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STELLINGEN 

1. Transversale dispersie kan wel degelijk een belangrijk effect hebben op het transport van 
een verontreiniging. (Dit proefschrift) 

2. Hoewel in de in hoofdstuk 3 gepresenteerde gemengd numeriek-analytische methode voor 
het oplossen van de transportvergelijkingen voor een kinetisch adsorberende stof geen 
fouten worden geïntroduceerd als gevolg van tijdsdiscretisatie van de adsorptie-isotherm, 
heeft een gemengde oplossing dezelfde nauwkeurigheid als een volledig numerieke 
oplossing; de dominerende fout is afkomstig van de ruimte-tijd discretisatie van de 
parabolische advectie-dispersie vergelijking (la). 
(JJA van Kooten, A method to solve the advection-dispersion equation with a kinetic adsorption 
isotherm, To appear in Advances in Water Resources, 1995). 

3. We beschouwen het advectie-dispersie model met twee mobiele fasen: 

dC, dC. d2C. 

dt dx dx2 

dC2 dC, d2C7 

— I = -v.—l + D2 1 - (k^X^C. + k.C. 
dt 2 dx 2 dx2 2 ' 

waarin 
C, = concentratie van stof in fase i [M/L% 
V; = advectiesnelheid in fase i [LIT], 
Dt = dispersiecoëfficiënt in fase i [L2/T\, 
X; = vervalcoëfficiënt in fase i [F1], 
kt = kinetische uitwisselingscoëfficiënten tussen fase 1 en 2 [T1]. 

De oplossing van bovenstaand stelsel voor een Diracpuls in fase 1 

C^xfi) = à(x) , C2(x,0) = 0 , 

luidt 

Cfat) = C(x,t)e<k'^' + (C(x,x)hn(t,x)e'k'T'^'-^dx , 
o 

t 

C2(x,t) = (C(x,x)h12(T,t)e-^'KQ'z)dx. 

met 

C(x,v) = 1 „ p l - ^ - ^ - ^ - ^ l 

en waarin hn en hl2 als gedefinieerd in hoofdstuk 3 van dit proefschrift (uitdrukking (2) 
and (3)). (recent resultaat) 



4. Evenals voor (massa)media blijkt voor simulatiemodellen te gelden dat een gekleurde 
presentatie hoger gewaardeerd wordt dan eenvoudigweg diepgang. 

5. Bij het implementeren van een algoritme in programmacode dient men ter bevordering 
van de inzichtelijkheid en betrouwbaarheid te streven naar zo'n klein mogelijk aantal 
statements. 

De smogvorming in de stratosfeer illustreert dat onze welvaart een te hoge vlucht heeft 
genomen. Vliegtuiggebruik dient daarom ontmoedigd te worden, zeker voor vakantiedoel­
einden. (N.a.v. Volkskrant 18 november 1995, pag. 19) 

7. Het geven van zindelijkheidstraining voordat kinderen kunnen lopen, is dweilen met de 
kraan open. Zindelijkheid is een vorm van gedrag dat pas mag worden aangeleerd als de 
parasympathische vezels vanuit het centrale zenuwstelsel naar de blaas zijn aangelegd. 
(prof.dr. JA.R. Sanders-Wouters et al, Leerboek kinder- en jeugdpsychiatrie, 3' gewijzigde druk, 
Assen/Maastricht, 1990) 

8. Hoewel van den Beukei terecht constateert dat "natuurwetenschap (ver)wordt tot pseudo-
religie, waarvan de wetenschappers de priesters zijn", mogen wetenschap en techniek niet 
geïdentificeerd worden met de anti-christ. 
(prof.dr.ir. A. van den Beukei, "De dingen hebben hun geheim", Baarn, 1990; 2 Thess. 2). 

9. Het feit dat een wiskundig model een fysisch verschijnsel slechts kan beschrijven maar 
niet kan verklaren, zou natuurwetenschappers bescheiden moeten stemmen. 
(N.a.v. Stephen Hawking, "A brief history of time", Ned vert. "Het Heelal", A'dam, 1988). 

10. Ook non-conformisme kan een vorm van conformisme zijn. 

11. Het ontbreken van diversiteit in een kerkelijke gemeente duidt eerder op niet-wezenlijke 
betrokkenheid van de leden dan op eensgezindheid. 

12. Het is onmogelijk een goed interpreet van Bachs religieuze werken te zijn, zonder kennis 
te hebben van de Lutherse of gereformeerde theologie en de waarde hiervan aan te 
voelen. (Casper Honders, Over Bachs schouder, Groningen, 1986). 

13. Veelal geldt: Wie promoveert is niet wijs. 

J.J.A van Kooten 



Abstract 

In this thesis we describe an analytical approximation method for predicting the 
advective-dispersive transport of a contaminant towards a pumping well. The 
groundwater flow is assumed to be stationary and essentially horizontal. Due to 
dispersion contaminant transport is a stochastic process. We derive approximations 
for the arrival probability (or fraction) of particles at a well, for the mean and 
variance of the arrival time and for the arrival time distribution at a well. The 
advective flow yields first order approximations. The effect of longitudinal dispersi­
on is included by expanding the first and second moment of the arrival time in 
power series of the longitudinal dispersion coefficient. Transversal dispersion only 
plays a crucial role near the separating streamlines bounding the catchment area of 
a well. Its effect is analyzed locally with boundary layer techniques. The incorpora­
tion of linear equilibrium adsorption and first order decay is rather straightforward. 
The asymptotic approximations are compared with the results of random walk 
simulations. 

A self-contained part of this thesis is devoted to the transport of a kinetically 
adsorbing contaminant. We show that once the transport of a non-adsorbing 
contaminant has been computed, the effect of first order kinetics can be incorpora­
ted naturally by utilizing a stochastic description of the residence time of particles 
in the free phase. 

The results of our research have been implemented in the software package 
ECOWELL. The input of ECOWELL consists of a head field generated with a 
numerical flow model. The technical documentation of ECOWELL is part of this 
thesis. The use of ECOWELL is demonstrated in a case study. 

Key words: advective-dispersive contaminant transport, arrival fraction at well, arrival 
time, asymptotic approximations, random walk, first order decay, kinetic 
adsorption. 



Ontmoeting bij een put in Samaria: 
"Jezus antwoordde en zeide tot haar: Een ieder die van dit water drinkt zal 

wederom dorsten, maar zo wie gedronken zal hebben van het water dat ik hem 
geven zal, die zal in eeuwigheid niet dorsten, maar het water dat ik hem zal geven, 
zal in hem worden een fontein van water springende tot in het eeuwige leven". 

(Johannes 4 : 13 en 14) 

Voor MARJA 
en onze kinderen 
RUBEN en ARNOUD 
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GENERAL INTRODUCTION 

Knowledge is as the waters, 
some descending from above, some springing from beneath. 

(Francis Bacon, 1561-1626) 

MODELLING GROUNDWATER FLOW AND CONTAMINANT TRANSPORT 

In many countries in the world groundwater is pumped up for consumption purposes. In 
the Netherlands 70% of the drinking water is groundwater. Despite the protecting and 
purifying character of the soil groundwater can be polluted. Biological or chemical 
pollutants (such as bacteria, viruses, nitrates, heavy metals, radioactive materials and toxic 
compounds) produced by domestic, agricultural and industrial activities may penetrate the 
soil and reach the groundwater system. Examples are the leaching of landfills, penetration 
of fertilizers by rain water, oil spills and the infiltration of industrial waste from rivers, 
streams and lakes. To control the groundwater quality engineers and decision-makers need 
models that predict water flow and contaminant transport. The growing concern about the 
environment has stimulated the research in this field. Together with the advances in 
computer technology this research has resulted in the development of a large number of 
simulation models. An extensive review of computer models is given in Mangold & Tsang 
(1991). Restricting ourselves to the saturated zone we can distinguish two types: flow 
models and solute transport models. 

Flow models describe the macroscopic path lines of the water through the porous 
medium. Groundwater flow is a potential flow: Darcy's law gives a linear relationship 
between the flow velocity and the gradient of the hydraulic head. The hydraulic head can 
be solved from the law of mass conservation. For an interesting class of configurations the 
hydraulic head and the flow velocity can be expressed in an analytical formula. In the past 
decade the analytical element method of Strack (1989) has been widely used. The 
analytical element method can be applied to porous formations consisting of blocks with 
different hydraulic conductivities. To deal with irregular geometries and arbitrary boundary 
conditions finite element and finite different models have been developed. Flow models 
may be used to get an impression of the flow pattern in aquifer or to study the change in 
the hydraulic head (the drawdown) near a pumping well. 

Solute transport is governed by advection and dispersion. Advection is the 
displacement of a solute in the macroscopic flow direction. Dispersion is the spreading in 
longitudinal and transversal direction due to the complex movement of particles through 
tortuous pores with varying microscopic velocities. Almost all transport models assume 
that the dispersion can be described by a Fickian law. The resulting differential equation is 
commonly referred to as "the advection-dispersion equation" (ADE). The ADE may be 
coupled to isotherms that describe adsorption or chemical reactions. Analytical solutions of 
the ADE has been derived for various initial and boundary conditions (see e.g. van 
Genuchten & Alves, 1982, Leij et al. 1991). Almost all solutions are based on a uniform 
velocity field. More complex flow patterns can be dealt with by finite element, finite 
difference and random walk models. 
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ADVECnVE-DISPERSIVE TRANSPORT TOWARDS A PUMPING WELL 

In this thesis we mainly focus on contaminant transport towards a pumping well. Pumping 
wells are used to extract water both for human use and for remediation purposes. This 
class of problems is worth being studied in more detail than it has been done up to now. 
Currently, protection zones and remediation strategies are almost always determined with 
flow models. Flow models are easy to use and provide results quickly. However, to 
analyze contaminant transport to a well adequately also the effects of both transversal and 
longitudinal dispersion should be incorporated. Although in many application the dispersi­
on terms are small compared with the advection terms, their effect may be large. Due to 
transversal dispersion contamination spilled outside the catchment area may cross a 
separating streamline and enter the well. Or in remediation context: contamination may 
escape from the catchment area, so that the groundwater remains (partially) polluted. 
Furthermore longitudinal dispersion affects the time that contamination keeps seeping into 
the well. 

Of course, the dispersive transport towards a well can be computed with currently 
existing finite element or finite difference methods. However, this is a time-consuming job 
that requires much computer capacity. Because the ADE is a parabolic differential 
equation numerical solution methods are prone to numerical dispersion, especially if the 
dispersivities are small. To reduce numerical dispersion a large grid and a small time step 
are required. 

The random walk method may provide more satisfying results. By carrying out 
many simulations of the stochastic motion of a particle, an estimate can be obtained for 
the fraction of a contaminant that eventually enters a well and for the breakthrough curve. 
A disadvantage is that the random walk method costs much computer time. Moreover, it 
provides less general information; from the simulation results no formulae can be derived 
that, for example, express the arrival fraction at the well or the breakthrough curve as 
function of the dispersivities. 

RESEARCH OBJECTIVE 

Uffink (1989) has shown the usefulness of Kolmogorov's backward equation in the study 
of dispersive contaminant transport. Given the present state of a particle the backward 
equation describes where the particle might have been coming from. One of Uffink's 
examples concerns contaminant transport in horizontal stationary flow towards a well. This 
example has been worked out further by Van Herwaarden & Grasman (1991) and Van der 
Hoek (1992). From the backward Kolmogorov equation they have derived a boundary 
value problem for the arrival fraction of a contaminant at a well. Solving this problem 
with perturbation techniques they have obtained an analytical approximation for the arrival 
fraction in which the effect of transversal dispersion is included. A first extension was 
made by van Herwaarden (1994), who presented an asymptotic approximation for the 
mean arrival time. 

The objective of the research in this thesis is to develop the asymptotic method of 
Van Herwaarden & Grasman further and to implement it in a software package. Beside 
transversal dispersion we also take into account longitudinal dispersion. Moreover we 
allow the dispersivities to vary in space. Because chemical reactions and interactions with 
the soil may highly affect the transport of a contaminant we also incorporate the effect of 
linear equilibrium adsorption, first order decay and linear kinetic adsorption. We have 
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succeeded in deriving analytical approximations for 
the arrival fraction at a well, 
the mean and variance of the arrival time 
and for the arrival time distribution at the well. 

The approximations can be applied to arbitrary (numerically or analytically computed) 
flow patterns with wells. The regional background needs not necessarily to be uniform. 
The results have been derived for a point spill of pollution. By integrating the approxima­
tions in space they can also be applied to a contaminant that already has spread out over a 
certain area. 

In comparison with a finite element, a finite difference or random walk method the 
advantage of the asymptotic method is considerable. Because the effects of dispersion and 
adsorption are incorporated analytically, the approximations can be evaluated efficiently 
and free of numerical dispersion. The time that is needed to evaluate the approximations is 
of the same order as one random walk simulation. 

APPLICATION AND IMPLEMENTATION OF THE RESULTS 

The asymptotic method may be used for the following purposes: 
to delineate a protection zone near a pumping station more accurately, 
to design a remediation strategy, 
to analyze the risk of e.g. placing a factory or landfill at a certain location. 
to estimate the effective porosity or the dispersivities, by fitting theoretical and 

observed breakthrough curves in tracer tests. In this context our results may be considered 
as an extension of the work of Guvanasen & Guvanasen (1987), who describe a semi-ana­
lytical method to estimate parameters from a tracer experiment in radial flow to a well. 
They neglect the effect of the regional background flow. 

In order to make the method easy applicable for engineers and decision-makers we have 
implemented it in a software package, called ECOWELL (which stands for Estimating 
Contamination Of WELLs). The package will be distributed by the International Ground 
Water Modelling Centre (IGWMQ in Colorado. The input of ECOWELL consist of a 
head field generated with a finite element or finite difference code for groundwater flow. 
The flow pattern may contain various pumping and injection wells. With ECOWELL the 
effects of dispersion, adsorption and decay on the transport of a contaminant can be 
analyzed. In chapter 5 we discuss a case study. 

For completeness it is mentioned that the method has also been implemented in a 
program that has a complex-analytical potential as starting point. This version, however, is 
not yet available for direct use. 
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OUTLINE OF THE THESIS 

This thesis is composed of three scientific papers, published in or submitted to internatio­
nal journals, a technical description of the program ECOWELL and a case study. We give 
a brief overview of the contents. 

Chapter 1 deals with the transport of a linearly decaying contaminant. We start with 
summarizing some theoretical results on the validity of the advection-dispersion equation 
at field scale. Using that the mass flux of a contaminant satisfies the backward Kolmogo-
rov equation we derive boundary value problems for the arrival rate and the mean arrival 
time of a decaying contaminant at the boundary of a domain. These boundary value 
problems are solved asymptotically for flow towards a well. The advective flow pattern 
yields first order approximations. In a boundary layer near a separating streamline we have 
to compute a correction accounting for the effect of transversal dispersion. Because 
longitudinal dispersion hardly affects the arrival rate and the mean arrival time, it does not 
have to be taken into consideration. 

Without information on the spreading of the arrival time of a contaminant, the mean 
arrival time is an unreliable guideline for e.g. the clean up time of an aquifer. In particular 
one will be interested in the arrival time distribution. Therefore, in Chapter 2 we derive 
approximations for the variance of the arrival time and for the arrival time distribution. 
Now, also longitudinal dispersion has to be taken into account. We expand the moments 
of the arrival time in power series of the longitudinal dispersivity. Longitudinal dispersion 
is a one-dimensional process. Therefore, we expect that the arrival time distribution at the 
well can be parameterized by the probability distribution of a particle at the endpoint of a 
column. Near a separating streamline the effect of transversal dispersion is taken into 
account by generalizing the results of chapter 1. 

Chapter 3 is a more general chapter; it is not primarily devoted to contaminant transport 
toward a well. We study the advection-dispersion model for the transport of a kinetically 
adsorbing contaminant. Kinetic interactions of a contaminant with the soil may explain the 
long tail in the breakthrough profile that is often observed in remediation projects (see also 
van den Brink, 1995). We show that once the transport of a non-adsorbing contaminant 
has been computed, the kinetic adsorption can be incorporated naturally by utilizing a 
stochastic description of the residence time of particles in the fluid phase. The method is 
demonstrated in various examples, among which the special case of transport towards a 
pumping well. 

Chapter 5 is the technical documentation of the software package ECOWELL. We 
describe how ECOWELL determines the stagnation points and separating streamlines in 
the flow, and how it evaluates the asymptotic approximations for the arrival fraction and 
arrival time of a contaminant at a well. We also give estimates for the first and last 
entering time. 

In chapter 6 we discuss a field study. We demonstrate how ECOWELL may be applied to 
delineate a protection zone near pumping station Lochern in the Achterhoek. With a finite 
element program the flow field near Lochern has been computed. With ECOWELL we 
analyze the effect of dispersion on the arrival fraction of a contaminant at the pumping 
station and on the 1, 10, 25, 100 and 250 year travelling time zones. 
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CHAPTER 1 

GROUNDWATER CONTAMINANT TRANSPORT 
INCLUDING ADSORPTION AND FIRST ORDER DECAY 

(By J J A. van Kernten, Stochastic Hydrology and Hydraulics, 8, 185-205, 1994) 

Abstract: This study deals with the transport of a contaminant in groundwater. The 
contaminant is subject to first order decay or linear adsorption. Its displacement 
can be modeled by a random walk process in which particles are killed at expo­
nentially distributed times. Dirichlet problems are derived for the rate and mean 
time at which contaminated particles reach a particular part of the boundary of a 
certain domain. These Dirichlet problems are solved asymptotically for two types 
of 2D-flow patterns: flow parallel to the boundary of a domain and arbitrary flow 
towards a well in an aquifer. 

Key words : contaminant transport, adsorption, decay, random walk, killing, 
Kolmogorov equations, contamination of a well 

1. INTRODUCTION 

Groundwater confined in aquifers is an important source of water supply for domestic, 
industrial and agricultural use. In order to control the quality of the groundwater prediction 
tools are needed. In this study we present a method to predict the fraction of a pollution 
that enters a protected zone or a well where groundwater is pumped up. We also give an 
estimate of the mean travelling time of particles. If a contaminant does not interact with 
the solid or is not subject to decay these problems have already been dealt with by Van 
Herwaarden & Grasman (1991), Van Herwaarden (1994) and Van der Hoek (1992). 
However, adsorption and decay may be factors of importance; because of the large 
residence times of water in an aquifer adsorption and decay may have a non-negligible 
effect upon the rate and mean time at which contaminated particles cross a certain 
boundary or are pumped up at a well. 

Starting point of our analysis is the advection-dispersion equation containing terms 
that account for linear (non-) equilibrium adsorption and first order decay. In a dispersive 
flow a single particle makes a random walk. This random walk is modelled by a stochastic 
differential equation of which the corresponding Fokker-Planck equation equals the 
advection-dispersion equation without adsorption or decay terms (Uffink, 1990). Linear 
equilibrium adsorption only retards the spread of the contaminated particles. Linear 
irreversible adsorption and first order decay cause a fixed fraction of the contaminated 
particles to be "killed" in each time step. The spread of contaminated particles can be 
simulated by the aforementioned random walk process in which the particles have an 
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exponentially distributed life time. The Dirichlet problems formulated in section 4 are 
based on the backward Kolmogorov equation of this random walk process. The solutions 
of these problems give the rate and mean time at which particles cross a particular part of 
the boundary of a certain domain. These Dirichlet problems are applicable to various types 
of flow patterns. 

In section 6 we solve the Dirichlet problems to approximate the rate and mean time 
at which particles hit the boundary of a domain in which the flow is parallel to that 
boundary. In section 7 the Dirichlet problems are solved to predict what fraction of a 
pollutant will enter a well operating in a confined aquifer and its mean travelling time. In 
both cases the Dirichlet problems are solved with the use of singular perturbation 
techniques. Because dispersion contributes considerably less to the displacement of a 
particle than advection, the advective flow field yields a first order approximation of the 
solutions. Where necessary we introduce a boundary layer in which we compute second 
order approximations which take into account the effects of dispersion. In this way 
analytical expressions are obtained which may be used to approximate the rate and mean 
time at which particles hit a certain boundary or enter a well in arbitrary 2D-flow. In 
chapter 8 the latter case is worked out for a well in a uniform background flow. The 
accuracy of the approximations is tested by making a comparison with random walk 
simulations. 

2. THE SOLUTE TRANSPORT EQUATION 

We analyse the spread of a non-conservative contaminant by stationary groundwater flow 
in a saturated porous formation. We restrict ourselves to linearly interacting solutes. The 
transport of the contaminant may be influenced by local equilibrium adsorption (also 
called linear Freundlich sorption), which occurs in many applications. Linear equilibrium 
adsorption is a reversible process, which only makes that the solute transport is retarded 
(see, for example, Bear and Verruyt, 1987). In Valocchi (1985) criteria are presented to 
assess the validity of the local equilibrium assumption (LEA). The LEA is often used to 
describe adsorption processes in which the reaction rate with the porous matrix is much 
faster than the advective flow rate. 

In addition to local equilibrium adsorption, we allow for loss of mass due to linear 
irreversible adsorption or first order reactions/decay. These processes make that in each 
time step a certain fraction of the solute disappears. It is assumed that the 
adsorption/decay rate is a constant, which is realistic for radioactive and several reactive 
organic compounds. 

Under these assumptions it is well known that at local scale the solute concentra­
tion c(y,t) (M/LN, .yERN, N = 2 or 3) satisfies the advection-dispersion equation (ADE) 

* = -JL£LC) • A ( ^ ) - he, (2.1) 
dt dy.R dyt R dy' R 

where v; is the average pore velocity (L/T) and X. is the adsorption/decay rate coefficient 
(T1). With respect to the indices in (2.1) we use the Einstein summation convention. The 
retardation factor R is related to the distribution factor Kd which characterizes the 
equilibrium adsorption, and to the porosity n and the solid's density ps: 
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R = u L l PKd . (2.2) 
n 

For an isotropic porous medium the hydrodynamic dispersion tensor is given by 

DH " arlvlô» + K- f lr) v i v / l v l ' (2-3) 
where respectively aL and aT denote the longitudinal and transversal dispersion coefficient 
(see Bear and Verruyt, 1987). 

We are especially interested in the transport of a contaminant in an aquifer, which 
is a field-scale process. At field-scale a porous formation is often heterogeneous, i.e. the 
hydraulic properties of the formation display spatial variability. Heterogeneity enhances 
the spread of a contaminant (especially in the longitudinal direction). This phenomenon is 
called "macro-dispersion". Flow and transport in a heterogeneous formation can be 
modelled by introduction of random space functions (RSF) for the velocity field v, the 
retardation factor R and the first order reaction/decay coefficient X (Dagan, 1987). The 
heterogeneity of the formation is characterized by the auto-correlations and cross-correla­
tions of v, R and X. Because v, R and X are RSF the ADE (2.1) becomes a stochastic 
differential equation, and consequently the point value of the concentration becomes 
uncertain. Therefore, we are more interested in the expected value of the concentration. 
Assuming that v, R and X are stationary random fields Kabala and Sposito (1991) proved 
that the mean transport equation still is approximately an ADE of form (2.1), where v/R, 
DjJR and X/R have to be replaced by their "field-scale values". Because of the 
heterogeneity these field-scale values are functions of the auto- and cross-correlations of v, 
R and X. This results in time-dependent transport parameters. However, if the correlation 
scales are finite, it can be shown that at the long term the time dependency vanishes and 
the transport parameters tend to constants (see also Dagan, 1987, Neumann, 1991). 

In this study we assume that the scale of heterogeneity is small compared to the 
geometry of the aquifer, so that we may take as starting point of our analysis the equation 

*L = - ± (vf c) + ± ÇD/-21) -tic , (2.4) 
dt dv. dyt dy. 

where respectively v/, Dj and Xf denote the field-scale values of \JR, DJR and X/R at the 
long term. The field-scale dispersion is still assumed to be proportional to the velocity, so 
that the dispersion tensor is given by Eq.(2.3), where the pore-scale dispersivities aT and 
aL have to be replaced by their asymptotic field-scale values a / and a/. For small values 
of variance of the logconductivity Dagan derived approximations for this dispersivities 
(Dagan, 1987, p. 308-326, see also Gelhar and Axness, 1983). These approximation show 
that a/ » aL, whereas (at the long term) a/ - aT. The transversal dipersivity a/ turns out 
to play a crucial role in this study. 

It is noted that it is not always realistic to assume that the transport parameters 
tend to their asymptotic values rapidly. Sposito and Barry (1990) applied the Dagan model 
of solute transport to a tracer experiment at the Borden site. It turned out that at the 
Borden site the transversal dispersivities do not reach their asymptotic values on any 
realistic time scale. Roberts et al. (1986) found that for the Borden aquifer the scale of 
time dependency of the field-scale retardation factor is more than two years. 
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In this study we answer the question at what rate and mean time a contaminant, the 
expected concentration of which satisfies Eq.(2.4), will enter a protected domain. For that 
purpose the concentration function c(y,t) is interpreted as the space-time probability 
density function for a contaminated particle as it makes a random walk through the 
groundwater. (In the remainder of this study the superscripts ƒ in (2.4) will be omitted.) 

Remark. The LEA or the assumption that a solute undergoes first order decay do not 
always accurately describe the physical, chemical or biological processes in an aquifer 
(Valocchi, 1985, Cameron and Klute, 1977). In such cases kinetic non-equilibrium models 
are needed to describe the mass transfers. A random walk method for simulating the 
spread of a kinetic adsorbing solute is described by Andricevic and Foufoula-Georgiou 
(1991). 

3 COMPARISON WITH A DIFFUSION PROCESS WITH KILLING 

For the subsequent analysis of the transport of a contaminant, it is more convenient to 
rewrite Eq. (2.4) in the following form: 

Ol = Mkc (3.1a) 

with 

and 

dt 

Mx = ~4- W ) + i^TT- <¥>>)•) - * (3-lb) 
dy. 2 dyfy 

a. = v. + J- D.. , lb.. = D.. . (3.led) 

Setting c = c0 e'u we find that c0 has to satisfy the ADE without adsorption or decay 
terms: 

- ^ = MQc0 . (3.2) 

If no adsorption or decay takes place it is known that the dispersive spread of a contami­
nant in groundwater can be simulated by a random walk process. Contaminated particles 
are released at some point x E RN and their motion consists of a deterministic part, the 
drift, and a stochastic part that accounts for the dispersion: the position of the particles at 
time t is only known with some probability. The probability density function p<fy,t \ x) for 
particles released in x G RN has to satisfy the same equation as c0(y,t), so that 

- J = A^ 0 , p0(y,0\x) = ttx-y) . (3.3) 
at 

Eq. (3.3) is the Fokker-Planck equation or forward Kolmogorov equation that corresponds 
with the diffusion process described by the Ito stochastic differential equation 
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dyl = afy)dt + F.dW. , (3.4a) 

where Wj are independent Wiener processes and Ftj is a tensor so that 

V * = *,- . (3.4b) 

see Gardiner (1983) and Uffink (1990). 
Linear non-equilibrium adsorption or first order decay cause contaminated particles 

to be "killed". This killing process has an exponential distribution; the probability that a 
particle has not been killed before time t equals e~u. With this killing process, the 
probability density function for finding a particle in y G RN at time t is 

p(y,t\x) = pjyj\x) e-» . (3.5) 

It is noticed that p is a defective, or deficient, probability density function. The defect is 
\-e~u, being the probability that a particle has been killed before time f. The probability 
density function^? satisfies the ADE (3.1). So we can simulate the spread of a contaminant 
that is subject to adsorption or first order decay by a random walk process with killing. 

Eq. (3.3) describes where a particle that was released in the point x, might be some time 
later. We may also reverse the situation. Given that a particle is found in y at time t, we 
may ask where the particle's initial position might have been. Beside the forward 
Kolmogorov equation (3.3) p<J(y,t\x) satisfies the backward Kolmogorov equation that 
refers to the particle's position in the past: 

_ i = V 0 , (3.6a) 
dt 

where 

The backward equation plays an important role in finding expressions for the probability 
and mean time of entering or leaving a given domain in RN. 

Remark. In the above approach of the spread of pollution in a porous medium where 
adsorption or a first order decay takes place, it is essential that X is space independent. If 
the killing is space dependent the probability of finding a particle at a certain place at a 
certain time depends on the path followed by that particle. In that case the diffusion 
process and the killing process are not any longer independent. 

4. PROBABILITY AND MEAN TIME OF EXIT THROUGH A CERTAIN 
BOUNDARY 

Let us consider a domain Q G RN (N = 2 or 3) with boundary dQ. We assume that dQ is 
an absorbing boundary; a particle is removed when it reaches dQ, i.e. p(y,t \ x)=Q if ySdÇi. 
Let dQo and dQ1 be parts of dQ, i.e. dC^Dd^ = <)> and ôQ0UâQ! = dQ (fig. 1). 
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Figure 1 Example of the region Q considered in section 4. 

We want to know the probability that a particle that was released in x £ Q, exits through 
dQv In a diffusion process without killing the (defective) probability density function for 
leaving Q through dQt at time t is 

f nJfyjtWSy , (4.1) 
Jdfi, 

where n is the outward normal vector on dQ, and J is the so-called probability current: 

Jfy,t\x) = a O - K C r l x ) - ! ^ - ^ ) ^ ^ ' ! ^ (4-2) 
I ay j 

see Gardiner (1983), Sec. 5.2 and 5.4. It follows that the probability density function for 
exit through dQj at time t for a diffusion process with exponentially distributed killing is 

q(x,t) = (jxinJi(y,t\x)dSy)e^ . (4.3) 

A particle starting at dQ is absorbed immediately, so that a particle starting at dQ0 cannot 
exit through dß; anymore. So, at the boundary we have 

q(x,t) = 0 ifxGdQo» 
q(x,t) = à(t) iixEdQv (4.4) 

Let u(x) be the probability that a particle starting i n x G f i exits through dQt. By partial 
integration we find 

u(x) = [q(x,t)dt 

^ (4.5) 

•^v^)^i."}"^j4(jL,v^)^* 
The term between braces cancels because J(y,0) | x) = 0 at dQj. Because /?0 satisfies the 
backward Kolmogorov equation, / satisfies this equation too. Making use of this fact we 
conclude that 
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*» • T$L,M»ipTt Li / » ) - ! - / , ) JSy)e-"d, 
OX.OX. 

