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FOREWORD 

Shortage of fresh water of adequate quality has been predicted to become one of the most 
pressing problems mankind must face in the foreseeable future. In order to counteract this 
situation storage of surplus flows in reservoirs and the careful management of this 
resource is thus going to gain in importance. In addition, the improved operation of 
existing reservoirs might contribute to postpone the construction of new storage elements, 
thus implicitly helping to mitigate the impact on the natural environment. Consequently 
the management aspects of reservoirs both at the planning and at the operational stage 
form an essential research area. 
The present report summarizes the results of sensitivity analyses related to the application 
of stochastic dynamic programming (SDP) in optimization of reservoir operation in an 
uncertain environment. SDP has a strong potential to be used in deriving robust, detailed 
operational rules for reservoirs. The SDP-based policy is oriented towards the expected 
hydrological situation, thus its adequacy is largely depending on availability and accuracy 
of data and their numerical representation to capture the natural (hydrological) 
uncertainties inherent in the water resources system. 
Artificial inaccuracies and simplifications have been introduced into the mathematical 
processing of inflow data in order to assess the potential impact of possibly biassed data 
both on the optimal reservoir policy itself and on the operational performance of 
reservoirs. 
Next to the natural reservoir inflow uncertainties, objectives to be pursued may change as 
social preferences and aspirations undergo gradual changes. In order to model these 
possible scenarios optimal reservoir operational policies have been derived according to 
different anticipated objective functions and constraint sets. Furthermore alternative 
performance indicators such as reliability-type of criteria have been tested. 
Model uncertainty and its impact are taken into account by testing different versions of 
SDP in the operational studies. All along these analyses both single and multiunit systems 
have been considered. Practical relevance of the results is ensured by using inflow data 
and salient features of existing "real world" reservoir systems. 
Since the computations serve the purpose of clarification of algorithmic details and 
uncertainty aspects the results presented in this study do not refer to the actual operation 
and performance of the respective reservoirs. 
This report is a publication in a series of dissertations, theses and reports concerning 
different research issues in reservoir operation. This broad-based research activities of a 
dedicated international team had started at the Asian Institute of Technology, Bangkok, 
Thailand in the mid eighties and continued at the Wageningen Agricultural University, 
Department of Water Resources from 1989 onwards. 
The present report documents the joint efforts of the research team to provide a detailed 
analysis and practical recommendations towards the applicability of SDP in deriving 
reservoir operational rules. 
Computational work and a draft of the report was done by Mrs. He. Next to the authors 
Prof. Dr. Paul van Beek, Department of Mathematics contributed substantially to this 
report through his advice, corrections and recommendations. His involvement as well as 
the critical review by Drs. PJ.J.F. Torfs, Department of Water Resources, Wageningen 
Agricultural University are most appreciated. 

Prof. Dr.-Ing. J.J. Bogardi, Wageningen, February 1995 
Chairman Department of Water Resources 



Abstract 

Stochastic Dynamic Programming (SDP) technique has been used in the operational policy 
analysis of water resources systems over the past several decades. However, those studies 
indicate that certain algorithmic aspects of SDP have to be studied further to facilitate the 
application of it to real world reservoir operational problems. 

This study focuses on four major aspects of the SDP model: (a) Markov inflow transition 
probability matrix and its role in SDP models; (b) the influence of different decision variables 
and inflow state variables on the performance of the SDP model; (c) the suitability of the 
different inflow serial correlation assumptions; and (d) the appropriateness of the objective 
function in the SDP model and the performance evaluation criteria. 

The characteristics of a Markov chain and the convergence behaviour of the SDP model are 
analyzed through a real world application. Large number of zero elements in transition 
probability matrices seems to be the cause for failing to satisfy the convergence criterion, 
stabilization of expected annual increment of the objective function value, in the SDP model. 
The study shows mat the substitution of these zeros with reasonably small values is a suitable 
method to overcome the above problem. 

Several versions of the SDP model with different decision variables and inflow state variables 
are employed to study their influence on the performance of the SDP model. The variable, 
which is directly related to the objective of optimization, seems to be preferred as the 
decision variable. The choice of the inflow state variable considerably affects the operation 
of the system if the selected decision variable is not directly related to the objective of 
optimization. 

The suitability of different inflow serial correlation assumptions in the SDP model is 
examined through models formulated based on Markov-I, Markov-II, independence and 
deterministic inflow assumptions. The analysis indicates that the SDP model becomes 
insensitive to the above inflow assumptions if the selected decision variable is directly related 
to the objective of optimization. A comparison among the above assumptions is made based 
on the complexity involved in the computations, the length of inflow time series available, 
time step length considered in optimizations and errors possible in inflow forecast. 

Several different objective functions are introduced into the SDP model to study their 
influence on the resulting reservoir operation performance. The selection of the most 
appropriate objective in the formulation of the SDP optimization seems to be important for 
its success. The simulated objective function value is an inadequate indicator to measure the 
performance of the optimization. The study shows that some risk-related performance indices 
such as reliability, vulnerability and resilience are more suitable in the evaluation of the 
reservoir performance. 
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1 Introduction 

1.1 Reservoir Operation Optimization 

The history of man-made reservoirs can be traced back hundreds of years. Perhaps at the 
beginning, the "water reservoir" was not more than a huge tank to store water during the wet 
season for the use during the dry season. Today, with the development of the civilization, 
reservoirs can be found all over the world. The reservoirs can serve single or multiple 
purposes including hydropower generation, water supply for irrigation, industrial and 
domestic use, flood control, improvement of water quality, recreation, wildlife conservation 
and navigation. The effective use of reservoir systems has become increasingly important. 

For many years the rule curves, which define ideal reservoir storage levels at each season or 
month, have been the essential operational rule. Reservoir operators are expected to maintain 
these levels as closely as possible while generally trying to satisfy various water needs 
downstream. If the levels of reservoir storage are above the target or desired levels, the 
release rates are increased. Conversely, if the levels are below the targets, the release rates 
are decreased. Sometimes operation rules are defined to include not only storage target levels, 
but also various storage allocation zones, such as conservation, flood control, spill or 
surcharge, buffer, and inactive or dead zones. Those zones also may vary throughout the year 
and advised release range for each zone is provided by the rules. The desired storage levels 
and allocation zones mentioned above are usually defined based on historical operating 
practice and experience. Having only these target levels for each reservoir, the reservoir 
operator has considerable responsibility in day-to-day operation with respect to the appropriate 
trade-off among storage levels and discharge deviations from ideal conditions. Hence, such 
an operation requires experienced operators with sound judgement. 

To counteract the inefficiency in operating a reservoir system only by the "rule curves", now 
additional policies for operation have been incorporated into most reservoir operation rules. 
Those operation policies define precisely when conditions are not ideal (e.g., when the 
maintenance of the ideal storage levels becomes impractical), the decisions to be made for 
various combinations of hydrological and reservoir storage conditions. For some reservoir 
systems, this type of operation policy has already taken over the rule curves and is acting as 
the principal rule for reservoir operation. 

Over the past two to three decades, increasing attention has been given to system analysis 
techniques for deriving operation rules for reservoir systems. As a result, a variety of 
methods are now available for analyzing the operation of reservoir systems. In general, these 
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techniques lead to models, which can be classified into two categories: optimization models 
and simulation models. These categories are complementary. Simulation models can 
effectively analyze the consequences of various proposed operation rules and indicate where 
marginal improvements in operation policy might be made. The technique is not very 
appropriate in selecting the best alternative rule from the set of possible alternatives. Usually 
there are too many alternatives to be simulated and compared. Therefore, optimization models 
are often used to indicate which alternatives are most likely to be better man the others. 

Linear Programming (LP) and Dynamic Programming (DP) have been the most popular 
among the optimization models in deriving optimum operation rules for reservoir systems. 
Linear Programming is concerned with solving problems in which all relations among the 
variables are linear, both in the constraints and in the objective function to be optimized. The 
fact that most of the functions encountered in problems with reservoir operation are nonlinear 
has been the main obstacle to the successful use of LP in this area. Although linearization 
techniques can be employed, this might not be satisfactory. The degree of the approximation 
required in the linearization process can seriously affect the reliability associated with this 
technique. 

Dynamic Programming, a method that breaks down a multi decision problem into a sequence 
of subproblems with few decisions, is ideally suited for time sequential decision problems like 
deriving operation policies for reservoirs. Hall and Dracup (1970) stated that DP possesses 
substantial advantages for analysis of such a system. Because it can treat the nonconvex, 
nonlinear discrete variables and is generally more amenable to stochastic inputs. However, 
in the DP model, the separability condition of the objective function limits some applications. 
Thus a careful choice of the setup of the model (e.g., stage, state, decision, objective and 
constraint) is essential. 

1.2 Reservoir Operation Optimization Under Uncertainty 

Uncertainty has always been a serious problem in reservoir operation optimization. 
Uncertainty is present in many factors that affect the performance of systems, such as future 
hydrological, economic, human, technological conditions, etc.. Among them the uncertainty 
of future hydrology (i.e., reservoir inflow) is of extreme importance to water reservoir 
systems and is evidently regarded as a major issue in reservoir operation optimization. 

There are many ways to deal with the uncertainty of reservoir inflows, depending on its 
severity and on its influence on the operation of the system. The simplest approach is to 
replace the uncertain inflows, either by their expected mean values or by some critical values, 
and then proceed with a deterministic approach. However, substituting the random inflows 
by an expected mean value is unacceptable when there is a large variation in the inflow time 
series. In this situation, any single value would not be a safe approximation of the inflow 
variable. 

Besides the deterministic approach of using the expected mean inflow value, there exists 
several stochastic models that can be applied to solve the reservoir operation problem 
considering the inflow uncertainty. These models can be classified into two major schemes: 
"implicit" and "explicit". 



In the so called "implicit" stochastic model approach, a number of synthetic inflow sequences 
are generated using a time series model. The system is then optimized for each inflow 
sequence, and operation rules are found by using multiple regression on the optimized 
operation sequences. During the optimization phase the synthetic data series are considered 
deterministic. Monte Carlo Dynamic Programming (Young, 1967) is a well known example 
of the implicit stochastic model approach. A serious drawback inherent in the implicit 
approach is that it may never be possible to derive the theoretical optimum. Besides, the form 
of the equation for regression analysis (the independent variables to be included and the way 
they should be treated) and the error estimation are continuously open to discussion (Loucks 
and Sigvaldason, 1979). 

The "explicit" stochastic approach uses the probability distribution of the inflows. It is 
introduced into the optimization formulation by either a substitution of the expected value for 
the system objective or a failure chance permitted for the system. Most of the so called 
explicit models are extensions of well known deterministic models, either LP or DP, to the 
stochastic situation. Well developed explicit stochastic models include the so called Policy 
Iteration Method (Howard, 1960), Stochastic Dynamic Programming (Butcher, 1968), 
Stochastic Linear Programming (Loucks, 1968), Chance-constrained Linear Programming 
(ReVelle et al, 1969), Reliability-constrained Dynamic Programming (Askew, 1974a), and 
Reliability Programming (Colorni and Fronza, 1976). 

1.3 Review of the Explicit Stochastic Models 

Three of the explicit stochastic models, among those mentioned above, can take the serial 
correlation of the random inflow process into consideration. These are Stochastic DP, Policy 
Iteration and Stochastic LP. 

Stochastic DP simply combines the stochastic nature of inflows into the deterministic DP by 
optimizing the expectation of the original objective. In stochastic DP, the release decision is 
found at each stage upon each storage and inflow state, which maximizes the expectation of 
the objective value in the remaining stages (calculated with an appropriate recursive equation). 
The procedure is applied successively at each stage going backward until the policy becomes 
steady. 

The Policy Iteration is, as its name implies, an iteration method. It generally aims to improve 
the expectation of the objective value through a trial-and-error strategy. This method has two 
phases. One is called Value-Determination Operation, and the other Policy-Improvement 
Routine. During the Value-Determination Operation, a set of linear simultaneous equations 
has to be solved to find objective related values for any given release policy. During the 
Policy-Improvement Routine, for each (storage and inflow) state in each stage, a new set of 
policies is determined (through an appropriate recursive equation) based on the previous 
knowledge of the objective related values. The iteration cycle is supposed to terminate on the 
achievement of a steady state policy. 

The Stochastic LP, however, has certain significant differences as compared with the other 
two models. In Stochastic LP, the decision is defined as the steady state joint probability 
instead of steady state policy. Like the other two models, Stochastic LP also maximizes the 
expectation of the objective. The objective function is the sum of all states, stages, inputs and 



decisions (the joint probabilities that the steady state policies have). Therefore, a large set of 
linear equations has to be solved simultaneously to find the set of probabilities that maximize 
the expectation of the objective. Knowing the optimal values of joint probabilities of the 
system states, stages and inputs, the conditional probabilities of the final storage volumes for 
the given initial storage volumes and inflows in the corresponding stages are calculated for 
the derivation of the final operation policy. 

Many comparison studies among these three explicit stochastic models have been carried out 
(Gablinger and Loucks, 1970; Loucks and Falkson, 1970). All the results are in favour of 
Stochastic DP model. Although the information derived from each model yields an identical 
policy, the computational efficiencies of each model differ considerably. Stochastic DP takes 
the least amount of computer time. For a simple problem presented by 
Gablinger and Loucks (1970), Stochastic DP obtained a steady state policy in about one 
twentieth time required by the Stochastic LP. 

Perhaps, the accuracy is more important than the speed. There is no doubt that the number 
of simultaneous linear equations that can be accurately solved on present computers is much 
less than the number that may be required for any real world reservoir operation problem. 
While solving large numbers of simultaneous linear equations, computer round-off and 
truncation errors may result in an initially feasible solution rendering it infeasible. This limits 
the size of the problem that can be examined using techniques such as Stochastic LP and 
Policy Iteration (Chaturvedi, 1987). 

Furthermore, the stochastic DP model is very flexible. It has the ability to adjust easily to 
various problem environments by varying the state variables, decision variables, objective 
functions and constraints, etc., of the model. It can deal not only with Markov inflow process 
(lag-one serial correlation) as it was originally introduced for, but also with more (or less) 
complicated stochastic inflow processes. For example, the model Reliability-constrained 
Dynamic programming is in fact an extension of the version of Stochastic DP that assumes 
inflow as an independent process. The only difference in the Reliability-constrained DP is that 
an additional constraint or a penalty is introduced to limit the failures that could happen 
during the operation horizon. 

The three remaining explicit stochastic models, which were mentioned in Section 1.2, 
i.e., Chance-constrained LP, Linear Decision Rule and Reliability programming can be 
considered as one group. Among this group, Chance-constrained LP model is the basic 
model. Linear Decision Rule is introduced to allow easy formulation of chance constraints. 
Reliability Programming is developed to overcome difficulties in identifying a specific 
reliability as a chance constraint. 

The optimum operation policies designed to maximize expectation of the objective value, if 
followed strictly, may sometimes allow the system to fail on many occasions. The probability 
of such failures may be greater than can be permitted. In the Chance-constrained LP type of 
models, the inflow probability condition is reflected in the constraints. They aim to constrain 
the optimization to those decisions that represent a failure probability smaller than an 
acceptable level. A major advantage of this type of models is that they can be converted into 
deterministic equivalent after the accepted level is specified. 



In general, the usefulness of this group of Chance-constrained LP models is seriously limited 
due to the following facts: (a) they can only deal with linearly structured problems, whereas 
the problems in reservoir operation are mainly nonlinear; (b) they derive "rule curve" type 
of operating rules than a detailed operation policy, which is more needed in the modern 
reservoir operation; (c) they are based on the too rigid assumption that each inflow in each 
period is critical. 

1.4 Identification of the Task 

The previous review reveals that Stochastic Dynamic Programming (SDP) is a model with 
great potential. Having the nature of Dynamic Programming, SDP can handle non convex, 
nonlinear discrete variables. Furthermore, this approach generates an operation policy 
comprising storage targets or release decisions for all the possible reservoir storages and 
inflow states in each month (i.e., precise operation policy), than a mere single schedule of 
reservoir releases (rule curve operation rules). After all, it is a flexible model that could be 
adjusted easily to various problem environments. 

Since it has inherent merits, SDP has been well received as a long term (monthly or annually) 
reservoir operation optimization model. Over the past twenty years it has attracted 
considerable attention and has resulted in a long list of related studies (see Chapter 2). 

Many of those studies, however, indicate that certain algorithmic aspects have to be studied 
further to facilitate the application of SDP model to real world reservoir operation problems. 
For example, although many SDP formulations (different choices of state variables, decision 
variables, inflow serial correlation assumptions, objectives and constraints, etc.) are feasible, 
the suitability of each formulation for a particular problem at hand is still to be analyzed. Yet, 
another problem experienced is the large number of zero elements in the estimated inflow 
transition probability matrices, due to the absence of long time series of hydrological data. 

It is now an appropriate time to step back and try to view the structure of the model in its 
proper perspective and to develop some guidelines for the appropriate application of the SDP 
model in real world reservoir operation problems. 

1.5 Objectives and Scope of the Study 

The general goal of this research study is to obtain some insight or perception of SDP model 
construction and its application. This research aims at achieving this general goal by focusing 
on the following four specific objectives. 

I. In most applications of SDP based reservoir operation optimization, a Markov inflow 
process has been assumed. The stochasticity of inflow is expressed by inflow transition 
probability matrices for each successive time step, based on observed inflow records. The 
transition probability matrices coupled with the Bellman recursive relation lead to expectation 
oriented optimal strategies. Due to the limited length of the historical inflow time series, the 
estimated numerical values of the elements in the probability matrices are unreliable. Also, 
many elements remain void. Under certain circumstances, it causes the problem that the 
convergence criterion of the SDP model can only be partially fulfilled. 



The first objective of the research is to find effective means to circumvent the problem caused 
by the poorly structured estimation of the Markov inflow transition probability matrices. 

The study attempts to reach the first objective though the following three steps, (a) The 
interconnection between the characteristics of a Markov chain (the discretized presentation 
of the Markov process) and the convergence behaviour of the SDP model is analyzed, (b) The 
influence of the Markov inflow transition probability matrices has on the resulting SDP policy 
is studied through a real world case study, (c) Based on the studies of (a) and (b) a simple 
and effective method that would alleviate the problem is proposed. 

II. For any DP type of model, the careful choice of state and decision variables is crucial 
for the success of the model. There are two versions of stationary SDP models, which have 
been widely applied in reservoir operation optimization. One is the model having release as 
the decision variable, with previous inflow and initial storage as state variables. The other is 
the model with final storage as the decision variable, with present inflow and initial storage 
as state variables. These models have been developed and used by different groups of 
researchers in different problem environments. However, little has been known about their 
relative performance during reservoir operation optimization. Until now, the importance of 
the choice of the decision variable has been neglected. There also exist controversial remarks 
in literature regarding the choice of different inflow state variables. 

The second objective of this research is to study the characteristics of different SDP models 
that are defined with different decision variables and inflow state variables. 

The study attempts to reach the second objective through the following three steps, (a) The 
relevant studies in literature regarding the choice of decision and inflow state variables in 
SDP model are reviewed, (b) Besides the two existing versions, two more alternatives of the 
model are developed and a comparative study between these model versions is carried out 
using the same decision base (thus comparing the different choices of inflow state variables) 
or the same inflow state base (thus comparing the different choices of decision variables), 
(c) The suitability of the choices of decision variables and inflow state variables in the SDP 
model are tested and evaluated through this comparative study. 

III. An important issue in the literature on reservoir operations concerns the appropriate 
serial correlation assumptions for stochastic inflow sequences. When the SDP model was 
originally introduced into reservoir operation optimization, the inflow sequence had been 
assumed to be a Markov (i.e., Markov-I) process. Later, independence assumption has also 
been introduced into SDP based reservoir operation optimization. However, a clear picture 
on the pros and cons of the two assumptions is not available up to date. In theory, the model 
should reflect the nature of the inflow serial correlation, if this correlation has been identified 
as important. Yet, the growing error in parameter estimation with the growing complexity 
of the model sets practical limits to the validation of such a requirement. 

The third objective of the research is to obtain insight into the characteristics of different SDP 
models that are defined by different inflow serial correlation assumptions. 

The study attempts to reach the third objective through the following three steps, (a) Besides 
the models with Markov-I and independence assumptions, two other models are developed. 
They are used to obtain an overall picture of the relation between the serial correlation 



assumptions and performance of the SDP model. One of the models developed considers the 
serial correlation one step further than the Markov-I assumption: i.e., SDP model with 
Markov-n assumptions. The other model interprets the inflow process even simpler than the 
independence assumption does: the model with the assumption that the inflow is deterministic, 
(b) The inherent connection among each of the transition probability matrices, which 
correspond to different inflow serial correlation assumptions, are discussed from a theoretical 
point of view, (c) The applicability and suitability of each inflow serial correlation assumption 
is tested and evaluated by means of six experiments. 

IV. Simulation studies of reservoir system operation utilizing SDP based rules revealed 
that the simulated objective function value as an inadequate indicator to characterize the 
performance of a reservoir system. Bogardi et al. (1991) have noticed, for example, that for 
the Mahaweli reservoir system in Sri Lanka the value of the simulated average annual energy 
generation varies very little when different objective functions are used in SDP models. 
Besides the simulated objective function value, a number of (reliability-related) performance 
indices can be used to describe the operational behaviour of the reservoir system upon the 
application of a certain release policy (Bogardi and Verhoef, 1991). 

The fourth objective of the research is to obtain more insight and systematic knowledge on 
the subject of objective functions and performance evaluation criterion. This part of the work 
is in fact a continuation of the initial studies by Bogardi et al. (1991). 

The study attempts to reach the fourth objective through the following four steps, (a) The 
difficulties in the selection of the objective functions are discussed and some possible 
improvements are considered, (b) Several reasonable choices of the objective function are 
introduced into the SDP model to study their influence on the resulting reservoir operation 
performance, (c) Besides the often used performance indices of simulated objective values, 
some risk-related performance indices are also adopted as performance evaluation criteria to 
obtain a more complete picture of the reservoir performance, (d) Experiments are carried out 
with a real case study to examine the interaction between objective functions and the 
performance evaluation criterion. 

This report is organized into 9 chapters. Chapter 1 to 4 contain general information and 
background knowledge of the present research. Chapter 1 is a general introduction to the 
research. Chapter 2 gives a "bibliography" of the application of the SDP model in the 
reservoir operation optimization. In this chapter many important related publications are 
briefly reviewed chronologically. Chapter 3 gives a general description of the formulation and 
calculation procedure in the SDP approach. This chapter introduces the terminology and 
concepts for the study reported in the following parts of the report. Chapter 4 describes the 
reservoir systems selected for the case study. In the present research three different reservoir 
systems have been selected as reference systems. The reason for the selection of these 
systems is briefly explained at the beginning of Chapter 4. Chapter 5 to 8 are the four major 
chapters of the report that contain the contribution of the present research with respect to the 
earlier mentioned four research objectives. The Markov inflow transition probability matrix 
is the subject matter of Chapter 5. Decision and inflow state variables are studied in 
Chapter 6. Chapter 7 focuses on inflow serial correlation assumption. Objective and 
performance evaluation are analyzed in Chapter 8. Conclusions and recommendations are 
presented in Chapter 9. References and appendices are provided at the end of the report. 



2 Literature Review 

There are many reviews of mathematical programming models in reservoir operation. 
Yakowitz (1982) has provided a thorough insight on the application of dynamic programming 
models to various water resources problems. Yeh (1985) reviewed the state-of-the-art of the 
reservoir management models. Reznicek and Cheng (1991) presented a review of the 
implementation of uncertainties in reservoir management models. 

This chapter is focused on the literature regarding the application of stochastic dynamic 
programming models in the field of reservoir operation optimization. It aims at giving a 
general view upon the development of optimization models. In this chapter, all the relevant 
studies are listed and reviewed chronologically. The literature regarding the four subject 
matters, i.e., Markov transition probability matrices, decision and inflow state variables, 
inflow serial correlation assumptions, objective function and performance evaluation are 
discussed further in Chapters 5, 6, 7 and 8 respectively. 

The origins of dynamic programming, inventory theory and reservoir management are 
intimately interconnected. Masse (1946) is considered to be the first (Arrow et al., 1958; 
Hadley and Whitin, 1963; and Sobel, 1975) to achieve a satisfactory solution to an inventory 
problem with non negative variables. Masse's study concerned reservoir operations and he 
employed the functional equation approach, which lies at the base of dynamic programming. 
The earliest stochastic reservoir operation optimization study published in english language 
appears (cf., Yakowitz, 1982) to be the work of Little (1955), who has considered the 
operation of a simplified reservoir system. 

Little's model departs from the model for deterministic reservoir operation by assuming 
inflows to be observations of a stochastic sequence. Little chose the Markov assumption that 
the conditional probabilities for the present inflows can be defined completely by the previous 
inflow. The Markov assumption was not supported by statistical analysis. But Little 
mentioned that the much more convenient independence assumption was discarded because 
it is "... untenable for river flow". Little applied his model to data from the Grand Cooley 
generation plant on the Columbia River, USA. The time horizon was taken to be one year, 
and it was divided into 26 decision periods with a time interval of 2 weeks. The optimization 
was carried out backward through a recursive equation, and the transition matrix was inferred 
from 39 years of historical flows. The highly nonlinear single-stage loss function for the 
numerical study reflected the amount of water at a given head required to generate a given 
amount of electricity, and the cost of failing to meet a specified demand. His model derived 
the optimal release strategy as a function of the storage volume at the start of each time 
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interval and the inflow at the previous time interval. The computed optimal strategy was 
compared with that of the "rule curves" then in use, over the 39 year historical record. A 
relative improvement using the optimal strategy was detected. 

The early work of Little in this direction was modified by many researchers, based on the 
theory of Dynamic Programming (Bellman, 1957). 

Butcher (1968, 1971) adapted the model of Little (including the Markov inflow assumption) 
to a realistic case study. Butcher (1971) applied the so called (discrete) stochastic dynamic 
programming to find the optimal stationary strategy for operating the Wataheamu Dam along 
the California-Nevada border, USA. In his model the release decision was defined by initial 
storage and previous inflow states. The optimization calculation process was carried out based 
on Bellman's Principle of Optimality. Starting at sometime in future and using the connection 
between the flow in one time period and the adjacent time period, the value of release at each 
time period was calculated backward through a recursive equation. Butcher specially noted 
that under certain circumstances, this policy is said to converge when the values of release, 
which are used to evaluate the objective value, repeat for all of time periods t, as t becomes 
large enough. These steady state releases then form an optimal policy for the operation of that 
reservoir. 

Schweig and Cole (1968) adapted the Little (1955) model to a two-reservoir problem. 
Through discrete stochastic dynamic programming, they computed an optimal strategy for a 
problem based on data from the Lake Vyrnwy, Wales. Despite very coarse discretization 
(e.g., the state coordinates for past inflows were discretized into only two levels), the authors 
reported severe computational difficulties; the so called "curse of dimensionality". 

Gablinger and Loucks (1970) examined discrete stochastic reservoir operating models based 
on serially correlated Markov inflows with both linear and dynamic programming techniques. 
In the original version of the Stochastic LP model, the decision was defined based on the 
initial storage and present inflow instead of the previous inflow. Therefore, to make the two 
models (linear and dynamic) comparable, they introduced a new version of the SDP model. 
It used the present inflow instead of the previous inflow as the inflow state variable. The 
version of SDP assumed that the present inflow was known at the beginning of the period (or 
a forecast is possible with 100% certainty); thus the present return from the recursive relation 
of the SDP model was deterministic. The detailed formulation of the model was well 
described by Loucks et al. (1981). Their comparative study revealed that both DP and LP 
models result in the same optimal policy, but the requirements in computing time are 
different. The stochastic dynamic programming approach seemed faster. The authors 
suggested that the reason for the relatively poor performance of the linear programming 
method was due to its requirement of more solution variables in the transition compared with 
the dynamic programming method. Specially, the number of control values to be determined 
by the linear programming solution equals the product of the number of the discretized points 
in state and policy spaces, multiplied by the number of decision times. Whereas the number 
of control variables to be solved in the discrete dynamic programming formulation is only the 
product of the number of state values multiplied by the number of decision times. If there are 
10 decision times, and if everything in a bivariate space (as in the Little model) is discretized 
into 10 levels, the number of solution variables to be dealt with by dynamic programming is 
103, whereas the number of variables to be dealt with by linear programming is 104. 



Loucks and Falkson (1970) examined three types of discrete stochastic reservoir operating 
models based on serially correlated Markov inflows: linear, dynamic and policy iteration 
(Howard, 1960). They all lead to the same optimal policy but the requirements in computing 
time were different. The stochastic dynamic programming approach was observed to be the 
fastest. 

Arunkumar and Yeh (1973) used SDP to maximize the firm power output accompanied by 
a penalty function for not meeting the specified firm power level. They also proposed a 
heuristic decomposition approach for a multireservoir system. The approach consists of fixing 
a stationary policy for (m-1) reservoirs (i.e., 2, ..., m) and optimizing with respect to 
reservoir 1. The optimized policy of reservoir 1 replaces the initial policy of reservoir 1, and 
then reservoir 2 is chosen for optimization while release rules for reservoir 1,3 m are 
fixed, and so on. This procedure is continued until either the policies do not change or the 
successive improvement in the infinite time horizon return functions are uniformly bounded 
by some desired level. The existence of stationary optimal policies has been shown by Ross 
(1970). Arunkumar and Yeh applied the decomposition approach to a two parallel reservoir 
system, the Shata and Folsom reservoirs of the California Central Valley Project, USA. The 
algorithm started with the determination of the optimal release rules for Shata, independent 
of Folsom. The "flip-flop" decomposition algorithm was applied repeatedly interchanging the 
two reservoirs until the improvement between successive approximations of the reward 
function was uniformly bounded by a small number. 

Su and Deininger (1974) applied the model and methodology of Little (1955). They examined 
both independent and serially correlated Markov flows and derived the probabilities of 
occurrence of the flow intervals from the relative frequency with which the historical data fell 
into these intervals. As the flow intervals and storage state intervals were not of the same 
size, the state transition for a given inflow interval might not fall into a single output storage 
state interval in Su and Deininger's scheme. They proposed a second order interpolation 
scheme to compute the probabilities of occurrence of the output storage states in the 
optimization of the objective function. Data from the Lake Superior served as a basis for their 
computations. They noted that the "unreal" assumption of independent inflows (the inflows 
are serially correlated) did not influence very much the optimal strategy for the studied 
problem. 

Askew (1974a, 1974b) used stochastic dynamic programming (with independent inflow 
assumption) and simulation technique to derive the optimal policy that maximizes the expected 
net benefits. By introducing a penalty function in the recursive equation, to reduce the net 
benefits every time the demand is not met, an amended policy can be derived that has lower 
target releases and hence a smaller associated probability of failure. A simulation technique 
was used to estimate the value of the average number of failure associated with the optimum 
policy. 

Klemes (1977) studied the discrete representation of storage for stochastic reservoir 
optimization. He pointed out that the number of storage states is subjected to some absolute 
constraints. Also, it must increase linearly with the reservoir storage capacity so that 
comparability of results is assured. He demonstrated, both theoretically and with the aid of 
a numerical example, that a too coarse discrete storage representation can not only impede 
accuracy but may completely distort reality in most unexpected ways. 
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Alarcon and Marks (1979) presented a SDP model to study guidelines for the operation of 
the High Aswan Dam in Egypt. The study considered the conflicting nature of the purposes 
for which the dam was to be operated. The policies obtained by the SDP model were tested 
using a simulation model. The results were compared with the ones obtained by operating the 
system using a simple heuristic approach. 

Gal (1979) presented a pilot study of a method for finding an approximation for the optimal 
policy of a system, which contains one surface water reservoir and two underground aquifers. 
In the model, the state of the reservoir was represented by the water storage volume in the 
reservoir at the beginning of each time period and the inflows into the reservoir for the two 
previous time periods. Since this system was too large to be solved by the usual SDP 
approach, a method was devised to obtain an approximate solution that did not consume too 
much time or space. This method was referred to as the parameter iteration method. 
However, it was noted that contrary to the usual SDP approach, the parameter iteration 
method is not fully automatic. Further, the user was expected to have a good understanding 
and intuition about the behaviour of the considered system. Because good results depended 
on successful choice of some parameters. 

Turgeon (1980) proposed two methods to alleviate the problem of dimensionality. The first, 
called one-at-a-time method, consists of breaking up the original problem into a series of one 
state variable sub-problems, which are solvable by DP. The second method, called 
aggregation/decomposition method, consists of breaking up the original n-state variables 
stochastic optimization problem into a n stochastic optimization sub-problems of two state 
variables each, which are also solvable by DP. However, the final result was an optimal local 
(or a sub optimal global) feedback operating policy for each reservoir of the system. 

Loucks et al. (1981) presented a SDP model, which is different compared with the 
Butcher's (1971) version of the model. In Loucks' model, the generated sequential operating 
policies define the final storage volume as a function of the initial storage volume, which is 
known, and the inflows in the current period, which are not known until the end of the 
period. Since the policy is to be implemented starting at the beginning of each period prior 
to a knowledge of the inflow at that period, the above policy cannot be implemented right 
away. One way to implement this type of operating policy in real time operation is to 
reformulate the sequential operating policy in a way that does not depend on unknown future 
inflows. It can be done by identifying either a final storage volume target, subject to 
limitations on the releases, or by identifying reservoir release targets subject to limitations 
on the final storage volumes, in each period. Another way to implement mis type of policy 
is to employ inflow forecast. In spite of additional errors involved in forecasting inflows, the 
model does open the way for reservoir operators to operate the system based on the most 
up-to-date knowledge of inflow. 

Stedinger et al. (1984) presented a stochastic dynamic programming model, which is based 
on Louck's formulation. It uses the best forecast for the current period's inflow to implement 
the reservoir release policy. They claimed that the use of the best inflow forecast as an inflow 
state variable, instead of the preceding periods inflow, results in substantial improvements in 
simulated reservoir operations with derived stationary reservoir operation policies. However, 
the optimal policy derived in this way was conditioned on inflow forecast, which had been 
integrated in the model. This unnecessary additional restraint limited the applicability of the 
model. 
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Goulter and Tai (1985) applied SDP to model a small hydroelectric dam system. They 
addressed the aspect of discretization of the storage space in the modelling process. They 
found that using too small numbers of storage states can result in unrealistic high skewness 
in the storage probability distribution functions and therefore, affect the optimal operation 
policy. On the other hand, the computational burden may limit the number of applicable 
storage states that can be considered in the model. 

Nandalal and Bogardi (Nandalal, 1986; Bogardi and Nandalal, 1988) used a SDP model 
(which is similar to Louck's version with respect to decision and inflow state variables) to 
derive operation policies for two serially linked multipurpose (irrigation and energy 
generation) reservoirs on the Mahaweli River in Sri Lanka. The joint transitional probabilities 
of inflows were defined based on a Markov chain. The discrete time series and their 
probabilities were used to approximate the continuous distribution of the inflows. The model 
has the objective of maximizing expected annual energy generation subjected to the constraint 
of satisfying average annual irrigation requirement. Besides the SDP model, a deterministic 
DP model based on the incremental DP (IDP) was also formulated. The developed operational 
policies based on the SDP model were verified through simulation and were compared with 
the optimum operation of the system obtained by the deterministic method. They pointed out 
again the problem of the "curse of dimensionality". 

Budhakooncharoen (1986) studied the operation of a hydro-power plant using the IDP and 
SDP (Louck's version) formulations. The models have the objective to maximize the expected 
annual energy generation. The derived operational policies were compared with historical 
operational records of the Kariba Reservoir on the Zambezi River, Central Afrika. A 
sensitivity analysis was carried out by varying the installed capacity of the power plant, the 
size of the reservoir, and the minimum drawdown level to identify potential increase of the 
installed power generation and/or the reservoir capacity. 

Karamouz and Houcks (1987) formulated two dynamic programming models, one 
deterministic and the other stochastic (Butcher's version), to determine reservoir operating 
rules. These formulations were then tested with 12 cases of monthly operation of single 
reservoirs. The deterministic model (named DPR) constituted an algorithm that cycled 
through three components: a dynamic programme, a regression analysis and a simulation. The 
stochastic dynamic programme (SDP) considered the inflow with a discrete lag-one Markov 
process. To test the usefulness of both models in generating reservoir operating rules, 
real-time reservoir operation simulation models were constructed for three hydrologically 
different sites. The rules generated by DPR and SDP were then applied in the operation 
simulation model and their performances were evaluated. It was concluded that the DPR 
generated rules are more effective in the operation of medium to very large reservoirs and 
the SDP generated rules are more effective for the operation of small reservoirs. They 
showed that the DPR model is more sensitive to the number of characteristic storages and 
requires usually a large number of storage state variables to function properly. Especially 
when the reservoir is fairly large (1.0 - 1.7 times the mean annual flow). 

