
POTATO LEAFROLL VIRUS, 
MOLECULAR ANALYSIS AND GENETICALLY ENGINEERED 

RESISTANCE 



Promotor: Dr. R.W. Goldbach 
Hoogleraar in de Virologie 

Co-promotor: Dr. Ir. H. Huttinga 

Hoofd afdeling Detectie van het Instituut voor 

Planteziektenkundig Onderzoek (IPO-DLO) 



/Mo2?o \f zo £y 

POTATO LEAFROLL VIRUS, 
MOLECULAR ANALYSIS AND GENETICALLY ENGINEERED 

RESISTANCE 

Frank van der Wilk 

Proefschrift 

ter verkrijging van de graad van doctor 

in de landbouw- en milieuwetenschappen 

op gezag van de rector magnificus, 

Dr. C.M. Karssen, 

in het openbaar te verdedigen 

op woensdag 13 december 1995 

des namiddags te vier uur in de Aula 

van de Landbouwuniversiteit te Wageningen 

isn AllUb 



CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Wilk, Frank van der 

Potato leafroll virus, molecular analysis and genetically 

engineered resistance / Frank van der Wilk. -[S.l.:s.n.] 

Thesis Wageningen. - With ref. - With summary in Dutch. 

ISBN 90-5485-461-8 

Subject headings: Luteovirus / plant diseases 

LAND50Ü v VU N : V ERSITETT 
WACTVINCT.N 

The research described in this thesis was part of the research programme of 
the DLO Research Institute for Plant Protection (IPO-DLO), Wageningen. 
The work was a concerted effort of IPO-DLO, Mogen International NV and 
the Department of Virology, WAU. It was supported in part by the 

i p o - d l o Programme Committee on Agricultural Biotechnology (PcLB). 



^0<?2öi 2.Ù2H 

STELLINGEN 

1. De aanwezigheid van het PI-eiwit van het aardappelbladrolvirus in de plantecel is voldoende 
om bladrolsymptomen in aardappelplanten te veroorzaken. 
Dit proefschrift. 

2. Het opstellen van algemeen geldende theorieën betreffende mogelijke werkingsmechanismen 
van 'pathogen-derived resistance' op basis van resultaten verkregen in Nicotiana spp. alleen, 
dient vermeden te worden. 

3. De door Smith et al. gedane suggestie dat resistentie tegen het aardappelvirus Y in transgene 
aardappel veroorzaakt wordt door een cellulair afbraakmechanisme van transgene en virale 
RNA sequenties wordt onvoldoende ondersteund door de gepresenteerde gegevens. 
Smith, H.A., et al, (1995). Transgenic potato virus Y resistance in potato: evidence for an RNA-mediated cellular response. 
Phytopathology 85:864-870. 

4. De naam 'symbionine' voor het 63 kDa eiwit, dat door de endosymbiotische bacteriën van 
bladluizen in situ gesynthetiseerd wordt, dient op grond van sequentiegegevens vervangen te 
worden door 'GroEL'. 
Fukatsu, H.E., & Ishikawa, H, (1992). Synthesis and localization of symbionin, an aphid endosymbiont protein. Insect 
Biochem. Mol. Biol. 22:167-17. 

5. In het door Damsteegt et al. uitgevoerde onderzoek naar het voorkomen van luteovirussen in 
klaver wordt ten onrechte de sterke serologische kruisreactie tussen 'soybean dwarf virus' en 
het erwtetopvergelingsvirus (bean leafroll virus) genegeerd. 
Damsteegt, V.D., et al, 1995. Soybean dwarf, bean leafroll, and beet western yellows luteoviruses in southeastern U.S. white 
clover. Plant Dis. 79:48-50. 

6. De door Yonaha et al. gepresenteerde gegevens ondersteunen onvoldoende de conclusie van 
de auteurs dat zij een nieuw luteovirus beschrijven. 
Yonaha, T., et al., (1995). Pepper vein yellows virus, a novel luteovirus from bell pepper plants in Japan. Ann. Phytopathol. 
Soc. Jpn. 61:178-184. 

7. Gezien de wisselvalligheid van de Nederlandse zomers dient er meer onderzoek verricht te 
worden naar de mogelijkheid om (picorna-achtige) bladluisvirussen als biologisch 
bestrijdingsmiddel te gebruiken. 
Laubscher, J.M., Von Wechmar, M.B., (1992). Influence of aphid lethal paralysis virus and Rhopalosiphum padi virus on 
aphid biology at different temperatures. J. Invert. Path. 60:134-140. 

8. Bij de ontwikkeling van nieuwe taxonomische technieken die gebaseerd zijn op verschillen 
in nucleotidenvolgorden dient men 'lumping' boven 'splitting' te stellen. 

9. Van het tellen van publikaties als maat voor de kwaliteit van een onderzoeksgroep worden 
alleen uitgevers wijzer. 

10. Uit de naamgeving van het nieuwe computerbesturingsprogramma Windows 95™ blijkt dat de 
fabrikant zijn belofte dat de koper tot het jaar 2000 'up to date' is, niet serieus neemt. 

Stellingen behorende bij het proefschrift van Frank van der Wilk: "PLRV, molecular analysis 
and genetically engineered resistance". 

Wageningen, 13 december 1995. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Scope of the investigation 

The main objective of the investigations described in this thesis was to gain further 

insight in the genomic organization of the potato leafroll virus (PLRV) and to use this 

knowledge to develop new strategies for host plant resistance towards this virus. PLRV, 

a member of the genus Luteovirus, is still a problem in agriculture due to the lack of 

resistant potato varieties. The use of resistant potato plants would not only increase 

yields and reduce costs, but would also allow a considerable reduction in the use of 

insecticides, now being applied to control the aphid vector of the virus, thus reducing 

the spread of the virus. Knowledge about the molecular features of the virus is an 

absolute prerequisite for the development of new ways of virus resistance. Furthermore, 

information on the genomic organization of PLRV will lead to a correct classification of 

luteoviruses and provide new data about the relationship of this important virus group 

to other virus groups. 

This chapter will present a general introduction to the luteoviruses, with special 

emphasis on PLRV, and to the transformation strategies aimed at increasing virus 

resistance levels of host plants by what is currently known as 'genetically engineered 

resistance'. Chapter 2 describes the unravelling of the complete nucleotide sequence of 

the genomic RNA of PLRV. Experiments aimed to obtain PLRV resistance by 

transforming potato with sense and anti-sense constructs of the viral coat protein gene 

are described in Chapters 3 and 4. In Chapter 3 the production of transgenic potato 

plants containing the wild-type coat protein gene of PLRV is reported. Chapter 4 

describes the production of transgenic plants containing a mutated version of the PLRV 

coat protein gene. The coat protein gene was altered in order to increase its translational 

expression. Chapters 5 and 6 focus on the role of a non-structural (28 kDa) protein, 

encoded by the first open reading frame on the PLRV genome, during the infection 

process. The heterologous expression of this protein in both the Escherichia coli system 



and the baculovirus/insect cell system, as well as the production of an antiserum against 

this protein is described in Chapter 5. Furthermore, transgenic potato plants containing 

the PLRV 28 kDa gene have been produced and tested for resistance to PLRV (Chapter 

6 & 7). A general discussion of the experiments carried out and of the results obtained, 

are presented in Chapter 8. 

Luteoviruses 

In 1975, luteoviruses were recognized as a separate plant virus group, and in 1995 as a 

genus, by the International Committee on Taxonomy of Viruses. The name luteovirus is 

derived from the Latin word luteus, which means yellow. This refers to the yellowing 

symptoms that many of the viruses induce in their hosts. Barley yellow dwarf virus 

(BYDV) is the type species of the genus Luteovirus. Other, economical important 

species are PLRV and beet western yellows virus (BWYV). 

Luteoviruses have small icosahedral particles, with reported sizes ranging from 24 to 

30 nm in diameter. The viruses are not transmitted through seed or pollen, nor by 

mechanical inoculation, but exclusively by aphids in a persistent manner (Waterhouse 

et al., 1988). The virus particles are confined to the phloem of the infected host plant. 

The viruses are believed to replicate in the companion cells of the sieve tubes. The 

genome is a single-stranded, messenger-sense, RNA molecule of Mr 2 x 106 (Brakke & 

Rochow, 1974; Hewings & D'Arcy, 1983; Rowhani & Stace-Smith, 1979; Takanami & 

Kubo, 1979). A small protein (VPg) is covalently attached to 5'-end of the RNA, which 

is not polyadenylated at the 3'-end (Mayo et al., 1982; Murphy et al, 1987). The coat 

protein consists of a single subunit of approximately 23 kDa (Miller et al., 1988b). The 

nucleotide sequences of the genomic RNAs of BYDV (serotypes MAV, PAV and RPV) 

(Miller et al, 1988a; Vincent et al, 1991; Ueng et al, 1992), BWYV (Veidt et al, 

1988), soybean dwarf virus (SDV) (Rathjen et al, 1994) and cucurbit aphid-borne 

yellows virus (CABYV) (Guilley et al, 1994) have been determined partly during the 

course of the investigation on PLRV described in this thesis. 

Several luteoviruses cause severe damage to agricultural crops. The different 

serotypes of BYDV infect small-grain cereals and other grasses all over the world, 

resulting in high yield losses. BWYV infects a wide range of economical important 

crops, like sugarbeet and beans. PLRV is the causal agent of leafroll, one of the most 



important viral diseases in potato. Although most luteoviruses have a narrow host range 

(PLRV, carrot red leaf virus (CRLV)), a few species have a very broad host range 

(BWYV, SDV). Control of luteoviruses has proven to be very difficult due to the 

widespread occurrence of their aphid vectors, infection of weeds which serve as 

inoculum sources, and the absence of resistance genes suitable for resistance breeding. 

Classification of luteoviruses 

A large number of viruses has been listed in the past as members, or possible members 

of the luteovirus group. Naming of luteoviruses and differentiation between luteovirus 

strains and separate viruses has been severely hampered in the past by the occurrence of 

low virus titers in the plant, the confinement of particles to the phloem and in 

consequence of this, difficulties in purification. At present, several improved methods 

for the purification of luteoviruses are available, for the most based on the use of 

enzymes to macerate cell tissue. While in the past, the biological properties of the 

viruses were the main criteria for differentiation between viruses, nowadays other data 

can be used for discrimination, including serology and nucleic acid analysis. 

In spite of the availability of new techniques and increased knowledge about 

serology and physiology, classification of luteoviruses has remained difficult and 

subject to change. Most members of the genus Luteovirus are serologically interrelated. 

In the past host range and vector specificity of viruses have been major criteria for 

classification of luteoviruses. For BYDV five different serotypes (or isolates) have been 

described, namely PAV, MAV, SGV, RPV and RMV (Rochow, 1970a). The different 

serotypes are more or less specifically transmitted and named after their aphid vectors 

(MAV - Macrosiphum avenae; PAV - Rhopalosiphum padi and M. avenae; RMV - R. 

maidis; RPV - R. padi; SGV - Schizaphis graminum). The vector specifics of the 

various BYDV serotypes or isolates can be altered if these serotypes co-infect. One 

serotype can help another serotype to be transmitted by the vector aphid of the first 

serotype, which is a non-vector of the second serotype (Rochow, 1970b). This 

phenomenon, referred to as dependent transmission also occurs among other 

luteoviruses (Waterhouse et al, 1988) and is probably caused by transcapsidation, 

occurring between the different BYDV serotypes (Wen & Lister, 1991). 

The differentiation by vector specificity of the BYDV isolates approximately 



corresponds to separation on basis of serotype differences. The BYDV isolates can be 

separated into two subgroups by serological relationships. The first group includes 

PAV, MAV and SGV, the second group includes RPV and RMV (Rochow, 1970a). The 

MAV and RPV isolates do not cross-react in immuno-diffusion tests with each others 

antisera. Also, plants infected by one of these two serotypes are not protected from 

infection by the other, while PAV-infected plants are protected against infection with 

the MAV serotype (Aapola & Rochow, 1971). However, BYDV-RPV is serologically 

very closely related to BWYV and it has also been suggested that RPV should be 

considered a BWYV isolate (Casper, 1988). 

From the data mentioned above it follows that, classification of luteoviruses on the 

basis of biological properties and serology is difficult and not completely reliable. 

Nucleotide sequence analysis of the genomic RNAs of the different luteoviruses is an 

absolute prerequisite for a correct classification. Comparison of genomic nucleotide 

sequences viruses may help to clarify whether viruses should be considered to be 

isolates or distinct viruses. Sequence analysis also gives information about relationships 

between viruses belonging to different groups. The nucleotide sequences of the 

genomic RNAs of BWYV, SDV, CABYV and BYDV serotypes MAV, PAV and RPV 

have been determined (Veidt et al, 1988; Miller et al, 1988a; Vincent et al, 1991; 

Ueng et al, 1992; Guilley et al, 1994; Rathjen et al, 1994). 

While the genomic organization of BYDV-RPV shows a high degree of similarity 

with that of BWYV, the genomic organization of the MAV and PAV isolates is quite 

different. From the deduced nucleotide sequences it is clear that the BYDV isolates 

PAV and RPV are actually two distinct viruses and that BYDV-MAV and PAV are 

closely related or even can be considered two strains of the same virus. Comparison of 

the amino acid sequences of the putative viral products revealed that the RNA-

dependent RNA polymerase of BWYV shares a high homology with the putative RNA 

polymerases of southern bean mosaic virus (SBMV), SDV, CABYV and BYDV 

serotype RPV, while the RNA polymerase of BYDV serotypes MAV and PAV showed 

homology with the putative RNA polymerase of carnation mottle virus (CarMV) and 

not with the polymerases of BWYV or SBMV (Miller et al, 1988a; Veidt et al, 1988; 

see also Chapter 2). 

As a consequence of the extended knowledge concerning both serology and 

molecular biology of luteoviruses, the number of viruses placed into this virus group 

10 



Table 1: Members of the genus Luteovirus (Randies & Rathjen, 1995). 

Species in the genus Luteovirus: 

BYDV subgroup I: 
Barley yellow dwarf virus - MAV 
Barley yellow dwarf virus - PAV 
Barley yellow dwarf virus - SGV 

BYDV subgroup II: 
Barley yellow dwarf virus - RGV 
Barley yellow dwarf virus - RMV 
Barley yellow dwarf virus - RPV 
Bean leafroll virus 
Beet western yellows virus 
Carrot red leaf virus 
Groundnut rosette assister virus 

Possible species in the genus Luteovirus: 

Beet yellow net virus 
Celery yellow spot virus 
Chickpea stunt virus 
Cotton anthocyanosis virus 
Filaree red leaf virus 
Grapevine ajinashika virus 
Milk vetch dwarf virus 

Indonesian soybean dwarf virus 
Potato leafroll virus 
Solanum yellows virus 
Soybean dwarf virus 
Tobacco necrotic dwarf virus 
Tomato yellow top virus 

Millet red leaf virus 
Physalis mild chlorosis virus 
Physalis vein blotch virus 
Raspberry leaf curl virus 
Tobacco vein distorting virus 
Tobacco yellow net virus 
Tobacco yellow vein assister virus 

had been decreasing in the past years. In 1991 ten definitive and twelve possible 

members were recognized in the luteovirus group (Randies, 1991). 

However, virus taxonomy has dramatically changed recently. In stead of the concept of 

virus groups, classification of viruses will be similar to the taxonomie system used for 

living organisms. Consequently, the luteovirus group has been recognized as a separate 

genus and the different viruses are being considered as species. This division in species 

appears to be mainly based upon the biological properties of viruses. Unfortunately, this 

has resulted in a sharp increase of the number of luteovirus species (Table 1) compared 

to the number of formerly recognized luteovirus members (Randies, 1991; Randies & 

Rathjen, 1995). Surprisingly, CABYV has not been recognized as a species, although 
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comparison of its genomic nucleotide sequence indicates that it is a distinct entity rather 

than a strain of a luteovirus. All the BYDV serotypes are now considered different 

species. Furthermore, tomato yellow top virus (TYTV) is distinguished as a species. 

This virus, a pathogen of tomato, causes no or few symptoms in potato and is readily 

transmitted by Macrosiphum euphorbiae. Since, no antigenic distinction could be 

detected between TYTV and PLRV isolates from Australia (Thomas, 1984) or between 

isolates from The Netherlands and Brazil (Van den Heuvel et al, 1990), TYTV used to 

be considered a strain of PLRV (Casper, 1988). Undoubtedly the classification of 

luteoviruses has not been concluded and will certainly be subject to further changes in 

the future. 

Potato leafroll virus 

PLRV is of great economic importance all over the world. The virus is particularly 

damaging in tropical and subtropical areas where its vector, Myzus persicae (Sulzer), is 

present throughout the year. Yields of infected potato plants may be reduced by as 

much as 50%. The worldwide crop losses caused by PLRV is estimated at 10%, 

representing a yearly loss of 20 x 106 tons of potatoes (Kojima & Lapierre, 1988). 

Furthermore, PLRV causes damage to seed potato cultivation, a low incidence of PLRV 

infection in seed crops already leads to exclusion from certification schedules. 

PLRV was first purified by Peters (1967) from the green peach aphid (M. persicae). 

Subsequently, Kojima et al. (1969) purified the virus from infected Physalis floridana 

plants. Virus particles are approximately 25 nm in diameter and contain a single protein 

subunit of approximately 23 kDa (Rowhani & Stace-Smith, 1979). The genome consists 

of a single-stranded messenger-sense RNA molecule of approximately 6000 

nucleotides. The genomic RNA lacks a polyadenylate sequence at the 3'-end and 

contains a small protein (VPg), of approximately 7 kDa, covalently linked to the 5'-end 

(Mayo et al., 1982). Like all other luteoviruses, the presence of virus particles in 

infected plants is limited to the phloem and the virus is transmitted by aphids in a 

persistent manner. M. persicae is considered to be the major vector of PLRV, but 

several other aphid species are also capable of transmitting the virus (Sylvester, 1980). 

The host range of PLRV is mainly restricted to the plant family Solanaceae. PLRV 

is able to infect all Solanum tuberosum varieties. Although potato cultivars differ in 
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susceptibility to PLRV, there appears to be neither immunity nor major gene resistance 

to this virus within S. tuberosum species (Ross, 1986). Solanum brevidens, a wild non-

tuber bearing species and sexually incompatible with S. tuberosum, has shown to be 

resistant to PLRV (Jones, 1979). Attempts to confer this resistance to S. tuberosum have 

failed until now, in spite of extensive research. Other PLRV-susceptible species include 

Datura stramonium, Datura tatula, P. floridana, Physalis angualata, Lycopersicum 

esculentum and Nicotiana clevelandii. 

Infection of the plant by PLRV is followed by necrosis of the sieve tubes and the 

associated companion cells. Phloem parenchyma cells undergo hypertrophy and crush 

the necrotic cells (Esau, 1938). Abnormally large amounts of callous are deposited in 

the sieve tubes. As a consequence, the transport of assimilates through the sieve tubes 

becomes interrupted and the metabolism in the cells of the leaves disordered. External 

symptoms of PLRV infection are stunting of the plant, rolling or curling of the leaves, 

interveinal chlorosis (yellowing) and reddening of the leaves. 

Genetically engineered resistance 

Over the past years it has been shown that transgenic expression of viral genes induces 

host resistance to the homologous virus. This might be in accordance with the 

phenomenon of cross-protection whereby a virus is unable to infect plants which 

already have been infected by another strain of the same virus. This principle has been 

used, e.g. in the Netherlands to protect tomato plants against severe isolates of tomato 

mosaic virus (ToMV). Young tomato seedlings have been infected with a mild strain of 

the virus, which causes no yield losses, protecting the plant against severe strains of 

ToMV (Rast, 1972). A major disadvantage of this method is the continuous presence of 

ToMV in the crop. If the infected plants are infected with another virus too, serious 

yield losses can be encountered due to synergism between the two infections. There 

also is the risk that mild isolates may spontaneously mutate to more severe forms. 

Furthermore, a virus which causes mild symptoms in a certain crop may cause severe 

symptoms in another crop. For these reasons the use of cross-protection was abandoned 

after resistant tomato cultivars were obtained through breeding. Several different 

mechanisms for 'classical' cross-protection have been proposed. While, most reports 

indicate that viral coat protein is essential for protection, it has been shown that 
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infection of plants with the RNA-1 of tobacco rattle virus (TRV) is able to confer, in the 

absence of the RNA-2 encoded coat protein, protection to infection with a 'complete' 

TRV strain. (Cadman & Harrison, 1959). Furthermore, the occurrence of cross-

protection between viroids has been demonstrated (Khoury et al., 1988), clearly 

indicating that the presence of viral coat protein is not always necessary for protection. 

The disadvantages of the classical method of cross-protection can be circumvented 

by expressing only a part of the viral genome in the plant to be protected. Initially, it 

has been shown that expression of viral coat protein genes in transgenic plants, 

conveyed protection from the virus of which the coat protein gene was derived (Beachy 

et al, 1990). This was first shown for tobacco and tobacco mosaic virus (TMV) (Powell 

et al, 1986). In these experiments tobacco plants were transformed with the coat protein 

gene of TMV, using an Agrobacterium tumefaciens Ti plasmid transformation system. 

The obtained transgenic plants, showed a delay or even complete inhibition of 

symptoms upon TMV infection. Similar results have since been obtained for many other 

plant-virus combinations (for a recent review, see Hackland et al, 1994). Usually this 

principle is referred to as coat protein-mediated protection (Beachy, 1988) or genetically 

engineered cross-protection (Nelson et ai, 1987). Afterwards, other forms of genetically 

engineered resistance have been described. The expression of modified or 'wild-type' 

viral replicase genes in transgenic plants has been shown to confer resistance 

(Baulcombe, 1994). It also has been reported that the expression of defective mutants of 

movement protein genes in transgenic plants incited resistance (Beck et ai, 1994; 

Cooper et ai, 1995). 

For most cases, the mechanisms involved in genetically engineered resistance have 

remained unknown sofar. In some cases it has been shown that the presence of 

transgenic viral protein is required for the expression of resistance, whereas in other 

cases the transgenic transcript induced resistance. In the initial experiments of Powell et 

al. (1986) it was shown that with increasing concentrations of the virus inoculum, both 

the delay in symptom development and the proportion of plants that escapes infection 

decreases. Also, it has been reported that the level of protection in transgenic plants 

expressing viral coat proteins was dependent on the presence and amount of transgenic 

protein expressed and not on the amount of RNA present (Van Dun et ai, 1988; Powell 

et al., 1990; Taschner et al, 1994). In experiments with transgenic tobacco plants 

expressing modified versions of the replicase gene P2 of alfalfa mosaic virus (A1MV) 
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resistance was observed in plants with relative high expression levels (Brederode et al, 

1995). Plants expressing altered versions of the P2 gene in which the catalytic GDD 

motif was modified into GGD, GVD or DDD exhibited resistance. Plants expressing a 

truncated gene or a gene in which the GDD motif was changed into VDD did not 

exhibit resistance, indicating that the (modified) P2 protein itself and not transcript 

sequences was involved in the conveyance of resistance. On the other hand, for 

transgenic potato plants expressing the coat protein gene of potato virus Y (PVY), the 

level of protection was independent of the level of transgenic coat protein produced 

(Lawson et al, 1990) and plants in which accumulation of transgenic PVY coat protein 

could not be observed were shown to be highly resistant (Van der Vlugt et al, 1992). 

Transgenic plants expressing modified and untranslatable coat protein gene sequences 

of tobacco etch virus (TEV) and PVY have been shown to be highly resistant (Lindbo 

& Dougherty, 1992a & 1992b). Similar results have been obtained for the replicase 

geneofPVX. 

It appears that both the transgenic protein or the transgenic viral RNA sequences can 

be involved in the induction of resistance. The mechanisms underlying both the protein-

or RNA-mediated resistance are still obscure. In the case of protein-mediated resistance 

several different mechanisms have been proposed. It has been reported for TMV and 

A1MV, that inoculation with viral RNA largely overcomes coat protein-mediated 

protection (Nelson et al, 1987; Turner et al, 1987; Loesch-Fries et al, 1987; Van Dun 

et al, 1987). This seems to support the theory that coat protein-mediated protection 

results from interference with an early event (possibly uncoating) in infection (Register 

& Beachy, 1988). However, inoculation with potato virus X (PVX) RNA did not 

overcome protection in transgenic plants expressing the PVX coat protein gene 

(Hemenway et al, 1988). Bertioli et al (1992) suggested that for coat protein-mediated 

protection the production of empty viral particles is a prerequisite to mediate resistance. 

Another proposed mechanism for coat protein-mediated protection involves interference 

with long-distance movement (Wisniewski et al, 1990). For plants expressing 

transgenic TMV coat protein it has been shown that spread of TMV to distant tissues 

was significantly reduced (Wisniewski et al, 1990). 

There is some evidence that protein-mediated genetically engineered resistance 

offers a type of broad spectrum resistance. Transgenic tobacco plants expressing the 

coat protein of the potyvirus soybean mosaic virus (SMV) have been shown to be 
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resistant against infection by two serologically unrelated potyviruses, tobacco etch virus 

(TEV) and PVY (Stark & Beachy, 1989). From amino acid sequence comparisons of the 

coat proteins of 40 strains of 18 different potyviruses it is known that, the N-terminal 

parts of the various proteins show major differences, but that the C-terminal parts share 

high sequence homologies (Ward & Shukla, 1991). This conserved region of the 

potyvirus coat protein or 'core' is probably involved in particle assembly. Sequence 

comparison of the coat protein core regions of TEV, SMV and PVY reveals 

considerable homologies (Ward & Shukla, 1991). Transgenic plants expressing the coat 

protein of TRV strain TCM, showed a considerable resistance to infection with another 

tobravirus, pea early browning virus (PEBV) (Van Dun & Bol, 1988). But, strikingly, 

the transgenic plants were not protected from infection with strain PLB of TRV. There 

is a 39% homology between the amino acid sequences of the coat proteins of TRV-

TCM and TRV-PLB. The coat proteins of PEBV and TRV-TCM are supposed to be 

highly homologous in their amino acid sequences (Van Dun & Bol, 1988). These 

results suggest that at least a distinct part of the coat protein genes should be highly 

homologous or identical to offer protection from infection. This view is further 

supported by the observation that the second amino acid of the A1MV coat protein is 

critical for coat protein-mediated protection (Turner et al., 1991). 

It has been reported that transgenic tobacco plants expressing a defective mutant of 

the TMV movement protein showed a delay in symptom expression and reduced 

systemic accumulation of virus in the upper leaves of plants infected with a whole range 

of different viruses, unrelated to tobamoviruses (Cooper et al, 1995). However, plants 

expressing the wild-type movement protein were more susceptible to viral infections, 

resulting in elevated virus titers, accelerated symptom development and enhanced 

symptom severity. All the above mentioned data suggest that for protein-mediated 

resistance, the transgenic protein based upon its intrinsic property, directly interferes 

with the viral infection cycle. 

Recently, a possible mechanism for RNA-mediated resistance has been proposed. 

