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PROPOSITIONS 

(1) The progress being made towards the ultimate goal of automated change 
detection and feature extraction should be complemented by an automation 
of database updating and consistency enforcement. 
- This thesis 

(2) Terrain objects are often spatially coincident; this spatial coincidence should 
be explicitly represented in a spatial data model to have richer information 
content and faster query realisation. 
- This thesis 

(3) The current practice of delayed reconstruction of topology (after database 
updating) should be replaced with an automatic reconstruction (during 
updating) to facilitate on-line updating of a spatial database from a (remote) 
data acquisition centre. 
- This thesis 

(4) An information system loses its reliability once information retrieved from 
it is identified as being inconsistent; thus the reliability of the system should 
be enhanced through the provision of automated procedures for monitoring 
and enforcing data consistency. 
- This thesis 

(5) The subject of automated techniques for map revision and database updating 
requires serious attention now that more and more organizations have 
completed database construction and are faced with the task of maintaining 
these databases with current information. 
- 1994 ISPRS Annual Report 

(6) A GIS will be successful only if it can present the user with an accurate, 
consistent and current view of the world as required for his application. 
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(7) When developing a generic spatial data model, the complexity of a terrain 
object (in terms of shape) cannot be predefined (except for application-
specific models); thus the most feasible approach is to model elementary 
objects which can then be used as building blocks for complex objects. 

(8) An individual without information cannot take responsibility; an individual 
with information cannot help but take responsibility. 
- Jan Carlson, CEO, Scandinavian Air Systems 

(9) Stable democracy cannot be realised until the society is ready to invent its 
own form of democracy that is rooted in its own realities. 

(10) Only creative, rather than emulative, socio-political theories can lead to 
progress of developing nations. 

(11) The less developed world will not become developed through the goodwill 
or generosity of the developed powers; it can only become developed 
through a struggle against the external forces which have a vested interest 
in keeping it undeveloped. 
- Kwame Nkrumah, First Post-independence President of Ghana (1957 -
1966). 

(12) The man dies in him who keeps quiet in the face of tyranny. 
- Wole Soyinka, 1986 Nobel Laureattefor Literature, in "The Man Died" 

(13) You don't need a good memory if you always speak the truth. 



To Taiwo, Mayowa, Dunni and Ope 



ABSTRACT 

Kufoniyi, O., 1995. Spatial coincidence modelling, automated database updating and data 
consistency in vector GIS. PhD Thesis, Department of Surveying and Remote Sensing, 
Wageningen Agricultural University, The Netherlands, 206 pp 

This thesis presents formal approaches for automated database updating and consistency 
control in vector-structured spatial databases. To serve as a framework, a conceptual data 
model is formalized for the representation of geo-data from multiple map layers in which a 
map layer denotes a set of terrain objects of the same mapping context, e.g., cadastral, soil 
mapping, etc. The necessity for a generalised model arises from the frequent requirement in 
spatial analysis and planning for a geometric integration of several different views of the 
world, whereas most existing data models were designed from the perspective of a "single 
application", leading to ad hoc and repeated overlay computations (during query processing) 
when dealing with an integrated analysis. An alternative model is therefore proposed in this 
thesis for the geometric integration of geo-data from multiple map layers. The proposed model 
is an object-based, query-oriented 2.5D data model for multi-valued vector maps (DMMVM). 

A multi-valued vector map refers to the vector-based representation of terrain objects from 
multiple map layers whereby two objects of the same geometric type may be spatially 
coincident. Two objects of the same type are spatially coincident if they (partially) overlap 
in space. In this model, positions of objects are defined in a 3D metric space but embedded 
in 2D topologie space. The model is based on the 2D formal data structure (FDS) for single-
valued vector maps. 

Terrain objects play a central role in the terrain description; each object has a thematic 
component and a geometric component. In the thematic domain, the objects can be grouped 
into thematic classes in which each class has a specific attribute structure, and in the 
geometric domain the object types (points, lines and areas) are distinguished for a 2D or 2.5D 
terrain description. 

A geometric data type - the m-dimensional container, or simply m-container, where m e 
{0,1,2} - is then introduced to model spatial coincidence among objects of the same 
geometric type. By introducing the container data type, overlapping sections across the layers 
are uniquely identified such that they have their own individual geometric data and non-
spatial data, apart from those inherited from the overlapping objects; they can then be main
tained and manipulated by the DBMS just like single objects. Using graph theory as a 
mathematical tool, the three container types are then represented by the topologie primitives 
arc and node. A node defines one 0-container and/or the beginning or end of an arc, while 
an arc defines (part of) one 1-container and/or (part of) the boundary of a 2-container. The 
arc is defined by one start node and one end node, and a node is defined by a coordinate 
triplet X,Y,Z. A flexible integration of the model with a DTM is also presented in the thesis, 
using an edge-based TIN. Two primitives of the edge-based TIN (edge and vertex) are added 
to the data types of the DMMVM to define the integrated model. 

Research and development on the updating of geo-information have been confined mainly to 
the aspects of data collection and change detection, with little emphasis on the corresponding 



automated propagation of the updating in the database in a consistent manner. To address the 
latter aspect, procedures are formulated in the thesis for a consistent automated updating of 
a vector-structured database, using the DMMVM as a framework. Algorithms are provided 
for the automated update propagation such that topology is automatically updated by the 
system, while maintaining structural and semantic consistency. This will improve on the 
current practice in operational systems, which usually requires a delayed reconstruction of 
topology whenever there is a geometric change in the database. Algorithms are developed for 
the insertion, deletion or modification of each of the eight data types (area, line, point, 2-
container, 1-container, O-container, arc and node) in the DMMVM. The human operator 
interacts with the system at the object-level, while the system propagates the update. The 
topology of the database is updated dynamically by the system by evaluating, using 
computational geometry, the topologie relationship between the new primitive (arc or node) 
of an object and the existing primitives in the database. The type of relationship detected will 
then activate the relevant consistency rule (including update propagation) to validate the 
topology and consistency of the database. The system alerts the human operator if it is not 
possible for it to resolve the inconsistency. 

To enforce data consistency during geometric updating of the database, consistency rules are 
defined to ensure structural consistency, while a monitoring strategy is formulated for 
semantic (application-dependent, topologie) constraints. In both cases, topology plays the 
central role as an "alerter" of constraint violations. Thus the possible topologie relationships 
among the three elementary object types (area, line and point), and among the geometric 
primitives (arc and node) in the DMMVM are formalised and algorithms are defined for 
detecting the occurrence of any of the elementary relationships for any object combination. 
Then the consistency constraints can be translated to topologie relationships and stored in the 
database as events, and the corresponding responses of the system to enforce consistency can 
be defined as actions, thus giving a rule-based procedure (using the if event then action 
convention) for the management of data consistency in spatial databases. 

The DMMVM was translated into a relational database structure and an object-oriented 
database structure to facilitate implementation in a variety of systems. The object-oriented 
data structure and the consistency rules and algorithms were tested experimentally using 
Postgres, an extended relational database management system. Data were acquired using the 
Kork digital mapping system, on a Planicomp CI20 photogrammetric stereoplotter equipped 
with a Zeiss Videomap and a Calcomp drawing board digitizer. 

The thesis concludes with an evaluation of the proposed model and an outline of areas 
requiring further investigations. 

Keywords: geographic information system, spatial coincidence, geometric data integration, 
data modelling, topologie relationship, consistency rule, database updating. 
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INTRODUCTION 

1.1 Information System and Geoinformation Production 

Information systems (IS), in general, have been widely accepted as efficient tools for the 
collection, storage and analyses of various kinds of data and for decision making. 
The general concept of the system can be schematically described by Figure 1.1 
(Wintraecken, 1985; Molenaar, 1991b). 
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Figure 1.1 A Conceptualized description of information 
system 

In the diagram, "environment" 
represents the users (persons, 
machines and other information 
systems) and the real world pro
cesses that interact with the 
system. The "information 
processor" serves as an interface 
between the environment and 
the information base. Through 
it, the system communicates 
with the environment to receive 
data to be stored in the 
information base as well as the 
requests of users for information 
from the system. In response to 
these requests, it retrieves 

requested information from the base and supplies it to the user. The "grammar" gives the rules 
for the allowable states of the information base and its state transitions. It therefore guides 
the information processor in its processes and behaviour. 

Relating this general concept of an information system to geographic application, which is 
then referred to as a geographic information system (GIS), in the "information base" will be 
a structured digital spatial database, the "grammar" will be the rules and algorithms to guide 
data input and update and information retrieval from the database while the "environment" 
represents the users in the wider sense of it (persons and other GISs). The "information 
processor" is, in general, a collection of four interrelated software subsystems respectively 
performing the following four functions, namely data collection and input, data storage and 
retrieval, data manipulation and analysis, and visualization and reporting. In other words, the 
information processor contains the database management system (DBMS) plus the other appli
cation software. The spatial database represents the real world objects as seen by an 
application. Its design often evolves through the hierarchic processes of conceptualization of 
reality in a data model, the structuring of this model in a computer-representable format, and 
the design of a file structure for the storage of the structured data. The information content 
of a database depends therefore on the data model. Obviously, information that has not been 
represented in the model, either explicitly or implicitly, cannot be retrieved from the database. 



Consequently, database designers have always placed much emphasis on data modelling. A 
common trend, however, is that the data models are often developed for specific tasks even 
within a discipline. 

A high percentage of the cost of operationalizing GIS for geoinformation production is 
attributed to data collection; hence it must be ensured that the quality of the data meets the 
technical specifications of the project. The database reflects the "reality" of an application at 
a specific time, e.g., at the time of aerial photography if acquisition is done by 
photogrammetric method of data collection. However, the database is supposed to be reusable 
for spatial planning and decision making; thus it must be up-to-date and consistent. 
Unfortunately, the terrain objects to be represented in the database are generally not static in 
time. Therefore the database should be made to efficiently respond to object dynamics through 
updating. And because the updating may disturb data consistency, rules should be provided 
to guide the system and human operator during the updating. Some of the outstanding 
problems in the acquisition and modelling of spatial information that will be addressed in this 
thesis are discussed in the following section. 

1.2 Need for the Study 

Geographic information systems provide the means for a variety of users to handle spatial 
data in a wide range of applications. As mentioned above, at the heart of the system should 
be a structured spatial database representing terrain objects of interest. Because different 
applications normally view terrain situations differently, the data model on which the database 
design is based is usually tailored to an application. At the same time, the system offers the 
opportunity to bring together hitherto separate disciplines, thus facilitating integrated analysis 
of spatial data. For example, it is possible to integrate cadastral information, land use data and 
soil data in the database. Conventionally, each of them would be regarded as separate 
mapping themes and produced as such because of the limitations of traditional map-making 
technology. This traditional spatial reasoning, otherwise called the "layer approach", has been 
carried into the digital era, in which most operational GI systems operate on the principles 
of layers. 

'To integrate the three themes mentioned above, each theme would be modelled as a layer and 
the three layers would be intersected by overlay computation during query processing. Apart 
from the high overhead cost necessitated by the ad-hoc overlay computations, a lot of 
redundant data are collected and stored (e.g., common geometry will be collected and stored 
in each layer). Furthermore, one of the advantages of defining a data model for database 
design is that the information content of the database system built on that model can be 
formalized a priori and a spatial query language developed for the retrieval of such 
information. However, if the model is designed for a single layer, the above will hold only 
for that layer. 

In other words, the information content of an integrated database can be predetermined only 
by first defining a data model that can handle spatial coincidence among terrain objects (i.e., 
that is capable of representing multiple layers). In this thesis, two objects are said to be 
spatially coincident if they partly or fully share the same location in space. "Normal" spatial 
coincidence among objects, such as two objects sharing the same boundary or a line object 



passing through an area object (in the vector domain), are normally taken into consideration 
even in the layer models. But they normally exclude the overlapping of two or more objects 
of the same geometric type, e.g., two collinear line objects, which unfortunately do exist in 
reality. This deficiency in the presently available spatial data models should be eliminated to 
derive more benefits from the capabilities of GIS. 

Apart from the modelling aspect, maintaining the quality and currency of a spatial database 
is also very important. The maintenance includes how to keep the database up-to-date and 
consistent. With the advances in research and development in the fields of pattern recognition 
and automatic feature extraction in digital photogrammetry and image processing, and in 
digital field survey equipment, the total process of data collection for geo-information 
production may be automated by also providing a dynamic update propagation facility with 
a "topology builder" and the means for enforcing consistency rules. For instance, when a new 
object is digitized, using for example on-screen digitizing, it should not be necessary for the 
operator to construct topology off-line (by activating a separate program); rather the system 
should be able to reconstruct topology on-line and to propagate the update while enforcing 
data consistency. With the assistance of computational geometry, building topology on-line 
should not pose much of a problem if the consistent topologie relationships among objects 
represented in the data model are formalized beforehand, something which is generally 
lacking in many existing spatial data models. 

Maintaining data consistency in a spatial database requires major attention because the 
database loses its reliability once inconsistent information is retrieved from it, e.g., getting 
different values for the length of the same road. At the moment, no operational system warns 
the user when (for example) two land parcels erroneously overlap in a cadastral database; 
instead the system, where there is provision for topology building, simply decomposes the two 
overlapping parcels into three. The reliability and performance of the system will increase 
through the provision of a strategy for the on-line monitoring of such (inconsistencies. It will 
even minimize the cost of data acquisition because it will be possible to warn the operator 
immediately that a consistency violation occurs such that remeasurement can be done in the 
case of erroneous digitizing. Take, for example, a situation in which a national cadastral 
database is set up on a main server at the headquarters, and field offices are established for 
data collection by field surveyors for the updating of the database. With the availability of 
electronic equipment such as the "Total station" (for measurement), and the "Modem" (for 
transmission), the field surveyor can transmit the measured data, in real time, to the main 
server. If an automated update propagation facility with consistency rules is provided on the 
main server, the transmitted data will be entered into the database and the system can 
automatically propagate the update with the possibility of a feed-back to the field officer if 
there is any violation of consistency (such as a new parcel overlapping an existing one). 
Should the violation be caused by incorrect measurement, the surveyor can immediately repeat 
the measurements while still on the site, thereby saving the cost of a revisit to the site which 
may be in a remote place. Of course, this example holds for other data acquisition methods 
as well. 

The problems identified above do not constitute an exhaustive research overview, but rather 
the presentation of some of the critical areas in vector-based GIS that will be given priority 
in this research project. These are presented as the objectives of this thesis in the next section. 



1.3 Objectives of the Thesis 

The objectives of this research are: 

- To formalize a 2.SD vector data model that is capable of handling spatial coincidence 
among terrain objects, i.e., for the integrated representation of multi-layer geo-data. 

- To formalize the basic set of consistency rules for the developed model for the creation and 
updating of its database. 

- Since terrain objects are not static in time, there is a need to analyze and model the effects 
of object dynamics on the database; hence the third objective is to analyze terrain object 
dynamics, define their effects on the database structure and consequently propose rule-based 
algorithms for the dynamic updating of the database in response to changes in physical terrain 
(focusing mainly on the geometric domain). 

- To translate the integrated model to a prototype database structure for implementations. 

1.4 Research Method (see Figure 1.2) 

To fulfil the aforementioned objectives, the research tasks are divided into four phases as 
described below: 

Phase 1: Conceptual Data' Modelling 

With the availability of many existing vector data models, it is not necessary to start from the 
scratch. Thus a review of some of the existing models is made in order to select one that can 
be extended to cover representation of a multi-layer terrain situation. In addition, the 
mathematical theory that forms the framework of the selected model is reviewed. By 
analyzing the basic data types in the selected model, including the functional links among 
these data types, we can generalise the model probably by adding extra data types. This 
results in a 2.5D data model for vector GIS in which terrain objects from more than one map 
layer can be represented. This model is referred to as the data model for multi-valued vector 
map (DMMVM) to indicate representation of multi-layer geo-data. Intuitively, the formal data 
structure (FDS) for single-valued vector maps (SVVM) (Molenaar, 1989) seems to be the best 
candidate for the generalisation. 

Because of the importance of DTM in geoinformation production and with the absence of full 
3D GIS, coupled with the fact that the positions of objects are already defined in 3D in the 
above-mentioned 2.5D model, a compatible digital elevation data structure is selected and 
integrated with the proposed data model. 

In preparation for the second and third phases, the topologie relationships among the basic 
data types in the proposed data model are formalized. The relationships are derived at two 
levels, namely at the object level i.e., among the elementary object types and at the level of 
the geometric primitives i.e., among the geometric primitives. These relationships, apart from 
their use in the formulation of spatial query language, are used as tools for maintaining data 
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consistency and for update 
propagation in this thesis. 

Phase 2 Formalization of 
Consistency Constraints and 
Rules 

The second phase of the 
research deals with the 
identification of the basic static 
consistency constraints that are 
associated with the proposed 
data model to ensure the 
correctness of the database 
(after initial set-up and after 
updating), e.g., ensuring that 
two nodes do not have the same 
coordinates, that each node 
appearing in the boundary of a 
closed area object has exactly 
two incident arcs of the object 
(i.e, has degree 2 in graph 
theory), etc. 
The identified constraints, are 
then translated to formal 
consistency rules making use of 
the formalized topologie 
relationships. The monitoring 
and enforcement of the rules are 
based on the conventional if 
event then action procedure 
where the event represents the 
occurrence of an inconsistent 
topologie relationship and action 
represents the operation to be 
activated by the system to ensure consistency. 
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Phase 3: Object Dynamics and Database Updating 

This phase deals with the analysis and modelling of terrain object dynamics and formalization 
of algorithms for database updating. The main concentration is on the geometric structure of 
objects. Procedures are provided for the propagation of the insertion, deletion or modification 
of each of the basic data types in the proposed model. The procedures are arranged in a 
hierarchic manner with the procedures for updating of the geometric primitives of the model 
serving as the basic set on which the updating of the other data types is based. The aim is that 
the user has to operate at only the object level with the system taking care of the database re
structuring in real-time. 



Phase 4: Database Structure and Implementation 

Before the data model can be implemented, it has to be translated to a database structure. 
Various data structures are available for handling data in a database, e.g., network, hierarchic, 
relational and object-oriented data structures. The relational structure is the most popular but 
it has shortcomings in the handling of spatial data (Date, 1990). The object-oriented structure, 
on the other hand, has been recommended for spatial data handling (Alagic, 1989; Hughes, 
1991) but operational systems that use this structure are still few. The gap-bridging solution 
is the so-called evolutionary approach (Beech, 1988) in which object-oriented concepts are 
added on top of a relational model, e.g., Postgres (Postgres, 1994). Thus an object-oriented 
implementation can be done in one of two ways (see Figure 1.2): (1) by using an extended 
relational system (e.g., Postgres and Iris), popularly called "evolutionary approach" or (2) by 
using a "pure" object-oriented system (e.g., Ontos) or building one from the scratch by 
programming using an object-oriented programming language, e.g., C++ and Smalltalk; this 
is popularly referred to as the "revolutionary approach". 

The implementation of the proposed data model is based on the evolutionary approach to 
object-oriented database design. Consequently, the data model is translated to a 
fully-normalized relational database structure using Smith's normalization method (Smith, 
1985), such that interested users can implement the prototype in either a relational system or 
an extended relational system. The data model is then mapped into an object-oriented data 
structure with appropriate definition of classes, including the identification of the properties 
and operations (or methods) of each class. 

For the experimental implementation, a selection is made of the data collection subsystem and 
the database management subsystem. The main guiding criteria are (1) a stereo-
photogrammetric data acquisition method is preferred because it still accounts for the most 
accurate and fastest data collection for high- and medium-resolution spatial databases (akin 
to large- and medium-scale mapping) and because of the background of the author, (2) an 
extended relational (evolutionary object-oriented) database management system is preferred 
because of the availability of a standard query language, thus minimizing programming tasks 
required in the pure object-oriented approach. For data collection, the Planicomp C120 with 
Videomap superimposition facility is selected, using the Kork Digital Mapping Software 
version 8.0 for the digital compilation of terrain objects. And for database management, the 
Postgres DBMS version 4.2 is used. 

The specific tasks performed during implementation include 
- mapping of the object-oriented data structure to the Postgres data model 
- preparation for data collection (selection of the data sources (e.g., aerial photographs), 
preparation of system configuration (hardware and software), etc) 
- data collection and input 
- consistency checks on the created database 
- sample database updating. 

The experiment is then evaluated and conclusions made. 



1.5 Limitations of the Study 

As reflected in the thesis title, this study is generally limited to vector representation of terrain 
objects. Although spatial coincidence modelling implies data integration, only the geometric 
aspect of the integration is covered; however, the thematic attributes of the new object 
resulting from the spatial coincidence of two or more objects can be derived by propagation 
from the attributes of the coinciding objects. 

Although updating of geo-data includes change detection, data collection and database 
updating, the main focus of the thesis is on the last aspect, covering the propagation of an 
update resulting from the insertion, deletion or modification of objects in the database. 

In order to formalize rules for data consistency in this study, the integrity constraints are 
analyzed into two groups: static and dynamic constraints. The former relates more to the 
structure and semantics of the embedding data model while the dynamic integrity constraints 
deal mainly with the allowable transitions from one database state to another (i.e., transaction 
management, etc). We focus more on the static constraints in this research because the 
dynamic constraints are more related to the system environment. 

1.6 Organization of the Thesis 

This thesis is arranged as follows. A review of some of the concepts and literature related to 
this research is made in chapter 2. The formalization of the data model for representing multi
layer geo-data is described in chapter 3. It also includes the description of an approach for 
integrating the formalized model with the edge-based triangulated irregular network (TIN) 
structure to enable a flexible integration of a digital terrain model (DTM) with other geo-data. 
Because topologie spatial relationships play important roles in the procedures proposed in this 
thesis for maintaining data consistency and for database updating, chapter 4 is devoted to the 
modelling of topologie relationships in vector maps, including the formulation of an algebra 
for detecting the existing relationships between any two elementary objects in the database. 
In chapter 5, consistency rules are formalized for ensuring the integrity of a vector-structured 
database. These consistency rules are used in chapter 6 as part of the formalized algorithms 
for update propagation during database updating. For implementation purposes, the proposed 
data model is translated to both relational and object-oriented data structures in chapter 7. 
Two examples of the experimental implementation of the relational structure are given in this 
chapter. The implementation of the object-oriented data structure in Postgres, using 
photogrammetric data acquisition method, is described in chapter 8. Examples of database 
updating with automatic enforcement of data consistency are also given in this chapter. The 
thesis ends with some conclusions in chapter 9. 



SPATIAL DATA MODELS AND STRUCTURES 

The organization of spatial data in computer systems has received a considerable attention in 
the field of GIS. In a simplified form, we are interested in knowing what is where and when, 
as depicted in Figure 2.1a, using a field-based or an object-based concept of the "real world". 
The field-based approach conceptualizes "reality" as a "non-empty" space composed of a 
tiling of area units in which thematic data are recorded for each unit, while the object-based 
concept views "reality" as an "empty" space filled by individual terrain objects (Ehlers et al, 
1989; Goodchild, 1992). On the basis of the object-based concept, we are thus concerned with 
an abstraction process involving the handling of terrain objects (what), location (where) and 
time (when), and the relationships among them (see Figure 2.1b). To simplify the abstraction 
process, one of the three domains is usually kept fixed, one is pre-defined and the third is 
measured or observed. In the mapping disciplines, time is often kept constant (except in 
spatio-temporal modelling where it is an important variable), an assumption that will be 
adhered to in this thesis. 
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Figure 2.1 Domains of spatial data modelling 

The decision as to which of the other 
two is pre-defined and which is to be 
measured then depends on the pre
ferred mode of geometric representa
tion, whether "tessellation", in which 
location is pre-defined by partitioning 
the space into regular or irregular units 
and observing and recording the entity 
occurring in each unit, or "vector" in 
which the entity is predefined and its 
location measured. Thus before we can 
organize spatial data in a computer 
system, we first have to identify and 
formalize the elements of the above-mentioned domains, usually with respect to one or more 
applications. In order to achieve this task, different levels of data abstraction (or data 
modelling) are often recognized. We will adopt the four levels proposed by Peuquet (1984), 
namely: 
(1) Reality - phenomena as they actually exist, including all aspects which may or may not 
be perceived by individuals; 
(2) (Conceptual) Data model - an abstraction of the real world which incorporates only those 
properties thought to be relevant to the application or applications at hand, usually a human 
conceptualization of reality; 
(3) Data structure - a representation of the data model often expressed in terms of diagrams, 
lists and arrays designed to reflect the recording of the data in computer code; 
(4) File structure - the representation of the data in storage hardware. 
The last three constitute the major steps involved in database design and implementation; thus 
they have received much attention in the field of GIS in order to define appropriate 
representations of terrain objects in the spatial database. 



Comprehensive treatments of these modelling steps, including examples of the data models 
and structures, can be found in Peucker and Chrisman (1975), Nagy and Wagle (1979), Ahuja 
(1983), Peuquet (1984), Burrough (1986), Samet (1989) and Oosterom (1990). An overview 
of some of these data models and structures is the focus of this chapter. Special attention is 
given to the vector representation, being the choice for geometric representation in this thesis. 
In §2.1, an overview of geometric models of spatial data is presented, while §2.2 focuses on 
conventional database structures. In §2.3, a new modelling approach in spatial applications, 
object-oriented data modelling, is reviewed. The object-oriented approach has been 
recommended for the modelling and management of spatial data (Date, 1990; Hughes, 1991; 
Egenhofer, 1992). Despite the acclaimed suitability of the object-oriented approach for spatial 
data handling, the method also has some deficiencies, especially the absence of a mature 
standard query language in which the relational structure has gained its popularity, maturity 
and reliability. Thus a database system which combines the benefits of the relational and the 
object-oriented structures is now being considered as more suitable than either of the two. 
This approach, called an object-relational database system (Stonebraker, 1994), is briefly 
discussed in §2.4, where some implementation issues concerning the object-oriented structure 
are treated. Concluding remarks are given in §2.5. 

2.1 Geometric Models of Spa
tial Data 

A spatial data model is a human 
conceptualization of reality (a given 
geographic space including all the 
entities embedded in that space, other
wise called "universe of discourse" 
UOD). The formalization is normally 
done without consideration of hard
ware and other implementation con
ventions (Peuquet, 1984; Egenhofer 
and Herring, 1991). A commonly 
employed approach in spatial data 
modelling is to separate the data into 
geometric and non-geometric data. In other words, having assumed time to be constant, the 
terrain objects to be represented in a data model are characterised by their geometric data and 
their (non-spatial) attribute data, as shown in Figure 2.2 (Molenaar, 1989). The geometric data 
are further classified into locational data, spatial relationships and the shape and size of the 
object (see Figure 2.3). 
Traditionally, the thematic and geometric components of terrain objects are modelled and 
presented for analysis by means of 2D analog models, called maps. In the digital era, the 
geometric data are formalized using a tessellation or vector approach; thus the geometric 
models of spatial data are often grouped into tessellation data models and vector data models. 
Examples from the two groups are summarised in the following sub-sections with more 
emphasis on vector data models. 

Figure 2.2 Basic structure of terrain object in a 
GIS 
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2.1.1 Tessellation Data Models 

In tessellation models, the basic 
data unit is a unit of space for 
which entity information is expli
citly recorded in digital form. They 
can be broadly classified into reg
ular and irregular tessellations. 

(a) Regular tessellations 

In a regular tessellation, the geo
graphic space is partitioned into 
regular cells and each cell is 
characterised by: (1) the area it 
covers and (2) one or several 
values describing non-spatial properties of the cell. In surface modelling (i.e., 2D topologie 
space), the three common types of cells are square (or regular grid), triangular and hexagonal, 
with the square type, popularly called "raster", being the most commonly used. Regular 
tessellations come close to the perception of spatial objects when data are collected by digital 
photogrammetry, remote sensing or other scanning devices. A regular tessellation can be 
subdivided into smaller cells of the same shape to have a nested tessellation model, as in a 
quadtree which is based on the recursive decomposition of a grid. 

Figure 2.3 Components of terrain objects in a GIS 

(b) Irregular tessellations 

These result from the decomposition of the geographic space in irregularly sized cells. An 
irregular tessellation therefore gives a variable resolution because the size and density of the 
cells vary over space. The basic advantage of the model is that it reduces data redundancy and 
it can be tailored to the areal distribution of the data. Three examples are the irregular grid, 
triangulated irregular network and thiessen polygons. 

2.1.2 Vector Data Models 

In vector models, the individual entity is the basic data unit for which spatial information is 
explicitly recorded. Thus they are object-based geometric data models. They are usually 
classified into two main types, namely spaghetti (unstructured) and topologie models. 

(a) Spaghetti model 

Analog maps, as a basic data model, hold all their information in the form of graphical 
representations, sometimes with different colours used to differentiate the objects. This 
traditional view of geographic data formed the basis for many of the earlier GIS which were 
actually designed for the purpose of mapping (computer-assisted mapping) rather than spatial 
analysis. The process of digitizing from maps was imitated directly in the digital domain, 
leading to the unstructured vector model popularly called the spaghetti data model, by analogy 
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with a plate of disconnected, but intertwined and intertangled pasta. In other words, it is a 
direct line-for-line translation of the paper map in which geometry of each line-string is 
represented as sequences of straight line segments. Thus a line-string is represented as a 
sequence of n connected straight line segments with two end points and n-1 breakpoints 
(vertices). The position of each point is defined by a pair or triplet of coordinates. Since the 
model is a direct imitation of the graphical map, it is very efficient for graphical purposes, 
as in computer-assisted mapping. However, because the model does not incorporate topology, 
it is not efficient for GIS applications. 

(b) Topologie model 

In this model, the basic logical entity is a line segment. A line segment begins or ends at the 
intersection with another line or at a bend in the line. Each line segment is recorded with the 
coordinates of its end points, called nodes, as well as the identifier of the polygon on each 
side (in 2D topologie space). The more elementary spatial relationships are thus explicitly 
stored. With the incorporation of topologie relationships, a more "intelligent" spatial analysis 
can be performed and the geometric definitions of objects are represented in a non-redundant 
manner (e.g., the common boundary of two adjacent polygons is represented only once). In 
addition, the model can serve as a very useful start in automating map generalisation 
(Haywood, 1988). Furthermore, it eliminates the double digitization of common boundaries. 
The model has served as the basis of many successful proprietary vector GIS, e.g., Arc/Info. 
Examples of topologie data models include the Geographic Base File/Dual Independent Map 
Encoding (GBF/DIME) model (U.S. Census Bureau, 1970), the Polygon Converter (Polyvrt) 
model (Peucker and Chrisman, 1975), the TIGRIS data model (Herring, 1987), the formal data 
structure (Molenaar, 1989) and the Authoritative Topographic-Cartographic Information 
System (ATKIS) data model (Hesse and Leahy, 1990). 

Many of the existing topologie data models are simplified such that two objects of the same 
type (e.g., two area objects) do not partially or fully coincide in space. But many GIS users 
are concerned with the management of overlapping objects of interest in a single structure of 
a vector-based GIS. In other words, it is often of interest to accommodate different views, or 
layers, of the same geographic space, as in questions such as "which parcels (represented as 
distinct area objects) have a soil type Y (with soil units also represented as distinct area 
objects)?" This spatial coincidence problem is usually handled by an overlay computation 
after organizing each of the two layers separately using any topologie data model. 

When the frequency of the multi-layer analysis is limited, this solution may be acceptable. 
However, in proprietary systems, it has not been practical to manage overlap by using 
different layers, often because of the frequency of overlap and the irregular way in which it 
occurs (Herring and Pullar, 1993). Alternative methods of handling the problem are (see also 
Hoop et al, 1993): (i) to separate the metric information of the layers and precompute (by 
overlay) and store topologie relationships among the objects within and across the layers, as 
in the "geographic region" data type in Arc/Info (Roessel and Pullar, 1993), (ii) to share 
metric information and separate topologie relationships (i.e., topology is explicitly recorded 
per layer) as in the ATKIS data model and (iii) to combine all the layers in a single topologie 
model, as proposed in this thesis, in order to derive the benefits of an integrated model (see 
chapter 3). 
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Most proprietary systems still handle this spatial coincidence problem by overlay computa
tions. The solution of Arc/Info to the problem is still limited to overlapping two-dimensional 
object types (see Roessel and Pullar, 1993). A new feature type, called geographic region, has 
been defined in the extended model of the system (as reported in the above-mentioned 
reference) to handle overlapping polygons as well as disjoint polygons with identical attributes 
as a single region. At present, this solution has not been extended to cover overlapping point 
and line object types, which are the two other geometric object types commonly defined in 
a 2D topologie data model. In addition, the geometric data redundancy is not solved. The 
ATKIS data model provides a mid-way solution for all the three object types by sharing 
metric information, but topologie relationships among overlapping objects have to be derived 
computationally. This model is summarised in the following section. 

The ATKIS data model 

ATKIS is the result of a multi-stage research and development project of the Federal Republic 
of Germany's State Survey Working Committee (Adv) in the fields of state survey, 
cartography and automation (Hesse and Leahy, 1990). The ATKIS data model describes the 
data elements and their relationships within the ATKIS database as required for the 
description of the landscape and their representation in maps. It consists of a digital landscape 
model (DLM) and a digital cartographic model (DKM). The former represents topographic 
objects and the surface of the landscape; it is thus the primary model of the system. The 
DKM is a secondary model consisting of objects derived from the DLM, together with the 
cartographic generalisation and symbolisation rules for graphical output from the system. The 
DLM is therefore of more interest in this review. 

semantic level 
of DLM-objects 

semantlc-
topotogical 
level of 
DLM-object parts 

geometric level 
ofDLM-
geometric elements 

-*• hierarchical relations 
•*• topological relations 

Figure 2.4 The ATKIS DLM Data Model (Hesse and Leahy, 1990) 
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The structure of the ATKIS DLM data model (see Figure 2.4) has three levels of data 
elements describing three important information aspects (Hesse and Leahy, 1990): 
- the semantic aspect of the DLM objects, 
- the topologie information aspect of the DLM object parts and 
- the geometric information aspect of the DLM geometric elements. 
The possible relationships among these data elements are indicated in Figure 2.4. The model 
represents real world objects by means of DLM complex objects, objects, object parts, and 
vector elements/raster matrices. Being essentially a 2D data model (elevation may however 
be incorporated, usually in a separate structure), die DLM objects are geometrically classified 
into object types point, line and area (for vector representation) and raster (for raster 
representation). Complex objects can then be constructed by means of references to the DLM 
objects constituting mem. The DLM object parts are formed according to semantic and/or 
topologie criteria. They can be of the geometric types area/face, line/edge, point/node or raster 
and can have attributes, like a DLM object. 

Using object parts makes it possible to represent objects (e.g., a stream) by means of object 
parts (e.g., sections along the length of the stream) having different values of certain attributes 
(e.g., width). The object parts constituting an object can differ in their geometric representa
tion. The DLM geometric elements that describe the geometry of a DLM object part are 
bound to the object part by references, while every object part is specified by means of a 
reference as being owned by a certain DLM object. The actual bearers of the geometric 
information are the two geometric elements DLM vector element and DLM raster matrix. The 
vector elements describe lines in terms of the coordinates of points linked by different, 
selectable interpolation types. In addition to its horizontal coordinates, the elevation of a point 
may also be specified. Geometric data redundancy is reduced because any geometric element 
can belong to a number of object parts (i.e., l:n); a geometric element is defined once. It is 
thus possible to represent spatial coincidence among objects of the same type with this model 
at the geometric level. 

Note that one object part defines only one DLM object, while one DLM object is defined by 
one or more object parts (i.e., one-to-many relationship between object and object parts). Thus 
to represent spatial coincidence, each of the overlapping objects will have its own unique 
object parts even if the object parts are defined by the same geometric element. This means 
that if this model is used to represent terrain objects from two or more map layers, the 
vertical topologie relationship (i.e., among objects from different layers) can be retrieved only 
by computational means (e.g., by first selecting the object parts of the objects and comparing 
their geometric elements). In other words, spatial coincidence is implicitly modelled and the 
benefit of explicit representation whereby the overlapping parts can also be treated as new 
objects with separate additional attributes cannot be realised with the model. In addition, the 
hierarchic many-to-many relationship between geometric elements and object parts can 
introduce complexity during updating operations especially with respect to integrity 
maintenance. 

The intention in this research is to select a generalised topologie model (that is capable of 
handling spatial coincidence among objects of the same geometric type) as the basis for 
formalizing automated database updating and consistency management in vector-based GIS. 
Mainly for the reasons stated above, the ATKIS data model cannot be selected. Another 
existing topologie model which has a rich syntax and semantic structure (Webster and Omare, 
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1991; Hoop and Oosterom, 1992) is the formal data structure (FDS) for single-valued vector 
maps (Molenaar, 1989). The model does not support spatial coincidence but it can be 
generalised to be able to handle this. A review and extension of this model is presented in 
chapter 3. Another variant of the extension of the FDS to accommodate a multi-valued terrain 
description, proposed in Hoop et al (1993) will also be reviewed in the next chapter. 

2.2 Database Structures 

An appropriate database structure, or logical data model, is required to organize the data for 
storage and retrieval in the computer after developing (or selecting) the most appropriate data 
model. Until the recent advent of the object-oriented data structure, three main kinds of 
database structures were commonly recognised (Burrough, 1986; Date, 1990). These are the 
network, hierarchic and relational database structures. The three types are reviewed in the 
following subsections, with emphasis on the relational data structure. More details can be 
found in, for example, Date (1990) and Burrough (1986). The new addition to the common 
database structures, the earlier mentioned object-oriented data structure, is separately reviewed 
in §2.3. 

2.2.1 Network Data Structure 

The network structure consists of two sets (Date, 1990), a set of records and a set of links, 
i.e, a set of multiple occurrences of each of several types of record, together with a set of 
multiple occurrences of each of several types of link. Each link type involves two record 
types: a "parent" record type and a "child" record type. Each occurrence of a given link type 
consists of a single occurrence of the parent record type, together with an ordered set of 
multiple occurrences of the child record type. For a particular link type L with parent record 
type P and child record type C, each occurrence of P is the parent in exactly one occurrence 
of L, and each occurrence of C is a child in at most one occurrence of L. In other words, in 
the network structure, a given record may have any number of immediate superiors (parents) 
as well as any number of immediate dependents (children), thus allowing for a direct 
representation of a many-to-many link type among data types. 

The structure is more flexible than the relational and hierarchical structures since it can 
accommodate many-to-many relationship which often occurs in applications. However, it is 
more complicated and the database is enlarged by the large number of pointers, which must 
also be updated every time the database is updated, thereby increasing the overhead cost 
(Burrough, 1986). 

2.22 Hierarchic Data Structure 

This is a special case of the network structure. In it, the data are represented by a simple tree 
structure where one entity is "superior" (parent) and others "dependent" (children), giving a 
one-to-many relationship. The record type at the top of the tree is usually known as the "root" 
and a root may have any number of dependents, each of which may have any number of 
lower-level dependents. In other words, it is an ordered set consisting of multiple occurrences 
of a single type of tree (Date, 1990). A tree type consists of a single "root" record type, 
together with an ordered set of zero or more dependent (lower-level) subtree types and the 
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subtree type in turn consists of a single record type (the root of the subtree type) together 
with an ordered set of zero or more lower-level dependent subtree types, etc. Each tree 
occurrence consists of a single root record occurrence, together with an ordered set of zero 
or more occurrences of each of the subtree types immediately dependent on the root record 
type, and each of the subtree occurrences in turn also consists of a single record occurrence 
(the root of the subtree occurrence) together with an ordered set of zero or more occurrences 
of each of the subtree types immediately dependent on that root record type, etc. Naturally, 
no child is allowed to exist in the structure without its parent. 

The structure naturally models truly hierarchic spatial objects and it is easy to understand and 
expand. However, it has some disadvantages, which include lack of flexibility to accommo
date retrieval requests involving different trees, maintenance of large index files, data 
redundancy caused by the fact that certain attribute values may have to be repeated many 
times, and updating problems caused by the dependent occurrence of data. 

2.2.3 Relational Data Structure 

The relational model of representation has been most widely accepted because of its 
simplicity and the availability of a standard language (the structured query language (SQL)) 
for the manipulation of the database. Various commercial relational systems are available in 
the market, e.g., DB2, Oracle, Ingres, etc. In the structure, the data are organized in a single 
uniform manner: in the form of relations. It is characterised by such formal terms as relation, 
tuple, attribute, cardinality, degree, primary key and domain (the terms are schematically 
described in Figure 2.5) which respectively mean -informally- table, row or record, column 
or field, number of rows, number of columns, unique identifier, and a pool of legal values. 
Each relation consists of a number of tuples and a fixed number of attributes with each 
attribute having a unique domain of values. In other words, a relation is a collection of tuples 
(rows), each of which contains values for a fixed number of attributes (columns). Thus given 
a set of domains S„ S2,.... S„ (not necessarily distinct), R is a relation on these n sets if it is 
a set of n-tuples, or simply tuples, each of which has its first element from S„ its second 
element from S2, etc., i.e., R is a subset of the cartesian product S, * S2 * ...* Sn. This gives 
a relation of degree n, called n-ary relation (for example, a relation of degree 1 is called unary 
relation and that of degree 2 binary relation). 

A relational structure has certain characteristics which distinguish it from traditional computer 
files (Freiling, 1982; Date, 1990); these are: 
(a) duplicate tuples are not permitted 
(b) each tuple/attribute (row/column) intersection within each relation must contain a single 
data field, i.e., multiple values are not allowed 
(c) no ordering of tuples within a relation is assumed 
(d) no ordering of columns within a relation is assumed 
(e) no component of a primary key may be null. 

Any relation that has the above-mentioned characteristics is said to be normalized (actually, 
in the first normal form). This means that each relation in the structure must be normalized. 
Thus normalization (informally, the process of converting a table with repeating attribute 
values in one or more columns to one with atomic attribute values per column) is one of the 
important considerations for the structure. If the relations are not normalized, the structure 
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will be vulnerable to major problems, i.e., addition, deletion and update anomalies as well as 
unnecessary data redundancy. Inherent benefits have in fact been claimed for relational 
structures that are fully normalized (Kent, 1983; Smith, 1985; Roessel, 1986). However, a 
fully normalized structure, apart from slowing down retrieval, also introduces referential 
integrity problems which the designer of the database must provide rules to control. Data 
concerning a single object are spread over many tables, thus making the structure liable to 
integrity violations. 
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Figure 2.5 Key Words in Relational Data Structure 

Five normal forms are usually defined for a relational structure and a relation that is in the 
fifth normal form is said to be fully-normalized. A description of the five normal forms can 
be found in Kent (1983) and Date (1990). The most common method of composing fully 
normalized relations is the non-loss decomposition procedure (Date, 1990), which progresses 
successively from the first normal form (INF) to the highest normal form (usually the fifth 
normal form (5NF)) but satisfying the condition that if join operations are performed, the 
preceding normal form can be derived without loss of data. The first normal form is usually 
constructed from an entity relationship diagram (Chen, 1985) of the application. 

Another method for composing fully normalized relations was developed by Smith (1985). 
It has been acknowledged that Smith's approach is less tedious than a non-loss decomposition 
and yields a fully normalized structure in a rather straightforward manner (Roessel, 1985). 
This approach will be used in chapter 7 of this thesis to design a prototype relational structure 
for vector maps and is therefore summarised in the following subsection. 
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Smith's Normalization Procedure 

This method is based on two important concepts of single-valued and multi-valued depend
encies among data types (these two terms should not be confused with the terms as used to 
describe vector maps where they indicate the relationship between a geometric primitive and 
an object, see chapter 3). A single-valued dependence from P to Q (P and Q are either single 
or composite data fields) exists if, at any time, a fact about P determines one fact about Q. 
Each value of P must then be non-null and unique, but Q may contain null or duplicate 
values. A multi-valued dependence exists if, at any time, a fact about P determines a set of 
facts about Q. P and Q must both be non-null, and each combination of P and Q must be 
unique. A single-valued dependence is diagrammed by a single headed arrow from the prime-
key (e.g., P) to the target field (e.g., Q) while a multi-valued dependence is diagrammed with 
a double headed arrow. 
Four major steps are involved in this approach (Smith, 1985), namely 
(1) identification of the data fields to be represented in the structure 
(2) listing of the dependencies among these data fields as dependency statements 
(3) construction of a rigorous dependency diagram from the dependency statements 
(4) composing relations from the completed dependency diagram. 

Identification of data fields: In this step, all the data types (including attributes) and the 
relationships among them are identified. This can be described using an entity-relationship 
diagramming convention, for example. However, if a conceptual data model has been 
predefined, the data types and relationships defined in the model, as well as the attributes of 
the data types, become the data fields. 

Guidelines for listing the dependencies: This step consists of the careful identification and 
listing of the functional relationships between a data type and all other data types that depend 
on it. Single-valued and multi-valued dependencies among the data fields must be well 
defined in the statements. Each data field in each statement must be atomic or non-
decomposable to satisfy the first normal form automatically, and the name assigned to the 
field should be chosen such that it satisfies the rules of the computer software that will 
implement the database. In addition, an identification number should be assigned in ascending 
sequence to each dependency statement. Examples of dependency statements can be found 
in §7.1.2. 

Guidelines for constructing the dependency diagram: As each dependency statement is 
written, field names are posted to a sheet of paper, enclosed inside bubbles (e.g., ellipses), and 
arrows are used to diagram the dependencies among the data fields. The arrowheads are 
shown only on one end of a line connecting two fields to show clearly which data field 
(prime-key bubble) determines the other (target bubble). Each field should appear only once 
in a connected diagram (interlinked bubbles) and the corresponding dependency statement 
number should be noted against the relevant arrow. As successive statements are written and 
diagrammed, earlier statements and diagrams may be revised, if necessary, as the overall data 
requirements of the application become clearer. Double or more bubbles are used to enclose 
a data field that participates in two or more chains. Transitive dependency occurring in a 
diagram must be corrected after correcting the corresponding statement. Figure 7.1 is an 
example of a dependency diagram. 
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Composing relations from the completed dependency diagram: Fully-normalized relations 
are composed from the completed dependency diagram by (a) working the single-valued 
dependencies into relations where the prime-key bubble(s) of a chain of linked bubbles 
becomes the primary key(s) of a relation, while all the target bubbles of that chain become 
other fields in that relation; the fields within the target bubbles become foreign keys of the 
relation if they also function as prime-keys of another chain or are tagged with a domain flag 
(a domain flag is used on the dependency diagram to identify data fields that share a common 
domain); (b) working the multi-valued dependencies into relations where each multi-valued 
dependency is composed into separate relations and fields within the end-key bubble, the 
prime-key bubble, and any/all uplink-key bubble in the same chain become the primary key(s) 
of one relation (an uplink-key field is a field on the dependency diagram that has a double-
headed arrow pointing from it to a prime-key field, while the prime-key field points to other 
fields, and an end-key is a field having a double-headed arrow pointing to it while no arrow 
emanates from it); and (c) working the isolated bubbles into relations where fields within an 
isolated bubble become the primary key of one relation (an isolated bubble exists if one or 
more fields with a multi-valued dependency to one another are enclosed within one bubble 
and that bubble has no arrows pointing to or from it). 

These four guidelines are applied in chapter 7 to design a prototype relational data structure 
for multi-valued vector maps. To take care of the referential integrity problems caused by the 
spreading of data concerning a single object over many tables during normalization, rules 
must be provided to control data consistency and database updating. This means that the 
conceptual data model on which the relational structure is based must have a well-defined set 
of consistency rules to enforce data consistency especially under updating operations. These 
rules are often called enterprise rules in the commercial database systems' environments (e.g., 
banking) where the relational DBMS first made its impact. Chapter 5 of this thesis provides 
such rules in the spatial domain, specifically in a vector-based GIS. And with the incorpor
ation of the rules in the database updating algorithms proposed in chapter 6, a sound 
framework is thus provided for the implementation of a spatial relational DBMS. 

2.3 Object-Oriented Data Modelling 

The spatial data models reviewed in §2.1 concentrate mainly on the geometric aspects of 
spatial data. The non-spatial aspects are often modelled separately using a semantic data 
modelling approach and the two components linked by some kind of (object) identifier. The 
non-spatial component is often implemented in a relational structure, while the geometric 
component is handled by another structure (e.g, as in Arc/Info). The need for a unified 
representation of all the components of an object and the shortcomings of the traditional data 
structures, including relational, in spatial data handling (Alagic, 1989; Oxborrow and Kemp, 
1989; Date, 1990; Hughes, 1991; Egenhofer, 1992), have led to the search for a more 
appropriate data structure for spatial applications. The reported shortcomings of the 
conventional data structures, especially relational, include (a) unacceptable performance when 
the database is populated with large quantity of data, (b) inadequate support for the treatment 
of complex objects such as spatial objects in GIS/LIS, and (c) absence of appropriate 
mechanisms for data structuring such that data concerning a single spatial object are not 
spread over different parts of the structure as in a relational structure. 
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With the development of object-oriented programming languages, popularly called "4th 
Generation Languages" (4GL) in computer science, implementation tools are now available 
for the implementation and enrichment of the abstraction mechanisms offered by semantic 
modelling, thus bridging the gap between the conceptual data model and the data structure 
and facilitating a unified representation of geometric and attribute data in a single structure. 
This new approach, called object-oriented (00) data modelling, has been advocated for spatial 
applications whereby real world entities and their properties are modelled as objects in order 
to support the treatment of complex (geometric) entities. In this approach, the word object is 
used (in a wider sense than in topographic science where it is used as synonym for a terrain 
feature) for a single occurrence (instantiation) of data describing something that has some 
individuality and some observable behaviour (Egenhofer and Frank, 1989). In this section, 
some of the principal terms and concepts of the OO approach are introduced. These can be 
grouped into: (a) the modelling constructs which include the object/object identity and the 
four abstraction mechanisms: classification, generalisation/specialization, aggregation and 
association and (b) the implementation constructs which include inheritance, propagation, 
encapsulation, persistence, abstract data type, polymorphism and overloading. 

Object/Object Identity: 

In object oriented modelling, all conceptual entities are modelled as objects (Worboys, 1992). 
An object has a state and a behaviour. The state of an object is implemented through 
properties or attributes, but unlike a relational structure, such properties are not restricted to 
non-decomposable data types and may in fact be objects themselves. The behaviour of an 
object is implemented as a set of procedures (also called methods or operations) that are 
encapsulated with the properties within the object. Objects can be as simple or as complex 
as the application demands; more complex objects can be constructed from combinations of 
existing objects which can, in turn, be simple or complex objects. Every object has a unique 
identity which persists through time, although the properties of the object may change. 

Classification: 

Classification can be defined as the mapping of several objects (instances) to a common class 
(Egenhofer and Frank, 1989). The process of classification is central to the object oriented 
approach whereby all objects with similar properties and behaviour are grouped into object 
classes. In other words, all objects that belong to the same class are described by the same 
properties and have the same behaviour. Thus, instead of describing individual objects, the 
CO approach concentrates on the patterns of both state and behaviour that are common to an 
entire class of objects (Hughes, 1991). The class structure, encompassing both properties and 
behaviour, is therefore the natural unit of abstraction in OO systems and may be used to 
model both entity objects and relationship objects. This differentiates the OO approach from 
the extended entity relationship (EER) model in which entities are classified according to their 
structure, with no regard to their behaviour, and a separate concept, called the relationship 
type, is used to model relationships among the entities (Hughes, 1991). 

Classification is often referred to as the instance of relationship because the individuals are 
instances of the corresponding class. For example, a GIS model of the city of Enschede will 
include the classes building, street, park, etc. Each of these classes will have a set of 
properties whose values will be evaluated for all instances of the class, in addition to a set 
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of behaviour (e.g., create, modify, destroy, etc.). For example, the properties of the class 
building may include address, owner, built-date, etc. A single building with the address 350 
Boulevard 1945 is an object, i.e., an instance, of the class building; the values of other 
properties of the class will be recorded for this instance and all the methods defined for the 
class will operate on this object. 

Generalisation/Specialisation : 

Generalisation as an abstraction mechanism provides views of the same geographic space in 
different levels of details. Several classes of objects which have some properties and 
behaviour in common are grouped together to a more general class, called superclass. Thus 
the terms subclass, the converse relation of superclass, and superclass characterise 
generalization hierarchy in which objects are linked by is a relationship. Subclasses are object 
types which share all of the properties and behaviour of another class (the superclass) but 
which also possess more specific properties and behaviour not shared by the superclass; they 
therefore describe a specialisation of the superclass. 