Tai and Goulter (1987) developed a heuristic stochastic dynamic programming model to 
derive a monthly operation policy for a " Y" shaped hydroelectric system consisting of three 
reservoirs. The unique feature of this system was that it had two upstream reservoirs without 
any hydroelectric generating capacity and with only the storage regulation structures. The 
author concluded that two upstream reservoirs must respond to the requirements of the 
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downstream station. Under this principle, they described a heuristic approach for this 
particular system. The method started with finding an optimum operation of the downstream 
reservoir using the historical data. Then the resulting optimal operation policies were used 
to determine relative weights or targets for finding the optimal operation policies for the 
upstream reservoirs. New input inflows to the downstream reservoir were then computed by 
running the historical inflow records through the optimal policies for the upstream reservoirs. 
Subsequently, optimal policies for downstream units were computed. This resulted in new sets 
of targets for upstream units. This iterative process terminated when the same overall system 
benefits for two successive iterations were achieved. It was shown that the best results with 
respect to accuracy and the requirement of computational efforts, could be obtained with nine 
storage state variables. The authors also mentioned that the number of storage states causes 
the problem of the "trapping states". 

He and Bogardi (He, 1987; He and Bogardi, 1990a; He and Bogardi, 1990b) studied a 
strategy based on a single reservoir stochastic dynamic programming (Louck's version) 
concept to obtain operation policies for a system of three tandem reservoirs in Northern 
China. In the study, the concepts such as hypothetical composite reservoir and iterative 
SDP/simulation were introduced to break up the large and complicated original problem of 
multireservoir optimization into some simpler sub-problems that can be solved separately. 
Besides, the impact of different objective functions such as minimizing reservoir spillage, 
minimizing quadratic deviation from downstream water demand and maximizing reservoir 
releases were investigated. 

Shrestha (1987) applied SDP to derive optimal operation policies for a hydropower system, 
which was in the planning stage. Simulation of the system operation was carried out based 
on the SDP based optimum policy to evaluate the system performance. Finally the optimum 
system configuration was selected by comparing die performance values obtained for the 
different configurations. 

Bogardi et al. (1988) investigated the impact of varying the number of storage and inflow 
classes upon the operational performance of SDP for both single and multiunit reservoir 
systems. Their results indicated that by simply increasing the number of storage classes 
beyond certain limits, the system performance would not improve dramatically. They stated 
that emphasis should be placed on the "synchronization" of the number and size of storage 
and inflow classes, to check whether any improvement can be obtained this way. 

Laabs and Harboe (1988) presented three models based on dynamic programming technique 
including a deterministic model, a probabilistic model and a stochastic model (Butcher's 
version) for finding Pareto-optimal operating rules for a multipurpose reservoir. The complex 
stochastic model included several objective functions and weighting factors for each objective 
as needed in a compromise analysis of multiobjective decision making. As a result many 
pareto-optimal operating rules for the reservoir were obtained. The final selection of an 
optimal policy can be done only after real-time simulations with these operating rules (with 
historical and synthetic flow records) have been performed and a multiobjective selection 
criterion is applied to the results. 

Kularathna and Bogardi (Kularathna, 1988; Kularathna and Bogardi, 1990) extended the two 
serially linked reservoir system of the Mahaweli Development Scheme in Sri Lanka studied 
by Nandalal (1986) to a system comprising three reservoirs. Four different SDP based 
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techniques were tested for their applicability in deriving optimal operation policies for the 
system. The first technique was a sequent optimization approach, which optimized the cascade 
reservoir system starting from the uppermost reservoir, and proceeding downwards. The 
second approach considered the two downstream reservoirs as a single hypothetical composite 
reservoir. An iterative SDP/simulation based approach was introduced as the third technique. 
A conventional SDP algorithm had been used as the fourth approach, which considered the 
three-reservoir-in-series configuration in the optimization process simultaneously. Although 
not applicable in general, they concluded that the sequent optimization as the best approach 
to derive operation policies for that reservoir system. The operation policy derived by the 
three reservoir model can hardly be used as an adequate guideline for the actual operation 
because of its rough discretizations of river inflow and reservoir storage. 

Shrestha (1988) studied the optimum operation of a multipurpose water resources system 
based on a SDP model, considering both inflows and downstream irrigation demands as 
stochastic variables. The analysis was carried out with two types of objective functions: 
(a) maximization of expected annual energy generation, and (b) minimization of deviation of 
the release from the irrigation demand. Two serially linked reservoirs on the Mahaweli River 
in Sri Lanka were used for the case study. The simulation of the reservoir operations was 
carried out based on the SDP optimum policy to evaluate the system performance. The 
problem of the "curse of dimensionality" again limits the applicability of the model. 

Huang et al. (Huang, 1989; Huang et al., 1991) developed an Operational Mode Switch 
(OMS) system for the on-line operation of the Feitsui multipurpose reservoir situated in a 
typhoon-prone area, in Northern Taiwan. The decision about whether to and when to shift 
the operation back and forth between the long term "normal mode" and short term 
"emergency mode" was determined by the OMS model. The reservoir operation in "normal 
mode" followed SDP based release policies. Four types of SDP models were considered. 
Those are the SDP models based on current or past inflows, and conditional and 
unconditional inflow transition probabilities. Among the proposed four types of SDP, they 
concluded that the one with observed inflows performs better than the others with forecasted 
inflows. However, they pointed out that the conclusion may not hold under different 
hydrological regimes. Locating in a typhoon area, the case study system has the prominent 
feature that there will be inevitable substantial errors in the forecasted inflows. 

Kelman et al. (1990) developed an implicit type of stochastic model called Sampling 
Stochastic Dynamic Programming (SSDP) based on SDP. The model captures the complex 
temporal and spatial structure of the streamflow process by using a large number of sample 
streamflow sequences. The best inflow forecast can be included as a hydrological state 
variable to improve the reservoir operating policy. The authors illustrated the SSDP approach 
and its performance through its application to a case study of the hydrological system on the 
North Fork of the Feather River in California. 

Bogardi et al. (Bogardi and He, 1991; Bogardi el a/., 1991) revealed considerable 
insensitivity of the SDP based reservoir operation performance with respect to inaccuracies 
of the inflow data and their model representation. Furthermore, the simulated value of the 
objective function appeared to be an inadequate indicator to measure the impact of the 
selection of the objective function and constraint set, to be relied upon in the SDP 
computation. In the study, the potential reasons of the above described phenomena were 
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analyzed. The results of the study clearly showed the need to identify the key indices for 
various combinations of reservoir systems, objective functions and constraint sets. 

Bogardi and Verhoef (1991) demonstrated an example of evaluating the operation policies of 
a reservoir system derived according to SDP, by using performance evaluation indices, such 
as reliability, reparability and vulnerability. The reference reservoir system selected was the 
Mahaweli reservoir system in Sri Lanka. Their research confirmed that the traditional 
evaluation indices, such as the simulated value of the objective function and the output figures 
related to the constraints, are not sufficient for an adequate characterization of the SDP based 
operation performance. 

Kularathna (1992) applied aggregation/disaggregation techniques based on SDP (Louck's 
model) and simulation to analyze a complex water resources system in Sri Lanka. The 
identification of subsystems by their functional and physical characteristics was an important 
first step in the analysis. Subsequently each subsystem was represented by a hypothetical 
composite reservoir to arrive at an operation policy for the interface point of the subsystem. 
A more detailed analysis that considers the real configurations of the subsystems was 
performed by following this operation policy of the interface point. Two approaches: 
sequential optimization and iterative optimization were presented. In those approaches, each 
subsystem was individually analyzed using a two reservoir SDP model. 

15 



3 Model Description 

3.1 Stochastic Dynamic Programming (SDP) Models for Single Reservoir Operation 

3.1.1 Calculation Procedure of the Model 

Stochastic Dynamic Programming is an extension of DP that considers the stochastic feature 
of inflow. Therefore, the structure of SDP model, similar to that of the conventional DP 
model, is defined by stage, state and decision variables, objective function, constraints and 
recursive equation. To incorporate the stochastic feature of inflow, it is defined as an 
additional state variable. The probability of inflow can be estimated from the observed inflow 
time series, and thus the optimization is based on the expectation of objective values. 
Optimum operation policies are obtained by iterating the recursive equation for each stage in 
successive years until they become stable (converged). The procedure for calculation of the 
SDP model is summarized in Figure 3.1. Each step used in the calculation procedure is 
explained in the following subchapters. 

3.1.2 Stage 

In a SDP formulation of reservoir operation, time periods (e.g., month or week) are often 
considered as stages. Thus, one period represents one stage and the total number of periods 
in a year represent a cycle. Since a SDP model has to be solved backward, the last period 
of the cycle becomes the initial stage of the next cycle. Two indices have been used to 
describe the stage of the model clearly. One is the absolute index n, which denotes the total 
number of periods passed in the backward moving optimization. The other is the within-cycle 
index t, which denotes the number of the time period within the year cycle. The relationship 
between these two notations is shown in Figure 3.2. Tin Figure 3.2 is the total number of 
time periods in one year cycle (which is 12 if the length of time period is month). 

3.1.3 State and Decision Variables 

The storage volume of water in the reservoir at the beginning of the time periods represents 
the state of the system. To incorporate the Markovian nature of the streamflow, it is also 
defined as a state variable in SDP formulations. Therefore, a SDP formulation of a reservoir 
operational problem will have a two-dimensional state variable consisting of the storage 
volume and the inflow to the reservoir. 
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Figure 3.1 Calculation Procedure of the SDP Model 
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The decisions to be made at every stage are concerned with the reservoir releases contributed 
to the objective formulated in the objective function. Therefore, release during the period t, 
R„ is frequently the choice of the decision variable. Sometimes the idea can be also implicitly 
identified by specifying the storage at the end of stage t (i.e., at the beginning of stage t+1), 
St+1, as the decision variable. The relationship between the stage notation t and the other 
variables are as shown in Figure 3.3. Q, is inflow to the reservoir during period t. The 
suitability of various choices of decision and inflow state variables in SDP model will be 
investigated in Chapter 6. 
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Figure 3.2 Relationship Between Stage Notations 
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Figure 3.3 Relationship Between Stage Notation t and Other Variables 

3.1.4 Discretization of Storage, Inflow and Release Variables 

The active storage volume of the reservoir is divided into equally spaced storage intervals. 
The boundary values of these storage intervals are taken as the characteristic storage volumes 
falling within halves of the storage intervals above and below them. The smallest and the 
largest storage states correspond to the storage volumes at minimum operating level and at 
the full supply level, respectively. They represent only the feasible halves of the smallest and 
the largest storage classes. 

The historically observed minimum and maximum inflow values for each time period (stage) 
form the range of possible inflow for that time period. Two discretization schemes of inflow 
states are considered. In the first scheme, the domain of inflows is divided into equally spaced 
(uniform) inflow intervals. In the second scheme, the domain of inflows is divided into 
intervals in such a way so that an equal number of inflows fall into each interval. This may 
result in non-uniform interval sizes. In both schemes, the averages of the inflows fall into the 
intervals are chosen as the discrete values to represent inflow classes. 
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The range of profitable release volume is divided into equally spaced intervals. This range 
is from 0 upto the downstream water demand for the water supply system or upto a value that 
is comparable with the release capacity of turbine pipes for the hydro-power system. The 
boundaries of these release intervals are taken as the characteristic release states, representing 
release volumes falling within halves of the intervals above and below these states. Thus, the 
smallest and the largest release states, correspond to the release volumes of 0 and the largest 
profitable release volume level, respectively. They represent the feasible halves of the 
smallest and largest intervals. 

3.1.5 Inflow Serial Correlation 

It is not uncommon that an observation at one time period is correlated with the observation 
in the preceding time period in an inflow time series. Such a correlation is termed "serial 
correlation" or "autocorrelation". 

Serial correlation also can exist between an observation at one time period and an observation 
k time periods earlier for ^=1 , 2, . . . . In this discussion it is assumed that observations are 
equally spaced in time and that the statistical properties of the process do not change with 
time (stationary process). The population serial correlation coefficient is denoted by p(k) 
where k is the lag or number of time intervals between the observations being considered. 
The sample serial correlation coefficient will be given by r(k). The sample serial correlation 
coefficient for a sample of size n is given by; 

n-k 

n-k n-k 

i=l i=l 

_/IL\ »=i n-k 
m ^ m ^ S (3-D n-k 1/2 n-k 1/2 

(XQ? , r „_* (E<?i+t)
2 

— - . E<& - - t L — 
n-k J L i-i n-k 

From Equation 3.1 it is seen that r(0) is unity. That is, the correlation of an observation with 
itself is one. If p(k)=0 for all k=0, the process is said to be an uncorrected stochastic 
process. The trade-off among various inflow correlation assumptions will be investigated in 
Chapter 7. 

3.1.6 Markov (or Markov-I) Inflow Process 

"Markov process" (or "Markov chain" - the discretized presentation of the Markov process) 
is the most widely applied inflow serial correlation assumption for the SDP models. It is the 
key to the understanding of other inflow serial correlation assumptions. 

In general, a Markov process describes only one-step dependence, called a first-order process, 
or exhibiting lag-one serial correlation (Markov-I). The process has the property that the 
dependence of future values of the process on past values is summarized by the current value. 

In a Markov chain, the move from a state at period t to a subsequent state at period t+1 is 
called "transition", assume that state Q at any time step can assume values from the set q, 
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Q—(QI> Q2' • • •)• The transition probability Ptj is the conditional probability of the transition 
from state qt at period t to state qj at period t+\. When it is stationary it can be expressed 
as: 

(3.3) V - m+rij/Qr«) 
which satisfies: 

0 s PJ s 1 

Vi 

A Markov chain is completely described by the initial state and the complete matrix of 
transition probabilities. The initial state is the value of the variable at the beginning, 
Pi=P(Qo=(li)- The vectorp={pj,p2,...] is called the "initial probability distribution" for the 
Markov chain. The complete matrix of transition probabilities is a matrix with elements Py 
for all possible states i and j in the Markov chain. 

P = 

M l M2 

P P 
rl\ r72 

(3.4) 

Let Py(n) denote the n-step transition probability, which is the probability that n periods from 
now the state will bey', given that the current state is i. It holds (Feller, 1968) that, 

P^n) = ij th element of P*. 

After a large number of periods have elapsed, the /i-step transition probabilities Pn approach 
a matrix with identical rows, for a certain class of Markov chains. These are called the 
steady-state probabilities. These conditions will be discussed in Chapter 5. 

lim P" = 

M ?2 

M Pi 

• Pn 

• P. 

M Pi . P. 

(3.5) 

The steady state probabilities are independent of the initial states. They describe the long-run 
behaviour of Markov chains. 

3.1.7 Estimation of Inflow Probabilities 

The inflow discrete probabilities (either independent or dependent) are estimated from the 
historical inflow time series. In the present research, three inflow correlation assumptions will 
be adopted into a SDP model. They are, 
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(i) the independent assumption: 

W M K ? A I ^ . » . ) - TOM> ( 3 ' 6 ) 

(ii) the Markov-I assumption: 

PiQ^lQ&.vQ,.»..) = P(Q,JQ) ( 3 7 ) 

(iii) the Markov-II assumption: 

P(QaQ&-vQt-i.~) - P(Qt+1\Q„Qt-i)
 ( 3 ' 8 ) 

In general, the independent probabilities P,(Qt=qj) are estimated from the observed inflow 
records by counting the number of times the recorded inflow values fall into interval j in 
period t. i.e., 

Where, N(Qt=qß is the number of inflows that fall into interval j in period t; N(Qt) is the 
number of inflow samples in period t. 

The Markov-I transition probabilities Pt(Qt—Qj\Qt-i=Qi) &£ estimated from the observed 
inflow records by tabulating the number of times the observed data went from state i to state 
j from period t-l to period t. That is, 

Where, Nt(Qt=qj,Qt_1=qi) is the number of inflows that fall into interval j and i in period t 
and f-1; Nt(Qt_1=qi) is the number of inflows that fall into interval i in period f-1. 

The Markov-II transitional probabilities P,(Qt
:=qj,Qt-i'=4i\Qt-i=Qi>Qt-2=<Ih) ^e estimated 

from the observed inflow records by tabulating the number of times the observed data went 
from state h,i to state i,j from period f-2, t-\ to period t-l, t. 

P.iQ^A-^Q,^^^ - mVoQt'llQt'lT *JJ" (311) 

N(Qt-rqPQt-2=qh) 

Where, N(Qt=qj,Qt.1=qi,Qt.2=qh) is the number of inflows that fall into interval j , i and h 
in period t, t-l and t-2; N(Qt.1=qi,Qt.2—qh} is the number of inflows that fall into interval 
i and h in period f-1 and t-2. 

However, due to the limited length of the historical inflow time series, the estimated 
numerical values of the elements in the probability matrices are rather unreliable (errors in 
estimations) and many elements remain void (ill-structured probability matrices). These 
problems will be discussed in depth in Chapter 7 and Chapter 5, respectively. 
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3.1.8 State Transformation Equation 

The state transformation equation in the SDP model is expressed by the principle of continuity 
for the water quantity in the reservoir. 

Where, t is time period within year; 5, is storage in reservoir at the beginning of period t; Q, 
is inflow to the reservoir during period t; Rt is release from the reservoir during period t\ SPt 

is spillage from the reservoir during period t; Et is evaporation from the reservoir during 
period t\ the relation between time notations and variables are as shown in Figure 3.3. 

3.1.9 Physical Constraints of Reservoir Systems 

Typical physical constraints of the reservoir systems include maximum and minimum 
storages, maximum and minimum releases, penstock and equipment limitations. 

The storage of the reservoir during any time period must be within the limits of maximum 
and minimum live storage capacity. 

d U * * , * ^ V t (3.13) 

Where, t and St are as defined in Equation 3.12; Stnün is minimum live storage of the 
reservoir at the beginning of period t; Stmax is the maximum live storage of the reservoir at 
the beginning of period t. 

The maximum releases are usually defined by the conveyance capacity of downstream 
channels. For those systems with hydro-power plants, the capacity of the power generators 
set a maximum limit to the reservoir releases. The minimum release is the compulsory release 
from the system, if any. The releases during any period should be within the feasible range. 

J ^ * * * ^ VI (3.14) 

Where, t and Rt are as defined in Equation 3.12; RtMn is minimum release from the reservoir 
during period t; Rtmax is the maximum release from the reservoir during period t. 

For those reservoir systems with hydro-power plants, energy generation during each period 
should satisfy the firm power of the system. Also, it cannot be more than the generation 
capacity. 

^Gynin * EGt * £ G . _ V t (3.15) 

Where, ns as defined in Equation 3A2;EGt = 9.81 *ri*R*H*Tt/l(/
sÇMWhy,Rt is the release 

from reservoir during period t in m3/s; Ht=ELt-TWt (m); ELt is elevation of water level in 
reservoir during period t (m); TWt is tail water level of power station during period t (m); Tt 

is time in hours in period t; TJ=0.75, the overall efficiency (turbines + generator 
transmission); EGtndn is minimum energy generation during period t; EGtmax is maximum 
energy generation during period t. 
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3.1.10 Objective Functions 

A reservoir can serve single or multiple purposes, which range from hydro-power generation, 
water supply for irrigation, industrial and domestic use, flood control, water quality 
improvement, recreation to navigation. A properly formulated objective function of the 
optimization model should reflect the purposes and key concerns of the reservoir system. 

Three reservoir systems have been selected as case studies for this research. They are 
operated for the purposes of water supply (Tunisia), or hydro-power generation (Kariba), or 
multi-purposes of both irrigation water supply and hydro-power generation (Mahaweli). 

For reservoir systems with hydro-power generation as their operation purpose, the objective 
can be, for example, maximizing annual energy generation of the system or minimizing 
energy deficit from a target. 

For maximizing annual energy generation, the formulation is as follows: 
N 

m a x r [ E ( £ G , ) ] (316) 
t-i 

Where, EG, is defined as in Equation 3.15; g is the expectation operator; N is number of 
periods in a year. 

For minimizing energy deficit from a target, the formulation is as follows: 
N 

max «T [ E (DE) ] (317) 
t-i 

Where, DEt=max{0, (EGttar-EGJ), is deficit of energy generation from energy target during 
period t (MWh), EG,,ar is the energy target for period t (MWh); EG, is defined as in 
Equation 3.15. 

Minimizing the water deficit from the requirement can be the objective function for systems 
with water supply as their operation purpose. This can be formulated as: 

N 
max «r [ E (DR) ] (318) 

t-i 

Where, DRt=max{0,(R,tar-RJ}t is deficit of release from release target during period t 
(MCM); Rttar is release target for period t (MCM); t and Rt are defined as in Equation 3.12. 

In some cases, contractual, legal, and institutional obligations arising from the various 
purposes of the reservoir system can be considered as constraints of the model. The 
applicability of various objective functions to various situations and the evaluation of their 
performance are investigated in Chapter 8. 

3.1.11 Recursive Equation 

There are different forms of recursive equation associated with different correlation 
characteristics of inflow time series (time dependent or independent), decision variables 
(release or final storage), inflow state variables (previous inflow or present inflow) and 
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objective patterns (maximization or minimization). They can be generalized in the following 
form; 

f^(S^Q)=opt[EPIt*[BJiSfiQ^)^(St^Qttl)^ V5„(?^ feasible (3.19) 
D, Q, 

subject to, 

* - * . * < ? , - s,*i - sp, - E, 

/7(SfiSQ)=opt.(£PIt*Bt(S(,Q(J>fl 
D, Q, 

Where, t, St, Qt, Rt, Et and SPt are defined as in Equation 3.12; n is total number of time 
periods passed, n=l,2,. . . ; Dt is decision variable, can either be Rt or St+1; SQt is state of 
inflow at period t, which can either be Qul or Qt; PI, is probability of inflow at either period 
t or t+1, which can be dependent or independent of previous inflow; Bt(St,QpD^ is increment 
of objective value for the transition state when the decision reaching Dt at the end of period 
t starting from St and having Qt inflow during the period; J?(S,,SQJ is (sub) optimal value of 
the recursive equation at stage n (period t) as function of St and SQt\ the relation between 
time notations and variables are as shown in Figure 3.3. 

To solve the optimization problems defined by the recursive equation, a backward DP 
algorithm is used. Note that in the case of SDP a forward algorithm has no sense as the 
expectation over the future states has to be considered. The value of the objective function 
at the last state is initialized. Computations proceed backward by stages until a steady state 
is reached. The procedure of carrying out the recursive calculation is shown in Figure 3.4. 

3.1.12 Convergence Criteria 

There are two convergence criteria that mark the so called "steady state" condition. 

(a) The first criterion is the stabilization of the operating policy. At each stage of the SDP 
algorithm, an operation policy for that stage is determined. After continuing backward 
computation for a couple of years, a stable operation policy can be obtained. This 
implies that the operation policy for each period will not change from year to year. 
When this condition is reached, the stabilization of the operation policy is achieved. 

(b) The second criterion is the stabilization of the expected annual increment of the 
objective value. During the continued backward computation of the SDP algorithm, 
the optimum expected return for all possible initial states tflt+T(S,,SQJ-f"(St,SQ^) will 
be determined for each stage (time period). After continuing with backward 
computation for a couple of years, the expected annual increments of objective values 
for all initial states in each stage tend to be constant. This phenomenon is called the 
stabilization of annual return of objective values. 

Studying the relationship between convergence criteria of the SDP model and the structure 
of Markov transition probability matrices is one objective of this research study. It is further 
discussed in Chapter 5. 
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Give initial value: Dt, ƒ ? (St, S<% ) 

fl?(st ,SQt ,D; ) - rçrçpr,ç,4 ) +/£}<s^1.ÄJV1 )] 

Is fl?(St ,SQt ,D't ) superior than / * ( S f , «? , M 

yes 

/"rç , r ç ) - yj/'rç ,s<?, , D ; ) , z>, - z?i 

no 
Next D't 

Have all possible D' S been checked 

yes 

Dt, f*(Sf ,S<^ ) determined 

no 

Figure 3.4 Calculation Flowchart of Recursive Equation 

3.2 SDP Models for Two Reservoirs in Series 

In this research, one case study concerns a system with two reservoirs in series. The 
formulation of a SDP model for such a system is almost similar to that for a single reservoir 
system. The difference is due to the increase of the number of state and decision variables. 

Its stage, state and decision variables, objective function and constraints are defined similar 
to those of a single reservoir SDP model. However, it is worth noting the following points; 

(a) The continuity equation should reflect the relation between the two reservoirs in the 
system, 

* M , -3**0*-**-sp» - Et* v ' <3-20> 

*»M - S<4 + <?* + SPtM * R^ - R,4 - SP^ - E^ V* (3.21) 

25 



Where, t, St, Qt, Rv E, and SPt are as defined in Equation 3.12; u denotes upstream 
reservoir; d denotes downstream reservoir. 

(b) In the recursive equation, the inflow probabilities for single reservoir SDP model will be 
replaced by joint inflow probabilities for the two reservoir system. 

For example, the joint independent probability JPt(Qt=qj) is the probability that the inflow 
to the reservoirs upstream and downstream at period t will fall in states qju and qjd 

respectively. 

The joint dependent (transition) probability JP,(Qt=qj\Qt.i=Çi) is the probability that the 
inflow to the reservoirs upstream and downstream at period t will fall in states qju and qjd 

given that at time period t-\ the inflow to the reservoirs upstream and downstream were in 
states qiu and qid respectively. 

3.3 Performance Assessment of SDP based Operation Policy 

The SDP based optimum operation policy has been evaluated by operation simulation. The 
simulation has been carried out by using either (a) the same piece of historical inflow series, 
or (b) forecasted inflow series. Case (a) opens the way to make a comparison between the 
system performance values obtained from steady state solution of SDP (which relies on 
discrete representation of input states) and system performance values obtained from a 
simulation that uses actual inflow series. Case (b) shows how the policy performs in a real 
world situation. 

The simulation procedure begins with the assumption of an initial storage state and an inflow 
state representing chosen historical inflow. For this combination, storage and inflow state, 
the decision (either final storage state or current release level) to be reached is defined by the 
SDP model. These storage state(s), release state and inflow state are then used for computing 
the objective values, their standard deviations and variance and associated performance 
indices. Those are used in the evaluation of the system performance. The suitability of 
various performance evaluation criteria is evaluated in this research study in Chapter 8. 

Since the optimum operation policies are determined using expected system performance 
based on discrete storage and inflow states, there is possibility that in some periods the actual 
releases or final storage will be out of their feasible range. That is, the release may be less 
than 0 or larger than the down stream channel capacity or final storage may be less than dead 
storage or larger than reservoir capacity. In such instances, corrections (e.g., over-ruling the 
SDP optimum operation policy) are made in the simulation model. The schematic diagram 
of the simulation procedure is shown in Figure 3.5. 
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t - 1 , input: 
inflow time 
inflow and storage discretization 
SDP based optimum operation policies Dt(SfQ) 
System characteristics, constraints, etc. 

Set time period t-t+l 

Set St be an initial value (If it is die first period of the first simulation year) 

Set 5; be the value of $+1 (otherwise) 

Decide the current inflow level Qt 

i 
Operation policy : D (Sf,Qt) 
together with continuity equation 

release Rf and final storage Sg+i can be decided 

Are Rf , S ^ feasible ? no 

yes 
Set R and S{+1 to the 

nearest feasible values 

Calculate associated performance indices -4 

no 
1 

Have all periods 
been simulated ? 

yes 
Statistical analysis (i.e., means and standard deviations etc., 
of associated performance indices) 

Figure 3.5 Simulation Procedure 
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4 Description of the Case Study Systems 

To investigate the performance of SDP three reservoir systems were selected as test systems 
in this study. They are the Mahaweli reservoir system in Sri Lanka, the Kariba Lake in 
Zambia and Zimbabwe, and the Joumine reservoir in Tunisia. 

With the common hydrological characteristic of strong seasonal fluctuation that makes them 
interesting to stochastic optimization, these three cases represent three different configurations 
of a reservoir system. Both Kariba and Joumine are single-unit/single-purpose systems. 
However, the Kariba is a robust system with huge reservoir capacity and huge reservoir 
catchment. Its turbine capacity is relatively small and it serves for energy generation. The 
Joumine is a more stressful system whose demand almost equals the mean annual inflow. It 
serves for water supply. The Mahaweli system is a multi-unit/multi-purpose system. The 
details of these three reservoir systems, Mahaweli, Kariba and Joumine are presented in the 
following sections. 

4.1 Mahaweli Reservoir System 

The Mahaweli reservoir system is a comprehensive multipurpose water resources development 
scheme planned to harness hydroelectric and irrigation potential of Mahaweli Ganga (river), 
Sri Lanka's largest and the most important river. 

The climate conditions in Sri Lanka are dominated by two monsoons, the Southwest monsoon 
(April to September) and the Northeast monsoon (October to March). The central hills impose 
a strong orographic influence. This, with other factors lead to the subdivision of the country 
into three climatic zones; wet zone, intermediate zone and dry zone as shown in Figure 4.1. 
The Mahaweli reservoir system has been based on using the naturally diverse flow pattern 
of the Mahaweli Ganga, regulated where possible with storage reservoirs, to satisfy irrigation 
demands in the dry zone. Hydroelectric energy is generated at storage dams and along some 
diversion routes, and fed into the National Electricity Grid. 

Figure 4.2 presents the schematic diagram of the Mahaweli system. For this study, the part 
of the system from the Polgolla diversion to the Minipe anicut (Victoria, Randenigala and 
Rantembe cascade three-reservoir system) was selected. The Rantembe was considered as a 
run-off reservoir. The acceptability of this simplification has been confirmed by 
Nandalal (1986). The principal features of the relevant reservoirs are summarized in 
Table 4.1. 
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1. 
2. 
3. 
U. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

Koen«Ie Reservoir 
Pol got la Barrage 
Victoria Reservoir 
Randen f ga la Reservoir 
Rantembe Reservoir 
Mlnlpe Diversion Weir 
Ulhitlya Oya Reservoir 
Maduru Oya Reservoir 
Ukuwela power plant 
Bowa tenna re se rvoIr 
E Iahe ra Diversion 
Angamedilla Diversion 
Kandakadu Dlvers Ion 

A, B, C, D, E, G, H, IH, 
and HH.-irrigation Systems 

Natural Streams 
- — - Diversion Canals 
s s r s Diversion Tunnels 

Figure 4.1 Layout of the Mahaweli Development Scheme and the Climatological 
Regions of Sri Lanka 
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Table 4.1 Principal Features of the Mahaweli Reservoirs 
Characteristics 
Catchment Characteristics 
Catchment area 
Average annual inflow 
Completion of construction 
Reservoir Characteristics 
Retention water level 
Design flood level 
Maximum water level 
Active storage 
Reservoir volume factor 
Power House Characteristics 
Average net head 
Turbine discharge 
Turbine 
Installed capacity 
Firm energy 

km2 

MCM 

m 
m 
m 
MCM 
% 

m 
m3/s 

MW 
GWh/yr 

Victoria 

1891 
1984 
1984 

438.0 
441.2 
370.0 
686.0 
23.5 

190.0 
140.0 

3 Francis 
210 
446 

Randenigala 

2365 
2528 
1986 

232.0 
236.2 
203.0 
580.0 

16.5 

78.0 
180.0 

2 Francis 
126 
304 

Rantembe 

3111 
3126 
1990 

152.0 
155.0 
140.0 
17.0 
4.1 

32.7 
180.0 

2 Francis 
49 

176 

The monthly evaporation values from the Victoria and Randenigala reservoirs are given in 
Table 4.2. Table 4.3 shows the elevation-storage-area relationships for the Victoria and 
Randenigala reservoirs. 

Table 4.2 Monthly Evaporation Values from the Victoria and Randenigala Reservoirs 
Reservoir 
Victoria (mm) 

Randenigala(mm) 

Table 4.3 

Oct 
50 

48 

Nov 
26 

6 

Dec 
28 

3 

Jan 
66 

48 

Feb 
143 

129 

Mar 
159 

149 

Apr 
103 

105 

May 
124 

137 

Jun 
125 

154 

Jul 
131 

160 

Aug 
147 

178 

Sep 
138 

165 

Elevation-Storage-Area Relationships of the Victoria and Randenigala Reservoirs 

Victoria Randenigala 
Elevation 

(m) 
Storage 
(MCM) 

Area 
(km2) 

Elevation 
(m) 

Storage 
(MCM) 

Area 
(km2) 

355.0 
365.0 
375.0 
385.0 
395.0 
405.0 
415.0 
425.0 
435.0 
440.0 

9.0 
24.0 
47.0 
80.0 

129.0 
200.0 
306.0 
455.0 
651.0 
768.0 

1.1 
1.9 
2.7 
4.0 
5.9 
8.7 

12.6 
17.2 
22.2 
24.8 

201.5 
203.0 
206.5 
210.0 
215.0 
220.0 
225.0 
230.0 
233.1 
236.2 

270.0 
295.0 
355.0 
415.0 
503.0 
590.0 
708.0 
825.0 
903.0 
980.0 

13.8 
14.4 
15.8 
17.2 
18.9 
20.6 
21.9 
23.2 
23.8 
24.3 
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The releases of the Kotmale reservoir and incremental inflows upto Polgolla are diverted by 
a barrage at Polgolla to meet the requirements of the irrigation area in the Amban Ganga 
basin. The excess, which is spilled over the Polgolla barrage has to be estimated and added 
to the incremental inflow between the Polgolla barrage and the Victoria reservoir, to get the 
total inflows to the Victoria reservoir. Nandalal (1986) simulated the operation of the system 
upstream of Polgolla barrage according to the operation rules recommended by the Acres 
International Limited (1985). The spillages over the Polgolla barrage obtained from that 
simulation were used in this study. These values are given in Table A. 1 in Appendix A. 

Observed records of monthly incremental inflows to the Victoria, Randenigala and Rantembe 
reservoirs are presented in Table A.2, Table A.3 and Table A.4, respectively in Appendix A. 
Further, the irrigation demands at Minipe were obtained from a system simulation carried out 
on Ulhitiya-Maduru Oya basins by Nandalal (1986). This simulation has been carried out 
using the water demands for irrigation areas A, B, C and E (see Figure 4.2). The rule curves 
developed for the Ulhitiya Oya and Maduru Oya reservoirs by Acres International Ltd. (1985) 
have been adopted in the reservoir operations in that simulation. The estimated irrigation 
demands at Minipe are presented in Table A.5 in Appendix A. 

4.2 Kariba Reservoir System 

The Zambezi River rises in northern Zambia. After flowing through Angola, it forms the 
boundary between Zambia and Zimbabwe. At the end, it passes through Mozambique to 
discharge into the Indian Ocean, north of Beira. The Zambezi River basin is shown in 
Figure 4.3. 

The catchment area upstream of Kariba Gorge is approximately 664,000 km2. Rainfall over 
the catchment is strongly seasonal. Normally the rainy season extends from November to 
March. The river's peak discharge reaches the Victoria Falls, approximately 400 km upstream 
of Kariba Gorge, at the beginning of May. The discharge at the Falls returns to base flow in 
October or November. In January the flows begin to rise. Additional inflow to Lake Kariba 
comes from the lower catchment located between Victoria Falls and Kariba. About 60% of 
the average annual flow from the lower catchment is concentrated between January and 
March (Santa Clara, 1988). 

Since completed, the hydro-power plant of Kariba has been the main source of energy for the 
Zambian-Zimbabwean interconnected electricity supply system. The principal features of the 
reservoir system are summarized in Table 4.4. 

The average monthly evaporations are shown in Table 4.5. These values are the depths of 
water evaporated from the reservoir (mm) derived by water balance calculations 
(Budhakooncharoen, 1986). The elevation-storage-area relationship of the Kariba reservoir 
is given in Table 4.6. 
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Table 4.4 Principal Features of the Kariba Reservoir 

Characteristics Kariba reservoir 
Catchment characteristics 
Catchment area 
Average annual inflow 
Completion of Construction 

km2 

MCM 
664,000 
54,689 

1977 

Reservoir characteristics 
Retention water level 
Design flood level 
Minimum water level 
Active storage 
Flood gate discharge 
Reservoir volume factor 

m 
m 
m 
MCM 
m3/s 

488.5 
489.6 
475.5 

64,750 
9,400 

118.4 

Power House characteristics 
Average net head 
Turbine discharge 
Turbine 
Installed capacity 

m 
m3/s 

MW 

86 
277.6 

12 Francis 
1200 

Table 4.5 Monthly Evaporation Values from the Kariba Reservoir 

Reservoir Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 
Kariba (mm) 19.7 17.6 14.9 14.6 12.8 14.4 13.5 12.3 10.9 11.2 12.9 16.2 

Table 4.6 Elevation-Storage-Area Relationship of the Kariba Reservoir 
Elevation (m) 

475.5 
476.0 
477.0 
478.0 
479.0 
480.0 
481.0 
482.0 
483.0 
484.0 
485.0 
486.0 
487.0 
488.0 
489.0 
490.0 
490.8 

Storage ( M C M ) 

50 
2270 
6710 

11280 
15910 
20610 
25480 
30410 
35430 
40570 
45780 
51090 
56510 
62000 
67600 
72086 
76304 

Area (km2) 

4354 
4405 
4507 
4608 
4709 
4811 
4901 
4991 
5081 
5171 
5261 
5350 
5440 
5531 
5623 
5719 
5792 
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The Zambezi River hydrological data at the Kariba Reservoir, provided by the Central 
African Power Corporation (CAPCO, 1985), are available from 1961 to 1984. Historical 
monthly discharge into the Kariba Reservoir including rainfall directly on the lake surface are 
tabulated in Table A.6 in Appendix A. 

