 

reached the skull bones more easily, thus resulting in indefinite relation between cBS on 

the one side and VCA and DCA on the other. 

Serum titer of antibodies against intranasal administered Pm-T were not detectable, 

which is in accordance with the poor immunogenicity associated with natural infections 

(Rutter, 1988). The reason why anti-toxin response is not detectable needs further 

research, because intramuscular administration of Pm-T causes strong antibody response, 

which is protective against experimental challenge exposure (Rutter, 1985; de Jong and 

Akkermans, 1986; Frymus et al., 1986). 
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Our results indicate that this experimental challenge-exposure model mimics the 

pathogenic effect of in vivo infection with toxin-producing Pm strains, and response 

characteristics are dose-dependent. These findings correspond to results of other research 

workers (de Jong and Akkermans, 1986; Frymus et al., 1986; Foged et a/., 1987), 

although in this study conventionally raised 4-week-old pigs and not young SPF or 

gnotobiotic pigs, were studied. The snouts were scored later after challenge exposure 

than was reported in most experiments. 

Toward the end of the study, weight gain per week for Pm-T-exposed pigs was lower 

than that for control pigs. Controls (TD0) had the best (18.3 kg) and pigs of group TD40 

had the lowest BWGe)<p (17.4 kg). This trait seemed to be dependent on severity of nasal 

damage. With time, this relation might have become more pronounced. Weight gain 

during the last 2 weeks (BWGw4 and BWGw5) had a negative linear relation with VCA. 

Growth of pigs with severe conchae atrophy was more (negatively) affected than that of 

pigs with slight conchae atrophy. This relation and the variable productivity losses cited 

in literature (Rutter, 1985) need further research. They might be caused by changed 

efficiency in metabolism or by lower food intake of affected pigs. 

Our model should enable studies of exogenous and endogenous factors involved in 

development of AR, independent of the colonizing ability of the Pm strain used. 

However, it remains to be established whether (sub)clinical signs attributable to 

administration of Pm-T are based on a mechanism similar to that attributable to in vivo 

infection with Pm* strains. 

ACKNOWLEDGEMENTS 

The authors thank Marcel Heetkamp, Koos van der Linden, Peter Vos, and Mirjam 

Houkes for technical assistance. 

REFERENCES 

Chanter N (1990) Advances in Atrophic Rhinitis and toxigenic Pasteurella multocida research. Pig news 

and Information 1 1 : 503-506. 

Dominick MA, Rimler RB (1986) Turbinate atrophy in gnotobiotic pigs intranasally inoculated with protein 

toxin isolated from type D Pasteurella multocida. Am 1 Vet Res 47: 1532-1536. 

Foged NT, Pedersen KB, Ell ing F (1987) Characterization and biological effects of the Pasteurella multocida 

toxin. FEMS Microbiol Letters 43: 45-51. 

Frymus T, Muller E, Schulte A, Kobatsch B, Ueberschär S, Petzoldt K (1986) Studies in conventional and 

gnotobiotic piglets on the pathogenicity and immunogenicity of a toxin from Pasteurella multocida 

involved in Atrophic rhinitis (abstr). Proceedings 9,h IPVS congress, Barcelona, Spain: 229. 



A challenge-exposure model to induce Atrophic Rhinitis 4 5 

Jong MF de (1991) Atrophic rhinitis A.D. 1991. Tijdschr Diergeneeskd 116: 1221-1230 (Dutch with English 

summary). 

Jong MF de (1985) Atrophic Rhinitis in pigs. Further investigations concerning diagnosis, pathogenesis, 

treatment and control and epidemiology. PhD Thesis. State University of Utrecht. Utrecht, The 

Netherlands (Dutch with English summary). 

Jong MF de, Akkermans JPWM (1986) Investigations into the pathogenesis of atrophic rhinitis in pigs: I. 

Atrophic rhinitis caused by Bordetella bronchiseptica and Pasteurella multocida and the meaning of 

a thermolabile toxin of Pasteurella multocida. Vet Q 8: 204-214. 

Martineau C-P, Broes A, Jong MF de, Martineau-Doizé B (1982) Experimental reproduction of Atrophic 

rhinitis with Pasteurella multocida on gnotobiotic and conventional piglets (abstr). Proceedings 7lh IPVS 

Congress, Mexico City, Mexico: 88. 

Martineau G-P, Denicourt M, Charette R, Lambert J, Désilets A, Sauvageau R, CousineauG (1988) Atrophic 

rhinitis and breed susceptibility (abstr). Proceedings 10,h IPVS Congress, Rio de Janeiro, Brazil: 39. 

Meeker DL, Rothschild MF, Christian LL, Warner CM, Hill HT (1987) Genetic control of immune response 

to Pseudorabies and atrophic rhinitis vaccines: I. Heterosis, general combining ability and relationship 

to growth and backfat. / Anim Sei 64: 407-413. 

Nakai T, Kume K, Yoshikawa H, OyamadaT, Yoshikawa T (1986) Changes in the nasal mucosa of specific-

pathogen-free neonatal pigs infected with Pasteurella multocida or Bordetella bronchiseptica. )pn j Vet 

Sei 48: 693-701. 

Pedersen KB, Elling F (1984) The pathogenesis of atrophic rhinitis in pigs induced by toxigenic Pasteurella 

multocida. ] Comp Pathol 94: 203-214. 

Robertson JG, Wilson D, Smith WJ (1990) Atrophic rhinitis: The influence of the aerial environment. Anim 

Prod 50: 173-182. 

Rutter JM (1988) Bacterial toxins as virulence determinants of veterinary pathogens: an overview. In 

Virulence mechanisms of bacterial pathogens (Roth JA, ed), pp. 213-227. Am Soc Microbiol , 

Washington, USA. 

Rutter JM (1985) Atrophic rhinitis in swine. Adv Vet Sei Comp Med 29: 239-279. 

Snedecor GW, Cochran WC (1980) Statistical Methods. 7th ed. The Iowa State University Press, Ames, 

Iowa: 298-333. 

Statistical Analysis System (1985) SAS Users' Guide: Statistics, version 5 ed. SAS Institute Ine, Cary, NC, 

USA: 891-996. 

Verstegen MWA, van der Hel W, Brandsma HA, Henken AM, Bransen AM (1987). The Wageningen 

respiration unit for animal production research; A description of the equipment and its possibilities. 

In Energy metabolism in farm animals (eds Verstegen MWA, Henken AM), pp. 21-48. Martinus Nijhoff 

Dordrecht, The Netherlands. 



Chapter 4 

CLIMATIC ENVIRONMENT 



Chapter 4.1 

EFFECTS OF ATROPHIC RHINITIS AND CLIMATIC 
ENVIRONMENT ON THE PERFORMANCE AND ENERGY 

METABOLISM OF PIGS 

P.M. van Diemen, J.W. Schrama, W. van der Hel, 

M.W.A. Verstegen and J.P.T.M. Noordhuizen 

Submitted to: Livestock Production Science (1995) 



EFFECTS OF ATROPHIC RHINITIS A N D CLIMATIC ENVIRONMENT 

O N THE PERFORMANCE A N D ENERGY METABOLISM OF PIGS 

P.M. van Diemen", J.W. Schrama*, W . van der Hel", 

M.W.A. Verstegen8 and J.P.T.M. Noordhuizen* 

Wageningen Agricultural University, Departments of *Animal Husbandry and §Animal 

Nutr i t ion, P.O.Box 338, 6700 A H Wageningen, The Netherlands. 

Abstract 

Effects of subclinical atrophic rhinitis and exposure to adverse climatic environment on 

partitioning of energy (metabolism) and performance in pigs under field-like conditions were 

determined. Eight groups of 30 five-week old pigs each, were assigned to a 2 x 2 factorial 

arrangement of treatments: to 0 or 13 //g/ml of Pm-T challenge-exposure, and to a good or 

adverse climatic environment. Climatic treatment lasted 5 weeks. Pigs were fattened till 100 kg 

live weight. All Pm-T exposed piglets had nasal damage, which was not affected by climatic 

treatment. Growth retardation caused by Pm-T administration was suggested to be mainly the 

outcome of a lower food intake. Changes in metabolizabilityand maintenance requirements were 

not found. Growth retardation due to adverse climatic environment was related to a lower food 

intake as well as an increased maintenance requirement. Pm-T treated and control pigs from the 

good environment differed 3 days in reaching 100 kg body weight, while for those groups from 

the adverse environment this difference was 8 days. 

Key words: Atrophic Rhinitis, Pasteurella mu/toc/da-toxin, Climatic Environment, Energy 

Metabolism, Performance, Piglets 

INTRODUCTION 

Environmental factors can play an important role in the health and product ion of 

l ivestock. Fluctuating ambient temperature and sometimes increased air velocity are 

important components of the indoor cl imatic environment. Incidence and severity of 

disease can be related to these components (Verhagen, 1987; Kreukniet et al., 1990). This 

is particularly true for respiratory diseases in pigs (Verhagen, 1987; Eibers, 1991). In the 

respiratory tract, a direct contact between the animal and its environment exists. Dur ing 

inspiration, air travels along branching passages where it is warmed and f i ltered on its 

way to the lungs. The nasal turbinate bones (conchae) are part of this f i l ter ing system. 

And, therefore, prone to be affected by environmental condit ions. When the conchae are 
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damaged or absent, the lungs are more susceptible to secondary infections like enzootic 

pneumonia or Actinobacillus p/europneumon/ae-infection (de Jong, 1983; Martineau et 

al.,1988). Therefore it is important that conchae function. 

Toxin producing strains of Pasteurella multocida (Pm+) cause progressive and 

irreversible lesions in the conchae (Foged et al., 1987; Chanter, 1990). This disease, 

atrophic rhinitis (AR) is considered to be a disease with a multifactorial etiology. Aerial 

conditions, management factors and hygiene are involved in the epizootiology of AR 

(Smith, 1983; Goodwin, 1988; Robertson et al., 1990). The severity of AR-symptoms is 

highly variable between animals both within and between affected farms. When an 

animal experiences disease, its maintenance requirement will increase due to an activated 

immune system and to fever, the efficiency of production will dwindle (Verhagen, 1987). 

Results reported with regard to effects of AR on productivity losses vary from no or little 

reduction in daily gain to a 10-15% reduction in growth rate (de Jong, 1985; Rutter, 

1985). Growth of pigs with more severe conchae atrophy was more (negatively) affected 

than that of pigs with no or slight conchae atrophy (van Diemen et al., 1994). 

Reduction in growth can be the outcome of a lower food intake or a changed partitioning 

of energy (metabolism) in affected pigs. Coldness and draught increase maintenance 

requirement (heat production) so that less energy is available for body weight gain 

(Verhagen, 1987). 

The aim of the present study was to assess the impact of exposure to adverse climatic 

conditions on the progression of AR symptoms, and the effects of atrophic rhinitis and 

climatic environment on partitioning of energy and performance of pigs under field-like 

conditions. 

MATERIAL AND METHODS 

Plan of study 

Eight groups of pigs were studied in a 2 x 2 factorial arrangement of treatments: two 

levels of Pm-T challenge-exposure, and 2 different climatic conditions. Each group 

consisted of 30 five-week-old Large White (GY) piglets. The experimental period was 

composed of an exposure period of 5 weeks in a climatically-controlled respiration 

chamber and a fattening period in a conventional barn. The first day of the exposure 

period was defined Day 0. Each exposure period started after a preliminary period of 5-7 

days. Pigs originated from 4 farms with a 'Pm+-free' certificate of the Animal Health 

Service in The Netherlands (de Jong, 1985). On Day 0, the piglets (gilts and boars) were 

39 + 5 days old, and weighed 9.1 ± 2.3 kg. 
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Exposure period 

Housing and feeding - Two by two, groups were brought to the experimental 

facilities. Upon arrival, these 60 piglets were randomly allocated to two groups and 

placed in a large, open-circuit, indirect climatically-controlled respiration chamber 

(Verstegen et al., 1987). Within each chamber, two pens of 9 m2 each were available (15 

pigs per pen). At arrival and until Day 0, ambient temperature in chambers was 25°C, 

relative humidity was maintained at 65 to 70 % and air velocity was below 0.2 m/s. 

Lights were on from 0700 to 1900. 

Piglets were fed a pelleted weaner diet acf libitum by self-feeders and had free access 

to water. Food contained 16,7 Kj of gross energy (GE) per gram and 1 7% crude protein. 

Both group-housing and ad libitum feeding are common in piggeries. 

Experimental routine - In 4 groups, AR-like symptoms were induced with the Pm-T 

challenge-exposure model described by van Diemen et a/. (1994). This model was aimed 

to induce moderate (subclinical) disease-symptoms, 5 weeks post challenge. Thus 

enabling studies on factors which may have a positive or negative effect on the disease 

symptoms. In short, all animals were pre-treated with an 1 % acetic acid solution in water, 

0.5 ml in each nostril. Three days after this pre-treatment, pigs were challenged 

intranasally with Pm-T (Pm-strain 5/05097-1 type D) on 3 subsequent days. The applied 

daily challenge-dose was 0.5 ml of a 13 jjg Pm-T/ml Phosphor Buffered Saline solution 

(PBS) in each nostril. The other 4 groups were treated similarly with 0 //g Pm-T/ml PBS. 

The challenge-exposure treatment started on Day 0. 

The climatic treatment as applied in this study was aimed at simulating sudden and 

intermittent changes in unfavourable climatic conditions. Two different climatic 

treatments were applied; a good environment and an adverse environment. At the good 

environment, the ambient temperature was thermoneutral (25°C) and air velocity was 

below 0.2 m/s. The adverse environment consisted of an ambient temperature below 

thermoneutrality (15°C) combined with draught periods. Four draught-periods were 

applied, one at daytime: 1 300 to 1500, and 3 during the night: 2100 to 2300, 0100 to 

0300 and 0500 to 0700. During each draught-period air velocity within the chamber was 

increased to 0.6 m/s and temperature of the air stream was lowered by 3 degrees 

compared with the ambient temperature in the chamber. The air stream was applied 

intermittently (4 minutes on and 4 minutes off) similar to Verhagen (1987). Between 

draught-periods, the air velocity was below 0.2 m/s. Exposure to the adverse conditions 

started on Day 0 and lasted throughout the exposure period. 
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Measurements - All animals were checked twice (start and end of exposure period) 

through nasal swab-samples for the presence of AR-causing toxigenic Pasteurella 

multocida and AR-predisposing factor Bordetella bronchiseptica. Bloodsamples were 

drawn on Day 0 (before treatments) and on collection days (d 7, 14, 21, 28, 35) for the 

detection of Pm-T specific in vivo antibodies. The change in brachygnathia superior (cBS) 

over the 35-d exposure period was measured in mm in all animals as disease 

characteristic (van Diemen etat., 1994). 

The exposure period was divided into five balance periods of one week each. 

Individual body weight (BW) was measured on Day 0, and at the end of each balance 

period (collection days: d 7, 14, 21, 28, 35). Daily food intake per pen was determined 

at 0800. Energy and nitrogen balances per group were measured during each balance 

period. Faeces with urine production was measured quantitatively per balance period per 

group and sampled for energy and nitrogen analysis. Gross energy (CE, kj-kg 7S-d_1) 

values were determined by adiabatic bomb calorimetry and nitrogen content by the 

Kjeldahl method. Intake of metabolizable energy (ME, kj-kg"75-d"1) and ME:GE ratio were 

determined from the G E intake and loss of energy through faeces with urine. Heat 

production (HP, kj-kg 75-d') was measured by determining the gaseous exchange of 

oxygen and carbon dioxide as described by Verstegen et al. (1987). These exchanges 

were used to calculate heat production according to the formula of Brouwer (1965). On 

the collection days, HP was not measured. Retained energy (RE, kj-kg^-d"1) and energy 

retention as protein (ERp, kj-kg"75-d"1 ) and fat (ERf, kj-kg 75-d-1) were calculated as 

described by del Barrio et a/. (1993). The amount of metabolizable energy available for 

production (MEp, kj-kg"75-d_1) was calculated as: 

MEP = —xER + — xER, [1] 
K kf 

where kp = efficiency of utilization of ME for protein was assumed to be 0.54 (ARC, 

1981); and kf = efficiency of utilization of ME for fat was assumed to be 0.74 (ARC, 

1981). Energy requirement for maintenance (MEm, kj-kg 7S-d_1) was then estimated by 

subtracting MEp from total ME. 

At the end of the exposure period (Day 35) six piglets per group were necropsied 

(stunned and bled) to observe AR characteristics. Progression of AR was defined by the 

grade of ventral and dorsal conchae atrophy (VCA and DCA, respectively) after cross-

sectioning the snout between the first and second premolar tooth. The method of grading 

described by de Jong (1985) was used; VCA was graded from 0 (no lesions) to 4 (total 

atrophy) and DCA from 0 (no lesions) to 3 (total atrophy). The average of both nostrils 

was used in calculations. 
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Fattening period 

The remaining 24 pigs per group were transferred to a conventional barn. They were 

housed in 2.75 x 2.20 m pens, 3 to 4 pigs per pen. About 30% of the floor was covered 

with slats. Ambient temperature was kept above 15°C. Pigs had free access to food and 

water. The first four weeks pigs were fed a grower diet containing 17 kj GE per gram and 

17% crude protein. Thereafter they were fed a finisher diet containing 20 kj GE per gram 

and 16.5% crude protein. Individual BW was measured once a week. A pig was 

slaughtered (stunned and bled), and AR characteristics were defined, when the 100 kg 

body weight (D]00kg) was reached. Foodintake (Fl) was measured weekly per pen. For 

analyzing weight gain and Fl, the end of the fattening period was defined as the week 

the first pig reached 100 kg live weight (week 15). 

Statistical analysis 

The individually measured values of BW0, BW35, VCA, DCA, cBS, and D100kg were 

averaged per group, separately for exposure and fattening period. These means were 

analyzed for effect of Pm-T challenge-exposure, climatic treatment and their interaction 

using a two-way analysis of variance (SAS, 1989). 

The effects of Pm-T challenge, climatic treatment, time (week), and their interactions 

on the energy balance traits (GE, ME, ME:GE, HP, RE, ERp, ERf, and MEJ were tested by 

means of a F-test using Equation [2], with data of traits within groups taken as repeated 

measurements: 

Yijk| = fj + PmTj + CTj + (PmTxCT)ij + e, ljk + period, + interactions + e2ijk, [2] 

where Yijk| = trait at challenge-exposure i, climatic treatment j , group k, and balance 

period I; /J = overall mean; PmT; = the effect of challenge-exposure i (i = 1,2);CT = the 

effect of climatic treatment j (j = 1,2); e, ijk = error term 1, which represents the random 

effect of group k within challenge-exposure i and climatic treatment j (k = 1,2); week, = 

the effect of balance period I (1 = 1,..,5); and e2ijk| = error term 2. The effects of Pm-T 

challenge-exposure, climatic treatment and their interaction were tested against error term 

1. The effect of period and potential interactions were tested against error term 2. 

Data on WG and Fl were averaged per group and per week. They were analyzed 

separately for the exposure period (week 1-5) and fattening period (week 7-15) by 

Equation [2]. Sexe of animals and/or bacterial infection on were not included in the 

model because preliminary analyses showed no such effects nor of interactions with and 

treatments on averaged traits in either the exposure period or fattening period. 
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RESULTS 

Exposure period 

General - In all groups Bordetella bronchiseptica and non-toxigenic Pasteurella 

multocida were detected in about 50% of the piglets. These bacterial infections did not 

affect the performance traits or the disease symptoms. Seven piglets (4 controls and 3 Pm-

T treated) were discarded from the study: 4 pigs because of lameness and tailbiting, and 

3 pigs died of causes not related to AR (coli-diarrhoea, enteritis, Streptococcus-infection). 

None of the piglets experimentally treated with Pm-T developed detectable serum levels 

of antibodies against Pm-T. 

AR-characteristics - All necropsied Pm-T treated pigs had developed nasal damage 

significantly different from their non Pm-T treated contemporaries (P < 0.05). Ventral and 

dorsal conchae atrophy scores were solely affected by Pm-T treatment (Table 1). Mean 

VCA scores were 1.96 and 3.29 for control and Pm-T challenged pigs, respectively. Mean 

DCA score was 0.29 for control and 1.69 for Pm-T challenged pigs. Brachygnathia 

superior (cBS) tended to change more in Pm-T challenged than in controls piglets (P < 

0.051), 6.41 vs 1.40 mm, respectively (Table 1). Effects of climatic treatment and of 

interaction between treatments on the AR-characteristics were not found. 

Table 1 - Least Square Means (SEM) and significance level of body weight on Day 0 (BW0) and Day 35 
(BW35), ventral and dorsal conchae atrophy (VCA, DCA), change in Brachygnathia superior (BS), weight 
gain (WG), and food intake (Fl) of pigs within a Pm-T challenge treatment and climatic treatment (CT) 
combination in the exposure period (week 1-5). 

climatic treatment 

BW0 (kg) 
BW35 (kg) 

VCA 
DCA 
cBS (mm) 

WG (g/d/pig) 
Fl (g/d/pig) 

Pm-T treatment 
0 //g/ml 

good 

8.95 
25.88 

2.04a 

0.21a 

1.70 

486 
762 

adverse 

8.99 
23.26 

1.88a 

0.38" 
1.09 

402 
684 

13 //g/ml 
good 

9.25 
25.73 

3.25b 

1.83b 

8.16 

471 
731 

adverse 

9.24 
22.46 

3.33b 

1.54b 

4.66 

384 
656 

SEM 

0.57 
1.38 

0.27 
0.41 
1.82 

26 
54 

PmT 

0.65 
0.75 

0.008 
0.027 
0.051 

0.545 
0.613 

P-value' 
CT 

0.96 
0.10 

0.884 
0.886 
0.321 

0.030 
0.232 

PmTxCT 

0.97 
0.83 

0.666 
0.604 
0.470 

0.959 
0.988 

'In these three separate columns the effect of Pm-T treatment (PmT), climatic treatment (CT) and their 
interaction (PmTxCT) on the depicted traits are given (level of significance P < 0.05). 
abdifferent letters wi thin a row indicate a significant difference P < 0.05. 
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Body weight - At Day 0, mean initial body weight (BW0) of the piglets was similar 

for all treatment groups (Table 1). Mean weight gain (WG) over the exposure period was 

affected by climatic environment (P < 0.030). No effect of Pm-T challenge or of 

interaction between treatments on WG was found (Table 1). Pigs kept under adverse 

conditions had a reduced WG of 85 g/d compared with pigs kept under good conditions. 