A generalisation hierarchy may have an arbitrary number of levels in which a subclass has 
the role of a superclass for another more specific class. The terms superclass and subclass are 
abstractions for the same object, and do not describe two different objects (Egenhofer and 
Frank, 1989). For example, all hotels in the city of Enschede may be grouped into the class 
hotel because they have some other common behaviour and properties (e.g., standard, usually 
expressed as number of stars) that distinguish them from other buildings. And because they 
do have all the properties and behaviour of a building, they are a subclass of building. Thus 
hotel is a building. 

Aggregation: 

This is an abstraction mechanism used for modelling composed objects whereby several 
objects are combined to form a semantically higher-level object. Each constituent object of 
the aggregation has it own properties and operations, and the operations of the aggregate are 
usually not compatible with the operations of the parts. The properties of the aggregate are 
derived by propagation from the properties of the constituent objects. Thus the aggregation 
abstraction is used to build complex objects from elementary objects in a bottom-up fashion 
(Molenaar, 1993) i.e., starting from the elementary objects, composite objects of increasing 
complexity are constructed in an upward direction. 

The aggregation hierarchy is often expressed as a part of relationship because the constituent 
objects are part of the aggregate. The inverse relationship is often called consists of, i.e., the 
aggregate consists of some constituent objects. In the hierarchy, a constituent object can be 
part of more than one aggregation hierarchy. For example, in a model of a city, a complex 
object residential district may be defined as an aggregation of objects houses, roads, and 
parks which are selected according to some rules. Thus, as expressed by Molenaar (1993), 
the generic model for aggregate objects will consist of two components: (a) indication of the 
classes of objects that can be aggregated into a composite object and (b) rules to select the 
objects from the classes (indicated in (a)) for a particular aggregate object. 
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Association: 

This is a form of abstraction whereby a relationship among two or more independent objects 
is considered as another object. The term set is often used to describe the abstraction and the 
associated objects are said to be members of the set. The details of a member object are 
suppressed and properties of the set object are emphasised at that level of abstraction. Unlike 
aggregation and generalisation, association does not build hierarchies and does not follow 
strict rules (Molenaar, 1993); it only indicates a set of objects that have something in 
common. For example, the International Institute for Aerospace Survey and Earth Sciences 
(ITC) and the University of Twente are associated by the relationship inside Enschede. In 
terms of terrain objects in general, topologie relationships among the objects are examples of 
association. 

Inheritance: 

In generalisation hierarchies, the properties and methods (operations) of the subclasses depend 
on the properties and structure of the superclasses. Properties that are common to a superclass 
and its subclasses are defined only once at the superclass level; the properties are then 
transmitted to all the objects of the subclasses. This transitive transmission of properties from 
one superclass to all related subclasses, and to their subclasses, etc., is termed inheritance. 
It is a powerful concept in an object-oriented system because it reduces data redundancy 
(Woelk, 1987). It supports modularity and helps in maintaining integrity since essential 
properties of an object are defined once and are inherited at other lower levels in which it (the 
object) takes part (Egenhofer and Frank, 1989). 

Operations of the superclass are applicable to all objects of the subclass because each object 
of the subclass is also an object of the superclass; but operations which are specifically 
defined for a subclass are not compatible with superclass objects. The inheritance relation can 
be single or multiple. In single inheritance, a strict generalisation hierarchy is defined 
whereby each class has at most a single immediate superclass. Multiple inheritance, on the 
other hand, permits one subclass to have more than one distinct immediate superclass. 

Propagation: 

This is the mechanism used in aggregation hierarchies and association to derive values 
respectively for complex objects (aggregates) and associated objects (set) from the constituent 
objects. It supports complex objects which do not own independent data and is based on the 
concept that values are stored only once, for the properties of the component objects which 
are then propagated to the properties of the aggregates or associated objects when required. 
For example, the population of a city is the sum of the populations of all the districts that are 
part of the city. 

Apart from the propagated values, the composite object can have property values which are 
specifically owned by it and distinct from those of its components. Propagation works in a 
bottom-up manner as against the top-down transmission in inheritance. It helps to maintain 
consistency because the dependent values of the aggregate are derived and need not be 
updated every time a change is made to any of the components - only the constituent objects 
need be changed. 
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Encapsulation: 

The concept of encapsulation is very important in the context of object-oriented programming 
languages (Oxborrow and Kemp, 1989). Support for encapsulation of data and operations in 
objects enables objects to be defined completely, both in terms of their properties and in terms 
of their behaviour. Thus, for example, if certain actions have to be taken, or rules applied, or 
constraints checked, these actions, rules or constraints can be built (encapsulated) into the 
definition of the object. The encapsulation concept, when fully applied, means that the only 
operations that can be performed on an object of a certain class are those which are declared 
in the definition of that class or inherited from its superclass(es). 

Persistence: 

This means the permanent storage and maintenance of objects which have been created. It is 
a concept that has been added to the object-oriented programming language to distinguish it 
from conventional programming languages (in which the data created by a program exist only 
during the execution of that program) and thus have some functionalities of a conventional 
DBMS. Persistence is a normal feature in conventional DBMS which permanently store 
created data in the database. 

Polymorphism and Overloading: 

These are terms used by computer language specialists in describing some important and 
powerful aspects of computer languages, which have consequently been introduced in the 
implementation of object-oriented systems. Both relate to the number of ways a name can be 
used to represent an object or function. Polymorphism means that a name (variable) may 
represent at different times different classes of object. Overloading is a related concept which 
refers to the multiple functions that a function or operator may represent, depending on the 
types of the operands. For example, the function invoked by the "+" operator depends on 
whether the types of the operands are floating point, integer, complex, etc. 

2.4 Some Implementation Issues Concerning Object-Oriented Data 
Structure 

Despite the acclaimed suitability of the OO approach for spatial applications, most proprietary 
systems that claim to be object-oriented at the moment are built on a relational structure 
because of the lack of a standard object-oriented query language. This means that the 
relational structure will continue to play a significant role in database management either in 
its conventional form (as a main DBMS) or as a base for an object-oriented system. 
Stonebraker (1994) emphasised the need to harmonise the benefits of the relational and the 
object-oriented approaches to have a powerful database system. According to him, the object-
oriented DBMS vendors have focused on tactics that will best support the applications having 
complex data but requiring no query capability, just as the relational DBMS vendors 
concentrated on query capability for simple data. The data are said to be simple if they can 
be described using the base data types of the SQL, such as integer, character, date and 
floating point; they are complex if they cannot be directly described individually by any of 
the base data types unless by artificial decomposition. 
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To have the query capability in an object-oriented system that is comparable to the SQL, in 
addition to the ability to handle complex data, the object-relational DBMS has been 
recommended. Stonebraker (1994) defined an object-relational DBMS as one which adds the 
following concepts (which include OO concepts) to SQL: 
- unique identifiers (i.e., implementation of object identity); 
- user-defined types 
- user-defined operators 
- user-defined access methods 
- complex objects 
- user-defined functions 
- overloading 
- dynamic extendibility 
- inheritance of both data and functions 
- arrays 
These concepts are very useful in GIS applications. For instance, the user-defined types can 
be used to define such types as point, line and polygon in a spatial DBMS; the user-defined 
operators will be useful to provide metric spatial operators, such as area, distance and 
direction, and topologie operators for deriving topologie relationships between two spatial 
objects and the support for user-defined access methods is essential for efficient searching and 
data retrieval in the usually large database. Also, the complex objects will be useful in GIS 
for the representation of terrain objects of different shapes and sizes, while the inheritance of 
both data and functions concept will be useful in the implementation of a generalisation 
hierarchy. 

An example of this DBMS is the (public domain) Postgres DBMS (Postgres, 1994) whose 
commercial version is called Illustra (Illustra, 1994). The Postgres DBMS is used to test the 
prototype object-oriented data structure proposed in this thesis (see chapter 8). 

2.5 Summary 

This chapter has focused on the review of spatial data models and structures for GIS. The 
geometric models of spatial data are classified into two groups: the tessellation models and 
the vector models. Examples from the two groups are given, with more emphasis on the 
vector data models, being the choice in this thesis. The vector approach was chosen because 
it is closely related to the more accurate data acquisition methods (e.g., land surveying and 
photogrammetry) for large- and medium-resolution spatial databases which are very vital in 
many GIS applications (e.g., cadastral applications and urban planning). In the domain of 
conventional database structures, the common ones, including relational, and a procedure for 
designing the relational structure were also described. The object-oriented data modelling 
approach was also reviewed, including aspects regarding its implementation which have given 
rise to the call for the use of an object-relational system instead of a "pure" object-oriented 
system. 

The review made in this chapter is of course not exhaustive; it was limited to aspects that are 
more relevant to this thesis and the review of some aspects are also deferred to be treated 
under the relevant chapters. The review of the spatial data models indicated that a lot has 
been done in the field of spatial data modelling but it also shows the need for a generalised 
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spatial data model that can incorporate the explicit representation of spatial coincidence 
among terrain objects for an integrated spatial analysis. The database structures defined the 
logical representation of data types and relationships defined in a conceptual data model and 
provide concepts for minimizing inconsistencies (e.g., by using the propagation concept in the 
object-oriented structure, and by normalization in relational) but, being generic database 
structures, they cannot indicate the constraints to be enforced and how to enforce them. This 
means that the conceptual data model on which the database structure is based must have a 
well-defined set of consistency rules to enforce data consistency especially under updating 
operations. (These rules are often called enterprise rules in the commercial database systems' 
environments (e.g., banking) where the relational DBMS first made its impact.) Chapter 5 of 
this thesis provides such rules in the spatial domain, specifically in a vector-based GIS. And 
with the incorporation of the rules in the database updating algorithms proposed in chapter 
6, a sound framework is thus provided for the implementation of a spatial DBMS using any 
database structure. 

In the next chapter, one of the existing vector data models is selected and reviewed, and then 
extended to be able to handle geometric integration of spatial data belonging to one or more 
mapping themes. The object-oriented data modelling concepts described in §2.3 are applied 
in chapter 7 to translate the extended model to a prototype object-oriented data structure. In 
the same chapter, a prototype relational structure for the same model is designed using the 
normalization method summarised in §2.2.3. 



25 

CONCEPTUAL DATA MODEL FOR VECTOR MAPS 

In mapping sciences and GIS, different applications normally view terrain situations 
differently, thereby extracting only those terrain phenomena which play definite roles within 
those applications. For example, a cadastral surveyor will partition a given region into land 
parcels with each parcel having its unique attribute values. The same region will be par
titioned by a soil scientist into different soil units. This implies a "layered" view of a terrain 
situation. However, in spatial analyses and planning it is often necessary to integrate different 
views of the world, in which case (part of) a terrain object may play more than one distinct 
role in the same database. In other words, two or more objects of the same type (point, line 
or area) from different mapping contexts or map layers may spatially coincide. Here we use 
the term map layer, or simply layer, to denote a geographic dataset describing a certain aspect 
of the real world (Hoop et al, 1993) i.e., the set of objects belonging to the same mapping 
context (cadastral, soil mapping, etc). A vector structure which incorporates spatial data from 
a single map layer (e.g., cadastral mapping, soil mapping or land use mapping) can be 
described as a single-valued vector map. When the structure incorporates data from one or 
more layers, it is described as multi-valued vector map. 

In this chapter, a conceptual data model for multi-valued vector maps is defined by extending 
the formal data structure for single-valued vector maps. The mathematical tool for the 
modelling is provided by graph theory. The relevant elements of the theory are summarised 
in §3.1, where aspects of simplicial complexes are also given because of their similarity to 
some geometric data types used in the conceptual model. 

The choice of the FDS for the conceptual modelling instead of other topologie models was 
based on the preference for an object-based model which is generic, flexible and extendible. 
In the 2D FDS, terrain objects play a central role in the terrain description; each object has 
a thematic component and a geometric component (see Figure 2.2). In the thematic domain, 
the objects can be grouped into thematic classes in which each class has a specific attribute 
structure. The geometric component of a terrain object is clearly distinguished into three 
independent aspects, namely topology, shape and size, and position (see Figure 2.3). The clear 
distinction of the geometric aspects of terrain objects not only facilitates the construction of 
a semantically-rich, query-oriented spatial database, it also leads to an extendible and flexible 
data model. For example, having distinguished the semantic characteristics of terrain objects 
into thematic and geometric, it follows that the geometry of the same terrain situation can be 
represented either by vector elements (arc and node) or by raster elements (see Molenaar and 
Fritsch, 1991; Molenaar and Janssen, 1992) leading to flexibility in the choice of system 
configuration for its implementation and in data exchange. 

The clear articulation of the geometric aspects of an object also facilitates key modelling 
decisions. (1) It becomes possible to decide on the dimension of the metric space (whether 
2D or 3D) independent of the dimension of the topologie space (which also helps our 
appreciation of what a 3D spatial data model should be). (2) It also helps in deciding at which 
level to integrate geo-data from multiple map layers, i.e., at geometric level or at thematic 
level. At the geometric level (the choice in this thesis), it becomes possible to distinguish four 
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different approaches to the geometric integration by considering how metric (positional) data 
and topologie data of the different layers are handled. The four possibilities are (i) to structure 
each layer separately, i.e., combining metric and topology per layer and perform an overlay 
of the layers when necessary; (ii) to structure the geometric data such that all layers share the 
metric dataset while topology is kept per layer, vertical topologie query will then be done by 
overlay computation or by comparison of metric data; (iii) to structure the geometric data 
such that all layers share a common topology, while the metric information is structured per 
layer, and (iv) to define a model in which both metric data and topology are shared by all 
layers as proposed in this chapter. 

The FDS is summarised in §3.2, followed by a discussion in §3.3 of the different approaches 
for modelling a multi-valued terrain situation and a review of related work on the modelling 
of multi-valued vector maps. In §3.4 the FDS is extended to incorporate a multi-valued terrain 
situation. In the last section of the chapter, the integration of the proposed data model and a 
DTM is described. The integrated model can be used for the establishment of a multipurpose 
vector GIS incorporating multi-layer object data and terrain relief information with minimum 
redundancy. Here a vector map refers to a database representation of terrain objects as points, 
lines, surfaces (areas), and bodies (volumetric objects) in which positional data of the objects 
are given in form of coordinates. In a 2D representation, only the first three types are present. 
The fourth exists as an additional type in 3D representation. 

3.1 Graph Theory and Simplicial Complexes 

3.1.1 Elements of Graph Theory1 

A graph is defined abstractly as a pair (V,E) in which V is the non-empty finite set of vertices 
of the graph and E is a finite family (permitting the existence of repeated elements) of 
unordered pairs of (not necessarily distinct) elements of V, called edges. The graph is said 
to be directed if V is a non-empty finite set and E is a finite family of ordered pairs of 
elements of V. 

Hereafter, only the directed graph, or simply graph, will be referred to and an edge will be 
called arc and a vertex will be called node. Also, it is assumed that E contains distinct 
elements and the two elements of V that define an element of E are not equal. Thus a graph 
is a collection of two sets: 
a set of nodes N = {n„ n2,....}, and 
a set of arcs A = {a„ a2,...J 
in which for each aj e A is aj = {np,nq} where n,, and nq e N and n,, * nq. 
Figure 3.1a is an example of a graph with N = {p,q,r,s} and A = {(p,q), (q,r), (r,s), (s,p), 
(PJ)}. 

Let G(N,A) be a graph. A graph Gb(N„,Ab) is a subgraph of G if Ab is a subset of A and Nb 

is a subset of N such that the arcs in Ab are incident only with the nodes in Nb. 
Figure 3.1.b shows a subgraph of the graph in Figure 3.1.a 

1 The materials used in this section are taken from Wilson (1990) and Liu (1986). 
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Two nodes of graph G are said to be ad
jacent if there is an arc joining them; the 
nodes are then said to be incident to that 
arc. Also, two arcs of G are adjacent if they 
have one node in common. The degree of a 
node n is the number of arcs incident to n. 
A node of degree zero is called an isolated 
node and a node of degree one is an end-
node. In the graph of Figure 3.1.(b), for 
example, the degree of node q is two and 
that of node p is one (therefore p is an end-
node). Figure 3.1 Examples of a graph 

In a graph, a path or walk is a sequence of arcs (a^, ai2,~..,aik) such that the terminal node of 
a,j coincides with the initial node of a ^ , for 1 < j < k-1. The path is said to be simple if it 
does not include the same arc twice. It is elementary if it does not meet the same node twice 
(i.e., no two arcs in the sequence have the same terminal node). The length of a path is the 
number of arcs it contains. A graph is said to be connected if there is a path between every 
pair of nodes, i.e., if there is a path from any node to any other node; otherwise it is said to 
be disconnected. A graph whose set of arcs is empty is called a null graph. The graph is said 
to be planar if it can be drawn on a plane so that no arc crosses another (i.e., the two 
crossing arcs are decomposed into four arcs meeting at a common node). 

In a planar graph, the arcs of the graph divide the plane into planar segments called faces; 
thus a face is an area of the plane that is bounded by arcs and is not further divided into 
subareas. The relationship between the number of nodes (n), arcs (a) and faces (f) - including 
the outerface - that must exist for a graph to qualify as planar is given by Euler's formula as 
follows: 

n-a+ƒ= 2 

This formula holds for only connected planar graphs but it can be extended to include 
disconnected graphs (Wilson, 1990) to have 

n - a+ƒ= k + 1 

where k = number of component graphs. Also, in a planar graph, the sum of the degrees of 
all nodes must be an even number and twice the number of arcs. 

The concepts summarised above are applied in the definition of the FDS and the data model 
for multi-valued vector maps proposed in this chapter in which arc and node serve as 
primitives in the geometric representation of terrain objects. The use of the third element of 
a planar graph, i.e., face, as a geometric primitive is not necessary in 2D terrain description 
because, since planarity is enforced, every arc will have a face on either side, and since a face 
will always represent a 2D terrain object, the arc can reference the object directly (which is 
not so with arc and node: an arc may represent a linear object or just the boundary of an area 
object and a node may represent a zero-dimensional object or just the end-point of an arc). 
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3.1.2 Simplexes and Sîmplicial Complexes 

In §3.4, a geometric data type, called m-container, will be introduced for the explicit 
modelling of spatial coincidence among objects in a vector map. In a mathematical sense, the 
m-containers have some similarities to n-simplicial complexes, although the latter terms are 
not used in the model because of some semantic difference between the two, as will be 
explained in §3.4.2. The definitions of simplicial complexes (Giblin, 1977; Worboys, 1992) 
are therefore relevant and are given here. The definitions are given for the case of spatial 
objects embedded in the Euclidean plane, i.e., for cases of up to two dimensions. Simplicial 
complexes are amalgamations of basic building blocks, called Simplexes (Worboys, 1992) in 
which an n-simplex, n e {0,12} is defined as follows: 

0-simplex: A set consisting of a 
single point in the Euclidean 
plane. 
1-simplex: A set consisting of 
all the points on a straight line 
between two distinct points in 
the Euclidean plane, including 
the end points. 
2-simplex: A set consisting of 
all points on the boundary and 
in the interior of a triangle 
whose vertices are three fton-
collinear points. 

(a) (b) 

(c) «r % 
«» 

X 
Co) 

(d) and (a) - Exampias of »Impllctal compta»* 

0) and (g) - Configurations which am not 

(a)-0-«tmpl«x 
(b)-1-simptax 
(c) - 2-slmptex 

Figure 3.2 Simplexes and simplicial complexes (Wo
rboys, 1992) 

Thus an n-simplex is the convex 
hull of a set S of n+1 linearly 
independent points, p0,...,pn, say. Such a simplex is denoted <p0,...,p^> or <S>. Furthermore, 
the integer n is defined to be the dimension of <S>. Given T £ S, then the convex hull of T 
is itself a simplex contained in <S> and called a face (not to be confused with the face in 
graph theory) of <S>; this is expressed as <T> < <S>. Simplexes serve as building blocks for 
larger structures. 

A simplicial complex, C, is then defined as a finite set of Simplexes satisfying the following 
properties: 

1. A face of a simplex in C is also in C. 
2. The intersection of two Simplexes in C is either empty or is a face of both Simplexes. 

The dimension of a simplicial complex is the maximum dimension of its constituent 
Simplexes. In a 2D space, we have 0-, 1- and 2-simplicial complexes which are defined as 
follows: 

- A 0-simplicial complex is a complex of dimension zero. 
- A 1-simplicial complex is a complex each of whose maximal simplicial components is a 1-
simplex. 
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- A 2-simplicial complex is a complex each of whose maximal simplicial components is a 2-
simplex. 

Examples of simplexes and simplicial complexes are given in Figure 3.2. They are often used 
for the geometric modelling of spatial objects (see for example Worboys, 1992) in which a 
O-simplicial complex corresponds to a point, a 1-simplicial complex corresponds to an arc or 
edge and a 2-simplicial complex corresponds to a polygon, after imposing some constraints. 

3.2 Formal Data Structure (FDS) for Single-Valued Vector Maps 

The FDS is an object-based terrain description in which the analysis of the terrain is based 
on distinct objects such as areas with well defined boundaries, linear terrain structures, and 
individual point objects. Only a summary of the model will be given here; comprehensive 
descriptions have been published elsewhere (see Molenaar, 1989; 1991c; 1993). 

3.2.1 Summary of the Model 

The fundamental information structure of the FDS is shown in Figure 2.2. It shows that 
distinct terrain objects, represented by object identifiers, have two semantic characteristics, 
namely (1) the geometric characteristics and (2) the thematic (non-spatial) characteristics. The 
former comprise topology, shape and size, and position (see Figure 2.3) while the latter 
indicate the non-spatial attributes of the objects. 

To model the thematic com- | das» | 1 attributeist 1 
ponent of objects, the terrain (a) 
objects occurring in a vector | ^ | 1 attribut» vaiu»»n«t 1 
map are grouped into several 
distinct classes according to 
their thematic characteristics. A | superclass ~| [ supsrdew amto J, superclass atwb.j I 
list of attributes is connected to 
each class and the class is iden
tified by a class label or name. 
The attribute list of a class gives 
the names of the attributes. The 

superclass attributes I ] 

~ d a w — L " " " Iwpwdas« attributes J valus«! «jv 

I class attributes I 

object >=X value* ot superclass attributes I 

objects belonging to the same —-I values of dass attributes 1 
class will have a commonat- F i 3 J C l a s s a n d s u p e r c l a s s s t r u c t u r e o f o b j e c t s 

tribute structure inherited from 
the class (see Figure 3.3a). Thus 
each object of that class will have a list containing a value for each attribute in the class 
attribute list; the values are taken from the value domains of the individual attributes. 

The FDS supports a class hierarchy in which classes that have some common attributes are 
grouped into a superclass, while superclasses having some common attributes are also grouped 
into a higher superclass, and so on (see Figure 3.3b). Each (superclass will have its own list 
of attributes. At the highest level we have the superclasses with their lists of superclass 
attributes which can be split as in Figure 3.3b, because some of these attributes (superclass 
attributes j) are evaluated at the next lower level, the class level, and some are evaluated at 
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the lowest level, the object level. At the class level, new attributes that are specific to that 
class will be defined as class attributes (in addition to the inherited superclass attributes). At 
the object level no new attributes are introduced, but all attributes introduced at the higher 
levels will be evaluated as far as they have not been evaluated at class level. If an attribute 
is evaluated at class level, it means that all objects belonging to the class do have the same 
value for that attribute. The class definition should be mutually exclusive, with each terrain 
object belonging to exactly one of the classes, i.e., the classes should be defined so that the 
classification system is disjoint and complete. Thus in the FDS, an object can belong to only 
one class and, for simplicity, all objects that belong to one class must be of the same type. 

In the geometric domain, the object types points, lines and areas are distinguished for a 2D 
or 2.5D terrain description. In the model, the geometry of a terrain object is clearly 
distinguished in three independent aspects, namely topology, shape and size, and position (see 
Figure 2.3). This geometric dataset has been carefully structured in the FDS, leading to a 
semantically-rich, query-oriented and extendible data model in which information on topology, 
shape and size, and position can be retrieved. The three terrain object types are geometrically 
described by their linear characteristics using the two elementary geometric primitives: arc 
and node. 

The mathematical framework for the geometric description of objects in a vector map is 
provided by graph theory (see §3.1.1). Thus the geometry of a vector map is represented by 
a planar graph G(N, A) in which 
N = {...,nit...} is the set of nodes of the map, and 
A = {...,ajt...} is the set of arcs of the map in which for each dj e A is ay = (n^) with np, 
nq e N; np and nq are respectively the beginning and end nodes of a,. 
Thus each arc is directed and is a subset of N. Furthermore, each arc has an area object on 
its left side and one area object on its right side and may represent one line object. The 
geometry of each object occurring in the map is thus a subgraph G^N^AJ of G where N0 

c N and A , c A . 

Figure 3.4 represents the formal data structure for single-valued vector maps. In the figure, 
the classes are represented only by class labels; the class labels will serve as a link to the 
thematic descriptions when the thematic classes are identified during implementation. 

3.2.2. Elementary Links Among Objects, Geometric Components and Thematic 
Components 

Four categories of elementary links (functional relationships) among the three groups of 
information represented in Figure 3.4 have been identified and defined in the FDS: 
(1) object to class links (oc-links) 
(2) object to object links (oo-links) 
(3) geometry to object links (go-links) 
(4) geometry to geometry links (gg-linhs) 
The four categories of link type will be explicidy represented in the database to facilitate 
unambiguous application, analysis of spatial relationships and other query operations in an 
FDS database. They facilitate the clear interpretation of the links represented in Figure 3.4 
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Object - Class Links (oc-links) 

(1) Each point object belongs to a point object class. 
(2) Each line object belongs to a line object class. 
(3) Each area object belongs to an area object class. 

Object - Object Links (oo-links) 

(1) A point object may lie inside an area object. 
(The explicit representation of this link is necessary because the relationship cannot be 
derived without the use of coordinate information.) 
(2) A line object crosses another line object. (This is required in 2D topologie space to take 
care of linear objects crossing each other, e.g., a road crossing a river.) 

Geometry - Object Links (go-links) 

(1) One node may represent at most one point object. 
(2) One arc may represent at most (part of) one line object. 
(3) An arc has only one area object on its left side and only one area object on its right side. 

The concept of the single-valued vector maps is emphasised by the three geometry-object 
links. The three links clearly indicate that there should be only one occurrence of a link 
between a geometric primitive and a terrain object. The first link shows that one node can 
represent only one point object but it does not mean that every node must represent a point 
object, i.e., this link may be empty for some nodes. The same explanation holds for the 
second link. The third link emphasises the fact that planarity must be enforced such that an 
arc will always have one area object on its left side and one area object on its right side. This 
link cannot be empty. 

Geometry - Geometry Links (gg-links) 

(1) Each arc starts from a node. 
(2) Each arc ends at a node. 
(3) Each arc has a shape (represented here as a straight line). 
(4) Each node has a position defined by a pair of X and Y coordinates. 
The first two links indicate that a node should not contain loops. 

The FDS is indicated in Figure 3.4, in which the ellipses represent the elementary data types 
and the labelled arrows represent the elementary link types among them. Headed arrows 
represent a many-to-one link type in the direction of the arrow, e.g., many area objects may 
belong to the same area class, while non-headed arrows represent one-to-one relationships, 
e.g., one node defines only one point object. Each data type represents a set. The expression 
"elementary" means that these data types and link types cannot be further decomposed. In the 
diagram, the thematic data are represented by the class labels. The objects (identifiers) are 
represented by the object types, and the geometric data are the arcs, nodes, shapes and 
positions (coordinates). 
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3.2.3 Conventions of the FDS 

The following seven conventions have been defined to complement Figure 3.4 in ensuring the 
consistency of an FDS database by defining rules for their monitoring and enforcement (see 
chapter 5). 

(1) The object classes are mutually exclusive, i.e., each object belongs to exactly one class. 
(2) Each class contains objects of only one geometric type. 
(3) When a vector map is analyzed as a graph, all points that are used to describe the 
geometry will be treated as nodes. 
(4) The arcs of this graph are geometrically represented by straight line segments. 
(5) For each pair of nodes there is at most one arc connecting them directly; each of them 
may be connected also by one or more chains consisting of two or more arcs. 
(6) Two arcs should not intersect; if they do intersect, they should be replaced by four arcs 
joining at a node. 
(7) A node may represent at most one point object. An arc may be part of at most one line 
object An arc has exactly one area object at its right-hand side and exactly one at its 
left-hand side. 

taknpID 

<s> 

Figure 3.4 Diagram representing the FDS for vector maps 

A map which has the FDS as shown in Figure 3.4 and fulfils these seven conventions is a 
single-valued vector map (Molenaar, 1989). 

3.3 Handling Multi-valued Terrain Description 

From convention 7 (§3.2.3), it is clear that two objects of the same type are not permitted to 
spatially coincide (overlap), and in order to generalise the model to accommodate 
representation of objects which are spatially coincident, the model should be extended. The 
clear distinction in the FDS of the geometric aspects of terrain objects into topology, shape 
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and size, and position gives room for the necessary extension. It facilitates key modelling 
decisions. (1) It becomes possible to decide on the dimensions of the metric space (whether 
2D or 3D) independent of the dimensions of the topologie space. Here, the extended model 
is based on 3D coordinate space (position) and 2D topologie space, i.e., a 2.5D data model 
(see §3.4). (2) It also helps in deciding at which level to integrate geo-data from multiple map 
layers, i.e., at geometric level or at thematic level. 

At the geometric level (the choice in this thesis), it becomes possible to distinguish four 
different approaches to the geometric integration by considering how metric (positional) data 
and topologie data of the different layers are handled. The four possibilities and their pros and 
cons are outlined below (see Hoop et al, 1993 for more details). Here, it is assumed that the 
layer is structured according to the FDS. 

(a) The first, and conventional approach, is to structure each layer separately, i.e., combining 
metric and topology per layer and perform an overlay of the layers when necessary. This 
results in fast single-layer topologie query and the geometry of objects in a single layer can 
be reconstructed more easily. Updating is more straightforward and it is easier to manage data 
consistency within an individual layer. It is also easier to implement in existing vector-based 
systems. 

However, the approach gives room for much data redundancy because common geometric 
elements are stored in every layer in which they occur. In addition, vertical topologie queries 
(queries involving objects from different layers) can be derived only by on-line map overlay 
computations (with the attendant editing problems arising from pseudo polygons and sliver 
lines), thus increasing costs. 

(b) A second option is to structure the geometric data such that all layers share the metric 
dataset while topology is retained per layer. This eliminates metric data redundancy as well 
as the problems of sliver lines and. pseudo polygons during overlay computations that may 
be required to answer vertical topologie queries. However, vertical topologie query can be 
realised only by on-line overlay computation or by comparison of metric data, and the 
reconstruction of the geometry of individual objects is slower. In addition, it is necessary to 
provide rules that will guarantee consistency of the metric data during updating (note that 
consistency rules are also required even in the single-layer approach but at a lower scale). 

(c) Another option is to structure the geometric data such that all layers share a common 
topology, while the metric information is structured per layer. This leads to faster multi-layer 
topologie queries and faster single-layer metric queries. On the other hand, it leads to metric 
data redundancy and requires additional rules to guarantee consistency of the topologie data 
during updating. Moreover, topologie queries related to a single layer are slower to retrieve. 

(d) The fourth approach is to define a model in which both metric data and topology are 
shared by all layers as proposed in the next section. This approach is mainly beneficial when 
frequent vertical topologie queries are envisaged. In addition, the reconstruction of the 
geometry of an object is slower. Because all layers are intersected, overlay computation will 
be performed even in areas that may not be required for multi-layer analysis. Moreover, 
updating procedure becomes more complex and consistency considerations are very critical. 
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But the approach has many advantages, which include the following. 
(1) Elimination of redundant data: A single geometric dataset (positional and topologie) is 
kept for all layers. 
(2) Reduction in overhead cost because map overlay is computed once during database 
creation; thus problems of spurious polygons, etc., are handled once. 
(3) Faster multi-layer queries since it will not be necessary to compute an overlay before 
answering such queries. 
(4) Higher information content, the knowledge of which is known a-priori; thus a query 
language can be predefined for retrieval of geo-information from the multi-valued database. 
(5) Spatial consistency can be maintained at system level since only one data structure is used 
and only one set of geometric data is kept 
(6) If overlapping sections across the layers are uniquely identified, as proposed in §3.4, they 
can have their own geometric and non-spatial datasets. Therefore, they can be maintained and 
manipulated by the GIS functions just like single objects. Thus it is easier to include them 
in aggregation and association abstractions. 

Since all options have their individual pros and cons, every solution will be a compromise. 
The choice of approach will therefore depend largely on the intended application. The fourth 
approach (d) is used in §3.4 to develop a data model for multi-valued vector maps by 
extending the FDS. This can then be used in applications that require frequent analysis of 
multi-layer geo-data in which there is a frequent occurrence of spatial coincidence among 
objects of the same type. An example of the second approach (b) is the ATKIS model which 
was reviewed in §2.1.2. 

In the work of Hoop et al (1993), cited above, an example of the extension of the FDS to 
accommodate multi-valued vector maps was also given. The extension allows the geometric 
primitives arcs and nodes to have many-to-many links with the terrain objects so that objects 
from one or more layers can be represented in a single structure. The links are defined as 
follows. A node may represent one or more coinciding point features (in this thesis the term 
object is used instead). An arc may represent (part of) one or more (partly) coinciding line 
features. With n merged structure layers, an arc has n coinciding or overlapping area features 
on each side. A point feature may lie in n area features. A line feature consists of one or 
more arcs. An area feature consists of at least three arcs and may additionally contain several 
point features in its interior. The structure was designed for implementation in the Postgres 
database management system (see chapter 8 for information on Postgres); thus four groups 
of Postgres classes were defined for the implementation of a multi-valued vector map as 
follows (the classes defined for single-valued vector maps are excluded here): 

Data Structure for Multi-valued Vector Maps as Defined by Hoop et al (1993): 

I* PART 1: LAYERS */ 
structurejayer ( 

slayerjd = int4, /* primary key */ 
single_valued = bool I* single or multi-valued */ 
description = charQ ) 

thematicjayer ( 
tlayerjd = int4, /* primary key */ 
slayerjd = int4, /* foreign key structurejayer */ 
description = charQ ) 
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I* PART 2: FEATURE CLASSES */ 
area_feature ( 

aid = int4, /* primary key */ 
tlayer = int4, /* foreign key Ihematicjayer */ 
area_class = char[] I* thematic info */ ) 

line_feature ( 
lid = int4, /* primary key */ 
tlayer = int4, /* foreign key thematicjayer */ 
line_class = char[] /* thematic info */ ) 

/* PART 3B: TOPOLOGICAL CLASSES, MULTI-VALUED */ 
point_feature_multi ( I* also FEATURE CLASS */ 

pid = int4, /* primary key */ 
tlayer = int4, I* foreign key thematic layer */ 
point.class = char[] I* thematic info */ 
node_id = int4, I* foreign key node */ 
areas = int4[] /* foreign keys area_features */ ) 

arc_multi ( /* primary key: from_node & to_node */ 
from_node = int4, I* foreign key node */ 
to_node = int4, /* foreign key node */ 
left_areas = int4Q, /* foreign keys area_features */ 
right_areas = int4[], /* foreign keys area_features */ 
lines = int4[] /* foreign keys line_features */ ) 

/* PART 4: METRIC INFORMATION */ 
node ( 

node_id = int4, /* primary key */ 
location = point /* x,y-coordinates */ ) 

Like the ATKIS model, this'structure does not explicitly model spatial coincidence among the 
overlapping objects so as to derive the sixth advantage listed under the fourth approach (d 
above). The many-to-many relationships that exist between the geometric primitives and the 
objects may also introduce integrity control problems when implemented in a pure relational 
system. In the next section, an alternative model is defined which explicitly models spatial 
coincidence among objects. 

3.4 Data Model for Multi-valued Vector Maps 

In this section, an extension of the FDS is proposed to represent spatial data from one or 
more map layers, i.e., multi-valued vector maps. The proposed model is a 2.5D (3D position, 
2D topology) model that integrates both metric and topologie data of one or more map layers 
from the same geographic space. The extended model will be called data model for multi
valued vector maps (DMMVM). Since positions of objects are defined in a 3D metric space 
but embedded in planar topology, only surfaces of objects are represented. The DMMVM is 
still based on the fundamental structure shown in Figure 2.2. How the thematic and geometric 
components of objects are handled in the DMMVM is shown in the following sections. 

3.4.1 Thematic Component 

The representation of the thematic aspects of objects remains essentially the same as in the 
FDS (see Figure 3.3); only a slight extension is required to accommodate multi-valued 
situations. In the FDS, each object can belong to only one class. This convention has been 
adopted here with respect to individual map layers. Normally, each layer has a distinct 
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domain of objects but sometimes an object may occur in more than one layer. In such situa
tions, the object can be classified in more than one layer in the DMMVM. At a higher level 
of abstraction, it is also possible to further identify classes with some common attributes and 
by that generalise them into superclasses with each superclass having its own set of attributes, 
i.e., a hierarchic classification of objects. Like objects, a class can belong to only one 
superclass at the next higher level in the hierarchy. 

Consequent upon the strict classification hierarchy adopted in this model, the following rules 
must be observed: 
- Cyclic classification is not permitted, i.e., the classification must be a directed acyclic graph; 
for example, given three distinct classes A, B and C, C is not allowed to be a subclass of A 
if it is a superclass of B when B is a superclass of A. 
- The classification must be complete, i.e., all objects must be classified. 
- Each object must belong to only one class in each map layer but the object can be classified 
in more than one layer. 

In the DMMVM, the thematic data will be represented by only class labels because this thesis 
concentrates on the geometric component of vector maps. But the model does not preclude 
the representation of thematic data. During implementation (when thematic attributes of 
objects are identified) the thematic data can be arranged in a hierarchic manner as described 
above. 

3.4J Geometric Component 

As in the FDS, the geometry of each object is represented by topologie primitives, arcs and 
nodes (see §3.2.1). An arc is defined by a pair of connected nodes while a node is defined 
by a set of X, Y and Z coordinates. The fact that the DMMVM integrates objects from one 
or more map layers implies that two or more objects of the same geometric type can overlap 
in space. This means that each geometric primitive may represent more than one object in 
the model, i.e., 
- a node may represent J point objects from J map layers 
- an arc represents (part of) K line objects from K layers and has L area objects from L layers 
on each side (left and right). Objects may therefore have many-to-many (M:N) relationships 
with the geometric primitives. 

For example, (part of) many line objects may be represented by the same arc while many arcs 
may define a single line object. This is a many-to-many relationship between arcs and line 
objects (see Figure 3.5 (a)). It is desirable to decompose the M:N relationship between objects 
and the geometric primitives into components of M:l relationships to simplify the structure 
for easy manipulation, especially with respect to integrity controls. This will also allow the 
use of a single set of consistency rules for geometric primitives in both single- and multi
valued vector maps. Therefore, an additional data type, m-container, m e {0,1,2}, is 
introduced such that one m-container will represent many objects of corresponding dimension 
while a geometric primitive represents only one m-container (see Figure 3.6). In the example 
above, many line objects will be represented by a single 1-container (i.e., M:l relationship), 
while an arc defines (part of) only one 1-container, since one 1-container can be described 
by many arcs, we have a 1:N relationship between a 1-container and arcs (see Figure 3.5 (b)). 
Note, however, that there is still an M:N relationship between an m-container and an object 
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with respect to line and area objects. But this is now more at a semantic level than a 
geometric level. Thus (for example) an arc will still have only one two-dimensional entity on 
either side as in the FDS so that the same consistency operation defined for an arc in this 
model can also be used for the FDS arcs. By introducing the m-container data type, 
overlapping sections across the layers are uniquely identified such that they have their own 
individual geometric data and non-spatial data apart from those inherited from the overlapping 
objects; they can then be maintained and manipulated by the DBMS just like single objects. 
Thus it is easier to include them in aggregation and association abstractions, thereby 
improving spatial analyses in GIS. 

Layer 1 

Layer 2 

Layer 3 

Layer 1 

Layer 2 

Layer 3 

Une Object 
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Une Object 

Une Object 
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1-oontalner1 *-«f 1H_ a !Çl 

Figure 3.5 Decomposing M:N relationships between arcs and line objects ((a)) to 
1:M relationships using 1-container ((b)) 

To formally define the m-container, let the metric space covered by terrain objects in the 
multi-valued vector map (which is assumed to be a closed region) be denoted by E" where 
n = 3, i.e., a 3D metric space. Also, the allowable entity (a bounded portion of space in E3) 
in the map is denoted by Rm where m e {0,1,2}, i.e., a 2.5D terrain representation. Thus Rm" 
denotes an entity in E° where m = dimensionality of R and n = dimensionality of the space 
E in which R is located, and m <, n. The allowable entities in our 2.5D representation are: 
(a) R0,3 : OD entity in E3 space having a position but no spatial extent; 
(b) R1'3 : ID entity in E3 space having shape and position but only length as a measurable 
spatial attribute; 
(c) R2'3 : 2D entity in E3 space having a 2D spatial extent with shape, size and position. Its 
measurable spatial attributes are area, perimeter and centroid. 
R3,3, a volumetric or solid object, does not occur in a 2.5D representation. 

The R"1,3 corresponds to the m-container where m € {0,1,2} such that 
- one 0-container represents J point objects from J map layers, 
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- one 1-container represents (part of) K line objects from K layers, and 
- one 2-container represents (part of) L area objects from L layers, 
where L is the maximum number of layers and J and K may each be less than or equal to L. 

The m-containers V m e {0,1,2} are then structured as a 2.5D graph using the two geometric 
primitives, arc and node. A node represents one 0-container and an arc represents (part of) 
one 1-container and/or boundary of a 2-container. The node is defined by a coordinate triplet 
X, Y and Z with respect to some coordinate system, while an arc is defined by a pair of 
adjacent nodes. The arc has a shape which is defined here as a straight line. 
Thus the geometry of the multi-valued vector map is represented by a planar graph G(N, A) 
as defined in §3.2.1. The geometry of each m-container E occurring in the map is thus a 
subgraph Ge(Ne,Ae) of G where N e c N and A , c A . Note that for 0-container, Ae = 0 . 

LAYER 1 LAYER 2 LAYER N 

Figure 3.6 Representation of geometric primitives, m-containers, objects and classes 
in the DMMVM 

Apparently, the m-container, m € {0,1,2}, is similar to the n-simplicial complex, n € {0,1,2} 
described in §3.1.2, when m equals n. However, while a 0-container is related to a 0-
simplicial complex on a one-to-one basis, the semantic aspect of 1- and 2-containers 
introduces some differences between an m-container, m e {1,2}, and an n-simplicial complex, 
n e {1,2} whereby 

one n-simplicial complex c one m-container V m = n; m,n e {lil} 
In other words, a 2-container is a contiguous (connected) set of 2-complexes representing the 
same set of elementary objects of corresponding dimension (the same goes for 1-container 
vis-a-vis 1-complex). 
Figure 3.7 illustrates this semantic difference. As shown in the figure, suppose we have two 
overlapping area objects P and Q (from two layers) with P = {1,8,2,3,4,10,5,6,7} and Q = 
{2,3,4,10,5,11,12,6,9}; a line object L = {8,9,10} intersects P and Q. The situation in the 
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figure will be represented by one 1-container 
(L) and three 2-containers R, S, T (where R 
= {1,8,2,9,6,7}, S = {2,3,4,10,5,6,9}, and T 
= {6,5,11,12}) whereas, in strict mathemat
ical sense, we have five 2-complexes (each 
of the five closed non-overlapping polygo
ns). 

The DMMVM is shown in Figure 3.8 in 
which headed arrows represent many-to-one 
relationships in the direction of the arrow 
(e.g., many arcs may begin from the same 
node) while non-headed arrows represent 
one-to-one relationships (e.g., one node 
defines only one 0-container). Data types are 
represented by ellipses, each of which represents a set. 

Figure 3.7 Simplicial complex and m-con-
tainer (see text) 

m-container - object Hnb 

Figure 3.8 Data model for multi-valued vector maps (DMMVM) 

3.43. Elementary Links Among Data Types in the DMMVM 

There are four groups of data in the DMMVM, namely objects' thematic data as represented 
by the thematic classes, the objects (identifiers), the m-containers representing the objects, and 
the geometric data of the m-containers. Six categories of elementary links among the four 
groups of data are presented below. The links indicate the semantic constraints for the model. 
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Object - Class Links (oc-links) 

- Each point object belongs to only one point object class in a given map layer but the object 
may be classified in more than one layer. 
- Each line object belongs to only one line object class in a given map layer but the object 
may be classified in more than one layer. 
- Each area object belongs to only one area object class in a given map layer but the object 
may be classified in more than one layer. 

Object - Object Links (oo-links) 

These will be realised through the combination of the following mo-links and mm-links. 

m-Container - Object Links (mo-links) 

- One m-container, m e {0,1,2}, is part of K m-dimensional objects from K different map 
layers. 

m-Container - m-Container Links (mm-links) 

- One or more 0-containers may lie in one 2-container. 
- One 1-container may cross one or more other 1-containers at one or more points. 

Geometry - m-Container Links (gm-links) 

- A node may represent only one 0-container. 
- An arc may represent (part of) only one 1-container. 
- An arc always has just one 2-container on its left side and just one 2-container on its right 
side. 
Note that the two geometric primitives, arc and node, retain the same structure as in the FDS 
(see go-links in §3.2.2) except that they are linked to the m-containers and not the terrain 
objects directly. 

Geometry - Geometry Links (gg-links) 

- Each arc has a beginning node. 
- Each arc has an end node. 
- Each arc has a shape, defined here as a straight line. 
- Each node has a position given by coordinate triplet X, Y and Z. 
Note that the four links are the same as defined in the FDS (see gg-links in §3.2.2). 

3.4.4 Conventions of the DMMVM 

The seven conventions of the FDS should be modified to fit multi-valued vector maps. The 
modified conventions and their relationships with the FDS conventions are as follows: 

(1) The object classes are mutually exclusive in each layer, i.e., each object belongs to exactly 
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one class in one layer but the object can be classified in more than one layer. This 
convention is the same with the FDS convention with respect to individual map layers but 
with an added provision to allow an object to be classified in another layer if it plays a role 
in that layer. 

(2) One m-container, me {0,12}, represents K m-dimensional objects from K different map 
layers. This is a new convention for the added data type m-container that has been introduced 
to model spatial coincidence among objects of the same type. 

(3) When a vector map is analyzed as a graph, all points that are used to describe the 
geometry will be treated as nodes (same as in the FDS). 

(4) The arcs of this graph are geometrically represented by straight line segments (same as 
in the FDS). 

(5) For each pair of nodes there is at most one arc connecting them directly; each of them 
may be connected also by one or more chains consisting of two or more arcs (same as in the 
FDS). 

(6) Two arcs should not intersect; if they do intersect, they should be replaced by four arcs 
joining at a node (same as in the FDS). 

(7) A node may represent at most one O-container. 
An arc may be part of at most one 1-container. 
An arc has exactly one 2-container at its right side and exactly one at its left side. 

This is structurally the same as in the FDS except that the geometric primitives are linked to 
the m-containers and not directly to the terrain objects as in the FDS. Here, the primitives are 
linked to the objects through the m-containers (see convention 2 above). 

A vector map which is modelled according to Figure 3.8 and satisfies the conventions above 
is termed a multi-valued vector map. 

3.4.5 Elementary Objects 

The complexity of terrain objects in terms of shape and size will often vary from one 
mapping context to another, which creates a problem in the definition of a generic model that 
can be used in different applications. A feasible solution is to define a limited set of 
elementary (non-decomposable) objects which can then be used as building blocks for 
complex objects in different applications (by providing some rules for the aggregation of the 
elementary objects). This philosophy can be related to the provision in the English language 
of 26 letters (A - Z) which can then be grouped together using defined rules (grammar) to 
formulate different words, e.g., the letter Q should always be followed by the letter U in any 
word. Thus in the DMMVM, the elementary terrain object types (area, line and point) are 
defined and constrained as follows. The mapping of terrain objects to these elementary types 
can then be one-to-one or one-to-many. 



42 

Elementary Area Object Type 

An instance of this type is defined and constrained as follows: 
- A two-dimensional object, F, geometrically represented by the subgraph GF(NF, AF) where 
AF = {a!, aj, ...., aj) is the set of arcs defining the boundary of the object and j > 3, i.e., a 
minimum of three arcs will form a closed polygon since an arc is assumed to be a straight 
line segment; and NF = {n„ n2, ...., nk} is the set of nodes defining AF 3 k = j . 
- V n( e NF, degree^n,) = 2. This implies that 

* The start-node = end-node. 
* A path must exist between the start-node and the end-node with only one occurrence of 

aj e AF in the path, i.e., the path must be simple. 
- The interior (see Table 4.1) must be fully connected. 

Elementary Line Object Type 

Each instance of a simple line object type is defined and constrained as follows: 
- A ID spatial object, L, geometrically defined by the subgraph GL(NL, AL) where 
AL = {a„ a2, ..... aj} is the set of arcs defining the geometry of the object L and j > 1; and 
NL = {nl5 iij, ..... nk} is the set of nodes defining AL 9 k = j + 1. 
- Exactly two of the nodes NL have degreeL(n) = 1 
- All other nodes in the set NL have degree^n) = 2. These imply that 

* A simple line object can neither intersect nor close back on itself. 
* A path must exist between the start-node and the end-node of GL, with only one 

occurrence of a, e AL in the path, i.e., the path must be elementary and simple (see §3.1.1). 

Elementary Point Object Type 

An instance of this type is always a primitive and is geometrically represented by a single 
node. 

3.5 Integrating the DMMVM with DTM 

The DMMVM can easily be extended to cover representation of other spatial information in 
vector mode. This section shows its extendibility by incorporating a digital terrain model. 
Digital terrain model (DTM) is used here to mean a dataset representing the elevation of a 
given terrain. Development of digital terrain modelling techniques started more than three 
decades ago (Ebner and Eder, 1992), and program packages are today available covering all 
phases from preparation to derivation of DTM products. 

With the increasing popularity and use of GIS, attention is being focused on the total integra
tion of DTM and related packages into GIS such that DTM-specific information can be 
derived from the same database, just like any spatial information under a single DBMS. 
Recent works on the integration of DTM into GIS include Sandgaard (1988), Fritsch (1991), 
Radwan (1991), Ebner and Eder (1992), Höhle (1991,1992), and Pilouk and Tempfli (1993). 

A DTM contains two complementary sub-sets (Makarovic, 1988): the skeleton and the filling 
information, with the skeleton being largely contained in various terrain objects such as lakes, 
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rivers, etc. Therefore, many planimetrie objects serve as characteristic objects (breaklines, etc) 
and primary data in digital elevation modelling. Thus, in developing this integrated model, 
the terrain relief is regarded as a mapping theme such that it (terrain relief) is classified into 
geometric classes like other terrain objects. To realise this, the DTM class to which an object 
belongs can be made a mandatory property of each terrain object in the database. Table 3.1 
gives the DTM classification scheme for terrain objects. 

Various models have been developed for the digital representation of terrain relief. These 
include: 
- regular grid, 
- irregular grid, 
- isolines (digital contours), 
- triangulated irregular network (TIN) 
The TIN is an appropriate structure that can be integrated with vector structures since 
characteristic points and lines, which form a logical part of the TIN, are often objects in the 
vector structure (e.g., rivers, lakes). In other words, TIN, though a tessellation model, can be 
seen as a vector topologie structure for representing polygon networks (Burrough, 1986). The 
TIN-DTM was therefore chosen for integration with the DMMVM. 

Table 3.1. Classification model for DTM objects (modified from Höhle (1992)). 