= lLx)JLu(x) + iA/x)_Ç_«(x) 
A. dx. 2 ' dxdx. 

(4.6) 

Thus, the probability that a particle starting in x E Q exits through d ^ satisfies the 
homogeneous Dirichlet problem 

L^u = 0 in Q 

with the boundary conditions immediately following from (4.4): 
u = 1 at dQj, 
u = 0 at dQ0. 

(4.7a) 

(4.7b) 

Let Tx(x) be the mean exit time of a particle starting in x E £2, under the condition that the 
particle exits Q through dQx 

where 

(4.8a) 

T r(x)= r^x,o*- (4.8b) 

Partial integration of T gives 

Again, because / satisfies the backward Kolmogorov equation, it follows that 

T(x) = —u(x) + — a(x)—T + lb..(x) d T 
'K ' dx. 2 'A ' dxM. 

(4.9) 

(4.10) 

From (4.4) we obtain as boundary condition: T = 0 at dQ. Thus, T(x) is the solution of the 
nonhomogeneous Dirichlet problem 

L^Qc) = -u(x) in Q 
T = 0 at dQ . 

(4.11) 

We mention that in the same way as we derived the Dirichlet problem (4.11) related to the 
first moment 7\ of the conditional exit time we can derive the Dirichlet problem related to 
the /nth moment T™ of the conditional exit time. We do not work this out, because we do 
not use these higher order moments in this study. 
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In section 6 and 7 the Dirichlet problems (4.7) and (4.11) will be solved approximately for 
two special 2D cases. Using singular perturbation techniques we derive approximations for 
the rate and mean time at which particles reach a given boundary. We test the accuracy of 
the asymptotic approximations by comparing them with the outcomes of random walk 
simulations. 

5. RANDOM WALK SIMULATION WITH KILLING 

In two dimensions the stochastic differential equation (3.2) reads 

** = (V* + if" + if») dt + V^M^i^ + \ß^\^dWT . (5.1a) 

^ = (V> + if" + l!f») dt + ^ > l " ^ | ^ - f ^ ^ f r • (5.1b) 

Because the Wiener processes WL and WT are independent, their increments dWL and dWT 

are also independent. The increment of a Wiener process has variance dt: 

(dWl) = (dwf) = dt, (5.2) 

see Gardiner (1983), sec 4.2. Let z; be a uniformly distributed variable with mean zero and 

N 

variance o. Then, according to the central limit theorem, the variable z = Y.zi , with N 

sufficiently large, has approximately a normal distribution with mean zero and variance 

JNO . So we can simulate the motion of a particle in a specified domain Q C R2 on the 

computer by 

AX = v + 
Tx 

AY = |v + - I D + _ 1 D 
' dx v dy " 

+ ±D\ At + y ^ M ^ J à T + fi^M^ßT (5.3a) 

,j At * ^Jvl-J-z.v/ÄT + ^ /2a r |v | i rV /Är (5.3b) 

where zL and zT are uniformly distributed variables with mean zero and variance one (see 
also Kinzelbach, 1988). The time step At is taken sufficiently small. Furthermore, the 
particles are killed at exponentially distributed times. Therefore, before we start simulating 
the motion of a particle by (5.3), we choose a random variable x which is uniformly 
distributed at [0,1]. Then t = - log(t)A. is exponentially distributed; we call / the killing 
time of this particular particle. We stop simulating the motion of a particle if it exits the 
domain Q, or if its simulated travelling time exceeds the killing time t. By counting the 
particles that exit Q across a particular part dQ1 of the boundary dQ an estimate is 
obtained of the probability of exit through dQ^ By taking the mean of the exit time of 
these particles we obtain an estimate of the conditional mean exit time Tv 
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Now the question arises how small the time step At and how large the number of 
simulations has to be taken to obtain accurate estimates from the random walk simula­
tions. The first part of the question must be answered empirically: we take At sufficiently 
small, such that the result is independent of the chosen step size. The second part of the 
question can be answered with the use of a theoretical argument. 

Let Hi be the outcome of the i'th random walk; \i, = 1 if the particle exits through 
dQj, |Xj = 0 if not. Let Xj be the exit time of the j 'th particle that exits through dQv The 
mean of nt is u and the mean of Xj is Tv The sample means are 

N a. » x. 
jT = E ^ and x = E ^ , (5.4) 

where N is the number of simulations and M s N the number of particles that exit Q 
through dQv Let ou

2 and a,-2 be the variances of ^ an xj; respectively. From statistics it is 
known that the random variables 

JNQLÏI and tfT^R, (5.5) 

have a limiting normal distribution with zero mean and unit variance. This fact can be 
used to construct confidence domains for u and Ty For that purpose estimates for 0„2 and 
c^2 are needed. Unbiased estimators for them are respectively 

S- = L, y , 3 n d ST = E -Tf-T • (5-6) 
i-i N-i jwl M-I 

It is easy to verify that 95% confidence intervals for u and Tx are approximately: 

»-du < u < £ + du, (5.7a) 

x - dT < Jj < x + d r (5.7b) 

1.96 S 1.96 ST 
with du = 1 and dT = I . (5.7c) 

6. UNIFORM PARALLEL FLOW 

As a first example we consider a uniform 2D flow through the domain 

a = {(jyO|x < 0, y > 0} (6.1a) 

with boundaries 

dQ0 = {(x,y)|jc = 0, y > 0} and dQ, = {(*,>>) |x < 0, y = o} . (6.1b) 

The uniform advective flow is in the x-direction. Due to dispersion a particle released 
somewhere in fi may hit the boundary dß,. While moving through Q particles may be 
absorbed or may undergo first order decay. We use the Dirichlet problem (4.7) to compute 
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ôQo 

Q 

Figure 2. Uniform flow parallel to the boundary dQ^ 

an approximation of the probability u(x,y) that a particle released in (x,y) EQ hits the 
boundary dQv Neglecting the probability that a particle starting at dQ0 may hit dQ1( we 
find that u(x,y) is the solution of the problem 

du djl 
/ + 

dx 
u(x,0) 
<0,y) 

aLv. 

= 1 
= 0 

+ 
dx2 

for 
for 

öj? 

x 
y 

V 

dy 
< 0 
> 0 

- KU 0 in Q 
(6.2) 

Due to the advective flow in the x-direction, which dominates the dispersion, particles 
released far away from dQ, have probability zero of reaching dQ,. One may expect that 
only near d£2x the probability of reaching dQj differs significantly from zero. Therefore, a 
boundary layer around dQj may occur in which the qualitative behaviour of u changes. 
We expect that in this layer the transversal dispersion is important, because it allows 
particles to cross streamlines. The layer is stretched by introducing the boundary layer 
coordinate 

r\ = ylja^. 

Substitution in (6.2) yields for aL, aT -* 0 

du d2ü 
v _ _ + v - Xu = 0 in Q 

dx ÖT12 

with 

«(0,TI) = 0, u(x,0) = 1 

and with matching condition 

lim ü(x,r\) = 0 . 

(6.3) 

(6.4a) 

(6.4b) 

(6.4c) 

Using a Laplace transform in the ^-direction we find that the solution of (6.4) reads 

. (6.5) u(x,r\) = — exp{v\jkjv} Erfc 
ITI+V' -VV 
2 ' 

fx~ 
+ —exp{ -r\^k/v} Erfc 

1 T ! - / ^ V V " 

/ T 
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X 

-0.5 
-1.0 
-1.5 
-2.0 
-2.5 
-3.0 
-3.5 
-4.0 

y = 0.04 

wasymp 

55.2 
65.4 
69.7 
72.0 
73.5 
74.5 
75.2 
75.7 

Mamu1 

53.7 
64.0 
68.9 
71.9 
73.0 
74.2 
74.6 
76.1 

4, 
1.382 
1.331 
1.283 
1.246 
1.231 
1.213 
1.207 
1.182 

y = 0.08 

Masymp 

24.4 
38.7 
45.8 
49.9 
52.5 
54.3 
55.6 
56.6 

U«mul 

23.5 
38.1 
45.5 
50.0 
52.3 
53.9 
56.7 
56.6 

4, 
1.175 
1.346 
1.380 
1.386 
1.385 
1.382 
1.374 
1.374 

y = 0.12 

Myinp 

8.4 
20.5 
28.1 
33.0 
36.3 
38.6 
40.3 
41.6 

"amiil 

7.9 
19.4 
26.9 
31.9 
36.0 
37.8 
40.1 
41.0 

d. 

1.605 
1.096 
1.229 
1.292 
1.331 
1.344 
1.359 
1.363 

TABLE I. Probabilities of hitting dQl (in %) calculated from the asymptotic approximation 
(6.5), compared with the probabilities from N = 5000 simulations at different 
points (v = \,aL = 1/32, aT = 1/200, X = 0.2, At = 0.0005). 

We have simulated the spread of particles by the random walk method with killing as 
described in section 5. In table I the rate at which particles hit the boundary 5QX as 
calculated from (6.5) and as obtained from simulations are compared. Because the rate 
obtained from the simulations is also an approximation of the real rate u, table I contains 
the coefficient da calculated from (5.7c). The probability that u differ less then du from 
"simui i s 0-95. One may notice that in almost all cases | ^„,^-u^^ \ s 0.95. From the table 
we may conclude that formula (6.5) gives a good approximation of the rate at which 
particles hit dQ{. We emphasize that in this formula aL does not occur. So the Brownian 
motion in the x-direction plays a minor role in answering the question at what rate 
particles hit dQv 

From the Dirichlet problem (4.11) we may find an approximation for the conditional mean 
of the first time that a particle hits dQv However, we may also try to derive an approxi­
mation in a different way. Ignoring the Brownian motion in the x-direction there only 
remains a stochastic motion in the v-direction, which is described by 

dr\ = y/2v~dWT . 

For a particle released in (x,r\) 
T) = 0 at time t equals 

(6.6) 

Q the probability density function for reaching the axis 

KW 
2\[ï™ l 

_JT_e-t|
2/4v< (6.7) 

see Karlin (1960). Starting at (X,Ï]) G Q the boundary dQ can only be reached if t < -JC/V, 
otherwise the boundary dQ0 has been passed. Furthermore, the probability that a particle 
has not been killed at time t is e"^. So the conditional mean first hitting time of dQ1 

equals 

T.frri) 
2/jtv~ i 

(jy-(n2ito<)-Kdt/n(x,r\) (6.8) 
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Table II contains the mean first hitting time obtained from random walk simulations and 
calculated from (6.8). A comparison shows that Tt(x,T]) is a good approximation for the 
real mean first hitting time Tv To support our confidence in T̂mui table II also contains dj 
calculated from (5.7d); the probability that 7\ differs less then dj from Tamû is 0.95 (see 
§5). We notice that in almost all cases | 7 ^ - 7 ^ | s 0.95. 

X 

-0.5 
-1.0 
-1.5 
-2.0 
-2.5 
-3.0 
-3.5 
-4.0 

y = 0.04 

T 

0.173 
0.256 
0.316 
0.362 
0.400 
0.431 
0.457 
0.479 

T 
-'•mut 

0.179 
0.260 
0.321 
0.364 
0.406 
0.452 
0.474 
0.491 

dr 

5.22.10"3 

8.32.10"3 

1.10.10"2 

1.34.10"2 

1.57.10"2 

1.82.10"2 

1.99.10"2 

2.14.10"2 

y = 0.08 

T 
'asymp 

0.280 
0.442 
0.562 
0.658 
0.737 
0.804 
0.861 
0.909 

T 
ijtxuil 

0.301 
0.442 
0.571 
0.672 
0.753 
0.829 
0.866 
0.910 

dr 

8.86.10"3 

1.17.10-3 

1.58.10"2 

1.95.10"2 

2.27.10"2 

2.58.10"2 

2.82.10"2 

3.12.10"2 

y = 0.12 

T 
* asymp 

0.347 
0.575 
0.752 
0.897 
1.019 
1.123 
1.213 
1.292 

T 
smul 

0.395 
0.592 
0.759 
0.906 
1.026 
1.140 
1.231 
1.305 

dr 

7.49.10"3 

1.66.10"2 

2.08.10"2 

2.47.10"2 

2.88.10"2 

3.33.10"2 

3.68.10"2 

4.01.10"2 

TABLE II. Mean time of hitting ôQ, computed by the asymptotic approximation (6.8), 
compared with the mean time obtained from N = 5000 simulations at different 
points (v = 1, aL = 1/32, aT = 1/200, \= 0.2, M = 0.0005). 

7. EXIT PROBLEM IN A DOMAIN WITH SEPARATING STREAMLINE 

The Dirichlet problems (4.7) and (4.11) play a crucial role in answering the question at 
what rate and mean time a certain pollution will enter a drinking water well. Drinking 
water is often pumped up from layers from confined aquifers. The thickness of the aquifer 
is assumed to be small relative to its horizontal dimensions, so that the groundwater flow 
we consider is essentially 2D. Domains containing a well have the important characteristic 

Fig.3. Example of a flow field in a domain containing a well. The catchment area of the well is 
bounded by two separating streamlines ending in the stagnation point S. Due to dispersion 
a particle released outside the catchment area may enter the well. 
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that the flow field contains separating streamlines ending in a stagnation point. These 
separating streamlines bound the region of advective flow towards the well, called the 
catchment area. Therefore we now analyse the exit problem in a domain Q C R2 with 
arbitrary flow containing separating streamlines ending in a stagnation point. To force that 
the flow is divergence free we assume that Q is free of sources or sinks; we simply 
exclude them as in figure 3 (dQj may consist of the well only). 

7.1 Away from a separating streamline 

The solution u(x,y) of the Dirichlet problem (4.7) gives the probability that a contaminated 
particle released in (x,y) E Q exits Q through dQi (e.g. enters a well). We will solve this 
problem asymptotically. Since dispersion contributes considerably less to the displacement 
of a particle than advection, we take as a first order approximation for the probability of 
exit, the solution of the advective part of problem (4.7) 

W £ + v2(*,v)^ - ̂  - 0 , (? 1} 

"adv = 1 a» aOi . 

where vfay) and v2(x,)>) denote the velocity of the flow in (x,y) in respectively the x- and 
y-direction. Notice that outside the catchment area no streamline is ending at dQlt so that 
outside the catchment area 

« * = « • (7-2) 

Inside the catchment area all streamlines are ending at dQ^ Putting u^ = exp (-XT) we 
find that T satisfies 

vi(*>>0— + Vj(jy)-r- - -1 in O 
dx dy (7.3) 

T = 0 at dQj . 
The solution of (7.3) is the advective travelling time T^ to dSiv So inside the catchment 
area we have 

"adv = exp(-X7'adv) , (7.4) 

i.e. u^ is the probability that a particle has not been killed at t = T^. 

7.2 Near a separating streamline 

We expect that near a separating streamline u^ will need a correction. Due to transversal 
dispersion a particle released outside the catchment area and not too far away from a 
separating streamline may cross the separating streamline and enter the well. Or in the 
opposite way: a particle released inside the catchment area and not too far away from a 
separating streamline may cross the separating streamline, which would reduce the 
particles probability of reaching the well. Furthermore, the advective travelling time 
towards the well along a streamline, that ends into the well and that is close to a separat­
ing streamline, is very large, because this streamline passes the stagnation point very 
closely. Due to the killing a particle moving along this streamline has a very small 
probability of reaching the well. Transversal dispersion, however, may bring a particle into 
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a streamline further away from a separating streamline, which shortens the travelling time 
towards the well and, thus, enlarges the probability of reaching the well. So, near a 
separating streamline we may not neglect the influence of transversal dispersion; a 
boundary layer around such streamline is to be expected. Before we analyse the exit 
probability u in this boundary layer we carry out some preliminary coordinate transforma­
tions. 

Fig. 4 The coordinates p and u are taken along and perpendicular to a separating streamline 
leading towards the stagnation point. The coordinates 6 and |x are taken along and 
perpendicular to the separating streamline leading away from the stagnation point. 

Around a separating streamline we introduce some new (local) coordinates p and v. p > 0 
is a coordinate along the separating streamline and v a coordinate perpendicular to it, see 
figure 4. The stagnation point is in (p,v) = (0,0). The velocity near the separating 
streamline in this new coordinates is given by 

(KP,V), H<P,V)) . (7.5) 

Furthermore, we allow the dispersion coefficients to vary in space. We decompose the 
transversal dispersion coefficient in the following form: 

aj(p,i>) = aT a(p,i>) . (7.6) 

where âT is a (spatial) average of aT and a(p,v) accounts for the spatial variability. (In a 
homogeneous medium âT = aT and a(p,"u) = 1). At the end of this paragraph we will see 
that it is not important how the average âT is taken. We only have to introduce it for 

computational reasons. A boundary layer of width 0(JäT ) is expected near a separat­

ing streamline. We therefore introduce the boundary layer coordinate 

v/yöjT (7.7) 
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Letting aL, âT -» 0 we obtain that inside the boundary layer u approximately satisfies 

v ( p , a Ä = L + w^Ofr!^ - a ( P ) 0 ) v ( p , 0 ) i ^ l - Xu^ = 0 (7.8a) 
dp dr\ dry 

with Mtx̂nd to be matched with the outer solution u^: 

K ^ C P , ! ! ) = 0 for Ti -* oo , (7.8b) 

« ^ ( p j l ) = exp(->.radv(p,Ti)) for TI « -1 . (7.8c) 

In order to find the solution u^^^^ we have to know T^ just outside the boundary layer. 
For that purpose we again introduce new local coordinates. 

Let 8 > 0 be a coordinate along the streamline leading away from the stagnation 
point and \i a coordinate perpendicular to 8, see figure 4. The stagnation point is in (0,8) 
and the streamline leading away from the stagnation point intersects dQt in (8^0). The 
velocity near this streamline in these coordinates is given by 

(r(8,n), s(8,n)) (7.9) 

We need these coordinates in an expression for T^ just outside the boundary layer. Van 
Herwaarden (1994) proved that for -1 « v < 8 

T^(P,v) - — l n ( ~V "fo0* ) + Ä(p) (7.10a) 
- ^ ' vp(8,o) \fmp% 

with 

o e„ 
h(p) = f(—!— 1 )dp + f(—!— 1 )dQ . (7.18b) 

J'v<p,e) vp(e,o)p Wm r6(Q,o)e' 
We call the right-hand side of (7.18a) 7 ^ . Let 

«»*, = « P C - ^ J • (7-n) 
We put 

f 1 
"bound = e x P( x ——<*p}" , (7.12) 

Jv(p,8) 
where y is an integration constant. It follows that ü satisfies 

. dÜ , n . dÜ , n\ r r>\ Ô2W v(p,8)^l + w„(p,0>i-^l - o(p)e)v(p,0)J 
ôp " dr\ drf 

"(P»1!) = 0 for T] -» », 

*(P>*l) = « m , c „ -e*P{-4 -=^P} = exp{-M(Y)}("V a ; n^ , 0 ) )"^ ( 0 0 ) for n « - l . 
i v(p,o) v^e.e^e^ 

(7.13) 
We introduce the new coordinates 
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p 

T = fv(p,0)2<fp and % = -riv(p,0) (7.14) 
o 

and write Û(T,Ç) = a(p,v) . Using the fact that the flow is divergence free, which implies 

that vp(p,0) = -wv(p,0), we obtain the following initial value problem for ü: 

i £ = a(x,0)^£ (7.15a) 

with 

û(0,Ç) = 0 for Ç>0 , (7.15b) 

«-(0,Ç) = exp{-M(Y)} 

/ \-Wvf(0,0) 

for £<0 . (7.15c) 
(vp(0,0)Y8vJ 

The solution of this initial value problem reads 

, /ST JT> vp(o ;o)Ye, 

where (7.16a) 

X 

q(x) = {2 fa(r,0)rft}-1/2 . (7.16b) 
o 

Bringing this solution in (p.v)-coordinates and using (7.6) and (7.12) we find the boundary 
layer solution for the rate of pollution that exits Q through dQ^ 

J^ vp(o,o)Pe„ J 
"«(p) 

where 

q(p) = {2|a7(p,0)v(p)0)2^/v(p,0)2}-1'2 . (7.17b) 
o 

Note that in this boundary layer solution only the velocity field and the transversal 
dispersion coefficient upon a separating streamline are used. 

73 A composite approximation 

Note that uboaad is an approximation for the exit rate u that is only valid in the boundary 
layer around a separating streamline. Outside the boundary layer we have the approximati­
on u - u^. Because u^ = 0 outside the catchment area of the well, we may use (7.17) as 
an approximation for u in the whole domain outside the catchment area. We are able to 
construct an approximation uœnip that is valid in the entire catchment area, inside and 
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outside the boundary layer, as follows 

"comp = "adv + «bound - "match ( 7 - 1 8 ) 

Outside the boundary layer umaich cancels «bound. Inside the boundary layer umtdtl cancels 

"adv-

7.4 Mean time of exit 

If a particle released in Q exits through dQu then its mean time of exit is 7\ = T/u, where 
T has to satisfy the nonhomogeneous Dirichlet problem (4.11). We solve problem (4.11) 
asymptotically. Again we start with neglecting the dispersion terms outside the boundary 
layer around a separating streamline. A first order approximation for T satisfies 

v,(x>y)— + V7(JC,V)— - XT' = -u . in Q , 
lV <te 2V " dy * (7.19) 

T = 0 at dQj . 

Outside the catchment area (7.19) yields the approximation T = 0. 
Inside the catchment area we find the approximation 

T = T^ . Madv) (7.20) 
which yields as an approximation for the conditional mean exit time 

r , = T^. (7.21) 

Inside the boundary layer around a separating streamline T satisfies asymptotically 

)E + wJ[p,0)nE - a(p,0)v(p,0)Ülr 

dp ft] dr) 

with T to be matched as follows 

v(p,0)£i + vv/p.O^fi - a(p,0)v(p,0)41 - \T = -u^ , (7.22a) 

r(p,Ti) = 0 for Ti — oo , (7.22b) 

TTM) = ^ c h - " ^ for TI«-1 . (7.22c) 

A particular solution of (7.22a) is 

(o , \ 
r'(p'T,) = " f -F^ "^ (7-23) 

with y a certain integration constant. Setting 

7/(p,Ti) = r (p,T|) + T„(p,r\) (7.24a) 
and 

f 1 r4(p,tl) = exp{X|_i_iip>rA(p,ii) (7.24b) 

Jv(p,0) 

one can easily check that Tk is the solution of the homogeneous problem 
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v ( p , 0 ) ^ + vv,(p,0)n-^* - a(p,0)v(p,0)lZ* = 0, 
dp dr\ drf 

T„(p,r]) = 0 if Tl -* », (7.25) 

*> , r i ) = ( ^ c + f-^-^^Pi-HT^* f^-^P)} for r,« -1 
J vfo.O) J vfo.O) v<P,0) i v(p,0) 

Solving this problem in the same way as problem (7.13) and using (7.23) and (7.24) we 
find a boundary layer solution for T and thus for the conditional mean exit time Tbami: 

u, 
J _ l n ( *P-°> ) • Ä(p) + 

bound vp(0,0) v p (0 ,0 )pO, / 

1 7 ln(-u+^(p)X-v+^(p))-Wv '(0,0)
e-'

2* 

vo(0,0) - f -1,0) J 
(7.26) 

ƒ (-'"+^(P)) -Wv/o,o) 
e>''dt 

««(p) 

b̂ound is a n approximation for the conditional mean time of exit through dQj for a particle 
released inside the boundary layer. For a particle released outside the boundary layer and 
inside the catchment area of the well we have the approximation (7.21). In the same way 
as we constructed uçomf, we can construct an approximation for the conditional mean exit 
time ^.„p which is valid in the whole catchment area, both inside and outside the 
boundary layer. 

T = T + T - T 
comp adv bound match 

= T -
vD(0,0) 

_ln(-u) + _ L _ f 
',0) v(0,0) J (0,0) . 

\n{-v +t/q(pj) {-v Hlqjpf^^e ^'dt 
(7.27) 

«KM 

We may use T^^ as an approximation for the conditional mean exit time that is valid in 
the whole domain outside the catchment area. 

8. A WELL IN A UNIFORM BACKGROUND FLOW 

As an example we apply the expressions derived in the previous section to calculate the 
exit rate and mean exit time to a well in a uniform background flow. We assume that the 
background flow is parallel to the x-axis and that the well is situated in the origin (0,0). 
The corresponding velocity field is described by 

vi(*.>0 = i -
x2 + y2 

v2(*o0 -y 
(8.1) 

x2 + y2 
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-6 -5 - 4 - 3 - 2 - 1 0 1 2 3 

Figure 5 Stream pattern for a well in a uniform background flow. 

We want to predict the rate and mean time at which a pollution, released somewhere in 
the xy-plane, reaches the well. Let £2 be the jy-plane with (0,0) excluded. So, dQl consists 
of the well in (0,0) only. The stagnation point is in (1,0) and the separating streamline is 
given by 

x = y/tan(y) . 

The (p,u)-coordinates of a point (x,y) near the separating streamline are given by 

(8.2) 

y, 

p = (<x>(y)dy , v = ((x-xf + (y-y)2)™ (8.3ab) 

with 

1 cor» = J K - A y - f , r • ( 8 - 3 c ) 

" tanv sin2)» 
and where (x^ vs) is a point on the separating streamline so that (x-xs, y-y^)T is perpendicu­
lar to the separating streamline (see fig. 5). The velocity v(p,0) along the separating 
streamline is 

v(p,0) i • ( -L-1) 2 
u 

smyt 
(8.4) 

The advective travelling time to the well from a point inside the catchment area of the 
well is 

^sinvj 
- lnl 

tany 
x - x , (8.5) 

see van der Hoek (1992). From (7.10) we obtain for the advective travelling time near the 
separating streamline 
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T~JP.V) = -ln(-v) - ha Ui-h-lf 
\ 

(8.6) 

Assuming that the transversal dispersion coefficient is a constant and making use of (7.17) 
we find 

oo 

. / ^T tany. y. J . v/2JT 
dt 

v*P) 

with 

(8.7a) 

<?(p) = {2ar|v
2(p(y),0)(o(y)<fy/v2(p,0)}- 1/2 (8.7b) 

For pollution released inside the boundary layer or outside the catchment area of the well, 
uboani is an approximation for the fraction of the pollution that will reach the well. The 
corresponding approximation for the mean arrival time is obtained from (7.26): 

n-tft») - 41" t a iy, y. 

\ 
- X ƒ 

" * > ) 

\n{-v+t/q(p))(-v+t/q(p)) e'^dt 
oo 

ƒ {-VHlqipfe-^dt 

(8.8) 

"«(p) 

From (7.18) we obtain an approximation for the rate of pollution that will reach the well, 
if the pollution is released in an arbitrary point inside the catchment area 

e -*- + e^-(l+(-J—-i^-L \{-vHlq(pte-Vdt-{-v)\ 

**y. y. ^ J p ) 

(8.9) 

An approximation for the mean arrival time of this pollution is 

f ln(-v + t/q(p)) {-v + t/q(p)fe'',2dt 
T».'M W - ƒ. 

f {-v + tlqifife-^dt 

" * > ) 

(8.10) 

We tested the accuracy of the asymptotic approximations by comparing them with results 
of random walk simulations. On the separating streamline we took the point C with 
coordinates (p,v) = (2.958,0) corresponding with (x,y) = (-0.915, 2.0). Carrying out some 
preliminary simulations, we obtained A/ = 0.001 as an appropriate time step to simulate 
the random walk motion of the particles in an accurate way. Next we carried out from C 
simulations consisting of respectively N = 100, 1000 and 15000 random walks, doing each 
simulation 10 times. In fig. 6 the rates and mean times at which particles reached the well 
are plotted. The figures visualise that the deviation in the random walk results is linear in 
respectively 1/VN and l/VN^ see also section 5. If N -* °° the estimates for the probabil­
ity and mean time of arrival obtained from random walk simulations will converge to their 
real values. Fig. 6 shows that these real values only slightly differ from the values 
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calculated from the asymptotic approximations. This implies that the asymptotic approxi­
mations for the probability and mean time of arrival are very good for this example. 

0.32 

03 

S 0.28 
'S 
£•' 
Ü0.24 

PROBABILITY OF REACHING THE WELL MEAN TIME OF REACHING THE WELL 

'0.26 

J20.22 
I 02 
I S 0.18 

0.16 

0.14, 

(a) 

:N=100 
:N=1000 
: N=15000 

0.02 0.04 0.06 0.08 0.1 
1/ N , N = Number of Random Walks 

).12 0 0.05 0.1 0.15 0.2 0.25 0.3 
(b) 1/ Nw,Nw = Number of particles that entered the well 

Fig. 6. Probability and mean time of arrival at a well in a uniform background flow for particles 
released in the point C (p,v) = (2.958,0) as estimated from random walk simulations with 
N = 100, 1000 and 15000 respectively, and with aL = 0.01, aT = 0.001, X. = 0.2 and Ar = 
0.001. The dashed lines denote asymptotic approximations for the probability and mean 
time of arrival as calculated form (8.7) and (8.8). 