Effect of Pm-T treatment on WG did not change with time (Figure 1). Difference in WG 

between the two climatic treatments was significant from week 3 onwards (Figure 2). 

Food intake - In general, Pm-T treated animals ate less (30 g/d) than their 

contemporaries though not significantly (Table 1). In time, the difference in Fl between 

the control and Pm-T treated animals increased (Figure 1 ). In week 4 and 5 this difference 

tended towards significance (P < 0.1). Pigs kept in the adverse environment had a lower 

Fl (70 g/d) than pigs in the good environment. During the exposure period, the difference 

in Fl between the good and adverse environment increased with time (P < 0.0008) 

(Figure 2). 

Metabolism characteristics - The effects of Pm-T treatment and climatic treatment on 

the energy metabolism characteristics are given in table 2. The metabolizability of the 

dietary energy (ME:GE) was not affected by the applied Pm-T treatment. The maintenance 

requirement (MEJ as well as the heat production (HP) were (although not significantly) 

reduced in the Pm-T treated pigs compared with the not Pm-T treated controls. 

Table 2 - Effect of Pm-T treatment and climatic treatment (CT) on gross energy (GE), metabolizable energy 
(ME), ME:GE ratio, heat production (HP), retained energy (RE), energy retained as protein (ER,,) and fat (ER() 
and maintenance requirement (MEm) of pigs during exposure period. 

climatic treatment 

GE (kj-kg75-d-') 
ME (kJ-kg-75-d-') 
ME:GE 

HP (kj-kg-75-d') 
RE (kj-kg75-d-') 

E R ^ k J - k g ^ d ' ) 
ER, (kJ-kg-75-d') 
MEm (kj-kg 75-d') 

Pm-T treatment 
0 jt/g/ml 

good 

1599 
1304 
0.813 

751 
552a 

244 
309 
435 

adverse 

1513 
1203 
0.795 

754 
448 

216 
233 
488d 

13 /yg/ml 
good 

1520 
1250 
0.822 

721 
528 

235 
294 
417" 

adverse 

1462 
1163 
0.796 

733 
430b 

207 
223 
478 

SEM 

57 
36 

0.01 

18 
19 

7 
19 
11 

PmT 

0.316 
0.263 
0.719 

0.226 
0.310 

0.308 
0.523 
0.272 

P-value' 
CT 

0.273 
0.060 
0.119 

0.712 
0.006 

0.020 
0.017 
0.006 

PmT x CT 

0.817 
0.848 
0.768 

0.807 
0.891 

0.993 
0.894 
0.749 

'In these three separate columns the effect of Pm-T treatment (PmT), climatic treatment (CT) and their 
interaction (PmT x CT) on the depicted traits are given (level of significance P < 0.05). 
•"•''different letters within a trait indicate a significant difference P < 0.05. 
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Table 3 - Effect of t ime (balance weeks) on gross energy (CE), metabolizable energy (ME), ME:CE ratio, heat 
production (HP), retained energy (RE), maintenance requirement (MEJ, and energy retained as protein (ERP) 
and fat (ER,) of young pigs. 

week 

CE (kJ-kg-"-d-') 
ME (kj-kg^-d1) 
ME:GE 

HP (kj-kg75-d-') 
RE (kJ-kg-75-d') 

ERp (kJ-kg-75-d-') 
ER, (kj-kg-75^-1) 
MEm (kJ-kg-75-d') 

1 

1266a 

1000a 

0.790a 

667" 
334" 

171a 

163a 

464 

2 

1493b 

1209b 

0.810b 

72 7b 

482b 

224b 

258b 

446 

3 

1621b 

1313b 

0.810b 

762bc 

550" 

245b 

306b 

447 

4 

1618b 

1311b 

0.810b 

774cd 

537b 

244" 

293b 

463 

5 

1619b 

1316b 

0.812b 

768cd 

548b 

244b 

304b 

453 

SEM 

30 
26 

0.005 

9 
19 

6 
13 
6 

P-value' 

0.0001 
0.0001 
0.0207 

0.0001 
0.0001 

0.0001 
0.0001 
0.1116 

'Interactions of Pm-T challenge, climatic treatment and their interaction with time parameter (week) not 
significant. 

abdifferent letters within a trait indicate significant differences (P < 0.05) 

Climatic treatment (CT) increased the maintenance requirement (MEJand decreased 

the retained energy (RE) and the energy retained in protein (ERp) and fat (ERf) significantly 

(P < 0.05). The intake of metabolizable energy (ME) was lowered by CT (P < 0.06). The 

effect of CT was most clear in week 5. Interaction between Pm-T and climatic treatments 

were not found. 
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Figure 1 - Mean weight gain (WG) and food intake (Fl) of pigs as affected by Pm-T treatment (0 ji/g/ml and 

13 //g/ml) during the exposure period (week 1-5) and the fattening period (week 7-15). 
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All characteristics except MEm increased with time (Table 3). No interaction between 

the time parameter (balance periods) and treatments occurred. Only heat production (HP) 

tended to be affected by the interaction of the climatic environment with the time 

parameter (P < 0.067). The first two weeks, the pigs in the adverse environment showed 

a higher HP, and the last two weeks, the pigs in the good environment showed a higher 

HP. In week 2 and 5 these differences were significant (P < 0.001). Influences of 

atrophic rhinitis in relation to climatic environment on level and changes in heat 

production and activity of pigs both between and within days will be described 

elsewhere (van Diemen et a/., 1995) 

Fattening period 

General - A total of 170 out of 185 pigs which entered the fattening period reached 

100 kg live weight. Fourteen pigs were culled during the fattening period (5 Pm-T treated, 

9 control pigs). One control pig was a runt pig and therefore discarded from analyses. 

AR characteristics - At the end of the fattening period, nasal damage of Pm-T treated 

pigs differed from controls (Table 4). Mean VCA scores were 2.80 for challenged and 

1.80 for control pigs. Mean DCA scores were 0.94 and 0.10 for Pm-T challenged and 

control pigs, respectively. 
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Figure 2 - Mean weight gain (WG) and food intake (Fl) of pigs as affected by climatic treatment ( 'good' 
and 'adverse' environment) during the exposure period (week 1-5) and the fattening period (week 7-15). 
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Interaction between date of determination and severity of AR-characteristics was 

significant for DCA (P < 0.0049) and tended towards significance for VCA (P < 0.1). 

Pairwise comparisons showed that for Pm-T challenged pigs the nose damage was less 

severe at the end of the fattening period than at the end of the exposure period (P < 

0.05) (Table 4). In the not Pm-T treated (control) animals no differences were found. 

Table 4 - Least Square Means (SEM) and significance level of ventral and dorsal conchae atrophy (VCA, 
DCA), weight gain (WG), food intake (Fl), and days to 100 kg live weight (D100kg) of pigs per treatment 
combination (Pm-T, CT) in the fattening period (week 7-15). 

climatic treatment 

VCA 
DCA 

WG (g/d/pig) 
Fl (g/d/pig) 

^100kg 

Pm-T treatment 
0/tfg/ml 

good 

1.82a 

0.13a 

741a 

1748 
137a 

adverse 

1.79a 

0.06" 

592b 

1423 
144b 

13 jug/ml 
good 

2.69b 

0.91b 

743a 

1724 
140ab 

adverse 

2.92b 

0.94b 

628b 

1409 
152c 

SEM 

0.15 
0.21 

42 
130 

0.99 

PmT 

0.003 
0.017 

0.661 
0.741 
0.006 

P-value' 
CT 

0.534 
0.928 

0.027 
0.004 
0.001 

PmT x CT 

0.438 
0.823 

0.690 
0.934 
0.089 

'In these three separate columns the effect of Pm-T treatment (PmT), climatic treatment (CT) and their 
interaction (PmTxCT) on the depicted traits are given (level of significance P < 0.05). 
abdifferent letters within a row indicate a significant difference P < 0.05. 

Weight gain - Effect of Pm-T treatment and of interaction between Pm-T treatment and 

climatic treatment on WG were not observed (Figure 1, Table 4). Climatic treatment 

affected WG (P < 0.027). Mean WG was 742 and 611 g/d/pig, respectively for pigs from 

good and adverse environment. Until week 12, pigs from the good environment had a 

higher WG than the pigs from the adverse conditions (Figure 2). After week 12 WG was 

comparable. 

Over treatments, D100kg ranged between 105 and 208 days. The average D100kg was 

143 days (+ 17). The Pm-T treated pigs needed 5 days more to reach a BW of 100 kg 

(P < 0.006) compared with the controls (Table 4). Exposure to adverse conditions during 

a 5 week period after weaning caused a delay of 10 days in D100kg (P < 0.001). 

Interaction between climatic environment and Pm-T challenge for this trait tended 

towards significance (P < 0.089). The difference in D100kg between Pm-T treated and 

control pigs was 3 days at the good environment and 12 days at the adverse 

environment. 

Food intake - During the fattening period (wk 7-15) Fl was similar for Pm-T treated 

and control pigs (1.59 and 1.57 kg/d/pig, respectively) (Figure 1). Until week 13, Fl of 
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pigs from the adverse conditions remained lower than of pigs coming from the good 

environment (Figure 2). The first-mentioned pigs consumed 320 g/d less during the 

fattening period (P < 0.004) than the latter. 

DISCUSSION 

The Pm-T administration induced symptoms of in situ infection with toxigenic 

Pasteurella multocida. Clinical cases were not observed. No evidence was found that the 

low ambient temperature with draught periods aggravated (or reduced) AR nose lesions, 

induced by the challenge model. While in practice, the severity of an AR-outbreak can 

be controlled to a great extent on most farms by improving climatic and social 

environment (Smith, 1983; Robertson et ai, 1990). The major difference between the 

studies can be marked as Pasteurella multocida field-infection with clinical cases versus 

Pm-T induced subclinical AR. Suggesting that the improvements in climatic environment 

as referred to by the above mentioned research workers, might have had a greater impact 

on the colonization possibilities and concomitant toxin production of the bacterium 

species on the mucous membrane, than on the passage of the toxin through this 

membrane. The Pm-T, whether produced by Pm* on the spot or applied experimentally, 

might reach the underlying bony tissues in any case. 

Although nasal damage caused by Pm+ or Pm-T is said to be irreversible in several 

studies (de Jong, 1985; Rutter, 1985; Foged et a/., 1987), in the present study partial 

regeneration of the conchae appeared in the Pm-T treated pigs. Whereas our exposure 

models aimed to induce subclinical AR, the other studies were performed with challenge-

exposure models aimed at clinical status to establish pathogenic effects or to evaluate 

vaccines. When the conchae have disappeared completely, regeneration is impossible. 

The difference between challenged and control pigs in our study, was still present at the 

end of the fattening period (Table 4). In control animals regeneration of the conchae was 

not found. Thus it is not likely that the regeneration was caused by regrowth of the 

conchae after Bordetella bronchiseptica infection. 

AR is said to be an important cause of economic losses through retarded growth rates, 

medication costs and inability to sell (breeding-) stock. De Jong (1985) mentioned that 

especially severely affected animals showed a 5-20% reduction in growth. Growth 

retardation can be caused by a lower food intake, a lower availability of nutrients and/or 

by an increased maintenance requirement (heat production) of exposed (affected) animals. 

Our findings show that the reduction in growth was the outcome of a lower food intake 

(30 g/d) rather than of a changed partitioning of energy (metabolism) in affected pigs 
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(Figure 1). The maintenance requirement (heat production), efficiency and 

metabolizability of the dietary energy (ME:GE) were not significantly changed by the 

applied Pm-T treatment. The reductions food intake and concomitantly weight gain 

occurred about one week after the challenge and progressed over time (Figure 1). 

This outcome confirms the assumption of Smith (1983) that AR pigs convert food to 

meat as well as their contemporaries. He thought it likely that affected pigs had a 

depressed food intake, caused by a poor appetite, due to a possible loss of taste and 

sense of smell by damaged nasal tissues, or by irritation of the mucosal membrane by 

dust particles. In clinically diseased pigs differences in food intake, weight gain and 

metabolism might be more pronounced. On the other hand, Pm-T might cause only a 

local increase in metabolism, which might be too low to measure. The relation between 

individual rate of food intake, feeding strategy and severity of AR deserves further 

investigation in order to diminish economic losses in case of disease outbreaks. 

Pigs housed under the adverse condition had less energy available for production 

than pigs in the good condition, due to their increased maintenance requirement (Table 

2). The first two weeks, the piglets in the adverse environment showed a higher HP. The 

pigs, however, did not respond to the lower temperature by elevating food intake to meet 

the extra energy demand (Figure 2). Regulation of food intake may attribute to maintain 

homeothermy. Why an increase in food intake did not take place is not clear. Both 

control and challenged pigs at the adverse environment had a decreased food intake 

compared with pigs kept at 25°C. The food intake might be lowered due to reduced 

physical activity by huddling. This way, the pigs can reduce heat loss to the environment 

and adapt to their climatic environment. On the other hand, at the adverse conditions 

applied, pigs of this age (5 weeks) may not have the capacity to pick up heat loss by 

increasing food intake. Verhagen (1987) observed a delayed response in increasing Fl 

after cold exposure in grower pigs of 10 weeks old. 

Pigs could cope with the subclinical disease state as induced in this study, and reach 

100 kg live weight with a delay of 3 days compared with their contemporaries. Exposure 

to adverse environmental conditions, however, during a 5 week period at young age, 

affected the performance later on as grower pig; Those pigs needed, on average, 10 days 

more to reach 100 kg live weight. Especially pigs which had to cope with both the Pm-T 

challenge and the adverse climatic treatment had a prolonged fattening period; 12 days 

longer to reach 100 kg live weight compared with the challenged pigs coming from the 

good environment (Table 4). 

Thus it is concluded that the effects of Pm-T challenge and climatic treatment are 

greatly independent of each other. The adverse climatic treatment as applied in the 
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current study, did not aggravate severity of AR symptoms induced by our challenge 

model. The performance of the piglets was affected by climatic treatment,due to lower 

amount of energy available for production. The Pm-T administration caused a lower food 

intake with concomitantly growth reduction which seemed to be dependent on the 

development of nasal damage. Metabolizability and maintenance requirements were not 

changed. By controlling the climatic environment of pigs, the economic losses due to 

poor performance can be minimized. 
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Abstract 

Effects of artificially induced moderate atrophic rhinitis symptoms on level and changes in 

heat production and activity were determined in piglets kept under different climatic conditions. 

Eight groups of 30 pigs each, housed in one of two climatically controlled respiration chambers, 

were exposed to a 2 x 2 factorial arrangement of treatments: challenge with 0 or 13 /7g of 

Pasteurella mu/toc/da-Toxin (Pm-T)/ml, and two climatic environments (good: 25°C, or adverse: 

15°C with draught periods). The Pm-T challenge reduced (P < 0.05) day averages of total (HP) 

and activity-related heat production (Har). The response to Pm-T treatment was similar in both 

climatic environments. Differences in the heat production and activity caused by the climatic 

treatment declined (P < 0.001) with t ime- with acclimation to the environment. Analyses of HP, 

Har and activity-free heat production in 12 2-h periods showed a biphasic activity rhythm. Both 

treatments affected (P < 0.05) level of HP and Har in several of the 2-h periods, but the biphasic 

rhythm was not altered. Day averages of Har showed a disposition to be differently affected (P < 

0.068) by Pm-T challenge in the climatic treatments dependent on duration of exposure. This 

interaction effect appeared to originate from the periods between 1500 and 2100 (P < 0.001). 

Therefore, it might be wise to distinguish between overall effects (day means) on total, activity 

related and activity free heat production, and effects within a day (e.g. 2-h means). Pm-T 

treatment seemed to suppress the general state of well-being of pigs, reducing pigs' activity and 

food intake. By reducing its activity, the piglets seemed to compensate the lower food intake, the 

lower amount of energy available for production. 

Keywords: Pasteurella multocida toxin, Atrophic Rhinitis, Climatic Environment, Heat 

Production, Physical Activity, Piglets 

INTRODUCTION 

Progressive atrophic rhinitis (AR) is a disease of the proximal respiratory tract that may 

affect pigs. Toxin-producing strains of Pasteurella multocida (Pm+) cause AR-specific 

turbinate lesions (de Jong and Nielsen, 1990). Intranasal challenge of pigs w i th Pm + -

67 
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derived toxin (Pm-T) can artificially induce AR; pathogenicity depends on the applied 

dose (van Diemen et al., 1994; Foged et al., 1987). Aerial conditions, management 

factors and hygiene are involved in the epidemiology of AR (Robertson et a/., 1990; 

Smith, 1983). 

Animals need to maintain a steady state in their internal environment irrespective of 

their external surroundings (Curtis, 1983). Ambient temperature may affect level and 

variation in heat production within and between days (Verhagen, 1987). Activity of pigs 

has to be considered also because activity is related to heat production (Verhagen, 1987). 

When a pig experiences an infection, its reaction to adverse climatic conditions might be 

different from that of non-infected animals (Verhagen, 1987; Noyés et al., 1988). Low 

ambient temperature and draught are a commonplace in the climatic environment of pigs 

under practical conditions (Tielen, 1988). The effects of AR in relation to climatic 

environment on level and changes in metabolic rate within and between days is 

unknown. 

In this study, therefore, influences of atrophic rhinitis in relation to climatic 

environment on level and changes in heat production and activity of pigs both between 

and within days were investigated. 

MATERIALS AND METHODS 

Animals, Housing and Feeding 

Eight groups of 30 Large White (GY) pigs each were studied in a 2 x 2 factorial 

arrangement of treatments: two levels of Pm-T challenge-exposure, and two different 

climatic environments. Two groups were studied at each combination of treatments. The 

experimental period was composed of an adaptation period of 5 to 7 days and an 

exposure period of 5 wk (35 d) in climatically controlled respiration chambers. The 1st 

d of the exposure period was defined d 0. 

Pigs were purchased from four commercial farms that had obtained a 'Pm+-free' 

certificate of the Animal Health Service in The Netherlands (de Jong, 1985). Two by two, 

groups were brought to the experimental facilities. Upon arrival, these 60 pigs were 

randomly allocated to one of two groups and placed in one of two large, open-circuit, 

indirect climatically controlled respiration chambers (Verstegen et al., 1987). Within each 

chamber, two pens of 9 m2 each were available (15 pigs/pen). On d 0, the pigs (gilts and 

boars) were 39 + 5 d old, and weighed 9.1 + 2.3 kg. Mean initial body weight was 

similar between treatment groups. Lights were on from 0700 to 1900. 

Pigs were fed a pelleted weaner diet ad libitum by self-feeders and had free access 

to water. Food contained 16.7 kj of gross energy (GE) per gram and 17% crude protein. 
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Food intake was measured daily. Results on energy metabolism measurements and 

performance will be described elsewhere (van Diemen et al., 1995). 

Treatments 

For each group, at arrival and until d 0, ambient temperature in chambers was 25°C, 

relative humidity was maintained between 65 and 70% and air velocity was below 0.2 

m/s. On d 0, groups were assigned to one of two climatic treatments (CT); a 'good' 

environment or an 'adverse' environment. At the 'good' environment, the ambient 

temperature was thermoneutral (25°C) and air velocity was below 0.2 m/s. The 'adverse' 

environment consisted of an ambient temperature below thermoneutrality (15°C) 

combined with daily draught periods. Four daily draught-periods were applied, one at 

daytime: 1300 to 1500, and three during the night: 2100 to 2300, 0100 to 0300 and 

0500 to 0700. During each draught-period air velocity within the chamber was increased 

to 0.6 m/s and temperature of the air stream was lowered by three degrees compared 

with the ambient temperature in the chamber. The air stream was applied intermittently 

(4 min on and 4 min off) similar to Verhagen (1987). Between draught-periods, the air 

velocity was below 0.2 m/s. Exposure to the adverse conditions started on d 0 and lasted 

throughout the 35-d exposure period. 

Atrophic rhinitis-like symptoms were induced with the Pm-T challenge-exposure 

model described by van Diemen et al. (1994) (Chapter 3). This 3-day challenge-exposure 

model was aimed to cause moderate (subclinical) disease-symptoms, 5 weeks post 

challenge. Factors related to the mucosal system of the turbinates that may have a 

positive or negative effect on the disease can be studied. In short, all animals were 

pretreated with a 1 %-acetic acid solution in water (0.5 ml/nostril), 3 d before a 3-d 

intranasal challenge with Pm-T (derived from Pm+-strain 5/05097-1 type D, Intervet 

International BV, Boxmeer, The Netherlands). Applied daily challenge-dose was 13 //g 

of Pm-T/ml Phosphor Buffered Saline solution (PBS) or 0 //g of Pm-T/ml PBS (control 

pigs), 0.5 ml/nostril. Challenge treatment started on d 0. 

• 
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Figure 1 - Plan of study, T : start climatic treatment; p: HAc pre-treatment; t: Pm-T challenge; c: collection 
day (weigh pigs, clean pens, sample for nitrogen and energy balance); n: necropsy of 6 piglets per group. 



70 Chapter 4.2 

Experimental Routine 

The 35-d exposure period was divided into five subsequent 6-d periods separated by 

a collection day used to weigh pigs, clean pens, and to sample for nitrogen and energy 

balance (Figure 1). Rectal temperature was measured twice each 6-d period. 

During the 6-d periods, the gaseous exchange of oxygen and carbon dioxide of a 

group of pigs within a chamber was determined continuously as described by Verstegen 

et al. (1987). Data on these gaseous exchanges were used to calculate heat production 

(HP) according to the formula of Brouwer (1965) in successive 9-min intervals. On the 

collection days, HP was not measured. 

Physical activity was measured by an ultrasound burglar device above each pen 

(Wenk and van Es, 1976). Quantitative estimates of activity of the pigs per pen were 

recorded during successive 3-min intervals and stored as 9-min means, matching with 

heat production intervals. The relation between 9-min values of heat production and 

activity was determined for each group and for each day separately, according to 

Equation [1]. Activity in both pens within a chamber was used. 

HPijkl = u + &,-Xr, + ß2-X„ + Lj + Dk + eijkl [1] 

where HPijk, = heat production in kj/kg075 per 9-min; XV|, X2i = activity counts of 9-min 

periods (i) of the ultrasound device in pens 1 (X,) and 2 (X2); ß,, ß2 = regression 

coefficients of heat on activity counts; Lj = fixed effect of Lights on (j = 1) or off (j = 2); 

Dk = effect of Draught on (k = 1) or off (k = 2); eijk| = error term. 