(Dougherty et al., 1994; Smith et ah, 1994). In several reports it has been shown that 

the expression of untranslatable viral gene sequences in transgenic plants rendered 

resistance, but that the degree of resistance did not correlate with the steady state levels 

of transgenic transcripts (De Haan et al, 1992; Lindbo & Dougherty, 1992a & 1992b). 

Strikingly, an inverse correlation has been observed between transgenic steady state 
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levels and acquired resistance (Lindbo et al, 1993; Dougherty et al, 1994; Smith et al, 

1994). Also, it was shown that some transgenic plants were susceptible for infection but 

able to recover from systemic viral infection. Tissues from recovered plants contained 

steady state levels of transgenic transcripts five to eightfold lower than those of 

unchallenged transgenic tissues (Dougherty et al, 1994). Possibly, high levels of 

accumulation of transgenic viral transcripts lead to post-transcriptional breakdown of 

the transcripts and, ergo, to the breakdown of the genomic RNA sequences of the 

homologous infecting virus (Dougherty et al, 1994; Smith et al, 1994). Such an event 

would be in accordance with the well-known, but poorly understood, phenomenon of 

co-suppression, in which expression of transgenes in plants leads to the silencing of 

both the transgene and the homologous endogenous gene (for review, Finnegan & 

McElroy, 1994). Many different mechanisms have been suggested to play a role in co-

suppression including mRNA breakdown (Van Blokland et al, 1994). In support of the 

theory of specific post-transcriptional breakdown of RNA sequences is the observation 

that RNA-mediated resistance is highly virus-specific, indicating that only highly 

homologous RNA molecules are degraded. 

Field experiments and agronomic importance 

Most of the data considering genetically engineered resistance, resulted from 

experiments carried out in greenhouses under controlled conditions, making an 

assessment of the value of the transgenic plants in agricultural practice difficult. 

However, there are some data available regarding field tests. Transgenic potato plants 

expressing both the coat protein of PVX and PVY have been tested for resistance under 

field conditions (Kaniewski et al, 1990). In the case of the transgenic potato plants, 

four different transgenic plant lines were tested, with untransformed potato plants as a 

control. All four lines had been previously tested under greenhouse conditions and 

proved to show a high resistance against viral infection. In field tests, two transgenic 

plant lines demonstrated a significant resistance to PVX infection and another 

transgenic plant line proved to be highly resistant against infection with both PVY and 

PVX. 

Also, transgenic tomato plants expressing the coat protein of TMV or ToMV, have 

been tested for resistance under field conditions (Nelson et al, 1988; Sanders et al, 
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1992). It was shown that plant lines expressing the TMV coat protein gene were 

protected from TMV infection, but were susceptible to ToMV infection, while plants 

expressing the ToMV coat protein gene were resistant to ToMV and susceptible to 

TMV. Tomato fruit yields of non-transgenic control plants decreased 20-69% due to 

virus infection, whereas the yields of the resistant transgenic tomato plants were 

unaffected (Sanders et al, 1992). 

Probably, the most elaborate studies have been carried out with potato cultivars 

Bintje and Escort, expressing the PVX coat protein gene (Jongedijk et al, 1992 & 

1993). Both the occurrence of resistance and cultivar properties were monitored under 

field conditions over a period of three years. It was shown that approximately 82% of 

the 'Escort' and 18% of the 'Bintje' derived transgenic plant lines were true to type and 

exhibited resistance to PVX. These results clearly demonstrate the potential value of 

genetically engineered resistance in agriculture. 
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CHAPTER 2 

Nucleotide sequence and organization of potato 

leafroll virus genomic RNA 

ABSTRACT 

The nucleotide sequence of the genomic RNA of potato leafroll virus (PLRV) was 

determined and its genetic organization deduced. The RNA is 5882 nucleotides long 

and contains 6 open reading frames (ORFs). In the 5'-terminal coding region of the 

RNA the ORFs 1 and 2, encoding 28 kDa and 70 kDa proteins respectively, are 

overlapping in different reading frames. The ORF3, encoding for another protein of 70 

kDa, overlaps in a different reading frame the ORF2 and lacks a start codon. Circum

stantial evidence suggests that this ORF is expressed via a -1 ribosomal frameshift. The 

C-terminal part of this protein contains the putative consensus sequence for RNA-

dependent RNA-polymerases. The three ORFs in the 3' half of the PLRV RNA are 

preceded by a non-coding region of 197 nucleotides. The 23 kDa protein encoded by 

ORF4 shows a high homology with the putative coat proteins of barley yellow dwarf 

virus (BYDV) and beet western yellows virus (BWYV). The ORF6 encodes a 55 kDa 

protein and is contiguous with ORF4 being only separated by an amber stop codon. 

Since ORF6 lacks its own start codon, it is suggested that this ORF is expressed via 

translational readthrough from the ORF4 by suppression of the stop codon. The ORF5 

of PLRV underlies ORF4 in a different reading frame and encodes a protein of 17 kDa. 

Parts of this chapter have been published as Van derWilk et ai, (1989). FEBS Lett. 245:51-56. 
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INTRODUCTION 

Potato leafroll luteovirus (PLRV) is of great economic importance and infects potato 

plants worldwide (Kojima & Lapierre, 1988). Luteoviruses are transmitted by aphids in 

a persistent manner, their particles being confined to the phloem of the infected plants 

(Harrison, 1984). In spite of its economic importance, little is known about the genomic 

organization and expression of PLRV. PLRV has isometric capsids with a diameter of 

circa 28 nm, consisting of subunits of approximately 26 kDa. The capsid contains a 2 x 

106 Da (6 kb) single-stranded messenger-sense RNA genome (Rowhani & Stace-Smith, 

1979; Takanami & Kubo, 1979). The PLRV RNA is provided with a genome-linked 

protein (VPg) of approximately 7 kDa, but lacks a polyadenylate sequence at the 3'-end 

(Mayo et al, 1982). The presence of a sub-genomic messenger RNA in infected plant 

cells has been reported (Mayo et al, 1984). 

PLRV is serologically related to several other luteoviruses, including beet western 

yellows virus (BWYV) and barley yellow dwarf virus (BYDV), the type species of the 

luteoviruses. The complete nucleotide sequences of the genomic RNAs of BYDV 

(serotype PAV) and BWYV have been determined (Miller et al, 1988a; Veidt et al, 

1988). So far for PLRV cDNA physical maps and the sequence of the 3'-terminal 141 

nucleotides have been published (Prill et al, 1988; Smith et al, 1988). Here the 

complete nucleotide sequence of the PLRV genomic RNA is reported with comparisons 

of its deduced amino acid sequences with those of other plant viral proteins. 

MATERIALS AND METHODS 

Materials 

Enzymes were purchased from Bethesda Research Laboratories (BRL) and Amersham. 

Chemicals were obtained from Sigma and radiochemicals from Amersham. Computer 

programs used were developed by the Genetics Computer Group of the University of 

Wisconsin (UWGCG) (Devereux et al, 1984). 
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Virus purification 

PLRV isolate 'Wageningen' was transmitted using the aphid Myzus persicae (Sulzer) 

and propagated in Physalis floridana Rydb. plants. Virus was purified by a slightly 

modified method as described by Van den Heuvel et al. (1990). Infected leaf material 

(300 g) was thoroughly homogenized in 600 ml 0.1 M sodium citrate buffer pH 6.0, 

containing 0.5% macerozyme R-10 (Yakult Honsha Co. Ltd, Tokyo), 0.5% cellulase 

'Onuzuka' R-10 (Yakult Honsha Co. Ltd, Tokyo), and 0.5% ethanol in a blender. The 

homogenate was stirred at 26 °C for 3-4 h and emulsified with a mixture of 150 ml 

chloroform and 150 ml 1-butanol. The emulsion was vigorously stirred for 5 min and 

broken by centrifugation at 10,000 rpm for 15 min in a Sorvall GS A rotor. The aqueous 

phase was collected and respectively 1% Triton X-100, 8% polyethylene glycol 6000 

and 0.4 M sodium chloride were added to precipitate the virus. After stirring at room 

temperature for 1 h, the virus was collected by centrifugation at 10,000 rpm for 15 min 

in a Sorvall GSA rotor. The pellet was resuspended in 90 ml 0.1 M sodium citrate 

buffer pH 6.0 containing 5% ethanol. The supernatant was clarified by centrifugation at 

7,000 rpm for 15 min in a Sorvall SS34 rotor. The partly purified virus suspension was 

layered on 30% sucrose (in citrate buffer) cushions and centrifuged at 30,000 rpm for 4 

h in a Beckmann R45 rotor. Each pellet was resuspended 1 ml 0.1 M sodium citrate 

buffer pH 6.0. and loaded on a 5-45% linear sucrose gradient. After centrifugation at 

30,000 rpm for 3 h in a Beekman SW41 Rotor, the purified virus was collected using an 

ISCO density gradient fractionator and resuspended in 0.1 M sodium citrate buffer pH 

6.0. 

RNA isolation and denaturing agarose gel electrophoresis 

RNA was isolated from purified virus by phenol extraction. Purified virus was extracted 

with one volume phenol at 65 °C in the presence of 0.5% SDS, followed by two phenol 

extractions at room temperature. The PLRV RNA was ethanol precipitated and 

dissolved in sterile, diethyl pyrocarbonate (DEPC) treated, water. Denaturing agarose 

gel electrophoresis was performed as described (Maniatis et al, 1982). 1 ug RNA was 

mixed with an equal volume 2x loading buffer (2.5% mercury methyl hydroxide, 20% 

glycerol, lx electrophoresis buffer, 0.20% bromo phenol blue) and loaded onto a 1% 
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agarose gel. As electrophoresis buffer 50 mM boric acid, 5 mM sodium borate and 10 

mM sodium sulphate was used. After electrophoresis the gel was stained with 0.5 M 

ammonium acetate containing 1 ug/ml ethidium bromide and examined under UV light. 

In vitro translation of genomic PLRV RNA 

A commercial kit (BRL) was used for the in vitro translation of purified PLRV RNA. 

0.5 ug RNA was added to 30 ul reaction mixture containing 10 ul nuclease treated (3x) 

rabbit reticulocyte lysate or wheat germ lysate, 1 ul ribonuclease inhibitor, 50 uM 

amino acid mixture (minus methionine), 25 mM HEPES pH 7.2, 40 mM KCl, 10 mM 

creatine phosphate, 1 mM Mg2+ and 5 uCi [35S]-methionine (1000-1500 Ci/mmol). After 

incubation at 30 °C for 1 h, the reaction mixture was placed on ice to stop the reaction. It 

was then incubated with 1 mg/ml pancreatic Rnase at 30 °C for 1 h to hydrolyse 

radioactive aminoacyl-fRNAs. The translation products were analyzed by 

Polyacrylamide SDS gel electrophoresis, followed by fluorography. 10 ul of the 

translation reaction mixture was loaded onto a 15% SDS-polyacrylamide gel. After 

electrophoresis the gel was soaked in 10% HAc, 40% methanol (v:v) for 1 h to fix the 

proteins in the gel, followed by a 15 min incubation in amplify solution (Amersham). 

The gel was dried for 2 h at 80 °C on a geldryer. Fluorography was carried out by 

placing a XAR-5 (Kodak) film against the dried gel for 48 h. 

cDNA synthesis and cloning 

Two different strategies were followed to obtain cDNA clones. For first strand cDNA 

synthesis reverse transcription on the viral RNA was initiated by random priming with 

the use of calf thymus DNA fragments or by priming with specific synthetic 

oligonucleotides. Double-stranded cDNA fragments were synthesized using the RnaseH 

method (Gubler & Hoffman, 1983) with the use of (and according to the instructions of 

the manufacturer) a commercially available kit (Amersham). The first strand cDNA was 

synthesized using 20 units reverse transcriptase and 1 ug purified viral RNA. Second 

strand synthesis was performed using the RNA/cDNA hybrid as substrate. 1 u/ul 

RNaseH was utilized to produce nicks and gaps in the RNA. DNA polymerase (23 

units) replaced the RNA strand utilizing the nicked RNA as primer. The double-
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Figure 1: (A) Map of cDNA clones used to elucidate the nucleotide sequence of the PLRV RNA 
(p2, pl4, p29, p37, p54 represent pUC19 clones; pl06, pl23, pl32, pl36, pl39 represent lambda 
gtlO clones). 
(B) Schematic representation of the organization of the PLRV genome and comparison of the 
open reading frames (ORFs) on the genomic RNAs of PLRV, BWYV and BYDV-PAV. The size 
in kDa (K) of the proteins encoded by each ORF is indicated. Similar shading indicates regions of 
high amino acid sequence homology amongst the ORFs of different viruses. 

stranded cDNA was treated with 2 units T4 DNA polymerase to remove possible 3' 

overhangs from the first strand cDNA. The reaction was stopped by adding 1% SDS. 

The synthesized cDNA was purified by phenol extraction and ethanol precipitation. 
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In the first case the synthesized double-stranded cDNA fragments were blunt-end 

ligated into Smal digested pUC19 followed by transformation of Escherichia coli strain 

DH5a. Recombinant plasmids were purified by a modified 'boiling preparation' 

procedure (Maniatis et al., 1982). Transgenic bacteria were grown for 8 h in a rotary 

shaker at 37 °C. 1.5 ml of the bacterial culture was centrifuged for 1 min in an eppendorf 

centrifuge at full speed. The supernatant was carefully removed and the pellet was 

resuspended in 100 ul of STET (8% sucrose, 0.5% Triton X-100, 50 mM EDTA, 50 

mM Tris-HCl pH 8.0), 5 ul lysozyme (10 mg/ml dissolved in STET) was added and the 

suspension was boiled for 1 min. Immediately afterwards the suspension was 

centrifuged for 10 min in an eppendorf centrifuge at full speed. The pellet was removed 

with a sterile tooth pick, and 105 ul of cold isopropanol was added to the supernatant 

followed by centrifugation for 5 min to precipitate the nucleic acids. The pellet was 

washed with 70% ethanol, dried and resuspended in 30 ul of sterile water. Recombinant 

plasmids were analyzed by restriction endonuclease digestion followed by agarose gel 

electrophoresis. 

In the second case a commercially available kit (Amersham) was used to clone the 

cDNA fragments into lambda gtlO phages. According to the instructions of the supplier 

EcoRI adapters were added onto the cDNA fragments, followed by ligation into DNA 

lambda gtlO arms. The recombinant lambda DNA was in vitro packaged and E. coli 

strain NM514 was used for amplification of the recombinant phage. Recombinant 

lambda DNA was isolated by a modified method as described (Davis et al., 1980). A 

single recombinant phage plaque was isolated and resuspended in 0.5 ml TM buffer 

(0.01 M Tris-HCl pH 7.5, 0.01 M MgCl2). Bacterial cells (0.3 ml) at OD600=0.6 were 

mixed and incubated with 0.3 ml resuspended phage particles. The cells were mixed 

with top-agarose and incubated for 8 h, until all cells were lysed. The plate was 

overlayed with 5 ml TM buffer and incubated for 8 h. The buffer was poured off and 

500 ul was mixed with 1 ul DEPC, 12 ul 10% SDS and 60 ul 2 M Tris-HCl pH 8.5, 0.2 

M EDTA to lyse the phage particles. Cell debris, proteins and the SDS were precipitated 

by adding 0.5 M KAc pH 6.0, followed by centrifugation. The supernatant was 

extracted with an equal volume phenol (phenol equilibrated with 10 mM Tris-HCl pH 

7.6, 1 mM EDTA and 0.5 M KAc). After chloroform extraction the DNA was 

precipitated with ethanol. The DNA was analyzed by restriction endonuclease digestion. 

The inserted cDNA fragments were subcloned into EcoRI-digested pUC19 plasmids. 
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DNA sequence analysis 

Sequence analysis was performed as previously described (Sanger et ai, 1977). 

Overlapping restriction fragments from cDNA clones were subcloned into M13 

tgl30/131 replicative form DNA (Kieny et al, 1983) and sequenced using the dideoxy 

method with [cc-35S]thio-dATP as radioactive nucleotide. Both DNA polymerase I 

(Klenow fragment) and Sequenase (USB) were used as enzymes in sequencing 

reactions. 

RNA sequence analysis 

Direct dideoxy sequence determination on genomic RNA was performed as described 

(Huisman et ai, 1988). Synthetic oligonucleotides were used as primers and reverse 

transcriptase as enzyme. PLRV RNA was annealed to a suitable primer (in a 100-fold 

molar excess) in a buffer containing 50 mM Tris-HCl pH 8.3, 10 mM MgCl2, 40 mM 

KCl by heating the mixture at 95 °C for 5 min and a subsequent incubation at 40 °C for 

30 min. Dithiothreitol to a concentration of 10 mM, 2.5 units of reverse transcriptase 

and 10 |aCi [a-35S]dATP were added. This mixture was added to the termination 

mixtures. The final concentrations for dCTP, dGTP and dTTP were 62.5 uM and for 

dATP 12.5 uM. Each termination mixture contained one of the dideoxy NTPs at a final 

concentration of 18.75 |jM; in the case of ddATP the final concentration was 6.25 uM. 

The samples were incubated for 30 min at 40 "C and were chased with 0.3 volumes of 

0.5mMofalldNTPs. 

RESULTS 

Viral RNA isolation 

Prior to cDNA synthesis, the purified genomic viral RNA was analyzed on a denaturing 

agarose gel (Fig. 2). The molecular size of the PLRV RNA as estimated from the 

electrophoretic mobility was approximately 6 kilobases (kb), which is consistent with 

previously reported values (Mayo et al, 1982). As shown in Figure 2, the purified RNA 
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was of high integrity and therefore suitable for cDNA synthesis. 

Molecular cloning and sequence analysis 

Two different procedures were used to obtain cDNA clones. 

The first procedure, in which reverse transcription on the viral 

RNA was initiated by random priming, followed by blunt-end 

cloning of the synthesized cDNA molecules in Smal-digested 

pUC19 was less effective than the second procedure. The 

second procedure, initiation of the reverse transcription 

reaction by specific synthetic oligonucleotides and cloning of 

the double stranded cDNA in lambda gtlO, produced 4 x 105 

recombinant clones, while the first procedure yielded only 60 

recombinant clones. Moreover cDNA clones obtained by the 

first procedure proved to be 'scrambled'. Nearly all clones 

contained several small cDNA fragments (approximately 80-

100 nucleotides) not in accordance with the sequence of the 

other parts of the cDNA clones and actually corresponding to 

a different position on the PLRV RNA. A few recombinant 

clones were composed of 2 or 3 different cDNA fragments, 

each larger than 500 nucleotides. All clones, derived from the 

second procedure and used for sequence determination, were 

free from such aberrant sequences. The clones selected from both the libraries for 

sequence determination spanned approximately 99% of the viral genome (Fig. 1A). The 

5'-proximal nucleotides were elucidated by direct dideoxy sequencing on PLRV 

genomic RNA by extension of an oligonucleotide complementary to nucleotides 98-115 

(5'-ATCTTTGGTCAAAAAG C-3'). The sequence could be determined unequivocally 

up to the first nucleotide shown in Figure 3. The VPg covalently attached to the 5'-

terminal nucleotide probably obscured one or two additional nucleotides from our 

scrutiny: they were observed as strong stops in all lanes of the sequence ladder. The 

total length of the sequence elucidated is 5882 nucleotides. This length corresponds 

well to the 6 Kb estimated by electrophoretic mobility in denaturing agarose gels, 

(Rowhani & Stace-Smith, 1979), and is close to the value of 6.1 Kb as estimated by 

Figure 2: Denaturing 
agarose gel electro
phoresis of PLRV RNA. 
Lane 1: viral RNA; Lane 
2: RNA molecular weight 
marker RNA (BRL). 
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Prill et al. (1988), from endonuclease restriction mapping of cDNA. 

Comparison of the deduced nucleotide sequence with the restriction endonuclease 

maps published by Prill et al. (1988) and Smith et al. (1988) shows no major 

differences. The Xhol site nearest the 3'-end reported by Prill et al. and Smith et al, is 

absent in our sequence and five restriction sites present in our sequence are not shown 

by Prill et al.. All but three restriction sites present in our sequence are present in the 

restriction map as published by Smith et al. (1988). 

Open reading frames 

In Figure 3 the complete nucleotide sequence of the PLRV genomic RNA is shown. 

The first AUG start codon on the PLRV genome appears at position 70, thus the 

genome has a non-coding leader sequence of 69 nucleotides. Furthermore there are non-

coding sequences in the middle (197 nucleotides) and at the 3'-terminal of the genome 

(140 nucleotides). In total the non-coding sequences of PLRV consist of 406 

nucleotides, being 6.9% of the sequence. The minus strand does not contain ORFs of 

significant length. 

The coding regions comprise six large open reading frames (ORFs) (Fig. IB) of 

which the amino acid sequences are noted below the PLRV genomic RNA sequence in 

Figure 3. For brevity, ORFs will be referred to by their position on the genome, starting 

with the 5' proximal ORF as ORF1. ORF1 starts at the first AUG codon (position 70), 

terminates with a UGA stop codon (position 811) and could encode a product of 28,127 

Da. The second ORF overlaps ORF1 by a start at position 203, in a different phase from 

ORF1, and stops at position 2120, corresponding with a putative translation product of 

69,674 Da. Although lacking an AUG start codon ORF3 is proposed to start at position 

1540, overlapping the second ORF, and to terminate at the UGA stop codon at position 

3388. ORF3 encodes a putative protein of 69,622 Da. ORF4 is separated from ORF3 by 

a non-coding sequence of 197 nucleotides, starts at position 3588 and extends to a UAG 

stop codon at position 4212, hence coding for a protein of 23,233 Da. The ORF5 

underlies ORF4 from position 3613 to the UGA stop codon at position 4081 and 

encodes for a protein of 17,344 Da. PLRV ORF6 is contiguous with ORF4, separated 

only by the amber stop codon of ORF4 and lacks its own AUG start codon. ORF6 

extends to a stop codon (UGA) located at position 5739, thus corresponding 
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1 CAAAAGAAUACCAGGÄGGAAUUGCAGCUUUAGCGCAUÄAACUCUACACUCAUUGCAAACGOUAUAGCAUAUGAUUGUAUUGACCCAGUCUGGAACaJUGC 
M I V L T Q S G T L L 

1 0 1 UUUUUGACCAAAGAUUUAAACUCUCAAAGUUUCUCUUCGUUGUCAtnjGCAACAGGUUUUCCUCUUCUCCUGCAGCAAGCGAGCUUAAUUUACGGCUAUAA 
F D Q R F K L S K F L F V V I A T G F P L L L Q Q A S L I Y G Y N 

2 0 1 UCAUGAACAGAUUUACCGCAUAUGCCGCUCUUUUCUUUAUAUUCUCCCUUUGCUCAACUGCAAAAGAGGCAGGAUUUCAACAUCCGGCCUUCAACUUCCG 
H E Q I Y R I C R S F L Y I L P L L N C K R G R I S T S G L Q L P 

M N R F T A Y A A L F F I F S L C S T A K E A G F Q H P A F N F R 

3 0 1 AGGCACCUCCACUAUGAGUGCCUUGAGUGGGGAUUACUCUGCGGCACCCACCCCGCUAUACAAAUCGUGGGCCCUACCAUCGUCAUUAAACUUGACGACC 
R H L H Y E C L E W G L L C G T H P A I Q I V G P T I V I K L D D P 

G T S T M S A L S G D Y S A A P T P L Y K S W A L P S S L N L T T 

4 0 1 CAACCACCGCCGCUGCUUACAGAUCGGAGCUACUACGAGUUAGUUCAAGCUCUUAUAUCCAAAAUGCGGCUGGAUUGUCAAACGGUUGGGGACAUGACAU 
T T A A A Y R S E L L R V S S S S Y I Q N A A G L S N G W G H D M 

Q P P P L L T D R S Y Y E L V Q A L I S K M R L D C Q T V G D M T W 

5 0 1 GGAGGCAUUUGUCAGAAAUGCUAUUUGCCUCCUGGAACUCCGUGAAAGAAGUAUCCCUCAAAGCGGCCUCCGUGACCUUAUGGGCAAUCAUCAGCAUUUG 
E A F V R N A I C L L E L R E R S I P Q S G L R D L M G N H Q H L 

R H L S E M L F A S W N S V K E V S L K A A S V T L W A I I S I W 

6 0 1 GUUCGGUCUCUAUUGGACGCUUGCAAGGUUGAUCACUUUGUUCCUCUGGACUUUCAGCAUAGAAGCCUUAUGCUUAAUUUUGCUCGGUUGUAUAACCAGC 
V R S L L D A C K V D H F V P L D F Q H R S L M L N F A R L Y N Q L 

F G L Y W T L A R L I T L F L W T F S I E A L C L I L L G C I T S 

7 0 1 UUGAUCUACAAGGGCGCGCUAAGUCUUUCAGAGCACUUACCGGUUUUCCUGUUUAUGUCCCCUCUGAAGAUUAUUUGGAGGGCAGCUUUCUCCAAAAGGA 
D L Q G R A K S F R A L T G F P V Y V P S E D Y L E G S F L Q K E 

L I Y K G A L S L S E H L P V F L F M S P L K I I W R A A F S K R N 

801 AUUACAAGAAUGAGAAGGCUGUGGAAGGAUACAAAGGGUUUUCGGUUCCACAAAAACCGCCAAAGUCUGCCGUAAUUGAACUACAACAUGAAAACGGCAG 
L Q E 

Y K N E K A V E G Y K G F S V P Q K P P K S A V I E L Q H E N G S 

901 CCAUCUCGGGUACGCGAACUGCAUUCGCUUAUACAGUGGAGAGAACGCCUUGGUGACAGCUGAACACUGUCUAGAAGGCGCUUUCGCAACGUCGUUGAAA 
H L G Y A N C I R L Y S G E N A L V T A E H C L E G A F A T S L K 

1001 ACUGGAAACAGGAUUCCGAUGUCGACUUUCUUUCCCAUUUUCAAAAGUGCCCGUAAUGAUAUCUCCAUACUAGUAGGUCCACCCAACUGGGAAGGUCUAC 
T G N R I P M S T F F P I F K S A R N D I S I L V G P P N W E G L L 

1101 UAUCAGUCAAAGGAGCUCAUUUCAUCACAGCUGACAAAAUCGGCAAAGGUCCUGCCUCUUUCUACACUCUUGAGAAAGGGGAGUGGAUGUGCCAUAGUGC 
S V K G A H F I T A D K I G K G P A S F Y T L E K G E W M C H S A 

1201 CACCAUAGAUGGAGCCCAUCACCAGUUCGUGUCUGUUUUAUGCAACACUGGACCCGGAUAUUCCGGAACAGGGUUUUGGUCUUCAAÄGAAUCUGCUUGGU 
T I D G A H H Q F V S V L C N T G P G Y S G T G F W S S K N L L G 

1301 GUGCUUAAAGGCUUCCCACUGGAAGAGGAGUGUAACUACAAUGUUAUGUCUGUUAUACCCUCGAUCCCAGGAÄUCACUUCCCCAAÄUUAUGUGUUUGAGU 
V L K G F P L E E E C N Y N V M S V I P S I P G I T S P N Y V F E S 