ENTITY 
TYPE 

Point 

Linear 

DTM CLASSES 

Regular' 

Spot 

Peak 

Pit 

Break 

Drain 

Ridge 

Contour 

Regular 

DEFINITION 

Any regular point with xyz coord 

Local high and low points. No assumptions are 
made on the slope of the surrounding terrain 

Specific local high z-value 

Specific local low z-value 

A line which defines a change in slope or a 
surface discontinuity 

A specific form of the breakline, it is assumed 
that the surface on either side of the line object 
has an increasing slope 

A specific form of the breakline, it assumes a 
decreasing slope on either side of the object 

Equal z values along the line 

Any line entity which is not a breakline 
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Area Double-line drain 

Water body 

Obscure 

Regular 

A drainage object which at the map scale is 
large enough to be represented as an area 
object. Heights decrease uniformly in one 
direction. 

A hydrographie area object with assumed 
constant z-value in its interior 

A dead area. Any area object which obstructs 
the measurement of heights in its interior, the 
values of which cannot be assumed, e.g., dense 
forest cover 

Any area object in a relief-homogeneous re
gion 

The primitive topologie entities of a TIN are vertices, edges and triangles. The internal 
storage structure of a TIN is therefore usually based on one or a combination of the three 
primitives. In a vertex-based TIN, the primary entity is the vertex; for each vertex, the vertex 
number is stored with the list of pointers to connected vertices and edges. In triangle-based 
TIN, it is possible to store the triangle number with its three vertices and its three neighbours. 
For edge-based TIN, a record will comprise the edge number, the two adjoining triangles and 
the two vertices that define the edge. 

Thus in an edge-based structure, the TIN will be fully described by two geometric primitives, 
edges and vertices. This is consistent with the use of arcs (edges) and nodes (vertices) as 
topologie primitives in multi-valued vector maps. Thus the proposed integrated model uses 
the edge-based TIN structure by adding the data types TIN edge and TIN vertex to the data 
types defined in the DMMVM. The integrated data model is shown in Figure 3.9 in which 
part B indicates the edge-based TIN data types and their links and part A is the DMMVM 
of Figure 3.8. This gives a flexible structure which allows separation of the two parts into two 
subsystems in the same database such that geo-information that does not require DTM input 
can be retrieved without involving the DTM part. And because they are integrated, objects 
in the object-base can contribute to the generation of a DTM with high fidelity, while the 
DTM supports the object-base, e.g., when updating via mono-plotting techniques, to provide 
elevation information for objects whose Z values could not be determined during the data 
collection phase, and to provide relief information in general. 

With reference to Figure 3.9, the part of link between arc and TIN_edge and is a link 
between node and TIN_vertex provide the link between the map base and the DTM at 
geometric level. It would appear that the arc and node structure, being similar to the edge and 
vertex of the TIN, should be sufficient to handle the geometric information of the joint model 
without having a separate TIN structure. We prefer not to do this because a single arc in the 
map base may be decomposed into more than one edge after triangulation, as illustrated in 
Figures 3.10a and b. For example, using a relational structure, the ARC table in the map base 
(Figure 3.10a) will contain a record for arc number 5 in the following form: 
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Figure 3.9 Integrated data model for multi-valued vector maps and DTM 

Arc id beg end 1ft aid ret aid alid 
5 1 4 11 12 10 

where 10, 11 and 12 are the m-container identifiers of riverl, cultivatedLandl and forestl, 
respectively. After triangulation (Figure 3.10b), the TIN-EDGE table will include two records, 
related to arc number 5, in the following form: 

begVertex endVertex leftTriangle rightTrianele arc id 
1 8 1 5 5 
8 4 3 8 5 

Figure 3.11 shows the block diagram of the procedure for implementing the integrated data 
model. First, the data acquisition for the multi-valued vector map can be done either in multi
valued mode (i.e., from a combined multi-valued data source such as photogrammetric 
superimposition of two layers) through screen digitizing, land surveying, etc., or by data 
acquisition per layer followed by overlay computation. During data acquisition, objects would 
also be classified into DTM classes (apart from their thematic classes). The dataset is then 
reformatted and checked for consistency (see chapter 5). The result can then be structured 
according to a relational data structure, for example. 

To generate the DTM subsystem, the 0-, 1- and 2-containers which belong to DTM object 
classes are extracted to form part of the DTM skeleton. In other words, the arcs of such 1-
and 2-containers will form part of the TIN edges and the nodes of those 0-containers will be 
vertices in the TIN. Further sampling is carried out to collect filling data for the interior parts 
of 2-containers and for more skeleton data for characteristic Unes which have not been 
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captured as terrain objects during the initial data 
acquisition. The coordinate data of other objects in 
the database which belong to the DTM class "regu
lar" (see Table 3.1) are extracted as filling data. The 
skeleton and the filling data are then triangulated and 
structured as an edge-based TIN. Heights of points 
defining the boundaries of 2-containers belonging to 
DTM class "obscure" are then derived by inter
polation. Finally, the relational tables describing the 
DTM subsystem (e.g., Tinedge, Tinvertex and Trian
gle) are filled. 

For queries on objects requiring DTM input, the part-
of link between arc and Tin_edge, and is-a link 
between node and Tin_vertex (Figure 3.9) would be 
used for navigation. With this flexible set-up, non-
DTM-related information will be more efficiently 
retrieved. For example, topologie queries at the object 
level will not have to search through DTM data. 
DTM-related queries involving line and point objects 
can be easily handled through the part-of link bet
ween arc and Tin-edge and the is-a link between 
node and Tin-vertex. Deriving DTM-related infor
mation for area objects is, however, not as straightfo
rward as in the other two object types, since the 
DTM points in the interior of the area object are not 
directly linked to the object. To facilitate retrieval of 
DTM points for any area object, a routine can be 
provided as an integral part of the database. This 
routine may make use of a "point-in-polygon" subro
utine (in 2D mode) to retrieve all vertices located in 
the interior of a certain area object and its output will 
then serve as input into the derivation of DTM information concerning area objects. 

3.6 Summary 

5 - Nod* number 
+5 -Triuajb 

Figure 3.10 A simple map in the 
map-base (a) and DTM-base after 
(fictitious) triangulation (b) 

In this chapter, a vector data model has been proposed to represent multi-valued terrain 
abstraction, especially when frequent spatial analyses across many map layers are envisaged, 
i.e., in applications involving frequent analysis of multi-layer geo-information. The proposed 
conceptual data model is an object-based 2.SD data model for multi-valued vector maps 
(DMMVM). A multi-valued vector map refers to the vector-based representation of terrain 
objects from multiple map layers whereby two objects of the same geometric type may be 
spatially coincident. Two objects of the same type are said to be spatially coincident if they 
(partially) overlap in space. In the model, positions of objects are defined in a 3D metric 
space but embedded in planar topology, i.e., a 2.5D model. This means that only surfaces of 
objects are represented such that a pair of X and Y coordinates must have a single Z value, 
thus a single-elevation model. The model was based on the formal data structure (FDS) for 
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Figure 3.11 Procedure for creating an integrated multi-valued and DTM database 

single-valued vector maps. In the 2D FDS (see §3.2), terrain objects play a central role in the 
terrain description; each object has a thematic component and a geometric component. In the 
thematic domain, the objects can be grouped into thematic classes in which each class has a 
specific attribute structure; in the geometric domain, the object types points, lines and areas 
are distinguished for a 2D or 2.SD terrain description, subject to a constraint that two objects 
of the same type may not be spatially coincident. The three object types are then completely 
described by a common set of two types of geometric elements: arc and node, using graph 
theory as the mathematical framework. In the FDS, the geometry of a terrain object is clearly 
distinguished into three independent aspects, namely topology, shape and size, and position. 
This geometric dataset has been carefully structured in the FDS, leading to a semantically-
rich, query-oriented and extendible data model in which information on topology, shape and 
size, and position can be retrieved. 

The FDS was extended in this thesis to allow objects of the same type to be spatially 
coincident, thus facilitating the use of a single structure for the representation of multi-layer 
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geo-data. A geometrie data type, m-dimensional container, or simply m-container, where m 
E {0,1,2} was introduced to model spatial coincidence among objects of the same geometric 
type. Thus a 0-container represents spatially coinciding J point objects from J layers, a 1-
container represents (part of) K line objects from K layers and a 2-container represents (part 
of) L area objects from L layers, where L is the maximum number of layers and J and K may 
each be less than or equal to L. 

By introducing the container data type, overlapping sections across the layers are uniquely 
identified such that they have their own individual geometric data and non-spatial data apart 
from those inherited from the overlapping objects; they can then be maintained and 
manipulated by a DBMS just like single objects. Thus it is easier to include them in 
aggregation and association abstractions, thereby improving spatial analyses in GIS. 

Using graph theory as a mathematical tool, the three container types are then represented by 
topologie primitives arc and node. A node defines one 0-container and/or beginning or end 
of an arc while an arc defines (part of) one 1-container and/or (part of) boundary of a 2-
container. The arc is defined by one start node and one end node, and a node is defined by 
a coordinate triplet X,Y,Z. 

Thus eight basic geometric data types are defined to represent geo-data from multiple map 
layers, namely area, line, point, 2-container, 1-container, 0-container, arc, and node. Each data 
type plays some specific roles in the model. The area, line and point data types abstractly 
represent terrain objects, whereby each terrain object in the application is mapped into one 
of the three types during implementation. The mapping can be one-to-one or one-to-many, 
depending on the complexity (shape) of the terrain object, e.g., a two-dimensional object with 
a connected boundary and interior will be mapped to one elementary area object type while 
a two-dimensional object with disconnected boundaries and interiors will be mapped into two 
or more elementary area objects. These related elementary objects will then be aggregated to 
reconstruct the parent (original) object during query. 

One of the attributes of each of the three object types should be the thematic class of the 
object. Although the thematic aspects of objects were given less attention here, the model 
does not preclude the representation of thematic data. During implementation (when thematic 
attributes of objects are identified) the thematic data can be arranged in a hierarchic manner 
as proposed in §3.2.1 and §3.4.1 

The m-container, m e {0,1,2}, models spatial coincidence among elementary objects of 
corresponding spatial dimension as explained above. Apart from the attribute values inherited 
from the spatially coinciding objects, an m-container data type can have additional attributes 
as required by the user. Arc and node, as stated above, play the roles of geometric descriptors 
in the model. 

An integration of the DMMVM with the TIN-DTM was described in §3.5. The integrated 
model provides a unified representation of multi-valued terrain object data and terrain relief 
information in a flexible manner. The position of an object can thus be given in 2D or 3D; 
when defined in 2D, the height value will be interpolated from the DTM subsystem. 

The philosophy behind this integrated approach to spatial data modelling is based on two 
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main considerations: 
(1) Although data acquisition is usually layer-oriented, subsequent analyses often require 
integration of data from more than one layer, leading to ad hoc overlay computations. The 
model presented here can be used to organize the result of an initial overlay of all relevant 
layers which will subsequently be used for future single-valued or multi-valued queries. 

(2) Most of the skeleton of a DTM is usually contained in terrain objects such as rivers, 
roads, lakes, etc.; with the importance of DTM in spatial analyses, it is apparently more 
efficient to integrate planimetrie and elevation models. Thus objects in the object-base will 
contribute to the generation of a DTM with high fidelity while the DTM supports the object-
base, e.g., when updating via mono-plotting techniques, to provide height information for 
objects whose Z values could not be determined during the data collection phase, and to 
provide relief information in general. 

It has been shown here that the DMMVM can be extended to handle DTM information, but 
this will not be elaborated further in this thesis. Additional information on the integration of 
the DMMVM and DTM can be found in Kufoniyi et al (1994), Kufoniyi and Pilouk (1994), 
Pilouk and Kufoniyi (1994), and Kufoniyi and Bouloucos (1994). Subsequent chapters will 
focus only on the DMMVM. The translations of the DMMVM to prototype relational and 
object-oriented database structures are given in chapter 7. The topologie spatial relationships 
supported by the DMMVM are formally derived in the next chapter; they will be used as 
tools in chapters 5 and 6 for the provision of consistency rules to guide updating operations. 
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MODELLING TOPOLOGIC RELATIONSHIPS IN VECTOR MAPS 

In chapter three, a conceptual data model for multi-valued vector maps was proposed. The 
model described how the geometric and attribute data of objects from different map layers 
can be organized in a structure. Part of an object's geometric data are the spatial relationships 
between the object and other objects. They often serve as the main tool for intelligent 
analyses and processing in GIS. The relationships can be grouped into three main types 
(Kainz, 1990): 

(1) Topologie spatial relationships: these are the relationships which remain invariant under 
certain topologie transformations such as rotation, shift and scaling. Examples are 
neighbourhood and connectivity. 
(2) Spatial order relationships: these concern the representation of the concepts of inclusion 
and containment of spatial objects using partially ordered sets and lattices based on 
mathematical order theory. 
(3) Metric spatial relationships which cover the concepts of distance and direction. 

The main focus in this thesis is the first group: topologie spatial relationships. They give more 
detailed spatial relationships than the spatial order set (Kainz, 1990). The metric relationships 
are normally computed from the database using the coordinates of objects. For example, the 
metric relationship distance (euclidean) between two point objects A and B whose positions 
are respectively defined in a 3D cartesian space as XA, YA, ZA and XB, YB, Zg will be 
computed using the formula 

distance(A,B) = sqrt((XB-XA)2 + (YB-YA)2 + (ZB-ZA)2) 

All topologie relationships among objects can normally be derived through the use of 
coordinate information and analysis, but this approach will slow down operations in the 
system. 

In topologie data structures, most of the topologie relationships are implicitly or explicitly 
represented and can be derived by queries. However, it is useful to formalise the elementary 
(basic) set supported by a certain data model in order to know a-priori the information content 
of the database. The elementary set can then be translated into basic topologie operators as 
a fundamental step towards the establishment of an active (dynamic) spatial database. In 
general, the topologie operators will be useful for the following operations in an active vector 
GIS: 
(1) On-line building of topology such that if the geometry of an object changes, topology is 
automatically updated. Also, complex topologie relationships and other implicitly represented 
relationships can be dynamically derived. 
(2) Dynamic checking of spatial consistencies as a step towards consistency enforcement. 
(3) Dynamic building of a consistent multi-valued vector map from two or more single-valued 
vector maps. 
(4) As tools for constructing complex objects from elementary ones. 

This chapter describes the formal derivation of the topologie relationships in vector maps 
based on the data model proposed in the preceding chapter. The "9-intersection" formalism 
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(Egenhofer and Herring, 1992) (see §4.1) was used for the derivation. The relationships are 
defined at two levels: first, among the elementary objects (object topology), and second, 
among the topologie primitives, arcs and nodes (geometric-primitive topology). The 
algorithms for detecting the particular relationship (from the possible set) that exists between 
any pair of objects are also formalised. The application of the derived topologie relationships 
in automated consistency validation and updating of the geometric structure of vector maps 
is proposed in the next chapter. 

The importance of topologie relationships in GIS has made it an active research topic. For 
example, Molenaar (1991a) defined the topologie relationships among data types in the FDS 
at three levels. The first comprises a set of semantically defined relationships among the three 
elementary objects (point, line and area) in single-valued vector maps (see Figure 4.1). The 
second level consists of the links provided by the graph structure of vector maps between the 
geometric primitives and the objects. The third consists of the connectivity among the 
geometric primitives (arc and node). 

island in branches of 

( Point object ) 

Figure 4.1 Topologie relationships among elementary objects (Molenaar, 1991a) 

Also, Pullar and Egenhofer (1988) applied the point-set topology (Vaidyanathaswamy, 1960) 
to define six minimal set of binary relationships (disjoint, meet, overlap, concur, common-
bounds and equals) between two one-dimensional intervals (line segments). 

The point-set approach has been formalised as a mathematical framework for the derivation 
of topologie relationships between n-dimensional objects by using either the "4-intersection" 
model (Egenhofer and Herring, 1990) or the "9-intersection" model (Egenhofer and Herring, 
1992). The former distinguishes two parts of an object, the interior and boundary, and 
evaluates the set intersection between each part of one object and each part of a second 
object The 9-intersection extends this by including the exterior component of an object. This 
approach has become popular among researchers for deriving topologie relationships, e.g., 
Egenhofer and Franzosa (1991), Hadzilacos and Tryfona (1992), Hoop and Oosterom (1992), 
Egenhofer and Al-Tahar (1992), Pigot (1991), Clementini et al (1993), Kufoniyi et al (1993, 
1994) and Molenaar et al (1994). The 9-intersection model is used in this thesis to analyze 
the topologie relationships in the DMMVM. 
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4.1 The 9-Intersection Formalism for Modelling Topologie Relationships 

Egenhofer and Herring (1992) proposed the 9-intersection model for formalising binary 
topologie relationships between two arbitrary objects. The model was based on point-set 
theory of algebraic topology. In the model, an object, Oj, is represented as a point-set 
consisting of the following three components (subsets): the boundary set of O, represented by 
dO„ the interior set of 0 ( represented by °0, and the exterior set of Oj represented by ~Oj 

With the three components of a point-set identified, the modelling proceeds with the following 
three main operations: 
Step One: Evaluate the set intersections (n) between the boundary, interior and exterior of 
one point-set O, and the boundary, interior and exterior of the second point-set 02 . This gives 
a 9-intersection configuration as shown in Figure 4.2 

ao,n302 dOin°02 3O,nn02 
°0,nao2 °0,no02 °0,n-02 
T),nao2 T>,n°02 T>,n-02 

Figure 4.2 The 9-Intersection configuration 

Each element in the nine-element tuple is evaluated as empty, denoted 0 , or non-empty, 
denoted -0. This gives a total of 512 (29) mutually exclusive candidate binary topologie 
relationships between the two arbitrary objects. 
Step Two: Eliminate from' the 512 the topologically impossible relationships. Rules are 
defined for the elimination, based on the definition of object types in the embedding data 
model. 
Step Three: Combine the topologically similar relationships in the result of step two. Two 
relations are topologically similar if they share the same boundary-boundary, interior-interior 
and exterior-exterior specifications, but have opposite boundary-interior and interior-boundary, 
and/or boundary-exterior and exterior-boundary, and/or interior-exterior and exterior-interior 
specifications. 
The third step will yield the topologically consistent set of mutually exclusive candidate 
binary relationships between the two objects. 

This formalism is applied here to derive the topologie relationships between objects and 
between geometric primitives in the DMMVM. 

4.2 Topologie Relationships in Vector Maps 

4.2.1 Relationships among the elements of a planar graph 

In chapter three, vector maps are modelled as a planar graph. The relationships among the 
elements of this graph, i.e., nodes, arcs and faces, can be defined with a limited number of 
relational functions (Molenaar et al, 1994) as follows. 
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Nodes and arcs 

The following relationships can be defined between nodes and arcs: 

Arc a, has node n, as the begin node -» Begin[at, n}] = 1 
Arc a, has node nk as the end node -» Endla^ nj = 1 

If loops are not allowed: 

Beging, nj = 1 -» End[ait nß = 0 
and End(ait nj = 1 -» Begin[ait nj = 0 

So arcs will have distinct begin and end nodes. Whether ^ is a node of arc a, can be 
investigated by the function: 

N[Oi, nj = Beging, nß + End[ait n-l 

If N[a„ nj] = 1 then n̂  is a node of a, 
If N[aj, nj] = 0 then this is not the case. 

The degree of a node can be found through: 
Degree(nj) = li(N[ai,nj ]) 

Arcs and faces 

Each arc will always have one face at its lefthand side and one at its righthand side. These 
relationships will be expressed by the following functions: 

Arc a, has face F, at its left-hand side -» Le[ait Fa] = 1 

For any F„ * F, we get then Leia^, Fb] = 0 

Arc aj has face F, at its right-hand side -> Ri[Oj, Fa] = 1 

and again for Fb *• F, we get then Ri[aj, Fb] = 0 

If an arc a, is part of the border of Fa then only one of the functions Ri and Le is equal to 1 
for a,, but not both. So if we define the function: 

B[Qi ,FJ = Le[ak, F J + Rifr, Fa ] 

then when aj is part of the boundary of F, we find B[at, Fa] = 1. 
The boundary of F, is: 

dFa = {N., AJ with Aa = {a. / B[a., FJ = 1} and 
Na contains the nodes of the arcs of Aa 

"." stands f or an unspecified index value. 
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The arcs that make up the border of a face form a polygon (i.e., a closed chain of arcs). So 
for any arc ai that is part of a polygon in a planar graph there are only two faces, so that 
B[a, ,F.] = 1, for all other faces B[at, F.] = 0. 

If an arc aj is part of a polygon then it is 
not possible that there is any face F. for 
which B[at, F.] - 2. If an arc a, does not 
belong to a polygon then there must be 
a face F. for which B[a(, F.] = 2. In this 
case there are two possible relationships 
between an arc aj = {nb, ne} and 3F„ 
see figure 4.3: Figure 4.3: Relationships between an arc on a 

face and the boundary. 
the arc is not directly connected 
to the boundary: 
nb, nei N„ 
the arc is connected to the boundary through one node: 
nb e Na or nte Na 

Nodes and faces 

If the degree of a node n, is Degree[n, ] = 0, then it is not related to an arc. In that case it 
must be contained inside a face F„; this relationship will be expressed by: 

ISIN[ni,FJ = l 

If Degree[nj] *• 0, then there is some arc aj for which N[ajt nt] * 0. This arc will be related 
to some face through one of the relationships explained above; the relationship between the 
node and that face is then established through the arc. 

Face to face 

For face Fj with a boundary brF1 = {N,, A,} as defined above, and F2 with 3F2= {N2, A2), 
there are four possibilities for the intersection of these subgraphs, see Figure 4.4: 

a. 

O 
D. c a. 

not connected touch adjacent 

Figure 4.4: Geometric connections between two faces 

combination 
ofb. andc. 

there is no geometric connection if there are no common nodes or arcs; thus: 
N,r\N2=0 and A,n A2= 0 
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the objects touch if there are one or more common nodes but no common arcs; thus: 
N,nN2*0 and A,n A2= 0 
the objects are adjacent if there are one or more common arcs, but no common nodes 
that do not belong to the common arcs; in that case the objects also have the nodes 
of these arcs in common, so it is sufficient to state that: A,n A2* 0 
the objects have a combination of the touch and adjacency relationships; that means 
there are common nodes that do not belong to the common arcs. 

4.2.2 Topologie Relationships at Object Level 

4.2.2.1 Elementary Objects in the data model. 

The 9-intersection model requires the definition of the boundary, and interior and exterior 
components of an object To define these components for the three object types (point, line 
and area) in vector maps, the definitions of the three types (see §3.4.5) are reformulated in 
terms of the relational functions of §4.2.1 as follows. 

Elementary Area Objects 

The geometry of an object of this type is represented by one or more adjacent faces. If a face 
F, is part of an area object AO,, this will be represented by: 

Partof[Fa, AOjl = / 

The relationships between arcs and area objects can be found via their relationship with the 
faces by: 

Le[ait AOfl = Max^Lela» FJ*Partof[Fa, AOfJ) 

Rifc, AOf] = MaxFJRi[aj, FJ*Partof[Fa, AOß) 

and 

B[üi, AOf] = Lefa, AOf] + Ri[at, AOs] 

The boundary of AOf represented by dAOf, is defined by the subgraph (Nf, A,) where 

Af = {aJ B[Oi, AOf] = 1} and 
TV} = {nlt n2, ...., nj contains the nodes of these arcs. 

The interior of an area object °AOf is defined by its faces minus dAOf. For an elementary area 
object these should be adjacent so that if we eliminate the arcs aj with B[a;, AOf] = 2 from 
the graph, then the object would be represented by exactly one face. 
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Elementary Line Objects 

When an arc ^ is part of a line object LO„ this can be represented by: 

Partoffa, LOJ = 1; if the arc is not a part of the line object this function will have the value 
= 0. 

An elementary line object type can then be pragmatically defined as any ID spatial object, 
LO„ geometrically defined by the subgraph G,= {N„ A,} where 

A, = {aJPartofldi, LOJ = 1} is the set of arcs defining the geometry of LO, and 
N, = {n„ n2, ..... nj contains the nodes of these arcs. 
Exactly two of the nodes of N, have Degree,(n) = 1; these are the endpoints and they 
constitute the boundary, 3LO„ of the line object 
All other nodes in the set N, have Degree,(n) = 2; with the arcs in A, they form the 
interior of the line object. 

Elementary Point Objects 

An instance of this type is always elementary and is any point object POp geometrically 
represented by a single node ^ where n, e N; this will be expressed as: 

Reprlnit POJ - 1; if the node does not represent this object the value of the function will be 
= 0. 

A point object has no interior; n, is the boundary of the point. 

Boundary, Interior and Exterior of Elementary Objects 

Based on these definitions, the boundary, interior and exterior of each of the three elementary 
object types are defined in Table 4.1 . The universal set of points defining the map is 
represented by U. 

Table 4.1.1 

Object 
Type 

Point (P) 

Line (L) 

Area(R) 

boundary, interior and exterior of elementary objects 

Boundary (3) 

aP=npIRepr[np,P]=l 

aL={njeNLIDegree,.(ni)=l} 

3R= Gr(N„ A,) 
A ^ I B ^ R ] ^ } 
Nr={njIN[ai,nj]=l,ai6Ar} 

Interior (°) 

No interior point (undefined) 

°L = GL - 3L = {(NL - 9L), AL} 

°R= {FiIPartof[Fi,R]=l}-9R 

Exterior (") 

-P = O - 3P 

X = O - (dL u °L) 

-R = U - OR u °R) 
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4.2.2.2 Deriving the Relationships 

For n number of elementary objects, there are n2 groups of binary topologie spatial 
relationships among them, each group consisting of 512 mutually exclusive candidates. It is 
assumed that the order of the objects in the n by n combinations will not be relevant, so 
because of their symmetry the number of groups reduces to (n(n+l))/2. For the three 
elementary objects, there are thus six groups of candidate relationships, namely Area/Area, 
Area/Line, Area/Point, Line/Line, Line/Point and Point/Point. 

To eliminate the topologically impossible relationships from the 512 candidates of each object 
combination, rules were defined as illustrated with the following three examples. First, two 
assumptions were made: (1) all objects are embedded in the same closed geographic space 
(similar to a project area in mapping); (2) a situation where only two complementary objects 
occupy the whole region does not exist. 

Rule 1: Based on the two assumptions above, the exteriors of two arbitrary objects must 
always intersect. 

Rule 2: Considering a point object (p) and a line object (1), 
dp n 31 = -10 => dp n °1 = 0 and dp m = 0 

Rule 3: Since the interior of a point object is undefined, all intersections between the point's 
interior and any of the three components of the second object must be empty. 

Furthermore, the topologie relationships which are not consistent with the DMMVM, although 
topologically possible under a different object definition, are eliminated. There are two cases 
in this category. The first case deals with single-valued vector maps while the second deals 
with multi-valued vector maps. After eliminating the topologically impossible set (using the 
defined rules) and those that are not consistent with the embedding data model (DMMVM), 
the resulting consistent relationships and their intersection configuration for the six object 
combinations are presented in Table 4.2. 

The graphic representations of the relationships are given in Figures 4.7 to 4.10. No attempt 
at linguistic definition of the relationships is made; rather, each of them is coded as the 
decimal conversion of the binary number corresponding to its relationship. This is because 
relationships with the same topologie structure (9-intersection configuration) will have 
different names in different contexts. For example, while the relationship coded as r220 can 
be interpreted as overlap for area/area and line/line, the topologie overlap for point/point is 
defined by r272. This difficulty has also been acknowledged by Mark and Egenhofer (1994). 
For the distinct coding, empty intersection is interpreted as bit value 0 and non-empty as bit 
value 1. Thus, relation r511 (111111111 in binary digits) represents a tuple where all nine 
intersections are non-empty. Likewise, rOOO (000000000) represents the relationship in which 
all nine intersections are empty. The structure of the nine-field tuple is in the following form: 

30,n802
 00,n°02 °0,n302 dOin°02 T>,nno2 3O,nn02 °Otn-X>2 -0,nao2 -0,n°02 

The number of relationships for each object combination can be further reduced by combining 
the topologically similar ones (e.g., rl79 and r220 between two area objects) in Table 4.2. 
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The result of this combination is the limited number of topologie relationships in vector maps 
shown in Table 4.3. 

Note that the 9-intersection model improves on the 4-intersection model (using only boundary 
and interior parts) (Egenhofer and Franzosa 1991), because relationships which cannot be 
differentiated in the latter model can now be distinguished, e.g., relationships r252, r253 and 
r255 between an area and a line object will be the same relationships in the 4-intersection 
model. However, the 9-intersection model can still not eliminate all ambiguities in the types 
of relationships. For example, Figure 4.5 shows two (semantically) different spatial 
relationships, but they are topologically equal in the 9-intersection model. Both cases are 
defined by the same relationship r287. Thus additional measures, such as the dimension of 
intersection, must be applied to resolve this type of ambiguity. But by basing the realization 
of the relationships on the elementary set and the relational functions defined for the elements 
of a planar graph (§4.2.1), this ambiguity can be taken care of. All simple and complex 
object-level topologie relationships can then be derived from this elementary set. 

However, the use of the elementary relationships between the elements of a planar graph 
assumes that the geometry of the map is consistent, i.e., all the conventions relating to 
geometry (see §3.2.3 and §3.4.4) are observed. An inconsistent geometry can be detected by 
checking the topologie relationship between the geometric primitives (arc and node), e.g., by 
checking whether two arcs intersect without a node at the intersection point or whether two 
nodes overlap. Therefore, it is beneficial to also formalize the relationships between the 
geometric primitives. Rules can then be made to resolve any inconsistency that may arise. The 
relationships among the geometric primitives are presented in the next subsection. 

Table 4.2: Topologie relationships between two simple objects 0 , and 0 2 in 

Relation 

r026 

r030 

r031 

r063 

r092 

r095 

rl27 

rl59 

rl79 

rl91 

r220 

Intersection 

aa °° °a a ° — a - ° - -a -° 
0 0 0 0 1 1 0 1 0 

0 0 0 0 1 1 1 1 0 

0 0 0 0 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 

0 0 1 0 1 1 1 0 0 

0 0 1 0 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 

0 1 0 0 1 1 1 1 1 

0 1 0 1 1 0 0 1 1 

0 1 0 1 1 1 1 1 1 

0 1 1 0 1 1 1 0 0 

A/A 

-

-

Yb 

-

-

-

-

-

Ym 

-

Ym 

A/L 

-

-

Yb 

Yb 

-

-

-

-

-

Yb 

Yb 

A/P 

-

Yb 

-

-

Yb 

-

-

-

-

-

-

L/L 

-

-

Yb 

Yb 

-

Yb 

Yb 

Yb 

Ym 

Yb 

Ym 

vector maps 

UP 

-

Yb 

-

-

Yb 

-

-

-

-

-

-

P/P 

Yb 

-

-

-

-

-

-

-

-

-

-
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r223 

r252 

r253 

r255 

r272 

r277 

r279 

r284 

r285 

r287 

r311 

r316 

r317 

r319 

r349 

r373 

r400 

r412 

r415 

r435 

r439 

r444 

r445 

r447 

r476 

r477 

r501 

r508 

r509 

r511 

0 1 1 0 1 1 1 1 1 

0 1 1 1 1 1 1 0 0 

0 1 1 1 1 1 1 0 1 

0 1 1 1 1 1 1 1 1 

1 0 0 0 1 0 0 0 0 

1 0 0 0 1 0 1 0 1 

1 0 0 0 1 0 1 1 1 

1 0 0 0 1 1 1 0 0 

1 0 0 0 1 1 1 0 1 

1 0 0 0 1 1 1 1 1 

1 0 0 1 1 0 1 1 1 

1 0 0 1 1 1 1 0 0 

1 0 0 1 1 1 1 0 1 

1 0 0 1 1 1 1 1 1 

1 0 1 0 1 1 1 0 1 

1 0 1 1 1 0 1 0 1 

1 1 0 0 1 0 0 0 0 

1 1 0 0 1 1 1 0 0 

1 1 0 0 1 1 1 1 1 

1 1 0 1 1 0 0 1 1 

1 1 0 1 1 0 1 1 1 

1 1 0 1 1 1 1 0 0 

1 1 0 1 1 1 1 0 1 

1 1 0 1 1 1 1 1 1 

1 1 1 0 1 1 1 0 0 

1 1 1 0 1 1 1 0 1 

1 1 1 1 1 0 1 0 1 

1 1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 0 1 

1 1 1 1 1 1 1 1 1 

-

-

-

-

-

-

Yb 

-

Yb 

Yb 

-

-

-

-

-

-

Ym 

-

-

Ym 

-

-

-

-

Ym 

-

-

-

-

Yb 

-

Yb 

Yb 

Yb 

-

-

-

-

Yb 

Yb 

-

Yb 

Yb 

Yb 

-

-

-

Yb 

-

-

-

Yb 

Yb 

Yb 

Yb 

-

-

Yb 

Yb 

-

-

-

-

-

-

-

-

Yb 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Yb 

-

-

Ym 

-

Yb 

-

-

-

Yb 

Yb 

-

-

-

Yb 

Yb 

Ym 

-

Yb 

Ym 

Yb 

-

-

-

Ym 

Yb 

Yb 

-

-

-

-

-

-

-

-

-

-

Yb 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ym 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
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The symbols in Table 4.2 are as follows 
- (dash) = not applicable 
Yb = allowed in both single-valued and multi-valued vector maps 
Ym = allowed only in multi-valued vector maps 

4.2.3 Relationships Among Geometric Primitives 

Two geometric primitives are used in the DMMVM: arc and node. The third primitive, face, 
was not required for the modelling in 2D topologie space because, since planarity is enforced, 
every arc will have a face on either side, and since a face will always represent a 2D terrain 
object, the arc can reference the object directly (see §3.1.1). Thus there are three groups of 
binary topologie relationships among the primitives, namely arc/arc, arc/node and node/node. 

The definitions of the boundary, interior and exterior components of a node are similar to 
those of a point object defined above. The boundary of the arc, denoted 3a, is defined by its 
two end-nodes. The interior, denoted °a, consists of the set of points of the arc, excluding the 
boundary points. Since the arc is defined here as a straight line segment, the interior points 
are not explicitly represented but can be derived by interpolation. The exterior of the arc, 
denoted ~a, = U - (3a u °a). 

Applying the same procedure as in object-level topology, the topologie relationships in Figure 
4.11 for the two topologie primitives are derived. The "r..." (e.g., r031) represents the code 
of a relationship and the binary value in parenthesis (e.g., 000011111) is the 9-intersection 
value of the relationship. The components of the 9-intersection are ordered as in object-level 
topology (see §4.2.2.2). The asterisked relationships in the figure are not consistent with the 
DMMVM and can therefore not be detected by simple query. Actually, they can occur only 
before a consistent vector map, based on the DMMVM, is constructed i.e., during the process 
of database creation and updating. Thus they can be detected only by computational geometry, 
using coordinate information. They are necessary for two purposes: (1) to detect geometric 
inconsistency in the database and (2) for on-line geometric updating of the database. These 
are further explained in the next chapter. Note that at this level, the same situation holds for 
both single-valued and multi-valued vector maps because each primitive (arc or node) must 
have a one-to-one link with an m-container in the DMMVM (e.g., one arc represents (part of) 
just one 1-container). 

Table 4.3 Number of allowed object level topologie relationships in vector maps 

Object Combination 

Area/Area (A/A) 
Area/Line (A/L) 
Area/Point (A/P) 
Line/Line (1VL) 
Line/Point (IVP) 
Point/Point (P/P) 

Total allowed in SVVM 

3 
19 
3 
12 
3 
1 

Total allowed in MVVM 

7 
19 
3 
16 
3 
2 
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4.3 Algorithms for Detecting the Existing Topologie Relationship 

Only one of the candidate relationships derived in §4.2.2.2 can exist between two objects at 
any one time. This section describes how to detect the existing relationship between two 
objects in a vector map. Generally, topologie relationships between objects stored in a spatial 
database can be derived in two ways: 
(1) through computational geometry, for non-topologic data structures and during the process 
of creating or updating a topologie database, and 
(2) through query, for topologie data structures. 

In topologie data structures such as the FDS and the DMMVM, most of the topologie 
relationships supported will be implicitly represented. Those that would require the use of 
computational geometry are usually represented explicitly so that they can be retrieved 
without the use of coordinate information (e.g., point-in-polygon). Deriving the implicit 
relationships in a spatial database using conventional database management system (DBMS) 
may require some programming effort by the user because the query language of the DBMS 
often lacks spatial operators. Provision of fundamental spatial operators in a spatial query 
language to detect the elementary topologie relationships will improve the performance of the 
information system. This section outlines how the topologie relationships among objects 
formalized in §4.2.2 can be realised in a graph-structured vector map. The outlines can be 
formulated into topologie relationship operators as a software module in an operational GIS. 

The relationships between any two elements of a graph were described in §4.2.1. By 
analyzing these relationships and the set intersection between the subgraphs GP(NP, AP) and 
GQ(NQ, AQ) of two arbitrary elementary objects P and Q, the existing topologie relationship 
between the two objects can be detected. The analyses which can be translated (programmed) 
into an overloaded spatial operator Relation(P,Q) (where P and Q are related to the relevant 
object type at run-time, i.e., late binding) consist of the following six main operations. 

(1) Evaluate AP n AQ 

Set intersection, i.e., evaluate whether there are common and/or different elements bet
ween AP and AQ; this will indicate the possible types of relationships to further 
examine, e.g., considering P and Q as area objects, an empty set reduces the possible 
types to r031, rl79 and r220 see Figure 4.7 

(2) Evaluate NP n NQ 

Set intersection: to check whether some nodes are common to both P and Q. If P and 
Q have some arcs in common, it implies that they have the nodes of those arcs in 
common. But they can also have some nodes in common irrespective of whether or 
not they have common arcs (e.g., see Figures 4.4b, c and d). This is useful, for 
example, to determine whether P and Q intersect, overlap with common boundaries 
or touch. 

(3) Determine Degree(n) V rç e NP n Nö with respect to subgraph GP u GQ 

(This helps to detect differences among similar relationships, e.g., a line object that 
branches off another line object will have a common node of degree 3, while 
intersecting (crossing) line objects will have a common node of degree 4.) 
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(4a) Evaluate whether 3 a&AP 3BlaitQ]=0 
(i.e., whether any arc of P lies in the exterior of Q.) 

( b) Evaluate whether 3 ajeAP BB[aj,Q]=l 
(i.e., whether any arc of p is part of Q's boundary.) 

( c) Evaluate whether 3 akeAP 3B[ak,Q]=2 
(i.e., whether any arc of P lies in Q's interior.) 
The three operations give further indication of the type of relationship, e.g., if each 
of the sets derived in a, b and c is not empty with respect to two area objects, it 
implies a variant of the relationship r511 (see Figure 4.7). They are necessary for only 
area/area and area/line combinations. 

(5a) Evaluate whether 3 aßAQ 3B[a„P]=0 
(i.e., whether any arc of Q lies in the exterior of P.) 

( b) Evaluate whether 3 an<zAQ 3B[a„,P]=l 
(i.e., whether any arc of Q is part of P's boundary.) 

( c) Evaluate whether 3 aneAQ BB[an,P]=2 
(i.e., whether any arc of Q lies in P's interior.) 
The operations performed for P in 4a, b and c are repeated for Q when dealing with 
two area objects. Operation 4 alone will suffice in the case of the area/line object 
combination. 

(6) Evaluate °P n NQ 

(i.e., whether a node of Q lies in the interior part of P; required for only area/point 
combination) 

The third operation will return a list of integer values indicating the degrees of node r^, the 
sixth operation will return true (T) or false (F), while other operations are evaluated as empty 
(0) or not empty, with the elements of the set being kept for further analysis if necessary. 
Not all the six operations will be required for each object combination. In some cases, the 
occurrence of an operation may already be implied by a previous one. For instance, °P n NQ 

= T =* B[aj,Q]=2 where P = area object and Q = line object, and AP n AQ *• 0 => NP n NQ 

* 0 . Also, for any point object Q, AQ = 0 ; hence operations 1,4 and 5 will not be applicable 
for combinations involving point objects, i.e., Area/Point, Line/Point and Point/Point. In 
addition, operation 6 is required only for Area/Point combination to determine if a point 
object is topologically inside an area object. This relationship can be expressed by the fol
lowing function, where P = area object and Q = point object: 

NQ n °P = Repr[nq,OJ*ISIN[nq,FJ*Partof[F„P] where F, = face a. 
NQ n °P = 1 => point object is inside area object, and NQ n °P = 0 means it is not. 

The input into the procedure Relation(P,Q) will be the geometric primitives of objects P and 
Q and the return value will be the existing topologie relationship between P and Q. 

The relevant operations for each object combination are elaborated in the following 
subsections. 
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4.3.1 Detecting Topologie Relationship Between Two Area Objects 

The following expressions should be determined in order to detect the existing relationship 
between two area objects in our model. In the expressions, Vi represents the return value of 
the expression while the other terms are as defined above. 

(1) VI = AP n AQ 

i.e., VI is a set containing the set of arcs which are common to both P and Q 
(2) V2 = AP - VI 

i.e., V2 is a set containing the set of arcs which define geometry of P only 
(3) V3 = AQ - VI 

i.e., V3 is a set containing the set of arcs which define geometry of Q only 
(4) V4 = NP n NQ 

i.e., V4 is a set containing the set of nodes which are common to both P and Q 
(5) V5 = {a, e AP 3 Bfa^Q] = 0} 

i.e., the set of arcs of P which intersect the exterior part of Q. 
( 6 )V6={a J e AP 3 B^.Q] = 1} 

i.e., the set of arcs of P which are part of boundary of Q. 
(7) V7 = {a, e AP 9 B ^ O J = 2} 

i.e., the set of arcs of P which intersect interior part of Q (this is possible only in a 
multi-valued vector map; a non-empty set in a single-valued map indicates inconsis
tency). 

(8) V8 = {a, e AQ 3 B[a,,P] = 0} 
i.e., set of arcs of Q which intersect the exterior part of P. 

(9)V9 = {ame AQ 3 B[a«fl = 1} 
i.e., the set of arcs of Q which are part of boundary of P. 

(10) V10 = { a „ 6 A Q 3 Bta^P] = 2} 
i.e., set of arcs of Q which intersect interior part of P (this is possible only in a multi
valued vector map; a non-empty set in a single-valued map indicates inconsistency). 

Each expression is evaluated as empty (0) or non-empty ( -0) . The combined values of Vi, 
i = 1,10, will be unique for each of the ten elementary topologie relationships, as indicated 
by the examples in Table 4.4 (relate the examples with Figure 4.7). 

Table 4.4 Values for some relationships between two area objects 

Relation 

r031 

rl79 

r287 (touch as in Figure 
4.5a) 

r287 (touch as in Figure 
4.5b) 

VI 

0 

0 

0 

- 0 

V2 

- 0 

- 0 

- 10 

-H0 

V3 

- 0 

-0 

~® 

-&> 

V4 

0 

0 

- 0 

- 0 

V5 

- 0 

0 

- 0 

- 0 

V6 

0 

0 

0 

- 0 

V7 

0 

HZS 

0 

0 

V8 

- 0 

-10 

- 0 

-10 

V9 

0 

0 

0 

-n0 

V10 

0 

0 

0 

0 

"If condition then action" rules can then be formulated in the system based on the values of 
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Vi for each relationship. Then, when it is required to find an existing relationship, the values 
of Vi will be computed for the object pair and compared with the predefined configuration 
to ascertain which of the relationships holds. 

The procedure can be further optimised by analyzing the implication of one result for the next 
operation. For instance, if VI * 0 and V2 = 0 and V3 = 0 , then Relation(P,Q) = r400 (i.e., 
equal) thus it is not necessary to evaluate the remaining expressions. 

4.3.2 Detecting the Topologie Relation
ship Between an Area Object (P) and a 
Line Object (Q) 

To detect the existing relationship between 
an area object P and a line object Q in our 
model, the following expressions should 
be determined where VI, V2, V3 and V4 
are as defined above. The eight expres
sions would be analyzed conjunctively to 
determine the elementary relationship that 
exists between the area object P and the 
line object Q. These can be programmed 
as spatial operators in the database. 

(1) VI = AP n AQ 

(2) V2 = AP - VI 
(3) V3 = AQ - VI 
(4) V4 = NP n NQ 

(5) V5 = {ai e AQ 3 Btai.Pl = 0} 
i.e., set of arcs of Q which inter
sect the exterior part of P. 

(6) V6 = [DegreeOO I {Nfa^nJ = 1 } ] ^ 
e V5 and i^ E NQ ; 

(degree computed with respect to 
the subgraph GP u GQ) 
V6 is an array containing the de
gree of each node ne. The mini
mum degree will be 1 and the 

(a) Two simple area objects touching 
at a point n 

3 14 13 
(b) The two objects touch along a line 

Figure 4.5 Topologie relationship r287 (touch) 
between two simple area objects 

maximum will be 4 with two intermediate values 2 and 3. These should be analyzed 
further to determine the location of the endpoints of the line object, e.g., two 
occurrences of the minimum degree means that the two endpoints of Q are located in 
the exterior of P; only one with minimum and one with degree 3 will indicate that one 
endpoint of Q is outside of P and one is probably on the border (confirmed to be on 
border if V7 is empty); one minimum and one maximum implies one endpoint outside 
and one probably inside of P (confirmed by analysis of V8); two nodes with degree 
3 and others with degree 2 implies two endpoints on border of P (confirmed if V7 is 
empty); one node with degree 3 and one with maximum degree with others having 
degree 2 implies one endpoint on border and one inside P (confirmed if V7 is not 
empty); two nodes with maximum degree and others with degree 2 means the two 

http://Btai.Pl
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endpoints are inside P. 
(7) V7 = {a, e AQ 9 B ^P ] = 2} 

i.e., arcs of Q which intersect interior part of P 
(8) V8 = [DegreeCnJ I {N[ak,nJ = 1}], a,, e V7 and ne e NQ 

V8 is an array containing the degree of each node n,.. Like V6, V8 should be analyzed 
further to determine the location of the endpoints of the line object, e.g., two nodes 
with minimum degree means that the two endpoints of Q are located in the interior 
of P; only one minimum and one node with degree 3 means one endpoint of Q inside 
P and one is probably on the border of P (confirmed to be on border if V5 is empty); 
one minimum and one with maximum degree implies one endpoint inside and one 
outside P; two nodes with degree 3 and others with degree 2 implies two endpoints 
on border of P (confirmed if V5 is empty); one node with degree 3 and one with 
maximum degree with others having degree 2 implies one endpoint on border and one 
outside P (confirmed if V5 is not empty); two nodes with maximum and others with 
degree 2 means the two endpoints are outside P. 

For example, let us assume that Figure 4.6 is 
part of a consistent vector map (with nodes, say 
nl and n2, created at the two points where the 
road intersects the boundary of soil al: nl intro
duced to decompose arcs (1,4) and (11,12) and 
n2 to decompose arcs (2,3) and (12,13)). The 
relationship between the soil unit (area object P) 
and the road (line object Q) which is similar to 
the query " find the area object P through which 
the line object Q passes", i.e., relationship rl91 
(see Figure 4.8) gives VI = 0 , V2 = -.0, V3 = F j 8 u r e 4-6- A n e w , i n e **>&** ^ road) 
- 0 , V4 = {nl,n2} (i.e.,-0 ), V5 = {(ll,nl), Passin8 through existing area object 
(n2,13)} (i.e., ->0), V6 (for only nodes 11, ni, (s0'1) 
n2, 13 respectively) = [1,4,4, 1], i.e., two nodes 
with minimum degree hence endpoints outside, V7 = {(nl,12), (12,n2)}, V8 = [4, 2, 4] 
(confirms that the two endpoints are outside). Compare this result with relationship r447 (as 
represented in Figure 4.8) which is almost similar to rl91. For r447, VI = 0 , V2 = -i0, V3 
= - 0 , V4 = -i0, V5 = ->0, V6 = [4, 1] (confirms that one endpoint is outside and one 
probably inside), V7 = -0, V8 = [3, 2, .., 2, 4] (ie., one node with degree 3, one with 
maximum degree and others with degree 2, hence one endpoint on border and one outside. 
Note that for both relationships, VI, V2, V3, V4, V5, and V7 are similar, the difference being 
realised through the results and analyses of V6 and V8. Thus when translating the eight steps 
into a spatial operator for area/line topology, the analyses must be carefully incorporated in 
order to distinguish between seemingly similar relationships. 

4.33. Detecting Topologie Relationship Between Area Object and Point Object 

To determine the existing relationship between an area object P and a point object Q, the 
following expressions, which are a subset of the steps in §4.3, will suffice. 

(1) VI = NP n NQ 

i.e., check if node of Q is an element of the set of nodes of P. Since NQ contains only 
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one element, VI will also contain one element if it is not empty. If VI is not empty, 
it means that the relationship r284 (see Figure 4.10a) exists and the next step is not 
required. If VI is empty, perform the next operation. 

(2) V2 = °P n NQ 

If V2 is true, it means the existence of r092 (see Figure 4.10a), while Boolean value 
false means the existence of r030 (Figure 4.10a). Note that V2 can be determined only 
through computational geometry (e.g., using point-in-polygon algorithm) unless the 
relationship is explicitly represented. 

4.3.4. Detecting Topologie Relationship between Two Line Objects 

The existing relationship between two line objects P and Q can be detected with the following 
algorithm consisting of six operations to be determined and analyzed. Vi, i =1,4 is as defined 
in §4.3.1. 

(1) VI = A P n A Q 

(2) V 2 = A P - VI 
(3) V 3 = A«, - VI 
(4) V 4 = N P n N Q 

(5) V5 = [Degreepdij), n, e V4] 
V5 is an array containing the degree of each node nj in GP 

(6) V6 = [DegreeQ(nj), n, e V4] 
V6 is an array containing the degree of each node ^ in GQ 

The maximum degree of r̂  in V5 and V6 will be 2 (indicating middle of line) and the 
minimum will be 1 (indicating endpoint). By comparing the degree of nj in V5 and V6, it 
should be possible to distinguish an intersection at the end of a line object or somewhere in 
its middle (like a road branching off another compared with two crossing each other). The 
combination of this with the values of Vi, i =1,4, can then be applied to detect the topologie 
relationship between two elementary line objects. 
For example, compare the values for the five relationships in Table 4.5 (relate with Figure 
4.9) 

Table 4.5 Values for some relationships between two line objects 

Relation (see Figure 4.9) 

r031 

r095 

r220 

r400 

r435 

VI 

0 

0 

- 0 

- 0 

- 0 

V2 

- 0 

-10 

-10 

0 

0 

V3 

- 0 

- 0 

0 

0 

- 0 

V4 

0 

- 0 

-10 

- 0 

- 0 

V5 

[ ] 

[2] 

[2,2] 

[1 H 

[1.1] 

V6 

[ ] 

[1] 

[1,1] 

[1 1] 

[1,2] 
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4.3.5. Detecting Topologie Relationship Between a Line Object and a Point Object 

The following two operations will suffice to determine the existing relationship between a line 
object P and a point object Q: 

(1) VI = NP n NQ 

(2) V2 = Degree,^), nj e VI 

V2 is computed only if VI is not empty and it indicates whether the point lies in the middle 
of the line object, wherein V2 = 2 (relationship r092, Figure 4.10b), or at one of its endpoints, 
wherein V2 = 1 (relationship r284). If VI is empty, it indicates relationship r030. 

4.3.6. Detecting Topologie Relationship Between Two Point Objects 

Only one operation is required to determine the existing relationship between two point 
objects, viz. 

Determine VI = NP n NQ 

If VI is empty, it indicates relationship r026 and non-empty set (with one element) indicates 
r272 (see Figure 4.10c). 