Activity-related heat production (Har, kj/kg075) per 9-min interval was subsequently 

obtained according to the following: 

Har = kyX,; + b2-X2i [2] 

Where b,, b2 = estimates of regression coefficients (ß,,ß2) out of Equation [1]. Activity-

free heat production (Haf, kj/kg075) was calculated as total heat production per 9-min 

interval minus activity-related heat production per interval. For each 6-d period, data on 

HP, Haf, and Har of 4 d were used in analyses. Data of HP, Haf, and Har on rectal 

temperature days (2 d per 6-d period) were omitted from the data set because of 

disturbance of the pigs and potentially disturbed measurements. 

At the end of the exposure period (d 35), six pigs per group were slaughtered 

(stunned and bled) to observe AR characteristics. Progression of AR was defined by the 

grade of conchae atrophy after cross-sectioning the snout between the first and second 

premolar tooth. Atrophy of the ventral conchae (VCA) was graded from 0 (complete 
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conchae) to 4 (total atrophy) and of the dorsal conchae (DCA) from 0 to 3 (total atrophy) 

(de Jong, 1985). The average of both nostrils was used in calculations. 

Statistical Analyses 

The effects of Pm-T challenge, climatic treatment, day, and their interactions on total 

heat production (HP), activity related (Har) and activity free heat production (Haf) were 

tested by means of a F-test (SAS, 1989) using below mentioned Equation [3]. Daily values 

of traits within groups were taken as repeated measurements. 

ijkl = fj + PmT; + CT, + (PmTxCT);, + e, ijk + ß*day, + interactions + e2ijk| [3] 

where YjjU = HP, Har or Haf at challenge-exposure i, and climatic treatment j , in group 

k, day I; PmT; = the effect of Pm-T challenge-exposure i (i = 1,2); CT = the effect of 

climatic treatment j (j = 1,2); e, i|k = error term 1, which represents the random effect 

of group k within PmT and CT combination (k = 1,2); day, = day number I (I = 1 ,..,35); 

ß = regression coefficient of trait on day number; e2 jjk, = error term 2. The effects of Pm-

T challenge, climatic treatment and their interaction were tested against error term 1. The 

effects of day and potential interaction terms were tested against error term 2. 

To study whether the effects of Pm-T challenge and climatic treatment on HP, Haf, 

and Har, were influenced by the time of day, the day was arbitrarily divided into 12 

periods of 2 h each (2-h periods), starting at 0700. Averages for each of the defined 

periods were analyzed with Equation [3]. 

Table 1 - Least square means ( + SEMa) and significance level of daily weight gain (WC, gd'-pig~'),food 
intake (Fl, g-d'-pig"'),total (HP), activity-related (Har), and activity-free (Ha() heat production (kj-kg°75-d"')as 
influenced by Pm-T treatment (//g/ml) and climatic treatment (CT) 

WC 
Fl 

HP 

H„ 
Hü, 

Pm-T 
0 

444 
723 

751 
180 
571 

13 

427 
693 

725 
162 
563 

CT 
good 

479 
746 

737 
168 
569 

adverse 

393 
670 

740 
175 
565 

SEM 

18.2 
38.4 

11.2 
5.5 
9.5 

PmT 

0.545 
0.613 

0.178 
0.076 
0.606 

P-valueb 

CT 

0.030 
0.232 

0.868 
0.432 
0.784 

PmTxCT 

0.959 
0.988 

0.761 
0.724 
0.579 

aSEM between treatment means. 
b\n these separate columns the effect of Pm-T treatment (PmT), climatic treatment (CT), and their interaction 

(PmTxCT) on the depicted traits are given. 
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RESULTS 

Gênerai 

All pigs treated with Pm-T showed nose damage. Mean VCA scores (SEM) were 1.96 

(± 0.14) and 3.29 (± 0.12) for control and Pm-T challenged pigs respectively (P < 

0.008). Mean DCA score was 0.29 (± 0.09) for control and 1.69 (± 0.18) for challenged 

pigs (P < 0.03). Effect of climatic treatment on conchae atrophy was not found. 

In Table 1, daily gain and food intake are given. Pm-T treated animals consumed 30 

g/d less and gained 17 g/d less weight than their contemporaries. The effect of Pm-T 

treatment on both traits increased as time progressed. In the last 6-d period, the effect of 

Pm-T treatment on daily gain and food intake was more severe in the 'adverse' environ

ment (45 g/d and 64 g/d reduction, respectively) compared with the 'good' environment 

(31 g/d and 44 g/d reduction, respectively) (P < 0.1). Results on performance and 

partitioning of energy will be described elsewhere (van Diemen et a/., 1995). 

Heat Production 

Total (HP), activity related (Har), and activity free (Haf) heat production are stated in 

kilojoule per kilogram of metabolic weight per day (kj-kg-0 75-d_1). 

Day Averages - Day averages of HP and Haf were not affected by PmT, CT, nor by 

their interaction (Table 1). Har of the Pm-T treated pigs was 18 kJ-kg"°75-d"1lower than of 

the control pigs (P < 0.076). All heat production traits increased with increasing day 

number (P < 0.001) in any treatment. The Pm-T treatment caused, with increasing day 

number, a lower increase in HP (P < 0.01) as well as in Haf (P < 0.044). This treatment 

effect started approximately 6 d after challenge (Figure 2A). The interaction of Pm-T with 

day number on Har tended to be different for both climatic treatments (P < 0.068). In the 

'adverse' environment, the challenged pigs spent less heat on activity in the last 14 days 

compared with the Pm-T treated pigs in the 'good' environment. In time, climatic 

treatment affected (P < 0.001) both HP and Har (Figure 2B). These traits were raised 

during the first 14 days and lowered during the last 14 days in the adverse environment 

as compared with the good environment (Figure 2B). 

Two-hour Periods - Analyses of HP, Har, and Haf in 12 2-h periods showed a biphasic 

activity rhythm within a day (Figure 3A and B). Just after 'lights on' (0700) the first peak 

of activity was seen, followed by a relatively quiet period. In the afternoon a second, 

more pronounced peak of activity ('playtime') appeared, which decreased rapidly after 

'lights out' (1900) and stayed low during the night. The main peak in activity-free heat 

production occurred after 'lights out'. This pattern remained throughout the exposure 

period for all treatment groups. 
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Figure 2 - Day averages (and significance level of interaction) of total (HP), activity-related (Har) and activity-
free (Haf) heat production during 35-d exposure period, A) within Pm-T challenge treatment, and B) within 
climatic treatment. 

A) Pm-T challenge 

0700 1300 1900 0100 0700 

Time of day, hour 

B) Climatic Treatment 

0700 1300 1900 0100 0700 

Time of day, hour 

Figure 3 - Daily rhythm in total (HP), activity-free (Ha() and activity-related (Har) heat production (2-h means) 
as influenced by A) Pm-T challenge and B) climatic treatment. 



74 Chapter 4.2 

All 2-h period means of HP were lower in Pm-T treated groups than in controls, 

although not significantly (Figure 3A). The Pm-T treatment reduced Har in most periods 

(Table 2). This effect was significant in the periods just before and after 'lights on' at 

0700, in the first afternoon period (1300 to 1500), and after midnight from 0100 to 0300 

(Table 2). Climatic treatment affected Har in the afternoon draught period (1300 to 1500), 

from the 'playtime' peak (1700 to 1900) up to and including the second nocturnal 

draught period (1700 to 0300) with an exception for the period between the nocturnal 

draught periods (2300 to 0100) (Table 2). Compared with the groups in the good 

environment, Har was 44 kj-kg° "-d"1 lower during the afternoon draught period, whereas 

Har was 25, respectively, 16 kjkg0 75-d_1 increased during the first, respectively, second 

nocturnal draught period, in the groups in the adverse environment (Figure 3b). Effects 

of interaction between PmT and CT treatment on HP and Har were not found. The 2-h 

means of Haf were not affected by Pm-T challenge, CT, nor by their interaction. 

With increasing day number, the reducing effect of Pm-T challenge on 2-h means of 

HP was especially found during day-time periods (data not shown). Interaction effect 

between Pm-T treatment and day number occurred only on Har during the 'playtime' peak 

(1700 to 1900) (Table 2). 

Table 2 - Least square means (± SEa) and significance level of two-hour averages of activity-related heat 
production (Ha„ k j -kg^^-d'^within Pm-T treatment (pg/ml) and climatic treatment (CT) using Equation [3] 

period 

0700-0900 
0900-1100 
1100-1300 

1300-1500 Dc 

1 500-1 700 
1700-1900 

1900-2100 
2100-2300 Dc 

2300-0100 

0100-0300 Dc 

0300-0500 
0500-0700 Dc 

Pm-T 
0 

253 
140 
191 

253 
311 
351 

164 
111 
101 

101 
87 
104 

13 

225 
124 
155 

217 
280 
325 

162 
106 
93 

93 
76 
91 

CT 
good 

245 
131 
189 

257 
289 
310 

134 
96 

100 

89 
82 
96 

adverse 

232 
133 
157 

213 
303 
366 

192 
121 
94 

105 
81 
99 

SEM 

5.0 
10.1 
11.3 

8.6 
19.5 
12.6 

7.7 
2.7 
2.3 

1.7 
3.2 
2.5 

PmT 

* 
ns 
t 

* 
ns 
ns 

ns 
ns 
t 

* 
t 

* 

CT 

ns 
ns 
ns 

* 
ns 

* 
* * 
* * 
ns 

* * 
ns 
ns 

P-va ueb 

dxPmTdxCTd 

ns 
ns 
ns 

ns 
ns 

* 
ns 
ns 
ns 

ns 
ns 
ns 

* * * 
* 
* * * 
* * * 
* * * 
* * * 
* * * 
* * * 
* * * 
,«. 
* * 
* * * 

xPmTxCT 

ns 
ns 
ns 

ns 

* 
* * * 
* * 
ns 
ns 

ns 
ns 
ns 

aSE between treatment means. 
b ln these separate columns the effect of Pm-T treatment (PmT), climatic treatment (CT), and interactions 

with day number (d) in the depicted periods are given as resulted from Equation [3]. P-value of PmT xCT 
ns, and of d * * * in all periods, (ns P > . 1 ; t P < . 1 ; * P < .05; * * P < .01 ; * * * P < .001). 
cDraught periods in the 'adverse' environment. 
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All 2-h means of Har were affected by interaction of CT with day number. The adverse 

CT raised the heat production traits in the first two 6-d periods (P < 0.05), followed by 

a small reduction, comparable with in the day averages (Figure 2B). As time progressed, 

climatic treatment affected the 2-h means of Haf from 0700 to 1700 and the 2-h means 

of HP from the afternoon draught period (1300) until 0500. Interaction of both treatments 

with day number affected HP and Har during the 'playtime' peak period (1 700 to 1900) 

and Har also in the periods before and after this peak (1500 to 2100). 

In Figure 4, the actual data and lines drawn from regression of HP and Har on day 

number are shown for the 'playtime' peak. In the good environment, a level difference 

in HP (+ 47 kJ-kg°75-d"')occurred between Pm-T treated and control groups over the 35-d 

exposure period (Figure 4A). Whereas in the 'adverse' environment, HP of the Pm-T 

challenged groups increased less with increasing day number than did the control groups 

(Figure 4B). In the last 6-d period, HP of Pm-T treated groups was equal in both climatic 

environments. The activity-related heat production of Pm-T treated pigs in the adverse 

environment stayed behind compared with their controls (Figure 4B). While in the good 

environment difference in Har were mainly present in the second and third week after 

initial exposure (Figure 4A). 

A) good environment B) adverse environment 

• 13 iigfra 

O 0 pg/ml 

• 13 (ig/ml 

^ryi/'<' A 

0 7 14 21 28 35 

days post initial exposure 

0 7 14 21 28 35 

days post initial exposure 

Figure 4 - Effect of interaction between Pm-T challenge, climatic treatment and day number on total (HP) 
and activity-related (Har) heat production during the 'playtime' peak (1700 to 1900). A) Controls (0 /vg of 
Pm-T/ml) and Pm-T challenged (13 yi/g/ml) in 'good' environment, and B) Controls and Pm-T challenged 
in 'adverse' environment. Lines drawn from regression of 2-h means of HP and Har on day number. 
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DISCUSSION 

Total heat production of pigs is composed of the maintenance requirement (related 

to metabolic body size), activity, and heat production associated with the synthesis of fat 

and protein. Level and variation in heat production within and between days may be 

affected by climatic environment. It is known that in cold environments, the maintenance 

requirement wil l increase, due to a rise in convective heat loss (Mount et al., 1980). As 

a consequence, pigs have to generate more heat to maintain relative constant 

(homoeothermic) body temperature. 

A single environmental stimulus (e.g. cold air), can effectively reduce resistance to 

disease-causing organisms in swine, like Actinobacillus pleuropneumoniae (Verhagen, 

1987), or killed Aujeszky's virus vaccine (Noyés et al., 1988). In this study, subclinical 

atrophic rhinitis was artificially induced with Pasteurella multocida derived toxin in pigs 

kept in a 'good' environment or an 'adverse' environment. The Pm-T treated animals 

responded similar in both climatic environments. No evidence was found that the low 

ambient temperature with draught periods aggravated AR nose lesions induced by our 

challenge model. Main effects of Pm-T challenge, climatic treatment and their interaction 

on heat production or physical activity were not found. As time progressed, the Pm-T 

challenge caused a reduction in heat production traits compared with the controls. 

Difference in HP and Har between the Pm-T treated and control pigs occurred 

approximately one week after initial challenge, and remained as time progressed. This 

difference coincided with the moment the challenged pigs started to sneeze and showed 

nasal discharge. First pathological signs of atrophic rhinitis can be found then. Moreover, 

at the same time, the Fl of these pigs dropped behind compared with the control pigs. 

Apparently, Pm-T induced effects have a one week incubation time to become 

measurable. 

The pigs in this study reacted similarly to the lower ambient temperature with the 

higher air velocity periods (draught) as described for 10-wk-old pigs (Mount et al., 1980; 

Verhagen, 1987). During the first two 6-d periods, our piglets in the adverse environment 

showed an increased HP and Har after which they adapted to their climatic environment. 

When using the definition of acclimation of Verhagen (1987) - acclimation is the time 

after which exposure to a climatic treatment does no longer affect heat production or 

activity - the pigs were acclimated to the adverse climatic treatment at the end of the 

second 6-d period. This is comparable to the studies of Verhagen (1987), where 

acclimation was established 10 days after initial exposure. 
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The pigs did, however, not use the ad libitum feeding as an additional source of 

thermal regulation. On the contrary, a reduction in food intake was seen (77 g-d'-pig ') 

in the 'adverse' environment (van Diemen et al., 1995). Why this reduction in food 

intake did take place is not clear. Both control and challenged pigs at the adverse 

environment had a decreased food intake compared with pigs kept at 25°C. Thus the Pm-

T administration is not likely to be the reason. Pigs of this age (5 weeks) may not have 

the capacity to pick up heat loss by increasing food intake at the adverse conditions as 

applied. Verhagen et al. (1987) observed a delayed response in increasing Fl after cold 

exposure in fattening pigs of 10 weeks old. 

Results of the present study showed that the ad libitum fed pigs had two peaks in heat 

production within a day, corresponding with the endogenous biphasic activity rhythm 

(Alternanstype) within a time period of 8 to 10 h as described by Schrenk (1981). He 

stressed that light was the actual timegiver ('Zeitgeber'), stimulating activity. The circadian 

rhythm was led by a rhythmic excretion of hormones of the hypothalamus-pituitary 

system. Split into 2-h periods, both Pm-T challenge and climatic treatment affected level 

of HP and Har in several of those periods, but the biphasic rhythm was not altered. 

Three draught-periods were chosen to take place during the night because the normal 

level of metabolism and activity is low during the night (Schouten, 1986). The other 

draught-period was applied in the afternoon at the beginning of 'playtime', with an 

increasing level of metabolism and activity. It was expected that specific effects on 

metabolic rate and activity, if any, would be present in these periods. 

The reaction of the pigs to the draught was not the same in each period. During the 

afternoon draught period, the activity-related heat production was significantly lower, and 

during the first two nocturnal periods the Har was significantly higher than in the good 

environment. The other draught period did not affect the trait. The different reaction of 

the pigs in Har to the afternoon draught is possibly due to another mechanism related to 

thermal demand than during the nocturnal draught periods. The pigs in the 'adverse' 

environment huddle to prevent heat loss, whereas the pigs in the 'good' environment 

begin to be active. Active individuals will have concomitant an increased heat produc

tion. At night, when the activity is low, the lower ambient temperature and the increased 

air velocity (draught) may have disrupted the huddling behavior of the pigs. Thus causing 

increased heat loss and heat production, compared with the 'good' environment. 

All differences between the 2-h means of the heat production traits of the piglets 

caused by the climatic treatment declined with time - with acclimation to the 

environment. The reducing effect of Pm-T challenge was also affected by time of day. The 

effect on H,r is a direct level difference between control and challenged piglets, especially 
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in the periods after midnight. The effect of challenge treatment on HP and Haf, on the 

other hand, progressed over time and was mainly found during day-time periods. With 

increasing day number, day averages of activity-related heat production showed a 

disposition to different effects of Pm-T challenge in both climatic treatments. When 

analyzing 2-h periods, this interaction effect on Har appeared to originate mainly from 

afternoon period, around and during the 'playtime' peak. Therefore, it might be wise to 

distinguish between overall effects (day means) on total, activity related and activity free 

heat production, and effects within a day (e.g. 2-h means). The thermal demand of a 

diseased pig might be fluctuated differently within a day, than that of a healthy pig. The 

relation between activity, heat production and AR is not clear and remains to be sorted 

out. By doing so one has to take in account the biphasic circadian rhythm in heat 

production and activity of pigs, which is led by rhythmic excretion of hormones of the 

hypothalamus-pituitary system (Schrenk, 1981). It is possible that this hormonal system 

dismisses the Pm-T effect by other mechanisms (e.g. behaviour) to balance heat 

production and heat loss and thus maintain a constant core temperature in the body. 

IMPLICATIONS 

Our findings, sofar, show that the effect of Pasteurella mu/toc/da-toxin (Pm-T) 

challenge on heat production is mainly expressed by a decreased activity. The effects of 

both treatments seemed greatly independent of each other. The reaction of the pigs to the 

treatments was influenced by the time of day. Therefore, it might be wise to distinguish 

between overall effects (day means) on total, activity related and activity free heat 

production, and effects within a day (2-h means). The toxin seemed to suppress the 

general state of well-being of pigs, reducing pigs' activity and food intake. By reducing 

its activity, the piglets compensated the lower food intake, the lower amount of energy 

available for production. This way the induced subclinical atrophic rhinitis did not cause 

substantial growth retardation in our experiments. 
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Abstract 

Experimental atrophic rhinitis (AR), serum antibody titres and in vitro lymphoproliteration to 

Pasteurella multocida-denved toxin (Pm-T) were studied in piglets. Specific immune responses 

to Pm-T and Pm-T induced conchae atrophy were compared with AR immunity. This immunity 

was initiated by the Nobi-VAC* AR-T vaccine administered at various times with respect to Pm-T 

challenge. Animals challenged with Pm-T developed conchae atrophy, but no antibodies nor 

cellular immune responses to Pm-T were detected. Vaccination 3 weeks before Pm-T challenge 

protected pigs against breakdown of nasal bony tissues. This protection was accompanied by an 

increase of serum antibodies and in vitro lymphoproliteration to Pm-T. Animals vaccinated 10 

days before or after Pm-T challenge also had antibodies and cellular immune responses. However, 

these animals developed AR. In vitro, Pm-T appeared mitogenic for quiescent (non-immune) 

peripheral lymphocytes and Concanavaline A stimulated lymphocytes from some pigs. These in 

vitro lymphoprol iterative responses could be partly abrogated by the addition of monomorphic 

anti-swine major histocompatibility complex class II DQ and DR specific monoclonal antibodies. 

We conclude that Pm-T is poorly immunogenic in vivo and does not initiate a protective Pm-T 

specific immune response. Pigs were protected from AR by vaccination, but protection was 

dependent on the timing of vaccine administration. We speculate that Pm-T modifies the immune 

response such that the response is not directed towards the toxin but to an unidentified 

component in the nose of piglets. 

Key words: Pasteurella mu/toc/c/a-toxin, Atrophic Rhinitis, immune response, mitogenicity 

INTRODUCTION 

Pasteurella multocida derived toxin (Pm-T) initiates the pathogenic processes of 

atrophic rhinitis (AR), leading to irreversible destruction and reabsorption of nasal bony 

tissues in pigs (Martineau-Doizé et a/., 1990; Wi l l iams et a/., 1990; de Jong, 1991 ; van 

Diemen et al., 1994). The latter can be reliably diagnosed by visual examination of 

turbinate atrophy in snout sections f rom slaughtered pigs (Collins et al., 1989). AR can 

be induced artif icially by intranasal challenge of young piglets w i th Pm-T. Pathogenicity 
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caused by intranasally administered Pm-T depended on the dose applied (Frymus et al., 

1986; van Diemen et a/., 1994). 

Detection of antibodies to Pm-T would be singular proof of contact or infection with 

toxigenic Pm strains (Schimmelpfennig and Jahn, 1988). Clinical symptoms, however, do 

not relate to a detectable humoral immune response to Pm-T (Frymus et al., 1986; 

Bording Jensen and Riising, 1988; Foged et ai, 1989; de Jong, 1991). Sera from naturally 

affected pigs lack toxin neutralising antibodies or show a late and hardly detectable 

humoral response. This suggests that Pm-T does not initiate a (protecting) response. Heat 

or formaldehyde treatment, however, can convert the low immunogenic toxin into a high 

immunogenic toxoid, that initiates antibodies to Pm-T (Bording et al., 1990). The toxoid 

is commonly applied as vaccine (Voets, 1988; Kobisch and Pennings, 1989). 

The mechanism(s) by which Pm-T initiates or mediates the breakdown of bony tissues 

in piglets is unknown. Chanter (1990) suggests that the toxin upsets the balance between 

bone formation and resorption in favour of a net resorption. The duration of toxin 

production of Pm strains may be short. Therefore bacterial products in the nasal mucosa 

of pigs affected by AR may influence bone metabolism. The influence may not be a direct 

toxic effect but can be indirect through mediators produced by immune cells (Ueberschär 

et al., 1983; Pedersen and Elling, 1984). As yet, little is known of cellular immunity in 

AR-affected pigs. 

