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Propositions/Stellingen 

1. A serious drawback for industrial kenkey manufacture is its high moisture 

content (up to 60% w/w) which makes it prone to spoilage, especially as 

the packaging is not adequate to prevent spoilage over long storage periods. 

(This thesis). 

2. Acidification of dough from dry-milled maize by accelerated natural 

fermentation and wet-milling of the aflata portion may be more acceptable 

than the use of proteolytic enzymes which would raise production costs and 

arouse consumer fears, as this may be interpreted in the same light as the 

addition of chemical substances to a product that has always been 

considered as natural. (This thesis). 

3. Although a lot of development aid from the West is channelled into African 

agriculture, it is rather debatable whether improving primary agricultural 

output alone can begin to tackle the chronic hunger crisis on that continent 

if a firm post-harvest processing base is not developed. (This thesis). 

4. Most authors, including Nowak & Steinkraus (1988) tested whole foods for 

their potential to cause flatus. In the human digestive tract, however, 

accessible starch is broken down to mono- and disaccharides which are 

absorbed in the upper gut. In vitro models of digestibility and fermentability, 

therefore, need to take this aspect into account. (This thesis). 

5. It is reasonable to assume that developing countries will be unable to benefit 

fully from biotechnology, in terms of economic development and problem 

solving, unless they are able to utilise results from indigenous 

biotechnological research. Bridging the gap between research and 

applications is therefore of vital importance. (R.A. Zilinskas, 1993. World 

Journal of Microbiology and Biotechnology 8, 145-152). 

6. In the industrialised world the concept of sustainability, or in other words 

minimal resource utilization and environmental impact, has only been applied 

to a limited extent to agricultural and industrial food production. (Anderson 

et al., 1994. Trends in Food Science and Technology 5 1 , 134-138). 



7. Foreign aid is a method by which the United States maintains a position of 

influence and control around the world and sustains a good many countries 

which would definitely collapse or pass into the communist bloc. (J.F. 

Kennedy, 1961). Will Foreign Aid follow in the food steps of Kennedy and 

the Communist bloc? 

8. Birth control in an impoverished and uneducated society is simply a non-

starter. Those most in need are often victims of the poverty trap which itself 

does not allow for proper education (1994 Cairo Conference on World 

Population). 

9. In Ghana, like in most West African countries, fermented maize dough is the 

base material for several types of snacks, staples and beverages. The 

absence, however, of sustainable agro-industries that can improve the 

processing and promotion of such indigenous foods has contributed 

significantly to their perception as "poor peoples' foods". 

10. The distribution of food and wealth in today's "modern" societies 

guarantees that whilst some people are dieting others are dying of 

undernourishment and malnutrition. 

11 . I have a truly wonderful proof which this margin is too small to contain. 

(Pierre de Fermât - 1637). Bluff or gross understatement? 

Propositions belonging to this thesis of P. Fru Nche entitled "Innovations in the 

production of kenkey, a traditional fermented maize product of Ghana". 

Wageningen, The Netherlands, 10 February 1995. 
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ABSTRACT 

Nche P.F. (1995). Innovations in the production of kenkey, a traditional fermented 

maize product of Ghana: Nutritional, Physical and Safety aspects. Ph.D. thesis. 

Agricultural University Wageningen 1135 pp, English, Dutch and French 

summaries). 

Kenkey is traditionally made from a dough obtained by soaking maize (1-2 days, 

room temperature), milling and then fermenting naturally for 2-4 days. This thesis 

was aimed at improving not only the nutritional quality of kenkey, but also the 

production process. The traditional method for making kenkey was scaled down 

to a laboratory process and the microbiological, physical and nutritional quality of 

both maize and maize-cowpea kenkey were investigated. Natural fermentation for 

48h or 72h at 30°C was sufficient to obtain properly acidified maize (pH 4.07) or 

maize-cowpea (pH 4.08) doughs, respectively. Lactic acid bacteria were mainly 

responsible for acidification. Supplementation of maize (on a replacement basis) 

with 20% white cowpea resulted in significant increases in protein (by 20.5%) and 

available lysine (by 74%) contents. This also resulted in significant increases in 

biogenic amines (total amines < 500 ppm, mainly putrescine and tyramine) 

compared with maize kenkey (total amines < 60 ppm). Histamine was absent ( < 

5 ppm). Acceptability tests in Ghana, however, showed that only a 10% cowpea 

level was comparable with the traditional kenkey in terms of flavour and texture. 

Process options for producing a dehydrated kenkey meal (kenkey dry-mix) were 

investigated with the aim of developing a product with a longer shelf-life than 

traditional kenkey. An in vitro method was developed for determining the 

digestibility and flatulence potential of kenkey. Soaking of grains effected the 

highest increase in in vitro digestibility. Clostridium perfringens strain NCTC 8239 

produced more gas from the solid residue left over from the in vitro digestion of 

maize-cowpea samples than from the resulting supernatant which contained low 

molecular weight oligosaccharides, traditionally held responsible for intestinal flatus 

induction, suggesting that non-starch polysaccharides contribute significantly to 

the flatulence potential of cowpea-supplemented kenkey. 

Keywords: Accelerated fermentation, aflata, biogenic amines, cowpea, 

digestibility, drum drying, dry milling, flatulence, kenkey, 

maize, supplementation, texture. 
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/ expect to pass this way but once, and any good, therefore, that I can do, or any 
kindness that I can show to any fellow creature, let me do it now. Let me not defer 
or neglect it, for I shall not pass this way again 

(Etienne de Grellet). 

To my family 



Chapter 1 

General Introduction 
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More than 60% of the total world food production is provided by cereals which, 

along with pulses and oil seeds, contribute significantly to the dietary protein, 

energy, mineral and vitamin requirements of the world population in general and 

the developing world in particular (Chavan and Kadam, 1989a,b). Whereas over 

70% of the total cereal production in the West is fed to animals, the developing 

world channels almost all of the produced cereals to feeding its large and ever-

increasing populations (FAO, 1980; Betschart, 1982). Despite their excellent 

nutritional quality, foods of animal origin remain a scarcity mainly because high 

production costs, the need for sophisticated and costly processing technology for 

storage and distribution and a short shelf-life put them beyond the reach of 

developing countries (Lay and Fields, 1981; Chavan and Kadam, 1989b). 

Of the total world cereal production, maize makes up about 27%, and 

although other cereals such as rice, sorghum and millet exist in noticeable 

quantities, maize remains the most important cereal in the developing world, 

particularly in Africa (Lay and Fields, 1981; Hounhouigan, 1994). Maize has the 

highest energy value (16.6 kJ/g), compared with pearl millet (16.5kJ/g), brown rice 

(16.1 kJ/g), sorghum (16.1kJ/g) and wheat (15.7kJ/g) (Chavan and Kadam, 

1989a). The total production of maize in Africa in 1991 was estimated at over 33 

million tonnes (FAO, 1992). 

Cereal processing 

The processing technologies employed for maize and other cereals commonly 

found in the developing world include cooking, sprouting, milling, fermentation and 

combinations of these. Of these, fermentation is the most commonly practised, 

particularly in Africa, although the type of raw material, type and conditions of 

fermentation and sensory qualities of the finished products may vary from culture 

to culture. Fermentation is especially important to the developing world because 

it is an inexpensive and simple method of improving the nutritional and organoleptic 

qualities of otherwise monotonous cereal products (Hesseltine, 1983; Cooke era/., 

1987; Chavan and Kadam, 1989a). It does not require expensive equipment or 

special expertise and can be achieved in a very short period of time (Lay and Fields, 

1981 ). Some of the nutritional advantages of fermentation are said to include the 
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decrease in starch and fibre contents, followed by an increase in reducing sugars 

(Kazanas and Fields, 1981) although it can be expected that the fermenting 

organisms would use up the available sugars. The process of fermentation itself 

does not have any significant effect on total protein content, but can result in the 

qualitative modification of proteins, often resulting in the increase of water-soluble 

proteins and free essential amino acids. These changes can be effected by 

endogenous proteases, but have also been attributed to the proteolytic activity of 

some of the bacteria responsible for cereal fermentations (Kao and Robinson, 

1978; Hamad and Fields, 1979; Zamora and Fields, 1979; Umoh and Fields, 1981 ; 

Lay and Fields, 1981 ; Tongnual era/ . , 1981 ; Chavan and Kadam, 1988, 1989). 

Table 1.1. Some fermented maize products commonly found in Africa. 

Product Type Microorganism(s) Country 

Agidi 

Akasa 

Banku 

Busaa 

Fufu 

Kaffir beer 

Kenkey 

Mahewu 

Mawè 

Ogi 

Pito 

Uji 

Gruel 

Gruel 

Dumpling 

Beverage 

Dumpling 

Beverage 

Dumpling 

Beverage 

Intermediate2 

Gruel 

Beverage 

Gruel 

LAB1 & Yeasts 

LAB & Yeasts 

LAB 

LAB & Yeasts 

LAB & Yeasts 

LAB & Yeast 

LAB & Yeast 

LAB 

LAB & Yeast 

LAB 

LAB & Yeast 

LAB & Yeast 

Nigeria 

Ghana 

Ghana 

Kenya 

Cameroon 

S. Africa 

Ghana 

S. Africa 

Bénin 

Nigeria 

Nigeria 

Kenya 

1LAB = lactic acid bacteria; 2Fermented dough used for making different products. 

Since maize forms the greatest portion of cereals grown in Africa, it is no 

surprise that most fermented cereal products are either from maize or a mixture of 

maize and other cereals and in some cases, legumes. Table 1.1 lists some of the 

many of fermented maize products of Africa, which include staples, gruels and 

beverages. Most of these fermentations are spontaneous, and involve lactic acid 

bacteria, yeasts or a mixture of these as the functional microorganisms. 
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In addition to the enhancement of flavour and nutritional value (Hesseltine, 

1983; Halm era/. , 1993, Hansen and Hansen, 1994; Hounhouigan, 1994), one of 

the most important aspects of fermentation in the developing world is the 

improvement of the microbiological safety of foods. In high temperature and humid 

regions such as Africa, where cooling facilities are not readily available, 

fermentation provides a cheap but effective method of food preservation 

(Hesseltine and Wang, 1979; Umoh and Fields, 1981 ; Chavan and Kadam, 1989a). 

Lactic acid fermentations inhibit spoilage and pathogenic microorganisms in a 

variety of ways. The most important of these is the production of organic acids 

which lower the pH of foods to levels not favourable to food pathogenic and 

spoilage bacteria (Nout etal., 1989; Nout and Rombouts, 1992). The depletion of 

essential nutrients and production of hydrogen peroxide and bacteriocin-like agents 

by lactic acid bacteria have also been cited as important in limiting the occurrence 

of spoilage and pathogenic microorganisms in fermented foods (Cooke era/., 1987; 

Mensah et al., 1991 ; Mbugua and Njenga, 1992, Nout and Rombouts, 1992; 

Larsen et al., 1993). Fermentation is also known to reduce the levels of anti-

nutritional factors in cereals and legumes, although this is often influenced by the 

choice of raw materials, fermentation times and the physiological differences in 

fermenting microorganisms. Lactic acid fermentation can result in rapid decreases 

in pH, hence the level of enzymatic degradation of antinutrients may depend on pH 

optima and fermentation times (Chavan and Kadam, 1989a). 

Nutritional quality of cereals 

Although cereal grains form the bulk of the staple diet of people in the developing 

world, they are generally inferior in nutritional and sensory quality, compared with 

foods of animal origin (Chavan and Kadam, 1989a). The protein quantity and 

quality is low, lacking in essential amino acids such as lysine. Although rich in the 

sulphur-containing amino acids cysteine and methionine, maize for example, is 

deficient in lysine and tryptophan, making its protein quality inferior compared with 

FAO/WHO reference proteins (Newman and Sands, 1984; Plahar and Leung, 1985) 

With indications that the ever increasing populations of the developing 

countries could become increasingly dependent on cereal grains for both energy 

and protein requirements, there is an urgent need to improve the overall nutritional 

quality of cereals. Traditionally, cereals are consumed with other plant protein 

sources such as legumes. Since legumes are deficient in the sulphur-containing 

amino acids but rich in lysine, the overall protein quality of such mixtures, wi th 
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respect to amino acids, will be better than that from either protein source alone 

(Chavan and Kadam, 1989b). Various methods have been employed in attempts 

to improve the protein quantity and quality of cereal foods. These include genetic 

manipulations, fortification with essential amino acids and supplementation with 

protein-rich sources such as grain legumes, oil seed meals or their protein 

concentrates and isolates (Akinreleand Edwards, 1971; Adeniji and Potter, 1978; 

Plahar and Leung, 1983, 1985; Plaharef a/., 1983). 

In Ghana, like in most West African countries, ferfnented maize dough is the 

base material for several types of snacks, staples and beverages. Fermented maize 

foods account for more than 95% of the total calories in diets of the coastal 

peoples of Ghana (Plahar and Leung, 1983). The preparation of fermented maize 

meal and its nutritional composition have been described by several authors 

(Christian, 1970; Muller, 1970; Plahar and Leung, 1983; Sefa-Dedeh, 1989). 

Kenkey is one of the most popular of the staples of Ghana, prepared 

exclusively from fermented maize dough. There are several types of kenkey, the 

most common being Ga and Fanti kenkeys from the Ga and Fanti tribes, 

respectively. Despite some differences between these kenkeys, processing 

methods are basically similar, with lactic acid bacteria largely responsible for the 

fermentation, although other bacteria and yeasts have been implicated (Akinrele, 

1970, Wood and Hodge, 1985; Halm era/ . , 1993). 

The low quality and quantity of kenkey protein is a reflection of that of the 

raw material, maize, which is deficient in lysine. Traditionally, kenkey is eaten with 

a palm oil and pepper sauce known as shittoh or a rich source of protein such as 

sardine sauce. Fish, however, is expensive and is not often available to especially 

the poor families. 

In addition to its limited protein quality, kenkey is a high moisture containing 

product (up to 60% w/w) and is, therefore, prone to spoilage (Plahar and Leung, 

1985), especially as the packaging (corn husks for Ga and banana leaves for Fanti 

kenkey) is not adequate to prevent spoilage over long storage periods. 

Presently, the production of kenkey is on a micro household scale, operated 

mainly by women. The whole process, from soaking through milling of maize, 

fermentation and cooking, can take anything up to a week, and includes one very 

tedious step during which a gelatinized paste called aflata, used as a binder and 

moisturizer, is prepared by stir-cooking. Usually these producers rely on their 

intuitive expertise rather than on carefully standardised procedures, and do not 

always understand the exact nature of the chemical and microbiological changes 

initiated by the natural fermentation of the maize dough. As a result, kenkey 
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producers have very little or no control over the fermentation process, and often 

end up with products that are highly variable in quality. Such variations occur not 

only amongst different products, but also within the same product made in the 

same or different house holds. 

Kenkey is a highly popular product amongst the fishermen of the coastal 

regions, as well as amongst urban populations of workers and students, who for 

lack of t ime, tend to prefer ready-to-eat foods. As these populations increase, so 

will be the demand for a product that is less prone to spoilage and consistent in 

quality (Hesseltine, 1983; Hollingsworth, 1994). The technologies in place are, 

however, not adequate to meet this ever-increasing demand for high quality and 

microbiologically stable kenkey. 

Aim and outline of this thesis 

The work described here was carried out as part of an E.C. sponsored collaborative 

project on the evaluation and improvement of traditional fermented cereals and 

legumes in Ghana. The improvement of the production process and quality of 

kenkey, are covered in Chapters 2 - 5 . Chapters 6-8 and deals with the safety 

aspects and digestibility of kenkey. 

Chapter 2 of this thesis tackles the translation of the traditional kenkey 

process to a laboratory scale process, and looks at the effects of cowpea 

supplementation on the fermentation of dough for kenkey production and on the 

quality of the final product. Chapter 3 discusses the technical feasibilities of 

reducing production time and increasing output by using a standardized method 

that can be scaled up in industry. Chapter 4 looks at the biochemical, 

microbiological and physical changes that occur during the soaking of maize and 

how these changes could influence the final texture of kenkey. In Chapter 5, the 

effects of the different process options applied in making kenkey on protein quality, 

with respect to lysine availability, are discussed. Chapter 6 looks at the influence 

of the choice of ingredients and fermentation conditions on the formation of 

biogenic amines and ethyl carbamate in kenkey. 

The use of cowpeas increases protein quality but also affects parameters 

such as digestibility and the level of antinutrients such as flatus-forming 

oligosaccharides in kenkey. Chapters 7 and 8 discuss the development and use of 

an in vitro method to determine the digestibility and flatulence potential of kenkey. 

Chapter 9 is a general discussion of the pertinent issues raised in this thesis, 

and includes recommendations for possible future work involving the improvement, 
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not only of the quality of fermented cereal foods, but also the establishment of 

improved facilities for processing foods in Africa. 
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The effect of cowpea-supplementation on the quality of kenkey1 

Abstract 

The effects were evaluated of cowpea-mediated protein enrichment of kenkey on 

factors relating to kenkey acceptability. Kenkey was prepared at laboratory scale 

from a 4:1 mixture of maize (Zea mays) and red or white cowpea (Vigna 

unguiculata) and compared with an all-maize product in terms of parameters such 

as the fermentation profile of doughs, colour and fracture profiles. There was no 

significant difference between the fermentation profiles after 4 days' fermentation 

at 30°C, with final dough pH values reaching 4.07 and 4.08 for all-maize and 

maize-cowpea mixtures, respectively. Addition of wholegrain cowpeas resulted in 

an increase in the crude protein content to 12.99% (w/w) and 13.89% (w/w; dry 

weight basis) for kenkey supplemented with 20% white and 20% red cowpea, 

respectively, compared with 10.80% (w/w) for unsupplemented kenkey. Addition 

of cowpea reduced the whiteness (Hunter L value) of the kenkey by 12% (using 

white cowpeas) and by 27% (using red cowpeas). The use of dehulled red 

cowpeas improved the whiteness only slightly. Cowpea-supplemented kenkey was 

more homogeneous and less prone to fracture than all-maize kenkey. The force 

required to fracture cowpea-supplemented kenkey was higher than for traditional 

kenkey, and increased with increasing cowpea concentrations. Kenkey stored for 

24 hours required over twice as much force to fracture than freshly prepared 

kenkey. A group of native Ghanaians familiar with the traditional maize kenkey 

sampled the new product and concluded that kenkey made from a mixture of 

wholegrain white cowpea or dehulled red cowpea and maize compared very well 

with the traditional kenkey. 

INTRODUCTION 

Kenkey, a dumpling made from fermented maize dough, is a popular staple 

amongst the peoples of Ghana. There are several types of kenkey (Ga, Fanti), but 

the processing methods are largely similar. In the traditional kenkey process 

(Muller, 1970; Muller and Nyarko-Mensah, 1972) maize is cleaned and then 

'Nene, P.F., M.J.R. Nout and F.M. Rombouts (1994). The effect of cowpea-supplementation on the 
quality of kenkey, a traditional Ghanaian fermented maize food. Journal of Cereal Science 19, 191-197. 
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steeped for 1 to 2 days. The steep water is drained and the grain coarsely milled 

and made into a dough by adding water (1:3 v/w). The dough is then left to 

ferment naturally in a heaped mass or in covered containers for 2 to 3 days. The 

fermented dough is then divided into two equal parts, one of which is slurried and 

cooked to gelatinisation. This gives a sticky paste known as aflata, which is then 

mixed with the uncooked part to give a kneadable dough. Balls of appropriate size 

( « 500g) are shaped, wrapped (in corn sheaths for Ga kenkey or banana leaves 

for Fanti kenkey). Salt is also added to dough for Ga kenkey before shaping and 

wrapping. The wrapped dumplings are immersed in water and boiled in a drum or 

large iron pot for 2 to 3 hours. 

Since maize is the basic raw material, such products are rich in 

carbohydrate, relatively low in protein and deficient in some essential amino acids, 

particularly lysine. In a region where animal sources of protein are often in short 

supply, plant sources such as legumes may be of immense importance. Attempts 

have been made, with some success, at improving the protein quality and quantity 

of traditional maize-based fermented products of Ghana (Plaharand Leung, 1983) 

and Nigeria (Akinrele and Edwards, 1971) by supplementation with soya beans. 

However, soya beans are rather expensive and not well known in West African 

households. Being relatively cheaper and readily available, cowpeas can be a 

suitable alternative to the more expensive soya beans ( Akinyele and Fasaye, 1988). 

In this work, cowpeas were used as a protein supplement to the traditional all-

maize Ghanaian kenkey. This improves the protein quantity and certainly its amino 

acid balance as the methionine-containing maize is complemented by the lysine-

containing cowpeas (Bressani, 1985). The rate of fermentation, the colour and 

textural properties as well as the overall acceptance of cowpea-supplemented 

kenkey were compared with the conventional all-maize formula. 

MATERIALS AND METHODS 

Maize (Zea mays cv. Obaatanba) and red and white Cowpeas (Vigna unguiculata 

cvs. Benpla and Asontem, respectively) were obtained from the Crops Research 

Institute, CSIR, Kwadaso, Ghana. Whole grain and dehulled cowpeas were used. 

Dehulling was done by hand following 48 h of soaking in excess water. 

The Laboratory Kenkey Process 

In the laboratory process (Fig. 2.1), maize or a 4:1 mixture of maize and cowpea 

(0.5 - 1.0 kg) was soaked for 48 h in tap water (approx. 3 I). 
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Clean maize or maize-cowpea mixture 

I 
Soak in water for 2 days at ambient temperature 

I M i l 

I 
I 

Drain water and coarse mill grain 

Add water (1:3; v/w) 1-
Ferment dough for 4 days at 30°C 

— ' * 

Add water (3:1;v/dwt), slurry and cook 

Raw dough AFLATA 

I I T 
Mix (dumpling) 

1 
Shape, wrap and boil for 1h 

I 
KENKEY 

Figure 2 . 1 . Laboratory method for kenkey production 

The soak water was drained and the grain coarsely ground in a hammer mill (Fritsch 

Pulverisette, Type 14.702, Marius Instruments, Utrecht, The Netherlands) with 

rotor and sieve (4 mm) and made into a dough, M0 , Mw0 or Mr0 f rom maize, 

maize/white cowpea or maize/red cowpea, respectively, by adding water (1:3 v /w). 

The dough was then placed in a 1 litre beaker, covered with polyethylene film and 

allowed to ferment naturally for a standard 4 d at 30°C. The fermented dough, M4 , 

Mw 4 or Mr4, was then divided into two equal portions, one of which was slurried 

with water (3:1 v /w; dry weight basis) and stir-cooked to gelatinisation to give the 

aflata. The cooked and uncooked portions were mixed, kneaded and dumplings 
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were made and wrapped, first in polyethylene film followed by aluminium foil, as 

direct contact wi th aluminium foil resulted in darkening of the foil during cooking, 

imparting a black colour to the outside of the dumpling. The wrapped dumplings 

were immersed in boiling water to cook. Dumplings were smaller (250 - 300g) than 

in the traditional household process hence the cooking time (under constant heat 

in a covered saucepan) was reduced to 1 h. The resulting products were all-maize 

(Iv^C,), white cowpea-supplemented |Mw4C,] and red cowpea-supplemented 

(M^C,) kenkeys. 

Fermentation profile 

During the 4 days of fermentation, the microbial count, pH, and titratable acidity 

(% lactic acid) were determined according to Nout et al. (1987) on a daily basis. 

Counts were made of the functional groups of micro-organisms in the product, 

namely lactic acid bacteria (LAB) and yeasts. In addition, Enterobacteriaceae were 

monitored for public health reasons. Lactic acid bacteria were counted in MRS agar 

(Merck 10661) pour plates containing 0 . 1 % (w/v) Natamycin ("Delvocid", Gist-

brocades, Delft, The Netherlands) overlaid with MRS agar without Delvocid, the 

yeasts in Oxytetracycline Glucose Yeast Extract agar (Oxoid CM 545) containing 

0.01 % (w/v) Oxytetracycline (Oxoid SR 073A), and the Enterobacteriaceae in Violet 

Red Bile Glucose agar, VRBG (Merck 10275), with a VRBG overlay. 

Characterisation of isolated lactic acid bacteria 

Isolates were made daily from appropriate MRS counting plates. Five representative 

colonies of LAB were isolated and subsequently purified on MRS agar. These were 

then stored at -80°C in cryotubes containing 15% (w/v) glycerol in MRS broth for 

later characterisation. Characterisation tests included Gram-stain, morphology (by 

microscopic observations), catalase reaction, growth at 15°C and/or 45°C, 

homo/heterofermentation and arginine hydrolysis. Confirmation of isolated lactic 

acid bacteria was obtained from established descriptions of non-sporing Gram -

positive rods (Kandier and Weiss, 1986) based on the utilisation of relevant 

carbohydrates on the API 50 CHL test strips (API System SA, Montalieu Vercieu, 

France). 

Crude protein content 

The crude protein content was determined using a semi-automated version of the 

micro-Kjeldahl method for nitrogen determination (Roozen and Van Boxtel, 1979). 

Experiments were done twice and all samples run in duplicates. The values for 
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nitrogen concentration were converted to crude protein content by multiplying by 

5.26 for the maize (Thomas, 1951) and 5.46 for maize-cowpea blends (5.26 x 

8 0 % + 6.25 x 20%). 

Colour 

Colour parameters L, a, and b representing whiteness, redness and yellowness, 

respectively were measured using a DR LANGE Tricolor LFM3 Colorimeter 

(Hunterlab, 9529 Lee Highway, Fairfax Virginia), calibrated with a standard white 

tile (L = 88.20; a = -0.96; b = -1.69). Two measurements were made of the 

surface of each sample. 

Fracture stress 

Fracture stress was measured using an Overload Dynamics Instron-type instrument 

(Marius Instruments, Utrecht, The Netherlands) having two plates between which 

samples of standard cylindrical dimensions (length 3cm; diameter 2cm) were placed 

vertically and compressed at constant speed till fracture point and the fracture 

stress calculated according to Van Vliet (1991). Dehulled cowpeas were used in 

supplemented kenkeys. 

Product evaluation 

An untrained 5-member panel of native Ghanaians (3 males and 2 females, aged 

between 28 and 40 years) familiar with traditional kenkey, was asked to evaluate 

the control and supplemented products on the basis of their sourness (taste), smell, 

texture, colour, doneness (degree of cooking) and hardness. This was done by 

individual structured interview, followed by group discussion. Each panellist was 

asked to sample the product and comment on paper on how the supplemented 

kenkey compared with the all-maize traditional kenkey with respect to the above 

qualities. Each panellist was advised to draw from his or her experience as a 

traditional kenkey consumer. Individual comments were compared and the group 

discussion that followed was aimed at reaching a general consensus on the 

potential acceptability of the new product and recommendations on the possible 

improvement of the less acceptable qualities. 

RESULTS AND DISCUSSION 

In the experiments to study lactic acid fermentation in kenkey doughs (Table 2.1), 

the pH decreased and the titratable acidity increased as the LAB count increased. 
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Table 2 . 1 . Fermentation profiles of all-maize and cowpea-supplemented maize 

doughs. 