4.4 Summary 

In this chapter, an extensive set of object-level topologie relationships in vector maps has 
been derived using 9-intersection point-set algebraic topology. The topologie relationships 
between geometric primitives were also derived; these can be combined with the graph 
structure of the model and used as the elementary set from which the object-level 
relationships are derived. Algorithms are then defined for detecting the occurrence of any of 
the elementary relationships for any object combination. The algorithms can be translated to 
topologie operators and used for topologie queries, as well as a tool for detecting violation 
of and enforcing geometric constraints. In the latter case, the topologie operators will serve 
as detectors of inconsistencies. The return value of an operator will trigger the relevant rule 
that will enforce consistency if violation occurs. The rules that will enforce the geometric 
consistency are presented in the next chapter. 
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Figure 4.7 Topologie relationships between two area objects 
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Figure 4.8 Topologie relationships between an area object and a line object 
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Figure 4.9 Topologie relationships between two line objects 
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Figure 4.10 Topologie relationships between (a) an area object and a point object, 
(b) a line object and a point object, (c) two point objects 
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MONITORING AND ENFORCING INTEGRITY CONSTRAINTS IN 
VECTOR MAPS 

For every large data collection intended for repeated production of information, as in GIS, 
controls must be installed to check that all incoming data or changes made to existing data 
follow some pre-defined rules and do not contradict existing data in the database. Internal 
contradictions in the data will cause retrieval of inconsistent information from the database, 
which leads to users' lack of confidence in the data (Frank, 1984). The logical consistency 
of data is in fact one of the main components of data quality in GIS, a constituent of 
reliability. The other components of data quality are positional accuracy, attribute accuracy, 
completeness and lineage (DCDSTF, 1988; Aronof, 1989). Like other components, it deserves 
serious attention in spatial databases, considering the fact that the major cost of setting up a 
GIS arises from data acquisition. The logical consistency of the data contained in a database 
can be ensured by enforcing integrity constraints. Integrity refers to the (logical) accuracy or 
validity of data (Date, 1990). Consistency or integrity constraints are statements that must 
always be true for data items in the database (Zdonic and Maier, 1990), i.e, they can be 
regarded as conditions that a correct state of the database is required to satisfy. 

Integrity constraints may exist in different forms, from simple (e.g., specifying that all object 
identifiers must be represented by a four-byte positive integer), to more complex constraints 
(e.g., the boundary polygon'of a land parcel must be closed and must abut a road). While the 
former can be enforced at run-time by the system, the latter has to be monitored and enforced 
by some kind of user-defined consistency rules. Lack of data integrity can arise from many 
different sources (Hughes, 1991), including data entry errors, logical errors in the application 
program, errors in system software which result in data corruption, and topologie errors. 
Unfortunately, most commercial GIS software does not adequately support integrity 
constraints - except for some constraints on the domain of object identifiers, key constraints, 
or referential constraints (Date, 1990; Hughes, 1991; Nassif et al, 1991; Kemppainen, 1992) -
and most integrity checking is still done by user-written procedural code. It is preferable to 

specify integrity constraints in a more declarative fashion so that the system can do the 
checking. Furthermore, in spatial databases (where terrain objects are the main focus), because 
the objects do change with time, it is necessary to update the database, whereas updating 
operations always imply the risk of disturbing data consistency. To prevent this, the 
information system should be able to monitor its own consistency and to take measures to 
preserve it (Molenaar, 1991c). Thus integrity enforcement is an important aspect of GIS 
development. 

In general, two types of integrity constraints can be distinguished (Nassif et al, 1991; 
Hadzilacos and Tryfona, 1992): 
(1) Static integrity constraints, which define the valid state of the database. 
(2) Dynamic integrity constraints, which are the conditions on the allowable transitions from 
one database state to another. 

The static constraints are closely related to the structure and semantics of the embedding data 
model, while the dynamic constraints relate mainly to the implementation domain, e.g., how 
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a multi-user database is managed during an updating session. The focus in this thesis is on 
the static consistency constraints. 

In a spatial database, an important consideration for determining whether a database state is 
correct or not is topology. For example, two neighbouring countries must have a common 
border, two land parcels cannot overlap, every parcel must have access to a road, etc, are all 
topologie constraints. However, not all constraints are topologie. Some are specific to the 
database model used for the implementation of a conceptual data model. For example, the 
three types of integrity constraints in a relational database model, namely (1) domain integrity 
which specifies the range of legal values for each field in a relation, (2) intra-relation integrity 
which relates to the correctness of relationships among attributes of the same relation and to 
the preservation of key uniqueness, and (3) referential integrity constraints, which assert that 
a reference in one data item indeed leads to another data item (e.g., when an arc is part of 
a road, then a data item for that road must actually exist). Some DBMSs provide triggers to 
help enforce some of these database model-related constraints, although mainly for the domain 
integrity constraint. In general, to enforce consistency, actions can be initiated on access to 
particular data items, either to check that the stated constraints hold or to perform additional 
updates to bring the database to a state of consistency. 

This thesis focuses on the provision of consistency rules for monitoring and enforcing static 
geometric integrity constraints under updating operations in vector-structured spatial databases, 
using the DMMVM as a framework. The rules should ensure that the database state after an 
update is a correct mirror of the reality that it models. This implies that the database is 
assumed to be consistent before an update operation. This assumption will hold where initial 
database creation is also regarded as updating, in this case from "zero-level" with enforcement 
of consistency during data input. This approach has been adopted in this thesis. 
The proposed consistency rules can be grouped into two classes, namely 
(1) the consistency rules for the geometric structure of the data model, i.e., structural integrity 
rules, 
(2) consistency rules related to the application making use of the model, i.e., application-
dependent semantic integrity rules. 

The simple constraints in the two groups - such as uniqueness of identifiers, unique 
occurrence of instances of data types ~ can easily be checked and enforced during 
implementation. These are related to the definition of acceptable values (domain) for the 
identifiers, as well as rules for installation-wide uniqueness and existence of the identifiers. 
Many systems do provide automatic immutable identification of objects (e.g., Postgres and 
Arc/Info) together with indexing mechanisms to eliminate repeated identifiers where the 
identifier is defined by the user. The user-defined identifiers are often mapped to one of the 
system's base types, which are already provided with operators to reject non-valid values. 
Thus these simple constraints will not be given attention in this thesis. 

In the following section, constraints in the first group will be analyzed with the corresponding 
rules for monitoring and enforcing the constraints. The second group will be treated in §5.2. 
An approach for their implementation is outlined in §5.3, with a summary in §5.4. The 
topologie relationships formalized in the preceding chapter will play a major role in the 
monitoring of the two groups of constraints. 
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5.1 Structural Consistency Rules 

From the basic structure of terrain objects in figure 3.2, the three components of each object, 
namely the object identifier and its two semantic characteristics (thematic and geometric), 
represented in the database do have their individual integrity constraints. Because objects from 
different layers can overlap in space, the data type m-container was introduced to uniquely 
identify overlapping sections of objects; the geometric description of an object is therefore 
composed of the geometry of its component m-containers. Each m-container is geometrically 
described by the two (geometric) primitives, arc and node. These m-containers and the 
geometric primitives also have integrity constraints which must be monitored and maintained. 
In addition, there are consistency rules for the functional relationships among these data types. 
Therefore, the structural consistency constraints for a vector map that is based on the 
DMMVM can be analyzed in different levels of complexity as follows. 
(1) Consistency rules for the geometric primitives arc and node. 
(2) Consistency rules for the geometric structure of m-container types. 
(3) Consistency rule for the planarity of the map (Euler constant) 
(4) Consistency rules for the structure of object types 

- rules related to the thematic component of objects, 
- rules for the geometric descriptions of objects. 

(5) Consistency rules for the functional relationships among the data types (node, arc, m-
container, and object). 

5.1.1 Consistency Rules for the Geometric Primitives 

When the geometry of a terrain object changes or when a new one has to be inserted in the 
database, it implies insertion, modification or deletion of some arcs and nodes. This means 
that updating operations have to be performed on the set of arcs and nodes related to the 
object in a manner that maintains the geometric consistency of the database, i.e., in a manner 
that preserves the topology of geometric primitives. This is the lowest level of consistency 
rules for vector maps. It is the lowest level because updating of the geometric primitives 
depends on the behaviour of m-containers whose updating depends on the dynamics of terrain 
objects. At this level, the system should check that conventions 3 to 6 of §3.4.4 are fulfilled 
for each arc or node introduced into the database. 

Conventions 3 and 4 can be easily enforced during the data collection phase, i.e., each point 
introduced should be treated as a node and each straight line segment should be treated as an 
arc. Conventions 5 and 6 are topologie in nature and can therefore be translated broadly into 
the following topologie constraints, with an additional one for nodes. 

Geometric Primitive Constraint #1 (GPC1): Nodes must not overlap 

Geometric Primitive Constraint #2 {GPC2): Arcs must not intersect 

Geometric Primitive Constraint #3 (GPC3): Arcs must not overlap 

Geometric Primitive Constraint #4 (GPC4): An arc must be defined by only two adjacent 
node. 
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The GPC_1 arises from the fact that there is a single-valued link between a node (geometric 
primitive) and a O-container. In addition, because geometric primitives can be shared by 
objects, a node that defines a O-container can also be a node of an arc, but with the conditions 
that only a single set of coordinates are kept for the node and the identifier must be unique. 
Hence we still have the condition that two nodes may not overlap. This condition is violated 
if the position of a new point coincides with that of an existing point. GPC_2 is a planarity 
condition in graph theory which formed the basis of our model (see §3.1.1). GPC_3 is akin 
to GPC_1 because an arc must have a single-valued link to a 1-container and/or boundary of 
a 2-container. The fourth arises because we treat every point as a node (see convention 3 in 
§3.2.3) hence, when a new node (representing a new point object for instance) falls on an 
existing arc (but not on its nodes) the existing arc must be decomposed. 

Violation of any of the four conditions can be interpreted as an inconsistent topologie 
relationship between two geometric primitives. To ensure that the constraints are not violated 
during database updating, an automated consistency rule for monitoring and enforcing them 
must be provided. The strategy being proposed here is to use topologie relationships among 
geometric primitives as "alerters" and to define the consistency operations that should be 
performed by the system in response to each inconsistent topologie relationship in order to 
maintain geometric consistency. In other words, when a geometric primitive is inserted into 
the database, the consequent automated updating of the database involves two integrated 
operations: (1) evaluation of the topologie relationship between the primitive and each of the 
other existing primitives, and (2) the result of the evaluation (type of relationship) triggers the 
necessary consistency rules. 

When GPC_1 is converted to a topologie relationship between geometric primitives (see 
Figure 4.11), its violation implies one occurrence of the following set of relationships: 
{r272(node,node), r284(arc,node), r287(arc,arc), r400(arc,arc), r435(arc,arc), r476(arc,arc)}. 
Violation of GPC_2 means the occurrence of one of the following set of topologie 
relationships: {r063(arc,arc), r095(arc,arc), rl59(arc,arc)} while a violation of GPC_3 implies 
the existence of a member of the topologie relationship set {rl79(arc,arc), r220(arc,arc), 
r255(arc,arc), r400(arc,arc), r435(arc,arc), r476(arc,arc)}. The fourth, GPC_4 is violated if 
there is occurrence of a relationship e {r092(arc, node), r063(arc, arc), r095(arc, arc), rl79-
(arc, arc), r220(arc, arc), r255(arc, arc), r435(arc, arc), r476(arc, arc)}. The four topologie 
constraints can therefore be represented by a negation (using ->) of the applicable relationship, 
e.g., -Tl59(arcl,arc2) means "two arcs must not intersect". 
To detect these inconsistent topologie relationships, computational geometry must be used. 
For instance, an algorithm similar to line intersection will be used to check whether two arcs 
intersect. 

The consistency rules for monitoring and enforcing the three constraints as defined in 
Kufoniyi et al (1993 and 1994) are described in the following section. 
The rules can be translated into the IF condition THEN action convention as follows, using 
relation r272(node, node) as an example. 

If RelationfNewNode, OldNode) = r272 
Then 
do GP_Rule_l 

The mandatory time to enforce the rules is during insertion of a geometric primitive. They 
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can also be checked, optionally, at some defined intervals to validate the reliability of the 
database. 

Rules for enforcing consistency of the geometric primitives 

The consistency operations that must be performed to maintain the four constraints, GPC_1, 
GPC_2, GPC_3, and GPC_4, during (geometric) updating are defined in Table 5.1. The 
following notations are used in the table. 
Let the universal set of arcs of the map be represented by A where ai e A. Let A be further 
subdivided into two subsets P and Q where P = set of arcs already existing in the database 
and Q = set of new arcs to be inserted, i.e., A = P u Q. Note that P and Q must be mutually 
exclusive 9 P n Q = 0 hence ai € P => ai « Q. In other words, if a new arc already has a 
counterpart in the database, the new arc should not be accepted by the system; rather the 
affected properties of the existing arc (brought by the new arc) should be only updated to 
reflect the changes. 
Let the universal set of nodes of the map = N 3 n e N. Let N be further subdivided into p 
and q where p = set of nodes existing in the database and q = set of new nodes to be inserted. 
Hence, as in arcs, N = p u q and n e p =* n i q. 
One existing arc is then defined by PI = (pl,p2) where pi and p2 are respectively the starting 
and ending nodes of the arc, while a new arc is represented by Ql = (ql,q2) where ql and 
q2 are respectively the starting and ending nodes of the arc. 
The fact that a node of one arc, say ql of Ql, intersects the interior (°) of another arc, say 
al, is represented as ql n °al. 

Table 5.1 Consistency rules for geometric primitives 

Topologie 
Constraint 

Intersection 
Rules 

Violation response Name of Rule 

-r272(nl, n2) 

-r092(ai, n) 

-r063(al, a2) 

nl e p, n2 e q 
or v.v. 

aieQ, nep 

aieP, neq 

aleP, a2eQ 

store the more accurate coord., assign GP_Rule_l 
number of existing node to new. 

decompose ai into (ql Ji) & (n,q2) 

decompose ai into (pi A) & (n,p2) 

do GP_Rule_2b 9 n e {ql,q2} 

GP_Rule_2a 

GP_Rule_2b 

GP_Rule_3 

-r095(al, a2) 

->rl59(al, a2) 

-rl79(al, a2) 

aleQ, a2eP 

aleP, a2eQor 
v.v. 

aleQ, a2eP 

do GP_Rule_2a 3 n e {pl,p2} GP Rule 4 

replace al and a2 by four arcs joining GP_Rule_5 
at new node, compute and insert 
coord, of new node. 

split a2 into (pl,ql), (ql,q2), (q2,p2); GP_Rule_6 
update attributes of al 

->r220(al, a2) aleP, a2eQ split a2 into (ql.pl), (pl,p2), (p2,q2); GP_Rule_7 
update attributes of al 

http://ql.pl
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-*255(al, a2) aleQ, a2eP or If (q2n°a2Apln°al) 
v.v. then 

replace al by (ql.pl), 
do GP_Rule_2b 9 n = q2, 
update attributes of (pl,q2), 
delete a2 
Elself (qln0a2Apln°al) 
then 
replace al by (pl,q2), 
do GP_Rule_2b 3 n = ql, GP_Rule_8 
update attributes of (pl,ql), 
delete a2 
Oself (qln°a2Ap2n°al) 
then 
replace al by (p2,q2), 
do GP_Rule_2b 3 n = ql, 
update attributes of (ql,p2), 
delete a2 
Elself (q2n°a2Ap2n°al) 
then 
replace al by (ql,p2), 
do GP_Rule_2b 3 n = q2, 
update attributes of (q2,p2), 
delete a2 

do GP_Rule_l GP_Rule_9 

do 2x GP_Rule_l, GP_Rule_10 
update attributes of al if necessary 

do GP_Rule_l, GP_Rule_l 1 
update attributes of a2 
replace al by (nlji2) 9 nl e {pl,p2-
}:nln°al, n2 e (ql,q2}:n2 e. {pl-
,p2) 

->r476(al, a2) aleP, a2eQ do GP_Rule_l, GP_Rule_12 
do GP_Rule_2b 3 n e {ql,q2}, up
date component of al which = a2, 
delete al 

-r287(al, a2) 

-•r400(al, a2) 

--r435(al, a2) 

aleP, a2eQ or 
v.v. 

aleP, a2eQ or 
v.v. 

aleQ, a2eP 

The 12 consistency operations for the geometric primitives can then serve as elementary 
operations on which updating of the geometric aspects of objects can be decomposed, as 
shown in the following section. 

Application of the Geometric Consistency Rules 

The following two examples will illustrate the use of the consistency rules defined in Table 
5.1 during updating of vector maps. A more intensive illustration of the application of these 
rules during updating will be given in the next chapter. 

http://ql.pl
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(a) With reference to Figure 4.5b, suppose the area object O,, defined by the set of arcs 
{(1,2), (2,3), (3,4), (4,1)}, is being newly inserted into the database, and 02, defined by 
{(11,12), (12,13), (13,14), (14,11)}, already exists in the database. This situation requires 
geometric updating to make the database consistent. This can be effected by the system 
without interference of the human operator. First, the system evaluates the topologie 
relationship between each arc of O, and each arc of 0 2 using the procedure Relation(arcl,ar-
c2). The result of this procedure should then trigger the necessary updating rule. In this 
particular example, the system enforces geometric consistency in the following ways: 
(i) Relation(arcl,arc2) where arcl = (1,2) and arc2 = (14,11) will return r063 which then 
triggers the GP_Rule_3, and 
(ii) Relation(arcl,arc2) where arcl = (2,3) and arc2 = (14,2) will return r400 which triggers 
the GP_Rule_10. 

(b) Suppose in Figure 4.6 that the road, defined by {(11,12), (12,13)}, has been inserted into 
a static database (i.e., without dynamic updating facility) and soil unit a l , defined by {(1,2), 
(2,3), (3,4) & (4,1)}, exists in the database before the insertion of the road. The situation in 
the figure violates the planar graph constraint of our data model because arcs (4,1) and 
(11,12) as well as (12,13) and (2,3) intersect without creating nodes at the points of 
intersections. As in the previous example, the system evaluates the topologie relationship 
between each arc of the road and each arc of soil unit al. Relation(arcl,arc2) where arcl = 
(11,12) and arc2 = (1,4) should detect the topologie relationship rl59 which then triggers the 
GP_Rule_5. Similar operations will be performed for the two arcs (12,13) and (2,3). 

5.1.2 Consistency Rules for the Geometric Structure of M-container Types 

In this subsection, consistency rules for the geometric structure of the m-container where m 
e {0,1,2} are defined. The rules are at a higher level than the preceding ones since the 
behaviour of an m-container affects the geometric primitives that describe the m-container. 
They are, however, on a lower level in comparison with the consistency rules for terrain 
objects because the dynamics of an m-container depends on the behaviour of the terrain 
object(s) which the m-container is part of. If the DMMVM is used for a single layer, there 
will be a 1:1 relationship between the m-container and the terrain object; hence the constraints 
defined for the m-container become the constraints for the terrain object of equivalent 
dimension. 

O-Container 

Geometrically, a 0-container is represented by a single node with X, Y and Z coordinates. In 
this respect, what needs to be checked is that the node defining the geometry of the 0-
container exists. This can be done by a simple query. 

1-Container 

The geometry of an instance of this type is defined by the subgraph GL(NL,AL) (see §3.4.2). 
The following constraints must hold for each instance, the violation of which will have the 
consequence of retrieving the wrong metric and topologie information for the line objects of 
which the affected 1-container is a part. 
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1-Container Constraint #1 (1CC1): For each 1-container, a simple and elementary path 
must exist (see §3.1.1). 

1-Container Constraint #2 (ICC 2): The length of the path in ICC J must be > 1. 

From the geometric definition of a 1-container L, 1CC_1 translates to the fact that exactly two 
elements of NL must have degreeL(n) = 1, while all other elements of NL must have degree^n) 
= 2. In other words, a 1-container must not close back on or intersect itself. The two 1-degree 
nodes are the end-nodes of the 1-container. 

This constraint can be checked after the overlay of two or more layers, i.e., after the creation 
of the multivalued spatial database, by retrieving the beginning and end nodes of each element 
of AL for the subject 1-container and counting the number of times each node occurs, i.e., the 
degree of each node, in the list. 

Violation of the constraint may arise from a gap (undershoot), hanging arc or sliver line in 
the chain of arcs of the 1-container. These will be manifested in the degrees of the elements 
of NL. If a gap exists, there will be a minimum of four elements of NL having degree 1. An 
overshoot will give rise to three nodes with degree 1 and at least one node with degree 3. A 
sliver line will lead to two connected nodes having degree 3. They may result from a 
digitizing error, e.g., a gap may be caused by a digitizing error whereby a node connecting 
two adjacent arcs of the 1-container is digitized twice (for each arc) with the coordinate 
difference between the two being greater than the defined threshold for snapping two nodes. 
The undershoot error will arise only if the digitizing is done in multivalued mode, i.e., direct 
digitizing of a multi-valued vector map from primary sources (photographs, images, etc) or 
from a hardcopy map. It can also be caused by incorrect coding during manual input whereby 
one of the arcs of the 1-container is mistakenly omitted. The errors can also be caused by a 
failure to georeference all layers on the same system. These types of gross error or blunder 
can be eliminated only by remeasuring the 1-container, or recomputation of overlay with new 
snapping tolerance, or proper coordinate transformation. 

1CC_2 means that set AL must contain at least one element. This implies that AL * 0 . If AL 

= 0 , it implies that NL = 0 since each element of AL is defined by a subset of NL. Violation 
of this constraint therefore means that the geometry of the 1-container is not defined at all and 
can be checked first within the consistency rule for 1CC_1. 

Consistency Rule for 1-container 

The following consistency rule, called lCC_Rule_l, can be defined to monitor 1CC_1 and 
1CC_2. The checking will occur during insertion of a 1-container or after an overlay 
computation. 

Let Lset be the set of 1-containers with L e Lset defined by subgraph GL(NL,AL). 

For each L 
Count number of distinct n, e NL 

If n; < 2 notify user "1-container ill-defined: length of path = 0 or is defined by only 
one point" 
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Exit to data input 
Else continue 

Count occurrence of a; e AL 

If Count(aj) > 1 /* i.e., if % occurs more than once */ 
Display error message: "path not simple" 
Display L for interactive editing 

continue 
For each ^ e NL 

compute degree^n,) 
letj e {n, IdegreeL^j) = 1} 

k e {nj I degree^n,) = 2} 
m € {nj I degreeL(ni) > 2} 

If 5 j = 2 and 2k = NL - 2j -» consistent 
goto next L 

Elseif H > 2 and I m = 0 
display error message: "no path: gap in 1- container" 
display L for interactive editing 

Elseif 2J < 2 or m >= 1 
display error message: "path not elementary, loop or overshoot in 1-
container" 
display L for interactive editing 

Endif 
Next nj 

Next L 

2-Containers 

The geometry of a 2-container is defined by the subgraph GE(NE,AE) (see §3.4.2). 
The following constraint must hold for each instance of this type to satisfy the geometric 
definition. 

2-Container constraint 1 (2CC_1): For all nt e NL degreejnj^ 2 
The implications of this constraint are 
(a) The start-node and end-node of the 2-container must be equal. 
(b) A simple path must exist between its start-node and end-node. 
(c) The length of the path must not be less than 3 (because an arc is defined as a straight line 
segment here). 
(d) The length of the path must be equal to the total number of nodes. 

Thus satisfying 2CC_1 will automatically enforce the four implied constraints. 
A violation of 2CC_1, as in 1CC_1, occurs if there is a gap (undershoot) or an overshoot, 
or sliver polygon. They can be caused by digitizing error or omission of an arc during manual 
input, or by incorrect geo-referencing of the layers on the same system. The constraint must 
be checked when inserting or modifying a 2-container, and the system should warn the 
operator of a violation so he can perform immediate interactive editing. If acquisition is made 
in multivalued mode, a snapping distance can be defined to automatically ensure that the 2-
container is defined by a closed polygon. The consistency rule, called 2CC_Rule_l, for 
monitoring this constraint is as follows. 
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Consistency Rule for 2-Container 

For each 2-container E 
For each distinct tij e NE 

compute degreeE(ni) 
if 3 rii e NE 3 degreeE(nj) < 2 

display error message: "gap in 2-container" 
display E for interactive editing 

else 
if 3 nj e NE 3 degree^) > 2 

display error message: "overshoot in 2-container" 
display E for interactive editing 

endif 
next nj 

next E 

5.1.3 Consistency Rule for the Planarity of the Map 

To ensure that the overall geometry of the vector map is consistent as a planar graph, the 
Euler constant must be checked. The constants for connected and disconnected planar graphs 
are given in §3.1.1. Although it can be assumed that if the constraints at the two lower levels 
are enforced, the Euler constant should also follow. Nonetheless, it is preferable to check the 
constant at some intervals to ascertain that the overall geometry is consistent. A violation of 
the Euler constant definitely implies that one of the constraints at the lower levels has been 
violated. 

It is assumed that the preceding constraints have been fulfilled. If this assumption holds, the 
Euler constant (see §3.1.1) can then be checked for a subset of the map, consisting of the 
planar graph in which all arcs having Bfo, AOf] = 2 are isolated (these individual 1-containers 
can be checked separately as described above). Here, % = arc i and AOf = 2-container f. The 
procedure for monitoring the constant will then be as follows. 

Let the map be represented by the planar graph G(M,A) where M is the set of nodes and A 
is the set of arcs. 

Subtract {rij e Ml degree^,) = 0} from M /* eliminate isolated nodes */ 
Select {Temp2} = ^ e Al B[aj,AOf] = 1} /* select arcs that define boundaries of 2-
containers */ 
Let N2 = number of arcs in {Temp2} /* count number of arcs in Temp2 */ 
Select {Temp3} = {a, e Al B[aj,AOf] = 2} /* select arcs that define only 1-containers 
*/ 
Let N3 = number of arcs in {Temp3} /* count number of arcs in Temp3 */ 
Let {Tempi} = {nil(N[aj,ni]=lAN[ak,ni]=0, % e Temp3, a^ e Temp2, k = 1,N3)} /* 
select the nodes that define only 1-containers */ 
Let {M} = {M} - {Tempi} (i.e., subtract {Tempi} from {M}) 
Let N4 = number of nodes in {Tempi} 
Let N5 = number of (remaining) nodes in {M) 
Let N6 = number of distinct 2-containers 
Compute E (general Euler constant) as 
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E = N5-N2+N6-1 (i.e., v-e+f-1) 
Analyze value of E: 
E = 1 => consistent and connected map 
E > 1: investigate presence of subgraphs. Number of subgraphs should equal E else 
map is not geometrically consistent. 

As an additional check, the total number of arcs must equal N2 + N3. 

5.1.4 Consistency Rules for Elementary Object Types 

At the next higher level of complexity are the consistency rules for terrain object types. The 
semantics of the objects are given by their geometric type and their thematic classes 
(Molenaar, 1991c); thus two sets of consistency rules can be defined for each object. These 
are: 
(1) Rules for the geometric description of individual elementary objects. 
(2) Rules related to the thematic component of the object. 

Rules for the Geometric Description of Elementary Objects 

The geometric definitions of elementary objects in vector maps have been given in §3.4.5 (see 
also Molenaar, 1991c). The geometry of each object in a vector map must be consistent with 
these definitions, i.e., the topology of individual objects must be consistent and must be 
preserved. If the consistency rules at the three lower levels have been fulfilled, the rules for 
the geometric structure of an object can easily be checked. There are two aspects of these 
rules. First, the geometric description of the object must be consistent (i.e., properly defined) 
during data capture before it is accepted into the database. The data input and editing routines 
of most data acquisition subsystems can handle this. Second, the geometry of the object as 
provided by the m-containers representing it must be consistent after insertion. This has to 
be done by specified rules as outlined below. 

Point Object 

For an individual point object, it should be verified that the O-container defining the object 
has been created. 

Line Object 

For an elementary line object, a simple and elementary path (see §3.1.1) must exist between 
the beginning and end of the chain of 1-containers defining the object, i.e., the chain of 1-
containers representing the object must be fully connected. In other words, let L,j represents 
1-container j of line object L,; for the object's geometry to be consistent after the creation of 
its 1-containers, the terminal node of L^.,, must be the initial node of Ltj, the terminal node 
of L,j must be the initial node of Liü+I), etc. (Note that if the DMMVM is used for a single 
layer, each object will be represented by a single equivalent m-container.) This constraint can 
be monitored by evaluating the topologie relationship between pairs of the 1-containers 
representing the line object, as illustrated in the following rule LO_Rule_l: 
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Consistency Rule for Line Object (LO_Rule_l) 

Let {....Ljj,...} be the chain of 1-containers representing line object L(. 
If Relation(Lu,Li[j+1]) * r287 then 

display error message 
display {...,LU,...} for editing. 

If the geometry of the object has been correctly measured with accurate georeferencing during 
acquisition, then the error can be due only to gap(s) or overshoot(s) during creation of the 1-
containers (e.g., by overlay computation), which can be caused by incorrect tolerance values 
for snapping. By displaying the chain, the erroneous segment can be corrected. 

Area Object 

For an individual area object, the 2-containers representing the 
object must be connected and non-overlapping. This constraint can be monitored by 
evaluating the topologie relationship between pairs of the 2-containers as follows: 

Consistency Rule for Area Object (AO_Rule_l) 

Let {...,FM,...} be the set of 2-containers representing area object Fj. 
If Relation(FM,Fiü+I1) « {r279, r285, r287} then 

display error message 
display {..„Fy,...} for editing. 

As in the case of line object, if the geometry of the object has been correctly measured with 
proper georeferencing during acquisition, then the error can be caused only during creation 
of the 2-containers (e.g., by overlay computation), which may be due to incorrect tolerance 
values for snapping. By displaying the set of 2-containers, the erroneous part can be corrected. 

The other components of geometric aspects of an object are the shape and size of the object. 
These are constraints such as: a house must be rectangular, the two sides of a road must be 
parallel, etc. These constraints can be related to the thematic classes of the object as suggested 
by Molenaar (1991c). 

Rules for Thematic Component of Objects 

The thematic data of individual objects are application-dependent. However, apart from the 
constraints that will be defined for these data, the constraints described in §3.4.1. must be 
enforced for each object to conform with the strict classification hierarchy of the DMMVM. 
These mandatory constraints are: 
(a) Cyclic classification hierarchy is not permitted. 
(b) The classification must be complete, i.e., all objects must be classified. 
(c) The classes must be mutually exclusive, i.e., each object must belong to only one class 
in each layer, but if one object appears in more than one layer, the object can be classified 
in the other layer as well. 
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5.1.5 Consistency Rules for Functional Relationships Among Data Types 

The functional relationships among the eight data types of the DMMVM, namely node, arc, 
O-container, 1-container, 2-container, point, line and object, are described by the elementary 
links of §3.4.3 These relationships should be checked for consistency. 
In the preceding sections, consistency rules have been defined for individual data types and 
between arcs and nodes. The functional relationships among different data types can be 
verified for consistency by using the relational functions described in §4.2. 

5.2 Semantic Consistency 

In general, semantic constraints are application-dependent and they are both spatial (e.g., two 
adjacent parcels must share a common border) and non-spatial (e.g., a lessee cannot transfer 
his right on a leasehold parcel beyond the period of the lease). In the spatial domain, they are 
mostly a group of forbidden relationships between pairs of objects. Here the focus will be on 
the geometry-related semantic constraints. These constraints are also important in spatial 
databases because the database may be geometrically consistent (satisfying the constraints in 
the preceding sections) but semantically inconsistent. For instance, it is topologically in order 
for a line object to cross an area object insofar as the geometric constraints are fulfilled. But 
this relationship may or may not be consistent, depending on the meaning of the two objects, 
i.e., the application for which the data model is being used. 

This makes it difficult to provide a generic algorithm for resolving semantic constraints. But 
a monitoring procedure can be formulated for those that are topologie in nature, especially 
between pairs of objects. The monitoring strategy being proposed here is to use topologie 
relationships as alerters. The strategy is for only semantic constraints that are geometric in 
nature, and it is based on the assumption that the database is structurally consistent. Some of 
these constraints are for individual objects, e.g., size and shape constraint. These can be 
monitored and enforced by the editing routines of the data acquisition system or with 
functions defined as part of the topologie editor. 

A scheme for monitoring the constraints between object pairs is as follows (see Figure 5.3). 
Translate the constraint to a set of expected topologie relationships ({E}) which will 
maintain the consistency of the map. In practice, this can be done for all semantic 
constraints (topologie) in the application and stored in the database. 
On-line derivation of the actual relationship (A) by the system during insertion using 
the topologie relationship operator (implementation of the scheme in §4.3) 
System checks for membership of A in the set E 
If A £ {E} then violation has occurred and the system should wam the user. The user 
can then interactively resolve the violation either by using pre-defined rules (if 
applicable) or by taking any other action. 

This strategy will be illustrated with some examples of semantic constraints in cadastral 
application. 



84 

Examples of Constraints in Cadastral Mapping 

Constraint #1: A river may not flow into or through a cadastral parcel. 
Assuming that a river, represented as line object L, and a parcel, represented as area object 
A, exists as depicted in Figure 5.1 

Translating the constraint to the expected 
topologie relationships (E) gives 
{E} = {r031, r063, r285, r287, r316, i317, 
r319) (see Figure 4.8). The actual relation
ship A (to be derived by the procedure 
Relation(A, L)) = rl91. Testing A for mem
bership of {E} indicates that A i (E) thus 
a violation has occurred. The system must 
then warn the user about this inconsistency 
or execute the relevant rule to enforce con
sistency if such a rule has been defined. 
Possible causes of this may be incorrect 
geo-referencing or incorrect digitizing (by 
field survey or any other means) of either of 

the two objects. Assuming that the geo-referencing is accurate and the digitizing is within 
tolerance, then the parcel must be partitioned into two and re-allotment carried out if 
necessary. 

Figure 
parcel 

5.1 A river crossing a cadastral 

A similar constraint to this is that a (residential) building (represented as an area object) must 
not be crossed by a (underground) gas pipeline (represented as a line object). If the actual 
relationship (A) is not an element of the above set E, then violation has occurred and the 
building plan must be disapproved (assuming the digitizing of the two is accurate and geo-
referencing is accurate). 

Constraint #2: A parcel must have access to a road. 

This is an important constraint in modern cadastral layout, a topologie constraint concerning 
the connectivity of a land parcel and a road. Let a parcel be represented as an instance A of 
area object type and a road an instance L of line object type. The constraint can be monitored 
for each parcel being inserted by the system with the following algorithm: 

If RelationfAJ.) e {r063, r285, r287, r316, r317, r319} then display error message: "parcel 
A does not abut a road". 

Here, Relation(A,L) will return the actual relationship (A in Figure 5.3) while the 
relationships inside braces are the expected relationships (E) (see Figure 4.8). 

If an inconsistency is detected and it is certain that the survey was done accurately, then a 
buffer can be defined around the parcel and the parcel together with the objects inside the 
buffer displayed to assist the human operator in interactive editing. 
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Constraint #3: Two parcels must not overlap. 

Given the situation in Figure 5.2 between new parcel Ol and an existing parcel 02. 
The expected relationships that will not 
violate the constraint, i.e., {E} = {i031, 
r279, r285, i287} (see Figure 4.7). Note that 
although r279 and r285 do not actually 
violate this particular constraint, occurrence 
of any of them will not be permitted beca
use of constraint #2 above. Thus {E} redu
ces to {r031, r287}. From Figure 5.2, the 
actual relationship A = r511. Since A e 
(E), the constraint is violated and the sys
tem should warn the human operator. 

The possible actions to be taken by the F i 8 u r e S2 T w o overlapping parcels 
operator include an adjudication process if 
the overlap is caused by what is commonly referred to as "land-in-dispute" in cadastral 
surveying, re-measurement of one or both of the parcels, splitting the two parcels into three, 
or reduction of the size(s) of one or both of them. This example clearly indicates that human 
intervention will still be required to resolve some inconsistencies. 

Constraint #4: A building must be contained inside a parcel. 

This constraint is normally checked before a building plan is approved. Assuming that 
buildings and parcels are represented as area objects, the expected relationships are {E} = 
{rl79, r220, r400, r435, r476} (see Figure 4.7). The actual relationship (A) between a given 
building and the parcel on which it is to be located (assumed to exist in the database) should 
be derived by the procedure Relational, 02). If A « {E} then violation has occurred and 
the building plan will not be approved pending the resolution of the conflict. 

53 Implementation Approach 

Figure 5.3 shows the flow-chart of the scheme for spatial consistency management in a vector 
GIS. At the core of the GIS is a spatial database which is assumed to be structured according 
to the DMMVM. The topologie relationship operators will consist of the automated procedure 
to dynamically derive the existing topologie relationships between objects and between 
geometric primitives using the algorithms in §4.3 and computational geometry where 
necessary. The topologie editor will comprise the automated procedures to carry out topologie 
editing of the database in a consistent manner as described in §5.1.1. User-defined operations 
will consist of the operations that must be performed when there is a violation of semantic 
constraints. The operations may include the use of the topologie editor functions. 

The set of expected topologie relationships {E} between geometric primitives that will not 
result in constraint violation may be stored as a kind of look-up table (LUT). This should also 
be done for the semantic constraints (geometric) between objects. To monitor topologie 
consistency, e.g., between two objects, the system will then evaluate the actual relationship 
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Figure 5.3 Scheme for consistency operations in vector maps 

(A) between the two objects, check for its occurrence in the set {E} for that constraint, give 
a message if violation occurs, resolve the violation if the operation is provided or call for the 
decision of the human operator. 

5.4 Summary 

A large proportion of the cost of setting up a database for spatial information production is 
attributed to data acquisition. To offset the cost and derive profit, the information produced 
by that system must be reliable, i.e., the quality of the data from which the information is 
derived must be trustworthy. This has made the issue of data quality an important aspect in 
GIS. Data consistency is a component of data quality because consistency is essential for the 
database's reliability. This chapter has focused on this issue. 

Consistency rules have been formulated to ensure structural constraints, while a monitoring 
strategy was proposed for semantic constraints. In both cases, topologie relationships play the 
central role as alerters of constraint violations. The next chapter will focus on the handling 
of object dynamics in the database in a manner that does not disturb its structural consistency. 
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OBJECT DYNAMICS AND UPDATING IN VECTOR MAPS 

In geo-information production, currency of the data plays a very important role, together with 
data quality (accuracy, completeness, consistency), in the reliability of the information. In the 
preceding chapter, procedures were defined for monitoring and enforcing one aspect of data 
quality: data consistency. This chapter focuses on the maintenance of data currency, i.e., 
updating. Database updating is an important aspect of GIS development because the terrain 
objects represented in the database are generally not static in time; thus the database should 
also respond to such object dynamics through "consistent" updating. By consistent, we mean 
that the structural and semantic constraints of the database (see chapter S) must be enforced 
after each update. 

In the mapping disciplines, in reaction to the evolution of mapping methods and processes 
(from conventional analogue mapping through computer-assisted mapping to digital mapping 
and then to GIS), updating of geo-information has evolved from simple graphic map revision 
using analogue methods and equipment through digital map revision with the aid of computer 
hardware and software but using a spaghetti model and with intensive involvement of the 
human operator. The goal is to be able to update a structured database in a GIS with a high 
degree of automation, but this last stage is still very much confined to the research and 
development domain; this thesis aims at contributing towards achieving that goal. 

In principle, it is simple to update a database: remove the outdated data and replace them with 
the new data. This used to be largely true when updating was carried out on the (plastic) 
master copy of the hardcopy map. The major problem then was on how to detect changes and 
what policy to follow for the updating, i.e., whether cyclic, selective or continuous; the actual 
change involved peeling off the old data on the master copy and scribing in the new 
information. Still, it is an expensive and complex operation which leaves many maps un-
updated, especially in developing countries. 

In this digital era when many processes are being automated to take advantage of technologic 
developments, and where the interrelationships among terrain objects are also modelled to 
make the database more useful, updating has become a more complex operation and 
researchers are focusing attention on the complete automation of updating procedures starting 
with change detection through the extraction of changed data, to database updating including 
editing and quality assessment The general procedure for the updating of geo-information is 
represented in Figure 6.1. 

For change detection, superimposition techniques and image processing and analysis are 
powerful tools. Information about changes in the terrain can also be obtained from local 
knowledge, i.e., from people and agencies involved in building and construction. The changes 
can be extracted manually or automatically by means of photogrammetry (mono or stereo), 
image processing, head-up (screen) digitizing, field survey, etc. These aspects (change 
detection and data collection) are not addressed in this thesis. Rather, the focus is on the 
database updating aspect, addressing the issues of update propagation, topologie editing and 
consistency enforcement in vector-structured spatial databases. In this context, database 
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Figure 6.1 General procedure for geo-information updating 

updating denotes an operation that leads to (a) the insertion of new data into the database, (b) 
the modification of some existing data, and (c) the removal (deletion) of obsolete data from 
the database. Because the DMMVM is a topologie model, the representation of terrain objects 
includes their interrelationships; it is thus possible that an update on one object will effect 
another object(s), causing an inconsistent state. To forestall such inconsistency, an update 
"propagation" must be effected when any of the three updating operations is carried out. 
Intuitively, update propagation means the system should identify all objects that are affected 
by a single update and modify them (or give warning to the human operator) to ensure 
consistency. 

In the DMMVM, three generic types of spatial object are represented: point, line and area 
objects. Changes in the database will therefore result from the dynamics of these objects. In 
Figure 2.2, an object (O) is uniquely defined by its geometry (G) and the set of its thematic 
attributes (T), i.e., O = f(G, T). The dynamics of an object can thus be grouped into two basic 
aspects: thematic changes and geometric changes. In addition there can also be a change in 
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the aggregation structure of objects (see Molenaar, 1991). These changes can occur singly or 
jointly. 

The aggregation aspect of terrain objects indicates how a complex terrain object can be 
composed from smaller objects. Since the aggregation structure of objects is not explicitly 
represented in the DMMVM (they can be derived through queries), this aspect will not be 
considered as a basic updating operation in the database. 

The updating of the other two aspects are analyzed in the following sections with emphasis 
on the geometric aspects. The procedures for propagating the geometric updates are also 
presented in pseudo codes. 

6.1 Updating Thematic Data of an Object 

Here, the thematic attributes of an object are restricted to its thematic class label in order to 
focus on the more complex geometric updating, but the other attributes can be handled as 
well. Thus only the class label will require updating, as in the reclassification of an object 
(e.g., an area object "parcel" changing from class "vacant" to class "built-up"). It is assumed 
that the DBMS of the implementation platform will have facilities (e.g., insert, update, and 
delete in RDBMS) for simple updating in which propagation is not required. When a new 
object comes into existence, simple insertion of its class label (and other thematic attributes 
if any) can easily be done by the DBMS tools. The same holds when an object comes to the 
end of its life-span, in which case its thematic information is simply deleted. 

However, if hierarchic classification is implemented, then certain rules must be observed 
when updating the thematic classes. For class creation, the superclass has to be created first 
because its attribute structure is expected to be inherited by its subclasses. The consistency 
rules defined for thematic data (see §5.1.4) should also be monitored and enforced. The 
insertion of the thematic attribute values of the individual objects belonging to the class can 
then be effected by the DBMS commands. When it is necessary to remove a class, an 
essential rule is that a superclass cannot be deleted unless all its subclasses have been deleted. 
And in general, no class should be deleted unless all its instances have been deleted. 
Hereafter, the analyses will focus on the updating of geometric aspects of objects. 

6.2 Updating of Geometric Components 

Changes in the geometric aspects of an object might include a change of position, or size or 
shape, or a combination. These changes may also lead to changes in the topologie 
relationships among the objects in the database. Thus care has to be taken to ensure integrity 
of the database during geometric updating of objects. The main focus of the updating 
procedure is therefore on this aspect. In this research, it is assumed that the boundaries of 
objects are well-defined (crisp dataset). The objects are also assumed to be correctly geo-
referenced, using the same coordinate reference system and the same resolution. 

In the DMMVM, the geometric characteristics of objects are defined by the data types 2-
container, 1-container and O-container, which are represented by the two geometric primitives: 
arcs and nodes. Thus geometric changes directly imply changes in the five data types. The 
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updating can be analyzed at three levels. The lowest level concerns the geometric primitives 
whose updating is triggered by an updating request from higher level data types by 
propagation. The next higher level concerns the m-containers, m e {0,1,2}, whose updating 
will also be triggered by propagation from the updating at the highest (i.e., object) level. At 
the highest (and user) level are the individual terrain objects of types point, line and area, 
which actually trigger the database updating. 

The update propagation path is depicted by Figure 6.2, indicating that the updating must 
always be initiated by the need to update (insert, modify, delete) terrain objects. The 
expectation in automated database updating is therefore that the system receives an updating 
request at the highest (i.e., object) level, together with the necessary input data, and performs 
the propagation from the object level to the level of geometric primitives. In addition, for the 
database to be geometrically consistent, all the constraints defined in chapter 5 must be 
satisfied after each updating. Thus (automated) procedures must be provided to propagate the 
update while checking and enforcing the constraints. In the following sections, the update 
propagation involving the basic data types (area, line, point, 2-container, 1-container, 0-
container, arc and node) are analyzed at their respective levels, starting from the lowest level 
(node and arc), with each level serving as "building block" for the next higher level. 
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Figure 6.2 Update Propagation Path in the DMMVM; (A) = Area Object's Path, (B) 
= Line Object's Path, (C) = Point Object's Path 

6.2.1 Notations 

We will recall the functions presented in chapter 4 (see §4.2.1 and §4.2.2) for representing 
the functional relationships between data types, and add other ones to completely represent 
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the functional relationships among the data types in the DMMVM (see Figure 3.8) by similar 
notations. The functional relationships indicate the navigation route among the data types; thus 
the functional notations described here will be used in the pseudo codes for the update 
propagation procedure described in this chapter. 

Link between thematic class and terrain object 

The link belongs-to between a terrain object O, and the thematic class TCj can be represented 
by: 

Belongs-to[TCj,OJ e {0,1} 
When the function has the value 1, the object belongs to that class, and when it has value 0, 
the object does not belong to that class. 

Link between elementary terrain object and m-container 

The links between an elementary object O, (Oj e {area, line, point}) and m-container (m e 
{2,1,0}) can be represented as follows. 

The fact that a 2-containerj is part-of an area object AO, can be represented by 
PartoflAO ̂ -containerJ = I 

And if the 2-container is not part of the area object, then 
Partof[AO ̂ -containerJ = 0 

If a 1-containerj is part-of a line object LO,, it will be represented by 
Partof[LOt,l-containerß = 1 

And if the 1-container is not part of the line object, then 
Partof[LOi,l -containerj = 0 

Also, the link represented by between a point object PO, and a O-container̂  can be indicated 
by the function 

Repreby[POit0-containerj] = 1 
If the 0-container does not represent the point object, then 

ReprebylPOiß-containerJ = 0 

Link between m-container and geometric primitives (arc and node) 

In the DMMVM, planar enforcement must be satisfied. Thus an arc must always have one 
2-container on its left side and one 2-container on its right side. The relationship between an 
arc a, and a 2-container; can then be depicted as follows. 

The existence of the relationship left between arc aj and 2-containerj can be represented as 
Leftll-container^aJ = 1; 

if the 2-container is not on the left of the arc, then 
Leß[2-containeritaj] = 0. 

And the fact that arc â  has 2-containerj on its right side can be represented by 
Right[2-containeritaß = 1; 

if the 2-container is not on the right of the arc, then 
Right[2-containeritaJ = 0. 
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A boundary arc a, of 2-container, can then be found from the function 
Boundary [2-container„a^ = Leftß-container^aJ+Rightfi-container^aj] 
If this function = 1, the arc is part of the boundary of the 2-container, and if = 0 or 2 it is 
not. 

The fact that arc aj is part of 1-container, can be represented by 
Partofll-containeritajj = 1; 

if the arc is not part of the 1-container, then 
Partofll-container^ = 0. 

The fact that node nj represents O-container can be represented by 
Repr[0-containeri,nJ] = 1 

If the node does not represent the O-container, then 
Repr[0-containeri,nj] = 0. 

Link between arcs and nodes 

See §4.2.1. 

Other Links 

The link crosses between 1-container, and 1-containeTj can be represented by 
Crosses[l-containeri,l-containerj] = 1 when j crosses i, and 
Crosses[l -container••,!-container^ = 0 if they do not cross. 

Also, the fact that 2-container, contains O-containerj can be depicted by 
Containsß-container^O-containerj] = 1, 

and if it does not contain it, then 
Containsp.-containerß-container^ = 0. 

From the basic functions above, other transitive links can also be derived, e.g., whether or not 
1-container is part of the border of 2-container, can be found through 

Border [2-container itl-container J = (Left[2-containeri,aJ]+Right[2-con-
tainer^ajl^Partoffl-container^aj] 

If the value of the function = 1, then the 1-container lies on the border of the 2-container; if 
the value is 0 or 2 it does not. 

Whether or not arc aj is part of area object AO, can be established from 
Partof[AOita) = PartoflAO^-containerJ^Lefi^-container^ajl+Right^-con-
tainerk,aj]) 

If the value of the function = 1, the arc is part of the area object's geometry; if = 0 or 2, the 
arc is not part of the geometry of the area object. 

6.2.2 Updating of Geometric Primitives 

At the lowest level of the update propagation path are the two geometric primitives. Their 
updating will normally be an indirect operation triggered by geometric updating at the next 
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higher level. The consistency rules defined for the geometric primitives in chapter 5 (see 
Table 5.1) are intended to propagate updating of the primitives while maintaining geometric 
consistency. The updating operations (resulting from insertion, deletion or modification) 
involving the two primitives are analyzed below. They will serve as the elementary operations 
into which the updating of the higher level data types can be decomposed. 

Inserting a new node 

When inserting a new node in the database, the topologie relationships between the new node 
and the existing arcs and nodes should be checked for inconsistent relationships (r272 and 
r092 in Table 5.1); if they occur, the necessary consistency operation is performed by the 
system; otherwise, the node (and coordinate information) can be inserted. The algorithm for 
inserting a node is as follows. The block diagram of the algorithm is given in Appendix 1.1.1. 

Algorithm Insert_Node: 

begin 
get nodeid (nl) and its properties (x, y and z coord and accuracy data) 
do while exists nj e NIDegree^)^ /* N = existing nodes */ 

determine Relational,iij) /* by comparing coordinates */ 
if Relational,nj) = r272 

do GP_Rule_l 
goto end 

endif' 
end do while 
do while exists aj e A /* A = existing arcs */ 

determine Relationen 1) /* using coordinate geometry */ 
if Relationnel) = r092 

do GP_Rule_2 
goto end 

else if Relationen 1) = r284 /* by comparing coord, see Figure 4.11b 
*/ 

do GP_Rule_l 
goto end 

endif 
end do while 
insert nl (and its properties) 

end 

Deleting an existing node 

Before a propagator causes the deletion of a node during update propagation, the system 
should check that the node does not define other arc(s) and/or a O-container. 

The following is the procedure Delete_Node for deleting a node n,, in pseudo code (see 
Appendix 1.1.2 for the block diagram): 

begin 
get identifier of n, from propagator 
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check for each O-container OCj 
if 3 OCj 9 ReprfOCj.nJ = 1 

goto end /* i.e., do not delete /* 
else next Ocj 
endif 

check for each arc ÜJ 
if 3 a, 3 (Beg[a,,nJ = 1 v Endr_[a,,iiJ = 1) 

goto end /* i.e., do not delete /* 
else delete node (and its attributes) 
endif 

end 

Modifying an existing node 

The modification request for a node may arise when the value(s) of one (or more) of its 
coordinates is (are) to be changed, e.g., because of more accurate measurement. This 
modification request is not as simple as it appears because the node's existing topologie 
relationships with some arcs (if any) may have resulted from the previous coordinate values. 
It may also be defining a O-container which represents more than one point object. It is 
therefore necessary to ascertain that this node does not define the position of other arcs or 
point objects (same O-container) before the modification. The most appropriate solution is to 
insert the affected node as new (with its new coordinate values) using Insert_Node procedure 
and delete the old using the Delete_Node procedure. However, if only the accuracy property 
has changed, this can be effected by simple updating facilities of the DBMS. The algorithm 
for effecting the modification will therefore be as follows (see Appendix 1.1.3 for the block 
diagram): 

Algorithm Modify_Node 

begin 
get nodeid and modified properties 
select the node and current properties /* as a kind of view */ 
modify requested values and assign new id 
do Insert_Node /* with its modified values and unchanged properties */ 
do Delete_Node I* for obsolete node */ 

end 

Inserting a new arc 

To maintain the integrity of the database when a new arc is being inserted, the geometric 
primitive constraints GPC_i, i e {1,2,3,4} should be enforced through the consistency rules 
defined in Table 5.1., i.e., when a new arc is inserted, the system must evaluate the arc's 
topologie relationship with each of the existing primitives in the database and apply the 
corresponding consistency rule for any relationship that violates geometric consistency. 
The following is the algorithm Insert_Arc for inserting a new arc. The block diagram of the 
algorithm is given in Appendix 1.1.4. 
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Algorithm Insert_Arc: 

begin 
get new arc a, (and its properties: id, coords, left, right, 1-container) 
assign node numbers for its start and end nodes 
do while exists nj e NIDegree(nj)=0 /* N = existing nodes */ 

determine RelationCa^) /* by coordinate geometry */ 
if Relation^,^) = r092 

do GP_Rule_2 
endif 
if Relation^,^) = r284 /* by comparing coord, see Figure 4.11b */ 

do GP_Rule_l 
end do while 
do while exists aj e A /* A = existing arcs */ 

determine Relation(ai,aj) /* using coordinate geometry */ 
Case r063 do GP_Rule_3 
Case r095 do GP_Rule_4 
Case rl59 do GP_Rule_5 
Case rl79 do GP_Rule_6 
Case r220 do GP_Rule_7 
Case r255 do GP_Rule_8 
Case r287 do GP_Rule_9 
Case r400 do GP_Rule_10 
Case T435 do GP_Rule_l 1 
Case r476 do GP_Rule_12 
goto end 

end do while 
determine new values for left and right relationship 
store a, 
insert start and end nodes of aj using Insert_Node 

end 

Deleting an existing arc 

When a delete request is propagated to an arc, the system should first verify that the arc is 
not linked to other primitives. An existing arc will have one of the following combinations 
of properties at one time: 

(1) Left[2-containeri,aj] = 1 A Rights-container,,^] = 1 A Partof[l-containerk,aj] = 1 (A = 
logical and), i.e., the arc has the same 2-container on each side and represents part of a 1-
container. In this case, the arc defines only (part of) a 1-container and can be deleted only if 
the 1-container is being deleted or modified. 