For the assessment of the quality of derived reservoir operation policies, the inflow 
forecasting is sometimes required during operation simulation. Budhakooncharoen (1986) used 
regression analysis to forecast inflow to the Kariba reservoir. In that study, multiple 
regression has been used to evaluate the forecasted inflow (dependent variables) from the 
known inflows in previous stages (independent variables) by assuming that these variables are 
linearly correlated. That study investigated the appropriate number of independent variables 
in previous months, and selected three months lag time after trials with various number of 
independent variables. The results of that analysis are summarized in Table 4.7 and that 
forecast is used in this study. 

Table 4.7 Multiple Regression Analysis of the Kariba Reservoir Inflow 

Al 
A2 
A3 
A4 

R2 

Oct 

0.8773 
0.2070 

-0.2469 
310.48 

0.382 

Multiple Regression Equation 

Nov Dec Jan 

0.3269 -0.8018 0.7772 
0.4326 3.5237 -0.5743 

-0.1821 2.0885 -3.2355 
780.55 -2288.14 6967.94 

0.192 0.227 0.353 

: Y<j,Xl,X2,X3) = Al(t)*Xl + A2(t)*X2 + A3(t)*X3 + A4(t) 

Feb 

0.8494 
0.2684 
0.6903 

899.77 1 

0.441 

Mar Apr May 

0.3063 1.0595 0.5854 
0.4652 -0.2041 -0.0272 
0.7587 -0.3044 0.0612 

1734.72 2845.92 2081.14 

0.431 0.843 0.841 

Jun 

0.6720 
-0.1394 
0.0088 

604.85 

0.896 

Jul 

0.3446 
0.1413 
0.0068 

-166.32 i 

0.970 

Aug 

0.4389 
-0.1464 
0.0727 

602.65 

0.924 

Sep 

0.2915 
0.0385 
0.0057 

752.66 

0.637 

where, R2 is the determination coefficient 

4.3 Joumine Reservoir System 

The major part of the Tunisia is in arid or semi-arid area. Different studies have identified 
a total of 39 major reservoirs and transfer constructions (partly terminated and partly 
planned), which play an important role in the national system of water management. 
Figure 4.4 shows the configuration of the complex system. Most of the reservoirs in the 
system are independent and the utilization of water depends only on their active storage 
volume, demands and their inflows. Among them, the Joumine reservoir is the one that plays 
a crucial role in supplying drinking water to Tunis. 

The principal features of the Joumine reservoir are summarized in Table 4.8. Table 4.9 
presents the monthly evaporation values from the reservoir. The elevation-storage-area 
relationship for the Joumine reservoir is given in Table 4.10. 
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Figure 4.4 Tunisia Reservoir System Scheme 
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Table 4.8 Principal Features of the Joumine Reservoir 

Characteristics Joumine reservoir 
Catchment characteristics 
Catchment area 
Average annual inflow 
Completion of Construction 
Reservoir characteristics 
Retention water level 
Design flood level 
Minimum water level 
Active storage 
Flood gate discharge 
Reservoir volume factor 

km2 

MCM 

m 
m 
m 
MCM 
m3/s 
% 

418 
133 

1983 

90.0 
95.0 
58.0 

121.3 
59.0 
91.2 

Table 4.9 Monthly Evaporation Values from the Joumine Reservoir 
Reservoir Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 
Joumine (mm) ÏÖÏ 52 41 38 34 55 73 162 245 349 314 203 

Table 4.10 Elevation-Storage-Area Relationship of the Joumine Reservoir 
Area (km2) 

ÖTÖ 
13.3 
38.6 
50.5 

144.0 
174.0 
214.0 
254.0 
375.0 
476.0 
547.0 
651.0 
763.0 

The inflow time series at the Joumine reservoir provided by Agrar-und Hydrotechnik GMBH 
(1991) are available from 1946 to 1989. These inflows are tabulated in Table A.7 in 
Appendix A. 

The Joumine reservoir alone supplies the following water demands: 
(a) drinking water to Bizerte, 
(b) irrigation water to Mateur region, and 
(c) water demand of Lac Ichkeul (recharge of Lake Ichkeul). 
These are called the "Joumine's local demands". 
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Elevation (m) 
0.0 
4.0 
6.0 
8.0 

18.0 
20.0 
22.0 
24.0 
32.0 
38.0 
42.0 
48.0 
54.0 

Storage (MCM) 
0.00 
0.14 
0.66 
1.55 
9.30 

14.00 
17.90 
22.50 
47.60 
73.20 
93.70 

129.90 
172.60 



Besides these demands, the Joumine reservoir contributes towards satisfying the following 
demands together with some other reservoirs. 
(a) drinking water to city of Tunis, 
(b) drinking water demands of remote urban areas and coastal tourist centres (Nabeul, 

Monastir, Sousse, Sfax); water for these users is transferred via the Medjerdah-Cap Bon 
canal. 

These demands are called "Joumine's system demands". These demands are given in 
Table 4.11. 

Table 4.11 Water Demands of the Joumine Reservoir 

System Demand (MCM) Local Demand (MCM) 

ÏTÖÖ3 0.539 
8.081 1.030 
8.554 2.358 
9.923 4.089 

11.026 4.972 
10.027 4.482 
10.415 3.086 
8.901 1.939 
9.027 1.536 
9.409 1.445 

10.014 1.063 
10.199 1.014 
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5 Markov Inflow Transition Probabilities 

Application of the SDP technique for the optimization of reservoir system operations is based 
on the idea that the policies will converge to a "steady-state" policy after several iterations 
of the recursive relation. The steady-state policy achieved in this way will be a global 
optimum. In several applications of the SDP technique in reservoir operation optimizations, 
one convergence criteria given in Chapter 3.1.12, that is the stabilization of the expected 
annual increment of objective function value, could not be realized. In those studies only the 
stabilization of the operating policy after a few iteration cycles was reported to be achieved. 
Besides the effect of possible deterministic constraints (Nandalal, 1986), the cause is believed 
to be related to the structure of the Markov transition probability matrices, which have been 
derived from inflow records. The large number of zero elements resulting in the transition 
probability matrices due to the limited length of those inflow time series is considered the 
cause. 

This chapter presents a study carried out to find an effective means to circumvent the problem 
caused by the poorly structured Markov inflow transition probability matrices in SDP models. 
It starts with the introduction of some basic terminologies used in the Markov process (and 
Markov chains). The relationship between the convergence of the SDP model (converging to 
the steady state) and the ergodicity of the Markov chains will be discussed next. This is 
followed by a sensitivity analysis of the SDP based operational performance of reservoir 
systems with respect to inaccuracies in the estimation of Markov inflow transition probability 
matrices. Then an example method to guarantee the ergodicity by modifying the transition 
probability matrices will be presented. The conclusions drawn from this chapter are presented 
in Chapter 9. 

5.1 Role of Markov Inflow Transition Probabilities in the SDP Model 

5.1.1 Problems in SDP Convergence Behaviour 

In stochastic dynamic programming model, the inflow process Qt is usually assumed as a 
"Markov Process" (or "Markov chain"). In general, a Markov process describes only 
one-step dependence, called a first-order process, or exhibiting lag-one serial correlation 
(Markov assumption). A SDP model is the application of the "Principle of Optimality" of 
dynamic programming (Bellmann, 1957) to the Markovian sequential decision process. 
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As an example, consider the version of the SDP model described by Loucks et al. (1981). 
The time period is defined as stage. The storage volume at the beginning of the time period 
and the inflow level at the present time period are the state variables. The storage volume at 
the end of the time period is defined as the decision variable. The Markov transition 
probabilities of the inflow (from present time period to the subsequent time period) can be 
incorporated into the recursive relation to derive optimal values. 

/ l"(S^=0p^(5 t,<?^r+1)+S^i«?»+i/<?r)*/r+i , ,"1(^i'<?r*i)] VSrQ^Jeasible (5A) 

subject to, 

Where, t, n, Sv Qt, Rt, SPt and Et are as defined as in Equation 3.12. Pt+1(Q,+1/Qt) is 
Markov transition probability of inflow falls into level Qt+1 in period t+1, given the inflow 
Qt in period t; B(St,QvSt+1) is objective increment for the transition state when the decision 
reaching St+1 at the end of period t starting from St and having Qt inflow during the period; 
fTfSfQJ ls (sub) optimal value of the recursive equation at stage n (period t) as function of 
St and Qt; the relation between time notations and variables are shown in Figure 3.3. 

The optimization process starts with a set of initial values/^ (S,,Q,). Due to the characteristics 
of Markov sequential decision process, after a large number of iterations of the recursive 
relation (Equation 5.1) the "steady state" for each period in successive years will finally be 
reached. It is independent of the initial state. 

There are two criteria marking convergence of the steady state: (i) stabilization of the policy; 
(ii) stabilization of the expected annual increment of the objective values. The interpretation 
of the two criteria is presented in Chapter 3.1.12. However, experimental evidence shows that 
often the second criterion of convergence cannot be achieved. This is illustrated in 
Appendix C. 

5.1.2 Reasons for the Violation of SDP Convergence Criteria 

As has been reviewed in Chapter 2, the SDP model was originally developed based on the 
model of Little (1955) by introducing the dynamic programming recursive relation. It is 
similar in form to the method that has been developed to derive the solution of Markov 
sequential decision process (Howard, 1960). A step-by-step discussion regarding the links 
among Markov process, Markov process with reward (which is the gain associated with each 
transition), and the solution of Markov sequential decision process was given by Howard, 
(1960). The behaviour of the policy convergence after many iterations is the resulting 
performance of the Markov transition probability matrix incorporated in the recursive relation 
that converges to its steady state probabilities. Under the condition of the bounded reward, 
Howard has proved that it is generally true the policies would converge to the global 
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optimum, if the associated Markov transition probability matrices were 
"ergodic". 

"stationary" and 

Stationary means that the probability distribution of the inflow process is not changing over 
time cycle (Loucks et al., 1981). This is the condition to ensure that the policies will become 
stable after a certain number of iterations (the first convergence criterion). 

This condition may not always hold for reservoir systems. Urban development, deforestation, 
agricultural development, climatic shifts, and changes in regional resource management can 
alter the distribution of inflow over time. If the stochastic inflow process is not essentially 
stationary over the time span, adjustments have to be made to account for the changes in the 
inflow data. Otherwise the SDP model that relies on the stationary assumption cannot be 
applied. Since this condition has always been much better taken care by the users of SDP 
model, it will not be discussed at this stage. 

The precise definition of ergodicity is presented in Appendix B. In short, a Markov chain is 
said to be ergodic if all the members in the chain form a single recurrent chain. Immaterial 
of the starting point the process would end making jumps among all the members in the 
chain. In other words, ergodic implies that the final state of the system is independent of the 
initial state (Howard, 1960). This condition ensures that the stable policies would be the 
global optimum. 

To illustrate it, consider a simple three-state process with two recurrent chains (non-ergodic 
Markov chain) as shown below. 

P = 

1 0 0 

0 1 0 

1/3 1/3 1/3 

State 1 constitutes one recurrent chain. State 2 the other (both are trapping states). State 3 is 
a transient state that may lead the system to either of the recurrent chains. 

The n-step transition probability matrix when n-»oo is, 

lim P* = 
n-» 

"l o o" 
0 1 0 

1/2 1/2 0 

It says that if the system is started in State 1 or State 2 it will eventually remain in its starting 
state indefinitely. If it is started in State 3, after many steps it will be State 1 with probability 
Vi and in State 2 with probability xh. 

The above simple example shows that for a non-ergodic Markov process the rows of the 
n-step transition probability matrix Pn when n-»oo are no longer identical. Because the 
limiting state probability distribution is now dependent on how the system is started. The i* 
row of matrix Pn, when n-*oo represents the limiting state probability distribution that would 
exist if the system were started in the ith state. It is easy to see that having non-ergodic 
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Markov inflow transition probability matrices, the set of derived SDP based policy would be 
separated into more than one group, which have no communication among each other. The 
reservoir operation following such policy will confine itself to the optimal strategies in one 
of the groups where it initially starts. 

Fortunately, from theoretical point of view the ergodicity is a condition that is naturally hold 
for reservoir inflow process in reality. Many theoretical probability distributions have been 
used to describe reservoir inflow processes. Even though they only approximate the 
hydrological processes, it has been proved to be useful, at least for understanding the 
phenomenon. The most commonly used probability distributions for the description of the 
reservoir inflow processes are Normal, Log-normal and Pearson-in. 

Assume, for example, both reservoir inflows of subsequent periods (Q,_j and Qt) follow the 
Log-normal probability density function. Each row of the transition probability matrices of 
the two periods is also Log-normal distribution. The discrete transition probability equals to 
the area of the stripe that has the class boundaries as sides and the shape of the Log-normal 
probability distribution as the top (see Figure 5.1). By estimating mean, standard deviation 
and other useful statistical parameters, the shape of the probability distribution can be 
determined. Therefore, the discrete transition probability can be calculated by computing the 
area of the stripe. 

0««n-V 
Figure 5.1 Deriving Inflow Transition Probabilities by Distribution Fitting 

It is obvious that the inflow transition probability matrix derived through the above procedure 
will be ergodic since a matrix without any vanished element will surely form a single 
recurrent chain. However, this rigorous methodology is hampered by its relatively large 
computational requirement. 

In practice, the transition probabilities are usually estimated from observed inflow records. 
This is done by counting the number of times the observed data transit from state Qt.j in 
period t-l to Qt i

fl period t (see section 3.1.7). This simple method is suitable when the 
number of inflow classes is small. However, it has the drawback of limiting the accuracy of 
the SDP model. 
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When number of inflow classes is larger than 3 or 4, the difficulty arises. For example, if 
the inflow of subsequent periods are discretized into 10 classes, the number of elements to 
be estimated in a matrix during a period is 10*10 = 100. In practice, the historical reservoir 
inflow time series are seldom longer than 50 years. For developing countries, a 30 year 
record is considered as a long record. A large number of elements will remain void if 
30 years of monthly inflow data are used to estimate 12 matrices (each with 100 elements) 
in a year. This would cause the real danger of loosing the ergodicity of the matrices. Note 
that those zeros are "artificial" in the sense that those are the results from the error 
estimations of statistics due to the sample size. 

In SDP model, the problem is more aggravated as there are T (e.g., 12 with a monthly time 
period) Markov inflow transition probability matrices in one year cycle. The optimal policies 
are produced after many cycles (years) of iterative calculation. Therefore, it is not easy to 
judge whether the ergodicity requirement is satisfied by looking at the combination of T 
matrices. For example, some vectors that do not communicate in the matrix of transitions 
from October to November may communicate in the matrix of November to December. 

One definite sign of the combination matrices having ergodicity is that the second criterion 
for steady state policy, that is a constant value of annual increment of objective function can 
be achieved. 

Up to now, the importance of the ergodicity property of the Markov chains has been 
disregarded in their application in the SDP model. The problem stated at the beginning of this 
chapter, that is the difficulty in achieving the second convergence criterion in many SDP 
applications can be explained from the above discussion. For those cases, the stable policies 
can be reached after a few iteration cycles while the annual increment of the objective 
function value converges to more than one constant (instead of one). The failure to converge 
to a single constant in the annual increment of objective value is due to the violation of 
ergodicity of the Markov inflow processes. At this time although the first convergence 
criterion (i.e., stable policies) is obtained, the set of stable policies is separated to more than 
one group, which have no communication among each other. Each group obtains its optimal 
with respect to the initial state where the reservoir operation starts. 

The cause of violating the ergodicity can be traced back to the large number of zero-elements 
in the estimated transition probability matrices. Therefore, an important point obtained from 
this analysis is that in applying SDP model, the number of zero-elements in the reservoir 
inflow transition probability matrices should be kept within a limit to guarantee that the 
derived policies will be a global optimum. 

Therefore, an approach to satisfy the ergodicity requirement is needed while keeping the 
computing effort requirements at a reasonable level. The method to derive inflow transition 
probabilities by distribution fitting involves a considerably large amount of computing effort. 
This suggests the necessity to find an alternative method to smooth out the zero-elements in 
the matrices derived from the simple tabulating method. Therefore, the elimination of 
zero-elements while maintaining the performance of the derived optimal operation policies 
is of interest. 

43 



Initially the sensitivity of the SDP based operational performance of reservoir systems with 
respect to inaccuracies in the estimation of Markov inflow transition probability matrices was 
investigated. 

5.2 Sensitivity Analysis of Markov Inflow Transition Probabilities 

5.2.1 Computer-Experiments 

The Kariba lake and the Mahaweli reservoir system were selected to study the impact of the 
transition probability matrices have on the reservoir operational performance. In this study 
several hypothetical transition probability matrices reflecting different flow regimes were 
used. 

The sensitivity is carried out for both systems in the following steps, (a) Set up the SDP 
models, (b) Create several sets of extremely different inflow transition probability matrices 
and incorporate them into the SDP model to derive several sets of operation policies, 
(c) Simulate with the historical inflow time series according to the derived sets of policies and 
compare the resulting performance. 

The setups of the SDP models used to derive operation policies for the two reservoir systems 
are described in Table 5.1. 

Table 5.1 SDP Model Setups 

Objective 

Constraint 

Inflow Discretizations 

Storage Discretizations 

Time step length 

for the Mahaweli and Kariba Reservoir Systems 

Mahaweli System 
Victoria and Randenigala 
reservoirs 

Kariba reservoir 

Maximize expected annual energy generation 

Irrigation demand 

equal size intervals 
4*4= 16 combinations 

7*7=49 combinations 

one month 

— 

equal occupancy 
varying number of classes 
(from 2 to 8) 

33 classes 

one month 

The version of SDP model with the recursive relation described in Equation 5.1 has been 
adopted. For both cases the time period is month; the objective is to maximize the expected 
annual energy generation. For the Mahaweli system the constraint of satisfying irrigation 
requirement was added. For the Mahaweli system 4 inflow classes and 7 storage classes with 
equal size intervals have been considered for each reservoir in cascade. This yields 4*4=16 
inflow class combinations and 7*7=49 storage class combinations. For the Kariba system 
varying number (2 classes for August, September, October and November; 3 classes for 
December and July; 4 classes for January and June; 6 classes for February and May; 8 
classes for March and April) of inflow classes with equal occupancy frequencies and 33 
storage classes with equal size have been used. 
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The observed Original Transition Probabilities (ORG) and some modified forms, namely, 
Modified Transition Probabilities (MDF), Average Transition Probabilities (AVG) and 
Modified Average Transition Probabilities (AVM) have been adopted in the SDP models to 
derive respective optimal operational policies. 

Original Transition Probabilities are derived from the historical inflow series. Modified 
Transition Probabilities are obtained from the ORG version by overemphasizing the maximum 
probability (or -is) occurring in every line. Average Transition Probabilities are assumed to 
characterize a hypothetical uniform frequency distribution of inflow class transitions. 
Modified Average Transition Probabilities combine the principles of MDF and AVG. Zero 
elements are kept zero at the beginning and at the end of each row. Internal sequence of 3 
or more zero elements remain as such, while uniform frequency distribution is assumed 
row-wise over the non-zero and imbedded single or double zero elements of the ORG 
matrices. Table 5.2 shows a few example lines of these inflow transition probabilities 
calculated for the Kariba reservoir. 

Table 5.2 Example of Modifications of the Markov Inflow Transition Probabilities of 
the Kariba Reservoir 

ORG 

MDF 

AVG 

AVM 

.500 

.000 

.000 

1.000 
.000 
.000 

.125 

.125 

.125 

.333 

.000 

.000 

250 
000 
000 

000 
000 
000 

125 
125 
125 

333 
000 
000 

.250 

.000 

.000 

.000 

.000 

.000 

.125 

.125 

.125 

.333 

.000 

.000 

.000 

.333 

.000 

.000 

.333 

.000 

.125 

.125 

.125 

.000 

.200 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.125 

.125 

.125 

.000 

.200 

.000 

.000 

.333 

.000 

.000 

.333 

.000 

.125 

.125 

.125 

.000 

.200 

.000 

.000 

.000 

.330 

.000 

.000 

.000 

.125 

.125 

.125 

.000 

.200 

.500 

.000 

.333 

.670 

.000 

.333 
1.000 

.125 

.125 

.125 

.000 

.200 

.500 

In the subsequent simulation, the historical inflow time series have been used "strictly" 
relying on the SDP based operational policies obtained according to the different sets of 
transitional probabilities. The optimum operation policies are determined using the expected 
system performance based on discrete storage and inflow states. Therefore, it is possible that 
in some periods the actual releases resulted from continuity equation would be out of their 
feasible range (e.g., release less than 0 or larger than the downstream channel capacity). In 
such instances, corrections (i.e., over-ruling the SDP optimum operation policy) are required 
in the simulation model. The releases are made equal to the nearest feasible value and the 
consequent final storage is defined by the continuity equation. The final storage (or the closest 
discrete value) obtained is used as the initial storage for next time step. 
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5.2.2 Results and Discussion 

The operation performances of Kariba and Mahaweli systems are shown in Table 5.3 and 
Table 5.4 respectively. The expected annual energy outputs shown are obtained from the SDP 
optimization. They are the expected gains for the different sets of inflow transition 
probabilities considered in this study and do not represent the real gain of the reservoir 
operation. 

The simulated mean annual energy outputs are obtained from the real time operational model 
for the given time period. Those results are based on the operation policies derived from 
different sets of inflow transition probabilities. The performance based on "ORG policy" is 
observed to be better than the others. That operation has the largest average energy output, 
least standard deviation and largest minimum energy output. The differences among mean 
annual energy outputs appear to be very limited (less than 2%). The standard deviations and 
the minimum energy output seem to be more sensitive for assumed changes in the inflow 
regime. However, the variation among the simulated performances of the reservoir system 
for different sets of assumed transition probability matrices is observed to be very much 
limited. 

Table 5.3 Operational Performance of the Kariba Reservoir 

ORG MDF AVG AVM 

Indices referring to energy output: 
(1) Expected annual energy (GWh) 8679 9164 9291 8967 
(2) Simulated mean annual energy (GWh) 8502 8355 8494 8478 
(3) Standard deviation of (2) (GWh) 847 1226 914 996 
(4) Minimum annual energy (GWh) 6157 4606 5383 5358 

Indices referring to reservoir: 
(5) Mean utilized storage volume as % of 

available reservoir capacity 58.7% 57.5% 44.4% 50.6% 
(6) Standard deviation of (5) 26.6% 26.9% 24.2% 26.0% 
(7) Minimum storage drawdown as % of 

available reservoir capacity 0.0% 0.0% 0.0% 0.0% 

The mean utilized reservoir storage volumes, their standard deviations and the minimum 
storage drawdowns are also presented in Table 5.3. The mean utilized reservoir storage 
volume related to "AVG policy" is much smaller than that value from "ORG policy". The 
"AVG policy" is derived based on the assumption that the reservoir inflow transition 
probabilities are uniform. This implies that anyhow there is a moderate (not low and not high) 
incoming inflow. If this assumption is valid, the reservoir storage capacity needed to regulate 
the over year inflow is low. Therefore, decisions (the storage volumes at the end of each time 
period) made from the SDP model lead to the smaller mean utilized reservoir storage volume. 

Table 5.4 shows the performance of the Victoria and Randenigala reservoirs in the Mahaweli 
system. In the SDP model, the objective of maximizing energy generation is subjected to the 
constraint of irrigation requirement. When both the inflow to the reservoir and the initial 
reservoir storage are very small it may not possible to make a decision (a reservoir storage 
at the end of the period) that falls into the feasible region. This occurs as the irrigation 
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demand is introduced to the system as a constraint that has to be satisfied always. Zeros 
represent these cases in the policy tables. Since the optimization does not hold for the whole 
set of decisions in the annual cycle, the expected annual energy output is not obtained. 

Table 5.4 presents the simulated mean annual energy outputs corresponding to the operation 
policies derived for different sets of inflow transition probabilities. The mean utilized 
reservoir storage volumes, their standard deviations and the minimum drawdown of the 
reservoir storages are also shown in this table. Except the indices referring to reservoir 
storage volume, most of the other performance indices referring to the objective function 
(energy generation) display little variation among different sets of policies derived from 
different inflow series. These results are similar to those for Kariba reservoir. 

The Mahaweli system serves multipurposes: energy generation and irrigation supply. The 
irrigation requirement is set as a constraint in the SDP model. In Table 5.4 the performance 
indices referring to the irrigation supply are also presented. They display little variation 
among different policies derived from different sets of inflow series. 

Table 5.4 Operational Performance of the Mahaweli System 

Indices referring to energy output: 
(1) Mean annual energy (GWh) 
(2) Standard deviation of (1) 
(3) Minimum annual energy (GWh) 

Indices referring to reservoirs: 
(4) Mean utilized storage volumes as % of 

available reservoir capacity 
Victoria 
Randenigala 

(5) Standard deviation of (4) 
Victoria 
Randenigala 

(6) Minimum storage drawdown as % of 
available reservoir capacity 

Victoria 
Randenigala 

ORG 

1390 
308 
841 

80.1% 
91.2% 

6.6% 
10.2% 

20.6% 
44.8% 

MDF 

1364 
302 
838 

89.1% 
89.1% 

7.8% 
10.0% 

36.5% 
44.8% 

AVG 

1342 
311 
774 

42.4% 
86.5% 

11.3% 
11.8% 

4.7% 
33.7% 

AVM 

1384 
321 
730 

65.6% 
91.5% 

8.0% 
9.9% 

20.6% 
44.8% 

Indices referring to irrigation shortage: 
(7) Time-based reliability1 86.2% 85.9% 84.6% 86.2% 
(8) Quantity-based reliability2 95.9% 95.9% 95.5% 95.7% 
(9) Repairability3 (month) 1.57 1.64 1.64 1.47 
(10)Vulnerability4 (MCM) 60.5 61.6 62.0 59.6 

1 - % of time steps with fulfilled irrigation demand 
2 - % of the accumulated irrigation demand met 
3 - Average duration of an irrigation failure (shortage) event 
4 - Average accumulated irrigation shortages per failure 
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These results show that for the given inflow and storage discretizations, a limited impact of 
the different transition probabilities can be detected as long as the objective factors are 
concerned. This fact implies that the inherent inaccuracy in estimating the transition 
probabilities is unlikely to have a considerable impact on the SDP based operational 
performance of reservoir systems. This "insensitivity" phenomenon may be interpreted from 
the following two aspects. 

(i) The transition probability matrices with large variations may derive similar steady state 
policies. As mentioned before, the SDP optimization process is an iteration of the Bellman 
recursive relation with the incorporated transition probability matrices (Equation S.l). Each 
row of the transition probability matrix is associated with an expected objective value of a 
feasible region. The optimal decision for each state is selected among the whole set of 
feasible decisions for that state by comparing the expected value of those decisions. It is clear 
from the behaviour of Markov chains that the influence of the initial transition probabilities 
is decreasing along the iterations. After many cycles the decisions are mainly weighted by the 
steady probabilities of the transitions. 

However, the foregoing discussion does not imply that all the transition probability matrices 
with the same steady probabilities will always derive the same steady state policy. Two 
transition probability matrices with large variation at the starting of the optimization process 
may be deformed to have less variation along the way of optimization iterations. Thus they 
may derive similar optimal policies at the end. 

(ii) The derived operation policies, which vary to a certain extent may satisfy the purpose of 
the reservoir system to similar standards. 

Water reservoirs are expensive long-live investment projects. Once they are built, they are 
often operated for decades. Therefore, when designing reservoirs the uncertainty on the future 
supplies, flows, qualities, costs, benefits and so on has to be considered. While the forecast 
for the future conditions is never perfect, well designed reservoirs are needed to be 
sufficiently flexible to permit their adaptation to a wide range of possible future conditions. 
Nowadays, many professionally designed reservoirs have to a certain extent built in 
robustness for dealing with the future uncertainties. Therefore, the policies, which vary to a 
certain extent from the optimal policies may not cause much worse performance of reservoir 
systems. 

In the two case studies presented, the operational policies derived from transition probability 
matrices "AVG" vary from the policies derived from the matrices "ORG". This can be 
detected from the indices referring to the reservoir storage level (policy is a set decisions 
defining the reservoir storage at the end of each time period). However, the difference among 
the performance indices referring to the key concerns of the reservoir systems (energy output 
and irrigation supply) are limited. 

5.3 A Methodology to Eliminate Zeros in Transition Probability Matrices 

As shown in Chapter 5.1, the large number of zero elements in the transition probability 
matrices resulted due to the limited length of inflow record are the cause of the violation of 
the second convergence criterion of SDP model. Therefore, when using SDP model, it is 

48 



safer to make sure that most of the elements in each row in the transition probability matrices 
are non-zeros. 

It can be easily seen that a transition probability matrix is ergodic (irreducible) if more than 
half the elements in each row are non-zero. This can be proved by the reduction to absurdity. 
Assume a n*n non-ergodic matrix having more than n/2 non-zero elements in each row. This 
matrix can be divided at least into two groups of rows (each non-ergodic matrix is reducible 
and can be reduced to at least two non-communicating groups of rows). These two groups 
of rows do not have non-zero elements at the same column. Therefore, these groups of rows 
form a matrix with more than n columns. This is in contradiction with the given fact that the 
matrix is a n*n matrix. 

The results of the sensitivity analysis in Chapter 5.2 reveal that the inherent inaccuracy in 
estimating the transition probability matrices is unlikely to have a considerable impact on the 
SDP based operational performance of reservoir systems. Therefore, it is proposed that some 
zeros in the transition probability matrices may be easily smoothed out by a reasonably small 
value. The following example applied to Kariba reservoir illustrates this. 

The method targets to make, most of the elements in the transition probability matrices, 
non-zeros. When a row is empty, a uniform frequency distribution is assumed row-wise. 
When more than half the elements of a row are non-zeroes, the row is kept unchanged. 
Otherwise, each zero in the row is replaced by 0.01 while the non-zeros in the row are 
accordingly reduced slightly to maintain the sum of the row to 1.0. Table 5.5 shows an 
example of how a given transition probability matrix is transformed into a new transition 
probability matrix by smoothing out the zeros according to the method. 

Table 5.5 Example of the Smoothing Method 

ORG 

NEW 

.500 

.000 

.000 

.480 

.010 

.010 

.250 

.000 

.000 

.240 

.010 

.010 

.250 

.000 

.000 

.230 

.010 

.010 

.000 

.333 

.000 

.010 

.313 

.010 

.000 

.000 

.000 

.010 

.010 

.010 

.000 

.333 

.000 

.010 

.323 

.010 

.000 

.000 

.330 

.010 

.010 

.310 

.000 

.333 

.670 

.010 

.313 

.630 

The simulated reservoir operation performance based on the policy derived by incorporating 
the new transition probability matrices (after partially smoothing out zeros) in the SDP model 
are compared with that from the original transition probability matrices. The results are 
shown in Table 5.6 and Figure 5.2. 

Table 5.6 shows the average annual performance indices from the simulated reservoir 
operation concerning both reservoir storage and energy output. Figure 5.2a and Figure 5.2b 
show the average monthly reservoir storage and energy output respectively. The similarity 
in the performance indices for reservoir storage can be interpreted as the similarity of the 
operation policies derived from both "ORG" and "NEW" transition probability matrices. 
Their performance indices referring to the energy output are also similar. 
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(b) Average energy output 

Figure 5.2 Simulated Monthly Performance After Smoothing 
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Table 5.6 Simulated Performance after Smoothing 

ORG NEW 

Indices referring to energy output: 
(1) Expected annual energy (GWh) 8679 8693 
(2) Simulated mean annual energy (GWh) 8502 8493 
(3) Standard deviation of (2) (GWh) 847 847 
(4) Minimum annual energy (GWh) 6157 6157 

Indices referring to reservoir: 
(5) Mean utilized storage volumes as % of available 

reservoir capacity 58.7% 58.8% 
(6) Standard deviation of (5) 26.6% 26.7% 
(7) Minimum storage drawdown as % of available 

reservoir capacity 0.0% 0.0% 

The same method was applied for Mahaweli system and identical results were obtained. That 
is, the simulated reservoir operation performance based on the policy derived by 
incorporating the new transition probability matrices (after partially smoothing out zeros) in 
the SDP model is almost the same as that from the original transition probability matrices. 
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6 State and Decision Variables 

For any DP type of model, the careful choice of state and decision variables is crucial to the 
success of the model. There are two versions of stationary SDP models, which have been 
widely applied in reservoir operation optimization. One is the model having release as a 
decision variable, with previous inflow and initial storage as state variables. The other is the 
model having final storage as decision variable, with present inflow and initial storage as 
decision variables. These models have been developed and used by different groups of 
researchers in different problem environments. However, little is known about their relative 
performance during reservoir operation optimization. The importance of the choice of the 
decision variable has been neglected; and there exist controversial remarks in literature 
regarding the choice of different inflow state variables. This chapter aims at obtaining an 
insight into the roles of different decision variables and state variables in the SDP model. 

The chapter starts with a review of the existing models and relevant research. It is followed 
by a comparative study carried out for a real case, the Kariba reservoir system. To enable 
making comparisons on the decision base (with the same decision variable when comparing 
the different choices of inflow state variables) or the inflow state base (with the same inflow 
state variable when comparing the different choices of decision variables), two more 
alternatives of the SDP models have been developed. One model has the final storage as a 
decision variable and previous inflow and initial storage as state variables. The other model 
has release as decision and present inflow and initial storage as state variables. One 
phenomenon in the comparative study, which catches attention is that the overwhelming 
influence of the decision variable (which is directly related to the objective) has on the 
suitability of the SDP model for the system to be optimized. This was analyzed with case 
study system, the Joumine reservoir in Tunisia. 

6.1 Review of the Existing Models 

In reservoir operation, the decision has to be made at the beginning of the time period. But 
at that instant, the inflow to the reservoir during the time period is not known. However, by 
considering the probability relations between the inflows in succeeding periods (Markov 
process), the reservoir operation policy can be set up based on the knowledge of previous 
inflow and the reservoir storage level at the beginning of the period. The SDP model was 
originally introduced into reservoir operation in this way (Little 1955; Buras 1966; 
Butcher 1968, 1971) and has been widely applied in reservoir operation. Butcher (1971) 
described the model as follows; 
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f^Q^op^PtiQJQ^MB^Q^*/^^^ VSfQ^ feasible m ) 

subject to, 

*, lQ, 

Where, t, St, Qt, Rt, SP, and E, are as defined as in Equation 3.12. n is total number of time 
periods passed, n=l,2,. . . ; P,(Q/Q,.j) is Markov transition probability of inflow falls into 
level Q, in period t, Given the inflow Qul in period t-1; B,(S,,Q,,RJ is objective increment 
for the transition state when the release decision is R, in period t starting from the initial 
storage S, and having Q, inflow during the period; f?(S,,Qhl) is (sub) optimal value of the 
recursive equation at stage n (period t) as function of S, and QtA\ the relation between time 
notations and variables are shown in Figure 3.3. 

The general sequential operating policies define the release for each time period as a function 
of the initial storage volume S, and the previous inflow Qul. These current releases R,(S,,Qt, 
j / s form the optimal policy of operation of a reservoir. Table 6.1 shows an example of a 
possible policy set for a problem with two periods in an operational cycle. It has two inflow 
and two storage states during each period. 

Table 6.1 Operational Policy Identifying the Current Release 

\ 
st

s 

20 
30 

Ö,-/ 
\ 

Period t= 

30 

20 
20 

= 1 

40 

20 
20 

\ 

V 
10 
20 

Ö,-/ 
\ 

Period t= 

10 

20 
20 

= 1 

20 

20 
30 

At the beginning of the time period, when the decision is to be made, both 5, and Qt.j are 
known. Thus the forgoing type of policy has the advantage that it can be easily implemented. 
However, such a policy has been criticized as making no explicit attempt to redefine the 
release in response to the actual inflow levels observed during the current period t (Stedinger 
etal, 1984). 