1401 CGACCGCCGUAAAÄGGCCGCGUCUUCUCGGAUGAAACUGUGAAAGAACUAGAGCGGGAAGCAUCCGAAGCCGUCAAGAAGCUUGCCAGAUUUAAAUCACU 
T A V K G R V F S D E T V K E L E R E A S E A V K K L A R F K S L 

1501 UACCGGCAAGAACUGGGCUAAUGAUUAUGACUCCGAUGAGGAUUACGGUCUGGAGAAAGAGGCUGCAACAAAUGCGCCCGCAGAGAAAACUGCUCAAACA 
G L R S G E R G C N K C A R R E N C S N K 

T G K N W A N D Y D S D E D Y G L E K E A A T N A P A E K T A Q T 

1 6 0 1 AACUCAGCAGAGAAGACUGCUCCAUCAACUUCAGCAGAGAAAACUGCUCCAACAAACAAGCCUUUAAAUGGGCGAGCGGCACCGCCCGCCAAAACAAACG 
L S R E D C S I N F S R E N C S N K Q A F K W A S G T A R Q N K R 

N S A E K T A P S T S A E K T A P T N K P L N G R A A P P A K T N G 

1 7 0 1 GCAACUCCGACAUCCCCGACGCCGCUAUAAGCGCACCACCAAUGGACAAAAUGGUCGAACAGAUCAUCACAGCUAUGGUGGGGAGAAUCAAUCUCUCGGA 
Q L R H P R R R Y K R T T N G Q N G R T D H H S Y G G E N Q S L G 

N S D I P D A A I S A P P M D K M V E Q I I T A M V G R I N L S E 

1 8 0 1 GAUAGAGGAGAAGAUAGUGAGCAGGGUGUCUCAGAAAGCCCUGCAGAAGCCCAAACAAAACAAACGCGGAAGACGUGGAGGGAAGAACAAGCAAAACAAU 
D R G E D S E Q G V S E S P A E A Q T K Q T R K T W R E E Q A K Q F 

I E E K I V S R V S Q K A L Q K P K Q N K R G R R G G K N K Q N N 

1 9 0 1 UUACCUCCUACUUCGACGCAAUCUAUAAGUGGGGCGCCCAAGAAGAAGGCUGUCCCCCAGGCUUCAGGAAGUGCGGGAAUAUCCCCGGCUACUACCACCC 
T S Y F D A I Y K W G A Q E E G C P P G F R K C G N I P G Y Y H P 

L P P T S T Q S I S G A P K K K A V P Q A S G S A G I S P A T T T P 

2 0 0 1 CCGCACCAAAGGAGAAACCAAGUGGGGGCAAAAACUCUGCCAAGUUCAUCCCGAGCUGGCGGAUAAAACAGCAGGAUUCGGCUGGCCAAAAGCCGGAUUU 
R T K G E T K W G Q K L C Q V H P E L A D K T A G F G W P K A G F 

A P K E K P S G G K N S A K F I P S W R I K Q Q D S A G Q K P D L 

2101 GAAGCUGAACUCCAAAGCCUGAAUCUACAGGCUGCCAGGUGGCUCCAACGCGCGGAGUCGGCCACUAUCCCUGGCGCAGAAGCAAGAAAGCGCGUGAUUG 
E A E L Q S L N L Q A A R W L Q R A E S A T I P G A E A R K R V I E 

K L N S K A 

2201 AGAAAACAGUGGAGGCAUACAGAAAUUGUAUAACUAACGCCCCACUGUGCUCCCUUAAAUCCAAACUGGAUUGGGCUGGCUUUCAACAAGAUAUCCGUGA 
K T V E A Y R N C I T N A P L C S L K S K L D W A G F Q Q D I R E 

2301 AGCAGOCCAGUCCCUUGAGCUAGACGCUGGUGUAGGCAUUCCCUAUAUCGCGUAUGGCCUCCCCACACACCGAGGAUGGGUUGAGGACCAUAAGCUUCUC 
A V Q S L E L D A G V G I P Y I A Y G L P T H R G W V E D H K L L 

2401 CCAGUGCUCACUCAGCUGACCUUUGACCGACUACAGAAGAUGUCAGAGGCCAGCUUUGAGGAUAUGAGCGCAGAAGAGCUGGUUCAAGAAGGGCUCUGUG 
P V L T Q L T F D R L Q K M S E A S F E D M S A E E L V Q E G L C D 

2501 AUCCUAUOAGACUAUUUGUCAAAGGAGAGCCCCACAAACAGAGCAAACUCGAUGAAGGCCGCUACCGCCUCAUCAUGUCUGUUUCCUUGGUGGAUCAACU 
P I R L F V K G E P H K Q S K L D E G R Y R L I M S V S L V D Q L 

2601 GGUAGCCCGGGUUCUGUUCCAAAAUCAGAACAAAAGGGAAAUUUCCCUGUGGAGGUCUGUGCCUUCCAAACCCGGUUUUGGCCUUUCAACUGACACUCAA 
V A R V L F Q N Q N K R E I S L W R S V P S K P G F G L S T D T Q 

2701 ACUGCUGAAUUCUUGGAGUGUCUUCAAAAGGUGUCUGGAGCGCCAUCUGUGGAAGAAUUGUGUGCAAAUCACAAGGAGCACACGCGCCCAACCGACUGUU 
T A E F L E C L Q K V S G A P S V E E L C A N H K E H T R P T D C S 

2801 CCGGUUUCGACUGGUCAGUCGCGUAUUGGAUGCUGGAGGAUGAUAUGGAGGUGAGAAAUCGCCUGACAUUUAAUAACACCCAGCUCACCGAGCGCCUUCG 
G F D W S V A Y W M L E D D M E V R N R L T F N N T Q L T E R L R 
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2901 GGCUGCCUGGUUGAAGUGCAUAGGAAACUCCGUCCUAUGCCUGUCCGAUGGCACUUUACUUGCCCAÄÄCUGUUCCCGGUGUGCAAAAGAGCGGAÄGUUAC 
A A W L K C I G N S V L C L S D G T L L A Q T V P G V Q K S G S Y 

3 001 AAUACAAGUUCUUCCAACUCUAGAÄUCCGGGUUAUGGCUGCCUAUCACUGUGGCGCCGÄCUGGGCAAUGGCCAUGGGGGACGAUGCUCUCGAAGCCCCCA 
N T S S S N S R I R V M A A Y H C G A D W A M A M G D D A L E A P N 

3101 ACUCCGAUCUAGAGGAGUAUAAAACACUAGGUUUCAAAGUCGAGGUAGGUCGAGAACUCGAAUUCUGUUCACACAUaJUCAGAAAUCCGACCCUCGCCGU 
S D L E E Y K T L G F K V E V G R E L E F C S H I F R N P T L A V 

3201 UCCGGUCAACACCAACAAAAUGCUUUACAAGUUGAUCCAUGGUUAUAAUCCGGAAUGUGGCAAUCCAGAAGUGAUUCAAAACUAUCUGGCUGCAGUUUUC 
P V N T N K M L Y K L I H G Y N P E C G N P E V I Q N Y L A A V F 

3301 UCUGUGCUGCAGGAACUCCGACACGAUCGUGAGCUCGUUGCCAAGCUCCACCAGUGGUUGGUUCCGAGUGCCACCACAAAAGAACACUGAAGGAGCUCAC 
S V L Q E L R H D R E L V A K L H Q W L V P S A T T K E H 

3401 UAAAACUAGCCAAGCAUACGCGAGUUGCAAGCAUUGGAÄGUUCAAGCCUCGUUACAUCAACCGGAUAAAAUAGAUUUUAAAUUCUUAGCGGGAUUUGCUU 

3 501 UAGGAUUCUCAUCCGCAAUCCCAUUUUCAGUAGCCGGUUUAUAUUUAGUUUACCUAAAGAUUUCCUCCCACGUGCGAUCAAUUGUUAAUGAGUACGGUCG 
M S T V V 

3 6 0 1 UGGUUAAAGGAAAUGUCAAUGGCGGUGUACAACAACCAAGAÄGGCGAAGAAGGCAAUCCCUUCGCAGGCGCGCUAACAGAGUUCAGCCAGUGGUUAUGGU 
M S M A V Y N N Q E G E E G N P F A G A L T E F S Q W L W S 

V K G N V N G G V Q . Q P R R R R R Q S L R R R A N R V Q P V V M V 

3 7 0 1 CACGGCCCCUGGGCAACCCAGGCGCCGAAGACGCAGAAGAGGAGGCAAUCGCCGCUCAAGAAGAACUGGAGUUCCCCGAGGACGAGGCUCAAGCGAGACA 
R P L G N P G A E D A E E E A I A A Q E E L E F P E D E A Q A R H 

T A P G Q P R R R R R R R G G N R R S R R T G V P R G R G S S E T 

3 8 0 1 UUCGUGUUUACAAAGGACAACCUCAUGGGCAACUCCCAAGGAAGUUUCACCUUCGGGCCGAGUCUAUCAGACOGUCCGGCAUUCAAGGAUGGAAUACUCA 
S C L Q R T T S W A T P K E V S P S G R V Y Q T V R H S R M E Y S 

F V F T K D N L M G N S Q G S F T F G P S L S D C P A F K D G I L K 

3 9 0 1 AGGCCUACCAUGAGUAUAAGAUCACAAGCAUCUUACUUCAGUUCGUCAGCGAGGCCUCUUCCACCUCCUCCGGUUCCAUCGCUUAUGAGUUGGACCCCCA 
R P T M S I R S Q A S Y F S S S A R P L P P P P V P S L M S W T P I 

A Y H E Y K I T S I L L Q F V S E A S S T S S G S I A Y E L D P H 

4 0 0 1 UUGCAAAGUAUCAUCCCUCCAGUCCUACGUCAACCAGUUCCAAAUUCCUCAGGGCGGCGCCAAAACUUAUCAAGCGCGGAUGAUAAACGGGGUAGAAUGG 
A K Y H P S S P T S T S S K F L R A A P K L I K R G 

C K V S S L Q S Y V N Q F Q I P Q G G A K T Y Q A R M I N G V E W 

4101 CACGAUUCUUCUGAGGAUCAGUGCCGGAUACUGUGGAAAGGAAAUGGAAAAUCUUCAGAUACCGCAGGAUCCUUCAGAGUCACCAUCAGGGUGGCUUUGC 
H D S S E D Q C R I L W K G N G K S S D T A G S F R V T I R V A L Q 

4201 AAAACCCCAAAUAGGUAGACUCCGGACCAGAGCCUGGUCCAAGCCCACAACCAACACCCACUCCAACUCCCCAGAAGCACGAGCGAUUUAUUGCUUAUGU 
N P K * V D S G P E P G P S P Q P T P T P T P Q K H E R F I A Y V 

4301 UGGCAUACCUAUGCUAACCAUUCAGGCCAGGGAGAGCGACGACCAAAUCAUAUUGGGUUCCUUAGGGAGCCAAAGGAUGAAAUAUAUAGAGGACGAGAAC 
G I P M L T I Q A R E S D D Q I I L G S L G S Q R M K Y I E D E N 

4401 CAGAACUAUACAAAUGUUAGUUCUGAGUAUUACUCUCAAUCGAGCAUGCAAGCCGUCCCUAUGUAUUACUUCAAUGUCCCGAAAGGGCAAUGGUCAGUCG 
Q N Y T N V S S E Y Y S Q S S M Q A V P M Y Y F N V P K G Q W S V D 

4501 ACAUCAGCUGCGAAGGGUAUCAACCCACUAGCAGCACCUCGGAUCCAAACCGGGGUAGGAGUGACGGGAUGAUCGCGUAUUCAAACGCGGAUUCCGAUUA 
I S C E G Y Q P T S S T S D P N R G R S D G M I A Y S N A D S D Y 

4601 UUGGAAUGUUGGUGAAGCGGAUGGUGUAAAAAUUUCGAÄGCUACGCAACGAUAACACCUACCGCCAAGGUCACCCAGAACUUGAAAUUAACUCGUGUCAU 
W N V G E A D G V K I S K L R N D N T Y R Q G H P E L E I N S C H 

4701 UUUCGCGAGGGCCAACUCCUUGAACGGGACGCUACAAUUAGCUUCCACGUUGAAGCGCCUACUGAUGGGCGAUUCUUUCUCGUUGGUCCCGCUAUCCAGA 
F R E G Q L L E R D A T I S F H V E A P T D G R F P L V G P A I Q K 

4801 AAACCGCAAAGUAUAACUAUACUAUCUCAUACGGUGACUGGACGGACCGAGACAUGGAACUGGGGCUGAUCACCGUGGUGCUUGAUGAACAUUUAGAAGG 
T A K Y N Y T I S Y G D W T D R D M E L G L I T V V L D E H L E G 

4901 CACUGGÜUCGGCUAACAGAGUGCGGCGGCCCCCACGGGAGGGCCACACCUAUAUGGCCUCGCCGCGCGAACCGGAAGGAAAACCGGUUGGAAAUAAACCA 
T G S A N R V R R P P R E G H T Y M A S P R E P E G K P V G N K P 

5001 AGGGACGAAACCCCGAUACAAACGCAGGAAAGACAACCUGAUCAAACUCCGUCUGACGACGUAUCCGAUGCUGGUUCGGUAAACAGCGGCGGCUCAACUG 
R D E T P I Q T Q E R Q P D Q T P S D D V S D A G S V N S G G S T E 

5101 AGUCGCUGCAAUUGGAGUUCGGGGCAAAUUCAGAUAGUACCUACGAUGCUACAGUCGAUGGUACAGACUGGCCCAGAAUUCCUCCACCAAGGCACCCACC 
S L Q L E F G A N S D S T Y D A T V D G T D W P R I P P P R H P P 

5201 UGAACCUAGAGUUUCCGGCAAUUCAAGAACUGUUACUGACUUUUCUCCGAAÄGCCGAUCUAUUGGAGAAUUGGGAUGCCAAACACUUCGACCCUGGUUAU 
E P R V S G N E R T V T D F S P K A D L L E N W D A K H F D P G Y 

53 01 UCCAAAGAAGAUGUCGCUGCUGCUACUAUUAUAGCGCACGGCAGUAUUCAAGAUGGGCGAAGUAUGUUAGAGAÄGAGAGAGGAAAÄUGUCAAGAACAAAA 
S K E D V A A A T I I A H G S I Q D G R S M L E K R E E N V K N K T 

5401 CCUCCUCCUGGAAGCCCCCGUUACCUAAAGCGGUGAGCCCAGCCAUAGCCAAAUUGCGCUCGAUUCGCAAAUCCCAACCCCUCGAGGGAGGGACCCUUAA 
S S W K P P L P K A V S P A I A K L R S I R K S Q P L E G G T L K 

5501 GAAAGACGCCACUGAUGGUGUCUCAUCUAUUGGCAGUGGUUCUCUAACAGGUGGCACGCUUAAGAGGAAGGAAACUAUCGAAGAGCGUUUACUGCAGACC 
K D A T D G V S S I G S G S L T G G T L K R K E T I E E R L L Q T 

5601 UUAACAACUGAACAAAGGCUGUGGUACGAGAAUUUGAAGAAAACUAÄCCCUUUAGCUGCUACCCAAUGGCUGUUUGAAUAUCAGCCACCUCCCCAAGUGG 
L T T E Q R L W Y E N L K K T K P L A A T Q W L F E Y Q P P P Q V D 

5701 AUAGAAACUUAGCUGAAAAGCCAUUCCAAGGGAGGAAAUGAGUCGACUCACGACUUAAAACUGAGUGUCCGCCGGACAUUAAGCGGAACGAAAGCCGAAA 
R N L A E K P F Q G R K 

5801 GGUGAUUAGGCUCUCAACGCCUGCUAGAGACCGUCGAAAGACGCGACUGUGUACCCAGGAUCCUCUUACAGGGUUGUGUAGU 5882 

Figure 3: The nucleotide sequence of PLRV RNA. The deduced amino acid sequences of long open 
reading frames are depicted below the nucleotide sequence. 
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with a coding capacity for a protein of 56,476 Da. 

In Table 1, the main characteristics of the proteins encoded by the various ORFs of 

the three sequenced luteoviruses are summarized. Most proteins have high isoelectric 

points, except for the ORF5 product of PLRV, BWYV and the corresponding ORF4 

product of BYDV. 

Expression of the PLRV ORFs 

As shown in Figure 4, in vitro translation of purified PLRV RNA, using rabbit 

reticulocyte lysate and wheat germ lysate, resulted in two major products synthesized in 

both reactions. The largest protein is approximately 70 KDa and probably corresponds 

to the PLRV ORF2 product. The smaller protein is approximately 28 kDa, which is 

similar in size as the ORF1 protein. Besides these two proteins present in both 

reactions, several other translation products are present in one translation only. 

Possibly, these products resulted from proteolytic degradation or reflect the different 

preferences for translational sequences of both translation lysates employed. A proteins 

of approximately the size (23 kDa) of the PLRV coat protein could be detected in the 

translation products of the reticulocyte lysate, however, such a product was absent in 

the translation products from the wheat germ lysate. Possibly, the coat protein is 

expressed via a sub-genomic messenger. Mayo et al. (1984) reported the presence of 

sub-genomic RNA in infected cells. In the non-coding regions of the three sequenced 

luteoviruses similar nucleotide sequences can be distinguished. These sequences might 

function as promoter sequences for the sub-genomic RNAs. 

Table 1: Molecular weights (MW) and isoelectric points (pi) of the proteins encoded by the ORFs of 
PLRV, BWYV and BYDV RNA. 

ORF1 
ORF2 
ORF3 
ORF4 
ORF5 
ORF6 

PLRV 
MW 

28.1 
69.7 
69.6 
23.3 
17.3 
56.5 

Pi 

8.2 
10.1 
7.8 

11.9 
6.8 
5.2 

BWYV 
MW 

29.1 
66.2 
66.8 
22.5 
19.6 
51.4 

pi 

8.2 
9.9 
8.3 
11.9 
8.5 
4.8 

BYDV-PAV 
MW 

-
38.7 
60.4 
22 
17.1 
49.7 

pi 

-
5.9 
9.2 

12 
9.3 
4.8 
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The ORF1 and ORF2 are probably directly expressed from 

the genomic RNA. Usually, viral RNAs are expressed in a 

mono-cistronic fashion, though exceptions on this rule are 

known (Kozak, 1986). The start codon of the ORF1 has to be 

considered as suboptimal compared to the start codon of 

ORF2 (Kozak, 1989). Possibly, ribosomes scanning the RNA 

slip past the first, suboptimal and therefore leaky, start codon 

and initiate translation at the, more optimal, ORF2 start codon 

located 133 nucleotides downstream of the first one. 

The first AUG codon in ORF3 is located at position 2440, 

more than 900 nucleotides downstream from the preceding 

stop codon. Initiation of translation from this start codon 

would result in the synthesis of a product of 35,607 Da, while 

the complete coding capacity of the ORF2 corresponds to a 

protein of 69,674 Da. The putative PLRV ORF3 product 

shows a high homology with the BWYV ORF3 product. For 

BWYV ORF3, evidence has been obtained that it is expressed 

via a -1 translational frameshift (Brault & Miller, 1992). 

Moreover, in the ORF 2 and 3 overlapping region of the RNA 

a pseudoknot structure can be formed (Ten Dam et a/., 1990). 

Pseudoknots are proposed to play an important role in the -1 

ribosomal frameshift in the F, and F 2gene overlap region of 

the coronaviral avian infectious bronchitis virus (IBV) 

(Brierley et al, 1989). On the basis of both the presence of a 

pseudoknot structure and the strong sequence homology 

between the ORFs of PLRV and BWYV, we propose that 

PLRV ORF3 is expressed via translational frameshift, like the analogous ORFs in 

BYDV and BWYV RNA. 

As mentioned above, PLRV ORF6 lacks its own AUG start codon and is contiguous 

with ORF4, separated only by the amber stopcodon of ORF4. The same situation is 

observed for ORF5 of BYDV and ORF6 of BWYV, which show homologies to PLRV 

ORF6 of 45 and 59%, respectively. The sequences flanking the amber stop codons are 

identical in all three viruses (CCAAAUAGGUAGAC). Amber stop codons are 

Figure 4: Fluorogram 
showing the products of 
an in vitro translation of 
PLRV genomic RNA, 
using rabbit reticulocyte 
1 y sate or wheat germ 
lysate. Lane 1: PLRV 
RNA translation products 
employing reticulocyte 
lysate; lane 2: PLRV 
RNA translation products 
employing wheat germ 
lysate. 
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renowned for their leakiness (Van Toi et al, 1980). Furthermore, for BWYV evidence 

was presented that readthrough of ORF4/6 indeed occurs (Veidt et al, 1988). Therefore 

it seems likely that ORF6 is expressed via translational readthrough, by suppression of 

the amber stopcodon, which would result in a protein of 79,709 Da. 

Homologies with other plant viruses 

The genomic organization of PLRV seems to be very similar to the genomic 

organization of BWYV and, to a lesser extent, BYDV-PAV. Figure IB compiles the 

genomic organization of all three luteoviruses. Comparison of the deduced amino acid 

sequences of the PLRV ORFs with the sequences of BWYV and BYDV reveals 

homology with nearly all of the BWYV ORFs and with several of the BYDV ORFs 

(Fig. 2B). The total genome lengths of the three viral genomes are comparable, the 

PLRV genome being the longest (5882 nucleotides). Also the base composition of the 

PLRV RNA (28%A; 25%C; 24%G; 23%U) is similar to those of BYDV RNA 

(29.5%A; 24%C; 24.5%G; 22%U) and BWYV RNA (28%A; 25%C; 24%G; 23%U). 

The PLRV ORF1 product shows no amino acid homology with any of the different 

ORFs of BWYV or BYDV, in spite of the fact that the BWYV ORF1 is similar in size 

and position on the genome. The PLRV ORF1 peptide also shows no homology with 

any other published plant viral proteins. In a database search, the protein showed a low 

degree of similarity with various membrane-associated proteins, like cytochrome d, 

terminal oxidase and NADH dehydrogenase. All similarities were located in the, 

strongly hydrophobic, N-terminal part of the ORF1 protein. These data suggest that the 

PLRV ORF1 protein is membrane-linked. 

The putative product of PLRV ORF2 shows homology (54%, calculated with the 

UWGCG programme GAP) with the BWYV ORF2 product. The ORF2 product 

contains amino acid sequence motifs found in plant viral proteases. The putative 

protease belongs to the type of the trypsin/3C-like proteases, with a serine protease 

catalytic activity (Gorbalenya et al, 1989; Bazan & Fletterick, 1989). Using sequence 

analysis, four conserved regions in these proteases can be distinguished (Fig. 5). These 

boxes encase the conserved putative catalytic triad of His, Asp, and Ser residues as well 

as residues that contribute to substrate binding. The function of this protease in the 

expression of the PLRV-encoded proteins is unclear. 
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BOX I BOX II 

ENALVTAEH255CLEGAFATSLK-aa17-RND268ISILVGPP-

BOXIII BOX IV 

-aa„-LCNTfiPGYS354fiTGFWSSKNLLGVLKGFPL 

Figure 5: Trypsin Ser-proteases motifs as found in the ORF2 product of PLRV. The putative 
catalytic residues are represented in bold and underlined. Positions in the ORF2 protein of the 
amino acids constituting the putative catalytic triad are indicated. 

The putative PLRV ORF3 peptide contains the amino acid sequence motifs (—S/TG~ 

-T—Ns/T18-37aaGDD—) which are found in all RNA-dependent RNA polymerases of 

eukaryotic RNA viruses sequenced to date (Koonin, 1991) and therefore this product 

most likely represents the PLRV-encoded RNA-dependent RNA polymerase. The 

predicted amino acid sequence of ORF3 shows considerable homology with BWYV 

ORF3 (70%) and the putative RNA-dependent RNA polymerase (43%) of southern 

bean mosaic virus (SBMV) (Wu et al, 1987). Strikingly ORF2 of BYDV showed no 

homology with the PLRV ORF3 but, instead, showed homology with the putative RNA 

polymerase of carnation mottle virus (CarMV) (Miller et al, 1988a). 

Two nucleic acid helicase consensus motifs (IV and VI) can be distinguished in the 

ORF2 and ORF3-encoded peptides (Habili & Symons, 1989). Helicase motif VI 

(QSKLDEGRYRLIMSVS), believed to provide the nucleic acid binding site, is located 

in the ORF3-encoded part. The helicase motif IV (NYFVESTAV) is located in the 

ORF2-encoded part, no putative function has yet been stipulated for this sequence 

motif. No NTP-binding site consensus sequence could be detected in any of the PLRV 

ORFs(Higginsera/., 1986). 

As shown in Figure 6 PLRV ORF4 shows considerable homology with BYDV 

ORF3 (57%) and BWYV ORF4 (72%). Since BYDV ORF3 has been shown to 

correspond to the BYDV coat protein (Miller et al, 1988b), the conclusion seems 

justified that ORF4 of both BWYV and PLRV encodes the respective viral coat 

proteins. The strong homology in amino acid sequences can explain the serological 
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cross-reactivity between the different luteoviruses. The putative coat protein of PLRV 

has a high isoelectric point, resulting in a positive charge. This high positive charge of 

the ORF4 product is mainly caused by the arginine-rich sequence near the N-terminus. 

Several other viruses, including SBMV have coat proteins positively charged at the N-

terminal end. For SBMV it has been suggested that the positively charged part of the 

coat protein reacts with negatively charged groups of the RNA (Hermodson et al, 

1982). While the ORF4 protein has a positive charge, the ORF6 protein has a very low 

isoelectric point, resulting in a negative charge. Thus the complete readthrough product 

(ORF4+6) has a negatively charged C-terminal end and a positively charged N-terminal 

end, the net charge of the overall protein being positive. It has been shown that the so-

called readthrough proteins of luteoviruses are associated with virus particles and are 

suggested to play a role in aphid transmission (Bahner et al, 1990; Reutenauer et al, 

1993). 