To enhance our confidence in the accuracy of the asymptotic approximations we carried 
out some additional simulations. On a line perpendicular to the separating streamline 
through C we took a number of points from which we carried out N = 15.000 random 
walk simulations. In fig. 7a the fraction of the particles that entered the well is compared 
with the asymptotic approximations (8.7) and (8.9) for the probability of arrival. In fig. 7b 
the mean arrival time of the particles that reached the well is compared with the 
asymptotic approximations (8.8) and (8.10) for the mean arrival time. If v increases the 
number of particles that enter the well decreases. Therefore the mean arrival time as 
estimated from the simulations is subjected to increasing uncertainty. From the figures we 
may conclude that the approximations take into account the boundary layer behaviour of 
the probability and mean time of arrival in a surprisingly accurate way. The figures 
confirm that, although 04- is much smaller than aL, the transversal dispersion plays a 
dominant role in predicting what fraction of a contaminant will enter a well. 
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PROBABILITY OF REACHING THE WELL 

(a) 

-0.8 -0.6 -0.4 -0.2 0 0.2 
v (distance from separating steamline) 

0.4 

MEAN TIME OF REACHING THE WELL 

0>) 
-0.8 -0.6 -0.4 -0.2 0 0.2 

v (distance from separating streamline) 
0.4 

Fig. 7. Simulation results for particles released on a line perpendicular to the separating streamline 
through the point C obtained with N = 15.000, aL = 0.01, aT = 0.001, X. = 0.2 and Af = 
0.001. In fig. 7a the fraction of the particles that reached the well is compared with the 
asymptotic approximation for the probability of arrival calculated from (8.9) for v < 0 and 
from (8.7) for v a 0. For all simulations the 95% confidence domains for the real probabi­
lity of arrival have a radius of less then 0.008. In fig. 7b the mean arrival time of the 
particles is compared with the asymptotic approximation calculated from (8.10) for v < 0 
and from (8.8) for v a 0. For v a -0.03 the 95% confidence domains for the real mean 
arrival time are indicated. For v < 0.03 these domains are so narrow that they are not 
indicated. 
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CONCLUSIONS 

When modelling the transport of pollution in aquifers the effects of adsorption or decay 
phenomena have to be taken into account. Restricting ourselves to space-independent 
linear (non-)equilibrium adsorption and first order decay/reactions, we answered the 
question at what rate and mean time particles of a source of pollution cross the boundary 
of a certain domain. In particular we considered a domain with arbitrary 2D-flow near 
separating streamlines ending in a stagnation point, which is typical for groundwater flow 
towards a well. We have constructed asymptotic approximations for the rate and mean 
time at which a contaminant, spilled somewhere in an aquifer, will enter the well. Far 
away from a separating streamline the advective flow field yields a first order approxima­
tion. Around a separating streamline boundary layer solutions are necessary which take 
into account the transversal dispersion. The approximations were worked out in the special 
case of a well in a uniform background flow. It was noticed that there is a good agreement 
with results from random walk simulations. 

Substitution of A. = 0 and aT = constant in the expressions (7.17), (7.18), (7.27) and 
(7.28) yields the same approximations for the rate and mean time of arrival at a well as 
obtained by van Herwaarden and Grasman (1991) and van Herwaarden (1994), who made 
a study of the spread of a mass conservative contaminant. 

The expressions (7.17) and (7.18) we derived for the arrival rate not only give the 
fraction of a pollution produced by a point-source that will enter a well. If a pollution is 
distributed over a certain area Q the expressions can also be used to compute approxi­
mately the amount of the pollution that will enter a well. Let c(x) be the initial concentra­
tion of the pollution, then the amount of pollution that will be pumped up at well is 

£c(x)M(x>fr , 

where u(x) denotes the probability that a particle released in x E Q enters the well. 
The analytical expressions for the rate of arrival ((7.16) and (7.17)) and for the 

mean arrival time ((7.27) and (7.28)) are quite powerful. Once an analytically or numeri­
cally obtained advective flow field is given, approximations for the rate and mean time at 
which a pollution will enter a well can be computed in an efficient and accurate way. The 
accuracy of the approximations increases when the ratio between advection and dispersion 
increases. The advantage above solving the advection-dispersion equation numerically is 
considerable. The latter method is very time and memory consuming and is subject to 
numerical dispersion, especially at high Peclet numbers, i.e. in cases where the ratio 
between advection and dispersion is large. 

The expressions (7.16) and (7.17) can also be used to determine domains from 
which a certain fraction of the pollution will enter a well. Therefore these expressions may 
play an important role in the delineation of well head protection areas. 
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CHAPTER 2 

AN ASYMPTOTIC METHOD TO PREDICT THE 
CONTAMINATION OF A PUMPING WELL 

(By J J A. van Kooten, published in Advances in Water Resources, 18 (5), 295-313, 1995) 

Abstract: A method is presented to predict the advective-dispersive transport of a 
contaminant towards a well in a confined aquifer. Due to (macro-)dispersion 
particles carry out random walks through the porous formation. Using perturbation 
techniques we derive analytical approximations for the fraction of the particles that 
reaches the well and for the mean and variance of the arrival time. In particular, 
approximations for the breakthrough curve at the well are provided. The asymptotic 
approximations are shown to be in good agreement with results of random walk 
simulations. The method may be applied to any 2D-flow pattern. 

Key words: advection, dispersion, contamination of a well, 
asymptotic approximations, breakthrough, random walk. 

1. INTRODUCTION 

Groundwater confined in aquifers is an important source of drinking water supply. In order 
to control groundwater quality in pumping wells, tools are needed which predict 
contaminant transport. Popular tools to delineate wellhead protection zones or to design 
aquifer remediation strategies are based on particle and front tracking techniques (e.g. 
Javandel and Tsang, 1986, Schäfer and Wilson, 1991). These methods only take into 
account the advective transport of a contaminant. However, to control well water quality 
as accurately as possible one should also incorporate the effects of macro-dispersion. 
Recently, Van Herwaarden & Grasman (1991), Van der Hoek (1992), Van Herwaarden 
(1994) and Van Kooten (1994) have reported on an analytical method to study the effect 
of transversal dispersion on the fraction of a contaminant that enters a well. In the present 
paper this method is developed further. Taking into account both longitudinal and 
transversal dispersion we derive asymptotic approximations for the first and second 
moment of the arrival time at the well. The main aim of this study is to obtain expressions 
for the breakthrough curve. 

We assume that contaminant transport can be modelled by the advection-dispersion 
equation (ADE), in which the dispersion may be a non-linear function of the velocity. The 
ADE can be interpreted as the Fokker-Planck equation corresponding with the random 
motion of a single particle (Uffink, 1989). Following this interpretation we formulate in 
section 4 boundary value problems both for the probability that a particle exits a certain 
region as for the moments of the exit time. In section 5 we show how these boundary 
value problems may be applied to a one-dimensional dispersion problem. In section 6 the 
boundary value problems are used to predict the arrival of a conservative contaminant at a 
well in a confined aquifer. Assuming that advection dominates dispersion we solve these 
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problems with the use of perturbation techniques. The advective flow yields first order 
approximations. These first order approximations can be improved by adding terms that 
account for longitudinal dispersion. Furthermore, we make use of the fact that transversal 
dispersion only plays a significant role in a boundary layer near the separating streamlines, 
which bound the catchment area. In section 7 the asymptotic approximations for the mean 
and variance of the arrival times at the well are used to obtain expressions for the arrival 
time distributions. In section 8 the results are generalised for a contaminant subject to 
linear equilibrium adsorption and first order decay. Finally, we consider the special case of 
a well in a uniform background flow. The asymptotic approximations are compared with 
results of random walk simulations. 

2. SPREAD OF POLLUTION IN AN AQUIFER 

2.1 The advection-dispersion equation 

The conventional advection-dispersion model for the transport of a contaminant through a 
saturated porous formation is 

* « - ±(yfi) + *J(P*) - *c, (2.1) 
dt dy. dyt 'by. 

where v E R" (N = 1,2 or 3) is the vector of space coordinates, c(y,t) [M/Ü] is the solute 
concentration, v [LIT] is the mean pore-velocity vector, D^ [L2/T\ is the dispersion tensor 
and X [Tl] is the decay or reaction rate. With respect to the indices we use the Einstein 
summation convention. Linear equilibrium adsorption can be incorporated by replacing the 
parameters v, and DiS in (2.1) by their retarded values v* = vJR, £>,* = DJR, where R [-] is 
the retardation constant (/fel). 

The ADE has been derived from laboratory experiments. In this study we are 
especially interested in contaminant transport at aquifer scale. The soil properties in an 
aquifer will often be heterogeneous. Because at laboratory scale a porous medium is 
homogeneous, the applicability of the ADE to field scale processes is limited. In many 
experimental and theoretical studies (e.g. Roberts et al., 1986, Sudicky, 1986, Gelhar & 
Axness, 1983, Dagan, 1984, 1989) it has been demonstrated that physical and chemical 
heterogeneities have a large impact on solute transport. The irregular spatial variability of 
the velocity field and the chemical properties results in an enhanced spreading of the 
contaminant. This phenomenon is commonly referred to as "macro-dispersion". Another 
interpretation of the concept macro-dispersion is that it accounts for uncertainties in model 
prediction of the movement of a contaminant. 

Important results with respect to flow and transport in heterogeneous porous 
formations have been obtained with stochastic modelling. Because the transport parameters 
vary in a random manner it is impossible to predict the actual transport of a contaminant. 
One can only try to predict the mean transport. If the velocity field, the decay rate and the 
retardation factor are assumed to be stationary (i.e. statistically homogeneous) random 
fields, the concentration expected value still satisfies an ADE of form (2.1) (Dagan, 1984, 
1989, Kabala and Sposito, 1991). Because of the heterogeniety the field scale transport 
parameters show temporal growth. However, if the correlation scales of the random fields 
are finite, the time dependency vanishes after a certain time and the field-scale parameters 
tend to asymptotic values (see Gelhar & Axness, 1983, Neumann et al., 1987). 
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2.2 Basic assumptions 

In this study we focus on contaminant transport through a confined aquifer with steady 
state flow towards a well. It is assumed that the scale of heterogeneity is small compared 
to the geometry of the aquifer. Under this assumption we expect that in many cases the 
transport parameters will reach their asymptotic values rapidly. So, as starting point of our 
analysis we may take ADE (2.1), where the parameters are time independent. We also 
assume that the thickness of the layer is small relative to the horizontal geometry, so that 
the flow is essentially two-dimensional. The velocity field is divergence free, except at the 
location of a well. Furthermore we assume that the porous medium is isotropic, so that the 
flow is also rotational free. The asymptotic method we develop in section 6 is based on 
the assumption that the advective transport dominates the dispersive transport. 

For the analysis in this study it is essential that the concentration c occurs linearly 
in the ADE. So, non-linear effects can not be incorporated. We come back to this issue in 
section 8. 

23 The dispersion tensor 

A commonly used expression for the (macro) dispersion tensor in an isotropic formation is 

D9 = a r |v |ô, + (aL - aT)^ , (ij = 1..JV) (2.2) 

where at [L] and aT [L] denote the longitudinal and transversal dispersivities, (Bear & 
Verruijt, 1987). In experiments it has been found that the longitudinal dispersivity is much 
larger than the transversal dispersivity. To allow for spatially varying dispersivities, we 
make the following decomposition: 

«i = a i / iO) and aT=aTf1(y), (2.3) 

where aL [L] and aT [L] are (spatial) means of aL and aT and fL and fT are dimensionless 
functions accounting for the spatial variability. 

Expression (2.2) is based on the assumption that the dispersion is proportional to 
the velocity. Decomposition (2.3) enables us to deal with problems where the dispersion 
depends non-linearly on the velocity. E.g. there exist situations in which fL and fT are 
functions of the Peclet number Pe=/|v|/D</ and thus of the velocity. At laboratory scale / 
[L] is a characteristic length of the pores and Dd [L

2/T\ is the coefficient of molecular 
diffusion (see e.g. Saffman, 1960, Bear and Bachmat, 1967). At field scale / is a length 
characterizing the heterogeneity of the aquifer and Dd is a pore-scale dispersion coefficient 
(Gelhar & Axness, 1983, Neumann et al., 1987). In such, cases fL and fT can be expressed 
as 

A(y)=A(v(y)) and f,(y)=fAy(y)), (2.4) 

so that the dispersion tensor becomes a non-linear function of the velocity. 

3. RANDOM WALK MODEL FOR SOLUTE SPREADING 

Instead of analyzing the transport of a solute body we may also follow the path of a single 
particle in groundwater. Due to dispersion a single particle makes a random walk. The 
expected concentration of a solute can be interpreted as a probability density function for 



34 CHAPTER 2 

the location of a particle some time after injection. So, the probability density function 
p(y,fyc) for a particle with initial position x has to satisfy ADE (2.1), i.e. 

± = M ^ , Ky.oi*) = ô(x - y) , 
at 

M, = -±i(y,+ 4-°^ + ITT*0*') 
dy{ dyj dyfrj 

(3.1) 

Setting 

P=Poe-», (3.2) 

we find that p0 has to satisfy the ADE for a conservative contaminant: 

-El = M ^ . (3.3) 
of 

Equation (3.3) is the forward Kolmogorov or Fokker-Planck equation that corresponds 
with the diffusion process governed by the Ito stochastic differential equation 

dyi = (v. + — D.)dt + FvdW. , (3.4) 

The term F^ dWj accounts for the stochastic displacement due to dispersion: Wj are 
independent Wiener processes (Gardiner, 1983, p. 66), F- is and amplitude tensor related 
to the dispersion tensor: 

F , ^ = 2D„ (3.5) 

Uffink (1989). 
Because of linear irreversible adsorption and first order decay particles may be 

"killed". The term e'u in (3.2) may be interpreted as the probability that a particle has not 
been killed before time r. So, we can simulate the dispersive spread of pollution by a 
random walk process in which particles have an exponentially distributed life time. 

4. THE BACKWARD KOLMOGOROV EQUATION AND EXIT PROBLEMS 

Beside the forward Kolmogorov equation (3.3) p0 also satisfies the backward 
Kolmogorov equation that describes how p0 depends on the initial position x: 

dp« I n 

2 ( 4 1 ) 
L. = (V.-_!D..)_!L + D..JL- - X- = v.JL + JL(DJL) - X- . 

x K • dx. "' dx. " ta Ax. 'Ox. dxK "ex.' 
j i i i t i ] 

(Gardiner, 1983, p. 143-170, Uffink, 1989). The backward operator Lx is the formal 
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adjoint of the forward operator Mx: Lx = M^ (Garabedian, 1964, p. 185). The operator Lx 

plays an important role in exit problems. 
Let us consider a domain Q in R" (N = 1,2 or 3) with boundary dQ. The boundary 

dQ is absorbing, i.e. p(y,fyc)=Q if xEdQ. We wish to know the probability u(x) that a 
particle with initial position xEQ is absorbed at a particular part dQt of the boundary. The 
remainder of the boundary is called dQ0 (figure 1). 

Figure 1. Example of the region Q considered in section 4 

The probability u(x) of adsorption at dCii is the solution of the boundary value problem 

Lxu = 0 in Q , 
(4.2) 

n = 0 at SO, , u = 1 at dQi . 

(For the case X = 0, van Herwaarden, 1994, for the case X*0, see Van Kooten, 1994). The 
conditional m'th moments ^ ( / l a l ) of the arrival time at dÇly is given by 

rw(x) = j^(*) > (4-3) 
u(x) 

where 7^ is the solution of 

LxP\x) = -u(x) in Q , fl) = 0 at dQ, 
(4.4) 

and for m Ä 2, 2n is the solution of 

Ltf\x) = -mF^Xx) in Q, 2 ^ = 0 at dQ. (4.5) 

(For the case X = 0, see Van Herwaarden, 1994, for the case X*0 see Van Kooten, 1994). 
The variance of the arrival time at dQx is given by 

o2 = 7<2> - (7«)2 . (4.6) 

5. DISPERSION IN ONE-DIMENSIONAL FLOW 

The boundary value problems formulated in section 4 may be applied to various types of 
flow patterns. By way of introduction we show how these boundary value problems may 
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be applied to a simple, one-dimensional dispersion process. Let Q = (-<»,0), where 
dQ^jO} is an absorbing boundary. The transport of a conservative solute which is 
injected in x<0, is described by 

dt dy dy dy 

where the advective flow rate v>0 is constant. The dispersion coefficient is given by 

D = aLv, (5.2) 

The dispersivity aL is taken constant. The backward Kolmogorov operator for this example 
is 

Lo = vi- + 4-Vir) • (5-3) 

dx dx dx 
From boundary value problem (4.2) follows «=1: every particle will be absorbed sooner or 
later. From boundary value problems (4.4) and (4.5) we find for, respectively, the mean 
and variance of the arrival time at dQx 

\i= - - and o2 = - 2D— = a,— . (5.4) 
V V3 V2 

Note that \i equals the advective travelling time to dQv The probability density function 
for absorption at dQL at time x is 

T^T-rf^T^' (5'5) 

see Feller (1968, Ch.14). Using (5.4) we may also express (5.5) as 

g^oVc) = _ J i — exp { - i ü _ g ! ü } . (5.6) 

So, the distribution for the arrival time x at dQj is completely determined by its first two 
moments. In section 7 expression (5.6) will be used to estimate the arrival time distribu­
tion of a contaminant at a pumping well. 

6. TRANSPORT OF A CONSERVATIVE CONTAMINANT TOWARDS A WELL 

The aim of this study is to provide a mathematical tool to control groundwater quality in 
pumping wells. Drinking water is often pumped up from a confined aquifer. A typical 
flow pattern around a pumping well is sketched in fig. 2. The region of advective flow 
towards the well, called the catchment area, is bounded by two separating streamlines 
ending in a stagnation point. 
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We start with studying the advective-dispersive transport of a conservative 
contaminant (X=0). The aquifer is called Q C R2. The probability at which particles enter 
the well and the first two moments of the arrival time are the solutions of boundary value 
problems (4.2), (4.4) and (4.5) respectively, with dQj being the position of the well. 
Assuming that advection dominates dispersion we solve these boundary value problems 
with the use of an asymptotic method. In particular we use that transversal dispersion only 
plays a significant role near a separating streamline. An outline of the method is given in 
section 6.1. In the sections 6.2, 6.3 and 6.4 the method is worked out in detail. 

Figure 2. Example of a flow pattern with a well. The catchment area is bounded 
by two separating streamlines ending in the stagnation point S. 

6.1 Outline of the asymptotic method 

We consider spills of contaminant in three different regions of the aquifer. Firstly, we 
consider a spill in the point x^x^^) outside the catchment area, see fig. 3. The advective 
streamline through x does not end in the well. The point x is so far away from the 
separating streamline that transversal dispersion cannot deflect the path of a particle 
sufficiently to enter the well, so that the probability of entering the well is negligible. 
From boundary value problems (4.4) and (4.5) it follows that u = 0 implies that 7*1' and 
1®, which are related to the (conditional) first and second moment of the arrival time, are 
also 0. So, well outside the catchment area we approximately have 

f® = 0 and T® = 0. (6.1) 

Secondly, we consider a spill of contaminant far inside the catchment area (fig. 4). Now, 
nearly all particles will reach the well: the probability of entering the well is close to 1. 
Again transversal dispersion has a negligible effect on the arrival rate. Because far inside 
the catchment area the travelling time along neighbouring streamline only varies slowly, 
the effect of transversal dispersion on the mean and variance of the arrival time is also 
negligible. Furthermore, the advective transport dominates the longitudinal dispersive 
transport, so that the first and second moment of the arrival time may be expanded in 
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asymptotic sequences in aL. These expansions are called 7 ^ , and 7^* : 

T^ = Tfc + aLTfc + 0(al). 

(6.2a) 

(6.2b) 

Remark that u = 1 implies that 7 ^ = 7 ^ and 7*^ = 7 ^ , see equation (4.3). The 
expansions are also valid in the vicinity of a well. In approaching the well |v|-*oo and thus 
|D|-»°°. However aL is a constant that is small in the entire region. In section 6.1 the 
terms of the expansions are determined. 

Figure 3 Spill outside the 
catchment area 

Figure 4 Spill inside the 
catchment area 

Figure 5 Spill near a 
separating streamline 

Finally, we consider a spill of contaminant in the neighbourhood of a separating stream­
line (fig. 5). Near a separating streamline transversal dispersion may not be neglected. Due 
to transversal dispersion a particle released just outside the catchment area may cross the 
separating streamline and enter the well. Or in the opposite way: a particle released just 
inside the catchment area may cross the separating streamline, which would reduce the 
probability that the particle enters the well. So, near a separating streamline we have a 
boundary layer in which, due to transversal dispersion, the probability of entering the well 
changes rapidly from 1 to 0. This rapid change can be analyzed with the use of coordinate 
stretching techniques. In this way we derive an approximation for the probability of 
entering the well, which we denote by «bo^. 

A similar approach results in approximations for the first two moments of the 
arrival time at the well for particles released in the boundary layer. Note that close to a 
separating streamline the advective travel time is large because the stagnation point is 
passed very closely. Therefore, in this region the advective travelling time may vary 
quickly among neighbouring streamlines. It follows that near a separating streamline 
transversal dispersion will have a non-negligible effect on the mean and variance of the 
arrival time. Let 

f(i) ja?) 
fO) _ bound nn/i 7^(2) bound 
•'bound a n a •'bound = 

^îound Dound 

(6.3) 
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be the first and second (conditional) moment of the arrival time at the well for a particle 

released inside the boundary layer. In analogy to (6.2) we expand u^,^^, 7 ^ ^ an(*̂ bound 
in asymptotic sequences in aL: 

"bound = «i> + aLuzb + ° ( a i ) > ( 6 - 4 a ) 

ï?L = ï%*<hï%+<KaÜ, (6.4b) 
^ 1 = ^ + « ^ + ^ ) . (6.4c) 

The difference with the expansions 7^,, and I^t6h is that the terms in the boundary layer 
expansions (6.4abc) depend on Oj. Outside the boundary layer the expansions (6.4abc) 
have to match the outer expansions, i.e. inside the catchment area «boû  must tend to 1 and 

the terms of T ^ j and 7 ^ , have to match the corresponding terms of 7 ^ and 7 ^ , , 
whereas outside the catchment area all terms tend to 0 (see eq. (6.1)). In section 6.3 
expressions for the terms of the boundary layer expansions are derived. 

The transition from a boundary layer to the outer regions is smooth, of course. Therefore, 
in section 6.4 the different types of approximations for the probability of entering the well 
and the mean and variance of the arrival time are melted together to smooth expansions 
valid in the entire aquifer, both inside and outside a boundary layer. 

subscript 

catch 
i,c 

bound 
i,b 

comp 
sing 
sep 

usage 

indicates an asymptotic expansion valid far inside catchment area 
denotes i'th term of a 'catch'-expansion 
indicates an asymptotic expansion valid in boundary layer 
denotes i'th term of a 'bound'-expansion 
indicates an expansion connecting the 'bound'- and 'catch'-expansions 
indicates an integral along streamlines close to a separating streamline 
indicates an expression for the 'catch'-expansions in (r|,v)-coordinates 

Table 1 List of subscript used in the asymptotic approximations 

6.2 Arrival at the well for particles released far inside the catchment area 

Far inside the catchment area we may put aT = 0, so that the backward Kolmogo-
rov operator (4.1) for a conservative contaminant becomes 

L . = v.JL + vJL + CL(V._L + VJL)(JL [V .JL + v.JL] ). (6.5) 
"•* l9x1

 2dx2
 LKldx1

 2dx2
A\v\ l ldx1

 2dx2''
 V ' 

(see Appendix A). The probability u of entering the well is approximately 1. Substituting 

the expansions 7 ^ (6.2a) and 7 ^ (6.2b) in the boundary value problems (4.4) and 
(4.5) (with m = 2) and collecting terms of equal power in aL we obtain boundary value 
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problems for the terms of the expansions. These boundary value problems can be solved 
iteratively with the method of characteristics. In this way we have determined the 
expansions for the first and second moment of the arrival time up to the second terms: 

ÎÏÏK«) = TJM + a L _ ^ , (6.6a) 

7*L(*) = Tl(x) + 2aL ( r a d v_^ j . + ƒ(*)), (6.6b) 

where 

TJx)=[-Lä, and / ( x ) = f ^ E d Ç . (6.7) 
t! v(9 J v2© 

The term T^ is the advective travelling time to the well and Ç is a coordinate along the 
streamline through injection point x, see fig. 6. The corresponding approximation for the 
variance of the arrival time is 

c^ = 2aLl{x). (6.8) 

Note that T^J^x), T^Jx) and o ^ x ) only depend on the velocity and the longitudinal 
dispersivity along the streamline through x. Thus, for any flow pattern these approxima­
tions can easily be determined by particle tracking. 

kW 

Figure 6 The coordinate Ç is taken along the streamline through the injection point x. 

63 Arrival at the well of particles released near a separating streamline 

Near a separating streamline transversal dispersion plays a crucial role. Its effect on the 
arrival of particles at the well can be analysed by introducing new (local) coordinates. 
These coordinates can be chosen in different ways. E.g. van der Hoek (1992) has taken the 
potential <j> and the stream function ip as new coordinate system. A drawback of this 
choice may be that, when the flow pattern is computed numerically, the streamfunction is 
not at hand. The coordinates we use are indicated in fig. 7: p>0 is a coordinate along the 
separating streamline and v is a coordinate perpendicular to it. The stagnation point is in 
(p,i>) = (0,0). The velocity field in these new coordinates is given by 

(v(p,-u), KP.V)). (6.9) 

Along a separating streamline a boundary layer of width O^a^) is expected. To stretch 
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Figure 7. The coordinates p and v are taken along and perpendicular to the separating 
streamline leading towards the stagnation point. The coordinates 6 and u, are taken 
along and perpendicular to the separating streamline leading away from the 
stagnation point. The well is situated in (9,|i)=(9W)0). The flow velocity in (6,u)-
coordinates is given by (r(8,(i), s(8,u)). 

the boundary layer we introduce the coordinate 

Ti = v/^aT . (6.10) 
Switching to (p,T])-coordinates we obtain (Appendix A) that for %-*() the backward 
Kolmogorov operator asymptotically becomes 

^ d = K P . O ) - ^ + ^ ( P , O ) T I ^ - - / ^ P . O M P . O ) - ^ 'an dr\z 

- aL(y(p,0)± + vv/p.O^J-X U^L[v(p,0)-L + ^(p.O^JL] ). (6.11) 
dp dï] v(p,0) dp dr] 

The fact that the flow is divergence free implies that in (6.11) vv^p.O) = -vp(p,0). 

6.3.1 Boundary layer approximations without the effect of longitudinal dispersion 

Boundary layer approximations for the probability and mean time of entering the well 
which do not take into account longitudinal dispersion have already been presented in Van 
Herwaarden & Grasman (1991), Van Herwaarden (1994) and van Kooten (1994). Putting 
0^=0 in (6.11) we find that the term uib in the expansion for the probability of arrival 
(6.4a) has to satisfy 

du,. du,. d2u,. 
v(P)o)_id + wjipßft-ht - /KP.OMP.O). >•* op dr] 

0. 
dr]' 

(6.12) 

Outside the boundary layer ulk must match with u = 1 and u = 0, i.e. for T]»l, ulJb must 
tend to 0 and for T J « - 1 , ulb must tend to 1. Grasman and Van Herwaarden (1991) have 
determined ulb for the homogeneous case fT = 1. Generalisation of their result to the 
heterogeneous case gives 
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with 

»JSVÙ = -jL ƒ *"^< 
V2JI ^p) 

9(P) = 
v2(P.0)J 

•1/2 

(6.13) 

(6.14) 

Far outside the catchment area the terms f\l and fyh of the boundary layer expansions 
for the moments of the arrival time (6.4bc) must tend to 0 (see (6.1)). Far inside the 

catchment area F£ and T̂ jJ have to match 7^=1^ and 7 ^=7^ , respectively (see 
(6.7)). So, for matching purposes an expression for 7 ^ in (p,i>)-coordinates is needed. For 
ufO 7 ^ will tend to infinity because a streamline near a separating streamline passes the 
stagnation point very closely. We say: for v = 0 T^ has a singularity. Van Herwaarden 
(1994) has shown that for - l « u < 0 

^ (PAO - TäJp,v) (6.15a) 

where Täng is the advective travelling time to the well along a characteristic (uv(p,0)=con-
stant) of the differential operator Z-bound (6.11) : 

TWpAO = _ J _ i n ( - ^P ' 0 ) ) - f( _ j _ - l .)dp + ef(_L_- 1 ye 
vp(0,0) ypBwvp(0,oy r^pß) vp(0,0)p; H r < e , o ) r9(0,0)e^ 

(6.15b) 

The coordinate 6>0 is taken along the streamline leading away from the stagnation point, 
r(9,0) is the velocity along this streamline, and Qw is the distance of the stagnation point to 
the well along this streamline (see fig. 7). 

The first term in the expansion for the mean arrival time (6.4b) has to satisfy 

dT*1' öf-0 d2^ 
H P - 0 ) — Ü + w„(p,o)n—ü - /7(p,o)v(p>o)_^ 

7™ - • 0 for Ti - • oo , 

J ? ' - r . for TI « -1 . 
1,0 sing • 

-u 1.* 

(6.16) 

With the symbol ' - ' we mean that 7j^ matches Tàag if r\ becomes more and more 
negative. The solution of (6.16) is a special case of a solution derived in van Kooten 
(1994): 

(6.17) ï?l(p,v) = J - f Tä(p,v - TL.) e-*dt 

The first term in the expansion for the second moment of the arrival time (6.4c) is the 
solution of 
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AT*2* ZT™ tfT™ 

3TJ2 
v(p,0). 

1,* 

dp 

0 

T2 

+ ^(p.o)n-

for 

for 

X] -* oo 

T) « -

) 

1 . 

(6.18) 

Problem (6.18) can be solved with the same technique as problem (6.16). For a detailed 
description of this technique we refer to van Herwaarden (1994) or van Kooten (1994). 
The result is: 

T%(p,v) = _ L f 7ig(p/u - !l^L.) e-** . (6.19) 

6.3.2 Boundary layer approximations with the effect of longitudinal dispersion 

The boundary layer terms u^, (6.13), f[h (6.17) and Tlb (6.19) only take into account the 
effect of transversal dispersion. The effect of longitudinal is accounted for by the terms 
u%b' 2̂,1. anc* ïy, ( see 6.4). Unfortunately, we have not succeeded in solving these terms 
from the boundary value problem (4.2), (4.3) and (4.5), where the backward Kolmogorov 
operator is given by (6.11). In this section we describe an alternative method to account 
for longitudinal dispersion in the boundary layer. 