At the same time when Butcher was working on the Stochastic Dynamic Programming model, 
Loucks (1968) developed another interesting approach. It is the Stochastic Linear 
Programming (SLP) for the optimization of reservoir operation with the Markov inflow 
process. In his original version of the SLP model, the present inflow is used instead of the 
previous inflow to determine the present decision. Later Loucks and his associates (Gablinger 
and Loucks, 1970; Loucks and Falkson, 1970) carried out studies on the relationship between 
the SDP and SLP models. To make the two models comparable, they introduced a new 
version of SDP model which uses the present inflow instead of the previous inflow as the 
hydrologie state variable. This version of the SDP assumes that the present inflow is known 
at the beginning of the period (or that a forecast is possible with 100% certainty); thus the 

53 



present return from the recursive relation of the SDP model is deterministic 
(Stedinger et al., 1984). The model has been described by Loucks et al. (1981) as follows: 

/ A W H * ' ^ * 5 ' ^ S raQtJQ)*ft.r
lV,.vQtJ ™7>QA*i feasible 

subject to, 

R, - s,+ Q, - sM - sp, - Et 

fT\SfiQ) = opHB&QAJ] 

Where, t, Sv Qt, Rt, SPt and Et are as defined in Equation 3.12; n, Bt, f? and Pt+1 are as 
defined in Equation 6.1. The relation between time notations and variables are as shown in 
Figure 3.3. 

The generated sequential operating policies define the final storage volume as a function of 
the known initial storage volume St and the current period's inflow Qt, which can only be 
observed during the period. These final storage volumes St+1(St,Q,)'s then form an optimal 
policy for the operation of a reservoir. Table 6.2 shows an example of a possible policy set. 
By comparing Table 6.1 and Table 6.2, one can notice the difference between the derived 
policies from the two versions of the SDP model. 

Table 6.2 Operational Policy Identifying the Final Storage 
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To implement this policy, the inflow during the period should be known at the beginning of 
each period. Therefore, the above policy cannot be implemented straight away. 

One way of implementing this type of operation policy in real time operation is to reformulate 
the sequential operating policy in a manner that does not depend on unknown future inflows. 
This could be done by identifying either a final storage volume target subject to the releases, 
or reservoir release targets subject to limitations to the final storage volumes in each period 
t. The implementation of such an operating policy does not guarantee smooth reservoir 
releases throughout a period. However, such a policy can be used by the reservoir operators 
as a guideline at the beginning of a period without actual knowledge of the period's inflow 
(Loucks et al, 1981). 

Another way of implementing a St+1(SVQ^ policy, which demonstrates the advantage of this 
version of SDP is to employ the forecast of Qt. As the goal of making the storage volume of 
the reservoir at the end of the period, St+1(St,QJ is realized by a continuous release process 
throughout the period, and Q, will be known by the end of that period, the operator could 
redefine the release during the period in response to the best available forecast of Qt. In spite 
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of the difficulties and additional errors involved in forecasting inflows, the model does open 
the way for reservoir operators to operate the system based on the most up-to-date knowledge 
of inflow. 

Besides the inflow state variable the choice of the decision variable is important. The storage 
volume at the end of the period and release within the period could be the most reasonable 
choices. The suitability of the decision variable varies from case to case. The choice depends 
on the purposes and the characteristics of the reservoir system. For example, the policy that 
defines the storage volume would be a better choice for a reservoir system if it aims at flood 
control and if the level of water in the reservoir can be easily controlled by a sluice gate. On 
the other hand, the policy that defmes the release volume would be a better choice for a 
reservoir system for energy generation and hence, the key task for the operators is to regulate 
the quantity of water entering the generator. 

The optimal policy derived from the SDP model with previous inflow as state variable is used 
in real time operation, without inflow forecasting. In this case there is no even a rough 
estimation between St+1 and Rr Thus, clearly for this type of models the decision indicator, 
which is needed during the operation of the reservoir system has to be the decision variable. 

The policy derived from a SDP model with present inflow as state variable, is usually 
implemented with the forecast of the present inflow. Huang et al. (1991) argued that since 
Qt is assumed to be known, St+1 and Rt are mutually determined by the continuity equation. 
Thus, the decision S[+1 is preferred over Rt in the optimization process because the 
discretization of the release variable is eliminated. Their first argument can hardly be 
accepted when the spillage is significant, which is usually the case for reservoir systems for 
hydro-power generation. In such instances the so-called release is only the amount of water 
passing through the turbines that is used for energy generation. The balance can be called 
spillage and it is usually not negligible. 

Even if their first argument is tenable, it is still disputable whether the use of the storage 
instead of the release as the decision variable is a good choice for those cases where release 
is the direct target. For a yearly regulated reservoir system aiming at hydro-power generation, 
the feasible range of storage is usually much larger than the release. The feasible range of 
the storage volume is the reservoir capacity, which is almost comparable with the reservoir 
annual inflows. The feasible range of release in a month (if the time period is a month) is 
constrained by the capacities of the turbines, which is about 10 or 20 times smaller than the 
reservoir storage capacity. Therefore, for the same discretization accuracy, many more 
discretization points in the decision variable (storage) are required if the storage is used as 
the decision variable instead of release. This implies that much unnecessary search-work has 
to be performed during the optimizing process in checking the discretized points that are not 
feasible. Therefore, the decision variable, which mostly facilitates the operation of the 
reservoir system is probably always the better choice for both versions of the SDP model 
(version with the previous inflow state variable or version with the present inflow state 
variable). A further discussion regarding the selection of decision variables is presented in 
Chapter 6.3 with case studies. 

Huang et al. (1991) compared the performance of the stationary SDP model with different 
choices of inflow state variables. They have structured four types of stationary SDP models 
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to derive optimal operation policies for the Feitsui Reservoir System in Thaiwan. The four 
models are; 

Type 1 - Model described by Equation 6.2 
State : Initial storage + Present inflow 
Decision : Final storage 
Markov inflow processes 

Type 2 - A version of Type 1, assuming that the inflow is an independent variable 
(Model described by Equation 7.6) 
State : Initial storage + Present inflow 
Decision : Final storage 
Independent inflow processes 

Type 3 - Model described by Equation 6.1 
State : Initial storage + Previous inflow 
Decision : Current release 
Markov inflow processes 

Type 4 - A version of Type 3, assuming that the inflow is an independent variable 
State : Initial storage + Previous inflow 
Decision : Current release 
Independent inflow processes 

The comparison has been made based on the simulation of the reservoir system operation with 
the derived policies. They concluded that the derived policies, which can be implemented 
with observed inflows (Type 3 and Type 4) perform better than the policies that have to be 
implemented with forecasted inflows (Type 1 and Type 2). However, they have immediately 
added that this conclusion may not hold under different hydrological regimes. The studied 
case has the prominent feature that there will be inevitable substantial errors in the forecast 
inflows as it is situated in a typhoon area. This feature may have largely weaken the models 
whose derived policies have to be implemented with forecast inflows. 

There is another factor that makes the generality of their conclusion questionable. It is clear 
from the structure of their models that the final storage has been adopted as the decision 
variable while the present inflow is the state variable. Current release has only been adopted 
as the decision variable for the models with the previous inflow as the state variable. As 
previously shown in this section, the selection of either the final storage or the current release 
as the decision variable may largely alter the optimization searching process. The 
computer-experiment in the next section will show that the robustness of the policies derived 
from these two different decision variables also can differ considerably. Therefore, from their 
comparison hardly any conclusion on the performance of different inflow state variables can 
be drawn. 
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6.2 Comparison of the Models with Different Decision and Inflow State Variables 

This section compares the performance of the different SDP models. These models differ in 
the choice of inflow state variables and decision variables. For this purpose two more 
alternatives of the SDP model (Model 2 and Model 3) have been formulated based on the 
models described by Equation 6.1 (Model 4) and the model described by Equation 6.2 
(Model 1), respectively. Model 2 has the same decision variable (final storage) as Model 1 
while it has the same inflow state variable (previous inflow) as Model 4. Model 3 has the 
same decision variable as Model 4 and the same inflow state variable as Model 1. The 
formulations of the four SDP models are listed below. 

Model 1 State : Initial storage + Present inflow 
Decision : Final storage 
The recursive equation is defined as in Equation 6.2 

Model 2 State 
Decision 

Initial storage + Previous inflow 
Final storage 

si*tlQt
 J 

subject to, 
*r - S, + <?, - SM - SPt - Et 

/ r W W = opt Y,nQJQtJ*B,V?QAJ 
*M Q, 

Model 3 State 
Decision 

Initial storage + Present inflow 
Current release 

subject to, 

fM,Qt) - o/tfTB,(Wy] 

^Q^Rfeasibk (fi 4 ) 

Model 4 State : Initial storage + Previous inflow 
Decision : Current release 
The recursive equation is defined as in Equation 6.1 
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Where, t, St, Qt, Rt, SP, and E, are as defined in Equation 3.12; n, Bt, f? and P, are as 
defined in Equation 6.1. The relation between time notations and variables are as shown in 
Figure 3.3. 

The four SDP formulations are compared by applying to a real case, the Kariba reservoir 
system. The Kariba reservoir system is described in Chapter 4. Initially the optimum 
operation policies were derived and then the system operations were simulated according to 
the derived policies. The comparison is made based on the performance indices obtained from 
the simulation. 

6.2.1 Computer-Experiments 

The structure of the SDP model is similar to the model described in Table 5.3 except the 
different sets of decision and inflow state variables. The stage is the time period, which is one 
month. The objective is to maximize the expected annual energy generation. The optimization 
is subjected to the physical constraints of the reservoir system (e.g., storage constraints, 
release constraints, etc.). The whole reservoir storage is discretized into 42 classes of equal 
size, each having the interval of 1579 MCM. For the models in which policies are defined 
as optimal releases (Model 3 and Model 4), the release levels up to twice of the monthly 
release capacity of the turbines are to be optimized. They are discretized into 6 classes with 
equal size, each having an interval of about 1575 MCM. The monthly inflows are discretized 
into varying numbers of classes (2 classes for August, September, October and November; 
3 classes for December and July; 4 classes for January and June; 6 classes for February and 
May; 8 classes for March and April) with equal occupancy frequencies. The median of each 
inflow class is defined as the representative value of that class. Uniform frequency 
distribution is assumed row-wise for the empty rows if they occur in the inflow transition 
probability matrices. Empty rows may occur due to the limited length of the observed 
historical inflow time series. For all the SDP based optimizations, both convergence criteria 
have been obtained. 

In the subsequent simulations, the historical inflow time series were used "strictly" relying 
on the derived SDP based operation policies subjected to the physical constraints of the 
reservoir system. Based on the setup of these models, the following three 
computer-experiments have been carried out. 

Experiment 6.1 
Derive optimal operation policies for the reservoir system using the four SDP models based 
on 24 years (1961 - 1984) of historical inflow time series. Then simulate the performance of 
the reservoir system according to the derived operation policy sets. Use the last 12 years 
(1973 - 1984) of historical inflow time series at this step. Assume that the perfect forecast is 
available at the beginning of each time period. 

Experiment 6.2 
Derive optimal operation policies for the reservoir system using the four SDP models based 
on 12 years (1961 - 1972) of historical inflow time series. Then simulate the performance of 
the reservoir system according to the derived operation policy sets using the last 12 years 
(1973 - 1984) of historical inflow time series. Assume that the perfect forecast is available 
at the beginning of each time period. 
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Experiment 6.3 
Derive optimal operation policies for the reservoir system using the four SDP models based 
on 12 years (1961 - 1972) of historical inflow time series. Then simulate the performance of 
the reservoir system according to the derived operation policy sets using the last 12 years 
(1973 - 1984) of historical inflow time series using the imperfect inflow forecast at the 
beginning of each time period. The inflows are forecast by using the regression equations 
derived by Budhakooncharoen (1986) for this case study system. The regression equations 
obtained from that study are shown in Table 4.7. The three computer-experiments are 
summarized in Table 6.3. 

Table 6.3 Summary of the Three Computer-Experiments 

The inflow time series used to 
derive release policy 

The inflow time series used to 
simulate system operation 

The type of inflow forecast 
available at the beginning of each 
period (during simulation) 

Experiment 6.1 

1961 - 1984 

1973 - 1984 

Perfect 
forecast 

Experiment 6.2 

1961 - 1972 

1973 - 1984 

Perfect 
forecast 

Experiment 6.3 

1961 - 1972 

1973 - 1984 

Imperfect 
forecast 

In Experiment 6.1, the part of historical inflow series (1973 - 1984) that has been employed 
for deriving the optimal policies is used to simulate the performance of the system. This 
enables to observe the difference between system performance values obtained from the 
steady state solution of SDP and that from simulation. SDP relies on discrete representation 
of input states while simulation uses actual inflow series. 

In Experiment 6.2, the first 12 years of the historical inflow series are employed to derive 
optimal policies. The second 12 years of the historical inflow series are used to simulate the 
performance of the system according to the derived policies. This corresponds to the situation 
that exist in reality if the system is operated based on a perfect inflow forecast. 

Derivation of optimum operation policies in Experiment 6.2 and Experiment 6.3 are similar. 
But in the implementation of the derived policies in the operation simulations, the forecasted 
inflow data are used in Experiment 6.3 while observed inflow data are used in 
Experiment 6.2. Nevertheless, when simulating the operation the inflows used in the 
continuity equation are still the actual inflows. In Experiment 6.3, the models whose derived 
policies can be implemented with known previous inflow (Model 2 and Model 4) will perform 
the same way as in Experiment 6.2. Variation from Experiment 6.2 occurs only in those 
models whose derived policies have to be implemented using inflow forecast data. 

6.2.2 Analysis of the Results and Discussion 

For each experiment each SDP model derives one optimal policy. Each policy contains 12 
tables (12 months). Out of the large number of policies derived, the policy tables for the 
month of May from Experiment 6.2 are presented in Table 6.4 for all the four models, for 
example. Table 6.4a, Table 6.4b, Table 6.4c, and Table 6.4d refer to the policies from 
Model 1, Model 2, Model 3 and Model 4 respectively. Note that the policies from 
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Experiment 6.3 are the same as those from Experiment 6.2. The values in Table 6.4a and 
Table 6.4b are the targeted storage classes in the reservoir at the end of the month. The 
values in Table 6.4c and Table 6.4d are the targeted release classes during the month. The 
policy tables of the other months and the tables from Experiment 6.1 have a similar structure 
as the policies shown in Table 6.4. 

The simulated performance is presented based on the following three aspects: (a) the average 
reservoir storage; (b) the average release through turbine; and (c) the average energy 
generation. The energy generation, being the objective of the optimization is the most 
important performance index. The release through turbine is directly proportional to the 
energy generation. Reservoir storage shows the behaviour of the reservoir very clearly. 

Table 6.5 and Figure 6.1 present the results from Experiment 6.1. Table 6.5 shows the 
average annual performance indices regarding the reservoir storage, the release through 
turbines and the energy generation. For each of the three performance indices, the simulated 
mean, the standard deviation and the minimum value are presented. For energy generation 
the expected annual gain obtained from the SDP based optimization is also included. To make 
the comparison easy, each value corresponding to reservoir storage, turbine release and 
energy generation are presented as the percentages of reservoir capacity, the average annual 
inflow and the generation capacity, respectively. Figure 6.1 shows the average monthly 
performances (average reservoir storage in (a), average turbine release in (b) and average 
energy generation in (c)). 

Table 6.5 Simulated Average Annual Performances (Experiment 6.1) 

Indices in storage 
as % of reservoir capacity: 
(1) Mean utilized storage 
(2) Standard deviation of (1) 
(3) Minimum drawdown 

Indices in releases 
as % of annual inflow: 
(4) Mean annual release 
(5) Standard deviation of (4) 
(6) Minimum annual release 

Indices in energy 
as % of power capacity: 
(7) Expected mean annual 

energy output 
(8) Simulated mean annual 

energy output 
(9) Standard deviation of (8) 
(10)Firm annual energy output 

Model 1 

62.3% 
29.8% 
7.0% 

70.7% 
7.3% 

51.3% 

93.5% 

90.8% 

11.4% 
62.0% 

Model 2 

63.7% 
21.1% 
24.7% 

66.5% 
8.1% 

47.4% 

86.6% 

85.5% 

11.3% 
59.4% 

Model 3 

68.0% 
28.1% 
10.6% 

70.3% 
4.7% 

57.6% 

91.7% 

91.0% 

8.3% 
73.3% 

Model 4 

67.2% 
28.4% 
11.0% 

70.1% 
5.2% 

57.7% 

91.4% 

90.7% 

9.0% 
73.8% 

Table 6.6 and Figure 6.2 show the average annual performance indices and the average 
monthly performances, respectively, from Experiment 6.2. 
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Figure 6.1 Simulated Monthly Performance of Experiment 6.1 
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Figure 6.2 Simulated Monthly Performance of Experiment 6.2 
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Table 6.6 Simulated Average Annual Performances (Experiment 6.2) 

Indices in storage 
as % of reservoir capacity: 
(1) Mean utilized storage 
(2) Standard deviation of (1) 
(3) Minimum drawdown 

Indices in releases 
as % of annual inflow: 
(4) Mean annual release 
(5) Standard deviation of (4) 
(6) Minimum annual release 

Indices in energy 
as % of power capacity: 
(7) Expected mean annual 

energy output 
(8) Simulated mean annual 

energy output 
(9) Standard deviation of (8) 
(10)Firm annual energy output 

Model 1 

61.8% 
30.2% 
6.2% 

69.8% 
7.9% 

48.4% 

92.7% 

89.6% 

11.9% 
58.6% 

Model 2 

59.8% 
21.1% 
22.0% 

64.5% 
7.2% 

50.4% 

87.7% 

82.4% 

10.0% 
62.7% 

Model 3 

66.5% 
29.6% 
8.2% 

69.9% 
6.0% 

55.6% 

91.0% 

90.3% 

10.1% 
67.1% 

Model 4 

66.0% 
29.2% 
11.1% 

69.7% 
6.2% 

54.6% 

91.1% 

90.0% 

10.2% 
66.5% 

Table 6.7 and Figure 6.3 show the average annual performance indices and the average 
monthly performances, respectively, from Experiment 6.3. 

Table 6.7 Simulated Average Annual Performances (Experiment 6.3) 

Indices in storage 
as % of reservoir capacity: 
(1) Mean utilized storage 
(2) Standard deviation of (1) 
(3) Minimum drawdown 

Indices in releases 
as % of annual inflow: 
(4) Mean annual release 
(5) Standard deviation of (4) 
(6) Minimum annual release 

Indices in energy 
as % of power capacity: 
(7) Expected mean annual 

energy output 
(8) Simulated mean annual 

energy output 
(9) Standard deviation of (8) 
(10)Firm annual energy output 

Model 1 

66.3% 
22.5% 
19.6% 

67.2% 
5.1% 

58.8% 

92.7% 

86.4% 

7.5% 
73.3% 

Model 2 

59.8% 
21.1% 
22.0% 

64.5% 
7.2% 

50.4% 

87.7% 

82.4% 

10.0% 
62.7% 

Model 3 

66.3% 
29.3% 
10.4% 

69.9% 
6.3% 

54.7% 

91.0% 

90.3% 

10.2% 
66.6% 

Model 4 

66.0% 
29.2% 
11.1% 

69.7% 
6.2% 

54.6% 

91.1% 

90.0% 

10.2% 
66.5% 
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Figure 6.3 Simulated Monthly Performance of Experiment 6.3 
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In Table 6.4 the particular structure of the policy tables for models with release as the 
decision variable (Table 6.4c and Table 6.4d) attracts attention. It is noticeable that most of 
the decisions are 3212 MCM, which is close to the capacity of the turbines (3937 MCM). 
The decision changes to the value of one class larger (4818 MCM) only if both initial storage 
and the inflow are very large, or to the value of one class smaller (1606 MCM) only if both 
initial storage and the inflow are very small. This structure of the policy table can be 
explained as follows. The objective of the optimization is to generate as much energy as 
possible. The maximum energy that a hydro-power plant can generate is the capacity of its 
generators. The amount of energy generation is proportional to the release through the 
penstocks. Corresponding to the capacity of the generators there is an imaginary capacity 
release (Rc). Therefore, optimal decisions can be seen as attempts to approach Rc. 

In contrast to Table 6.4c and Table 6.4d, models with storage as the decision variable 
(Table 6.4a and Table 6.4b) have policy tables that show large variations in the decisions. 
The above mentioned feature of "stability" is achieved for the policy with release as 
decisions, only when release is the direct target of the optimization (e.g., to satisfy 
downstream water requirement or to satisfy energy requirement, etc.). The feature of 
"stability" would occur to the policy with storage as the decision, if storage is the direct 
target of the optimization. For example, if the water level in a reservoir is important, the 
objective of the optimization could be minimizing the deviation from a target storage level 
at each time period. Thus the derived policy would have the feature that many decisions 
(storage) in each table were equal to the unique value of the target (or the discretized value 
closest to that target) for that time period. The more robust the reservoir system is, the more 
decisions will be the target values. 

The "stability" of the policies defined with release as decision intuitively explains the 
following three aspects of the simulation results in this study. 

(i) Figure 6.2 and Figure 6.3 show the simulated average monthly performance of 
Experiment 6.2 and Experiment 6.3, respectively. As previously described in Chapter 6.2.1, 
the Experiment 6.2 corresponds to the operation of the system with perfect inflow forecasting. 
The Experiment 6.3 corresponds to the operation of the system with perfect inflow 
forecasting. With respect to models with the previous inflow as a state variable (Model 2 and 
Model 4), the performance indices do not change. Model 1 performs considerably worse in 
Experiment 6.3 than in Experiment 6.2, as expected. However, the performance of Model 3 
in Experiment 6.3 is unexpectedly close to the performance in Experiment 6.2. 

This unexpected result can be explained with policy Table 6.4c. For a wide range of initial 
storage values (from 11105 MCM to 52166 MCM), the release decisions are independent of 
the present inflow values. The errors in the present inflow forecast only affect the release 
decision in a very few cases (the top-right and bottom-left triangle), and the maximum 
deviation in decision is only one class. Therefore, the (simulated) operation based on this type 
of policy is insensitive to the errors in the inflow forecast. 

(ii) From Table 6.5 to Table 6.7 and from Figure 6.1 to Figure 6.3, it is observed that the 
models with release as a decision variable (Model 3 and Model 4) differ very little from each 
other with respect to all three simulated performance indices (reservoir storage, turbine 
release and energy generation). In contrast, models with storage as a decision variable 
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(Model 1 and Model 2) show much larger difference between them with respect to 
performance indices. 

In Table 6.4c (Model 3) and Table 6.4d (Model 4), for a wide range of initial storage values 
(from 12684 MCM to 52166 MCM) the optimal decisions (release) are independent of both 
the present and the previous inflow values. The differences in the present or the previous 
inflows only affect the release decisions in a very few cases (the top-right and bottom-left 
triangle). The maximum deviation in decision is one class. In contrast, Table 6.4a (Model 1) 
and Table 6.4b (Model 2) show that the optimal decisions (final storage) for the operation are 
strongly determined by the initial storage values and the inflow values. A small variation in 
the inflow value can lead to a different decision. Therefore, whether the previous or the 
present inflow is used as a state variable strongly influences the decisions during operations 
(and hence, the performance indices). Comparing the structures of Table 6.4c and Table 6.4d 
with those of Table 6.4a and Table 6.4b, it can be concluded that the policies derived from 
models with release as a decision variable (Model 3 and Model 4) are much less sensitive to 
variations in the initial storage and inflow than policies derived from models with storage as 
a decision variable (Model 1 and Model 2). 

(iii) From Table 6.5 to Table 6.7 and from Figure 6.1 to Figure 6.3 (particularly in Table 6.7 
and Figure 6.3 when the imperfect inflow forecast is adopted as a guidance during operation 
simulation), indicate that the reservoir performances obtained from the models with release 
as a decision variable (Model 3 and Model 4) are better than that obtained from the models 
with storage as a decision variable (Model 1 and Model 2). Model 3 and Model 4 results in 
larger mean values and smaller fluctuations in energy generation, both in annual and monthly 
performance indices. These results can be related to the "stability" of policy Table 6.4c and 
Table 6.4d. 

From this discussion, it can be concluded that the models with release as the decision variable 
considerably outperform the models with storage as the decision variable. If the "right" 
decision has been made regarding the decision variables, the different choices of inflow state 
variables would not much affect the performance of the system. However, in reality the 
selection of the "right" decision variable can not always be realized. For example, for 
multipurpose reservoir systems, sometimes more than one objective has to be optimized at 
the same time. Some objectives might be directly related to release and others might be 
directly related to storage. As has been shown in the case study that when storage is selected 
as a decision variable, models will become sensitive to the choice of inflow state variable. 

Figure 6. lb and Figure 6. lc show that Model 2 considerably deviates from the optimum 
during the wet season (January, February, March and April) when the stochastic inflow has 
large distribution ranges (see Table A.6, the 24 years of historical inflow into the Kariba 
reservoir). The course for this behaviour is explained below. 

Equation 6.3 (Model 2) can be written in the following form; 

SL. In n J S M L Ç , Q, 
(6.5) 
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When Equation 6.2 and Equation 6.S are compared, the major difference between them is 
observed to be in the first item (present return). For the model with the present inflow as a 
state variable (Equation 6.2), the present return in the recursive relation is deterministic. For 
the model with previous inflow as a state variable (equation 6.S), the present return is 
stochastic. Thus, its expected value is instead adopted as the index for finding an optimal 
decision. When the possible range of the stochastic inflow is small, an expected value would 
be a good representative. The larger the possible range of the stochastic inflow, the poorer 
the expected value as a representative. Table A.6 shows that in April the minimum value is 
3010 MCM and the maximum value is 21390 MCM, the mean value is 9373 MCM. The 
possible deviation from the mean could be 12017 MCM, which is more than three times the 
release capacity of the generator. Therefore, an expected value of the present return from 
such a series of inflow is likely to mislead the SDP optimization search slightly. 

The same problem does not occur in Model 4. It has the previous inflow as a state and thus 
has a stochastic present return. Because the much smaller feasible range of the release 
decision base restricts the scale of possible error. 

The above argument can be explained in a simple way by an example with an optimization 
horizon of one time period. Assume there is an empty reservoir with storage capacity of 
64800 MCM. The incoming inflow is stochastic and it has a distribution range from 
3010 MCM to 21390 MCM and the mean value is 9373 MCM. The feasible release is from 
0 to 3937 MCM. Releasing 3937 MCM is assumed as the target of optimization. These 
assumed figures are picked up from the historical inflow time series for Kariba reservoir 
(April, Table A.6). 

First, consider the case that the release is selected as a decision variable. If the estimated 
inflow is 3010 MCM, the release decision should be 3010 MCM; if the estimated inflow is 
3937, the release decision should be 3937; if the estimated inflow is 9373, the release 
decision should still be 3937; if the estimated inflow is 21390, the release decision is still 
3937. Therefore, the error in the estimation of incoming inflow for the range from 3937 to 
21390 MCM does not affect the release decision. Only the error in the estimation of inflow 
within the range of 3010 to 3937 MCM alters the release. Now, let the final storage be 
selected as decision variable. If the estimated inflow is 3010 MCM, the storage decision 
should be 0 and thus release 3010 MCM; if the estimated inflow is 3937, the storage decision 
should still be 0; if the estimated inflow is 9373, the storage decision should be 5436; if the 
estimated inflow is 21390, the storage decision should be 17463. The error in the estimation 
of coming inflow for the range from 3937 to 21390 MCM does influence the storage 
decision. Although the fluctuation on inflow within the range of 3010 to 3937 does not alter 
the decision of storage, the resulting release does change with the actual inflow. Therefore, 
for the policy defined with final storage as a decision, the error in the estimation of inflow 
for the whole possible range (from 3010 to 21390 MCM) can strongly alter the actual release. 

Now, assume that the policies are obtained from the mean value of inflow. The policy defined 
with release as a decision is 3937 MCM; the policy defined with storage as a decision is 
5436 MCM. In real time operation if the actual inflow is 5436, for example, according to the 
policy defined with release as a decision, 3937 MCM should be released and 1499 MCM 
should be left in the reservoir; according to the policy defined with final storage as a 
decision, 5436 MCM should be kept in the reservoir and 0 should be released. Therefore, for 
this particular inflow situation, the policy defined with release as a decision satisfies the 
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release target 3937 MCM more than the policy defined with final storage as a decision. This 
again demonstrates the importance of selecting the variable that is directly related to the target 
as a decision. 

The same example also can be used to explain the simulation results that during the dry 
season (September, October and November) the models with final storage as a decision 
variable slightly outperform the models with release as a decision variable (see Figure 6.1b, 
Figure 6.1c, Figure 6.2b and Figure 6.2c). 

Consider the inflow time series of October as an example (Table A.6). The inflow 
distribution range is from 843 to 1918 MCM and the mean is 1197 MCM. Now the obtained 
policies based on the mean value of inflow are releasing 1197 MCM with release as a 
decision and storing 0 MCM in the reservoir with final storage as a decision. In real time 
operation if the actual inflow is 1918 MCM, for example, according to the policy defined 
with release as a decision, 1197 MCM should be released and 721 MCM should be left in 
the reservoir; according to the policy defined with final storage as a decision, 0 MCM should 
be kept in the reservoir and 1918 MCM should be released. Therefore, for this inflow 
situation, the policy defined with final storage as a decision satisfies the release target with 
721 MCM more than the policy defined with release as a decision. However, as compared 
with the wet season, the scale of possible errors is limited. 

The comparison of the simulation results from Experiment 6.2 and Experiment 6.3 
(Table 6.6, Figure 6.3, Table 6.7 and Figure 6.4) shows the influence of the imperfect inflow 
forecast on the Model 1 based performance. The influence is limited during wet season, as 
can be expected. During wet season the distribution range of inflow is large, and thus the 
possible errors in the inflow forecasting are large enough to alter the SDP based policy. It 
is obvious that the quality of the forecasting model has a great effect on the performance. The 
better the reliability of the forecast inflow, the closer the reservoir operation performance to 
its real optimum. In Experiment 6.3, the inflow is forecast by a simple linear regression 
model (Budhakooncharoen, 1986) with considerable errors (see Table 4.7). Even so, the 
Model 1 based simulation still performs better than the Model 2 based simulation that depends 
on the previous inflow. This makes the model with present inflow as a state, better than the 
model with previous inflow as a state. Although it cannot be concluded from the current 
results that this type of models with present inflow as a state will always outperform the type 
of models with previous inflow as a state, it does illustrate that the policy derived from 
Model 1 can sustain errors in the inflow forecast. Besides, in real time operation, having 
large amounts of up-to-date information regarding rainfall, river channel flow, ground water 
and catchment area characteristics etc., a good inflow forecast can be easily produced. 

6.3 Comparison of the Models with Different Decision Variables 

One of the phenomena from the comparative study of Chapter 6.2, which draws attention is 
the overwhelming influence of the release as the decision variable has on the suitability of the 
SDP model for the system optimized. As compared with final storage volume, release is more 
directly related to the objective of hydro-power generation, which is the objective of the 
system analyzed. 
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However, though the above example (Kariba reservoir) is good to illustrate the influence of 
decision variable and state variable, it may not be sufficient to draw conclusions. First, 
Kariba is not a water supply system and thus the objective is not purely decided by release. 
The Kariba system serves as a hydropower plant. Hydropower generation is proportional to 
the water head and the amount of water passing through the turbines. The water head depends 
on the water storage level in the reservoir. In Kariba reservoir the change in the water head 
is very limited compared with the penstock release. Nevertheless, regarding it as a problem 
based on release decision is an approximation. Second, Kariba is a robust system with huge 
reservoir storage (active capacity is 64750 MCM) and a huge annual inflow (average is 
54689 MCM), but with relatively small capacity of penstocks (about 4000 MCM water can 
pass through monthly). This fact may slightly abate any inherent advantages or disadvantages 
of the optimization models. 

To verify the hypothesis regarding the choice of decision variables, another case study is 
carried out on the Joumine reservoir. It has characteristics different from the Kariba 
reservoir. 

The Joumine reservoir, situated in Tunisia, is a water supply system. Its live storage capacity 
is about 121.3 MCM and the mean annual inflow is 133 MCM. The Joumine reservoir is 
supposed to satisfy the immediate downstream water demand and supply water through an 
inter-basin transfer tunnel to several remote places (together with some other reservoirs). In 
this study the immediate water demand is called "local demand"; the demand from remote 
places is called "system demand". The "local demand" and the "system demand" together is 
called the "total demand" in this study. Detailed information about the Joumine reservoir is 
described in Chapter 4.3. 

The present study confines to the comparison between the models with the present inflow as 
the inflow state variable, but with different decision variables; i.e., Model 1 and Model 3 are 
applied to derive SDP based optimal operation policies. The system operation is then 
simulated according to the derived policies and the discussion is made based on the simulated 
water shortage or the water requirement fulfilment. 

6.3.1 The Structure of the SDP Models and Resulting Policies 

The structure of the SDP model is summarized in Table 6.8. 

Table 6.8 SDP Model Setup for the Joumine Reservoir 

Stage 

Objective 

Inflow discretizations 

Storage discretizations 

Release discretizations 

Time period in month 

Minimize expected squared deficit from the 
"total demand" 

Equal size intervals and varying number of 
classes (from 4 to 12) 

Equal size intervals. 18 classes 

Equal size intervals. 3 or 4 classes 
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The stage is the time period, which is one month. The objective is to minimize the squared 
deficit from the "total demand", subjected to the physical constraints of the reservoir system 
(e.g., storage constraints, release constraints, etc.). Total reservoir storage is discretized into 
18 classes of equal size. For the model with the policy defined as release (Model 3) the 
release levels upto the monthly "total demands" are to be optimized. They are discretized into 
3 classes of equal size when the demands are smaller than 9 MCM and into 4 classes 
otherwise. The monthly inflow is discretized into varying number of classes (from number 
4 to 12 according to the distribution range of the 44 years (1946-1989) of historical monthly 
inflow) with equal intervals. 

Table 6.9 shows the derived policy tables for the month of March. Table 6.9a and Table 6.9b 
are the policy tables from Model 1 and Model 3, respectively. The numbers in Table 6.9a 
are the targeted storage classes at the end of March; the numbers in Table 6.9b are the 
targeted release classes during March. 

In the policy table defined in terms of release (Table 6.9b), most of the optimal decisions are 
the value of the "total demand" in March (class 1). The decision changes to the value of one 
class smaller (class 2) or two classes smaller (class 3) only if both the initial storage and the 
inflow are very small (see the small bottom-left triangle in Table 6.9b). This feature of the 
policy table clearly shows the tendency that decisions are equal to the water demand in that 
time period as long as the reservoir system is capable of doing so. 

In the policy table defined in terms of storage (Table 6.9a), the decision for most of initial 
storage and inflow conditions (except the bottom-left triangle) are also aiming at releasing the 
amount at the discretized point closest to the water demand. However, since the optimal 
decisions are defined as final storage volumes, the resulting policy table has a different 
feature (as compared with Table 6.9b). The figures gradually change with the different 
combination of initial storage and inflow conditions from the smallest value at the left bottom 
corner to the storage capacity of the reservoir (up-right). 

6.3.2 Simulation and Results 

To compare the performances of Model 1 and Model 3, the reservoir operation has been 
simulated according to the above two sets of derived policies (from Model 1 and Model 3). 
The Model 3 based simulation "strictly" relies on the derived policies (as long as the physical 
constraints of the reservoir system are not violated), whereas the Model 1 based simulation 
includes certain modifications to the derived policy. These modifications are; (a) if the release 
according to the policy table is larger than the "total demand", then release an amount of 
water equal to the "total demand" and save the balance in the reservoir (if there is still room 
in the reservoir); (b) if the initial storage level is higher than half the full capacity and the 
resulting release according to the policy table were smaller than the "total demand", adjust 
the targeted final storage so that the release satisfies the "total demand". 
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Table 6.9 Derived SDP-based Policy Tables for the Joumine Reservoir (March) 
(a) Model-1 

Period: March 

Inflow 1 2 3 4 5 6 7 8 9 10 

Initial 
Storage 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 
3 2 1 1 1 1 1 1 1 1 
4 3 2 1 1 1 1 1 1 1 
4 3 3 1 1 1 1 1 1 1 
5 4 4 2 1 1 1 1 1 1 
6 5 5 3 1 1 1 1 1 1 
7 6 6 4 2 2 1 1 1 1 
8 7 7 4 3 3 1 1 1 1 
9 8 8 5 4 4 2 1 1 1 

10 9 9 6 5 5 3 1 1 1 
11 10 9 7 5 6 4 2 1 1 
12 11 10 8 6 7 5 3 2 1 
13 12 11 9 7 8 6 4 3 2 
14 13 12 10 8 9 6 4 4 2 
15 14 13 11 9 10 7 5 5 3 
16 15 14 12 10 11 8 6 6 4 
17 16 15 13 11 12 9 7 7 5 

11 

2 
3 
3 

(b) Model-2 

Period: March 

Inflow 10 11 

Initial 
Storage 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

The reason for having these modifications for the Model 1 based simulation is the following. 
As has been described when setting up the SDP model in Chapter 6.3.1, in Model 3 the 
release up to the amount of the "total demand" has been optimized. The exact demands are 
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discretized and the reservoir release is never larger than the demand unless storage is full. 
Besides, since the decision base of Model 3 (monthly release varying from 0 up to the amount 
of "total demand") is much smaller than the decision base of Model 1 (the whole reservoir 
storage capacity), it can be easily discretized into much smaller classes. Therefore, there is 
a smaller discrepancy between the release and demand caused by rough dicretization in 
Model 3 compared with that for Model 1. These are the advantages of the models that use 
release as decision variable. Therefore, to illustrate the additional superiority inherent in 
Model 3, the Model 1 is reinforced with the foregoing modifications during the simulation 
process. 

