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Stellingen 

De suggestie dat een conformationele overgang tussen een type I- en een type I' turn 

plaatsvindt, en dat deze een rol speelt bij het bewegen van de biotinylgroep van het 

biotine carboxyl carrier eiwit (BCCP) tussen de verschillende aktieve centra van het 

acetyl-CoA carboxylase, is niet gebaseerd op enige experimentele waarneming of 

analogic 

Athappilly, F.K. & Hendrickson, W.A. (1995) Structure 3,1407-1419 

2. De hogere mobiliteit, tijdens natieve gel-electroforese, van gelipoyleerde lipoyl-

domeinen ten opzichte van de niet-gelipoyleerden, is het gevolg van het verdwijnen 

van een positieve lading, en wordt niet veroorzaakt door een conformatie 

verandering die leidt tot een compactere eiwitstructuur. 

Liu, S., Baker, J.C., Andrews, P.C. & Roche, T.E. (1995) Arch. Biochem. Biophys. 316,926-940. 

3. Men mag wel vaker, zoals Havel, van geluk spreken in wetenschappelijke 

publicaties. 

Havel, T.F. (1991) Prog. Biophys. Molec. Biol. 56, 43-78. 

4. Berekende 1H-NMR chemische verschuivingen kunnen nog niet worden gebruikt 

om de kwaliteit van eiwitstructuren te meten. 

Williamson, M.P., Kikuchi, J. & Asakura, T. (1995) /. Mot. Biol. 247,541-546. 

5. De mathematische beschrijving, door Forman-Kay et al., van de fi-evolutie van de 

magnetisatie in een HMQC-/ experiment voor een multiplet gecentreerd rond de 

nulfrequentie, is onjuist. 

Forman-Kay, J.D., Gronenborn, A.M., Kay, L.E., Wingfield, P.T. & Clore, G.M. (1990) 

Biochemistry 29, 1566-1572. 
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6. De meeste stellingen zijn geen stellingen, maar waarheden als koeien. 

7. Het afschaffen van de dienstplicht zal het verzet tegen militairisme, oorlog en 

geweld doen afnemen. 

8. Als men zegt geen tijd te hebben wordt veelal bedoeld dat men geen prioriteit heeft. 

Prioriteit zou daarom volgens de nieuwe spellingsregels als prioritijd geschreven 

moeten worden. 

9. Een gepopulariseerde Nederlandse samenvatting voor niet-ingewijden in een 

proefschrift roept bij hen in het algemeen meer vragen op dan worden beantwoord. 

10. De maatregel van NWO dat een OIO pas dan wordt opgevolgd als voor zijn/haar 

voorganger geen wachtgeld meer hoeft te worden betaald, kost op termijn meer geld 

dan zij oplevert. 

11. Het opzuiveren van eiwitten leidt tot niets. 

Stellingen behorende bij het proefschrift: 

'Solution structures of lipoyl domains of the 2-oxo acid dehydrogenase complexes 

from Azotobacter vinelandii. Implications for molecular recognition' 

Axel Berg 
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CHAPTER 1 

General introduction: 2-oxo acid dehydrogenase complexes 

Introduction 

The 2-oxo acid dehydrogenase complexes are commonly regarded as classic 

examples of multienzyme complexes. Ever since the pioneering work of the group of 

Lester J. Reed (Reed, 1974), these complexes have expansively disclosed many of their 

secrets, providing currently a wealth of information on macromolecular structure, assembly 

and symmetry, active-site coupling, conformational mobility, substrate specificity and 

metabolic regulation (Roche & Patel, 1989; Patel et al, 1996). In particular, by effectively 

combining protein biochemistry with modern biophysical and genetic techniques, which 

are currently undeniable indispensable in contemporary biochemistry, the knowledge of 

structural and mechanistic properties of these complexes of gigantic size (0.7 - -14 MDa) 

has expanded largely during the last decade. Major contributions to this field, i.e. on 

bacterial complexes, have been made by the laboratories of Richard N. Perham (Perham et 

al, 1988; Perham & Packman, 1989; Perham, 1991), John R. Guest (Miles & Guest, 

1987a; Guest et al, 1989), Aart de Kok and Wim GJ. Hoi (Mattevi et al, 1992a; De Kok, 

1996). 

Multienzyme complexes are defined as noncovalent aggregates of enzymes that 

catalyse two or more consecutive steps in a metabolic sequence (Reed, 1974). The purpose 

of multienzyme complexes appear to be manifold. Reaction intermediates can be forced to 

complete the intended reaction sequence instead of escaping to conversion by enzymes that 

compete for the same reaction intermediate (substrate channelling) (Reed, 1974; Hammes, 

1981). This is particular efficient if intermediates are covalently bound to the complex, like 

in the cases of the 2-oxo acid dehydrogenase complexes and the fatty acid synthases. 