For BYDV and BWYV it has been proposed that the ORFs, underlying the coat 

protein gene, code for the respective VPg's. However, the VPg of PLRV has been 

estimated to have a molecular mass of 7 kDa only (Mayo et al, 1982), whereas the 

1 50 
cpBWYV MNTWgRrii NG....rRRp RRQT..RRAq RpQPWWQT sRAtgRRPRR 
cpPLRV MsTWvkGnv NGgvqqpRRR RRQslrRRAn RVQPWmV.T aPggPRRRRR 
cpBYDV MNsVgrRGpr ranqngtRRR RRrT VrPWWQp nrAgPRRRng 

51 100 
cpBWYV RRrGNnRtGR TvptRGaGSS ETFVFSKDNL aGsSSGAITF GPSLSDCPAF 
cpPLRV RRgGNrRsrR TgVpRGrGSS ETFVFtKDNL mGNSqGAfTF GPSLSDCPAF 
cpBYDV RRkC.RgGa nfVfRptGgt EvFVFSvDNL kaNSSGAIkF GPSLSDCPA1 

101 150 
cpBWYV SnGmLKAYHE YKIsmvILEF VSEASSqnSG SIAYELDPHC KlnSLsStlN 
cpPLRV kDGILKAYHE YKITSILLqF VSEASStsSG SIAYELDPHC KvSSLqSYvN 
cpBYDV SDGILKsYHr YKITSIrvEF kShASantaG alfiELDtaC KqSaLgSYIN 

151 200 
cpBWYV kFgltKpGkr aFtAsylNGt EWHDvaEDQF RILYKGNG.S SsiAGSFRIT 
cpPLRV qFqlpqgGaK TyqArmlNGv EWHDSsEDQc RILwKGNGkS SDTAGSFRvT 
cpBYDV sFtlsKtasK TFrsealNGk EfqeStiDQF wmLYKaNGtt tDTAGqFilT 

201 
cpBWYV IkcqfhNPK* 
cpPLRV IrVaLqNPK* 
cpBYDV msVsLmtaK* 

Figure 6: Alignment of the coat protein sequences of BYDV, PLRV and BWYV. Amino acid 
residues differing from the consensus are shown in small lettering, gaps are indicated by dots. 
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coding capacity of ORF5 predicts a protein of 17 kDa. Possibly, this ORF encodes a 

VPg-precursor molecule from which, at the onset of RNA synthesis, the VPg molecule 

is released, as has been suggested for CPMV (Goldbach & Van Kammen, 1985). 

DISCUSSION 

In this chapter the nucleotide sequence of the PLRV genomic RNA has been determined 

and described. The genomical RNA is 5882 nucleotides long and contains six different 

ORFs. Comparison of the deduced PLRV sequence with the recently determined 

nucleotide sequences of BWYV and BYDV-PAV reveals both similarities and 

intriguing differences between the luteovirus genomes. The PLRV genome as 

determined is 5882 nucleotides in length, whereas both BYDV (5677 nucleotides) and 

BWYV (5641 nucleotides) are smaller. The genomic organization of PLRV appears to 

be similar to that of BWYV and to a lesser extent to that of BYDV-PAV. The putative 

products of the ORFs of PLRV and BWYV show high homologies in amino acid 

sequence except for the ORF1 products. Although both ORF Is are similar in size, they 

are completely different in amino acid sequence. An equivalent of this ORF is even 

completely absent in BYDV-PAV RNA. The function of the ORF1 is unclear, for 

PLRV there is circumstantial evidence that the ORF1 protein is membrane-associated. 

For BWYV, however, the ORF1 amino acid sequence does not suggest an association 

to membranes. In their ecological aspects, PLRV and BWYV mainly differ in their 

potential host range: PLRV is only able to infect a restricted number of plant species, 

while BWYV infects a wide range of plant species (Rochow & Duffus, 1981). 

Therefore, it is tempting to suggest that the ORF1 proteins play a role in host 

determination, but more data will be needed to verify this hypothesis. 

Figui 
seque 
CP = 

ORFl ORF3 ORF4 ORF6 

VI GDD CP 

: PRO : i v 
ORF2 ORF5 

•e 7: Putative functions of the PLRV ORFs. GDD = putative polymerase amino acid 
nee motif; IV = helicase motif IV; VI = helicase motif; PRO = Ser protease (3-C like); 
coat protein. 
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Remarkably the putative RNA-dependent RNA polymerases of PLRV and BWYV 

(ORF3 products) show a high homology to the (putative) RNA polymerase of SBMV, 

while the RNA polymerase of BYDV-MAV shows homology with the RNA 

polymerase of CarMV and no homology with the other luteoviral or SBMV 

polymerases. Until now this is the only example of viruses of the same taxonomie group 

having RNA polymerases corresponding to different gene families. 

In contrast to the genes located in 5' halves of the genomes, comparison of the 3' 

terminal gene clusters of all three luteoviruses reveals a similar gene organization and 

high amino acid sequence homologies (Fig. IB). The 3'-terminal gene clusters are 

obviously evolutionary related, while the RNA-polymerases of PLRV (and BWYV) and 

BYDV seem to have different ancestors. This observation strongly supports the 

hypothesis that RNA viruses evolve by interviral gene exchange. 

Considering the homology between the different luteoviruses it seems that PLRV is 

more closely related to BWYV than to BYDV. It is suggested that BYDV and BWYV 

might be considered as distinct subtypes of the luteovirus group. In view of the 

homologies observed between the ORFs of PLRV and BWYV, PLRV appears to be 

part of the BWYV subgroup. However, differences between PLRV and BWYV, e.g. the 

non-homologous ORFls, make PLRV and BWYV distinctly different members. 
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CHAPTER 3 

Expression of the potato leafroll luteovirus coat 

protein gene in transgenic potato plants inhibits viral 

infection 

ABSTRACT 

Transgenic potato plants, cultivar Désirée, were produced that contained the coat 

protein gene of potato leafroll luteovirus (PLRV). The transformed potato plants 

expressed the PLRV coat protein (CP) RNA sequences but accumulation of coat protein 

in transgenic tissues could not be detected. Upon inoculation with PLRV, the PLRV-CP 

RNA expressing potato plants showed a reduced rate of virus multiplication. 

This chapter is a slightly modified version of Van der Wilk et al, (1991). Plant Mol. Biol. 17:431-439. 
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INTRODUCTION 

Potato leafroll luteovirus (PLRV), the causal agent of one of the major viral diseases of 

potato, is responsible for large crop losses. Yields of PLRV-infected plants may be 

reduced by as much as 50% while the worldwide damage is estimated at approximately 

10% yield loss or a yearly loss of 20 x 106 tons of potatoes (Kojima & Lapierre, 1988). 

All commercial potato varieties are, to a greater or lesser extent, susceptible to PLRV 

infection. Resistance breeding to control the virus has sofar been hampered by the lack 

of readily available resistance genes. All resistance traits available in potato breeding 

lines are thought to be multigenic and monogenic dominant resistance genes conferring 

a high level resistance against PLRV are absent (Gibson et al, 1988). Genetically 

engineered coat protein-mediated protection has been shown to be a promising 

approach for the control of a number of plant viral diseases. In some aspects coat 

protein-mediated protection is similar to 'cross-protection', i.e. the phenomenon 

whereby infection of a plant with a mild strain of a virus is used to reduce susceptibility 

to infection with a virulent strain of the same virus (Sherwood, 1987). 

By expression of the coat protein of a virus in transgenic plants, a delay or even 

complete inhibition of infection with the corresponding virus has been observed. This 

has been shown for viruses belonging to different taxonomie groups, like tobamo-

(Nelson et al, 1987), tobra- (Van Dun & Bol, 1988), potex- (Hemenway et al, 1988; 

Hoekema et al, 1989), poty- (Lawson et al, 1990), ilar- (Loesch-Fries et al, 1987; 

Turner et al, 1987) and cucumoviruses (Cuozzo et al, 1988). All these viruses differ 

substantially in morphology, genome organization and replication strategy, but they are 

all mechanically transmissible and the presence of their viral particles in infected plants 

is not confined to specific plant tissues. 

PLRV is, like all other luteoviruses, dependent on aphids for its transmission and is 

not mechanically transmissible (Harrison, 1984). In infected plants the isometric virus 

particles are found in the phloem only. Aphids acquire the virus by feeding on the 

phloem of infected plants and transmit the virus, in a persistent manner, directly to the 

phloem of healthy plants. 

The genome of PLRV is a single-stranded, messenger-sense RNA which is 

characterized by a small protein (VPg) covalently attached to the 5' terminus (Mayo et 

al, 1982). The nucleotide sequence of the genomic RNA of PLRV has been determined 
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(Van der Wilk et al, 1989). The sequence revealed six open reading frames. The open 

reading frame corresponding with the coat protein gene was identified by amino acid 

sequence homology with the coat protein of barley yellow dwarf virus, the type species 

of the luteovirus genus (Miller et al, 1988). In this study, the potato cultivar Désirée 

was transformed with the PLRV-CP gene. The resulting transgenic plants were tested 

for expression of this viral gene and for protection against aphid inoculation with 

PLRV. 

Materials and methods 

Cloning of the PLRV coat protein constructs 

Several cDNA clones collectively spanning the complete PLRV genome were isolated 

(Van der Wilk et al, 1989). For construction of the PLRV-CP expression vectors, a 

fragment encoding the CP sequence was excised from a pUC18 plasmid and cloned into 

M13mpl8. By site-directed mutagenesis the Dpnl site, located eight nucleotides 

upstream of the AUG start codon, was modified into a Bglll site and the fragment was 

recloned into pUC18. The AccI site immediately downstream of the UAG stop codon 

was filled in using DNA polymerase I (Klenow fragment) and the blunt end supplied 

with a Bglll linker. The resulting fragment was excised with Bglll and cloned in the 

BamHI site of pMOG181 (Fig. 1). The construct was checked for deletions or mutations 

by sequence analysis and in vitro translation. Two constructs were selected, one with 

the CP gene in the sense orientation and the other with the CP gene in the antisense 

orientation. These constructs were digested with EcoRI and Hindlll and the fragments 

containing the chimaeric CP gene were placed into the binary vector pMOG23 (Sijmons 

et al, 1990), giving rise to plasmids pLRV-S and pLRV-A. 

In vitro translation of the coat protein construct 

The coat protein was subcloned into pBluescript SK+. The construct DNA was digested 

with EcoRI, RNase A treated and subsequently incubated with proteinase K (50 ug/ml), 

in the presence of 0.5% SDS. After phenol extraction and ethanol precipitation, 
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Figure 1: Schematic representation of the construction of the plant expression vectors pLRV-S 
and pLRV-A used to express the PLRV-CP gene in transgenic potato plants. 35S = cauliflower 
mosaic virus (CaMV) 35S promoter; pnos/tnos = nopaline synthase promoter/ terminator sequence 

the DNA was resuspended in sterile water and used for synthesizing T3 RNA 

transcripts. RNA was synthesized using a commercially available kit (Stratagene), 

following the manufacturers instructions. The transcripts were checked for size on a 

denaturing agarose gel and translated in vitro, using a commercial kit (Bethesda 

Research Laboratories). 0.5 ug RNA was added to 30 ul reaction mixture containing 10 

ul nuclease treated (3x) rabbit reticulocyte lysate, translation buffer, 1 ul ribonuclease 

inhibitor, 50 uM amino acid mixture (minus methionine), 5 uCi [35S] methionine (1000-

1500 Ci/mmol). After incubation at 30 °C for 1 h, the mixture was placed on ice to stop 

the reaction. Subsequently, it was incubated with 1 mg/ml pancreatic RNase at 30°C for 

1 h to hydrolyse radioactive aminoacyl-tRNAs. The translation products were analyzed 

by Polyacrylamide SDS gelelectrophoresis, followed by fluorography. 10 ul of the 
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translation reaction mixture was loaded onto a 15% SDS Polyacrylamide gel. After 

electrophoresis the proteins were fixed in the gel, followed by a 15 min incubation in 

amplify solution (Amersham). Fluorography was carried out by placing a XAR-5 

(Kodak) film against the dried gel for 48 h. 

Potato transformation 

Transformation of potato plants was done as previously described (Hoekema et al, 

1989). Potato tuber discs, cultivar Désirée, were cocultivated with Agrobacterium 

tumefaciens, strain LBA 4404, harbouring plasmid pLRV-S or pLRV-A. For each 

cocultivation 500 tuber discs were used. Selection for transformation was done on 

medium containing kanamycin (100 ug/ml). Kanamycin resistant shoots were cut off 

and placed onto rooting medium, propagated axenically and transferred to soil. 

Analysis of transgenic potatoes on Northern and Southern blots 

For Northern analysis, total RNA was isolated from transgenic leaf material as 

previously described (Verwoerd et al., 1989) and 20 ug aliquots were loaded onto a 

denaturing 1% agarose gel containing 2.2 M formaldehyde. After electrophoresis the 

RNA was transferred to a Hybond-N membrane (Amersham) and hybridized with a 

radiolabelled PLRV-CP probe. 

For Southern analysis high molecular weight DNA was isolated as described 

(Mettler, 1987). DNA was digested with EcoRI and Hindlll and 10 ug of DNA was 

loaded on a 1% agarose gel. After gel electrophoresis the DNA was transferred to 

GeneScreen-Plus (NEN-DuPONT) and probed with a radiolabelled CP fragment. 

Immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) 

For immunoblot analysis leaf discs of one centimeter diameter were ground in 200 ul 3x 

Laemmli buffer (Laemmli, 1970). Protein concentrations were determined using BCA 

protein assay reagent (Pierce Chemical Co.). Different amounts, ranging from 10 to 200 

ug, of soluble leaf proteins were boiled for 5 minutes, loaded onto a 12.5% 

Polyacrylamide SDS gel and run at 200 mA (Bio-Rad Mini-PROTEAN II 
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electrophoresis system). The gels were blotted onto nitrocellulose using a semi-dry 

transfer system. The blots were preincubated with a blocking reagent (Boehringer 

Mannheim) and incubated with anti-PLRV IgG. Several different antisera were used, 

including polyclonal IgG's from rabbit, mouse and rat, Mabs and IgG-conjugates. The 

antisera were kind gifts of J.F.J.M. van den Heuvel (Department of Virology, 

Agricultural University Wageningen), D.Z. Maat (Research Institute for Plant 

Protection), T. Kühne (Institut für Phytopathologie Aschersleben, GDR) or purchased 

from Boehringer Mannheim. All antisera were raised against intact, non-denatured 

virions. 

ELISA was performed as described, including amplification of the enzyme reaction 

(Van den Heuvel & Peters, 1989). Leaf discs of one centimeter diameter were ground in 

0.5 ml extraction buffer (0.2% ovalbumin, 2% polyvinylpyrrolidone, 0.05% Tween 20 

in PBS), 200 ul of the suspension was used per well in the test. The samples were 

simultaneously incubated with the conjugate for 16 h at 4°C. For amplification of the 

enzyme reaction 100 ul of 0.2 mM NADP in 0.05 M diethanolamine (pH 9.5) was 

added to each well. After incubation at 20 °C for 30 min. alkaline phosphatase activity 

was blocked by adding 15 ul of 0.5 M 4-nitrophenyl disodium ortho-phosphate in 0.025 

M phosphate buffer pH 7.4 to each well. Subsequently 150 ul of amplification reaction 

mixture was added per well. The stock amplification reaction mixture consisted of 700 

units of alcohol dehydrogenase, 100 units of lipoamide dehydrogenase (type VI), 3% 

ethanol and 1 mM p-iodonitrotetrazolium violet in 15 ml of 0.025 M phosphate buffer 

pH 7.0. Colour development was allowed to proceed at room temperature and 

absorbency values were read at 492 nm. 

Transmission of PLRV to transgenic plants 

Myzus persicae (Sulzer), Wmpl, was maintained on Brassica napus L. susp. oleifera 

(oilseed rape) in a greenhouse under controlled conditions (Reinink et al, 1989). 

Mature apterae, confined to leaf cages, were transferred daily to leaves of oilseed rape 

plants. Nymphs were used for the protection experiments. The aphids acquired the virus 

by feeding for 4 days on virus-infected young Physalis floridana Rydb. plants. 

Inoculation of the transgenic potato plants was carried out by confining 10 viruliferous 

nymphs per plant for a 9 day access period. Since the virus titer is not uniform within 

48 



the infected plant, virus infection was monitored for each individual plant by taking 

samples of the lower, middle and top leaves at each time-point. For each time-point, 3 

leaf discs of each plant were pooled, ground in extraction buffer, and screened for the 

presence of virus using the 'cocktail' ELISA procedure without enzyme amplification. 

Tubers from infected control and transgenic plants were harvested and stored at 4 °C. 

After 4 to 6 months of storage at 4 °C, the tubers were planted and subsequently virus 

titers were determined in the emerging shoots by ELISA. 

Statistical analysis 

Statistical analysis of the A405 ELISA-values was done with the help of the computer 

programme Statistical Application Systems of the SAS Institute Inc. The general linear 

models procedure was used to calculate the standard error of the mean (MSE). 

Statistical significance was determined with the procedure of the least significant 

difference (LSD). LSD=t0025[r][y(2/n)].MSE 

RESULTS 

Construction of the PLRV expression vector and transformation of potato plants 

As shown in Figure 1, the coat protein gene of PLRV starts on the viral genomic RNA 

at position 3588 and extends to an UAG stop codon at position 4212. Contiguous with 

the coat protein gene another open reading frame, separated only by the amber stop 

codon, is present. This open reading frame is probably expressed by translational 

readthrough from the coat protein gene, to yield a protein of approximately 79 kDa 

(Veidt et al, 1988). In spite of the putative leakiness of the UAG stopcodon and sub-

optimal start codon (Kozak, 1989), the coat protein gene was cloned in its unaltered, 

natural appearance. 

For this purpose a Bglll site was created by site directed mutagenesis, at a position 

seven nucleotides upstream of the AUG start codon. The AccI site directly downstream 

of the UAG stop codon was used to create a Bglll site (Fig. 1). The CP gene was cloned 

in both the sense and antisense orientation in the BamHI cloning site of the plasmid 
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pMOG181 between the cauliflower mosaic virus (CaMV) 35S promoter, with a double 

enhancer, and the transcription termination signal of the nopaline synthase (nos) gene. 

These constructs were placed in a binary vector (pMOG23) (Sijmons et al., 1990) (Fig. 

1). Transformation of tuber discs of potato cultivar Désirée was mediated by A. 

tumefaciens (Hoekema et al, 1989). Using this procedure, we analyzed twenty-five 

independent transformants containing the CP gene in the sense orientation (CP-s) and 

forty-one transformants containing the CP gene in the antisense orientation (CP-a). 

Expression of the PLRV-CP gene constructs in transgenic potatoes 

3 4 

All transgenic potato plants were analyzed on Northern blots for expression of PLRV-

CP gene transcripts. Using a CP coding probe, a single transcript of the expected size of 

approximately 800 nucleotides was detected in all transformed plants tested. 

Remarkably, the transgenic plants containing the CP gene in the antisense orientation 

showed a relatively lower expression of CP gene RNA sequences than the CP-s 

transgenic plants. The levels of expression for two plants containing the sense and for 

two plants containing the antisense CP gene 

construct are shown in Figure 2. When signal 

intensities of the transcripts were compared to 

known standards, it was estimated that the 

transgenic tissues contained between 30 and 

1 5.9 
100 pg of transcript RNA per ug of total plant 
RNA, depending on the transgenic plant line 

» «I 0.8 

tested (data not shown). 

Southern analysis was carried out on four 

transformed plants (Fig. 3). It was estimated 

that the tested transformants contained one to 

four copies of the CP gene per tetraploid 

genome. In the case of one of the 

transformants analyzed, the size of the detected 

fragment in the Southern analysis was larger 

than expected (Fig. 3). This might indicate the 

occurrence of a mutation during the integration 

Figure 2: Northern analysis of PLRV-CP 
transgenic potato plants. Twenty ug of total 
plant RNA purified from transgenic leaf 
material were loaded onto a 1% agarose gel 
containing formaldehyde. Lane 1: 25 ng 
PLRV RNA; lane 2: RNA from control 
Désirée plants; lane 3-6: RNA from 
transgenic plant lines, CP^Ç, CPS31, CPA2 
and CP*26, respectively. 
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of the construct in the plant genome. Since the CP 

transcript detected in this transformant was of the 

expected size (Fig. 2), it is assumed that mutational 

events occurred in sequences flanking the actual 

PLRV-CP gene. 

All the transgenic plants containing the sense CP 

gene construct were analyzed on Western blots and 

screened for possible accumulation of PLRV coat 

protein. None of the twenty-five CP-s transgenic 

plants analyzed contained detectable levels of coat 

protein. However, the antisera used in the Western 

blot procedure showed only low affinity to SDS-

denatured purified virus. This might be due to the fact 

that all antisera tested, were raised against intact, non-

denatured virions. The antiserum showing the highest 

affinity for purified virus, still did not allow detection 

of less then 10 ng denatured virus. For this reason all 

transgenic CP-s plants were also tested in a 'cocktail' 

ELISA procedure (Van den Heuvel & Peters, 1989). 

Using this technique, together with amplification of 

the enzyme reaction, it is possible to detect as little as 

60 pg of purified virus or 20 pg of viral coat protein 

per 100 ug soluble leaf protein. However, even in this 

more sensitive procedure, none of the transgenic potato plants accumulated detectable 

levels of coat protein. Hence, it was concluded that the CP-s transgenic plants produced 

either extremely low amounts of coat protein (less than 2 x 10"5% of soluble leaf 

protein, as calculated on basis of ELISA measurements), produced no coat protein at all, 

or produced protein which was rapidly degraded. 

Inoculation of transgenic potato plants with PLRV 

On the basis of highest level of expression of the PLRV-CP RNA four transgenic plant 

lines (two sense lines: CPS19, CPS31 and two antisense lines: CPA2 and CPA26) were 

Figure 3: Southern analysis of 
PLRV-CP transgenic potato plants. 
Ten ug of DNA, purified from 
transgenic leaf material, and digested 
with EcoRI and Hindlll were loaded 
onto a 1% agarose gel. Lane 1 
represents two copies of EcoRI-
Hindlll double-digested pLRV-S per 
tetraploid genome; Lane 2: DNA 
from control Désirée plants; lane 3-
6: DNA from transgenic plant lines, 
CPS19, CPS31, CPA2 and CPA26, 
respectively. 
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Table 1: Development of viral multiplication in transgenic and control potato plants after inoculation 
with PLRV, as determined by 'cocktail' ELISA. Ten plants per plant line were used. Plants were 
inoculated by ten viruliferous aphids. The ELISA plate reader was not blanked. Values within a column 
not followed by the same letter are significantly different. Dpi = days post infection; Dreg = non 
transformed, regenerated potato plants; LSD = least significant difference. 

Dpi 

Dreg 

C P 8 ^ 

CPS31 

CPA2 

CPA26 

healthy 

LSD 5% 

21 

0.288±0.060 (a) 

0.124±0.028(b) 

0.184±0.026(a) 

0.216±0.044 (a) 

0.167±0.030(b) 

0.037±0.002 

LSD=0.114 

A^CELISA values) (x ± SE) 

29 

0.636±0.188(a) 

0.173±0.051 (b) 

0.138±0.025 (b) 

0.543±0.155(a) 

0.209±0.056 (b) 

0.052±0.002 

LSD=0.331 

36 

0.966±0.258 (a) 

0.168±0.044(b) 

0.244±0.055 (b) 

0.404±0.128(b) 

0.179±0.053(b) 

0.048±0.003 

LSD=0.389 

45 

0.695±0.209 (a) 

0.178±0.032(b) 

0.253±0.055 (b) 

0.411±0.102(a) 

0.263±0.060 (b) 

0.048±0.002 

LSD=0.322 

selected for analysis of their sensitivity to PLRV infection. All four transgenic plant 

lines were phenotypically identical to control plants (Désirée) and were able to produce 

tubers. Ten plants from each line were inoculated by viruliferous aphids and ten non-

transformed, regenerated potato plants (cultivar Désirée) were used as a control. All 

plants were propagated on rockwool microplugs and infected one week after their 

transfer to soil. For inoculation, ten aphids (Myzus persicae) were used per plant. 

Previous experiments had shown that ten viruliferous aphids per plant never failed to 

initiate a full blown infection in control plants, whereas with lower aphid numbers some 

plants did not become infected. For tissue culture propagated potato plants, 

development of primary infection symptoms upon PLRV infection was absent. 

Therefore virus replication and spread were monitored by ELISA on leaf discs sampled 

at various times for each plant. The results obtained are shown in Table 1. For statistical 

analysis the general linear models procedure was used to calculate the standard error of 

the mean. 

Significant differences between the A405 values were determined by calculating the 

least significant difference (LSD) with a 95% probability. The statistical analysis of the 

A405 values indicated that the infected transgenic plant lines CPS19, CPS31 and CPA26 

contained a significantly lower amount of viral antigen during the experiment than the 

control plants (Table 1). The different A405 values in the experiment reflect differences, 
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Table 2: Development of viral multiplication in transgenic and control shoots emerging from infected 
tubers, as determined by 'cocktail' ELISA. The ELISA plate reader was not blanked. Eight to ten tubers 
per plant line were used. Values within a column not followed by the same letter are significantly 
different. Dreg = non transformed, regenerated potato plants. T = Days following the emerging of the 
first shoots. 

T 

Dreg 

CPS19 

CPS31 

CPA2 

CPA26 

healthy 

Ams (ELISA values) 0 

experiment 1 

42 

0.951 ±0.127 (a) 

0.236±0.019 (b) 

0.729±0.152(a) 

0.560+0.092 (b) 

0.572±0.121 (b) 

0.070±0.010 

56 

1.369+0.180 (a) 

0.281±0.040(b) 

0.781 ±0.163(b) 

1.097±0.126(a) 

0.546±0.103(b) 

0.080±0.020 

i±SE) 

experiment 2 

21 

1.706±0.140(a) 

0.696±0.162(b) 

0.769±0.219 (b) 

1.267±0.129(a) 

1.205±0.101 (a) 

0.090±0.015 

35 

2.178±0.155 (a) 

0.754±0.132(b) 

1.460±0.128 (b) 

1.856±0.375 (a) 

1.237±0.183 (b) 

0.085±0.010 

ranging from 4 to 10 times, in viras titers between control and transgenic plants. This 

indicates a lower rate of multiplication of the virus in the transgenic plants compared to 

the control plants and thus a significant interference of the expressed CP gene 

sequences with the viral replication cycle. By repetition of the inoculation experiment 

as described in Table 1 the conclusion, that lines CPS19, CPS31 and CPA26 show a 

significant level of PLRV resistance, was confirmed. 

Potato tubers, harvested from transgenic and control plants used in the inoculation 

experiments, were planted and the emerging shoots were tested in an ELISA procedure. 

The results obtained are shown in Table 2. Shoots from infected tubers of the transgenic 

plant lines CPS19, CPS31 and CPA26 contained a significantly lower amount of viral 

antigen compared to the shoots of the control line. These results are in accordance with 

the results obtained from the initial inoculation experiments. 

DISCUSSION 

The potato cultivar Désirée was transformed with the PLRV-CP gene by use of the 

binary vector system of A. tumefaciens. Two transgenic plants, that expressed the CP 

RNA sequences in sense orientation (CPS19, CPS31) and one of the two tested 
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transgenic plants expressing the CP RNA sequences in antisense orientation (CPA26), 

showed inhibition of viral multiplication upon infection with PLRV by aphids or after 

secondary infection. The transgenic plant line CPA2 did not show a statistical significant 

reduction of virus titer upon infection compared to the control plants, although it 

contained similar levels of (antisense) transcript RNA as CPA26. In all four transgenic 

plant lines coat protein could not be detected by immunoblot or by ELISA procedures. 

Although the presence of coat protein below detection levels could not be ruled out, it 

seems likely that the coat protein was absent in these plants, taking into account the low 

detection level of the ELISA procedure used, i.e. 20 pg coat protein per 100 fig of 

soluble leaf protein. 

The mechanism of coat protein-mediated protection has remained unknown sofar. 