Dough* 

M0 

M, 

M2 

M3 

M 4 

Mw0 

Mw, 

Mw2 

Mw3 

Mw4 

Mr0 

Mr, 

Mr2 

Mr3 

Mr4 

pH 

6.02'5 

4.00 

3.86b 

4.05e 

4.07° 

5.87° 

4.19 

4.11 

4.07c 

4.08c 

6.65d 

4.31 

4.11 

4.07e 

4.08e 

TA 

0.49 

0.97 

1.11 

1.15 

1.12" 

0.49 

1.31 

1.46 

1.55 

1.57° 

0.32 

1.32 

1.58 

1.67 

1.73e 

LAB 

(Log10 cfu/g) 

6.72 

8.09 

8.01 

7.97 

7.93" 

6.05 

8.17 

8.00 

7.94 

7.93a 

7.86 

8.34 

8.52 

8.13 

8.07a 

Yeasts 

(Log10 cfu/g) 

4 .36 

< 1 . 7 0 

< 1 . 7 0 

< 1 . 7 0 

< 1 . 7 0 

4.79 

<1 .70 

< 1 . 7 0 

<1 .70 

< 1 . 7 0 

4.61 

<1 .70 

<1 .70 

< 1 . 7 0 

< 1 . 7 0 

Enterobac-

teriaceae 

(Log10 cfu/g) 

6.53 

< 1 . 7 0 

< 1 . 7 0 

< 1 . 7 0 

< 1 . 7 0 

8.86 

<1 .70 

<1 .70 

<1 .70 

<1 .70 

8.62 

<1 .70 

<1 .70 

<1 .70 

<1 .70 

* Sample codes: M = 100% maize; Mw = 80% maize + 20% white cowpea; Mr 

= 8 0 % maize + 20% red cowpea; subscripts (0, 1, 2, 3, 4) indicate fermentation 

time (days); § a, b, c, d values in the same column, with the same letter are not 

significantly different [p < 0.05) TA = Titratable acidity, expressed as % lactic 

acid (w/w). 

LAB counts exceeded 108/g after only 24h fermentation. Further incubation led to 

a slight fall in LAB counts. Where yeasts occurred, lower counts ( < 105) than LAB 

were often noticed. Yeast counts declined sharply with the rapid decrease in pH. 

The Enterobacteriaceae counts also fell rapidly to below detection level as a result 
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of acid production by the LAB (Nout et al., 1989). Some authors (Mensah et al., 

1991 ) believe that other substances (e.g. bacteriocins) produced by the dominating 

LAB may contribute to the disappearance of Enterobacteriaceae. 

Table 2.1 confirms the trend observed by previous authors (Chavan et al., 

1988) investigating the changes in pH and titratable acidity during the natural 

fermentation of cereals and legumes. They reported an optimum fermentation 

period of 2 and 3-4 days at 30°C for cereals and legumes, respectively. The pH of 

all-maize dough (M0) fell from 6.02 to 3.86 in just two days, whereas that of 

supplemented doughs (Mw0 & Mr0) required a further day to reach its lowest value 

of 4.07. After 4 days of incubation, the pH of all three doughs stabilised at 4.08. 

The higher titratable acidity values obtained for supplemented doughs could be 

attributed to the high buffering capacity of the medium due to the higher content 

of proteins and amino acids (Banigo and Muller, 1972; Zamora and Fields, 1979). 

The addition of 20% cowpeas, therefore, did not hinder proper dough fermentation, 

though a longer time was required for acidification to stabilise. Two and 3 days of 

fermentation were sufficient to lower the pH of all-maize and cowpea-supplemented 

doughs, respectively, to the inhibitory pH range (3.6 - 4.1) for food poisoning 

bacteria reported by Hamad and Fields (1979). These authors, however, did not 

specify lactic acid as responsible for lowering the pH to this inhibitory range. 

Tests identified Lactobacillus plantarum, L. confusus, L. brevis and 

Pediococcuspentosaceus as the main lactic acid bacteria present in the fermenting 

doughs. In the case of doughs M0 and Mw0, L. confusus was found to dominate 

the earlier stages of fermentation (d0). These were later replaced by Pediococcus 

spp and L. plantarum for M ^ and Mw,.4 respectively. The pattern was one of acid-

sensitive heterofermentors being succeeded by more acid tolerant homofermentors. 

This was in line with the decrease in pH and the increase in titratable acidity (Table 

2.1) as fermentation progressed. 

The pattern was less clear for Mr04 , in which L. plantarum, L. confusus and 

Pediococcus spp were present in similar proportions throughout the four days of 

fermentation. 

The addition of 20% red and 20% white cowpea resulted in increases in 

crude protein contents of 29 .2% and 20.5%, respectively, for the supplemented 

products. The values for crude protein content shown in Table 2.2 are comparable 

with those reported earlier (Akinyele and Fasaye, 1988) for ogi fortified with 

cowpeas. With regard to the average essential amino acid contents of maize 

(Salunkhe et al., 1985) and cowpea (Bressani, 1985), these values represent, 

respectively, 76.3, 15.6 and 26.8% increases in lysine, methionine and tryptophan 
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in maize-red cowpea blends and 65.3, 8.2 and 19.5% increases in lysine, 

methionine and tryptophan in maize-white cowpea blends. 

Table 2.2. Crude protein content of doughs of maize and maize-cowpea blends. 

DOUGH1 CRUDE PROTEIN CONTENT 

(%, w /w , dry matter)2 

M0 10.41 ± 0.49 

M 4 10.80 ± 0.32 

Mw0 12.57 ± 0.21 

Mw 4 12.99 ± 0.21 

Mr0 13.51 ± 0.20 

Mr4 13.89 ± 0.24 

^ e e Table 2.1 for meaning of sample codes; 2Mean ± SD; n = 4 

The addition of wholegrain cowpea reduced the whiteness of the product 

(Table 2.3). This was more pronounced with the addition of red cowpeas where the 

colour change was noticeable. Dehulling the cowpeas improved the colour visibly 

even though the Hunter L-values were still very much lower than for all-maize 

kenkey. Traditional kenkey is usually wrapped in either banana leaves (Fanti) or 

corn sheaths (Ga), which results in a slight browning of the surface of the product 

after cooking. This does not seem to be of concern to the consumer, hence a 

reduction in whiteness by white cowpea is not expected to be a major setback. Red 

cowpea wil l , however, require dehulling to prevent the final product becoming 

brown. Other authors (Plahar and Leung, 1983) used a Hunterlab Model D25D 

Color Meter, calibrated with a standardised white tile (L = 93.6, a = 0.7 and b = 

0.2), and obtained L, a, and b values of 76.94 ± 0.14, -1.14 ± 0.06, and 10.55 

± 0.23, respectively, for traditional fermented maize doughs from Ghana. The 

differences between these L, a, and b values and those reported here may be due 

to the use of different standardisation constants. Also, those authors referred to 

fermented dough and not to the cooked product of fermented doughs used here. 
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Table 2.3. Colour parameters of all-maize and cowpea-supplemented kenkey 

(Hunter L, a and b values) 

KENKEY1 

M4C, 

Mw^C, 

Mw^C,2 

Mr4C,2 

L 

(mean ± sd) 

66.89 ± 0.46 

58.86 ± 2.02 

61.09 ± 1.45 

49.70 ± 3.28 

54.03 ± 1.87 

a 

0.10 ± 0.74 

3.00 ± 1.25 

0.44 ± 0.08 

6.30 ± 1.13 

8.07 ± 0.25 

b 

16.48 ± 1.37 

13.67 ± 2.14 

15.72 ± 0.36 

10.86 ± 1.37 

12.19 ± 0.33 

1 Sample codes in addition to those in Table 2 . 1 ; C = cooked, with subscript 

cooking time (hours); 2 Dehulled cowpeas. 

Fracture experiments were conducted on kenkey stored at room temperature 

for 1, 24, and 72 h. The moisture contents were maintained by storing samples 

well wrapped up with aluminium foil in a closed bucket. Table 2.4 shows that 

fracture stress (a,) increased with increasing cowpea levels. This may be due to the 

fact that cowpea supplementation results in a more homogeneous product, which 

is less prone to breakage than the traditional all-maize kenkey. In the traditional 

kenkey, intact maize hulls form areas of local stress concentrations, which makes 

the product more prone to fracturing (Luyten, 1988). In addition, starch/protein 

interactions may contribute to the increased firmness of the product. Fracture 

stress also increased on storage of the product, the greatest increase occurring in 

the first 24 h, during which fracture stress (a,) values doubled. This may be 

attributable to a number of factors, amongst them setback and rétrogradation of 

starch as the product cools (Bean and Setser, 1992), resulting in a firmer product. 

The sharp sour taste of properly fermented kenkey (Plahar and Leung, 1983) 

was detected in all samples by all panellists. None registered off-smells resulting 

from the addition of cowpeas. Kenkey made from mixtures of 80% maize and 20% 

wholegrain white or dehulled red cowpeas were accepted by all the panellists as 

these compared very well with the traditional product. Three male panellists also 
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liked the kenkey supplemented with dehulled white cowpea, but the two female 

panellists thought it was smoother than the traditional product. Kenkey 

supplemented with wholegrain red cowpeas was rejected by all but one (male) of 

the panellists on account of its brown colour. 

Table 2.4. Effect of cowpea level and storage on hardness of kenkey at constant 

moisture content. 

Cowpea Storage time 

Kenkey1 level (%) (h) 

e time 

1 

24 

72 

1 

24 

72 

1 

24 

72 

1 

24 

72 

1 

24 

72 

Moisture content 

(% w/w) 

64 

63 

63 

63 

63 

62 

67 

63 

63 

63 

63 

63 

65 

65 

66 

Stress at 

fracture 

[ x 1 0 3 

2.40 

4.50 

4.20 

3.40 

6.30 

6.50 

3.15 

6.35 

6.95 

4.30 

8.30 

8.10 

3.20 

8.10 

7.90 

± 

± 

± 

± 

± 

± 

± 

± 

± 

± 

± 

± 

± 

± 

± 

N m " 2 ] 2 

0.10 

0.20 

0.20 

0.30 

0.10 

0.10 

0.10 

0.20 

0.60 

0.20 

0.10 

0.20 

0.20 

0.10 

0.10 

M4C, 

Mw4C, 

Mw4C, 

M w ^ , 

Mw4C, 

10 

20 

30 

50 

1For abbreviation see Table 2.1 and Table 2.3, with the exception that the level of 

cowpea substitution ranges from 0-50% as specified above; 2 Mean ± SD; n = 3 
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Although the results of product evaluation must be interpreted cautiously, 

they, nevertheless, place additional weight on the argument that traditional kenkey 

could be enriched with 20% (w/w) cowpeas without necessarily affecting its basic 

physical and organoleptic properties. Large scale product evaluation is, however, 

required to establish absolutely the degree of acceptability of enriched kenkey. 

Previous reports on cereal-legume mixtures (Bressani, 1985; Bressani and 

Scrimshaw 1961), and the results reported in this chapter, suggest that cowpea 

could be used successfully to supplement traditional cereal-based products. This 

will undoubtedly go some way towards improving the protein requirements of 

peoples of a region where animal sources of protein are often too expensive to 

obtain. 
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Dry-milling and accelerated fermentation of maize for industrial kenkey production1 

Abstract 

The dry-milling of maize and accelerated fermentation of dough for kenkey 

production were studied as part of a wider investigation into the possibility of 

industrial production of a dehydrated kenkey flour. Dough containing an enrichment 

of lactic acid bacteria, was used successfully to achieve, within 24 h incubation 

at 30°C, the required level of acidification of dry-milled maize flour to obtain kenkey 

dough. Cabinet- and drum-drying were used to prepare dehydrated kenkey flour 

and pre-gelatinised aflata, respectively. Drum-drying was an effective method for 

preparing pre-gelatinised aflata, but it resulted in a 3 4 % reduction in the titratable 

acidity (TA) of the fermented dough. Cabinet-drying, on the other hand, had a less 

drastic effect on the TA of fermented dough, suggesting the possible use of a 

mixture of drum-dried aflata and uncooked cabinet-dried flour for convenient 

preparation of kenkey at household level. Dry-milled maize flours had pasting and 

set-back viscosities that were inferior to those of the traditionally prepared doughs 

and consequently were unsuitable for the production of pre-gelatinised aflatas. Pre-

gelatinised aflata from unfermented dry-milled flours resulted in a crumbly and 

friable kenkey product. It was concluded, therefore, that, although dry-milling of 

maize and accelerated fermentation of dough could drastically reduce kenkey 

production time, from about 6 days to within 24h, omission of the soaking step 

practised traditionally, can result in a product with inferior textural quality. 

INTRODUCTION 

Kenkey is a popular traditional, fermented maize product, still prepared 

commercially on an small artisan scale in Ghana. The traditional kenkey process 

has been described earlier (Muller, 1970; Muller and Nyarko-Mensah, 1972). In this 

process, maize is cleaned and steeped in excess water for 2 days, followed by 

milling. The meal obtained is made into a dough by adding water (1:3 v/w) and 

allowed to ferment naturally. The period for natural dough fermentation and souring 
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varies from 2 - 4 days, but it has been shown that 2 days at 30°C are sufficient 

to obtain the desired degree of souring (Nche et al., 1994). The fermented dough 

is divided into two equal portions, one of which is slurried and stir-cooked to 

gelatinisation, giving rise to a sticky paste called the aflata, having a glutinous 

consistency (Muller, 1970). There is some dispute over which intermediate product 

should be called the aflata, but most reports and most indigenous kenkey 

consumers agree with the description by Muller (1970), which has also been 

adopted in this thesis. The aflata is usually mixed in equal proportion with the 

uncooked portion to produce a dumpling from which balls of appropriate size ( « 

300 - 500 g) are shaped, wrapped in maize sheaths (Ga kenkey) or banana leaves 

(Fanti kenkey) and cooked for 1 - 3 h, depending on the size, to give kenkey. 

In the traditional process, the soaking step not only softens the grains 

thereby facilitating smooth milling, but also stimulates enzyme activity leading to 

amylolysis and proteolysis which contribute to the desired physical, chemical and 

organoleptic properties characteristic to kenkey (Sefa-Dedeh and Plange, 1989). 

The technical feasibility of preparing a dehydrated kenkey flour for kenkey 

manufacture at the household level or in a small scale industry has not been 

explored to date. The total time taken to prepare kenkey the traditional way, from 

steeping to cooking, can be as much as 6 days. To adapt such a process to 

industrial scale would require, amongst other technical adaptations, a reduction in 

production time. This means, therefore, that the various steps in the whole process 

have to be looked at and modified, where necessary, to suit an industrial scale 

process, without significantly compromising the quality of the final product. One 

way of reducing production time is to skip the soaking step and mill the grains dry. 

Dough from this can then be fermented rapidly by using a starter dough containing 

an enrichment of lactic acid bacteria (LAB). 

The objectives of this study were to investigate the technological feasibility 

of producing kenkey from dry-milled maize. This involved an investigation of the 

effects of dry-milling, compared with soaking-before-milling, on the gelatinisation 

of maize flour for aflata production and on the subsequent physical characteristics 

of the final product. Also, the use of a starter dough to accelerate fermentation 

was investigated. 

MATERIALS AND METHODS 

Maize (Zea mays L cv. obaatanba) was supplied by the Crops Research Institute, 

Council for Scientific and Industrial Research, CSIR, Kwadaso, Ghana. Grains were 
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milled using a hammer mill (Fritsch Pulverisette, Type 14.702, Marius Instruments, 

Utrecht, The Netherlands) with a fine rotor. Rotor speed was set on 2 and grains 

were milled to pass through a 4 mm sieve. 

Microbiological analyses 

Sample preparation and enumeration of lactic acid bacteria (LAB), moulds and 

yeasts and Enterobacteriaceae were as described by Nout et al. (1987). 

pH and Acidity 

A pH meter (Electrofact, Sweden) with a Schott N61 electrode was used to 

measure pH of fermenting dough. 90ml of distilled water were added to 10 g of 

sample and mixed in a blender (Stomacher 400 Type BA 7021 , Seward Medical, 

London, U.K.) before recording the pH. Titratable acidity was determined according 

to Nout eta/. (1989). 

Pasting viscosity 

A Brabender Visco-Amylograph (Brabender, Duisburg, Germany) was used to 

compare the hot and cold paste viscosities of traditionally fermented (TF) and 

unfermented (TUF) maize doughs as well as dry-milled, unfermented (DUF) and 

accelerated (starter) fermented (DAF) maize doughs. Samples were tested at 9% 

(w/w) dry solids basis. The slurry in the Visco-Amylograph bowl was heated from 

50°C at a rate of 1.5°C/min to a maximum temperature of 95°C. The temperature 

was maintained at this maximum for 30 min before cooling at a rate of 1.5cC/min 

back to 50°C. A 250 cmg cartridge was used and the bowl speed was set at 

75 rev/min. Viscosity was recorded in Brabender Units. 

Colour determination 

Colour parameters L, a and b, representing luminosity (brightness), redness and 

yellowness, respectively, were measured using a DR Lange Tricolor LFM 3 

Colorimeter (Hunterlab, 9529, Lee Highway, Fairfax, Virginia, USA), calibrated with 

a standard white tile (L = 88.20, a = -0.96, b = -1.69). Two measurements were 

made of both surfaces of each sample. 

Textural measurements 

Fracture stress was measured with an Overload Dynamics, Instron-type instrument 

(Marius Instruments, Utrecht, The Netherlands), wi th two plates between which 

samples of standard cylindrical dimensions (length, 3cm; diameter, 2cm) were 
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placed vertically and compressed at constant speed (50mm/min) until fracture 

point. Fracture stress was calculated according to Van Vliet (1991). 

Accelerated natural fermentation 

A LAB-enriched starter dough was prepared by "back-slopping" (Nout eta/., 1989). 

Initially, a previously 24h naturally fermented dough was used to inoculate (at 10% 

w /w level) fresh dough for a further 24 h fermentation at 30°C. This was repeated 

until a stable culture, as indicated by a stable pH, TA and microbial count, was 

obtained. This was then used as a starter to accelerate the fermentation of fresh 

dry-milled maize dough. Inoculated dough was incubated at 30°C for 24 h to obtain 

an accelerated fermented dough (Fig. 3.2) that was then used for laboratory 

preparation of kenkey as described earlier (Nche et al., 1994). 

Drying 

Two types of drying methods, viz. cabinet- and drum-drying were used. For 

cabinet-drying, traditionally fermented maize dough was spread on trays and placed 

in an electrically heated circulating air cabinet drier maintained at 60°C. Drying was 

done over a period of 3 h during which samples were taken out hourly for 

moisture, pH and titratable acidity measurements. 

For drum-drying, 3 differently treated doughs were used. These were 

traditionally fermented dough (TF), traditionally soaked but unfermented maize 

dough (TUF) and dry-milled unfermented maize dough (DUF). During drum-drying, 

a 20% w/v dough slurry (in tap water) was applied onto the pre-heated (140°C) 

rotating (1.5 rev/min) drum of the drum drier (N.V. Goudsche Machinefabriek, 

Waddinxveen, The Netherlands). A film thickness of 0.2 mm was maintained. 

Aflata and kenkey processing 

Figures 3.1 and 3.2 summarise the schemes used for producing kenkey. Drum-

dried dough was reconstituted by adding tap water (1:3 w/v). This gave a gluey 

paste, the aflata, which was then mixed, in equal proportion, wi th cabinet-dried, 

traditionally fermented dough to produce a dumpling from which portions 

(ca. 300g) were shaped into cylinders (25-30 mm diameter; 10 cm length) and 

wrapped, first in polyethylene sheaths, and then aluminium foil (Nche eta/., 1994). 
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Figure 3 . 1 . Production of kenkey from traditionally fermented maize dough 
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Figure 3.2. Production of kenkey from dry-milled maize flour 

These were then boiled for 1h to give kenkey (Fig. 3 . 1 , A). Aflatas from wet and 

dry-milled, unfermented drum-dried maize doughs were also mixed, in equal 

proportions, wi th cabinet-dried traditionally fermented dough to produce kenkey 

(Fig. 3 . 1 , B and Fig. 3.2, C respectively). Kenkey was also produced from both 
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traditionally (Fig. 3.1) and accelerated (Fig. 3.2, D) fermented doughs. 

Sensory evaluation 

The appearance, texture, smell and taste of all experimental kenkey products were 

compared with laboratory-made "traditional" kenkey by a 4-member panel 

consisting of 1 Ghanaian familiar wi th kenkey and 3 untrained panellists. 

Sensory evaluation of samples of kenkey was carried out in Ghana by a 10-

member trained taste panel, in triplicate on 3 consecutive days. The samples were 

judged on the basis of the following attributes and properties: Appearance (usual 

kenkey colour, acceptable kenkey colour, uniform mix). Texture (breaks easily, 

crumbliness, softness, hardness, mouldability, stickiness to fingers and palm), 

Smell (strong, mild, no smell, kenkey), and Taste (pleasant, sour, chewiness, sticks 

in throat, pleasant after-taste). 

RESULTS 

The lactic acid bacteria population of naturally fermenting, soaked maize dough 

increased by about 2 log cycles in 2 days, after which it stabilised (Table 3.1). The 

mould and yeast counts remained very low (log10 < 2 . 7 cfu/g) throughout 

incubation. The Enterobacteriaceae count, on the other hand, fell from an initial 

high level (log10 6.1 cfu/g) on day 0 to < log 1 0 2.7 cfu/g within 24 h. 

Table 3 . 1 . Fermentation parameters of wet-milled maize dough. 

Time 

(days) 

pH Titratable 

acidityC/o)1 

LAB2 Yeasts2 Enterobacteriaceae2 

0 

1 

2 

3 

5.24 

3.96 

3.94 

3.95 

0.37 

0.83 

0.92 

0.92 

6.9 

7.4 

8.8 

8.5 

< 2.7 

< 2.7 

< 2.7 

< 2.7 

6.1 

< 2.7 

< 2.7 

< 2.7 

expressed as lactic acid (w/w); 2Log10 cfu/g 

Within the same period of t ime, the pH of the fermenting dough decreased from 

an initial 5.24 to 3.96, and thereafter remained constant (Table 3.1). This decrease 
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in pH was accompanied by an increase in titratable acidity (Table 3.1) to a final 

value of 0 .92% (expressed as w / w lactic acid, wet basis). 

After 3 "back-slopping" cycles at 30°C, the measured parameters of the 

starter dough remained relatively constant (Fig. 3.3), suggesting the establishment 

of a stable microflora. This was used successfully to obtain an accelerated 

acidification of fresh dough. Within 24 h, the pH of the inoculated dough dropped 

from 5.65 to 3.79, and a titratable acidity value of 1.24% (wet weight basis), was 

significantly higher than was obtained after 3 days for traditionally fermented 

dough. 
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Figure 3.3. pH, titratable acidity and LAB counts during accelerated natural 

fermentation of dry-milled maize flour 

Drying the traditionally fermented maize dough at 60°C for 3 h in a cabinet 

drier reduced the moisture content from 54 - 10% without significantly affecting 

its pH (Table 3.2). Only a marginal decrease in titratable acidity from 2 .87% to 

2.49 % (dry weight basis) was observed. Drum-drying resulted in a significant (p 

< 0.05) reduction in the TA of freshly fermented dough, however, from 2.87% 

to 1.90% (w/w as lactic acid). 
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Table 3.2. Effect of cabinet drying at 60°C on the pH and titratable acidity of 

kenkey dough 

Drying time(h) Moisture content(%) o/„\i pH TA(% as lactic acid)2 

0 

1 

2 

3 

54 
35 
20 
10 

3.75 
3.75 
3.75 
3.76 

2.87 
2.58 
2.57 
2.49 

1 0n fresh weight basis. 
2Titratable acidity, expressed on dry weight basis. 
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Figure 3.4. Visco-Amylograms of doughs from traditionally-treated and dry-milled 

maize. (TF) Traditional fermented dough; (TUF) Traditional unfermented dough; 

(DAF) Dry-milled accelerated (starter) fermented dough; (DUF) Dry-milled 

unfermented dough 
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The pasting viscosities of standard slurries of the differently prepared maize 

doughs are shown in Fig. 3.4. Traditionally fermented maize dough (TF) gave the 

highest peak viscosity of 950 Brabender Units (B.U.) wi th the highest set-back 

value. The corresponding unfermented maize dough (TUF) had lower peak and set­

back viscosity values (Fig. 3.4). Both these doughs had significantly higher set­

back viscosities than dry-milled accelerated fermented (DAF) and dry-milled 

unfermented (DUF) doughs. 

Table 3.3. Surface colour of dough and kenkey 

Sample 

Traditional dough 

Traditional kenkey 

Accelerated dough 

Accelerated kenkey 

76.08 ± 1.161 -1.51 ± 0.71 14.35 ± 0.25 

63.42 ± 0.54 1.47 ± 2.44 13.98 ± 1.40 

73.54 ± 0.94 -0.81 ± 0.94 14.60 ± 0.43 

63.53 ± 1.55 0.56 ± 1.30 15.05 ± 0.70 

1Mean ± sd; n = 4. 

Table 3.4. Fracture stress of the different kenkey products 

Kenkey Moisture 

content (%) 

63.0 

67.0 

69.0 

68.0 

60.6 

Fracture stress 

(x 103 Nnr2) 

6.43 ± 0.521 

4.67 ± 0.09 

4.77 ± 0.26 

3.67 ± 0.53 

5.65 ± 0.15 

Traditional 

Kenkey A 

Kenkey B 

Kenkey C 

Kenkey D 

'Mean ± SD; n = 4 

Table 3.3 shows that there was no significant difference in colour between 

traditionally made kenkeys and those made by the accelerated process. There was 

some loss in luminosity of dough when processed into kenkey, however. The 
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luminosity (L) values for kenkey were comparable with values obtained earlier 

(Chapter 2) for traditional kenkey. 

Table 3.4 shows the values for fracture stress, a textural measure of the 

hardness of the product. There was no significant difference {p < 0.05) in fracture 

stress values for traditional kenkey and kenkey D. Both these kenkeys had higher, 

though not significant, fracture stress values than kenkeys A and B. Only Kenkey 

C had a significantly lower fracture stress value. 

Sensory assessment at the laboratory level revealed that, compared with 

laboratory-made "traditional" kenkey, kenkey products B, C and D were of 

unsatisfactory texture, taste and smell. On the other hand, kenkey A got promising 

assessments; this product was selected for sensory evaluation by a local Ghanaian 

panel. 

During sensory evaluation in Ghana, the following samples were compared: 

(1) Kenkey prepared by reconstituting and cooking of dry kenkey mix (Fig. 3 . 1 , A); 

(2) Local samples of kenkey bought from the same vendor each day. Both types 

1 and 2 were perceived as normal Ga kenkey of commendable quality. However, 

minor differences were detected. Type 1 scored better with respect to texture (less 

sticky) and mildness of taste; whereas type 2 had better scores for uniformness 

and characteristic kenkey smell and taste. 