(2) Left[2-container„a|] = 1 A Rights-container^] = 0 (or vice versa) A Partof[l-
containerk,aj] = 0, which means that the arc demarcates two 2-containers and can be deleted 
only if a preceding updating operation would have made left = right. 

(3) Left[2-containeri,aj] = 1 A Right[2-containeri,aj] = 0 (or vice versa) A Partof[l-con-
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tainerk,aj] = 1, in which case the arc represents a 1-container and demarcates two 2-containers. 
It can be deleted only if the updating operation requires that the 1-container which the arc 
represents be deleted, and left and right are first updated to have equal values. 

(4) Left[2-containeri,aj] = 1 A Right[2-containeri,aj] = 1 A Partof[l-container,^] = 0. This is 
a 'dangling' arc which should be deleted from the database. 

Thus if an existing arc was deleted, the preceding operations in the update propagation chain 
that triggers it would have led to the fourth situation; otherwise the arc would have been only 
modified. The following algorithm Delete_Arc will do the necessary checking and delete the 
arc if it is now redundant (see Appendix 1.1.5 for the block diagram): 

Algorithm Delete_Arc: 

begin 
get arc id -» aj 
if Left[2-containeri,aj] = 1 A Right[2-containeri,aj] = 1 A Partof[l-containerk,aj] 
= 1 goto end /* do not delete */ 
if Left[2-containeri,aj] = 1 A Right[2-containerB,aj] = 1 
Partof[l-container,^] = 0 goto end 
if Left[2-containeri,aj] = 1 A Right[2-container„,aj] = 1 
Partof[l-containerk,aj] = 1 goto end 
if Left[2-container„aj] = 1 A Right[2-container„,aj] = 1 
Partof[l-containerk,aj] = 0 

then 
select nil Beginn 1] = 1 and n2l End[aj,n2] = 1 /* beg & end nodes */ 
delete ^ I* simple DBMS command to remove record of aj */ 
do Delete_Node(nl) 
do Delete_Node(n2) 

endif 
end 

Modifying an existing arc 

During update propagation, the modification of an existing arc may be necessitated by any 
of the following situations: 
- When the value(s) of the Left and/or Right function(s) of the arc change(s), which may be 
caused by the creation or modification of a 2-container. 
- If there is a change in the value of the relationship Partof between the arc and a 1-container, 
which may be caused by an insertion of a new line object (thus modification or creation of 
a 1-container) or deletion of a 1-container. 
- When there is a change in the coordinates of one or both of its two nodes. This may arise 
from more accurate measurement of the position of the node(s) and, because this may affect 
the existing topology, the affected arc should be inserted as a new arc using the Insert_Arc 
procedure, thereby recreating the topology (this can be optimised by forcing the system to use 
the primitives associated with the former arc and those in that vicinity) and the old arc deleted 
using Delete_Arc procedure. 
- When a new node or a new arc is inserted and necessitates the execution of any of the 
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consistency rules GP_Rule_i, 2 < i < 12 (see Table 5.1). The necessary modification will be 
performed within the propagation chain that triggers the insertion of the new primitive. The 
algorithm for modifying an existing arc is given below; the block diagram is shown in 
Appendix 1.1.6. 

Algorithm Modify_Arc 

begin 
get arcid and modified properties 
if 3 locational change 

select the arc and current properties /* as a kind of view */ 
modify requested values and assign new id to arc and its nodes 
do Insert_Arc /* with its modified values and unchanged properties */ 
do Delete_Arc /* for obsolete arc */ 

else 

endif 
modify affected property /* simple DBMS command */ 

end 

6.2.3 Updating of the m-Containers 

At the next level of the update propagation path are the three m-containers: 2-container, 1-
container and O-container. Their updating will normally be an indirect operation triggered by 
updating at the highest level, i.e., of individual terrain objects. Like the geometric primitives, 
the updating of the m-containers should be automated as much as possible while enforcing 
the consistency rules defined for them (see chapter 5). The updating operations (resulting from 
insertion, deletion or modification of a terrain object) involving the three types of m-container 
are analyzed below. 

Inserting a new 2-Container 

To satisfy completeness of incidence in the DMMVM as a planar vector map, all 2D 
segments (faces) must be classified, i.e., every closed polygon must be (part of) a 2-container; 
thus the addition of a new 2-container implies modification or deletion of an existing one. 
This means that insertion of a 2-container involves a combination of insert, modify and/or 
delete operations. It is thus a complex operation which may still require the use of semantic 
information as well as human intervention. For example, in a single-valued vector map, the 
new 2-container will be spatially coincident with one or more existing 2-containers. If after 
analyzing the semantic information of those 2-containers (through the Partof[area-object, 2-
container] function) it is found that they are part of area objects classified as "vacant" (or 
"unclassified"), then the update propagation can proceed; but if any of those 2-containers is 
part of a "real" terrain object then the human operator's decision is required as to whether that 
existing object should be deleted or modified. Also, in the multi-valued situation, it must be 
determined first if the overlapping 2-containers are class-compatible, e.g., a cadastral parcel 
cannot overlap a lake. Class-incompatibility can be predefined in a look-up table (LUT), for 
example, such that the system consults the table when a new 2-container is being inserted 
and, in general, during overlay computation to ascertain if the overlapping 2-containers 
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represent compatible objects. The same situation holds for 1-containers and O-containers. 

Detecting and forestalling such incompatibilities can be handled in two ways: (1) at the 
beginning of the update propagation (or overlay computation to derive a multi-valued vector 
map), or (2) immediately after the update/overlay computation. The first approach implies that 
the checking routine should be part of the algorithm being used for the computation, but it 
will require more interaction with the human operator (except if an LUT is provided) during 
the updating. The second approach allows the use of any available overlay computation 
algorithm, after which the consistency module can check for compatibility. The algorithm 
provided here uses the first approach, but this part can be transferred to the end during 
implementation if the user so decides. 

If the insertion is allowed, the existing O-containers topologically contained by the 2-
containers should be identified (computationally) in order to make this relationship explicit. 
The system should continue the update propagation by inserting one arc of the 2-container 
at a time using the Insert_Arc algorithm (defined in the previous section). Some existing arcs 
may need to be deleted, while some may require modification. For example, Figure 6.3a 
shows a small vector map which has been structured according to the DMMVM; 2-container 
A5 is to be inserted, as shown in Figure 6.3b. 
From the figures, it is obvious 
that the new 2-container's posi
tion has affected the geometry 
of 2-containers Al, A2, A3, and 
A4, and also the topology of the 
1-container representing the 
railroad. When the algorithm for 
inserting an area object is used, 
the incorporated algorithm for 
inserting an arc will create extra 
nodes (11, 12, 13, 14, 15 and 
16) and split arcs (9,5) into 
(9,16) and (16,5) and (5,4) into 
(5,13) and (13,4), respectively; 
the algorithm for updating an 

arc will update arcs (16,5) and (5,13), while the algorithm for deleting an arc will delete arcs 
(12,5), (11,5), (15,5) and (14,5) (arcs having Left[A5,ai]=l and Right[A5,aJ=l and Partof[l-
containernüMtal!,ai]=0 where a, is an existing arc). It is therefore obvious that having provided 
the basic updating operations for arcs, any complex situation can be decomposed into a set 
of elementary updating operations. The generalised algorithm for inserting a new container 
is defined below (see Appendix 1.1.7 for the block diagram): 
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Figure 6.3 Insertion of a new 2-container. A = original 
situation; B = 2-container A5 is inserted 

Algorithm for inserting a 2-container: Insert_2-container 

begin 
do for each new 2-container c2 
get Gc2(Nc2,Ac2) 
do 2CC_Rule_l /* consistency rule for 2-container */ 
select all existing 2-containers OC2 for which oc2 e OC2I Relation(c2, oc2) 
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e {rl79, r220, r400, r435, r476, r511} /* using computational geometry e.g., 
any polygon intersection algorithm */ 

for each oc2 
select area object AOj for which Partof[AOj,oc2]=l 
if map is single-valued 

determine thematic class of AOj 
if class g {"vacant", "unclassified"} 
notify user /* decision e {interactive editing?, next oc2) */ 
else next oc2 
endif 

else 
if map is multi-valued 

determine compatibility between AOj and new area object 
represented by c2 /* LUT or user decision */ 
if class incompatible 
notify user /* decision e {interactive editing?, next oc2) */ 
else next oc2 
endif 

endif 
display all 2-containers EC2 3 V ec2 e EC2 is Relation(ec2,c2) e {rl79, 
r220, r400, r435, r476, r511) /* see Figure 4.7 */ 
perform interactive updating /modify neighbouring 2-containers which are 

affected by the new one and insert arcs and nodes of c2; using update 
algorithms of lower level data types */ 

for each ec2 e EC2 where Contains[ec2,c0]=l /* cO = an existing O-container 
*/ 

determine the new 2-container nc2 3 Contains[nc2,c0]=l 
if nc2 exists, store relation as property of nc2 and property of cO 

next ec2 
next c2 
end 

Deleting a 2-container 

Deleting a 2-container may involve a combination of delete, modify and insert operations. The 
delete request may be triggered because an area object represented by the 2-container is to 
be deleted or its location is to be shared among neighbouring 2-containers. In both cases, 
modification of the geometry of neighbouring 2-containers will be required by inserting extra 
arcs and deleting some obsolete arcs. Moreover, the O-containers inside the affected 2-
container may have a new topology: now inside or on the boundary of a new 2-container. To 
handle the operations leading to a consistent database, the procedure for deleting the 2-
container should comprise the following main steps (see the block diagram in Appendix 
1.1.8). 

Algorithm Delete_2-container: 

begin 
get id of the 2-container -* c2 
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select the 0-container(s) c0 for which Contains[c2,c0] = 1 
select all existing 2-containers 0{ for which (\ E OJ Relation(c2, cv) e 

{rl79, r220, i279, r285, r287, r400, r435, r476, r511} /* figure 4.7 
refers */ 

modify c^ € Oj e.g., by inserting new arcs to modify its geometry /* has to be 
done interactively but using combinations of Insert_Arc, Delete_Arc and 
Modify_Arc */ 
delete any arc aj for which Left[2-container„aj]=l A Right[2-containerm,aj]=l 
A Partof[l-containerlc,aj]=0 where i = m 
determine 2-container nc2 for which Contains[nc2,c0]=l /* using com
putational geometry e.g., point-in-polygon algorithm */ 

if True, store as property of nc2 and property of cO 
end 

For example, 2-container A5 is to be deleted from Figure 6.3b and its former space 
apportioned among adjoining 2-containers as shown in Figure 6.3a. This operation involves 
- geometric update of 2-containers Al, A2, A3, A4 (by inserting arcs (11,5), (12,5), (14,5), 
and (15,5) or new arcs as defined by user's sharing criterion, which is simply by defining the 
position of the common node) 
- update of arcs (17,12), (12,13), (13,18), (18,14), (14,19), (19,15), (15,16), (16,11), (11,17), 
(16,5) and (5,13) 
- after the immediate step above, the system will delete arcs (17,12), (12,13), (13,18), (18,14), 
(14,19), (19,15), (15,16), (16,11) and (11,17) using the algorithm for deleting an arc since, 
in each case, the values of the left and right relationships are equal and the arc is not part of 
any 1-container. 

Modifying an existing 2-container 

Modification of an existing 2-container can be triggered in three ways: (1) when a new 0-
container falls in the interior of the 2-container, thereby necessitating the modification of the 
value(s) of the relationship Contains[2-container,0-container]; this modification, being a 
secondary update, will be triggered by the lnsert_0-container algorithm; (2) as a secondary 
modification triggered by an insertion of a new area object, or deletion or (geometric) 
modification of another existing one causing the modification of this 2-container; this 
modification will therefore be triggered by the primary update; or (3) as a primary update 
triggered by the need to modify the geometry of one of the area objects which the 2-container 
is part of (e.g., caused by the expansion of the size of an area object "parcel" from 36 m by 
18 m to 36 m by 36 m), or an additional area object (as a result of overlay) is to be 
represented by the 2-container, or the area object(s) which the 2-container is part of is (are) 
to be deleted. 

In the third case, if the modification involves changing only the value(s) of the relationship 
Part-of (between area object and the 2-container), this can be effected by simple "add", 
"remove" or modify commands of the DBMS. If geometry is involved and if the change is 
substantial, the strategy is to use the algorithm for inserting a 2-container to insert the mod
ified version and use the algorithm for deleting a 2-container to delete the obsolete one. If 
only a few arcs are involved, the affected arcs are isolated from the (retrieved) arc list of the 
2-container, the new arcs (to replace the affected ones) are added and the new geometry of 
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the 2-container is inserted using the algorithm for inserting a 2-container while the isolated 
arcs are deleted using the algorithm for deleting an arc. This can be summarised in the 
following algorithm for (primary) modification of a 2-container (see Appendix 1.1.9 for the 
block diagram). 

Algorithm Modify_2-container: 

begin 
get 2-container_id -» c2 
if much geometric change /* subjective decision of user! */ 
then 

insert modified 2-container with Insert_2-container 
delete obsolete 2-container with Delete 2-container 

else 

endif 
end 

retrieve G^N^ .AJ 
isolate affected arcs (Ak) from A,.2 

add new arcs (A„) 3 Ac2 = (A,.2 - Ak) + A„ 
(re)insert Gc2(Nc2,Ac2) using Insert_2-container 
delete a; € Ak using Delete_Arc 

Inserting a 1-container 

The insertion of a new 1-container is triggered when a new line object comes into existence 
or part of an existing one has a geometric change. As part of the required update propagation, 
the class compatibility of the line objects represented by the 1-container should be 
ascertained; where they are not class-compatible, the insertion should be rejected. For 
example, a river and a road cannot be represented by the same 1-container. In addition, the 
consistency rule lCC_Rule_l (see §5.1.2) should be enforced by the system. If the line 
objects which the 1-container is part of are class compatible and the consistency rule has been 
enforced, the update propagation can then continue by first determining if there is any existing 
1-container having the topologie relationship rl59 (see Figure 4.9), i.e., crossing, which is 
then stored as an instance of the explicit relationship Crosses (see Figure 3.8). Then each arc 
of the 1-container is inserted using the Insert_Arc algorithm. The algorithm Insert_l-container, 
in pseudo-code, is presented below, and its block diagram is shown in Appendix 1.1.10. 

Algorithm Insert_l-container: 

begin 
do for each new 1-container cl 

get Gcl(Nc„Acl) 
do lCC_Rule_l /* consistency rule for 1-container */ 
select all existing 1-containers C, for which ck e C,l Relational, ck) e 

{rl59, rl79, rl91, r220, r223, r255, r400, r415, r435, 
r439, r476, r477, r501} /* see Figure 4.9; using com
putational geometry */ 
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for each ck 

select line object LOj for which Partof[LOj,ck]=l 
if map is single-valued 

notify user /* error, requires decision e {interrupt, next ck) */ 
else 

if map is multi-valued 
determine compatibility between LOj and new line object 
represented by ck /* LUT or user decision */ 
if class incompatible 
notify user /* error, requires decision € {interrupt, next c j */ 
else next ck 

endif 
endif 

endif 
determine existing 1-container, eel for which Relation(cl,ecl)=rl59 

/* using computational geometry (see Figure 4.9 for rl59) */ 
if eel exists, store Crosses[cl,ecl]=l as properties of cl and eel 
for each a, e Aci 

do Insert_Arc(ai) 
next a, 

next cl 
end 

Deleting a 1-container 

The triggered request to delete a 1-container may arise if the line object(s) represented by the 
1-container no longer exist or because of substantial locational changes of the objects. When 
an existing 1-container cl is to be deleted, the following operations must be performed: 
- check if there is any 1-container eel for which Crosses[cl,ecl]=l; if so modify eel by 
setting Crosses[cl,ecl]=0. 
- delete the arcs of the 1-container using the algorithm for deleting an arc. An arc that exists 
only because of the 1-container will have equal values for its left and right relationships; such 
an arc should be deleted. Where these values are not equal, the value of the Partof 
relationship between the 1-container and the arc should be changed to zero or null because 
the arc still demarcates two area objects. 
These operations can be translated into the following algorithm Delete_l-container for 
deleting a 1-container (the block diagram is given in Appendix 1.1.11). 

Algorithm Delete_l-container: 

begin 
get id of the 1-container -» cl 
select the 1-container eel for which Crosses[cl,ecl] = 1 

if exists, set value to zero 
for each arc % e Acl having Partof[cl,aj]=l set value of Partof = 0 
for each arc ^ e Acl /* arcs of the 1-container cl */ 

do Delete_Arc(ai) 
end 
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Modifying a 1-container 

Modification of an existing 1-container can be triggered in three ways: (1) when a new 1-
container crosses a 1-container, thereby necessitating the modification of the value(s) of the 
relationship Crosses[l-containerl,l-container2]; this modification, being a secondary update, 
will be triggered by the Insert_l-container algorithm; (2) as a secondary modification 
triggered by an insertion of a new line object, or deletion or (geometric) modification of 
another existing one causing the modification of this 1-container; this modification will 
therefore be triggered by the primary update; or (3) as a primary update triggered by the need 
to modify the geometry of one of the line objects which the 1-container is part of (e.g., Figure 
6.4), or to delete some of the line objects which the 1-container is part-of. 

a. Old situation b. New situation 
Figure 6.4 Modification of a 1-container 

In the latter case, if the modification involves changing only the value(s) of the relationship 
Part-of (between line object and the 1-container), this can be effected by simple "add", 
"remove" or "modify" commands of the DBMS. If geometry is involved and if the change 
is substantial, the strategy is to use the algorithm for inserting a 1-container to insert the mod
ified version and use the algorithm for deleting a 1-container to delete the obsolete one. If 
only a few arcs are involved, the new arcs (to replace the affected ones) of the 1-container 
are inserted using the algorithm for inserting an arc, while the affected arcs are deleted using 
the algorithm for deleting arc. 

For small changes, it must also be verified whether the 1-container crosses/intersects any other 
1-container within the changed segment (in which case the two 1-containers will have a 
common node in this segment). Three new possibilities can then be identified: 
- the two still intersect/cross at the same point despite the geometric change 
- they are now disjoint 
- they have a new intersection/crossing point and situation (upper/lower). 
The first possibility requires no action. In the second, the value of the relationship Crosses 
for the two 1-containers should be set to zero. In the third, the new cross-point of the affected 
1-containers) should be determined and value of Crosses updated to reflect the new situation. 
These can be summarised in the following algorithm for (primary) modification of 1-
container. The block diagram of the algorithm is presented in Appendix 1.1.12. 

Algorithm Modify_l-container: 

begin 
get l-container_id -> cl 
if much geometric change /* decision of user */ 
then 

insert modified 1-container with Insert_l-container 
delete obsolete 1-container with Delete_l-container 

else 
retrieve G^N^A,.,) 
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determine existing 1-container, eel for which Relation(cl,ecl)=rl59 /* 
reference Figure 4.9 for rl59) */ 
if eel exists set Crosses[cl,ecl]=0 
select affected elements of Ac, (say Ak) 
for each aj e A„ /* A,, = the replacement arcs */ 

do Insert_Arc(aj) 
next aj 
for each aj e Ak 

do Delete_Arc(aj) 
next â  

endif 
determine existing 1-container, eel for which Relation(cl,ecl)=rl59 
if eel exists set Crosses[cl,ecl]=l 

end 

Inserting a 0-container 

Before propagating the triggered insertion of a 0-container, it is necessary to verify that, 
where the 0-container represents more than one point object, the objects are class-compatible 
(see discussion on inserting 2-container). If the insertion should be propagated, the system 
should determine (by using a computational algorithm) if there is any existing 2-container 
topologically containing the 0-container and register the occurrence. The node defining the 
geometry of the 0-container should then be inserted using the Insert_Node algorithm. 

These operations can be translated into the following algorithm lnsert_0-container (see the 
block diagram in Appendix 1.1.13). 

Algorithm lnsert_0-container: 
begin 

do for each new 0-container cO 
get G ^ N ^ A J /* note: Ac0 = 0 */ 
retrieve existing 0-container ecO 3 Relation(ec0,c0)=r272 

if exists and map is single-valued 
notify user /* error, requires operator decision */ 

endif 
else 

if exists and map is multi-valued 
select point object(s) POj for which Repreby[POj,ec0]=l 

determine compatibility between (each) POj and new point 
object represented by cO /* LUT or user decision */ 
if class incompatible 
notify user /* error, requires operator decision */ 
endif 

endif 
endif 

determine existing 2-container, ec2 for which Contains[ec2,c0] = 1 /* using 
computational geometry */ 
if eel exists, store Contains[ec2,c0]=l as properties of cO and ec2 
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do Insert_Node(Nc0) 
next cO 

end 

Deleting a 0-container 

The triggered deletion of a 0-container cO may be required if the point object(s) represented 
by the 0-container no longer exist or because of changes in its/their location(s). Before 
effecting the delete operation, the existence of any 2-container ec2 for which Con-
tains[ec2,c0]=l should be checked; if so, modify the property of ec2 by setting Con-
tains[ec2,c0]=0. Then the 0-container can be deleted and its node deleted using Delete_Node 
algorithm. These operations can be translated into the following algorithm Delete_0-container 
for deleting a 0-container (see the block diagram in Appendix 1.1.14). 

Algorithm Delete_0-container: 

begin 
get id of the 0-container —» cO 
select iij for which ReprlcO,^] = 1 
select the 2-container ec2 for which Contains[ec2,c0] = 1 

if exists, set value to zero 
delete cO 
do Delete_Node(nj) 

end 

Modifying an existing 0-container 

There are usually three reasons for a triggered modification of a 0-container: 
(1) When one of the point objects represented by the 0-container requires deletion or 
positional shifting while the other point objects remain at the same location; this is a 
secondary request which involves a simple operation of modifying the value of the Represent-
by relationship between the 0-container and the point object that triggers the update. 
(2) Change in relationship Contains[2-containerj, 0-containeTj] caused by a change in the status 
of the 2-containerj; this requires only a setting of the proper value for the relationship and will 
be propagated by the affected 2-container. 
(3) Change in its position (this may also involve topologie changes). 
In the last case, the best strategy is to treat the modified 0-container as new, thereby inserting 
it with the lnsert_0-container algorithm. The obsolete version of it is then deleted using the 
Delete_0-container algorithm. 
These can be translated into the following algorithm Modify_0-container. The block diagram 
of the algorithm is given in Appendix 1.1.15. 

Algorithm Modify_0-container: 

begin 
get 0-container_id -* cO 
if 3 positional change 
then 
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else 

endif 
end 

insert modified O-container with lnsert_0-container 
delete obsolete O-container with Delete_0-container 

modify affected property of O-container /* simple query 

6.2.4 Updating the Elementary Objects 

We will now analyze the required updating operations when inserting, deleting, or modifying 
a point, line, or area object. The thematic aspects of the objects, such as its layer and thematic 
class, can be handled as discussed in §6.1. Here the emphasis will be on geometric aspects. 
The geometric update propagation initiated by the updating of a terrain object can be seen as 
a message carried by the object concerned into the database; the type of object and type of 
update (insert, delete or modify) will signify the message type and thus the actions to be 
performed by the system. This can be depicted by the following expression 6.1 (see also 
Figure 6.2): 

UP(OT, UT) -> {PRS : LPUTJ © {SRk : LPUTJ (7.1) 

where UP = Update propagation message 
OT = Object type ( e {point, line, area}) 
UT = Update type ( e {Insert (I), Delete (D), Modify (M)}) 
-> = Triggers 
PRj = Primary receiver (affected) data type (i.e., mandatory and definitely affected) 
LPUTj = List of (alerted) propagated update types (e {LD,M}) for data type i 
SI^ = Secondary receiver (consulted/probably affected) data type k 
© = Possibly affected path 

Updating Point Objects 

As indicated in Figure 6.2c, any geometric updating of point objects will also trigger updating 
of O-container and node data types. It will necessarily involve consultation of the arc data 
type, probably leading to the updating of some existing arcs. Thus the algorithms defined for 
the affected data types will be part of the update propagation chain for point objects. The 
propagation of insertion, modification and deletion of individual point objects in the 
DMMVM are discussed below. 

Inserting a point object 

The expression (7.1) with respect to insertion of a point object is: 

UP(PO, I) -» {PO: I; 0C: I,M; N: I, M) © {AR: M, 2C: M} (7.1.1) 

This implies that the insertion message for a new point object PO triggers the insertion of a 
new object of point type, insertion of a new or modification of an existing instance of 0-
container (0C) type, the insertion of a new or deletion of an existing instance of node (N) 
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type. The propagation will also consult the arc data (AR) and 2-containers (2C) for possible 
modification, e.g., if the position of the point object coincides with a point in the interior of 
an arc, thereby necessitating decomposition of the arc (GP_Rule_2b). 
After the insertion of the object's thematic data, the geometric update propagation proceeds 
by inserting first the object as an instance of point type. To continue the propagation, the 
point object is assigned a temporary 0-container identifier and the lnsert_0-container algorithm 
triggered. This will then trigger any necessary updating that may be required in the chain such 
as the updating of node and possibly an arc. The algorithm for inserting a point object will 
therefore have the following structure (see the block diagram in Appendix 1.1.16): 

Algorithm Insert_Point: 

begin 
get properties of point object PO /* id, coords, thematic class, layer, */ 
insert thematic data 
assign 0-container identifier —» cO 
do Insert_0-container(cO) 

end 

Deleting a point object 

This will be required when an existing point object comes to the end of its life span. Like an 
insert operation, the delete point object operation is an initiator of update propagation which 
will have the following interpretation of the expression (7.1): 

UP(PO, D) -» {PO: D; 0C: D, M; N: D) © {AR: M; 2C: M} (7.1.2) 

Expression 7.1.2 implies that when a message to delete (D) a point type object (PO) is issued, 
the update propagation operation will delete the instance from the point type, trigger updating 
of its 0-container (to delete or modify the 0-container), which in turn triggers the updating 
of an instance of data type node (for possible deletion). The operation on node will trigger 
the consultation of arc before the node is deleted and the operation on 0-container may 
require modification of an instance of the 2-container if the instance contains the 0-container. 
The algorithm for deleting an object of the Point type is therefore as follows (see Appendix 
1.1.17 for the block diagram): 

Algorithm Delete_Point: 

begin 
get id of object -» po 
delete thematic data of po 
select 0-container cO where Repreby[po,cO]=l 
select point object pol where Repreby[pol,cO]=lApo*pol 
if pol exists 

set Repreby[po,cO]=l to Repreby[po,cO]=0 
goto end 

else 
do Delete_0-container(cO) 
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endif 
end 

Modifying a Point Object 

There are usually three reasons for modifying a point object: 
(1) change in the object's thematic data, e.g., thematic class 
(2) consequential change in topologie relationship with other objects brought about by 
locational changes of those objects 
(3) change in the object's position (which may also lead to topologie changes). 
The first involves a simple operation of replacing the old thematic data by the new. The 
second operation will be taken care of by the primary update (which caused the topologie 
change). In the third case, if the modification involves positional change, the strategy is to 
insert the object as new using the Insert_Point algorithm and to delete the obsolete one with 
the Delete_Point algorithm. The update propagation chain for the modification is depicted by 
expression 7.1.3, indicating the need for consistent update propagation. 

UP(PO, M) -> {PO: M; OC: M J) J; N: DJ} © {AR: M; 2C: M} (7.1.3) 

The algorithm for the updating is as follows (see the block diagram in Appendix 1.1.18): 

Algorithm Modify_Point 

begin 
get id of object (po) and new (modified) data 
modify thematic data /* simple DBMS commands */ 
if positional change 

select 0-container colRepreby[po,cO]=l 
assign new 0-container id -* ncO 
do Insert_0-container(ncO) 
do Delete_0-container(c0) 

end 

Updating Line Objects 

A line object, like the two other generic objects area and point, has three components: 
(1) the object's identity 
(2) the object's non-spatial (thematic) data which are restricted to the object's class in our 
case and can be handled by simple update commands of the DBMS during implementation 
(3) the geometric data which can be further split into three: 
- the positional data as represented by its 1-containers 
- the shape information which is derived from the aggregation of the 1-containers that define 
the object 
- the topology of the object, which is derived from the topology of its 1-containers. 

Thus, as shown in Figure 6.2b, the geometric updating of line objects will trigger updating 
of 1-container, arc and node data types. It will necessarily involve consultation of the existing 
instances of 2-container data type to derive the left and right properties of the arcs defining 
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the line object's 1-container. Also, instances of 0-container will be chained by operations on 
nodes of the line object. Hence updating on line objects will propagate to the two lower 
levels. The propagation of insertion, modification and deletion of geometric aspects of 
individual line objects in the DMMVM are presented below. 

Inserting a line Object 

The insertion of the line object's geometric data can be decomposed into insertion of the 1-
container that defines the object and the algorithm for inserting 1-container used to insert this 
and propagate the insertion of its arcs and nodes. The propagation chain for inserting a line 
object is given in expression 7.1.4 below (the secondary path is not involved). 

UP(LO, I) -» {LO: I; 1C: IJ),M; AR: IJDM; N: I, D} (7.1.4) 

After the insertion of the object as an instance of the line type and its thematic data, the 
geometric update propagation proceeds by assigning a temporary 1-container identifier to the 
object The Insert_l-container algorithm is then triggered. This will in turn trigger any 
necessary updating that may be required in the chain such as the insertion of new instances 
and/or modification of existing instances of arc (AR) type. The algorithm for inserting a line 
object will therefore have the following structure (see Appendix 1.1.19 for the block 
diagram): 

Algorithm Insert_Line: 

begin 
get properties of line object LO /* {id, coords, layer, etc. */ 
insert thematic data 
assign 1-container identifier -» cl 
do Insert_l-container(cl) 
enforce LO_Rule_l 

end 

Deleting a Line Object 

A line object that has come to the end of its life span should be deleted from the database. 
Also, an existing line object may have undergone such a substantial positional change that it 
is better to insert it as a new object and delete the obsolete one. The delete propagation chain 
for a line object is shown in expression 7.1.5 

UP(LO, I) -» {LO: D; 1C: DM; AR: DM; N: D} (7.1.5) 

The expression indicates that when a delete message is sent to an object of the line type, this 
triggers the deletion of the instance from the line type, and triggers the deletion or 
modification of its 1-containers. The triggered deletion of a 1-container will trigger the 
necessary operation on instances of arc AR which propagates to some instances of node N. 
These operations are indicated in the following algorithm for deleting a line object. The block 
diagram of the procedure is given in Appendix 1.1.20. 
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Algorithm DeleteJLine: 

begin 
get id of object -* lo 
delete thematic data of lo 
select 1-containers CI 3 for each cl e Cl is Partof[lo,cl]=l 
for each cl 

select line object lol where Partof[lol,cl]=l A lo^lol 
if lol exists 

set Partof[lo,cl]=0 
else 

do Delete_l-container(cl) 
endif 

next cl 
end 

Modifying a Line Object 

The need to modify an existing line object may result from one, or a combination, of the 
following changes: 
(1) thematic changes, e.g., the object's class; these can be handled by simple updating 
commands and require no propagation; 
(2) geometric changes. 
For geometric changes, since a line object is geometrically represented by 1-containers, it is 
possible to identify the elements of the set of its 1-containers in which the change has taken 
place. The changed segment(s) of the line object can then be inserted using the algorithm for 
inserting a 1-container while the obsolete 1-containers should be deleted using the algorithm 
for deleting a 1-container. When a major part of the object has changed, the strategy is to 
insert the new one using the algorithm for inserting a line and delete the old object using the 
algorithm for deleting a line. In either case, the update propagation chain will be as shown 
in expression 7.1.6. 

UP(LO, M) -> {LO: M; 1C: W,M; AR: IJ),M; N: IX>] (7.1.6) 

This is expressed in algorithmic form as follows (see block diagram in Appendix 1.1.21): 

Algorithm Modify_Line 

begin 
get id of object (lo) and the replacement data 
modify thematic data /* simple DBMS commands */ 
if positional change 
select 1-containers Cl 3 for each cl e Cl is Partof[lo,cl]=l 

if substantial positional change /* decision of human operator */ 
assign new 1-container id -» ncl /* object treated as one 1-container 
*/ 
do Insert_l-container(ncl) 
for each cl 
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do Delete_l-container(cl) 
next cl 

identify Cl 1 c Cl in which positional changes occur 
for each c, e Cil 
do insert. 1-container^) 
next Cj 
for each Cj e (Cl -Ci l ) 
do delete_l-container(Cj) 

endif 
endif 

end 

Updating Area Objects 

Like point and line objects, an area object has two basic properties: thematic and geometric. 
Updating of the thematic data, as in the other two types, can be taken care of by DBMS 
commands during implementation. In the geometric domain, however, inserting, deleting or 
modifying a single area object may lead to further operations on other existing neighbouring 
area objects; thus updating of a single area object is a complex operation. The propagation 
of updating operations of inserting, deleting and modifying the geometric data of a single area 
object are presented in the following subsections. 

Inserting a single area object 

The complete classification (completeness of incidence) constraint of the DMMVM implies 
that all two-dimensional objects must be classified (even if as class "unclassified"); thus 
inserting an area object will always involve a combination of insert operations (for the new 
object) and possibly deletion and/or modification of existing area objects which are spatially 
coincident with the new object. The insertion of the area object's geometric data can be 
decomposed into insertion of a 2-container and the algorithm for inserting a 2-container used 
to insert this and propagate the insertion of its arcs and nodes. The insert algorithm for the 
2-container already has facilities for modifying neighbouring 2-containers if they are affected. 
The propagation chain for inserting an area object is given in expression 7.1.7 below. 

UP(AO, I) -» {AO: WM; 2C: IJD.M; AR: IßM; N: I, D} ® {OC: M) (7.1.7) 

This indicates that apart from inserting the area object, other area objects may have to be 
deleted or modified; the insertion of the new area object will then trigger the insertion of new 
2-containers (2C) with possible deletion or modification of some existing ones, and similarly 
for arc (AR) and node (N) in the propagation chain. Some existing instances of the 0-
container type may have to be modified if they are topologically contained by the new 2-
containers of the area object The updating operations to be performed on the existing area 
objects which are affected by the insertion of the new object cannot be determined by the 
system (e.g., in a cadastral database, if a new parcel, represented as area object, overlaps with 
an existing one, the system can only notify the user while the user decides whether to reduce 
the existing one or the new one as one of the numerous possible decisions). This aspect has 
to be done interactively. The propagation of the insertion will proceed by regarding the area 
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object as a new single 2-container. The following algorithm is proposed for inserting an area 
object. The block diagram of the algorithm is presented in Appendix 1.1.22. 

Algorithm Insert_Area: 

begin 
get properties of area object AO /* id, coords, thematic class, layer, */ 
insert thematic data 
assign 2-container identifier -» c2 
do Insert_2-container(c2) 
enforce AO_Rule_l 

end 

Deleting an Area Object 

Deleting a single area object will also involve a combination of delete, update and insert 
operations. The operation will be required if an area object has come to the end of its life 
span or if an existing one has undergone such a substantial positional change that it is better 
to insert it as new object and delete the obsolete one. The updating also requires interaction 
with the human operator because of its effects on neighbouring area objects (whether to 
allocate its space to only one or among all of its former neighbours). 
The delete propagation chain for an area object is shown in expression 7.1.8 

UP(AO, D) -» {AO; DM; 2C: DM; AR: DM; N: D} ® {OC: M] (7.1.8) 

The expression indicates that when a delete message is sent to an instance of the area type, 
it will require not only the deletion of the instance from the area type but also the 
modification of neighbouring ones. It will require the deletion or modification of some 2-
containers, which will trigger deletion or modification of some instances of arc AR, which 
propagates to some instances of node N. Being an interactive operation, the system should 
select the 2-containers representing the area object as well as related 2-containers for the 
human operator to decide on the necessary modification of affected neighbours. The human 
operator will use any of the updating algorithms defined for the lower level data types (2-
container, arc and node, especially the last two). The outline of the operations is indicated in 
the following algorithm for deleting an area object (see Appendix 1.1.23 for the block 
diagram). 

Algorithm Delete_Area: 

begin 
get id of object -> ao 
delete thematic data of ao 
select 2-containers C2 3 V c2 e C2 is Partof[ao,c2]=l 
for each c2 e C2 

display all 2-containers EC2 3 V ec2 e EC2 is Relation(ec2,c2) € 
{rl79, r220, r400, r435, r476, r511} 
perform interactive updating /* using update algorithms of lower level 
data types */ 
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next c2 
end 

Modifying an Area Object 

The need to modify an existing area object may result from one, or a combination, of the 
following changes: 
- thematic changes, e.g., the object's class; these can be handled by simple updating 
commands and require no propagation; 
- geometric changes. 
Geometric changes will also affect neighbouring area objects; thus the same situation applies 
as in the insertion and deletion of area objects. The update propagation path that will guide 
in the interactive updating during geometric updating is shown in expression 7.1.9. 

UP(AO, M) -» {AO: IJ)M; 2C: IJ),M; AR: IJ)M; N: Iß} ® {OC: M} (7.1.9) 

This is expressed in algorithmic form as follows (see the block diagram in Appendix 1.1.24): 

Algorithm Modify_Area 

begin 
get id of object (ao) and the replacement data 
modify thematic data /* simple DBMS commands */ 
if positional change 

select 2-containers C2 3 V c2 € C2 is Partof[ao,c2]=l 
display all 2-containers EC2 9 V ec2 e EC2 is Relation(ec2,c2) e {rl79, 
r220, r400, r435, r476, r511} 
perform interactive updating /* using update algorithms of lower level data 
types */ 

endif 
end 

63 Handling Updating of Multiple Objects 

The updating procedure described in the previous section covers the eight data types (the 
elementary object types area, line and point, the m-containers, m e {0,1,2}, and the two 
geometric primitives arc and node) that have been used to model multi-valued vector maps. 
As stated in that section, users operate at the level of the elementary object types: area line 
and point; an update on any instance of the three is then dynamically propagated to the other 
data types. The procedure implies that terrain objects are being updated on individual basis, 
which is in line with the fact that a spatial database stores information concerning a group of 
individual terrain objects. It also conforms with the normal practice because the need to 
update a spatial database usually arises when (on individual basis), one or more terrain objects 
come into existence, require modifications, or become extinct The collection of the new data 
(by whatever method: photogrammetry, land surveying, etc.) is therefore usually object-based, 
e.g., recognizing that a new road has been constructed and has to be added to the database. 



114 

Consequently, updating of multiple objects in the database can still be based on the same 
algorithms. The implementation of the algorithms can be optimized to efficiently accom
modate the complexity introduced when many objects are to be updated at the same time, for 
example, through the use of efficient search trees and a contiguous storage of related data. 
Updating of multiple objects at one time can then be grouped into the following: 
- addition, removal or modification of multiple objects of the same generic type (e.g., multiple 
point objects) 
- addition and/or removal of multiple objects belonging to different generic types. 

Updating multiple objects of the same generic type 

In this case, the operation is handled by treating one object at a time, within a loop, using the 
appropriate algorithm. 

Updating multiple objects belonging to different generic types 

These involve one or more point objects and/or one or more line objects and/or one or more 
area objects. The following strategy can be used to handle the operation: 
- insert/delete/modify all the point objects (if any), one at a time, using the relevant algorithm 
for point object 
- insert/delete/modify all the line objects (if any) using the relevant algorithm for line object 
- insert/delete/modify all the area objects (if any) using relevant algorithms. 

By grouping objects of the same type together, the same operation (e.g., Insert_Area) can be 
performed in a loop instead of changing from one operation to another in an ad-hoc manner. 
However, to delete objects in a region (e.g., defined by some coordinates), since some of 
those objects may be partially inside the region, the best approach is for the system to retrieve 
all objects that are associated with (i.e, fully or partially in) the region for the user to select 
those that should be deleted or to even remodify the region to carve out or include more 
objects. 

6.4 Summary 

In gee-information production, the cost of data collection has been said to be about seven to 
10 times more than the cost of the hardware and software needed to establish the database 
(Peled, 1994). Thus it is very important that the accuracy and currency of the data should be 
reliable, such that the purpose for setting up the database can be fulfilled with profitable cost 
recovery. This chapter aimed at contributing towards achieving this by providing algorithms 
for consistent automated update propagation. 

Although geo-information updating includes change detection, data collection and database 
updating, the focus in the chapter was on automated database updating under the assumption 
that the necessary changes have been detected and captured in readiness for input into a 
DMMVM-structured database. Ideally, the defined algorithms should be translated into 
computer modules within an existing DBMS. However, since most of the operational DBMS 
are not capable of accepting user-defined rules and data types, the algorithms may have to 
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be programmed in a high-level language and then coupled with the DBMS during 
implementation. 

It should be noted that, although the final goal is to automate spatial database updating, some 
aspects will still have to be done interactively (i.e., require human intervention), aided by 
graphic visualisation. This limitation is related mostly to the area objects with respect to the 
correct decision to take when modifying the neighbouring area objects (of the same layer) 
effected by an area object that is being updated. 

After the update propagation, the consistency rule for planar enforcement (see §5.1.3) must 
be enforced. In addition, some of the other consistency rules (especially semantic) defined in 
the last chapter can be enforced immediately after the update and certainly at regular intervals. 

For the purpose of updating, in order to improve performance, the geographic space can be 
partitioned into different levels of windows (from coarse to fine), for example, using quadtree, 
and the list of the geometric primitives within a window, together with the coordinates of the 
window, can then be stored, e.g., in a random access file. This information can then be used 
when inserting a new object so that the necessary topologie editing is localised instead of 
involving the entire geometric primitives in the database. 

Some of the proposed algorithms have been experimented in automated update propagation 
in single-valued vector maps. The experiment was done by coupling Microsoft Fortran with 
an Oracle DBMS in a microcomputer environment at the Department of Land Surveying, 
Photogrammetry and Remote Sensing, Wageningen Agricultural University. The algorithms 
were translated into Fortran programs, while Oracle served as the RDBMS retrieving the 
necessary data from the database into the Fortran program, for updating and consistency 
operations, and returning the updated data back into the database. Details of this experiment 
can be found in Kufoniyi (1989) and Kufoniyi et al (1993). Further experimentation of the 
algorithms are presented in chapter 8 of this thesis, using the Postgres DBMS, an extended 
relational database management system. 

The next chapter focuses on the translation of the DMMVM into two prototype database 
structures (relational and object oriented). If the relational prototype is used for an 
implementation, then the update propagation algorithms and consistency rules would have to 
be handled by a high-level programming language and coupled with the RDBMS as in the 
experiment cited above, since most operational RDBMSs are not capable of handling user-
defined rules. If the object-oriented (OO) prototype is chosen, the algorithms have been 
defined as class methods, which should then be programmed using the programming language 
of the OO system. 
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DATABASE STRUCTURES FOR MULTI-VALUED VECTOR MAPS 

A conceptual data model is normally developed without consideration of the type of system 
that will implement it. This also holds for the object-based conceptual data model developed 
in chapter 3. However, for implementation purposes, it is necessary to translate the model into 
a prototype database structure, based usually on a database model (e.g., relational, network, 
etc.). A review of the common database models was presented in chapter 2, with the relational 
model being the most popular. Most of the present-day operational GI systems are built on 
the relational model, noted for its simplicity and standard query language. Another database 
model which is fast gaining importance in GIS is the object-oriented model, which has been 
acclaimed to be more suitable for spatial applications than the relational model (see chapter 
2). However, mature operational object-oriented systems are not yet common. 

The approach in this thesis is therefore to translate the DMMVM into two prototype database 
structures, one relational and the second object-oriented. The relational structure can serve for 
immediate implementation while the object-oriented structure can be implemented with the 
availability of mature operational object-oriented systems. In addition, the relational system 
can be upgraded into an evolutionary object-oriented (object-relational) systems by building 
an object shell on top of the relational system or by implementing the structure in an extended 
relational system (see §7.2.3). §7.1 describes the prototype relational database structure for 
multi-valued vector maps while the object-oriented data structure is presented in §7.2. 

7.1 Relational Database Structure for Multi-valued Vector Maps 

In this section, the translation of the DMMVM into a prototype relational database structure 
is presented. Smith's method for relational database design is used for the translation. This 
method was reviewed in chapter 2 and comprises four main steps, namely: 

(1) identification of the basic data types and relationships to be represented by the database 
structure; 
(2) listing of the functional dependency statements among the data types, showing the single
and multi-valued dependencies; 
(3) construction of the dependency diagram; and 
(4) construction of relations (tables) from the dependency diagram. 

7.1.1 Identification of Data Types 

The data types in the DMMVM are indicated in Figure 3.8. Since the identifier of an object 
in one layer may be the same as that of another object in another layer, it is necessary to add 
the thematic layer from which an object originated and the geographic name of the object as 
additional data types. Also, the planimetrie and vertical accuracies as well as the lineage (e.g., 
source and method of acquisition) of the point are added as optional data (see also Chhatkuli, 
1993 and Bouloucos et al, 1994 for modelling of geometric data quality in multi-valued vector 
maps). 
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7.1.2 Dependency Statements 

The identified data types together with the elementary links among the data types (see §3.4.3), 
are translated into the following dependency statements. The data types and the link types to 
be explicitly represented in the data structure are in bold characters. The total number of 
layers is represented by NL. 

(1) One 1-container, identified by a OneC, represents / Lobj line objects (/ £ NL), each 
of which originates from a map Layer, has a name Lname, and belongs to one Lclass 
thematic class in the layer. 

(2) One 2-container, identified by an identifier TwoC represents k Aobj area objects (k 
= NL), each of which originates from a map Layer, has a name Aname, and belongs 
to one Aclass thematic class in the layer. 

(3) One O-container, identified by ZeroC, represents ;' Pobj point objects (ƒ <, NJ, each 
of which originates from a map Layer, has a name Pname and belongs to one Pclass 
thematic class in the layer. 

(4) Each ZeroC is geometrically represented by one Pnode node number and may lie in 
one TwoC 2-container. 

(5) An arc, identified by an Arcnr, is defined by one Bnode starting node and one Enode 
end node and has one LftTwoC left 2-container identifier and one RgtTwoC right 2-
container identifier and represents one AOneC 1-container. 

(6) Each Nodenr node has a position given by a triplet of Xcoord, Ycoord, and Zcoord 
coordinates, and optionally has a Pace planimetrie accuracy, a Vacc height accuracy, 
a P_lng planimetrie lineage and a V lng elevation lineage. 

(7) Two 1-containers identified by Ulc upper 1-container and Lie lower 1-container may 
cross each other at a Crosspt point (crosspt belongs to the domain of nodenr). 

7.13 The Dependency Diagram. 

The dependency diagram constructed from the above dependency statements is given in 
Figure 7.1. Each data type is represented in an ellipse (or double ellipses to facilitate the 
representation of links) and the link between two data types is numbered according to the 
dependency statement from which the link is taken. Links may have single or double-headed 
arrows depending on whether the link represents single-valued or multi-valued dependencies 
(not to be confused with the same terms in vector maps, see §2.2.3 and §3.0). Related fields 
may be combined in a single bubble (ellipse) by using the "+" symbol. The domain flags, 
triangles with numbers inside them, easily identify all fields with a common domain and 
facilitates referential integrity rules at the implementation stage. Optional data types are 
written in lower-case letters. 

7.1.4 Composing Fully Normalised Relations from the Dependency Diagram 

The following seven relations are composed directly from the dependency diagram in Figure 
7.1. Table names are written in upper-case letters and primary keys are underlined. The fields 
in square brackets are optional. Figure 7.2 shows the relational structure and the links among 
the tables. 
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AREA (twoC, aobi, laver, aname, aclass) 
LINE (oneC, lobi, layer, lname, Iclass) 
POINT (zeroC, pobi, laver, pname, pclass) 
POINTNODE (zeroC. twoC, pnode) 
ARC (arcnr. bnode, enode, IftTwoC, rgtTwoC, aOneC) 
NODE (nodenr, xcoord, ycoord, zcoord [,pacc, vacc, pjng, v Ing]) 
LINCROSS (ulc. He. crossot) 

7.1.5 Implementing the Relational Structure 

The prototype relational structure developed above can then be implemented in any relational 
system by creating a database consisting of the seven base tables in which the columns of 
each table are mapped into the system's built-in data types (e.g., numeric, character, etc.). The 
database will then be manipulated with a RDBMS. 

In order to incorporate additional thematic information for the objects, extra tables should be 
created, one for each thematic class with each attribute of the class becoming one column of 
the table. The object identifiers (aobj, lobj, pobj) and layer identifier (layer) should be 
included as columns in the thematic tables in order to link the object's geometric and non-
spatial data sets. 

In the first experimental implementation of this prototype (with 2D position), an integrated 
land use and soil database was created in a micro-computer environment using dBase-IV as 
RDBMS. In the experiment, the land use map and the soil map (hard copies) covering the 
same geographic space and at the same scale were manual overlaid and coded into a dBase-IV 
DBMS to test the information content of the model. Details of the experiment can be found 
in Ayugi (1992) and Bouloucos et al (1993). 

Another experimental implementation of the prototype, with objects' position still defined in 
2D metric and topologie space but with incorporation of geometric data quality parameters, 
was carried out on Arc/dBase-IV configuration in which PC Arc/Info was used as the data 
acquisition subsystem and dBase-IV was used for the database management. For this 
experiment, "segment" was introduced as an additional data type (defined as a straight line 
between two adjacent vertices) to define the shape of an arc (which has been assumed to be 
straight in this prototype and in the first experiment). After performing the data acquisition 
and the necessary overlays in Arc/Info, both the geometric and thematic data were transferred 
into the dBase-IV DBMS and structured according to our relational prototype (with the 
necessary modifications to accommodate quality parameters and the segments) and then used 
for single- and multi-layer queries. Thus both the geometric and thematic datasets were 
organized in the same structure and managed by a single DBMS. 

The introduction of the segment improved the performance of topologie queries because a 
reduced number of geometric primitives (arcs and nodes) are searched in comparison with an 
implementation of arcs as straight lines. However, a lot of computational effort was required 
to achieve the integrated structure because of the layer approach of Arc/Info. Details of this 
implementation can be found in Chhatkuli (1993) and Bouloucos et al (1994). Also, an 
example of the design and implementation (using Oracle RDBMS) of a prototype relational 
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database structure for single-valued vector maps can be found in Kufoniyi (1989 and 
Bouloucos et al (1990). 