The current hypothesis is that the coat protein present in the transgenic plants interferes 

with an early event (possible uncoating) during viral infection (Register & Beachy, 

1988; Powell et al, 1990). Data supporting this hypothesis include the observation that 

the level of protection is dependent on the presence and the level of coat protein in the 

transgenic plant and not on the amount of mRNA produced (Van Dun et al, 1988; 

Powell et al, 1990). Moreover, inoculation with viral RNA has been shown to 

overcome the protection (Van Dun et al, 1987; Loesch-Fries et al, 1987; Nelson et al, 

1987). However, plants expressing the coat protein of potato virus X (PVX) have been 

reported to be protected against inoculation with viral RNA (Hemenway et al, 1988). 

Additionally, it was reported that the level of protection in transgenic potato plants, 

expressing the CP gene of potato virus Y (PVY), against infection with this virus, was 

independent of the level of accumulation of expressed coat protein (Turner et al, 1987). 

The results reported here indicate that protection against PLRV may be achieved 

solely by transcriptional expression of the PLRV-CP gene. The virtual absence of 

accumulated coat protein in CP-s transgenic plants and the protection conferred by the 

expression of antisense CP RNA sequences in the CP-a transgenic plants might support 

this view. Likewise, several distinct mechanisms for cross-protection, based on 

interference on either protein or RNA level, have been proposed. The majority of 

reports indicate that viral coat protein is responsible for the mechanism of cross-

protection. However, infection of plants with the RNA-1 of tobacco rattle virus (TRV) 

is able to confer, in the absence of the RNA-2-encoded coat protein, protection towards 

infection with a complete TRV strain (Cadman & Harrison, 1959). Additionally, the 
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occurrence of cross-protection between viroids indicates that proteins are not always 

involved (Khoury et al., 1988). 

Several explanations for the observed, engineered protection against PLRV can be 

envisaged. Firstly, even an extremely low level of presence of coat protein in transgenic 

plants is possibly enough to confer protection against this phloem-restricted virus. 

Secondly, coat protein is possibly not involved at all and the observed protection is 

conferred by the CP RNA sequences. If the first model is true, then we are studying a 

similar phenomenon as observed in all previous studies on coat protein-mediated 

protection, though strikingly low levels of coat protein are involved in this case. 

However, the second explanation seems more plausible, since it is supported by the 

protection conferred by the expression of antisense CP RNA sequences in the CPA26 

transgenic plants. Therefore we favour the hypothesis, that the protection observed for 

the transformed plant lines, expressing the PLRV-CP gene in either sense or antisense 

orientation, is based on interference of viral multiplication on the RNA level. This 

protection could be a phenomenon comparable to the cross-protection, observed for 

viroids or TRV RNA-1, in which RNA molecules have also been proposed to be 

involved. 

Further experiments are needed to clarify the mechanism of the protection described. 

However, from the data presented in this paper, it is clear that irrespective of the 

mechanism underlying the protection observed, transformation of potato plants with 

genomic sequences of PLRV leads to significant levels of protection against the virus. 
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CHAPTER 4 

Expression of a modified coat protein gene of 

potato leaf roll virus in transgenic potato plants 

ABSTRACT 

The PLRV coat protein gene was cloned and subsequently altered with the aim to 

optimize its translational expression upon transformation into potato plants and to study 

its potential as virus resistance trait. To this end, the sequences flanking the ATG start 

codon were modified into a potentially optimal context and the start codon of the open 

reading frame (ORF5) underlying the coat protein gene was deleted. Transgenic potato 

plants, expressing the modified PLRV coat protein gene on transcriptional level, did not 

accumulate detectable levels of coat protein. Upon inoculation with PLRV the 

transgenic potato plants showed a reduced rate of virus multiplication, as compared to 

non-transgenic control plants. These results are similar to previous results obtained with 

the wild-type PLRV coat protein gene. 
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INTRODUCTION 

The production of transgenic potato plants expressing the coat protein gene of potato 

leafroll virus (PLRV), in both sense as anti-sense orientation, has been described 

(Kawchuk et al, 1990 & 1991; Van der Wilk et al, 1991). The transgenic plants 

showed relatively high levels of expression of RNA sequences, but accumulation of 

transgenic coat protein was extremely low (Kawchuk et al, 1990) or even below 

detection limits (Kawchuk et al, 1991; Van der Wilk et al, 1991). Upon inoculation 

with PLRV, both the transgenic potato plants expressing the sense construct as the 

plants expressing the anti-sense construct, showed a reduced rate of virus 

multiplication, as compared to non-transgenic control plants. Although, considerable 

reductions in virus titers have been observed, the decrease was less extreme as reported 

for transgenic plants expressing coat protein genes of other viruses. In most instances 

the presence of coat protein in the transgenic plants has been suggested to be a 

prerequisite for protection. For transgenic tobacco plants expressing the coat protein of 

tobacco mosaic virus (TMV) has been reported that the presence of coat protein, and not 

coat protein RNA sequences was required for protection (Powell et al, 1990). 

The reason for the lack of a significant accumulation of transgenic PLRV coat 

protein has remained unknown, but the translational initiation site of the coat protein 

gene can be considered as sub-optimal (Kozak, 1989) and may therefore have caused an 

inadequate synthesis of transgenic coat protein. Transient expression studies of a PLRV 

coat protein construct in protoplasts have revealed that the open reading frame 5 

(ORF5), underlying the coat protein gene, was 3 to 7 times higher expressed than the 

coat protein gene itself (Tacke et al, 1990). The coat protein gene translational 

initiation site sequence (CAAUUGUUAAUGA) differs strongly from the consensus 

sequence (GCCGCCA/GCCAUGG) reported to be present in more efficiently translated 

eukaryotic mRNA's (Kozak, 1989; Cavener & Stuart, 1991). However, both potential 

translational initiation sites (UUAAAGGAAAUGUCAAUGG) of PLRV ORF5 differ at 

most positions from this consensus sequence, possibly the tandem array of the two 

AUG codons favour translation. On the other hand, it has been reported that 

dicotelydonous plant mRNA's exhibit a strong preference for a G at position +4 and a 

weak preference for A's at all positions upstream (-9 to -1) of the start codon (Cavener 

& Stuart, 1991). Possibly, preference for nucleotides also depends on the type of tissue 
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where translation takes place. 

In this paper, it was investigated wether the translational expression of the PLRV 

coat protein gene would be amplified in transgenic plants by mutations that lead to a 

translationary optimized context of the start codon. The modifications in the sequences 

were selected on basis of consensus sequences of dicot plant mRNA's and the initiation 

sites sequences of the other PLRV ORFs. 

Additionally, to rule out the possibility that the earlier observed inhibition of viral 

multiplication in transgenic plants (Van der Wilk et al, 1991) was caused by expression 

of the ORF5 underlying the coat protein gene, the ORF5 start codon was deleted. 

MATERIALS AND METHODS 

Mutagenesis of the PLRV coat protein gene 

The cloning of the PLRV coat protein gene has been described previously (Van der 

Wilk et al., 1989). A modified coat protein construct was produced by synthesizing an 

oligonucleotide nearly identical to the first 41 nucleotides of the coat protein gene. The 

synthetic oligonucleotide differed from the PLRV coat protein gene at the sequences 

flanking the start codon, changing the translational initiation site from sub-optimal to 

potentially optimal (Fig. 1). Furthermore, the translational initiation site of the open 

reading frame (ORF5) underlying the coat protein gene, was deleted. Additionally, 

restriction sites were placed at the 3'- and 5'-end of the oligonucleotide to facilitate 

cloning. The linker was cloned in plasmid pUC19 and subsequently, checked for 

mutations or deletions by nucleotide sequence analysis. The cloned linker (pMHl) was 

digested with AccI and subsequently treated with nuclease SI. A plasmid containing the 

cloned PLRV coat protein gene (pFW139) (Van der Wilk et al, 1989) was digested 

with Styl and Sstl. The resulting 445 base pairs (bp) fragment was isolated and treated 

with Rsal. The generated Rsal-Styl fragment was ligated into Styl/AccI/nuclease treated 

pMHl, giving rise to the plasmid pMH2. This plasmid was digested with Sstl and Styl 

and the resulting fragment was ligated into Styl/SstI digested pFW139. The AccI site 

immediately downstream of the altered PLRV coat protein gene was filled in using 

DNA polymerase I (Klenow fragment) and the blunt end supplied with a Bglll linker. 
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The generated fragment was digested with Bglll and cloned in BamHI digested 

pMOG181. The created construct, with the coat protein gene in the sense orientation, 

was digested with EcoRI and Hindlll and the fragment containing the chimaeric coat 

protein gene placed into the binary vector pMOG23 (Sijmons et al., 1990), giving rise 

to the plasmid pLRV-T. 

In vitro translation experiments 

To investigate whether the mutations introduced in the coat protein gene construct 

influenced the translation efficiency, in vitro translation experiments were performed. 

To this end, the wild-type and modified coat protein gene was placed under the control 

of the SP6 promoter. In vitro translations were performed using the TnT system 

(Promega) according to the manufacturers instructions. The synthesized proteins were 

separated on SDS-polyacrylamide gel and visualized by autoradiography. 

Potato transformation 

Transformation of potato plants was done as described by Hoekema et al. (1989). 

Potato tuber discs, cultivar Désirée, were cocultivated with Agrobacterium tumefaciens, 

strain LBA 4404, harbouring plasmid pLRV-T. For cocultivation 500 tuber discs were 

used. Selection for transformation was done on medium containing kanamycin (100 

ug/ml). Kanamycin resistant shoots were cut off and placed onto rooting medium, 

propagated axenically and transferred to soil. 

Northern and Southern blot analysis of transgenic potatoes 

For Northern analysis, total RNA was isolated from transgenic leaf material as 

described by Verwoerd et al. (1989). 20 ug aliquots were loaded onto a denaturing 1% 

agarose gel containing 2.2 M formaldehyde. After electrophoresis the RNA was 

transferred to a Hybond-N membrane (Amersham) and hybridized with a radiolabelled 

PLRV-CP probe. 

For Southern analysis high molecular weight DNA was isolated as described 

(Mettler, 1987). DNA was digested with the restriction endonucleases EcoRI and 
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HindIII and 10 (ng of DNA was loaded on a 1% agarose gel. After gel electrophoresis 

the DNA was transferred to Hybond-N and probed with a radiolabelled CP fragment. 

Immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) 

For immunoblot analysis three different methods of sample preparation were tested. In 

the first method leaf discs of one centimeter diameter were ground in 200 ul 3x 

Laemmli buffer (Laemmli, 1970). The second method was performed essentially as 

described (Van Etten et ai, 1979; Kawchuk et ai, 1991). Leaf material was ground in a 

mixture of 20% buffer (80 niM Tris-HCl pH 6.8, 1 mM dithiothreitol, 10 mM EDTA, 

2% SDS, 50 ug/ml phenylmethylsulfonyl fluoride (PMSF)) and 80% phenol (containing 

0.1 M ammonium acetate and 0.1 M dithiothreitol). The phenol and aqueous layers 

were separated by centrifugation. The phenol layer was extracted three successive times 

with equal volumes of buffer (80 mM Tris-HCl pH 6.8, 1 mM dithiothreitol, 10 mM 

EDTA, 0.1 M ammonium acetate). The protein was precipitated from the phenol phase 

by adding five volumes of methanol, containing 0.1 M ammonium acetate, and stored at 

-20 °C for 2 h. The protein was collected by centrifugation, washed three times with 

methanol and one time with acetone. The pellet was dried and resuspended in Laemmli 

buffer. 

The third method has been developed by Dr M.A. Mayo of the Scottish Crop 

Research Institute. Leaf material was powdered in liquid nitrogen, suspended in buffer 

consisting of 75 mM Tris-HCl pH 6.8, 9 M urea, 4.5% SDS and 7.5% ß-

mercaptoethanol and incubated for 30 min at 65 °C. Proteins were precipitated from the 

suspension by adding nine volumes of 10% TCA, dissolved in acetone, incubation 

overnight at -20 °C, followed by centrifugation. The pellet was washed three times with 

acetone (of -20 °C), two times with ether and subsequently resuspended in Laemmli 

buffer. 

Protein concentrations were determined using BCA protein assay reagent (Pierce 

Chemical Co.). Different amounts, ranging from 10 to 200 ug, of soluble leaf proteins 

were boiled for 5 minutes, loaded onto a 12.5% Polyacrylamide SDS gel and run at 200 

mA (Bio-Rad Mini-PROTEAN II electrophoresis system). The gels were blotted onto 

nitrocellulose using a semi-dry or buffered transfer system. The blots were preincubated 

with a blocking reagent (Boehringer Mannheim) and incubated with anti-PLRV IgG. 
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The antiserum used, was purchased from Boehringer Mannheim and raised against 

intact, non-denatured virions. 

ELISA was performed as described, including amplification of the enzyme reaction 

(Van den Heuvel & Peters, 1989). Leaf material was ground in extraction buffer (0.2% 

ovalbumin, 2% polyvinylpyrrolidone, 0.05% Tween 20 in PBS). The samples were 

simultaneously incubated with the conjugate for 16 h at 4°C. For amplification of the 

enzyme reaction 100 p.1 of 0.2 mM NADP in 0.05 M diethanolamine (pH 9.5) was 

added to each well, followed by an incubation at 20 °C for 30 min. Alkaline 

phosphatase activity was blocked by adding 15 ul of 0.5 M 4-nitrophenyl disodium 

ortho-phosphate in 0.025 M phosphate buffer pH 7.4 to each well. Subsequently, 150 ul 

of amplification reaction mixture was added per well. This reaction mixture consisted of 

700 units of alcohol dehydrogenase, 100 units of lipoamide dehydrogenase (type VI), 

3% ethanol and 1 mM p-iodonitrotetrazolium violet in 15 ml of 0.025 M phosphate 

buffer pH 7.0. Colour development was allowed to proceed at room temperature and 

absorbency values were read at 492 nm. 

Transmission of PLRV to transgenic plants 

Aphids, Myzus persicae (Sulzer) Wmpl, were maintained on oilseed rape, Brassica 

napus L. susp. oleifera in a greenhouse under controlled conditions (Reinink et ai, 

1989). Mature apterae, confined to leaf cages, were transferred daily to leaves of oilseed 

rape plants. The aphids acquired the virus by feeding for 4 days on virus-infected young 

Physalis floridana Rydb. plants. Inoculation of the transgenic potato plants was carried 

out by confining 10 viruliferous nymphs per plant for a 9 day access period. Since the 

virus titer is not uniform within the infected plant, virus infection was monitored for 

each individual plant by taking samples of the lower, middle and top leaves at each 

time-point. For each time-point, 3 leaf discs of each plant were pooled, ground in 

extraction buffer, and screened for the presence of virus using the 'cocktail' ELISA 

procedure without enzyme amplification. 

Statistical analysis 

Statistical analysis of the A405 ELISA values was done employing the Statistical 
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Application Systems programme of the SAS Institute Inc. The general linear models 

procedure was used to calculate the standard error of the mean (MSE). Statistical 

significance was determined with the procedure of the least significant difference 

(LSD). LSD=t0025[r][y(2/n)].MSE 

RESULTS 

Modification of the PLRV coat protein gene and construction of a plant 

transformation vector 

Potato plants (cultivar Désirée) have been transformed with the coat protein gene of 

PLRV in which mutations were introduced, affecting the translational initiation site. 

Using a synthetic oligonucleotide, the translational initiation site of the coat protein 

gene was altered from sub-optimal to a theoretically more optimal context, and the 

putative start codon of the open reading frame, underlying the coat protein gene 

(ORF5), was deleted. Since it was not clear which of the two AUG codons present at 

the 5' proximal end of the ORF5 acts as the translational start codon, both were deleted 

by replacement of the thymidines (located on the viral genome at nucleotide positions 

3614 and 3620 (van der Wilk et al, 1989)), with cytidines. As shown in Figure 1, the 

modifications in the sequences flanking the start codon of the gene, resulted in the 

substitution of the serine, being the second amino acid of the coat protein, into a 

glycine. The deletion of the translational initiation site of the ORF5 did not affect the 

amino acid sequence of the coat protein. The modified gene was ligated in the plasmid 

w i l d - t y p e 3579CAATTGTTAATGAGTACGGTCGTGGTTAAAGGAAATGTCAATGGCG3624 

s e q u e n c e M S T V V V K A N V N G G 
M S M A 

mod i f i e d CTATAAACAATGGGTACGGTCGTGGTTAAAGGAAACGTCAACGGCG 
s e q u e n c e M G T V V V K A N V N G G 

T S T A 

F igure 1: Mutations introduced in the PLRV CP gene. Mutated nucleotides and amino acids 
residues are underlined. Nucleotide positions are indicated according to Van der Wilk et al. 

(1989). 
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pM0G181 between the cauliflower mosaic virus (CaMV) 35S promoter, with a double 

enhancer sequence, and the transcription termination signal of the nopaline synthase 

(nos) gene. The created chimaeric gene was placed in the binary vector pMOG23 

(Sijmons et ai, 1990). Potato tuber discs, cultivar Désirée, were transformed using an 

Agrobacterium tumefaciens mediated transformation system (Hoekema et al, 1989). 

Employing this procedure, 63 independent transformants were obtained. 

Expression of the altered PLRV-CP gene construct in transgenic potato plants 

1 2 . 3 4 5 6 7 8 

-0.8 

All transgenic potato plants obtained were analyzed for transcriptional expression. In all 

transgenic plants transcripts of the expected size of 800 nucleotides, encoding the 

PLRV coat protein, could be detected. 

The levels of accumulation of transgenic 

transcripts for three plants lines are 

shown in Figure 2. Generally, the levels 

of expression of the altered PLRV coat 

protein gene were approximately equal to 

those of the transgenic wild-type coat 

protein gene. 

The copy number(s) of the integrated 

coat protein gene in the transgenic plant 

lines CPT13, CPT14, CPT20, as 

determined by Southern analysis, was 

between one and three (Fig. 3). A similar 

copy number has been determined for 

transgenic potato plants containing the 

wild-type PLRV coat protein gene 

(Chapter 3, this thesis). 

All the transgenic potato plants were 

analyzed on Western blot for 

accumulation of PLRV coat protein. For 

sample preparation transgenic leaf 

Figure 2: Detection of PLRV CP transcripts in 
transgenic potato plants. Twenty ug of total 
plant RNA purified from leaf material was 
loaded onto a 1% agarose gel, containing 
formaldehyde. After transfer of the RNA, the 
blot was probed with a cDNA fragment 
comprising the PLRV coat protein sequences. 
Lane 1: RNA from control Désirée plants; lane 
2-7: RNA from transgenic plant lines, CPS19, 
CPS31, CPT13, CPT14, CPT20, CPA12, CP^ó, 
respectively. 
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1 2 3 4 5 6 

material was ground in Laemmli buffer 

(Laemmli, 1970). None of the analyzed plant 

lines contained detectable levels of coat protein. 

The applied method of sample preparation is 

commonly used in immunoblot analysis 

procedures for the detection of viral coat 

proteins in transgenic plants. However, two 

other methods of sample preparation have been 

developed to enable the detection of PLRV coat 

protein in transgenic potato plants (Kawchuk et 

al., 1991; Mayo, personal communication). 

Both methods are based on the purification of 

total protein from the transgenic leaf material. In 

the first method phenol-soluble proteins are 

extracted from the leaf material and precipitated 

with methanol (Van Etten et al, 1979). The 

second method involves the incubation of 

powdered leaf material in a buffer containing 

urea, SDS and ß-mercaptoethanol at 60 °C, 

followed by precipitation of the proteins with 

the use of trichloric acid (Mayo, unpublished). 

On the basis of highest levels of expression of 

PLRV coat protein transcripts five transgenic plant lines were selected and tested on 

Western blot for the presence of coat protein, using all three different methods of 

sample preparation. Regardless of the method used, in none of the plant lines analyzed, 

coat protein could be detected. Twenty of the transgenic plant lines were analyzed in a 

'cocktail' ELISA procedure, including amplification of the enzyme reaction. This 

procedure has shown to be extremely sensitive for the detection of PLRV in infected 

plants and viruliferous aphids, allowing the detection of 60 ng of virus (Van den Heuvel 

& Peters, 1989). However, despite this high sensitivity in none of the ELISA analyzed 

plant lines, coat protein could be detected. 

It is therefore concluded that accumulation of PLRV coat protein in the transgenic 

potato plants did not occur or only at extremely low amounts. Hence, the introduced 

Figure 3: Southern blot analysis of PLRV 
CP transgenic potato plants. Ten ug of 
DNA, purified from transgenic leaf 
material, and digested with EcoRI and 
Hindu! was loaded onto a 0.8% agarose 
gel. After transfer of the DNA, the 
membrane was probed with a cDNA 
fragment comprising the PLRV coat 
protein sequence. Lane 1: DNA derived 
from control Désirée plants; lane 2-6: 
DNA from transgenic plant lines, CPS19, 
CPT13, CPT14, CPT20 and CPA26, 
respectively. 
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Figure 4: In vitro translation 
of the PLRV-CP constructs 
used in potato transformation 
experiments. 
Lane 1: translation products 
of the modified coat protein 
transcripts; lane 2 xontrol 
translation products 
employing an empty vector 
construct; lane 3: translation 
products of 'wild-type' coat 
protein transcripts. The size in 
kDa (K) of the translation 
products is indicated 

1 2 3 

2 3 k -
17k_ 

modifications in the PLRV coat 

protein gene did not positively 

influence its accumulation in 

transgenic potato plants. 

Comparison of the products of 

in vitro translation experiments 

with the modified and non-

modified coat protein gene 

revealed that expression of the 

23 kDa coat protein was 

markedly higher in case of 

employing the modified 

construct (Fig. 4). This indicates that the observed low accumulation of transgenic coat 

protein in plants (Chapter 5) is possibly due to proteolytic breakdown rather than faulty 

translation of the transgenic transcripts. 

Inoculation of transgenic potato plants with PLRV 

Three independent obtained transgenic potato lines (CPT13, CPT14, CPT20), containing 

the modified PLRV coat protein gene and expressing the highest levels of coat protein 

mRNA, were selected for further experiments. All three plant lines were phenotypically 

indistinguishable from non-transformed control plants (cultivar Désirée) and were able 

to produce viable tubers. The selected transgenic plants were analyzed for their possibly 

altered susceptibility to infection with PLRV. In the experiments non-transformed, 

regenerated potato plants (cultivar Désirée) and two transgenic plant lines, containing 

the unaltered PLRV coat protein gene in the sense (CPS19) and antisense orientation 

(CPA26), respectively (Van der Wilk et al., 1991) were used as controls. All plants were 

propagated in tissue culture and infected two weeks after their transfer to soil. Ten 

plants from each line were inoculated by viruliferous aphids. For inoculation, ten aphids 

(M. persicae) were used per plant. Accumulation of virus in the infected plants was 

monitored by ELISA. Leaf discs were sampled from the plants at different time points 

after inoculation. The results obtained in two of these experiments are shown in Table 1. 

For statistical analysis the general linear models procedure was used to calculate the 
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Standard error of the mean. Significant differences between the A405 values were 

determined by calculating the least significant difference (LSD) with a 95% probability. 

All analyzed transgenic plant lines showed to be susceptible to PLRV infection. 

Statistical analysis of the A405 values indicated that the infected transgenic plant lines 

contained significant lower amounts of viral antigen during the experiments than the 

control plants. The actual differences in virus titers between the transgenic and control 

plants ranged from 4 to 10 times, as calculated from the ELISA values. No statistical 

significant differences were observed between the mutual A^j values of the different 

transgenic plant lines. 

These results indicate a lower rate of multiplication of the virus in the transgenic 

plants as compared to the control plants. Furthermore, the modification of the second 

amino acid of the expressed coat protein did not influence the reduction of viral 

multiplication. From the results obtained with the transgenic plant lines, containing the 

modified PLRV coat protein gene, it can be concluded that the putative product of the 

ORF5, underlying the coat protein gene, did not play a role in the observed reduction of 

viral multiplication. 

Table 1: Development of viral multiplication in transgenic and control plants after inoculation with 
PLRV, as determined by ELISA. The ELISA plate reader was not blanked. Values within a column not 
followed by the same letter are significantly different. Dreg = non-transformed, regenerated potato 
plants (Désirée). 

Dreg 

CPS19 

CPT13 

CPT14 

CPT20 

CPA26 

healthy 

A405 (ELISA values) (x 

experiment 1 

0.801+0.181 (a) 

0.273+0.132 (b) 

0.431 ±0.178(b) 

0.331±0.145 (b) 

0.551+0.131 (b) 

0.296±0.091 (b) 

0.040±0.010 

±SE) 

experiment 2 

1.084+0.142 (a) 

0.556±0.399 (b) 

0.822±0.527 (a) 

0.620±0.142(b) 

0.743±0.188 (b) 

0.596±0.200 (b) 

0.065±0.030 
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DISCUSSION 

Translational expression of the PLRV coat protein gene in transgenic plants has been 

shown to be extremely low or possibly absent (Van der Wilk et al, 1991; Kawchuk et 

al, 1991). In an attempt to enhance the synthesis of the coat protein in transgenic 

plants, the viral gene was modified. The sequences flanking the start codon of the coat 

protein gene, which can be considered as sub-optimal, were altered and the start codon 

of the ORF5 deleted. The mutations induced in the translational initiation site of the 

coat protein gene could theoretically lead to a higher level of protein expression 

(Kozak, 1989; Cavener & Stuart, 1991). In vitro translation experiments employing 

both the modified and wild-type coat protein gene showed that synthesis of the 23 kDa 

protein was indeed enhanced by the mutations introduced. However, attempts to detect 

accumulated coat protein in transgenic potato plants, containing the modified gene, 

failed. Although the presence of coat protein below detection levels can not be ruled 

out, it seems likely that the mutations, introduced in the translational initiation site of 

the coat protein gene, did not lead to a considerable increase in protein accumulation as 

compared to the wild-type coat protein accumulation. Possibly, the extremely low 

amounts or even complete absence of coat protein is caused by rapid degradation of the 

protein, thereby masking any difference in rate of synthesis. 

Both the modified and the wild-type coat protein gene, induced in transgenic plant 

lines reduction of PLRV multiplication, but no immunity. Statistical analysis revealed 

that no discrimination could be made between the viral titers in infected transgenic 

plants expressing the wild-type and those of transgenic plants expressing the modified 

coat protein gene. For the coat protein of alfalfa mosaic virus it has been reported that 

the second amino acid was critical for coat protein-mediated protection (Turner et al, 

1991). However, the substitution of the serine with an glycine as the second amino acid 

of the PLRV coat protein did not lead to an altered sensitivity for PLRV infection. This 

observation does not contradict the hypothesis that the observed inhibition of viral 

multiplication in transgenic potato plants expressing the PLRV coat protein gene, is 

caused by RNA sequences rather than coat protein (Van der Wilk et al, 1991). 

In the modified PLRV coat protein expression vector, the start codon of ORF5 was 

deleted, to prevent interference of the expression of the coat protein by the expression 

of the ORF5 17 kDa product. This deletion clearly demonstrates that the earlier reported 
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inhibition of viral multiplication in transgenic plants, expressing the wild-type PLRV 

coat protein gene, was not caused by translational expression of this viral gene. 
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CHAPTER 5 

SYNTHESIS OF PLRV PI IN 

ESCHERICHIA COLI AND INSECT 

CELLS 

ABSTRACT 

To study the role of the hypothetical translation product (PI) of the ORF1 of PLRV in 

the viral infection cycle, several antisera directed against this protein were produced. 