DISCUSSION 

The results shown in Table 3.1 and Fig. 3.3 confirm earlier reports on naturally 

fermenting cereal doughs (Nche era/., 1994; Chavanefa/., 1988). As LAB counts 

increased, more acid was produced, as shown by increasing titratable acidity (TA) 

and the decline in pH. Within 3 days of fermentation, the pH fell to 3.96, well 

within the inhibitory range for food pathogenic and spoilage bacteria (Hamad and 

Fields, 1979). This drop in pH is presumed responsible for the very low levels of 

Enterobacteriaceae and yeasts (Nout et al., 1989). Other workers attribute this to 

antibacterial substances such as bacteriocins (Mensah eta/., 1991), organic acids, 

hydrogen peroxide and antibiotic-like substances (Nout eta/., 1989; Gibbs, 1987) 

produced by the dominant LAB. The rate of acidification was even higher when a 

starter dough was used, with the pH dropping from 5.65 to 3.79 within 24 h. This 

was an indication that inoculum recycling resulted in a natural selection of LAB 

which are tolerant to low pH conditions and can bring about rapid acidification of 

fresh dough when used as an inoculum (Nout et al., 1989). Previous work (Nche 

et al., 1994) has shown that Lactobacillus plantarum and Pediococcus spp. 
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dominate the latter stages of maize dough fermentation and may, therefore, be 

responsible for the rapid acidification of inoculated dough. 

The decrease in TA following drum-drying could be due to evaporation of 

some acid at the higher temperature of the drum (140°C), necessary for proper 

gelatinisation of the starch component of the dough. Since no cooking was 

required during cabinet-drying, a lower temperature could be used to achieve the 

required level of dehydration without the loss of acid through evaporation. The fact 

that dehydration of the fermented maize dough in a cabinet drier did not 

significantly affect the pH and titratable acidity is interesting as this portion can 

then be used to prepare dumplings by mixing wi th drum-dried aflata. This way the 

diminished acidity of the drum-dried portion can be partly compensated for by the 

relatively more sour cabinet-dried portion. 

Traditionally fermented dough, from soaked maize, gave the highest peak 

viscosity of 950 B.U. as compared with the lower peak viscosity values ( < 300 

B.U.) of doughs made from dry-milled maize (Fig. 3.4). This finding is contrary to 

reports on fermented sorghum flour (Adeyemi, 1983), but agrees with the report 

of Banigo et al. (1974), who found that soaking and wet-milling of maize for ogi 

manufacture increased the swelling and thickening characteristics of the maize 

starch component. 

Damage of starch granules, as may occur during dry-milling, can result in 

increased enzymic hydrolysis of starch up to two-fold (Schweizer et al., 1988) or 

even seven-fold (Wong and Trianedes, 1985) in some instances. Thus fewer intact 

starch granules undergo swelling and partial solubilisation, especially of amylose. 

The very low hot and cold paste viscosities of dry-milled flours could, therefore, 

be the result of mechanical starch damage. Soaking may reduce such damage 

during milling and thereby result in high viscosities of wet-milled maize doughs. 

Any inhibition of the release of amylose, which may occur due to the binding of 

lipids and proteins to starch granules can inhibit gelatinisation and set-back 

(Eliasson et al., 1981). It has been reported that delipidation resulted in the 

lowering of the gelatinisation temperatures (Ta) of wheat and maize starches 

(Vasanthan and Hover, 1992) and in an increase in the pasting viscosity of wheat 

starch (Eliasson et al., 1981), although a similar treatment increased the T0 of 

potato and lentil starches (Vasanthan and Hover, 1992). There is, therefore, the 

possibility that a lack of proper lipolysis and proteolysis, as might be the case with 

unsoaked maize grains, might lead to the protein and lipid matrix surrounding the 

starch granules inhibiting the proper swelling of granules for gelatinisation to occur. 

It would certainly be interesting to investigate the enzyme activities during soaking 
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and compare this with that in dry-milled grains. 

A high set-back viscosity is desired for proper kenkey quality as this 

determines the cohesive capacity of the aflata, which serves as a binding agent 

(Sefa-Dedeh and Plange, 1989). If proper gelatinisation is not achieved during the 

heating phase in the Visco-Amylograph, the set-back viscosity would be low, an 

indication that any kenkey from such a dough will be crumbly and friable. 

During the drum-drying of soaked maize dough, a complete breakdown of 

the starch granule structure (Bean and Setser, 1992) and hence rapid gelatinisation 

and solubilisation of released starch occurs. Poor release of amylose from dry-

milled flours would, however, result in less gelatinisation and subsequently a lower 

set-back potential during drum-drying. Rehydration (3:1 v/w) of the drum-dried 

flour yielded a smooth and gluey aflata, easier to handle than the hot paste 

obtained from the traditional aflata process. The low degree of set-back in drum-

dried, dry-milled unfermented maize flour is reflected in the inferior fracture stress 

values for kenkey C, produced from this flour (Table 3.4). In fact, kenkey C was 

a crumbly and friable product that fell apart quite easily. The slightly lower fracture 

stress values of kenkeys A and B, compared with traditional kenkey, could be 

accounted for by the higher moisture contents of these kenkeys. Kenkeys A and 

B were, however, less brittle, reflecting the higher degree of starch gelatinisation 

and subsequent set-back (Fig. 3.4, see TF and TUF). This is a desirable 

characteristic of kenkey and can be obtained only in the traditional process if small 

quantities of kenkey are made at any one time. To obtain such a quality for larger 

quantities of kenkey would be laborious and time consuming. Bediako-Amoa and 

Austin (1976) also observed that satisfactory aflata could be produced from pre-

gelatinised starch to avoid the strenuous physical work involved in the traditional 

process. 

For logistic reasons, kenkey samples 1 and 2 were made from different 

batches of maize, and their fermentation was carried out under different conditions 

(i.e. in the laboratory in The Netherlands, and artisanally in Ghana). These factors 

will certainly have contributed to the observed difference in smell and taste. For 

the purpose of the present research, however, the textural behaviour was of major 

importance, since it could be strongly affected by pre-cooking, dehydration and 

reconstitution. The positive response on the texture of kenkey 1 (Fig. 3 . 1 , A) is 

encouraging indeed and indicates that the concept of an intermediate "kenkey dry 

mix" has good chances of consumer acceptance. 

The findings in this Chapter clearly indicate that, although accelerated 

acidification of dry-milled maize flour can be achieved by using a starter dough, 
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proper gelatinisation is necessary during the aflata process in order to obtain the 

desired physical characteristics of kenkey. The rejection of kenkeys C and D by the 

laboratory-scale screening panel was a confirmation of the physical evidence 

showing inferior pasting properties of dough from dry-milled maize, compared with 

dough from wet-milled maize. Pre-gelatinisation offers an alternative way of aflata 

production wi th minimum physical labour, on condition that the treatment of dough 

prior to gelatinisation is optimised with regard to maximum swelling and set-back. 
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Soaking of maize determines the quality of aflata for kenkey production1 

Abstract 

Aflata is a gelatinised maize paste, serving as intermediate in the manufacture of 

kenkey. The effect of water uptake during soaking of whole or dry-milled maize, 

extent of starch damage, dough pH, fermentation time and of endogenous and 

added enzymes on pasting and set-back viscosities of aflata dough were studied. 

Water uptake by coarsely dry-milled maize (grits) reached 6 3 % in just 1 h, 

compared with 50% in 3 days for whole grain. High endogenous proteolytic and 

saccharolytic enzyme activities were recorded in both grits and whole maize when 

soaked at 4 or 25°C. These were significantly reduced after soaking at 60°C. 

Soaking of grits at 60°C with a protease, or wet fine-milling of fermented grits 

resulted in significant (P < 0.05) increases in pasting viscosities. Peak viscosities 

increased with fermentation up to 24 h. Pasting viscosities decreased with 

increased extent of starch damage caused by repeated milling of dough. 

INTRODUCTION 

Kenkey, a popular Ghanaian staple is produced from fermented maize dough. 

During kenkey production (Muller and Nyarko-Mensah, 1972; 1993; Nche et al., 

1994a), part of the fermented dough (usually half) is slurried and cooked to 

gelatinisation to give a thick and sticky paste, called the aflata. This paste is then 

mixed with the uncooked remainder of the dough and serves as a binding agent 

(Sefa-Dedeh and Plange, 1989) as well as moisturizer. When kneaded together, the 

aflata holds the uncooked dough together into a dumpling which can then be 

shaped, wrapped and boiled to give kenkey. 

The quality of the aflata is very important in determining the desired textural 

qualities of the final product. The choice of ingredients and the pre-treatment of 

maize and dough for aflata production are, therefore, crucial to the achievement 

of these qualities. Local women kenkey producers recognise this fact and are 

meticulous in their choice of maize, usually favouring maize with a high swelling 

index during soaking (Sefa-Dedeh & Plange, 1989). 

1P.F. Nche, G.T. Odamtten, M.J.R. Nout and F.M. Rombouts (1994). Soaking determines the quality 
of aflata for kenkey production. Journal of Cereal Science, Submitted 
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In an attempt to shorten the long and tedious traditional kenkey 

manufacturing process, dry-milling and accelerated fermentation and the use of 

pre-gelatinised aflata have been suggested (Bediako-Amoa and Austin, 1976; Nche 

et al., 1994b). Dry-milling, however, has been shown to cause significant starch 

damage resulting in a dough of very low pasting and set-back viscosities (Adeyemi 

and Beckley, 1986). Soaking of maize, on the other hand, is known to limit starch 

damage during subsequent milling (Akingbala era/., 1987) and is considered crucial 

to the production of aflata with high pasting and set-back viscosities required for 

binding uncooked dough in the dumpling prior to cooking (Nche et al., 1994b). As 

soaking usually takes 24-48 hours, omission or shortening of this step would be 

desirable if production time is to be reduced for the purpose of industrial-scale 

kenkey manufacture. However, given the importance of soaking, it is necessary to 

understand which changes occur during this step and how they affect the optimum 

properties of aflata dough. These changes could be (bio)chemical (enzymatic, pH, 

acidity), microbiological (microbial proliferation) or physical (water uptake) and it 

is the aim of this study to investigate their individual and/or collective roles in 

determining the behaviour of aflata during kenkey production. 

MATERIALS AND METHODS 

Maize (Zea mays L cv. obataanba) was supplied by the Crops Research Institute, 

CSIR, Kwadaso, Ghana. 

Cleaning, disinfection and soaking of whole maize 

Before soaking, whole maize kernels were first rinsed with sterile distilled water 

and then disinfected for 5 min at room temperature in a 1 % solution of sodium 

hypochlorite. Treated kernels were then rinsed with sterile distilled water. Soaking 

took place at 4 or 25°C for 72 h, during which samples of steep water were 

analyzed on a daily basis for microbial load. Untreated maize soaked under the 

same conditions served as a control. 

Dry milling 

Dry whole maize was coarsely milled in a hammer mill (Fritsch Pulverisette Type 

14.702, Marius Instruments, Utrecht, The Netherlands) using a 12 teeth rotor and 

a 4 mm screen to obtain grits. Rotor speed was set at 2. 
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Wet milling 

Soaked whole grains were also coarsely milled using a 12 teeth rotor and a 4 mm 

screen. A 24 teeth rotor was then used together with either a 1 mm or 0.5 mm 

screen for fine-milling fermented dough from coarsely milled grits. Rotor speed was 

maintained at 2. 

Microbiological analysis 

Sampling, dilution and enumeration of total aerobic mesophyllic bacteria, lactic acid 

bacteria, Enterobacteriaceae and fungi were as described earlier (Nout et al., 

1987). 

Endogenous enzyme activity 

Using API-ZYM kit (API Products, Montalieu, Vercieu, France), endogenous enzyme 

activities in 1:10 homogenates (in distilled water) of soaked and dry maize were 

evaluated. Soaking was done at 4 °C, 25°C and 60°C. Dry milled maize (DM) was 

used as a standard and the test samples were either dry maize milled before 

soaking (DMS) or whole maize soaked before milling (WMS). The levels of enzyme 

activity were read from the standard API-ZYM colour chart after incubating 

samples for 4 hours at 37°C. This was on a scale of 0 - 5 indicating the amount 

of substrate hydrolysed by the enzymes; where 0, 1, 2, 3, 4 , 5 represented 0, 5, 

10, 20, 30 and > 40 nmoles of degraded substrate, respectively. 

Water uptake 

Pre-weighed whole kernels were soaked for 12, 24, 48 and 72 h, after which the 

water was drained and the weight increase measured as water uptake. Samples 

were taken of dry milled maize grits soaked for 2, 4 , 6 and 8 h, weighed and then 

dried for 48 h in a hot air oven maintained at 80°C to determine their moisture 

contents. Water uptake was determined by subtracting the moisture content of 

unsoaked maize flour from that of an equivalent amount of soaked grits. 

Viscosity of maize dough 

A Brabender Visco-Amylograph was used to measure the pasting characteristics 

of variously treated maize doughs. 9% (w/w dry matter) slurries of dough in 

distilled water were used and conditions used were as described elsewhere (Nche 

eta/. 1994b). 
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Treatment with proteolytic enzyme 

Some of the dry-milled maize was also soaked at 25 and 60CC in a 1 % (v/v) of a 

heat-stable mixture of acid, neutral and alkaline bacterial proteases (Protease-L 

660, Solvay Enzymes, Hannover) solution to determine the effects of proteolytic 

enzyme activity on the pasting characteristics of the resulting maize dough. 

Effect of pH on pasting characteristics 

Grits were slurried with distilled water and pH adjusted with 1 N HCl to the desired 

level. The pasting viscosity of the slurry was then determined using a Brabender 

Visco-Amylograph as described above. 

Fermentation time 

Grits were made into a dough by adding water (8:1 v /w), inoculated with recycled 

starter dough (Nche et al. 1994b) and fermented at 30°C for 0, 4 , 8, 12 and 

24 h. At the end of each fermentation period, the dough was slurried in distilled 

water and the slurry was adjusted to pH 6.0 with 1 N NaOH to eliminate the pH 

effect before measuring the pasting characteristics of the dough. 

RESULTS AND DISCUSSION 

During soaking of whole maize at 4 and 25°C increases of total aerobic counts in 

soak water were observed after 48 h incubation, reaching levels of > 105 cfu/ml 

in non-disinfected samples. On the other hand, 1 % (v/v) sodium hypochlorite was 

very effective at keeping the microbial load of disinfected kernels below 104 c fu/ml, 

and was subsequently used in cases requiring kernel disinfection. 

Water uptake at 4 and 25°C by soaking whole kernels reached 4 2 % (w/w, 

wet basis) after 24 h, and 50% after 72 h of soaking. Predictably, hydration was 

faster when the maize was coarsely milled before soaking. Water uptake reached 

63% in just 1 h of soaking. 

A high endogenous enzyme activity was recorded in both dry and soaked 

maize at 4°C and 25°C (Fig. 4.1). Following soaking at 4°C and 25°C, a-

galactosidase and a-mannosidase were stimulated, ß- galactosidase, a- and ß-

glucosidase, N-acetyl-ß glucosaminidase, leucine aralymidase and valine 

aralymidase activities remained unchanged, whilst cystine aralymidase, trypsin and 

chymotrypsin were suppressed. With the exception of ß-galactosidase and a-

mannosidase, all proteolytic and saccharolytic enzyme activities were suppressed 

following soaking at 60°C. 
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Figure 4 . 1 : Endogenous enzyme profiles of soaked and dry maize as determined 

with an API-ZYM kit. 
DM = dry-milled maize; DMS = dry-milled maize soaked for 2h; WMS = wet-milled maize; 
(1) control; (2) alkaline phosphatase; (3) esterase(C4); (4) esterase lipase (C8); (5) lipase (C14); 
(6) leucine aralymidase; (7) valine aralymidase; (8) cystine aralymidase; (9) trypsin; (10) 
chymotrypsin; (11) acid phosphatase; ( 12) naphthol-AS-bi-phosphohydrolase; ( 13) cr-galactosidase; 
(14)ß-galactosidase; (15) ß-glucoronidase; (16)cr-glucosidase; (17) ß-glucosidase; (18) N-Acetyl-ß-
glucosaminidase; (19) a-mannosidase; (20) o-fucosidase. 
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Figure 4 .2. The effect of soaking, with and without protease L-660 on the pasting 

properties of dry-milled maize dough. (1) dry-milled grits + water; (2) dry-milled 

grits soaked for 2h at 25°C with protease L-660; (3) dry-milled grits soaked for 2h 

at 60°C; (4) dry-milled grits soaked for 2h at 60°C with Protease L-660. 

Dry-milling resulted in a dough with very low pasting and set-back viscosities 

(Fig. 4.2), confirming earlier reports (Adeyemi and Beckley, 1986; Akingbala et al., 

1987) of the detrimental effect of dry-milling of maize on the pasting properties of 

ogi flour. Hydration alone did not improve the pasting properties of the maize 

dough since the soaking of grits at 60°C still did not improve on the very poor 

pasting characteristics. The gelatinisation temperature was 85°C and no peak was 

obtained during the heating phase, suggesting incomplete swelling of granules and 

an incomplete gelatinisation (Olkku and Rha, 1978). 

When a heat-stable proteolytic enzyme was added to soaking grits at 60°C, 

it resulted in significantly higher pasting and set-back viscosities (Fig. 4.2). The 

index of gelatinisation, peak viscosity and set-back viscosity of 610 B.U., 1325 
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B.U. and 1260 B.U., respectively, were comparable to those reported for traditional 

fermented maize dough (Nche eta/., 1994b), and ogi from soaked maize (Adeyemi 

and Beckley, 1986). The gelatiriisation temperature was also reduced from 85°C 

to 73°C. Soaking of grits with protease at room temperature, on the other hand, 

further reduced the pasting and set-back viscosities of the resulting dough (Fig. 

4.2). These observations may be explained in terms of starch damage during dry-

milling and the high endogenous enzyme activity in soaked grains. Dry-milling can 

result in high levels of mechanical starch damage (Akingbala et al., 1987). Adeyemi 

and Beckley (1986) reported levels of 41.1 % damaged starch in dry-milled maize. 

Such damage renders starch granules susceptible to attack by either endogenous 

amylolytic enzymes or hydrolytic enzymes of fermenting microorganisms 

(Akingbala era/., 1987). The result is a dough with very much reduced pasting and 

set-back viscosities. 

How endogenous or added proteolytic enzymes affect the viscosity of either 

whole or milled maize during soaking may depend on the arrangement of starch 

granules and the composition of the material embedding the granules in the 

endosperm. In the endosperm of wheat grains, for example, starch granules are 

surrounded by a composite of proteins, minerals and enzymes (Knight, 1965; 

Barlow et al. 1973). If this is true for maize grains, the effect of added or 

endogenous proteolytic enzymes, during soaking, will be to break down such a 

matrix embedding starch granules, thus allowing them to swell freely and gelatinise 

faster and better. Addition of the heat-stable proteolytic enzyme, protease L-660, 

during soaking of dry-milled maize flour at 25°C, did not affect pasting properties. 

This could be expected since firstly, 25°C is not the optimum temperature for this 

enzyme and secondly, because its effect would be counteracted by hydrolysis of 

damaged starch. The use of other proteases with optimum activities at ambient 

temperatures had a similar effect (data not included) to that obtained with Protease 

L-660. At 60CC, however, the activity of protease L-660 is highest and the matrix 

structure holding granules together (Knight, 1965; Tuschhoff, 1987) may be 

weakened, thus releasing starch granules. Also, at 60°C, all endogenous and 

microbial enzyme activity is suppressed, hence no hydrolysis of damaged or freed 

starch granules will occur. Following such treatment, starch granules will swell 

freely, when heated, exuding solubilised amylose (Miller et al., 1973) that will 

significantly increase the pasting and set-back viscosities of the dough. Sulphur-

reducing agents have also been used to disrupt protein disulphide bonds and 

enhance the swelling and gelatinisation of starches (Hamaker and Griffin, 1993). 

Soaking of maize and the eventual fermentation of dough results in a 
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lowered pH. To investigate how this factor may affect the pasting properties of 

aflata dough, the doughs from dry grits were adjusted with 1 N HCl to pH 6.0 

(initial pH of dry-milled maize), 5.6 (pH of wet-milled maize) and 3.6 (pH of a 3 

days' fermented dough), and their pasting and set-back viscosities were measured. 

Fig. 4.3 shows that lowering the pH of dry-milled flour had no positive effect on 

the pasting viscosity, which was slightly reduced instead. In all three cases, no 

peak was obtained during the heating phase, again indicating incomplete 

gelatinisation and consequently low set-back. 
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Figure 4 .3. The effect of pH on the pasting properties of dough from dry-milled 

maize. (1) pH 6.0; (2) pH 5.6; (3) pH 3.6 

Wet fine-milling (to pass through a 1.0 mm sieve) of fermented dough from 

grits, however, resulted in a significant increase in pasting viscosity (Fig. 4.4). In 

this case wet-milling limited mechanical damage of freed starch granules. Also, the 

lower pH of fermented dough would inhibit endogenous amylases to some extent. 
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Figure 4.4. The effect of fermentation time (0, 4 , 8, 12, and 24 hours) on the 

viscosity of dough from dry milled maize. 

A limited loss of starch through amylolysis would therefore occur. Only with wet-

milling following fermentation could the real effects of fermentation on the 

viscosity of maize dough be observed. Brabender Visco-Amylograms of doughs 

fermented for 0, 4 , 8, 12 and 24 h and then milled to pass through a 1.0 mm 

sieve, and adjusted to pH 6.0, show increasing pasting and set-back viscosities 

(Fig. 4.4). At 0 h, 4h and 8 h, no clear peak viscosities were obtained due to 

incomplete gelatinisation (Olkku and Rha, 1978), whereas after 12 and 24 h of 

fermentation, peak viscosities were obtained during the heating phase indicating 

a higher degree of gelatinisation. Fermentation for 24 h resulted in a lower 

gelatinisation temperature, a higher peak viscosity, but a reduced set-back 

viscosity compared with a 12 h fermented dough. These observations are in 

agreement with earlier reports (Banigo et al., 1974; Adeyemi and Beckley, 1986) 

that fermentation of maize flour increases the swelling and thickening potential of 
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the maize starch component. After 24 h fermentation, the starch component 

rapidly swells on heating to 95°C. Increasing the temperature of a starch 

suspension results in a reversible decrease in water mobility (Jaska, 1971 ) due to 

absorption by starch granules. At temperatures higher than the gelatinisation 

temperature, water mobility increases due to a decrease in the microviscosity of 

starch granules as they break up and exude their solubilised contents. The break 

up of most, if not all, of the swollen starch granules could mean that it takes 

longer for significant set-back to occur, hence the reduced set-back viscosity. 

Despite this, a 12 - 24 h fermentation would give a dough with adequate pasting 

characteristics provided, of course, that the maize is coarsely dry-milled, fermented 

and the aflata portion wet-milled before cooking to give aflata. 
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Figure 4.5. The effect of milling levels (to particle sizes of 4mm, 1 mm and 0.5mm) 

on the viscosity of 24 h-fermented dough from wet-milled maize. 

Even during the wet-milling of fermented dough or soaked maize, some 

degree of mechanical starch damage will occur. This is shown in Fig. 4 .5, where 
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repeated milling of coarsely wet-milled maize, to pass through 1 mm and 0.5 mm 

sieves, resulted in doughs with lower pasting and set-back viscosities than dough 

from coarsely wet-milled maize. 

Various factors have been listed as being important in the formation and 

determination of characteristics of starch gels. Amongst these factors are: the 

type, size and previous treatment of starch granules, as well as paste 

concentration, amylose/amylopectin ratio, and the temperature and time of cooking 

(Olkku and Rha, 1978). The results presented here confirm that a complex 

combination of factors, during soaking and milling of maize and fermentation of the 

resulting dough contribute to the final pasting characteristics of kenkey dough. 

Endogenous enzyme activity, hydration and grain softening during soaking combine 

to limit the degree of mechanical starch damage during milling and thus ensure 

better hydration and swelling of granules, a high degree of gelatinisation and the 

eventual set-back necessary for good aflata quality. 

Acidification of dough from dry-milled maize by accelerated natural 

fermentation and wet-milling of the aflata portion may be more acceptable than the 

use of proteolytic enzymes which would raise production costs and arouse 

consumer fears, as this may be interpreted in the same light as the addition of 

chemical substances to a product that has always been considered as natural. 

Soaking whole maize before milling, however, remains the best option for 

developing the necessary dough textural characteristics. 
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The effects of processing on the availability of lysine in kenkey1 

Abstract 

The effects of processing steps such as soaking, fermentation, cooking and drying 

on the availability of lysine in kenkey were investigated. Soaking increased lysine 

availability by 21 % and 22% for maize and maize-cowpea mixtures, respectively. 

Cooking of soaked samples further improved lysine availability by 6 8 % and 3 1 % 

for maize and maize-cowpea mixtures, respectively. Further significant 

improvements in lysine availability were effected by fermentation and cooking and 

values of 3.42 and 4.43 g/16g N were recorded, respectively, for maize and maize-

cowpea doughs, fermented for 4 days and cooked for 3 h. Cabinet drying had no 

significant effect on lysine availability, but drum drying of fermented maize and 

maize-cowpea doughs significantly lowered lysine availability in the resulting 

kenkey. A 1:1 mixture of cabinet and drum dried flours gave a product with higher 

available lysine content than the drum dried flour. 

INTRODUCTION 

Lysine is well established as one of the most important amino acids in animal and 

human nutrition. It has, however, been reported that in certain circumstances not 

all the lysine present in a protein is nutritionally available to the animal or human 

consumer (Björck et al., 1983). This is being attributed to the interaction of the e-

amino groups of lysine in heat-processed foods with other food constituents such 

as sugars, to become nutritionally unavailable (Geervani and Devi, 1986; Friedman 

and Finot, 1990). Many such interactions have been described and they include the 

reaction of free amino groups with carbonyl groups of sugars and fatty acids to 

form Maillard browning products, the formation of cross-linked amino acids such 

as lysinoalanine and glutamyllysine and the steric blocking of the action of 

digestive enzymes by newly-formed cross-links, as well as native ones such as 

disulphide bonds (Otterburn, 1989) which can result in the formation of aggregates 

that are very poorly susceptible to hydrolysis (Deshpande and Nielsen, 1987). 

'Nche, P.F., Nout, M.J.R. and Rombouts, F.M. (1994). The effect of processing on the availability of 
lysine in Kenkey, A Ghanaian fermented maize food. International Journal of Food Sciences and 
Nutrition, Accepted for publication. 
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Hence the total lysine content of foods itself is not always an accurate indication 

of the true nutritional value of the protein with respect to lysine (Hall et al., 1973, 

Faldet et al., 1992). 

Fermented cereal foods such as Ghanaian kenkey are prevalent in developing 

countries. Although a major energy source, such foods are also the source of a 

large proportion of the dietary protein which unfortunately is often seriously 

deficient in lysine (Clark era/ . , 1977, Friedman and Finot, 1990). It is, therefore, 

important that the processing of such foods is carefully controlled in order to 

maximize lysine availability. This also applies to cereal foods supplemented with 

legumes in an attempt to improve both protein quality and quantity. In such cases, 

it is important that the processing methods used do not undermine the quality 

improvement process intended with legume supplementation. 