A system that appears more promising for the implementation of this relational prototype is 
the System 9 which uses a different kind of layer-approach in which a geographic layer is 
built on top of a standard relational DBMS (Eck and Uffer, 1990). This facilitates the 
integrated storage of spatial and non-spatial data, thus allowing to take benefit of consistency 
and concurrency control mechanisms on both kinds of data (Boursier and Faiz, 1993). The 
system defines three basic geometric data types for the representation of simple geographic 
objects, from which more complex objects can also be derived. The three generic primitives 
are node, line and area, which are comparable to our elementary object types point, line and 
area respectively. 

All the experiments indicated that a relational system can be used for the implementation of 
vector maps. However, such issues as graphic output of query results, update propagation and 
integrity maintenance must be handled by user-written (or any third party) procedures. 
Algorithms for the automated update propagation and consistency enforcement in a relational 
data structure for single-valued vector maps (which were tested by coupling editing 
procedures written in Fortran with Oracle DBMS) have been proposed by the author (see 
Kufoniyi, 1989 and Kufoniyi et al, 1993). Similar approach can be used to implement the 
consistency rules provided in chapter 5 and the updating procedure of chapter 6 for this 
prototype, i.e., by using any programming language (e.g., C, Pascal, Fortran, etc) that is 
compatible with the chosen RDBMS to program the consistency rules and updating algorithms 
and then couple these with the RDBMS. 
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Figure 7.1 Dependency diagram for designing relational structure for the DMMVM 
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Figure 12 Relational database structure for multi-valued vector maps 

7.2 Object-Oriented Data Structure for Multi-valued Vector Maps 

In chapter 2, the main features of object-oriented data modelling were described. Some of the 
modelling constructs (classification, generalisation, aggregation and association), together with 
the concepts of inheritance and propagation, will be applied here to map the data model 
shown in Figure 3.8 to an object-oriented data structure. 

7.2.1 Class Definitions and Modelling 

From the basic structure of spatial objects shown in Figure 2.2, two classification domains 
are distinguished, namely thematic domain and geometric domain. Thus each terrain object 
will be an instance of one of the thematic classes and an instance of one of the geometric 
classes as shown in Figures 7.3 (i.e., double inheritance). The mapping of the DMMVM 
(Figure 3.8) to an object-oriented data model is represented in Figure 7.4 in which the classes 
are represented by rectangles and the links among the classes by arrows. The ellipses show 
the separation between the two classification domains and emphasise the central focus of 
terrain objects in the model. 

The thematic classification domain deals with the non-spatial characteristics of an object. In 
the scheme, objects with common non-spatial attributes are mapped into a common thematic 
class within one mapping layer (see Chapter 3) such that each object belongs to only one 
thematic class in that layer. Each class will have a list of properties (attributes) whose values 
are then evaluated during application for each object belonging to that class. Here, the 
classification may be hierarchical, such that at a higher level classes that share common 
properties are also generalised into a superclass. 
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The actual classification and instantiation in 
the semantic domain can be done only 
during application. Thus the thematic clas
sification line will be restricted to the class 
labels of each object which are symbolically 
represented by Linthemclass, Arthemclass 
and Pntthemclass in Figure 7.4, and further 
attention will be focused on the geometric 
domain. During application, the three class 
labels can then be expanded and structured 
as described in §3.2.1 and §3.4.1 

The geometric classification line deals with 
the geometric characteristics of an object. In 
this domain, objects are classified into three 
geometric classes in a 2D topologie space. 
The three classes, also referred to as object 
types, are: 
- Pointtype: OD objects having position but 
no spatial extension. 
- Linetype: objects having shape, position 
and ID spatial extension. 
- Areatype: objects which extend over two 
spatial dimensions having position, shape 
and size. 

J_ 
superclass 

m 

thematic 
class 

1 

geometric 
class 

1 

terrain 
object 

Figure 7.3 Classification structure for spa
tial objects 

Each terrain object (indicated as Lineobj, 
Areaobj and Pointobj in Figure 7.4) will be 
mapped onto only one type (either on one-
to-one basis or one-to-many) of these three 
geometric classes and the classification is not hierarchical. Note, however, that aggregation 
hierarchies can be defined to group objects of different types into a more complex object 
when the model is used to implement complex applications. 

The three geometric classes are regarded as aggregated objects with five subordinate classes 
(2-container, 1-container, O-container, arc and node) to define the geometric characteristics 
of each instance, as shown in Figure 7.4 and described below. In the figure, "instance-of ' 
represents classification, "part-of' indicates aggregation, "member-of' indicates association 
and "is-a" represents generalisation. The constraints for each class are not repeated here since 
they have been treated under the consistency rules in §5.1. The major constraints to be 
monitored and enforced are translated into class methods (operations). 

Areatype 

An instance of this class is a complex object in the sense of geometric representation. It is 
composed of one or more 2-containers (see Figure 7.4). The geometric properties (positional 
information, metric area, etc.) of the object are derived by propagation from the geometric 
properties of the component 2-containers, e.g., the metric area of an instance of Areatype is 
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the sum of the metric area of each of its component 2-containers. Some properties will still 
require explicit representation. These properties are the object identifier of the instance, its 
thematic class label (instance-of), its layer, and the set of its component 2-containers. It is 
necessary to mention that if the structure is used to model a single-valued vector map, then 
an instance of the Areatype will have only one 2-container component (the same goes for 
Linetype and Pointtype vis-a-vis 1-container and O-container). 

An (explicit topologie) association (member-of) exists between two instances of the class if 
they have one or more common 2-containers. The topologie relationships (see §4.2.2.2) 
between an instance of the class and an instance of the same class or Linetype class or 
Pointtype class define other types of association. One of these is the explicit representation 
of topologie containment of an instance of Pointtype by an instance of this class as a property 
of the O-container class. The other topologie relationships will be dynamically derived by 
predefined methods using the algorithms proposed in §4.3. 
The properties (attributes) and the operations (methods) of this class are presented in §7.2.2. 

UNTHEMCLASS ARTHEMCLASS FNTTHEMCLASS 

instanctjof 

FOINTTYPE 

memb*r_! 

O-CONTAINER 

ARC 

Figure 7.4 Object-oriented data model for multi-valued vector maps 

Linetype 

An instance of the Linetype is an aggregation of one or more instances of the 1-container 
class (see Figure 7.4). Its geometric properties are therefore derived by propagation from the 
geometric properties of the component 1-containers. The explicit properties of the class 
include the object identifier, its thematic class, its layer, and the set of its component 1-
containers (see the database schema in §7.2.2). As in Areatype, an association exists between 
two instances of the class if they have one or more common 1-container. The topologie 
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relationships (see §4.2.2.2) between an instance of the class and an instance of the same class 
or Areatype class or Pointtype class define other types of association, one of which is made 
explicit as Linecross class at the level of 1-container (for explicit representation of the 
crossing of two instances of Linetype class). The other topologie relationships will be 
dynamically derived by predefined methods using the algorithms in §4.3. 

Pointtype 

This is the third geometric class to which a terrain object can belong. An instance of the class 
is a member of an association defined by an instance of the O-container class. The 
corresponding O-container defines an association between two or more instances of Pointtype 
if those instances are spatially coincident (i.e., overlap in space). The geometric properties 
(e.g., position) of the member Pointtype are then derived from the geometric properties of the 
corresponding O-container. The explicit properties of the class include the object identifier, 
its thematic class, its layer, and the identifier of the O-container of which it is a member (see 
the database schema in §7.2.2). As in the above classes, the topologie relationships (see 
§4.2.2.2) between an instance of the class and an instance of the same class or Areatype class 
or Linetype class define other types of association. One of these, the topologie containment 
of an instance of Pointtype by an instance of Areatype, is made explicit at geometric level 
as a property of the O-container class. The other topologie relationships will then be 
dynamically derived by predefined methods using the algorithms proposed in §4.3. 

2-Container 

The 2-container class models a geometric association between spatially coinciding instances 
of Areatype. An instance of the class is part of one or more instances of the class Areatype. 
The introduction of this class is very useful in multi-valued analysis because the thematic 
properties of an instance are the elements of the set union of the thematic properties of the 
member instances of class Areatype (similarly for 1-container/Linetype and 0-con-
tainer/Pointtype). Put differently, given instance A of class Areatype with properties' set PA, 
an instance B of the same class with properties' set PB, and an instance C of class 2-container 
modelling spatial coincidence between A and B, the properties Pc of C c (PA u PB). Object 
C can then be manipulated as a unique object in the database. To the extent that a simple 
object of class Areatype is isomorphic to an instance of class 2-container (especially in single-
valued vector map representation where there is a one-to-one mapping between an Areatype 
object and a 2-container object), some methods defined for the former may be applicable to 
the latter e.g., checking for the graph-closure of the object 

The class is at a lower level compared with the Areatype class because instances of the class 
exist only if instances of the Areatype exist. An instance is geometrically an aggregation of 
one or more instances of class Arc; the positional information as well as some geometric 
properties are therefore derived from the Arc class by propagation. The properties and 
methods of the class are presented in the database schema in §7.2.2. 

1-Container 

As in the 2-container class, the 1-container models a geometric association between spatially 
coinciding instances of Linetype and an instance of the class is part of one or more instances 
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of the class Linetype. The properties of the instance are the elements of the set union of the 
properties of the member instances of class Linetype. Also, some methods defined for the 
Linetype may be applicable to the 1-container class, e.g., checking that the object's graph is 
simple and elementary. 

The class is at a lower level compared with the Linetype class since they come into existence 
only when instances of the Linetype exist. An instance is geometrically an aggregation of one 
or more instances of class Arc; thus the positional information as well as some geometric 
properties are derived from the Arc class by propagation. The properties and methods of the 
class are presented in §7.2.2. 

O-Container 

The O-container class is defined as a subclass of the class Node; thus it inherits the properties 
of the Node class (i.e., the node-id and coordinate triplet). The class also models a geometric 
association between spatially coinciding instances of Pointtype. In addition to the properties 
inherited from the node class, the class derives its (thematic) properties from the set union 
of the thematic properties of its member Pointtype objects by propagation. It sends positional 
information to the member Pointtype objects. 
The explicit properties of the class and its methods are presented in the database schema in 
§7.2.2. 

Arc 

This class participates in a double aggregation hierarchy (in the upward direction, see Figure 
7.4). One aggregation hierarchy is the link between the Arc class and the 1-container class. 
In this scheme, an instance of class Arc is part of one 1-container object. The second scheme 
is the link between the Arc and the 2-container. Here, one instance of the class can be part 
of at most two instances of 2-container class (i.e., as a boundary of two adjacent 2-
containers). The instances of the class are geometric primitives of instances of the 1-container 
and 2-container classes; thus an instance of the class will not exist unless a corresponding 1-
container or 2-container exists. It therefore sends geometric properties to the 1-container and 
2-container classes. 

An instance of the class is itself, geometrically, an aggregate object, being composed of two 
instances of the Node class. The positional information of the instance is therefore derived 
from the Node class by propagation. The properties and methods of the class are given in 
§7.2.2. 

Node 

This is an atomic class whose properties are the coordinate information of the vector map. 
The planimetrie accuracy, vertical accuracy, and planimetrie and vertical lineage (e.g., source 
and method of acquisition) of the node can be added as additional properties if desired. 
The class is treated as a superclass of O-container and an instance of the class is (optionally) 
part of an instance of the Arc class. The properties and methods of the class are given in the 
schema below. 
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7.2.2 Object-Oriented Database Schema 

[1] Class: Areatype 

Properties: 
- AreaObjId (OID, i.e., object's identity) 
- instance-of ArThemClass (its thematic class) 
- Layer (from which layer i.e., layer identifier) 
- 2-containerList: setof member 2-containers (OIDs of its 2-containers) 

Operations: 
- Insert (Area) /* inserts a new instance of the class and enforces topologie & 
geometric (i.e., spatial) constraints */ 
- Retrieve (Area) /* retrieves an instance of the class */ 
- Delete (Area) /* deletes an instance of the class and enforces spatial 
constraints */ 
- Modify (Area) /* modifies instance of the class and enforces spatial 
constraints */ 
- Relation(P,Q) /* determines topologie relationship between two instances of 
the class, or an instance P of the class and an instance Q of Linetype or 
Pointtype */ 
- ComputeMetricArea /* computes metric area of an instance by propagation 
of metric area values of member instances of 2-container */ 
- ComputePerimeter /* computes and returns the perimeter of an instance of 
the class as aggregation of the lengths of arcs defining the boundary of the 
instance by propagation from member 2-containers */ 
- Retrievesubgraph (Area) I* retrieves the arcs and nodes defining the 
boundary of the instance by propagation from member 2-containers */ 
- graphCheck /* consistency check for the connectedness of boundary of an 
instance */ 

[2] Class: Linetype 

Properties: 
- LineObjId (OID) 
- instance-of LinThemClass (object's thematic class) 
- Layer (its layer) 
- 1-containerList: setof member 1-containers (OIDs of its 1-container) 

Operations: 
- Insert (Line) /* inserts a new instance of the class and enforces spatial 
constraints */ 
- Retrieve (Line) /* retrieves an instance of the class */ 
- Delete (Line) /* deletes an instance of the class and enforces spatial 
constraints */ 
- Modify (Line) /* modifies instance of the class and enforces constraints */ 
- Relation(P,Q) /* determines topologie relationships between two instances 
of the class, or between instance P of Areatype and an instance Q of the class, 
or instance P of the class and an instance Q of Pointtype */ 
- ComputeLength /* computes metric length of the instance as aggregation of 
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lengths of member 1-containers */ 
- Retrievesubgraph (Line) /* retrieves the arcs and nodes defining the geometry 
of an instance of the instance by propagation from member 1-containers */ 
- graphCheck(Line) /* checking consistency of the graph (simple and 
elementary) of an instance */ 

[3] Class: Pointtype 

Properties: 
- PointObjId (OID) 
- instance-of PntThemClass (object's thematic class) 
- Layer (object's layer) 
- O-containerld (OID of its O-container) 

Operations: 
- Insert (Point) /* inserts a new instance of the class and enforces constraints 
*/ 
- Retrieve (Point) /* retrieves an instance of the class */ 
- Delete (Point) /* deletes an instance of the class and enforces constraints */ 
- Modify (Point) /* modifies instance of the class and enforces constraints if 
necessary */ 
- Relation(P,Q) /* determines topologie relationship between two instances of 
the class, or between instance P of Areatype or Linetype and instance Q of the 
class */ 
- ComputeDistance /* computes euclidean distance between the instance and 
another instance */ 

[4] Class: 2-container 

Properties: 
- 2-containerId (OID) 
- RepresentAreatype: set of associated instances of class Areatype (OIDs of 
member Areatype objects) 
- composedof Arcs: RetrieveGeometryO (indicates that geometry is retrieved by 
a function) 

Operations: 
- CreateContainer (2-container) /* creates a new instance of the class and 
enforces constraints */ 
- DestroyContainer (2-container) /* destroys an instance of the class and 
enforce constraints */ 
- AmmendContainer (2-container) /* modifies instance of the class and 
enforces constraints */ 
- ComputeMetricArea /* computes metric area of an instance */ 
- RetrieveGeometry (2-container) /* retrieves the arcs and nodes defining the 
geometry of the instance */ 
- graphCheck /* consistency check for the connectedness of boundary of an 
instance */ 
- RetrieveContainer (2-container) /* retrieves an instance of the class */ 
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[5] Class: 1-container 

Properties: 
- l-containerld (ODD) 
- RepresentLinetype: set of associated instances of class Linetype (OIDs of 
member Linetype objects) 
- composedofArcs: RetrieveGeometryO (geometry represented as a function) 

Operations: 
- CreateContainer (1-container) /* creates a new instance of the class and 
enforces constraints */ 
- DestroyContainer (1-container) /* destroys an instance of the class and 
enforce constraints */ 
- AmmendContainer (1-container) /* modifies instance of the class and 
enforces constraints */ 
- ComputeLength (1-container) /* computes metric length of the instance as 
aggregation of lengths of defining arcs*/ 
- RetrieveGeometry (1-container) /* retrieves the arcs and nodes defining the 
geometry of an instance */ 
- graphCheck /* consistency check for connectedness (simple and elementary 
path) */ 
- RetrieveContainer (1-container) /* retrieves an instance of the class */ 

[6] Class: O-container 

Properties: 
- O-containerld (OID) 
- RepresentPointtype: set of associated instances of class Pointtype (OIDs of 
member Pointtype objects) 
- isaNode: Nodenr (OID of node for positional information) 
- inside2container: 2-containerId (OID of 2-container object in which it lies, 
or computational procedure to determine this, e.g. point-in-polygon routine) 

Operations: 
- CreateContainer (O-container) /* creates a new instance of the class and 
enforces constraints */ 
- DestroyContainer (O-container) /* destroys an instance of the class and 
enforce constraints */ 
- AmmendContainer (O-container) /* modifies instance of the class and 
enforces constraints */ 
- RetrieveContainer (O-container) /* retrieves an instance of the class */ 
- RetrieveGeometry (O-container) /* retrieves geometry (nodenr & coord) of 
an instance of the class */ 

[7] Class: Arc 

Properties: 
- Arcld (OID) 
- NodePartofArcl: start nodenr (OID of start node) 
- NodePartof Arc2: end nodenr (OID of end node) 
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- Partof2containerl: left2-containerId (OID of 2-container on its left) 
- Partof2container2: right2-containerId (OID of 2-container on its right) 
- PartOflcontainer: l-containerld (OID of the 1-container which the instance 
is part-of) 

Operations: 
- Insert (Arc) /* inserts a new instance of the class and enforces spatial 
constraints */ 
- Retrieve (Arc) /* retrieves an instance of the class */ 
- Delete (Arc) /* deletes an instance of the class and enforces spatial 
constraints */ 
- Modify (Arc) /* modifies instance of the class and enforces constraints */ 
- Relation(P,Q) /* computationally determines topologie relationship between 
a new instance of the class and an existing instance of the class or an existing 
instance of class Node*/ 
- ComputeLength /* computes metric length of the instance */ 
- consistencyCheck (Arc) /* consistency check of an instance: no dangling or 
redundant arc, existence of node, etc. */ 

[8] Class: Node 

Properties: 
- Nodenr (OID) 
- Xcoordinate (value of x coordinate) 
- Ycoordinate (value of y coordinate) 
- Zcoordinate (value of z coordinate) 
- HasPlanAccuracy: PlanimetricAccuracy /* optional */ 
- HasHeightAccuracy: HeightAccuarcy /* optional */ 
- HasPlanLineage: PlanimetricLineage /* optional */ 
- HasHeightLineage: HeightLineage /* optional */ 

Operations: 
- Insert (Node) /* inserts a new instance of the class and enforces constraints: 
uniqueness */ 
- Retrieve (Node) /* retrieves an instance of the class */ 
- Delete (Node) /* deletes an instance of the class */ 
- Modify (Node) /* modifies instance of the class */ 
- Relation(P,Q) /* computationally determines topologie relationship between 
an existing instance of class Arc or this class and a new instance of the class 
*/ 
- consistencyCheck (Node) /* consistency check of an instance: no redundant 
node (single Z per pair of X & Y except at crossings, uniqueness of instance) 
*/ 

[9] Class: LineCross /* optional, not required for 3D metric space */ 

Properties: 
- Upperlcontainerld (ODD of higher 1-container object) 
- Lowerlcontainerld (ODD of lower 1-container object) 
- Crosspoint: nodenr (ODD of node where crossing occurs) 
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Operations: 
- InsertLineCross /* inserts a new instance of the class */ 
- RetrieveLineCross /* retrieves an instance of the class */ 
- DeleteLineCross /* deletes an instance of the class */ 
- ModifyLineCross /* modifies instance of the class */ 

7.2.3 Implementing the Prototype Object-Oriented Structure 

To implement the structure defined above, the classes would translate to abstract data types 
or modules or classes and the properties of each would be mapped onto the base types of the 
system to be used (e.g., Xcoordinate as double in a c++ based OODB system). If the system 
does not provide a complete set of base data types to cover all properties, the user can use 
the system's facility (if available) to provide user-defined types for the remaining properties, 
otherwise, some programming will be required to define them. The operations, as well as 
other operators and functions that will manipulate the user-defined types, must also be 
defined. 

The object-oriented implementation can be done in one of two ways (see Figure 1.2): (1) By 
using an extended relational (or object-relational) system (e.g., Postgres and Iris), often called 
"evolutionary approach" in which object-oriented features are added to the SQL features of 
the relational database model (see §2.4). In its simplest form, this is often done by some kind 
of simulation in which an object-oriented shell is built on top of a relational system, i.e., the 
SQL itself is not extended to accommodate object-oriented features as described in §2.4, 
instead, the SQL commands are packaged together as macro-commands and encapsulated 
within the object definition in the shell; the underlying structure of the database is therefore 
relational. This "layered approach" has the advantage of using the standard relational query 
language but the geographic data must submit to relational database constraints e.g., 
normalization). In the case of truly extended relational systems (e.g., Postgres), the system 
allows the definition of abstract data types and functionalities. The system itself can also be 
extended. For example, Postgres has been used to develop a research-oriented GIS prototype 
GEO++ (Vijlbrief and van Oosterom, 1992). (2) By using a "pure" object-oriented system 
(e.g., Smallworld and Ontos) or building one from the scratch by programming using an 
object-oriented programming language, e.g., C++ and Smalltalk; this is popularly referred to 
as the revolutionary approach. As stated in §2.4, a standard query language comparable to the 
SQL is not yet available, which makes a true object-oriented implementation difficult at the 
moment. Moreover, the object-oriented database management systems still have to prove their 
efficiency over the relational DBMS (Boursier and Faiz, 1993). 

Thus in this research, the structure will be tested in the extended relational database system 
Postgres which provides an evolutionary approach (with extended SQL) to object-oriented 
database implementation. In addition to other facilities, such as support for data of array type, 
the software supports some object-oriented modelling concepts to improve upon conventional 
relational DBMS. It supports object identity, multiple inheritance, operator overloading, user-
defined types and functions, support of set type (acceptance of a set of values as an attribute 
in a relation), versioning, user-defined rules, etc. (see §8.1.2.2). 



130 

7.3 Summary 

In this chapter, the conceptual data model for multi-valued vector maps (DMMVM) (see 
chapter 3) has been translated into two families of database structures, namely (1) relational 
database structure and (2) object-oriented database structure. 

The prototype relational database structure for multi-valued vector maps was designed using 
Smith's method for relational database design (Smith, 1985). The method comprises four 
steps, namely: (1) identification of data types and relationships in the application; (2) listing 
the single-valued and multi-valued dependencies among the data types as dependency 
statements; (3) translating the dependency statements to dependency diagram; and (4) 
composing normalised relations from the diagram. Using this method, a total of seven base 
tables have been developed for multi-valued vector maps. Additional thematic data of the 
objects can be introduced by creating extra tables for the thematic classes. Some experimental 
implementations carried out with the prototype indicate its usability for multi-layer spatial 
data modelling. The relational prototype can then be implemented in a relational system, or 
in an extended relational system. When used in an extended relational system in which a shell 
is built on top of a relational database, the relations can be implemented directly as base 
tables. If the system supports direct object-oriented queries through the extension of SQL, the 
proposed relations will translate to classes in which the attributes of each relation become the 
static properties of its corresponding class. 

For the object-oriented prototype, two classification lines (thus double inheritance) were 
distinguished for terrain objects, namely (1) thematic classification line for non-spatial aspects 
and (2) geometric classification line for geometric aspects of terrain objects. Attention was 
focused on the latter classification, which yielded a total of nine classes for the object-oriented 
data structure for multi-valued vector maps. The consistency rules and updating procedure 
proposed respectively in chapters 5 and 6 become operations (methods) of the classes. Also, 
the topologie relationships derived in chapter 4 are expected to be dynamically detected in 
the system by translating the proposed algorithms for detecting topologie relationship (also 
in chapter 4) into class methods. 
An experimental implementation of the object-oriented database structure is described in the 
next chapter. 
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8 

IMPLEMENTATION 

The translation of the DMMVM into two families of database structures was described in the 
last chapter. This chapter focuses on the implementation of the object-oriented data structure 
(see §7.2) using an evolutionary object-oriented(extended relational) DBMS. The objectives 
of the implementation are: 
(1) To test the use of the prototype database structure in the establishment of an integrated 
database using a combination of photogrammetric workstation (for data acquisition) and an 
object-relational (extended relational) system (for database management). 
(2) To verify the algorithms for consistency rules. 
(3) To verify the update propagation algorithms. 
To meet the stated objectives, the implementation was done in two main phases: 
(a) creation of an integrated database based on the object-oriented structure, including data 
acquisition by photogrammetric means, and verification of consistency rules, 
(b) database updating with automatic update propagation and consistency enforcement. 
The implementation platform and material resources used are outlined in the next section. The 
two parts of the experiment are described in §8.2 and §8.3 with an summary in §8.4 

8.1 Materials and System Configuration used for the Implementation 

8.1.1 Materials 

(1) A soil map of Goult, Southern France at scale 1:50000, published in 1978. 
(2) Near vertical aerial photographs of 1989 of the same region with a nominal focal length 
of 152mm and an approximate photo scale of 1:30000. The chosen test area is covered by two 
models. 
(3) Ground control points (X, Y and Z). 

8.1.2 System Configuration 

The system (hardware and software) configuration for the implementation is shown in Figure 
8.1. It consists of two parts: the data acquisition subsystem and the database management 
subsystem. 

8.L2.1 Data Acquisition Subsystem: 

This consists of the following specific hardware and software. 

Hardware 
(1) Planicomp C120 analytical photogrammetric stereoplotter 
(2) Zeiss VideoMap 
(3) Calcomp drawing board 
(4) Mirror stereoscope 
(5) Graphics plotter 
(6) Microcomputer with 80386 processor running on DOS 5.2 
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Figure 8.1 System configuration for the implementation 

As stated in chapter 1, a stereo-photogrammetric data acquisition method was chosen because 
it accounts for the most accurate and fastest data collection for high- and medium-resolution 
spatial databases (akin to large- and medium-scale mapping) and because of the background 
of the author. 

Software 
(1) Planicomp C120 orientation (inner, relative and absolute) software 
(2) Kork Digital Mapping System (KDMS) version 8.0 

8.1.2.2 Database Management Subsystem 

Hardware 
Hewlett Packard (HP) model 9000 series 700 running on HPUX 9.02 

Software 
(1) Postgres DBMS version 4.2 
(2) C compiler 

The Postgres database management system was chosen because it supports object-oriented 
concepts and rule management; it also has a query language, thus minimizing programming 
tasks required in the pure object-oriented approach. It is public domain research software, so 
information about it may be limited. A summary of the essential features of the software is 
given in the following subsection. 
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The Posteres Database Management System 

Postgres is a database research project from the University of California at Berkeley. It is an 
evolutionary object-oriented (extended relational) DBMS built on top of the Ingres relational 
DBMS. Its query language is called POSTQUEL. It runs on the following computers: Digital 
Equipment Corporation (DEC) computers based on MIPS R2000 and R3000 processors (under 
Utrix 4.2A and 4.3A), DEC based on Alpha AXP (DECchip 21064) processors (under OSF/1 
1.3), Sun Microsystems based on SPARC processors (under SunOS 4.1.3), Hewlett-Packard 
(HP) model 9000 series 700 and 800 based on PA-RISC processors (under HPUX 9.0x (x > 
0)), and International Business Machines (IBM) RS/6000 based on POWER processors (under 
AIX 3.2.5). Postgres has also been ported by users to many other architectures and operating 
systems, including NeXTSTEP, IRIX, Solaris 2.2, Linux and NetBSD. 

Terminal 
Monitor 
(Frontend 
user interface) 

LIBPQ 
frontend Advanced 

Programmer 's 

Interface) 

User Interface 

\Ma in server 
Postmaster 
communication 
manager) 

Backend 

Frontend Terminal Monitor: 
- user interface for postquel queries 

Postmaster: 
- communication between user's 

terminal monitor and Backend 
Backend: 
- database manipulation & management 

LIBPQ: 
- database queries from a C program 

Figure 8.2 Postgres DBMS architecture 

The system architecture of Postgres is illustrated with Figure 8.2. The architecture comprises 
three main parts: 

(a) The Postgres Backend which runs on the main server where Postgres and the databases 
reside. It manages and manipulates the database. One backend can host one or more 
databases. 

(b) The Postmaster which serves as the communication link between the front (user) end and 
the backend. Only one postmaster should run on one backend irrespective of the number of 
databases on that backend. 

(c) The Frontend Monitor and LIBPQ: These are the user interfaces. The monitor is used for 
interactive queries with Postgres using the Postquel query language. The LIBPQ is the 
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interface for a user who wishes to interact with Postgres through C (or C++) programming 
language; Postquel commands can be directly executed in the user's program using this 
interface. One or more frontends (running on the same or different servers) can communicate 
with the same backend (through a common postmaster). 

Postgres Data Model: 

Postgres' data model is based on the relational database model but extended with two main 
capabilities (Rowe and Stonebraker, 1987; Postgres Group, 1994): 
- object management capabilities 
- rule management capabilities 

Object management capabilities: 

Four basic object-oriented constructs were added on top of the conventional relational 
constructs: 

(a) Classes: 

The fundamental notion of Postgres is that of a class. A class is a named collection of objects. 
Each object, or instance, of a class has the same collection of named attributes, and each 
attribute is of a specific type (base type or instances of other classes). Each instance has a 
unique system-defined object identifier (oid). Classes can inherit data and functions from one 
or more other classes. 

(b) Inheritance 

In Postgres, a class can inherit from zero or more other classes (multiple inheritance) and a 
query can reference either all instances of a class or all instances of a class plus all of its 
descendants. The inheritance hierarchy is a directed acyclic graph. Functions defined for the 
parent class are also inherited. If an inheritance conflict occurs (when the same attribute name 
is inherited from more than one parent), the inheritance of that attribute is disallowed. When 
a function (or procedure) inheritance conflict arises, the system uses the function defined for 
the first parent of the class in its inheritance precedence list (IPL). IPL is a list of all the 
parents of a class constructed by the system. 

(c) Types 

The data types supported by Postgres are classified into three groups: 
- Base types which include int2, int4, float4, float8, bool, char, abstime, reltime, date, and 
postquel. 
- Abstract data types (ADT): These are user-defined arbitrary base types. They can be defined 
by specifying the type name, the length of the internal representation in bytes, procedures 
(functions) for converting from an external to internal representation for a value and from an 
internal to external representation. The procedures are coded in a conventional programming 
language, such as C, and defined to the system using the define procedure command. The 
user must also define the operators on ADTs (see functions). 
- Constructed types: These are the user-defined classes (classes are treated as data types also). 
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(d) Functions 

Functions are classified into three groups in Postgres: 
- Normal functions and procedures (programming language functions): Users can define an 
arbitrary collection of normal functions in a conventional programming language (e.g., C), 
apart from the predefined ones. Operands of a function can be any of the three Postgres types 
(i.e., base types, ADT's or classes). 
- Operators: Users can define new unary or binary operators which operate on any Postgres 
type, especially ADT. The creator of the operator becomes its owner. Operator overloading 
is supported. 
- Postquel functions (query language functions): A collection of commands in the POSTQUEL 
query language. A postquel function returns one or more instances of a class or one or more 
base types; thus Postquel functions are automatically constructed types (classes). They are 
useful for constructing composite types. 

Rule management capabilities: 

Postgres supports two rule systems: 
- Instance-level rule system which uses "markers" placed in each instance in a class to 
"trigger" rules. It is more efficient if there are many rules on a single class, each covering a 
small subset of instances. This is the default system. 
- Query rewrite rule system which modifies queries to take rules into consideration. It is more 
efficient when rules affect most of the instances in a class. 

8.2 Creation of an Integrated Database using the DMMVM 

A multi-valued spatial database, integrating a soil database (showing soil units and soil sample 
points) and a topographic database (showing major land uses and land cover types) was 
created based on the prototype object-oriented database structure described in §7.2. This 
aspect of the implementation consists of the following main phases: 
- The translation of the proposed database structure to the Postgres DBMS's data model. 
- The data acquisition phase using a photogrammetric workstation. 
- The creation and instantiation of classes using Postgres. 
- Checking data consistency. 
- Database query 
The second, third and fourth phases are illustrated with Figure 8.5 

8.2.1 Translation of the Object-Oriented Database Structure to Postgres Data Model 

For this implementation, the object-oriented database structure presented in §7.2 was mapped 
into the Postgres data model. The fact that the Postgres data model is based on the (extension 
of) relational model played a significant role in the translation process because some 
properties of a class can be derived through the relational join of two or more classes. Thus 
the 2-CONTAINER class was represented as the "twoCjd" property of the area (Areatype) 
class; the 1-CONTAINER class was represented as the "oneC_id" property of the line 
(Linetype) class and the 0-CONTAINER class was represented as the "zeroC_id" property of 
the pointf class (named pointf to avoid a conflict with the Postgres base type point). Three 
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new classes were created: pointnode, accuracy and lineage. The pointnode class was created 
to explicitly represent the POINTINAREA (see Figure 7.4) association between 0- and 2-
containers and to store the node identifier of the 0-containers. The accuracy and lineage 
classes were created from the node class to reduce data redundancy because most of the 
nodes will have the same accuracy and lineage, having been digitized with the same 
instrument and by the same human operator. 

The mapping produced the nine classes shown in Table 8.1. The properties of each class were 
mapped into base data types in Postgres and class methods were defined as Postquel or C 
functions (see Appendix 1.2). 

Table 8.1 Creation of classes in Postgres 

Class Name Properties Base type Description of Property 

area 

line 

pointf 

twoCjd 
aobjid 
layer 
aname 
aclass 

oneC_id 
lobjid 
layer 
lname 
lclass 

zeroC id 
pobjid 
layer 
pname 
pclass 

int4 
int4 
charlô 
charló 
text 

int4 
int4 
charló 
charló 
text 

int4 
int4 
charló 
charló 
text 

pointnode zeroC 

twoC 

pnode 

int4 

int4 

int4 

identifier of the area object's 2-container (nonnull) 
identifier of the area object (nonnull) 
name of the map layer of the object (nonnull) 
geographic name of the object 
the thematic attribute class of the object (nonnull) 

identifier of the line object's 1-container (nonnull) 
identifier of the line object (nonnull) 
name of the map layer of the object (nonnull) 
geographic name of the object 
thematic attribute class of the object (nonnull) 

identifier of the point object's 0-container (nonnull) 
identifier of the point object (nonnull) 
name of the map layer of the object (nonnull) 
geographic name of the object 
thematic attribute class of the object (nonnull) 

identifier of each (unique) 0-container in pointf class 
(nonnull) 
identifier of the 2-container that topologically con
tains the 0-container (value = 0 if none) 
identifier of the 0-container's node (nonnull) 

arc 

node 

arc_id 
snode 
enode 
lftTwoC 
rgtTwoC 
aOneC 

node id 
xcoord 

int4 
int4 
int4 
int4 
int4 
int4 

int4 
floatö 

identifier of an instance (nonnull) 
start node of the instance (nonnull) 
end node of the instance (nonnull) 
identifier of 2-container on its left (nonnull) 
identifier of 2-container on its right (nonnull) 
identifier of 1-container which the arc is part of (null 
or 0 if it represents only boundary of area) 

identifier of a node (nonnull) 
x coordinate (nonnull) 



linecross 

accuracy 

lineage 

ycoord 
zcoord 
ac_id 
lin_id 

upperlC 
lowerlC 
crosspt 
lower_H 

ac_id 
pl_acc 
ht_acc 

lin_id 
pl_lin 
ht lin 

floatë 
float8 
int4 
int4 

int4 
int4 
int4 
float8 

int4 
float4 
float4 

int4 
text 
text 
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y coordinate (nonnull) 
z coordinate (nonnull) 
identifier of the accuracy of the object 
identifier of the object's lineage 

identifier of upper 1-container (nonnull) 
identifier of lower 1-container (nonnull) 
node id of crossing point (nonnull) 
z coordinate of lower 1-container (interpolated from 
heights of the two adjacent nodes of the 1-container) 

identifier of the instance 
value of planimetrie accuracy 
value of height accuracy 

identifier of the instance 
lineage of planimetrie coordinates 
lineage of height coordinates 

Some of the class operations can be handled by simple queries (e.g., insertion and retrieval 
of instances of a class) using the Postquel query language without necessarily defining them 
as functions. However, the operations that are constantly required and the complex ones (e.g., 
geometric consistency enforcement) were defined as functions (see the list and descriptions 
of the functions in Appendix 1.2). The functions include those required for monitoring and 
enforcing data consistency and those required for update propagation; they were based on the 
algorithms presented in chapters 5 and 6. 

Multl-valMd data acquisition 
[tenen oTglttdnp. photogr.. etc) 

Data acquisition per map layer 
(mop dglUzIng, photogramm.,) 

8.22 Data Acquisition 

Data acquisition for a multi
valued database can be made in 
one of two ways, as shown in 
Figure 8.3. The first procedure 
is to digitize each map layer 
separately, in the format of the 
mapping software, and then 
perform map overlay of all the 
layers. The output of the map 
overlay can then be structured 
in the format of the DMMVM 
(see Chhatkuli, 1993 for a deta
iled example using Arc/Info). 
This approach requires less 
preparation compared with the 
second method and is easier to 

implement in any existing system. However, it will require more editing (e.g., removal of 
spurious polygons and sliver Unes) and consistency checks (e.g., checking for compatibility 
among objects that are spatially coincident; a lake and a football field may not overlap for 
instance) during and after the overlay operation. Moreover, if the mapping software has no 

Figure 8 3 General procedure for multi-valued data 
collection 
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map overlay facility, then an extra third-party software (acquired or developed by the user) 
is required, thereby increasing the overhead cost. 

In the second approach, data acquisition is made in multi-valued mode. This requires more 
extensive planning than the separate digitizing approach. A compilation guide has to be 
prepared during the planning phase, incorporating all the map layers including the annotation 
and identification (coding) of all m-containers (m € {0,1,2}). The compilation of the multi
valued map can then be done by cartographic digitizing, screen (head-up) digitizing (if all 
boundary lines of objects can be identified) and stereo-photogrammetry, using "optical 
overlay" by superimposition if necessary. This method minimizes the editing task because 
problems of sliver lines and spurious polygons are dealt with during data collection. In 
addition, no extra overlay software is required since map overlay is not involved. On the basis 
of our experience during the data collection phase, it is believed that this method will become 
more labour-intensive and less cost-effective as the number of map layers increases, especially 
in a large project because of the extensive preparation work required. 

The choice of approach will therefore depend on the size of project area, number of layers 
to be integrated and the system configuration (hardware and software) that is available for 
data acquisition. For a large mapping project or many map layers or both, it appears that the 
first approach will be more feasible; the structural and semantic consistency of the overlay 
result can then be checked as described in chapter 5. Conversely, for a limited number of map 
layers and not too large project area, especially in the absence of a system with map overlay 
capability, the second approach can be used. Obviously, there is still the need to properly 
investigate the cost-benefitsof the two approaches to guide in the selection of the appropriate 
one. 

In database updating, the data can be collected per layer and the objects input into the 
database using the updating procedures proposed in chapter 6. 

The second approach was chosen for this implementation mainly to test the approach (the first 
being the common practice though the overlay result is usually not structured). 
The data acquisition phases for this implementation are summarised in the following sections. 
More details can be found in the work of Essayah (1994). 

8.2.2.1 Preparation 

Two map layers - a topographic layer showing major land use and land cover types to be 
derived from aerial photographs and a soil layer to be derived from a soil map - were selected 
for this experimental implementation. A test area of approximately 5 km by 5 km, covered 
by two stereo models, was chosen in the Goult region of southern France on the basis of the 
availability of raw data (photographs with ground control points and a soil map). The 
following tasks were performed in preparation for data collection: 

- The table digitizer (Calcomp drawing board) to be used for initial digitizing of the soil map 
and the stereoplotter (Planicomp C120 with Zeiss Videomap superimposition system) were 
coupled for the actual 3D compilation of both map layers. The Kork-KDMS was already 
installed on a PC and linked with the Planicomp. 
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- Checking of the Planicomp C120 using the system's calibration program. 

- Preparation of the photographic materials and control data of the chosen area, including 
marking the control and tie points on the photographs. 

- Preparation of the compilation guide. This includes the selection, classification and 
annotation of terrain objects of interest (to form the topographic layer) on the photographs 
using mirror stereoscope and the manual overlay of the two layers on a transparency. The m-
containers were then identified on the transparency and used as a guide during the stereo-
compilation. 

- Formulation of a coding system to facil
itate collection of explicit topologie infor
mation during stereo-compilation. The data 
structure of the Kork system (see Kork, 
1992) was designed mainly for computer-
assisted mapping without adequate support 
for topologie data acquisition. Map details 
are collected as (aggregates of) strings (a 
string is a chain of straight-line segments 
used for the representation of polygon boun
daries and line objects), symbols (for point 
objects and map symbols) and annotation 
(for place names, etc). Each string repres
ents a single object in Kork and is assigned 
the code of the object. Since we are wor
king in 2D topologie space, each string does 
have a polygon on the left and a polygon on 
the right and may represent a linear object. 

Thus a different coding scheme was devised 
for the strings in order to digitize the strings 
in an approximate topologie format. This 
coding format (see Figure 8.4) was derived 
from the combination of Kork's colour code 
and feature code for strings (see Table 8.2 
for a sample output in Kork's format) as 
follows. A Kork manuscript contains 12 
fields per record (Kork, 1992) where field 1 
represents the nature of the point (whether 
part of string, STR, or single point, SYM, or annotation, ANN), field 2 represents the string 
number, field 3 represents the sequential number of the points in a string, field 4 the total 
number of points in the string, field 5 the X coordinate, field 6 the Y coordinate, field 7 the 
Z coordinate, field 8 the rotation angle of symbols and annotations, field 9 the pen status (0 
for pen up and 1 for pen down), field 10 the colour code, field 11 the feature code of the 
terrain object represented by the string (negative value means permanent feature and positive 
means temporary feature), and field 12 represents the line code. Kork allocates one digit (U 
e {1,2,..,9}) for the colour code and a 2-byte integer (with five digits VXXYY) for the 

L E G E N D +12: 2-Container identifier 

24:1-Container identifier 

#57: String number 

Assuming we digitize string #57 from left to 

right, the feature code for the string Is 

241314 
j — Identifier of 2-oontainer on the right 
I Identifier of 2-oontainer on the left 

Identifier of the 1-container 

Figure 8.4 Example of feature coding during 
digitizing, for automatic topology building. 
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feature code. By concatenating the two codes, a six-digit code (UVXXYY) can be derived in 
which the first (left justified) two digits (UV) are used as an integral colour code and 1-
container identifier, i.e., the colour code is synchronised with the 1-container identifier. By 
facing the direction in which the string is being digitized, the next two digits (XX) contain 
the identifier of the 2-container on the left side of the string while the last two digits (YY) 
contain the identifier of the 2-container on the right side of the string. Each string will 
therefore be digitized only once. For example, string number 510 (having nine points) in 
Table 8.2 has colour code 6 and (permanent) feature code -10735 which, in our coding 
method, translates to code 610735, meaning that the string is part of the 1-container with 
identifier 61, has 2-container with identifier 7 on the left and 2-container id 35 on the right. 

This coding scheme, due to the limitation of the Kork system (version 8.0), constrains the 
maximum number of 2-containers to 99 and the maximum number of 1-containers to 27. This 
was more than adequate in our implementation but another coding device must be designed 
for a very large project area with high density of different terrain objects. This constraint can 
be overcome by using one of the following feature coding methods: 

(a) By using digitizing software that supports 4-byte integer for feature codes, thereby 
increasing substantially the number of 1- and 2-container identifiers that can be coded. In the 
Kork system, this can be done by changing the computer length (from 2-byte to 4-byte 
integer) of the feature code in the source program (in collaboration with Kork). 

(b) After preparing the compilation guide, all the m-containers, m e {0,1,2} are assigned 
unique identifiers. Then, a look-up table (LUT) of feature codes is defined. The LUT will 
consist of four fields per record, each field being a 4-byte integer long. Each record will then 
contain the topologie information of each string as follows (the order can be rearranged): 

. field #1: the string number (this should tally with the feature code assigned to the 
string during digitizing and serves to relate the LUT strings with the coordinates of 
the strings in the system) and must be non-null if other fields have values, 
. field #2: the identifier of the 2-container on the left side of the string (non-null), 
. field #3: the identifier of the 2-container on the right side of the string (non-null), 
. field #4: the identifier of the 1-container which the string is part of. If the string does 
not represent a 1-container, then a value 0 is recorded. 

This LUT can be filled up in one of two ways: 

(i) During digitizing, the operator enters information about each string as a record of the LUT. 
As he digitizes the string, the same feature code entered in the system for the string is also 
recorded as the first field of the string's record in the LUT, and the 1- and 2-container 
identifiers are also recorded in their respective fields as indicated above. If the system permits 
intervention and temporary transfer of control, this recording can be done on the system, 
otherwise it has to be done on paper. The actual assignment of the 1- and 2-containers to the 
strings will then be done during the data conversion phase using a computer program. This 
method requires less effort during the preparation phase (strings do not have to be pre-coded) 
but has the disadvantage of slowing down the operator. 

(ii) The strings are also coded and annotated on the compilation guide like the m-containers. 
The LUT can then be filled up for all strings before the digitizing process. During digitizing, 
the operator will then enter the corresponding string number on the LUT as the feature code 
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of the string being digitized. As in the first method, the LUT will be related to the strings' 
coordinate information during data conversion and formatting. This method requires less effort 
by the operator during digitizing but more work is involved in the preparation phase. Coding 
errors and string omission can also be more easily checked in this approach. 

8.2.2.2 Data Collection 

The major data collection operations consist of the tasks shown in the upper part (above the 
dashed line) of Figure 8.5. and are outlined in the following: 

- The soil map of the chosen test area was initially digitized in "spaghetti" format on a 
Calcomp drawing board using the Track module of the Kork system. Boundary lines of soil 
units (as area objects) and sample points (as point objects) were digitized with approximate 
height (average elevation of the area) to reduce shift between the digitized map layer and the 
stereo model of the topographic layer during superimposition. Collection of all line objects 
appearing on the soil map was deferred till the stereo compilation of the topographic layer 
since they occur on the photographs which are more recent than the soil map. 

- The second map layer, the topographic map showing major land uses and land cover types, 
was derived from two stereomodels of the same area covered by the soil map layer. The first 
model was set up and oriented for digitizing in multi-valued mode on the Planicomp CI20 
using the 3D Track module of the KD MS. Through the videomap, the digitized soil map was 
superimposed in another colour on the stereomodel, thus facilitating a combined (multi
valued) stereocompilation of the two map layers. Every closed polygon on the stereomodel 
becomes (part of) a 2-container representing a certain soil unit in the soil map layer and a 
certain area object in the topographic map layer. Likewise, line and point objects are mapped 
into component 1-containers and 0-containers, respectively. Using the compilation guide 
prepared during the preparation phase and the devised feature coding system, the 1-containers 
and boundaries of the 2-containers were digitized as strings while the 0-containers were 
digitized as symbols. The identifier (code) of the 2-container topologically containing the 0-
container being digitized was assigned as a symbol code (user defined), while the symbol 
number (system generated) served as the identifier of the 0-container. Snapping functions are 
provided by the software to snap onto an already digitized node. 

A check plot of the manuscript was then made followed by editing before changing the 
model. The editing phase took care of some consistency checks which are within the 
capabilities of Kork. These include undershoot and overshoot errors. The second model was 
digitized using the same procedure. The two models were then combined with the Merge 
command of Kork. The hard copies of the two map layers and the multi-valued map are 
shown in Figures 8.6 (soil map layer), 8.7 (topo map layer) and 8.8 (the multi-valued map). 
The maps were plotted by the Plothp program of Kork. The multi-valued digital map was then 
converted to an ASCII file in the Kork output format (.LST) using the PTLIST command. 
Table 8.2 shows a sample of the output. 
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2D Digitizing of Soil Map Digital Manuscript of 

Soil Map 

Orientation of stereomodel & 
superimposition of soil layer 

3D (stereo) digitizing of main 
topographic features & the 
boundaries of soil units 

3D manuscript of integrated, 
soil and topographic layers 

Editing and ascii file generation 

check plot 

Ascii output of multivalued 
digital map in Korte's format 

Conversion to DMMVM 
(topologie) format 

Database creation and 

instantiation of classes 

inPostgres 

Integrated Soil and Topographic 

Database 

Figure 8.5 Procedure for creating the integrated topographic and soil database 
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Coordinate output for file: MWMGL 

Kork Digital Mapping System Data File 

File Name: MWMGL 
Manuscript Name: 

Operator: KORKTRÄN 

Project 
Project 
Model 

! Number 
! Number 

STR 
SIR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
STR 
1 
1 

Date: 29-AÜG-94 
Number: 

Name: Qoult 
Number: 62/64/66 

of centroids is 16 Next unused 
of s trings 

X coordinate 
Y coordinate 

504 
504 
504 
504 
504 
504 
504 
504 
504 
504 
508 
508 
510 
510 
510 
510 
510 
510 
510 
510 
510 
513 
513 
513 
515 
515 
515 
1 
2 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 
2 
1 
2 
3 
4 
5 

e 
7 
8 
9 
1 
2 
3 
1 
2 
3 
1 
3 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
2 
2 
9 
9 
9 
9 
9 
9 
9 
9 
9 
3 
3 
3 
3 
3 
3 
i 
4 

is 389 

range is from 
range is from 

836468.778 
836185.333 
836112.889 
836066.444 
835952.333 
835849.667 
835664.111 
835566.778 
835511.444 
835463.444 
835463.444 
835403.889 
835403.889 
835365.667 
835304.667 
835164.111 
835025.667 
834945.778 
834908.444 
834886.333 
834877.111 
835388.333 
835471.444 
835463.444 
835463.444 
835408.222 
835344.444 

i 
5 

832025.6 
173725.7 

177764.000 
177715.333 
177702.333 
177689.222 
177649.667 
177612.889 
177547.333 
177508.778 
177474.889 
177438.333 
177438.333 
177386.444 
177386.444 
177359.556 
177329.889 
177272.333 
177217.556 
177184.333 
177164.444 
177152.778 
177142.889 
177529.111 
177474.778 
177438.333 
177438.333 
177462.111 
177491.778 

i 
6 

to 
to 

160 
166 
167 
168 
168 
162 
161 
163 
162 
162 
162 
161 
161 
161 
160 
156 
154 
152 
152 
150 
150 
167 
162 
162 
162 
162 
173 

1 
7 

STR record 

837662.9 
179669.8 

89 
89 
44 
00 
00 
89 
00 
11 
00 
56 
56 
89 
89 
67 
56 
56 
56 
89 
67 
67 
67 
11 
11 
56 
56 
78 
44 

1 
8 

Ls 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 

1266 

6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10707 
6-10735 
6-10735 
6-10735 
6-10735 
6-10735 
6-10735 
6-10735 
6-10735 
6-10735 
5-10735 
5-10735 
5-10735 
7-13535 
7-13535 
7-13535 

11 1 
9 10 11 

600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
600 
500 
500 
500 
700 
700 
700 
1 
12 

8.23 Creation of the Integrated Database 

This phase involved the instantiation of the database and consistency checks. Before 
instantiating the classes, the ASCII output of the Kork manuscript was converted to the format 
of the DMMVM. 

8.23.1 Conversion of the Kork output to DMMVM format 

With the aid of the devised feature coding method, the output of the data acquisition phase 
contains the necessary topologie information, with each string carrying information about the 
2-containers on each side and the 1-container which it is part of (this value will be 0 if the 
string is not part of any 1-container). Although the snapping function was used during 
digitizing, the software still recorded the coordinates of the common point for each string in 
which the point occurs. On the other hand, the DMMVM format treats each line segment as 
an arc (thus all points as nodes), and coordinates of a node, irrespective of the degree of the 
node, must be recorded once. A conversion program was therefore developed to map the Kork 
output into a format that is compatible with the DMMVM such that each point became a 
node, duplicate nodes were eliminated and each line segment became an arc, each arc having 
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' Legend: 

River 

Road 

Boundary 

1 -Litte weathered noncllmatic 
mineral soils 

II -Slightly developed 
noncllmatic soils 

V -Calclmagneslc soils 
VII-Brown-earth soils 
IX -Iron-sesquiexlde-rich soils 
XI -Hydromorphic soils 
C -Complex units and associations 
S -Settlement 

Figure 8.6 The soil map of Goult 
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Legend: 
Railway 

River 

RnMd 

Boundary 

m 
M 
| M L | 

M 

Forest 

Farm-Land 

Mixed foresVfarm-land 

Settlement 

Figure 8.7 Topographie map of Goult showing major features 
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Legend: Railway 

River 

Road 

Polygon Boundary 
Number (e.g., 68) represents 2-container id. 