The following two simulation experiments were designed based on the above discussion. 

Experiment 6.4 
Simulate the performance of the reservoir system based on the two derived operation policy 
sets (from Model 1 and Model 3) using the 44 years (1946 - 1989) of historical inflow time 
series. Assume the perfect forecast is available at the beginning of each time period. 

Experiment 6.5 
Simulate the performance of the reservoir system based on the two derived operation policy 
sets (from Model 1 and Model 3) using the 44 years (1946 - 1989) of historical inflow time 
series. An imperfect inflow forecast is used at the beginning of each time period. 

The inflow forecast at this time step is according to the so-called "lag-one multi-period 
Markov model" (Viessman et al., 1989), which has the following formula; 

Q - Q, + Vl*W<Vl)*«?r-l-C?r-l) + ' r*V(l-'Vl)1/2 ( 6 6 ) 

Where, $f is the forecast inflow in period t; Qt.j is the observed inflow in period t-l; Qt is 
the mean of observed inflows in period t; rtul is the correlation coefficient for the relation 
of inflows from period t to period t-\\ at is the standard deviation of observed flows for the 
period t; et is a random number selected from a normal distribution having a zero mean and 
a unit variance. 

The results from the two simulation experiments have been summarized in Figure 6.4, 
Figure 6.S and Table 6.10. The quantity-based water shortage from simulation 
Experiment 6.4 and simulation Experiment 6.S are shown in Figure 6.4 and Figure 6.5 
respectively. Table 6.10 lists the monthly distribution of the level of time-based fulfilment 
of the "local demand" from the two experiments. 

The following two major points can be deduced from the simulation results. 

(i) When the perfect inflow forecast is available (Experiment 6.4), the system operation 
according to the release-based policy satisfies the water requirement slightly better than that 
according to the storage-based policy (both from the points of view of quantity-base and 
time-base). However, the difference is limited. 
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(a) Shortage to meet local demand 
1.4 

I . 2.638 MCM 
I = 0.847 MCM 

model 1 

(a) Shortage to meet system demand 
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2 3 4 5 6 7 8 9 10 11 12 
month 

Figure 6.4 Quantity-based Water Shortage Result from Experiment 6.4 
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(a) Shortage to meet local demand 
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model 1 
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Figure 6.5 Quantity-based Water Shortage Results from Experiment 6.5 
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(ii) When the imperfect inflow forecast is used (as is the case in real time operation) as 
a guidance to implement the derived policy (Experiment 6.5), the system operation according 
to the release-based policy satisfies the water requirement much better than that according to 
the storage-based policy. 

Table 6.10 Simulated Performance (Experiment 6.4 and 6.5) 
(Percentages of the months corresponding to Different Levels of Local Demand Fulfilment) 

Simualation Results from Experiment 6 .4 

Model-1 

month 
100% 
80% or more 
60% or more 
40% or more 
more than zero 
zero 

1 
93.2 
93.2 
93.2 
95.5 
95.5 
4.5 

2 
90.9 
90.9 
90.9 
90.9 
93.2 
6.8 

3 
86.4 
86.4 
88.6 
90.9 
95.5 
4.5 

4 
84.1 
86.4 
90.9 
93.2 
95.5 
4.5 

5 
59.1 
61.4 
65.9 
72.7 
93.2 
6.8 

6 
86.4 
93.2 
97.7 
97.7 

100.0 
0.0 

7 
86.4 
90.9 
95.5 

100.0 
100.0 

0.0 

8 
100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

9 
97.7 
97.7 
97.7 

100.0 
100.0 

0.0 

10 
93.2 
93.2 
93.2 
93.2 
93.2 
6.8 

11 
93.2 
93.2 
93.2 
93.2 
93.2 
6.8 

12 
93.2 
93.2 
93.2 
93.2 
93.2 
6.8 

whole 
88.6 
90.0 
91.7 
93.4 
96.0 
4.0 

Model-3 

month 
100% 
80% or more 
60% or more 
40% or more 
more than zero 
zero 

1 
86.4 
86.4 
88.6 
88.6 
88.6 
11.4 

2 
81.8 
81.8 
81.8 
84.1 
88.6 
11.4 

3 
97.7 

100.0 
100.0 
100.0 
100.0 

0.0 

4 
95.5 
97.7 

100.0 
100.0 
100.0 

0.0 

5 
95.5 
97.7 
97.7 
97.7 

100.0 
0.0 

6 
86.4 
88.6 

100.0 
100.0 
100.0 

0.0 

7 
97.7 
97.7 
97.7 

100.0 
100.0 

0.0 

8 
100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

9 
97.7 
97.7 

100.0 
100.0 
100.0 

0.0 

10 
86.4 
86.4 
86.4 
88.6 
90.9 
9.1 

11 
90.9 
90.9 
90.9 
90.9 
93.2 
6.8 

12 
95.5 
95.5 
95.5 
95.5 
95.5 
4.5 

whole 
92.6 
93.4 
94.9 
95.5 
96.4 
3.6 

Simualation Results from Experiment 6.4 

Model-1 

month 
100% 
80% or more 
60% or more 
40% or more 
more than zero 
zero 

1 
81.8 
81.8 
81.8 
81.8 
81.8 
18.2 

2 
61.4 
61.4 
61.4 
61.4 
63.6 
36.4 

3 
56.8 
56.8 
56.8 
63.6 
63.6 
36.4 

4 
52.3 
52.3 
54.5 
56.8 
56.8 
43.2 

5 
61.4 
63.6 
65.9 
68.2 
68.2 
31.8 

6 
75.0 
77.3 
79.5 
81.8 
81.8 
18.2 

7 
70.5 
70.5 
75.0 
79.5 
81.8 
18.2 

8 
81.8 
84.1 
86.4 
88.6 
93.2 
6.8 

9 
100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

10 
97.7 

100.0 
100.0 
100.0 
100.0 

0.0 

11 
97.7 
97.7 
97.7 
97.7 
97.7 
2.3 

12 
95.5 
95.5 
95.5 
95.5 
95.5 
4.5 

whole 
77.7 
78.4 
79.5 
81.3 
82.0 
18.0 

Model-3 

month 
100% 
80% or more 
60% or more 
40% or more 
more than zero 
zero 

1 
86.4 
86.4 
88.6 
88.6 
88.6 
11.4 

2 
90.9 
90.9 
90.9 
90.9 
95.5 
4.5 

3 
90.9 
93.2 
95.5 
95.5 
95.5 
4.5 

4 
90.9 
90.9 
93.2 
97.7 

100.0 
0.0 

5 
93.2 
93.2 
95.5 
97.7 

100.0 
0.0 

6 
93.2 
93.2 

100.0 
100.0 
100.0 

0.0 

7 
97.7 
97.7 
97.7 

100.0 
100.0 

0.0 

8 
100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

9 
90.9 
90.9 
90.9 
90.9 
93.2 
6.8 

10 
88.6 
88.6 
88.6 
90.9 
93.2 
6.8 

11 
84.1 
84.1 
84.1 
86.4 
86.4 
13.6 

12 
93.2 
93.2 
93.2 
93.2 
93.2 
6.8 

whole 
91.7 
91.9 
93.2 
94.3 
95.5 
4.5 

The intuitive explanation for the results obtained is the feature of "stability" in the release 
based policy tables. In those tables, more than 80% of the release decisions are equal to the 
amount of water demand for the period. This feature of "stability" makes the release-based 
policy insensitive to possible errors in inflow estimation. 

The underlying reason can be found by looking into the details of the system operation 
process (which goes from period t to period t +1). When the policy is defined as release, the 
operation aims directly at target release and the amount of water, which is the result of the 
error in the inflow estimation during period t will be left in reservoir storage. In the next time 
step t +1, the system will automatically adjust its operation according to the resulting storage 
level from the last time period t (since the decisions for period t+1 are based on the storage 
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levels at end of period t). In this way the non-optimal operation in the current time step t will 
be amended with future operations in time H-l, t+2, . . etc., . Thus the error in inflow 
estimation does not greatly disturb the system operation in the current periods nor the system 
operation on the long run. Whereas if the policy is defined as targeted storage, the operation 
aims at the "ideal" storage and the amount of water, which is the result of the error in the 
inflow estimation during the operation period t will be released. If the forecast inflow is 
larger than the actual inflow, for example, the selected targeted final storage may result in 
water shortage; and if the forecasted inflow is smaller than the actual inflow, the selected 
targeted final storage may result in a wasted release. In the next time step t+1 the system 
operation continues according to the final storage level from time step t. Nothing can be done 
in future time periods to amend what was done wrong during time step t. 

The case study in the present section verifies the phenomena observed in the Kariba reservoir 
case study, regarding the choice of decision variables. The different choice of decision 
variables in the SDP model has a considerable influence on the suitability of the model to the 
optimized system. Choosing the variable (either release or storage) that is directly related to 
the objective of the optimization will largely reinforce the power of the SDP model. 
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7 Inflow Serial Correlation Assumptions 

Serial correlation or autocorrelation means that the value of the stochastic variable under 
consideration at one time period is correlated with the values of the stochastic variable at 
earlier time periods. The correlation between an observation at certain time period with an 
observation k time periods earlier is called the 4th order serial correlation. It is denoted by 
correlation coefficient p(k) (see Section 3.1.5). 

The serial assumption for the stochastic inflow sequences is an important issue in reservoir 
operation optimization. In SDP models, serial correlation assumption is used to describe the 
inflow sequence. The stochastic nature of inflow sequence is a generally observed fact. 
However, the choice of the serial correlation assumption is an unsolved controversy in 
literature of reservoir operation optimization. 

When SDP model was first introduced into reservoir operation, the inflow sequence was 
assumed as a Markov-I process. Later, the independence assumption has also been used in 
SDP models. The Markov-I assumption is more popular than the independence assumption. 
But supporters of the use of each of these assumptions have presented arguments to favour 
one above the other. These arguments are often supported by experimental results on the 
reservoir operation optimization either for different real problems or with different SDP 
model setups (e.g., different discretization, different decision or state variables, and different 
objectives, etc.; See discussions in Chapter 5, 6 and 8). Thus the results are not often 
comparable. The discussion, on which inflow assumption is the best, remains undecided. 

The purpose of this chapter is to study the influence of different inflow serial correlation 
assumptions on the performance of the SDP models. To obtain an overview of the problem, 
besides models with the Markov-I and the independence assumptions, another two models 
have also been developed. One model considers the serial correlation one step further than 
the Markov-I assumption: SDP model with Markov-II assumption. The other model interprets 
the inflow process even simpler than the independence assumption does: the model with the 
assumption that the inflow is deterministic. 

This chapter is organized as follows. Initially, the four serial correlation assumptions are 
described and their modelling complexities are analyzed. Next, the issue about the best serial 
correlation assumption is discussed and the topics of the current study are identified. It is 
followed by several case studies (experiments) carried out to investigate these topics. The 
conclusions with respect to the use of serial correlation assumption in SDP models are given 
in Chapter 9. 
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7.1 The Four Serial Correlation Assumptions and Their Modelling Complexities 

It has been known for long that many river flow time series exhibit serial correlation. That 
is, high flows follow high flows and low flows follow low flows. This phenomena is 
particularly evident for short time intervals. Annual and seasonal flows (the total flow amount 
of an entire period) are seldom highly correlated, while monthly, weekly, and especially 
daily, hourly flows generally exhibit high serial correlations. The "high" is in the sense of 
both the value of lag k and the value of correlation coefficient p(k). 

For the application of SDP model in the optimization of reservoir operation, the inflow serial 
correlation is interpreted by transition probabilities. These transition probabilities are coupled 
with recursive relation of Dynamic Programming to derive expectation-oriented optimal 
values. The formulations for the SDP models with Markov-II, Markov-I, independence and 
deterministic inflow serial correlation assumptions are given in this section. The modelling 
and computational complexities of these models are analyzed. In all four models, the present 
inflow is selected as the inflow state variable. 

The Markov-II inflow process assumption 

The Markov-II assumption takes lag-two and lag-one serial correlations of the inflow process 
into consideration. The transition probability of the Markov-II process can be characterized 
as: 

Pt+l(QtJQfiQt.vQt.2,^ - />f+1«?r+1l<?Ä1) (7.1) 

The SDP model with Markov-II assumption can be formulated with the following recursive 
relation: 

foS&Q^opHBßrQ^yY,Pt+l(QtJQt>Q,-iX~i^vQ^,Qt)} VS^Jeas. (7.2) 

subject to, 
*r = St + <?, - SM - SP, - E, 

Ußt.Q&J = opi[Bt(SpQJ))] 
», 

Where, t, St, Qt, Rt, Et and SPt are defined as in Equation 3.12; n is total number of time 
periods passed, n=l,2,. . . ; Dt is decision variable, can either be R, or St+1; Bt(St,Qt,DJ is 
increment of objective value for the transition state when the decision is Dt in the end of 
period t starting from initial storage St and having Qt inflow during the period; j?(St,Qt,Qt_j) 
is (sub) optimal value of the recursive equation at stage n (period t) as function of St, Q, and 
Qt-i> Pt+i(Qt+i/Qt>Qt-i) is transition probability of inflow in class Qt+1 in period t+1, given 
the inflow classes are Qt and Qul in period t and t-\ respectively; the relation between time 
notations and variables are as shown in Figure 3.3. 

The transition probabilities, Pt+i(Qt+i/Qt>Qt-i) °f a Markov-II process can be represented as 
a three-dimensional array. Figure 7.1 shows a graphical illustration of such a 
three-dimensional array. 
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Figure 7.1 Graphical Illustration of the Three-dimensional (Markov-II) Transition 
Probabilities 

The Markov-I inflow process assumption 

The Markov-I assumption takes the lag-one (first order) serial correlation of inflow process 
into consideration. The transition probability of the Markov-I process can be expressed as: 

The SDP model with Markov-I assumption can be formulated with the following recursive 
relation: 

JtißrQ^opHBßeQeDyY, paQ,JQ)<î(S
t.i>Q,+iï VS„<?„Z>, feas. (7.4) 

subject to, 

* - * . • < ? . " s»y - sp< - E, 

Where, t, St, Qt, Rt, Et and SPt are defined as in Equation 3.12; Dt, Bt(St,Qt,DJ and n are 
as defined in Equation 7.2;f?(St,Qt,) is (sub) optimal value of the recursive equation at stage 
n (period t) as function of St and Qt; Pt+i(Qt+i/QJ is Markov transition probability of inflow 
in period t+l is in class Qt+1, Given the inflow class is Q, in period t; the relation between 
time notations and variables are as shown in Figure 3.3. 

The transition probabilities, Pt+1(Qt+1/QJ of a Markov-I assumption can be represented as 
a two-dimensional array as shown in Figure 7.2. It can be considered as a special case of the 
transition probabilities of a Markov-II process, that each layer along the axis of Qt_2 has the 
unique probability distributions. 
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Figure 7.2 Graphical Illustration of the Two-dimensional (Markov-I) Transition Probabilities 

The independence or random inflow process assumption 

The inflow process is considered as exhibiting no serial correlation with inflows of the 
previous time periods with the independence or random inflow process assumption. That is 
the probability Pt+i(Qt+i) is independent of the previous inflow station: 

Pt^Qt.l\Qt,Q,-vQt-i ) = Pt.i(Q,.x) <7-5) 

The SDP model with independence inflow assumption can be formulated with the following 
relation: 

J!(ßJ2)-crtBJP,QJ>)+E ̂ i W J ^ M J WoQeD, feas- (7.6) 

subject to, 

Where, t, St, Qt, Rt, Et and SPt are defined as in Equation 3.12; Dv Bt(St,QvD) and n are 
as defined in Equation 7.2; f?(St,QJ is the same as in Equation 7.4; Pt+1((2t+1) is the 
probability of the inflow in period t+\ is in class Qt+1', the relation between time notations 
and variables are as shown in Figure 3.3. 

The transition probabilities resulted from independence inflow assumption can be represented 
as a one-dimensional array as shown in Figure 7.3. It can be considered as a special case of 
the transition probabilities of the Markov-I assumption, that each line along the axis of Q,_j 
has the unique probability distribution. 
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Figure 7.3 Graphical Illustration of the One-dimensional (independence) Probabilities 

The deterministic inflow process assumption 

The deterministic assumption assumes that there is a predetermined inflow Q, for each time 
period t, thus: 

P,.1(QtJQt,Q,.vQt.v • ) = *jQ) = 10 (7 /7 ) 

The mean inflow value of a time period t (e.g., the average value of inflows of the month 
over a number of years) is used as Qr 

The (deterministic) model deterministic inflow assumption can be expressed in the following 
recursive relation: 

(7.8) 

subject to, 

ft(S) ^pUB&Q^)+<V(S,+1)] VS^QM feas. 

Where, t, St, Qt, Rt, Et and SPt are defined as in Equation 3.12; Dt, Bt(SvQvDJ and n are 
as defined in Equation 1.2;fî(S,) is (sub) optimal value of the recursive equation at stage n 
(period t) as function of St; the relation between time notations and variables are as shown 
in Figure 3.3. 

The deterministic assumption may be considered as a special case of the independence inflow 
process assumption. In that case the inflow of each time period is discretized into only one 
class and thus the occurrence probability is 1.0. 

The complexities involved in the modelling of these four types of models will be discussed 
and compared with each other. 

First, consider the Markov-II assumption. From Figure 7.1 it can be seen that if the inflow 
is divided into m classes for each time period, then the total number of transition probabilities 
is equal to m3. These m3 transition probabilities of the inflow process have to be estimated 
from historical inflow data. To estimate such a large amount of transition probabilities 
(parameters), not only many calculations have to be performed, but more importantly a large 
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estimation error may occur on the transition probabilities. To see this, let us consider the way 
the transition probability Pt(QJQt-i>Qt-2) *s calculated: 
P,(QJQt-i>Qt-2) = occurrence frequency of Qt at time period f given the inflows are QtA and 
Qt_2 at time period t-\ and t-2 respectively. 

If the total number of available historical observation data is not very large, say less than 
U2*m3, then most of the transition probabilities will be zero. Because there are simply not 
enough occurrences. Thus it requires a large number of historical observation data to obtain 
a reasonably accurate estimation of the transition probabilities. This is however a big 
difficulty, because historical inflow data covering more than 30 or 40 years are hardly 
available. Also, consider the computational complexity of a SDP model with the Markov-II 
assumption. Equation 7.1 indicates that the number of evaluations is proportional to m3. 

Second, consider the Markov-I assumption. From Figure 7.2 it is clear that if inflow is 
divided into m classes, then the total number of transition probabilities is equal to w2. Thus 
the number of transition probabilities to be estimated is a factor of m less than that with the 
Markov-II assumption. Consequently, with the same amount of historical inflow data, the 
estimation of the transition probabilities will be more accurate than the estimation of the 
Markov-II transition probabilities. Furthermore, from Equation 7.3, it can be seen that the 
number of evaluations is proportional to m2. Thus, the computational complexity of a SDP 
model with the Markov-I assumption is a factor m less than that of a SDP model with the 
Markov-II assumption. 

Similar analysis can be made for the SDP model with the independence inflow assumption 
and (deterministic) model with the deterministic inflow assumption respectively. The number 
of "transition" probabilities to be estimated is m for independence assumption (Equation 7.5) 
and is 1 for deterministic inflow assumption (Equation 7.7). 

7.2 The Best Serial Correlation Assumption 

The Markov-I assumption has been adopted to model the inflow by most of the researchers 
as mentioned at the beginning of this chapter. The independence inflow process assumption 
has also been used by some researchers (Su and Deininger, 1974; Laabs and Harboe, 1988; 
Huang et al., 1991). However, the simpler model with the independence inflow process 
assumption has never enjoyed the same popularity that the Markov-I assumption has in the 
application of SDP in reservoir operation. The independence assumption was criticized as too 
simple to describe the stochasticity of inflow time series accurately. However, this argument 
as not sufficient to decide which inflow assumption should be used in the SDP models. In 
fact, it is important to have an inflow assumption that reflects the real nature of the inflows. 
It is also very important not to make the model unnecessarily complicated. The best model 
should be the simplest model, which still "sufficiently" reflects the reality. The term 
"sufficient" depends on the application. For SDP models applied to reservoir operation 
optimization, a model is sufficiently good if it produces approximately the same performance 
as the best (complicated) models. 

The modelling and computational complexity of SDP models decrease with a factor m from 
Markov-II, Markov-I, independence inflow to deterministic inflow assumption as shown in 
Section 7.1. 
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With respect to the errors in the SDP model caused by the inflow assumption, two types of 
errors can be distinguished. One is when the model is too simple to describe those properties 
of the natural phenomena that are important for the decision. The other is when the set of 
historical samples is too small. In Section 7.1, it has been shown that the error caused by a 
small sample set increases as the complexity of the model increases (the number of 
parameters to be estimated increases). The difficulty in making a good choice among the 
serial correlation assumptions is mainly due to the difficulty in determining the appropriate 
interchange between these two types of errors. 

The question about which serial correlation assumption gives the best SDP model cannot be 
easily answered. It depends on many factors, and there may even not be a single best SDP 
model. It depends on the situation for which the SDP models are applied. Therefore, this 
problem is further studied through several case studies. 

The SDP models have been mainly applied in reservoir operations for their long-term 
management. The time period usually is a month or half a month or so. For this level of time 
it is not uncommon to have systems with low serial correlation for many time periods within 
a year. To illustrate, the monthly serial correlation coefficients of the three available inflow 
time series from the systems Kariba, Victoria/Randenigala and Joumine are listed in 
Table 7.1. 

Table 7.1 Serial Correlation Coefficients of the Three Case Study Systems 

Kariba Victoria Randenigala 

Month lag-one lag-two lag-one lag-one 

Joumine 

lag-one 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.36 
0.39 
0.10 
0.52 
0.65 
0.53 
0.89 
0.92 
0.93 
0.97 
0.94 
0.79 

0.07 
0.22 
0.42 
0.11 
0.45 
0.55 
0.31 
0.82 
0.79 
0.97 
0.88 
0.77 

0.22 
0.29 
0.50 
0.39 
0.51 
0.68 
0.31 
0.55 
0.19 
0.07 
0.01 
0.54 

0.22 
0.07 
0.36 
0.21 
0.53 
0.55 
0.44 
0.49 
0.36 
0.11 
0.05 
0.33 

0.08 
0.03 
0.29 
0.20 
0.31 
0.11 
0.04 
0.55 
0.08 
0.28 
0.32 
0.04 

From the serial correlation coefficients in Table 7.1, the following facts can be observed. For 
many months, the inflow series of the Kariba system is highly serially correlated (both 
lag-one and lag-two). Inflow series of the Mahaweli (Victoria/Randenigala) system can be 
considered as moderately serially correlated. The serial correlation of inflow time series of 
the Joumine system is low for almost all the months. 

In Section 7.3, case studies will be carried out to investigate the pros and cons of the four 
serial correlation assumptions described in Section 7.1. The study will be carried out with the 
three reservoir systems, Kariba, Victoria/Randenigala and Joumine. 
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7.3 Computer-Experiments 

In this section six experiments have been carried out. The detailed design and result of each 
of the experiments will be presented from Section 7.3.1 to 7.3.6. Table 7.2 gives a summary 
of the six experiments. 

Table 7.2 The Key Points of the Design of Experiments 7.1 to 7.6 
Experiment 7.1 Experiment 7.2 Experiment 7.3 Experiment 7.4 Experiment 7.5 

Study case Kariba Kariba Karibe Kariba Victoria/Randcnif 
ab 

Experiment 7.6 

Joumine 

Inflow assumption 
of the modela 

l)Markov-n 
2)Markov-I 

l)Markov-n 
2)Markov-I 
3)Independent 
4)Deterministic 

Markov-Iif 
1)0.0. 2)0.5 
3)0.75,4)0.9 
5)1.0 
otherwise 
independent 

l)Markov-I 
2)Independent 

l)Maikov-I 
2)Independent 

DMarkov-I 
2)Independent 

Deciaion variable 

State variable 

Objective 

Constraint 

Simulation 

release 

present inflow, 
initial storage 

max. expected 
annual energy 

-

according to 
policy baaed on 
perfect forecast 

final storage 

present inflow, 
initial storage 

max. expected 
annual energy 

-

according to 
policy based on 
perfect forecast 

final storage 

present inflow, 
initial storage 

max. expected 
annual energy 

-

according to 
policy baaed on 
perfect forecast 

final storage 

present inflow, 
initial storage 

max. expected 
annual energy 

-

according to 
policy based on 
imperfect forecast 

final storage 

present inflow, 
initial storage 

max. expected 
annual energy 

irrigation demand 

according to 
policy based on 
perfect forecast 

final storage 

present inflow, 
initial storage 

mm. expected 
annual energy 

-

according to 
policy based on 
perfect forecast 

7.3.1 Kariba System Operation Based on the Models with Release as Decision Variable 
(Experiment 7.1) 

In this experiment the Kariba reservoir, which has relatively high inflow serial correlation 
coefficients (see Table 7.1) is selected as the study case. 

This experiment aims to screen the performance of the SDP models with the four different 
inflow assumptions: Markov-II (Equation 7.2), Markov-I (Equation 7.4), independence 
(Equation 7.6) and deterministic (Equation 7.8). Based on the conclusion of Chapter 6, the 
release (which is more directly related to the objective of energy generation) is selected as 
the decision variable. The decision variable Dt in Equation 7.2, 7.4, 7.6 and 7.8 can now be 
specified as Rr 

In this experiment the structure of the SDP model is similar to the model described in 
Section 6.2 (Equation 6.4), except the different inflow assumptions. The stage is the time 
step, which is one month. The objective is to maximize the expected annual energy 
generation. The optimization is subjected to the physical constraints of the reservoir system 
(e.g., storage constraints, release constraints, etc.). The reservoir storage is discretized into 
42 classes with equal size. The release levels upto twice the monthly release capacities of the 
penstocks are to be optimized. They are discretized into 6 classes with equal size. For the 
three stochastic inflow assumptions the monthly inflows are discretized into varying numbers 
of classes (from 2 to 8, according to the discretization range of the 24 years historical 
monthly inflow; 1961-1984) with equal occupancy frequencies. For the deterministic inflow 
assumption the monthly inflows are "discretized" into one class. The median of each inflow 

85 



class is the representative value of that class. With the derived SDP based optimal operation 
policies, the performances of the reservoir system were simulated with the 12 years (1973-
1984) historical inflow time series. Perfect forecasting is assumed to be available at the 
beginning of each time period. The simulations "strictly" rely on the derived optimal 
operation policies, as long as the physical constraints of the reservoir system are not violated. 
Table 7.3 presents the simulated average annual performance indices from Experiment 7.1. 

Table 7.3 Simulated Average Annual Performance (Experiment 7.1) 

Indices referring to energy 
as % of power capacity: 
(1) expected mean annual 

energy output 
(2) simulated average annual 

energy output 
(3) standard deviation of (2) 
(4) 95% confidence interval 

for mean energy 
(5) minimum annual energy 

output 

Indices referring to storage 
as % of reservoir capacity: 
(6) average utilized storage 
(7) standard deviation of (6) 
(8) minimum drawdown 

Indices referring to release 
as % of annual inflow: 
(9) average annual release 
(lO)standard deviation of (9) 
(1 l)minimum annual release 

Markov-n 

91.3% 

91.0% 
8.3% 

(86.5%, 
95.5%) 

73.7% 

68.1% 
27.7% 
11.9% 

70.3% 
4.7% 

60.7% 

Markov-I 

91.7% 

91.0% 
8.3% 

(86.5%, 
95.5%) 

73.3% 

68.0% 
28.1% 
10.6% 

70.3% 
4.7% 

57.6% 

Independent 

96.6% 

90.6% 
10.0% 

(85.2%, 
96.0%) 

69.6% 

65.2% 
29.4% 
8.6% 

70.3% 
6.0% 

57.6% 

Deterministic 

95.6% 

90.0% 
9.4% 

(84.9%, 
95.1%) 

70.0% 

67.1% 
30.0% 
10.8% 

69.6% 
5.5% 

57.7% 

Same as in Section 6.2, the simulated performance is presented according to the following 
three aspects: (a) the energy generations; (b) the reservoir storages; and (c) the releases 
through turbine. For each of the three performance indices, the simulated mean, the standard 
deviation and the minimum value are presented. For the energy generation, the expected 
annual gain obtained from the SDP based optimization is also presented. The so called 
"expected annual energy output" itself does not tell much about the real performance of the 
system. However, the difference between the expected value (item 1 in Table 7.3) and the 
simulated value (item 2) exhibits how far is the optimization model from the real nature of 
the problem being optimized. 

According to the results, although the ways of inflow been considered differ very much for 
the four optimization models, the simulated performance based on the four derived "optimal" 
policies differ very little. For example, for the objective value of annual energy output 
(item 2), the smallest simulated energy output from deterministic inflow assumption is only 
1 % less than largest output from Markov-II and Markov-I assumptions. 
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The present result can be understood by recalling the conclusion of Chapter 6 regarding the 
influence of the decision variable of SDP. When the variable directly related to the objective 
of the optimization is selected as decision variable, the model becomes insensitive to the way 
how the inflow is considered. In this situation, the simpler models (either SDP model with 
independence inflow or even deterministic model based on mean value of inflow) would 
almost perform as well as the more complicated models that consider inflow serial 
correlations. 

7.3.2 Kariba System Operation Based on the Models with Storage as Decision Variable 
(Experiment 7.2) 

This experiment also aims to screen the performance of the SDP models with the four 
different inflow assumptions: Markov-H (Equation 7.2), Markov-I (Equation 7.4), 
independence (Equation 7.6) and deterministic (Equation 7.8). Same as in Experiment 7.1, 
the Kariba reservoir is selected as case study in this experiment. The final storage will be 
chosen to be the decision variable in the present experiment. Therefore, the decision variable 
Dt in Equation 7.2, 7.4, 7.6 and 7.8 can now be specified as St+1. The balance setup of the 
SDP models and the way of subsequent simulations remain the same as in Experiment 7.1. 

Table 7.4 presents the simulated average annual performance indices from Experiment 7.2. 
Similar to Table 7.3, they are presented according to the following three aspects: (a) the 
energy generations; (b) the reservoir storages; and (c) the releases through turbine. 

From the result of the present experiment the influence of SDP model with different inflow 
assumptions can be much better detected than from Experiment 7.1. 

First, the policy derived from the model with deterministic inflow assumption leads to a 
considerably worse performance of the reservoir system as compared with that from the 
models with stochastic inflow assumption. For example consider the indices for energy. The 
simulated mean annual energy output (item 2) resulted from the model with deterministic 
inflow assumption about 12% less than that of the models with stochastic inflow assumptions. 
The fluctuation or standard deviation of annual energy generation (item 3) is almost 50% 
more than that of the other three models. The firm annual energy output (item 4) is about one 
quarter less than that of the other three models. 

This result clearly illustrates the drawback of the model with deterministic inflow assumption 
in deriving reservoir operation policies. The deterministic model based on mean value of 
inflows seems too simple to represent the nature of reservoir inflows sufficiently. In general, 
a deterministic model is probably a good tool to screen the best performance a system could 
have if the historical inflow observations (which are already known) repeat in the future. If 
the issue is to derive reservoir operation policies, the deterministic model probably may 
function better within the framework of the so called "implicit" type stochastic approach (see 
Section 1.2 regarding the "implicit" stochastic approach). 
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Table 7.4 Simulated Average Annual Performance (Experiment 7.2) 

Indices referring to energy 
as % of power capacity: 
(1) expected mean annual 

energy output 
(2) simulated average annual 

energy output 
(3) standard deviation of (2) 
(4) 95% confidence interval 

for mean energy 
(5) minimum annual energy 

output 

Indices referring to storage 
as % of reservoir capacity: 
(6) average utilized storage 
(7) standard deviation of (6) 
(8) minimum drawdown 

Indices referring to release 
as % of annual inflow 
(9) average annual release 
(lO)standard deviation of (9) 
(ll)minimum annual release 

Markov-II 

93.0% 

90.9% 
11.3% 

(84.8%, 
97.0%) 

62.2% 

62.4% 
29.5% 
8.2% 

70.7% 
7.3% 

51.2% 

Markov-I 

93.7% 

90.8% 
11.4% 

(84.6%, 
97.0%) 

62.0% 

63.3% 
29.8% 
7.0% 

70.7% 
7.3% 

51.3% 

Independent 

99.9% 

90.9% 
12.9% 

(83.9%, 
97.9%) 

58.4% 

62.0% 
30.9% 
3.1% 

70.7% 
8.5% 

48.6% 

Deterministic 

99.2% 

80.1% 
17.8% 

(70.5%, 
89.7%) 

48.7% 

52.9% 
6.0% 

43.7% 

63.4% 
14.5% 
38.2% 

Second, the policy derived from the SDP model with the Markov-II assumption does not 
show much improvement in the reservoir system performance as compared with that of the 
model with the Markov-I assumption. Compare the two columns of performance indices 
corresponding to the Markov-II and Markov-I assumptions. It seems that except the 
unimportant indices referring the reservoir minimum drawdown (item 7), the difference of 
all the indices are less than 1%. 

This result, as we have expected, indicates that the improvement resulted from the model with 
Markov-II assumption does not justify the additional complication of the model. Generally, 
it can be concluded that the SDP models with the second or higher order inflow serial 
correlation assumption are not practical. The difficulty lies in the estimation of the 
three-dimensional inflow transitional probabilities. The availability of observed data of inflow 
time series for over 40 years is scarce. Such a limited length of historical inflow time series 
is bound to result in considerable errors in the estimation of three-dimensional inflow 
transition probabilities. Those errors may significantly diminish the merit of the Markov-II 
based model even when it better reflects the characteristics of the inflow. 

When comparing the performance between Markov-I and independence inflow assumption, 
a firm conclusion is somehow difficult to draw based on the present results. The objective 
value of mean annual energy outputs (item 2) resulted from both assumptions are almost the 
same. The model with the Markov-I assumption leads the system to slightly better 
performance in the sense of standard deviation of annual energy output (item 3) and firm 
annual energy output (item 4). However, as compared with the model with deterministic 
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inflow assumption, the model with independence assumption does not vary considerably from 
the model with Markov-I assumption. 

7.3.3 Kariba System Operation Based on the Models with Markov-I and Independence 
Assumption (Experiment 7.3) 

The present experiment aims to obtain additional insight into the performance of the SDP 
models with the Markov-I and independence assumptions. The reservoir system in 
consideration is still the Kariba system. 

Referring to Table 7.1, it can be noticed that the correlation coefficients of Kariba are high 
for some months and low for the rest. The idea of using a model with Markov-I assumption 
for the months with high correlation coefficient and independence assumption for the months 
with low correlation coefficient may be a reasonable choice for such a system. This type of 
model can both reflect the serial correlation of the inflow time series for the months when 
the serial correlation is high. It also can avoid the unnecessary additional parameter estimation 
errors for the months when the serial correlation is low. 

To, investigate this idea, five models are set up in the present experiment. For each model 
a critical point (cp) is defined. They are (a) 0.0, (b) 0.5, (c) 0.75, (d) 0.9 and (e) 1.0, 
respectively. For the months with lag-one serial correlation coefficients are larger than or 
equal to the critical point, the Markov-I transition probabilities will be coupled into the 
recursive relation of SDP model (Equation 7.4). For the months with lag-one serial 
correlation coefficients are smaller than the critical point, the independent probabilities will 
be coupled into the recursive relation of SDP model (Equation 7.6). Consider model-c as an 
example. There are 6 months (from month 7 to month 12) whose lag-one correlation 
coefficients are larger than 0.75 (see Table 7.1). Therefore, for those 6 months the Markov-I 
transition probabilities and for the remaining 6 months the independent probabilities will be 
coupled into the recursive relation. Similarly, for model-b there will be 9 months (from 
month 4 to 12) with Markov-I transition probabilities and 3 months with independent 
probabilities. For model-d there will be 4 months (from month 8 to 11) with Markov-I 
transition probabilities and 8 months with independent probabilities. The model-a with 0.0 
as critical point is the model with Markov-I assumption for all the 12 months in a year. The 
model-e with 1.0 as critical point is the model with independence assumption for all the 12 
months in a year. 