Conventional methods used to measure lysine availability in foods are usually 

either chemical or biological. Biological methods involve the use of microorganisms 

such as Pediococcus cerevisiae (Hamad and Fields, 1979a; Umoh and Fields, 

1981). The use of rats and mice in growth response experiments is also on the 

increase (Sherr et al., 1989; Friedman and Finot, 1990; Faldet et al., 1992). 

Several chemical methods have also been used (Conkerton and Frampton, 1959; 

Carpenter, 1960; Hall et al., 1973), and most of these have as a basis, the Sanger 

reaction (Sanger, 1945) involving free e-amino groups of lysine and 

fluorodinitrobenzene (FDNB) or its derivatives. Hurrell etat. (1979) described a dye-

binding method for estimating reactive lysine in foods. Despite some 

disadvantages, chemical methods involving the use of FDNB and trinitrobenzene 

sulphonic acid (TNBS) or their derivatives are still being used because they are 

relatively easy and a large number of samples can be analyzed economically (Bakr 

and Gawish, 1992; Faldet et al., 1992). 

The aim of this study was to compare the effects of various treatments of 

raw materials during kenkey production on the availability of lysine in the final 

product. Alternative methods used to prepare kenkey were also evaluated for their 

effects on lysine availability. 

MATERIALS AND METHODS 

Maize (Zea mays L cv. obantaanba) and cowpea (Vigna unguiculata cv. benpla) 

were obtained from the Crops Research Institute, CSIR, Kwadaso, Ghana. 

50 



Lysine availability in kenkey 

Preparation of kenkey 

Traditional and accelerated kenkeys were prepared in the laboratory as described 

earlier (Nche eta/., 1994a,b). In the traditional laboratory-scale process (Fig. 2.1), 

maize or maize-cowpea mixtures (80:20) were cleaned and soaked for 2 days, 

after which the soak water was drained and the grains milled and made into a 

dough that was then placed in sealed plastic containers and allowed to ferment 

naturally at 30°C for 4 days. Fermented maize or maize-cowpea dough was 

divided into two parts, one of which was slurried and cooked to gelatinisation to 

give a gluey paste called the aflata which acts as a binder and moisturizer to the 

uncooked portion. This was then mixed in equal amounts with the uncooked 

portion, kneaded to give a dumpling from which balls of appropriate size ( « 300 

g) were shaped, wrapped, first in polyethylene sheaths and then aluminium foil, 

before being cooked in boiling water for 1 h to give kenkey. 

In the accelerated process (Chapter 3) dry-milled maize was used and dough 

was fermented for 24 h at 30°C. In this case, fermentation was started by a 

previously fermented dough called "back-slop" (Nout et al., 1989). After 

fermentation, the dough was also divided into two portions, one of which was 

simultaneously pre-gelatinised and dried on a drum drier (NV Goudse 

Machinefabriek, Waddinxveen, The Netherlands) to give a dry flour for convenient 

aflata production. The drum was preheated to 140°C and set to rotate at 1.5 

rev/min. The other portion was dried for 3 h at 60°C in a circulating hot air cabinet 

drier. A 1:1 mixture of the cabinet- and drum-dried flours was then re-hydrated to 

give a dumpling from which balls could be shaped and wrapped as above before 

cooking to give kenkey. Samples were stored at -80°C until required for analysis. 

Sample preparation and sampling 

Wet samples were freeze-dried and all samples were milled to pass through a 

0.5 mm sieve using a hammer mill (Fritsch Pulverisette, Type 14.702, Marius 

Instruments, Utrecht, The Netherlands). 1 g of each sample was accurately 

weighed and placed in a 100 ml volumetric flask containing 8 ml of acetone. 

50 ml of 0.1 % agar solution were added and the flask shaken vigorously to ensure 

adequate mixing. The suspension was then diluted to volume with 0 . 1 % agar 

solution. The contents of the flask were transferred into a 250 ml beaker. While 

still stirring with a magnetic stirrer, 0.5 ml of the suspension was pipetted into 

calibrated 12 ml Kimax tubes with screw caps. Available lysine was determined as 

described by Hall et ai. (1973). 
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Determination of lysine availability 

The method described by Hall et al., (1973), an improvement of the Carpenter 

method was chosen for its simplicity and used to investigate the effect of different 

processing steps on the availability of lysine in kenkey. In this method fluoro-2,4-

dinitrobenzene (FDNB) is replaced by 2,4,6-tri-nitrobenzene sulphonic acid (TNBS, 

Fluka Chemische Fabrik AG, Buchs SG, Switzerland) during the Sanger reaction 

with free e-amino groups of lysine. 

Total nitrogen content of samples was determined by a semi-automated 

version of the micro-Kjeldahl procedure (Roozen and van Boxtel, 1979). 

Statistical analyses 

All determinations were in duplicate and repeated 3 times. The data were analyzed 

by an independent t-test (SlideWrite Plus, version 5.0, Advanced Graphics 

Software, Inc. Carlsbad, USA) for significant differences. 

RESULTS AND DISCUSSION 

It is important to stress that although most chemical methods, including the one 

used here, are useful for a range of animal materials, they suffer significant 

drawbacks when applied to plant materials. On the one hand, acid hydrolysis steps 

employed in some of these methods result in some of the available lysine being 

rendered unavailable by easily reacting with aldose groups of carbohydrates (Hall 

et al., 1979), on the other hand, reactions between free amino and carbonyl 

groups during HCl hydrolysis can lead to Maillard browning products imparting 

unwanted coloration which affects spectrophotometric readings in the later stages 

of the protocols used. The result could be an overestimation of the available lysine 

content of the food sample (Friedman and Finot, 1990). 

Whilst not ignoring such drawbacks, it must, however, be stressed that this 

work was aimed more at assessing the comparative effects of processing on the 

availability of lysine than at absolute quantification of available lysine in kenkey. 

The effects of soaking, fermentation time, cooking t ime, cowpea-

supplementation (in traditional kenkey) and cabinet- and drum drying (in 

accelerated kenkey) on lysine availability were all investigated. Table 5.1 shows 

the effects of these treatments on the availability of lysine in raw grains, fermented 

dough and kenkey from both maize and maize-cowpea blends. Soaking of maize 

and maize-cowpea blends resulted in significant (p < 0.05) increases of 2 1 % and 

22%, respectively, in lysine availability. 
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Lysine availability in kenkey 

Cooking of unfermented dough (F0C,) resulted in increases in lysine availability of 

68% and 31 %, respectively, for maize and maize-cowpea doughs, compared with 

soaked samples. Fermentation further increased these values by up to 2 2 % and 

12% for 2 days' fermented maize and maize-cowpea doughs (i.e. FjC,) 

respectively, compared with FQC,. Prolonged fermentation and cooking effected 

further increases in lysine availability, wi th the highest values of 3.42 and 4.43 

g/16g N being obtained, respectively, for maize and maize-cowpea doughs 

fermented for 4 days and cooked for 3 h. These values represent improvements of 

118% and 4 8 % , respectively, on the effects of soaking. These results largely 

agree with those reported by Hamad and Fields (1979a,b) showing that 

fermentation of maize and other cereals effected significant improvements in lysine 

availability. Plahar et al. (1983) reported available lysine values of 2.60 and 3.46 

g/16 g N for dehydrated fermented maize meal and maize-soy (80:20) flour blends, 

respectively. Zamora and Fields (1979) also found significant improvements in the 

availability of limiting amino acids such as isoleucine, methionine and tryptophan 

following the lactic fermentation of cowpeas. In their studies of the availability of 

sulphur amino acids in six varieties of common beans (Phaseolus vulgaris), Marietta 

et al. (1992) reported significant decreases in available cystine in only two 

varieties, and no changes in the total cystine contents of all six varieties after 

soaking and cooking. The availability of lysine was, however, reported as 

unaffected by cooking. This difference in the availability of cystine and methionine 

was reported (Marietta et al., 1992) to be due to their presence, in different 

proportions, in various bean protein fractions (albumins, globulins and glutenins) 

which have been shown to have different digestibilities (Lanfer Marquez and Lajolo, 

1981). 

The total nitrogen contents of all samples remained largely the same, 

regardless of the treatment (Tables 1 & 2). Although not determined, it could also 

be deduced that the total lysine contents of all the samples were not significantly 

altered. Any changes in the amount of available lysine could, therefore, have been 

mainly the result of changes in the binding state of total lysine. 

A 20% supplementation with white cowpea resulted in a 7 4 % increase in 

the available lysine content of kenkey made by the traditional process ( F ^ , ) in 

comparison with the all-maize product. This increase is in line with increases in 

total lysine contents of maize-cowpea blends reported earlier (Nche eta/., 1994a). 

Accelerated lactic fermentation followed by cabinet drying of dough did not 

affect lysine availability in the resulting kenkey (Table 5.2). Drum drying, on the 

other hand, significantly [P < 0.01) reduced the available lysine contents of the 
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resulting kenkeys. Adeniji and Potter (1978) reported heavy losses of up to 3 8 % 

in available lysine of ogi following drum drying. We found a 3 3 % and 25% 

reduction in the amounts of available lysine in drum dried maize and maize-cowpea 

kenkeys, respectively. Addition of an equal amount of cabinet dried flour to drum 

dried flour to produce kenkey, did not only contribute to the desired texture of the 

final product, but also compensated for some of the available lysine lost as a result 

of drum drying (Table 5.2). The values obtained for available lysine in such 

mixtures were only 12% and 6% lower than for traditional maize and maize-

cowpea kenkeys, respectively. 

Results obtained for lysine availability in the raw materials (Table 5.1) were 

generally below the range of values of total lysine contents of raw maize and/or 

cowpeas although Hamad and Fields (1979a) reported even lower values for maize. 

Calculations from literature values (Hurrell and Carpenter, 1979; Kent, 1983; 

Bressani, 1985) give average total lysine contents of 2.5 and 3.6 g/16 g N for 

maize and 80:20 maize-cowpea blends, respectively. These values are well in line 

with the crude protein contents of 10.8% and 13% reported by Nche et al. 

(1994a) for maize and a 80:20 maize-cowpea mixture, respectively. The lower 

values of available lysine for the raw materials, however, could be attributed to the 

fact that these materials have lower protein digestibilities (Nche et al., 1993) and 

hence only a fraction of the actual lysine content will be available. Further 

processing, which includes fermentation and cooking, results in increased protein 

digestibilities and subsequently increased lysine availability. 

The results presented in this chapter clearly show that soaking, fermentation 

and boiling contribute significantly to the protein quality of the final product. Drum 

drying, however, will induce high loses in available lysine, but a mixture of cabinet 

and drum dried flours wil l, in addition to maintaining the texture of traditional 

kenkey, limit excessive losses in nutritive value with respect to lysine availability. 
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Chapter 6 

Investigation of the presence of biogenic amines and ethyl carbamate in kenkey1 

Abstract 

Kenkey is a fermented and cooked maize dough from Ghana. The effect of 

manufacturing conditions, i.e. fermentation and cooking, and of protein-enrichment 

by cowpea addition (20% of total weight) on the occurrence of toxic microbial 

products namely biogenic amines and ethyl carbamate were investigated. The 

levels of biogenic amines in all-maize kenkey were very low (total amines < 60 

ppm), but were significantly increased by addition of red cowpea (total amines < 

200 ppm, mainly cadaverine and tyramine), and even more by white cowpea (total 

amines < 500 ppm, mainly putrescine and tyramine). Histamine was absent ( < 5 

ppm) in all samples. The effects of fermentation and cooking were less pronounced 

than the influence of cowpea addition. Prolonged cooking of kenkey resulted in 

lower levels of putrescine, but did not significantly reduce tyramine levels. Ethyl 

carbamate levels were negligible ( < 1 1 ppb) in all treatments. 

INTRODUCTION 

Biogenic amines and ethyl carbamate are toxic substances which can be formed 

in foods, mainly by microbial enzymic activity. The biogenic amines of toxicological 

relevance include histamine, tyramine, ß-phenylethylamine, tryptamine, putrescine 

and cadaverine (Stratton et al., 1991). The major pathway of formation in foods 

is by decarboxylation of free amino acids. Various lactic acid bacteria and 

Enterobacteriaceae possess the required decarboxylase activity (Stratton et al., 

1991). 

Ethyl carbamate (urethane) has mutagenic and carcinogenic properties 

(Mirvish, 1986), and can be formed from reaction with ethanol and naturally 

occurring carbamyl phosphate during the fermentation process. Both compounds 

mainly result from yeast metabolism; ethyl carbamate can also be formed from 

reaction with ethanol and urea naturally produced from amino acids like arginine 

and citrulline (Ough, 1976; Matsudo eta/., 1993). 

Nout, M.J.R., Nche, P.F. and Hollman, P.C.H. (1994). Investigation of the presence of biogenic amines 
and ethyl carbamte in kenkey made from maize and maize-cowpea mixtures as influenced by process 
conditions. Food Additives and Contaminants 1 1 , 397-402. 
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Kenkey is a popular ready-to-eat staple food from Ghana. Basically, it 

consists of fermented maize dough shaped into balls wrapped in leaves and cooked 

in water (Muller, 1970; Muller and Nyarko-Mensah, 1972; Nche era/. , 1994). The 

major functional microorganisms in the fermentation are lactic acid bacteria, but 

yeasts and Enterobactericeae may occur as well in variable quantities. In addition, 

it is also possible to produce acceptable protein-enriched kenkey (Nche et al. 1994) 

by substituting 2 0 % of the maize used with cowpea {Vigna unguiculata) which, in 

Ghana, is more popular than soya beans. The enrichment with cowpea results in 

increased availability of amino acids from which biogenic amines may also be 

formed. 

The presence of varying levels of biogenic amines in, for example, cheese, 

sausage, wine, beer, soya sauce and miso (Stratton et al., 1991), and of ethyl 

carbamate in distilled spirits and wines, and fermented foods e.g. bread, soya 

sauce, miso and yeast spread (Diachenko et al., 1992) have been reported. In the 

absence of data concerning kenkey, the present investigation was carried out to 

evaluate the influence of processing, choice of ingredients and of representative 

microorganisms on the possible accumulation of biogenic amines and ethyl 

carbamate in kenkey made with maize or maize-cowpea mixtures. 

MATERIALS AND METHODS 

Maize (Zea mays cv. obaatanba) and red and white cowpeas (Vigna unguiculata 

cv. benpla and asontem, respectively) were obtained from the Crops Research 

Institute, CSIR, Kwadaso, Ghana. 

Manufacture of Kenkey 

Kenkey was prepared at laboratory-scale according to Nche era/. (1994). In short, 

1 kg of maize kernels (or a 4:1 mixture of maize and cowpea) was soaked for 2 

days at 4°C or 30°C (regular process) in 3 L of tap water. The soak water was 

drained and discarded, and the grain coarsely ground in a hammer mill (Fritsch 

Pulverisette Type 14.702, Marius Instruments, Utrecht, The Netherlands) with 

rotor and sieve (4 mm aperture) and made into a dough by adding water (1:3 v /w). 

The dough was placed in a 1 L beaker, covered and allowed to ferment naturally 

(regular process) for 3 days at 30°C. Alternatively, the dough was inoculated prior 

to fermentation, as described below. The fermented dough was divided into two 

equal portions, one of which was slurried with water (3:1 v/w) and stir-cooked to 
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gelatinisation to give the aflata. The cooked and uncooked portions were mixed, 

kneaded and dumplings were made and wrapped, first in polyethylene film followed 

by aluminium foil. The wrapped dumplings were immersed in boiling water to cook 

for 1 hour (regular process) or 3 hours. Samples for chemical analysis were 

prepared by grinding 100 g of composite sample from duplicate treatments, 

followed by frozen storage at -20°C until analysis. Chemical analyses were carried 

out in duplicate. 

Inoculum preparation 

Lactic acid bacteria which had been isolated previously from kenkey (Nche et al., 

1994) included Lactobacillus plantarum, L. confusus, L. brevis and Pediococcus 

pentosaceus. Pure cultures were grown in MRS broth (Merck Art. 10661) at 30°C 

for 24 hours. At the start of the dough fermentation period, a mixed inoculation of 

maize dough was achieved by adding 1 ml of each MRS culture per 100 g of 

dough, followed by thorough mixing. Similarly, 4 unidentified yeast isolates 

obtained from kenkey dough were pre-grown in Malt Extract Broth (Oxoid CM57) 

at 30°C for 24 hours. Inoculation of maize dough was as described above. 

Determination of biogenic amines 

A portion of 15 g dry matter was homogenized with 50 ml 5% trichloroacetic acid 

at 70°C in a 100 ml glass beaker using a Waring blender. After cooling to room 

temperature, the mixture was transferred quantitatively into a 100 ml volumetric 

flask and made up to the mark with 5% trichloroacetic acid. After mixing, a 50 ml 

portion was transferred into a centrifuge tube and centrifuged at 2500 g for 10 

minutes. The supernatant was filtered through filter paper (Schleicher and Schuil 

595 1/2, no. 311645). A 25 ml aliquot of filtrate was transferred into a 100 ml 

volumetric flask and diluted to the mark with distilled water. The diluted filtrate 

was filtered again through a 0.45 pm pore size filter (Millipore filter, type HVLP 

04700). Biogenic amines were separated by ion-exchange liquid chromatography 

(LC) and detected with a fluorescence detector after post-column derivatisation 

with o-phthalaldehyde adapted from Walters (1984). The detection limit was 

1 mg/kg, and data had a coefficient of variation of 10%. The LC conditions were 

as follows: column: stationary phase Zorbax 300 SCX strong cation exchange resin 

(Dupont no. 28768); mobile phase (eluent): 70 parts by volume of 0.1 M 

phosphate buffer, pH 6.1 and 30 parts by volume of methanol; elution rate: 1.0 

ml/min. Post-column derivatisation was carried out at 45°C in a 900 x 0.5 mm i.d. 

Teflon reactor spiral. The reagent for post-column derivatisation was added at 
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0.8 ml/min and consisted of freshly mixed solutions of A and B. Solution A: 12.5 

g boric acid (Merck art. 165) in 475 ml distilled water adjusted with KOH to pH 

10.4. Solution B: 300 mg o-phthalaldehyde (Merck art. 11452) in 5 ml ethanol 

96% (Merck art. 983) to which 100 /J\ 2-mercaptoethanol (Merck art. 805740) 

was added. Detection was carried out with a fluorescence detector (Waters type 

420 with lamp 78245) with ^„xc i ta t ion = 338 nm and AmMon > 420 nm. Samples 

were extracted in duplicate. Each extract was chromatographed twice. The 

reported data are means of the 4 determinations. 

Detection of ethyl carbamate 

Ten grams of sample were homogenized and extracted in duplicate with methylene 

chloride according to the procedure for bread (Canas et al., 1989). Each 

concentrated extract was analyzed in duplicate by gas liquid chromatography (GLC) 

according to Kesselmans er al. (1986), applying the following conditions: column: 

CP wax-52 CB, WCOT fused silica length 50 m, inner diameter 0.32 mm; carrier 

N2 (120 kPa), make-up He (115 kPa), detector H2 (67 kPa), air (102 kPa); NPD-

detector in NP-mode (Potassium tablet); injection volume 1.0 fj\ on-column; 

temperature programme: 20°C for 20 s, 20-87°C in 40 s, 87-180°C at a rate of 

8°C per minute, 180-190°C at a rate of 10°C per minute, 190°C for 20 min. The 

recoveries for ethyl carbamate (EC) in spiked kenkey samples varied from 45 to 

50%. The detection limit of EC in extract by GLC was 10/vg/l, corresponding with 

11 /yg/kg (11 ppb) in the original sample. Data had a coefficient of variation of 

5.5% at 200 ppb level. 

RESULTS AND DISCUSSION 

Table 6.1 shows the treatments investigated, and the levels of cadaverine, 

histamine, putrescine, tryptamine and tyramine determined expressed as mg/kg 

sample dry weight. In addition, the pH of the fermented dough prior to cooking 

was recorded to serve as an index of fermentation. When soaking and dough 

incubation were carried out at 4 °C (treatment A), no fermentation took place. This 

was indicated by the almost neutral pH, as well as very low total plate count (data 

not shown). In doughs, natural fermentation at 30°C resulted in 108-109 cfu/g of 

lactic acid bacteria, 102-103 cfu/g of yeasts, while Enterobacteriaceae could not be 

detected (data not shown). These levels of microorganisms are in line with those 

reported earlier for laboratory-made kenkey (Nche et al., 1994) 
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Table 6 .1 . Biogenic amines (mg/kg dry matter) in maize- and maize-cowpea-based 

kenkey processing stages. 

Treatment code 

100% maize 80% 

A 

Soaking2 & fermentation 

temperature 

Added inoculum 

Fermented dough 

pH 

Cadaverine 

Histamine 

Putrescine 

Tryptamine 

Tyramine 

Cooked at 100°C for 

(Kenkey) 

Cadaverine 

Histamine 

Putrescine 

Tryptamine 

Tyramine 

4°C 

-

6.49 

< 2 2 

< 5 

< 1 1 

< 5 

78 

1 h 

< 2 5 

< 5 

< 1 3 

< 5 

50 

20% 

B 

30°C 

-

4.01 

< 2 2 

< 5 

< 1 1 

< 5 

11 

1 h 

< 2 5 

< 5 

13 

< 5 

< 1 3 

Raw material 

maize 

red CP1 

C 

30°C 

-

4.09 

100 

< 5 

22 

< 5 

56 

1 h 

113 

< 5 

< 1 3 

< 5 

63 

D 

30°C 

-

4.01 

< 2 2 

< 5 

377 

< 5 

200 

1 h 

< 2 5 

< 5 

325 

< 5 

163 

8 0 % maize 

2 0 % white CP 

D' 

3 h 

< 2 5 

< 5 

< 1 3 

< 5 

175 

E 

30°C 

LAB3 

3.75 

78 

< 5 

89 

< 5 

200 

1 h 

63 

< 5 

63 

< 5 

200 

F 

30°C 

Yeasts4 

4.20 

< 2 2 

< 5 

244 

< 5 

200 

1 h 

< 2 5 

< 5 

138 

< 5 

175 

^ o w p e a 
2Whole kernels soaked for 2 days, followed by grinding and 3 days' fermentation of 

resulting dough. 
3Multi-strain mixture of lactic acid bacteria isolated from kenkey. 
4Multi-strain mixture of yeasts isolated from kenkey dough. 
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When comparing treatments B, C and D, an assessment of the effect of ingredients 

can be made. Whereas maize alone hardly enabled formation of biogenic amines, 

addition of 20% red cowpea caused a significant increase of cadaverine and 

tyramine levels, and addition of 20% white cowpea gave even higher 

concentrations, mainly of putrescine and tyramine. The general increase can be 

explained by the supply of precursor amino acids by cowpea. The different effect 

of red vs white cowpea could be due to different ranges and levels of free amino 

acids. Also, polyphenols present in red cowpea seed coat may inhibit 

decarboxylases (Ogun et al., 1989). 

Treatments A and B allow an evaluation of the effect of natural 

fermentation. Although maize was shown not to be a strong precursor for biogenic 

amines, it was observed that non-fermented maize dough and kenkey (A) had a 

somewhat higher tyramine content compared with fermented dough and kenkey 

(B). These limited data suggest that in (A), formation of tyramine can be explained 

by the combined action of endogenous proteolytic and decarboxylating enzymes 

(Devi and Prasad, 1992). When actively growing microorganisms are present (B), 

some of the free amino acids are not converted into biogenic amines. In addition, 

the low pH in the fermented dough may be inhibitory to decarboxylases causing 

a lower amine level. 

Treatments D, E and F show the difference between natural and inoculum-

supplemented fermentations. The inoculation with a mixture of lactic acid bacteria 

caused a strong reduction of putrescine, but cadaverine slightly increased. Addition 

of lactic acid bacteria had no significant effect on tyramine levels. Added yeasts 

had no significant effects on either cadaverine or tyramine, but caused a significant 

decrease of putrescine levels. 

A comparison of dough and kenkey, and of treatments D and D' indicates 

the effect of cooking. A 1-hour cooking period (compare D,E,F-dough with D,E,F-

cooked kenkey) caused a slight (non-significant) decrease of the tyramine level 

only; extended cooking (D') for 3 hours significantly reduced the putrescine level. 

In general, histamine and tryptamine were absent in all samples. Non-

enriched whole maize kenkey did not contain significant levels of any of the tested 

biogenic amines and may be regarded as a safe product with regard to amines. On 

the other hand, the enrichment of kenkey with 20% cowpea significantly increased 

the levels of biogenic amines. Not all amines are equally toxic. Histamine and 

tyramine are especially associated with symptoms of intoxication. Although the 

other amines are considered to potentiate the toxic effect of histamine and 

tyramine, few quantitative data about such interactions in vivo are available 
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(Stratton et al., 1991). Histamine was absent ( < 5 ppm) in all samples, but 

tyramine was present in detectable quantities (60-200 ppm). In particular, the 

tyramine concentrations in cowpea-enriched kenkey could be considered as 

"moderately high" when compared with similar data for cheese (Stratton et al., 

1991). Considering the present lack of knowledge about the toxicity of tyramine 

in the presence of cadaverine and putrescine, it is not possible to simplify the 

results by, for example, calculating a weighted total biogenic amines level, or to 

compensate decreased levels of putrescine with increased cadaverine or tyramine 

concentrations. Taking into account that kenkey is an everyday staple food, it will 

nevertheless be important to minimize the level of biogenic amines in cowpea-

enriched kenkey as much as possible. The data show that prolonged cooking 

contributes only marginally to lowering the amine levels. Consequently, it will be 

of interest to select lactic acid bacteria with the ability to degrade amines (Beutling, 

1992), and to investigate their usefulness as starter organisms with a v iew to 

obtain low-amine enriched kenkey. 

With regard to ethyl carbamate, all samples contained less than 11 ppb (the 

detection limit). This appears to correspond with the reported absence of ethyl 

carbamate in a range of fermented foods in which yeasts were not involved as a 

major population (Diachenko et al., 1992), whereas levels of up to 84 ppb (soya 

sauce) were found in fermented foods in which alcoholic fermentation had taken 

place to some extent and an average of approximately 200 ppb was reported for 

alcoholic beverages. The tolerance level of ethyl carbamate as applied in Canada 

varies from 30 ppb in wines to 400 ppb in distilled spirits (Diachenko et al., 1992). 