The purpose of this study was to elucidate the role of the immune system of piglets in 

relation to AR pathology. Therefore, immunity-initiating characteristics of Pm-T and toxoid 

after primary and secondary Pm-T challenge, were studied in relation to pathology. Also, 

the relationship between the time of vaccination and protective humoral and cellular 

immune responses and pathology was studied. We attempted to identify mechanisms 

underlying the lack of conventional immune responses of pigs to Pm-T, and their possible 

consequences with respect to AR. 

MATERIALS AND METHODS 

Animals 

The first group of animals studied (Experiment 1 ) were Large White (Groot York (GY)) 

x Dutch Landrace (DL) crossbred piglets. In Experiments 2 and 3, DL piglets were 

studied. For each experiment, animals were obtained from one farm with a 'Pm* free' 

certificate (Animal Health Service, Deventer, Netherlands). Within experiments, 

littermates were equally distributed over treatments. In all experiments, the first day of 

challenge was defined as Day 0. The average age of the piglets on Day 0 was 37 days, 

44 days and 33 days, respectively for Experiments 1, 2 and 3. Piglets were fed ad libitum 
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a commercial diet containing 16.7 kj gross energy (GE) g"1 and 17% crude protein. They 

had free access to water. All animals were intranasally pretreated with diluted acetic acid 

( 1 % Aa in water, 0.5 ml/nostril), three days before treatment. At the end of each 

experiment all animals were killed (stunned and bled) in a slaughterhouse. 

Experimental design 

EXPERIMENT 1 - Nineteen GY x DL crossbred piglets were allotted to one of five 

treatment groups. Group 1 (control) consisted of five animals which were intranasally 

challenged with phosphate-buffered saline (PBS) on 3 consecutive days (0.5 ml per 

nostril); Groups 2 and 3 consisted of 4 piglets each intranasally challenged with 13 //g 

ml"1 Pm-T in PBS on 3 consecutive days (0.5 ml per nostril, Van Diemen et a/., 1994). 

Additionally, Group 3 animals received a single secondary Pm-T challenge (13 ^g ml"1, 

0.5 ml per nostril) on Day 22. Groups 4 and 5 consisted of 3 animals each intra

muscularly vaccinated on Day 0 with 2 ml Nobi-VAC8 AR-T (Intervet International BV, 

Boxmeer, Netherlands). This vaccine contains toxoid. On Day 22, Group 5 animals were 

challenged once with Pm-T (13 /jg ml"1, 0.5 ml per nostril). Blood samples were drawn 

on Day -3, 28, 35 and 42 for serum analyses. Heparinised blood samples were drawn 

once a week over a 6 week period for lymphocyte isolation. 

EXPERIMENT 2 - Twenty-eight DL piglets, allotted to one of five treatment groups 

(Groups 6-10), were used. Three days after pretreatment with acetic acid, 20 piglets 

received the intranasal Pm-T challenge (Van Diemen et al., 1994). Of these challenged 

piglets, five were vaccinated with 2 ml Nobi-VAC* AR-T 10 days before the Pm-T 

challenge (Day -10) (Group 8). Five pigs (Group 9) were vaccinated simultaneously with 

the Pm-T challenge (Day 0) and another five pigs (Group 10) were vaccinated 10 days 

after Pm-T challenge (Day 10). The other five Pm-T challenged piglets (Group 7) were not 

vaccinated. The remaining eight piglets which served as controls (Group 6) were 

intranasally challenged with PBS on Day 0, 1 and 2. The latter two groups served 

respectively as positive (AR+, Group 7) and negative (AR", Group 6) controls for 

pathogenesis. Depending on immunity, pathology in vaccinated groups was expected to 

be directed towards the negative control in case of protection or towards the positive 

control in case of AR symptoms. 

From all animals, blood samples were drawn for serum analyses before treatment, and 

thereafter weekly for an 8 week period. Heparinised blood samples were drawn once a 

week for lymphocyte isolation. 
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EXPERIMENT 3 - For the third experiment, 30 DL piglets were purchased. Three days 

after pretreatment, 15 piglets (Group 12) were challenged intranasally with Pm-T (Van 

Diemen et al., 1994) and 15 piglets (Group 11) served as non Pm-T challenged control 

group (PBS). For serum analyses, blood samples were drawn from all animals before 

treatment, and weekly over a 6 week period. Heparinised blood samples were drawn 3 

days before treatment, and on Days 14, 31 and 82 for lymphocyte isolation. 

A survey of treatment groups is given in Table 1. 

Table 1 - Least-Square Mean (SE) of ventral and dorsal conchae atrophy scores (VCA and DCA) and change 
in brachygnathia superior (cBS) per treatment group. 

Experiment 

1 

2 

Treatment group 

1 Control 
2 Pm-T challenge 
3 Pm-T + secondary Pm-T 
4 Vaccination 
5 Vaccination + Pm-T 

6 Control (AR) 

n 

5 
4 
4 
3 
3 

8 

VCA 

1.30(0.4) 
2.00(0.4) 
2.50(0.4) 
1.16(0.5) 
1.00(0.5) 

1.44(0.2)a 

DCA 

0 
0.50(0.4) 
1.25(0.5) 
0 
0 

0.06(0.2)a 

cBS 

-

1.38(0.6)a 

7 Pm-T challenge (AR+) 5 2.60(0.3)t> 0.60(0.3)ab 3.60(0.8)" 
Vaccination: 
8 10 days before Pm-T 5 2.40(0.3)b 0.30(0.3)ab 2.00(0.8)ab 

9 simultaneous with Pm-T 5 2.80(0.3)b 0.90(0.3)b 3.00(0.8)ab 

10 10 days after Pm-T 5 2.30(0.3)b 0.70(0.3)ab 3.20(0.8)ab 

3 11 Control 15 1.39(0.1)a 0.18(0.1)a 1.86(0.5)a 

12 Pm-T challenge 15 2.87(0.1)b 1.10(0.1)b 5.67(0.5)" 

a bWithin columns, different superscripts indicate a significant difference (P < 0.05) between treatment 
groups within an experiment. 

Response characteristics 

Progression of AR was defined, post mortem, by the grade of conchae atrophy after 

cross-sectioning the snout between the first and second premolar tooth. The method of 

grading described by De Jong (1985) was used; ventral conchae atrophy (VCA) graded 

from 0 (no lesions) to 4 (total atrophy) and dorsal conchae atrophy (DCA) from 0 (no 

lesions) to 3 (total atrophy). The average of both nostrils was used in calculations. The 

challenge model used, aimed at an intermediate grade of conchae atrophy (van Diemen 

et al., 1994), VCA grade 2-2.5 and DCA grade 1, i.e. subclinical AR symptoms. In 

Experiments 2 and 3, the brachygnathia superior (BS) was measured in millimetres on 

Day 0 (BS0) and on Day 35 (BS35). The change in BS (cBS) over the interval was used in 

calculations (van Diemen et al., 1994). 
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Immune characteristics 

Humoral response - Pm-T specific in vivo antibody titres were determined routinely 

by enzyme-linked immunosorbent assay (ELISA). Serial dilutions of serum were applied 

to toxin-coated wells of a microtitre plate. After incubation for 1 h at 37°C and 

subsequent washing, wells were incubated for 1 h with a 1:2000 diluted peroxidase 

conjugated goat anti-swine antibody (GASw/lgCH+L-PO, Kpl, Gaithersburg, MD, USA) 

followed by tetramethylbenzidine (TMB, Sigma T2885, USA) as substrate. Colour 

formation was stopped after 10 minutes with 2.5 N sulphuric acid. All absorbances were 

expressed relative to the absorbance of a standard positive control serum obtained from 

a vaccinated animal. 

Cellular response - Pm-T specific in vitro cellular immunity was determined by 

lymphocyte stimulation test (LST). Peripheral blood leucocytes (PBLs) were obtained from 

heparinised blood using Ficoll density gradient centrifugation. PBLs were tested for 

proliferation in the presence of either 5 jc/g ml"1 Concanavaline A (ConA), 1 and 10 //g 

ml ' Pm-T, heat inactivated Pm-T (1 h, 60°C, toxoid) or combinations of both Pm-T and 

ConA in RPMI tissue medium containing 10% foetal calf serum and antibiotics. The 

cultures (4-105 PBLs per well), set up in triplicate, were incubated 3 days at 37°C, 5% 

C02 in a humidified atmosphere. Eighteen hours before harvest, 0.5 //Ci of methyl-3H-

thymidine (3H, Amersham Nederland BV, Houten, Netherlands) was added. 3H uptake 

was determined with a Beekman ß-scintillatton counter. Results were expressed as mean 

counts per minute (cpm). Stimulation Indices {SI) were calculated as: 

SI = cpm in antigen stimulated cultures / cpm in unstimulated cultures 

A SI > 2 was regarded as positive. Dose response series of Pm-T on PBLs were 

performed to ascertain the lowest mitogenic concentration of the Pm-T. 

To study whether the mitogenic nature of Pm-T was related to major 

histocompatibility complex (MHC) class II dependent antigen presentation, either a 

1:4000 diluted monomorphic monoclonal antibody with specificity to swine MHC class 

II DQ (MSA3, obtained from Dr J. Lunney, Beltsville, USA) or to swine MHC class II DR 

(TH16ß, obtained from Dr W.C. Davis, Pullman, USA) antigens were added to in vitro 

cultures of control piglets. The cultures were incubated with Pm-T or ConA. The effect 

of anti-class II monoclonal antibodies (mAb) on Pm-T or ConA proliferation was 

calculated as: 

5/ = cpmPnvT(ConA) + mAb / cpm m A b 
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Statistical analysis 

The results of each experiment were statistically analyzed for effect of treatment using 

a one-way analysis of variance per test date (Statistical Analysis Systems Institute (SAS), 

1985). Subsequently, pairwise comparisons within test date were performed between 

control and experimental groups using least-square mean differences at the overall 0.05 

level of significance. Correlations between response and immune characteristics were 

analyzed by method of Pearson's partial correlation (SAS, 1985). 

RESULTS 

Response characteristics 

Ventral and dorsal conchae atrophy scores (VCA and DCA, respectively) and changes 

in brachygnathia superior (cBS) are shown in Table 1. No clinical AR symptoms occurred. 

In the first experiment no significant differences in VCA between treatment groups 

were found. The ventral conchae of animals in both Pm-T treated groups (Groups 2 and 

3), however, were more atrophied than those of control (Croup 1 ) or vaccinated animals 

(Groups 4 and 5). This difference tended towards significance. Only the dorsal conchae 

of the Pm-T challenged animals (Groups 2 and 3) were affected (P < 0.05). The 

secondary Pm-T challenge (Group 3) showed a tendency towards additional dorsal 

atrophy (P < 0.1). The vaccinated and Pm-T challenged (Group 5) animals did not 

develop conchae atrophy symptoms. 

In Experiment 2 all Pm-T treated groups (Groups 7-10) had a higher VCA score than 

the negative control (Group 6) (P < 0.05). The vaccinated animals were situated in 

between in order of vaccination moment, i.e. before (Group 8), simultaneously with 

(Group 9), or after (Group 10) Pm-T challenge. No differences were found between the 

positive control (Group 7) and the vaccinated groups (Groups 8-10). The DCA scores of 

the simultaneously vaccinated and challenged piglets (Group 9) were significantly (P < 

0.05) more affected than those of the control piglets (Group 6). With respect to cBS, the 

positive control (Group 7) differed significantly from the negative control (Group 6) (P < 

0.05). 

In Experiment 3, the ventral and dorsal conchae of the Pm-T challenged piglets 

(Group 12) were affected more than those of the control group (Group 11) (P < 0.001). 

Also, BS changed more in the challenged than in the control piglets (P < 0.001). 

Immune characteristics 

EXPERIMENT 1 - General characteristics of immune responses and the protecting 

capacity of toxoid. 
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Humoral response - Vaccinated animals (Groups 4 and 5) mounted an anti Pm-T 

serum antibody response about 4 weeks post-vaccination (Day 28). Treatment effect was 

found on Day 28 and Day 42 (P < 0.05). On Day 28 this effect was caused by a rise in 

antibodies in the Pm-T challenged vaccinated piglets (Group 5), and on Day 42 in both 

vaccinated groups (Groups 4 and 5) (P < 0.05). On Day 35, treatment tended towards 

significance (P < 0.10) because of a large standard deviation. No differences in antibody 

response were found between the non-challenged and challenged vaccinated groups 

(Groups 4 and 5). None of the piglets treated with a primary (Group 2) or secondary Pm-

T challenge (Group 3) developed detectable levels of anti Pm-T serum antibodies. No 

correlation was found between antibody titres and response characteristics. 

10 -

W 

Figure 1 - Stimulation indices of cultures stimulated with 10 JJ% ml"1 Pm-T (S/10Pm.T) per treatment group in 
Experiment 1. Solid, control; close cross-hatched, Pm-T challenge; cross-hatched, Pm-T + secondary Pm-T; 
dots, vaccination; close dots, vaccination + Pm-T; solid squares, not done; dagger, P < 0.10 difference. 
The cpm of unstimulated cultures ranged between 87 and 427. 

Cellular response - In Figure 1, 5/ to 10 /yg ml"1 Pm-T are given. The cpm of 

unstimulated cultures ranged between 87 and 427. In the lymphocyte stimulation test 

before treatment, the PBLs of five out of 18 piglets tested showed proliferation in the 

presence of Pm-T (2<5/, • 4). Throughout this experiment, control animals (Group 

1) maintained this level of proliferation. No difference in lymphocyte stimulation by Pm-T 

was seen between the controls (Group 1) and the primary (Group 2) or the secondary 
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Pm-T challenged animals (Group 3). Heat-inactivated toxin (toxoid) did not stimulate PBLs 

(̂ 'toxoid - 1 )• T n e vaccinated piglets (Groups 4 and 5) mounted a cellular response to Pm-T 

and toxoid 21 days post-vaccination (S/10Pm.T>5). On Days 35 and 42, the PBLs of 

vaccinated animals tended (P < 0.10) to be more stimulated in the presence of Pm-T and 

toxoid than PBLs of control (Group 1) or Pm-T treated (Group 2) animals. The PBLs of 

vaccinated animals with (Group 5) or without (Group 4) Pm-T challenge did not differ 

in response to Pm-T. 

Furthermore, ConA responses from PBLs of all animals were elevated in the presence 

of Pm-T, 5/ConA+Pm.T/5/ConA ranged between 1 and 3. This elevated ConA response remained 

absent in the presence of toxoid. No difference was found between treatment groups. The 

application of a higher dose of Pm-T to ConA cultures gave more proliferation as 

compared with ConA alone. In the tests performed with PBLs of control (compared with 

all) animals, 0.1 fjg ml"1 Pm-T gave more proliferation in 15% (13%) of the cases, 

whereas the addition of 10 fjg ml"1 Pm-T to ConA cultures gave more proliferation in 

65% (57%) of the tests performed. 

In vitro proliferation of non-immune lymphocytes in the presence of Pm-T indicated 

a moderate mitogenic activity of the Pm-T. Approximately 40% of tests performed with 

PBLs of control animals (Group 1) in the presence of Pm-T resulted in an S/10PmT that 

ranged between 2 and 5. The PBLs of Pm-T challenged animals (Groups 2 and 3) showed 

similar proliferation. 

The responses to all antigens in the lymphocyte stimulation assay varied between test 

dates. No partial correlation was found between response characteristics and lymphocyte 

stimulation. 

EXPERIMENT 2 - Relationships between humoral and cellular immunity induced by 

vaccination and AR pathology. 

Humoral response (Figure 2) - None of the piglets treated solely with Pm-T (Group 

7) developed detectable levels of anti Pm-T serum antibodies compared with control 

animals (Group 6). From about Day 32 onwards, a treatment effect was present (P < 

0.05). Animals vaccinated before (Group 8) as well as after (Group 10) Pm-T challenge 

mounted an anti Pm-T antibody response. This response was still increased at the end of 

the experiment. The timing of vaccination, however, with respect to Pm-T challenge 

influenced the swiftness of antibody formation. Both groups responded at about Day 32. 

This was 42 days post-vaccination for animals challenged 10 days after vaccination 

(Group 8) and 22 days post-vaccination for animals challenged 10 days before 

vaccination (Group 10). 
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Figure 2 - Pm-T specific antibody titres per treatment group in Experiment 2. • , control (AR); o , Pm-T 
challenge (AR+). Vaccination: • , 10 days before Pm-T; • , simultaneous with Pm-T; A , 10 days after Pm-T. 

On Day 56, the simultaneously vaccinated and challenged piglets (Group 9) had not (yet) 

developed anti Pm-T antibodies. Both groups vaccinated before (Group 8) or 

simultaneously with (Group 9) Pm-T challenge showed a tendency (0.05 < P < 0.1) 

towards a negative correlation (r = -0.87 and r = -0.83 respectively) between VCA and 

antibody titre on Day 56. 

Cellular response (Figure 3) -The animals vaccinated on Day -10 (Group 7) mounted 

an anti Pm-T cellular response on Day 16 (26 days post-vaccination). Mean 5/ was 4.37 

or 7.60, respectively, for the addition of 1 //g ml"1 and 10 /vg ml"1 Pm-T to cultures (mean 

cpmunstimu|ated = 498). Animals vaccinated on Day 10 (Group 10) mounted a cellular 

response on Day 22 (12 days post-vaccination). Mean S/1Pm.T was 6.31 and mean S/10Pm_T 

was 10.39 (mean cpmun5timu|ated = 465). These levels of proliferation remained until the 

end of the experiment. The simultaneously vaccinated and challenged piglets (Group 9) 

were tested on Days 22 and 57. On both days, two of five animals had an S/Pm.T of about 

5. The toxin stimulated non-immune lymphocytes in approximately 30% and 60% of the 

tests performed in the presence of 1 fjg ml"1 and 10 //g ml 1 Pm-T (5/ > 2, mean 

cpmunstimuldted = 492). The value of S/Pm.T did not exceed 5. This proliferation remained 

absent in the presence of heat-inactivated Pm-T (toxoid). The non-vaccinated Pm-T 

challenged animals (Group 7) showed proliferation similar to the control animals. The 
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S/ConA of non-vaccinated challenged animals was reduced compared with other treatment 

Groups. These differences, however, were not significant. 

Figure 3 - Stimulation indices of cultures stimulated with 10 //g ml"1 Pm-T (S/,0Pm.,) per treatment group in 
Experiment 2. Solid, control (AR"); close cross-hatched, Pm-T (AR+). Vaccination: widely spaced dots, 10 
days before Pm-T; medium spaced dots, simultaneous with Pm-T; closely spaced dots, 10 days after Pm-T; 
solid square, not done. The cpm of unstimulated cultures ranged between 148 and 1027. 

The application of 1 jjg ml"1 Pm-T to ConA cultures elevated the 5/ConA of the control 

(compared with all) animals in 47% (44%) of the tests performed. The application of 10 

fjg ml"' Pm-T increased the S/ConA in 69% (72%) of cases. No differences between 

treatment groups were found. The appli-cation of toxoid to ConA cultures did not elevate 

the response. No partial correlation was found between response characteristics and 

lymphocyte stimulation. 

EXPERIMENT 3 - Mechanisms underlying the mitogenic activity of Pm-T on non

immune PBLs. 

Humoral response - None of the piglets treated with Pm-T (Group 12) developed 

detectable levels of anti Pm-T antibodies. 

Cellular response - Three days before Pm-T treatment, 29 animals were tested for 

lymphocyte stimulation. The cpm of unstimulated cultures ranged between 157 and 1365 

and averaged 476 (in three animals the cpm exceeded 1000). The addition of 1 /vg ml"1 
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Pm-T gave stimulation ranging between 0.6 and 28.1. In 25 cases, 5/1Pm_T was higher than 

2, in 11 cases even higher than 5. Addition of 10//g ml"1 gave stimulation in the same 

range as S/1Pm.T. In 23 cases, the S/10Pm.T was higher than 2, of which 14 had S/10Pm_T of 

over 5. At Day 14 post-challenge, PBLs of six control (Group 11) and 14 Pm-T challenged 

(Group 12) animals were tested. All animals showed mitogenic proliferation (5/ > 2) in 

the presence of 1 /vg ml"1 Pm-T. The addition of an anti-swine MHC class II DQ 

monoclonal (MSA3) partially reduced mitogenic proliferation in 70% of the cases. The 

degree of reduction ranged between 1 3 and 69% (average 32% and 41 % for control and 

Pm-T challenged animals, respectively). 

Table 2 - Lymphocyte stimulation indices on Day 31 of none-immune PBLs (control piglets, Group 11) after 
the addition of 1 fj$ ml"1 Pm-T (S/,PnvT) or 1 fjg ml"1 Pm-T and anti-swine MHC class II DQ (S/Pm.T+DQ) or DR 
monoclonal (S/PmT+DR). Counts per minute (cpm) of unstimulated cultures ( - ) , and of unstimulated cultures 
in the presence of DQ or DR monoclonal antibodies. 

Piglet 
No. 

8 
15 
26 
30 
36 
4 
13 
48 

^ M Pm-T 

-

12.7 
10.8 
14.4 
9.2 
2.7 
0.8 
1.3 
0.6 

+ DQ 

2.5 
2.7 
3.5 
4.9 
5.6 
2.4 
2.3 
1.4 

+ DR 

1.3 
6.4 
3.8 
8.3 
1.4 
1.1 
3.9 
0.9 

^'ConA 

-

42.1 
85.8 
29.5 
25.1 
47.9 
11.1 
6.2 
8.3 

+ DQ 

15.3 
17.1 
9.7 
13.1 
18.2 
18.9 
12.1 
11.8 

+ DR 

9.5 
19.6 
10.0 
28.9 
25.5 
19.6 
7.6 

10.0 

cpm 

-

159 
233 
346 
280 
148 
833 
1541 
1274 

+ DQ 

657 
836 
852 
386 
142 
658 
840 
479 

+ DR 

797 
337 
612 
135 
158 
495 
1030 
435 

At Day 31, five of eight non-challenged animals (Group 11) showed a mitogenic 

response in the presence of 1 fjg ml"1 Pm-T. Four piglets had a S/1Pm.T of over 5. MSA3 

reduced the S/1PnvT (and S/ConA) of these 4 cases more than 50% (Table 2). Adding an anti-

swine MHC class II DR monoclonal (TH16ß) also gave reduction in these cases but less 

than MSA,. In cases where no mitogenicity to Pm-T occurred, MSA3 and TH16E stimula

ted PBLs to proliferate. In one case, slight proliferation occurred in the presence of Pm-T 

(S/1PmT = 2.7), MSA3 gave extra proliferation (S/1Prn.T = 5.6) while TH16ß reduced the 

S/1Pm.Tto 1.4. 