Figure 8.8 Multi-valued vector map of Goult showing soil units and land use/ land cover 
types 
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a unique arc identifier, a start and an end node, the identifiers of the 2-containers on its sides, 
and the identifier of the 1-container which the arc is part of. By ensuring uniqueness of each 
arc and each node during the conversion process and converting each line segment to an arc, 
the four geometric primitives constraints (GP_Rule_i, i = 1,4, see §5.1.1) were automatically 
enforced. 

8.23.2 Database Creation 

After creating a database (called Goult) in Postgres using the createdb command, the nine 
classes (see Table 8.1) representing the multi-valued vector map were created using Postquel's 
create command. The output of the format conversion program described above was then 
copied into the arc and node classes using the Postquel copy command. The other classes 
were also instantiated. Some instances of the nine classes are shown in Appendix 2. 

8.2.4 Consistency Checks 

Although a lot of care was taken during the data acquisition phase to ensure geometric 
consistency and some data consistency rules were enforced during the editing and format 
conversion phases, it is still essential to check the structural consistency of the database after 
its creation because of the limitations of the data acquisition software (e.g., lack of provision 
for node snapping in 3D) and because some inconsistencies may have been introduced during 
data conversion and, indeed, some may escape detection during the editing phase. This will 
also verify the effectiveness of the consistency rules. Thus the following consistency rules 
were monitored and enforced after creating the database: 

(a) Consistency rules for the geometric primitives. Postquel functions checkArcLoopO, 
checkRedArcO and checkDupArc() (see Appendix 1.2) were used to monitor the consistency 
of the geometric primitives. No violation was detected at this level because line segments 
were automatically treated as arcs, all points as nodes and redundant arcs and nodes were also 
eliminated during the data conversion. 

(b) Consistency rules for the m-containers. The consistency rule for O-container was checked 
by simple query. The consistency rules for 1-containers (lCC_Rule_l) and 2-containers 
(2CC_Rule_l) were monitored using the function mCgraph() (see Appendix 1.2). The function 
checks the degree of each node of a subgraph (the input subgraph can be the geometry of a 
line object, area object, 1-container or 2-container) and reports the node of the subgraph that 
has an incorrect degree. 

The function was used to check the rule lCC_Rule_l for each of the 1-containers in the 
database. It found a violation of the rule for one 1-container (with oneC_id 91) in which there 
was a vertical gap (two adjacent interior nodes have the same x and y coordinates but 
different z values). The violation arose because the height tolerance value set in the program 
for node snapping in height was too small compared with the measuring precision of the 
(inexperienced) human operator (the data acquisition software (KDMS)'s snapping function 
works only in 2D). The mean height of the two nodes was then taken as the most probable 
value and one of the two nodes was deleted while redefining the node identifiers of the two 
affected arcs. 
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The function mCgraph() was then used to check the 2CC_Rule_l for all the 2-containers in 
the database. There was no violation of the constraint. However, to ascertain the effectiveness 
of the function (and thus the algorithm), one arc was manually removed to create a gap in the 
boundary polygons of two adjacent 2-containers and the function activated again. This time 
the two 2-containers were returned as violating the structural constraint for 2-containers. 
Because of the absence of an on-line graphic facility in Postgres as installed, it was possible 
to retrieve the arc(s) and node(s) in error only in alphanumeric form for examination and 
editing. 

(c) Consistency rules for the elementary objects. The same function mCgraph() was used to 
check the graph consistency of individual line and area objects in the database because an m-
container is topologically isomorphic to an n-dimensional object where m = n. Note, however, 
that the input geometric data into the functions will be different except when, for instance, 
a 1-container represents only one line object. The topology of each elementary object was 
consistent most probably because consistency has been enforced at the lower levels (m-
containers and geometric primitives). 

(d) Euler constant for planar maps. The algorithm for checking the planar enforcement of the 
database (see §5.1.3) was translated to a Postquel function. As indicated in §5.1.3, the return 
value of the algorithm should equal the number of component graphs if the map is consistent. 
When the function was administered on the Goult database, we had: 

v = 1988, e = 2063, f = 80 
thus E = 1988 - 2063 + 80 - 1 = 4 
Relating the value to the hardcopy of the database in Figure 8.8, it is true that there are four 
component graphs in the map because 2-containers 11, 55 and 57 are disconnected from the 
others (none of the nodes defining each of the three subgraphs can be reached from any other 
nodes except from those defining the subgraph). Thus they form three additional component 
graphs (the fourth is the main map minus the three). The result proved the planar enforcement 
of the map and the effectiveness of the algorithm. 

To graphically compare the database after the consistency monitoring operations with the 
output of the Kork software (before database structuring), a perspective view of the database 
was produced (see Figure 8.9). The isolated point objects are not shown because the 
visualisation program was designed only for connected lines. A comparison of this map with 
Figure 8.8 further confirms the consistency of the database. Figures 8.9, 8.10, 8.11, 8.12 and 
8.13 were produced mainly by the PC-based 3D visualization software (Pilouk 1993) and 
Grasp version 4.0 (Bridges 1991). 

To maintain data integrity during subsequent updating of the database, the rules listed in 
Table 8.3 were defined to guide against invalid insertion to and deletion from the database 
classes. Two examples are given below. 

(1) /* if new node coincides with existing node within the defined tolerance, the system 
rejects the insertion */ 

define rule node_rule_2 is 
on append to node 
where float8abs(new.xcoord - node.xcoord) <= 0.02 and 
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float8abs(new.ycoord - node.ycoord) <= 0.02 and 
float8abs(new.zcoord - node.zcoord) <= 0.03 
do instead nothing \g 

(2) /* for any arc, arc_id, snode, enode, lftTwoC, rgtTwoC must be nonnull nor zero */ 

define rule arc_rule_3 is 
on append to arc 
where new.arc_id ISNULL or new.snode ISNULL or new.enode ISNULL or new.lftTwoC 
ISNULL or new.rgtTwoC ISNULL or new.arc_id = 0 or new.snode = 0 or new.enode = 0 or 
new.lftTwoC = 0 or new.rgtTwoC = 0 
do instead nothing \g 

Table 8.3 Data integrity rules defined in Postquel 

Name of Rule Target Class Description of Rule 

area_rule_l 

area rule 2 

line_rule_l 

line rule 2 

point_rule_l 

point_rule_2 

lcrossrule 1 

area Disallows values of the properties twoC_id, 
aobjid, layer and aclass of the Area class from 
being NULL or zero 

area Enforces that a new instance of Area class is not 
assigned the identity of an existing instance of 
that class 

line Ensures that values of the properties oneC_id, 
lobjid, layer and lcass of the Line class are not 
NULL or zero 

line Ensures that a new instance of the Line class is 
not assigned the identity of an existing instance 
of that class 

point Ensures that values of the properties zeroCjd, 
pobjid, layer and pclass of the Pointf class are 
not NULL or zero, and that the new instance is 
not assigned the identity of an existing instance 
of the same class 

point Ensures that values of the properties zeroC and 
pnode of the Pointnode class are not NULL or 
zero and that the new instance is not assigned the 
identity of an existing instance of the class; in 
addition, the new instance must exist in the po
intf class 

linecross Enforces the condition that the values of the 
properties upperlC, lowerlC and crosspt of the 
Linecross class are not NULL or zero; and that 
the upperlC and lowerlC must exist in the Line 
class 
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node_rule_l node Enforces that the property node_id of a new 
instance of the Node class is non-null or zero 

node_rule_2 node If new instance of the Node class spatially coin
cides with an existing instance of the class within 
defined tolerance, the new node object is not 
inserted 

node_rule_3 node If a new Node object is mistakenly assigned an 
existing node_id property value, the insertion 
should be rejected 

node_rule_4 node Enforces that a shared Node object cannot be 
deleted until it is no longer required 

arc_rule_l arc Ensures that if a new Arc object has equal values 
for the lftTwoC and rgtTwoC properties, then the 
value of the property aOneC should not be 0 

arc_rule_2 arc Enforces that the values of the properties snode 
and enode of a new Arc object are not equal (the 
arc forms a loop if they do) 

arc_rule_3 arc For any Arc object, values of the properties 
arc_id, snode, enode, lftTwoC, rgtTwoC must be 
nonnull nor zero 

arc_rule_4 arc If a new Arc object is mistakenly assigned the 
arc_id value of an existing instance, the new arc 
should be rejected 

arc_rule_5 arc Ensures that an Arc object is deleted only when 
the values of the properties lftTwoC = rgtTwoC 
and aOneC = 0 

These rules are used in combination with the consistency rules for geometric primitives 
(GP_Rule_l to GP_Rule_12, see Table 5.1) which are implemented in C programming 
language (see Appendix 1.2). 

8.2 J Query Example 

Having ensured data consistency, we can then query the database. An example of a topologie 
query involving the two map layers which would have necessitated map overlay during the 
query is given here. The query was: 
> Select all farmlands that have calcimagnesic soil type 
This query requests all area objects belonging to area class "farm_land" (from the topo layer) 
and have instances of area class "calcimagnesic_soils" (from the soil layer). The geographic 
names of the farmjand objects and the soil units are required in addition to a graphic output 
of the objects. The alphanumeric result of the Postquel query is shown in Table 8.4 while 
Figure 8.10 shows the selected objects. 



twoC id 
2 
4 
6 
8 
11 
12 
14 
28 
32 
39 
46 
55 
64 
73 
74 

Farmname 
FL1 
FL1 
FL2 
FL1 
FL3 
FL1 
FL1 
FL1 
FL1 
FL1 
FL1 
FL5 
FL1 
FL7 
FL7 

Soilname 
V22 
V22 
V22 
V21 
V22 
V22 
V22 
V22 
V22 
V23 
V23 
V24 
V25 
V26 
V26 
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8.3 Examples of Database Up- Table 8.4 All farmlands that have calcimag-
dating Operations nesic soil type 

To verify the updating algorithms presented 
in chapter 6, four examples of database 
updating operations were performed on the 
created database, as described below. In line 
with the proposed procedures for automated 
database updating (see chapter 6) while 
enforcing geometric consistency (see chapter 
5), the algorithms for inserting a new geom
etric primitive (node or arc) were translated 
into C functions (see Appendix 1.2). The arc 
insertion function (InsarcO) calls other 
functions which computationally detect the 
existing topologie relationship between a 
new arc and an existing primitive (arc or node). The return value of the function activates the 
function that enforces consistency. For example, if InsarcO detects relationship r287(new arc, 
old arc) (i.e., meet) the function Alternode() will be activated to assign correct values for the 
properties (left and right 2-containers, 1-container id and the start and end nodes) of the new 
arc. These functions are then used for inserting a new object (point, line or area). One 
example of each is given here to illustrate the insertion of point, line and area objects using 
these functions. Before the insertion examples, an example of a delete operation is given. 

8.3.1 Example of a Propagated Delete Operation 

To give an example of the automated update propagation algorithms for delete operations, the 
algorithm for deleting a line object (Delete_Line algorithm, §6.2.4) was translated to a 
Postquel function. The following query was then executed with the function: 

> Delete line object "railway 1" from layer "topo" 

Figure 8.9 shows the graphic representation of the database before the query was run. Figure 
8.11 shows the graphic representation of the database after the update propagation while 
Appendix 3 shows the instances of the Line and Linecross classes after the deletion. 

8.3.2 Example of a Propagated Point Insertion Operation 

The Insert_Point algorithm (see §6.2.4) was translated to a C function and used to insert a 
new point object having the following properties: 

Object Identifier: 79, Layer: Topo, Geographic name: gpsstationl, Thematic class: 
geodetic controls, xcoord: 834402.022, ycoord: 176596.472, zcoord: 215.325. (The point has 
the same lineage and accuracy as the original dataset.) 

At the end of the update operation, relation r092(2-container, new node) was detected and the 
program assigned the identifier of the 2-container (7) as the value of the twoC property of the 
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object in class Pointnode. A new node number was assigned as the value of the pnode 
property of the object and a new O-container identifier for properties zeroC_id in class Pointf 
and zeroC in class Pointnode. Appendix 4 shows some instances of the Pointf, Pointnode and 
Node classes after the insertion. 

8.3.3 Example of a Line Insertion Operation. 

As an example of a line insertion operation, the geometry of the deleted railway 1 was 
modified and reinserted into the database. The line object's data, including its new geometry, 
now with eight line segments instead of the previous 22, is shown in Appendix 5A. The 
algorithm InsertJLine (see §6.2.4) was translated into a C program. The program makes use 
of the InsarcO function. Each line segment of the line object was inserted as an arc. The 
program generates the Postquel function that appends the new and modified geometric 
primitives into the database while deleting the obsolete ones. Appendix 5B shows the 
instances of the Line and Linecross classes and some instances from the Arc and Node classes 
after inserting the new railway. The perspective view of the database after the insertion is 
shown in Figure 8.12. 

8.3.4 Example of an Area Insertion Operation 

To test the algorithm for inserting an area object, one area object with the locational and 
attribute data as shown in Appendix 6A was inserted into the database. It was assumed that 
the object will displace the existing area objects of the same layer that it (partially or fully 
) overlaps (if this is a full, overlap, the existing object will cease to exist, and for partial 
overlap, the existing area object's size will be reduced). Because of the absence of an on-line 
graphic display facility in Postgres, the insertion was done in two stages. First each line 
segment of the new object was inserted, one at a time (the program actually checks and 
enforces all the geometric primitives rules, see Table 5.1, and writes the result into a Postquel 
command macro file which is then used to update the database in the next stage), using the 
InsarcO function, and the existing arcs located in the interior of the new area object were 
detected by running the Ptin2c() function. The InsarcO function displays the identifiers and 
names of the existing area objects which the new object overlaps for the user's decision on 
compatibility (semantic consistency) and a prompt to continue or stop the updating operation. 
Figure 8.13 shows the graphic representation of the database after the insertion with the new 
area object (now decomposed into two 2-containers in black and red colours at the top right 
corner of the map). The relevant instances of the new object in the Area, Arc and Node 
classes are shown in Appendix 6B. 

8.4 Summary 

This chapter described the test implementation of the object-oriented data structure for multi
valued vector maps presented in §7.2 using the extended relational (evolutionary object-
oriented) database management system Postgres version 4.2. Data acquisition was done with 
a Planicomp C120 photogrammetric stereoplotter equipped with a Zeiss Videomap (for 
superimposition) and a Calcomp drawing board digitizer. The stereo-compilation was done 
with the aid of the Kork digital mapping system version 8.0. 
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The implementation aimed at three objectives: (1) to illustrate the usage of the proposed data 
structure for multi-valued vector maps (see chapters 4 and 7), (2) to test some of the 
consistency rules presented in chapter 5 and (3) to test some of the updating algorithms (see 
chapter 6). Without loss of generality, the data structure was tested with two map layers: a 
soil map layer and a topographic map layer showing major land use and land cover types. The 
geo-data from the soil layer were initially digitized on a Calcomp drawing board. The digital 
manuscript was then superimposed on the stereo-model which contained the geo-data of the 
second layer. The superimposition resulted in the intersection of the two layers such that 
closed polygons became 2-containers (representing (part of) a certain area object in the soil 
layer and (part of) an area object in the topographic layer), line objects were decomposed into 
1-containers and point objects became O-containers. Thus the two layers were compiled in 
multi-valued mode. 

A method was designed to assign a feature code to each string (an aggregation of connected 
line segments representing (part of) a certain line object or boundary of an area object) such 
that the code contains the identifier of the 1-container represented by the string (or zero if 
none) and the identifiers of the 2-containers on its sides. The coding method was devised by 
combining the colour and feature codes of a string in which the colour code, concatenated 
with the first (left justified) digit of the feature code represents a 1-container identifier, the 
next two digits of the feature code represent the identifier of the 2-container on the left side 
of the string and the last two digits of the feature code represent the identifier of the 2-
container on the right. A more general coding method was proposed in the chapter whereby 
a look-up table (LUT) is prepared before digitizing. The LUT, containing four fields per 
record, will then store the string identifier as one field, the identifier of the 2-container on the 
left side of the string as the second field, the 2-container on the right as the third field, and 
the identifier of the 1-container represented by the string (0 if none) as the fourth field. The 
LUT will then be related to the locational data of the strings as part of the data conversion 
program before instantiating the database. 

The digital manuscript was then converted from Kork format to the format of the DMMVM 
(shared geometry; line segments as arcs) and used to instantiate the nine classes obtained after 
the mapping of the object-oriented data structure (§7.2) to the Postgres data model. 

The consistency rules proposed in chapter 5 were then verified on the created database using 
a combination of C functions and Postquel queries. The only geometric inconsistency detected 
(a vertical gap in one 1-container caused by the constraint in Kork for node snapping only 
in 2D while digitizing in 3D) was corrected by taking the average height of the two affected 
nodes. Rules were then defined in Postquel to enforce structural integrity of the database 
during subsequent updating. 

An example of a topologie query involving the two map layers was given to illustrate the 
capability of the model for multilayer spatial analysis without the need for overlay operation 
during query processing, as is conventionally done in operational systems at present. 

Some of the updating algorithms proposed in chapter 6 were also tested on the created 
database. The algorithms (translated to C functions and Postquel queries) were used to (a) 
delete an existing line object, (b) insert a new point object, (c) insert a new line object and 
(d) insert a new area object. The database remained consistent after the update operations, 
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indicating that the algorithms can be translated into an operational software module in a GIS. 
However, the experiment confirmed (as indicated in the algorithm) the need for the decision 
of the human operator during insertion of area objects as to the fate of existing area object(s) 
in the same layer which are (partly) in the same location as the new object, apart from the 
semantic consistency situation with the objects from the other layers (which can be handled 
by rules as proposed in this thesis). The operator should be assisted in this task by a graphic 
display of the objects involved, a facility which was not available in the DBMS (Postgres) 
used in this experiment. In the experiment, it was assumed that a new area object takes over 
the (common) location of the existing area object of the same layer it overlaps with. The 
semantic consistency was checked by displaying the name(s) of the spatially coinciding area 
objects from other layers and requesting a prompt from the user to proceed with the updating 
or to stop. 

The Postgres DBMS, though an experimental, public domain software, proved to be effective, 
especially in rules management, but like most DBMS, a visualization module in the system 
will improve its capabilities in spatial database management. 

This implementation has also proved that the data model for multi-valued vector maps, 
proposed in this thesis, can indeed be operationalized, this being the third experiment in 
different systems' environments. In the first experiment, the map layers were manually 
overlaid and coded into a dBase-TV DBMS to test the information content of the model (see 
Ayugi 1992). The second experiment used an Arc/Info system for data acquisition and dBase-
IV for database management to test the usage of the model in an operational GIS environment 
(see Chhatkuli 1993). The third experiment reported here (see Essayah 1994 for more details) 
has been carried out using a photogrammetric workstation for data acquisition and an object-
relational system for database management. The data model together with the consistency 
rules and updating algorithms can therefore be recommended for operational use in GIS and 
mapping. 



155 

= Railway 

Other' colours a r e used simplvj to distinguish a 2—container" -From its neighbours 

Figure 8.9 Graphic representation of the database (perspective view) 
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all farmlands t h a t have calcimagnesic soil type 

Figure 8.10 All farmlands (from topo layer) having calcimagnesic soil type (from 
soil layer) 
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— — = Rivers = Roads 

Other- colours a re used simply to distinguish a 2-container f rom its neighbours 

Figure 8.11 Graphic representation of the database after deleting the railway 

Neuily inserted railway 

Other colours are used to distinguish a £-container f rom its neighbours. 

Figure 8.12 Graphic representation of the database after inserting the railway 
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1 Risers = Railway 

Other colours ara used to distinguish a 2-con+ainer f rom its neighbours. The two 2—containers in black 
and red colours at the top r ight corner o-f the map represent the newly inserted area object 

Figure 8.13 Graphic representation of the database after inserting a new area object 
(the new area object was decomposed into the two 2-containers shown in red and 
black colours during the update propagation) 
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CONCLUSIONS 

This chapter concludes the research work reported in this thesis and indicates further 
extensions and improvements. The research aimed at developing a formal approach for 
automated consistency controls during updating operations in a vector-based GIS. To serve 
as framework, a generalised conceptual data model was developed for a vector representation 
of a multi-layer terrain situation. The data model was based on the formal data structure for 
single-valued vector maps (Molenaar, 1989). In order to test the model and the concepts 
developed in this thesis and for their future implementation, the extended model was 
translated to relational and object-oriented data structures (logical data models). Concluding 
remarks on how these tasks were achieved, including comments on further research and 
development in this area, are presented in the following sections. A summary of the research 
work is given in §9.1, followed by an evaluation of the prototype data structure in §9.2. 
Future research and development are discussed in §9.3. 

9.1 Summary of the Research Work 

9.1.1 Development of a Data Model for Multi-valued Vector Maps 

Geographic information systems are often classified (according to hardware and software 
aspects) into four main subsystems for handling the four interrelated phases in information 
processing, namely data collection and input, data storage and retrieval, data manipulation and 
analysis, and visualization and reporting. When the system is set up for geo-information 
production, the most vital component on which the four subsystems operate is the spatial 
database. The database, which represents the real world as seen by the application, must be 
well-structured and consistent in order to meet the objectives of the system. 

To design the database, it is common to view the data at four levels of abstraction, namely 
reality, conceptual data model, data structure and file structure (Peuquet, 1984). The way the 
reality (phenomena as they actually exist) is conceptualized in the data model (usually 
categorised into tessellation and vector) is often tailored to a given application, i.e., different 
applications normally view a terrain situation differently, thereby extracting only the terrain 
data that play definite roles within the application. For example, a cadastral surveyor will 
partition a given region into land parcels with each parcel having unique attribute values. The 
same region will be partitioned by a soil scientist into different soil units. This implies a 
layered view of the terrain situation meaning that terrain objects belonging to different 
applications are spatially coincident in reality. However, spatial analyses and planning often 
require integration of different views of the world, i.e., to integrate geo-data from different 
map layers. The term map layer is used to denote a geographic dataset describing a certain 
aspect of the real world (Hoop et al, 1993), i.e., the set of objects belonging to the same 
mapping context, e.g., cadastral, soil mapping, etc. 

At present, the common approach to achieve an integrated analyses in an application 
involving the use of spatial data from multiple map layers is to structure each layer separately 
and then perform an overlay operation when joint analysis is desired. The consequences of 
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this solution include an increase in overhead cost needed for the ad-hoc, repeated overlay 
computations and the difficulty of predefining the spatial relationships among features from 
different map layers (vertical topology). For example, to answer a spatial query like " select 
all cadastral parcels having a soil type V with land use type W, situated within distance X 
of place Y and having a metric area of not less than Z square units" in the layer approach will 
involve the overlay of soil and cadastral maps during the query processing. Any time such 
a query (involving multiple map layers) is submitted to the system, an overlay will have to 
be computed. 

In chapter 3, an alternative approach was proposed in which a single model was developed 
to represent a multi-valued terrain abstraction, especially when frequent spatial analyses across 
many map layers is envisaged, i.e., in applications involving frequent analysis of multi-layer 
geo-information. The proposed conceptual data model is an object-based 2.5D (3D position, 
2D topology) data model for multi-valued vector maps (DMMVM). Here, a vector map refers 
to a database representation of the terrain situation as points, lines, surfaces (areas) and bodies 
in which positional data are given in the form of coordinates of isolated points and the end-
points of line segments. A multi-valued vector map then refers to the vector-based 
representation of terrain objects from multiple map layers whereby two objects of the same 
geometric type may be spatially coincident. Two objects of the same type are said to be 
spatially coincident if they (partially) overlap in space. The mathematical framework for the 
modelling is provided by graph theory, the relevant elements of which were described in §3.1. 

In this model, positions of objects are defined in a 3D metric space but embedded in 2D 
topologie space, i.e., a 2.5D model. This means that only surfaces of objects are represented 
such that a pair of X and Y coordinates must have a single Z value, thus a single-elevation 
model. The model was based on the formal data structure (FDS) for single-valued vector 
maps (Molenaar, 1989). In the 2D FDS (see §3.2), terrain objects play a central role in the 
terrain description; each object has a thematic component and a geometric component. In the 
thematic domain, the objects can be grouped into thematic classes in which each class has a 
specific attribute structure (see Molenaar, 1993), and in the geometric domain, the object 
types points, lines and areas are distinguished for a 2D or 2.SD terrain description, subject 
to a constraint that two objects of the same type may not be spatially coincident. The three 
object types are then completely described by a common set of two types of geometric 
elements (arc and node), using graph theory as the mathematical framework. In the model, 
the geometry of a terrain object is clearly distinguished into three independent aspects, namely 
topology, shape and size, and position (see Figure 2.3). This geometric dataset has been 
carefully structured in the FDS, leading to a semantically-rich, query-oriented and extendible 
data model in which information on topology, shape and size, and position can be retrieved. 
The FDS was extended in this thesis to allow objects of the same type to be spatially 
coincident, thus facilitating the use of a single structure for the representation of multi-layer 
geo-data. 

A geometric data type, the m-dimensional container, or simply m-container, where m € 
{0,1,2} was introduced to model spatial coincidence among objects of the same geometric 
type. Thus a 0-container represents spatially coinciding J point objects from J layers, a 1-
container represents (part of) K line objects from K layers and a 2-container represents (part 
of) L area objects from L layers, where L is the maximum number of layers and J and K may 
each be less than or equal to L. 
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By introducing the container data type, overlapping sections across the layers are uniquely 
identified such that they have their own individual geometric data and non-spatial data, apart 
from those inherited from the overlapping objects; they can then be maintained and 
manipulated by the DBMS just like single objects. Thus it is easier to include them in 
aggregation and association abstractions, thereby improving spatial analyses in GIS. 
Using graph theory as a mathematical tool, the three container types are then represented by 
the topologie primitives arc and node. A node defines one 0-container and/or beginning or end 
of an arc, while an arc defines (part of) one 1-container and/or (part of) a boundary of a 2-
container. The arc is defined by one start node and one end node, and a node is defined by 
a coordinate triplet X,Y,Z. The geometry of the map is thus represented by a planar graph 
G(N,A) where A is the set of arcs of the graph and N is the set of nodes. Each m-container 
C, m e {0,1,2}, is then a subgraph of G such that the geometry of C is represented by 
GC(NC,AC) where N t c N and Ac c A. For a 0-container, Ac = 0 . 

Thus eight basic geometric data types are defined to represent geo-data from multiple map 
layers, namely area, line, point, 2-container, 1-container, 0-container, arc, and node. Each data 
type plays some specific roles in the model. The area, line and point data types abstractly 
represent terrain objects whereby each terrain object in the application is mapped into one of 
the three types during implementation. The mapping can be one-to-one or one-to-many, 
depending on the complexity (shape) of the terrain object, e.g., a two-dimensional object with 
a connected boundary and interior will be mapped to one elementary area object type, while 
a two-dimensional object with disconnected boundaries and interiors will be mapped into two 
or more elementary area objects. These related elementary objects will then be aggregated to 
reconstruct the parent (original) object during query. 

One of the attributes of each of the three object types should be the thematic class of the 
object. Although the thematic aspects of objects were given less attention in the thesis, the 
model does not preclude the representation of thematic data. During implementation (when 
thematic attributes of objects are identified) the thematic data can be arranged in a hierarchic 
manner as proposed in Molenaar (1993). 

The m-container, m e {0,1,2}, models spatial coincidence among elementary objects of equal 
spatial dimension, as explained above. Apart from the attribute values inherited from the 
spatially coinciding objects, an m-container data type can have additional attributes as 
required by the user. For example, in a multi-valued vector map that integrates land use map 
and soil map data, apart from the attribute values propagated to a 2-container by the two 
spatially coinciding area objects from the two layers, the 2-container can have additional 
attributes such as metric area, alternative land uses (based on factors such as type of soil, 
nearness to certain utilities, etc) etc. 

Arc and node, as stated above, play the roles of geometric descriptors in the model. The 
proposed DMMVM can thus be used to organize the result of an initial overlay of all relevant 
map layers for subsequent single-valued or multi-valued queries. 

Spatial relationships (topologie, metric and order) provide the main framework for spatial 
analysis in GIS. Thus vector data models place great emphasis on the modelling of the 
topologie spatial relationships among objects. However, little effort is usually made to 
formalize the consistent set of relationships which a given data model can support in order 



161 

to have a priori knowledge of the information content of the model and to provide a spatial 
query language for retrieving such information. Apart from this acknowledged role of 
topologie relationships in GIS, they can also serve as useful tools in automated database 
updating and the maintenance of data consistency in GIS as shown in this thesis. 

The possible topologie relationships among the three elementary object types area, line and 
point, and among the geometric primitives arc and node in the model proposed in this thesis 
were formalised in chapter 4 using the 9-intersection model (Egenhofer and Herring, 1992) 
as interpreted for graph-structured vector maps (Molenaar et al, 1994). Algorithms are then 
defined for detecting the occurrence of any of the elementary relationships for any object 
combination. The algorithms can be translated to topologie operators and used for topologie 
queries, as well as providing a tool for detecting violation of and enforcing geometric 
constraints. When used as a tool for maintaining consistency, the topologie operators will 
serve as detectors of inconsistencies. The return value of an operator will trigger the relevant 
rule that will enforce consistency if violation occurs. The rules that enforce the geometric 
consistency were presented in chapter 5. 

An integration of the DMMVM with a DTM was described in §3.5, indicating the 
extendibility of the model to relief modelling. The integrated model provides a unified 
representation of multi-layer terrain object data and terrain relief data in a flexible manner, 
such that DTM specific information can be derived from the same database as any other 
spatial information under a single database management system, while retaining the ability 
to perform non-DTM related spatial analysis without involving DTM information. The 
integration is based on the consideration that most of the skeleton of a DTM is usually 
contained in terrain objects such as rivers, roads, lakes, etc., and with the importance of DTM 
in spatial analyses, it is apparently more efficient to integrate geographic and elevation mod
els. The terrain relief is therefore regarded as a mapping layer during data acquisition so that 
the terrain surface is classified into DTM object types in form of point, line and area on the 
basis of relief characteristics (slope and height). The DTM class can then become one of the 
mandatory properties of each terrain object. 

The edge-based triangulated irregular network (TIN) was selected for the digital representation 
of the terrain relief since it can easily be linked with the topologie structure of the DMMVM 
via the geometric primitives arc and node which are isomorphic, respectively, to the 
primitives edge and vertex of the edge-based TIN. Thus in addition to the eight data types in 
the DMMVM, two extra data types, edge and vertex, were added to represent terrain relief 
in the integrated model. An edge is defined by two adjacent TIN vertices and has one triangle 
on each side. A vertex is defined by a coordinate triplet X, Y and Z. The geometric 
connection between the edge-based TIN and the DMMVM is provided by the links among 
the geometric primitives arc, node, edge and vertex. A TIN edge can be part of zero or one 
arc while a vertex can be a node. 

An algorithm can be provided for deriving relief information in the interior of area objects 
(see Kufoniyi and Bouloucos, 1994 for an example) because these cannot be resolved through 
the links among the geometric primitives. The position of an object can therefore be given 
in 2D or 3D; when defined in 2D, the height value can be interpolated from the DTM 
subsystem. Thus objects in the object-base can contribute to the generation of a DTM with 
high fidelity, while the DTM supports the object-base, e.g., when updating via monoplotting 



162 

techniques, to provide height information for objects whose Z values could not be determined 
during the data collection phase, and to provide relief information in general. Additional 
information on the integration of the DMMVM and DTM can be found in Kufoniyi et al 
(1994), Kufoniyi and Pilouk (1994), Pilouk and Kufoniyi (1994), and Kufoniyi and Bouloucos 
(1994). 

9.1.2 Translation of the Model to Database Structures for Implementation 

A conceptual data model is normally developed without a consideration of the type of system 
that will implement it. However, for implementation purposes, it is necessary to translate the 
model into a prototype database structure, based, usually on a database model (e.g., relational, 
network, etc.). Thus the conceptual data model for multi-valued vector maps (DMMVM) was 
translated into two families of database structures, namely (1) a relational database structure 
and (2) an object-oriented database structure (see chapter 7). 

The prototype relational database structure for multi-valued vector maps was designed using 
Smith's method for relational database design (Smith, 1985). The method comprises four 
steps, namely (1) identification of data types and the relationships among them, (2) listing the 
single-valued and multi-valued dependencies among the data types as dependency statements, 
(3) translating the dependency statements to a dependency diagram, and (4) composing 
normalised relations from the diagram. Using this method, seven base tables were developed 
for creating a relational database for multi-valued vector maps. Additional thematic data of 
the objects can be introduced by creating extra tables for the thematic classes. Some 
experimental implementations carried out with the prototype indicate its usability for multi
layer spatial data modelling (see Ayugi, 1992; Bouloucos et al 1993; Chhatkuli, 1993 and 
Bouloucos et al, 1994). However, if the relational prototype is used for an implementation, 
then the consistency rules (chapter 5) and the update propagation algorithms (chapter 6) 
would have to be handled by a high-level programming language (e.g., C or Fortran) and 
coupled with the RDBMS (see Kufoniyi, 1989 and Kufoniyi et al, 1993 for examples) since 
most operational RDBMSs are not capable of handling user-defined rules. 

The relational structure can serve for immediate implementation given the wide availability 
of operational relational DBMS as compared with object-oriented systems. Because of the 
shortcomings of the relational model in handling spatial data (see chapter 2), the model was 
also translated to an object-oriented data structure (which has been acclaimed to be more 
suitable for spatial applications than the relational model). The object-oriented modelling 
constructs classification, generalisation, aggregation and association, together with the 
concepts of inheritance and propagation, were applied to translate the data model to an object-
oriented data structure. 

From the basic structure of spatial objects whereby each terrain object has two main 
characteristics, geometric and thematic, two classification domains were distinguished for the 
object-oriented modelling, namely (1) thematic domain and (2) geometric domain. Thus each 
terrain object will be an instance of one of the thematic classes and an instance of one of the 
geometric classes (i.e., double inheritance). Attention was focused on the latter classification 
which yielded a total of nine classes (each of the eight data types - area, line, point, 2-
container, 1-container, O-container, arc and node - as a class plus the explicit representation 
of the topologie relationship "cross" between two 1-containers as a class) for the object-
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oriented data structure. The consistency rules and updating procedure proposed respectively 
in chapters 5 and 6 become operations (methods) of the classes. Also, the topologie 
relationships derived in chapter 4 are expected to be dynamically detected by the system. This 
can be done by translating the proposed algorithms for detecting a topologie relationship (see 
chapter 4) into operations of the classes. 

9.1.3 Development of Procedure for Spatial Database Updating 

Another aspect of this research was to formulate procedures for a consistent automated 
updating of a vector-structured database, using the DMMVM as a framework. In geo-
information production, the cost of data collection has been said to be about seven to ten 
times more than the cost of the hardware and software needed to establish the database 
(Peled, 1994). Thus it is very important that the accuracy and currency of the data should be 
reliable, such that the purpose for setting up the database can be fulfilled with profitable cost 
recovery. This thesis aimed at contributing towards achieving this by providing algorithms 
for automated update propagation (see chapter 6) such that topology is automatically updated 
by the system in a consistent manner. This will improve on the current practice in operational 
systems, which usually requires a delayed reconstruction of topology whenever the geometry 
of an existing object changes or when a new one is inserted. In other words, there is usually 
a time-lag between the time the geometric state of the object changes and when the topology 
is reconstructed, often by the user having to issue a command for the reconstruction. 

Although geoinformation updating includes change detection, data collection and database 
updating, the focus in the thesis was on automated database updating, under the assumption 
that the necessary changes have been detected and captured in readiness for input into a 
DMMVM-structured database. Algorithms were developed for the insertion, deletion or 
modification of each of the eight data types (area, line, point, 2-container, 1-container, 0-
container, arc and node) in the DMMVM. The updating of the two geometric primitives (arc 
and node) are at the lowest level upon which the updating of other data types are based. 

The topology of the database is updated dynamically by the system during the updating by 
evaluating, using computational geometry, the topologie relationship between the new 
primitive (arc or node) of an object and the existing primitives in the database. The type of 
relationship detected will then activate the relevant consistency rule (including update 
propagation) to validate the topology and consistency of the database. Ideally, the defined 
algorithms should be translated into computer modules as an integral part of an existing 
DBMS. However, since most of the operational DBMS are not capable of accepting user-
defined rules and data types, the algorithms may have to be programmed in a high-level 
language and then coupled with the DBMS during implementation. 

9.1.4 Handling Data Consistency in Spatial Databases 

This research also addressed the problem of data consistency in spatial databases. A large 
proportion of the cost of setting up a database for spatial information production is attributed 
to data acquisition. To achieve the aims of setting up the database, the information produced 
by that system must be reliable, i.e., the quality of the data from which the information is 
derived must be reliable. This has made the issue of data quality an important aspect in GIS. 
Data consistency is a component of data quality because consistency is essential for the 
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database's reliability. Consistency can be categorised into two types: static and dynamic 
consistencies. The thesis focused on static consistency which can also be analyzed into 
structural and semantic consistencies (see chapter 5). For a vector map to be structurally 
consistent, the topology of individual objects represented in the database must be consistent. 
In addition, the topology of the geometric descriptors of the objects must be preserved. 
Furthermore, if the objects are embedded in a 2D topologie space as in the model developed 
in this thesis, the planarity of the map must be enforced by ensuring that the generalised Euler 
constant (see §5.1.3) holds at any time. 

The semantic consistency, on the other hand, deals with topologie consistency between pairs 
of objects and the application-dependent constraints attached to individual objects. In chapter 
5, consistency rules were formulated to ensure structural constraints, while a monitoring 
strategy was proposed for semantic constraints. In both cases, topology plays the central role 
as an "alerter" of constraint violations. As shown in chapter 5, the conditions can be translated 
to topologie constraints (for single objects) and topologie relationships (for object pairs) and 
stored in the database as events. The corresponding responses of the system to enforce 
consistency can then be defined as actions, thus giving a rule-based procedure (using the if 
event then action convention) for the management of data consistency in spatial databases. 

9.1.5 Experimentation of the Prototype Data Structure 

An experimental implementation of the proposed model as translated to an object-oriented 
data structure in §7.2 was'carried out using the extended relational (evolutionary object-
oriented) database management system Postgres, version 4.2 (see chapter 8). Data acquisition 
was done with a Planicomp CI20 photogrammetric stereoplotter equipped with a Zeiss 
Videomap (for superimposition) and a Calcomp drawing board digitizer. The stereo-
compilation was done with the aid of the Kork digital mapping system, version 8.0. 

The implementation aimed at three objectives: (a) to illustrate the usage of the proposed data 
structure for multi-valued vector maps (see chapters 3 and 7), (b) to test some of the 
consistency rules presented in chapter 5 and (c) to test some of the updating algorithms (see 
chapter 6). Without loss of generality, the data structure was tested with two map layers: a 
soil map layer and a topographic map layer showing major land use and land cover types. The 
geo-data from the soil layer were initially digitized on a Calcomp drawing board. The digital 
manuscript was then superimposed on the stereo-model which contained the geo-data of the 
second layer. The superimposition resulted in the intersection of the two layers such that 
closed polygons became 2-containers (representing (part of) a certain area object in the soil 
layer and (part of) an area object in the topographic layer), line objects were decomposed into 
1-containers and point objects became O^containers. Thus the two layers were compiled in 
multi-valued mode. 

A method was designed to assign a feature code to each string (an aggregation of connected 
line segments representing (part of) a certain line object or boundary of area object) such that 
the code contains the identifier of the 1-container represented by the string (or zero if none) 
and the identifiers of the 2-containers on its sides. The coding method was devised by 
combining the colour and feature codes of a string in which the colour code, concatenated 
with the first (left justified) digit of the feature code represents a 1-container identifier, the 
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next two digits of the feature code represent the identifier of the 2-container on the left side 
of the string and the last two digits of the feature code represent the identifier of the 2-
container on the right. 

A more general coding method was proposed in chapter 8 whereby a look-up table (LUT) is 
prepared before digitizing. The LUT, containing four fields per record, will then store the 
string identifier as one field, the identifier of the 2-container on the left side of the string as 
the second field, the 2-container on the right as the third field, and the identifier of the 1-
container represented by the string (0 if none) as the fourth field. The LUT will then be 
related to the locational data of the strings as part of the data conversion program before 
instantiating the database. 

The digital manuscript of the compiled multi-valued map was then converted from Kork 
format to the format of the DMMVM (shared geometry and line segments as arcs) and used 
to instantiate the nine classes obtained after the mapping of the object-oriented data structure 
(§7.2) to the Postgres data model. 

The consistency rules proposed in chapter 5 were verified during implementation using a 
combination of C functions and Postquel queries. The geometric inconsistency detected was 
corrected and rules were defined in Postquel to enforce structural integrity of the database 
during subsequent updating. In addition, computer programs were developed for detecting the 
topologie relationships among geometric primitives (i.e., between a new arc and an existing 
arc, between a new arc and an existing node (or vice versa) and between a new and an 
existing node) during updating such that the detected relationship will activate the 
corresponding C function that enforces geometric consistency. 

An example of a topologie query involving the two map layers was given to illustrate the 
capability of the model for multi-layer spatial analysis without the need for an overlay 
operation during query processing as is conventionally done in operational systems at present. 
Information relating to a single layer can also be easily retrieved (see Essayah, 1994 for 
examples). 

Some of the updating algorithms proposed in chapter 6 were also tested on the created 
database. The algorithms (translated to C functions and Postquel queries) were used to (a) 
delete an existing line object, (b) insert a new point object, (c) insert a new line object and 
(d) insert a new area object. The database remained consistent after the update operations, 
indicating that the algorithms can be translated into an operational software module in a GIS. 
However, the experiment confirmed (as indicated in the algorithm) the need for the decision 
of the human operator during insertion of area objects as to the fate of existing area object(s) 
in the same layer which are (partly) in the same location as the new object, as well as the 
semantic consistency situation with the objects from the other layers. 

The human operator should be assisted in this task by a graphic display of the objects 
involved, a facility which was not available in the DBMS (Postgres) used for the experiment 
in this thesis. In the experiment, it was assumed that a new area object takes over the 
(common) location of the existing area object of the same layer it overlaps with. The semantic 
consistency was checked by displaying the name(s) of the spatially coinciding area objects 
from other layers and requesting a prompt from the user to proceed with the updating or to 
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stop. An earlier, related experiment on automated update propagation, using a subset of these 
algorithms, was also performed on a single-valued vector map by the author. The experiment 
was done by coupling Microsoft Fortran with an Oracle DBMS in a microcomputer 
environment at the Department of Land Surveying, Photogrammetry and Remote Sensing, 
Wageningen Agricultural University. The algorithms were translated into Fortran programs, 
while Oracle served as the RDBMS retrieving the necessary data from the database into the 
Fortran program, for updating and consistency operations, and returning the updated data back 
into the database. Details of this experiment can be found in Kufoniyi (1989) and Kufoniyi 
et al (1993). 

The Postgres DBMS, though an experimental, public domain software, proved to be effective 
especially in rules management, but like most DBMS, a visualization module in the system 
will improve its capabilities in spatial database management. 

The experimental implementation of the data model for multi-valued vector maps proposed 
in this thesis has also proved that the model can indeed be implemented, this being the third 
experiment in different systems' environments. In the first experiment, the map layers were 
manually overlaid and coded into a dBase-IV DBMS to test the information content of the 
model (see Ayugi, 1992). The second experiment used an Arc/Info system for data acquisition 
and a dBase-IV for database management to test the usage of the model in an operational GIS 
environment (see Chhatkuli, 1993). The third experiment reported here (see Essayah, 1994 
for more details) was carried out using a photogrammetric workstation for data acquisition 
and an object-relational system for database management. The data model, together with the 
consistency rules and updating algorithms, can therefore be recommended for operational use 
in GIS and mapping. 

Although the DTM aspect of the data model was not addressed in the experiment, a 
subsequent decision to create a DTM of the same area will not require much extra effort 
because the locations of objects have been defined in 3D. First, two extra classes, namely 
Edge and Vertex, should be created in the database with the class Edge having mandatory 
properties edge-id, beg-vertex, end-vertex, left-triangle, right-triangle and arc-id (identifier of 
the arc which the edge is part of; this will be zero if none), and class Vertex having properties 
vertex-id, x-coordinate, y-coordinate and z-coordinate including accuracy and lineage if 
desired. Then the stereomodel will be set up again using the existing orientation parameters 
of the model and the digital manuscript superimposed to determine the DTM classes of the 
already digitized objects and to acquire additional skeleton data as well as filling data. Based 
on the DTM classes just determined for the objects, the coordinates of those objects would 
be retrieved from the database and combined with the acquired skeleton and filling data to 
triangulate the project area (using any triangulation software) and structure the result 
according to the structure proposed in chapter 3. 

9. 2 Evaluation of the Model 

As stated earlier in this chapter, the proposed data model for multi-valued vector maps 
(DMMVM) was based on the 2D formal data structure (FDS) for single-valued vector maps. 
The extension of the FDS now facilitates the use of a single structure to represent spatially 
coinciding objects of the same type, i.e., terrain objects from different map layers. 
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The clear distinction in the FDS of the geometric aspects of terrain objects into topology, 
shape and size, and position not only facilitates the construction of a semantically-rich, query-
oriented spatial database, it also leads to an extendible and flexible data model. For example, 
having distinguished the semantic characteristics of terrain objects into thematic and 
geometric, it follows that the geometry of the same terrain situation can be represented either 
by vector elements (arc and node) or by raster elements (see Molenaar and Fritsch, 1991 and 
Molenaar and Janssen, 1992), leading to flexibility in the choice of system configuration for 
its implementation and in data exchange. The flexibility and extendibility of the model have 
also been demonstrated in this work. The clear articulation of the geometric aspects of an 
object facilitated key modelling decisions. (1) It became possible to decide on the dimension 
of the metric space (whether 2D or 3D) independent of the dimension of the topologie space. 
Here, the extended model was based on 3D coordinate space (position) and 2D topologie 
space, i.e., a 2.5D data model. (2) It also helped in deciding at which level to integrate geo-
data from multiple map layers, whether at geometric level or at thematic level. 

At the geometric level (the choice in this thesis), it becomes possible to distinguish four 
different approaches to the geometric integration by considering how metric (positional) data 
and topologie data of the different layers are handled. The four possibilities are (i) to structure 
each layer separately, i.e., combining metric and topology per layer and perform overlay of 
the layers when necessary; (ii) to structure the geometric data such that all the layers share 
a metric dataset while topology is kept per layer; vertical topologie query will then be done 
by overlay computation or by comparison of metric data; (iii) to structure the geometric data 
such that all layers share a common topology, while the metric information is structured per 
layer, and (iv) to define a model in which both metric data and topology are shared by all 
layers as proposed in this thesis. The pros and cons of the four geometric approaches are 
given in chapter 3 (see also Hoop et al, 1993) but some remarks are in order about the fourth, 
for which a data model has been proposed in this thesis. The advantages of this approach 
include the following: 
(1) Elimination of redundant data because a single geometric dataset is kept for all layers 
instead of storing geometric components (position and/or topology) separately for each layer. 
(2) Faster multiple-layer queries since it will not be necessary to compute an overlay before 
answering such queries. 
(3) Reduction in overhead cost: overlay is computed once, whereby problems of spurious 
polygons, sliver lines, etc. are handled once, although there is the disadvantage of performing 
overlay computation where it is not required (see subsequent paragraphs). 
(4) Higher information content, the knowledge of which is also known a-priori; thus a query 
language can be predefined for retrieval of such information. 
(5) Spatial consistency can be maintained at system level since only one data structure is used 
and only one geometric data set is kept. 
(6) Because the overlapping parts among objects of the same type are uniquely identified with 
their own geometric and non-spatial datasets, they can be maintained and manipulated just 
like single objects; thus it is easier to include them in aggregation and association 
abstractions. 

Thus the proposed data model is query-oriented, giving high performance efficiency when 
used in applications that frequently require analysis of multi-layer geo-data with a high 
density of spatial coincidence among the objects. Even when an implementation starts with 
separate layers, the proposed database structure can be used later to organize the result of an 
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overlay computation during query if it is desired to make the overlay result persistent for 
future queries. 

Using the data model to organize a multi-layer terrain situation, however, means that overlay 
computation would have to be performed in all parts of the geographic space, including areas 
that may not require it, thereby introducing some unnecessary increase in the storage and 
computational costs. Note also that query operations concerning a single layer will be slower 
in the integrated model than in separate structures. Thus it is necessary to have a priori 
knowledge of the extent of the spatial coincidence among objects in the application and how 
frequent the "vertical" spatial analysis will be required. If it is possible to model terrain 
objects in a multi-layer application such that no two objects of the same type overlap in 
space, then the FDS will be more suitable. And if it is certain that only a limited number of 
objects will be spatially coincident in the application or more single-layer queries are 
envisaged with vertical queries required only seldomly, then the layers are best structured 
separately. 

Note that using the FDS instead of the DMMVM, as mentioned in the paragraph above, does 
not significantly invalidate the consistency rules and update propagation algorithms developed 
here, since they were formulated at the conceptual level with terrain objects, as defined in the 
FDS, as the main focus. In addition, an m-container is topologically isomorphic to an n-
dimensional elementary object with m = n; it is thus easy to harmonize the operations defined 
for the m-containers with those of the elementary objects. 

The DMMVM is more query-oriented than data acquisition-oriented (except where it is 
possible to derive all input data from the same source) because data acquisition is usually 
done within a certain context and by a specialist in that particular discipline. For example, to 
set up an integrated database incorporating soil and cadastral geo-datasets, the classification 
and sampling of soil units will be performed by a soil scientist, while the demarcation and 
survey of the cadastral parcels will be done by a land surveyor. The collection of data for 
updating will also follow the same trend: the data will be collected per layer and it is easier 
to update a single layer than a combination of layers. 

In a DMMVM-based GIS, the addition of a new object means a further segmentation of the 
geographic space, leading to higher storage and overhead cost, but this is relevant only if the 
model is used in a situation where vertical spatial analysis is not often required. When used 
to organize multi-layer geo-data for continual vertical spatial analysis, it solves the problem 
of the much higher overhead cost that will occur if overlay is computed for every query. 
Intuitively, it would also appear that overlay computation will be required each time the 
database is being updated. This is not necessarily so because the updating algorithm proposed 
here eliminates the need for overlay computation during updating; the updating is propagated 
just as it would in a single-layer vector structure. This has been made possible by using the 
same geometric structure for single- and multi-valued vector maps. 

The experience gained during the experimentation with the model indicates that elaborate 
planning is required to create the database but, as pointed out earlier, the faster multi-layer 
query and richer information content of the database compensate for this. Data consistency 
is also ensured because inconsistencies are identified and corrected during the creation or 
updating of the database. 
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If this model is compared with other models of its type, e.g., the ATKIS DLM data model 
(see §2.1.2) and another variant of the FDS extension proposed by Hoop et al (1993) (see 
§3.3), the DMMVM has a potentially richer information content because of the explicit 
representation of overlapping sections among objects, which can then be assigned additional 
attribute values apart from the ones they inherit from the overlapping objects. These are 
implicitly represented in the two cited examples and will therefore require extra computations 
to derive them during query. 

The provision of conventions for the FDS, with extensions of the conventions as required by 
the DMMVM, facilitates an unambiguous mapping of the terrain situation to a DMMVM-
structured database, making it possible to implement the proposed data structure in any 
existing GI systems, albeit with additional operations (such as programming) or slight 
modification of conventions. For example, many existing systems represent an arc differently, 
usually as an aggregation of straight-line segments; thus additional operations will be required 
to restructure topology if we keep to the assumption that an arc is a straight-line segment. 
This, in addition, introduces some data redundancy. Because it does not invalidate the 
conceptual model (an arc can have any shape subject to the constraints that it is not self-
intersecting and it does not close back on itself), this convention can be relaxed during 
implementation to accommodate a different shape definition for an arc (Molenaar, 1992). 