This implies that ethyl carbamate is not a factor of public health relevance in 

kenkey or in cowpea-enriched kenkey. Most likely, the absence of ethyl carbamate 

is due to inadequate levels of ethanol and/or precursors such as citrulline, arginine 

or urea in the product. 
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Gas production by Clostridium perfringens as a measure of the fermentability of 
carbohydrates and processed cereal-legume foods1 

Abstract 

A new and improved method was developed for the in vitro measurement of gas 

produced by Clostridium perfringens, in an attempt to determine the fermentability 

of pure carbohydrates, processed legumes and cereal-legume mixtures. The 

bacterial strain, inoculum and substrate concentrations and type of carbohydrate 

all proved to be important factors affecting in vitro gas production by CI. 

perfringens. Whilst one strain, NCTC 8239, remained relatively unaffected, strain 

83V70-2 tended to be inhibited by glucose concentrations > 1.5%. A 10-fold 

dilution of the active inoculum reduced the rate of gas production, whilst a 50-fold 

dilution produced no gas in 24 hours. Strain NCTC 8239 was able to ferment a 

wide range of carbohydrates, with the exception of xylose. Arabinose, ribose and 

raffinose were, however, only moderately fermented. Native starch was also poorly 

fermented but after heating, was fermented with vigorous gas production. Cooked, 

lactic-fermented cereal-legume composite doughs produced less gas compared to 

cooked non-fermented doughs. Soaking resulted in decreased fermentability of 

cowpea and pigeon pea, but the opposite effect was observed with soaked 

mungbean and soya bean. Fungal fermentation (with Rhizopus oligosporus) into 

tempe also had varying effects on fermentability, depending on the legume. Fungal-

fermented cowpea, groundnut and pigeon pea produced more gas than similarly 

treated mungbean and soya bean. Steaming these products again had contrasting 

effects, with cowpea and pigeon pea showing reduced fermentability whilst the 

fermentability of mungbean and soya bean increased. 

INTRODUCTION 

The large scale consumption of legumes is often hindered by their poor digestibility, 

a consequence of which is the induction of flatus in both humans and animals 

(Hellendoorn, 1969; Reddy era/. , 1980; Kennedy et al., 1985). Legumes contain 

Nene, P.F., Nout, M.J.R. and Rombouts, F.M. (1994). Gas production by Clostridium perfringens as 
a measure of the fermentability of carbohydrates and cereal-legume foods. Food Microbiology 11 , 21-
29. 
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high levels of indigestible oligosaccharides (a-galactosides) of the raffinose family, 

unavailable starch and other carbohydrate fractions (Hellendoorn, 1969; Murphy 

era/ . , 1972; Fleming, 1981 ; Kennedy et al., 1985). These carbohydrates escape 

digestion in the upper gut and end up in the colon where they could be fermented 

by colon microflora to produce volatile fatty acids (Englyst and Macfarlane 1986, 

Macfarlane and Englyst 1986, Kikuchi and Sakata 1992) and gas which results in 

flatus (Richards era/., 1968; Rackis era/., 1970; Speck et al., 1970; Savitri et al., 

1986). 

Clostridium perfringens is one of the many saccharolytic bacteria (Rockland 

eta/., 1969; Cummings and Macfarlane, 1991) that occur in the colon microflora 

and contribute to the fermentation of sugars and other carbohydrates reaching the 

colon. This bacterium has, therefore, been used in in vitro methods to determine 

the fermentability of legumes and legume foods (Rockland era/. , 1969; El Faki et 

al., 1983; Savitri et al., 1986; Nowak and Steinkraus, 1988). Most of the in vitro 

methods reported involve the measurement of gas released from the fermentation 

of either pure sugars in defined media, or food homogenates inoculated with CI. 

perfringens. In these methods gas measurement usually involves the use of 

graduated syringes (El Faki et al., 1983; Savitri et al., 1986; Nowak and 

Steinkraus, 1988), but inverted (10 x 75 mm) borosilicate glass test tubes 

(Rockland et al., 1969), head space pressure (Beuvink and Spoelstra, 1992) and 

horizontal pipettes (Kikuchi and Sakata, 1992) have also been used. These 

methods vary in accuracy and reproducibility hence the large variability in reported 

results. 

This study was aimed at carrying out comparative determinations of the 

fermentability of legume food samples as influenced by process conditions viz. 

soaking, fermentation and cooking. To this effect, the sensitivity and reproducibility 

of the syringe method was evaluated. A new sensitive U-tube system for 

measuring gas production was developed, and test conditions were standardized. 

Using several strains of CI. perfringens, a range of carbohydrates, cereal and 

legume foods at different processing stages were tested for fermentability in an 

attempt to establish their flatulence potential after processing. 

MATERIALS AND METHODS 

Maize [Zea mays) and the legumes cowpea (Vigna unguiculata), pigeon pea 

{Cajanus cajan), soya bean (Glycine max), mungbean (Vigna radiata) and 

groundnuts (Arachis hypogaea) were obtained from Grano-Drente, Meeuwen, The 
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Netherlands. All processed samples were freeze-dried and milled in a hammer mill 

(Fritsch pulverisette. Type 14.702, Marius Instruments, Utrecht, The Netherlands) 

to pass through a 0.5 mm sieve before being tested for fermentability. The test 

strains were Clostridium perfringens 83V70-2, 83 .42 .1 , 84.1.1 and NCTC 8239, 

obtained from the National Institute of Public Health and Environmental Hygiene 

(RIVM), Bilthoven, The Netherlands. With the exception of maize starch and ribose 

(Sigma Chemical Co. St. Louis, USA), all other carbohydrates used were obtained 

from Merck (E. Merck, Darmstadt, Germany). 

Measurement of gas production 

I. Syringe method. 

An active inoculum of CI. perfringens was obtained from a 24 h pre-culture at 37°C 

in thioglycollate medium U.S.P.fOxoid CM173). 1 ml of this pre-culture was used 

to inoculate 20 ml of sugar free thioglycollate medium (per litre: 5.0 g yeast 

extract, 15.0 g tryptone, 0.5g sodium thioglycollate, 2.5 g NaCI, 0.5 g L-cystine, 

0.5 g Agar No. 1, pH 7.1 ) to which had been added the appropriate concentration 

of pure carbohydrate or 2% w /w freeze-dried, processed cereal-legume mix to be 

tested. 5 ml each of this culture suspension were then drawn into pre-weighed 

graduated 20 ml sterile plastipak syringes (Becton Dickinson, Dun Laoghaire, Co. 

Dublin, Ireland). After recording the exact weight of culture in the syringe, its 

hypodermic needle was pushed into a rubber bung to ensure hermetic closure. The 

syringes were then placed in a 37°C water bath such that the portion containing 

the culture medium was submerged. Unless otherwise stated, triplicate syringes 

were used. The volume of gas released was measured by following the movement 

of the plunger in the syringe. Readings were taken at regular time intervals. 

I I. The pressure-free U-tube (PFUT) method 

Figure 7.1 illustrates the experimental device (pressure-free U-tube, PFUT) which 

was developed to measure periodically the volume of gas produced. A volume of 

approximately 10 ml of freshly inoculated liquid medium is introduced into a sterile 

pre-weighed tube (1). The weight of the culture is recorded to enable expression 

of gas production per unit weight of substrate. With valve (4) opened, the tube is 

connected to the U-tube system via a rubber bung equipped with a hypodermic 

needle (2). Because of the connection of the U-tube with the atmosphere, the 

liquid (7) levels in both arms are at equal height (6). At time = 0, valve (4) is 

closed and the whole set up is arranged such that the culture tube (1) suspends 
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in a waterbath (3) maintained at 37°C by a thermostat heater (Haake D 1 , 

Karlsruhe, Germany). During incubation, pressure exerted by the gas released 

forces the liquid (7) into the spiralized arm of the U-tube. The spiral is meant to 

increase capacity without making the equipment cumbersome. At regular intervals, 

a 10 ml graduated gastight syringe (5) is connected to valve (4), the valve is 

opened and the gas produced is drawn up into the syringe until the liquid (7) 

reaches its original level (6). The valve is closed, the syringe removed and the 

amount of gas produced is read from the position of the plunger in the syringe. 

Figure 7 . 1 . Pressure-free U-tube device for gas measurement. (1) culture vessel 

wi th known weight of culture medium (about 10 ml); (2) hypodermic needle linking 

culture vessel wi th U-tube; (3) thermostat controlled waterbath; (4) Valve; 

(5) detachable gastight syringe (10 ml Hamilton 1010 Til); (6) reference mark 

(7) U-tube liquid (saturated NaCI solution, pH 1 ); (8) spiralized glass capillary tube 

(inner diameter = 3 mm; length = 50 cm) 
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RESULTS AND DISCUSSION 

Figure 7.2 shows gas production using the syringe and U-tube methods. The 

syringe method gave highly variable values due to friction between plunger and 

syringe, and this is evident in the volume displacements of the syringe plunger 

which were considerably less than values recorded in the U-tube. A 2 h delay was 

often required before any movement of the plunger could be recorded. The 

sensitivity of the U-tube is shown by the early initial recording of gas production 

and the higher values obtained. Reduced friction in the U-tube resulted in better 

reproducibility as shown by a lower standard deviation in the recorded values. In 

addition, the absence of overpressure in the system limits the amount of C02 

dissolving in the culture medium. Compared to the pressure-free system described 

by Kikuchi and Sakata (1992), there is no need for graduated pipettes in which to 

collect the gas. We also found that the larger internal diameter of graduated 

pipettes resulted in easy collapse of the liquid meniscus. 

8 12 16 
Time (h) 

- A - Syringe method - O - Pressure-free U-tube 

Figure 7.2. Gas production (ml) by CI. perfringens strain NCTC 8239 in 10 ml 

thioglycollate broth with 2% glucose. (Bars indicate standard deviation). 

The effect of substrate concentration on the total gas produced (Table 7.1) 

was investigated in sugar-free thioglycollate medium to which different glucose 

concentrations had been added. The two strains of CI. perfringens used showed 

significant (p s 0.05) inhibition at glucose concentrations > 1.5%. In order to 
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standardise experimental conditions and to avoid unwanted inhibitory effects, the 

level of carbohydrate was limited to 2% in further experiments. 

Table 7 .1 . Effect of glucose concentration on gas production by Clostridium 

perfringens 

Glucose (%) Gas produced (ml)1 

strain 83V70-2 strain NCTC 8239 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0.00 ± 0.002 

8.83 ± 0.85 

12.00 ± 0.82 

13.17 ± 1.17 

11.50 ± 1.50 

9.35 ± 0.78 

6.77 ± 0.92 

0.00 ± 0.00 

12.98 ± 1.89 

15.17 ± 0.62 

13.53 ± 0.29 

17.58 ± 0.51 

12.58 ± 0.31 

12.53 ± 0.21 

1Total gas produced in 10 ml culture after 24 h incubation at 37°C. 
2Mean ± s.d. (n = 3). 

Table 7.2. Effect of inoculum size on growth and gas production by CI. perfringens 

strain NCTC 8239 in thioglycollate broth with 2% glucose. 

Incubation 

Time (h) 

0 

3 

6 

24 

Undiluted inoculum1 

Log10cfu/ml Gas (ml)2 

7.02 0.00 ± 0.00 

7.88 1.63 ± 0.13 

8.95 5.75 ± 0.25 

7.90 17.63 ± 0.63 

10-fold dilution 

Log10cfu/ml Gas (ml) 

6.15 0.00 ± 0.00 

6.25 0.33 ± 0.08 

8.14 3.70 ± 0.21 

7.91 21.13 ± 1.47 

1Pre-cultured in 10% v/v Brain Heart Infusion medium for 24 h at 37°C. 
2Mean ± s.d. (n = 3). 
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Table 7.2 shows that the rate and amount of gas produced were very much 

influenced by the initial cell density of the inoculum. A 10 fold dilution of inoculum 

resulted initially in a slower rate of gas production, although this had no effect on 

the total gas produced after 24 h. Further dilution by 50 fold resulted in no gas 

production within the 24 h of measurement (result not shown). Although not 

tested here, inoculation at levels exceeding 107 cfu/ml could be expected to 

increase the rate and possibly the amount of gas production. This would, however, 

require additional preparatory work with centrifugation and re-suspension, whilst 

avoiding any unwanted contamination. Other authors (Nowak and Steinkraus, 

1988) have also reported a good positive correlation between gas production and 

cell density. 

The ability of CI. perfringens strain NCTC 8239 to ferment a wide range of 

carbohydrates is presented in Table 7.3. With the exception of xylose, all other 

carbohydrates tested were fermented. The pentoses arabinose and ribose and the 

trisaccharide raffinose were, however, fermented with only moderate gas 

production. Native starch was poorly fermented, probably because of its 

inaccessibility. However, after heating, the then gelatinised starch caused the 

highest gas production recorded. These results fall in line with previous reports 

(Nowak and Steinkraus 1988) showing that gas production by CI. perfringens 546 

varied with the carbohydrate present in the culture medium. This variation could 

be related to the ability of the bacteria to adapt to the carbohydrate tested, or in 

the case of the pentoses, to the different pattern of fermentation products formed. 

Tests to the effect of induction showed that CI. perfringens pre-cultured on 

glucose-containing thioglycollate medium produced relatively small amounts of gas 

on raffinose compared with glucose. However, if pre-cultured on raffinose, gas 

production by strains 83.42.1 and NCTC 8239 on raffinose was doubled (Table 

7.4). Strain 84 .1 .1 , on the other hand, responded differently by producing very 

little gas on raffinose irrespective of pre-cultivation conditions. An adaptive 

response to different carbohydrates by Bacteroides ovatus was reported by 

Macfarlane et al, 1990. These authors showed that B. ovatus was able to 

synthesize enzymes specific to the carbohydrate contained in the culture medium. 

The response of the CI. perfringens strains 83.42.1 and NCTC 8239 is probably 

an indication of their ability to synthesize the enzymes required to degrade the 

various carbohydrates tested. 
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Table 7.3. Growth and gas production by CI. perfringens strain NCTC 8239 

incubated for 24 h at 37CC on 2% carbohydrate in thioglycollate broth (inoculum 

pre-cultured in thioglycollate broth with 0 .5% glucose) 

Carbohydrate 

None 

Arabinose 

Fructose 

Galactose 

Glucose 

Maltose 

Mannose 

Raffinose 

Ribose 

Starch (native) 

Starch (heated5) 

Sucrose 

Xylose 

O.D.3 

0.64 

1.02 

3.39 

3.20 

3.67 

4.25 

ND 

1.23 

1.46 

ND 

ND 

4.16 

ND 

Growth 

Log10cfu/ml 

8.04 

ND4 

8.18 

8.18 

7.90 

7.87 

ND 

7.88 

ND 

ND 

8.63 

ND 

ND 

Gas1 (ml) 

0.00 

3.40 

20.00 

16.90 

22.80 

23.40 

19.20 

8.50 

10.00 

4.10 

24.60 

16.80 

0.00 

s.d.2 

0.00 

0.20 

0.30 

0.10 

1.70 

0.40 

1.10 

0.10 

0.10 

0.10 

1.50 

1.70 

0.00 

1Total gas measured after 24 h incubation at 37°C; 2Standard deviation (n = 3); 
3Optical density at 660 nm, measured as diluted samples in the range < 1 . 0 and 

multiplied by respective dilution factors; 4Not determined; 5Heated for 10 minutes 

at 90°C. 

Growth of the bacteria was determined by both plate counts and 

spectrophotometric measurements of optical density (O.D.) at 660 nm, using a DU 

Series 60 spectrophotometer (Beekman Instruments, Mijdrecht, The Netherlands). 

An interesting observation to note here is that, whereas plate counts of colony 

forming units, after 24 h incubation at 37°C, were of the same order of magnitude, 

regardless of the carbohydrate tested (Table 7.3), some carbohydrates e.g. glucose 

and maltose produced much more biomass (measured as O.D.) compared with 

raffinose or the sugar-free control. This indicates that a high turnover of cells 

occurs, and that the difference in O.D. values represents already dead cells which 

76 



Fermentability of cereal-legume foods 

are, nonetheless, detected spectrophotometrically. High O.D. values also correlate 

much better with total gas production (Pearson's r2 = 0.88) than do plate counts 

(r2 = 0.09). 

Table 7.4. Effect of pre-culturing conditions on gas production by CI. perfringens 

in thioglycollate broth containing glucose or raffinose. 

Pre-cultured1 in Gas2 production (with s.d.3) in thioglycollate broth containing: 

thioglycollate w i th: 2% glucose 2 % raffinose 

0 .5% glucose 

Strain 83.42.1 13.50(0.60) 5 .30(0.30) 

Strain NCTC 8239 22.80(1.70) 8 .50(0.10) 

Strain 84.1.1 20.60(0.10) 1.00(0.10) 

2% raffinose 

Strain 83.42.1 17.70(0.39) 9 .10(0.10) 

Strain NCTC 8239 18.80(0.10) 20 .10(0 .10) 

Strain 84.1.1 14.17 (0.92) 0.30 (0.10) 

124 h at 37°C; 2Total gas produced after 24 h expressed in ml; 3standard deviation 

(n = 3); 

In addition to pure carbohydrates, several food samples were tested for their 

fermentability following different process treatments. Table 7.5 shows results 

obtained with raw and processed cereal-legume mixtures. As can be expected from 

earlier results with pure carbohydrates (Table 7.3), gas production from food 

samples reflected the availability of fermentable carbohydrates. Freshly milled raw 

composite flours containing maize, sorghum and several legumes contain sufficient 

fermentable carbohydrates such as mono- and disaccharides. After only natural 

lactic fermentation, the fermentability for CI. perfringens is considerably lower 

since easily fermentable mono- and disaccharides have already been consumed by 

lactic acid bacteria. However, the starch fraction is still in native form, not having 

been heated or degraded and lactic acid bacteria are very poor starch degraders. 

Cooking the fermented dough, however, results in starch gelatinisation hence 

increased fermentability of starch (compare Table 7.3) wi th the exception of 
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groundnut mix. With the exception of soya bean mix, less gas was produced from 

cooked fermented doughs compared with cooked non-fermented flours which still 

contained higher levels of mono- and disaccharides (data not shown). 

Table 7.5. Fermentability of processed cereal-legume mixtures by CI. perfringens 

strain 83V70-2. (Total gas production in 24 h at 37CC, expressed as ml g"1 dry 

matter). 

Processing 

stage 

Raw 

Fermented2 

Fermented 

& cooked3 

Non-fermented 

& cooked 

MSC 

(30:30:40)1 

40 

15 

30 

55 

MSG 

(30:35:35) 

55 

10 

0 

20 

MSM 

(30:30:40) 

50 

10 

35 

60 

MSP 

(30:30:40) 

35 

10 

25 

35 

MSS 

(35:35:30) 

30 

15 

45 

0 

h e i g h t ratio on dry matter basis; decelerated natural lactic fermentation at 30°C 

for 24 h; 3Cooked at 100°C for 5 minutes. MSC = maize/sorghum/cowpea; 

MSG = maize/sorghum/groundnut; MSM = maize/sorghum/mungbean; 

MSP = maize/sorghum/pigeon pea; MSS = maize/sorghum/soya bean 

Table 7.6 summarizes the extent of fermentability of legumes when 

processed into tempe. Except for groundnuts, raw legumes contain readily 

fermentable carbohydrates. Soaking, followed by cooking had varying effects on 

fermentability. In cowpea and pigeon pea, fermentability decreased, possibly due 

to loss of fermentable carbohydrates by leaching. Soaking and cooking have also 

been reported to reduce the oligosaccharide content of some legumes, resulting in 

a decrease in flatulence (Silva and Braga, 1982; Jood era/., 1985). Mungbeanand 

soya bean, on the other hand, showed increased fermentability. This could be 

attributed to better availability of polysaccharides (i.e. starch in mungbean) or to 

inactivation of antimicrobial factors such as were described by Nowak and 

Steinkraus (1988), in soya beans. 
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Table 7.6. Effect of the tempe manufacturing process on the fermentability of 

legumes by CI. perfringens strain 83V70-2. (Total gas production in 24 h at 37CC, 

expressed as ml g"1 dry matter). 

Processing stage 

Raw 

Soaked 

& cooked1 

Fermented2 

Steamed3 

Cowpea 

40 

15 

40 

20 

Groundnut 

0 

0 

10 

10 

Mungbean 

20 

40 

0 

50 

Pigeon pea 

45 

0 

110 

30 

Soya bean 

10 

25 

0 

5 

Soaked overnight at 25°C, drained and cooked in fresh water at 100°C for 25 

minutes; 2fermented with Rhizopus oligosporus at 30°C for 44 hours; 3Fresh tempe 

steamed for 15 minutes. 

Fungal fermentation had different effects depending on the legume used. 

Increases in fermentability were found in cowpea, groundnut and pigeon pea. Such 

increases might have been caused by improved accessibility of fermentable 

substrate, due to the enzymes produced by Rhizopus oligosporus (Sarrette et al, 

1992). Fungal fermentation of mungbean and soya bean, on the other hand, 

resulted in reduced fermentability. Presumably here, any fermentable carbohydrates 

liberated had been assimilated during the fermentation (as in Table 7.5). In 

addition, the formation of antimicrobial substances by R. oligosporus in soya bean 

was reported elsewhere (Wang et al., 1969; Nowak and Steinkraus, 1988; Nout 

and Rombouts, 1990). If present, such antimicrobials might have affected the gas 

production capacity of CI. perfringens. Steaming resulted in reduced fermentability 

of fungal-fermented cowpea and pigeon pea. These results contradict those 

obtained for steamed groundnut, mungbean and soya bean which all showed 

increased fermentability. A similar observation for soya bean (Nowak and 

Steinkraus, 1988) has been attributed to the inactivation, by steam, of the factors 

inhibitory to CI. perfringens, thereby allowing for the bacteria to grow and produce 

gas. 

In conclusion, our results clearly point out potential difficulties that could be 

encountered when trying to estimate the fermentability of food products by in vitro 

methods. Several important parameters such as the sensitivity of the equipment 
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used, the type and pre-culture conditions of the bacteria used cannot be 

overlooked. It must also be made clear that this simple approach which has also 

been followed by several other authors (Rockland et al., 1969; El Faki et al., 1983; 

Savitri et al., 1986; Nowak and Steinkraus, 1988; Kikuchi and Sakata, 1992) 

cannot represent a model of digestion and flatulence in humans. CI. perfringens is, 

of course, only one of a wide range of different bacteria occurring in the human 

colon and which ferment carbohydrates reaching the colon. Also, as we have 

shown, many mono- and disaccharides cause more gas production than indigestible 

oligosaccharides. In the human digestive tract, accessible starch is broken down 

to mono- and disaccharides which are absorbed in the upper gut. In vitro models 

of digestibility and fermentability, therefore, need to take this aspect into account. 

The development of a simple system to this effect will be discussed in Chapter 8. 
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An in vitro method for determining the digestibility and fermentability of traditional 
maize and cowpea-supplemented kenkey1 

BS.vW„\-.«J ™ 

Abstract 

A method was developed to determine the in vitro digestibility and fermentability 

of cereal and cereal-legume foods. The new method consists of three main parts 

viz. (1) a digestion step in which food samples are hydrolysed using enzymes 

similar to those found in the human digestive system; (2) an absorption step in 

which the yeast Saccharomyces cerevisiae is used to selectively remove from the 

digest simple, easily fermented mono-and disaccharides that would normally be 

absorbed in the upper gut of humans, but not the flatus-forming oligosaccharides 

raffinose and stachyose; (3) a fermentation step in which Clostridium perfringens 

is used to ferment residual solids from the digestion step and soluble residues (e.g. 

oligosaccharides) in the yeast-treated supernatants. This method was used to test 

the effect of different unit operations of the kenkey process on the digestibility and 

flatulence potential of kenkey. Soaking was most effective in improving the 

digestibility of both maize (M) and maize-cowpea (Mw) mixtures. Further 

processing, which included lactic fermentation and cooking, only slightly improved 

on the effects of soaking. Overall, M samples were more digestible than M w 

samples. Ci. perfringens produced gas from yeast-treated supernatants as well as 

from the undigested residue of Mw samples. No gas was produced from the 

supernatants of M samples, suggesting that oligosaccharides present in cowpeas 

were the source of gas in the supernatants of Mw samples. Soaking and 

fermentation reduced gas production from the supernatants, but not from the 

residues of Mw samples. Despite the significant amounts of starch in the residue 

of Mw samples, no correlation between this and gas production was observed, 

suggesting the presence of other fermentable substrates in the residue. Cooking 

almost completely inhibited gas production from both the supernatants and 

residues of fermented samples. It was concluded that fermentation, coupled with 

cooking, significantly reduced the flatulence potential of both M and Mw kenkey. 

'Nche, P.F., Champ, M., Nout, M.J.R. and Rombouts, F.M. (1994). An in vitro method for determining 
the digestibility and fermentability of traditional maize and cowpea-supplemented kenkey. To be 
submitted for publication. 
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INTRODUCTION 

A large portion of the diet in developing countries is composed of carbohydrates 

from either cereals (e.g. maize, sorghum, millet) or tubers (e.g. cassava). These 

supply much of the required energy but do not meet the protein-calorie 

requirements, because they are low in protein content and deficient in essential 

amino acids, e.g. lysine. This means that alternative sources of proteins have to 

be used to improve the nutritional quality of cereal-based foods. A potential source 

of proteins is legumes such as cowpeas which are produced in large quantities in 

developing countries, wi th more than 70% of the world's production being met by 

Nigeria, Brazil and Niger (Nnanna and Phillips, 1988). Cowpeas are rich in lysine 

and are more affordable to the average family in Africa than animal sources of 

protein. There is, therefore, the possibility that this legume could be used to 

supplement cereal-based foods, e.g. kenkey in an attempt to improve on protein 

quality (Nche et al., 1994a). Despite the nutritional potential of cowpeas as a 

source of significant amounts of protein, its utilization is still limited because of the 

presence of anti-nutritional factors and indigestible substances (Junek et al. 1980). 

The latter include flatulence-forming oligosaccharides viz. raffinose, stachyose as 

well as other dietary fibres (Fleming, 1981; Jood et al., 1985), which escape 

digestion in the human upper gut and end up in the colon where they may be 

fermented by the intestinal microflora, producing fatty acids and gas, the latter 

being a source of discomfort to adults, and a cause of diarrhoea in infants. 

Despite wide reports of oligosaccharides being the flatus-causing factors in 

legumes, other factors are thought to be involved (Murphy et al., 1972). 

Carbohydrates other than the low molecular weight oligosaccharides are 

increasingly being implicated by virtue of the fact that they escape digestion in the 

upper gut of humans and other mammals but can be fermented in the colon by 

resident microflora to produce short chain fatty acids (SCFA) as well as gas 

(Cummings et al. 1989; Macfarlane et al., 1992). Starch and non-starch 

polysaccharides (NSP) such as hemicelluloses, cellulose and pectins which form 

part of plant cell walls (Bourquin et al., 1992) represent such poorly digestible 

substances. A significant proportion of starch escapes digestion in the small 

intestine of humans (Andrieux et al., 1989) usually because it is resistant to 

hydrolysis by salivary and pancreatic o-amylases (Ring et al., 1988; Tovar et al., 

1992). 

Both fungal and lactic acid fermentations have been claimed to reduce the 

flatulence potential of legumes, either by reducing levels of oligosaccharides (Mital 
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and Steinkraus, 1975; Duszkiewicz-Reinhard et al., 1994) or by producing 

antibacterial substances (Nowak and Steinkraus, 1988; Noutand Rombouts 1990) 

which prevent the growth of colon bacteria and hence the production of flatus. In 

order to determine such effects, several in vitro methods have been developed to 

test processed food samples for their ability to induce flatus in human and animal 

consumers. Such methods have been based largely on the assumption that o-

galactosides of the raffinose family are the main source of flatus in humans 

consuming legume-based foods. Hence foods can be tested for the presence of 

oligosaccharides by extracting them in various solvents followed by analysis by 

GLC(Hymowitz etal., 1972), GC (Fleming, 1981) or HPLC (Kennedy et al., 1985). 