At Day 82, 12 control animals (Group 11) were tested for mitogenic response to 1 

fjg ml"1 Pm-T. The cpm of unstimulated cultures ranged between 149 and 684 (average 

243). Pm-T stimulated the non-immune lymphocytes in ten cases (mean S/1Prtl.T = 3.95). 

The addition of MSA3 reduced this proliferation with about 40%, ranging between 1 7 and 

66%. In eight cases, S/ConA was reduced by about 40%, in the same range as 5/1PnvT. In 

one case, MSA3 stimulated proliferation, in the other cases no reduction or stimulation 

occurred. 
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The lowest mitogenic concentration of the Pm-T was in the 10 and 50 ng m l ' range 

(Figure 4). This comes down to 1 - 5 ng Pm-T on 4-105 PBLs. 

Figure 4 - Stimulation indices of cultures of four control piglets of Experiment 3 (O , No .1 ; A, No.2; O , 
No.3; D, No.4) stimulated with dose series of Pm-T. 

DISCUSSION 

Intranasal administration of Pm-T induced subclinical symptoms of in situ infection 

with toxigenic Pm strains as previously reported (van Diemen et al., 1994). In none of 

the three experiments, however, were these symptoms accompanied by a detectable 

systemic humoral and cellular response to Pm-T (Groups 2, 7, 12). Also, after secondary 

Pm-T administration (Group 3), no anti-toxin immune responses were found. No Pm-T 

antibodies were found in 'swabs' of nasal mucosae from the Pm-T challenged groups 

(data not shown). 

However, Pm toxoid vaccinated animals (Groups 4 and 5) mounted both humoral 

and cellular responses to Pm-T after 3 - 4 weeks. These anti Pm-T responses protected 

animals from the annihilative effects of a subsequent Pm-T challenge. Thus, in principle, 

cells of the immune system can be sensitised by vaccination with Pm toxoid. These cells 

can recognise and react to Pm-T, as illustrated by the elevated in vitro proliferation and 

antibody titres to Pm-T from vaccinated animals. 
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Animals vaccinated 10 days before (Group 8) or after (Group 10) Pm-T challenge 

developed humoral and cellular responses to Pm-T. Antibodies were detectable 42 or 22 

days post-vaccination (Day 32, Figure 2). Proliferation occurred 26 or 12 days post-

vaccination (Day 16 and 22, Figure 3) for both groups, respectively. In spite of these anti 

Pm-T responses, the noses of the animals were affected to the same extent as non-

vaccinated Pm-T treated animals (Group 7). Thus, vaccination 10 days before or after Pm-

T challenge did not prevent or diminish pathology. In the animals vaccinated simultane

ously with Pm-T challenge (Group 9), no detectable systemic humoral and/or cellular 

responses to Pm-T were found. The Pm-T challenge seemed to slow down (vaccination 

before challenge) or abrogate (simultaneous vaccination and challenge) the immune 

responses to Pm-T initiated by the toxoid in the vaccine. The Pm-T specific immune 

responses in the second experiment could not inhibit an irreversible process. This process 

was initiated by the Pm-T and led to pathology. These data suggest that when the 

immune response has not sufficiently built up, the devastating process will not be slowed 

down or stopped. The effect of Pm-T on pig noses seemed to be a non-reversible process 

with an all-or-nothing effect. Apparently, nose damage can develop in the presence of 

antibodies to Pm-T and anti Pm-T T cells in vivo. 

The humoral and cellular immune responses of vaccinated animals showed that in 

principle the immune system can recognise Pm-T, whether or not this results in protective 

immunity. It remains to be determined, however, why no detectable responses to Pm-T 

appear without prior vaccination with toxoid. 

In our model, pigs were challenged on 3 consecutive days with a relatively low dose 

of Pm-T. Clinical symptoms/pathology progressed gradually during weeks. The duration 

of toxin production of pathogenic Pm strains in the nose under 'field conditions' may be 

short. Therefore, Pm-T in the nasal mucosa may influence bone metabolism. The 

influence may not be a direct toxigenic effect, but can be mediated through unidentified 

products of immune cells (Ueberschär et a/., 1983; Pedersen and El I ing, 1984; Frymus 

et al., 1986). Pm-T is an extremely potent mitogen for several cell types of different 

mammals (Rozengurt et a/., 1990; Williams et ai, 1990). In the present experiments, Pm-

T appeared mitogenic for non-immune quiescent and ConA-stimulated PBLs of some 

piglets. PBLs of both the GY x DL crossbred and DL purebred responded. Similar results 

were found when PBLs of purebred GY pigs were tested (data not published). This 

proliferation can probably be attributed to CD4+ T cells. Fluorescence Activated Cell 

Sorter (FACS) analysis of PBLs incubated with the toxin showed increased numbers of 

CD2+ and CD4+ cells (data not shown). Animals in the Pm-T challenged groups 

showed proliferation similar to the control animals. This proliferation depended on dose 
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and did not differ before or after Pm-T challenge. Thus, the cause of proliferation was 

probably the mitogenic activity of the toxin and built-up 'memory'. 

Heat-inactivation abrogated the mitogenic activity of Pm-T. This indicated that the 

mitogenic capacity may not rest on lipopolysaccharide components regularly present in 

endotoxins from Gram-negative bacteria. The monomorphic anti-MHC class II DQ and 

DR monoclonal antibodies could partly block the in vitro lymphoproliferative activity of 

Pm-T. If no Pm-T induced proliferation occurred, addition of the monoclonal antibodies 

could induce proliferation. This suggested that the mitogenic activity of Pm-T is based on 

stimulation of T cells through the MHC class II antigens on the cell membrane of antigen 

presenting cells. The results of the tests on mitogenicity and blocking with MSA3 or 

TH16ß were diverse. This might be due to the fact that no inbred lines were used in this 

research. 

Recently, a specific class of antigens which either belong to the endotoxins of Gram-

negative bacteria, mycoplasmas, or viral antigens has been reviewed. These, so called 

'superantigens' are potent T cell mitogens and do not induce conventional humoral 

and/or cellular immune responses. In murine models and in humans, they differ from 

'normal'antigens such that they 'nonspecifically'activate T cells without the conventional 

processing by antigen presenting cells. The superantigens bind MHC class II molecules 

on antigen presenting cells and are then presented to T cells with certain subsets of T cell 

receptor ß chains. This may result ad random, either in activation of (preferentially 

autoimmune) T cells, followed by a rise of (auto)antibodies, or in death/inactivation of 

the responding T cells, leaving holes in the T cell repertoire (Acha-Orbea and Palmer, 

1991; Cole and Atkin, 1991). A 'genetic' diversity in subsequent immune responses 

between MHC compatible individuals was attributed to the repertoire of Vß T cell 

receptor genes (Cole and Atkin, 1991; Coffin, 1992). Whether Pm-T acts as a 

superantigen in pigs remains to be determined. However, the lack of a detectable anti

toxin immune response in all Pm-T treated animals (Groups 2, 3, 7 and 12), while Pm-T 

can be recognised by immune cells, the irreversible pathogenicity in the presence of 

immune cells and the mitogenicity of Pm-T, make it tempting to speculate that Pm-T 

modifies the immune response. The response may not be directed towards the Pasteurella 

multocida toxin but to an unidentified component in the nose of piglets. 
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Abstract 

Effects of intranasal administration of Pasteurella mu/toc/da-toxin (Pm-T) on cellular and T-cell 

dependent antibody responses of piglets were studied in a 3 by 2 factorial arrangement of 

treatments: three levels of intranasal challenge with Pm-T (either once, or on 3 consecutive days, 

or no Pm-T challenge), and with or without simultaneous immunization with a 'cocktail' 

containing Keyhole Limpet Haemocyanin (KLH), Ovalbumin (OA) and Tetanus Toxoid (TT). Total 

Ig, IgC, and IgM antibody formation as determined by ELISA revealed that Pm-T treatment 

decreased but did not abrogate the humoral response to KLH, advanced and decreased the 

humoral response to OA, whereas the response to TT was not affected. In vivo cellular immunity 

to OA was accelerated and enhanced, but the cellular response to TT was increased or decreased 

depending on applied Pm-T treatment. The results indicate that Pm-T toxin does not suppress 

immunity to T-cell dependent antigens. This suggests that the lack of detectable immune 

responses to Pm-T in Pm-T challenged pigs may not be based on non-specific suppression of the 

cellular immune system. 

Key words: Pasteurella mu/toc/da-toxin, immune response, T-cell dependent antigens, pigs 

INTRODUCTION 

Pasteurella mu/toc/da-toxin (Pm-T) is the causing agent of atrophic rhinitis (AR), wh ich 

is characterized by irreversible destruction and reabsorption of nasal bony tissues in 

piglets (de Jong, 1985; van Diemen et al., 1994a). In f ield outbreaks of AR, no antibodies 

to Pm-T were found (de Jong, 1985), and also (experimental) intranasal administration of 

Pm-T does not evoke detectable Pm-T-specific humoral nor cellular immune responses 

in pigs (Foged et a/., 1987; van Diemen et al., 1994b). The reasons for the lack of 

systemic and local immunity in pigs to Pm-T are unknown. 

Pigs can be protected against Pm-T-initiated nasal breakdown by vaccination 3 weeks 

before challenge w i th inactivated Pm-T, 'Pm-toxoid' (Kobisch and Pennings, 1989; van 

Diemen et a/., 1994b). Al though anti-Pm-T immune cells were present, nose damage was, 

however, found in pigs vaccinated 10 days before or after challenge (van Diemen et a/., 
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1994b). Furthermore, pigs simultaneously challenged with Pm-T and vaccinated with Pm-

toxoid failed to respond to Pm-toxoid (van Diemen et a/., 1994b), suggesting that Pm-T 

affected cellular immunity. 

Recently, we developed a 3-day challenge-exposure model with Pm-T that was aimed 

to cause moderate (subclinical) disease-symptoms at 5 weeks post challenge (van Diemen 

et a/., 1994a). This enabled to study the effects of Pm-T on in vivo cellular and T-cell 

dependent humoral immunity in pigs that had been challenged intranasally with Pm-T 

and simultaneously sensitized systemically with various (non-related) T-cell dependent 

antigens. 

MATERIALS AND METHODS 

Animals, housing and feeding 

Sixty Dutch Landrace piglets were obtained from one farm with a 'Pm+ free'-

certificate issued by the Animal Health Service in The Netherlands (De Jong, 1985). Upon 

arrival at the experimental facilities, the piglets were randomly allocated to one of 6 

treatment groups and housed in 2.75 x 2.20 m pens, 5 piglets per pen. About 30% of the 

floor was covered with slats. Ambient temperature was maintained at 25°C. 

At the start of the treatments, the piglets (gilts and boars) were 38 + 1.5 days old, and 

weighed 9.7 + 1.3 kg. Piglets were fed a pelleted weaner diet ad libitum by self-feeders 

and had free access to water. Food contained 16,7 kj of gross energy (GE) per gram and 

1 7% crude protein. All animals were intranasally pre-treated, on Day -3, with a 1 % acetic 

acid solution in water, 0.5 ml in each nostril (Van Diemen et al., 1994a). 

Experimental routine 

The experimental period was composed of a preliminary period of 7 days and an 

exposure period of 5 weeks. The first day of the exposure period was defined as Day 0. 

In two treatment groups (Croup 3-0 and Croup 3-1), subclinical AR-like symptoms 

were induced with the Pm-T challenge model as described by Van Diemen et al. (1994a). 

This 3-day challenge-exposure model was aimed to cause moderate (subclinical) disease-

symptoms, 5 weeks post challenge. The applied daily challenge-dose was 0.5 ml of 13 

/yg ml"' Pm-T in phosphate buffered saline (PBS) in each nostril. The Pm-T challenge 

started on Day 0. The second pair of treatment groups were challenged only once with 

13 /yg ml"1 Pm-T, 0.5 ml in each nostril {Croup 1-0 and Group 7-7). This treatment was 

chosen to compare the effects of Pm-T in vivo with in vitro stimulation of lymphocytes 

where Pm-T is only once added to the cultures. The last pair of groups served as control 
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groups {Croup 0-0 and Croup 0-7). They were challenged similarly with 0 //g Pm-T ml"1 

PBS. 

On Day 0, of each pair of treatment groups, one group was intramuscularly 

immunized with 2 ml antigen cocktail (Group 0-1, Croup 1-1, and Croup 3-1). The 

cocktail contained 1 mg Keyhole limpet haemocyanin (KLH), 4 mg ovalbumin (OA) and 

15 If tetanus toxoid (TT) in a 1:1 PBS and Freund's incomplete adjuvant solution. The 

other groups were treated similarly with the PBS-adjuvant solution (Croup 0-0, Croup 1-0 

and Group 3-0). 

Atrophic rhinitis characteristics 

The presence of brachygnathia superior (BS) was measured in mm on Day 0 and on 

Day 35 in all animals. The change in BS (cBS) over this 35-d period was used as disease 

characteristic (Van Diemen et al., 1994a). 

On Day 38 after challenge, all piglets were necropsied (stunned and bled) to observe 

AR characteristics. Progression of AR was defined by the grade of conchae atrophy after 

cross-sectioning the snout between the first and second premolar tooth (De Jong, 1985); 

atrophy of the ventral conchae (VCA) was graded from 0 (no lesions) to 4 (total atrophy) 

and of the dorsal conchae (DCA) from 0 (no lesions) to 3 (total atrophy). The average of 

both nostrils was used in calculations (Van Diemen et al., 1994a). 

Immune characteristics 

Before treatment, and at weekly intervals, bloodsamples were collected. 

Humoral response - KLH, OA, TT and Pm-T specific in vivo antibody titres were 

determined routinely by either one- or two step indirect ELISA. Shortly, serial dilutions 

of serum were applied to antigen-coated wells of a microtitre-plate. After incubation for 

1 h at 37°C, and subsequent washing, either a one (IgG, total Ig) or two step (IgM) 

conjugation followed. The one step assay consisted of incubation for 1 h with a 1:2000 

diluted peroxidase (PO) conjugated rabbit antibody directed to swine lgGFc (RASw-

lgGR/PO, Nordic, Tilburg, The Netherlands) or lgGH + L (RASw-lgGH + L/PO, Kpl, 

Gaithersburg, MD, USA) for IgG and total Ig respectively. The two step assay consisted 

of incubation for 1 h with 1:6000 diluted mouse anti-swine IgM monoclonal antibody 

(MASw-IgM, ID-DLO, Lelystad, The Netherlands) and 1 h incubation with 1:500 PO-

conjugated rabbit anti-mouse antibody (RAM/PO, Dakopatts, Glostrup, Denmark). After 

washing, tetramethylbenzidine (TMB, Sigma) was added as a chromogen. Colour 

formation was stopped after 10 minutes with 2.5 N sulphuric acid. All absorbances were 



106 Chapter 5.2 

expressed relatively to the absorbance of a standard positive control serum obtained from 

a vaccinated animal. 

Cellular response - Ovalbumin- and tetanus toxoid-specific in vitro cellular immunity 

was determined by a whole blood lymphocyte stimulation test (LST). One to ten diluted 

heparinized whole blood samples were tested for proliferation in the presence of either 

15 /jg ml"1 OA or 5 //g ml"' TT in RPMI culture medium containing antibiotics. Numbers 

of peripheral blood leucocytes (PBLs) per ml were determined with a Coulter Counter 

ZM (Coulter Electronics LTD, Luton, UK). 

Mitogenic activity of Pm-T on PBLs (Van Diemen et a/., 1994b) was determined by 

LST on isolated PBLs, obtained from heparinized blood samples using Ficoll density 

gradient centrifugation. PBLs (4*105 per well) were tested in the presence of 1 fjg ml"1 

Pm-T in RPMI containing 10% foetal calf serum and antibiotics. 

All cultures, set up in triplicate, were incubated 4 days at 37°C, 5% C02 in 

humidified atmosphere. Eighteen hours before harvest, 0.5 /JC\ of methyl-3H-thymidine 

(3H, Amersham, Bucks, UK), was added. 3H uptake was determined with a Beekman ß-

scintillation counter. Results were expressed as mean counts per minute (cpm). 

Stimulation Indices {SI) were calculated as: 5/ = cpm in antigen stimulated cultures/cpm 

in unstimulated cultures. A SI > 1.5 was regarded as positive. 

Statistical analysis 

Traits were statistically analyzed for the effect of Pm-T challenge, cocktail vaccination 

and their interaction using a two-way analysis of variance per testdate (SAS, 1989). 

Subsequently, pairwise comparisons within testdate were performed between treatment 

groups using least square mean differences at the overall 0.05 level of significance. 

Correlation between parameters of (subclinical) disease and immune characteristics were 

analyzed by method of Pearsons partial correlation (SAS, 1989). 

RESULTS 

Atrophic rhinitis characteristics 

Ventral and dorsal conchae atrophy scores (VCA and DCA) and change in 

brachygnathia superior (cBS) per treatment group are shown in Figure 1. No clinical AR 

symptoms occurred. All pigs treated with Pm-T on 3 consecutive days were significantly 

more severely affected with respect to VCA, DCA, and cBS (P < 0.0001) than the not 

Pm-T challenged control pigs (Figure 1). The pigs challenged only once with Pm-T did 

not differ in ventral or dorsal conchae atrophy nor in cBS from the control pigs. 
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Figure 1 - Ventral and Dorsal Conchae Atrophy scores and change in Brachygnathia superior (mean ± SEM) 
per treatment group. Cross-hatched, no cocktail immunization (Croups 0-0, 1-0 and 3-0 respectively); dots, 
cocktail immunization (Croups 0-1, 1-1 and 3-1 respectively), a,b: Different characters indicate pairwise 
significant difference, P < 0.05. 

The administration of the antigen-cocktail had a significantly decreasing effect (P < 0.02) 

on the VCA scores, which were 2.08 for the antigen-challenged group and 2.50 for the 

non-antigen challenged group, respectively. The simultaneous administration of other 

antigens tended to affect the DCA scores differently, depending on the number of Pm-T 

doses administered (P < 0.07). The DCA scores of the pigs of Croup 0-1 and Croup 1-1 

were decreased compared with their non-antigen treated contemporaries, while the pigs 

of Croup 3-1 had an increased score compared to the pigs in Group 3-0. 

Immune characteristics 

Humoral response - In general, pigs immunized with the cocktail consisting of KLH, 

OA, and TT mounted systemic antibody responses directed to KLH, OA and TT, which 

were measured from one week post vaccination on. 

Keyhole limpet haemocyanin - The total antibody response to KLH of the Pm-T-

challenged groups {Group 1-1 and Croup 3-1) were lower than the non-Pm-T treated 

(control-) group (Group 0-1) (Figure 2a). On Days 17, 24 and Day 31, this reduced 

response was significant for Group 1-1 (P < 0.05). Within the groups which had not 

received KLH, Group 1-0 had a lower anti-KLH total Ig titre than Group 0-0. 
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Figure 2 - Antigen specific total Ig titres (mean ± SEM) per treatment group. A) KLH, B) OA, C) TT and D) 
Pm-T. O: Group 0-0, • : Croup 0-1, A: Croup 1-0, * : Croup 1-1, D : Group 3-0, • : Group 3-1. 

On day 10, a maximum anti-KLH IgM response was found for all antigen-treated 

groups (Figure 3a). From day 1 7 onwards anti-IgM responses were similar in all groups. 

The anti-KLH IgG response of Group 0-1 pigs increased on Day 10 and remained high 

throughout the observation period (Figure 4a). The response of the pigs in Group 3-1 

increased simultaneously, and decreased slightly towards the end of the exposure period. 

The response of the Group 1-1 pigs was lower compared with the Group 0-1 pigs. On 

Day 1 7, 24 and 38 this decrease tended towards significance (P < 0.1). This suggested 

that the lower total antibody response to KLH was due to a lower IgG response. 

Ovalbumin - The total Ig response was equal for Group 0-1 and Group 3-1. Though not 

significantly, a lower response was found in Group 1-1 (Figure 2b). The IgM response to 

OA increased throughout the experimental period. Difference between Group 0-1 and 

Group 3-1 was not found (Figure 3b). Both groups treated once with Pm-T {Group 1-1 

and Group 1-0) showed a lower response than their control contemporaries (Group 0-1 

and Group 0-0). 
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Figure 3 - Antigen specific IgM titres (mean + 
SEM) per treatment group. A) KLH, B) OA, and C) 
TT. O: Croup 0-0, • : Group 0-1, A: Croup 1-0, 
A: Croup 1-1, D : Group 3-0, • : Group 3-1. 
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Figure 4 - Antigen specific IgG titres (mean ± 
SEM) per treatment group. A) KLH, B) OA and C) 
TT. o : Group 0-0, • : Croup 0-1, A: Group 1-0, 
A: Group 1-1, D : Group 3-0, • : Group 3-1. 

From Day 10 onwards, Croup 0-1 pigs mounted an anti-OA IgG response with the 

highest response at Day 31 (Figure 4b). Similar responses were found in the other OA-

sensitized groups, although in Group 1-1 pigs the maximum response occurred earlier 

(Day 24) and appeared lower, whereas the response of the Croup 3-1 pigs was broader 

and lower. 
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Tetanus Toxoid - The total antibody responses to TT were similar for all three TT-

sensitized groups. All groups showed a peak at Day 24 (Figure 2c). The response of the 

Group 1-1 pigs, however, was slower and remained lower than the Group 0-1 pigs until 

Day 31. No higher anti-TT IgM responses were found in TT sensitized groups as 

compared to non-TT sensitized groups (Figure 3c). The IgG responses to TT were similar 

in all TT sensitized groups (Figure 4c). Although pigs of Group 1-1 had a slower IgG 

response to TT than pigs from the other cocktail groups (Figure 4c). 

Pm-T - Low, but significantly elevated total antibody titers to Pm-T were found in all 

groups sensitized with the mixture of KLH, OA, and TT (Figure 2d). 

Cellular response - The effect of a single or repeated (3 days) exposure of pigs to Pm-

T on cellular immunity in vitro to OA and TT was measured. 