Longitudinal dispersion will mainly influence the shape of a contaminant plume: 
the plume will be stretched in time. The effect on the centre of mass of the plume will be 
much smaller. We therefore expect that in many cases the approximations for the 
probability and mean time of entering the well that do not take into account longitudinal 
dispersion will be quite good. This may also be concluded from simulation results 
presented in Van Herwaarden (1994) and Van Kooten (1994). However, longitudinal 
dispersion will have an important effect on the variance of the arrival time. In the 
remainder of this section we will mainly focus on the derivation of a boundary layer 
approximation for the variance of the arrival time which takes into account both the effect 
of longitudinal and transversal dispersion. 

Note that the terms w1(, (6.13), ïfl (6.17) and 7 ^ (6.19) have the same structure. In order 

-TO tVaT 

to clarify this structure, we rewrite Tlb by substituting t) = v 
9(P) 

î - ^ f n̂g(p,v) e xp{-("-W(P)} M . (6.20) 

The function 

j(£L e x p { - f r -W(p ) } (6.21) 

may be interpreted as the probability density function of a stochastic variable H, which 
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has a N(v, ajicfip)) distribution. Due to transversal dispersion a particle that is released at 
distance v from a separating streamline may jump to streamlines at distance 0 from the 
separating streamline (see fig. 8). The most likely path of a particle is the streamline at 
which the particle is released. If the p-coordinate of a starting point increases, the 
probability of jumping to streamlines further away from the streamline on which the 
starting point lies, increases too. This phenomenon is understood from the fact that if p 
increases q(p) (6.14) decreases so that the variance a/g^p) increases. So, if p increases 
the probability distribution becomes wider. The probability that a particle enters the well 
equals the probability that a particle follows a streamline at distance f)<0 from the 
separating streamline, i.e. a streamline inside the catchment area (see fig. 8). The boundary 
layer approximation for the first moment of the arrival at the well (6.20) is the mean of 
the advective travelling time along all streamlines to which a particle may jump, as far as 
these streamlines end in the well. The approximation for the second moment of the arrival 
time (6.19) can be interpreted similarly. 

Based on this interpretation we may improve the approximations for the first and second 

moment of the arrival time T\b (6.17) and 7 ^ (6-19) with terms that account for the 
effect of longitudinal dispersion. In section 6.2 such terms have already been derived for 
the case in which transversal dispersion may be neglected. If aT = 0 a "one-dimensional" 
dispersion process along a streamline of the advective flow remains. Comparison of (6.6) 
with (6.17) and (6.19) shows that the boundary layer approximations for the first and 
second moment of the arrival time are obtained by taking means of the first terms of the 
expansions that belong to these "one-dimensional" processes along the streamlines that end 
in the well. The idea is to do the same for the second terms, which account for the 

longitudinal dispersion. For that purpose the expansions T^tch (6.6a) and 7^,, (6.6b) have 
to be expressed in (p,v)-coordinates. Near a separating streamline, i.e. for - l « u < 0 , we 
have 

and 7 2 * - T g , (6.22) 7<i) „ TO) 
•* catch J sep 

separating streamline separating streamline 

Figure 8. Examples of probability density functions for jumping to neighbouring streamlines for 
particles that were released inside (u<0, fig. a) and outside (i»0, fig. b) the catchment 
area. The probability of entering the well equals the area below the graph as far as it 
lies inside the catchment area. 
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where 

n>,"u) = r„ (p,v) + aL. /-(PAO = T^v) + aLJ*LL 

I%P.v) = Tig(p,v) + Z a . C ^ ^ - W M , " , T w 

(6.23) 

^ ( P , v ) = 7lg(p,-u) + 2 a l ( ^ _ ^ r T .n8(p,v) + IJfrv)) , 

with 

f /,(P>°) //(0,0) 
ƒ. B(p,-u) = f( w ' - 1£1J_! )dp + (6.24) 

i (v*(p,0)+cVp(p,0)y<2 (vp
4(0)0)p4+c2vp

2(0,0))1'2 

9f( m - w) ye + ', um 
J (r<(0,O)+cV2(0,O))1'2 (re

4(O,O)0<+c
2r9

2(O,O))1'2 i ^ O ^ c ^ o f 

where c = uv(p,0) and where 0, r(0,O) and 0^ are again as indicated in figure 7, Tjj is the 
integral of /i/|v|2 along a characteristic of the operator L^^^ (Appendix B). 

In analogy to (6.17) and (6.19) we expect that the boundary layer approximations 

for T and 7^ are given by: 

.for J «P) 

Ub L\<m\ xb 

(6.25) 

= 7™ + 2a f _ ^ _ f '> + ! f I (p v - 'fir^e-i'dt) 

(6.26) 

I<KP) 

It can be shown that outside the boundary layer these approximations match the outer 
expansions, i.e. 

3 L - 0 and 7*1,-0 fort,-«, 
(6.27) 

bound sep bound sep 7 Î L - 7 Ï Ï and 7™, ~ ? £ for n « -1 . 

Thus, boundary layer approximations for the (conditional) first and second moment of the 
arrival time which take into account the effect of both transversal and longitudinal 
dispersion are 
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7<I) _ bound j j<7) 
j(2) 

bound (6.28) 

As approximation for the variance of the arrival time we find 

o2 = T™ - (7™ \2 

wbound * bound V bound./ 

U> 

M 

^T 5 ' 1 ^ 
1,» 2a, f A/aT 

(6.29) 

From (6.23) and (6.27) it follows that outside the boundary layer 
2 _ 2 

"bound ""' "sep» 

where 

Osep = 2aL 1 ^ . 

(6.30a) 

(6.30b) 

Finally, we emphasize that the boundary layer approximations ulb (6.13), Tboind.̂ boLd 
(6.28) and o 2 , , ^ (6.29) are build up from functions that only use the velocity and 
dispersivities along a separating streamline. 

6.4 Composite approximations 

In section 6.2 we have derived approximations for the mean and variance of the arrival 
time, which are only valid far inside the catchment area. The approximations we have 
derived in section 6.3 are only valid inside a boundary layer along a separating streamline. 
As a final step we construct approximations which are valid in the entire region in which 
contaminant transport is studied. 

Because u1Jk = 1 for T|<<—1 (i.e. v«-VaT) and « u = 0 for r i » l (i.e. v»VaT), ulb may 
be used as approximation for the probability at which a particle enters the well which is 
valid in the entire region, both inside and outside the boundary layer. 

Composite approximation for the mean and variance of the arrival time can be 
constructed as follows 

and 

7<i) _ . 
•* comp ~~ 

2 
'-'comp ~~ i 

7<i) 
•"catch 

7<i) 
1 bound 

' 2 
"catch 

"bound 

7<i) . Tm 
1 sep ~"~ -* bound 

2 2 
"sep + "bound 

if 

if 

if 

if 

v<0 

V3& 

v<0 

•UÄO 

(6.31) 

(6.32) 

Inside the catchment area two situations may occur: outside the boundary layer the 'sep'-
terms cancel the 'bound'-terms (see 6.27)), whereas inside the boundary layer the 'sep'-
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terms cancel the 'catch'-terms (see (6.22)). Because particles released far outside the 
catchment area will not reach the well, the boundary layer approximations may be used in 
the entire region outside the catchment area. The composite approximations are continuous 
in v. In the same way a composite approximation for the second moment of the arrival 
time may constructed. 

7. BREAKTHROUGH OF A CONSERVATIVE CONTAMINANT AT A WELL 

In section 6 we have derived approximations for the arrival rate and for the mean and 
variance of the arrival time of particles contaminant at a well. In applications one is not 
primarily interested in the mean and variance of the arrival time. Often one is mainly 
interested in breakthrough curves, which describe the arrival time distribution of the 
contaminant at a well. 

7.1 Breakthrough of particles released far inside the catchment area 

Far inside the catchment area transversal dispersion is negligible, so that a "one-dimen­
sional" dispersion process along a streamline of the advective flow remains. In section 5 
we have shown that the arrival time distribution of particles at the endpoint of a streamline 
in a uniform flow can be parameterized by the mean and variance of the arrival time. 
Although the flow velocity along a streamline ending in a well is not uniform, we use this 
parameterisation to estimate the breakthrough of a contaminant at a well; we expect that 
the distribution of the arrival time is still approximately of form (5.6), because the spatial 
variability of the velocity has already been taken into account in the approximations for 

the mean and variance of the arrival time T ^ (6.6a) and o^d, (6.9). So, for particles 
released at a point x far inside the catchment area the probability density function for 
entering the well at time x is approximated by 

*«-*(**) = ^chC^oLchC*);*), (7-1) 

where g is defined by (5.6). Consequently, the cumulative breakthrough curve, which 
gives the fraction of a contaminant which has entered the well before time x, is approxi­
mated by 

kfchtex)«. (7.2) 

7.2 Breakthrough of particles released near a separating streamline 

In section 6 we have shown that near a separating streamline the transfer of particles to 
neighbouring streamlines has an important effect on the probability of arrival and the 
moments of the arrival time at the well. In a boundary layer near a separating streamline 
the dispersion process is essentially 2-dimensional. In section 6.3 boundary layer approxi­
mations for the first and second moments of the travel time were obtained by taking the 
means of the first and second moments of the travel time along the streamlines to which a 
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particle may be transferred by transversal dispersion, as far as these streamlines end in the 
well (see fig. 8). Here we use this idea in a similar way: for particles released near a 
separating streamline the distribution of the arrival time at the well is the mean of the 
arrival time distributions that correspond with the "one-dimensional" processes along the 
streamlines to which a particle may be transferred by transversal dispersion, as far as these 
streamlines end in the well, i.e. 

8*JPW) = - 7 L f gV%(P,v - !tl-), < (p ,v - !^L.);x)e-^dt. (7.3) 
fadp> «<P> * P ) 

The fraction of the contaminant that will eventually reach the well equals the integral of 
Sbound fr°m T=0 t 0 T=0°- By changing the order of integration it can easily be seen that 

oo oo 

ƒ&,»£>.«.•?)<« = -jL j *'** , (7.4) 

which is consistent with (6.13). One can also easily check that the conditional mean and 

variance of the stochastic variable x with p.d.f. gt,^ (7.3), are equal to 7 ^ , , (6.28) and 
o 2 ^ (6.29). 

73 Composite approximation for the breakthrough curves 

The p.d.f. &„„;!, (7.1) is only valid far inside the catchment area, whereas the p.d.f. gbound 

(7.3) is only valid in a boundary layer near a separating streamline. To connect this two 
types of approximations to each other we construct a composite p.d.f. which is valid 
everywhere. This composite p.d.f. gœmp has to be constructed in such a way that the 

(conditional) mean and variance of the arrival time x are equal to 7^,p (6.32) and o^^ 
(6.33), respectively, i.e. 

oo oo 

^«w*/Bi> = *£, and J(*-02Wft/«i> = c j 2 - p - (7-5b) 
o o 

Using (6.16), (6.23) and (6.25) we obtain that for vaO, 7*^ (6.32) may be expressed as 

(7.6) 

22 , = — L = f (7^(*) - l%p,v) + T%p,v - !rJL))e-^dt 
"»fad* 9(P) 

oo 

"»fad* VP(0'0) TW*> 

(Remark that for T](=x)/v'ar)«-l the log-term in (7.6) may be neglected, which confirms 

that 7 ^ ~ Î^L if r|<<—1). In analogy to expression (7.6) we define 
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00 

Sœinp = - T L T f g^,o2,x)e-i,2dt , 
V 2 3 1 tw(p) 

where 

(7.7a) 

\i = I 

T*Ux) + _1—-ln(l l - ' ) for v<0 , 
vo(0,0) Tiq(p) 

for DÄO 

(7.7b) 

w a 
J (p,v - -!—!_) 

o' 

wa, oLchW - o2 (p,v) + o^(p,TJ - J L L ) for v<0 
<?(P) 

o*p(P''u 

(7.7c) 

A/a. 
) for uaO 

4(P) 

One can easily check that g^^ satisfies the conditions given by (7.5) and that 

&»mp - Sb,»,«, for v = 0 ( / ö7 ) , 

«comp - Scad, for W"T « "I . 

i.e. g^^ connects the arrival time distributions g^^ and gbound to each other. So, g^^ may 
be used as approximation for the distribution of the arrival time at the well for a 
contaminant that was spilled in any point in the aquifer, both near and far away from a 
separating streamline. 

8. BREAKTHROUGH OF A NON-CONSERVATIVE CONTAMINANT 

8.1 Equilibrium adsorption 

The arrival of a contaminant subject to linear equilibrium adsorption can be predicted by 
replacing the velocity v by the retarded velocity v"=v/R (section 2.1). Expression (2.2) 
implies that the dispersion tensor automatically transforms into its retarded form. The 
retardation only affects the arrival time at the well an not the ultimate arrival fraction (see 
(6.13) and (6.14)). The arrival time distribution is given by g^^ (7.7), where LI and o2 

have to be replaced by their retarded values nR=\i/R and (oR)2=(o/R)2. 
Non-linear equilibrium phenonema can not be taken into account. If the concentra­

tion c occurs non-linearly in the ADE the formal adjoint of the operator Mk (3.1) does not 
exist, so that the boundary value problems for (4.2), (4.4) and (4.5) for the rate and time 
at which particle exit a region can not be derived. 

8.2 First order decay 

From (3.2) it follows that the probability density function for the arrival time x for a 
particle of a linearly decaying contaminant that has been released in the point x equals 
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In (8.1) gconpfcx) is the p.d.f. for arrival at the well at time x and e'*" is the probability 
that a particle has not been "killed" before time x. The breakthrough curve of the decaying 
contaminant is described by 

T 

0 

The fraction u(x) of the particles contaminant that will reach the well can be computed 
from (8.2) by letting x -* °°. In applications one may also be interested in the conditional 
mean of the arrival time which is given by 

I<\x) = ƒ xjç tex)e"Xxdx ScompK ' (8.3) 
w(x) 

The fraction u and the mean arrival time 7*1' may also be obtained from the boundary 
value problems (4.2) and (4.4) (with X. * 0). These boundary value problems again can be 
solved with the asymptotic method described in section 6. Here, we do not work out this 
method in detail, because the asymptotic approximations for u and 7^ become rather 
complicated. Moreover, there is no need to know u and 7*1J as accurately as possible, 
because the most important information concerning the arrival at the well is already 
contained in the arrival time distribution (8.1). Therefore, here we only give approxima­
tions for u and 7*1' which do not take into account longitudinal dispersion. 

Due to decay not all particles will reach the well, not even if they are released far inside 
the catchment area. When the effects of longitudinal and transversal dispersion are 
neglected, approximations for the probability and mean time at which a particle reaches 
the well are given by 

ulc(x) = e-™ , (8.4) 

Z I?« = TJÙ • (8-5) 

Thus ulc equals the probability that a particle has not been killed at time T^. 
Along a separating streamline we again have a boundary layer in which transversal 

dispersion plays an important role. In van Kooten (1994) we have shown that boundary 
layer approximations for u and 7*1' are 

tl— 
ujp,v) = _ L f « (p,-ü - Sh-)e-^dt , (8.6) 

raW) = ^S., (8.7) 
with 
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WP.«) = e -"•„„(p.«) 

• v^T J p )
 8 9(P) g 9(P) 

(8.8) 

(8.9) 

where 7 ^ again is given by (6.15). Note that for X = 0, K U (8.6) and Tlb (8.7) are 
identical to the expressions (6.13) and (6.17). In fact (6.13) and (6.17) are special cases of 
(8.6) and (8.7). The boundary layer approximation ulb (8.6) can be interpreted as the mean 
of the probability of reaching the well along all streamlines to which a particle may be 

•fW transferred by transversal dispersion, as far as these streamlines end in the well. Tlb may 
be interpreted similarly. 

Composite approximations for the rate and mean time of arrival which are valid 
both inside and outside the boundary layer are 

comp 

M 1 , ~ Mdn„ + M1fc f 0 1 V < 0 
l,c sing l,o 

u.. for vaO , 
(8.10) 

Tm 
1 l,comp 

T.-T. + Tfl for v<0 
adv sine w 

for v*0 
(8.11) 

Note that for X = 0, uœmp equals ulk for both v<0 and UÄO (see also section 6.4) and 

î!comp IS equal to the 0(1) terms in r £ ^ (6.31). From simulation results in van Kooten 

(1994) it may be concluded that in many cases the approximations u^^ and 7^„mp will be 
quite satisfactory. 

9. EXAMPLE: CONTAMINATION OF A WELL IN A UNIFORM 
BACKGROUND FLOW 

As an example we show how the asymptotic approximations for the arrival rate and for 
the mean and variance of the arrival time as well as for the breakthrough curves may be 
applied to a well in a uniform background flow. We assume that the background flow is 
parallel to the jc-axis and that the well is situated in (0,0). The complex potential for the 
flow field is 

co(z) = z - ln(z), z = x + iy. 

The corresponding velocity field is given by 

(9.1) 

^(x,y) = l -
x2 + y2 . v

2(
x>y) = 

x2 + y2 
(9.2) 
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Stream pattern for a well in a uniform background flow 

Along a streamline the streamfunction i|) =Im(oo) is constant, so that the streamlines are 
described by 

x = y/tan(y-rp) (9.3) 

For Tp = 0 (9.3) describes the separating streamlines which end in the stagnation point 
(1,0). The advective travelling time to the well from a point inside the catchment area is 

TJx,y) = ln(_^L) - lnf_2L - x) - x , 
smy tany 

(9.4) 

see van der Hoek (1992). From (6.6a) we obtain as approximation for the mean arrival 
time of a conservative contaminant released far inside the catchment area 

r(l) r&fcy) = TJx,y) + aL(x,y). 
x2 + y2 

(9.5) 
(x - l)2 + y2 

The variance of the arrival time a2^^ can be computed numerically from (6.7) and (6.8). 
In order to predict the arrival of a contaminant that is released near a separating 

streamline we first have to carry out some preliminary coordinate transformations. The 
(p,v)-coordinates of a point (x,y) near a separating streamline are given by 

p = (w(y)dy , v = \/(x - xf + (y - v f 

with 

My) = l + C l 
' tan v sin2)/ "Vi' sin'y I 

(9.6a) 

(9.6b) 

and where (x", ƒ ) is a point on the separating streamline so that the vector (JC-JC8, y-y*)T is 
perpendicular to the separating streamline (figure 9). 
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The flow velocity v(p,0) along the separating streamline is 

v(p,0) = -sin(y*) 1 + ( JL - If (9.7) 
\ tanys y* 

Furthermore, 8 = 1 - x is a coordinate along the separating streamline leading from the 
stagnation point to the well. The velocity r(8,0) along this streamline is given by 

r(9,0) = J L _ . (9.9) 

From (6.16) we obtain that near a separating streamline the advective travelling time to 
the well may be expressed as 

^„(P.«) = -H-v) - l l n ( l + ( J _ - ± ) 2 ) - x°. (9.10) 
8 2 t a n / y* 

With the above information one can compute the boundary layer and composite approxi­
mations for the arrival of a contaminant at the well which we have derived in sections 6, 7 
and 8. 

We have tested the accuracy of the asymptotic approximations by comparing them with 
results of random walk simulation. The stochastic motion of particles is described by the 
stochastic differential equation (3.4). In discretised form in two dimensions it reads: 

ta = (v, + ±Dn + J-D^t + ^2aL\v\^LZL^T + faT\v\ J^JKF , 
°x ty \v\ \v\ (9.11) 

Ay = (V2 + lf2i + lf^ + fi^fa^ • &M^fJ*~. 
where ZL and Z r are random deviates from a uniform distribution with mean 0 and 
variance 1 (see also Kinzelbach, 1988). On the separating streamline we took the point D 
with coordinates (p,i>) = (5.445, 0), corresponding with (x,y) = (-3.347, 2.50). From 
several points on a line through D perpendicular to the separating streamline we carried 
out random walk simulations. From the points inside the catchment area (vsO) 15.000 
particles were released. From the points outside the catchment area (TJ>0) 30.000 particles 
were released. In these simulations the dispersivities were taken constant: aL=0.0l and 
flj=0.001. In fig. 10 arrival rates and means and deviations of arrival times obtained from 
simulations with a conservative contaminant are compared with the asymptotic approxima­
tions ulb (6.13), T^p (6.31) and a^^ (6.32), respectively. Some arrival time distributions 
and breakthrough curves as obtained from the simulations and as computed from (7.7) are 
displayed in fig. 11. From the figures we may conclude that the approximations are 
surprisingly accurate for this example. The figures confirm the boundary layer behaviour 
of the contaminant transport: near a separating streamline the small transversal dispersivity 
has a large impact on the arrival of a contaminant at the well, whereas far away from a 
separating streamline its effect may be neglected. Because particles released at the 
separating streamline pass the stagnation point very closely, in fig. I l ea kind of "tailing" 
can be observed. 
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To check the accuracy of the asymptotic approximations for the arrival of a linearly 
decaying contaminant, we also carried out random walk simulations in which particles 
were "killed" at exponentially distributed times (see section 3). The decay coefficient X 
was taken 0.1. In figure 12 we compare a simulated arrival time distribution and break­
through curve with the asymptotic approximations (8.1) and (8.2). In fig. 12b the 
asymptotic approximation for the arrival rate (8.4) is indicated, too. Again we observe a 
good resemblance between simulation results and asymptotic approximations. 

PROBABILITY OF ENTERING THE WELL MEAN ARRIVAL TIME AT THE WELL 

43 Ä 5 3 Ö ä 
v (distance from separating streamline) 

2 33 4 53 Ö Ö.5 
v (distance from separating streamline) 

DEVIATION OF THE ARRIVAL TIME 

(c) 
~^3 4 53 Ö 0.5 
v (distance from separating streamline) 

Figure 10 Simulation results (*) for particles of a conservative contaminant released in points 
(p,v) with p = 5.445 and v between -2.0 and 0.5. In fig. 10a the fraction of the 
particles that entered the well is compared with the asymptotic approximation (6.13). 
In fig. 10b the mean arrival time of the particles is compared with the asymptotic 
approximation (6.31). In fig. 10c deviation, i.e. the square root of the variance, of the 
arrival time is compared with the asymptotic approximation (6.32). 
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Figure 11 Arrival t ime distributions and breakthrough curves for particles o f a conservative 

contaminant released in the points (p,u) with p=5.445 and u = - 2 . 0 (fig. a,b), v = -0 .5 

(fig. c,d) and v=0 (fig. e,f). The solid lines in fig. a, c and e denote the arrival time 

distributions obtained from random walk simulations. The dotted lines denote the 

asymptotic approximations for the arrival time distributions computed from (7.7) . The 

breakthrough curves are obtained by integration of the corresponding arrival time 

distributions. 
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Figure 12 Arrival time distribution (fig. a) and breakthrough curve (fig. b) for a linearly 
decaying contaminant (X=0.1) released in the point D (p,v) = (5.554,0) on the 
separating streamline. The solid lines denote random walk results. The dotted lines 
denote the asymptotic approximations (8.1) (fig. a) and (8.2) (fig. b). The dashed line 
in fig. b denotes the approximation for the arrival rate (8.11). 

10. IMPLEMENTATION OF THE METHOD 

The method described in this paper has been implemented in the software package 
ECO WELL (Buse & van Kooten, 1995). ECO WELL must be used in connection with a 
finite difference or finite element code for the simulation of groundwater flow. With such 
code a numerical hydraulic head field can be generated for an aquifer in which one or 
more wells are operating. Together with the corresponding discretization, the conductivity 
and the porosity, this head field serves as input for our computer program. Using Darcy's 
law the program computes a velocity field. 

First, the program searches for the stagnation points in the flow. The separating 
streamlines are determined by backward tracking with a Runga-Kutta method. Next, from 
any point in the domain the arrival of a contaminant at a certain well can be predicted. 

The approximations 7 ^ (6.6a) and cr̂ tch (6.8) that only take into account longitudinal 
dispersion are computed with particle tracking. To incorporate the effect of transversal 
dispersion the program determines the (p,u)-coordinates of a point with respect to each 
relevant separating streamline. The boundary layer approximations for the arrival rate and 
for the mean and variance of the arrival time only depend on the velocity and the 

dispersivities along a separating streamline. The expressions for ulb (6.13), T^mi (6.28) 

and Ground (6.29) can be evaluated with numerical integration. The arrival time distribution 
can be determined accordingly. 
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CONCLUDING REMARKS 

To control groundwater quality in pumping wells it is not sufficient to model contaminant 
transport by advection only. Even when advection is the dominating transport mechanism, 
longitudinal and transversal dispersion may have an important effect on the arrival of a 
contaminant at a well. In this study we present a method to predict the advective-
dispersive transport of a contaminant to a well in a confined aquifer. We allow the 
dispersion to be a non-linear function of the velocity. Using perturbation techniques we 
have constructed analytical expressions for the fraction of a contaminant that enters the 
well, for the mean and variance of the arrival time and for the breakthrough curves. Near 
the boundary of the catchment area special attention should be paid to transversal 
dispersion, even when it is very small. The accuracy of the asymptotic approximations 
increases when the ratio between advection and dispersion increases. As an example we 
considered the special case of a well in a uniform background flow. The approximations 
were shown to be in good agreement with the results of random walk simulations. 
The asymptotic method has the following features and advantages: 

The method is nearly as accurate as random walk simulation, whereas the costs are 
much lower: the time needed to compute the asymptotic approximations is of the 
same order as the time needed to carry out a few random walks. In the example of 
a well in a uniform background flow it took several hours CPU-time to carry out 
the random walk simulations, whereas the asymptotic approximations could be 
computed in a few seconds. 
The advantage of the asymptotic method above solving the advection-dispersion 
equation numerically is considerable. The latter method is very time and memory 
consuming and is subject to numerical dispersion, especially at high Peclet 
numbers, i.e. if the ratio between advection and dispersion is large. 
The method can be applied to any given flow pattern. Once an analytical or 
numerical flow field is given, the separating streamlines can be determined by 
particle tracking or from the stream function. Next, the transformation to local 
coordinates p and v (fig. 7) can be carried out, so that the boundary layer approxi­
mations can computed. We note that the coordinate v may also so be taken along 
an equipotential line, so that it is perpendicular to both a separating streamline and 
the neighbouring streamlines. 
The effects of linear equilibrium adsorption and first order decay can be incorpor­
ated. In the meantime we have also extended the results for a kinetically adsorbing 
contaminant (van Kooten, 1995). 
The method can also be used to predict the arrival at a well of a pollution that is 
distributed over a certain area Q. Let c(x) be the initial concentration of the 
pollution, then the breakthrough at the well is described by 

where g c^* ) (7.7) the arrival time distribution of a contaminant released in the 
point x. So, the method may be a useful tool to design aquifer cleanup strategies. 

The approximations T^^x) (6.6a) and c^tch(x) (6.8) that only take into account longitudi­
nal dispersion, are completely determined by the velocity and dispersivity along the 
streamline through the injection point x. Therefore, these approximations and the corre­
sponding approximation for the arrival time distribution g^^x) (7.1) may also be aplied to 
three dimensionsal flow patterns. 
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Appendix A: The backward Kolmogorov equation in (x^j) and (p/u)-coordinates 

Using that the flow is divergence and rotational free we obtain that in two dimenstions the 
backward Kolmogorov equation (4.1) can be written as: 

_-__, = v ._L + v__L + a , (v . J_ + v -_L .x4r Iv ._L + v2_L] ) 
•** ' dx1

 2 dx2
 LK 1 dxt

 2 dx2 | v | l 1 a_! 2 dx2' ' 

a ^ - v ^ ) ( ^ [ v ^ " v ' ^ ] ) - ( A l ) 

"2 

Figure 13 Orhogonal projection of x at a separating streamline. 

Let ^-(x,8,^8) be the orthogonal projection of x=(xlrx2) a' a separating streamline. The 
velocity vector in Xs we denote by v,_(v1",v2')

T (fig. 13). The derivatives of the coordinates 
p and v with respect to x{ and x2 are 

dp vi ôp = _
 V2 

dx, \vs\ ' to, |vs| 
'. ' 2 ' J (A2) 

dv _ v2 dv v i 

1x7 \v*\ ' Hx2 " pT ' 
Furthermore, the velocities v(p,v) and w(p,v) can be expressed as 

v(p,v) = <_____> = _^_L_____£ , 
| v | | v | (A3) 

w(P,v) = <__^___ = ^ _ _ _ _ _ _ : , 

http://v-_L.x4rIv._L
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where (%•) denotes an inner-produkt of two vectors. Using (A2) and (A3) we obtain that 
the operator (Al) in (p.v)-coordinates reads 

Lcatch = v ( P > ^ ) - ^ + v v(P^)^- + a
i(

v(P.'")4-+M<P.'")4-X-rn-[v(P.'")-^-+vKP.'")4^]) dp dv dp dv |v| dp dv 

+ a r(w(p,v)_—v(p,'u)__X_I r[H<p )i))_l-v(p )v)^.]). (A4) 
dp dv |v| dp dv 

To stretch the boundary layer near a separating streamline we have introduced the 
coordinate T I ^ /VC^ (6.10). Because 

d i a . . . KfwWoi) .. Kp.nvar) 
= _, and hm . = lim r\ . = x]w(p,0) , (A5) 

dv voij. dr\ 0,-0 va r «r-o Tivcij. 

we arrive for a r -> 0 at expression (6.11). 

Appendix B: Derivation of an expression for / in (p,u)-coordinates near a separating 
streamline 

The function I (6.7) is the integral of fj\v\2 along a streamline of the advective flow. In 
mathematical terms I is an integral along a characteristic of the operator L^,^ (6.5). To 
obtain an expression for I in (p,v)-coordinates near a separating streamline, we decompose 
I into three parts (see fig. 14 and fig. 7): Ix is the contribution to I close along the 
separating streamline, I2 is the contribution in an (ô,e)-neighbourhood of the stagnation 
point, and /3 is the contribution to I close along the streamline leading away from the 
stagnation point. 

(P,v) 

ô C*A 
1 

Vï\ 

l\ 

W 

S 
J 

8 

1 
ew 

Figure 14 Decomposition of the integral I into the parts ƒ„ I2 and I3 for small v, ô and e. 