Breath hydrogen is also being used as a measure of fermentation in the colon 

(Fleming et al., 1988). Most common are methods involving the measurement of 

gas resulting from the incubation of whole foods or extracted non-digestible 

portions with either pure cultures of saccharolytic bacteria such as Clostridium 

perfringens (Nowak and Steinkraus, 1988; Kikuchi and Sakata, 1992; Nche et al., 

1994b) or mixed culture faecal slurries (McBurney et al., 1990; Salvador et al., 

1993). Several methods to measure gas production have also been described. 

These include the use of graduated syringes (El Faki et al., 1983; Nowak and 

Steinkraus, 1988), headspace pressure of culture vessels (Beuvink and Spoelstra, 

1992), horizontal pipettes (Kikuchi and Sakata, 1992) and u-tubes such as the 

pressure-free u-tube (PFUT) described by Nche etal. (1994b). These methods vary 

in accuracy and substrates used, hence the large variability in reported results. 

In most of the methods described in the literature (El Faki et al., 1983; 

Nowak and Steinkraus, 1988; Nche et al., 1994b) whole food samples from 

various stages of processing are tested for their potential to cause flatus. This 

implies that simple easily-fermented sugars as well as oligosaccharides, resistant 

and available starch and NSPs present in some of these food samples will be 

fermented to produce gas. In the human intestinal system, however, accessible 

starch is broken down by digestive enzymes to simple mono- and disaccharides 

which are absorbed in the upper gut. Only resistant starch, NSPs and 

oligosaccharides reach the colon where they could be fermented. It has also been 

shown (Nche et al., 1994b) that more gas is produced from monosaccharides such 

as glucose than from raffinose or stachyose when these pure sugars are incubated 

with CI. perfringens. The removal of glucose and other simple sugars in the upper 

gut of humans, however, means that these sugars do not contribute to the 

formation of flatus, hence the use of whole foods may result in overestimation of 

their flatulence potential. It is, therefore, important to take this into account when 
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designing experiments to test the flatulence potential of cereal, legume or cereal-

legume foods. In vivo methods would be more representative of the human system 

but such methods are expensive and often the necessary facilities for such studies 

are not present in food research laboratories, especially in developing countries. 

Besides, in vivo methods can be laborious and often require several motivated 

subjects for long periods of time (Granfeldt et al., 1992). 

The present work is aimed at developing an in vitro approach to obtain a 

differential view of the direct or indirect digestibility of food constituents. This is 

attempted by a combination of successive steps of enzymic digestion, biological 

absorption of low molecular weight degradation products, and fermentation of 

residual materials using intestinal microorganisms. This method is not meant to be 

a simulation of the complex human digestive system, but rather a standardized tool 

to assess the effects of food processing operations on the bio-physiological 

behaviour of foods. These effects are examined in kenkey, a traditional fermented 

maize product of Ghana. 

MATERIALS AND METHODS 

Maize (Zea mays L cv. obaatanba) and white cowpeas (Vigna unguiculata cv. 

benpla) were obtained from the Crops Research Institute, CSIR, Kwadaso, Ghana. 

Baker's yeast, Saccharomyces cerevisiae, was obtained from a local bakery. 

Clostridium perfringens NCTC 8239 was obtained from the National Institute of 

Public Health and Environmental Hygiene (RIVM), Bilthoven, The Netherlands. 

Sample preparation 

Maize (M) and cowpea-supplemented (Mw) kenkeys were produced as described 

earlier (Nche et al., 1994b). Samples tested included the untreated maize (M) and 

4:1 mixture of maize and white cowpeas (Mw), dough from grains soaked at room 

temperature for 48 h (M0 and Mw0), unfermented maize and maize-cowpea doughs 

cooked for 1 h (MWQC,) , uncooked fermented (4 days) maize and maize-cowpea 

doughs (M4 & Mw4) and fermented maize and maize-cowpea doughs cooked in 

boiling water for 1 h ( M ^ , & Mw4C,| or for 3 h (M„C3 & Mw4C3). Except for 

untreated samples, all soaked grains were first ground to pass through a 4mm 

screen, in a hammer mill (Fritsch Pulverisette Type 14.702, Marius Instruments, 

Utrecht, The Netherlands) before further processing. Before testing, all samples 

were freeze-dried and ground to pass through a 1 mm screen. 
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In vitro digestibility and fermentability of samples 

The method used is composed of three main stages: ( 1 ) enzymic digestion in which 

samples were treated with enzymes similar to those found in the human digestive 

system; (2) absorption in which the simple sugars resulting from enzymatic 

digestion were removed by incubating the suspension with the yeast, 

Saccharomyces cerevisiae; and (3) fermentation in which the yeast-treated 

supernatants and non-digestible residue resulting from stage one were incubated 

with Clostridium perfringens and the amount of gas produced measured. 

Enzymic digestion 

Two protocols (slow protocol and fast protocol), both of which were adaptations 

of previously described methods for determining total dietary fibre content of foods 

were used. The method of Schweizer and Wiirsch (1979) was adapted and used 

as the slow protocol to determine in vitro digestibility at 37°C. Due to long 

incubation periods in this method, a preservative, thymol (Merck 8167) was added 

to prevent unwanted microbial contamination. This method was therefore suitable 

only for stage one because the presence of an antimicrobial agent would not permit 

the activity of the yeast and bacteria used in later stages. The fast protocol was 

an adaptation of AOAC procedure 985.29 (AOAC, 1990) for determining the total 

dietary fibre content of foods. Here, incubation periods were shorter than in the 

slow protocol, and the use of higher temperatures removed the risk of microbial 

contamination in the first stage. Both protocols are described in the sections 

below. 

1.0 Slow protocol 

1.1 Weigh 5 g of sample (dry matter) accurately (A) into a pre-weighed 250 ml 

beaker or wide-neck conical flask. 

1.2 Add 50 ml distilled water and mix by gentle swirling and adjust pH to 1.5 

with 5N HCl. Note volume of acid used. 

1.3 Add 100 mg pepsin NF (Merck, 7197, Darmstad, Germany). 

1.4 Adjust total weight of suspension to 75 g with distilled water and cover 

beaker with aluminium foil. 

1.5 Incubate in a shaking incubator (120 rpm) at 37°C for 20 h. 

1.6 Adjust pH to 6.5 with 3N NaOH. Note volume of alkali used. 

1.7 Add 0.5 g of thymol crystals (Merck 8167) as a preservative. 
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1.8 Add 200 mg pancreatin FL), USP (Merck 7130) and 100 mg 

amyloglucosidase (Merck E 21 8432) in 20 ml 0.1 M phosphate buffer (pH 

6.5). 

1.9 Adjust weight of suspension to 100 g with distilled water and cover beaker 

as above. 

1.10 Incubate in a shaking incubator (120 rpm) at 37°C for 18 h. 

1.11 Centrifuge at 4000 rpm for 20 minutes and save supernatant (S1). 

1.12 Wash pellet wi th 20 ml distilled water, centrifuge as above and keep 

supernatant (S2). 

1.13 Dry pellet to constant weight and weigh (R,). 

1.14 Pool supernatants S1 and S2 in a 100 ml volumetric flask. 

1.15 Adjust volume to 100 ml with distilled water. 

1.16 Transfer 10 ml to a clean dry 100 ml conical flask and weigh. 

1.17 Add 4 volumes of ethanol (95%) to precipitate soluble fibres. 

1.18 Centrifuge at 4000 rpm for 20 min and discard supernatant. 

1.19 Dry pellet to constant weight and calculate total soluble fibre (R2) in 

S1 + S2. 

Control 

A reagent blank without sample and with equal amounts of enzymes, preservative, 

acid and alkali as used above is passed through the same steps as the sample up 

to step 1.9 where the dry weight (B) of the final suspension is determined and 

used to correct for non-sample residue. 

Calculations 

Apparent in vitro digestibility is calculated as follows: 

Digestibility=A +B~iR1 +R2) * 100% [1] 

2.0 Fast Protocol 

2.1 Weigh 5 g of sample (dry matter) accurately (A) into a pre-weighed 250 ml 

beaker. 

2.2 Add 50 ml of 0.1 M phosphate buffer (pH 6.0) and re-adjust pH with 0.1N 

NaOH or 0.1 N HCl to 6.0 ± 0.2. Note volume of either acid or alkali used. 

88 



Digestibility and f ermentability of kenkey 

2.3 Add 0.5 ml of Termamyl (heat-stable o-amylase, Sigma A-0164) to the 

suspension. 

2.4 Cover the beaker with aluminium foil, place in a boiling water bath and 

incubate at 95-100°C for 30 minutes with shaking at 5 min intervals. 

2.5 Immerse beaker in cold water to cool the suspension to room temperature, 

and adjust pH to 7.5 ± 0.2 using 3N NaOH solution. Note volume of alkali 

used. 

2.6 Add 25 mg of protease (Sigma P-3910) and incubate the suspension at 60°C 

for 30 min with regular shaking as above. 

2.7 Cool suspension to room temperature and adjust the pH to 4.5 ± 0 . 1 with 

5N HCl. Note volume of acid used. 

2.8 Add 1.5 ml of amyloglucosidase (Sigma A-9913) and incubate for 30 

minutes at 60°C with regular shaking as above. 

2.9 Cool to room temperature and adjust pH to 3.0 ± 0 . 1 with 5N HCl. Note 

volume of acid used. 

2.10 Centrifuge at 4000 rpm for 15 minutes and save the supernatant (S1). 

2.11 Wash pellet wi th 4 x 10ml changes of distilled water, each wash followed 

by centrifugation at 4000 rpm for 15 min to give 4 more supernatants (S2 -

S5). If necessary, filter supernatants through a Whatman No. 1 filter paper 

to remove any suspended particles. 

2.12 Freeze-dry the final pellet (Ft,), weigh and keep for use in the fermentation 

step. 

2.13 Pool the 5 supernatants (S1 - S5) and record the weight of the pool (S6). 

2.14 Take out 1g of S6 and precipitate with 4 vols, of 9 5% ethanol, and 

determine total weight of water-soluble fibre (R2). 

2.15 If necessary, re-adjust the pH of S6 to about 3 (with 5 N HCl), to limit 

unwanted microbial growth in the period before the absorption step. Note 

volume of acid used. 

A reagent blank (B) without sample is set up as earlier described and in vitro 

digestibility calculated according to equation [1]. 

3.0 Absorption 

This step involves the uptake of degradation products of fast enzymic digestion 

(protocol 2), mainly monosaccharides from the breakdown of polysaccharides such 

as starch. Here, the yeast Saccharomyces cerevisiae is used to remove the 
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absorbable monosaccharides. Fresh Baker's yeast is used because it can be 

obtained easily in large quantities and also because of its much higher affinity 

towards monosaccharides compared with oligosaccharides such as raffinose and 

stachyose. A previous investigation by HPLC (data not included) showed that the 

major carbohydrate degradation products (glucose, fructose, sucrose) were taken 

up by the yeast within 3 h, and that fermentation or assimilation of raffinose and 

stachyose by Baker's yeast was negligible. 

Protocol 
3.1 Re-adjust S6 ( « 96 g) with 3 N NaOH to pH 6. Note volume of alkali used. 

3.2 Takeout 1g and dry (48 h at 80°C) to determine the dry weight (W,)of S6. 

3.3 Mix with 5 g of fresh Baker's yeast. 

3.4 Incubate for 3h at 30°C with orbital shaking (120 rpm). 

3.5 Centrifuge the suspension (4000 rpm for 15 min) to remove the yeast 

cells. Save supernatant (S7). 

3.6 Wash the pellet with 5 ml of 0.1M phosphate buffer (pH 6.0), centrifuge 

(4000 rpm) and pool the supernatants with S7. Weigh S7 and determine 

total dry weight (W2) as in section 3.2. 

3.7 Filter-sterilize S7 for use in the fermentation step 

The amount of supernatant taken up by the yeast (W, - W2) is calculated and the 

apparent absorbability of the original sample calculated as follows: 

Absorbability =^W1~W2) * 100% [2] 

4.0 Fermentation 

Here, CI. perfringens is used to ferment what remains from the first two stages i.e. 

the residue (R,), and the yeast-treated supernatant, (S7). Fermentation is carried 

out in 100 ml serum bottles and gas production measured periodically as described 

earlier (Nche eta/., 1994b). 

Protocol 
4.1 Prepare both single and double-strength sugar-free thioglycollate medium 

(per litre: 5.0 g yeast extract, 15.0 g tryptone, 0.5 g sodium thioglycollate, 

2.5 g NaCI, 0.5 g L-cystine, 0.5 g Agar No. 1, pH 7.1). 
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4.2 Dispense 40 ml each of single-strength and 20 ml each of double-strength 

medium in 100 ml serum bottles and autoclave (15 min, 121°C, 15 psi). 

4.3 Add a known amount ( « 0.2 g) of freeze-dried residue (R,) from the 

digestion step to a serum bottle containing single strength medium; or 20 

ml of filter-sterilized yeast-treated supernatant (S7) to a serum bottle 

containing double-strength medium. 

4.4 Inoculate with 1 ml of active inoculum (24 h pre-culture of CI. perfringens 

strain NCTC 8239, in normalthioglycollatemedium, U.S.P..containing0.5% 

glucose). 

4.5 Attach culture bottle via a syringe needle to the gas measuring device (Nche 

et al., 1994b) and arrange the whole setup such that the culture vessel 

suspends in a waterbath maintained at 37°C by a thermostat heater. 

4.6 Incubate and measure gas production in ml (G) for 24 h. 

A control is set up by inoculating 40 ml of single strength sugar-free thioglycollate 

medium without substrate (r) and measuring the gas (B) produced during 24 h of 

incubation at 37°C. 

Gas production from non-digestible residues per gram of original sample (dry 

weight basis) is calculated as follows: 

Gas(m//g)=(G~fi)*5 [3] 
A*r 

Where: 

G = Gas produced (ml) in 24 h from substrate r 

B = Gas produced from blank (ml) 

S = Total amount (g dry weight) of residue (R,) or supernatant (S7). 

r = Amount (g dry weight) of residue (R,) or supernatant (S7) used in 

fermentation. 

A = Weight (g) of original sample. 

Determination of total (TS) and resistant (RS) starch content of residues 

Total starch was determined by a procedure (Edwards, pers. comm.) adapted from 

the method of Englyst era/. (1992). 100 mg of freeze-dried sample was placed in 

screw-capped polypropylene centrifuge tubes containing acetate buffer and boiled 

for 30 min. After cooling, samples were dispersed in 2 N KOH for 15 min at 0 °C , 
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before hydrolysing with amyloglucosidase in acidic medium. The samples were 

again boiled for 10 min, cooled and pH adjusted with 4 N KOH. Samples were 

centrifuged to obtain a clear supernatant, the glucose content of which was 

determined using a glucose oxidase kit (Merckotest, GOP-PAP, Merck Ltd). 

Resistant starch was analyzed according to Faisant et al. (1995). 100 mg 

of sample was incubated with pancreatic amylase for 16 h at 37°C. Ethanol was 

added to a final concentration of 80%, the samples centrifuged and the soluble 

fraction removed with the supernatant. The pellet was washed with 8 0 % ethanol 

and incubated in boiling water for 30 min, after which it was cooled, dispersed in 

2 N KOH for 30 min at 0 °C, and then proceeded with analysis as in the 

determination of total starch. 

RESULTS AND DISCUSSION 

A comparison of the two in vitro digestibility protocols as well as the effect of 

various unit operations on digestibility are presented in Table 8 . 1 . The results show 

that there were no significant differences in the two protocols. Since the fast 

protocol involves higher temperatures not representative of the human system, it 

was hypothesized that the heating could result in higher enzymatic breakdown of 

samples, and as such, cause an overestimation of in vitro digestibility values. 

The results obtained do not show any such effects and it is possible that the long 

incubation period in the slow protocol adequately compensates for the increased 

digestibility due to higher temperatures in the fast protocol. In any case, the results 

obtained are comparative rather than absolute as either protocols cannot be taken 

to accurately represent the human system. The fast protocol, however, has the 

added advantage that the absence of preservatives allows for the incorporation of 

the biological absorption and fermentation steps. 

Table 8.1 also shows that the most significant increase in digestibility is 

effected by the soaking of the raw grains. Further processing which includes 

fermentation and cooking for up to 3 h has only limited effect on the in vitro 

digestibilities of the samples tested. Soaking is known to soften grains and lead to 

absorption of water by the starch moiety of grains which then swells and become 

more accessible to digestive enzymes (Akingbala et al. 1987). Although not 

determined, further processing such as fermentation and cooking could be 

expected to increase the speed of digestion, though the total digestibility remained 

unchanged. 
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Table 8 . 1 . In vitro digestibilities of samples as determined by the slow and fast 

protocols 

Sample 

Slow protocol 

%digestibility 

(mean ± sd) 

Fast protocol 

%digestibility 

(mean ± sd)1 

M2 

M0
3 

M4
4 

M4C3 

75.23 ± 0.74 

82.50 ± 0.04 

83.40 ± 0.33 

83.40 ± 0.79 

83.27 ± 0.85 

77.83 ± 0.74 

80.10 ± 1.70 

80.20 ± 2.20 

82.63 ± 0.63 

82.23 ± 0.70 

Mw2 

Mw0
3 

MWQC, 

•pH-MwoC, 

Mw4
4 

Mw4C, 

Mw4C3 

71.47 ± 0.46 

78.80 ± 0.71 

nd 

nd 

80.40 ± 0.87 

80.93 ± 0.79 

80.70 ± 0.67 

74.33 ± 0.74 

78.00 ± 0.97 

85.66 ± 3.29 

86.29 ± 2.06 

80.80 ± 0.58 

81.47 ± 0.69 

80.99 ± 0.53 

^ e a n ± sd (for n = 3); 2Untreated maize (M) and mixtures of 8 0 % maize and 

2 0 % white cowpeas (Mw); 3Soaked (2 days at room temperature); "Four days' 

fermented dough; C, & C3 = cooked for 1 and 3 hours respectively; *pH adjusted 

to 4.0 ± 0 . 1 before cooking. 

It was also observed that the digestibilities of all-maize samples were generally 

higher than maize-cowpea samples. This could be the result of more resistant 

starch being formed from the legume fraction of the mixtures, given that legume 

starch is more difficult to digest than cereal starch. The reasons for this difference 

reportedly could include the relatively high amylose/amylopectin ratio of legume 

starch, the physical insulation of starch by thick-walled cells and the presence of 

amylase inhibitors in legumes (Tovar et al., 1992). 

Figure 8.1 shows that processing did not significantly affect the 

absorbability of both maize and maize-cowpea blends, with values ranging from 
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Figure 8 . 1 . Apparent absorbability of digested maize and maize-cowpea samples 
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Figure 8.2. Gas production from maize and maize-cowpea samples 

(M) Untreated maize grains; (Mw) untreated maize-cowpea blend; (M0 & Mw0) Soaked 

for 2 days at R.T.; (M4 & Mw4) Fermented for 4 days at 30°C, (C1 & C3) Cooked for 

1 h and 3 h respectively to kenkey. *pH of dough adjusted to 4.0 ± 0 . 1 . 
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7 1 % and 66%, respectively in raw maize and maize-cowpea blend to 7 7 % and 

75%, respectively in fermented maize and maize-cowpea kenkey cooked for 3 h. 

There was no significant difference (p < 0.05) between the maize and maize-

cowpea samples. These values show that less than 85% of the solubilised matter 

was taken up by the yeast and this could be due to several reasons. First, the 

yeast did not take up the o-galactosides (raffinose and stachyose) present in the 

supernatant of Mw samples; secondly, because of the short incubation t ime, the 

yeast was not able to assimilate other soluble substrates such as amino acids for 

biomass formation. 

Figure 8.2 shows gas production from the residue and supernatant left over 

from the enzymic digestion and absorption steps. It can be deduced from these 

results that, generally, gas production from the residue was higher than from the 

yeast-treated supernatants. This is not surprising since lactic acid fermentation is 

known to reduce the levels of flatus-forming oligosaccharides in legumes (Mital and 

Steinkraus, 1975; Duszkiewicz-Reinhard et al., 1994). Analysis by HPLC (data no 

included) showed a 6 4 % and 22% reduction of the levels of raffinose and 

stachyose, respectively, in the supernatants of maize-cowpea blends following 4 

days of fermentation. Murphy et al. (1972) reported equal gas production from 

both alcohol extracts and residues of dry beans, suggesting that substrates other 

than o-galactosides could also be responsible for inducing flatus in humans. With 

respect to the residues, gas production from maize-cowpea samples was 

significantly (p < 0.05) higher than from maize samples. The type of fermentation 

and resulting gas production are known to depend on the chemical composition 

and botanical source of the substrate (McBurney and Thompson, 1990). It may be 

the case here as legume starch would be expected to be more resistant to 

hydrolysis by o-amylase than cereal starch (Tovarera/., 1992) and would therefore 

contribute more to the residual fraction of maize-cowpea than maize samples 

following enzymatic digestion. The difference in digestibility between Mw and M 

samples is supportive of this. The different compositions of legume and cereal 

NSPs forming the residue could also influence the degree and type of fermentation 

by CI. perfringens and hence the amount of gas produced from either sample type 

within the 24 h of fermentation. 

No gas was produced from incubations with M supernatants. The absence 

of flatulence-forming oligosaccharides in maize would be an obvious reason for this 

observation but it also suggests that no other soluble fermentable carbohydrates 

(e.g. starch, oligosaccharides) were present in the supernatants following 

enzymatic digestion and the absorption steps. 
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It can also be observed from Fig. 8.2 that food processing treatments 

significantly affect gas production from residues and supernatants. Following 

soaking, an increase in gas production was observed with residues from Mw 

samples but a significant reduction from Mw supernatants. There was no change 

in gas production from the residue of M samples. After fermentation, there was 

reduced gas production from Mw residue, but not for M residue which produced 

as much gas as untreated and soaked samples. Fermentation also did not effect 

any further reduction of gas production from Mw supernatants. Cooking of 

fermented samples further reduced gas production from the residues as well as the 

supernatants. It was hypothesized that a combination of the acid formed during 

lactic fermentation and the heat applied during cooking resulted in the hydrolysis 

of oligosaccharides and any resistant starch that would otherwise add to the 

undigested fraction. To test this hypothesis, the pH of soaked maize-cowpea (Mw0) 

dough was adjusted with a solution of 20% lactic acid and 2% acetic acid to the 

same level (4.0 ± 0.1 ) as that of a 4 days' fermented (Mw4) dough, then digested 

and the resulting residue and supernatant tested for gas production. The results 

(cf. PH -MWQC, in Fig. 8.2) show that, although there was a reduction in gas 

production from the resulting residue, the amount of gas produced was still higher 

than from raw fermented (Mw4) samples. There was no significant difference 

between Mw0C, samples with or without pH adjustment, suggesting that pH alone 

may not cause a reduction of the flatus-forming potential of soaked (Mw0) 

samples. Lactic acid bacteria may, therefore, play an important part in reducing the 

flatulence capacity of such foods. Lactic acid bacteria have been reported (Mital 

and Steinkraus, 1975; Duszkiewicz-Reinhard, 1994) to possess o-galactosidase 

activity and therefore the ability to utilise raffinose and stachyose, the effect of 

which would be a reduction in flatus in humans consuming such fermented 

products. 

Table 8.2 shows that significant amounts of starch (TS) were present in the 

residues resulting from in vitro digestion of maize-cowpea (Mw) mixtures. TS and 

resistant starch (RS) were significantly reduced after soaking, possibly as a result 

of endogenous o-amylase activity. Further reduction was observed after 

fermentation, during which some of the starch could have been hydrolysed by 

microorganisms in the fermenting dough. Significant increases in TS were again 

observed after cooking. Most of this starch (> 50%) was RS, which could have 

been formed as a result of rétrogradation as the cooked samples cooled. 

There appears to be no correlation between starch content of and gas 

production from the residues. This lack of correlation would suggest that starch is 
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not the only fermentable substrate in the residue, or that the strain of CI. 

perfringens used is unable to degrade it. Fleming (1981) reported a negative 

correlation between the starch contents of legume seed residues fed to rats and 

gas production and concluded that carbohydrates such as glucans and pentosans 

induced flatulence when fermented by colonic microflora. Gas production from the 

residue of cooked fermented samples (IV^C, and Mw4C,) was significantly lower 

than in uncooked samples, suggesting that lactic acid fermentation, coupled with 

cooking, resulted in the modification of the fibre, rendering it less susceptible to 

fermentation by CI. perfringens. Bourquin et al. (1992) noted that the 

fermentability of dietary fibre was influenced, not only by the source of the fibre, 

but also by its pre-treatment prior to fermentation. Different sample treatments 

could influence the rate of fermentation of residues, hence 24 h incubation with 

CI. perfringens may not be enough for significant fermentation of the residue from 

fermented and cooked samples. Pre-treatment of material could also cause a shift 

in the type of by-products resulting from fermentation of the undigested fraction. 

For example, more SCFA may be produced instead of gas. In order to obtain a 

clearer idea about the digestibility and fermentability of cereal and cereal-legume 

foods, gas as well as short-chain fatty acid (SCFA) production during in vitro 

fermentation of the residue would have to be measured. 

The results obtained here do give a good indication of the possible causes 

of flatulence following the consumption of cereal and cereal-legume foods. They 

confirm that low molecular weight oligosaccharides and undigested starch may not 

be the only cause of flatus in humans consuming such foods. It must, however, 

be kept in mind that a simple approach such as this cannot be fully representative 

of the complex human digestive system. The use of a single organism, for 

example, does not fully mirror the enormous diversity in colonic microflora. This 

approach was, however, necessary to keep the already complex 3-part protocol as 

simple as possible. Fecal preparations may be difficult to standardise, but their use 

for in vitro fermentation of dietary fibres, monitored by their production of gas and 

short-chain fatty acids, might further increase the representativeness of such a 

method. 
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Chapter 9 

General Discussion1 

This study focuses on the processing as well as the nutritional, physical and safety 

aspects of kenkey. It has laid the foundation for the exploitation of technologies 

for processing, not only foods for adults, but also infant weaning foods for the 

tropics from indigenous raw materials such as cereals (e.g. maize) and legumes 

e.g. cowpea). It is clear from this study that the processing as well as the 

nutritional value of kenkey can be improved. The implications of these 

improvements need, however, to be considered before implementation. 

Lactic acid fermentation, proved to be an appropriate technology, not only 

for cereals from the tropics, but for legumes also, especially if these are blended 

with cereals such as maize. The lowering of pH, due to acidification of maize or 

maize-cowpea doughs is very important for taste and flavour development and is 

now widely recognized as crucial from a microbiological safety perspective 

(Mensah eta/., 1991 ; Larsen et al., 1993). This study also confirmed the positive 

role of fermentation with respect to the availability of essential amino acids such 

as lysine. 