Ovalbumin - The proliferation of lymphocytes of all groups in the presence of OA are 

shown in Figure 5a. The Group 0-1 responded from Day 10 onwards (S/OA> 1.5) and 

peaked at day 31 (S/OA = 3.86). The cellular response to OA of the pigs treated three times 

with Pm-T {Group 3-1) started later and peaked sooner and more pronounced (Day 17, 

S/OA = 5.38) with a large variation between individual pigs, compared with the Group 0-1 

pigs. The Group 1-1 pigs mounted their cellular response to OA at Day 10, and peaked 

at Day 24 (5/OA = 5.92). A large variation between animals was found (Figure 5a). 
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Figure 5 - Stimulation indices (mean ± SEM) of cultures stimulated with A) 15 /vg ml"1 OA or B) 5 //g ml"' 
TT, per treatment group per testday. o : Croup 0-0, • : Croup 0-1, A: Croup 1-0, ±: Croup 1-1, • : Group 
3-0 • : Group 3-1. The mean cpm of unstimulated cultures averaged 76 (range: 45 and 111 cpm). 

Tetanus Toxoid - The cellular response to TT of Group 0-1 occurred from Day 10 up till 

Day 31 (S/TT> 1.5) with a peak at day 24 (S/TT = 2.51, Figure 5b). In the group of pigs 

treated three times with Pm-T {Group 3-1), the response was delayed and remained 
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lower, and was without a clear peak compared with the response of Croup 0-1. The PBLs 

of Group 1-1 pigs started to proliferate in the presence of TT on Day 10, which was 

comparable with Group 0-1 pigs. However, whereas of the latter group the S/TT peaked 

at Day 24, the S/TT of Group 1-1 increased to 3.90 (P < 0.001), and remained high until 

the end of the experiment. The SE of the S/TT increased simultaneously. 

Pm-T - In approximately 47% of the pigs tested, the non-immune lymphocytes 

proliferated in the presence of Pm-T (S/Pm.T > 1.5, mean cpmun = 204). No partial 

correlations between mitogenic activation of T-cells by Pm-T, and AR-specific pathology 

were found. 

DISCUSSION 

Pasteurella mu/toc/da-toxin (Pm-T) initiates the pathogenic processes of atrophic 

rhinitis (AR). This results into irreversible destruction and reabsorption of nasal bony 

tissues in pigs (de Jong, 1987; van Diemen et al., 1994a). No detectable levels of Pm-T-

specific antibodies are found in pigs challenged with Pm-T (Foged et a/., 1987; van 

Diemen et a/., 1994b), and also in field outbreaks of AR, no antibodies to Pm-T have 

been found (de Jong, 1985). Also in the present study, intranasal Pm-T challenge did not 

induce a cellular nor humoral immune response in vivo, as reported previously (Frymus 

et a/., 1986; Foged et al., 1989; van Diemen et al., 1994b). The lack of immune 

responses to Pm-T may be caused by the inability of T cells to recognise Pm-T. However, 

previously we found that T cells recognising Pm-T were present in pigs vaccinated with 

Pm-toxoid prior to Pm-T challenge. Pm-T was reported to be mitogenic in vitro for several 

cell types (Frymus et al., 1986; Foged et a/., 1989; Rozengurt et al., 1990), and also for 

naive and lectin-stimulated porcine T cells in vitro (Van Diemen, 1994b). This 

'nonspecific' activation of T cells by Pm-T was individually restricted, and could be partly 

abrogated by monomorphic anti-swine MHC class II DQ and DR specific monoclonal 

antibodies (van Diemen et al., 1994b). These observations suggested that Pm-T may affect 

cellular immunity by interference with antigen presentation via MHC class II antigens. 

Pigs simultaneously challenged with Pm-T and vaccinated with Pm-toxoid failed to 

respond to Pm-toxoid (van Diemen et al., 1994b). In vivo, Pm-T may be presented to T 

cells in such a way, that T cells responding to Pm-T and possibly to other antigens are 

inactivated. 

The present results indicated that a single or repeated treatment of pigs with Pm-T did 

not cause a 'non-antigen specific' suppression of immune responses in vivo to various T-

cell dependent antigens. Challenge with Pm-T affected but did not abrogate the in vivo 

immune response against OA, KLH or TT. This was especially true for pigs which were 
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challenged only once with Pm-T. Though not always significantly, the animals treated 

once with Pm-T showed lower total antibody responses to KLH, OA and TT, which 

seemed to rest on the lower IgC responses to these antigens. No clear effects were found 

on cellular immune responses to these antigens in vitro. The present results indicated 1) 

that the lack of detectable immune responses to Pm-T probably does not depend on a 

'general non-specific' suppression of cellular immunity, and 2) that challenge with a dose 

of Pm-T, which ultimately results in a breakdown of nasal bony tissues does not 

uniformly affect immune responses to various T-cell dependent antigens. 

A low, but significant increase of antibodies binding to Pm-T were found in pigs 

sensitized with a mixture of KLH, OA, and TT, irregardless of Pm-T sensitization. As yet, 

we have no explanation for this phenomenon. The increase in antibodies binding Pm-T, 

however, did not protect group 3-1 animals from nose damage, although in these animals 

a lower VCA score was found. 

The relationship(s) between Pm-T and porcine T cells deserve further study. Bacterial 

endo- and exotoxins can act as so called 'superantigens' in mouse and man. These 

antigens nonspecifically activate the cellular immune response, such, that ad random 

activation of preferably autoimmune T cells with concomitant rise of (auto)antibodies can 

occur. On the other hand, death or inactivation of the responding T cells may leave holes 

in the T-cell repertoire of the individual (Cole and Atkin, 1991; Coffin, 1992). The lack 

of immune responses to Pm-T in vivo, and the individual restriction of the mitogenic 

effect of Pm-T on porcine immune cells in vitro (van Diemen et al., 1994b), therefore 

urges studies on the expression of T-cell receptor V-beta families (Cole and Atkin, 1991; 

Coffin, 1992) in affected and non-affected pigs. 
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Abstract 

Attempts were made to unravel the role of T cells during the early phase of atrophic rhinitis 

(AR) experimentally induced by Pasteurella multocida toxin (Pm-T). In the first pilot experiment, 

AR was studied in piglets treated with the immuno-suppressant Cyclosporin A (CyA). Treatment 

with CyA affected the proportions of peripheral T cell subsets. Symptoms of AR appeared to be 

less pronounced in these pigs, but no significant differences between CyA treated and control pigs 

were found for any parameter of AR studied. Pm-T was mitogenic for non immune lymphocytes 

in vitro for most but not all animals. Disease symptoms of AR in situ could not be initiated by 

syngeneic transfer of peripheral white leucocytes sensitized in vitro with Pm-T. However, a 

significant positive relation was found between the number of T cells returned and the change 

of brachygnathia superior. Although the role of T cells during the early phase of AR could not be 

established, the latter result urges further studies on putative involvement of T cells in the 

development of AR. 

Key words: Pasteurella multocida toxin, immunosuppression, Cyclosporin A, T cell, pigs 

INTRODUCTION 

The causative agent of AR in pigs, Pasteurella multocida toxin (Pm-T) appeared to be 

mitogenic for naive and Concanavalin A (ConA) stimulated peripheral whi te b lood cells 

of pigs (van Diemen et a/., 1994b; Chapter 5.2). The mitogenic activity of Pm-T could be 

abrogated by the addit ion of antibodies directed to M H C class II antigens (van Diemen 

et al. 1994b). As is true in naturally infected pigs, no antibodies nor sensitized T cells 

directed to Pm-T are found in pigs wh ich develop symptoms of AR after experimental 

administration of Pm-T. The role of T cells in the (lack of) protection to Pm-T is largely 

unknown. A possible relation may exist between the mitogenic effect of Pm-T on porcine 

T cells on the one hand, and the lack of immune responses to Pm-T, and the individual 

variabil i ty of (sub)clinical AR symptoms on the other hand. 

In case of T-cell mediat ion, immuno-suppressant treatment is expected to abrogate 

or reduce AR lesions. Therefore, in the first experiment, effects of suppressing cellular 

immunity on the development and severity of AR lesions were studied. In the second 

experiment, the potency of peripheral wh i te leucocytes (PBL) stimulated in vitro w i th Pm-
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T to induce specific nose damage was studied. Specific nose damage is expected in case 

of T-cell mediation. 

EXPERIMENT 1 

The effect of the putative immunosuppressive agent Cyclosporin A (CyA) on Pm-T 

initiated nose damage in pigs, and the proportion of peripheral T-cell subsets were 

studied. 

Experimental design 

Thirty DL piglets were purchased from a farm with a 'Pm+-free' certificate (Animal 

Health Service, Deventer, Netherlands) and housed in a climate respiration chamber used 

as an isolator. Littermates were equally divided into 2 groups, a control and CyA treated 

group. Within these groups, pigs were randomly allotted to either Pm-T treatment (n = 10, 

Pm-T) or no treatment (n = 5, NON). 

The CyA treatment (5 mg kg') started one week before and continued for another two 

weeks after Pm-T challenge. CyA dissolved in ethanol/PBS (1:4) was administrated once 

a day subcutaneously. Pigs were weighed twice a week to adapt the amount of CyA to 

the individual body weight. Control pigs received only the ethanol/PBS solvent. 

Pm-T treatment was conducted according to the challenge model developed by van 

Diemen et al. (1994a). In short, three days after pretreatment with acetic acid, 20 piglets 

were intranasally challenged with 13 //g ml"1 Pm-T in PBS on 3 consecutive days (0.5 ml 

per nostril). The pigs in the NON groups were intranasally challenged with PBS. First day 

of challenge was defined Day 0. 

For analyses, blood samples were drawn from all animals before treatments and 

weekly over a 5 week period. Percentages of T-cell phenotypes in the blood were 

determined by Fluorescence Activated Cell Sorter (FACS) analysis (Joling et al., 1994). 

EXPERIMENT 2 

The potency of PBL stimulated in vitro with Pm-T to induce AR characteristics in situ 

was studied. 

Experimental design 

Nineteen CY x DL crossbred piglets, 4-5 weeks old, were used. PBL were obtained 

from heparinised blood samples using Ficoll density gradient centrifugation. The PBL 

were incubated with 1 /vg ml"1 Pm-T for 4 days at 37°C, 5% C0 2 in humidified 

atmosphere. Subsequently, cells were washed and returned to the respective 14 donor 

piglets through an ear vein (T-cell group). The remainder five pigs served as control 
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group. Number of PBL returned ranged between 18* 106 and 62*106 (mean 38* 106). The 

day of returning the cells was defined as Day 0. 

AR characteristics 

At the end of both experiments (day 35) all pigs were stunned and bled in a 

slaughterhouse. Progression of AR was examined, post mortem, by the grade of ventral 

and dorsal conchae atrophy (VCA and DCA) after cross-sectioning the snout between the 

first and second premolar tooth (De Jong, 1985). The turbinate perimeter ratio (TPR) was 

derived by digitizing photographs of cross-sections (Collins et al., 1989). The change in 

Brachygnathia superior (cBS) between onset and end of the experiment was measure 

determined. 

In both experiments, mitogenic activity of Pm-T on PBL (Van Diemen et a/., 1994b) 

was determined by lymphocyte stimulation test. Isolated PBL (4*105 per well) were tested 

in the presence of 1 //g ml"' Pm-T in RPMI containing 10% foetal calf serum and 

antibiotics. The cultures, set up in triplicate, were incubated 4 days at 37°C, 5% C0 2 in 

humidified atmosphere. Eighteen hours before harvest 0.5 //Ci of methyl-3H-thymidine 

(3H) was added. 3H uptake was determined with a Beekman ß-scintillation counter. 

Results were expressed as mean counts per minute (cpm). Stimulation Indices {SI) were 

calculated as: SI = cpm in stimulated cultures/cpm in unstimulated cultures. A SI > 1.5 

was regarded as positive. 

RESULTS AND DISCUSSION 

EXPERIMENT 1 

The effects of CyA treatment of pigs on parameters of AR are summed up in Table 1. 

No distinct differences in VCA, DCA or cBS between the two Pm-T challenged groups 

were found. However, the reduction in severity in TPR between CyA treated and non-

treated pigs tended towards significance (P < 0.1). A negative relation (r2 = -0.67, P < 

0.05) was found between VCA and TPR. No increase in severity of AR was found either 

in CyA-treated pigs. The high 'background' level in VCA of the non Pm-T treated (NON) 

groups may have been caused by (ubiquitous present) Bordetella bronchiseptica, which 

can induce moderate nose lesions (de Jong, 1985; Rutter, 1985). In this respect, the slight 

increase in VCA, DCA, and cBS in the CyA treated NON pigs was noteworthy (Table 1). 

Considering our results, CyA treatment before and early after Pm-T challenge did not 

clearly affect symptoms of AR. It is possible that the amount of CyA in the blood had not 

reached a sufficient level to suppress cellular immunity in pigs. On the other hand, Pm-T 

was mitogenic for pig lymphocytes in vitro, thus it cannot be excluded that the 
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suppression of T cells is 'overruled' by an activation of T cells due to the mitogenic 

activity of Pm-T. 

Table 1 - Pilot study on immunosuppression. Comparison of mean AR characteristics by treatment group. 

Cor 
NON 

5 

1.70" 
0.10" 
0.81c 

1.80" 
4.00 

trol 
Pm-T 

9 

2.72b 

1.00b 

0.66d 

4.11 b 

3.60 

CvclosDorin A 
NON Pm-T 

4 

2.13" 
0.38 
0.81 

2.75" 
2.39 

10 

2.65b 

0.75 
0.77 

3.90b 

4.02 

SEM 

0.20 
0.39 
0.07 

0.57 
0.90 

Variable 

VCA 
DCA 
TPR 

cBS (mm) 
S'pm-T 

Different row superscripts indicate pairwise, significant differences or trends;"b P<0.05, cd P<0.1. 

Cyclosporin A was given preference over the immunosuppressive agent 

dexamethasone. CyA acts selectively on primary cellular immune responses and leaves 

secondary responses intact (Anonymous, 1985 and 1988). Flaming et al. (1994) reported 

that pigs seem remarkably resistant to immunosuppression by dexamethasone treatment. 

That treatment resulted in only mild alterations in porcine immune functions even at a 

dose that is 150 times higher than the dose that is consistently immunosuppressive in 

cattle (Roth and Kaeberle, 1981 cited by Flaming eta/., 1994). In the current experiment, 

the humoral immune system seemed undisturbed, i.e. the applied CyA treatment did not 

affect the percentage of B cells in the blood. 

Figure 1 - Proportions of A) CD2, B) CD4, and C) CD8, in Pm-T challenged pigs. Close cross hatched: 
control; cross hatched: Cyclosporin A. (*: P < 0.05; t : P < 0.1). 
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At day 7, the total T cell (CD2) pool was significantly lower in the CyA treated pigs 

(P < 0.05, Figure 1A). In the period after CyA treatment (from Day 10 onwards), 

proportions of CD2 were similar in both groups. After Pm-T treatment at Day 0, 

percentages of CD4 increased only in pigs not treated with CyA. At day 7, the percentage 

of CD4 (The!per) was significantly lower in CyA-treated pigs (P < 0.05, Figure 1B). This 

difference was still present on day 21 (P < 0.07). The proportion of CD8 (Tsuppress0l) 

showed a trend downwards in the CyA pigs at Day 0 and later on (Figure 1C). A large 

diversity in immune parameters between individuals was found. As in humans, (Hu, 

1994), the CD8 positive cells appeared to respond earlier (day 0) to the CyA treatment 

than CD4 cells. Thus, CyA treatment seemed to affect porcine cellular immune functions, 

although the method of application and dose of CyA used may require optimization. 

EXPERIMENT 2 

In Table 2 characteristics of AR of pigs which received syngeneic PBL sensitized in 

vitro with Pm-T and control pigs are given. Pigs which received non-stimulated PBL were 

not included in this pilot experiment. No differences in parameters of nose damage 

between the treatment and control groups were found. A positive relation (r2 = 0.70, P < 

0.006) occurred between the numbers of PBL (T cells) returned and the change in 

brachygnathia superior (cBS). This suggested that the number of cells returned might have 

been too low to induce detectable nose damage by Pm-T sensitized T cells. 

Table 2 - Pilot study on in vitro Pm-T stimulated T cells. Comparison of mean AR characteristics by 
treatment group. 

Variable control SEM T cell SEM 

n 5 - 14 -

VCA 
DCA 
TPR 

cBS (mm) 

J'pm-I 

CONCLUSION 

1.10 
0 
0.74 

0 
2.34 

0.24 
0 
0.04 

0.55 
0.42 

1.32 
0 
0.68 

0.36 
2.47 

0.15 
0 
0.03 

0.32 
0.47 

Although the application method and dose of CyA used may not have been optimal 

to suppress cellular immunity in pigs, a decrease of T (helper) cells early after Pm-T 

challenge did not result in either a significant increase, nor a significant decrease of AR 

symptoms. Thus, the role of T cells during the early phase of AR remained obscure. On 
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the other hand, data of the second experiment suggested an involvement of (T) cells in 

the initiation of AR, but the number of PBL returned may have been too low to induce 

detectable nose damage. In conclusion, the data of both pilot experiments urges further 

research on the immune mechanisms operating during the early phase of AR. 
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INTRODUCTION 

In the pig production industry, high-density rearing ensures that virtually every animal 

will be exposed to (potentially lethal) infectious agents through direct or aerial contacts 

(Dietert et al., 1994). This is irrefutably true for infections of the upper respiratory tract, 

where a direct contact between the animal and its environment exists. In bacterial 

diseases, such as atrophic rhinitis, environmental management can be pivotal in host 

disease-resistance. Environmental factors represent a ubiquitous, yet frequently 

manageable, category of components that can influence performance and disease 

susceptibility or resistance (Verhagen, 1987; Scheepens, 1991). The climatic environment 

of animals exerts a considerable influence on immune status, particularly on the overall 

capacity to mount immune responses and to protect the host from disease (Kelley, 1985; 

Verhagen, 1987; Kreukniet et a/., 1990). With respect to atrophic rhinitis, knowledge of 

environmental and animal factors on disease progression, is lacking. 

The development of a challenge model to mimic the disease facilitated studies on 

atrophic rhinitis. Two areas of interest in atrophic rhinitis have been described in this 

thesis. First, the impact of climatic environment on the severity of disease symptoms, and 

the effects of Pasteurella multocida toxin (Pm-T) on energy metabolism, production traits, 

heat production and activity of piglets were determined. Second, investigations after the 

role of the immune system in atrophic rhinitis-pathogenesis have been conducted with 

emphasis on mechanisms underlying the lack of conventional (classic) immune responses 

to Pm-T. The performed research, as well as prospective research are discussed here and, 

finally, consequences and implications of the proposed concept are outlined. 

INDUCTION OF ATROPHIC RHINITIS 

Experimental model 

When ciliary function of the nasal mucosa is normal and mucus is removed, airborne 

micro-organisms and dust can be cleared. Once adhered to the nasal epithelium, a 

bacterium can avoid clearance by the mucociliary transport system. The ability of 

toxigenic Pasteurella multocida (Pm+, serotype D), however, to adhere to the upper 

respiratory tract epithelial cells is poor (Frymus et al., 1986; Jacques, 1987), but Pm+ has 

affinity for mucus (Letellier et al., 1991). When ciliary activity is impaired and the mucus 

stagnant or absent, colonization with toxigenic Pm+ on the conchal mucous membrane, 

and concomittant production of its toxin (Pm-T), will be enhanced. Also the clearance 
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mechanisms of the upper respiratory tract in the pig may be overloaded, when the rate 

of bacterial invasion or the rate of bacterial multiplication exceeds the rate of muco

ciliary transport and clearance (Letellier et al., 1991). The developed AR challenge model 

(Chapter 3) operates independently of the colonizing ability of the bacterium by using 

Pm-T, but it needs impaired ciliary function. 

Both acetic acid (under experimental conditions) and Bordetella bronchiseptica {Bb) 

(under experimental and natural conditions) are known as predisposing factors to the 

nasal infection with toxigenic Pm. They share the ability to cause ciliostasis and 

stagnation of nasal mucus (Gagné and Martineau-Doizé, 1993; Nielsen and Rosendal, 

1994). Since a ßb-infection is ubiquitous in most commercial pig units, it is hard to 

obtain conventionally raised ßb-free piglets. Even by treating sow and litter with 

antibiotics, an infection could not be prevented (data not published). The degree of 

mucosal irritation by Bb also depends on maternal immunity against the bacterium. For 

the standardization of the model, acetic acid pretreatment was, therefore, preferred over 

Bb inoculation. This pretreatment wil l at least cause a minimum degree of mucosal 

irritation in all animals. In a pilot study it was found that pretreatment with acetic acid 

reduced the snout lesions caused by Bb (data not published). 

The results of the conducted experiments indicate that our model mimics the 

pathogenic effect of in vivo infection with toxin-producing Pm strains. The induced 

disease characteristics are dose-dependent. However, it has to be kept in mind that dose 

dependency is relative, whereas the 'amount' of Pm-T that penetrates the respiratory 

epithelium is unknown. The ventral conchae are affected first, the dorsal conchae atrophy 

(DCA) developed slower and occurred with the higher ventral conchae atrophy (VCA) 

scores (Chapter 3). It remains to be established whether the AR-symptoms caused by 

administration of Pm-T are based on a mechanism similar to that attributable to in vivo 

infection with Pm+ strains. Concerning the nose damage, the difference in outcome 

between the Pm-T challenged and control animals in the model was fairly constant over 

experiments. All Pm-T treated piglets developed turbinate lesions. The base level of nose 

damage (control pigs), however, varied between experiments. Both Done (1985) and 

Goodwin et al. (1990) mentioned the problem of higher snout scores without epidemio

logical or bacteriological evidence to indicate that the pigs were experiencing active AR. 

They stated that all pigs with AR have conchae atrophy, but not all pigs with conchae 

atrophy have actually AR. The higher snout scores were associated with Bordetella 

bronchiseptica- and non-toxigenic Pasteurella mu/toc/da-infections. Further association 

with other diseases influencing bone formation, with unsatisfactory environmental 

conditions, like dust or concentration of ammonia, and with recurring husbandry 

problems, like overstocking, are mentioned (Done, 1985; Goodwin et a/., 1990). In our 
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piglets, the higher base level in nose scores might have had a bacteriological cause since 

both Bordetella bronchiseptica and non-toxigenic Pasteurella multocida were present, as 

demonstrated through nasal swabs. Within an experiment, however, the difference in 

VCA and DCA scores between the Pm-T challenged and control pigs was solely 

attributable to Pm-T administration. The severity of the induced lesions were, 

nevertheless, moderate (subclinical), thus enabling us to study factors which may have 

a positive or negative effect on the disease symptoms. Clinical cases were not observed. 