The characteristics of the operator Z/bound (6.11) are described by r|v(p,0) = constant, or, in 
(p,\))-coordinates, uv(p,0) = cl (constant). The product w(p,0) may be interpreted as the 
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increment of the streamfunction, which describes the flux between the separating stream­
line and an adjacent streamline. The integral ƒ, along the characteristic i)v(p,0) = q (*> 
v=c1/v(p)0) ) may be expressed as 

__ >. / t (p,o)( i+(^P)2rH- = ', fLcm H-
4 v ^ + x A / f o O ) K (v4(p,0) + Cl

2vp
2(p,0))1/2 

Near a stagnation point v(p,0) - vp(0,0)p, so that near the stagnation point the streamline 
is described by vp = c2, where c2 = cx/v (0,0). It follows that I2 may be expressed as 

* ",'(0.°)? * Ä Ä ° . ° ) -A (v>.0)P* * cfv.'lO.O))" 

Since the flow is rotational free the separating streamlines leading towards and 
leading away from the stagnation point are perpendicular. Streamlines close to the 
streamline leading away from the stagnation point are described by \i r(8,0) = c3. Because 
the flow is divergence free vp(0,0) = re(0,0), so that for c3 = c, such a streamline connects 
with the streamline originating in (p,u). For the integral 73, we find 

9f /,(6.0)(1 + (aM/ô6)2)1/2 \ /.(8,0) 
/3 = f JJLUI L!__L!_de = f JlK ' de (B3) 

i r\Q,0) + nVe
2(e,0) I (r\QjB) + clrl(Q,0))m 

So, for small v the function I can be approximated by 

4„g = / i + / 2 + /3 (B4) 

Remark that for u = 0 the term 72 has a singularity. In order to remove Ô and e we rewrite 
Iäng as follows: 

ƒ. = f ( JJL1L1 - JLV ' )dp + (B5) 
ang 4 (v<(p,0) + c2v2(p,0))1/2 (Vp4(0,0)p4 + c2v2(0,0))1/2 

f 452 « +
 ef( «*2 - fJ™ )« 

A(vp
4(0,0)p4+c1

2v2(0,0))1/2 { (r4(e,O)+c2re
2(0,O))1/2 (re

4(0,0)e4+c2re
2(0,0))1/2 

Letting E, Ô -» 0 we arrive at expression (6.24). 
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CHAPTER 3 

A METHOD TO SOLVE THE ADVECTION-DISPERSION 
EQUATION WITH KINETIC ADSORPTION 

(by J J A. van Kooten, in revised form accepted for publication in Advances in Water 
Resources) 

Abstract: This study deals with a method to solve the transport equations for a 
kinetically adsorbing solute in a porous medium with spatially varying velocity 
field and dispersion coefficients. Making use of the stochastic nature of a first 
order kinetic process, we show that the advection-dispersion equation and the 
adsorption isotherm can be decoupled. Once the solution for a non-adsorbing solute 
is known, the method provides an exact solution for the kinetically adsorbing 
solute. The method is worked out in three examples. In particular we demonstrate 
how the method can be applied simultaneously with a numerical transport code: the 
advective-dispersive transport is computed numerically, whereas kinetic effects are 
incorporated analytically. The proposed approach may be useful in field scale 
applications with complex flow patterns. 

1. INTRODUCTION 

Solute transport in groundwater may be highly affected by interactions between the solute 
and the solid. Therefore transport models should contain equilibrium or non-equilibrium 
isotherms that account for these interactions. The most simple model is obtained by 
applying the linear equilibrium isotherm. Linear equilibrium adsorption only retards the 
transport of a solute. The local equilibrium assumption (LEA) may be valid if the rate of 
mass change due to the adsorption process is much faster than that due to the flow process 
(Valocchi, 1985). If the LEA is not valid a kinetic model may give a better description of 
the solute transport. An equilibrium approach is often preferred above a kinetic approach; 
the retardation factor in the equilibrium model can be estimated more easily from 
experimental data than the kinetic reaction rates. Moreover, a kinetic model requires more 
complicated mathematics than the equilibrium model. One of the aims of this study is to 
show that the mathematics can be understood from the physics of the kinetic process. In 
this way the practical applicability of the kinetic model may be enlarged. 

The conventional advection-dispersion model for a solute subject to first order 
reversible kinetics is 

- £ + # = " T-(V^ + T -^-^ + *« ' ( l 3 ) 

dt dt dx. dx. ' dx. 
' • i 

Ü£ = k.C - k2S , (lb) 
dt l 2 

where x is the vector of space coordinates, C(x,t) (M/L3) is the concentration of the solute 
in the free phase, S(x,t) (MIL?) is the concentration in the adsorbed phase, v (LIT) is the 
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fluid velocity vector, D^ (L2IT) is the dispersion tensor, y(x) (M/L3T) is the rate of zero-
order production in the point x and k± (Tl) and fc2 C^1) a r e t n e forward and backward 
reaction rate, respectively. With respect to the indices we use the Einstein summation 
convention. 

Model (1) is mathematically equivalent with a dual porosity model, i.e. a model for 
transport in a medium in which two zones can be distinguished: a mobile zone in which 
flow and transport take place and an immobile zone (e.g. dead end pores) in which the 
water is nearly stagnant (Van Genuchten & Wierenga, 1976). 

In literature analytical solutions of (1) are available for various initial and boundary 
conditions. Lindstrom & Narasimham (1973) have presented a one-dimensional solution 
for a previously distributed contaminant. Solutions for migration through a semi-infinite 
column with different types of solute input at the inlet have been obtained by Ogata 
(1964), Cameron & Klute (1977), Van Genuchten & Wierenga (1976) and De Smedt & 
Wierenga (1979). Three-dimensional solutions for a point spill of pollution in an infinite 
domain have been derived by Carnahan & Remer (1984) and Goltz & Roberts (1987). 
Lassey (1988) has derived solutions for arbitrary solute input after t=0. Recently also 
solutions have been derived with zero-order production (y*0); Torido et al. (1993) have 
presented a wide class one-dimensional solutions assuming arbitrary input concentration, 
initial conditions and production functions. In all papers the velocity field was assumed to 
be uniform and one-dimensional. The dispersion coefficients were taken constant. At field 
scale these conditions will often not be satisfied. All solutions were obtained with the 
Laplace transform method. From mathematical point of view this method may be quite 
powerful. However, it does not always give insight in the relation between the structure of 
a solution and the underlying physical processes. Moreover, the Laplace method fails if 
model parameters are space dependent. 

The objective of this study is to develop a method to solve model (1) in a multi­
dimensional system with spatially varying v, D and y. The sorption rates k{ and kj are 
assumed to be constant. All coefficients are assumed to be time-independent. We interpret 
the adsorption kinetics as a stochastic process in which a particle is alternately free or 
sorbed (section 2). Keller & Giddings (1960) have presented four conditional distributions 
for the residence time in the free phase during a time interval t. We use these distributions 
to solve the set of partial differential equation (1). For arbitrary initial and boundary 
conditions we show that the solution of (1) is a convolution of solutions of the classical 
ADE (la) without adsorption term and a combination of these distributions (section 3). So, 
in fact we show that the advection-dispersion equation (la) and the reaction equation (lb) 
can be decoupled. Analytical solutions of the classical ADE have been derived for 
numerous initial and boundary conditions (e.g. Leij et al. 1990, 1991). Now, for all these 
problems we also have the solution for a kinetically adsorbing contaminant. Some 
examples are considered in section 4. Furthermore, we demonstrate how the method may 
be applied simultaneously with a numerical transport model. The transport equation is 
solved numerically, whereas the kinetic adsorption is incorporated analytically. 

2. RESIDENCE TIME DISTRIBUTIONS IN THE FREE PHASE 

The kinetic adsorption process described by equation (lb) can be considered as a 
stochastic process in which particles are alternately in the free and sorbed phase. Between 
transitions the residence times in the free (/) and sorbed (s) phase are exponentially 
distributed with mean 1/ifc, and 1/^ respectively. During a time interval t a particle may 
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make several transitions from the one state to the other. Assuming that at least one 
transition has taken place, Keller & Giddings (1960) have presented probability density 
functions for the time fraction / (Osx^l) t n a t a particle has spent in the free phase (see 
also Giddings & Eyring, 1955). These distributions depend on the initial and final state of 
a particle. For the purpose of this study we rewrite these distributions in terms of x (= x0> 
the residence time in the fluid phase during a time interval t: 

hff(x,t) = Ê ^ f ^ ï ? e<k>-k*-k' = ( ^ ) e - {*'-^ Ifljkfcif-x) ), (2) 

^(V) = k, Ê (^f"(
2
f"T)" e*-**-" = V*"**"* / „ ( ^ W ^ ) ). (3) 

«=o ( n ! ) 2 

VT'f> = kJ. h^t), (4) 
*i 

*.(x,0 = - ^ VT-0. (5) 
where the first and second subscript of the functions h denote the initial and final state of 
a particle, respectively. In (2) and (3) /0 and Ix denote modified Bessel functions. For the 
distributions hfi and h^ the condition that at least one transition has taken place is satisfied 
automatically. In the two other cases there is also the possibility that a particle remains in 
the initial state all the time; the probabilities that a particle spends time t in the free or 
sorbed phase are exp^f ) or exp(-^)» respectively. Some integration and differentiation 
properties of the distributions are given in the Appendix A. 

In general, only the expressions in terms of the modified Bessel functions are given 
(see e.g. Valocchi & Quinodoz, 1989). The reason that we have also given the summation 
representation is twofold: Firstly, it is closer to the underlying physical process: e.g. the 
counter n is the number of times a particle has returned to the initial state. Secondly, this 
representation automatically gives power expansions for the distributions which are valid 
for each t and x. This fact may be helpful when programming the distributions on the 
computer. 

3. DECOUPLING OF TRANSPORT AND REACTION EQUATION 

The residence time distributions (2)-(5) can be used to decouple the transport equation (la) 
and the reaction equation (lb). In this section we show that the solutions C and S can be 
expressed as an integral of a proper combination of the A-distributions and C, the 
concentration of a non-adsorbing contaminant satisfying 

¥L=MmC + Y(*) with MM = - J_(V) + ̂ - ( 0 ~ ) • (6) 
at ox. ax. ox. 

In the sequel we refer to Mm as the advection-dispersion operator. 
Let Q (Q C Ä", N=\,2 or 3) be the region in which contaminant transport is 

studied. The boundary dQ may consist of two disjunct parts. At the part 3QD the concen­
tration is prescribed. At the part dQN the mass flux is prescribed. In mathematical terms 
dQD is a Dirichlet boundary and dQN is a Neumann boundary. 

A method to solve the kinetic model (1) for arbitrary initial and boundary condi­
tions is developed in three steps. First we consider the case of non-zero initial conditions 
and zero boundary conditions. Next, we consider the opposite case: zero initial conditions 
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and non-zero boundary conditions. Finally, the solution for arbitrary initial and boundary 
conditions is obtained by superposition of the two former cases. We also give a physical 
interpretation of the solutions. 

3.1 Transport of a contaminant distributed at or before t=0 

In this section we consider the transport of a contaminant which has been distributed at or 
before <=0. It is assumed that the distributions of both C and S at t=0 are known: 

CQcfi) = CJx) and S(x,0) = SJx) . (7) 
Furthermore, we assume that no contaminant is added to or extracted from the system so 
that Y=0 and the boundary conditions are 

' C(x,t) = 0 at dQD , 

n.-(v. - D..—)C = 0 at dQ„ , (8) 
' V ' •> ta/ N 

where /MS the outward normal vector on dQ. 

An expression for the solution of model (1) subject to these initial and boundary condi­
tions can be found with physical arguments. We first give this expression. Next, we 
explain how it is obtained. 

C(x,t) = C/x,i)e^ + J(C/x,T)A/t,0 + C£x,T)hJiT,t))<h, (9a) 
0 

t 

S(x,t) = SJx)e-* + j(C/x,r)hfi(x,t) • C£x,x)hJLT,t))dz, (9b) 
o 

where both C, and Cs are solution of ADE (6) (with y=0) subject to the initial conditions 

CfrV) = CJx) and Cs(x,0)=SJx) (10) 
and zero boundary conditions. 

The physical reasoning behind expression (9) is as follows. During the time that 
particles are in the free phase their transport is governed by the classical ADE (6). In the 
sorbed phase particles are immobile. The residence time in the free phase T is stochastic. 
With the help of the residence time distributions hp h^, h^ and h^ the expected advective-
dispersive displacement can be computed. The free phase transport of the contaminant 
with initial state 'f is described by Cp and the free phase transport of the contaminant 
with initial state 's' is described by Cs. To compute the concentration C in the free phase 
at time t the distributions with final state 'ƒ should be used and to compute the concentra­
tion S the distributions with final state V should be used. The term exp^f ) in (9a) 
represents the probability that particles have remained in the free phase continuously. The 
term exp f̂cjf) in (9b) represents the probability that a particle has not moved at all. 
The mathematical verification is given in Appendix B. 

It is often possible to simplify expression (9). For example, if all contaminant is injected 
instantaneously at t=0 (see section 4.1) then S=0, so that Cs=0. In many applications it is 
assumed the initial distributions C and S are in equilibrium, which implies that C=(kJk^)Cf 

so that only Cf has to be determined. A one dimensional example of the latter case is 
discussed in Lindstrom & Narasimham (1973). 
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3.2 Transport of continuously injected contaminant 

If a domain is uncontaminated at 1=0, the initial conditions are 
C(x,0) = 0 and S(x,0) = 0 . (11) 

We assume that from t=0 there is a constant input and output of contaminant. The 
input/output may take place at the boundary of the domain and inside the domain, e.g. at 
an injection or withdrawal well. Contaminant input/output at the boundary is described by 

' C(x,t) = Cb(x) at 3QD , 

ni<yP-D~) = F(x) at dQN . (12) 
ox. 

Production/withdrawal inside the domain is described by the term y in (1). The functions 
Cb, F and y may vary in space. 

One-dimensional examples of this case with y=0 are discussed in Ogata (1964), Cameron 
& Klute (1977), Van Genuchten & Wierenga (1976) and De Smedt & Wierenga (1979). 
We have rewritten their solutions in terms of the residence time distributions hp h^ h^ 
and ftK. For the solutions that are expressed in terms of the Goldstein /-function (Gold­
stein, 1953) we have applied relation A3 and A4 of Appendix A. All solutions turned out 
to have the same structure. Generalizing the result to multi-dimensional systems with 
spatially varying velocity fields and dispersion coefficients and y*0 we have found that the 
solution of (1) with zero initial conditions and boundary conditions (12) can be expressed 
as 

' k 
C(x,t) = C0(x,t)e-k'' + jC0(x,T){hjT,t) + -lhjx,t)}dx , (13a) 

0 2 

S(x,t) = JC0(X,X){/IA(T,0 + ^hjT,t)}dl , (13b) 
o 2 

where C0 is the concentration of a non-adsorbing contaminant satisfying ADE (6) with 
zero initial condition and boundary conditions given by (12). The mathematical verifica­
tion is sketched in Appendix B. 

Because contamination is constantly entering and leaving the porous medium the 
physical interpretation of expression (13) is less straightforward than that of (9). However, 
using the differentiation properties of Appendix A one may check that the time derivatives 
of (13) can be written as 

oC(x,t) _ dC0(x,t)e_kl ^ 'fdC0(x,T) 

dt dt 

dS(x,t) _ 'r dC0(x,x) 

\—^hJx,t)ch , (14a) 

St -J-^W>*- (14b) 
o 

The physical interpretation of (14) is straightforward. When particles are in the free phase 
the change in the concentration is described by equation (6). Because the residence time in 
the free phase is stochastic, this change should be weighted with the proper residence time 
distribution. Because particles enter or leave the medium in the free phase, only the 
distributions with initial state (f) are relevant. The term exp(-£;f) in (13a) and (14a) again 
represents the probability that particles have remained in the free phase continuously. 
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33 Arbitrary initial and boundary conditions 

The solution of model (1) (with y*0) subject to non-zero initial conditions 
C(xfi) = CJx) and S(x,0) = SMt(x) 

and non-zero boundary conditions 

C(x,t) = Cb(x) at dQn 

n ^ - D")C = F(x) at âQN , 
dxj 

is the superposition of (9) and (13). This superposition can be written as 

C(x,t) = C^O*"*'' + jiC^h/rj) + C2(x,T)-±hJx,t))<h, 
o 2 

i 

S(x,t) = SMt(x)e-* + |(C1(x,x)ÄA(T,0 + C2(x,x)hjr,t))dt, 

(15) 

(16) 

(17a) 

(17b) 

where Cx = Cf+Ca and C2 = Cs + (fc1/A2)C0, so that Cj and C2 are concentrations of a non-
adsorbing contaminant satisfying equation (6) with the initial and boundary conditions 
respectively given by 

A(*>0) = qjx) , 
CpJ) = Cb(x) at dQD 

»,-(y, - D^C, = F(x) at dQN 

ox. 

(18) 

C&O) = SJx) , 
C2(x,t) = (kfäCJLx) at 5QD , 

» ^ • ^ ^ » ( W n * ) at dQN . (19> 
OX. 

1 

A considerable simplification is achieved if it may be assumed that the initial concentra­
tion distributions are in equilibrium, i.e. 

Sinit = (WC i n i t , (20) 

which implies that Cl = (k1/k2)C2 so that only Cx has to be determined. 

3.4 Further generalisations 

If contaminant input only takes place during time 7^, i.e. for tsT^ the boundary conditions 
and/or y are not equal to 0 and for t>T they are 0, then the solution of model (1) is 

C/x,t) = C(x,t) and Sj(x,t) = S(x,t) for tsT^, 

CJx,t) = C(x,t) - C(x,t-TJ and S&t) = S(JC,0 - S(x,t-TJ for t>T^ (21) 

where C and 5 are given by (17). 
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Equation (17) at p. 68 should be 

c(x,t) = cw* + J ( c 1 ( * ' T )V T ' / ) + <^)tyt'WA ' <17a) 
0 

t 

S(x,t) = SJx)e-^ + jiCfrrfh^t) • C2(x,T)AM(x,0)dt , (17b) 
o 

where Cx and C2 satisfy equation (6) with Yi=Y(x) anQl
 Y2=(V*2)Y(;C)> respecti­

vely. The initial and boundary conditions are given by (18) and (19). 
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It is well known that for large kt and k2 a kinetic model approximately predicts the same 
transport as the linear equilibrium model 

dt dt dx. dx. H dx. 

k ' t22) 
5 = —C 

K 
where R=l+(kl/k2) is the retardation factor. On the other hand, it may occur that neither 
the kinetic nor the equilibrium model describe the transport of a solute satisfactorily 
(Cameron&Klute, 1977). A combined equilibrium and kinetic approach may be required: 

R*L + Ü£ = - JL(v.Q + _L(D.. i£) + y(x) , 
dt dt dX; « ' a*> • dX; R } 

dS 
= Ac,C - Ac.0 , 

dt 
where k^ (T1) and kA (F1) again denote a forward and backward sorption rate, respectively. 
After introduction of the retarded parameters v/W/Ä, £)/=D,/Ä, /=•///?, SP=S/R and 
ki

R=k3/R model (23) transforms into a model equivalent to (1), so that the method 
presented in this study also applies to the combined model. 

4 SOME EXAMPLES 

In section 3 we have shown that once the transport of a non-adsorbing solute is known, 
also the transport of a kinetically adsorbing solute can be determined. In this section the 
theory is worked out in some examples. In the first example we show how a solution of a 
kinetic model presented by Carnaham&Remer (1984) and Goltz&Roberts (1986) can be 
obtained as a special case of the method described in this study. In the second example 
the method is applied to predict the breakthrough of a contaminant at a well. We extend 
the results for the breakthrough of a non-adsorbing contaminant obtained in previous 
publications (Van Herwaarden, 1994, van Kooten 1994, 1995). In example 3 we demon­
strate how the method can be combined with a numerical transport model. 

In all examples we assume that the dispersion tensor is given by 

).. = aJvlo.. + (a, - a ' Ds = aT\V\\+(aL-aTy^, (24) 

where aL and aT denote the longitudinal and transversal dispersivities (Bear&Verruyt, 
1987). In example 2 we allow aL and aT to vary in space. 
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4.1 example 1: 3D transport of instantaneously injected solute 

In three dimensions the kinetic model for transport in an isotropic formation with uniform 
flow in the Xj-direction reads 

i£ + » = -Vl* + DJS. + DJS. + DJ£. , 
d< dt ^ V * * a*»' (25a) 

At t=0 an amount Q (M) of solute is injected in the origin (x1^2^3)=(0,0,0), so that the 
following initial conditions apply to (25a). 

C(x,0) = Qà(x) and S(x,0) = 0 . (25b) 

where b(x) denotes the Dirac delta function. As boundary condition we require that C 
vanishes at infinity. The concentration of a non-adsorbing solute, i.e. kl=k2=Q in (25), is 
given by 

Q , l , ( * r v i 0 2 *22 * ^ exp{ -— ( :—+ +— CAO = ^ e x p { - J . ( ^ _ l L + _ l - + _ 2 _ ) } (26) 

(see e.g. Carnaham & Remer, 1984). Now, from (9) we directly obtain the concentrations 
of the kinetically adsorbing solute in the free and sorbed phase: 

C{x,t) = C{x,t)e-k<' + (Cfic,T)hfiS) dt 

i 

S(x,t) = jCfic,x)h^ dx. 

(27) 

(Note that in this example Cs=0, because 5=0 at t=0). Solutions equivalent to (27) were 
presented by Carnaham & Remer (1984) and Goltz & Roberts (1986). However, they 
obtained the solutions after lengthy Laplace transforms. Here, the solutions simply follow 
with a more general theory which, moreover, is closer to the underlying physical process. 

In fig. 1 a comparison is made between the evolution of the concentration profiles 
Cf, C and S along the jq-axis (x2=x3=0). For small t the concentration profiles of C and S 
have a strong non-Gaussian shape. This can be explained from the fact that shortly after 
the injection the solute concentration close to the origin is high so that a large amount of 
solute will be adsorbed. The adsorbed amount is released slowly. Furthermore the figures 
clearly illustrate the enhanced longitudinal spreading and tailing due to kinetic adsorption. 
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NON-ADSORBING SOLUTE 

71 

(a) 

3.5 r 

3-

-C2.5-

7 2-
o 

| 1.5 

6 

Ô ! 

0.5 

0 

x, (L) 

KINETICALLY ADSORBING SOLUTE 

IJ 

ji 

. 1 
•A ** 

0 

'"-- \ 

10 
^ ^ 

20 

-=C(t = 

.-S(t-

30 

10,20,30,40) 

30,40) 

= = ^ ^ o " 

-

-

• 

50 
*i (L) 

Fig. 1 Evolution in time of the concentration profiles Cf (eq. 26), C and S (eq. 27) along the 
xraxis. (Q=100 (M), v,=l (MIL), Dn=0.25 (L2/T), D^D^O.05 (Lz/T), jfc,=*2=0.1 (r1)). 

4.2 Example 2: Contamination of a pumping well 

In previous publications we have studied the arrival of conservative or linearly decaying 
contaminants at a well in a confined aquifer (e.g. Van Herwaarden & Grasman, 1991, Van 
Herwaarden, 1994, Van Kooten, 1994, 1995). A typical flow pattern for groundwater 
discharge is shown in fig. 3. Van Herwaarden and Grasman have analyzed the effect of 
the transversal dispersion on the arrival rate. If a contaminant is subject to first order 
kinetics, then during intervals a particle is adsorbed and not displaced in the transversal 
direction. Thus, kinetic adsorption only affects the time at which particles pass a certain 
point and not the ultimate transversal spreading. Therefore, the approximation for the 
fraction of a contaminant that reaches the well presented by van Herwaarden (1994, 
eq.(4.5)), may also be used for a kinetically adsorbing contaminant. 
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In van Kooten (1995) we have derived approximations for the arrival time 
distribution at a well. E.g. for particles released in the point x far inside the catchment 
area, where the effect of the transversal dispersion is negligible, the arrival time distribu­
tion can be approximated by 

g\x,t) = - J g _ _ exp { - 0 * - ^ } , (28a) 

fa** 2oh 

where \i and o2 are asymptotic approximations for the mean and variance of the arrival 
time: 

a,(x) , rai(Q -
H(*) = T^(x) + -*-L and o\x) = 2 (J^L <K (28b) 

In (28b) T ^ is the advective travelling time to the well and £ is a coordinate along the 
streamline through x, see fig. 2. Note that for any flow pattern [i and a2 can easily be 
determined by particle tracking. For a detailed description of how to take into account 
transversal dispersion we refer to van Kooten (1995). 

Figure 2 The coordinate ; is taken along the streamline through the point x. 

With the residence time distributions of section 2 kinetic adsorption can be incorporated 
without making any further approximation. It is assumed that in an aquifer Q at ?=0 the 
concentrations of the contaminant in the free and sorbed phase are given by Cm(x) and 
SMt(x). The arrival time distributions of the corresponding conservative cases are 

iß = {CJix)g^)dx and gs(t) = \S.mit(x)g(x,t)dx, 

and, thus, the arrival time distribution for a kinetically adsorbing contaminant is 

(29) 

*(0 = Sft)e'K' * f (#T)*/ t ,0 + gs(x)hjr,t))dx. 

For an instantaneous spill in the point x (30) reduces to 

(30) 

g(x,t) = gXx,t)e-k'' + \gXx,x)hJx,t)dx. (31) *'' + fK^Ä/x 

We have worked out the above for the special case of a well in a uniform background 
flow (fig. 3). The corresponding velocity field is given by 

v ^ x ^ = 1 - _ ^ _ , v2(x^ = _ ^ i _ . (32) 

We assume that at f=0 in the point (xlrx^)=(-4,l) an instantaneous spill of contaminant 
takes place. For various values of kl and k2 the approximation for the arrival time 
distribution (31) at the well is displayed in fig. 4. The dispersivities are Û£=0.1 and 
07=0.01. The figures show that the tail due to kinetic effects becomes more pronounced if 
&! increases and/or kj. 
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Figure 3 Flow pattern for a well in a uniform background flow. 

decreases, i.e. if the expected time of one stay in the fluid phase (l/&i) decreases and/or 
the expected time of one stay (l/fcj) in the fluid phase increases. 

To assess the accuracy of the approximations we have made a comparison with the 
results of random walk simulations. There exist various random walk algorithms that take 
into account kinetic adsorption (Valocchi&Quinodoz, 1989, Andricevic& Foufoula-
Georgiou, 1991). Here, it suffices to select the most natural and straightforward method 
(method 1 of Valocchi&Quinodoz, 1989). 

In the free phase the stochastic displacement of a particle is governed by 

AX = (vj + 

AY = (v2 + 

12)A< + ^L\V\1LZJÄT + ^2or |v| d 

" * 7 ' j 1 ; ' (33) 
'21 + ±D^)At + faL\v\^LZLJAT - N/2cx7.|v|_lLZ7VÄT 

d 

±L 
dx "- dy ~ ' - |v| - ' • |v| 

where At is the time step and ZL and ZT are random deviates from a uniform distribution 
with mean 0 and variance 1 (see van Kooten, 1994). First the time xf of one stay in the 
fluid phase is generated from an exponential distribution. During time xf a particle is 
advected-dispersed according to (34). Next, from an exponential distribution the time xs 

that a particle stays in the adsorbed phase is generated. The time xs is added to t, the total 
time elapsed from the beginning of the simulation. This process is repeated, until the 
particle enters the well. 

From the point (-4,1) we carried out 15000 random walks with ^=0.5 (T1) and 
Ä^=0.2 (T1). The time step Af was chosen 0.001 except if xf would be exceeded. In the 
latter case At was taken equal to the difference between xf and the time that has been 
spend in the fluid phase yet. From fig. 5 we may conclude that approximation (31) agrees 
quite well with the arrival time distribution obtained from the simulations. The small 
differences are caused mainly by the irregular behaviour of the simulations, and it is to be 
expected that the agreement will still become better if the number of random walks is 
increased. 
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ARRIVAL TIME DISTRIBUTIONS AT WELL ARRIVAL TIME DISTRIBUTIONS AT WELL 
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Some arrival time distributions at the well for a contaminant spilled in (-4,1). 
In (a) the adsorption rate Jfcj is kept fixed. In (b) the desorption rate k2 is kept fixed. 

COMPARISON OF RANDOM WALK AND ASYMPTOTIC APPROXIMATION 
0.25 r 

Figure 5 Comparison of the arrival time distributions obtained with the random walk 
simulation and computed from eq. (31). 

4 3 Example 3: Simultaneous application with a numerical transport model 

Currently, there exist many finite element (FE) and finite difference (FD) codes to solve 
the ADE for a conservative contaminant. The aim of this example is to demonstrate how 
the theory of section 3 can be used simultaneously with such a code. Once the transport of 
a conservative contaminant has been computed numerically, with some post processing the 
transport of a kinetically adsorbing contaminant can be computed. In this example the 
numerical computation were carried out with the FE code METROPOL, which has been 
developed by the National Institute of Public Health and Environmental Protection in the 
Netherlands. 
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Sketch of the aquifer considered in section 4.3 

We consider contaminant transport in an aquifer which is recharged at the top (figure 6). 
From below the formation is confined by an impervious layer. The effective velocities 
(m/day) of the incoming and outgoing flow are indicated in the figure. In the v-direction 
no flow takes place. Initially the aquifer is unpolluted. From <=0 at the top of the aquifer 
for x between 7 and 10 m and y between -1 and 1 m contaminated water constantly 
leaches into the aquifer. The concentration of the contaminant in the incoming water is 
Cj,=100 ng/m3. At the remainder of the top surface Cb=0. Because of the symmetry in y-
direction it suffices to solve the transport problem in only one half of the aquifer, with a 
no flux condition at the surface y=0. At the downstream boundary x=40 we impose a zero 
concentration condition. The surfaces x=0, y=0 and z=0 are no flux boundaries. The 
aquifer was covered by 40x20x12=9600 cubic elements. Because of the zero initial 
conditions the theory for simulating the transport of a kinetically adsorbing contaminant is 
described in section 3.2. 