Neither antisera raised against synthetic peptides nor antisera raised against an in E. coli 

produced Pl-GST fusion protein were able to detect the presence of PI in PLRV-

infected plant material, although these antisera allowed detection of 1 ng of protein on 

Western blot. The data presented suggest that PI accumulates to extreme low levels in 

infected plant cells and is possibly rapidly degraded in the cell. As an alternative 

approach to study the function of PI, this protein was produced in Sf21 insect cells 

using the baculovirus expression system. Despite of using the strong polyhedrin 

promotor, PI accumulated only to low levels in the insect cells, underlining the instable 

character of this protein and making purification infeasible. In immunolabelling 

experiments the synthesized protein was shown to accumulate in the cytoplasm of the 

Sf21 cells. 
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INTRODUCTION 

The genome of potato leafroll virus (PLRV), a species of the genus Luteovirus, consists 

of a single-stranded RNA molecule of 5882 nucleotides long containing six open 

reading frames (ORFs) (Van der Wilk et al, 1989; Mayo et al, 1989; Keese et al, 

1990). An intergenic region located in the middle of the RNA separates two clusters of 

three genes each. The genes at the 3'-end (ORF4-6) are highly conserved among all 

luteoviruses and are translated from a subgenomic messenger RNA. The largest ORF 

(ORF6) is contiguous with ORF4, only separated by an amber stop codon, and is 

expressed via translational readthrough from ORF4. ORF4 encodes for the major coat 

protein subunit. ORF6 is to believed to play a role in the transmission of the virus 

(Brault et al, 1995). The function of ORF5, underlying ORF4, has not been clarified 

yet, although some evidence has been presented that it encodes a movement protein 

(Tacke et al, 1991). The ORFs located at the 5'-terminus are less conserved among 

luteoviruses. The equivalent of the first ORF of PLRV is even absent in the MAV and 

PAV strains of barley yellow dwarf virus (BYDV) (Miller et al, 1988; Ueng et al, 

1992). ORF3 overlaps with ORF2 and is expressed via a -1 translational frameshift 

(Prüfer et al, 1992). The translational fusion protein contains motifs characteristic for 

proteases (Gorbalenya et al, 1989; Bazan & Fletterick, 1989) and the viral replicase 

(Van der Wilk et al, 1989; Mayo et al, 1989; Habili & Symons, 1989). 

The genomic organization of PLRV is very similar to the genomic organization of 

other luteoviruses, especially beet western yellows virus (BWYV). Comparison of the 

products of the analogous ORFs of both luteoviruses shows a high amino acid sequence 

homology for all the ORFs except the ORF1 product. The function of the ORF1 

encoded protein remains unclear. Since the most notable difference between PLRV and 

BWYV is in their host range, it has been suggested that the function of the ORF1 

products is associated with host range specificity (Veidt et al, 1992). The PLRV ORF1 

encodes a 28 kDa protein (PI) which contains a putative membrane binding site (Mayo 

et al, 1989) and shows low sequence homology with several membrane-associated 

proteins (Chapter 2, this thesis). 

To gain insight in the function of the PLRV PI the protein was expressed in E. coli 

and Spodoptera frugiperda cells as to study its intracellular location and to produce 

specific antisera to allow in situ studies on PLRV-infected potato leaf tissues. Both 
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these heterologously expressed PI sequences as well as synthetic peptides were used to 

raise antisera against PI. The obtained antisera were used in experiments to detect PI in 

infected plants and ORF 1-recombinant Autographa californica Nuclear Polyhedrosis 

Virus (AcNPV)-infected S. frugiperda cells. 

MATERIALS AND METHODS 

Production of PI in E. coli 

A PLRV ORF1 construct was synthesized from an existing cDNA clone (Van der Wilk 

et al., 1989) using specific primers and polymerase chain reaction (PCR). The construct 

was supplied with unique BamHI restriction sites directly in front of the start and after 

the stop codon. The synthesized PCR fragment was cloned with the help of the TA 

cloning system (Invitrogen) according to the instructions of the manufacturer. Upon in 

vitro translation to verify whether the cloned sequence encoded a protein of the 

expected size, a PI-related protein was disclosed on the fluorogram. In vitro translation 

was performed using the TnT system (Promega) according to the manufacturers 

instructions, synthesized proteins were separated on SDS-polyacrylamide gel (SDS-

PAGE). After sequencing to exclude undesired mutations, the ORF1 fragment was 

excised from the pCRlOOO vector using BamHI and the fragments were separated on a 

1% agarose gel. After isolation of the ORF1 fragment from the gel it was ligated in 

pGEX-2T and the obtained construct (pGEXPl) was used to transform JM101 cells. 

Cells harbouring the plasmid were grown to mid-log phase (OD600 = 0.6-1.0) at 37 °C 

after which expression was induced by adding isopropyl-ß-D-thiogalactoside (IPTG) to 

a final concentration of 1.0 mM to the culture. The cells were allowed to grow further 

for 5 h and consequently harvested by centrifugation. To monitor expression of PI, the 

cells were resuspended in Laemmli buffer (Laemmli, 1970) and boiled for ten minutes. 

The samples were loaded onto a 12.5% SDS-polyacrylamide gel and subjected to 

electrophoresis. After electrophoresis the proteins were either visualized with 

Coomassie Brilliant Blue or by silver staining. 

Non-denatured PI was purified by disruption of the bacterial cells using sonification 

followed by high speed centrifugation. The pellet containing PI was dissolved in 5 M 
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urea. After incubation for 1 h the suspension was centrifugea at 14000 rpm for 30 min. 

The pellet was dissolved in 9 M urea/5% ß-mercaptoethanol at 65 °C. After 

centrifugation, the supernatant was dialyzed against 5 M urea at room temperature. PI 

was collected from the suspension by centrifugation at 10000 rpm for 30 min. The 

pellet was sonified to dissipate the aggregate. Two rabbits were four times injected 

subcutaneously at three week intervals with 100 ug purified protein samples emulsified 

in Freund's incomplete adjuvant (Difco Laboratories). One week after each injection the 

rabbits were bled. Gamma-globulin fractions were isolated from the blood by 

ammonium sulphate precipitation (Clark & Adams, 1977). 

Denatured PI was isolated from SDS-polyacrylamide gel using a Prep-Cell 

electrophoresis apparatus (BioRad). Purified denatured protein (5 ug) was emulsified in 

Freund's incomplete adjuvant (Difco Laboratories) and injected four times into two 

mice at three week intervals. Gamma-globulin fractions were isolated according to 

Clark and Adams (1977). 

Production of PI in insect cells using the baculovirus expression system 

A transfer vector (pFWAc03) containing the PLRV ORF1 was constructed by ligation 

of the ORF1 DNA into BamHI digested plasmid vector pJRl. Insect cells (5. 

frugiperda, Sf21) were cotransfected (Smith et al, 1983) with pFWACOl and Nhel-

linearized AcPAK6 baculoviral DNA. After three days at 27 °C, virus was collected 

from the medium and titrated in dilutions to render single plaques (Brown & Faulkner, 

1977). Recombinant viruses (AcMU19) were further plaque purified. 

S. frugiperda 21 or Trichoplusia ni (High Five) cells were either inoculated with 

recombinant (AcMU19) or wild-type AcNPV and incubated at 27 °C. The infected cells 

were harvested 24 to 48 h post infection and monitored for PI production by SDS-

PAGE and Western blotting. The cells were collected by centrifugation, resuspended in 

Laemmli buffer (Laemmli, 1970) and boiled for ten minutes. After electrophoresis the 

separated proteins were transferred to nitrocellulose using a buffered transfer system. 

The blots were pre-incubated with 5% skimmed milk powder in phosphate buffered 

saline (PBS)/0.1% Tween. Subsequently, the proteins were probed for PI expression by 

incubation with anti-Pi IgG's for 16 h at 4°C. After washing with 0.05% Tween 20 in 

PBS the blot was incubated with alkaline phosphatase conjugated anti-mouse IgG 
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(Sigma) for 3 h at room temperature. Bound conjugate was visualized using nitro blue 

tetrazolium (NBT) and bromo-chloro-indolyl-phosphate (BCIP) as substrate. 

Raising of antisera against PI using synthetic peptides 

The amino acid sequence of PI was analyzed with the help of the GCG computer 

programme Peptidestructure. Two domains with a high antigenic index were identified 

at amino acid positions 64-83 and 205-224, respectively. Two synthetic peptides 

identical to the identified domains were synthesized, with amino acid sequences 

CKRGRISTSGLQLPRHLHYE (SYN1) and ARLYNQLDLQGRAKSFRALT (SYN2), 

respectively. The synthetic peptides were covalently conjugated to the carrier protein 

keyhole limpet haemocyanin (KLH; MW 4.5 x 104 to 1.3 x 107) using l-ethyl-3-3-

dimethylaminopropyl carbodiimide hydrochloride (EDC) as a coupling reagent. 

Coupling reactions and subsequent purification of the conjugate was carried out using a 

commercially available kit (Imject Immunogen EDC Conjugation Kit) and according to 

the manufacturers instructions (Pierce). Antisera were raised by a two times, at a three 

week interval, repeated subcutaneous injection of two rabbits with approximately 100 

|ig of conjugate emulsified with equal volumes of Freund's incomplete adjuvant, 

followed three weeks later with a booster injection with approximately 200 ug 

conjugated protein. One week after the third injection blood was taken from the rabbits 

and tested for immunogenic response in enzyme-linked immunosorbent assay (ELISA). 

Antibodies were isolated from the blood according to Clark and Adams (1977). 

Immunofluorescence microscopy 

Sf21 insect cells were infected with AcMU19 or AcPAK6 baculovirus. After washing 

the cells to remove inoculum, the cell suspension (105 cells in 100 ul) was placed on a 

sterile coverslip for 1 h. Subsequently, 1 ml of medium was added and the cells were 

allowed to grow for 24 to 72 h. To fix the cells the coverslips were placed in acetone for 

15 min at -70 "C. After fixing of the cells, the coverslips were incubated in PBS for 15 

min followed by an incubation in PBS containing 1% BSA. Immunodetection was 

tested by incubation of the coverslips in (1:100-1000) diluted antiserum. The coverslips 

were washed three times in PBS to remove unbound antibodies, followed by incubation 
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with 1:1000 diluted FITC conjugated anti-rabbit or anti-mouse IgG's (Sigma) for 1 h. 

The coverslips were washed three times in PBS, covered with glycerine/PBS/cityfluor 

and placed on microscope slides. The slides were examined under UV light using a light 

microscope. 

Immunogold detection 

Insect cells infected with AcPAK6 or AcMU19 baculovirus were harvested by 

centrifugation, washed twice with PBS to remove medium and fixed in 2% 

paraformaldehyde/3% glutaraldehyde in PBS for 3 h. Subsequently, the cells were 

washed and resuspended in 2% gelatine. The gelatine encapsidated cells were fixed 

with 2% paraformaldehyde/3% glutaraldehyde in PBS for 16 h at 4°C. Afterwards, the 

encapsidated cells were dehydrated with ethanol and embedded in LRGold (London 

Resin Co) (Van Lent et al, 1990). For immunolabelling, unstained ultra-thin sections 

were pre-incubated with 1% BSA/PBS for 1 h followed by incubation with anti-Pi 

antibodies for 3 h. After rinsing with BSA/PBS three times, the grids were incubated 

with colloidal gold-antibody complexes (Jansens Chimica) for 1 h. 

RESULTS 

Expression of PI in E. coli and production of antisera 

Several bacterial expression vectors were tested to express PI in E. coli cells. With the 

exception of the glutathione S-transferase (GST) gene fusion vector pGEX-2T, none of 

the tested vectors expressed detectable amounts of PI, indicating a possible cytotoxic 

character of PI. The recombinant PI-GST fusion vector was synthesized by extending 

the PLRV ORF1 with unique BamHI restriction sites and ligation in the BamHI site of 

pGEX-2T, located directly after the GST gene. Upon induction of expression with 

IPTG, the fusion protein was readily detectable in bacterial cell proteins separated on 

SDS-polyacrylamide gel (Fig. 1). However, the estimated molecular weight of the 

fusion protein was approximately 45 kDa in stead of the expected 54 kDa. Sequence 
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analysis of the Pl-GST expression vector 

revealed no mutations in both reading 

frames. Thus, part of the fusion protein was 

cleaved off and probably degraded, since 

no extra proteins were observed on gel as 

compared to the lanes loaded with proteins 

from cells containing the 'empty' GST 

vector (Fig. 1). 

Upon lysis of the bacterial cells, the 

fusion protein showed to be nonsoluble, 

making it impossible to purify the fusion 

protein from bacterial lysate by affinity 

chromatography employing glutathione-

coupled Sepharose. Solubilization of the 

protein proved to be only possible under 

highly chaotropic conditions e.g. in 9 M 

urea at 65 °C. However, after solubilization 

under these conditions the protein 

precipitated again if temperature and 

molarity urea were lowered. Exploiting 

these conditions it was possible to refine 

the fusion protein from the bacterial 

proteins to a 90% purity. The purified 

protein was used to immunize rabbits, but the antisera obtained proved to be ineffective 

in both ELISA and Western blot procedures, probably because the antigenicity of the 

protein was strongly affected due to the harsh conditions used during purification. 

Therefore, the fusion protein was purified under denaturing conditions using preparative 

SDS-polyacrylamide electrophoresis. Two mice (Balb-c) were injected with the 

denatured fusion protein to raise specific antisera. Strikingly, the serum of one mouse 

reacted strongly on Western blot with the fusion protein and only weakly to GST while 

the serum obtained from the second mouse reacted exactly the opposite, although both 

mice were immunized with the same batch of protein. Using the antiserum derived from 

the first mouse it was possible to detect 1 ng of purified fusion protein on Western blot. 
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Figure 1: Expression 
of PLRV PI in E. coli 
cells, employing the 
GST fusion vector 
pGEX-2T. 
Proteins from total 
bacterial cell extracts 
were separated on a 
12.5% Polyacrylamide 
gel and subsequently 
stained with Coomassis 
Brilliant Blue. Lane 1; 
molecular weight 
markers, 200, 97.4, 68, 
43, 29, 18.4 and 14.3 
kDa, respectively; 
lanes 2 & 3: extracts 
from cells harbouring 
pGEXPl and ex
pressing the GST-PI 
fusion protein; lane 4: 
extracts from control 
cells harbouring the 
plasmid pGEX-2T. 
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However, the antiserum was unable to recognize the non-denatured protein in ELISA 

procedures, indicating that the antibodies in the serum were exclusively directed at 

linear epitopes which are not exposed in the native protein. 

Production of antisera raised against synthetic peptides 

To obtain antisera able to detect the non-denatured PI, synthetic proteins mimicking 

putative epitopes present on the surface of the protein, were used to raise antisera. To 

this end, the amino acid sequence of PI was analyzed for surface probability and 

antigenic index. Predictions were made according the Emini-method (surface 

probability) and the Jameson-Wolf method (antigenic index) employing the computer 

programme Peptidestructure (Jameson & Wolf, 1988; Devereux et ai, 1984). Two areas 

with a high antigenic index and surface probability were identified located 

approximately in the middle and at the C-terminal part of the protein. Two synthetic 

peptides of twenty amino acids identical to these areas were synthesized (SYN1 & 

SYN2). To obtain a high immunoresponse the synthetic peptides were covalently 

coupled to a carrier protein (KLH), making them more immunogenic. Two rabbits were 

immunized with the different conjugated peptides. Both obtained antisera displayed a 

similar, slightly lower affinity for PI on Western blot as compared to the antiserum 

raised against the E. coli fusion protein (Fig. 2). 

Analysis of PLRV-infected plant tissues for the presence of PI 

PLRV-infected Physalis floridana and Solanum tuberosum plants were analyzed on 

Western blot and in ELISA for the presence of PI. Leaves, roots and stems from 

infected plants were examined separately for the presence of PI, since it can not be 

excluded that PI accumulation is tissue specific. For Western blot analysis plant tissues 

were ground in Laemmli buffer (Laemmli, 1970), boiled and subsequently separated in 

SDS-PAGE. After transfer to nitrocellulose the proteins were probed with all the 

obtained antisera for the presence of PI. However, no detectable levels of PI were 

observed. 

In experiments to detect PI in infected plant material employing ELISA, leaf tissues 

were ground in SEB (0.2% ovalbumin, 2% polyvinylpyrrolidone, 0.05% Tween 20 in 
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PBS). For detection, the separate antisera raised against the synthetic peptides as well as 

a mixture of both, were used. In all instances the obtained ELISA readings were 

statistically indifferent from those derived of control samples. 

Possibly, the detection of PI in infected plant tissues was hampered due to low 

accumulation of PI. Since, it is conceivable that PI only accumulates in distinct parts of 

infected tissues or cells, several procedures were tested to obtain cell fractions enriched 

for the presence of PI. Computer analysis of the amino acid sequence suggests that PI 

is membrane-linked, therefore, membrane fractions were isolated from infected plant 

tissues and analyzed for the presence of PI. Two procedures were tested to isolate 

membrane fractions. The first method used has been shown to enable the detection of 

the movement proteins MP of tobacco mosaic virus (TMV) and BL1 of squash leaf curl 

virus (SqLCV) in plasma membrane and crude cell wall fractions of infected and 

transgenic tobacco plants (Deom et al., 1990; Pascal et al, 1993). The second method 

has been shown to facilitate the isolation of crude membrane fractions containing viral 

replicase activity from plum pox virus-infected plants (Martin & Garcia, 1991). 

However, in none of the fractions obtained from PLRV-infected plant tissues, the 

presence of PI could be detected. In addition, a method was tested which among others 

has been used to detect transgenic PLRV coat protein (P4) in potato plants (Van Etten et 

al, 1979; Kawchuk et ai, 1990). But again, accumulation of PI employing this 

procedure, which involves the isolation of phenol-soluble protein fractions, was not 

detectable on Western blot. 

The aforesaid results indicate, that either extreme low levels of PI are present in 

infected plant material or that extraction of PI from plant material is hampered, possibly 

due to presence of PI in insoluble fractions. 

Expression of PI in insect cells 

Since, PI approved to be non-detectable in PLRV-infected plant material, an alternative 

approach was followed to gain insight in the intracellular behaviour of PI. It was 

decided to express this protein in the eukaryotic baculovirus/insect cell system. Insect 

cells (Sf21) were infected with the ORF 1-recombinant baculovirus AcMU19 and 

expression of PI was monitored by SDS-PAGE and Western blotting, using AcPAK6 

baculovirus-infected Sf21 cell extracts as a control. No extra protein band was observed 
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Figure 2: Detection of PI in total cell extracts from AcMU19-infected insect cells by Western blot 
analysis. A. Western blot probed with antibodies raised against synthetic peptides. Lanes 1: 
lysates from AcPAK6-infected insect cells; Lane 2 & 3: lysates from AcMU19-infected cells. The 
western blot membrane was cut in two halves. The left hand lanes were probed with antibodies 
raised against synthetic peptide SYN1, while the right hand lanes were probed with antibodies 
raised against SYN2. 
B: Western blot probed with antibodies raised against GST-PI fusion protein. Lane 1: lysate from 
wild-type AcNPV-infected insect cells; Lane 2 & 3: lysates from AcMU19-infected insect cells. 

in Coomassie Brilliant Blue or silver stained protein patterns of AcMU19-infected cells 

on SDS-PAGE as compared to the control patterns. However, Western blots of extracts 

of AcMU19-infected cells probed with the antisera raised against the E. coli PI-GST 

fusion protein or the synthetic peptides disclosed a Pl-related protein band of 28 kDa 

(Fig. 2). To determine at which time point the accumulation of PI reached its maximum, 

cell extracts were analyzed on Western blot at different time points after infection (p.i.). 

AcMU19-infected cells displayed the highest levels of PI accumulation at the end of 

the infection cycle (72 h p.i.), shortly before lysis, but also breakdown products were 

observed. However, the amount of PI produced was insufficient to allow purification. 

Upon lysis of the infected cells small amounts of PI were detectable in the medium, 

indicating that PI itself is stable and that the observed breakdown in the cells was 

probably caused by proteolytic activity of the cells. To determine whether other insect 

cell lines would allow higher levels of PI expression T. ni ('High Five') and Sf9 cells 

were infected with AcMU19. However, both cell types produced similar levels of PI 

and further experiments were performed using Sf21 cells. To see whether the low 

accumulation of PI was caused by impeded transcription rather than by breakdown of 

the protein or poor translation, mRNA was isolated from infected Sf21 cells and 
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analyzed for expression of ORF1 mRNA on Northern blot. Using radiolabelled ORF1 

DNA as a probe it was disclosed that ORF1 mRNA was abundantly present in 

AcMU 19-infected cells, ruling out the possibility of faulted transcription of the PLRV 

ORF1. 

Localization of PI in Sf21 cells 

To determine the intracellular location of PI and ergo to gain insight in the nature of the 

protein, AcMU19-inoculated Sf21 cells were prepared for immunofluorescence and 

immunogold studies. All available PI antisera were tested in the experiments. The E. 

coli Pl-GST fusion protein raised antiserum displayed no affinity for PI in 

immunolabelling experiments, probably since it was raised against SDS-denatured 

protein. The antisera raised against the synthetic peptides were tested in 

immunolabelling experiments both separate and in a mixture. Using a mixture of both 

antisera, in approximately 10% of the AcMU19-infected Sf21 cells high levels of 

immuno-fluorescence were observed in the cytoplasm of the cells (Fig. 3). In labelling 

experiments using the separate antisera immunofluorescence was markedly reduced. 

Figure 3: Detection of PI in AcMU19-infected insect cells by immunofluorescence. 
A: AcMul9-infected insect cells; B: AcPAK6-infected cells. 
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Immuno gold labelling experiments of ultrathin sections of AcMU19-infected insect 

cells revealed that PI was present at low levels in the cytoplasm. PI seemed not to be 

membrane-associated, but rather to occur randomly dispersed throughout the cytoplasm 

of the insect cells (data not shown). 

DISCUSSION 

In this study several antisera were raised against the putative ORFl-product of PLRV 

with the aim to determine its intracellular localization and consequently to gain insight 

in the role of this non-structural protein in the viral infection cycle. Antisera were raised 

against synthetic peptides as well as against in E. coli expressed PI. Remarkably, 

production of PI in E. coli cells employing non-fusion expression vectors failed while 

expression employing the pGEX-2T GST-fusion vector rendered a product 

approximately 10 kDa smaller in size as expected. Possibly, PI 

is rapidly degraded in the bacterial cell except in case it is 

fused to another protein conveying stability to at least part of 

the protein. 

Although, the antiserum obtained from the immunization 

experiments with the GST-PI fusion protein allowed detection 

of less then 1 ng PI in Western blot procedures, the presence of 

PI could not be detected in PLRV-infected plant material. Also 

the antisera raised against the synthetic peptides were unable to 

detect PI in Western blot or ELISA procedures. 

From these data it was concluded that the detection of PI 

was infeasible in infected plant material and an alternative 

strategy had to be examined. The baculo virus expression 

system has been shown to enable a high production of a wide 

range of different proteins in eukaryotic cells, ergo presenting 

an opportunity to study the intracellular localization of PI in a 

heterologous system. Hence, PI was expressed in insect cells. 

Surprisingly, accumulation of PI in AcMU19-infected insect 

cells was exceptionally low, although ORF1 mRNA was 

abundantly present in the cells. Besides, considerable 

Figure 4: In vitro 
translation products of 
T7 transcripts of the 
PLRV ORF1 constructs 
used. Lane 1: negative 
control; lane 2: 
translation products of 
the ORF1 transcripts. 
The size in kDa (K) of 
the translation products 
are indicated. 
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breakdown of the protein was observed at the peak of accumulation of PI in the cells, 

shortly before lysis of the AcMU19-infected cells while the use of different types of 

host cells (Sf9, High Five) generated similar results. PI released in the medium upon 

lysis of the cells showed to be stable and in vitro translation experiments of the ORF1 

construct used, showed that the sequence was efficiently translated to high levels and 

breakdown of the synthesized product was not observed (Fig. 4). These data suggest 

that PI is readily degraded upon synthesis before it accumulates to substantial amounts 

in the cell. Conceivably, PI is highly susceptible to breakdown by proteases present in 

the cell, but this seems to be contradictory with the fact that PI released from the cells 

appears to be stable and unaffected by proteases present in the medium. Therefore, a 

more likely explanation is that PI conveys a toxic effect to both bacterial and insect 

cells. Consequently, only cells which display a high proteolytic activity resulting in low 

accumulation of PI would manage to persist. Supporting the latter hypothesis are the 

results obtained regarding the expression of PI in E. coli and the observation that 

expression of PI in transgenic potato plants leads to phenotypic alterations resembling 

viral infection, possibly caused by metabolic changes in the plant cells (Chapter 6, this 

thesis). 

The immunofluorescence and immunogold labelling experiments showed that PI 

appeared not to accumulate in distinct regions of the insect cells but to occur randomly 

dispersed throughout the cytoplasm of the insect cells. Based upon amino acid sequence 

homology and predictions made over the amino acid sequences present at the N-

terminal part of the protein it has been suggested that PI is membrane-associated (Mayo 

et al., 1989). Strikingly, the BWYV PI sequence does not suggest membrane-linking. 

The immunolabelling experiments showed that transgenic PLRV PI present in 

AcMU19-infected Sf21 cells was not membrane-associated, however it can not be ruled 

out that the low level of accumulation hampered detection of membrane-linked PI or 

that binding of PI to cellular membranes is a specific process only occurring in plant 

cells. 
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CHAPTER 6 

Expression of the potato leafroll virus ORF1 induces 

viral disease-like symptoms in transgenic potato 

plants 

ABSTRACT 

The open reading frame 1 (ORF1) of potato leafroll virus (PLRV) was transformed into 

potato cv Désirée. From a total of 44 transgenic potato plant lines none contained 

detectable levels of PI protein and only 14 produced detectable levels of ORF1 mRNA. 

The transgenic potato plants accumulating detectable levels of ORF1 transcripts 

displayed an altered phenotype resembling virus-infected plants. Potato plants 

transformed with a modified, untranslatable ORF1 sequence were phenotypically 

indistinguishable from wild-type control plants. These data indicate that PI is involved 

in viral symptom expression. 
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INTRODUCTION 

The genome of potato leafroll virus (PLRV) consists of a single-stranded messenger-

sense RNA molecule containing six open reading frames (ORFs) (Van der Wilk et al, 

1989; Mayo et al, 1989; Keese et al, 1990). The genomic RNA contains a VPg at the 

5'-terminus and is encapsidated in an icosahedral particle. The major coat protein 

subunit is encoded by the open reading frame 4 (ORF4) present in the 3'-half of the 

genomic RNA. The ORF6 which is expressed by translational readthrough of the 

ORF4, is believed to be involved in the transmission of the virus (Brault et al., 1995). 