Parameters 

In this thesis, the lesions were graded at five weeks post challenge with the method 

described by De Jong (1985). This method is based on changes in shape of the conchae. 

The ventral conchae are evaluated in 9 classes and the dorsal conchae in 7 classes. This 

system of scoring was refined enough to distinguish between control and challenged pigs 

(t-test). However, to detect nuances in lesions between challenged piglets in different 

treatment groups, the grading system seemed not sensitive enough. It was felt that next 

to changes in shape also the loss in extent should be accounted for. Therefore, in two 

experiments morphometric values (turbinate perimeter, TP and turbinate perimeter ratio, 

TPR) were derived by digitizing photographs of cross-sections according to Collins et al. 

(1989). 

Although TPR is said not to be influenced by pig age or breed (Collins et al., 1989), 

in our experiments, the TPR differed considerably between experiments. The TPR of non 

Pm-T treated 10-wk-old DL pigs was 1.15 (± .09) and 0.81 (+ .06) respectively in the 

2 experiments. Within experiments, the differences between TPR of control and Pm-T 

treated pigs were significant (t-test). The TPR is valuable as a less subjective, and possibly 

more sensitive, measure of atrophic rhinitis within an experiment than VCA/DCA, 

providing parametric data suitable for quantitative analysis. For comparison between 

experiments, however, caution is needed, since the TPR seemed affected by factors from 

the 'outside', just as VCA and DCA. 

The position of the upper jaw with respect to the lower jaw (Brachygnathia superior, 

BS) reflects the shortening of a snout in AR. This AR characteristic is the only indicator 

for impairment of the nose, measured in a living pig. Measured once, however, BS is a 

breed- and litter-associated characteristic in herds without the disease (Groenland, 1984; 

Rutter 1985; Chapter 3). When measuring the same animal a second time after a five 

week interval, the change in Brachygnathia superior (cBS) between the measurements was 

only dose associated (Chapter 3). Notwithstanding a degree difference in malapposition, 

the breeds used in our experiments reacted similarly to the applied Pm-T doses. The cBS 

seems routinely applicable as AR characteristic in practice by measuring BS of piglets at 
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4-5 and 10 weeks of age. If used consequently, cBS can possibly be used as simple 

indicator for the presence of AR. When the average cBS of a herd rises, this herd can be 

subjected to bacteriological testing. Subjective effects of the observer cannot be excluded 

(Groenland, 1984), but measurements by one person should produce an accurate change 

over the time interval. 

In conclusion, the developed challenge-exposure model enables studies on factors 

involved in the multifactorial etiology of AR in pigs. The characteristics used to measure 

AR are satisfactory, but can be refined. As wil l be discussed further on, the model 

allowed judgement of factors (positive or negative) related to the mucosal system of the 

turbinates and did not largely impaired animal welfare. With the same challenge model, 

on the other hand, clinical disease symptoms can be induced after an adjustment of the 

Pm-T dose (Chapter 3). For investigating effectiveness of medication or vaccination, the 

induction of clinical pathogenesis might be the correct method. 

ATROPHIC RHINITIS AND CLIMATIC ENVIRONMENT 

Because of a direct contact between the animal and its environment in the respiratory 

tract, the local defence mechanism is prone to be affected by environmental conditions. 

Several non-contagious factors such as air quality, ammonia and dust are thought to be 

of importance in herd outbreaks of progressive atrophic rhinitis (Hamilton et al., 1993). 

Factors such as low ambient temperature, draught and low relative humidity are known 

to hamper the local defence system of the respiratory tract of pigs (Verhagen, 1987; 

Kreukniet et a/., 1990). Especially factors which relate to the mucosal system of the 

turbinates may compromise the mucociliary clearance and facilitate bacterial 

colonization. Several of those factors seem to have seasonally conditioned effects on AR, 

although such effects are not clearly established (Smith, 1983; Goodwin, 1988; Kavanagh, 

1994). Recurring husbandry problems such as overstocking, have been associated with 

higher snout scores (Goodwin, 1988). And, in practice, the severity of an AR-outbreak 

can be controlled to a great extent on farms by improving climatic environment and 

housing conditions (Smith, 1983; Goodwin, 1988). In Chapter 4, interaction between AR 

and climatic environment in weanling pigs was studied. As 'adverse' environment, 

ambient temperature below thermal neutrality (below the lower critical temperature, 

Chapter 3, Figure 1) with four draught-periods was applied. No evidence was found, 

however, that the low ambient temperature with draught periods aggrevated AR nose 

lesions induced by our challenge model (Chapter 4.1). Even slightly less severe conchae 

atrophy was noticed. This indicates that the passage of Pm-T through the mucous 
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membrane seemed not affected or reduced rather than enhanced. Based on this study, 

it is probable that the improvements in climatic environment as referred to by the above 

mentioned research workers, have had an impact on the colonization possibilities and 

concomitant toxin production of the bacterium on the mucous membrane. The Pm-T, 

whether produced by Pm+ on the spot or applied experimentally, might reach the 

underlying bony tissues in any case. This implicates that in studies on the role of climatic 

conditions on the severity of AR, effects on the colonizing ability of the Pm+ should be 

reckoned with. For this type of research, a challenge model using the Pasteurella 

multocida bacterium should be applied. 

However, next to a direct effect on the local defence system against respiratory 

disorders, indoor climatic conditions also exert an influence on immune status of the pig. 

Diarrhoea, coughing and sneezing as well as haemorrhagic ear lesions are reported to be 

more pronounced in pigs kept under poor indoor climatic conditions (Scheepens, 1991 ). 

Even if pigs appear healthy and do not seem to have depression of growth, immune 

function can be impaired (Noyés et al., 1988). Immune assessment relative to 

environmental-immune interactions can enhance the efficiency of the production 

operation and optimize the welfare of the animals during the production cycle (Dietert 

et al., 1994). In the performed study, climatic treatment started at the first day of Pm-T 

challenge. Experimental work with Actinobacillus pleuropneumonias (App) (Verhagen, 

1987; Kreukniet et a/., 1990) revealed namely, that in young growing pigs the time of 

occurrence of climatic stress influenced the effect of a challenge. When the adverse 

conditions occurred after the App challenge, incidence and severity (mortality and 

morbidity) increased. When the low temperature occurred before challenge, clinical 

symptoms were related to the duration of exposure before challenge. 

The characteristic conchae atrophy of AR, at the other hand, was not accompanied 

by a detectable systemic humoral immune response to Pm-T (Chapters 3 and 4). Thus, 

effects of environmental factors on specific immune responsiveness (antibodies) could not 

be measured. This lack of conventional (classic) immune responses to Pm-T, stimulated 

us to study the role of the immune system in atrophic rhinitis in the second part of the 

project (Chapter 5). 

When an animal experiences disease (e.g. App), the maintenance requirement wil l 

increase due to fever and an activated immune system (Verstegen et al., 1987). Efficiency 

of production wil l dwindle. In case of App, the first week after experimental inoculation 

the diseased pigs lost weight (Verhagen, 1987). This weight loss could mainly be 

attributed to an increased maintenance requirement (fever) and partly to a reduced food 

intake. The adverse climatic treatment delayed and prolonged the rectal temperature 
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increase in diseased pigs (Verhagen, 1987). Moreover, a higher mortality and a different 

antibody level was noted due to the adverse environment. 

The effects of Pm-T (AR) on performance were less dramatic (16 g/d weight gain) and 

increased overtime. The growth retardation seemed to be dependent on the development 

of nasal damage. Growth reduction up till 80 g/d for the most severe cases of AR have 

been reported (Dominick and Rimler, 1986). In our experiments described in Chapter 4, 

however, subclinical AR was induced and clinical cases were not observed. With the 

development of the challenge model, growth of pigs with more severe conchae atrophy 

was more (negatively) affected than that of pigs with no or slight conchae atrophy 

(Chapter 3). The reduction in growth was the outcome of a lower food intake (30 g/d) 

rather than of a changed partitioning of energy (metabolism) in affected pigs. The 

maintenance requirement (heat production), efficiency and digestability were not changed 

by the Pm-T treatment (Chapter 4.1). The reductions in food intake and concomittantly 

weight gain occurred about one week after the challenge and progressed over time. In 

experiments conducted with Dutch landrace (Dl_) pigs, similar reductions were found. 

These observations confirm the assumption of Smith (1983) that AR pigs convert food 

to meat as well as their contemporaries. He thought it likely that there is a correlation 

between the severity of AR and the rate of food intake. A depressed food intake can be 

caused by a poor appetite, due to a possible loss of taste and sense of smell by damaged 

nasal tissues, or by irritation of the mucosal membrane by dust particles. Therefore, the 

relation between individual rate of food intake, feeding strategy and severity of AR 

deserves further investigation in order to diminish economic losses in case of disease 

outbreaks. On the other hand, it is possible that Pm-T causes only a local increase of the 

metabolism. The effects on local metabolism may be too low to be measured. 

Exposure to cold with draught increases the maintenance requirement in pigs, which 

can be partly compensated by a reduced activity at daytime (extended 'midday nap') 

and between draught periods in healthy pigs (Verhagen, 1987; Chapter 4.2). The App-

infected pigs could not compensate this inceased demand by behaviour (e.g. huddling), 

their heat production (HP) increased in the adverse environment (Verhagen, 1987). This 

increase was at the cost of efficiency of production. Differences as found between AR and 

control piglets in the good or the adverse climatic treatment were similar (Chapter 4.2). 

The reaction, however, of the pigs to the Pasteurella mu/todda-toxin (Pm-T) challenge 

on heat production traits was influenced by the time of day and was largely independent 

of climatic treatment (Chapter 4). The effect of the challenge on heat production is mainly 

expressed by a decreased activity. Only during the activity peak in the afternoon 

interaction with climatic treatment was found. It might be wise to distinguish between 
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overall effects (day means) on total, activity related and activity free heat production, and 

effects within a day (2-h means). The toxin seemed to suppress the general state of well-

being of pigs, reducing pigs' activity and food intake. By reducing its activity, the piglets 

compensated the lower food intake, the lower amount of energy available for production. 

This way the induced subclinical atrophic rhinitis did not cause substantial growth 

retardation in our experiments. It is very well possible that clinically diseased pigs will 

not be able to reduce the effects of lower energy intake by behavioural responses. 

The Pm-T treated pigs seemed to respond to the challenge by means of a small 

temporary rise (0.2°C) in rectal temperature, suggesting that Pm-T acts systemically. 

However, this rise was not supported by a synchronous increase in heat production. On 

the contrary, the Pm-T challenge had a reducing effect on heat production and activity, 

which was affected by time of day. The relation between rectal temperature, heat 

production and AR is not clear and remains to be sorted out. By doing so one has to take 

into account the biphasic circadian rhythm in heat production and activity of pigs, which 

is led by rhythmic excretion of hormones (e.g. thyrotropin) of the hypothalamus-pituitary 

system (Schrenk, 1981). It is possible that this hormonal system dismisses a Pm-T effect 

by other mechanisms to balance heat production and loss (e.g. behaviour), and thus 

maintains a constant core temperature in the body. 

The major objective of the conducted experiments was to evaluate the effects of 

climatic environment on AR in relation to productivity under field-like conditions. 

Summarized, Pm-T-induced AR-lesions were not affected by the applied climatic 

treatment. The toxin treatment mainly suppressed pigs' food intake and activity. And a 

systemic response to the presence of Pm-T was evoked as a small reduced weight gain. 

The effects of the challenge as well as of climatic treatment on performance traits, and 

heat production seemed greatly independent of each other. By reducing its activity, the 

piglets seemed to compensate the lower food intake, the lower amount of energy 

available for production. 

ATROPHIC RHINITIS AND THE IMMUNE SYSTEM 

Resistance to infectious diseases rests on the activation of the innate (a-specific) and 

acquired (specific) immune system. Whereas the innate immune system of the respiratory 

tract against invading pathogens is composed of the mucociliary transport system together 

with phagocytic cells, the specific immunity rests on specific recognition and binding of 

(non-self) antigens (pathogens) by cell receptors. This is followed by a cascade of 

mechanisms which inactivates the pathogen. Simultaneously, 'memory' for the specific 
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pathogen is established. Such, that in case of renewed contact with the pathogen a fast 

and efficient specific immune response will follow. These mechanisms, however, do not 

always act adequately: infectious diseases are still widespread in man and (production) 

animals. Much effort is given to the unraveling of mechanisms involved in immune 

responses and applying them in disease prevention via vaccination or zootechnical 

intervention. 
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Figure 1 - Relations and mutual interference between Pm-T and the immune system: a hypothetical model. 

In Figure 1, (possible) relations and mutual interference between the immune system 

of the pig and Pm-T are schematically outlined. Via the mucosa of the respiratory system, 

Pm-T appears to be a poor immunogen (Foged et al., 1987; Rutter, 1988; Chapters 3-5). 

Serum titres of antibodies against Pm-T were not detectable (Figure 1). The reason why 

such immune response was absent was not clear and pleaded for further research. 

Especially because intramuscular or intraperitoneal administration of Pm-T cause - next 

to nose lesions - a strong antibody response (Rutter, 1985; Foged et al., 1987). 

Parenteral immunisations with preparations of Pm-T or detoxified Pm-T have been 

used for the production of sera with both high anti Pm-T titres and anti Pm-T monoclonal 

antibodies (Foged et a/., 1987). Thus, in principle, cells of the immune system can be 

sensitised to Pm-T by vaccination with Pm-toxoid (Figure 1). These cells can recognize 
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and react to Pm-T as was illustrated by the elevated in vitro proliferation and antibody 

titres to Pm-T in vaccinated animals (Chapter 5.1). It was found, however, that despite the 

presence of Pm-T binding antibodies, nose damage can develop. When the immune 

response has not sufficiently been build up, the devastating process will not be slowed 

down nor stopped (Chapter 5.1). Protection was dependent on the timing of vaccine 

administration. It was possible to observe pathogenesis developing and a 'protective' 

immune response (antibodies and T cells) next to each other. Surprisingly, pigs 

simultaneously vaccinated with Pm-toxoid and challenged with Pm-T, failed to develop 

anti Pm-T immune responses (Chapter 5.1). It could not be established whether this lack 

of reactivity to Pm-toxoid was due to idiotypic interference of Pm-T with presentation of 

Pm-toxoid, or ' nonspecific' binding of Pm-T to MHC class II molecules. Also vaccination 

could not eradicate infection with the AR pathogenic Pm+ (Smelt, 1989). Apparently, 

nose damage can develop in the presence of antibodies to Pm-T and anti-Pm-T T cells 

in vivo. 

With respect to the involvement of the immune system, 'atrophic rhinitis' can be 

based on several fundamentally different mechanisms (Figure 1), which eventually may 

involve different types of treatment or management. 

First, intranasally applied Pm-T acts locally, directly on osteoclast precursors with 

specific preference for the nasal turbinate bones because of the structure and high natural 

turnover (Dominick and Rimler, 1988; Martineau-Doizé et a/., 1990). The (local) immune 

system does not become involved or was not able to recognize the Pm-T. The latter is 

not likely since protective antibodies and T cells to Pm-T can develop after injecting the 

Pm-T. 

Second, atrophic rhinitis may result from a functional immune system (mis)directed 

to an unidentified component in the nose of the pig itself. Instead of the toxin, the 

effector mechanism of the immune system causes the damage. The influence on the 

turbinate bones might be directed via immune cells or through mediators produced by 

immune cells (Pedersen and Elling, 1984; Martineau-Doizé et a/., 1990). 

And third, atrophic rhinitis may result from Pm-T actively or passively misleading the 

immune system. Pm-T might have immunomodulatory effects on various lymphoid cell 

populations (Chapter 5.1, mitogenic effect), with the lack of immune responses to Pm-T, 

in solely Pm-T challenged pigs resulting from the way of presentation of Pm-T to T cells. 

Pm-T might be presented to T cells in such a way, that T cells responding to Pm-T and 

possibly to other antigens are (in)activated. This might lead to subsequent non-antigen 

specific (in)activation of T cells, as was repeatedly found for bacterial proteins in murine 

models (Misfeldt, 1990; Cole and Atkin, 1991 ). The last two mentioned mechanisms may 
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result in hypersensitivity or autoimmune reactions in the nasal environment to 'self' 

antigens. Such antigens remain to be determined. 

Although the mode of action of Pm-T in atrophic rhinitis is not yet unriddled, an 

interaction between the immune system of the pig and Pm-T is established. As mentioned 

before, this interaction is not conventional, i.e. no classic humoral nor cellular immunity 

to Pm-T is built, even though the Pm-T molecule is immunogenic (Foged, 1992). 

However, Pm-T was reported to be mitogenic in vitro for some cultured fibroblasts 

(Rozengurt et al., 1990), and for naive and lectin-stimulated porcine T cells in vitro. This 

'nonspecific' activation of T-cells by Pm-T could be partly abrogated by monomorphic 

anti-swine major histocompatibility complex (MHC) class II DQ and DR specific 

monoclonal antibodies (Chapter 5.1). The effect of Pm-T on immune cells was found to 

be individually restricted. This proliferation can probably be attributed to CD4+ T cells. 

Fluorescence Activated Cell Sorter (FACS) analysis of PBL incubated with the toxin 

showed increased numbers of CD2+ and CD4+ T cells. Heat-inactivation abrogated the 

mitogenic activity of Pm-T. These observations suggested that a possible way by which 

Pm-T affects the cellular immunity may be interference with antigen presentation through 

MHC class II antigens. In vivo, Pm-T might be presented to T cells in such a way, that 

T cells responding to Pm-T and possibly other antigens are (in)activated. Furthermore, 

pigs simultaneously challenged with Pm-T and vaccinated with Pm-toxoid failed to 

respond to Pm-toxoid (Chapter 5.1). Challenge with Pm-T did affect the in vivo immune 

response against various T-cell dependent antigens (Ovalbumin, Keyhole Limpet 

Haemocyanin and Tetanus Toxoid) in a dose dependent fashion, but did, however, not 

abrogate these immune responses (Chapter 5.2). In this respect, the lack of detectable 

immune responses to Pm-T probably does not depend on a 'general non-specific' 

suppression of cellular immunity. Challenge with Pm-T, which ultimately results in the 

specific nose damage does not affect immune responses to various T-cell dependent 

antigens. The relationship(s) between Pm-T and porcine T cells deserve further attention. 

Bacterial endo- and exotoxins can act as so called 'superantigens' in mouse and 

man. 'Superantigens' are a specific class of antigens which belong either to the 

endotoxins of Gram negative bacteria, mycoplasmas, or viral antigens (Figure 2). They 

cause disease, are potent T-cell mitogens and do not induce conventional humoral and/or 

cellular immune responses (Misfeldt, 1990). In murine models and in humans, they differ 

from 'normal' antigens such that they 'nonspecifically' activate T cells (or B cells) 

without the conventional processing by antigen presenting cells (Figure 2). The 

superantigens bind MHC class II molecules on antigen presenting cells and are then 

presented to T cells (or B cells) with certain subsets of T-cell receptor beta chains. This 
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may result either in activation of (preferentially autoimmune) T cells, with concomitant 

rise of (autoantibodies, or in death/inactivation of the responding T (B) cells, leaving 

holes in theT-cell repertoire of the individual (Acha-Orbea and Palmer, 1991; Cole and 

Atkin, 1991; Coffin, 1992). 'Genetic' diversity in subsequent immune responses 

between MHC compatible individuals depended on the expression of certain T-cell 

receptor V-beta families (Cole and Atkin, 1991; Coffin, 1992). 
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Figure 2 (a) 'Normal' antigens are processed by antigen-presenting cells (APC) and are re-expressed on 
the APC surface in the antigen groove of the MHC molecule, (b) MAM and other superantigens are released 
by microorganisms in a form that binds directly to MHC molecules without processing. 

The mechanisms behind the non-specific activation of porcine lymphocytes by Pm-T, 

and the differential effects of Pm-T on the immune response to T-cell dependent antigens 

need further research. Considering the characteristics of Pm-T in AR (Chapter 5.1; Chapter 

5.2) and the preliminary studies described in Chapter 5.3, a T cell involvement in the 

pathogenic process of AR in Pm-T treated pigs is not unlikely. Especially the lack of 

immune responses to Pm-T in vivo, and the individual restriction of the mitogenic effect 

of Pm-T on porcine immune cells in vitro, urges studies on the expression of T-cell 

receptor V-beta families in affected and non-affected pigs. Knowledge of the relation 

between the swine MHC (SLA) types, T-cell receptor V-beta's and severity of AR might 

be enlightening. Differences in sensibility of the nasal bone tissue and receptors on cells 
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may explain the age-related affection and differences found between breeds, lines 

(Martineau et a/., 1988) or individuals. A complex relationship between the immune 

system and the persistence of infection seems present in some strains of pigs (Smith, 

1983). 

Nevertheless, it is still possible that all in vitro features of Pm-T have nothing to do 

with the in vivo processes of AR specific bone damage, simply because no contact is 

made between the immune system and Pm-T. The cell type(s) directly or indirectly 

responsible for AR-symptoms and target receptors of Pm-T, together with age-

susceptibility, needs further research to broaden insight in the mode of action of Pm-T 

associated with the nasal breakdown. 

It was noticeable that all measured effects of Pm-T treatment, whether temporarily or 

lasting, seemed to initiate about a week after challenge. This moment coincides with the 

moment upon which the Pm-T treated pigs started to sneeze and showed nasal discharge. 

According to Martineau-Doizé et al. (1990), this is also the moment when the number 

of osteoclasts is increased and the atrophy of conchae is started. Pathology of atrophic 

rhinitis wil l progress gradually during weeks after the initial challenge. 

IMPLICATIONS 

Up till now, the most reliable criterion for diagnosis of AR has remained the isolation 

of toxigenic Pasteurella multocida through nasal swabs and tonsil biopts, combined with 

the visual examination of the turbinates. The best combating strategy is still prevention 

of the AR pathogenic Pasteurella from entering the herd (risk management). And by 

means of vaccination and/or zootechnical management, economical damage can be 

controlled in case of a break-out. 