The balance set up of the SDP models and the procedure adopted in the subsequent 
simulations are the same as in Experiment 7.2. Table 7.5 presents the simulated annual 
performance indices from Experiment 7.3. 

Table 7.5 shows that the variation among the simulated performances resulted from the five 
models are very limited. For the indices to storage, gradual minor changes can be observed 
from the model with Markov-I inflow assumption (cp=0.0) to the model with independence 
assumption (cp=1.0), with the increase of the value of critical point value. For the indices 
to energy and release, a very small jump at the critical point 0.9 can be detected. The 
standard deviations (item 3 and 10) are smaller and the minimum values (item 4 and 11) are 
bigger at the critical point 0.9 when compared with the two neighbouring points, 0.75 and 
1.0. This can be interpreted as a positive sign for the idea of using a model with Markov-I 
assumption for the months with high correlation coefficients and independence assumption for 
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the months with low correlation coefficients. However, the improvement is so small to justify 
the additional complications involved with the model. 

Table 7.5 Simulated Average Annual Performance (Experiment 7.3) 

cp=0.0 
Markov-I 

cp=0.50 cp=0.75 cp=0.90 cp=1.0 
Indep. 

Indices referring to energy 
as % of power capacity: 
(1) expected mean annual 

energy output 93.7% 93.7% 95.3% 97.3% 99.9% 
(2) simulated average annual 

energy output 
(3) standard deviation of (2) 
(4) 95% confidence interval for 

mean energy 
(5) minimum annual energy 

output 62.0% 62.0% 58.6% 61.9% 58.4% 

90.8% 
11.4% 

(84.6%, 
97.0%) 

90.8% 
11.4% 

(84.6%, 
97.0%) 

91.0% 
12.3% 

(84.3%, 
97.7%) 

91.0% 
12.1% 

(84.4%, 
97.6%) 

90.9% 
12.9% 

(83.9%, 
97.9%) 

Indices referring to storage 
as % of reservoir capacity: 
(6) average utilized storage 
(7) standard deviation of (6) 
(8) minimum drawdown 

Indices referring to release 
as % of annual inflow: 
(9) average annual release 
(lO)standard deviation of (9) 
(ll)minimum annual release 

63.3% 
29.8% 
7.0% 

70.7% 
7.3% 

51.3% 

63.3% 
29.8% 
7.0% 

70.7% 
7.3% 

51.3% 

62.3% 
30.2% 
5.8% 

70.8% 
8.1% 

48.4% 

62.2% 
30.5% 
4.5% 

70.8% 
7.9% 

51.4% 

62.0% 
30.9% 
3.1% 

70.7% 
8.5% 

48.6% 

7.3.4 Kariba System Operation Based on Imperfect Forecast (Experiment 7.4) 

From the results of both Experiment 7.2 and 7.3, it seems that the model with the Markov-I 
assumption leads the Kariba system to a slightly better performance when the perfect 
forecasting is available (as they have been used in the experiments). However, the policy 
derived from the model with Markov-I inflow assumption is likely to be more sensitive to the 
accuracy of inflow forecasting. In real-time operation when the inflow forecasting is not 
perfect, the trade-off between the two SDP models with Markov-I and independence inflow 
assumption may be different. 

The present experiment aims to obtain insight into the performance of the SDP models with 
the Markov-I and independence inflow assumptions, when the inflow forecasting is not perfect 
during operation simulation. The reservoir system in consideration is still the Kariba system. 

The setting up of the SDP models are the same as the two models (Markov-I and 
Independence) in Experiment 7.3. The way of subsequent simulations differs from 
Experiment 7.3. The derived optimal policies are implemented at the beginning of each time 
period with forecasted inflow instead of the actual inflow. The inflows are forecasted 
according to the readily available regression analysis of Budhakooncharoen (1986). This has 
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also been applied in Section 6.2 of this report. Table 7.6 presents the simulated annual 
performance indices from Experiment 7.4. 

Table 7.6 Simulated Average Annual Performance (Experiment 7.4) 

Markov-I Independent 

Indices referring to energy 
as % of power capacity: 
(1) expected mean annual energy output 93.7% 99.9% 
(2) simulated average annual energy output 86.6% 87.1% 
(3) standard deviation of (2) 7.4% 7.4% 
(4) 95% confidence interval for mean energy (82.6%, 90.6%) (83.1%, 91.1%) 
(5) minimum annual energy output 76.5% 73.6% 

Indices referring to storage 
as % of reservoir capacity: 
(6) average utilized storage 67.1% 66.2% 
(7) standard deviation of (6) 24.2% 24.7% 
(8) minimum drawdown 14.8% 14.3% 

Indices referring to release 
as % of annual inflow: 
(9) average annual release 67.2% 67.7% 
(10)standard deviation of (9) 4.6% 4.2% 
(1 l)minimum annual release 60.4% 61.0% 

Table 7.6 shows that the difference between all the simulated performance indices resulted 
from the two models (with Markov-I and independence assumptions) becomes even less, as 
compared with that when the perfect inflow forecasting is available (see Table 7.5, the models 
with Markov-I and independence assumptions). As for the simulated mean annual energy 
output (item 2), the model with independence assumption slightly outperforms the model with 
Markov-I assumption. As for the firm annual energy output (item 4), the model with 
Markov-I assumption slightly outperforms the model with independence assumption. The 
standard deviations of mean annual energy output (item 3) are the same for the two models. 
The impression obtained from Table 7.6 is that when the inflow forecasting is not perfect, 
it is difficult to identify the most suitable model (with Markov-I or independence assumptions) 
for Kariba system in the sense of energy production. 

From the results of Experiments 7.2, 7.3 and 7.4, it can be observed that the model with the 
Markov-I assumption leads Kariba system to a slightly better performance when the perfect 
forecasting is available (as they have been defined in the Experiments 7.2 and 7.3). However, 
by considering the additional complexity of the SDP model with Markov-I assumption, the 
improvement does not seem to be substantial. Besides, in real-time operation when the inflow 
forecasting is not perfect, the small improvement of the model with Markov-I assumption will 
diminish. From these points of view, the SDP model with independence inflow assumption 
can be entitled a better suitable one than the SDP model with Markov-I assumption for a 
system like Kariba with high inflow serial correlation coefficients for many months but with 
short observed inflow data. 
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7.3.5 Mahaweli System Operation (Experiment 7.5) 

This experiment aims to compare the model with the Markov-I assumption with the model 
with independence inflow assumption. In the experiment the two-unit reservoir system of 
Victoria/Randenigala, whose inflow time series has a low serial correlation compared with 
Kariba, is selected as case study. 

The setup of the SDP models are similar to that described in Section 5.2, except for the 
different inflow assumptions. The recursive relations of the two models are defined as in 
Equation 7.4 and 7.6, respectively, while the Dt in the equations is final storage St+1. The 
stage is time step, which is one month. The objective is to maximize the expected annual 
energy generation subject to the constraints of satisfying downstream irrigation requirement. 
The 32 years of (1949-1980) available observed inflow data is used to obtain statistical 
parameters of the stochastic inflow. 4 inflow classes and 7 storage classes with equal size 
intervals have been considered for both reservoirs in cascade, thus yielding 4*4=16 inflow 
class combinations and 7*7=49 storage class combinations. The median of each inflow class 
is the representative value of that inflow class. In the subsequent simulations the historical 
inflow time series have been used "strictly" relying on the derived optimal operation policies, 
as long as the physical constraints of the reservoir system are not violated. During the 
simulation, perfect forecasting is assumed to be available at the beginning of each time 
period. Table 7.7 presents the simulated performance indices from Experiment 7.5. 

Table 7.7 Simulated Performance (Experiment 7.5) 

Markov-I Independence 

Indices referring to energy 
as % of power capacity: 
(1) simulated average annual energy output 
(2) standard deviation of (1) 
(3) 95% confidence interval of mean energy 
(4) minimum annual energy output 

Indices referring to irrigation supply: 
(5) Time-based Reliability1 

(6) Quantity-based Reliability2 

(7) Repairability (month)3 

(8) Vulnerability (MCM)4 

1 % of time-based steps with fulfilled irrigation demand 
2 % of the accumulated irrigation demand met 
3 Average duration of an irrigation failure (shortage) event 
4 Average accumulated irrigation shortage per failure 

The simulated performance is presented in two aspects: (a) energy generation; and (b) the 
irrigation supply. For the energy generation, the simulated mean, the standard deviation and 
the minimum value are presented. As has been explained in Section 5.2, for this system the 
optimization does not hold for the whole set of decisions in the annual cycle due to the 
constraint of irrigation demand. Therefore, the expected annual energy output is not obtained. 
For the irrigation supply, the performance indices of reliability (both for time-based and 
quantity-based), repairability and vulnerability are presented. 
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52.5% 
11.6% 

(49.0%, 56.0%) 
31.7% 

86.2% 
95.9% 

1.57 
60.5 

52.2% 
11.6% 

(48.7%, 55.7%) 
28.2% 

86.2% 
96.0% 

1.47 
56.1 



The performance indices of energy output in Table 7.7 indicate that the model with Markov-I 
inflow assumption leads to slightly better system performance (e.g., larger minimum annual 
energy in item 4) compared with independence assumption. However, the indices of irrigation 
supply imply that the model with independence inflow assumption leads to slightly better 
system performance (e.g., smaller reparability in item 7 and vulnerability in item 8) 
compared with the other. When the most important indices (mean annual energy and 
reliability of irrigation supply) are concerned, there is hardly any difference between the two 
models. 

The results from the experiment show that the two SDP models (with Markov-I and 
independence assumptions) lead Victoria/Randenigala system to almost equal utilization of the 
water in the reservoirs, when the perfect inflow forecasting is available. Therefore, the SDP 
model with independence inflow assumption can be considered better than the SDP model 
with Markov-I assumption due to its simplicity involved in modelling. 

7.3.6 Joumine System Operation (Experiment 7.6) 

In this experiment the comparison between the two models with the Markov-I and 
independence inflow assumptions will be carried out with Joumine reservoir. Its inflow time 
series shows very low serial correlation (see Table 7.1). 

The setting up of the models are similar to the model described in Section 6.3, except for the 
different inflow assumptions. The recursive relation of the two models are defined as in 
Equations 7.4 and 7.6, while the Dt in the equations is final storage St+1. The stage is the 
time step, which is one month. The objective is to minimize the squared deficit from the 
"total demand", subject to the physical constraints of the reservoir system (e.g., storage 
constraints, release constraints, etc.,). The whole reservoir storage is discretized into 18 
classes with equal size. The monthly inflows are discretized into varying numbers of classes 
(from 4 to 12, according to the distribution range of the 44 years historical monthly inflow 
: 1946-1989) with equal intervals. The median of each inflow class is the representative value 
of that inflow class. In the subsequent simulation the historical inflow time series have been 
used "strictly" relying on the derived optimal operation policies, as long as the physical 
constraints of the reservoir system are not violated. During the simulation, perfect forecasting 
is assumed to be available at the beginning of each time period. 

Figure 7.4 and Table 7.8 present the simulated performance indices from Experiment 7.6. 
Figure 7.4 shows the quantity-based water shortage from the "total demand" and from the 
"local demand". Table 7.8 presents the monthly distribution of the level of time-based 
fulfilment of the "local demand". 

In the experiment, the SDP model with independence inflow assumption leads to a remarkably 
better system performance than the SDP model with Markov-I assumption. Figure 7.4 shows 
the amount of water shortages both from the "local demand" and from the "total demand". 
For both shortages, the simulated values resulted from the SDP model with Markov-I inflow 
assumption are higher than that from the SDP model with independence inflow assumption. 
As for the time-based fulfilment of the "local demand" (Table 7.8), the simulated values 
resulted from the SDP model with Markov-I inflow assumption are smaller than that from the 
model with independence assumption. 
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Figure 7.4 Quantity-based Water Shortage Results from Experiment 7.6 
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Table 7.8 Simulated Performance (Experiment 7.6) 
(Percentages of the Months Corresponding to Different Levels of Demand Fulfilment) 

Model with Markov-I Assumpti 

month 

100% 
80% or more 
60% or more 
40% or more 
more than zero 
zero 

1 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

ion 

2 

79.5 
81.8 
81.8 
81.8 
81.8 
18.2 

3 

59.1 
61.4 
65.9 
65.9 
79.5 
20.5 

4 

68.2 
75.0 
79.5 
86.4 

100.0 
0.0 

Model with Independence Inflow Process Assumption 

month 

100% 
80% or more 
60% or more 
40% or more 
more than zero 
zero 

1 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

2 

84.1 
86.4 
86.4 
86.4 
86.4 
13.6 

3 

70.5 
72.7 
75.0 
77.3 
86.4 
13.6 

4 

70.5 
77.3 
81.8 
90.9 

100.0 
0.0 

5 

84.1 
88.6 
93.2 
93.2 

100.0 
0.0 

5 

81.8 
86.4 
90.9 
90.9 
97.7 
2.3 

6 

81.8 
81.8 
84.1 
86.4 
88.6 
11.4 

6 

84.1 
84.1 
86.4 
88.6 
90.9 
9.1 

7 

77.3 
81.8 
86.4 
95.5 
97.7 
2.3 

7 

84.1 
84.1 
88.6 
97.7 

100.0 
0.0 

8 

72.7 
81.8 
84.1 
93.2 
97.7 
2.3 

8 

86.4 
90.9 
93.2 
97.7 
97.7 
2.3 

9 

79.5 
81.8 
81.8 
84.1 
88.6 
11.4 

9 

88.6 
88.6 
88.6 
88.6 
93.2 
6.8 

10 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

10 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

11 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

11 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

12 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

12 

100.0 
100.0 
100.0 
100.0 
100.0 

0.0 

whole 

83.5 
86.2 
88.1 
90.5 
94.5 
5.5 

whole 

87.5 
89.2 
90.9 
93.2 
96.0 
4.0 

The result from the present experiment clearly illustrates the drawback of unnecessary 
complication in the modelling. It can be concluded that when the inflow serial correlation 
coefficients are low for most of the time periods, the SDP model with independence inflow 
assumption should be applied. 
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8 Objective Functions and Performance Evaluation 

Simulation studies of reservoir system operation utilizing Stochastic Dynamic Programming 
(SDP) based rules revealed that the simulated objective function value as an inadequate 
indicator to measure the impact of the selection of the objective function and constraint set. 
Bogardi et al. (1991) reported that for Mahaweli reservoir system the value of the simulated 
average annual energy generation varies very little when different objective functions are used 
in SDP models. Bogardi and Verhoef (1991) revealed that some (reliability-related) 
performance indices fit better the task of measuring the operational behaviour of reservoir 
systems upon the application of a certain release policy. 

The present chapter is a continuation of the initial studies by Bogardi et al., (1991). It aims 
to obtain more insight and systematic knowledge on the subject of objective functions and 
performance evaluations. 

An introduction to the problems of selecting an appropriate objective function will be given 
in Section 8.1. The difficulties in selecting the objective function and some possible 
improvements will be discussed. In Section 8.2, several experiments will be set up. These 
experiments are designed to study the relation between the performance and various setups 
of the objectives. To obtain a more complete picture of the reservoir performance, besides 
the often used performance index of simulated objective values, some risk-related 
performance indices are also adopted as performance evaluation criteria. The results of these 
experiments will be analyzed in Section 8.3. The conclusions obtained from the results of 
these experiments are given in Chapter 9. 

8.1 Theoretical Discussion 

A major difficulty in the construction of a reservoir operation model is to define a suitable 
objective function. This is primarily due to (a) the stochastic nature of inflow to the reservoir, 
(b) the difficulty in identifying a unique (economic) measure of performance, (c) the 
inadequacy of expected performance criteria to reflect the typical decision maker's aversion 
to the poor outcome of an adopted set of policies, and (d) the multi-objective nature of 
reservoir operation. 

Since the objective function is a function of random variables, in the SDP model it is 
averaged by an expectation factor to make it mathematically tractable. This leads to the 
computation of policies that maximize the expected average performance of the reservoir but 
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ignores serious negative effects that are unusual, yet still probable (Loaiciga and Marino, 
1986). 

Generally, maximizing the expected economic performance is the commonly aimed goal in 
reservoir operation optimization. However, it is not easy to define the values of benefit and 
cost quantitatively. Therefore, some directly measurable quantities are usually substituted as 
objectives in optimizing reservoir operations. For example, if the purpose of a reservoir is 
water supply, then the objective can be to satisfy a certain demand, or to have the greatest 
possible average annual release, etc. 

The appropriateness of the objective depends to a large extent on the anticipated system 
performance and system characteristics. Comparing the above two example objectives, the 
objective of satisfying a demand may usually be more consistent with the goal of maximizing 
the expected economic performance. The benefit from a function of this type has high value 
when there is demand and lacks value for the part exceeding the demand. Having the greatest 
possible annual release type of objective can find its application only in arid areas when the 
system is seriously short of water (i.e., demand is always larger than supply, and the critical 
anticipation of the system is to save every drop of incoming water). However, even in this 
situation, having a well-distributed release pattern, which satisfies the most essential part of 
the demand is still to be preferred. The appropriateness of different objective functions to a 
specific purpose is one issue studied in this chapter. Further study and discussion will be 
carried out by means of a few experiments. 

If the goal of reservoir operation is to meet a specific (release) demand, the objective can be 
set to minimize the expected value of deficits of actual releases from target levels, for 
example. With such an objective function the SDP model will result in release policies that 
averagely satisfy the targeted releases. However, since the noncommensurate consequences 
of risk have not been explicitly considered during the optimization process, the derived 
release policies can be better trusted under normal than under extreme conditions (such as 
prolonged droughts). 

According to the shortcomings of the expected performance criterion, there have been 
attempts in the direction of embedding a utility function. A utility function is defined as the 
numerical representation of the relationship between the set of possible decisions and the 
decision maker's preference (Bogardi, 1987) into the objective function to reflect the 
risk-attitude of a decision maker (e.g., Keeny and Wood, 1977; Loaiciga and Marino, 1986). 
Unfortunately, there are certain drawbacks to this methodology. In short, such a method 
requires a utility function that incorporates a decision maker's attitude towards risk. 
Identifying such a function for a single decision maker will not only be difficult, but also will 
not reflect the priorities of all the groups in a multiple-decision-maker system 
(Hashimoto et al., 1982). 

Another attempt to overcome the shortcomings of the expected performance criterion is to 
develop additional performance criteria that capture particular performance aspects that are 
specially important in extreme situations (Hashimoto et al., 1982; Moy et al., 1986; 
Duckestain and Plate, 1987; Bogardi and Verhoef, 1991). The addition of the risk-related 
performance evaluation criteria to the already used objective (with or without the risk-attitude 
of a decision maker) illustrating the expected performance would help the decision makers 
to better understand the performance of a system in the uncertain future. In the remaining 
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sections of the present chapter, number of utility functions and risk-related performance 
evaluation criteria are introduced into the case study. This is carried out to investigate how 
they can work together to overcome the shortcomings of the expected performance criterion. 

So far the discussion has been confined to the single purpose reservoir operation delivering 
a targeted release. In practice, most of the reservoirs serve more than one purpose and most 
of those purposes are competing with each other to some extent. For example, a reservoir 
may have the function to satisfy both energy and irrigation demands from its surrounding 
area. A serious difficulty in the optimization of operations of a multi-purpose reservoir is how 
to combine the different units and the often competing demands into the objective function. 

In the present research, the background philosophy of one linear optimization technique "goal 
programming" is applied. The basic approach of goal programming is to establish a specific 
numerical goal for each of the objectives, formulate an objective function for each objective, 
and then seek a solution that minimizes the (weighted) sum of deviations of these objective 
functions from their respective goals (Hillier and Lieberman, 1990). In some situations one 
of the objectives of the system may not be specified in terms of a numeric goal, but as 
maximizing or minimizing a quantity. In these cases, one can first determine the best 
expected optimal value (maximum or minimum) of that objective through the corresponding 
single-objective optimization. This best expected optimal value can be then considered as a 
pseudo-system goal with respect to this objective in the multi-objective optimization. 

The following three cases can be distinguished, (a) There is a hierarchy of priority levels for 
the goals. The goals of primary importance receive first-priority attention, those of secondary 
importance receive second-priority attention, and so forth (if there are more than two priority 
levels), (b) All the goals are of roughly comparable importance, (c) The mixture of (a) and 
(b), which means there are different priority levels for the goals, and for some priority levels 
there is more than one goal with roughly comparable importance. 

One way of dealing with type (a) problem is to select the goals with lower level importance 
to be targeted in the objective function by minimizing the deficit from it, and to set the goals 
with higher level importance as constraints during the optimization. A method to deal with 
the type (b) problem is to measure the degree of deficiency of each goal as the percentage of 
the goal not being satisfied, and define the objective as minimizing the (weighted) sum of the 
degrees of deficiency of the system goals. This type of approach, in fact, has also the 
potential to deal with type (a) and (c) problems. Assigning much higher weights to the degree 
of deficiency of those particular goals can lead to giving higher preference for some goals 
over others. The mixture of the above two approaches also can deal with the type (c) 
problem. The interchange among the different methods of handling multiobjective problems 
will be another major issue of the present study. Investigations into these issues will be 
further carried out by means of experiments in the remaining sections of the present chapter. 

8.2 Computer-Experiments 

For the computer experiments in the present chapter, the Mahaweli multi-reservoir/ 
multi-purpose system has been selected as the case study. The detailed description of the 
reservoir system is presented in Section 4.1. 
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This reservoir system serves two major purposes: hydro-power generation and irrigation 
supply. There is a firm power requirement for energy generation. A 32-year record (1949-
1980) of monthly irrigation requirements at Minipe has been used as the irrigation demand 
of the system. This record is obtained from the study of Nandalal (1986). 

In accordance with the two purposes of the system, the following four types of objectives and 
constraints are proposed: (a) the objective function is maximizing annual energy generation 
under the constraints of satisfying the average irrigation demand and firm power of the 
system; (b) the objective function is minimizing the deficit from the firm power requirement 
under the constraint of satisfying the average irrigation demand of the system; (c) the 
objective function is minimizing the deficit from the average irrigation demand under the 
constraint of satisfying firm power of the system; and (d) both the requirements of the firm 
power and average irrigation demand are targeted simultaneously in the objective function. 

In the present study, several additional variations in objective functions and constraints are 
developed from the above four types, to obtain a wider view on the studied subject. All 
together 25 models with different sets of objective functions and constraints have been tested 
in the study. They are listed in the Table 8.1. 
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Table 8.1 Combinations of Objective Functions and Constraints of the Tested Models 

Objective : 
Constraint : 

Objective : 
Constraint : 
Objective : 
Constraint : 

max. E (E EGJ 
R, ï> ID,j 
EG, * EG,j 
same as (8.1) 

same as (8.1) 
EG, * EGtJ 

(8.1) 

4 

5 

6 

7 

8 

9 - 2 5 

Objective : 

Objective : 
Constraint : 
Objective : 

Objective : 
Constraint : 
Objective : 

Objective : 

same as (8.1) 

min. E (E DEJ 

same as (8.2) 

min. E (E DR} 
EG, à EGtJ 

same as (8.3) 

nm.E{na*(DE/EG,^+(i-a)*(DR/ID,>ms)y
2]} 

(8.2) 

(8.3) 

(8.4) 

For 9 
For 10 
For 11 
For 12 
For 13 
For 14 
For 15 

a 
a 
a 
a 
a 
a 
a 

1.00 
0.75 
0.50 
0.25 
0.10 
0.01 
0.00 

71 
71 
71 
71 
Yl 
71 
71 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

72 = 1.0 
72 = 1.0 
72 = 1.0 
72 = 1.0 
72 = 1.0 
72 = 1.0 
72 = 1.0 

For 16 
For 17 
For 18 
For 19 
For 20 

For 21 
For 22 
For 23 
For 24 
For 25 

a - 0.01 
a = 0.01 
a = 0.01 
a = 0.01 
a = 0.01 

o = 0.01 
o = 0.01 
a = 0.01 
a = 0.01 
a = 0.01 

7 1 =10.0 
7 1 = 5.0 
7 1 = 2.0 
7 1 = 0.5 
7 1 = 0.1 

7 1 = 1.0 
7 1 = 1.0 
7 1 = 1.0 
7 1 = 1.0 
7 1 = 1.0 

7 2 = 1.0 
7 2 = 1.0 
7 2 = 1.0 
7 2 = 1.0 
7 2 = 1.0 

7 2 =10.0 
7 2 = 5.0 
7 2 = 2.0 
7 2 = 0.5 
7 2 = 0.1 

Where, E is expectation; E is summation over the annual cycle of 12 months, f =1,2, ,12; 
max. is maximization; min. is minimization; DE, is energy deficit from the system firm 
power, which is defined as DE,=max. {0,EG,j*EG,}; EG, is total energy generation of the 
system during the month t (which is the sum of the energy generation of each hydro-power 
plant (EG,J) in the system: Victoria, Randenigala and Rantembe); 
EGtit=L9.'81*ii*Rtit*Htit*T/l(f (GWh); Rti is release from reservoir i during period t (m3/s); 
Htii=ELtifTWtii (m); EL,t is elevation of water level in reservoir i during period t (m); TWti 

is tail water level of power station of reservoir i during period t (m); 7} is length of period 
t in hours; i/=0.75, which is overall efficiency (turbines+generators transmission); EG,jis 
firm power required for the system during the month t (GWh); DR, is release deficit from the 
system irrigation demand, which is defined as DR,= msx.{Q,ID,avg-R,}; R, is total release at 
Rantembe during the month t (MCM); ID,avg is average irrigation water demand at Minipe 
during month t (MCM); a is a parameter which determines the weight of each objective in 
the objective function, 0.0 < a < 1.0; 7I is a parameter, which defines the shape of the 
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deficiency function from firm power demand; 72 is a parameter, which defines the shape of 
the deficiency function from irrigation demand. 

Model-1 to Model-4 have the type-I objective functions. Model-1 has the objective function 
of maximizing annual energy generation under the constraints of satisfying the average 
irrigation demand and firm power of the system. Model-2 to Model-4 have the same objective 
function as Model-1. The differences are in their constraints. Model-2 is under the constraint 
of satisfying the average irrigation demand. Model-3 is under the constraint of satisfying the 
firm power. Model-4 has no other constraint but the physical constraints of the reservoirs. 

Model-S and Model-6 have the type-II objective functions. Model-S has the objective function 
of minimizing the deficit from power requirement under the constraint of satisfying average 
irrigation demand of the system. Model-6 has the same objective function as Model-S, 
however has no other constraint except the physical constraints of the reservoirs. 

Model-7 and Model-8 have the type-Ill objective functions. Model-7 has the objective 
function of minimizing the deficit from the average irrigation demand under the constraint 
of satisfying the firm power of the system. Model-8 has the same objective function as 
Model-7, however, it has no other constraint but the physical constraints of the reservoirs. 

Model-9 to Model-25 have the type-IV objective functions and no constraints but the physical 
constraints of the reservoirs. In those models, both the requirements of firm power and 
average irrigation demand are targeted in the objective function. To put the two objectives 
with different dimensions into one formula, the degree of deficiency, which is the deficit 
normalized by the demand is introduced. Therefore, the objective function is minimizing the 
sum of degrees of deficiency from the firm power and from the average irrigation demand 
of the system, respectively. The differences among Model-9 to Model-15 in this group are 
their weights on each of the two objectives. From Model-9 to Model-15 the weight of the 
degree of deficit from the firm energy decreases from 1.0 to 0.0 and the weight of the degree 
of deficit from the irrigation water supply increases from 0.0 to 1.0. 

In this group, Model-16 to Model-20 differ in the exponent 7I in their objective functions, 
and Model-21 to Model-25 differ in the exponent 72 in their objective functions. The terms 
(DEJEGtJ and (DR/IDtavg) have a value between 0 and 1. It holds (DE/EGtJ>yl > 
(DE/EGt) if 7 K I , and (DE/EGtJ)yl < (DE/EGtJ if 7 I M . This is illustrated in 
Figure 8.1. 

This means that for 7 K I the effect of a small deficit (DEJEGfJP1 is considered more 
serious. Whereas, for 7 > 1 the effect of a small deficit (DE/EGtJ)yl is considered less serious 
than it really is. Therefore, by choosing the values of 7I and 72, it is possible to incorporate 
a certain preference and risk-attitude of a decision maker into the objective function. From 
Model-16 to Model-20, the exponent 7I decreases from 10.0 to 0.01, while 72 remains a 
constant 1.0. From Model-21 to Model-25, the exponent 72 decreases from 10.0 to 0.01, 
while 7I remains a constant 1.0. 

Except the objective functions and the constraints, the setups of the SDP models are the same 
for Model-1 to Model-25. The stage is time period, which is one month. The state variables 
are reservoir storage at the beginning of each time period and the inflow during the current 
time period. Reservoir storage at the end of each time period is selected as the decision 
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variable. The available 32 years (1949-1980) of observed inflow data are used to obtain 
statistical parameters of the stochastic inflow. Since the serial correlation coefficients of the 
inflow time series of the system are not high, the independent inflow process is assumed. 
4 inflow classes and 7 storage classes with equal size intervals were considered for both 
reservoirs in cascade, thus yielding 4*4=16 inflow class combinations and 7*7=49 storage 
class combinations. The median of each inflow class is the representative value of that inflow 
class. 

0.5 EGfj 

Figure 8.1 Utility Functions 

The reason for selecting final storage as the decision variable is as the following. Most of the 
objective functions of the 25 models concern energy generation. For the Mahaweli system, 
reservoir elevation considerably changes with the reservoir storage. Therefore, for this system 
both reservoir storage and release are closely related to the objectives. On this basis, final 
storage is preferred as a decision variable since it saves the additional work of discretizing 
the reservoir release (refer to Section 6.1). Furthermore, as has been discussed, the SDP 
models with release as a decision variable would outperform the model with final storage as 
a decision variable. This occurs particularly when there are errors in the assumption regarding 
the inflow process (refer Chapter 7) or forecast (refer Chapter 6) of the inflow process. 
Otherwise the reservoir operation performance resulting from the two types of models would 
not differ more than that caused by the accuracy of the discretization of the variables. To 
verify this argument, one additional model (Model-8') has been developed based on Model-8. 
Model-8' has the same setup as Model-8, except that the decision variable is the current 
release of each time period instead of the final storage volume. Model-8' has been designed 
to illustrate the closeness of the reservoir operation performance resulting from the SDP 
model with release as a decision variable (Model-8') with that from the model with final 
storage as the decision variable (Model-8). 

The recursive relation of the models can be summarized in the following formulation: 

(8.5) 
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subject to, 

* - * . • < ? , - Sr-1 - SP, - Et 

faSeQ) = optVtt(SfiQ,D)] 

Where, t, St, Qt, Rt, SPt and E, are as defined as in Equation 3.12; n is total number of time 
periods passed, «=1,2,...; Dt is decision for the time period t, which is R, for Model-8 and 
5 , + i for all other models. Bt(S,,Qt,DJ is objective increment for the transition state when the 
decision is Dt in period t starting from the initial storage St and having Qt inflow during the 
period; This is the annual energy generation for Model-1 to Model-4, deficit from firm power 
for Model-6 and Model-6, deficit from irrigation demand for Model-7 and Model-8 (and 
Model-8'), and (weighted) sum of degree of deficiency from firm power and irrigation 
demand for Model-9 to Model-25. f? (St,QJ is (sub) optimal value of the recursive equation 
at stage n (period t) as function of St and Qt; P,(QJ is probability of inflow in period t is in 
class Qt; opt. is optimization, which is maximization for Model-1 to Model-4, and 
minimization for all the other models; the relation between time notations and variables are 
shown in Figure 3.3. 

After the SDP based optimal operation policies have been derived, the performances of the 
reservoir system are simulated with the same part of historical inflow time series. The 
simulations "strictly" follow the derived optimal operation policies, as long as the physical 
constraints of the reservoir system are not violated. During simulations it has been assumed 
that the perfect forecast is available at the beginning of each time period. 

The simulated performances of the system are described not only in terms of simulated values 
that are directly related to the objectives (average objective values, their standard deviations 
and 95% confidence interval for their means), but also in terms of the risk-related 
performance indices. Generally, reliability is a risk-related performance criterion, which 
receives the most attention in reservoir design and operation. There have been quite a number 
of attempts to maximize system reliability in practice. Still, few systems are so perfect that 
failures are impossible. Even when it is possible, it is often not economical to do so. After 
a certain point, efforts are better made to make the consequences of failure less severe and 
more acceptable than to try to eliminate the possibility of failure alone. In the present study, 
the following three risk-related performance indices: (a) reliability, (b) resilience, and 
(c) vulnerability are adopted. To avoid confusion in terminology, the definitions of the 
selected risk-related performance indices are given below. 

Reliability 

Reliability (PI1) indicates how likely a system is to fail. Two measures of reliability are 
adopted in the present study. They are called time-based reliability and quantity-based 
reliability. 

Time-based reliability (PHtb) is the percentage of the total time period that the system can 
satisfy a specific demand (or in other words, never flips into failure mode during the 
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simulated operation). Let the indicator function ô(k) be 1, if the system is in failure mode in 
month A:, or be 0 otherwise. The time-based reliability is then defined as: 

PIU = 1.0 -

JK 

E 
k-l 

E *<*) (g.6) 

* JK 

Where, JK is the total number of time periods (months) in the simulated operation (JK=384 
in this study). 

Quantity-based reliability (PHqb) is the percentage of the total sum of a specific demand that 
has been satisfied during the simulated operation. Let the deficiency function 
DRO(k)=max.{0,RO(k)-O(k)}. Where, 0(k) is simulated system output for month k; RO(k) 
is the corresponding target output. The quantity-based reliability is then defined as: 

JK 

PIlqb = 1.0 - £L (8.7) 

E*0(*) 

The reliability indices vary from 0 to 1. The reservoir system is more reliable for larger 
values of this index. 

Resilience 

Resilience (PIZ) indicates how quickly the system recovers from failure. Two measures of 
resilience are adopted in the present study. One is the average number of consecutive periods 
of failures that occurred prior to recovery during the simulated operation. It is denoted by 
PI2avg. The other is the maximum number of consecutive periods of failures that occurred 
prior to recovery during the simulated operation, and it is denoted by Pl2mm. They can be 
formulated as follows: 

N 

«2«. - -E<*(«) ( 8 8 ) 
*yg N 

* - i 

PH^ = max d(n) V « (8.9) 
n 

Where, d(n) is the duration of the n-th failure incident (n= 1,2,....,N); N is the total number 
of periods. 

In the present study these resilience indices are presented as the length of failure in months. 
The reservoir system is less resilient for large values of this number. 

Vulnerability 

Vulnerability (PI3) indicates how severe the consequences of failure may be. Two measures 
of vulnerability are adopted in the present study. One is the average of the accumulated 
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deficit per failure event during the simulated operation, which is denoted by PI3avg. The other 
is the largest deficit occurred in one failure event during the whole simulated operation and 
it is denoted by P/5maï. They can be formulated as follows: 

PBmm TiLÈDRO<n ( 8 1 0 ) 

P / 5 ^ =msa£DRO(k) V n (8.11) 
» *-i 

Vulnerability is a measure of the magnitude of a failure. Large vulnerability indices imply 
that the failure is a significant one. 

8.3 Analysis and Results 

Table 8.2 and Table 8.3 present the simulated performance indices of the experiments. 
Table 8.2 presents the indices referring to energy output and Table 8.3 presents the indices 
referring to irrigation supply. 

The reservoir operation simulation results for Model-8 and Model-8' (Table 8.2 and 8.3) are 
almost the same. This fact confirms the argument that for the study case the choice of the 
decision variable will not greatly affect the comparison among the various objective functions. 
Therefore, the comparison among the various objective functions will be carried out based 
only on the SDP models in which the decision variable is the average volume at the end of 
time period t. 

First consider the two simulated operations in which energy generation have been targeted 
in the objective functions: annual energy output and annual deficit from firm power 
(Table 8.2). The average annual deficits do vary considerably with the different setups of 
objectives. While the average annual energy output remains consistently uniform, despite 
whether it has been targeted as an objective during optimization (for Model-1 to Model-4) or 
not (for the other models). The difference between the largest value 1393.9 GWh (Model-4) 
and the smallest value 1248.0 GWh (Model-1) is about 10%. Except the models with firm 
power as a constraint (Model-1, Model-3 and Model-4), the average annual energy output 
varies less than 3.5% for all the models. 