In addition, it is possible to also relax the convention that constrains all objects belonging to 
the same thematic class to be of the same geometric type, to allow for the construction of 
complex thematic classes. The requirement for additional operations often arises because the 
data models of many of the existing systems often lack the topologie richness that is found 
in the FDS. For example, in order to realise an object-level topology in Arc/Info, such as 
knowing all the cities (with each city represented as an area object) through which a certain 
road (with roads represented as line objects) passes, will require the overlay of the line and 
polygon coverages. The topologie relationships that are explicitly represented in the 
conceptual data model will therefore be pre-computed in the same manner and stored. 

The power of the data structure developed here is in the fact that it can be used in any vector-
based application being a generic model. It can be used to set up the primary database and 
then define aggregation rules (see Richardson, 1993 for an example) to derive databases of 
lower resolutions from the basic structure. 

9.3 Further Research and Development 

Much work has been done in this research to meet the stated objectives, but there are still 
areas for further research and development. As with every prototype, the relational and object-
oriented data structures proposed in this thesis still require more experiments before actual 
implementation. Experiment is needed to formulate the optimum procedure to collect data 
using any data source (aerial photographs, digital images, etc.) and data acquisition method 
(photogrammetry, digital image processing of remotely sensed data, land surveying, etc.). 
Since the main aim is to automate much of the processes involved in the production of geo-
information, the data collection procedure should, as much as possible, include dynamic 
building of topology and consistency enforcement as the data are entered into the system. The 
consistency rules and update propagation algorithms, together with the topologie coding 
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method proposed in this thesis, will serve this purpose by translating them into software codes 
as part of the data collection software for the implementation of the structure. 

Not all the developed rules and algorithms were tested during the experimental phase of the 
thesis because not all the formalized situations occurred during the experiment. Moreover, the 
extensiveness of the rules and algorithms implies that more time is required to translate all 
of them into software codes and test them with real data. More extensive tests are therefore 
required to verify all the possibilities covered in the consistency rules and the update 
propagation algorithms. The consistency rules and updating algorithms have been defined for 
a 2D topologie space. It is necessary to extend them to cover a 3D topologie situation, using, 
for example, the 3D FDS (Molenaar, 1990) as the framework. This can be done by first 
extending the topologie relationships to cover 3D topologie space (see for example Hoop et 
al, 1993), which will then be used as tools for consistency operations using the approach in 
this thesis as guidelines. 

On the basis of the experience articulated in this thesis on the extension of the 2D FDS (for 
single-valued vector maps) to a 2.5D data model for multi-valued vector maps (DMMVM), 
it should be possible to also extend the 3D FDS to accommodate multi-valued terrain 
representation. 

A basic assumption made in the modelling process is that time is considered constant such 
that, during updating, the old data are treated as obsolete and deleted, and only the current 
data are kept. Although it is possible to archive these obsolete data, because the basic data 
model does not incorporate time as a variable component of objects, spatio-temporal analysis 
cannot be performed. This aspect is now very important in GIS; thus it is necessary to extend 
the proposed model to accommodate the temporal dimension of objects. In the same vein, the 
boundaries (positions) of objects are assumed to be well-defined (i.e., crisp dataset) in this 
work; it is also important and relevant to investigate and formalize the aspect of objects with 
fuzzy boundaries which will then be incorporated in the consistency rules and updating 
procedure. 

9.4 Thesis Recapitulation 

9.4.1 Conclusions 

- A 2.5D query-oriented spatial data model for multi-valued vector maps was developed by 
extending the 2D formal data structure (FDS) for single-valued vector maps. 

- Three geometric data types, namely 0-container, 1-container and 2-container were added to 
the five basic data types (area, line, point, arc and node) in the FDS to facilitate representation 
of geo-data from multiple map layers. 

- The addition of the m-container, m e {0,1,2}, facilitated an explicit representation of spatial 
coincidence among objects of the same geometric type, meaning that an m-container can be 
handled as an individual object with distinct geometric and attribute properties for spatial 
analysis. 
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- The proposed model gives faster and richer multi-layer topologie queries in a vector GIS. 

- Overlay is computed only once at the time of database creation (if data collection is made 
per layer) and not during query processing as presently done in most commercial systems; 
thus production cost is reduced, while increasing the information content of the database. 

- By using an edge-based TIN, the model can be integrated with a DTM in a flexible manner 
as demonstrated in the thesis. 

- A method was proposed for the coding, during data collection, of the elementary topologie 
relationships to be made explicit in the database. 

- Consistency constraints in vector-structured spatial databases were identified and analyzed. 

- Rules were then defined for monitoring and enforcing the constraints during database 
creation and updating. Topologie relationships served as a tool in the rule-based scheme; they 
are used as inconsistency detectors which activate the corresponding operations to be 
performed by the system to validate consistency. 

- The possible topologie relationships in vector maps were formalized for the above-
mentioned purpose but they also serve their traditional role in topologie queries. 

- The thesis addressed the issue of database updating by providing a procedure for automated 
updating of the database while maintaining data consistency. 

- Algorithms were provided for the updating of the basic data types in a vector-structured 
spatial database using the proposed data model as a framework. Complex updating operations 
can then be decomposed into the formalized elementary operations. 

- Having translated the proposed model to a relational structure and an object-oriented data 
structure, implementation in a variety of systems is made possible. 

- An experimental implementation of the object-oriented prototype indicated that the model 
and the consistency rules and the updating algorithms can be used in a production 
environment. For the experiment, data were acquired by analytical photogrammetry, while an 
extended relational DBMS (Postgres) was used for database management. 

- For frequent spatial analysis across many layers, the proposed model is very suitable. 

9.4.2 Recommendations 

- Because the proposed model requires a complete segmentation of the combined layers, even 
in areas where vertical topologie queries will not be performed, it is necessary to have a priori 
knowledge of the extent of spatial coincidence among objects in the application and how 
frequent the "vertical" spatial analysis will be required in order to decide on the optimum data 
model for multi-layer representation. 
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- If it is possible to model terrain objects in a multi-layer application such that no two objects 
of the same type overlap in space, then the FDS will be more suitable. And if it is certain that 
only a limited number of objects will be spatially coincident in the application or more single-
layer queries are envisaged with vertical queries required only seldomly, then the layers are 
best structured separately. 

- To facilitate easier implementation of the model (and the FDS on which it is based) in 
commercial systems, and to further minimize data redundancy, the arc can be implemented 
as an aggregation of straight-line segments. 

- Experiments are needed to formulate the optimum procedure to collect data for multi-valued 
vector maps using any data source (aerial photographs, digital images, etc.) and data 
acquisition method (photogrammetry, digital image processing of remotely sensed data, land 
surveying, etc.); the coding method proposed in the thesis can be used for such an experiment. 

- More extensive tests are required to verify all the possibilities covered in the consistency 
rules and the update propagation algorithms. 

- The proposed 2.5D data model for multi-valued vector maps (together with the rules and 
algorithms) should be extended to full 3D, e.g., by extending the 3D FDS to accommodate 
multi-valued terrain representation following the same approach used here. 

- To be able to handle spatio-temporal analysis, the temporal dimension of objects have to 
be accommodated in the proposed model. 

- It is also important and relevant to investigate and formalize the aspect of objects with fuzzy 
boundaries so as to incorporate this aspect in the consistency rules and updating procedure. 
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APPENDIX 1.1 Block Diagrams of the Updating Algorithms 
(see Chapter 6 for the notations and algorithms) 

1.1.1 Insert Node 

Input tocattonal data for 

talaaaidrtngnodatN > Vn| eNttDogr—(n|)-0 

torn) eN, ofnj 

d^wnifcw mrton(n^iD 

'072 Yw 
doQPJutoJ 

I No 

Mnwtnl 

[NO 

MtodMltftlQ WCS A 

® 

Jj> w 
•ate* coordlnatat of al e A 

doGPJtuM>_2 

doQPJtutoJ 

anion nodsnumbarto n 

_L 
(mart nod« and coodnMs 

C^Z) 

1.1.2 Delete Node 1.1.3 Modify Node 

C —' ) 

Input nodtfs Id (n) and«* 

MMd n and tha cunant 

mod*/ affccM valuH on V» vMw 
and«monn»wnoo»ld(n1) 

do lRMft_Noda tof modflad noda 

do MM^Nodt ferobMlM nod* 

C^IJ C^D 
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1.1.4 Insert Arc 

( ««art ) 

Input beg and end coordinates of new 
arc (say al) 

•elect existing arcs A, their attrlb values and ooonlt. 

far aj e A. delermine Relation(aiIaj) 

doQP_Rute_3 

doGP_Rule_4 

doQP_Rule_5 

doGP_flule_6 

doQP_Rule_7 

Yes doGP_RulejB 

doGP_Rule_9 

doGP_Rute_10 

doGP_RuleJl 

<k)GP_Rute_12 

datonnina lift and right 2-oonttrinsrs 

and l̂ sontolnar Ut tor aj 

atilp^ U to aj and Intart tha faoovd 

aaalgn nods Us to bag and «nd d aj; 
Inaart toa nodaa and oooidtnaiH 



1.1.5 Delete Arc 

'input H. of are («.g., al) / 

I 
Mlact al and lts attribut» valu** 

I 
Lat P - Ltftp-contaliwJ, al] 

Q-Hlghil2-contBli»fK,aIl 
H - Partofll-conalnarL, al) 

^ R - V * * -

I M }Bao|al.n1]-1 
andn2aEnd[al,n21-1 

dato* are al 

doDalata_Noda(n1) 

doCMa»_Noda<n2) 

C^D 
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1.1.6 Modify Are 

( « M ) 

^ Input Hof are 
and th> modmad valu»» 

No modify obsohMa 
spatel allitiul» 

Yat 

«•toot arc and lts curant 
attribut» valuas a t a vtew 

modify abtötet» valut« on Uw vtew 
and assign Id« to are and hsnodts 

do lnaart_Arc for ffrt luudVted vtaw 

feDateteJte forth» abtötete are 

G«0 

1.1.7 Insert 2-container 

/ Input gtomttrlodala o f / 7 

•nforo»2CC_Rul»_1 

notify usarto 
modify ojaomvtry 

No 

srtBct»xl«tlng2-contBln»rsOC2 3Voc2eOC2 It 
R»tetlon(c2,OC2)e(r178. r220, HOP, i435, i478, fS11) 

VOC2eOC2s»tect 
VaoleAO|ls 

anMobtectsAOj > 
" il,oc2]-1 

^valutd 

|Y»s 

No sslact thematic class 

of «ach a d e ACH 

Vaal cMarmln» cornpatfcUty with the 
objtct which c2 Is part of 

% 

notify utar 
fordaeWon 
(e^., modfy 

Dbjaoft thap») 

display a l 2-contame« EC2 » v ac2 e EC2 It 
Rtlatlon(ac2,c2) E (r179, r220, (400, r436, i476,r511) 

dolnttracDvB updating (modHy «Htctedaterntnt» 
of EC2 4 Inaart geometrie «lamantt of c2), using 
arc/nodt updating algoitthnis 

If 3 modMed ae2 e EC2 * ConWnt{ac2,cO] - 1 
(cO - 0-contalnar). determine new 2-contalner 
nc2 > Contalnalnc2.c01 - 1 

nc2«dtts Yas 

No 

stort nttdtonshlp 

M property vatuts 

Ofnc2andc0 

c 



1.1.8 Delete 2-container 

( —' ) 

Input ld ol 2-oonWnar (c2) 

lalsct «dsttng O-contalnars cO > Contalns(c2,c01 - 1 

M lKt «odrtng 2-oonMmra EC2 
} Vec2 e EC21» (tota»on(c2,»cZ) e 

frITB, r220, |g7», r28S, r287, |400, i435,i478. |S11} 

modify «e2 E EC2 («g., then» tocadon of c2 
among neighbours), using «rGfnode «jgortlhms 

daktfa arc aj whom Lan(2-corrtaln»rl,aJ)-1 

andHghll2-oonlakNcK4a-1 (KI) and 
Panofl1-conMn»n-al1-0 

»alact2-oonialnarnc2 a Crjra«lns[nc2^0>1 
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1.1.9 Modify 2-container 

( "•" ) 

. / Input W of 2-contalnar (say c2) 

Insart modMad e2 at nsw, 

using lnsTL2-oomaln»f 

dak*aabsoWac2, uring 
D»leto_2-cofflaln«r 

lat aNactMl are* - Ak; subtract from Ao2 

add now area ( - An) ä AB2 - (Ac2 - Ak) + An 

Inssrt modlfiad c2, using lns«rt_2-contalnar 

datataal e Ak. using DalataJVrc algorithm 

CSD 

1.1.10 Insert 1-container 

( «" ) 
/ Input gaomatrte data of 7 

•nforo»1CC_RukJ_1 

notify ussr to 
modify gaomatry 

Yat 

talact «liHng 1-contarnrs OC1 > Vort eOC1 Is 
rManon(c1,oc1) e (MSB, r179, r191, r220, r223. r255, 

r400,1415. r435,143». K7B, 1477, r501) 

V o d £ OCIsstsct Br» objects ÜO| > 
Parlof[ljO),oc1|-1 

09 
No 

Inconsistant; nofMy 
usarfordsdston 

foraach al e Ac1 (arcs of ol) 
oolns«rt_Aro(al) 

C^D 



1.1.11 Delete 1-container 
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( —' ) 

Input kl of 1-contalnar 
(••g-.c1) / 

aakKtaxbtkigl-contalnaracl > 
Croa«a«tc1,ac1l-1 

No 

•at Croiiat(c1^e1l-0 

for «ach are aj hoving Partof[c1 jeß - 1 
•stPartoflcl^fl-O 

toraachaj eArf (aretof e1), 
doD*«»_Arc(aD 

r*o 
1.1.12 Modify 1-contàiner 

( «y ) 
/Input M of 1-contalnar (a.q c l ) / 

Jc1, 
) lnMrt_1-contain« 

ratrWvs gaomasy of d 
U..Qo1(Nc1Ae1) uatooDalatajI'Comalnar 

MkMt «dttkio 1 -contakwr ac1 
}Raladon(c1,ac1)-r1SO 

^ 1 No 

»at Croifi[o1 .art | - 0 

of Art («ay Mc) 

CKJ 
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1.1.13 Insert O-container 
(*•" ) 

fortlwOv. 

nUImm axtthig O-contalna» ECO and 
thairooofdlnatts 

I 
tor «ach acO e ECO compute niKonfrcO.cO) 

noMyiaartor 

Mtad «Ming point objwls PO 
V l r tePOI»H« l in *yM.»o01-1 

uaUMHibiacoinpBdUIllyofthanawobjact 
lauiaiautadbycOandaachpoJeFO 

Q14) (Q13 

notify usar for 

ofetwmlna «dring 2-contalnarac2 » 
Contain«|acg,c0l-1 

No 

ttoni raiafioniiaji as proparty 
vakmofcOandacS 

dolnian_Noda(NoO) 

CKJ 

1.1.14 Delete O-container 

^^^npulMofO-conlBlnarltayi^K^ 

«•act HOB» nl > Haprt.cO.nl]-1 

raMavaa>dtllng2-aontalnarae2 J 
Contalnt|ac2,o0]-1 

No 

•otConWnilaoe^Ol-O 

oO 

dt>Datt*_Noda(nl) 

1.1.15 Modify O-container 

c^n 
/ and» 

id of 0-oomalnar (tay oO). 
and tharaplacaniant data / 

i nudNy troctod 
«Mbu» valus« 
wMithaDBMS 

nMriava tha currant attributs 
vakjasofcOatavlaw 

modKy affadad valuat on tha vlaw 

kiaart modfflsd oO uthig 
ImartjO-containar 

data» obaoMW O-oontalnar 
usJng DslstaJD-contatoar 

r«o 

http://Haprt.cO.nl


1.1.16 Insert Point 

/ input cooidlnates and thematic data 
/(ckus and tayw) of the point object 

d a » / 

Iraart the themafc data ol PO 

assign PO a 0-oontalnar Identifier 

C-g-co) 

do lnsenj>-oontalnef(cO) 

ŒD 
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1.1.17 Delete Point 

( « M ) 

^ ^ p u t Mof object e . g . , P < ^ ^ 

delete thematic data o(PO 

»elect 0-contalnercO > ReprebyfPO.cO] - 1 

select existing point objact(s)po1 - P O 
}Rapnby(pol.c0|-1 

<B>f«i8fi>^Ä 

[NO 

est value of 
BeprebyfPacO] 

doDokMjD«cflteJnar(cO) 

r̂ ~) 

1.1.18 Modify Point 
(«UP) 

1 
Input object's Id (say pO) 

and the new (changed) data 

No 

No 

modify thematic data with DBMS 

select 0-eonWner eO such that 
0 .00] -1 

assign new O-contalner Id (say ncO) 

do lnse(t_0-contalner(ncO) 

doDelete_0-contalner(cO) 

7"T) 
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1.1.19 Insert Line 

( —' ) 

'Input coordinatas and tha tfwmatlc . 
oalaofthellneobJactLO 

Irasct tha thsrnadc data 

assign LO a 1-oontalnarlaanifflar 
aj.. c1 

dolnaan_1-oontainar(c1) 

•ntoroa LO_Hut»J 

<S> 

1.1.20 Delete Line 

C «•" ) 

^^1nputldofobjacta.g., LO-

r M f thrnallroataoiLO 

sakKt1-conta)namC1 » Vol e C l b 
PartD>lLO,c1]-1 

fo rd eC1 salad Una obJsct(t) 
toi * lO>Pariol[lo1,c1|-1 

Yas 

satvaluaof 
Partof|LjO,e1] 
top 

do Dalaia_1-conialnar(e1) 

r^o 

1.1.21 Modify Line 
(«art) 

Input objacrs Id (say LO) 
and tha raw (changad) data 

modfy thematic data wllh DBMS 

t1-conMnar»C1 J V C 1 e C I 
»PartorjtjO.cll-l 

(an) (QIS) (QIO) 

torncl.do 
lnsert_1 -conlalnaf 

UsnUfyCUcCI 

l o rd eC1,do 

No 

fordeCl lgetnaw 

do lrmrt_1-oontaln«r(ol) 

L*tCJ-)C1-C11) 

VeleC) 
do Dalata_Hantalnar(d) 

r^o 



1.1.22 Insert Area 

Input coonJInaM and 
of the area object AO 

Insert the thematic data 

assign AO a 2-contalner 

Identifier. e.g.,c2 

do lwwt_2-contaln«r(c2) 

enforce AOLRulejl 

CKD 
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1.1.23 Delete Area 

( —' ) 

Input object's Id o.g., A 3 

d u m thematic data of AO 
using DBMS command 

select 2-oontalnersC2 3 
V e2 E C2 It PartoOAO, 02] - 1 

Vc2 e C2 display all 2-oontalnaia 

EC2 3 V«c2 E EC2 l l HaUton(ac2^2) 

e (r179,1220, rtOO, 1436,1478, i€11) 

do baeracave updating (o>g<t to partMon 
vacated space among ft* nalghboura), 
using arc/node updating atgorithms 

r»o 

1.1.24 Modify Area 

modify ttwranilc 
data with DBMS 

select 2-contalner«C2 » 
Vo2 E<Xh>Partot|AO,c2]-1 

Vc2 e C2 display aH 2-contalnar« 
EC2 9 vec2 e EC2 it Roiaoori(ec2.c2) 
e | r17». 1220.1400.1435, i47a. r511} 

) updating (i do interactive updating («g., t> moony" 
tha geometry of aaoh oi lit nalghboun), 
uehgarc/ftodo updating algorithms 

C^D 
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Appendix 1.2 

Function Name 

checkArcLoop 

checkDupArc 

checkRedArc 

mCgraphO 

insarcO 

arctopoO 

meetO 

arcintQ 

Descriptions of Selected C and Postquel Functions Written for the 
Implementation (see chapters 6 & 7 for the algorithms) 

Language 

Postquel 

Postquel 

Postquel 

C 

C 

C 

C 

C 

Argument (input) 

arc class 

arc class 

arc class 

subgraphs of all 1-
containers or 2-
containers or line 
objects or area 
objects 

arc of new line or 
area object and all 
existing arcs (incl
uding coordinates) 

properties (includ
ing coord.) of new 
arc; properties of 
all existing arcs 

new arc and exist
ing arcs 

new arc and exist
ing arcs 

Output 

null (if no viol
ation) or arcs with 
snode = enode (if 
violation occurs) 

null or duplicate 
arcs 

null or redundant 
arcs 

identifiers and 
nodes of 1- or 2-
containers or line 
or area object that 
violate graph 
structure 

property values 
(snode, enode, 
IftTwoC, rgtTwoC 
and aOneC) of 
new arc, and data 
file for updating 
database geometry 

topologie relation
ship between new 
arc and an existing 
arc 

existing arc for 
which r287(new 
arc, existing arc) 
is True; 0 if none 

existing arc for 
which r063 or 
rl59(new arc, 
existing arc) is 
True 

Description 

consistency check 
for arc loop 

consistency check 
for duplicate arcs 

consistency check 
for arcs that carry 
no information 
(dangling arcs) 
e.g. IftTwoC = 
rgtTwoC but 
aOneC = 0 

monitoring 1CC_-
1/1CC_2 and 
2CC_1 (see §6.-
2.2) 

monitor and 
enforce GP_Ru-
le_l to GP_Rule-

12 (see Table 
6.1) 

computation of 
existing topologie 
relationship 
between a new 
and an existing arc 
using computation
al geometry 

computation of 
relation r287(new 
arc, existing arc) 

computation of 
relations r063 and 
rl59 between two 
arcs 
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ptin2c0 

interlrO 

alternodelr() 

equallrQ 

insidelrO 

containslrQ 

inden tlrO 

ouldentlr() 

coveredbylrQ 

coverslrO 

toucheslrO 

new node and 
existing 2-con-
tainers and their 
Ideational data 

existing 2-con-
tainer in which the 
new node lies 

new arc and the property values of 
existing arc having new arc; modified 
relation rl59 version(s) of exist

ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r287 version(s) of exist

ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r400 version(s) of exist

ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation rl79 version(s) of exist

ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r220 version(s) of exist

ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r255 version(s) of exist-
(indents) ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r255 (out- version(s) of exist-
dents) ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r435 version(s) of exist

ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r476 version(s) of exist

ing arc 

new arc and the property values of 
existing arc having new arc; modified 
relation r063 version(s) of exist

ing arc 

point-in-polygon 
computation 

enforces GP_Ru-
le_5 (see Table 
6.1) and assigns 
property values to 
new arc 

enforces GP_Ru-
le_9 and assigns 
property values to 
new arc 

enforces GP_Rule-
_10 and assigns 
property values to 
new arc 

enforces GP_Ru-
le_6 and assigns 
property values to 
new arc 

enforces GPJRu-
le_7 and assigns 
property values to 
new arc 

enforces GP_Ru-
le_8 and assigns 
property values to 
new arc 

enforces GP_Ru-
le_8 and assigns 
property values to 
new arc 

enforces GP_Rule-
_11 and assigns 
property values to 
new arc 

enforces GP_Rule-
_12 and assigns 
property values to 
new arc 

enforces GP_Ru-
le_3 and assigns 
property values to 
new arc 
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touchedbylrO 

r272nn() 

r092an0 

arcnodecoord 

euler 

delline 

insptQ 

inslineO 

insareaO 

c 

c 

c 

Postquel 

Postquel 

Postquel 

C 

C 

C 

new arc and the 
existing arc having 
relation r095 

coordinates of new 
point object and 
all existing nodes 
with degree 0 

new node and 
existing arcs 

arc and node 
classes 

area and arc 
classes 

id and layer of 
line object 

coordinates, object 
id, name, layer 
and class of the 
new point object 

as in inspt but for 
line object 

as above, for area 
object 

property values of 
new arc; modified 
version(s) of exist
ing arc 

existing node for 
which r272 (new 
node, existing 
node) is True 

existing arc for 
which r092(exi-
sting arc,new 
node) is True; 
returns 0 if none 

G(N,A) of the 
map (database) 
including 
coordinates 

Number of com
ponent graphs of 
the map 

file containing 
property values 
with enforced 
consistency rules; 
the file is run as 
Postquel query file 
to propagate the 
update 

as above 

as above 

enforces GP_Ru-
le_4 and assigns 
property values to 
new arc 

computation of 
relation r272 
between new node 
and existing nodes 
(with degree 0) 

to compute r092(-
arc.node) between 
a new node and an 
existing arc 

to retrieve the 
arcs, nodes and 
coordinates in the 
database 

to ascertain planar 
enforcement 

to delete a given 
line object & 
propagate the 
update 

insertion of new 
point object while 
maintaining con
sistency 

as above, for line 
object 

as above, for area 
object 
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Appendix 2 Samples from the Database 

Arc C l a s s 

a r c i d s n o d e e n ode l f tTwoC rq tTwoC aOneC 
967 
968 
970 
971 
1070 
1071 
1106 
1107 
1112 
1155 
1156 
1157 
1167 
1 
2 

1096 
1097 
186 
1101 
679 
1206 
1244 
1246 
1252 
1299 
1300 
1300 
1314 
1 
2 

1097 
1098 
1101 
1102 
1206 
1207 
1246 
1247 
1253 
1300 
1302 
1304 
1315 
2 
4 

7 
7 
53 
53 
39 

• 39 
10 
10 
32 
30 
30 
30 
2 
99 
99 

7 
7 
53 
53 
39 
39 
27 
27 
27 
30 
30 
30 
26 
5 
6 

92 
92 
92 
92 
21 
21 
71 
71 
71 
71 
71 
91 
91 
0 
0 

Area C l a s s 

twoC i d a o b i i d l a y e r aname a c l a s s 
1 1 t o p o FL1 f a r m _ l a n d 
80 6 t o p o FL6 f a r m _ l a n d 
73 7 t o p o FL7 f a r m _ l a n d 
81 12 t o p o F12 f o r e s t 
82 12 t o p o F12 f o r e s t 
40 21 t o p o MLF21 m i x e d _ l d _ f o r 
30 72 t o p o S72 b u i l t _ u p _ a r e a 
82 1 soil II little_weathered_nonclimatic_mineral_soils 
84 1 soil Ï1 little_weathered_nonclimatic_mineral_soils 
9 11 soil IUI slightly_developed_nonclimatic_soils 
21 13 soil 1113 slightly_developed_nonclimatic_soils 
31 22 soil V22 calcimagnesic_soils 
32 22 soil V22 calcimagnesic_soils 
16 32 soil VII32 brown-earth_soils 
63 33 soil VII33 brown-earth_soils 
24 41 soil 1X41 iron-sesquioxide-rich_soils 
71 42 soil 1X42 iron-sesquioxide-rich_soils 
53 51 soil XI51 hydromorphic_soils 
58 61 soil C61 complex_units_and_associations 
65 61 soil C61 coraplex_units_and_associations 
99 99 soil 099 out area 

Lina Class 

oneC 
11 
41 
42 
61 
22 
42 
61 
92 

id lobiid 
1 
2 
3 
4 
10 
3 
4 
13 

laver 
topo 
topo 
topo 
topo 
topo 
soil 
soil 
soil 

lname 
railway1 
riverl 
river2 
N100 
D105 
river2 
N100 
D108 

lclass 
railway 
river 
river 
road 
road 
river 
road 
road 

Linaoross Class 

upperlC 
81 
81 
71 
61 
21 
11 
21 

lowerlC 
41 
11 
42 
42 
41 
41 
11 

crosspt 
1033 
1028 
1303 
1886 
2051 
2005 
2048 

lower ht 
149.89 
156.11 
135.33 
133.33 
137.33 
133.33 
139.11 



Accuracy Class 

ac id pi ace ht ace 
1 0.45 0.68 
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Pointf Class 

zeroC id 
1 
2 
12 
13 
14 
15 

pobiid layer pname 
1 
2 
12 
13 
14 
15 

topo 
topo 
soil 
soil 
soil 
soil 

bridge1 
bridge3 
pt_samplel80 
pt_samplel79 
pt_samplel78 
pt_sample36 

pclass 
rd_rive r_bridge 
rd_river_bridge 
point_sample 
point_sample 
point_sample 
point_sample 

Pointnode Class 

zeroC twoC pnode 
1 
2 
3 
4 
5 

7 
30 
7 
7 
7 

1033 
1302 
1886 
2051 
1028 

Lineage 

lin 
id 

1 

Class 

pl_lin 

The soil data were extracted from the 'Pedologique 
map of atlas No2 , South-Est Sector at scale of 
1/50.000. The map was issued by the Ministry of 
Agriculture of France, 'Direction Departementale 
de l'Agriculture de Vaucluse' ,in 1978. The fea
tures of interest were initially digitized by 
using a 2D tablet digitizer and the control points 
used for coordinate transformation were taken from 
the topographic map of Cavaillon at 1/50.000 ,re— 
edited by IGN of France in 1988. For map projec
tion, the ellipsoid of Clarke 1880, Lambert coni
que conform projection was used. The topographic 
layer informations (major land use/cover types) 
were extracted from aerial photograghs at scale of 
1/30.000, which were taken in 1989, with a focal 
length of 152.00 mm. The two layers were superim
posed and 3D digitizing of the outcome multivalued 
map was made in stereomode using Planicomp C120, 
with KORK-KDMS software, in August 1994. 

ht_lin 

The height infor
mation was 
extracted by using 
the phogrammetric 
techniques (during 
the stereocompila-
tion) and from the 
same data 
sources(aerial 
photos. The flying 
height of the used 
photographs i s 
about 4560 meters, 
and by using Plan
icomp C120 , the 
expected height 
accuracy is : 0.10 
to 0.15 per mil of 
the flying height. 

Mod« Class 

node 
1 
2 
4 
6 
2959 
2960 
2965 
2966 
2963 
2964 
2967 
2974 
2975 

id xcoord 
834800.875 
835732.6875 
835964.6875 
836144.6875 
832303.875 
832236.125 
832232.4375 
832226.000 
832226.125 
832229.6875 
832215.125 
832740.6875 
832740.4375 

vcoord 
179542.4375 
179587.671875 
179604.109375 
179609.109375 
175914.109375 
175768.4375 
175682.671875 
175666.000 
175725.5625 
175703.78125 
175659.890625 
178054.000 
178080.4375 

zooord 
268.890015 
243.440002 
227.110001 
227.110001 
199.220001 
192.220001 
193.440002 
193.110001 
192.000 
192.559998 
193.440002 
143.559998 
147.110001 

ac id 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

lin id 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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3 Some instances from the Line and Linecross after de le t ing an 
ex i s t ing l i n e object (railwayl) 

Instances of t he Lin« c l a s s a f t e r the automatic d e la t i on of the l i n e objact : 

oneC 
41 
42 
61 
21 
31 
71 
81 
91 
22 
32 
72 
92 
41 
42 
61 
21 
31 
71 
81 
91 
22 
32 
72 
92 

id lobiid 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

laver 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 

lname 
riverl 
river2 
N100 
D106 
D109 
D145 
D36 
D60 
D105 
D218 
D104 
D108 
riverl 
river2 
N100 
D106 
D109 
D145 
D36 
D60 
D105 
D218 
D104 
D108 

lclass 
river 
river 
road 
road 
road 
road 
road 
road 
road 
road 
road 
road 
river 
river 
road 
road 
road 
road 
road 
road 
road 
road 
road 
road 

Instances of tha Linecross 
va lues of th« l i n a objac t : 

c l a s s showing that tha system has delated the property 

uppe r l c lowerlC c r o s sp t lower h t 
81 41 1033 149.89 
71 42 1303 135.33 
61 42 1886 133.33 
21 41 2051 137.33 
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Appendix 4 Some instances from the Pointf, Pointnode and Node c l a s se s 
a f ter insert ing new point object 

Soma instanca» of the Mods class after inserting the point object ( i t s node_id = 3181) 
by propagation: 

node id xcoord vcoord zcoord ac id l in id 

3137 
3178 
3179 
3180 
3181 

837109.25 
834357.4375 
834526.75 
835836.875 
834835.6875 

177420.890625 
178006.5625 
177746.890625 
177542.890625 
176707.046875 

161.320007 
220.600006 
217.160004 
155.639999 
247.774994 

Instances from Pointnode class after propagating the insertion of the point object 
(its zeroC id - 16) : 

zeroC 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

twoC 
7 
30 
7 
7 
7 
7 
7 
8 
9 
53 
7 
7 
28 
28 
7 
7 

Instances 

zeroC 
1 
2 
3 
4 
5 
6 

12 
13 
14 
15 
16 

id 

of 

pnode 
1033 
1302 
1886 
2051 
1028 
2048 
2005 
3038 
3037 
3041 
3137 
3180 
3179 
3178 
3036 
3181 

the Pointf 

pobiid laver 
1 
2 
3 
4 
5 
6 

12 
13 
14 
15 
79 

topo 
topo 
topo 
topo 
topo 
topo 

soil 
soil 
soil 
soil 
topo 

class after inserting a new poinl 

pname 
bridgel 
bridge3 
bridge4 
bridge5 
bridge2 
bridge7 

pt_samplel80 
pt_samplel79 
pt_samplel78 
pt_sample36 
gps_stationl 

pclass 
rd_river_bridge 
rd_river_bridge 
rd_river bridge 
rd_river_bridge 
rd_road_bridge 
rd_road bridge 

point_sample 
point_sample 
point_sample 
point_saraple 
geodetic controls 
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Type of Object: Line 
Geographic name: railwayl 
Thematic class: railway 
Layer: topo 
Geometry: 

Segment* 

1 

2 

3 

4 

5 

6 

7 

8 

Points 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

X 

New 1-container Id: 

837592 
836953 
836953 
836071 
836071 
835466 
835466 
834735 
834735 
833341 
833341 
832892 
832892 
832645 
832645 
832122 

93 

.250000 

.750000 

.750000 

.312500 

.312500 

.437500 

.437500 

.562500 

.562500 

.312500 

.312500 

.437500 

.437500 

.750000 

.750000 

.125000 

177319 
177149 
177149 
176917 
176917 
176753 
176753 
176568 
176568 
176821 
176821 
176931 
176931 
177072 
177072 
177401 

.671875 

.781250 

.781250 

.109375 

.109375 

.000000 

.000000 

.437500 

.437500 

.000000 

.000000 

.328125 

.328125 

.328125 

.328125 

.562500 

167.889999 
161.779999 
161.779999 
156.110001 
156.110001 
155.559998 
155.559998 
149.559998 
149.559998 
139.110001 
139.110001 
138.779999 
138.779999 
138.559998 
138.559998 
134.559998 

Appendix 5B Some instances from the Line, Linecross, Arc and Node 
classes after inserting new line object 

Instances of tha Lina class after inserting tha lina object (it has onaC_id = 93) : 

oneC 
41 
42 
61 
21 
31 
71 
81 
91 
22 
32 
72 
92 
41 
42 
61 
21 
31 
71 
81 
91 
22 
32 
72 
92 
93 

id lobiid 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
1 

laver 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
topo 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
soil 
topo 

lname 
riverl 
river2 
N100 
D106 
D109 
D145 
D36 
D60 
D105 
D218 
D104 
D108 
riverl 
river2 
N100 
D106 
D109 
D145 
D36 
D60 
D105 
D218 
D104 
D108 
railwayl 

lclass 
river 
river 
road 
road 
road 
road 
road 
road 
road 
road 
road 
road 
river 
river 
road 
road 
road 
road 
road 
road 
road 
road 
road 
road 
railway 
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Instances of the Linacross class aftar inserting "xailwayl" (it now has oneC_id = 93) : 

upperlC lowerlC crosspt lower ht 
81 
71 
61 
21 
81 
21 
93 

41 
42 
42 
41 
93 
93 
41 

1033 
1303 
1886 
2051 
1028 
2048 
2005 

149.89 
135.33 
133.33 
137.33 
156.110001 
139.110001 
133.33 

Soma instances of the Axe class showing aras of the new railway: 

arc id 
2683 
2684 
2685 
2686 
2687 
2688 
2689 
2690 

snode 
17 
3182 
1028 
3185 
3186 
2048 
3187 
2005 

enode 
3182 
1028 
3185 
3186 
2048 
3187 
2005 
3189 

lftTwoC 
7 
7 
7 
7 
7 
7 
7 
7 

rotTwoC 
7 
7 
7 
7 
7 
7 
7 
7 

aOneC 
93 
93 
93 
93 
93 
93 
93 
93 

Instances of the Node class showing nodes of the new railway: 

node id 
17 
1028 
2005 
2048 
3182 
3185 
3186 
3187 
3189 

xcoord 
837592 
836071 
832645 
833341 
836953 
835466 
834735 
832892 
832122 

25 
3125 
75 
3125 
75 
4375 
5625 
4375 
125 

vcoord 
177319 
176917 
177072 
176821 
177149 
176753 
176568 
176931 
1.77401 

671875 
109375 
328125 
000 
78125 
000 
4375 
328125 
5625 

zcoord 
167.889999 
160.440002 
138.559998 
143.889999 
161.779999 
155.559998 
149.559998 
138.779999 
134.559998 

ac id 
1 
1 
1 
1 
1 
1 
1 
1 
1 

lin id 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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Appendix 6A Data of the new area object for insertion 

Object Name: Potato_farm 
Thematic class: Farm_land 
Layer: Topo 
Object_Identifier 74 
Locational data : 
Segment* Point X 
1 1 837350.5000 

837512.0000 
837512.0000 
837568.1150 
837568.1150 
837357.0080 
837357.0080 
837350.5000 

179500.050 
179486.225 
179486.225 
178205.515 
178205.515 
178425.375 
178425.375 
179500.050 

Z 
189.127 
193.400 
193.400 
184.005 
184.005 
184.113 
184.113 
189.127 

Appendix 6B Some instances of the Area, Arc and Node classes after 
inserting the new area object 

Area Class showing addition of 2-containers 86 and 87 after inserting new ana object 
"potato_fann" : 

twoC 
81 
82 
84 
83 
81 
86 
87 
85 
85 
86 
87 

id aobiid 
12 
12 
1 
23 
43 
32 
21 
11 
61 
74 
74 

laver 
topo 
topo 
soil 
soil 
soil 
soil 
soil 
topo 
soil 
topo 
topo 

aname 
F12 
F12 
11 
V23 
1X43 
VII32 
V21 
Fll 
C61 
potato_ 
potato_ 

farm 
farm 

aclass 
forest 
forest 
little weathered nonclimatic mineral soil 
calcimagnesic_soils 
iron-sesquioxide-rich_soils 
brown earth soils 
calcimagnesic_soils 
forest 
complex_units_and_associations 
farm_land 
farm land 

Soma instances from the Are class showing ares related to tha inserted area object: 

arc id snode enode lftTwoC rqtTwoC aOneC 
2693 
2696 
2697 
2700 
191 
192 
193 
2694 
2691 
2692 
2698 
2700 
191 
192 
193 
2694 

3192 
3194 
3195 
3197 
233 
234 
235 
236 
3190 
3191 
3197 
3197 
233 
234 
235 
236 

3194 
3195 
3197 
233 
234 
235 
236 
3192 
3191 
3192 
3190 
233 
234 
235 
236 
3192 

Instances from tha Mode 

node 
233 
234 
235 
236 
3190 
3191 
3192 
3194 
3195 
3197 

id xcoord 
837376 
837448 
837485 
837509 
837350 
837512 
837523 
837568 
837357 
837352 

3125 
5625 
4375 
6875 
5 
000 
689453 
125 
000 
307129 

16 
16 
16 
87 
87 
87 
87 
87 
8 
8 
8 
87 
87 
87 
87 
87 

86 
86 
86 
86 
86 
86 
86 
86 
87 
87 
87 
86 
86 
86 
86 
86 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

class showing nodes and locational data of th 

ycoord 
179142 
179144 
179161 
179176 
179500 
179486 
179198 
178105 
178225 
179145 

5625 
328125 
000 
78125 
046875 
21875 
650391 
515625 
375 
720703 

zcoord 
185.669998 
183.559998 
190.440002 
192.669998 
189.126999 
193.399994 
193.786942 
184.005005 
184.113007 
187.733231 

ac id lin id 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
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De modellering van samenvallende ruimtelijke objecten, de geautomatiseerde bijhouding 
van databases en data consistentie in een vector GIS. 

Samenvatting 

In deze dissertatie zijn formele procedures ontwikkeld voor de automatische controle van 
dataconsistentie en voor het bijhouden van databases in een vectorgestructureerd GIS. Het 
kader daarvoor wordt gegeven door een conceptueel datamodel voor de representatie van een 
terreinbeschrijving in meerdere lagen in een vectorstructuur. Om het model en de ontwikkelde 
concepten te testen en om de implementatie mogelijkheden te onderzoeken, is het model 
vertaald naar relationele en objectgestructureerde gegevensstructuren. 

Geografische informatie systemen (GIS) geven de mogelijkheid voor ruimtelijke gegevensver
werking voor een breed scala van toepassingen. Het hart van zo'n systeem is de ruimtelijke 
database, daarin wordt de wereld gerepresenteerd zoals die vanuit de toepassingen gezien 
wordt. Deze database moet goed gestructureerd en consistent zijn. Bij het ontwerp van de 
database worden de gegevens op vier abstractie niveaus bekeken: de werkelijkheid, het 
conceptuele datamodel, de datastructuur en de filestructuur. De wijze waarop de werkelijkheid 
in een conceptueel datamodel wordt afgebeeld hangt meestal sterk van de toepassing af. 
Ruimtelijke analyse en planning vereisen meestal dat verschillende visies op de wereld 
geïntegreerd worden, dit betekent meestal de integratie van verschillende "kaartlagen". De 
term "kaartlaag" wordt hier gebruikt voor een verzameling geo-data, die een bepaald aspect 
van de wereld beschrijven. Tegenwoordig wordt meestal iedere laag apart gestructureerd, 
integratie wordt dan via overlays gerealiseerd. Deze oplossing leidt vaak tot een toename van 
de overheadkosten voor herhaalde ad-hoc overlay berekeningen (tijdens query bewerkingen), 
bovendien is het moeilijk om in dit geval van tevoren relaties te definiëren tussen objecten 
uit verschillende lagen (verticale topologie). 

In deze dissertatie wordt een alternatief gegeven met een conceptueel model voor een 
vectorrepresentatie voor meerwaardige terreinabstracties, vooral wanneer veelvuldig 
ruimtelijke analyses worden uitgevoerd over meerdere lagen. Dit model is een object 
gestructureerd 2.5D datamodel voor meerwaardige vectorkaarten (DMMVM); dit is een 
vectorgestructureerde representatie van terrein objecten uit meerdere kaartlagen, waarbij 
objecten van hetzelfde geometrische type kunnen samenvallen, i.e., elkaar overlappen. In dit 
model is de positie van objecten in 3D coördinaten gegeven, terwijl hun topologie door een 
2D vlakken graaf beschreven wordt; dit geeft een 2.5D model. Het model is gebaseerd op de 
2D formele datastructuur (FDS) voor enkelwaardige vectorkaarten (Molenaar, 1989). In de 
FDS spelen terrein objecten een centrale rol; ieder object heeft een thematische- en een 
geometrische beschrijvingscomponent. Thematisch gezien worden objecten ingedeeld in 
klassen, waarbij iedere klasse een eigen specifieke attribuutstructuur heeft. Geometrisch 
worden de punt-, lijn- en vlakobjecten onderscheiden, de geometrie van deze objecten kan 
worden uitgedrukt in knooppunten en zijden waarvan de samenhang volgens de regels van 
de grafentheorie kan worden bestudeerd. De FDS werd in deze dissertatie uitgebreid zodat 
objecten van hetzelfde type elkaar kunnen overlappen, zodat geodata uit meerdere kaartlagen 
in een structuur gebracht kunnen worden. Dit gebeurde door de introductie van het begrip m-
container (m duidt de dimensie aan). Een O-container representeert samenvallende 
puntobjecten uit meerdere lagen, een 1-container samenvallende lijnobjecten en een 2-
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container samenvallende vlakobjecten. Voor vlakken worden altijd alle lagen betrokken, bij 
punt- en lijnobjecten kunnen dat minder lagen zijn. Via de containers worden de samenval
lende delen van objecten geïdentificeerd, deze delen kunnen hun eigen geometrie en thematiek 
hebben naast die van de oorspronkelijke objecten. Ze kunnen door de database als aparte 
(sub)objecten behandeld worden, zodat ze in aggregatie en associatie operatie gebruikt kunnen 
worden. 

De geometrie van de containers wordt ook beschreven door middel van knooppunten en 
zijden: een knooppunt beschrijft een O-container en/of het begin of einde van een zijde, terwijl 
een zijde een deel kan zijn van een 1-container en tegelijkertijd van de grens van een 2-
container. Een zijde wordt gedefinieerd door de begin- en eindknooppunten, een knooppunt 
heeft een positie uitgedrukt in X,Y,Z-coördinaten. De geometrie van een kaart wordt 
beschreven door een vlakke graaf G(N,A), daarin is A de verzameling van alle zijden en N 
van alle knooppunten. Iedere m-container C wordt beschreven door een subgraaf van Gc van 
G met GC(NC,A,.) met Nc is een deelverzameling van N en Ac is een deelverzameling van A. 
Voor een O-container is Ac leeg. 

De geo-data in multi-kaartlagen worden dus beschreven door acht basistypes van geometrische 
gegevens: punt-, lijn- en vlakobjecten, 0-, 1- en 2-containers en knooppunten en zijden. Ieder 
gegevenstype speelt haar eigen rol in het datamodel. Net als in de FDS representeren de 
punten, lijnen en vlakken de terreinobjecten, ieder object kan op een of meer van deze typen 
worden afgebeeld, de m-containers worden gebruikt om overlappende delen van objecten te 
beschrijven, terwijl de feitelijke geometrische beschrijving van de objecten wordt uitgedrukt 
in de knooppunten en zijden. 

In dit model konden DTM's geïntegreerd worden via een op zijden (edges) gebaseerde TIN 
representatie, de twee geometrische primitieven van TIN, te weten edges en vertices werden 
aan de acht datatypen van het DMMVM toegevoegd. De topologische relaties tussen de 
punten, lijnen, vlakken, knooppunten en zijden werden geformaliseerd. Daarna werden 
algoritmen gedefinieerd voor het opsporen van de mogelijke elementaire relaties tussen 
objecten. Deze algoritmen kunnen vertaald worden in topologische operatoren voor het 
uitvoeren van topologische bevragingen, maar ze vormen ook het gereedschap voor het 
opleggen van topologische voorwaarden aan de gegevens. Als de topologische operatoren 
gebruikt worden voor het handhaven van consistentie regels, dan kunnen er inconsistentie mee 
opgespoord worden. Ingeval van inconsistentie activeert de operator de relevante regels 
waarmee de consistentie hersteld wordt. 

De DMMVM werd vertaald naar twee types van database-structuren, het relationele en een 
objectgestructureerd model. Het prototype in het relationele model werd genormaliseerd met 
de methode van (Smith, 1985). Zeven basistabellen werden gedefinieerd, waarin experimentele 
implementaties werden gerealiseerd om de bruikbaarheid van het multi-lagen model te toetsen. 
De consistentie en bijhoudingsoperaties werden in C geprogrammeerd en aan de RDBMS 
gekoppeld. Het relationele model kan direct geïmplementeerd worden omdat er vele 
RDBMSen beschikbaar zijn, dat is minder het geval voor het object-georiënteerde model. 
Omdat relationele databases vele tekortkomingen hebben voor het behandelen van ruimtelijke 
gegevens, werd het model ook geïmplementeerd in een object-gestructureerde database. 
Hierbij werden negen objectklassen gedefinieerd, voor ieder van de acht genoemde 
geometrische elementtypen één plus één voor het onderscheid tussen kruisende en snijdende 
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lijnobjecten. De consistentie en bijhoudingsoperaties werden als aan deze klassen verbonden 
methoden behandeld. 

Dit onderzoek richtte zich ook op gegevensconsistentie in ruimtelijke databases. Er zijn twee 
typen van consistentie, de dynamische en de statische. Hier werd vooral gekeken naar de 
statische consistentie, welke uitgesplitst kan worden in structurele en semantische consistentie. 
Er werden regels geformuleerd om structurele voorwaarden te handhaven, terwijl een strategie 
werd voorgesteld voor de monitoring van de semantische regels. In beide gevallen speelt de 
topologie een belangrijke rol voor het opsporen van inconsistenties. Deze dissertatie toonde 
aan dat de consistentie regels vertaald kunnen worden in topologische voorwaarden voor de 
afzonderlijke objecten en topologische relaties tussen paren van objecten. Overtredingen 
kunnen in de database opgeslagen worden als "events" en de overeenkomstige respons als 
"actie"; hiermee kan een rulebased procedure ontwikkeld worden met de conventie "IF event 
THEN actie". 

In de dissertatie werden procedures ontwikkeld op basis van het DMMVM voor de consistente 
automatische bijhouding van vectorbestanden. Hierbij werden algoritmen ontwikkeld om 
bijhoudingsoperaties automatisch zo te laten doorwerken dat topologische relaties consistent 
blijven. Hierdoor wordt de huidige praktijk verbeterd, waarbij de systemen later een 
herstelslag moeten uitvoeren als de geometrie in de database is bijgewerkt. Er zijn algoritmen 
ontwikkeld voor het invoegen, verwijderen en veranderen van alle acht geometrische typen 
in DMMVM. De interactie tussen mens en machine vindt daarbij op objectniveau plaats, de 
verandering van objecten wordt dan door de machine doorvertaald naar de andere 
gegevenstypen. De topologie van de database wordt door het systeem onder bij
houdingsoperaties dynamisch bijgewerkt. Hierbij wordt gebruik gemaakt van "computational 
geometry", de topologische relatie tussen de nieuwe ingevoerde geometrische primitieve van 
een object en de al aanwezige. De gevonden topologische relaties activeert dan de relevante 
consistentie regel, zodat de consistentie van de database hersteld wordt. Het systeem 
waarschuwt de operateur als het er zelf niet uitkomt. 

Een experimentele implementatie van object-georiënteerde datastructuur werd in Postgres 
versie 4.2 gerealiseerd. De data acquisitie werd gedaan met een Planicomp Cl20, een 
fotogrammetrische stereoplotter voorzien van een Zeiss Video Map en een Calcomp digitizer. 
De stereocompilatie werd uitgevoerd met een Kork digital mapping system, versie 8.0. Het 
datamodel werd getest voor een situatie met twee lagen: een bodemkaart en een topografische 
laag (met de belangrijkste landgebruik en landbedekkingstypes). De consistentie regels werden 
geverifieerd met behulp van C-functies en Postquel queries, een aantal consistentie regels 
werden ook getest. 

De ervaring met deze experimenten leerde dat deze methodiek een grotere inspanning vraagt 
voor het ontwerp van een database, dat wordt dan gecompenseerd door snellere query 
afhandeling in het multi-lagen model en door het grotere informatiegehalte van de database. 
Dataconsistentie is bovendien verzekerd doordat inconsistenties al bij de creatie en bijhouding 
van de database gevonden worden en doordat topologie dynamisch door het systeem wordt 
bijgewerkt. 

De conventies van de FDS aangevuld met de conventies van de DMMVM ondersteunen een 
eenduidige afbeelding van terreinsituaties op de databases, de voorgestelde datastructuur kan 
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in ieder bestaand vector-GIS worden geïmplementeerd, ook al is het soms met toegevoegde 
operaties of met een lichte aanpassing van de conventies. Veel systemen representeren zijden 
bijvoorbeeld verschillend, meestal als een aggregaat van rechte lijnstukken; aanvullende 
operaties zijn dan nodig om de topologie te herstructureren als we de veronderstelling dat een 
zijde recht is willen handhaven. Hiermee worden dan wel wat dataredundanties ingevoerd. De 
conventie dat zijden recht moeten zijn kan wel ontspannen worden door ook andere vormen 
toe te laten. 

De experimentele implementatie toonde aan dat het datamodel met de consistentie regels en 
bijhoudingsalgoritmen geïmplementeerd kunnen worden. Ze kunnen daarom aanbevolen 
worden voor implementatie in GIS en kaarteringssystemen, daartoe moeten de algoritmen en 
consistentie regels aan het DBMS toegevoegd worden. 
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