Before atrophic rhinitis is 'solved', several gaps in knowledge as mentioned in the 

previous sections and Chapters need to be clarified. Especially the role of animal factors 

in the development and severity of AR needs to be elucidated. Among which the reason 

why only young pigs, in contrast to adult pigs, are sensitive to Pm-T to induce nasal 

breakdown, and why asymmetrical affection of the nose can occur. Identification of the 

immune mechanisms underlying AR-pathology will help to increase understanding of the 

role of the bacterially derived T-cell mitogen (Pm-T) in disease pathogenesis. It might 

enable development of better therapeutic approaches for intervention in this and possibly 

other (bacterial) diseases. Assessment of the mechanisms behind the selective bone 

resorption in AR can produce benefits in two areas. First, via better diagnostic values, 

insight in the quantitative influence of a single factor on the health status and 

performance of pigs can be obtained. Differences in susceptibility or resistance to the Pm-
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T (AR) between breeds, lines, or individuals can be looked into, and genotype-

environment interactions determined. And second, the mechanisms might contribute to 

the knowledge of mechanisms involved in human bone diseases, with a possible genetic 

(autoimmune) component. 

If atrophic rhinitis really is a disease with the Pm-T triggering T cells to destroy nose 

tissue, there are possible consequences for pig management in combating this disease. 

Selective breeding towards less sensitive individuals, families and/or breeds, and early 

recognition of the disease belongs to the possibilities. For both economical and ethical 

reasons, improving genetic disease resistance is an attractive preventive measure against 

infectious diseases in livestock production. The efficiency of production can be enhanced 

and the welfare of the animals during the production cycle can be optimized. In this 

perspective, a genetic factor, like T-cell receptor V-beta, is prone to be used in disease 

resistance. Pig families known to bear a such a risk factor for AR, can be monitored 

closer as indicator for infection. 

CONCLUSIONS 

The developed challenge model to induce subclinical atrophic rhinitis with Pm-T 

enables studies on factors involved in the multifactorial etiology of AR in pigs. The 

relationship(s) between the severity of disease and (individual) traits such as growth and 

feed intake and conversion can be studied. 

The applied Pm-T suppressed the general state of well-being of pigs, reducing pigs' 

activity and food intake, and, concurrently, the weight gain. By reducing their activity, 

the piglets compensated the lower food intake - the lower amount of energy available for 

production. This way the induced subclinical atrophic rhinitis did not cause substantial 

growth retardation in our experiments. 

The circadian rhythm in heat production (HP) and activity (Har) of 4 to 10 week old 

pigs, was not changed by the Pm-T challenge as applied in our model. The level of HP 

and Har, however, was more or less reduced dependent on the time of day. Therefore, 

it is recommendable to distinguish between overall (day) effects on total, activity related 

and activity free heat production, and effects within a day (e.g. 2-h means) in 

investigations on climatic demands of an animal. 

Atrophic rhinitis is a complex, multifactorial, infectious disease, which is not a simple 

all-or-nothing phenomenon, neither at individual pig nor at herd level. Variations in 

response to Pm-T are the rule rather than the exception. The symptoms of atrophic 

rhinitis are amenable to strategic modulation through vaccination and zootechnical 

management (e.g. feeding), but these modulations do not eradicate the infectious cause, 
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the toxigenic Pasteurella multocida, from a herd. The role of climatic environment in the 

severity of atrophic rhinitis, seems primarily expressed in the colonizing ability of the 

Pm+ on the mucous membrane, and likely affects the concomitant amount of toxin 

reaching the bony tissues. 

The indistinct role of the immune system in AR needs further elucidation. Although 

interaction between the immune system of the pig and Pm-T is established, the (immune) 

mechanisms underlying the specific nasal breakdown are not known. Pathology might 

result from hypersensitivity or autoimmune (superantigenic) reactions in the nasal 

environment to 'self' antigens. If, in this respect, a relation between Pm-T and porcine 

T cells or expression of T-cell receptor V-beta's could be demonstrated, this would be of 

tremendous help in unravelling the mechanisms involved in AR-pathology. 
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SUMMARY 

In today's pig husbandry, upper respiratory tract infections, such as atrophic rhinitis 

are common and insidious diseases of swine. They are often considered causes of 

decreased rate of gain, inefficient feed conversion, and increased time to market, 

although these parameters do not absolutely correlate with the severity of lesions. Studies 

investigating the role and effects of toxigenic Pasteurella multocida (Pm+) or its toxin, Pm-

T, in atrophic rhinitis under experimental conditions (Chapter 2, review), show that 

several factors attribute to the severity of observed clinical, pathological or anatomical 

deformations specific for this disease. Although they are reported to be of importance, 

the impact of most of them and their relationships with severity of disease and age 

susceptibility are inadequately understood. Moreover results of studies on atrophic rhinitis 

conducted from several angles of incidence are hard to compare because various routes, 

and agents are used to induce AR experimentally. Unequivocal definitions of AR and/or 

grading systems of conchal lesions have been used. 

Consequently to be able to study effects of environmental and animal factors on AR, 

a standard challenge-exposure model to induce (sub)clinical AR experimentally was 

required. Chapter 3 of this thesis is focused on the development of such a challenge 

model. The optimal model to induce subclinical AR appeared to be pretreatment with 1% 

acetic acid, three days later followed by 13 //g of Pm-T/ml (0.5 ml/nostril/day) on 3 

consecutive days. The intranasally administered Pm-T mimicked, dose-dependently the 

pathogenic effects of in vivo infection with toxigenic Pm-strains. 

The developed challenge-exposure model enables studies on factors involved in the 

multifactorial etiology of AR in pigs. The characteristics used to measure AR are 

satisfactory, but can be refined. The model allowed judgement of factors (positive or 

negative) related to the mucosal system of the turbinates and did not largely impaired 

animal welfare. 

The fourth Chapter of this study was aimed to establish the impact of climatic 

environment on the severity of AR-symptoms, and to study the effects of AR (Pm-T) and 

climatic environment on energy metabolism (heat production), and performance of 

weaned piglets. 

Exposure to adverse climatic conditions as applied in the current study (15°C with 

draught periods) did not affect the severity of Pm-T induced AR symptoms. Growth 

retardation caused by Pm-T administration was suggested to be mainly the outcome of 

a lower food intake, since no change in metabolizability and maintenance requirements 

were found (Chapter 4.1). No interaction between the challenge and climatic treatments 
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was seen. The time to market (100 kg body weight) was 3 days longer for Pm-T treated 

pigs compared with their not treated control contemporaries. 

The effects of Pm-T challenge as well as of climatic treatment on heat production 

traits seemed greatly independent of each other (Chapter 4.2). Day averages in heat 

production and activity related heat production were reduced by Pm-T challenge in both 

climatic environments. Within a day, heat production showed an endogenous biphasic 

activity rhythm (Alternanstype). The reaction of the pigs to the treatments was influenced 

by the time of day. Suggesting, that differentiation between overall effects (day means), 

and effects within a day (e.g. 2-h means) on heat production traits might be important. 

The major objective of the conducted experiments was to evaluate the effects of 

climatic environment on AR in relation to productivity under field-like conditions. 

Summarized, the toxin treatment mainly suppressed pigs' food intake and activity. And 

a systemic response to the presence of Pm-T was evoked as a small reduced weight gain. 

By reducing their activity, the piglets seemed to compensate the lower food intake, the 

lower amount of energy available for production. 

The purpose of the fifth Chapter of the study was to elucidate the role of the immune 

system of piglets in relation to AR pathology. We attempted to identify mechanisms 

underlying the lack of conventional immune responses of pigs to Pm-T, and their possible 

consequences with respect to AR. 

Pm-T is poorly immunogenic in vivo and does not initiate a protective Pm-T specific 

humoral and/or cellular immune response. Protection by means of vaccination was 

dependent on the timing of vaccine administration. The pathogenicity is irreversible also 

in the presence of immune cells. The toxin was found to be mitogenic for naive T cells 

in vitro. The 'nonspecific' activation of T cells by Pm-T could be partly abrogated by 

monomorphic anti-swine MHC class II DQ and DR specific monoclonal antibodies. The 

effect of Pm-T on immune cells was found to be individually restricted. This suggested 

that the mitogenic activity of Pm-T is based on stimulation of T cells through the MHC 

class II antigens on the cell membrane of antigen presenting cells (Chapter 5.1). 

The effects of Pm-T on in vivo cellular and T-cell dependent humoral immunity in 

pigs that had been challenged intranasally with Pm-T and simultaneously sensitized 

systemically with various (non-related) T-cell dependent antigens were studied in Chapter 

5.2. The results of this study indicated 1) that the lack of detectable immune responses 

to Pm-T probably does not depend on a 'general non-specific' suppression of cellular 

immunity, and 2) that challenge with a dose of Pm-T, which ultimately results in a 

breakdown of nasal bony tissues does not uniformly affect immune responses to various 

T-cell dependent antigens. 
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In the General Discussion (Chapter 6), the challenge model in relation with the results 

described in Chapters 4 and 5, and the features and the possible mode of action of the 

Pm-T are discussed. It was noticeable that all measured effects of Pm-T treatment, 

whether temporarily or lasting, seemed to initiate about a week after challenge. 

Although the mode of action of Pm-T in atrophic rhinitis is not yet unriddled, an 

interaction between the immune system of the pig and Pm-T is established. Considering 

the characteristics of Pm-T in AR as found in Chapter 5.1 and Chapter 5.2, supplemented 

with the preliminary studies described in Chapter 5.3, a T cell involvement in the 

pathogenic process of AR in Pm-T treated pigs is not unlikely. The speculation was made 

that Pm-T modifies the immune response such that the response is not directed towards 

the toxin, but to unidentified component(s) in the nose of piglets, in an autoimmune-like 

(superantigenic) fashion. Subsequently, consequences and implications of the proposed 

concept are outlined and discussed. 

CONCLUSIONS 

The developed challenge model to induce subclinical atrophic rhinitis with Pm-T 

enables studies on factors involved in the multifactorial etiology of AR in pigs. The 

relationship(s) between the severity of disease and (individual) traits such as growth and 

feed intake and conversion can be studied. 

The applied Pm-T suppressed the general state of well-being of pigs, reducing pigs' 

activity and food intake, and, concurrently, the weight gain. By reducing their activity, 

the piglets compensated the lower food intake - the lower amount of energy available for 

production. This way the induced subclinical atrophic rhinitis did not cause substantial 

growth retardation in our experiments. 

The circadian rhythm in heat production (HP) and activity (HJ of 4 to 10 week old 

pigs, was not changed by the Pm-T challenge as applied in our model. The level of HP 

and Har, however, was more or less reduced dependent on the time of day. Therefore, 

it is recommendable to distinguish between overall (day) effects on total, activity related 

and activity free heat production, and effects within a day (e.g. 2-h means) in 

investigations on climatic demands of an animal. 

Atrophic rhinitis is a complex, multifactorial, infectious disease, which is not a simple 

all-or-nothing phenomenon, neither at individual pig nor at herd level. Variations in 

response to Pm-T are the rule rather than the exception. The symptoms of atrophic 

rhinitis are amenable to strategic modulation through vaccination and zootechnical 

management (e.g. feeding), but these modulations do not eradicate the infectious cause, 

the toxigenic Pasteurella multocida, from a herd. The role of climatic environment in the 
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severity of atrophic rhinitis, seems primarily expressed in the colonizing ability of the 

Pm+ on the mucous membrane, and likely affects the concomitant amount of toxin 

reaching the bony tissues. 

The indistinct role of the immune system in AR needs further elucidation. Although 

interaction between the immune system of the pig and Pm-T is established, the (immune) 

mechanisms underlying the specific nasal breakdown are not known. Pathology might 

result from hypersensitivity or autoimmune (superantigenic) reactions in the nasal 

environment to 'self' antigens. If, in this respect, a relation between Pm-T and porcine 

T cells or expression of T-cell receptor V-beta's could be demonstrated, this would be of 

tremendous help in unravelling the mechanisms involved in AR-pathology. 



SAMENVATTING 

In de hedendaagse varkenshouderij, zijn bovenste luchtweg infecties, zoals atrofische 

rhinitis, veel voorkomende en hardnekkige ziekten bij varkens. Ze veroorzaken vaak een 

verlaagde groeisnelheid, een inefficiënte voederconversie en een verlengde mestperiode. 

Deze parameters correleren niet altijd volledig met de ernst van de aandoening. Uit 

onderzoek naar de rol en effekten van de Pasteurella multocida (Pm+) bacterie en toxine 

in atrofische rhinitis blijkt dat meerdere faktoren bijdragen aan de ernst van de 

waargenomen klinische, pathologische of anatomische afwijkingen welke specifiek zijn 

voor deze ziekte (Hoofdstuk 2). Ofschoon vele faktoren van belang worden geacht, is er 

weinig bekend van hun impact en hun relatie met leeftijdsgevoeligheid en ernst van de 

ziekte. Bovendien zijn door verschillende invalshoeken de onderzoeksresultaten moeilijk 

met elkaar te vergelijken. Een verscheidenheid aan besmettingsroutes en -agentia zijn 

gebruikt om AR experimenteel op te wekken. Verschillende, niet eensluidende definities 

van AR en beoordelingsmethoden voor de specifieke neusbot aantastingen zijn gebruikt. 

Om effekten van omgevings- en dierfaktoren op AR te kunnen bestuderen, moet 

atrofische rhinitis derhalve, op een gecontroleerde wijze experimenteel geïnduceerd 

kunnen worden. In Hoofdstuk 3 van dit proefschrift wordt de ontwikkeling van zo'n 

besmettingsmodel beschreven. Het optimale (subklinische) model was uiteindelijk 

voorbehandelen met een 1% azijnzuur oplossing, 3 dagen later gevolgd door een drie

daagse behandeling met 13 /yg Pm-T per ml PBS, 0.5 ml per neusgat per dag. De 

intranasaal toegediende Pm-T bootste, dosis afhankelijk, de pathogène effekten van een 

in vivo besmetting met toxine producerende Pasteurella multocida na. 

Met het ontwikkelde besmettingsmodel kan de multi-faktoriële aetiologie van AR in 

varkens bestudeerd worden. De variabelen gebruikt om AR te beoordelen voldoen maar 

zouden verfijnd kunnen worden. Het model staat beoordeling van faktoren toe welke een 

positief of negatief effekt in AR kunnen hebben zonder het welzijn ernstig aan te tasten. 

In Hoofdstuk 4 is de impact van omgevingsfaktoren op de ernst van AR symptomen 

bepaald. Tevens zijn de effekten van AR (Pm-T) en omgevingsfaktoren op de energie 

huishouding (warmte produktie) en productie kenmerken (inclusief afmest periode) van 

gespeende biggen bestudeerd. 

Blootstelling aan niet optimale omgevingscondities zoals in de uitgevoerde studie 

(15°C met tocht perioden) veranderde de ernst van met Pm-T geïnduceerde AR 

symptomen niet. Groei achterstand ontstaan door de Pm-T toediening leek voornamelijk 

veroorzaakt door een verminderde voeropname, aangezien er geen verschillen werden 

gevonden in metaboliseerbaarheid van voerenergie en in onderhoudsbehoefte (Hoofdstuk 
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4.1). Interactie tussen beide behandelingen werd niet waargenomen. De 

klimaatsbehandeling verhoogde de onderhoudsbehoefte (warmteproduktie). De 

afmestperiode (dagen tot 100 kg lichaamsgewicht) van de Pm-T behandelde varkens was 

gemiddeld 3 dagen langer dan van niet behandelde leeftijdsgenoten. 

De effekten van Pm-T challenge als ook die van omgevingscondities op warmte 

produktie kenmerken leken grotendeels onafhankelijk van elkaar (Hoofdstuk 4.2). De 

totale en aktiviteit-gerelateerde warmte produktie gemiddeld per etmaal waren verlaagd 

in beide omgevingscondities. De warmte produktie binnen een etmaal vertoonde een 

endogeen bi-fasisch aktiviteitsritme (Alternanstype). De reaktie in warmte produktie 

kenmerken van de biggen op de behandelingen was afhankelijk van het tijdstip van de 

dag. Dit suggereert dat het belangrijk kan zijn om in onderzoek naar effekten op warmte 

produktie kenmerken, onderscheid te maken tussen daggemiddelden en dagdelen. 

Het voornaamste doel van de uitgevoerde experimenten was het effekt van 

omgevingscondities op AR te bepalen in relatie met de produktiviteit onder praktijk

achtige condities. Samengevat kan gezegd worden dat de toxine behandeling 

voornamelijk de voeropname en de aktiviteit van de biggen verlaagde. Een systemische 

respons op de aanwezigheid van het Pm-T leek een iets verlaagde groei. De biggen leken 

de lagere voeropname - de lagere hoeveelheid energie beschikbaar voor produktie - te 

compenseren door hun aktiviteit te verlagen. 

Het doel van het vijfde Hoofdstuk van het onderzoek was het in kaart brengen van 

de rol van het immuun systeem in de AR Pathogenese. Gepoogd is die mechanismen te 

identificeren, waardoor er geen conventionele immuun respons tegen Pm-T optreedt, 

samen met hun mogelijke consequentie voor AR. 

In vivo, is Pm-T laag immunogeen, het wekt geen beschermende, Pm-T-specifieke 

humorale en/of cellulaire immuun respons op. De effektiviteit van een 'beschermende' 

vaccinatie was afhankelijk van het tijdstip van vaccineren ten opzichte van het tijdstip 

van besmetting. De destructieve werking van Pm-T is onomkeerbaar, ook in de 

aanwezigheid van specifieke immuun cellen (Hoofdstuk 5). In vitro, is het toxine 

mitogeen voor naïeve T cellen. Deze 'niet-specifieke' aktivatie van T cellen door Pm-T 

kon deels worden afgeblokt door monomorfe anti-varken MHC klasse II DQ en DR 

specifieke monoklonale antilichamen. Het effekt van Pm-T op de immuun cellen was 

individu gebonden. Dit wekt de suggestie dat de mitogene werking van Pm-T gebaseerd 

is op stimulatie van T cellen via MHC klasse II antigenen op de celmembraan van 

antigeen presenterende cellen (Hoofdstuk 5.1). 

In Hoofdstuk 5.2 is het effekt van Pm-T op de in vivo cellulaire en T cel afhankelijke 

humorale immuunrespons bestudeerd van biggen die met Pm-T intranasaal behandeld 
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waren alsmede simultaan met verschillende (niet verwante) antigenen (KLH, OA, TT) 

systemisch gesensibiliseerd waren. De resultaten uit deze studie geven aan 1) dat het 

gebrek aan een detekteerbare immuunrespons tegen Pm-T waarschijnlijk niet afhangt van 

een 'algemene niet-specifieke' onderdrukking van de cellulaire immuniteit en 2) dat de 

challenge met een dosis Pm-T, welke uiteindelijk resulteert in neusaantasting, de 

immuunrespons tegen verschillende T cel afhankelijke antigenen niet uniform beïnvloed. 

In Hoofdstuk 6 (General Discussion) worden het besmettingsmodel in relatie met de 

resultaten uit de Hoofdstukken 4 en 5, de karakteristieken en de mogelijke werkingswijze 

van het Pm-T bediscussieerd. Het was opvallend dat alle waargenomen effekten van Pm-T 

behandeling, hetzij tijdelijk hetzij blijvend, ongeveer één week na challenge schenen te 

ontstaan. 

Ofschoon het 'hoe veroorzaakt Pm-T atrofische rhinitis' nog niet ontraadseld is, is 

een interactie tussen het immuun systeem van het varken en Pm-T vastgesteld. Gebaseerd 

op de resultaten uit de Hoofdstukken 5.1 en 5.2, aangevuld met de vooronderzoeken 

beschreven in Hoofdstuk 5.3, is de betrokkenheid van T cellen in de pathogène 

processen van AR in Pm-T behandelde varkens niet onwaarschijnlijk. Gespeculeerd wordt 

dat het Pm-T de immuun respons dusdanig aanpast dat de respons niet meer gericht is 

op het toxine zelf, maar op niet-geïdentificeerde componenten in de snuit van een big 

op autoimmuun-achtige (superantigene) wijze. 

CONCLUSIE 

Faktoren betrokken bij de multi-faktoriële aetiologie van AR in varkens kunnen 

bestudeerd worden met het ontwikkelde AR-challenge model, waarbij subklinische 

atrofische rhinitis met Pm-T wordt geïnduceerd. Verbanden tussen de ernst van de ziekte 

en (individuele) kenmerken, zoals groei en voeropname kunnen onderzocht worden. 

Het toegediende Pm-T verlaagde de aktiviteit en voeropname van de biggen en, 

bijgaand hun groei. Door hun aktiviteit te verlagen, compenseerden de biggen hun lagere 

voeropname, de lagere hoeveelheid energie dat beschikbaar was voor produktie. 

Zodoende veroorzaakte de geïnduceerde subklinische atrofische rhinitis in onze 

experimenten geen substantiële groei vertraging. 

De Pm-T challenge veranderde het 24-uurs ritme in warmte produktie en aktiviteit 

van 4 tot 10 weken oude biggen niet. Het niveau van HP en Har was echter meer of 

minder verlaagd, afhankelijk van het tijdstip van de dag. Het is daarom 

aanbevelingswaardig om bij onderzoek naar de temperatuurbehoefte van een dier 

onderscheid te maken tussen effekten binnen een dag of tussen dagen. 
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Atrofische rhinitis is een complexe, multi-factoriële ziekte, welke noch op dierniveau 

noch op bedrijfsniveau een simpel alles-of-niets fenomeen vertoond. Variatie in reactie 

op Pm-T is eerder de regel dan de uitzondering. Via vaccinatie en zoötechnisch 

management kan atrofische rhinitis in de hand worden gehouden; dit soort maatregelen 

verwijderen echter niet de eigenlijke oorzaak, de toxigene Pasteurella multocida, van het 

bedrijf. De rol van omgevingscondities op de ernst van AR, lijkt voornamelijk tot 

uitdrukking te komen op de kolonisatie mogelijkheden van de bacterie op het 

neusslijmvlies en, mogelijk, op de hoeveelheid toxine dat het botweefsel bereikt. 

De onduidelijke rol van het immuun systeem in AR heeft verdere opheldering nodig. 

Ofschoon interactie tussen het immuun systeem van het varken en Pm-T is vastgesteld, 

zijn de (immuun) mechanismen verantwoordelijk voor de specifieke bot afbraak niet 

bekend. Pathogenese kan ontstaan uit hypersensitiviteits- of autoimmune (superantigene) 

reakties tegen 'eigen' antigenen in de neus. Als, in dit opzicht, een relatie tussen Pm-T 

en varkens T cellen of expressie van T cel receptor V-beta's aangetoond kan worden, zou 

dit een enorme hulp zijn bij het ontrafelen van de mechanismen betrokken bij AR-

pathologie. 
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