To facilitate the interpretation of this phenomenon, the term "challenging" is introduced. 
First, consider a simplified situation in which a reservoir system serves to save every drop 
of inflow for downstream water supply. If the reservoir is large enough, it will not be 
difficult to operate the system without any spillage. For this case the long-run average annual 
release will always be equal to the average annual inflow, no matter how dramatically the 
actual monthly (or weekly) releases vary from each other. For a system of this nature the 
optimization of maximizing the expected annual release would not be a "challenging" task. 
If the reservoir becomes smaller or the fluctuation of monthly inflow becomes larger, the 
spillage becomes more difficult to avoid. For this situation the optimization of maximizing 
the expected annual release may become a "challenging" task. Consider another example 
where the downstream demand affects the operation of a reservoir system. If the demand is 
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so small that there is no difficulty at all for the system to satisfy it, then the optimization of 
minimizing the expected deficit from the demand would not be a "challenging" task. If the 
demand becomes larger or the fluctuation of inflow becomes larger, then it becomes more 
difficult for the system to satisfy the demand. For this situation the optimization of 
minimizing the expected deficit from the demand may become a "challenging" task. 

When the purpose is energy generation, the problem becomes more complicated due to the 
involvement of the water head. However, one thing remains the same as in the release 
problem. That is, there is no general conclusion about which types of objectives are more 
"challenging". It varies from case to case, depending on the characteristics of the reservoir, 
fluctuation of inflows and how exigent the demand is, etc. For the case study, the 
invariability of the simulated average annual energy generation implies that this objective of 
maximizing expected annual energy generation is not "challenging" to this system. On the 
other hand, satisfaction of the firm power is obviously a more "challenging" goal. Thus, the 
optimization had better taken satisfying the monthly firm power as an objective, the average 
annual energy generation would not vary much anyway. 

Table 8.2 Simulated Performance Indices Referring to Energy Output 

1 
2 
3 
4 

5 
6 

7 
8 
8* 

9 
10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

annual energy output 

avg. 

(GWh) 

1248.0 
1384.2 
1300.0 
1393.9 

1358.9 
1348.5 

1303.3 
1358.6 
1358.6 

1342.3 
1341.4 
1343.7 
1341.8 
1338.8 
1346.2 
1358.8 

1358.1 
1356.8 
1349.1 
1338.8 
1335.0 

1343.0 
1343.2 
1343.9 
1344.0 
1344.8 

Ad. 

(GWh) 

304.4 
308.3 
282.5 
335.9 

290.2 
273.8 

286.9 
295.4 
290.2 

278.8 
272.6 
269.6 
267.6 
273.6 
278.6 
295.7 

275.3 
274.2 
283.6 
281.2 
281.9 

272.8 
269.4 
278.0 
283.7 
285.4 

95% 
confidence 

interval 
(GWh) 

(1155;1341) 
(1290; 1478) 
(1214; 1386) 
(1291;1495) 

(1271;1447) 
(1265;1432) 

(1216;1391) 
(1269; 1448) 
(1270;1447) 

(1257;1427) 
(1258;1424) 
(1262; 1426) 
(1260; 1423) 
(1256; 1422) 
(1261;1431) 
(1269; 1449) 

(1274; 1442) 
(1273; 1440) 
(1263;1435) 
(1253;1424) 
(1249; 1421) 

(1260; 1426) 
(1261;1425) 
(1259;1429) 
(1258;1430) 
(1258-.1432) 

annual deficit from firm power 

avg. 

(GWh) 

123.8 
162.0 
92.1 

172.8 

88.9 
56.1 

90.0 
156.3 
155.9 

56.0 
55.0 
54.7 
59.5 
62.1 
66.2 

155.4 

72.9 
72.0 
67.8 
67.7 
80.1 

54.6 
55.0 
63.4 
69.1 
68.8 

std. 

(GWh) 

121.7 
80.8 

105.6 
96.2 

97.4 
63.7 

110.4 
83.8 
81.3 

66.8 
67.2 
64.7 
65.5 
73.6 
84.5 
82.7 

78.4 
77.4 
83.8 
85.3 
92.3 

66.0 
64.3 
69.9 
94.7 
94.9 

95« 
confidence 

interval 
(GWh) 

( 87;161) 
(137;187) 
( 60;124) 
(144;202) 

(59;119) 
( 37; 75) 

( 56;124) 
(130;181) 
(131;181) 

(36; 76) 
(35; 75) 
(35; 74) 
(40; 79) 
(40; 85) 
(40; 92) 
(130; 181) 

(49; 97) 
(48; 96) 
(42; 93) 
(42; 94) 
(52; 108) 

( 35; 75) 
( 35; 75) 
(42; 85) 
(40; 98) 
( 40; 98) 

reliability 

time-
based 

0.727 
0.659 
0.776 
0.667 

0.734 
0.789 

0.794 
0.627 
0.625 

0.786 
0.784 
0.789 
0.781 
0.768 
0.797 
0.628 

0.760 
0.758 
0.784 
0.784 
0.771 

0.784 
0.786 
0.766 
0.792 
0.792 

quantity-
based 

0.865 
0.823 
0.900 
0.812 

0.903 
0.964 

0.902 
0.830 
0.831 

0.939 
0.940 
0.940 
0.935 
0.932 
0.928 
0.831 

0.921 
0.922 
0.926 
0.926 
0.913 

0.940 
0.940 
0.931 
0.925 
0.925 

resilience 

avg. 

(month) 

2.5 
2.0 
2.2 
1.9 

1.9 
2.0 

1.9 
2.3 
2.2 

1.8 
1.8 
1.8 
1.8 
1.9 
1.7 
2.2 

1.8 
1.8 
2.2 
2.0 
1.9 

1.9 
1.8 
2.0 
1.9 
1.8 

max. 

(month) 

9.0 
7.0 
9.0 
6.0 

7.0 
6.0 

7.0 
5.0 
5.0 

9.0 
9.0 
6.0 
6.0 
8.0 
8.0 
6.0 

7.0 
8.0 
8.0 
7.0 
7.0 

6.0 
6.0 
9.0 
7.0 
7.0 

vulnerability 

avg. 

(GWh) 

94.3 
77.4 
75.6 
83.8 

52.7 
43.8 

70.2 
80.7 
79.8 

39.8 
37.5 
38.9 
40.5 
43.2 
45.1 
76.5 

45.7 
44.3 
57.0 
52.8 
55.7 

39.7 
39.1 
44.1 
51.4 
50.0 

max. 

(GWh) 

341.4 
310.1 
341.4 
274.5 

313.4 
184.9 

312.3 
274.6 
264.6 

227.0 
227.0 
189.1 
189.1 
256.4 
329.8 
274.6 

294.5 
297.6 
310.1 
310.0 
320.6 

189.1 
189.1 
261.5 
293.2 
293.2 
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Table 8.3 Simulated Performance Indices Referring to Irrigation Supply 

l 
2 
3 
4 

5 
6 

7 
8 
8' 

annual deficit from irrigation 

avg. 

(MCM) 

176.7 
63.1 

161.7 
189.4 

55.3 
140.3 

174.7 
63.9 
63.9 

ltd. 

(MCM) 

160.6 
47.2 

143.4 
180.6 

33.5 
126.8 

158.1 
46.3 
44.3 

demand 

95« 
confidence 

interval 
(MCM) 

(128,226) 
(49; 77) 
(118;205) 
(134;244) 

(45; 65) 
(102;179) 

(127;223) 
( 50; 78) 
( 50; 77) 

reliability 

time-
reliabiliy 

0.810 
0.859 
0.810 
0.750 

0.862 
0.807 

0.799 
0.849 
0.849 

quantity-
reliability 

0.886 
0.959 
0.896 
0.878 

0.964 
0.910 

0.888 
0.959 
0.959 

reiilience 

avg. 

(month) 

1.8 
1.5 
1.6 
2.0 

1.6 
1.5 

1.6 
1.7 
1.7 

std. 

(month) 

6.0 
6.0 
6.0 
9.0 

6.0 
4.0 

6.0 
6.0 
6.0 

vulnerability 

avg. 

(month) 

137.9 
56.1 

112.5 
126.3 

52.1 
91.6 

118.9 
60. 
60.1 

max. 

(month) 

681.8 
246.2 
492.2 
731.3 

251.9 
292.5 

529.7 
232.0 
232.0 

9 
10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

137.4 
122.6 
115.5 
106.5 
68.0 
63.5 
64.4 

51.8 
50.9 
58.6 
70.3 
67.2 

133.6 
122.8 
95.8 
56.9 
57.7 

123.6 
115.1 
111.5 
101.9 
65.0 
17.5 
47.1 

47.1 
46.1 
32.4 
35.3 
58.0 

124.7 
119.3 
90.3 
27.1 
31.9 

(100; 175) 
( 88; 150) 
(82; 149) 
( 75;133) 
( 48; 88) 
( 58; 69) 
(50; 79) 

(39; 66) 
( 37; 65) 
(49; 68) 
( 60; 81) 
( 50; 85) 

(96; 172) 
(86; 159) 
(68; 123) 
(49; 65) 
(48; 67) 

0.807 
0.818 
0.815 
0.833 
0.867 
0.859 
0.846 

0.875 
0.877 
0.867 
0.867 
0.867 

0.810 
0.812 
0.836 
0.867 
0.865 

0.912 
0.921 
0.926 
0.931 
0.956 
0.959 
0.959 

0.967 
0.967 
0.962 
0.955 
0.957 

0.914 
0.921 
0.938 
0.963 
0.963 

1.5 
1.5 
1.5 
1.5 
1.4 
1.5 
1.7 

1.4 
1.4 
1.4 
1.4 
1.3 

1.5 
1.5 
1.4 
1.5 
1.4 

4.0 
4.0 
4.0 
4.0 
4.0 
7.0 
6.0 

6.0 
6.0 
6.0 
4.0 
4.0 

4.0 
4.0 
4.0 
7.0 
7.0 

89.7 
85.3 
78.6 
79.3 
58.8 
54.9 
60.6 

48.8 
47.9 
52.0 
60.8 
56.6 

87.2 
81.9 
68.1 
52.0 
51.3 

291.9 
291.1 
291.8 
291.9 
273.0 
182.6 
231.0 

242.1 
242.1 
242.1 
202.8 
201.8 

273.0 
273.0 
217.8 
261.4 
261.4 

A second phenomenon, which draws attention is that the reservoir performance turns 
considerably worse for those models with firm energy requirements as constraint (Model-1, 
Model-3 and Model-7). This can particularly be noticed from the simulated performance 
indices of the average annual energy output (Table 8.2), vulnerability of firm power (max.) 
(Table 8.2), average annual irrigation deficit (Table 8.3), reliability of irrigation water supply 
and vulnerability of irrigation (max.) (Table 8.3) etc. 

The poor performance of those models with firm energy requirement as constraint can be 
explained as follows. In Section 8.1 it has been mentioned that there are two ways of 
targeting a demand in SDP optimization: by objective function, or by constraint. If a demand 
is taken in the objective function as minimizing the deficit, the system will try to satisfy the 
demand as much as possible. While if demand is taken as a constraint, it becomes an 
"absolute" requirement in the optimization process, which must be met. A demand subjected 
to the constraint is being treated with priority compared to the demand targeted in the 
objective function during the optimization process. However, putting any demand into 
constraint of the optimization is a potential danger. When the demand is too exigent for a 
system to satisfy, there will be no feasible solution in certain circumstances (for certain initial 
storage and inflow states). This leads to distortion of the whole optimization process (see the 
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next two paragraphs). The more severe the demand is, the more severe the optimization 
process will be distorted. 

When comparing Table 8.2 to Table 8.3, it can be observed that the reliability of power, 
particularly the time-based reliability, is considerably lower than that of the irrigation 
demand. This implies that the firm power is more difficult for the system to satisfy than the 
irrigation demand. The policy tables are analyzed below, to study the extent to which the firm 
power requirement affects the system and to study the frequency of occurring distortions due 
to the inability to satisfy the firm power requirement. 

Table 8.4 shows the derived SDP-based policy tables for the hydrological month 6 for the 
type-I models. Table 8.4a, Table 8.4b, Table 8.4c and Table 8.4d are the policy tables from 
Model-1, Model-2, Model-3 and Model-4, respectively. 

The values in Table 8.4 are the targeted numbers of the final storage class. 1 represents 
class 1, which means both reservoirs should be in class 1. 49 represents class 49, which 
means both reservoirs should be class 7. 0 means there is no feasible solution available for 
that state. During reservoir operation simulation, the 0 decisions encountered will be replaced 
by the closest feasible decisions (minimum storage volumes for both reservoirs, for the case 
under study). 

The large amount of zeros in Table 8.4a (Model-1) and Table 8.4c (Model-3) clearly illustrate 
the difficulty for the system to satisfy the firm power constraint. For Model-2 (with 
satisfaction of average irrigation demand as a constraint), there are no zeros in the policy 
table of month 6. Although there are some zeros in some other months, the severity is much 
less when compared to Model-1 and Model-3. The occurrence of non-feasible solutions 
(zeros) causes distortions during the optimization process. This means the optimization in 
Model-1 and Model-3 has been frequently distorted. 

Both from the theoretical discussion and from the experimental results, it can be concluded 
that the tough requirement, such as the firm power in this system, had better be considered 
in the objective function than be set as a constraint. This conclusion is also supported by the 
result of Model-5. That model has the objective function of minimizing the deficit from firm 
power subjected to the constraint of satisfying the irrigation demand. Model-5 gives a rather 
good performance both in terms of satisfying firm power (Table 8.2) and satisfying irrigation 
demand (Table 8.3). 

Next, consider the type-IV models (models with both the requirements of firm power and 
average irrigation demand are targeted in the objective function). One obvious advantage of 
this type of model is that it has the flexibility to change the preference of one objective to 
another by changing the weight corresponding to that objective in the objective function. This 
type of approach can deal with the multiobjective problems of both type (a) and type (b) 
cases, which have been discussed in Section 8.1. In the present study, the influence of the 
weight a has been studied for 7 different values (see Table 8.1). From Model-9 to Model-15, 
the weight of the energy generation decreases from 1.0 to 0.0 and the weight of the irrigation 
water supply increases from 0.0 to 1.0. Figure 8.2 shows the changing curves of the average 
annual deficit from firm power (Table 8.2) and from irrigation demand (Table 8.3) 
respectively, along the axis of a. 
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Figure 8.2 shows that along the axis a, the two curves go in (two) opposite directions. As 
a decreases, the average annual deficit from firm power keeps quite stable at the level of 
5 0 - 6 0 GWh except at a=0 .0 where a jump to about 150 GWh occurs. The average annual 
deficit of irrigation demand decreases relatively gradually from about 140 to 60 MCM as a 
decreases from 1.0 to 0.0. The characteristics of these curves indicate that depending on 
preference of a decision maker an interchange point between a=0 .0 and a=1 .0 can be 
chosen. For example at a=0.01 (Model-14), the deficit from irrigation demand is already its 
lowest value (64 MCM, when a=0.0) while the deficit from firm power is still quite stable 
at a constant level (from a=1.0 till a=0.01). Model-14 is considerably better at satisfying 
firm power with hardly any sacrifice in satisfying irrigation demand compared with the other 
relatively good model, Model-5. 

Model-16 to Model-25 are designed to investigate the influence of the utility function in the 
objective function on the risk-related performance indices. As has been described in 
Table 8.1, Model-16 to Model-20 differ in the exponent 7I in their objective functions. The 
exponents 7I and 72 define the shape of the function of deficiency from the system firm 
power and the irrigation demand, respectively. The values of 7I and 72 varying between 10 
and 0.1 (see Table 8.1) have been considered to provide a set of policies, for comparison. 

m 20 05 
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a Average deficit from firm power 

o Average deficit from irrigation demand 

1 ' ' ' , • ' • • 
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Figure 8.2 Relation of Deficits and a 
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Theoretically, if it is a single goal optimization, for 7=1 one obtains the "standard" operating 
policy. For 7 > 1, operating policies exhibit "hedging" : they sometimes provide only a portion 
of the target value, where the total amount of the target value or at least more could be 
provided. This saves water to protect against future deficits, which could be even larger. A 
very different operating policy behaviour results for 7 < 1. In this case the marginal disutility 
of deficits is a decreasing function of the total deficit. As a result, optimal policies cover the 
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entire target when it is possible, but sometimes fail to release any water when a modest 
failure should occur. 

The problem of the present case study is a two-goal optimization. Therefore, there are mutual 
influences between the two goals in the objective function when either 71 or 72 changes. As 
Table 8.3 shows, the reliability of satisfying the irrigation demand for 7I > 1 is higher than 
that for 71 = 1. This is because when 7 I M , the deficit from system firm energy is less 
emphasized, and therefore the deficit from system irrigation demand becomes relatively more 
emphasized in the optimization. Similarly, Table 8.2 reveals that the reliability of satisfying 
firm power energy for 72 > 1 is higher than that for 72=1. This is because when 72 > 1, the 
deficit from system irrigation demand is less emphasized. Therefore, the deficit from system 
firm energy becomes relatively more emphasized in the optimization. 

From the investigation of type-IV models (from Model-9 to Model-25), a general trend can 
be observed. When a decreases from 1.0 to 0.0, the reliability (both time-based and 
quantity-based) of firm energy decreases and the reliability of irrigation demand increases. 
When 7I increases, the reliability of irrigation demand increases. When 72 increases, the 
reliability of firm energy increases. 

The interchange among these tested models is rather a practical than a scientific issue. It 
largely depends on the key concern of the system, which is closely related to the political, 
economical, administrative, environmental, etc., factors of the local area. They are beyond 
the scope of the present study. The aim of the present study is to examine the influence of 
the different approaches of considering objectives and constraints on the SDP based reservoir 
operation performance. 
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9 Conclusions and Recommendations 

9.1 Conclusions 

The study was focused on four major aspects of the SDP model: (a) the Markov inflow 
transition probability matrix and its role in SDP models; (b) the influence of different decision 
variables and inflow state variables on the performance of the model; (c) the suitability of the 
different inflow serial correlation assumptions; and (d) the appropriateness of the objective 
function in the SDP model and the performance evaluation criteria. 

A large number of zero elements may occur in transition probability matrices due to the 
limited length of inflow time series usually available in practice. This is regarded as the cause 
for failing to satisfy the second convergence criterion (stabilization of the expected annual 
increment of the objective function value) in the SDP model. Also, the violation of the second 
convergence criterion is the sign that the ergodicity condition of the Markov inflow transition 
probability matrices has not being fulfilled. The corresponding derived "stable policy" is only 
a locally optimum for the initial state of reservoir operation. Therefore, when using the SDP 
model, most of the elements in each row in the transition probability matrices should not be 
zero. 

The sensitivity study carried out in Chapter 5 reveals that the inaccuracies in estimating the 
transition probability matrices do not have much impact on the SDP based operational 
performance of reservoir systems. The "insensitivity" may have partially resulted from the 
robustness of the structure design of the reservoir system. The inflow transition probability 
matrices, which vary to a certain extent may yield steady state policies with considerable 
similarity. The above observed results are possible due to this reason also. Due to the above 
fact and the possible errors in "historical" transition probability matrices (estimated from 
limited length of inflow records), a procedure to ensure ergodicity can be applied by 
replacing zeros in the transition probability matrices by reasonably small values. 

The selection of the decision variable in the SDP model has an overwhelming influence on 
the suitability of the model for the system to be optimized. This was observed in Chapter 6. 
The variable (either release or storage) that is directly related to the objective of optimization 
was shown to be always preferred as the decision variable. 

The SDP model with the decision variable directly related to the objective has the following 
advantages: (i) the policy derived leads to better performance of the reservoir system, 
particularly during real-time operation when the policy has to be implemented with the 
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guidance of imperfect inflow forecasting; (ii) the selection of the inflow state variable may 
not greatly affect the performance of the system operation; (iii) reservoir operators can 
implement the policy table more easily (when the decision is not the variable that indicates 
the operation target, it has to be converted by the continuity equation together with an 
estimation of the inflow for that operation period), and the principle is consistent with use of 
a rule curve, which has been the common practice in the past. 

The choice of different inflow state variables considerably affects the operation of the system 
if the selected decision variable is not directly related to the objective of optimization in the 
SDP model. In those cases, present inflow should be taken as inflow state variable. The main 
advantage of this type of model is that it opens the way for reservoir operators to regulate the 
system with the most up-to-date information of inflow. If the perfect inflow forecast is 
available, the system operation based on present inflow will perform better. 

The conclusion from Chapter 6 regarding the influence of the decision variable of SDP has 
been verified by the experiments carried out in Chapter 7. If the variable directly related to 
the objective of optimization is selected as decision (Experiment 7.1), the SDP model 
becomes insensitive to the way inflow is considered. In this situation, the simplest SDP model 
with independence inflow assumption or even the deterministic model based on mean value 
of inflow was shown to be always preferred over the complicated SDP models that consider 
inflow serial correlation. 

Drawbacks in the deterministic and Markov-II assumptions were observed when the decision 
variable is not directly related to the objective of optimization in the SDP model 
(Experiment 7.2). The simplest deterministic model based on mean value of the inflows is 
too simple to represent the characteristics of reservoir inflow. The policy derived from this 
model results in a system performance considerably worse than those of the other models. On 
the other hand, the insignificant improvement resulting from the model with Markov-II 
assumption does not justify the additional complication of the model. In fact, the experiments 
show hardly any improvement by the Markov-II model over the Markov-I model. 

The main conclusion of Chapter 7 is concerning the trade-off between the independence and 
the Markov-I assumptions. The SDP model with independence inflow process assumption 
seems more practical than the one with the Markov-I assumption. First, the limited length of 
historical inflow time series is the main obstacle for making a good estimate of Markov-I 
transition probabilities. A good estimation of a one-dimensional occurrence probability 
distribution that refers to the independence inflow assumption is much easier to obtain (e.g., 
it requires fewer observations). Second, if the time interval is a month or half a month or so, 
systems do not generally have high serial correlation among all the time periods within a 
year. Third, the model that assumes independent inflow is less sensitive to the errors in 
inflow forecast, which is unavoidable during real-time operation. 

There should always be an inflow statistical analysis for the case under consideration before 
making the inflow correlation assumptions. Naturally the independence inflow assumption is 
preferred if the inflow correlation coefficients are low for most of the time periods 
(Experiments 7.5 and 7.6). Even for the situation that the inflow correlation coefficients are 
high for many time periods but the length of the available historical inflow time series is not 
very long (Experiments 7.3 and 7.4), the assumption of independent inflow still looks a better 
choice for its simplicity in modelling and its insensitivity to the imperfect inflow forecasting. 
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Probably, the more complicated Markov-I assumption would only be justified if the inflow 
serial correlation coefficients are high for almost all the time periods in a year and the 
observed historical time series is also long enough. 

Chapter 8 shows that the selection of the most appropriate objective in the formulation of the 
SDP optimization model is important for its success. For example, if the system serves for 
energy generation, the objective can be formulated to maximize the expected annual energy 
generation or to minimize the expected squared deficit from firm power. For the case studied, 
the second formulation is more consistent with the idea of maximizing the expected economic 
benefit of the system, and more "challenging" for the system to be optimized. Therefore, this 
formulation should be selected as objective. 

One way of dealing with multiobjective optimization is to transform some objectives into 
constraints. However, additional care must be taken to determine which objectives should be 
transformed, and which should not. Those objectives that are difficult for the system to satisfy 
should not be set as constraints. Otherwise the optimization process will be seriously 
distorted. 

For example, for the case studied, the firm power is not a good choice as a constraint. First, 
because it is too difficult for the system to satisfy. Second, because in practices, it is not an 
"absolute" requirement but a kind of target that the system aims to satisfy with certain 
reliability. Therefore, setting it as an "absolute" constraint is also not consistent with its role 
in reality. 

When all the objectives can be formulated as approaching certain targets (e.g., demands), all 
the objectives should be in the objective function (e.g., defined as minimizing the sum of the 
degree of deficiency). This type of approach will overcome the drawbacks of treating an 
objective as a constraint in the optimization. Furthermore, it has the flexibility to allow 
gradual change in the preference for one objective over another by changing the weight 
corresponding to that objective in the objective function. This offers opportunities to obtain 
the best trade-off among different goals. For example, for the case study the relatively good 
models (Model-14 or Model-18) were identified from this group of models. 

Regarding the performance indices, the simulated objective values (which are targeted either 
in objective functions or in constraints) are the most direct measure of the performance of the 
optimization. However, these indices give only an "averaged" picture of the system 
operations based on SDP optimization. To gain a more complete picture of the system 
operations, the risk-related performance indices should be examined. 

The risk-related performance indices provide a means of monitoring the vulnerability spots 
of the SDP based operation under extreme circumstances. Among the three selected 
risk-related performance criteria, reliability has provided the essential information on system 
performance. It offers a view on the long-term satisfaction of a certain demand. Time-based 
reliability shows how frequently a deficit may (or may not) occur during system operation. 
Quantity-based reliability (although somewhat closely related to the objective value - expected 
deficit) gives an additional insight into how significant the deficit is, compared with system 
demand. Resilience and vulnerability together give an insight into the severity or likely 
consequences of an individual failure. Resilience gives an insight into how long a failure 
persists. Vulnerability gives an insight into how bad things may become. 
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9.2 Recommendations 

The elimination of the zeros (if a large number occurs) in the Markov inflow transition 
probability matrices was observed to be important in SDP models. In the present study a 
simple method was suggested to eliminate zeros. It is worthwhile to compare this method with 
other potential techniques that can be used to minimize or eliminate zeros in transition 
probability matrices. Some potential techniques are: (a) generating inflow time series before 
deriving transition probabilities; (b) fitting the transition probability matrices row by row, by 
suitable one dimensional probability distribution function; and (c) fitting the transition 
probability matrices by suitable two dimensional probability distribution function. 

Throughout this study, one month was considered as the length of the stage (time period). In 
SDP models the choice of the length of the time period (one stage) could have an influence, 
specially regarding the inflow serial correlation assumption used in the model. Future 
research towards studying the influence of the length of the time period on the performances 
of the SDP models is valuable. 

An important aspect, which was not addressed in this research is studying the influence of 
the discretization of state and decision variables have on the performance of SDP models. 
Discretization of state and decision variables could influence the accuracy and also the 
complexity of the model. It would be interesting to study the relationship between the variable 
discretization and the performance of the SDP models. 

In this study only three case studies were used. Each system considered in the study has 
certain representative characteristics as discussed in Chapter 4. However, they do not 
represent all possible systems. Therefore, studying some extreme systems (in hydrological 
characteristics or reservoir features, etc.) with respect to the key aspects examined in this 
research is important. That would assist to verify the conclusions made from this research. 
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Appendix A: Data of the Case Study Systems 

Table A.l Estimated Monthly Spillages over the Polgolla Barrage (MCM) 

23AR 

19S0 
I 9S1 
1952 
1953 
1954 
1955 
1956 
1957 
1953 
1959 
I 960 
1961 
1962 
1963 
1964 
1965 
I 960 
1967 
1963 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1975 
1977 
1973 
1979 
1930 
1931 

OCT 

1 0 2 . 4 
9 9 - 5 

1 7 4 - 9 
3 4 0 . 9 
1 1 3 . 1 
3 0 0 . 4 
1 3 4 . 3 
2 5 5 . 6 

6 3 . 7 
3 0 7 . 3 
1 3 8 . 7 
2 6 5 . 5 

3 3 . 5 
2 3 3 . 0 
2 4 5 . 5 
1 1 0 . 6 
2 0 6 . 5 
2 6 2 . 2 
3 1 0 . 1 
1 9 3 . 7 
1 4 3 . 2 
1 3 5 . 3 
2 4 6 . 9 
3 4 3 . 1 

. 0 
2 6 3 . 4 
3 3 0 . 9 
1 2 1 . 0 
2 7 2 . 5 
2 1 5 . 0 
2 6 4 . 2 
1 3 2 . S 

MOV 

7 5 . 5 
7 5 . 1 

2 1 1 . 1 
. 5 9 . 7 
3 6 . 3 
6 1 - 9 

1 4 1 . 3 
3 3 2 . 5 
2 4 7 . 2 
2 3 1 . 9 
1 4 5 . 2 
3 1 4 . 6 
1 1 7 . 4 
1 1 7 . 3 
1 4 3 . 3 
2 9 3 . 1 
1 3 3 . 3 
1 3 5 . 9 
1 7 1 . 4 
1 3 5 . 5 

6 9 . 5 
1 6 9 . 3 

3 1 . 4 
2 5 4 . 3 

7 1 . 5 
5 4 . 3 

4 3 3 . 5 
1 4 9 . 5 
1 6 4 . 9 
4 8 7 . 7 
2 9 7 . 2 
1 0 4 . 3 

DEC JAW 

7 7 . 0 . 1 
. 0 4 2 . 2 

3 0 . 9 4 6 . 5 
. 0 . 0 

5 4 . 4 2 1 . 3 
1 3 5 . 4 4 3 . 7 

1 3 . 4 . 0 
7 4 . 0 . 0 

6 2 2 . 1 6 9 . 2 
5 4 . 2 . 0 
4 9 . 0 2 3 . 0 
6 2 . 3 . 0 
5 6 . 5 1 3 . 6 
3 6 . 5 2 4 . 4 

1 3 5 . 2 4 7 . 7 
3 1 . 6 . 0 

1 0 1 . 3 7 . 4 
4 7 . 3 . 0 

2 0 9 . 4 . 0 
4 5 . 1 . 0 
7 1 . 1 5 4 . 5 

1 8 4 . 4 5 7 . 7 
1 3 7 . 0 . 0 
1 5 7 . 1 . 0 
' 3 S . 0 1 2 . 9 
6 5 . 7 1 4 . 4 

1 2 5 . 3 2 5 . 3 
6 3 . 3 . 0 
4 6 . 2 . 0 

1 3 2 . 0 1 . 3 
1 5 5 . 0 1 . 0 

5 6 . 2 6 . 0 

FSB 

. 0 

. 0 

. 0 

. 0 

. 0 
3 . 4 

. 0 

. 0 

. 0 

. 0 
5 6 . 7 

. 0 

. 0 

. 0 
S . l 

. 0 

. 0 

. 0 

. 0 

. 0 
1 2 . 3 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

MAR 

. 0 

. 0 

. 0 

. 0 

. 0 
4 . 2 

. 0 

. 0 
1 1 . 1 

. 0 
6 . 1 

. 0 

. 0 

. 0 
1 . 8 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

APR 

. 0 
1 1 . 7 

. 0 

. 0 
3 7 . 4 
1 5 . 0 

. 0 

. 0 
4 2 . 0 

. 0 
7 7 . 2 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 
1 3 . 3 
1 7 . 4 

. 0 

. 0 
2 6 . 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

. 0 

MAT JUN JUL AUG 

. 0 1 0 1 . 4 2 1 3 . 9 2 2 1 . 8 

. 0 5 2 0 . 0 1 9 6 . 4 1 1 . 4 
3 2 3 . 3 2 7 1 . 4 1 3 1 . 9 2 0 0 . 8 

. 0 . 0 6 9 . 5 3 3 . 7 
1 0 0 . 3 3 2 . 3 1 0 2 . 6 2 3 9 . 0 
3 0 9 . 7 7 1 2 . 1 2 S 3 . S 1 0 4 . 0 

. 0 2 0 5 . 0 1 0 4 . 3 1 3 5 . 0 
1 4 . 1 3 0 1 . 6 3 5 7 . 7 1 0 7 . 0 

1 1 0 . 0 1 1 7 . 1 2 1 9 . 3 1 7 8 . 7 
. 0 3 5 5 . 3 4 1 3 . 6 1 1 3 . 9 

8 9 . 0 1 5 3 . 7 2 1 4 . S 2 0 4 . 3 
9 0 . 0 1 2 5 . 3 1 2 3 . 3 3 0 7 . 5 

1 4 0 . 9 3 4 . 2 2 0 3 . 3 1 2 3 . 3 
. 0 7 3 . 9 1 5 3 . 1 1 2 5 . 2 

1 3 . 5 5 3 . 6 1 9 3 . 3 2 2 6 . 3 
2 6 1 . 1 2 2 4 . 3 3 0 . 0 1 6 2 . 3 

. 0 . 0 . 0 2 8 . 6 

. 0 2 3 . 3 6 0 . S 8 1 . 9 
2 5 . 7 5 9 . 4 4 3 6 . 3 2 9 9 . 0 
7 5 . 9 2 6 2 . 4 8 2 . 3 1 9 . 5 
3 5 . 4 1 1 7 . 0 1 3 S . S 2 S 2 . 4 

1 0 6 . 7 1 9 7 . 0 2 5 3 . 5 2 7 2 . 0 
1 3 4 . 2 . 0 2 2 7 . 2 1 7 1 . 0 

. 0 . 0 . 0 7 2 . 7 
1 4 6 . 2 3 0 5 . 3 4 8 6 . 4 4 5 5 . 0 

. 0 3 5 7 . 0 1 0 5 . 5 3 4 3 . 7 

. 0 . 0 2 . 7 . 0 
7 1 . 4 1 4 5 . 4 1 8 1 . 2 8 3 . 3 

1 2 0 . 5 1 0 6 . 3 2 9 5 . 3 3 9 7 . 9 
. 0 5 6 . 2 2 0 8 . 0 3 6 . 1 
. 0 . 0 5 5 . 1 1 4 4 . 9 
. 0 7 3 . 7 1 1 5 . 9 1 1 4 . 2 

S S ? 

3 3 9 . 3 
7 1 . 7 
7 7 . 5 
5 1 . 1 
9 3 . 8 

1 4 9 . 3 
1 5 4 . 3 

5 3 . 5 
3 8 . 9 

1 1 9 . 9 
2 3 7 . 3 
1 0 1 . 7 
2 4 2 . 5 
1 0 6 . 3 
2 2 0 . 9 

9 9 . 7 
2 4 9 . 4 

1 0 . 1 
2 3 6 . 0 
1 3S . 9 

7 3 . 4 
5 3 8 . 2 

7 9 . 3 
1 2 . 7 

3 5 3 . 4 
2 5 3 . 7 

. 0 
2 4 . 1 

1 3 9 . 5 
2 0 5 . 2 

4 6 . 9 
3 8 7 . 8 
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Table A.2 Monthly Incremental Inflows into the Victoria Reservoir (MCM) 

TSXS. 

19S0 
19S1 
19S2 
1953 
1954 
19S5 
19SS 
19S7 
19S3 
19S9 
I960 
1951 
1962 
1953 
1954 
1963 
1955 
1957 
1963 
1969 
1970 
1971 
1972 
1973 
1974 
197S 
1975 . 
1977 
1973 
1979 
1980 
1931 

MEAN 
STD. 
COR.COS 

OCT 

40-9 
23.4 
23.5 
43.0 
34.4 
55.1 
27.1 
23.3 
2S.0 
46.2 
92.3 
50.0 
31.2 
73.9 
30.3 
2S.3 
47.4 
SO. 4 
37.4 
73.3 
34.5 
53.3 
44.3 
72.5 
24.3 
13.2 
15.7 
36.5 
92.0 
55.3 
31.0 
40.3 

71.0 
32.0 

. .220 

NOV 

74.2 
33.7 
32.5 
63.5 
40.1 
66.0 
32.1 
33.2 

151.3 
62.2 

121.7 
33.6 

132.7 
92.3 
95.6 
63.3 
99.1 
37.2 

153.7 
104.3 

70.4 
78.1 
14.5 

145.9 
53.2 
23.7 
55.3 
53.5 
59.9 

108.5 
109.4 

79.5 

103.8 
42.4 
.290 

DEC 

143.2 
23.0 
98.7 
53.9 
62.5 

175.1 
67.4 

107.3 
447.0 

82.3 
123.0 

54.9 
130.2 
123.0 
160.5 

32.3 
129.0 

57.5 
167.4 
144.7 
140.2 
206.3 
230.7 
295.2 
115.0 

85.3 
98.3 
50.5 
95.1 

113.3 
31.9 
50.5 

117.5 
39.4 
.500 

JAK 

30.5 
282. S 
174.7 

72.5 
54.7 

240.2 
73.2 
97.4 

270.9 
57.3 

142.7 
57.7 

157.3 
140.3 
229.2 

68.3 
110.4 

87.6 
31.9 
79.0 

166.9 
209.1 

31.3 
49.5 
40.5 
57.9 

109.7 
13.9 
65.3 
45.7 
33.2 
48.4 

3S.4 
61.9 
.390 

FSB MAR APR HAT JON JOT. AUG 

67.1 44.9 17.3 13.7 16.S 8.9 30.2 
37.4 19.6 34.5 23.0 17.8 27.4 7.1 
52.0 12.3 33.0 58.4 37.5 34.1 19.7 
24.0 21.1 31.9 4.3 13.9 22.2 13.9 
40.3 44.2 22.9 14.6 6.6 9.4 19.4 

121.5 37.4 52.6 17.3 11.2 13.1 13.7 
26.4 20.3 13.2 11.4 67.5 13.2 4.4 
78.5 41.0 14.5 14.0 28.7 43.3 9.7 
55.8 65.4 59.1 55.7 42.1 17.5 33.3 
22.3 9.5 27.7 20.4 13.0 25.6 10.2 

248.0 71.2 25.3 23.5 17.0 54.9 29.7 
42.4 27.9 19.9 33.3 13.3 19.1 19.0 
39.0 30.5 40.7 74.2 25.4 25.4 27.9 

106.9 27.3 40.0 33.3 18.3 28.5 21.3 
175.5 76.5 23.9 25.4 7.6 41.3 24.9 
141.6 20.5 55.1 96.3 10.7 6.0 32.5 

46.9 35.0 42.7 31.3 10.9 12.3 25.5 
105.4 42.4 25.1 11.9 13.2 17.5 14.8 

17.4 30.5 19.5 28.9 5.7 32.9 17.6 
35.3 19.1 54.3 33.9 26.6 20.0 19.7 

155.3 25.3 36.4 26.6 15.1 15.4 37.3 
26.1 23.5 29.6 35.3 22.0 21.2 53.3 
45.1 7.1 15.7 39.2 4.3 23.0 11.3 
15.4 3.3 11.0 2.3 7.2 17.5 21.4 
10.5 8.3 12.4 12.5 7.7 13.4 57.5 
12.4 15.5 13.5 31.9 34.2 7.3 27.2 
31.2 8.2 13.5 5.3 1.5 5.3 9.9 
10.9 10.3 13.2 38.2 13.3 13.3 3.3 
27.1 29.2 11.8 44.5 4.4 27.1 27.0 

3.3 10.5 8.8 7.4 5.3 5.5 13.7 
7.5 1.1 10.9 14.7 4.3 9.3 15.5 

34.3 10.9 15.5 17.0 14.1 17.2 7.5 

50.5 29.9 40.5 52.4 52.1 53.5 52.3 
51.3 21.5 22.7 35.5 35.4 23.7 33.5 
.510 .530 .310 .550 .190 .070 .010 

SS? 