Presently, little is known about the role of most of the products of the non-structural 

genes of PLRV. The ORF3 represents the putative viral polymerase gene, since its 

product contains the GxxxTxxxN(x25.40)GDD amino acid sequence motif, which is 

conserved in all known RNA-dependent RNA polymerases (Koonin, 1991). The ORF2 

product contains a protease motif (Bazan & Fletterick, 1989; Gorbalenya et al, 1989), 

but the role of this putative protease in the viral infection cycle is still concealed. The 

ORF5 product has been shown to bind single-stranded nucleic acids and therefore has 

been suggested to play a role in the cellular transport of the virus (Tacke et al, 1991 & 

1993). The function of the ORF1 product is still a mystery. ORF1 encodes a 28 kDa 

protein which is highly hydrophobic and shows a very weak homology with several 

membrane-linked proteins. Analysis of its amino acid sequence has revealed a putative 

membrane binding site between residues 21 and 32 (Mayo et al, 1989). 

The genomic organization of PLRV is very similar to those of other luteoviruses 

especially beet western yellows virus (BWYV) (Veidt et al., 1988). Comparisons made 

between the PLRV and BWYV-encoded proteins revealed that all the viral proteins 

shared a high homology in amino acid sequence except for the ORF Is. Although, the 

ORF Is of both viruses are similar in size and position on the genome, their respective 

products (PI) share no homology whatsoever. Furthermore, there are no indications that 

the BWYV ORF1 product is membrane-linked. In ecological view the main difference 

between both viruses lies in their host range, PLRV being only capable of infecting a 

limited number of plant species (mostly Solanaceae) and BWYV able to infect many 

different plant species. Since the ORF1 products seem to compose the main genetical 

difference between the viruses, it has been suggested that ORF1 plays a role in host 

recognition (Veidt et al, 1992). 
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The transformation of plants with viral non-structural genes has been shown to be 

most beneficial both for gaining more insight in the function of these genes and for 

obtaining resistance. For example, transgenic plants expressing functional or 

dysfunctional viral polymerases (Golemboski et al, 1990; Longstaff et al, 1993; 

Brederode et al, 1995) have been shown to convey resistance, while the expression of 

the two movement proteins of squash leaf curl virus (SqLCV) in transgenic plants 

induced viral disease-like symptoms and provided insight in the cellular localization of 

the proteins (Pascal et al, 1993). To investigate the function of PLRV PI, potato plants 

were constructed containing the ORF1. Plants expressing the ORF1 displayed a viral 

diseased-like phenotype, indicating that PI interferes with the metabolism of the plant. 

MATERIALS AND METHODS 

Production of transgenic plants 

The sequence encoding the PLRV ORF1 was excised from an existing cDNA clone 

(Van der Wilk et al, 1989) employing the polymerase chain reaction (PCR). Using 

different oligonucleotides, two ORF1 constructs were synthesized. The first construct 

(pORFl) was analogous to the wild type PLRV ORF1 sequence, while the second one 

(pORFM) contained a stop codon 6 nucleotides downstream of the ORF1 start codon, 

ergo inhibiting translation of the sequence (Fig. 1). To facilitate further sub-cloning the 

ORF1 sequences were supplied with BamHI restriction sites located immediately in 

front and after the start and stop codons. The obtained fragments were translated in vitro 

and sequenced to exclude the occurrence of possible mutations. Subsequently, the 

fragments were placed between the cauliflower mosaic virus (CaMV) 35S-promoter and 

the nopaline synthase terminator (nos) by ligation in BamHI digested pMOG181 

(Chapter 3, this thesis). The resulting plasmids (pMOGORFl & pMOGORFM) were 

digested with EcoRI and Hindlll and the fragments containing the ORF1 cassette 

inserted in the binary vector pMOG402, giving rise to the plasmids pBWTO and 

pBMO. Transformation of potato plants was done as previously described (Hoekema et 

al, 1989) Potato tuber discs, cultivar Désirée) were cocultivated with Agrobacterium 

tumefaciens LBA4404 harbouring the plasmid pBWTO or pBMO. For cocultivation 
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WTO ATGATTGTATTGACCC 
M I V L T Q 

MO ATGATTGTATGAACCC 
M I V * 

Figure 1: Induced mutations in the PLRV ORF1 
sequence. WTO: wild-type sequence; MO: 
modified sequence. Modifications are 
underlined. 

1000 tuber discs in the initial 

experiments were used and 500 discs in 

the other experiments. Selection for 

transformation was done on medium 

containing kanamycin (100 p.g/ml). 

Kanamycin resistant shoots were cut off 

and placed onto rooting medium, 

propagated axenically and transferred to 

soil. 

Analysis of transgenic potato plants 

The transgenic plants were analyzed on Northern blot for expression of ORF1 encoding 

mRNA. Total RNA was isolated from plant material as described (Verwoerd et al., 

1989). Aliquots of approximately 20 ug of total RNA were loaded onto a denaturing 1% 

agarose gel containing 2.2 M formaldehyde. After electrophoresis the RNA was 

transferred to a blotting membrane (Hybond-N) and probed with a radiolabelled ORF1 

fragment. 

For Southern analysis genomic DNA was isolated from the plant material as 

previously described (Dellaporte et al., 1983). The genomic DNA was digested with 

restriction enzymes, separated on agarose gel and subsequently transferred to a blotting 

membrane (Hybond-N). The blots were hybridized with a radiolabelled ORF1 probe. 

All the transgenic plants containing the wild-type ORF1 sequence were analyzed for 

transgenic protein expression using enzyme linked immunosorbent assay (ELISA) and 

Western blot procedures. To analyze the presence of accumulated PI, antisera were 

used raised against two synthetic peptides (ELISA) and raised against a PI-glutathione

s-transferase (GST) fusion protein produced in Escherichia coli (Western blot) (Chapter 

5, this thesis). ELISA was performed as described (Van den Heuvel & Peters, 1989), 

transgenic plant tissues were ground in extraction buffer (0.2% ovalbumin, 2% 

polyvinylpyrrolidone, 0.05% Tween-20 in phosphate buffered saline (PBS)). Two 

hundred microliter of the suspension was used per well. ELISA plates were coated with 

(0.5 ug/ml) IgG's raised against synthetic peptides. IgG's conjugated to alkaline 

phosphatase were used to detect bound PI. Western blot was carried out using a 
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buffered transfer system. Leaf material was ground in Laemmli buffer (Laemmli, 1970), 

boiled for 10 minutes and loaded onto a 12.5% Polyacrylamide SDS gel. After 

electrophoresis, the proteins were transferred to nitrocellulose and probed with 

antiserum. 

RESULTS 

Analysis of transgenic ORF1 potato plants 

Transgenic potato plants, cultivar Désirée, were produced containing the PLRV ORF1. 

To this end, the ORF1 sequence was supplied with BamHI restriction sites and cloned 

into a binary transformation vector. Employing the A. tumefaciens transformation 

system, forty four independent transformants were obtained. 

Strikingly, approximately one third of the produced plant lines was phenotypically 

dissimilar from the other obtained transformants or non-transgenic potato plants. As 

shown in Figure 2, the phenotypic aberrations included yellowing and rolling of the 

leaves, anthocyan formation in the leaf, slow and (severe) stunted growth of the plant. 

The leaves of these transgenic plants were thickened and showed a loss in flexibility 

making the leaves brittle. Moreover, the plants displaying the more extreme phenotypic 

aberrations exhibited slow or even impeded root formation both in soil and on medium 

containing or devoid of kanamycin. Several of the obtained transgenic plants were not 

able to produce viable tubers. In general, the observed phenotypic aberrations 

resembled strongly viral disease-like symptoms. The changes in the phenotypic 

appearance of the plants were not due to the possibly unfavourable conditions in tissue 

culture, since plants grown from tubers displayed exactly the same phenotype. 

The manifestation and extension of the phenotypic aberrations was strongly 

influenced by the light intensity used to grow the plants. High light intensities induced 

strong phenotypic aberrations, while at low light intensities phenotypic changes were 

milder. This is analogous to the situation with PLRV-infected plants, in which 

symptoms are enhanced by elevated light intensities. 

All of the obtained transgenic plants were tested on Northern blot (Fig. 2) to detect 

the presence of ORF1 specific mRNA. Fourteen of the transgenic plants accumulated 
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detectable levels of ORF1 mRNA. The presence of detectable amounts of ORF1 mRNA 

in the transgenic potato plants coincided with the observed phenotypic aberrations, with 

the exception of one plant line (WT034). This plant line was phenotypically indifferent 

of non-transgenic potato plants but contained detectable levels of ORF1 mRNA. In all 

other cases, severity of the phenotypic aberrations was directly correlated with the 

levels of accumulation of ORF1 transcripts, suggesting that expression of PLRV ORF1 

sequences caused the appearance of viral diseased-like symptoms. 

To determine if the observed correlation between ORF1 mRNA accumulation and 

severity of phenotypic aberrations was not generated by an overall impeded mRNA 

accumulation due to a disturbed metabolism in the plant tissues, the obtained transgenic 

plants were tested for accumulation of mRNA encoding actin and the small sub-unit of 

ribulose-biphosphate-carboxylase (rubisco). Whereas all the plants contained 

comparable amounts of mRNA coding for actin, the accumulation of rubisco mRNA 

was strongly inhibited in the plants displaying a changed phenotype, suggesting that 

ORF1 expression interfered with the process of photosynthesis but did not have an 

overall effect on mRNA synthesis. 

To examine wether both transgenic plant lines displaying the altered phenotype and 

plant line WT034 contained complete, non-mutated ORF1 sequences, PCR was carried 

out using isolated genomic DNA as a template. The 5'-terminal primer used in the PCR 

experiments was identical to a sequence internally located in the CaMV 35S promoter 

(92 nucleotides upstream of the start codon of ORF1 in the binary construct), while the 

downstream primer was complementary to the 3'-end of ORF1. PCR performed with 

genomic DNA, isolated from both transgenic plants expressing and plants not 

expressing ORF1 mRNA, rendered in all cases products of the expected size. Sequence 

analysis of these PCR products, including WT034 derived products, showed that all 

plants tested contained unaltered copies of the PLRV ORF1 sequence. 

Expression of PI 

All the obtained transgenic plants were tested on Western blot or in ELISA for the 

accumulation of transgenic PI. To detect PI on Western blot an antiserum was used 

raised against an E. coli expressed Pl/GST fusion protein, for ELISA antisera were used 

raised against synthetic peptides (Chapter 5, this thesis). Since detection of PI in 
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Figure 2: Phenotypes of PLRV ÜRF1 transgenic potato plants. A, B, C, D: transgenic WTO 
plants, expressing levels of transgenic transcripts detectable on Northern blot, WT024, WT026, 
WT04, WTO 18, respectively; E: wild-type potato plant cv Désirée; F: potato plant cv Désirée 
infected with PLRV. 
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PLRV-infected plants has been shown to be 

infeasible, as a control PI produced in the 

baculovirus expression system was used (Chapter 

5). Although several different procedures were 

examined to isolate PI from transgenic plant 

tissue, including methods specifically designed to 

isolate membrane-linked proteins (Martin & 

Garcia, 1991; Deom et al, 1990, Chapter 5) 

transgenic PI protein could neither be detected 

on Western blot nor by ELISA. 

Analysis of transgenic plants containing a 

modified ORF1 sequence 

1 2 3 4 5 6 

KAM :•:••!. 

Figure 3: Northern analysis of PLRV 
ORF1 transgenic potato plants. Twenty 
ug of total plant RNA purified from 
transgenic leaf material were loaded 
onto a 1% agarose gel containing 
formaldehyde. Lane 1: RNA from 
control Désirée plants; lane 2-6: RNA 
from transgenic plant lines, WT015, 
WT024, WT025, WT026, WT034, 
respectively 

To investigate whether translational expression of 

PLRV ORF1 is responsible for the observed viral 

disease-like symptoms, potato plants (cultivar 

Désirée) were transformed with a modified ORF1 

sequence (MO). This altered sequence contained 

a stop codon (UGA) 6 nucleotides downstream of 

the start codon, thus blocking the translation of the ORF1 reading frame (Fig. 1). 

Remarkably, a significant higher number (more than 80) of transgenic MO plant lines 

than WTO plant lines (approximately 20) was obtained in the transformation procedure. 

Moreover, compared to the MO transgenic plants WTO plants were slow in shooting 

and rooting (3 to 9 weeks longer). 

Nearly all of the MO plants were phenotypically similar to wild-type potato plants 

and none of the obtained transgenic MO plant lines displayed phenotypic aberrations 

similar to those of the WTO plants. Five to six MO plant lines displayed growth and 

morphological aberrations. These aberrations were believed to be caused by the 

occurrence of somaclonal variation and included stunting and disformation of the 

leaves. Rolling of the leaves, yellowing of the leaves and anthocyan formation, 

however, were never observed. Northern blot analysis of forty transgenic MO plant 

lines disclosed that 90% of the examined plants contained detectable levels of ORF1 
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transcripts. 

The results from the transformation experiments with 

the wild-type ORF1 sequence were similar to the results 

from the initial transformation experiment. Transgenic 

WTO plant lines, expressing levels of ORF1 transcripts 

detectable on Northern blot, displayed viral disease-like 

symptoms similar to the earlier observed phenotype. 

These results indicate that translational expression of 

PLRV ORF1 product in transgenic potato plants is 

responsible for the induction of the disease-like 

symptoms. 

DISCUSSION 

1 2 3 4 5 

t l 

Figure 4: Southern blot 
analysis of PLRV ORF1 
transgenic potato plants. Ten 
Hg of DNA, purified from 
transgenic leaf material, and 
digested with EcoRI and 
Hindlll were loaded onto a 
1% agarose gel. Lane 1-5: 
DNA from transgenic plant 
lines, WTOl, WT015, 
WT025, WT026, WT034, 
respectively. 

Presently, surprisingly little is known about the functions 

of the putative products of the open reading frames 

present on the genome of PLRV in particular and of 

luteoviruses in general. While, the genes encoding the 

coat protein subunits are known, it is still obscure which 

ORF codes for the VPg and concerning the non-structural 

genes only the putative RNA-dependent RNA polymerase 

has been identified by sequence comparison. To gain insight in the function of the non

structural ORF1 of PLRV, potato plants have been transformed with this sequence. 

Surprisingly, the resulting transgenic (WTO) plants which accumulated detectable 

levels of ORF1 transcripts were phenotypically different from wild-type potato plants 

and from transgenic plants which did not accumulate transgenic mRNA. Since, 

transgenic plants expressing a modified, untranslatable ORF1 sequence were 

phenotypically identical to wild-type potato plants, it is concluded that translational 

expression of PLRV ORF1 provokes the observed viral disease-like symptoms. The 

altered phenotype included yellowing, rolling and thickening of the leaves, anthocyan 

formation and stunted growth, thus resembling plants displaying viral disease 

symptoms. 

95 



Northern blot analysis of the transgenic WTO plants revealed that accumulation of 

mRNA encoding rubisco was also impeded. Both the change in phenotype and the 

decrease in accumulation of rubisco mRNA indicate that expression of ORF1 sequences 

interfered with the metabolism in the plant cells. Remarkably, only approximately one 

third of the obtained transgenic WTO plants accumulated levels of ORF1 mRNA 

detectable in Northern blot procedures. These findings strongly deviate with the results 

of the transformation experiments in which a modified, untranslatable ORF1 sequence 

was transformed into potato plants. Ninety percent of transgenic MO plants analyzed 

were shown to accumulate detectable levels of transgenic mRNA. Moreover, the level 

of accumulation of transgenic mRNA in plants expressing the wild-type ORF1 was 

notably lower than in transgenic plants expressing the modified ORF1 sequence. In all 

experiments the same binary transformation vector and thus promoter was used to 

express the different ORF1 sequences in plants. Differences in accumulation of mRNA 

have been shown to be caused by variations in the level of transcription due to 

methylation of promoter sequences (Razin & Cedar, 1991) and by post-transcriptional 

degradation of the mRNA (Van Blokland et al, 1994). Possibly, expression of ORF1 

sequences is down-regulated in the plant cell to minimize the amount of PI present in 

the plant cell (Chapter 5). 

Attempts to detect the ORF1 product in transgenic tissues proved to be unsuccessful. 

PI has been suggested to be membrane-linked (Mayo et al., 1989). However, 

employing procedures which have been shown to be successful for the isolation of viral 

membrane-bound proteins, no PI could be detected in both ELISA and Western blot 

procedures. These findings coincide with the results of the experiments described in 

Chapter 5, in which the detection of PI showed to be infeasible in PLRV-infected 

plants. Conceivably, PI is rapidly degraded in plant cells. It has been shown that 

expression of PI in both E. coli cells and the baculovirus/insect cell expression system 

was burdensome, due to the fact that accumulation of high levels of transgenic PI was 

obstructed by proteolytic degradation (Chapter 5). Conceivably, breakdown of the 

protein circumvents a toxic effect imparted by the accumulation of PI in the cell. 

Previously, it has been reported that expression of the movement protein BL1 gene 

of the geminivirus squash leaf curl virus (SqLCV) in Nicotiana benthamiana (Pascal et 

al, 1993) and the gene VI of the pararetrovirus cauliflower mosaic virus (CaMV) in 

non-host tobacco species (Baughman et al, 1988) induced viral disease-like 
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phenotypes. While expression of gene VI in susceptible host plants has been shown not 

to convey virus disease-like symptoms (Goldberg et al, 1989), expression of BL1 in its 

permissive host induced viral disease-like symptoms. Interestingly, SqLCV, a bipartite 

geminivirus, is phloem-limited like PLRV and its movement proteins BL1 and BRI 

have been shown to be important determinants of viral host range properties 

(Lazarowitz, 1991; Ingham & Lazarowitz, 1993). Both PI and BL1 are moderately 

hydrophobic (isoelectric points 8.4 and 8.6, respectively) and are approximately similar 

in size, 28 and 33 kDa respectively). However, SqLCV is a circular single-stranded 

DNA virus and the BL1 and BRI proteins of the different bipartite geminiviruses share 

an extensive amino acid sequence homology (Smith & Maxwell, 1994) while the ORF1 

products of the luteoviruses display no amino acid sequence homology whatsoever. 

Nonetheless, based upon the available data on BL1 and the results of the experiments 

described in this chapter it is tempting to suggest a BL1 analogous function for PLRV 

PI. 
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CHAPTER 7 

Resistance in transgenic potato plants expressing the 

PLRV ORF1 

ABSTRACT 

Transgenic potato plants containing the open reading frame 1 (ORF1) of potato leafroll 

virus (PLRV) were tested for acquired resistance. From a total of 34 transgenic potato 

plant lines one showed to be highly resistant upon inoculation with PLRV. The 

acquired resistance was expressed as near immunity, under high inoculation pressure 

only a low percentage of the plants became infected. 
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INTRODUCTION 

Pathogen-derived resistance (PDR) (Sanford & Johnston, 1985), the phenomenon that a 

host is protected from infection by expressing pathogen-derived sequences, is currently 

widely applied to obtain resistance to plant viruses. Both the expression of wild-type 

and modified versions of viral genes encoding replicases, coat proteins, or movement 

proteins have been shown to convey resistance. PDR has now been shown to be 

effective against viruses in 14 different taxonomie groups and in a growing number of 

crop plants (for review, see Wilson, 1993; Hackland et al, 1994). 

In most cases the mechanisms underlying PDR have remained unknown. Initially it 

was believed that expression of transgenic protein was indispensable to incite 

resistance, later it has been shown that expression of untranslatable mRNA sequences 

also induced resistance (Smith et al, 1994). Conceivably, different mechanisms are 

involved, in some cases the presence of transgenic protein is required while in other 

cases the transgenic transcript itself mediates resistance (for review, see Lindbo et al, 

1993; Wilson, 1993; Hackland et al, 1994). However, the molecular mechanisms 

underlying both the 'protein-mediated' and 'RNA-mediated' resistance are still obscure 

and subject to further investigations. 

Recently, evidence has been presented that high expression of transgenic viral 

sequences in plants leads to specific degradation of the transgenic mRNA, resulting in 

low accumulation of the transgenic RNA. As a consequence the genomic RNA of the 

analogous challenging virus would be degraded by the same cellular pathway, resulting 

in immunity (Smith et al, 1994; Dougherty et al, 1994). Thus, plant lines accumulating 

low levels of transgenic mRNA should exhibit high levels of resistance. Acquired 

resistance by specific degradation of RNA sequences corresponds to the phenomenon of 

'co-suppression', in which transgenes silence homologous endogenous plant genes. Co-

suppression has been reported for several different genes in various plant species (for 

review, see Finnegan & McElroy, 1994). The mechanism underlying the event of co-

suppression is poorly understood. Both methylation of promoter sequences (Hobbs et 

al, 1990 & 1993), the spontaneous occurrence of anti-sense mRNA (Mol et al, 1991), 

and po st-transcriptional degradation of mRNA (Van Blokland et al, 1994) have been 

reported to play a role in gene silencing. 

Potato leafroll virus (PLRV) is the causal agent of one of the major diseases of 
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potato. Since, all commercial potato cultivars are, to a greater or lesser extent, 

susceptible to the virus, resistance is of great economic value. It has been shown that the 

expression of the open reading frame 1 (ORF1) of potato leafroll virus (PLRV) induced 

viral disease-like symptoms in transgenic potato plants (Chapter 6). Furthermore, it has 

been shown that most of the transgenic plants are capable of suppressing the 

accumulation of ORF1 transcripts to circumvent the toxic effect imparted by the 

expression of PI. Therefore, in concordance with the above mentioned concept of co-

suppression-like RNA-mediated resistance, it would be expected that transgenic ORF1 

plants expressing low levels of transgenic transcripts display high levels of resistance. 

To investigate this supposition, transgenic ORF1 plants both non-expressing and 

expressing extreme low or high levels of transgenic transcripts have been inoculated 

with PLRV and monitored for infection. 

MATERIAL AND METHODS 

Inoculation of plants and assessment of PLRV resistance 

Transgenic and wild-type potato plants (cv Désirée) were inoculated with PLRV as 

previously described (Van der Wilk et al., 1991) using 10-15 viruliferous aphids 

(Myzus persicae (Sulzer) Wmpl) per plant. The aphids were allowed 3-7 days to feed 

on the plants and thereby to transmit the virus. Infection was monitored for each 

individual plant by taking samples of the lower, middle and top leaves at each time 

point. The three samples of each plant obtained were pooled, ground in extraction 

buffer and tested in an enzyme-linked immuno sorbent assay (ELISA) procedure for the 

presence of PLRV. In the first preliminary tests 3 to 5 plants per transgenic plant line 

were screened; lines which showed a reduction in viral incidence as compared to the 

controls were examined in more detail. In the additional screenings 10 to 15 plants of 

each line were inoculated and monitored for acquired resistance. Tubers of plants 

showing up negative in the screenings were harvested and stored for 4 to 6 months at 

4 "C. After replanting the shoots emerging from the tubers were tested in ELISA for the 

presence of PLRV. 
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Enzyme-linked immuno sorbent assay (ELISA) 

ELISA was performed as described (Van den Heuvel & Peters, 1989). Leaf discs of one 

centimeter diameter were ground in 0.5 ml extraction buffer (0.2% ovalbumin, 2% 

polyvinylpyrrolidone, 0.05% Tween 20 in phosphate buffered saline (PBS)), 200 ul of 

the suspension was used per well in the test. ELISA plates were coated with (1 ug/ml) 

IgG's raised against intact purified virus. The samples were incubated for 16 h at 4°C. 

Subsequently, the wells of the plates were washed three times with PBS/0.05% Tween 

20. IgG's conjugated to alkaline phosphatase (1 ug/ml) were used to detect bound virus. 

Reverse transcription (RT) and polymerase chain reaction (PCR) 

Transgenic plants were analyzed for the presence of ORF1 transcripts by reverse 

transcription (RT) of purified mRNA followed by amplification of the transgenic cDNA 

using the polymerase chain reaction (PCR) and employing specific primers. Total RNA 
was isolated as described (Verwoerd et al, 1989). cDNA was synthesized using 

moloney leukemia virus (M-MLV) reverse transcriptase (Gibco-BRL) and an 

oligo(dT)121g as primer. PCR was performed using oligonucleotides identical to 5'-end 

sequence of the ORF1 and complementary to a sequence located internally in the ORF1. 

PCR-products were visualized by agarose gel electrophoresis. 

RESULTS 

Inoculation of transgenic potato plants with PLRV 

Thirty-four transgenic plants containing the PLRV ORF1 sequence were tested for 

possible acquired resistance to PLRV. All transgenic plants were derived from one 

transformation experiment (Chapter 6). 

Inoculation experiments employing viruliferous aphids disclosed that one plant line 

(WT025) exhibited resistance, while all other plant lines were susceptible to infection. 

In five separate experiments, using 10 to 15 plants per tested plant line, line WT025 

was found to be highly resistant. Upon inoculation of WT025, using ten viruliferous 
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aphids per plant, none of the tested plants became 

infected, while all the other inoculated transgenic 

and non-transgenic control plants showed a 90-

100% infection incidence. Experiments on 

WT025 with an increased inoculation pressure 

employing higher numbers (15-30) of viruliferous 

aphids resulted in an infection rate of 

approximately 10%. The infected WT025 plants 

contained similar amounts of viral antigen as 

compared to infected wild-type potato plants. To 

determine if possible infections could have been 

obscured by low virus titers resulting in low 

ELISA readings, tubers of plants used in the 

inoculation experiments were harvested and the 

emerging sprouts of the replanted tubers were 

monitored for viral infection. None of the tested 

sprouts derived from plants assessed in earlier 

experiments as non-infected contained detectable 

levels of PLRV. 

WT025 was phenotypically indifferent from 

wild-type potato plants. Previously, plant line 

WT025 had been shown to accumulate levels of 

ORF1 mRNA undetectable on Northern blot. RT-PCR, using total RNA extracted from 

WT025 as a template, showed that extreme low amounts of ORF1 mRNA were present 

in the transgenic tissue (Fig. 1). From southern blot analysis it was estimated that the 

genome of WT025 contained one copy of the ORF1 sequence. PCR and subsequent 

sequence analysis disclosed that the inserted ORF1 sequence did not contain any 

mutations or deletions, indicating that the observed resistance was not due to expression 

of a modified ORF 1-product. 

Figure 1: Analysis of transgenic potato 
plants for the presence of ORF1 
transcripts by RT-PCR. All plants 
tested had previously been shown to 
contain levels of ORF1 transcripts 
undetectable on Northern blot. Lane 1 : 
DNA marker; lanes 2-6: RT-PCR 
products from WT02, WT05, 
WT025, WT032, WTO 15, 
respectively; lane 7: empty; lane 8: 
non-transgenic control plants. 

DISCUSSION 

Transgenic plants containing the PLRV ORF1 were tested for possible acquired 
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resistance. All the transgenic plants were derived from one transformation experiment. 

In Chapter 6 of this thesis it was shown that only approximately one third of transgenic 

ORF1 plant lines tested accumulated notable amounts of transgenic transcripts. Most 

likely the accumulation of transgenic transcripts in the cell is impeded to suppress the 

toxic effect caused by expression of the PI protein (Chapters 5 & 6). This appears to 

make these plant lines a possible model system to examine the recently proposed 

mechanism of cosuppression-like RNA-mediated resistance (Smith et al., 1994; 

Dougherty et ai, 1994). 