Improving protein quality and quantity 

At first glance the idea of supplementing an adult diet such as kenkey with a 

legume protein source, seems debatable since kenkey can be eaten with a fish 

sauce as a side-dish. It could, therefore, be argued that, instead of supplementing 

maize with cowpea, more of the kenkey could be substituted with the side-dish. 

This is however not easy for several reasons. First, being a staple, kenkey is 

always eaten in large quantities, sometimes as breakfast, lunch and dinner. 

Secondly, the side-dish is often made of fish which is expensive and therefore not 

readily available to the ordinary folk. A third, though indirect reason for 

supplementation is that such products can then be extended by converting into 

infant weaning foods at no extra cost. More often than not infants develop their 

parents tastes and it would therefore, be easier to introduce as a weaning food, a 

product that is well known and accepted by parents. 

Parts of this chapter have been presented at "Bioavailability'93" conference of 9-12 May 1993 in 
Ettlingen, Germany and at the ECSAFoST regional Food Conference of 12-16 September 1994 in 
Victoria Falls, Zimbabwe. 
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Cowpea was the logical choice of legume for use in supplementing maize 

during kenkey production because, like soya bean, it is relatively high in protein 

content: 24-28% (Akinyele et al., 1986). Also, cowpea is a legume that is 

commonly found in most West African households (Dovlo et al., 1976). In Ghana 

and Nigeria, for example, cowpea is already being used widely to make other 

products such as koose or akara (McWatters, 1983). The locals are therefore 

familiar wi th the ways of handling this legume, as well as with its taste. This is in 

contrast wi th soya bean which, although widely accepted as a very rich protein 

source, is more expensive than cowpea and still considered foreign to most West 

African households. 

Table 9 .1 . Essential amino acids balance in cowpea-supplemented kenkey 

compared with concentrations in all-maize kenkey and FAO recommendations 

(Adapted from Bressani and Scrimshaw, 1961). 

Amino acid (mg/gN) 100% Maize Maize:cowpea FAO 

(80:20) recommendation 

Lysine (mg/gN) 139 207 270 

S-amino acids (mg/gN) 195 178 270 

Chapters 2 and 5 outline the advantages of supplementing maize with 

cowpeas. There is a significant increase in the protein content as well as of the 

level of available lysine. Table 9.1 shows how the essential amino acid balance of 

maize kenkey could be affected by supplementing (on a 20% replacement level) 

wi th whole grain cowpeas. Although there is a drop in the level of S-amino acids, 

this is not significant as the overall amino acid balance in this mixture is better than 

that for maize alone. The addition of cowpeas also improves on the texture of the 

final product. As shown in Chapter 2, addition of cowpea results in a less friable 

product that requires more force (<J,) to break. A measurement of the viscosity 

profile of maize-cowpea dough (Fig. 9.1) shows that cowpea addition gives a 

dough with higher hot paste and set-back viscosities and hence an aflata with a 

superior binding capacity compared with the traditional all-maize aflata. 
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3000 
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Figure 9 . 1 . The effect of cowpea on the pasting properties of traditional maize 

dough. M 4 = traditional kenkey dough; M w , = cowpea-supplemented dough. 

A panel of five Ghanaians familiar wi th kenkey (see Chapter 2) carried out 

a sensory evaluation of cowpea-supplemented kenkey and could not detect the 

presence of any beany flavour at 20% cowpea level. A broader sensory evaluation 

carried out in Ghana, however, resulted in the acceptance of kenkey supplemented 

at 10% level only. At 20% supplementation the product was not accepted as 

kenkey. The main points of contention were the unfamiliar flavour and the beany 

taste imparted by the cowpea. Although the product with 20% cowpea fared 

poorly with experienced kenkey eaters, indications are that it could be introduced 

as a different product, possibly as a weaning food for infants, who have not yet 

developed a strong liking for the particular kenkey flavour and taste. Earlier work 

(Akinyele and Fasaye, 1988) on ogi, which is widely used as a weaning food in 

West Africa, indicated that a 30% supplementation of maize with dehulled cowpea 

obtained a 100% acceptability (80% as very good and 20% as good). 

105 



Chapter 9 

Dry-milling and accelerated fermentation 

The traditional kenkey manufacturing process has two major drawbacks; the length 

of time it takes to make a batch of kenkey, and the short shelf-life of the product 

resulting from its high moisture content (ca. 60%) and type of wrapping. The 

process can take up to a week to complete (Sefa-Dedeh Plange, 1989) and is 

therefore not economically viable if production was to be carried out at an 

industrial scale. It is therefore logical that this process be made more efficient wi th 

respect to processing time. Time-consuming steps are the soaking and 

fermentation steps, which when combined can take up to 5 days. The use of 

spontaneous fermentation often results in a dough with variable quality. 

Dry-milling and accelerated fermentation were, therefore, seen as possible 

solutions to the time and quality problems. These alterations were expected to cut 

down on the process time as well as to allow for a better control of the 

fermentation process to maintain dough and kenkey quality. Omitting the soaking, 

however, removed one very crucial step in the development of characteristic 

kenkey texture. It is reported (Sefa-Dedeh and Plange, 1989) that soaking not only 

softens the otherwise hard maize grain, but also results in amylolysis and 

proteolysis which probably contribute to the development of kenkey flavour and 

texture. A wide range of endogenous enzyme activities was recorded after soaking 

maize at room temperature. Suppression of these enzymes in whole or dry-milled 

maize by soaking at 60°C (Chapter 4) resulted in a dough with pasting viscosities 

inferior to that of dough obtained from traditionally treated maize. A sensory 

evaluation of kenkey from dry-milled maize showed that it had a texture inferior to 

that of traditional kenkey. Dry-milling resulted in starch damage, and the resulting 

dough had an inferior swelling and pasting potential compared with traditionally 

made dough. Wet-milling, on the other hand, causes less starch damage, while 

proteolysis and amylolysis during soaking facilitate adequate swelling of starch 

granules and the subsequent gelatinisation and set-back on cooling. Adeyemi and 

Beckley (1986) and Akingbala et al. (1987) reported that dry-milling of maize 

resulted in up to 41 % and 32% of starch granules damaged, respectively. 

To overcome the problems associated with dry-milling and still obtain a 

significant reduction of production time, the maize could first of all be cracked 

before soaking. In this case it takes only 16 hours to achieve the same degree of 

hydration that occurs when whole grain kernels are soaked for 48 hours. The 

resulting dough can then be fermented by the accelerated process. 
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Accelerated fermentation requires the use of starters. Conventional starters 

as used in the production of cheeses and yoghurts are pure cultures used either as 

a single species or a combination of different species of microorganisms. They are 

used in sufficiently large concentrations to quickly dominate the previously 

pasteurized substrate and prevent outgrowth of contaminants as well as produce 

the required taste and flavour components. 

Cycle 3 

Fresh dough 

Fermented 
dough 

Fermented dough 
used as inoculum 
in an amount of 
10% w/w of fresh 
dough 

Kenkey dough 

Figure 9.2. Schematic presentation of the back-slopping technique 

The use of pure culture starters makes it easier to control fermentations and 

maintain the quality of the product. Developing and maintaining such pure cultures 

requires laboratory infrastructure and trained personnel and is too expensive (Nout, 

1992) to be suitable for situations such as are usually encountered in developing 

countries. The "back-slopping" method (Spicher, 1986; Nout et al., 1989) for 

developing starter doughs (Fig. 9.2), is cheaper and very simple to carry out, and 

if properly done, results in the same quality of product with respect to flavour and 

taste. Back-slopping, therefore, provides a useful alternative to pure culture 

starters. 

Although it has not yet been investigated in detail, it is expected that a 

"back-slop" starter dough would contain the most acid-tolerant LAB, given that a 
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natural selection occurs, resulting in the elimination of acid-sensitive 

(heterofermentative) LAB, which are often present at the start of each spontaneous 

fermentation. Lactobacillusplantarum and Pediococcus spp. were shown (Chapter 

2) to dominate the later stages of natural fermentations. Hounhouigan (1994) also 

reported the presence of L. fermentum in fermented maize doughs. 

Yeasts such as Candida krusei and Saccharomyces cerevisiae have been 

reported to be present in fermented maize doughs (Halm etal. 1993, Hounhouigan 

1994). In this study, it was found that, although yeasts and moulds were present 

in the early stages of spontaneous fermentation and "back-slopping", they usually 

disappeared by the end of both processes. Those who report the presence of 

yeasts, cite them as contributing to the development of flavour components in 

fermented maize doughs. It could then be argued that the use of "back-slops" 

which contain mainly LAB, would result in a dough that lacks some of the flavour 

components of traditionally fermented doughs. Nevertheless, the clean acid aroma 

and sharp sour taste imparted by the organic acids produced by LAB are notably 

present and strong enough to meet the consumers' demand for properly fermented 

kenkey dough. The use of back-slops limits competition from spoilage and 

pathogenic microbial contaminants during fermentation. This maintains product 

quality and could prove to be a significant improvement should an industrial-scale 

process for kenkey production be developed along the lines discussed in this thesis. 

Safety of kenkey 

The presence of biogenic amines such as putrescine and cadavarine in detectable 

concentrations in cowpea-supplemented kenkey is an indication of how the 

introduction of cowpea could influence the safety quality of kenkey. Although the 

concentration of histamine, most associated wi th toxigenic effects in humans, was 

below detection (Chapter 6), tyramine, putrescine and cadavarine were present in 

concentrations that suggest caution must be exercised when cereal-legume 

products are processed by spontaneous fermentations, given that such products 

are staples eaten on a regular basis and in large quantities. 

Digestibility and total dietary fibre contents 

The choice of ingredients and processing options would influence the digestibility 

of the final product, kenkey. The effect of three processing steps of kenkey 

production; soaking, fermentation and cooking on the total dietary fibre content 

and in vitro, total and protein digestibilities of kenkey was investigated. 
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A. 100% maize 

B. maize:white cowpea 
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Treatments 
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C. maize:red cowpea 
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Figure 9.3. Dietary fibre Hi; Protein digestibility • ; and total 

digestibility ü j of maize and maize-cowpea kenkeys. (R) untreated grain, (SK) 

soaked grains, (F2) 2 days' fermented dough, (F4) 4 days' fermented dough, (C3) 

kenkey cooked for 3 hours after 4 days' fermentation. 
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Total dietary fibre was determined by AOAC 985.29 method (AOAC, 1990). In 

vitro total and protein digestibilities were determined on the basis of weight and 

nitrogen content of residual matter from dietary fibre determination. In general, 

there were no significant differences (p > 0.05) between the dietary fibre 

contents, the total and protein digestibilities of maize and cowpea-supplemented 

kenkey. Soaking was found to be most effective in reducing dietary fibre and 

increasing in vitro digestibility. Following soaking, the total dietary fibre content of 

the raw materials were reduced by 40%, 4 6 % and 5 1 % , whilst total in vitro 

digestibility increased by 9%, 13% and 14% for maize, maize-white cowpea (cv. 

asontem) and maize-red cowpea (cv. benpla) mixtures, respectively (Fig. 9.3a-c). 

Increases in protein digestibility of 33%, 3 6 % and 18% were recorded for 

unfermented maize (Fig.9.3a), maize-white cowpea (Fig. 9.3b) and maize-red 

cowpea (Fig. 9.3c) doughs, following soaking. Fermentation resulted in further, but 

non-significant decreases in total dietary fibre. Cooking for up to three hours 

tended to slightly increase the dietary fibre contents. Fermentation and cooking did 

not significantly improve on the values for in vitro total and protein digestibility 

obtained after soaking. These results again confirm that soaking is a very important 

step in the kenkey process. 

Antinutritional factors and flatulence 

Another important aspect of supplementation with cowpea is the introduction of 

higher levels of antinutritional factors (ANFs) in the form of protease inhibitors 

including trypsin inhibitors (Tl) and phytic acid (PA). Processing, however, is known 

to significantly reduce most of these ANFs (Somiari and Balogh, 1993, 

Duszkiewicz-Reinhard et ai., 1994). The traditional kenkey process was found to 

reduce PA by 4 9 % and Tl by 8 6 % from original levels of 12.0 mg/g and 15.4 mg/g 

(dwt.). The use of C. krusei, L. plantarum, L. fermentum and Pediococcus 

pentosaceus as pure culture starters in the fermentation of dough for kenkey 

production (Table 9.2) did not significantly influence the level of T l , although L. 

fermentum and P. pentosaceus initiated significant reductions in PA. Moreover, any 

significant effects were registered only after cooking and not after fermentation 

suggesting that cooking and not microbial fermentation was responsible for these 

reductions. 

The introduction of a legume such as cowpea meant that more attention 

needed to be paid to the presence of flatus-forming components in kenkey. It was 

necessary to monitor the presence of flatus-forming oligosaccharides such as 
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Table 9.2. Effect of pure culture starters of yeast and lactic acid bacteria on the 

antinutritional factor (ANF) content of kenkey 

Total reduction in antinutritional factors 

Microorganism 

Control4 

L. fermentum 

L. plantarum 

P. pentosaceus 

C. krusei 

Tl1 

86 

71 

55 

63 

86 

PA2 Oligosaccharides3 

49 

62 

56 

75 

49 

43 

nd5 

nd 

nd 

nd 

t r y p s i n inhibitor (% w /w, dwt. basis); 2Phytic acid (% w /w , dwt . basis); 
3Raffinose and stachyose; ^Naturally fermented; 6Not determined. 

raffinose and stachyose, present in cowpeas. The traditional process reduced these 

oligosaccharides by (43%). A lot of emphasis has been placed on oligosaccharides 

as the flatus factor in legumes and conventional methods of determining the flatus 

potential of foods have often involved extractions of these oligosaccharides for 

measurement by HPLC (Kennedy et al., 1985) or the measurement of gas and 

short chain fatty acids (SCFA) produced when wholesome foods are incubated 

with either fecal slurries (Kikuchi and Sakata, 1992, Salvador eta/., 1993) or pure 

cultures of saccharolytic bacteria of colonic origin (Nowak, 1992). However, poorly 

digestible carbohydrates other than low molecular weight oligosaccharides are 

known to be fermented in the lower gut, resulting in the formation of SCFAs as 

well as gas (Bourquin et al., 1992). 

Whilst methods involving the use of equipments such as HPLC and GC are 

complicated and expensive, the simple alternative of incubating whole foods with 

microorganisms of colonic origin (Nowak, 1992) overlooks one important fact -

that not all the carbohydrates present in wholesome foods such as are incubated 

with colonic microflora, will be present in the portion of the food that escapes 

digestion in the upper gut. Simple sugars such as glucose and fructose are 

completely absorbed in the upper gut and are therefore not available for 

fermentation in the lower bowel. Any procedure that does not take this into 
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account would result in an overestimation of the flatulence potential of the tested 

product. As already shown in Chapter 8 more gas is formed from such sugars than 

is formed from oligosaccharides such as raffinose. It was therefore necessary to 

develop a method that takes all the above into consideration, when determining the 

source of flatus in fermented cereal or cereal-legume foods. The method described 

in Chapter 8 goes some way to achieving this aim. It also confirms previous reports 

(Murphy et ah, 1972; Salvador et al., 1993) that oligosaccharides from legumes 

may not be the only cause of flatus in humans. In fact the results presented in 

Chapter 8 suggest that, in the case of cowpea-supplemented kenkey, indigestible 

matter appearing as residue (solids) produced more gas than oligosaccharide-

containing supernatants treated with yeast to remove simple fermentable sugars 

such as glucose. Analysis showed that significant amounts of resistant starch (RS) 

were present in these residues, following in vitro digestion. The levels of RS, 

however, did not correlate well with the amount of gas produced when these 

residues were incubated with CI. perfringens. This would suggest that other carbon 

sources were fermented to produce gas. This suggestion cannot, however be 

conclusive, since other compounds are formed during the anaerobic fermentation 

of carbohydrates by CI. perfringens. These include SCFAs which were not 

determined in this study. To obtain a complete mass balance of the original sample 

as it is passed through in vitro digestion, absorption and fermentation, it would be 

necessary to determine the concentrations of SCFAs produced as well as the 

amount of residue that is not fermented by the CI. perfringens. In this thesis the 

method was kept as simple as possible, while placing more emphasis on flatus as 

a negative aspect of consuming legume-containing fermented foods. SCFAs formed 

often include acetate, butyrate and propionate each of these having a positive role 

in body metabolism. 

Future Prospects for innovative kenkey processes 

Technological options 

The results of sensory evaluation of dehydrated kenkey meal (Chapter 3) 

undoubtedly add more weight to the concept of producing a kenkey "dry-mix". The 

advantages of having a dehydrated kenkey meal accepted cannot be 

overemphasised. There are, however, inevitable drawbacks to innovations. The 

implications of process innovations geared towards the scale-up of the traditional 

kenkey process to industrial level are presented in Table 9.3 which compares the 
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traditional process with that discussed in Chapters 3 and 4. It is imperative to 

consider not only the organoleptic aspects of such innovations, but also how they 

could affect the affordability of the product for the average kenkey consumer. 

There is no doubt that the initial investments in setting up an industrial process 

based on the methods presented in this thesis will be high and would, inevitably 

in the short-term, trickle down to the consumer. The long-term advantages in 

removing seasonal variations in price and supply of kenkey due to inadequate 

storage of and post-harvest losses in raw material must, however, more than offset 

any short-term costs. In the next 1 0 - 2 0 years, producers of products such as 

kenkey will be faced with a need to meet the demands of an ever increasing urban 

population, therefore, making the argument for processes that are fast and efficient 

all the more important. 

Although drum-drying was used to investigate the dry-mix concept, other 

technological concepts are being considered. One of these is extrusion-cooking. 

The eventual aim is to adopt the system that is most viable in terms of economics 

of scale as well as product quality and acceptability. Preliminary cost analysis of 

processes utilizing drum-drying and those utilizing extrusion (based on a single-

screw extruder) indicate that drum-drying is economically feasible only at a large 

throughput of up to 100.000 tons per year. Extrusion on the other hand seems to 

be more economically attractive both at medium ( < 50.000 tons per year) and 

large scale. 

It would also be important to investigate the packaging, storage and shelf-

life of the dehydrated kenkey dry-mix. 

Use of starters 

A lot of information can now be found on the microbiology of lactic fermented 

cereals such as maize (Akingbala et al., 1987, Hounhouigan et al,. 1994, Nout, 

1993). It is, therefore, possible to develop single or mixed culture starters for use 

in the fermentation of cereals (Hounhouigan 1994). This will involve the selection 

of those microorganisms (LAB and Yeasts) of highly rated functional importance. 

In the case of cereal and cereal-legume blends, such microorganisms would include 

yeasts such as C. krusei and S. cerevisiae (for flavour development) and LAB that 

not only acidify, but can degrade anti-nutritional factors such as PA, Tl , 

oligosaccharides and tannins. Preliminary trials using C. krusei, L. plantarum, 
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General discussion 

L. fermentum and P. pentosaceus, indicate no significant reductions in PA and Tl 

compared with spontaneous fermentation. Bacteriocin- and L-lactate producing 

lactic acid bacteria would be preferred, especially in the fermentation of foods for 

weaning purposes, to ensure microbiological safety and avoid the induction of 

acidosis in infants by the indigestible D-lactic acid which is often produced together 

with L-lactic acid (Yusof etat., 1993). 

Made in Ghana 

This study focused on kenkey which is traditionally made in Ghana. It is, however 

not uncommon to come across similar products throughout West Africa. As 

discussed in the opening chapter (Table 1.1) kenkey is only one of a wide variety 

of cereal-based products made by soaking, milling and fermentation. Usually only 

the final step of cooking determines the unique characteristics of the final product. 

The rationale here, therefore, is that the methods developed in this study can, with 

only minor adaptations, be applied to other cereal- and tuber-based products for 

both adults and infants. 

The challenges of developing a truly African food industry 

In over 30 years of "independence", Africa has still not come to grips with its ever-

mounting food insecurity problems. One only has to look at leaps made by Western 

food industries in the last decade to see that Africa is a long way from coming 

anywhere near to developing sustainable food production, processing and 

preservation systems. Although a lot of development aid from the West is 

channelled into agriculture, it is rather debatable whether improving primary 

agricultural output alone can begin to tackle the chronic hunger crisis in Africa, if 

a firm post-harvest processing base is not developed to limit the huge losses 

incurred after harvest. Such losses are currently being estimated at between 30-

4 0 % (Ngoddy, 1994). Most of the blame, of course, lies with short-sighted 

governments which, by virtue of their own insecurities, often neglect the fact that 

the lack of food security is a major root cause of apathy, hunger and disease 

among its working populations. Whilst Western food industries and institutions 

cannot determine African government policies with regard to food (in)security in 

Africa, they can, nevertheless, play an important role in helping set up a firm and 

sustainable post-harvest food processing base. Funders of major primary 

agricultural projects and policy makers in Africa must now widen the narrow band 
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of research to cover research into and application of post-harvest technologies for 

Africa in particular and the developing world in general. Only then can the 

governments of these regions begin to replace the spectre of endemic food 

insecurity and related ailments with strategies for long-term food security for the 

populations that are increasingly dependent on food aid. 
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Summary 

Kenkey is a popular traditional product of Ghana made from spontaneously 

fermented maize (Zea mays) dough. The local white maize preferred by traditional 

kenkey makers, however, is low in protein and is deficient in essential amino acids 

e.g. lysine. It is, therefore, important to attempt to improve on this aspect of 

kenkey. Cowpea [Vigna unguiculata), a well-known legume in Ghanaian 

households, is rich in proteins and lysine and was, therefore, considered for use as 

a supplement protein source for improving the protein quality and quantity of 

traditional kenkey. 

The traditional kenkey process was simulated at a laboratory scale, and the 

effects of cowpea addition on the fermentation of dough and the quality of the 

final product were investigated in Chapter 2. Kenkey was made from a 4:1 mixture 

of maize and red or white cowpea and compared with an all-maize product. After 

4 days' natural fermentation at 30°C, final pH values of 4.07 and 4.08 for maize 

and maize-cowpea doughs, respectively, were obtained. Although 48 h were 

sufficient for proper acidification of the maize dough, it took a further 24 h before 

the same pH level could be obtained in maize-cowpea doughs. Due to 

supplementation with cowpea, the crude protein content increased by 29 .2% and 

20.5%, respectively, for kenkey supplemented with red and white cowpeas. These 

represent, respectively, 76.3%, 15.6% and 26 .8% increases in total lysine, 

methionine and tryptophan contents of maize-red cowpea kenkey, and 65.3%, 

8 .2% and 19.5% increases in lysine, methionine and tryptophan contents, 

respectively, of maize-white cowpea kenkey. 

Cowpea-supplemented kenkey had a more homogeneous structure and was 

therefore less prone to fracture than the traditional all-maize kenkey (Chapter 2). 

Hence more force was required to fracture the cowpea-supplemented product and 

this increased with storage at room temperature. For example, kenkey stored for 

24 hours required over twice as much force to fracture as freshly prepared kenkey. 

Addition of red cowpea reduced the whiteness (Hunter L value) of kenkey by 27% 

causing it to be rejected by a panel of 5 Ghanaians familiar with kenkey on account 

of an unfamiliar brown coloration. On the other hand, this panel also concluded 

that kenkey made from a mixture of wholegrain white cowpea or dehulled red 

cowpea and maize compared very well with traditional kenkey. A broader sensory 

evaluation carried out in Ghana itself indicated, however, that 10% but not 2 0 % 

supplementation was acceptable. 

The traditional kenkey process is carried out on a small household scale and 

is a long (can take up to a week), tedious (especially during aflata production) 
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process and often results in a product of variable quality because of varying 

conditions of fermentation. Also because of its high moisture content (ca. 60%, 

w /w) , kenkey has, in the absence of refrigeration, a rather short shelf-life, ranging 

from a couple of days for Ga kenkey to about a week for Fanti kenkey. Chapter 3 

discusses the technological feasibilities of improving the whole process by reducing 

production time and increasing output by use of a standardised process that can 

be scaled up in industry. The aim was also to develop a dehydrated and convenient 

intermediary product that can be packaged and distributed or stored for longer 

periods. This can then be made into kenkey simply by rehydrating, wrapping and 

boiling to taste. Options considered included omission of the soaking step and the 

use of dry-milled maize and accelerated fermentation. Pre-fermented dough 

containing an enrichment of lactic acid bacteria was used as a starter in the 

accelerated fermentation of dough from dry-milled maize flour. Cabinet and drum 

drying were used to prepare dehydrated kenkey flour and aflata, respectively. 

Dough from dry-milled maize, however, had pasting and set-back viscosities that 

were significantly inferior to traditionally prepared dough, and as a result it was not 

suitable for making good quality aflata for kenkey production. Hence, although dry-

milling of maize and accelerated fermentation of the resulting dough could 

drastically reduce production time from about 6 days to within 24 h, omission of 

the soaking step practised traditionally, can result in a product with inferior textural 

quality. 

Chapter 4 describes an investigation of the (bio)chemical, microbiological 

and physical changes that occur during the soaking of maize and how these 

changes could influence the final flavour and texture of kenkey. During soaking, 

water uptake by coarsely dry-milled maize (grits) reached 63% (wet weight basis) 

in just 1 h, compared with 50% in 3 days for whole grain maize. The hypothesis 

that proteolysis is crucial to the development of the necessary textural 

characteristics of traditional kenkey was developed on the basis of the hydration 

experiments with and without microbial activity (at 25 and 4°C) and with and 

without enzyme activity (at 4 , 25 and 60°C). This was tested and confirmed using 

a heat-stable protease at 60°C. High endogenous proteolytic and saccharolytic 

enzyme activities were recorded in both grits and whole maize soaked at 4 or 

25°C. These enzymes were significantly repressed in grits soaked at 60°C. 

Although a high degree of hydration of grits occurred at this temperature, there 

was no significant improvement of the pasting and set-back viscosities. However, 

when a heat-stable protease was added to the grits during soaking at 60°C, the 

resulting dough had pasting and set-back viscosities comparable with those of 
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traditionally prepared doughs. 

The effects of supplementation and the various unit operations of the kenkey 

process on the availability of lysine were also investigated (Chapter 5). Results 

indicate that main unit operations such as soaking, fermentation and cooking had 

significantly positive influence on lysine availability in kenkey. Soaking increased 

lysine availability by 2 1 % and 22% for maize and maize-cowpea mixtures, 

respectively. Cooking of soaked samples further improved lysine availability by 

6 8 % and 31 % for maize and maize-cowpea mixtures, respectively. Significant (p 

< 0.05) improvements in lysine availability were also effected by the cooking of 

fermented doughs, with values of 3.42 or 4.43 g lysine/16g N recorded, 

respectively, for kenkey made from maize or maize-cowpea doughs fermented for 

4 days and cooked for 3 h. Cabinet drying had no significant effect on lysine 

availability, but drum drying of fermented maize and maize-cowpea doughs 

significantly lowered lysine availability. Kenkey made from a 1:1 mixture of cabinet 

and drum dried flours, however, had a higher available lysine content than that 

made from drum dried flour alone, as some of the lysine destroyed during drum 

drying was compensated for by the cabinet-dried portion. 