27.1 
28.0 
22.2 

3.0 
18.S 
28.7 

1.1 
15.4 
21.6 
15.3 
49.3 
17.6 
51.1 
32.3 
22.5 

9.5 
44.3 
20.5 
25.5 
35.2 
17.4 
63.1 
12.5 
15.7 
23.5 
29.7 

3.3 
7.1 
4.1 

11.2 
3.2 

23.0 

47.5 
37.9 
.540 
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Table A.3 Monthly Incremental Inflows into the Randenigala Reservoir (MCM) 

YEAR OCT NOV DEC JAM FSB MAR APR MAT JON Jul. AUG SEP 

1950 69.3 38.0 144.3 S7.3 72.3 44.3 29.3 34.4 63.6 27.5 39.3 32.9 
1951 SS.4 64.5 22.7 282.S 8S.S 24.7 47.8 24.9 44.0 72.7 10.1 S9.3 
1952 4S.5 115.0 79 .6 138 .2 S7.6 16 .2 SI .6 118 .0 126 .9 74 .0 103 .4 26 .3 
1953 98 .0 73 .7 45 .9 46 .3 19.8 24 .6 45 .4 15 . 3 3 3 . 1 49 .7 38 . 3 6 .0 
1954 59 .0 45 .4 4 2 . 4 45 .3 38 .3 53 .3 35 .0 52 .9 3 6 . 6 29 .5 40 .7 47 .8 
1955 9 5 . 4 71 .9 181 .8 181 .2 103.0 47 .9 81 .4 52 .7 4 1 . 7 44 .7 2 4 . 2 57 .3 
1956 50 .3 52.0 45 .0 46 .2 15 .1 2 9 . 1 30.9 . 40 .5 163 .8 4 7 . 4 15 .0 4 .0 
1957 51 .8 104.6 8 2 . 2 97 . 3 81 .4 37 .6 25 .5 26 .9 102 .2 119.3 33 .9 22 .8 
19S3 39 . 8 191.3 492 .0 170 .1 40 .4 38 .2 92 .0 117.2 108 .0 5 2 . 2 105 .0 22 .3 
1959 3 0 . 1 90 .9 63 .9 43 .6 17 .2 11 .5 47.3 35 .3 4 3 . 5 8 4 . 1 2 6 . 2 30 .0 
1960 134.5 140.4 105.6 134.3 230.7 61 .3 54.3 57 .5 69 .6 100 .9 53 .4 1S0.0 
1961 71 .9 144.2 45 .3 55 .2 37 .1 26 .5 28.9 9 3 . 1 4 7 . 4 58 .4 5 7 . 1 38.9 
1962 45 .5 127.5 116 .3 106 .4 62 .7 24 .5 61.3 1 57 .1 78 .9 63 .0 49 .5 140.3 
1963 135.6 91 .7 111 .0 141.3 83 . 1 37 .5 54.8 34 .0 55 .9 6 7 . 4 7 6 . 1 49 .5 
1964 3 3 . 1 111 .1 169 .3 196.6 139.6 73.0 34.6 49 .2 26 .2 32 .3 52 .5 53 . 1 
1965 46 .3 113.2 78 .4 49 .8 127.3 3 1 . 1 83.3 130 .2 39 . 5 10 .8 5 1 . 1 24 .9 
I960 66 .4 116.9 124 .4 3 0 . 1 35 .7 41 .3 50 .4 20 .3 2 5 . 0 39 .3 3 4 . 1 98 .3 
1967 67 .5 106.3 58 .9 79 . 3 104 .1 52 .5 37 .5 21 .5 50 .3 71 .0 52 .5 34 .2 
1963 39 .4 165.5 217 .2 62 .5 25 .1 36 .3 40.7 52 .5 21 . 6 123 .7 70 .0 68.3 
1969 108 .4 154.5 146 .0 61 .9 22 .3 19 .1 87.3 30 .2 94 .7 39 .7 3 8 . 1 69.3 
1970 129 .7 87 .9 140 .0 102.5 163.0 31 .0 60 .4 39 .4 57 .9 53 .8 79 . 3 39 . 1 
1971 123 .2 108.7 196 .8 141.3 29 .4 29 .5 49.0 5 6 . 4 68 . 3 51 . 3 140 .9 149.2 
1972 66 .3 13 .7 244 .0 63 .2 20 .4 8 .7 28.3 73 .3 13 .6 3 0 . 4 16 .9 15 .4 
1973 36.3 1S7.S 302.9 24.9 11.3 3.7 17.9 4.0 17.3 48.4 74.9 21.0 
1974 27.S 75.3 122.2 26.3 11.2 10.5 22.3 25.5 25.1 49.7 143.0 7S.5 
1975 31.9 38.0 70.9 44.9 13.0 24.0 20.3 55.1 92.9 15.0 34.4 Ó4.5 
1975 43.9 141.0 88.3 33.5 21.5 3.5 20.5 3.7 4.7 IS.3 24.5 24.5 
1977 72.2 92.0 59.3 12.2 9.3 12.9 24.S 32.7 55.2 35.9 16.7 7.3 
1978 141.2 91.7 76.0 34.4 27.2 36.3 15.9 96.4 21.9 69.5 89.7 14.5 
1979 33.5 2Ô5.3 98.5 3S.0 5.3 15.5 14.4 17.3 13.5 12.4 21.9 23.0 
1980 39.7 166.3 83.1 24.1 1.5 0.3 15.2 23.0 15.7 35.5 47.3 19.0 
1981 54.3 96.5 50.5 46.5 24.9 13.0 21.3 20.4 53.9 35.0 20.9 52.3 

MEAN 44.2 78.7 120.3 108.5 57.4 26.9 26.0 28.0 16.6 20.1 20.9 21.4 
STD. 21.0 33.7 30.0 63.9 55.2 22.9 IS.4 20.0 12.9 11.5 12.2 14.2 
CO.CO..220 .070 .330 .210 .530 .350 .440 .490 .330 .110 .050 .330 
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Table A.4 Monthly Incremental Inflows into the Rantembe Reservoir (MCM) 

rsaa 

1950 
19S1 
19 S2 
19 S3 
1954 
19S3 
19SS 
19S7 
19 sa 
19S9 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1963 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1973 
1977 
1973 
1979 
1980 
1981 

MEAN 
STD. 

OCT 

45.6 
54.1 
67.5 
50.4 
43.3 
31.6 
39.5 
40.9 
67.2 
47.3 
57.1 
53.4 
31.0 
49.3 
55.1 
45.3 
49.3 
41.3 
47.5 
50.1 
52.9 
73.2 
41.5 
51.9 
39.3 
49.5 
40.0 
46.0 
53.9 
43.0 
39.1 
43.4 

45.1 
12.1 

NOV 

67.5 
100.7 
127.0 

59. S 
73.2 

133.1 
40.4 
65.1 

149.7 
64.5 
30.2 
83.5 
65.5 
42.5 
34.3 
69.7 
83.1 
52-9 
72.7 
72.2 
89.1 
94.7 
53.9 
73.2 
55.9 
54.9 
40.2 
62.6 
79.7 
70.4 
50.1 
68.3 

61.3 
21.1 

DEC 

54.1 
194.4 
151.2 

25.1 
77.4 

524.7 
20.9 
52.3 

338.6 
53.3 
60.1 
34.5 
32.7 
54.0 

107.1 
55.1 
92.0 
37.3 
73.7 

104.7 
135.8 
151.3 

52.3 
51.7 

131.5 
44.7 
33.4 
45.3 
32.0 
84.4 
39.1 
53.1 

33.9 
95.5 

JAN 

59.3 
122.7 
122-1 

31.0 
82.3 

27S.5 
20.4 
52.6 

166.4 
47.7 
86.7 
75.4 
30.3 
33.7 

110.3 
79.1 
64.1 
64.6 
43.0 
3S.3 

110.4 
108.6 

52.S 
94.0 

100.4 
95.7 
62.9 
64.7 
30.5 
35.S 
73.1 
39.9 

86.0 
53.5 

FEB 

33.3 
73.2 

166.5 
54.9 
60.6 

149.3 
15.4 
47.9 
70.6 
23.4 

146.5 
60.0 
47.6 
59.3 
61.2 
53.5 
53.4 
53.5 
31.5 
68.0 
63.4 

106.7 
45.7 

156.6 
60.4 
66.0 
27.2 
39.7 

. 70.3 
43.6 
76.4 
24.4 

63.3 
33.5 

MÄR 

26.5 
53.0 
30.2 
35.1 
47.9 

125.2 
6.3 

35.0 
66.4 
15.7 
72.8 
49.4 
37.4 
40.5 
63.2 
35.5 
35.6 
33.4 
13.3 
44.7 
49.3 
62.2 
26.5 
63.1 
30. ó 
31.9 
23.7 
34.5 
50.0 
38.3 
4S.7 
14.6 

45.7 
20.2 

APR MAT JON JUT. 

46.4 45.5 29.3 30.3 
64.1 69.7 43.3 27.S 
92.9 66.2 35.9 47.3 
66.9 72.2 41.S 35.€ 
45.6 52.6 23.4 26.3 
84.6 69.3 42-7 37.1 
10.5 20.0 21.9 40-5 
39.0 48.4 31.0 27.0 
76.3 70.8 33.6 31.2 
60.3 51.1 42.3 3S.0 
80.0 55.3 28.9 47.3 
59.9 77.1 37.1 29.5 
43.2 53.7 27-0 2S.5 
53.1 45.8 29-9 24.9 
37.6 35.4 26.4 26.3 
58.7 50.7 31.1 23.7 
46.1 35.3 21.5 30.4 
38.0 40.3 24.S 32.0 
32.7 40.5 27.6 34.7 
45.5 43.7 26.3 30.3 
64.9 67.7 31.8 29.4 

126.7 72.5 45.0 47.0 
42.1 58-2 2S.2 27.0 
74.7 79.6 48.1 36.3 

104.2 74.3 47.8 45.5 
57.0 33.2 39.3 34.3 
43.1 45.1 22.1 17.1 
40.3 43.5 25.1 23.3 
65.9 74.8 36.6 36.6 
30.7 32.4 23.4 23.1 
61.9 46.4 34.1 23.1 
19.9 27.9 13.6 25.2 

54.5 50.3 32.6 22.6 
22.2 15.5 5.7 5.8 

AOG 

22.3 
26-0 
31-0 
25.1 
24.7 
31.5 
13.0 
13.3 
31-7 
19.5 
26.3 
23.3 
24.3 
19.4 
23.9. 
22.S 
22.7 
21-4 
23.3 
19.5 
26.4 
29.3 
21.3 
29.3 
31.3 
25.6 
13.0 
19.4 
30.1 
21.3 
20.3 
19.5 

30.2 
4.3 

SS? 

28.7 
19.3 
26.2 
28.6 

.29.4 
22.4 
39.5 
23.5 
19.9 
22.3 
35.7 
23.9 
23.7 
22.4 
24.3 
25.S 
29.5 
29.3 
2S.4 
23.3 
24.3 
35.2 
22.0 
24.4 
27.1 
23.3 
19.3 
24.7 
23.9 
25.9 
23.4 
38.5 

39.0 
6.0 
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Table A.5 Estimated Monthly Irrigation Demands at Minipe (MCM) 

ZEAR OCT NOV DSC JAM FES MAR. APR MAT JUN JTZC AXTG SZ3 

1950 347 .2 25 .3 .0 .0 32 .2 . 0 240.2 233.3 226 .2 172 .0 93 . 9 75 .2 
1951 337 .7 196.3 U S . 7 . 0 13 .7 5 .0 140.S 236.0 213 .2 165 .3 3 4 . 3 53 .7 
1952 363 .3 64.9 3 . 2 . 0 14 .3 40 .7 176.3 213 .9 227 .3 150 .2 100 .3 3 1 . 4 
1953 373 .4 128.4 113 .6 3 1 . 3 63 .3 2 0 . 5 150.4 297.9 213 .0 9 3 . 7 9 2 . 3 7 0 . 1 
1954 232 .4 142.7 3 . 1 3 . 9 .0 .0 149.3 266 .9 22S.6 167 .7 3 9 . 5 3 3 . 4 
1955 238 .4 173.7 . 0 . 0 .0 -0 129.7 263.2 224 .4 171 .0 7 3 . 1 49 .6 
1956 378.9 241.9 109 .0 39 .3 113.0 42 .9 250.0 300.7 166.3 164 .9 96 . 6 86 .3 
1957 289 .7 81 .6 37 .7 6Ô.3 .0 15 .3 254.9*217.8 225 .2 161 .3 100-3 82 .5 
1953 302 .9 .0 . 0 . 0 9 .2 . 0 105.9 204 .5 235 .2 176 .5 96 . 0 33 . 9 
1959 363 .2 170 .1 .0 7 6 . 7 113.6 64.0 208 .1 198.7 221.9 171 .2 9 4 . 5 3 0 . 7 
1960 242 .4 110.0 .0 . 0 .0 4 . 2 66.5 202 .4 239.8 106 .5 102 .5 84 . 0 
1961 343.2 116.4 123 .3 . 0 .0 15 .9 201.3 223.7 221.9 152 .3 104 .7 77 .3 
1962 335.9 .0 .0 . 0 40.0 17.9 209.0 133.6 216 .3 163 .1 64 .5 77 .0 
1963 261 .1 109.5 3 7 . 7 .0 .0 1.7 171.1 242.3 220 .3 164 .0 9 8 . 1 5 3 . 1 
1964 235 .9 . 5 . 0 . 0 .0 .0 236.5 206.6 216.0 101 .0 3 4 . 3 8 2 . 7 
1965 320 .1 240.4 7 3 . 1 146.4- .0 2 8 . 4 155.7 211.6 222 .4 1 69 . 4 5 5 . 2 84 . 8 
1965 310 .6 50 .1 4 1 . 1 41 .3 76 .3 .0 210.5 277.9 221 .9 171 .2 70 .0 6 3 . 1 
1967 133 .3 57 .0 7 1 . 7 92 .8 7 .6 10 .7 228.0 291.6 215 .9 170 .9 99 . 3 79 .7 
1963 257.5 .0 . 0 .0 117.4 .0 250.1 292 .1 222 .1 181 .4 1 0 9 . 1 7 7 . 4 
1969 355 .7 125.9 61 .9 68 .5 26 . 1 52.2 71.7 292.3 230 .7 1 80 . 1 6 7 . 4 77 .2 
1970 210 .6 229 .1 . 0 . 0 .0 4 . 3 133.8 196.7 227 .5 13S.3 9 7 . 3 67 .7 
1971 368.8 132.6 3 0 . 0 5 .0 71 .2 25 .6 133.1 264.7 212 .3 136 .0 6 7 . 3 50 .0 
1972 311 .1 151.0 . 0 1 65 .1 134 .1 53.2 254.2 187.6 214 .2 153 .3 8 2 . 4 60 . 3 
1973 142.0 S3.3 . 0 133.9 48.9 40 .4 242.2 250.7 175.3 105 .7 97 .2 53 . 3 
1974 292 .3 37 .4 .0 100.7 67.3 51.0 172.1 195.2 222.5 156 .3 9 6 . 4 50 . 1 
1975 427 .4 243.6 4 . 7 77 .3 55 .4 .0 118.3 22S.1 223.7 77 .9 72.S 3 1 . 2 
1975 3S3.3 147.9 8 . 3 65 .0 104.5 55 .4 225.4 292.9 215 .2 161 .5 92 . 3 3 1 . 3 
1977 380.3 121.5 50 .9 138.5 121.7 26.9 195.3 254.4 229 .3 136 .9 9S .3 59 .7 
1978 252 .2 114.2 .0 153 .3 99 .3 29 .0 268.3 274.0 235 .0 132 .9 115 .2 37 . 3 
1979 252.3 126.3 . 0 3 . 2 53 .4 35 .2 248.0 286.2 224.7 157 .9 103.8 55 .2 
1980 261.3 3 .5 79 .5 24S.0 150.9 57.2 130.3 273.5 241 .4 193 .1 112 .1 83 .7 
1981 230 .1 107.1 130 .7 148.0 48 .4 43 .2 237.2 232 .1 227 .4 1 27 . 1 9 6 . 1 73 . 3 

MEAN 303.6 110.3 3 4 . 5 59 .7 50 .0 23 .4 133.0 243.3 220 .5 155 .0 9 0 . 3 74 .3-
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Table A.6 Monthly Inflows into the Kariba Reservoir (MCM) 

1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 

MEAN 
STD. 
CO. CO 

OCT 

1300 
1220 
1510 
1160 

980 
1103 
1078 
1281 
1918 
1257 

999 
1098 

843 
1073 

974 
1185 
1144 
1470 
1514 
1139 
1051 
1290 
1007 
1125 

1197 
229 

. .36 

NOV 

1460 
1430 
1730 
1130 
1720 
1218 
1434 
1249 
1722 
1996 
1822 
1106 
1155 
1524 
1496 
1510 
1096 
1830 
1659 
1584 
1599 
1274 
1112 
1194 

1460 
267 
.39 

DEC 

1710 
8130 
4900 
3450 
1780 
2374 
2178 
3218 
7410 
2197 
1995 
1230 
6957 
6542 
2533 
1661 
4436 
6054 
5866 
2484 
1553 
1976 
2559 
2747 

3580 
2127 

.10 

JAN 

5830 
8080 
5080 
5230 
2620 
2744 
3679 
4713 
5295 
7468 
5950 
2128 

11166 
6321 
3195 
2514 

11798 
3588 
4229 
5211 
2489 
4620 
2188 
4839 

5041 
2558 

.52 

FEB 

6550 
14080 

6010 
3570 
6450 
3816 

11567 
4502 
6511 
6253 
7395 
3410 

13277 
11254 
4128 
5049 

11473 
4501 
7326 

15407 
2794 
3727 
3252 
9304 

7150 
3778 

.65 

MAR 

9900 
18740 

5630 
4950 
6730 
4267 

12339 
19365 
12537 

7040 
4538 
2701 

13856 
11487 
12594 

9800 
17486 

8115 
10149 
8794 
2869 
3609 
3986 
4188 

8986 
5013 

.53 

APR 

13230 
16420 

6020 
6790 

11750 
5307 

12717 
21390 
11036 

7932 
4807 
3010 
7769 

12819 
16734 

7134 
16978 
10827 

8094 
8090 
3224 
3429 
5292 
4157 

9373 
5023 

.89 

MAY 

10680 
10420 

5500 
5850 
7820 
8069 
8996 

13847 
7382 
5297 
5000 
3648 
6923 
8950 

12079 
7502 

15042 
10504 

7018 
8860 
3928 
3219 
4356 
5390 

7762 
3158 

.92 

JUN 

6290 
5260 
3150 
3200 
4650 
5078 
4872 
6145 
3803 
3804 
4011 
2201 
4489 
5020 
7659 
5558 
8773 
5499 
4599 
4868 
2670 
2091 
2483 
4059 

4593 
1628 

.93 

JUL 

3420 
3250 
1710 
1860 
2680 
3088 
3112 
4354 
2239 
2063 
2106 

979 
2341 
2723 
4024 
3124 
5138 
2945 
2379 
2777 
1409 
1106 
1088 
1947 

2578 
1036 

.97 

AUG 

1860 
1900 
1330 
1331 
1560 
1617 
1955 
2785 
1624 
1504 
1315 

964 
1451 
1476 
2339 
1568 
2682 
1862 
1645 
1657 
1408 

914 
1001 
1269 

1626 
472 
.94 

SEP 

1410 
1560 
1300 

990 
1260 
1159 
1506 
1735 
1475 
1370 
1288 
1254 
1084 
1495 
1482 
1450 
1856 
1547 
1595 
1348 
1032 
1156 
1017 
1077 

1352 
231 
.79 
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Table A.7 Monthly Inflows into the Joumine Reservoir (MCM) 

1946 
1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 

Mean 
STD. 
COR.CO 

SEP 

.15 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 
3.84 

30.10 
.00 
.63 
.19 
.00 
.00 
.00 
.43 
.00 
.56 
.16 
.00 
.00 
.01 
.00 
.50 
.07 
.04 
.00 

1.53 
.07 
.00 
.00 

1.52 
.00 
.00 
.00 
.00 
.06 
.36 

1.55 
.53 
.07 
.16 

.96 
4.54 

. .08 

OCT 

1.59 
4.82 

.00 

.00 

.73 
9.29 

.00 

.00 

.16 
28.90 

.11 
10.90 

6.78 
9.13 

.00 

.00 
57.90 

.73 
13.90 

.55 

.00 

.00 

.00 
34.30 

.00 
1.61 

.39 
12.10 

1.38 
2.38 
2.95 

.01 

.00 

.55 

.65 

.00 
1.63 

.00 

.11 

.13 
5.19 

.25 

.27 
1.77 

4.80 
10.89 

.03 

NOV 

7.05 
2.55 

31.10 
4.02 
5.50 

18.50 
11.80 
27.70 

1.79 
23.90 

6.56 
35.00 
34.70 
16.40 

.00 
12.50 
42.00 

.36 
13.20 

.98 
4.61 

.14 

.21 
2.95 

.03 

.67 

.39 
1.52 

47.70 
37.60 
22.30 

2.27 
3.90 

43.70 
4.06 

.23 
63.60 

.79 

.11 

.34 
6.72 

.10 

.28 
1.14 

12.29 
16.23 

.29 

DEC 

192.00 
18.10 
27.90 

2.06 
5.49 

30.00 
85.40 
13.60 

9.08 
34.60 
84.10 
46.60 
23.90 

9.96 
7.47 
4.12 

34.30 
1.68 
8.36 
3.80 

35.40 
1.82 
5.54 

112.00 
2.71 
2.79 

.45 
1.72 

14.50 
14.90 
11.20 

2.14 
11.10 

5.63 
47.60 

7.95 
90.70 

5.22 
17.05 

2.74 
12.37 

.62 
2.09 
6.68 

24.40 
37.08 

.20 

JAN 

38.60 
30.30 
69.40 
23.30 
19.00 
49.60 
76.60 
84.40 
15.00 
43.90 
66.40 
76.30 
53.30 
24.80 
18.70 

4.71 
22.90 
33.20 
73.10 

6.64 
44.70 
32.70 
12.70 
15.50 
21.00 
22.50 
45.50 

1.28 
3.37 
8.12 

14.00 
21.40 

3.55 
48.20 
53.10 
25.60 
25.40 

7.95 
46.04 
15.33 
34.40 

3.33 
2.05 

13.59 

30.71 
23.01 

.31 

FEB 

8.81 
7.89 

25.90 
21.40 
32.70 
58.10 
18.00 
68.90 

8.54 
87.70 

7.77 
8.10 

14.80 
7.14 
4.98 

72.80 
103.00 

12.90 
73.30 

5.47 
15.10 

5.54 
9.39 

35.30 
96.30 
12.00 
31.70 
18.10 
60.00 
18.70 

5.60 
70.30 
36.40 
11.20 
20.60 
21.50 

5.30 
17.64 
16.12 
18.05 
46.12 

3.53 
5.11 
6.49 

28.06 
27.51 

.11 

MAR 

3.59 
5.76 

40.70 
61.30 

9.11 
19.60 
22.20 
32.10 
29.50 
11.60 

.42 
36.20 
22.40 

3.99 
.94 

5.97 
10.40 

8.46 
15.60 
18.00 

4.63 
3.29 
6.24 

18.90 
27.60 

9.80 
192.00 

11.00 
12.50 
17.80 

2.13 
6.81 

11.70 
41.10 

6.56 
46.50 
39.70 
15.08 
14.99 

9.51 
16.53 
17.53 

3.87 
2.08 

20.36 
29.87 

.04 

APR 

7.59 
6.32 
5.57 

44.10 
2.36 

22.10 
4.56 

15.20 
10.40 

2.02 
.91 

10.90 
20.10 

1.42 
.00 

1.01 
4.61 
2.75 
7.83 

11.50 
2.26 
1.58 
4.48 
3.42 

28.00 
6.40 

26.70 
4.67 
4.17 
3.89 
2.02 

21.30 
9.60 
6.66 
2.89 

12.20 
4.44 
6.08 
3.58 
2.89 

14.66 
1.44 
2.31 
1.47 

8.14 
8.95 

.55 

MAY 

.38 
3.86 
2.44 
2.81 

.83 
6.80 

11.40 
3.21 
4.90 
3.54 
1.41 

.30 
6.43 

22.00 
.00 
.00 
.52 

1.13 
2.67 
2.42 
1.07 

.43 

.76 
1.39 
2.81 
3.13 
2.45 
1.71 
2.20 
2.54 

.76 
3.42 
2.70 
4.18 
1.68 
3.70 
1.02 

.00 
2.36 
3.07 
2.06 
1.19 
2.71 
1.11 

2.85 
3.61 

.08 

JUN 

.02 

.71 

.71 

.60 

.14 
1.53 
1.26 

.00 
1.26 

.00 

.00 

.00 
2.27 

.00 

.00 

.00 

.11 

.52 

.52 

.69 

.29 

.33 

.17 

.50 

.73 

.85 

.94 

.45 

.72 

.71 

.21 

.93 

.80 

.77 

.13 

.92 

.34 

.17 
1.04 

.85 

.34 

.49 

.53 

.33 

.54 

.47 

.28 

JUL 

.00 

.02 

.10 

.00 

.00 

.29 

.24 

.00 

.00 

.00 

.00 

.00 

.12 

.19 

.00 

.00 

.06 

.07 

.06 

.10 

.01 

.00 

.00 

.11 

.21 

.15 

.13 

.04 

.11 

.29 

.02 

.14 

.05 

.05 

.02 

.07 

.08 

.00 
1.00 

.05 

.24 

.01 

.81 

.01 

.11 

.19 

.32 

A0G 

.00 

.00 

.00 

.00 

.00 

.00 
1.02 

.00 

.00 
2.71 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.06 

.04 

.01 

.00 

.00 

.00 

.00 

.02 

.00 

.00 

.01 

.01 

.04 

.02 

.00 

.00 

.00 

.00 

.00 

.00 

.01 

.02 

.00 

.00 

.00 

.00 

.11 

.10 

.43 

.04 

130 



Appendix B: Definition of Ergodicity 

The definitions given here on transition probability matrices are obtained from the book 
"Dynamic Probability Systems" by Howard (1970). 

Definition 1 Given two states i andy', a path from i toy is a sequence of transitions that 
begins in i and ends iny', such that each transition in the sequence has a positive probability 
of occurrance. 

Definition 2 À state y' is reachable from a state / if there is a path leading from i toy. 

Definition 3 Two states i and y are said to communicate if y' is reachable from i, and ƒ is 
reachable from y. 

The following transition probability matrix (Winston, 1987) is used to illustrate the above 
definitions (* represents a non-zero element). 

P = 

* * 0 0 0 

* * 0 0 0 

0 0 * * 0 

0 0 * * * 

0 0 0 * * 

(B.l) 

For the matrix B.l, state 5 is reachable from state 3 (via the path 3-4-5) and state 3 is 
reachable from state 5. Therefore, state 3 and 5 communicate with each other. State 5 is not 
reachable from state 1 (there is no path from 1 to 5). Therefore, state 5 and state 1 do not 
communicate. 

Definition 4 A state i is a trapping (or absorbing) state if p{i = 1 and ptJ = 0, for / = y'. 

Definition 5 A set of states 5 in a Markov chain is a recurrent (or closed) chain if no state 
outside of S is reachable from any state in S. 

In other words, a set of states S in a Markov chain is a recurrent chain if the states inside S 
do not communicate with any state outside S. Each recurrent chain can be regarded as a 
generalized trapping state: once it is entered, it can never be left. 

As Howard (1970) pointed out, Markov chains have at least one recurrent chain. Most 
Markov chains in practice have exactly one, but some have more than one. The largest 
number of recurrent chains a Markov chain can have is its number of states. 

Definition 6 A state i is a transient state if there exists a state y that is reachable from i, 
but the state / is not reachable from state y. 
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That is, a transient state is a state that the system occupies before it becomes committed to 
one of the recurrent chains. 

For the matrix B.l, $i={l,2} and S2={3,4,5} are both recurrent chains. Once Sx or S2 has 
been entered, all state changes will remain in that recurrent chain. 

The following transition probability matrix (Feller, 1968) illustrates the above definitions. 

P = 

0 0 0 * 0 0 0 0 * 

0 * * 0 * 0 0 * 0 

0 0 0 0 0 0 0 * 0 

« 0 0 0 0 0 0 0 0 

0 0 0 0 * 0 0 0 0 

0 * 0 0 0 0 0 0 0 

0 * 0 0 0 * * 0 0 

0 0 * 0 0 0 0 0 0 

0 0 0 * 0 0 0 0 * 

(B.2) 

For the matrix B.2, in the fifth row a * appears only at the fifth place. Therefore, p55 — 1 and 
the state S is a trapping state. The third and the eighth row contain only one positive element 
each, and it is clear that state 3 and state 8 form a recurrent chain. From state 2 direct 
transitions are possible to itself and to state 3, 5 and 8. The pair {3,8} forms a recurrent 
chain while state 5 is trapping state. Accordingly, the set of smallest chain containing state 2 
is the set {2,3,5,8} and state 2 is a transient state. 

From state 6 the only possible transition is to state 2, which will end up in either the 
recurrent chain {3,8} or the trapping state {5}. Therefore, the smallest chain containing 
state 6 is the set of {2,3,5,6,8} and state 6 is also a transient state. Similarly, the smallest 
chain containing state 7 is {2,3,5,6,7,8} and state 7 is a transient state. From state 1 
transition into state 4 and 9 are possible, and from there only to state 1, 4 and 9. 
Accordingly, the three states, state 1, state 4 and state 9 form another recurrent chain 
{1,4,9}. 

Definition 7 A Markov Process is said to be ERGODIC if it forms a single recurrent chain. 

When a process has a single recurrent chain, no matter where the process started, it would 
end making jumps among the members of the recurrent chain. However, when a process has 
two or more recurrent chains, the ergodic property no longer holds. In such a situation, if the 
system is started in a state of one chain, then it will continue to make transitions within that 
chain and will never make transitions to another chain. 

Both matrices B.l and B.2 are not ergodic. Matrix B.l contains two recurrent chains, {1,2} 
and {3,4,5}. The matrix B.2 has three recurrent chains, {1,4,9}, {3,8} and {5}. 

132 



The following two matrices are examples for ergodic chains. 

P = 

* * 0 

* 0 * 

o * * 

(B.3) 

P = 

* * * 

* * 0 

0 * * 

(B.4) 
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Appendix C: Example for Problems in Convergence Behaviour 

In some cases one of the convergence criteria, that is the stabilization of the expected annual 
increment of the objective value can not be achieved. The following example similar to that 
given by Loucks et al., (1981) (pp.327-332) illustrates it. Instead of the original inflow 
transition probabilities in that example a new set of probabililities as given in Table C. 1 are 
assumed in this study. 

T a b l e d Inflow Transition Probabilities 
Period T=2 

Period 
t=l 

i Qt 

J 
Qt+i 

l 
30 

1 10 
2 20 

2 
40 

0 
1 

Period 
t=2 

i ON 
1 30 
2 40 

j 
Qt+i 

Period T = l 

1 2 
10 20 

1 0 
0 1 

Table C.2 shows the computation process. As the table reveals, a steady-state policy 
St+1(St,Q^ is reached after 1 annual cycle while the expected annual increments of objective 
value tend to be two different constants, 100 and 300. 

Table C.2 Calculation Progress for the Example 
Stage 1: t-2, »=1 

State 

S,-i 

1 
1 
2 
2 

Q, 

l 
2 
1 
2 

Bfit-i' 

S , : l 

200 
100 

0 
0 

Q) 

IfJPn.QJ 

500 200 
200 100 
121 0 

1 0 

s; 
1 
1 
1 
1 

Stage 3: /=2 , »=3 

State 

$-7 

1 
1 
2 
2 

e, 
i 
2 
1 
2 

/ M i 
S , : l 

500 
200 
300 
100 

,Q„SJ 

T-ti^i.Q.) 

744 500 
304 200 
365 300 
105 100 

s; 
1 
1 
1 
1 

Stage 5: t=2, n=5 

State 

SH Q, 

flQui 

S,:l 

.Q„S) 

2//(s,.7.&; s; 

State 

S,.i 

1 
1 
2 
2 

State 

Su 

1 
1 
2 
2 

State 

S-i 

Q, 

1 
2 
1 
2 

Q, 

l 
2 
1 
2 

Q, 

Stage 

tfQu. 

S,:l 

300 
100 
301 
200 

Stage 

f*(Sh„ 

S,:l 

600 
200 
601 
300 

Stage 

ffai. 

5,:1 

2: t-1, n=2 

Q..S) 

lfiQ».Qt 
441 300 
121 100 
244 244 
104 104 

4: f = l , n=4 

Q„S) 

Ifi'QH.Q,) 

741 600 
221 200 
544 544 
204 204 

6: f = l , »=6 

QpSi 

1fi6(S,.„QJ 

s; 
i 
i 
2 
2 

s; 
i 
i 
2 
2 

s; 
i 
i 
2 
2 

1 
2 
1 
2 

800 
300 
600 
200 

1044 
404 
665 
205 

800 
300 
600 
200 

1 
1 
1 
1 

1 
1 
2 
2 

1 
2 
1 
2 

900 
300 
901 
400 

1041 
321 
844 
304 

900 
300 
844 
304 

1 
1 
2 
2 

Q, f2JShi.Qtf2'(5„.QJ f26<Sn.Qtf24<Sn.Q> 
l 
l 
2 
2 

800 - 500 = 300 
300 - 200 = 100 
600 - 300 = 300 
200 - 100 = 100 

900 - 600 = 300 
300 - 200 = 100 
844 - 544 = 300 
304 - 204 = 100 
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He and Bogardi (1989) reported that the transition probability matrices with 'zero rows' or 
'zero columns', and with 'a large number of zero elements having symmetric shape of the 
non-zero elements' cannot achieve the second convergence criterion. They demonstrated this 
behaviour using a 3*3 transition probability matrix, as an example. In the following figures 
(from He and Bogardi, 1989), each small square in the matrices presents an element or a 
collection of elements (blocks). The empty square means a zero element (or elements). A 
shaded square means a non-zero element (or elements). 

\ 

The above transition probability matrices will converge to 3 constants (objective function 
values) instead of one. 
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The above transition probability matrices will converge to 2 constants (objective function 
values) instead of one. Based on the above results they suggested that the number of zero 
elements in the transition probability matrices should be kept as few as possible in order to 
facilitate the achievement of the second convergence criterion. 
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