Upon inoculation using viruliferous aphids, one plant line (WT025) showed to be 

resistant. All other thirty three analyzed transgenic plant lines were similar susceptible 

to viral infection as wild-type potato plants. Remarkably, the acquired resistance in 

WT025 expressed itself as nearly absolute immunity rather than a decrease in viral 

titers as observed for transgenic potato plants expressing the PLRV ORF4 (Van der 

Wilk et al, 1991; Kawchuk et al, 1991). Only if high inoculation pressure was applied 

a small percentage of the WT025 plants became infected. Infected WT025 plants 

contained levels of viral antigen similar to infected control plants. Shoots emerging of 

tubers derived of plants inoculated with PLRV and assessed as non-infected, did not 

contain detectable levels of virus. This indicates that possible infection of the plants was 

not obscured by extreme low viral titers, not detectable in ELISA. 

The mechanism of the observed resistance is unclear. Previously it has been shown 

that none of the transgenic plants accumulated detectable amounts of PI protein, 

secluding a possible role for the ORF1 product. Since only one plant line showed to be 

resistant it is highly unlikely that expression of ORF1 sequences itself conveyed 

resistance. Besides, WT025 contained extreme low amounts of ORF1 transcripts, solely 

detectable by RT-PCR. These findings seem to support the hypothesis that a co-

suppression-like event is involved in the observed resistance in WT025. However, 20 

out of 34 transgenic plant lines tested did not contain significant amounts of transgenic 

ORF1 mRNA, probably due to specific degradation of the transgenic transcripts or 

silencing of the transgene. If the observed resistance was imparted by post-

transcriptional breakdown of the viral RNA or another regulatory mechanism it would 

be expected that all plants, accumulating low levels of ORF1 transcripts showed to be 

resistant instead of only plant line WT025. Ergo, it appears that the observed resistance 

in plant line WT025 can not be attributed to a co-suppression-like phenomenon. 
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Another possible explanation for the acquired resistance is that it is induced by 

somaclonal variation. WT025 appeared to be phenotypically indistinguishable from 

wild-type potato plants cv Désirée. Nevertheless, it can not be excluded that somaclonal 

variation occurred. In field experiments with transgenic potato plants, cultivars Bintje 

and Escort, expressing the potato virus X (PVX) coat protein gene, it was found that 

approximately 82% and 18%, respectively, of the transgenic plant lines were not true to 

type in all 50 morphological traits examined (Jongedijk et al., 1992). In both the 

experiments described here and the experiments described by Jongedijk et al. 

essentially the same protocol for transformation was used. Interestingly, recently it has 

been described that transformation of potato with binary vector sequences alone 

induced resistance against PLRV (Presting et al., 1995). Although this resistance 

expressed itself as a reduction in viral titer rather than immunity as described here, it 

appears from these data that the procedure of transformation itself can introduce 

unexpected variation among the transformants, including the manifestation of 

resistance. 

Also, it can not be excluded that by insertion of the transgene in the potato genome a 

gene conferring susceptibility was inactivated. However, the existence of such a gene 

has never been reported and, ergo, the occurrence of insertional inactivation seems to be 

only a remote possibility. 

Irrespectively from the fact that further experiments will be needed to clarify the 

mechanism of resistance, a potato line resistant to PLRV has been generated. Since, 

PLRV is the causal agent of leafroll, one of the most important diseases in potato, 

extreme resistance is an economical highly important trait. 

REFERENCES 

Dougherty, W.G., Lindbo, J.A., Smith, H.A., Parks, D.T., Swaney, S., (1994). RNA-mediated virus 
resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA 
degradation. Mol. Plant-Microbe Interact. 7:544-552. 

Finnegan, J., McElroy, D., (1994). Transgene inactivation: Plants fight back! Bio/Technology 12:883-
888. 

Hackland, A.F., Rybicki, E.P., Thomson, J.A., (1994). Coat protein-mediated resistance in transgenic 
plants. Arch. Virology 139:1-22. 

Hobbs S.L.A., Kpodar, P., Delong, C.M.O., (1990). The effect of T-DNA copy number, position and 
methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15:851-864. 

105 



Hobbs, S.L.A, Warkentin, T.D., Delong, C.M.O., (1993). Transgene copy number can be positively or 
negatively associated with transgene expression. Plant Mol. Biol. 21:17-26. 

Jongedijk, E., de Schutter, A.A.J.M., Stolte, T., Van den Elzen, P.J.M., Cornelissen, B.J.C., (1992). 
Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato 
under field conditions. Bio/Technology 10:422-429. 

Kawchuk, L.M., Martin, R.R., McPherson, J., (1991). Sense and antisense RNA-mediated resistance to 
potato leafroll in Russet Burbank potato plants. Mol. Plant-Microbe Interact. 4:247-253. 

Lindbo, J.A., Silva-Rosales, L., Dougherty, W.G., (1993). Pathogen derived resistance to potyviruses: 
Working, but why? Semin. Virol. 4:368-379. 

Mol, J., Van Blokland, R., Kooter, J., (1991). More about co-suppression. T.I.B. 9:182-183. 
Presting, G.G., Smith, O.P., Brown, CR., (1995). Resistance to potato leafroll virus in potato plants 

transformed with the coat protein gene or with vector control constructs. Phytopathology 85:436-
442. 

Sanford, J.C., Johnston, S.A., (1985). The concept of parasite-derived resistance: Deriving resistance 
genes from the parasite's own genome. J. Theor. Biology 113:395-405. 

Smith, H.A., Swaney, S.L., Parks, T.D., Wernsman, E.A., Dougherty, W.G., (1994). Transgenic plant 
virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of 
nonessential RNAs. Plant Cell 6:1441-1453. 

Van Blokland, R., Van der Geest, N., Mol, J.N.M., Kooter, J.M., (1994). Transgene-mediated 
suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA 
turnover. Plant J. 6:861-877. 

Van den Heuvel, J.FJ.M., Peters, D., (1989). Improved detection of potato leafroll virus in plant 
material and in aphids. Phytopathology 79:963-967. 

Van der Wilk, F., Posthumus-Lutke Willink, D., Huisman, M.J., Huttinga, H., Goldbach, R., (1991). 
Expression of the potato leafroll coat protein gene in transgenic potato plants inhibits viral infection. 
Plant Mol. Biol. 17:431-439. 

Verwoerd, T.C., Dekker, B.M., Hoekema, A., (1989). A small-scale procedure for the rapid isolation 
of plant RNAs. Nucleic Acids Res. 17:2362. 

Wilson, T.M.A., (1993). Strategies to protect crop plants against viruses: Pathogen-derived resistance 
blossoms. Proc. Natl. Acad. Sei. USA 90:3134-3141. 

106 



CHAPTER 8 

GENERAL DISCUSSION 

Potato leafroll virus causes a destructive disease of potato plants and is consequently 

responsible for significant economic losses world-wide. Beside causing severe yield 

reductions, PLRV incidence above certain thresholds leads to rejection of seed potato 

lots from certification schedules. Although potato cultivars differ in resistance to PLRV, 

there appears to be neither immunity nor major gene resistance to the virus in Solanum 

tuberosum cultivars (Ross, 1986). Resistance to PLRV presently available in cultivated 

forms is believed to be polygenically controlled and can be overcome by high 

inoculation pressure. The aim of this study was to gain more insight in the molecular 

biology of this virus and to utilize this knowledge to obtain resistance, according to the 

principal of pathogen-derived resistance (Sanford & Johnston, 1985). 

To this end the nucleotide sequence of the PLRV genomic RNA was determined and 

its organization deduced. The PLRV genomic organization was shown to contain six 

open reading frames (ORFs). To express its genes the virus appears to employ all 

presently known strategies in viral gene expression: initiation at downstream AUG start 

codons by leaky scanning, shifting of ribosomes during translation from one reading 

frame to another, suppression of stop codons resulting in translational readthrough, 

translation of sub-genomic messenger RNAs and maturation of proteins by proteolytic 

cleavage. 

By interviral sequence comparison the genes encoding for the coat protein subunit 

and the putative RNA-dependent RNA polymerase have been identified. The amino 

acid sequences of the coat proteins of different luteoviruses share a substantial 

homology, which complies with the fact that many luteoviruses are immunogenic 

related. Remarkably, the putative replicase of PLRV shares sequence homology with 

both the replicases of BWYV and barley yellow dwarf virus serotype RPV (BYDV-

RPV) and the replicase of southern bean mosaic virus (SBMV), but not with those of 

BYDV-MAV and PAV, which resemble the replicase of carnation mottle virus 

(CarMV) (Miller et al, 1988; Ueng et al, 1992). This makes the luteovirus group the 
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only virus group harbouring members with different types of RNA-dependent RNA 

polymerases. Therefore, based on sequence data two different subgroups have been 

recognized. For subgroup I (BYDV-MAV & PAV) the term "alloluteoviruses" has been 

proposed while for subgroup II (PLRV, BWYV, BYDV-RPV) the original name 

"luteovirus" could then be reserved (Koonin & Doha, 1993). 

The role of most of the putative viral proteins in the infection cycle remains unclear. 

The ORF2 product contains sequence motifs believed to be typical for chymotrypsin-

like serine proteases (Bazan & Fletterick, 1989; Gorbalenya et al, 1989). However, the 

role of such a protease in the expression strategy of the virus is unknown. Possibly, this 

protease cleaves autocatalytical and conceivably plays a role in the maturation of the 

VPg. The ORF coding for the VPg has not been identified yet, but the most likely 

candidates are the ORF5 or the 5'-terminal part of the ORF2. Irrespective of which ORF 

encodes the VPg, proteolytic cleavage has to play a role in the expression of the mature 

protein since its reported size of 7 kDa (Mayo et al., 1982) is much smaller than the 

coding capacity of the different ORFs present on the PLRV genome. All the putative 

PLRV-encoded proteins exhibit a certain degree of homology with other putative 

luteoviral products except for the PLRV ORF1 product (PI). Not only PLRV PI 

exhibits no amino acid sequence homology with the analogous ORF1 products of other 

luteoviruses but an equivalent ORF is even absent on the genome of the BYDV-MAV 

and PAV isolates. The genomic organization of the PLRV and BWYV genomes are 

very similar (Van der Wilk et al, 1989; Veidt et ai, 1988) and the respectively encoded 

putative viral proteins share extensive amino acid sequence homologies, with the 

exception of the ORF1 products. The most notable difference between PLRV and 

BWYV is in their host range. While BWYV is able to infect a wide range of different 

plant species, the host range of PLRV is restricted to a few plant species. It has been 

speculated that the luteoviral ORFls determine host range, since they appear to 

represent the primary difference between the various luteoviruses genomes (Veidt et al, 

1992). In experiments described in this thesis it was attempted to elucidate the role of 

the PLRV ORF1 product (PI) in the viral infection cycle. Unexpectedly, expression of 

this protein in both prokaryotic {Escherichia coli) and eukaryotic cells (baculovirus/ 

insect cell expression system) demonstrated to be burdensome, probably due to high 

sensitivity to post-translational proteolytic activity. PLRV-infected plants analyzed for 

the presence of PI, appeared not to contain detectable levels of the protein, although the 
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antiserum used was able to detect as little as 1 ng of recombinant protein. It seems 

therefore justified to conclude that only extreme low levels of PI are accumulated 

during PLRV infection. Remarkably, only approximately one-third of transgenic potato 

plants, containing the PLRV ORF1 sequence, accumulated detectable levels of ORF1 

transcripts and none of the plants contained detectable levels of transgenic protein. The 

transgenic potato plants expressing ORF1 transcripts to detectable levels were 

phenotypically different from wild-type plants, strongly resembling viral-diseased 

plants. These data indicate that expression of PLRV ORF1 leads to distortion of the 

metabolism in the plant cell, possibly mimicking the events associated with viral 

infection. Such a putative toxic effect of PI could possibly also offer an explanation for 

the difficulties encountered in both the experiments aimed at the expression of the 

protein in E. coli or the baculovirus/insect cell system and the detection of PI in 

infected and transgenic plants. In order to avert the toxic effect generated by PI 

expression, cells are possibly capable of limiting the accumulation of the protein by 

down-regulation of the translation or by proteolytic breakdown. 

To incite resistance, potato plants have been transformed with PLRV genes. 

Pathogen-derived resistance, the phenomenon that expression of viral sequences in 

plants confers resistance, has been shown to be potentially extremely useful. Initially, 

attention has been focused on the expression of viral coat protein genes, later it has also 

been shown that the expression of other viral (nonstructural) genes could induce 

resistance (for reviews, see Wilson, 1993; Hackland et al, 1994). Since the initial 

experiments of Powell et al. (1986), coat protein-mediated resistance has been shown to 

be an effective strategy to acquire resistance against a whole range of different viruses 

(for recent review, see Hackland et al., 1994). The PLRV ORF4 encodes the major coat 

protein subunit present in the viral particle. In experiments described in this thesis, 

transgenic potato plants, were produced that contained the PLRV ORF4 sequence in 

sense or antisense orientation. Although, the obtained transgenic potato lines expressed 

ORF4 transcripts, none of the plants accumulated detectable levels of transgenic 

protein. Upon inoculation with PLRV the obtained transgenic plants showed a reduced 

rate of virus accumulation as compared to wild-type control plants. However, complete 

immunity was not obtained. Initially, it has been reported for other plant-virus systems 

that a direct correlation existed between the amount of coat protein expressed in planta 
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and the efficacy of coat protein-mediated protection (for recent review, see Hackland et 

al., 1994). Therefore, to determine whether it was feasible to optimize the translational 

expression of the PLRV ORF4 in transgenic plants and thereby to enhance the induced 

resistance, the ORF4 sequences were modified. The sequences flanking the sub-optimal 

start codon were modified into a potentially translationally optimized context and the 

start codon of the ORF5, underlying the ORF4, was deleted. The results obtained from 

experiments with the transgenic plants harbouring this modified ORF4 sequence were 

identical to the results obtained with the wild-type ORF4 transgenic plants. All the 

obtained transgenic potato plants were shown to express the modified ORF4 transcripts 

but still were not able to accumulate detectable levels of transgenic protein and upon 

inoculation with PLRV the transgenic potato plants showed a reduced rate of virus 

accumulation similar to the transgenic lines containing the wild-type ORF4. 

Since upon inoculation both plants expressing sense and those expressing antisense 

transgenic ORF4-transcripts were shown to inhibit viral accumulation, and 

accumulation of transgenic coat protein could not be detected in the plants expressing 

messenger-sense (wild-type or modified ORF4) transcripts, it is most likely that 

expression of RNA sequences alone effected the observed inhibition rather than the 

expression of transgenic protein. 

Besides transgenic plant lines containing the PLRV coat protein gene, potato lines 

containing the PLRV ORF1 have been produced. As aforesaid, only approximately one-

third of the obtained transgenic plants accumulated detectable levels of ORF1-

transcripts and none of the plants contained detectable levels of transgenic protein. All 

transgenic ORF1 plant lines obtained have been tested for possibly acquired resistance 

against PLRV. Out of thirty-four plant lines tested one showed to be resistant upon 

inoculation with viruliferous aphids. This resistant plant line was phenotypically similar 

to wild-type potato plants and was shown to accumulate extreme low levels of ORF1-

transcripts. The acquired resistance in this plant line expressed itself as immunity 

instead of a decrease in virus accumulation as observed for the transgenic plants 

expressing the ORF4. Only under high inoculation pressure a small percentage of the 

inoculated plants became infected. 

Presently, it is generally accepted that several different mechanisms are involved in 

specific resistance resulting from the expression of particular viral genes in plants. Both 

the expression of transgenic RNA alone as well as the expression of transgenic protein 
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has been shown to confer resistance. Recently, a mechanism underlying the 

phenomenon of genetically engineered RNA-mediated resistance has been proposed 

(Dougherty et al, 1994; Smith et al, 1994) which becomes more and more accepted. 

This mechanism would closely resemble the processes involved in co-suppression, i.e. 

the phenomenon that expression of transgenes in plants can provoke silencing of both 

transgenes and homologous endogenous genes (for review, see Flavell, 1994). The 

mechanism involved has not yet been elucidated, but it has been suggested that high 

accumulation of transgenic products would trigger cellular processes directed to 

suppress the transgene expression. The virus resistance generated in transgenic plants 

would possibly be incited by a similar mechanism, cellular processes involved in 

breakdown of transgenic sequences leading to suppression of the homologous 

sequences of the infecting virus. This theory is supported by the observation that RNA-

mediated resistance is prevalently observed in plant lines accumulating low levels of 

transgenic transcripts. 

However, it is questionable wether the observed, partial inhibition of viral 

accumulation in the PLRV ORF4 transgenic plants or the nearly complete immunity in 

the transgenic ORF1 lines can be explained by such a mechanism. The transgenic ORF4 

plants tested for resistance accumulated high levels of ORF4 transcripts, ergo, 

excluding the occurrence of silencing of transgenic and viral sequences. The results 

from the inoculation experiments with the resistant ORF1 plant line appear to conform 

to the findings reported concerning the above mentioned genetically-engineered RNA-

mediated protection or co-suppression (Dougherty et al, 1994; Smith et al, 1994). 

However, it is puzzling that only one plant line showed to be resistant. Altogether, 

twenty transgenic plant lines were shown to contain non-detectable or extreme low 

levels of ORFl-transcripts. If the observed low accumulation of transgenic ORF1 

transcripts in these plants was due to specific cellular processes, like post-transcriptional 

breakdown, it would be expected that all these plant lines exhibited a resistant 

phenotype. Conceivably, also other and still unknown factors are involved in the 

expression of genetically engineered resistance. 
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SUMMARY 

The nucleotide sequence of the genomic RNA of potato leafroll virus (PLRV) was 

elucidated and its genetic organization deduced (Chapter 2). Six open reading frames 

(ORFs) were shown to be present on the genome. Both the PLRV coat protein gene and 

the RNA-dependent RNA polymerase gene were identified by interviral sequence 

comparison. The PLRV genomic organization was shown to be highly similar to that of 

beet western yellows virus (BWYV) and except for the ORF1 products all PLRV and 

BWYV coded proteins displayed an extensive amino acid sequence homology. 

In order to obtain resistance following the principle of pathogen-derived resistance, 

the PLRV coat protein gene was placed under the control of the cauliflower mosaic 

virus (CaMV) 35S promoter and used to transform potato (Chapter 3). Upon analysis of 

the transgenic plants obtained it was shown that, although transgenic transcripts were 

abundantly present in the plant tissues, the presence of transgenic coat protein could not 

be detected. The transgenic potato plants were shown to be susceptible to PLRV 

infection but contained significant lower virus titers as compared to infected wild-type 

potato plants. To enhance the translational expression of the coat protein gene the 

sequences flanking the start codon were modified to a theoretically optimized context 

(Chapter 4). Potato plants were transformed with the altered coat protein gene and 

analyzed for the presence of transgenic coat protein. Despite of the induced mutations 

transgenic protein could not be detected. The results from inoculation experiments with 

PLRV were identical to those obtained with the transgenic plants containing the 

unaltered coat protein gene, the transgenic plants containing less viral antigen than 

infected wild-type plants. 

To investigate the role of the PLRV ORF1 product (PI) in the viral infection process 

and to define its intracellular location in infected plant cells, the protein was expressed 

in Escherichia coli and in the baculovirus expression system and used to raise an 

antiserum (Chapter 5). Expression of PI proved to be difficult, possibly due to a toxic 

effect imparted by the protein. Using an antiserum raised against a recombinant PI 

fusion protein, it was determined that PI did not accumulate in infected plant tissues to 
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detectable levels. 

To further investigate the function of the ORF1, its sequence was transformed into 

potato (Chapter 6). Surprisingly, the transgenic plants expressing detectable levels of 

ORF1 transcripts displayed an altered phenotype closely resembling that of virus-

diseased plants. Plants expressing a modified and therefore untranslatable, version of 

the ORF1 sequence were phenotypically indistinguishable from wild-type control 

plants, indicating that the expression of the PI protein induced virus disease-like 

symptoms. The transgenic potato plants containing the ORF1 sequence were analyzed 

for possibly acquired resistance (Chapter 7). Upon infection one plant line showed to be 

highly resistant while all other plant lines were susceptible to PLRV-infection similar to 

wild-type plants. The resistance obtained expressed itself as near immunity, only under 

high inoculation pressure a low percentage of the plants became infected. 
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SAMENVATTING 

Het aardappelbladrolvirus (potato leafroll virus, PLRV) is de veroorzaker van een van 

de belangrijkste ziekten (bladrol) in de aardappelteelt. Mondiaal wordt het jaarlijkse 

oogstverlies ten gevolge van PLRV-infecties geschat op 20 x 106 ton aardappelknollen. 

Het virus is in Nederland vooral schadelijk voor de pootaardappelindustrie. Jaarlijks 

worden vele partijen pootgoed afgekeurd of verlaagd in kwaliteitsklasse ten gevolge 

van infectie met PLRV. Alle aardappelrassen zijn vatbaar voor dit virus en bladrol 

wordt op dit moment voornamelijk bestreden door bespuitingen uit te voeren tegen de 

overbrenger van het virus, de bladluis Myzus persicae. De symptomen die het virus in 

geïnfecteerde aardappelplanten veroorzaakt zijn het karakteristieke oprollen van de 

bladrand, vergeling van het blad, de vorming van anthocyaan in blad en stengel, 

achterblijven in groei van de plant en het achterblijven in groei van de knollen. PLRV 

behoort tot het genus Luteovirus. Virussen behorende tot dit genus infecteren alleen het 

floeem van hun gastheer, waardoor de virusconcentratie in de totale plant laag blijft en 

dientengevolge de zuivering van virusdeeltjes uit de plant moeizaam is. Hierdoor is het 

onderzoek naar de economisch zeer belangrijke luteovirussen relatief laat op gang 

gekomen. Het onderzoek beschreven in dit proefschrift was erop gericht om meer 

kennis over de moleculaire biologie van het virus te verkrijgen en deze kennis te 

gebruiken om resistentie op te wekken door middel van genetische modificatie van 

aardappelplanten. 

Bij de aanvang van het onderzoek was de samenstelling van het RN A-genoom van 

PLRV niet bekend. In hoofdstuk 2 van dit proefschrift is beschreven hoe de 

nucleotidenvolgorde van het PLRV-genoom is bepaald. Het genomische RNA bleek 

5882 basen lang te zijn en op het genoom waren 6 mogelijke genen te onderscheiden. 

De genen coderend voor het manteleiwit en het RNA-afhankelijke RNA-polymerase 

konden geïdentificeerd worden door de aminozuurvolgorden van de respectievelijke 

Produkten te vergelijken met die van andere virale eiwitten. Verder bleek dat de door 

PLRV-gecodeerde eiwitten een grote homologie vertonen met de eiwitten gecodeerd 

door een ander luteovirus, het slavergelingsvirus (beet western yellows virus, BWYV), 
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met uitzondering van het produkt (PI) van het gen gesitueerd aan het uiterste 5'-einde 

van het genoom. Uit vergelijkingen met de beschikbare sequenties van andere 

luteovirussen bleek in dit gen een grote variatie te bestaan en bij het 

gerstevergelingsvirus (barley yellow dwarf virus, BYDV-MAV) zelfs geheel te 

ontbreken. 

Het PLRV-manteleiwitgen is onder de controle van de 35S promoter van het 

bloemkoolmozaïekvirus (cauliflower mosaic virus, CaMV) geplaatst en m.b.v. een 

Agrobacterium tumefaciens transformatiesysteem in het genoom van aardappelplanten 

ingebouwd. De op deze wijze verkregen transgene planten bleken wel transgeen 

mRNA, maar geen aantoonbare hoeveelheden transgeen manteleiwit te produceren 

(Hoofdstuk 3). De transgene aardappelplanten werden in inoculatie-experimenten met 

virusdragende bladluizen getoetst op resistentie. Hoewel de planten vatbaar waren voor 

PLRV, was de concentratie van het virus in de geïnfecteerde transgene planten 

aanzienlijk lager dan in de niet transgene controle-planten. Een gemuteerde vorm van 

het PLRV-manteleiwitgen werd in aardappelplanten ingebouwd om te onderzoeken of 

door de aangebrachte modificaties de synthese van transgeen manteleiwit in de plant 

verhoogd zou kunnen worden en daarmee wellicht het niveau van resistentie. Na 

analyse bleek dat ook in deze transgene planten wel transgeen mRNA maar geen eiwit 

aangetoond kon worden. De resultaten van inoculatie-experimenten waren identiek aan 

die van de eerdere experimenten met de transgene planten waarin het wildtype 

manteleiwitgen was ingebracht (Hoofdstuk 4). 

Het PLRV-Pl-eiwit is onderzocht om de rol van dit eiwit in het virale infectieproces 

en de lokalisering ervan in de plant te doorgronden. Het eiwit is zowel in Escherichia 

coli als in het baculovirusexpressiesysteem tot expressie gebracht, met de bedoeling een 

antiserum te maken. Hierbij bleek het eiwit zeer moeilijk te produceren en mogelijk 

toxisch van aard te zijn (Hoofdstuk 5). Opvallenderwijs was PI niet in aantoonbare 

hoeveelheden aanwezig in PLRV-geïnfecteerd plantmateriaal. Teneinde het gen verder 

te onderzoeken is het onder de controle van de CaMV 35S-promoter in 

aardappelplanten ingebouwd (Hoofdstuk 6). Transgene planten die aantoonbare 

hoeveelheden transgeen mRNA bevatten, vertoonden een zeer grote gelijkenis met 

virus-geïnfecteerde planten. Transgene planten waarin een gemodificeerd, voor 
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translatie geblokkeerd, Pl-gen ingebouwd was, waren uiterlijk eender aan niet-

transgene planten. Hieruit kon geconcludeerd worden dat de aanwezigheid van het Pl-

eiwit op zichzelf al voldoende is om symptomen te veroorzaken. De transgene Pi-

planten zijn getoetst op resistentie tegen PLRV. Eén transgene plantelijn bleek resistent 

te zijn terwijl alle andere transgene planten normaal vatbaar waren. De verkregen 

resistentie bleek absoluut te zijn en was alleen te doorbreken bij zeer hoge infectiedruk. 
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CURRICULUM VITAE 

De auteur van dit proefschrift werd geboren op 6 september 1961 te Rotterdam. Na het 

behalen van het V.W.O. examen aan de Christelijke Scholengemeenschap "Comenius" 

te Capelle a/d IJssel in 1980, begon hij met de studie Planteziektenkunde aan de 

Landbouwuniversiteit Wageningen. In 1987 studeerde hij af met als hoofdvakken 

Fytopathologie, Virologie en Moleculaire Biologie. Sinds zijn afstuderen is hij 

werkzaam bij het Instituut voor Planteziektenkundig Onderzoek (IPO-DLO), 

aanvankelijk in dienst van de Landbouwuniversiteit en later in tijdelijke en sedert 1992 

in vaste dienst van het IPO-DLO. 
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