With the METROPOL code the concentration profile C0 of a non-adsorbing 
contaminant was computed from t=Q to t=20 days with time step Af = 0.2 days and 
dispersivities aL=0.6 m and <2j=0.3 m. The computation time at a Sun3 workstation was 
about 6 hours. In fig. 7a the flow pattern and the concentration contours in the y=0 plane 
at f=20 are shown. For each nodal point the time profile of C0 was stored in a data file. 
The time profiles were post processed by substitution in eq.(13). In between partition point 
t=iAt the concentration was again determined by linear interpolation. The concentration 
contours for a kinetically adsorbing contaminant with &,=0.1 and /fc2=0-l (days1) are 
displayed in fig. 7b. The post processing could be carried out in about 2 minutes, so that 
the cost of the post processing are almost negligible compared to the cost of solving the 
ADE numerically. 

In fig. 7c we have drawn the concentration contours resulting from an equilibrium 
model with retardation factor R=l+(kjk^)=2. The solution of the equilibrium model was 
obtained from the METROPOL output by replacing the time t by the retarded time f=t/R. 
Compared to the kinetic model the downstream spreading is clearly underestimated. The 
"kinetic" profile is more flat than the "equilibrium" profile. So, the application of a kinetic 
or equilibrium model may have large consequences on, for example, the delineation of the 
polluted region for remediation purposes. In fig. 8 various "kinetic" profiles along the z-
axis through x=20 m are compared with an "equilibrium" profile. The figure confirms that 
for increasing sorption rates the kinetic model approaches the equilibrium model. 
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Figure 7 Flow pattern and concentration contours in the y=Q plane at f=20 (days). 
(a) Non-adsorbing contaminant 
(b) Kinetically adsorbing contaminant with A:, =0.1 and k2=0.1 (days'1). 
(c) Contaminant subject to linear equilibrium adsorption with R=2. 
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Figure 8 Comparison of various kinetic profiles (jfc,/£2=l) with an equilibrium profile (R=2) 
at f=20 (days) along the z-axis through *=20 m. 
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5. CONCLUDING REMARKS 

In this paper a transport model is studied for a kinetically adsorbing solute in a porous 
medium with homogeneous adsorption properties. We allow the velocity field and the 
dispersivities to vary in space, so that the medium may be heterogeneous with respect to 
the hydro-geological properties. Furthermore, solute may be added to or extracted from the 
system. 

We have presented a method to decouple the advection-dispersion equation and the 
adsorption isotherm. This method is directly based on the stochastic nature of the first 
order kinetic process. Therefore it may contribute to a better understanding of the 
solutions for the kinetic model presented here and in other papers. The four conditional 
distributions for the residence time of particles in the free phase of Keller&Giddings 
(1960) play an important role. For arbitrary initial and boundary conditions we have 
shown that once the transport of non-adsorbing solutes has been computed, the transport of 
a kinetically adsorbing can be determined with the aid of these distributions. 

Often an analytical solution for a non-adsorbing contaminant is already quite 
complicated (see e.g. Leij et al. 1991) or is even not at all at hand. Therefore, the method 
will probably find its major application when it is used simultaneously with a numerical 
transport model. With such model the transport of a non-adsorbing contaminant is 
computed first. Next, by substitution of the output in expression (9), (13) or (17) the effect 
of the kinetic adsorption can be incorporated analytically. An example is given in section 
4.3. The proposed approach may be useful in field scale applications with complex flow 
fields. The advantages above solving the complete model (1) numerically are: 

If the values of the reaction rates k^ and ^ are changed, no new run with the 
numerical code has to be performed. Only the post-processing has to be repeated. This 
feature may be very cost-saving when model output has to be fitted with experimental 
data. 

The approach is computational more efficient. The costs of solving one differential 
equation numerically are lower than the costs of solving two coupled equation. 

Although in the mixed numerical-analytical approach no additional errors are 
introduced due to discretization of the reaction eq. (lb), recent simulations have revealed 
that a full numerical solution and a mixed solution have the same order of accuracy. The 
dominating error appears to be caused by the space-time discretization of the parabolic 
ADE (la). 

A disadvantage of the approach may be that the time profiles of the concentrations 
in the nodal points have to be stored, so that for large grids much computer memory is 
required. In practice this disadvantage is not too large, because one is often only interested 
in the breakthrough of a contaminant at some particular points. In this case, just as for a 
traditional numerical method, only in the breakthrough points the time profiles need to be 
stored. 
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APPENDIX A: Some mathematical properties of the distributions hg, hß, h4 and hss 

1. Differentiation properties 

By differentiation of (2),(3),(4) and (5) we obtain 
dh. dh 

(Al) 

(A2) 
at 

2. Integration properties 

In the analytical solutions of the kinetic model (1) presented in literature, frequently the 
Goldstein J function appears (Goldstein, 1953). The / function and the distributions hg hp, 
hj and hs are related as follows: 

- J L / ^ T ^ - T ) ) = hjix,t) + h(x,t), (A3) 
ox 

JLj^t-x),^) = hjx,t) + Ä JT . 0 , (A4) 
dx 

(see also De Smedt & Wierenga, 1979). Using that J(a,0) = e"a and J(0,b) = 1 we find 
t t 

exp(-fc1f) + thjxfidx + [hß(x,t)dx = 1, (A5) 

exp(-*20 + ihjx,t)ax + [h^x,t)dx = 1. (A6) 

The determination of the integral of only a single A-function is less straightforward. Let 

H{t) = (hjix,t)dx (A7) 

Using (Al) and (A5) we find that H satisfies the differential equation 

A.H = -(*, +kJH + *2(1-e*>') . (A8) 
at 

The solution of (A8) is 

From A5 it follows that 

j \(x,0<*t = _ ^ _ ( 1 - e^^). (A10) 

In a similar way it can be shown that 

[h(x,t)<h = ^ L - + _ ^ _ e ^ ' - e*, (All) 

V)rft = *2 ( l - e ^ - ^ ' ) . (A12) 
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APPENDIX B: Mathematical verification of the solutions of the kinetic model 

1. Verification of the solution presented in section 3.1 

It is obvious that C (9a) and S (9b) satisfy the initial conditions (7). Because Cf and Cs 

have zero boundary conditions, C and S have zero boundary conditions too. 

To check whether the differential equations (la) and (lb) are fulfilled we start with 
differentiating S to f: 

- ^ = - A A * « ^ + *i<V~V + ]{CfQc,r)^(x,t) + Cs(x,x)^(T,t)}dx. (Bl) 

In (Bl) we used that h^t,t) = £j exp^-kj) and A„(t,t) = 0. Applying differentiation property 
(A2) and ordering the terms that belong to C and S, one can see that (Bl) is equivalent 
with equation (lb). 

For C we have on the one hand 

4£ = ̂ fe'k''-kAe'k', + W<) <**ftO + f {Cr(*,T A T , 0 <(* ,T At , f ) } r f t . (B2) 
of of ^ of of 

Since CE and Cs are solutions of ADE (6) with yO we have on the other hand 

Mjufi = ^ « V * '' + {{MnCfictfhfci) * MMCXx,x)hJix^}dt 

(B3) 

if6"'' + I {-97(*'T)VT'') + -J^W} * 
Applying partial integration we find 

HC* 
MMC = - i e " * ' ' + Cf(x,t)h£,t) + Cs(x,t)h£,t) - Cf(x,0)h/0,t) - C/*,0)/^0,f) 

- f{C/x,T)_£(T,f) + Cs(x,x)LS{x,t)}dx. (B4) 
,{ J ox dx 

Note that A/O.f) = 0 and Cs{x,Q)hß),t) = *2Sinit(x)e"*2'. Substituting integration property 
(Al) in (B2) we obtain that (B2) + (Bl) = (B4), so that equation (la) is satisfied too. 

2. Verification of the solution presented in section 3.2 

If * £ dQN then for any t, C0(;c,f)=Cb(;c), so that (13) reduces to 

C(x,t) = C„(x)exp(-V) + Cb(x){(h^x,t)dx + [hfs{x,t)dx}. 

Since (kjk^fi^h^ it follows from integration property (A5) that C(x,t)=Cb(x), so that at 
oQN C satisfied the right boundary condition. In a similar way it can be shown that at 
>i£2D the solute flux equals F(x). 

To verify that C and S satisfy the differential equations of the kinetic model the 
steps of Bl can be repeated with Cf replaced by C0 and Cs by (kJk^C0. To include the 
effect of the production term y, integration property (A5) must be applied in step (B3). 



80 CHAPTER 3 

REFERENCES 

Andrkevk, R. and E. Foufoula-Georgiou: Modeling kinetic non-equilibrium using the first two 
moments of the residence time distributions, Stoch. Hydrol. Hydraul. (5), 155-171, 1991. 

Bear, J. and A. Verruyt: Modelling Groundwater Flow and Pollution, Dordrecht, Reidel, 1987. 
Cameron, D.R., and A. Klute: Convective dispersive solute transport with a combined equilib­

rium and kinetic adsorption model, Water Resour. Res., 13, 183-188, 1977. 
Carnahan, C.L. and J.S. Remer: Nonequilibrium and equilibrium sorption with a linear sorption 

isotherm during mass transport through an infinite porous medium: some analytical 
solutions, J. Hydrology, 73, 227-258, 1984. 

van Genuchten, M.Th. and PJ. Wierenga: Mass transfer studies in sorbing porous media, 1, 
Analytical solutions, Soil Sei. Soc. Am. J. 40, 473-480, 1976. 

Giddings, J.C. and H. Eyring, A molecular dynamic theory of chromatography, J. Phys. Chem., 
59, 416-421, 1995. 

Goldstein, S.: On the mathematics of exchange processes in fixed columns, 1. Mathematical 
solutions and asymptotic expansions, Proc. Roy. Soc. London, Ser. A 219, 151-171, 1953. 

Goltz, M.N., P.V. Roberts: Three-dimensional solutions for solute transport in an infinite medium 
with mobile and immobile zones, Water Resour. Res. 22 (7), 1986. 

van Herwaarden, O.A. and J. Grasman: Dispersive groundwater flow and pollution, Math. Mod. 
and Meth. in Appl. Sei. 1, 61-81, 1991. 

van Herwaarden, O.A. : Spread of Pollution by Dispersive Groundwater Row. SIAM J. of Appl. 
Math. 54(1), 26-41, 1994. 

van der Hoek, C.J.: Contamination of a well in a uniform background flow, Stochastic Hydrol. 
Hydraul. 6: 191-208, 1992. 

Keller, RA. and J.C. Giddings: Multiple zones and spots in chromatography, J. Chroma tog. 3, 
205-220, 1960. 

van Kooten, J J . A.: Groundwater contaminant transport including adsorption and first order decay, 
Stoch. Hydrol. Hydraulics 8, 185-205, 1994. 

van Kooten, J J . A.: An asymptotic method to predict the contamination of a pumping well, 
Advances in Water Resources, 18 (5), 295-313, 1995. 

Lassey, K.R.: Unidimensional solute transport incorporating equilibrium and rate-limited isotherms 
with first-order loss, 1. Model conceptualizations and analytical solutions, Water Resour. 
Res. 24 (3), 343-350, 1988. 

Leg, FJ., T.H. Skags, M.Th. van Genuchten, Analytical solutions for transport in three-
dimensional semi-infinite porous media, Water Resour. Res, 27, 2719-2734, 1991. 

Ley, FJ. and J.H. Dane, Analytical solutions of the one dimensional advection equation and two-
or three-dimensional dispersion equation, Water Resour. Res., 26, 1475-1482, 1990. 

Lindstrom, F.T., and M.N.L. Narasimham: Mathematical theory of a kinetic model for disper­
sion of previously distributed chemicals in a sorbing porous medium, SIAM J. of Appl. 
Math. 24, 496-510, 1973. 

Ogata, A.: Mathematics of dispersion with linear adsorption isotherm, U.S. Geol. Surv. Prof. Pap, 
411-H, 9 pp, 1964. 

Smedt, F. de and PJ. Wierenga: A Generalized solution for solute flow in soils with mobile and 
immobile water, Water Resour. Res., 15 (5), 1137-1141, 1979. 

Torido, N., FJ. Ley and M.T. van Genuchten: A comprehensive set of analytical solutions for 
nonequilibrium solute transport with first-order decay and zero-order production, Water 
Resour. Res., 29, 2167-2182, 1993. 

Vaktcchi, A.J.: Validity of the local equilibrium assumption for modeling sorbing solute through 
homogeneous soils. Water Resour. Res. 6, 808-820, 1985. 

Valocchi, AJ. and U.A.M. Quinodoz: Application of the random walk method to simulate the 
transport of kinetically adsorbing solutes, In: Abriola, L.M. (eds), Groundwater Contami­
nation: Proceedings of the Third Scientific Assembly of the IAHS, 35-42, Baltimore, 1989. 



81 

CHAPTER 4 

ECOWELL, A PROGRAM TO ESTIMATE THE CONTA­
MINATION OF WELLS: TECHNICAL DOCUMENTATION 

CONTENTS 
Page 

1 Introduction 82 
2 Basic equations 83 
3 Discretization 

3.1 Triangular elements 84 
3.2 Barycentric coordinates and element width 84 
3.3 Neighbour elements 85 
3.4 Boundary points 85 

4 The head and velocity field 86 
5 The stagnation points and separating streamlines 

5.1 Searching the stagnation points 88 
5.2 Separating streamlines leading towards a stagnation point 89 
5.3 Separating streamlines leading away from a stagnation point 91 
5.4 Evaluation of the integral qj(p) 92 

6 Arrival at a well with only the effect of longitudinal dispersion included 93 
7 Incorporation of transversal dispersion 

7.1 Transition to (p,v) -coordinates 94 
7.2 The boundary layer approximations 95 
7.3 Evaluation of the integrals lu, lTl) and IT™ 96 
7.4 The travelling time Tüng 97 
7.5 Evaluation ofd2^ 97 

8 The arrival time distribution 98 
9 Incorporation of adsorption and decay 

9.1 Linear equilibrium adsorption 99 
9.2 First order decay 99 
9.3 Linear kinetic adsorption 100 
9.4 Combined effects 103 

10 Contour lines for h, u and arrival times 
10.1 Equipotential lines 104 
10.2 Contour lines for u and arrival times using a grid 104 
10.3 Contour lines for uif\ = 0. 105 

Appendices 
A: Approximations for lu, lTl) and IT® near the endpoint singularity 106 
B: Bounds for the amount of pollution pumped up before or after a certain time 

Bl Non-adsorbing contaminant 107 
B2 Kinetically adsorbing contaminant 107 



82 CHAPTER 4 

1. INTRODUCTION 

In various papers researchers of the Department of Mathematics of the Wageningen 
Agricultural University have developed an analytical approximation method to predict the 
advective-dispersive transport of a contaminant towards a pumping well in a confined 
aquifer (Grasman & van Herwaarden (1991), van Herwaarden (1994), van Kooten (1994, 
1995a and 1995b)). In this report we give a technical description of the implementation of 
the method in the computer program ECOWELL. For the run instructions and the 
visualization of the results we refer to the User Manual (Buse & van Kooten, 1995). We 
do not repeat the formula's that arise in the asymptotic method; when necessary we refer 
to a formula in the literature. Most formula's can be found in van Kooten (1995a). For 
easy reference a formula of that paper is marked with the superscript K , e.g. (xx)K. Each 
section of this report describes one or more algorithms that have been used in ECOWELL. 

The computer package ECOWELL must be used in connection with a finite element- or 
finite difference package for simulating groundwater flow. With such package a numerical 
head field can be generated for 2D-flow in an aquifer in which one or more withdrawal 
and injection wells are operating. Together with the corresponding discretization (section 
3), the conductivities and porosity this head field is input for ECOWELL. With respect to 
the hydraulic conductivity the aquifer may be heterogeneous. Using Darcy's law the 
program computes a velocity field (section 4). In order to apply the asymptotic method 
ECOWELL first searches the stagnation points in the flow. The separating streamlines 
which bound the region of advective flow to a well are determined by backward integrati­
on from the stagnation points (section 5). Next from any point in the aquifer the effects 
of longitudinal and transversal dispersion on the transport of a contaminant towards a well 
can be analyzed. Analytical approximations are computed for 

the arrival fraction of a contaminant at a well, 
the mean and variance of the arrival time, 
the arrival time distribution and breakthrough curve. 

ECOWELL can generate contours of equal arrival rates and arrival times, which may 
provide useful information for delineating a protection zone or for designing a remediation 
strategy. The program may also be used for standard facilities, such as the computation of 
streamlines and equipotential lines, or to carry out random walk simulations. 
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2. BASIC EQUATIONS 

The method is based on the assumption that the flow in the aquifer is approximately 
2-dimensional, steady state and divergence free (except at the location of a well). 
Furthermore the aquifer should be isotropic. The transport of a contaminant takes place by 
advection and longitudinal and transversal dispersion. The advective displacement should 
dominate the dispersive displacement. The effects of linear equilibrium adsorption, kinetic 
adsorption and first order decay can be incorporated. In the papers mentioned in the 
introduction the method has been developed stepwise. The transport model in which all 
aforementioned effects are included and combined is 

where 

R— = -V(vC) + V(DV-Q - RXC - kf + kbS 

0! = kfC 
dt f 

k.S - XS , 
(1) 

c 
s 
v 
R 
X 
kf 

= concentration of the contaminant in the free phase (MIL?), 
= concentration in the immobile phase (due to kinetic adsorption) (MIL?), 
= the effective fluid velocity vector {LIT), 
= retardation factor (due to equilibrium adsorption) (-), 
= first order decay rate (T1), 
= forward kinetic adsorption rate (T1), 
= backward kinetic adsorption rate (T1) 

The adsorption/reaction parameters R, X, kf and kb should be constant. 
Physically spoken, it is assumed that decay takes place in all phases and that the equili­
brium and kinetic adsorption mechanisms are independent, i.e. they do not interact. A pore 
wall may consist of several chemical and biological compounds. A solute particle moving 
through the pore may interact at different rates with different consistuents. The retardation 
factor R account for fast ("instantaneous" equilibrium) interactions. The kinetic isotherm 
accounts for the slow interactions (see Cameron & Klute, 1979). 
The entries of the dispersion tensor D (L2IT) are in the classical way given by 

v.v. D, = a r |v |ô ,+ ( f l i - a r ) ^ I , 
v 

(2) 

where 
aL = longitudinal dispersivity (L), 
aT = transversal dispersivity (L). 

The dispersivities are allowed to vary in space. 
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3. 

CHAPTER 4 

THE DISCRETIZATION 

3.1 Triangular elements 

A numerical head field for 2D-groundwater flow can be generated with a finite element or 
finite difference method. Because a finite element method has a greater flexibility in 
handling complex geometries, it is often preferred to the finite difference method. A finite 
element method can be based on triangular or quadrangular elements. Triangular elements 
easier allow for local refinement, which for example may be necessary in the vicinity of a 
well. Because popular flow models, as Micro-FEM and AQUA, use triangular elements, 
we have chosen this type of flow models as starting point for ECOWELL. The triangulari-
zation that has been used by the flow model, is input for ECOWELL. The network may 
be highly irregular. It should be specified in two files. The first file contains the coordina­
tes of the nodal points. The second file describes which nodal points are connected in an 
element (Figure 1). 

Of course ECOWELL may also run in connection with a flow model based on a 
finite element method with quadrangular elements or a finite difference method. In this 
case the user should first specify a selfmade network of triangles. 

Nodal point file (File 1) Network file (File 2) 

1849 (=number of nodal points) 
1 -50.0 -50.0 
2 -45.0 -49.0 
3 -40.0 -48.0 

k = nodal point number 

3050 (= number of elements) 
1 1 2 67 
2 2 67 68 
3 2 68 69 

elem k, k2 k3 

elem = element number 
ki - nodal point number 

Fig. 1 Example of input files describing the triangularization. File 1 gives the (x,y)-coordinates of 
the nodal points. File 2 specifies the network of triangles. 

3.2 Barycentric coordinates and element width 

To facilitate computations with irregular shaped triangular elements we use barycentric (or 
area) coordinates. For the concept of barycentric coordinates we refer to Lapidus & Pinder 
(1982, p. 109-116). The barycentric coordinates (ß1,ß2,ß3) of a point (x,y) with respect to 
an element with nodal points (x^y^, (pc^y2) and (x3,y3) (fig. 2.) are given by 

1 
ßi = -rrrlfa-yà* + (x3~x2)y + (*#3-¥2)] ' 2A 

ß2 = ^jKy3-.yi)* + (xrxi)y + (¥rVî)] > (3) 

ß3 = 1 - ßi - ß2 
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(ßi,foW - (OAD 
>,y3) 

* • ' \(Xo.Y->) 

(ßbfe(W-(IAO) ( ß l ; ßaß3 ) .(0,1,0) 

/neigh- \ 
' hour 2 N 

neigh- \ 
!n»gh-\*./ bourl \ 
i hour 3 > 

Fig. 2 Barycentric coordinates, 

where .A is the area of the element: 

Fig. 3 Ordering of neighbour elements. 

-[(Xl-x^(y2-y^ - ( x . - x ^ - j g ] (4) 

The point (x,y) is located inside the triangle if and only if ßi>0, ß2>0 and ß3>0. So, we 
have a simple criterium to decide whether a point is inside or outside a triangle. Further­
more, barycentric coordinates are of great use for linear interpolation in elements (eq. (6)). 

For particle tracking purposes we introduce the width / of an element, which we define as 
the mean of the distances of the three nodal points to an opposite edge: 

¥ l l l 

fa-xf+fy-yj? ^-xtf + ̂ -ytf J(xrxJ2 + (yryj2 
(5) 

33 Neighbour elements 

To enhance the computational efficiency ECOWELL builds a list of neighbour elements. 
Two elements are called neighbours if they have a common edge, i.e. if they have two 
nodal points in common (fig. 3). So, an element that is not located at the boundary of a 
domain has three neighbours. The neighbour opposite to nodal point kt (i= 1,2,3) (see also 
fig. 1, file 2) is called neighbour i. An element at the boundary of the domain has only 
one or two neighbours. The missing neighbour is set to -1. 

3.4 Boundary points 

The user does not have to specify which nodal points are at the boundary of the domain. 
From the Neighbour list ECOWELL itself builds a list of boundary points. For example, if 
in an element with nodal point numbers kY, k? and k3 neighbour 1 has been set to -1, kj 
and £3 are boundary points. First ECOWELL searches for all boundary points. Next, with 
a linear sort algorithm, the points are sorted in such a way that, if they are connected, a 
closed line is formed. 
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4 THE HEAD AND VELOCITY FIELD 

The hydraulic head in the grid points of the finite element or finite difference discretiza­
tion are input for ECOWELL. Inside a triangular element the head field is determined by 
linear interpolation. Let hlt h2 and A3 be the hydraulic heads in the nodal points of an 
element, then the head in a point (x,y) inside the element is 

h = ß,*, + ß2A2 + ß3Ä3 (6) 

where the barycentric coordinates ß1; ß2 and ß3 are defined by (3). Furthermore, a file 
should be given with the positions and discharges of sinks and sources and the thickness B 
of the aquifer at the position of sinks and sources (fig.4). It is assumed that sinks and 
sources are always located in a nodal point of the mesh. 

In groundwater modelling theory the velocity field v=(Vx,Vy) is computed from the 
head field with Darcy's law (Bear & Verruijt, 1987) 

v = £VA (7) 

where K (>0)is the hydraulic conductivity and n is the porosity. If the formation is hetero-

Head file (File 3) 

10.44 
10.12 
9.87 

nodal point number 
• hydraulic head 

3 1 
456 
671 
898 
544 

k 

k = 

Q = 
B = 

Well file (File 4) 

(= number 
-12.34 
-25.00 
-13.1 
16.5 

Q 

of sources and sinks, resp.) 
10.2 
11.12 
10.54 
10.4 

B 

nodal point number 
discharge (<0 for sink, >0 for source) 
thickness of the layer at the well 

Fig. 4 Example of input files describing the flow 
in the aquifer. File 3 gives the head values 
in the nodal points. File 4 contains infor­
mation on the sinks and sources. File 5 
specifies the conductivities either in the 
nodal points or in the elements. 

Conductivity file 

1 
2 
3 

kle 

kle 
K --

0.14 
0.15 
0.134 

K 

(File 5) 

= nodal point/element number 
- conductivity 
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geneous, ECOWELL expects a file in which the conductivities are specified either element 
or nodal point wise (File 5). From the number of rows in the file the program itself 
detects how the conductivities are specified. 

Because inside an element the head field is linear, the gradient of h is constant 
inside an element and discontinuous across interelement boundaries. From (3) and (6) it 
follows that it is given by 

VA = 
'02 -yùK+(y3 -ydh2+(yi -y^K 
(x^-xjh^ +(xrx3)h2*(x2-xl)hi 

(8) 

In the asymptotic method for predicting the contamination of a well the stagnation points 
in the flow play a crucial role. The velocity field that results from straightforward 
application of (7) and (8) will not contain stagnation points. At most it may contain a 
stagnation element, i.e. an element in which dh/dx=dh/dy=0 (*> h1=h2=h3 ). Therefore, this 
velocity field can not be used in the asymptotic method. 

In several papers methods have been proposed to obtain a velocity field that is 
continuous in the sense that it is mass-conservative. The mixed finite element method (see 
e.g. Ewing et al., 1985) produces piecewise polynomial approximations for both the head 
and velocity field. The lowest order mixed method has been discussed in detail by 
Kaasschieter et al. (1992, 1995). The mixed method can not be applied in connection with 
a standard finite element flow model. A method that does not have this drawback is 
proposed by Cordes & Kinzelbach (1992). They subdivide each triangle into four 
subtriangle. By fully utilizing that at each nodal point is divergence free in the weak 
sense, they construct a velocity field in which the flux across interelement boundaries is 
continuous. However, both the lowest order mixed method and the method of Cordes & 
Kinzelbach result in a velocity field that inside a (sub)element is constant, so that it is still 
impossible to find a stagnation point. Moreover, the asymptotic method uses the derivative 
of the flow velocity at the stagnation point (see e.g. (32) and (34)). With the aforementio­
ned methods this derivative would be zero. 

To obtain a velocity field that is continuous and (almost everywhere) differentiable, 
we apply the following "smoothing procedure". First, in each element the flow velocity is 
computed from (7) and (8). Next, in each nodal point we define the velocity as the mean 
of the velocity in the surrounding elements, i.e. the elements of which the nodal point is 
part. From now on the velocity inside elements is computed by linear interpolation of the 
velocity in the nodal points, so that a continuous velocity field results. Let (Vx^Vy^), 
(Vx2,Vy^) and (Vx$,Vy3) be the mean velocities in the nodal point of an element, then the 
velocity in a point with barycentric coordinates (ßi,ß2,ß3) equals 

Vx = ßlVxl + ß2Vx2 + ß37x 
Vy = ß ^ + ß2Vy2 + ß3Vy (9) 

In the smoothing procedure an exception is made for the nodal points in which a well is 
located. In a well we have an essential discontinuity; in the elements near a well the 
velocity field is pointing toward the well so that all streamlines end into the well. The 
smoothing procedure would disturb this important characteristic. Inside an element that 
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contains a well the approach is quasi-analytical: we assume that the velocity field can be 
approximated by the velocity field for radial flow towards a well of discharge Q 

Vx = _ ß XJ^1 and Vy = A l2jL , (10) 
2JIÖ (x-Xwf+(y-ywf 2*8 (x-xwf+(y-ywf 

where (j%,yw) is the position of the well. 

5. THE STAGNATION POINTS AND SEPARATING STREAMLINES 

The separating streamlines, that bound the region of advective flow towards a well, play a 
crucial role in the asymptotic method. Near a separating streamline we have a boundary 
layer in which transversal dispersion has an important effect on contaminant transport. 
This effect has been analyzed by introducing the local coordinates p and v (fig. 7)K (see 
also fig. 6 of this report). To carry out the coordinate transformation rapidly ECOWELL 
stores the coordinates of the separating streamlines in an array. In this section we describe 
how the stagnation points and the corresponding separating streamlines are determined. 

5.1 Searching the stagnation points 

For each element that does not contain a well the program checks if it contains a 
stagnation point. Because inside such element the velocity is determined by linear 
interpolation, barycentric coordinates are a helpful tool for searching the stagnation points. 
Solving Vx=Q and Vy=0 (9) we find that the barycentric coordinates of a stagnation point 
should be given by 

ß! 
Vx3Vy2 - Vx2Vy, 

& 

(Vx2-VxXVyrVyj - (Vx.-Vx^Vy.-vy,) 

v*iVy3 -
 Vx3vyi ( i i ) 

(Vx2-VxyyyrVyj - (Vx^x^Vy.-Vy,) ' 

ßs = 1 - ft - ft • 

If ß^aO, ß^^O and ß3
s£0 we may conclude that the element contains a stagnation point, 

which in cartesian-coordinates is given by 

XSTAG = ß l * l + ß2*2 + ß3*3 • ( 1 2 ) 

y*no = ß^ i + ß ^ + ß & • 

The asymptotic method assumes that with each sink at least one stagnation point is 
connected. Therefore, if the program finds less stagnation points then sources and sinks 
the user should check his flow pattern. If for a sink no stagnation point - and thus no 
(complete) catchment area - is found, the asymptotic method may give unreliable results 
for that sink. The user may have to refine the discretization or to enlarge the domain. 
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5.2 The separating streamlines leading toward a stagnation point 

The separating streamlines that bound the region of advective flow towards a well are 
determined by back-tracking from a stagnation point. In a stagnation point, however, the 
flow velocity is zero, so that a stagnation point is not suitable as starting point for the 
tracking method. Therefore, first we analyze the flow pattern near the stagnation point. 