Chapters 6-8 of this thesis tackle aspects relating to the digestibility and 

safety of kenkey as influenced by the choice of ingredients and processing 

conditions. 

The traditional kenkey process requires a spontaneous fermentation of maize 

dough. The quality of this dough and the subsequent kenkey is, therefore, 

governed essentially by the surface microflora of the grains, the choice of 

ingredients and the processing conditions used. It is, therefore, essential that such 

fermented foods be monitored for the presence of any contaminants that may 

result from processing and microbial activity. Chapter 6 looks at the influence of 

the above-mentioned factors on the formation of biogenic amines and ethyl 

carbamate in kenkey. Results obtained indicate that the levels of biogenic amines 

in all-maize kenkey were very low (total amines < 60 ppm). These were, however, 

significantly increased by the addition of red cowpea (total amines < 200 ppm, 

mainly cadavarine and tyramine), and even more by white cowpea (total amines 

< 500 ppm, mainly putrescine and tyramine). Histamine, which is usually 

associated with toxic effects in humans, was absent ( < 5 ppm) in all samples. The 

effects of fermentation and cooking were less pronounced than the influence of 

cowpea addition. Prolonged cooking of kenkey resulted in lower levels of 

putrescine, but did not significantly reduce tyramine levels. Ethyl carbamate levels 

were negligible ( < 11 ppb) in all treatments. 
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Cowpeas, like most other legumes, contain antinutritional factors (ANF) as 

well as the flatus-causing oligosaccharides raffinose and stachyose. Their 

introduction into kenkey and other cereal-legume foods is, therefore, expected to 

reduce digestibility and to boost the flatulence potential of these foods. In Chapter 

7, the flatulence potential of cereal, cereal-legume foods as well as pure 

carbohydrates was investigated by monitoring the amount of gas produced when 

these substrates were incubated with various strains of CI. perfringens. Results 

obtained indicated that the flatulence potential of foods or pure carbohydrates, as 

determined by gas production from incubations with CI. perfringens, depend 

strongly on the choice of food ingredients and processing conditions, the type and 

concentration of pure carbohydrate used and most importantly the strain of 

bacteria used. 

An in vitro method was developed to determine the digestibility of kenkey 

and to monitor the effects of several important unit operations on its flatulence 

potential (Chapter 8). The method was designed such that digestible and 

assimilable carbohydrates were removed, leaving only the indigestible portions of 

the food sample for testing flatulence potential by fermenting with CI. perfringens 

strain NCTC 8239. Results show that, although low molecular weight 

oligosaccharides were fermented to produce gas, more gas was obtained from 

poorly digestible carbohydrates that make up the solid residue resulting from 

enzymic digestion. 

This thesis has outlined some basic options for improving the quality, 

processing and preservation of kenkey. It is hoped that this work can form a basis 

for industrial upgrading of the processing of traditional fermented foods from the 

tropics, and be extended to cover other cereal and cereal-legume based foods for 

both adults and weanling infants. It wil l, therefore, be important to further 

investigate the nutritional and socio-economic consequences of applying these and 

similar process options in a bid to develop a sustainable post-harvest food 

processing system for Africa in particular, and the developing world in general. This 

must be considered as a very important weapon in the battle against food 

insecurity in these poorer regions of our world. 
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Kenkey , afkomstig uit Ghana, is een traditioneel gefermenteerd maïs-(Zea mays)-

produkt. De door plaatselijke kenkeyproducenten gebruikte lokale witte maïs is 

echter relatief arm aan eiwit. Omdat dit eiwit ook nog een laag gehalte aan 

essentiële aminozuren bijv. lysine heeft, is het vanuit voedingskundig oogpunt van 

belang dit gehalte te verhogen. De cowpea (Vigna unguiculata), een in de Ghanees 

huishouding veel geconsumeerde erwt, heeft een hoog eiwit- en lysinegehalte. De 

eiwitverrijking van traditionele kenkey met cowpea is daarom het uitgangspunt voor 

dit onderzoek geweest. 

Het traditionele kenkey bereidingsproces werd op kleine schaal in het 

laboratorium nagebootst; de invloed van de toevoeging van cowpea op de 

deegfermentatie en de eigenschappen van de uiteindelijke kenkey zijn beschreven 

in Hoofdstuk 2. Er werd kenkey gemaakt van een 4:1 mengsel van maïs en rode 

of witte cowpea, en deze werd vergeleken met maïs-kenkey. Na 4 dagen 

natuurlijke fermentatie bij 30°C was de pH gedaald tot 4,07 in maïsdeeg, en 4,08 

in maïs-cowpea deeg. Deze pH werd in maïsdeeg in 48 uur bereikt; in maïs-cowpea 

deeg was 24 uur langer fermenteren nodig. Het ruw eiwitgehalte nam met 29 ,2% 

toe bij verrijking met rode, en met 20 ,5% bij witte cowpea. Hiermee gingen 

toenamen van totaal lysine, methionine en tryptofaangehalten gepaard van 

respectievelijk 76 ,3%, 15,6% en 26 ,8% bij rode cowpea, en 65,3%, 8 ,2% en 

19,5% bij witte cowpea. 

Met cowpea verrijkte kenkey had een homogenere structuur, en was minder 

brokkelig dan maïs kenkey (Hoofdstuk 2). Voor het breken van net cowpea verrijkte 

kenkey was een grotere kracht nodig dan voor het maïsprodukt; door bewaring bij 

kamertemperatuur werd het produkt stijver. Na bijvoorbeeld 24 uur was tweemaal 

zoveel kracht voor breuk nodig als bij vers bereide kenkey. Toevoeging van rode 

cowpea verminderde de kleur-helderheid (Hunter L-waarde) van kenkey met 27%, 

en de afwijkende bruine kleur was dan ook de oorzaak voor een panel van vijf 

Ghanezen om het produkt te verwerpen. Hetzelfde panel vond echter dat kenkeys 

van mengsels van maïs met volkoren witte, of ontvelde rode cowpea vergelijkbaar 

waren met traditionele kenkey. Een beoordeling uitgevoerd in Ghana door een 

consumentenpanel wees echter uit, dat verrijking met 10% cowpea werd 

geaccepteerd maar 20% niet. 

Het traditionele bereidingsproces voor kenkey wordt op kleine huishoudelijke 

of commerciële schaal uitgevoerd. Het kost veel tijd (maximaal 1 week), 

lichamelijke inspanning (vooral de bereiding van de zgn. "aflata") en de onbeheerste 

fermentatie resulteert in een variabele produktkwaliteit. Bovendien heeft kenkey 
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door het hoge vochtgehalte (ca. 60% m/m) buiten de koelkast één beperkte 

houdbaarheid, uiteenlopend van enkele dagen (Ga kenkey) tot ongeveer een week 

(Fanti kenkey). In Hoofdstuk 3 worden de technologische mogelijkheden 

onderzocht om het proces te versnellen, en tevens te komen tot een gedroogd 

tussenprodukt dat gemakkelijker zou kunnen worden verpakt, gedistribueerd en 

bewaard. Hieruit kan eenvoudig kenkey worden bereid door het te mengen met 

water, te kneden, en in een blad te wikkelen en te koken zoals gebruikelijk. 

Getracht werd tot procesverkorting te komen door de weekstap over te slaan, en 

van droog vermalen maïs uit te gaan. De fermentatie kon worden versneld door 

gebruik te maken van een ophopingscultuur van melkzuurbacteriën in maïsdeeg 

bereid uit droog gemalen maïs. Gedroogde aflata werd bereid d.m.v. walsdroging; 

gedroogd kenkey meel werd m.b.v. een kastdroger verkregen. Duidelijk werd dat 

droog gemalen maïs een inferieure kwaliteit oplevert, veroorzaakt door geringe 

verstijfseling en gelvorming vergeleken met geweekte maïs. Hoewel het overslaan 

van de weekstap het proces aanzienlijk zou versnellen, is het geen haalbare keuze 

omdat het een onacceptabele kenkey textuur geeft. 

In Hoofdstuk 4 wordt verder ingegaan op de (bio)chemische, 

microbiologische en fysische veranderingen in maïs tijdens het weekproces, en hun 

invloed op aroma en textuur van het eindprodukt. Grof droog gemalen maïs (gries) 

neemt tijdens weken in 1 uur tot 63% (natgewicht) vocht op, in tegenstelling tot 

5 0 % in hele maïskorrels in 3 dagen. Op basis van hydratatie-experimenten met (bij 

25°C) en zonder (bij 4°C) microbiële activiteit, en met (bij 4 ° en 25°C) en zonder 

(bij 60°C) endogeen enzymactiviteit, werd de hypothese ontwikkeld dat Proteolyse 

van groot belang is voor de ontwikkeling van de textuur van traditionele kenkey. 

De hypothese werd getoetst en bevestigd door proeven met thermostabiel protease 

bij 60°C. Zowel bij 4 °C en 25°C werden in de hele maïs en in gries tijdens het 

weken grote endogeen proteolytische en saccharolytische enzymactiviteit 

aangetoond. Deze activiteiten werden nagenoeg onderdrukt tijdens weken bij 

60°C. Hoewel bij deze temperatuur een goede hydratatie van gries optrad, werd 

het verstijfselings- en gelvormingsgedrag niet verbeterd. Wanneer echter tijdens het 

weken bij 60°C een thermostabiel protease werd toegevoegd, werd een verstijfseld 

deeg verkregen met vergelijkbare eigenschappen als het traditionele produkt. 

Hoofdstuk 5 betreft de invloed van verrijking en procesbewerkingen op de 

beschikbaarheid van lysine. Deze werd positief beïnvloed door de voornaamste 

handelingen in het proces zoals weken, fermenteren en koken. Weken vergrote de 

lysinebeschikbaarheid met 2 1 % en 22% in respectievelijk, maïs en maïs-cowpea 

mengsels. Koken van de geweekte grondstof gaf een verdere verbetering van 68% 
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en 31 % voor respectievelijk, maïs en maïs-cowpea. Het koken van gefermenteerde 

maïs en maïs-cowpea mengsels resulteerde ook in een significante (p < 0,05) 

verbetering van de lysinebeschikbaarheid en gaf 3,42 g en 4,43 g beschikbaar 

lysine per 16 g stikstof in resp., kenkey van maïs en maïs-cowpea die vooraf 4 

dagen was gefermenteerd en 3 uur was gekookt. Kastdrogen van kenkeymeel had 

geen significante invloed, maar walsdrogen van gefermenteerde maïs en maïs-

cowpea degen leidde tot significante verlaging van de lysinebeschikbaarheid. Door 

1:1 mengsels van kastgedroogd meel en walsgedroogde af lata te gebruiken kon het 

lysineverlies aanvaardbaar blijven. 

De hoofdstukken 6-8 van dit proefschrift betreffen de invloed van gebruikte 

grondstoffen en procesomstandigheden op de veiligheid en verteerbaarheid van 

kenkey. In het traditionele kenkeyproces wordt van een natuurlijke fermentatie 

gebruik gemaakt, zodat de kwaliteit van deeg en kenkey vooral bepaald worden 

door de oppervlakte-microflora van de grondstof, de keuze van de grondstof en de 

procesomstandigheden. Het is daarom van belang om inzicht te verschaffen in de 

door procesbewerkingen of door microbiële activiteit mogelijk ontstane 

verontreinigingen. In Hoofdstuk 6 wordt aandacht besteed aan de vorming van 

biogene aminen en ethylcarbamaat in kenkey. Biogene aminen komen in 

maïskenkey slechts in zeer kleine hoeveelheden voor (totaal aminen < 60 ppm). 

Wordt echter verrijkt met cowpea dan neemt het gehalte biogene aminen 

aanzienlijk toe tot < 200 ppm (voornamelijk cadaverine en tyramine) bij gebruik 

van rode cowpea, en < 500 ppm (voornamelijk putrescine en tyramine) bij witte 

cowpea. Histamine, dat gewoonlijk wordt geassocieerd met vergiftiging bij de 

mens, werd in geen van de onderzochte kenkey's ( < 5 ppm) aangetroffen. De 

invloed van fermentatie en van koken was minder sterk dan dat van de verrijking 

met cowpea. Langer koken gaf lagere putrescine concentraties, maar tyramine 

bleef aanwezig. In alle kenkey's was ethylcarbamaat afwezig ( < 11 ppb). 

Zoals de meeste peulvruchten bevatten cowpea, antinutritionele factoren 

(ANF) en flatulentie veroorzakende Oligosacchariden zoals raffinose en stachyose. 

Toevoeging van peulvruchten aan kenkey of andere graanprodukten zal daarom 

naar verwachting een negatieve invloed hebben op de verteerbaarheid enerzijds, en 

meer flatus veroorzaken anderzijds. In Hoofdstuk 7 wordt beschreven hoe de flatus 

capaciteit van levensmiddelen op basis van graan, of graan-peulvruchten mengsels, 

alsook van zuivere koolhydraten, werd onderzocht aan de hand van gasvolumes die 

door fermentatie met Clostridiumperfringens stammen uit deze substraten werden 

gevormd. De hoeveelheden gevormd gas werden sterk beïnvloed door de gekozen 

substraten en procesbewerkingen, en tevens door de concentraties zuivere 
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koolhydraten en, in hoge mate, door de gebruikte bacteriestammen. 

Een in-vitro methode werd ontwikkeld (Hoofdstuk 8) voor de bestudering van 

de verteerbaarheid van kenkey, en van de invloed van procesbewerkingen op de 

flatus capaciteit van kenkey. In deze methode worden verteerbare en absorbeerbare 

koolhydraten verwijderd, alvorens de inverteerde resten van het levensmiddel te 

fermenteren met Cl. perfringens stam NCTC 8239. Uit de resultaten blijkt dat niet 

alleen water-oplosbare Oligosacchariden onder gasvorming worden gefermenteerd, 

maar dat zelfs meer gas wordt gevormd uit inverteerde koolhydraten, die aanwezig 

zijn in de water-onoplosbare resten overgebleven na enzymatische vertering van het 

levensmiddel. 

Dit proefschrift opent een aantal keuzemogelijkheden voor de verbetering van 

de kwaliteit, het bereidingsproces en de houdbaarheid van kenkey. Hopelijk zal het 

bijdragen aan de bereiding op industriële schaal van traditionele gefermenteerde 

levensmiddelen in de tropen, en zal het bredere toepassing vinden in de produktie 

van levensmiddelen op basis van granen en graan-peulvruchten mengsels, voor 

zowel volwassenen als zuigelingen. Het is daarom van belang de voedingskundige 

en socio-economische implicaties van deze en soortgelijke technologische 

ontwikkelingen verder te onderzoeken teneinde tot een duurzaam systeem voor 

levensmiddelentechnologie te komen voor Afrika, en de ontwikkelingslanden in het 

algemeen. Dit moet beschouwd worden als een zeer belangrijk wapen in de strijd 

voor voedselzekerheid in deze armere streken van onze wereld. 
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Le Kenkey est un produit traditionnel et populaire du Ghana. Il est fabriqué à partir 

d'une pâte de maïs (Zea mays L) spontanément fermentée. Cependant, le maïs 

local blanc, préféré par les fabricants traditionnels du kenkey est pauvre en protéine 

et déficient en acides aminés essentiels tels que la lysine. Par conséquent, il est 

important d'essayer d'améliorer cet aspect du kenkey. La dolique (Vigna 

unguiculata), une légume bien connue par des ménages Ghanéens, est riche en 

protéine et lysine. Elle a donc été présentée comme une source supplémentaire de 

protéines pour améliorer la qualité du kenkey. 

Le procédé traditionnel de fabrication du kenkey a été adapté en un procédé 

utilisable à l'échelle du laboratoire, et les effets de l'addition de la dolique sur la 

fermentation de la pâte et la qualité du produit final ont été étudiés en Chapitre 2. 

Le kenkey a été fabriqué à partir d'un mélange à 4:1 de maïs et de la dolique rouge 

ou blanche, et comparé avec un produit fait uniquement à partir du maïs. Après 4 

jours de fermentation naturelle à 30°C, des valeurs finales du pH de 4.07 et 4.08 

respectivement pour le maïs et le mélange maïs-dolique ont été obtenues. Quoique 

48 heures aient été suffisant pour une bonne acidification de la pâte de maïs, il a 

fallu 24 heures en plus pour que le même pH soit obtenu avec le mélange maïs-

dolique. A cause de l'addition de la dolique, le taux brut de protéine a augmenté 

de 29 ,2% et 20 ,5% pour le kenkey supplémentée respectivement avec la dolique 

rouge et blanche. Ceci représente respectivement des augmentations de 76,3%, 

15,6% et 26 ,8% du contenu total en lysine, methionine et tryptophane pour le 

mélange maïs-dolique rouge et 65,3%, 8,2% et 19,5% d'augmentation en lysine, 

methionine et tryptophane respectivement pour le kenkey issu du mélange maïs-

dolique blanche. 

Le kenkey fait à partir d'un supplément en dolique était plus homogène et 

par conséquent moins enclin à la fracture que le kenkey fait à partir du maïs 

uniquement (Chapitre 2). De même, davantage de force était nécessaire pour 

fracturer le produit issu de l'addition de la dolique et ceci s'est accru avec 

l'entreposage à température ambiénte. Par exemple le kenkey conservé pendent 24 

heures était deux fois plus difficile à fracturer que du kenkey fraîchement préparé. 

L'addition de la dolique rouge a réduit la blancheur (valeur Hunter L) du kenkey de 

27%, ce qui lui a valu d'être rejeté par un panel de 5 Ghanéens connaissant bien 

le kenkey. Ceci est à mettre au compte d'une couleur brune peu familière. Ce panel 

a aussi conclu que le kenkey fait avec un mélange de grain entier de dolique 

blanche ou bien de la dolique rouge décortiquée était bien comparable au kenkey 

traditionnel. Une enquête d'évaluation plus étendue au Ghana a cependant montré 
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qu'une supplementation de 10% était acceptable, mais pas de 20%. 

Le procédé traditionnel de fabrication du kenkey est conduit à petit échelle 

de ménage et est long (peut durer une semaine) et laborieux (spécialement pendant 

la production d'aflata). Et il résulte souvent en un produit de qualité variable à 

cause des conditions de fermentation aussi variables. Aussi à cause de sa forte 

teneur en eau (ca. 60% w/w) le kenkey a en l'absence de réfrigération une très 

courte durée de conservation variant de deux jours pour le Ga kenkey et près d'une 

semaine pour le Fanti kenkey. 

Le Chapitre 3 examine la faisabilité technologique de l'amélioration de tout 

le procédé par une réduction du temps de fabrication et une augmentation de la 

production par l'utilisation d'un procédé standardisé qui peut être utilisé à l'échelle 

industrielle. Le but était aussi de fabriquer un produit de valeur intermédiaire, 

déshydraté et qui peut être emballé et conservé plus longtemps. Un tel produit peut 

être transformé en kenkey par une simple réhydratation suivi d'une mise en paquet 

et d'une ebullition selon le goût. Les options examinées comprennent l'omission de 

l'étape de trempage et l'utilisation du maïs sec moulu de même que l'accélération 

de la fermentation. Une pâte pre-fermentée enrichie en bactéries lactiques a été 

utilisé pour le démarrage de la fermentation accélérée de la pâte faite à partir de la 

farine de maïs sec. Le séchage par cabinet et par tambour ont été utilisés pour 

fabriquer de la farine de kenkey déshydratée et l'aflata respectivement. La pâte 

issue du maïs sec moulu a cependant montré une viscosité inférieure à celle de la 

pâte préparée par le procédé traditionnel et par conséquent n'était pas appropriée 

pour faire de l'aflata de bonne qualité pour la production de kenkey. Quoi-que le 

séchage et l'écrasage du maïs et l'accélération de la fermentation de la pâte 

résultante ont puisse réduire le temps de production de 6 jours à 24 heures, 

l'omission du trempage pratiqué traditionnellement a résulté en une pâte dont la 

texture était de qualité inférieure. 

Le Chapitre 4 décrit une étude les changements (bio)chimiques, 

microbiologiques et physiques qui ont eu lieu pendant le trempage du maïs et sur 

l'influence que ces changements peuvent avoir sur le goût et la texture finale du 

kenkey. Pendant le trempage, l'absorption de l'eau par le maïs sec moulu a atteint 

un taux de 63% en une heure seulement, comparé avec un taux de 5 0 % en trois 

jours pour le maïs en grain entier. L'hypothèse que la Proteolyse est cruciale au 

développement des caractéristiques relatives à la texture du kenkey traditionnel a 

été examinée à travers les expériences avec ou sans activité microbienne (à 25°C 

et 4°C) et avec ou sans activité enzymatique (à 4, 25 et 60°C). Ceci a été testé 

et confirmé par l'utilisation à 60°C d'une protease thermostable. Des fortes 
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activités protéolytiques et saccharolytiques endogènes ont été enregistrées tant 

dans le cas du maïs moulu que dans celui du maïs entier à 4 ou 25°C. Ces 

enzymes ont été fortement réprimées pour la farine du maïs trempée à 60°C. Quoi­

qu'un degré élevé d'hydratation ait été obtenu a cette température, il n'y a pas eu 

une amélioration significative de la viscosité. Toutefois, quand une protease 

thermostable a été ajoutée à la farine pendant le trempage à 60°C, la pâte 

résultante avait une viscosité comparable avec celle des pâtes préparées 

traditionnellement. 

Les effets de la supplementation et des diverses opérations du procédé de 

fabrication du kenkey sur la disponibilité de la lysine ont aussi été examinés 

(Chapitre 5). Les résultats montrent que les principales opérations telles que le 

trempage, la fermentation et la cuisson ont une influence positive de façon 

significative sur la disponibilité de la lysine dans le kenkey. Le trempage a fait 

croître la disponibilité de la lysine de 21 % et 22% pour le maïs et le mélange maïs-

dolique, respectivement. La cuisson des échantillons trempés a en plus amélioré la 

disponibilité en lysine de 68% et 3 1 % pour le maïs et le mélange maïs-dolique, 

respectivement. D'autres améliorations significatives (p < 0,05) de la disponibilité 

en lysine ont aussi été effectuées par la cuisson des pâtes fermentées, avec des 

valeurs de 3,42 ou 4,43g lysine/16g N enregistrées, respectivement pour le kenkey 

fait à partir des pâtes de maïs ou du mélange maïs-dolique fermentées pendant 4 

jours et cuites pendant 3 heures. Le séchage par le cabinet n'a eu aucun effet sur 

la disponibilité en lysine, mais le séchage au tambour des pâtes de maïs et de 

mélange maïs-dolique a diminué de façon significative la disponibilité en lysine. Le 

kenkey fait a partir d'un mélange à 1:1 des farines séchées au cabinet et au 

tambour a, cependant, eu plus de lysine disponible que celui fabriqué à partir de la 

farine séchée au tambour uniquement, étant donné qu'une partie de la lysine 

détruite pendant le séchage au tambour avait été compensé par la portion issue du 

séchage au cabinet. 

Les Chapitre 6-8 de la présente thèse affronnent des aspects relatifs à la 

digestibilité et a la salubrité qui peuvent être influencés par le choix des ingrédients 

et les conditions de fabrication. Le procédé traditionnel de fabrication du kenkey 

utilise la fermentation spontanée de la pâte de maïs. La qualité de cette pâte et du 

produit qui en résulte est donc essentiellement déterminée par la microflore à la 

surface des grains, le choix des ingrédients et les conditions de fabrication utilisés. 

Il est par conséquent essentiel de contrôler tels aliments fermentes pour détecter 

la présence de quelque contamination pouvant provenir de la fabrication et de 

l'activité microbienne. Le Chapitre 6 examine l'influence des facteurs ci-dessus 
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mentionnés sur la formation des amines biogéniques et de la carbamate d'éthyle. 

Les résultats obtenus montrent que les niveaux des amines biogéniques dans le 

kenkey issue du maïs uniquement étaient très bas (totale < 60ppm). Ceux-ci ont 

cependant connus une augmentation significative avec l'addition de la dolique 

rouge (totale < 200ppm, surtout la cadaverine et la tyramine), et, encore plus avec 

la dolique blanche (totale < 500ppm, surtout la putrescine et la tyramine). 

L'Histamine, qui est souvent associée à des effets toxiques chez les humains 

n'était présent ( < 5ppm) dans aucun échantillon. Les effets de la fermentation et 

de la cuisson étaient moindre par rapport à ceux de l'addition de la dolique. La 

cuisson prolongée du kenkey a abouti à des niveaux inférieurs de putrescine mais 

n'a pas réduit de façon significative les niveaux de tyramine. Les niveaux d'éthyle 

carbamate (<11ppm) étaient négligeable dans tous les traitement. 

La dolique comme la plupart d'autres légumes contient des facteurs anti-

nutritionelles (ANF) tels des oligosaccharides raffinose et stachyose qui contribuent 

à la formation de flatus. Leur introduction dans le kenkey et dans d'autres 

mélanges alimentaires céréales-légumes devrait par conséquence augmenter le 

potentiel flatulence de ces aliments. Dans le Chapitre 7, le potentiel de flatulence 

du céréale, des mélanges alimentaires céréales-légumes ainsi que des glucides 

pures a fait l'objet de recherches par l'examen des quantités de gaz produites 

quand ces différents substrats font l'objet d'une incubation avec différentes 

souches pures de Cl. perfringens. Les résultats obtenus ont indiqué que le potentiel 

de flatulence des aliments ou des glucides pures telr que déterminés par la 

production de gaz suite à l'incubation avec Cl. perfringens dépendaient 

énormément du choix des ingrédients utilisés et surtout de la souche de bactérie. 

Une méthode de détermination de la digestibilité du kenkey in vitro a été 

mise au point pour suivre et évaluer l'effet de plusieurs opérations importantes sur 

son potentiel de flatulence (Chapitre 8). La méthode a été conçue de telle manière 

que les glucides digestibles et assimilables ont été éliminées laissant seulement les 

composantes indigestibles de l'échantillon alimentaire pour tester le potentiel de 

flatulence avec Cl. perfringens souche NCTC 8239. Les résultats montrent que 

malgré le fait que les oligosaccharides à faibles poids moléculaires ont été 

fermentes pour produire du gaz, encore plus de gaz a été obtenu des glucides 

difficilement digestibles qui constituent le résidu solide résultant de la digestion 

enzymatique. 

Cette thèse a permis d'identifier quelques options fondamentales pour 

l'amélioration de la qualité, du processus de fabrication et de la préservation de 

kenkey. Il faut espérer que ce travail formera une base pour une fabrication 
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industrielle des aliments fermentes traditionnels provenant des tropiques et qu'il 
sera étendu d'autres aliments basés sur les céréales et sur les mélanges céréales-
légumes tant pour les adultes que pour les enfants. Il sera donc important 
d'examiner plus en profondeur les conséquences nutritionnelles et 
socio-économiques de l'application de ces options, aussi que d'autres qui leur sont 
semblables dans les essaies cherchant à développer des systèmes durables de 
transformation des aliments après récolte en Afrique ou dans les pays en 
développement en général. Ceci doit être considéré comme une arme très 
importante dans la bataille contre l'insécurité alimentaire dans les régions qui sont 
les plus pauvres du monde. 
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