From (3),(9),(11) and (12) we obtain that the velocity field in an element that contains a 
stagnation point can be expressed as 

(13a) 

where 

ox 

ma = — - = [(x3-x2)Vxl + (xl-xi)Vx2 + (x2-x{)Vx3]/2A , 
dy 

ox 

«22 = ^ = [&"*» + (xrxJVy2 + (x2-Xl)Vy3\/2A . 
dy 

(13b) 

It follows that the set of equations for movement along a streamline reads 

W \m2i m22J \y-ysTAG 

dxldt 

[dy/dt) 
M 

lx-x ^ 
•* -\STAG 

The eigenvalues and eigenvectors of the matrix M are given by 

(14) 

X. = «11 + «22 + ( "^(«l l* «22)2-4(«ll«22-«12«2l) 0=1.2), 

/V«^ 
/M^ 

and 
p 11/ 

(15) 

Because the stagnation point should be a saddle point (fig. 5), X, must be negative and Xj 
must be positive. If not, the stagnation point is a (negative) attractor, and in fact it acts as 
a (hidden) sink or source. In this case the user should check whether all sinks and sources 
have been specified or if the head field has been generated with a too coarse mesh. 

file:///y-ysTAG
file://-/STAG
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The general solution of (14) is a linear combination of the eigenvectors of M: 

x(0 XSTAG 

yiO-ysoG 
= C1e1exp(X.1t) + C2e2exp(XJ) , (16) 

where the constants Cj and C2 follow from the initial conditions. The separating streamline 
leading towards and leading away from the stagnation point are described by (14) with 
C2=0 and (^=0, respectively. Eliminating the time variable t we find an (^^-representa­
tion for the separating streamlines towards the stagnation point: 

^ - « a z X y - y s n o ) = « a ( * - * m o ) (17) 

From (17) the intersection points (x^,/1*) and (pP^,^) of the separating streamlines with 
the boundary of an element can be calculated (fig. 5a). In very special cases - e.g. if the 
mesh is regular and the natural background flow is parallel to the x- or y-axis - it may 
happen that the stagnation point itself is located at the boundary of an element, an 
expression similar to (17) must be derived for the neighbour element that contains the 
stagnation point too (fig. 5b). 

sep. strl.w - sep. strl.w 

\ (*',¥"))' 

(a) 

Fig. 5 

sep. strl.P' ^ s e p . strl.P' 
(b) 

The intersection points of the separating streamlines with the boundary of the element that 
contains the stagnation point S are determined from eq. (17). Fig. (b) illustrates the special 
case that the stagnation point itself is located at an interelement boundary. 

We note that in the elements that do not contain a stagnation point the streamlines are 
described by expressions similar to (16). In these cases (XSTAG^STAG) is a fictive point 
outside the element, of which the barycentric coordinates are still given by (11) with ß^O, 
ß2<0 or ß3<0. So, element by element parts of a (separating) streamline can be determined 
analytically. To obtain a smooth streamline, for each element C1 and C2 have to be chosen 
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in such a way that the various parts connect to each other. However, in general it is 
impossible to eliminate t from (16), so that this procedure becomes quite complicated. 
Therefore, this procedure has not been worked out in ECOWELL. 

Starting from, respectively, (jc1,>'1)=(x(1),yl)) and (x1,y1)=(x(2>,/Z)), ECOWELL determines the 
remainder of the two separating streamlines by integrating the (smoothed) velocity field 
backward in time with a Runga-Kutta method, 

*•! = *i + Vx(xk,yh)M and yM = y, + VyQctfJAi , 

with (18) 

xh=xi+ Vxtx^tell and yh = y, + VyQc^At/l , 

The time step At is chosen in such a way that in each element approximately four steps 
are made: 

àt = -A , (19) 
4v. 

where /f (5) is the width of the element in which (xt,y{) is situated and v: is the absolute 
value of the velocity in (xi,)'i). So, in the parts of the region where the grid has been 
refined, the streamlines are determined more accurately than in the parts with a coarser 
grid. The coordinates (xi,)'i) are stored in an array. The Runga-Kutta method terminates if 
the separating streamline has crossed the boundary of the domain or if it has approached a 
source up to a distance less than /;/4. 

53 The separating streamlines leading away from a stagnation point 

Putting Ct=0 in (16) and eliminating the time variable t we find an (jc,}>)-representation for 
the separating streamlines leading away from a stagnation point: 

mn(y-ysrAa) ' (*2-«n)(*-*5Me) • (20) 

From (20) the two intersection points of the separating streamlines leading away from a 
stagnation point with the boundary of the element that contains the stagnation point are 
determined (fig. 5). By forward integration with the Runga-Kutta method (18) we 
determine the sinks with which the stagnation point are connected, i.e. the sink in which 
the separating streamlines end. E.g. in figure 6 stagnation point 1 is connected with sinks 
(or wells) Wl and W2, stagnation point 2 is only connected with well W2, etc. 
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Fîg. 6. Example of flow pattern: Wl, W2 and W3 are sinks, W4 is a source, 52 to S4 are stagnati­
on points. To predict the transport of a contaminant from (a,b) to Wl (or W3), we 
introduce (p,v)-coordinates along the separating streamline ending in stagnation point S3. 

5.4 Evaluation of the integral q^p) along a separating streamline 

In the boundary layer approximations for the arrival rate and for the moments of the 
arrival time an important term is 

q^p) = _ £ - # ) with q(p) = fa7(p,0)v2(p,0)dp , (21) 

lv(P'°) ) I 
where v(p,0) and 0 ^ , 0 ) denote the velocity and transversal dispersivity along the 
separating streamline, respectively. (Note that <fr(p) = vctjt^p), where q(p) is defined by 
(6.14)K and Op is a (spatial) mean of % (2.3)K). To avoid that in one run of ECO WELL 
the integral q^p) has to be evaluated repeatedly, it is evaluated during the calculation of 
the separating streamlines. Let p, be the distance along the separating streamline from the 
stagnation point to the point (xi,yi). We denote the velocity and transversal dispersivity in 
(jCj,)'i) by v, and a^, respectively. We assume that between two successive points (jci.1,yi.1) 
and (JCj,̂ ) the velocity and dispersivity vary linearly. Because the velocity in the stagnation 
point is zero it follows that 
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<?i - [a1(pfi)vXp,0)dp = ([a, + (Or -a,. )(-£.)](JLVl)
2dp 

J J Pi Pi (22) 

• Pi (jfrzTAa+ ~fr,i) vi • 

For i a 2 we have 

p, 

q. = Jflj(p,0)v2(p,0)rfp (23) 
0 

p, 

i P1-P1-1 PrPi-i 

= «,_! + (Pi -P i -x ) [ (^TJ- ! -^r , i)v i2- i + (-Ki-i+-Ki)vi-ivi + C^*rii-i
+-JaiX] • 

The values 

q, = ^ (24)-« (24) 

are stored in an array. 

Furthermore, the asymptotic method also uses the derivative of the flow velocity in a 
stagnation point, which is given by 

v(0,0) = V P l . (25) 

6. ARRIVAL AT A WELL WITH ONLY THE EFFECT OF LONGITUDINAL 
DISPERSION INCORPORATED 

The asymptotic method first incorporates the effect of longitudinal dispersion. In this 
section we describe how the corresponding approximations for the mean (6.6a)K and 
variance (6.8)K of the arrival time are computed. 

By forward tracking with the Runga-Kutta method (18) we determine the advective 
travelling time T^ along the streamline through the injection point (a,b). The timestep is 
the absolute value of (19). The tracking terminates if a streamline crosses the boundary of 
the domain or if the streamline has approached a certain well up to a distance less than 
IJA, where /; (5) is the width of the element in which the well and (xt,y) are situated. The 
approximation for the variance o2^^ consists of an integral of ajv1 along the streamline. 
During the tracking this integral is evaluated with a trapezium rule. 

If the streamline ends in a well the mean and variance of the arrival time are used 
in an approximation for the arrival time distribution at the well (eq.(7.1)K). If not, the 
mean and variance of the arrival time are meaningless. 
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7. INCORPORATION OF THE EFFECT OF TRANSVERSAL DISPERSION 

7.1 Transition to (p,u)-coordinates 

The asymptotic method is based on the assumption that the effect of transversal dispersion 
is most crucial near the separating streamlines in the flow. This effect can be analyzed by 
introducing (p,u)-coordinates along the nearest "relevant" separating streamline. A 
separating streamline is called "relevant" if it bounds the catchment area of the well of 
which we wish to estimate the contamination. To carry out the coordinate transformation, 
first the orthogonal projection of the initial point (a, ft) on a separating streamline should 
be determined. 

As example we again consider the flow pattern of fig. 6. At (=0 in (a,b) a 
contaminant is released. To predict the arrival of the contaminant at well Wl we have to 
determine the orthogonal projection of (o,ft) with respect to the separating streamlines 
ending in stagnation point 57 and 53. We call the separating streamlines ending in 
stagnation point 52 and 54 non-relevant for this case because they do not bound the 
catchment area of Wl: the stagnation points 52 and S4 are not connected with well Wl. 

The algorithm to determine the orthogonal projection on a separating streamline is 
as follows. Let (x-^y^) and (x^) denote two successive points on a separating streamline 
that have been determined with the Runga-Kutta method (section 5.2). A vector represen­
tation for a line through the two points is: 

/, 

s. : 
(x \ 

IrH 

/ v - r \ 

^i 

A vector representation for the line through (a,b) perpendicular to st is 

(26) 

X 

Vi 

( ) 
a w + X. 

>.-.-*] 
x. -x. , 

(27) 

In the intersection point of the two lines we have 

(a - x . ^ x -x . t ) *(b - y , . ^ , -?,.!) 

(*i-*i-i)2 + Oi-^i-i)2 
(28) 

Let Npoint be the number of points on a separating streamline that have been calculated 
with the Runga-Kutta method. Starting from i=l we make the following steps to determine 
the projection point (ap,bp): 

1. From (28) we compute \ir 
2. - If Os^sl the projection of (a,b) on the line s( is in between (x^y^) and (x^), so 

that this projection is on the separating streamline (fig. 7a). The corresponding 
projection point is (âp,fcp)=(xM + \ifa-, - x^), yul + wO, - )Vi))-

- If Hi<0 and m.^l (a,b) lies inside the shaded domain in fig. 7b. In this case we 

file:///ifa
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4. 

define the projection by (äp,ftp)=(*i-i,)Vi)-
- In all others case (a,b) can not be projected on the line piece between (XJ.I,VJ.I) and 

(xi,)>i). The program continuous with step 4. 
If the distance from (a, ft) to (äp,ftp) is less than the distance to projection points 
determined in previous steps (smaller i's), then the projection point (ap,ftp) is 
replaced by (äp,ftp), i.e. we put (ap,ftp)=(<äp,ftp). 
If \<Npoint the steps are repeated with i:=i+l. 

The above algorithm is carried out for all relevant separating streamlines. For certain 
separating streamlines no projection point (ap,ftp) will be found because the perpendicular 
projection does not exist. E.g in fig. 6 (a,ft) can not be projected on the separating 
streamline between S3 and W4. From all found projection points, we can determine the 
separating streamlines to which (a,b) is most close. Along this separating streamline we 
introduce (p/u)-coordinates. In particular we determine the distance v from (a,b) to (a^ft,,) 
and the value of the integral q-^p) (21): if (ap,ftp) is in between the points (*j.i,)Vi) and 
(jtj.Vj) then ç-rvP)^.! + \i.,iq, - q,^), where qi and \i-t are given by (24) and (28) respectively. 

Hi <0 
^ii>0 

(xi+t>3W 

/ / (Xi-i,yi-i7\;-.. 

/ (a,b) , 

(a) 
sep. strl. 

(Xi.2.yi-2) 

(b) sep. strl. 

Fig. 7. Examples of projections of a point (a,b) on (a piece of) a separating streamline. 

7.2 The boundary layer approximations 

Once we have determined v and <fr{p) we can compute the asymptotic approximations for 
the arrival rate, the mean and variance of the arrival time and the arrival time distribution 
at a well that have been presented in van Kooten (1995). To facilitate computations the 
approximations are slightly rewritten in this report. We first indicate how the approximati­
ons are rewritten. 

From (2.3)K, (6.13)K and (6.14)K it follows that the asymptotic approximation for the 
arrival rate u can be expressed as 

u(p,v) = 
\f2n 

lu (29) 

The integral lu is defined in Table I, where K = 0 , A = vq^p) and qT is given by (21). 
In the asymptotic approximations for the mean travelling time use is made of Täng 

(6.15)K which is an approximation for the advective travelling time to a well in (p,v)-
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coordinates. In section 7.4 we pay more attention to Täng. Using that 

Ww) = 7^ln(-x,) + r -> _ 1> ' (30) 

we obtain that the composite approximation for the mean arrival time (6.31)K can be 
written as 

*2L + -JL^-ln(-A) +^-\ if v<0, 
vp(0,0) lu 

(31) 

T. (p,-l) + i \-\n(qJp)) + _ ] + _J^U_ if VÄO . 

T0) _ 
•* comp 

The integral and lPl) is defined in Table I. From (6.17)K (6.19)K and (6.29)K we find that 
the boundary layer approximations for the variance of the arrival time may be written as 

^ = _^_ l£ _ W* + l j < ( p , . ^ ) e - , , (32) 
Vp(0,0) /« \ I u ) Iu{ q ^ 

In section 7.3 we describe how the integrals lu, iP^ and II™ are computed. In section 7.5 
the evaluation of the integral of o 2^ is described. We do not compute the integrals for the 
complete interval (A,°°). For \s\ > 10 the value of exp^-s1/!) is so small that it can not be 
represented in FORTRAN REAL*4 precision (IEEE standard) anymore. To avoid 
numerical instabilities we already cut of the contribution for |s| > 7.5. 

Definition of some integrals in the asymptotic method 

lu •-

00 00 

= ((s-Afe'^ds , IP» = ((s-A)K\n(s-A)e'is2ds 
A A 

00 

IP2) = ((s-Ay\n2(s-A)e-is2ds 
A 

Table I. In (29), (31) and (32) K = 0. In (40) and (41) K = X/v (0,0) 

73 Evaluation of the integrals lu, iP^ and lP2) 

None of the integrals in Table I can be computed analytically. So, the integration must be 
carried out. Because the //«-functions have a singularity at the endpoint s=A, IP» and IP® 
can not be solved with a simple quadrature rule. We determine the integrals in two steps. 

First, at an interval (A, A + e) we expand the 'weight'-function expf-sffè) in a Taylor-
series near sH = A + E/2. When the expansion is substituted in lu, iP^ and IP® the 
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integrals can be solved term by term analytically (Appendix A). We require that the error 
in the result is less than 10"5. If we use six terms in the Taylor-expansion of exp(-&!2) this 
accuracy is reached for e=0.5. If A > 7.5 or A + e < -7.5 the contribution of the integrals 
at the interval (A, A + e) is put to 0. 

Second, from s = A + E the integrals are approximated with a Simpson rule. We split 
the interval (A + E, 7.5) into two sub-intervals: (A + e, M) and (M, 7.5), where 
M=max(A + E, -7.5). If M > -7.5 we apply the interval (A + e, M) the Simpson rule with 
stepsize h=0.02. If M=-7.5 the contribution of the integrals at this interval is neglected. At 
the interval (M, 7.5) we take stepsize A=0.1. In (Stoer & Bulirsch, 1980, p. 120) an 
expression for the error in the Simpson approximation is given. Using this expression one 
may check that here the error is less then 10"5. 

7.4 The advective travelling time Täng 

When the injection point (a,b) is outside the catchment area of a well, the approximation 
for the mean arrival time (31) involves the evaluation of the term Täag. An expression for 
Täng has been derived by van Herwaarden (1994). From this derivation it follows that the 
logarithmic dependence of 7"̂  on v (see (30)) arises from the assumption that the flow is 
rotational free near the stagnation point. The numerical velocity field used by ECOWELL 
will often not be perfectly rotational free. However, we assume that close to the separating 
streamline the advective travelling time to a well still approximately satisfies expression 
(30). Of course, the accuracy of this approximation depends on the coarseness of the 
discretization near the stagnation point. Therefore, we recommend to refine the discretiza­
tion near the stagnation points in the flow. 

From (6.16)K (or van Herwaarden, (1994), eq (4.9)) it follows that T^p . - l ) is build 
up from integrals along the separating streamlines leading to and away from the stagnation 
point of interest. When we implemented these integrals in our computer program, it turned 
out that for v small Täng did not always perfectly coincide with the real advective 
travelling time T^. A much better results is obtained as follows. Using the (p.v)-coordina-
tes of point (a,b), we choose a point (p,ti) just inside the catchment area : p = p, D = 1/20, 
where / (5) is the width of the element in which (p,0)=(ap,fcp) (fig. 7) is situated. With 
particle tracking (18) we determine the advective travelling T^pVö). Putting ^ (p . f t ) = 
T*ng(P$), we compute Täng(p,-l) from eq. (30). 

7.5 Evaluation of o£p and t^,mp . 

In the asymptotic approximation for the variance of the arrival time o , ^ (32) we have a 

function c£p ((6.24)K and (6.31)K) which is a (p,u)-approximation for the integral of ajv2 

along a streamline close to the separating streamline. The expression (6.24)K consists of 
integrals along the separating streamlines leading to and away from the stagnation point of 
interest. In contrast to Täng (see eq. (30)) these integrals have to be recalculated for each v. 

Because in 0^ , (32) these integrals are nested in an integral to s, the evaluation o f o ^ , 

becomes quite complicated. Moreover, since o ^ has a singularity in v=0, its evaluation 
for small v causes numerical difficulties. 

In ECOWELL these complications have been overcome as follows. Instead of 

applying the analytical approximation (6.24)K for o ^p .u ) , we evaluate the integral of 
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OL/V2 along the streamline through (p,x>) with the numerical method described in section 6. 

The advantage of this approach is that o^,ch(p,u) = a ^p . u ) , so that in a 2 ^ (6.32)K 

reduces to ^ , ^ (32) . The 'weight'-integral of o^p in (32) is computed with a Simpson 
rule with respect to 5. Because of the singularity in s=A we apply the Simpson rule with 
various stepsizes. At the interval (A, A+0.2) we take stepsize h = 0.005, at (A+0.2, A+l) 
h = 0.05 and at (A, 7.5) h = 0.1. Let s, be the corresponding partition points. The values 

o? = O 2 > , I > - - 4 T ) (33) 

are stored in an array, so that they do not have to be recalculated for the arrival time 

distribution (34). If \s\ > 7.5 the contribution of o;
2 to a,*^ is neglected; we put o;

2=0. 

8. THE ARRIVAL TIME DISTRIBUTION 

An approximation for the distribution for the arrival time at a well with only the effect of 
longitudinal dispersion incorporated is given by (7.1)K. We have also derived a composite 
approximation that also takes into account transversal dispersion. Because in ECOWELL 

°Lch = °^p t n e composite approximation gœmp (7.7)K for the distribution of the arrival 
time f can be rewritten as 

g„JPW ') = -TL= f «0**0« '*"* (34) 
V2n i 

where g is given by (5.6)K and 

T%JW) + - J L j n C l - i ) if v<0 
v (0,0) A 

1 (35a) 
7 « > , - l ) + _ J L _ l n ( - v + _ L _ ) if v*0 
*sep' 

' P 

S 

vp(0,0) qjp)' 

o2 = o^(-v+^). (35b) 

The integral with respect to s in (35) is again computed with a Simpson rule with 3 
different step sizes (see section 7.5). 

To obtain an accurate description for the arrival time distribution g should be 
determined for a wide range of f-values, theoretically from 0 to ». However, the contribu­
tion for both t small and t large will be will be almost zero. In Appendix B we show that 
before time 

. (-2o+v4o2 + Li2 ) ,,,,. 
*„*, = !* - 4 a - *- — (36) 

and after time 

x ^ = „ • 4 o ( 2 ° + ^ r > . (37) 
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a fraction of at most 5.10"5 will enter the well. Therefore, we assume that it suffices to 

evaluate the arrival time distribution at ( x ^ x ^ ) , where in (36) and (37) \i = 7 ^ , and 
a = ocomp. [Note that the choice 5.10s is arbitrary. If sharper bounds are necessary, larger 
absolute values for r (Bl) should be chosen, resulting in a smaller rain and a larger x^,, 
respectively]. At the interval (x^,,, x ^ ) we choose 400 uniformly distributed times in 
which ^00^(34) is evaluated. These partitions points are used in a Simpson rule for the 
breakthrough curve 

(38) 

9. INCORPORATION OF ADSORPTION AND DECAY 

9.1 Linear equilibrium adsorption 

The effect of linear equilibrium adsorption is to retard the spread of a contaminant. It does 
not affect the ultimate arrival fraction at a well. The effect of the retardation can be 
analyzed by replacing the velocity v by the retarded velocity vR=v/R, where R is the 
retardation factor. The corresponding retarded values for the mean and variance of the 
arrival time are 

1 comp " 1 comp ' 

(cP \2 = K2c? 
V comp/ ** ^corr 

(39) 

The retarded arrival time distribution is obtained from (34) by replacing n and o2 by 
\iR=R\i and ( o ^ / î V . 

9.2 First order decay 

The effect of first order decay has been studied extensively in van Kooten (1994). Using 
(31) we obtain that the approximation for respectively the arrival rate (8.10)K and mean 
arrival time (8.11)K can be rewritten as 

:exp{-Xrj*,y)}(-A)*/K 
V^2JT 

^ e x p i - M ^ p . - l ) } ^ ) ) * / « 
V2JT 

if v<0 

if uaO . 
(40) 

7<i) 

1 /TCI) 
T.(x,y) + —_( - l n ( -A) + i i _ ) advV " vp(0,0)V V ' lu ' 

1 IT™ 
T (p,-l) + - (-ln(o(p)) + Ü-) 

if v<0 , 

if uaO , 
(41) 

where K = X/vp(0,0) and lu and 11^ are again as defined in Table I. The method to 
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compute the integrals lu and 77^ has been described in section 7.2. In this case the 
asymptotic method does not give explicit expressions for the variance of the arrival time. 
Therefore, it is determined from the arrival time distribution (8.1)K : 

J u 
Tmia OOmp 

The integral with respect to t is computed with a Simpson rule (A/ = ( t ^ - x^ay200). 

93 Linear kinetic adsorption 

Kinetic adsorption may cause extensive tailing in the spread a contaminant. However, it 
does not affect the ultimate transversal spreading. Therefore, the arrival rate at a well can 
still approximated by (31). In van Kooten (1995b) we have shown that the arrival time 
distribution gK of a kinetically adsorbing contaminant is related to the arrival time 
distribution of a non-adsorbing contaminant: 

ÄKCWO = EvJix&Qe-* + jgcomp(x,y;x)h^c,t)dx. (43) 
0 

where the distribution function hff is defined by van Kooten (1995b), expression (2). The 
integral in (43) should be evaluated with care. Below we discuss some complications we 
have to cope with. 

Although the most important information on the arrival of a contaminant is contained 
in the arrival time distribution, for completeness we also compute the mean 7*1' and 
variance o2 of the arrival time. Because no explicit expression for T^ and a2 are available, 
they are computed from gK. 

9.3.1 Asymptotic behaviour 

It is well known that for large kf and kh the kinetic model approximately predicts the same 
transport as the equilibrium model with retardation factor RK=l+(k/kb), i.e. 

8&jr,Q - gR(x,y;t) = gcomp(x,y t) if k» ^ -» ». (44) 

In mathematical terms this implies that the function hff approaches a Dirac delta function 
peaked about xR=t/RK. The existence of this peak can be seen by rewriting hff: 

A/x,0 = (!Î!L.y* Ifr) e-exp{-flx)} (45a) 
" t-x 

e 

z = 20fc,ifctT(/-T) and fix) = \fijc'-Jklt(f-T) J . (45b) 
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From the asymptotic behaviour of the modified Bessel function 

Ife) - _ for z — oo, (46) 
Jlxz 

it follows that for kf and kb large the "Gaussian term" exp(-f(x)) dominates the behaviour of 
hff (45a). The width of this term vanishes if kp kh -* oo. 

We note that Lassey (1988) has studied an integral similar to (43): his integrand g 
equals (5.5)K (i.e. our arrival time distribution with only the effect of longitudinal 
dispersion taken into account. He has developed an efficient analytical algorithm to 
evaluate (43) for large kf and kb. We have not implemented his (complete) algorithm 
because we need an algorithm that is also valid for small kf and k\. Moreover, in our 
integrand also the effect of transversal dispersion is incorporated. Nevertheless, some ideas 
of Lassey appeared to be useful in a mixed analytical-numerical approach. 

9.3.2 Mixed analytical-numerical approach 

To avoid numerical problems from the delta-function behaviour of hff and to force that gK 

converges to gR (44) if kp kb -» oo, we derive an analytical approximation for the integral 
in (43) at an e-interval near xR. At the remainder of the interval (xmin, min{t, T^}) we 
apply a Simpson rule with stepsize AT=(Tmin - Tmax)/200 (for t < x^n and x > x,^ the 
contribution of the integrand g is neglected, see section 8). 

A Taylor-expansion for fix) at the interval (xR - e, xR + e) is 

fc) = 4-^-?^ +
 ° ( E 3 >

 with ° 2 = (WF1 = 27T-h< • (47> 
2 o2 v (*i+*2) 

Substituting the expansion in (43) and extracting all slowly varying terms from the integral 
we find the following approximation 

kjcx "" 
f 8^(x^)h^dt - [gœ^x,y;x)(^y%(z)e-^:a \exp{-^}dè, 

x -«A* . (48) 

= ^s^,y^R)^RhizR)e'z'erK--^r-) 

The asymptote (46) implies that for kf and kb large (*> o small) gK indeed tends to gR. For 
kf and kb small (<*» o large), (48) approaches a midpoint quadrature formula. For arbitrary 
sorption rates the mixed-method produced quite accurate results with e = Ax. For the 
error-function in (48) we apply a polynomial approximation given in Abramowitz & Ste-
gun (1970, eq. 7.1.26) 

To compute Iy in (45a) and (48) we use the Chebyshev approximations of Blair (1974). 
For z < 15 he gives an approximation for z'Hfe) and for z a 15 he gives an approximation 
for e'Vj(z). For 2 a 50 we simply apply the asymptotic expression (46). 
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9.3.3 First and last entering time 

We also have to analyze for which values of t we should compute gK to obtain a complete 
and accurate description of the arrival time distribution. The first question is: at which 
time does the first amount of pollution enter the well? Secondly, when has all pollution 
reached the well? At least, the retardation effect of the kinetic process should be taken 
into account. So, in each case we determine gK at the interval (ÄRX^,,, ART^,). However, 
also for t s Rtf^ a considerable amount of pollution may enter the well, especially if the 
adsorption rate kf is small. The second question is of particular interest if the desorption 
rate kb is small. Due to long waiting times in the immobile phase gK may have a long tail. 

Let fcK(t) be the breakthrough curve of the kinetically adsorbing contaminant. Because the 
arrival time distribution is the derivative of the breakthrough curve, we obtain from van 
Kooten (1995b, eq. 14a) that 

' ' k 
V ) = fgjit)* = W)e~kf + jb(r){hjix,t) • -lhjr,i)}dt . (49) 

where fc(x) is the breakthrough curve (37) of the non-reacting solute. In Appendix B we 
show that for t G (x^, Rtf^) 

vo * *(o+ KV + 4/V" {"W - ̂ ) } ] - (50a) 

where 
Wl = A/Tmin - /*„(' " O a n d W2 = fif • (50b) 

Note that b ^ J - O . From (50) we approximate the time at which pollution starts entering 
the well: t^^r is the largest t G (xmin, RKx^n) for which the term between the brackets [ ] 
is less than 10"4. 

The lenght of the tail can be estimated in a similar way. We have the following 
upperbound for the amount of pollution that will enter the well after time t 2 ÄRX,^ : 

1 - bK(t) * ( l - f tCO) + [ifaT^jt{erft-wj - erft-wj}] , (51a) 
where 

W3 = -fij 3 nd W4 = V ^ T - ^(f_Tmax) • (51b) 

Note that ( l -b^^))«^. We approximate the last entering time by fTAIL: the smallest t for 
which the term between the brackets [ ] less than 10"4. 

The times t G (^ART, tTMI) at which we evaluate gK should be chosen with care. We 
distinguish two cases: 
1. kfC^„ s 2 and k^kh > 1, i.e. the mean residence time \jkf in the fluid phase is larger 

then or of the same order of magnitude as x^„, whereas the residence time in the 
sorbed phase l/kb is large relative to 1/kf. (Note that in this case fTAIL = x^,,). 
The term exp^-kf) will have an important effect on the shape of gK. A considerable 
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amount of pollution will reach the well between (x^,,, T ^ ) . On the other hand, once a 
particle has been adsorbed it will remain immobile for a long time. So, gK will have a 
long tail. A rather extreme case is shown in figure 8: 85% of the pollution enters the 
well between t = 110 and t= 270, whereas the tail extends from t= 270 to f= 130000. 
To describe the peak and tail accurately we divide ('STARTAAIL) m t 0 m r e e subintervals. 
- At ( T ^ , T ^ ) we choose n, = 200 points (dtv = ( T ^ - T ^ ^ O O ) . 

- At (x^,, Ä R O we also choose n2 = 200 points (dt2 = ( A ^ ^ - T ^ ^ O O ) . 
- At ( Ä R T ^ , tjMl) we choose at most 100 points. If trAiL"̂ KTmax > 100tft2 we take 
n3 = 100 and dt3 = ( ' T A I L - Ä K O / 1 0 0 else n3 = [(h^-R^^J/dt^ and dt3 = dt2. 

In all other cases the shape of gK is more regular (less peaked and/or tailed). Each 
particle will either make many transitions from the fluid to the sorbed phase before it 
enters the well (kf large), or it will return rapidly to the fluid phase (kh large) or both 
(equilibrium limit). Now, we divide (<START> 'TAIL) m t 0 o n ty tw0 subintervals. 
- We put nx = 0, dty = 0. 

- A t ('START. Ä K O w e choose n2 = 400 points (dt2 = (ÄK
Tmax-'srART)/400)-

- The partition point at (ÄRT,^ , ^ L ) are chosen in a similar way as case 1. 
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Fig. 8 Breakthrough curve of a kinetically adsorbing contaminant released in (-65,-90) (fig. 6) 
(aL=0.2 {tri), «,.=0.05 (m), fc^lO'3 (days1), jfct=5-10"5 (days'1)). Due to the small adsorption 
rate 85% of the solute enters the well between xmill=110 and T„M=270 (the first and last 
entering time of a non-reaction solute). The small desorption rate results in an extremely 
long tail. 

9.4 Combined effects 

The adsorption and decay phenomena discussed in the previous section may be combined 
(see section 2). First ECOWELL includes the retardation due to equilibrium adsorption. 
Next, the effect of kinetic adsorption is incorporated by computing gK with retarded 
forward adsorption rate kf = k/RK (van Kooten, 1995b, section 3.4). The effect of decay is 
superposed by multiplying gK with the survival factor exp{-"kt). The arrival rate and the 
first and second moment of the arrival time are computed from respectively 

s^- 'dt .ƒ 'SK
e' •dt and 8** •dt (52) 
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10 CONTOUR LINES FOR h, u AND ARRIVAL TIMES 

ECOWELL can generate contour lines of the hydraulic head A, the arrival fraction u ((29) 
or (40)) at a well, the mean arrival time 7*1} ((31) or (41)) and the first and last entering 
time T^ (36) and x ^ (37). For contour lines of u, 1™, r^ and x ^ , ECOWELL first 
calculates their values in the grid points of the triangularization. The values of A in the 
grid points are already known because it is input for ECOWELL. The contour lines are 
generated with the use of barycentric coordinates. An exception is made for contour lines 
of u if the decay rate X=0. 

10.1 Equipotential lines 

The user must first specify the point (a,b) through which he wishes to calculate an equip­
otential line. Because inside an element the hydraulic head is determined by linear 
interpolation, the equipotential line consists of element wise straight lines. The algorithm 
for calculating the intersection points with the edges of the elements is as follows. 

Let Ajb, Aj, A2 and A3 denote the hydraulic head in (a,b) and in the three nodal points 
of the element that contains (a,b). The equipotential line intersects two edges of the 
element. E.g. if h2 < h^ < A3 the equipotential line crosses the edge at which ßi = 0 
(see fig. 3). This edge also bounds Neighbour 3 (fig. 4). From (6) it follows that the 
barycentric coordinates of the intersection points are given by 

ft = 0, ß2 = ^ _ l j l , ß 3 = l - ß 2 - (53) 
h2 - A3 

The other intersection point is calculated accordingly. 
To calculate the next part of the equipotential line the previous steps is repeated with 
Ax, A2 and A3 replaced by their values in one of the neighbour elements. However, 
now only one new intersection point has to be calculated because the other one is still 
known from the previous step. An exception is made for the case that the equipotenti­
al line exactly intersects a nodal point k^ = kt (i = 1,2 or 3). In this case we should 
check all elements that surround kslxt to find the next part of the equipotential line. 

The algorithm is repeated until the element that contains (a,b) is reached (the equipotential 
line is circular) or until the boundary of the domain is crossed. 

10.2 Contour lines for u, fll\ x^, and x,^ using a grid 

In the grid points from which no contaminant can reach a specific well (K=0), the arrival 
time is undefined. To be able to calculate contour lines for 7^, xmin and x,^, such grid 
points are filled with the value Tmix, where T^ is the maximum corresponding arrival 
time in the grid points in which the arrival time is well defined. 

For any value (VAL) of u £ (0,1) or 7^, xmin, x,^ G (O,!^) contour lines can be 
generated. First we have to search for a point in which u or the arrival time equals VAL. 
This point is searched at a line through (*w,.yw) perpendicular to the vector 
(*w-*sTAG.>V.ysrAo)T> where (*w,;yw) is the position of the well and (JCSTAGJSTAG) are the 
coordinates of a stagnation point connected with that well (An example is shown in figure 
10). At this line u decreases from 1 (at the well) to 0 (far away from the well) and the 
arrival time increases from 0 to Tmm. Once a point has been found in which u or the 
arrival time equals VAL, the contour line through that point is generated with the same 
algorithm as for the equipotential lines. 
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If the decay rate X = 0 the contour lines for u can easily be determined from (31). We 
compute the value of A for which u equals a user specified value VAL. For a contaminant 
released at distance 

A 
v = 

9T<P) 
(54) 

from a separating streamline the arrival fraction at the well equals VAL. The values of 
<7j(p) have been stored in an array (section 5.4). Starting from a stagnation point connected 
with a specific well, we compute from (54) the contour lines at which u = VAL. An 
example is displayed in figure 9. 
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Fig. 9 
Arrival rate contours for well Wl. 
The dispersivities are aL=0.2 (m) and 
Or=0.05 (m). 

-100 

— 1 J 

/ ji^^^se^F 
/ 4?&*\ w 

/£/ m JsT~»~-
11M ! w 
1 ffi /f 
[fi /// 

• ill' <*>f//\% 

III /// / / ! f 70%-rW— 30% / 
/ # / ' ß/ S 

Ha /// / 

M4 .. 

^-^-

-100 -80 -60 -40 -20 

Fig. 10 
Mean arrival time contours for well 
Wl. First a grid with arrival times is 
computed. At the dashed-dotted line, 
which is perpendicular to 
Wl - SI, we search for a point in 
which the arrival time equals a user-
specified value. . -100 
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APPENDIX A: Approximations for lu, IP^ and /7*2) near an endpoint singularity 

Let 

Iut = ((s-Afe'^'ds , 

nf> = [(s-Af\n(s-A)e'^ds , 
A 

A+e 

nf> = f (s-Af\n\s-A)e'^ds 

(Al) 

(A2) 

(A3) 

Near .sH=A+e/2 the Taylor-series of e r up to the sixth term reads 

(A4) 
i-0 

where 

c0 = e"** W-3) 

= 1 ̂ ) , _ -# 
1 TT~~är~u» " * cA = 

= i <*Vy)i 
• 3 ' * 

1 d\e '?) , _ (*« - 6s« + 3) . # 

"3 3! <fc3 'î=î" S" 6 
4 £ 2 

4 4 ! <fc4 24 
4 i n j 

2! <fc* 

1 d\e'^), (% -10^ + 15) - ^ 
5 5! ds5 " " Ï2Ö 

Substituting the Taylor-expansion in (Al), (A2) and (A3) and using that 

v/ 
(s-Ay(-ie^, 

we obtain the following approximation for /we, 77; ' and /T, 

i-O •{ 1=0 J+A .+1 

<2) 

5 A*i 

1=0 

5 - i tXt l 

#?' = E 4 fln(*-A)(s-A)'^ = £rf ;Jl_[ln(E)-_L^ 
;=0 J 1=0 »+A.+1 1+A.+1 

(A5) 

(A6) 

(A7) 

5 A*t 

nf> = £d. fln2(5-A)(.-A)'^ = ̂ d .Jl-[(ln(E)-^T)2
 + — i _ ] ( A 8 ) 

;=o J 1=o 1+X.+1 i+X+l (i+k+lf 

where 

4 = E^ (-4-r (A9) 

The integrals in (A7) and (A8) have been determined by (partial) integration. 
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\e'y-E c^-sjl s * max \ftll\(lz)6 * ^(le)6. (A10) 
;.o oiA<s<A*t as z 6! l 

Using (A10) we can derive an upperbound for the error in Iut : 
A+e 

\Iu -lu I s 2£(ie)6 [(s-Kfds = lL(l£)6£l 1 e ,i 6 , v 2 ) j v ; 6 , 4 ) 1 + K 

Similar expressions can be derived for the error in ITt and ltt . One may easily check 

that for e=0.5 the errors in ƒ«,, if^ and /f(2) are less the 10"5. 

APPENDIX B: Bounds for the amount of pollution pumped up at a well before 
or after certain time 

Bl Non-adsorbing contaminant 

Let r = (J-V)»m
 f (Bl) 

axlf2 

With x^,, and xmax given by (36) and (37) ( o r = -4 and r = 4, respectively) we obtain 
•tmjB T ^ - 4 

fg(mo^)A < f ( l + l)g(^o2;T)dt = — L fe_',,<fr < 5-10-5 , (B2) 

and 

f gfaótydt < - [(l + l)g(\JL,o2;x)dx = 1 f e^ 'dr < 2.5-10"5. (B3) 

It follows that 

fgrft = 1 - (gdx - (gdx > 0.9999 . (B4) 

B2 Kinetically adsorbing contaminant 

Using that I0(x)e'x s 1 and I^x^'" s 1 (Abramowitz, 1970) we find from van Kooten 
(1995) (eq. A3) an upperbound for bK (49): 

k ' k 
b£) = b(t)e^ * fb(T){hjT,t)+-lhjLTJ)}dz + jb(x){hJir,t)+J.hjT,t)}ch 

0 b
 t *« * (B5) 

where 

w = fijx~ - fa(t-T) . (B6) 
Performing a change of integration variable t - • w we find 
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where wx and H»2 are given by (50b). For t < RKx^„, wl and w2 are both positive. Because 
6(f) s 1 we arrive at (50a). 
In a similar way we obtain that for f > Rx^ 

k k 
l-btf = ( 1 -6 (0 )«"* + j(l-b(T)){hjT,t) + 1LhjT,t)}dx + j(l-b(T))ihJzS) + 1LhjLT,Q}dz 

o h *_ fc 

* (l-*(0) + J(l-*W)l/*p K-^)1" + &m]e-'dz 
0 „4

 T T (B8) 

*(l-*(0) + A/T- Je "'*•' 

where w3 and vw4 are given by (51a). Because w3 and w4 are less then 0 and (1-6(0) s !• 
we arrive at (51b). 
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CHAPTERS 

CASE STUDY: DELINEATION OF A PROTECTION 
ZONE NEAR PUMPING STATION LOCHEM 

1. INTRODUCTION 

In this chapter we apply the computer program ECOWELL to a real world problem. We 
searched for data of an aquifer in the Netherlands in which the flow is predominantly 
horizontal. Researchers of the RIVM (Rijksinstuut voor Volksgezondsheid en Milieuhygi­
ene/National Institute of Public Health and Environmental Protection) brought to our 
attention an aquifer near Lochern in the Achterhoek from which groundwater is extracted 
by a pumping station. The pumping station is managed by Water Company Oostelijk 
Gelderland (WOG). We demonstrate how ECOWELL may be used to delineate a 
protection zone around the pumping station. 

In section 2 we give a description of the (geo)hydrologic situation near Lochern. 
More detailed information, e.g. on the topography, the geology, geomorphology, the 
structure of the soil and land use, can be found in Broks (1991). The hydraulic head in the 
aquifer has been computed with the finite element program LGM (Landelijk Grondwater 
Model/National Groundwater Model) of the RIVM (section 3). With ECOWELL we 
analyse the effect of dispersion on the transport of a contaminant to the pumping station 
(section 4). 

Dispersion may account for several effects. It may account for the tortuous 
movement of particles through the pores. In the previous chapters we have put emphasis 
on this interpretion. However, dispersion may also describe the uncertainty in prediction of 
the advective flow model. Due to the complex structure of a porous formation is often not 
possible to predict the actual transport of a contaminant, but rather some expected or 
average transport. The larger the uncertainties in the structure and parameters of the 
model, the larger the dispersivities should be taken. In the latter context ECOWELL may 
be used to get an impression of the uncertainty in the extent and shape of the catchment 
area and in the arrival times at a well. 

2. DESCRIPTION OF THE GEOHYDROLOGICAL SYSTEM 

Pumping station Lochern is situated at the foot of a hill (the Paaschberg) just south of the 
small town Lochern. A hydrological map of a region of 10x10 km around Lochern is 
shown in fig. 1. On this map all channels, brooklets and ditches in this region are 
indicated. The most important streams are the Berkel and the Veense Goot. The map has 
been drawn with the aid of GIS (Geographical Information System) and is based on a 
detailed invertarisation of the RGD (Rijksgeologische Dienst). From the streams water 
may percolate to the groundwater. Furthermore, recharge takes place by infiltration of 
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rainwater. Due to seasonal fluctuations in rainfall and evaporation, the infiltration is not 
equally distributed over a year. Because in a great part of the region the unsaturated zone 
is rather thick (20 à 30 m) the fluctuations are less recognizable in the groundwater head; 
in the period 1981-1991 changes between 0.75 and 1.5 m have been observed. Besides 
pumping station Lochern, four other private and industrial wells are operating in the 
region. The regional background flow is from south-east to north-west. 

Figure 1 Hydro-geological map of a 10x10 km region near Lochern. The map is bounded by 
the coordinate lines x=220.000 m, x=230.000 m, y=455.000 m and y=465.000 m of 
the topographical map of the Netherlands. 

NUMERICAL SIMULATION OF THE GROUNDWATER FLOW 

We have computed the groundwater flow near Lochern with the finite element model 
LGM. In this national flow model the Dutch subsoil has been schematized into 4 layers. 
The upper layer is phreatic. The layers are separated by thin loam laminae. The lower 
layer has an impervious bottom. This schematization is based on bore hole data of the 
RGD. In each layer LGM utilizes the Dupuit-Forchheimer assumption that the variation of 
the head in the vertical direction is negligible. In some parts of the Netherlands, for 
example in the Achterhoek, the geohydrological properties of the layers only slightly 
differ, so that the schematization into 4 layers is redundant. The total thickness of the 
aquifer near Lochern, from surface level to the impervious bottom, varies between 45 and 
90 m. 

In fig. 2 the discretization of the region is displayed. It consists of both quadrangu-
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lar and triangular elements. The two most important streams, the Berkel and the Veense 
Goot, are modelled separately. Near the pumping wells with the largest discharges the 
discretization has been refined. The topographical coordinates and the discharges of the 
wells are shown in table I. Actually, at pumping station Lochem eight extraction wells are 
operating with a total discharge of about 2.000.000 m3/year. In the model these wells have 
been centred into one point. 

Transient effects on the flow, due to seasonal fluctuations, have been neglected. 
Steady flow computations will already provide a good impression of the long term 
displacement of a water particle. As starting point has been taken the average isohypse 
pattern (head field) of the year 1988. By interpolation of the head, the boundary conditions 
for LGM have been determined. The drainage from the Berkel and the Veense Goot to the 
groundwater is assumed to be proportional to the area of the river bottom and the differen­
ce between the water level in the river and the groundwater head. The small streams 
(brooklets and ditches) have not been modelled separately. The drainage from or to the 
small streams has been incorporated in a recharge function. For the recharge of the 
groundwater due to infiltration of rain water, the average value is determined of the 
effective precipitation (i.e. the difference between rainfall and evaporation) over a number 
of years. The effective precipitation has been derived from measurements at a nearby 
KNMI-station and the air base Twente. 

From the calculations with LGM it turned out that the hydraulic head in the four 
layers is exactly the same, which confirms that the flow in the aquifer is predominantly 
horizontal. The isohypse-pattern is displayed in fig. 3. 
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Figure 2 In the discretization that is used by LGM, special attention has been paid to the 
major streams, the Berkel and the Veense Goot. 
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Well no. 
Wl 
W2 
W3 
W4 
W5 

Topograghical coordinates 
(226025, 464565) 
(225850, 464480) 
(225170, 462945) 
(220600, 459450) 
(228155, 456760) 

Discharge (nityear) 
362988 
530823 
1874870 
1092041 
744110 

Table I Topographical coordinates and discharges of the pumping wells. 
W3 is pumping station Lochern 
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Figure 3 Isohypse pattern in the aquifer. The head field was computed with LGM. The 
equipotential lines have been drawn by ECOWELL. 

ANALYSIS OF DISPERSION WITH ECOWELL 

4.1 Preliminaries 

ECOWELL can only be applied to strictly 2-dimensional systems: it cannot deal with 
multi-layer systems. Therefore we slighty adapt the output of LGM. We neglect the multi­
layer structure and treat the aquifer as one phreatic system. The conductivity in a nodal 
point is defined as the average of the conductivity in the four layers. The average conduc­
tivity varies between 18 mid and 22.5 mid. Because the hydraulic head in the four layers 
is equal, the velocity field that is computed with the average conductivities describes the 
mean flow in the aquifer. Also the discretization has to be modified. ECOWELL uses a 
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network of triangular elements. We have split all quadrangular elements in the LGM-
network into two triangles. 

One of the assumptions behind ECOWELL is that the 2D flow is divergence free, 
which implies that the flow is not affected by recharge. Due to infiltration of rainwater 
and drainage from streams, the groundwater flow near Lochem is obviously not divergence 
free. Nevertheless, we expect that in the parts of the region where the effect of recharge is 
small, ECOWELL may provide a good impression of the effect of dispersion on the 
transport of a contaminant. One should be aware of the fact that when the recharge is 
large (e.g. close to a stream) unreliable results will be obtained. 

4.2 Stagnation points and separating streamlines 

With ECOWELL the stagnation points in the flow have been determined. Six stagnation 
points were found: (in mathematical terms) four sadlle points and two negative attractors. 
By backward integration from the saddle points the separating streamlines were determi­
ned (fig. 4). To decide with which well a stagnation point is connected also the streamli­
nes leading away from the stagnation points were determined. For wells Wl and W2 no 
stagnation points were found. Most probably the stagnation points for Wl and W2 are 
outside the region. Furthermore the discretization near Wl and W2 should be refined. 
Because we are primarily interested in contaminant transport toward pumping station 
Lochem (W3) we have not carried out these steps. 

Before we have analysed the effect of dispersion on the transport of a contaminant 
towards pumping station Lochem, we have used ECOWELL to compute some advective 
travelling time zones (fig. 5). 
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Figure 4 Stream pattern and catchment areas. 
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Figure 5 Advective traveling time contours: T^, = 1, 10, 25, 100, 250 year. 

43 The effect of dispersion on arrival fractions and arrival times 

In practice the values of the longitudinal and transversal dispersivities are not exactly 
known. Dispersivities based on from laboratory experiments do not apply to field scale 
transport; fields scale dispersivities are a few orders of magnitude larger than those 
observed at laboratory scale. However, the results of field experiments are of low reliablity 
(Gelhar, 1986). At best, it is possible to indicate a range within which dispersivities may 
vary. Therefore to get an impression of what the effect of dispersion might be, the 
transport of a contaminant should be computed for various values of the dispersivities. 

We have analysed the effect of dispersion on the ultimate arrival fraction and 
arrival time at pumping station Lochern for aL=1.0 m and ^=0.1 m (fig. 6abc) and for 
aL=10.0 m and ^=1.0 (fig. 6def). In fig. 6a and 6d some contours of equal arrival fraction 
(or probability) have been drawn. Along the separating streamline on the left hand side of 
the stagnation point the asymptotic approximations are smooth. However, along the 
separating streamline on the right hand side of the stagnation point the contours are very 
irregular, especially along the part where the separating streamline passes the Berkel 
closely. Along this part the flow velocity is very low and highly divergent. Because of the 
low velocity the term q(p) (chapter 2, (6.14)) becomes small, so that the width of the 
error-function (chapter 2, (6.13)) that describes the transition of the arrival probability 
from 1 to 0 increases. The same effect is observed in the arrival time contours. Since the 
flow is highly divergent the asymptotic method is inaccurate in the neighbourhoud of this 
separating streamline. 

Protection zones are often based on 1, 10 and 25 year mean travelling zones. 
However, due to dispersion a considerable fraction of a contaminant may reach the well 
before its mean arrival time 7*1', so that mean arrival time contours may be unreliable 
measures for the protection zone. In the Technical Documentation of ECOWELL we have 
derived an approximation for the first arrival time x^n in which the variance in the arrival 
time due to dispersion is taken into account. We have shown that before T^,, (Chapter 4, 
eq. (36) and Appendix B) at most a 5.10"5 fraction of a contaminant will reach the well. 
So r^n may be a more reliable measure for the delineation of protection zones than 7^. 
Therefore in fig. 6c and 6f we have drawn contours of xmin. Examples of arrival time 
distributions for a contaminant spilled in (226500, 461500) are shown in fig. 7. The figure 
clearly illustrates that dispersion may cause large spreading in the arrival time at the well. 
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Fig. 5 In a, b, c, flL=1.0 m and a^O.l m. In d, e, f, aL=10.0 m and o,.=1.0 m 
a and d: Arrival fraction/probability contours: u = 0.001, 0.25, 0.75. 0.999. 
b and e: Mean/Expected arrival time contours: 7*'*= 1, 10, 25, 100, 250 year, 
c and f: First arrival time contours: Tmin = 1, 10, 25, 100, 250 year. 
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ARRIVAL TIME DISTRIBUTION ARRIVAL TIME DISTRIBUTION 
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Fig. 7 Arrival time distributions at pumping station Lochern for a contaminant spilled in (226500, 
461500). In fig. (a) aL=1.0 m and ^=0.1 m. In fig. (b) aL=10.0 m and a^l.O m. 

CONCLUSIONS 

The simulations confirmed that ECOWELL is a flexible and easy to use package for 
groundwater modellers. We were able to run ECOWELL after only slight modification of 
the conductivities and the finite element mesh used by the flow model LGM. In most 
applications the values of the dispersivities are uncertain. Because ECOWELL provides its 
results quickly, it is a helpful tool to analyse the effect of dispersion for various values of 
the dispersivities. 

Close to the river the Berkel the results of ECOWELL are unreliable. This is not 
surprising. ECOWELL is based on the assumption that the flow is divergence free. 
Therefore only realible results may be expected when the recharge is small. 

From fig. 6a and 6d we may conclude that due to transversal dispersion even from 
about 300 m outside the catchment area contamination may reach pumping station 
Lochern. However, from the time-contours it is seen that it will take more than 100 years 
before such contamination reaches the well. Fig. 6c and 6f illustrate the effect of dispersi­
on on the arrival time of a contaminant. The radii of the 1, 10 and 25 year first arrival 
time contours are about 200 m larger than the corresponding contours of the mean arrival 
time. 
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SAMENVATTING 

In grote delen van de wereld is grondwater de belangrijkste bron voor de drinkwatervoor­
ziening. In Nederland wordt ongeveer 70% van het drinkwater uit de grond opgepompt. 
Bij het beheersen van de kwaliteit van het grondwater vormen wiskundige modellen een 
onmisbaar hulpmiddel. Hiermee kan een voorspelling verkregen worden van het transport 
van een verontreiniging naar een pompstation. Veel huidige modellen houden slecht 
rekening met het meebewegen van een verontreiniging met de macroscopische stroming 
(advectie). Bij het vaststellen van een beschermingsgebied gaat men dan uit van het 
zogenoemd intrekgebied rond een pompstation. De werkelijkheid is echter gecompli­
ceerder. Op microscopische schaal maken deeltjes kronkelige bewegingen door de poriën 
van de grond, waardoor de verspreiding in zowel longitudinale als transversale richting 
versterkt wordt. Dit proces heet dispersie. Als gevolg van dispersie kan een fractie van een 
verontreiniging, welke buiten het intrek gebied werd losgelaten, de grens van het intrekge­
bied passeren en alsnog worden opgepompt. Longitudinale dispersie beïnvloedt de tijd dat 
deeltjes in de put blijven sijpelen. 

Er bestaan reeds eindige elementen en eindige differentie methoden om het 
advectie-dispersie model op te lossen. Een nadeel van deze numerieke methoden is dat ze 
een groot computer geheugen en veel rekentijd vereisen. Bovendien kunnen discretisatie-
fouten tot grote onnauwkeurigheden leiden, vooral als de dispersie heel klein is. Een 
alternatief is gevonden in de random walk methode, welke de stochastische wandeling van 
de deeltjes door de poriën nabootst. Door de wandeling vele malen te herhalen wordt een 
benadering verkregen voor de fractie van de deeltjes die in de put komen, alsmede voor de 
aankomsttijdenverdeling. Deze methoden is echter erg tijdrovend. 

Door collega-onderzoekers van de vakgroep Wiskunde van de Landbouwuniversi­
teit is een begin gemaakt met de ontwikkeling van een analytische benaderingsmethode die 
bovengenoemde nadelen niet heeft. De methode gaat er van uit dat de macroscopische 
stroming in de waterhoudende formatie (aquifer) reeds bekend is. Deze stroming wordt 
verondersteld voornamelijk stationair en horizontaal te zijn. Met behulp van perturbatie 
technieken wordt het effect van dispersie berekend. In dit proefschrift wordt de methode 
verder ontwikkeld. 

In hoofdstuk 1 bestuderen we het transport van een stof die (als gevolg van radioactief 
verval of chemische reacties) exponentieel afgebroken wordt. Allereerst leiden we 
randwaardeproblemen af voor de kans en de te verwachten tijd waarop een deeltje via een 
stochastische wandeling de rand van een gebied bereikt. De achterwaartse Kolmogorov 
vergelijking speelt hierin een sleutelrol. Gegeven de huidige plaats van een deeltje 
beschrijft de achterwaartse vergelijking de plaats waar een deeltje vandaan gekomen kan 
zijn. Deze randwaarde problemen zijn toegepast op een gebied met een put en vervolgens 
asymptotisch opgelost. De dispersie wordt beschouwd als een verstoring die in eerste 
instantie verwaarloosd kan worden. Rond een scheidende stroomlijn, die het intrekgebied 
van een put begrenst, zal transversale dispersie echter een belangrijke rol spelen. In een 
grenslaag rond een scheidende stroomlijn is dus een correctie nodig. Hiertoe voeren we 
langs de scheidende stroomlijn nieuwe coördinaten in. Met storingstechnieken is aange-
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toond dat de correctie uit error-achtige functies bestaat. Omdat longitudinale dispersie 
slechts een zeer klein effect heeft op de aankomstfractie en gemiddelde aankomsttijd, kan 
deze nog steeds buiten beschouwing worden gelaten. De asymptotische benadering zijn 
vergeleken met de resultaten van random walk simulaties waarin deeltjes op exponentieel 
verdeelde tijdstippen worden afgebroken. De overeenkomst is zeer goed. 

In hoofdstuk 2 leiden we benaderingen af voor de variantie van de aankomsttijd en voor 
de aankomsttijden verdeling. Nu is het van belang om ook het effect van longitudinale 
dispersie mee te nemen. We ontwikkelen de momenten van de aankomsttijd in een 
machtreeks van de longitudinale dispersiecoëfficiënt. De termen van de machtreeks kunnen 
iteratief bepaald worden. Longitudinale dispersie is een 1-dimensionaal proces; een deeltje 
verandert hierdoor niet van baan. De waarschijnlijkheidsverdeling voor de aankomst van 
een deeltje aan het eindpunt van een kolom met constante snelheid gebruiken we als 
parameterisatie voor de aankomsttijdenverdeling in de put. Rond een scheidende stroomlijn 
moet opnieuw het effect van transversale dispersie worden meegenomen. De transversale 
dispersie maakt het verspreidingsproces essentieel 2-dimensionaal. Uit de in hoofdstuk 1 
gevonden benaderingen leiden we een waarschijnlijkheidsverdeling af voor het over­
springen van deeltjes naar een nabijgelegen stroombaan. Gebruikmakend van deze waar­
schijnlijkheidsverdeling berekenen we de verwachtingswaarde van de benaderingen die 
horen bij de 1-dimensionale dispersie processen langs de stroombanen waar een deeltje 
naar toe kan springen. De aldus verkregen benaderingen blijken opnieuw goed overeen te 
stemmen met de resultaten van random walk simulaties. 

Hoofdstuk 3 is een meer algemeen hoofdstuk. We bestuderen de transportvergelijkingen 
voor een stof waarvan de deeltjes afwisselend een tijdje aan de poriewanden geadsorbeerd 
zijn en vrij zijn (kinetische adsorptie). Door gebruik te maken van het stochastisch 
karakter van de kinetiek tonen we aan de advectie-dispersievergelijking en de adsorptie 
isotherm ontkoppeld kunnen worden. Omdat advectie en dispersie alleen in de vrije fase 
plaatsvinden, kan het concentratie profiel van de adsorberende stof geschreven worden als 
convolutie van het concentratie profiel van een niet-adsorberende stof en een verblijftijden-
verdeling voor deeltjes in de vrije fase. Hiermee kan de in hoofdstuk 2 gevonden 
aankomsttijdenverdeling gegeneraliseerd worden voor een kinetisch adsorberende stof. Ook 
demonstreren we hoe de methode simultaan met een numeriek transport model gebruikt 
kan worden. Vooral als het stroompatroon gecompliceerd is betekent de methode grote 
winst. Bij verandering van de adsorptie coëfficiënten hoeven de numerieke berekeningen 
niet opnieuw gemaakt te worden, slechts de postprocesslag voor het meenemen van de 
kinetiek dient te worden herhaald. 

Hoofdstuk 4 is de technische documentatie van het computer programma ECOWELL. In 
dit programma zijn de resultaten van het onderzoek geïmplementeerd. ECOWELL moet 
gebruikt worden in combinatie met een eindige elementen of eindige differentie model 
voor grondwaterstroming. Zo'n model berekent het potentiaalveld voor een waterhoudende 
formatie waarin één of meerdere putten en bronnen werkzaam zijn. Dit potentiaalveld is 
input voor ECOWELL. Met ECOWELL kan het effect van dispersie, adsorptie en afbraak 
op het transport naar een put berekend worden. We beschrijven hoe ECOWELL de 
stagnatiepunten en de bijbehorende scheidende stroomlijnen in het stroompatroon bepaald 
en hoe de transformatie naar grenslaag coördinaten wordt uitgevoerd. Ook geven we 
schattingen voor het allereerste moment waarop een puntverontreiniging in de put begint te 
sijpelen, alsmede voor het moment waarop vrijwel alles is opgepompt. ECOWELL kan 
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worden toegepast bij 
het zo nauwkeurig mogelijk afbakenen van een grondwater beschermingsgebied, 
het ontwerpen van een schoonspoel-strategie van een vervuilde aquifer, 
het uitvoeren van een risico-analyse, bijv. betreffende het plaatsen van een afvalde-
pot op een zekere locatie, 
het schatten van de effectieve poreusiteit en/of dispersiviteiten, door in tracertests 
theoretisch en waargenomen doorbraak curves te fitten. 

In hoofdstuk 5 beschouwen we een praktijk voorbeeld. We demonstreren hoe ECOWELL 
toegepast kan worden bij afbakenen van een beschermingsgebied rond pompstation 
Lochern in de Achterhoek. Het stroompatroon rond Lochern is berekend met het eindige 
elementen pakket LGM (Landelijk Grondwater Model) van het RIVM. Met ECOWELL 
hebben we het effect van dispersie bestudeerd op de aankomstfractie van een verontreini­
ging in het pompstation en op de 1, 10, 25, 100, en 250-jaars aankomsttijden zones. 
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