Besides, by sequestering reactive intermediates, their conversion by undesired chemical 

reactions is also prevented (Perham, 1975). Another advantage of multienzyme complexes 

is that the catalytic activity can be enhanced because the local substrate concentrations are 

increased significantly (Reed, 1974). Since the enzyme activities in the complex are 

coupled, also better and more efficient regulation of the overall reaction is possible. 



Chapter 1 

The large attention for the family of 2-oxo acid dehydrogenase multienzyme 

complexes originates certainly, at least in part, from the key positions they occupy in 

energy metabolism. The pyruvate dehydrogenase complex (PDHC) catalyses the 

irreversible oxidative decarboxylation of pyruvate to acetyl-CoA, linking the glycolysis 

with the tricarboxylic acid cycle. The 2-oxoglutarate dehydrogenase complex (OGDHC) 

converts 2-oxoglutarate into succinyl-CoA as part of the tricarboxylic acid cycle itself, and 

the branched-chain 2-oxo acid dehydrogenase complex (BCDHC) catalyses an irreversible 

step in the catabolism of the branched-chain amino acids by converting the 2-oxo acids 

derived from valine, leucine and isoleucine. 

In this introduction I will review mainly developments concerning the structural 

and mechanistic features of the 2-oxo acid dehydrogenase complexes, with special 

emphasis on the structure and role of the lipoyl domains in the complex. Developments on 

genetic defects and regulation of the eukaryotic complexes have been reviewed elsewhere 

(Yeaman, 1989; Patel & Roche, 1990; Chuang etal, 1991; Patel etal., 1992; Behal etal, 

1993; Patel & Harris, 1995). 

Structure and mechanism 

2-Oxo acid dehydrogenase complexes are composed of multiple copies of at least 

three different enzymes, which are the major catalytic components: a substrate specific 2-

oxo acid dehydrogenase (El), a dihydrolipoyl acyltransferase (E2), and a common 

lipoamide dehydrogenase (E3). The complex-specific components are commonly 

abbreviated according to the origin of their complex, where Elp, Elo and Elb, and E2p, 

E2o and E2b, indicate the El and E2 components of PDHC, OGDHC, and BCDHC, 

respectively. The three components catalyse the set of sequential reactions as shown in 

Figure 1, involving three prosthetic groups (thiamin diphosphate (ThDP), lipoic acid and 

flavin adenine dinucleotide (FAD)), and two cofactors (NAD+ and CoA). The El 

component catalyses the oxidative decarboxylation of the 2-oxo acid and the subsequent 

reductive acylation of lipoic acid. The lipoic acid is covalently bound in an amide linkage 

to the Ne group of a specific lysine residue of the E2 component (Nawa et al., 1960), 

forming the so-called lipoyl group. The acyl group is then transferred to CoA, catalysed by 

the E2 component. Finally, the reduced lipoyl group is reoxidised by the E3 component 

with the concomitant reduction of NAD+. 

In addition to the three major catalytic components, mammalian and yeast PDHCs 

also contain a component called protein X (De Marcucci & Lindsay, 1985), which is 

involved in the binding of the E3 component to E2 (Neagie & Lindsay, 1991; Lawson et 

10 



General introduction: 2-oxo acid dehydrogenase complexes 

al, 1991a). Furthermore, eukaryotic PDHC and BCDHC contain an El-specific kinase and 

phosphatase, which are involved in regulation of the complex activity by a 

phosphorylation/dephosphorylation mechanism (Linn etal., 1969; Patel & Roche, 1990). 

NAD 

[ThDP] 

FAD 
HSSH 

f E3 NADH + H 

R-C-COOH + NAD + CoA-SH ->RC-S-CoA + NADH + H + CO2 

Figure 1. Reaction scheme for the oxidative decarboxylation of 2-oxo acids by the 2-oxo acid dehydrogenase 
complexes (Reed, 1974). R = CH3 for the pyruvate dehydrogenase complex (PDHC), R = CH2CH2COOH 
for the 2-oxoglutarate dehydrogenase complex (OGDHC), and R = CH(CH3)2, CH2CH(CH3)2 or 
CH(C2H5)(CH3) for the branched-chain 2-oxo acid dehydrogenase complex (BCDHC). ThDP, thiamin 
diphosphate; Lip, lipoic acid. 

The structural core of all 2-oxo acid dehydrogenase complexes is formed by an 

aggregate of the E2 component. The E2 components of PDHC from Gram-negative 

bacteria, and the OGDHC and BCDHC from all sources, except BCDHC from Bacilli 

(Perham & Packman, 1989), are assemblies of 24 identical subunits arranged with 

octahedral symmetry (Perham, 1991). The PDHC of mammals, yeast and Gram-positive 

bacteria form a core of 60 E2 subunits with icosahedral symmetry. Multiple copies of the 

peripheral components El and E3 bind tightly but noncovalently to the E2 core. Together 

this results in multienzyme complexes of enormous size (-5-14 MDa), which can easily be 

observed as large particles in electron micrographs (Oliver & Reed, 1982). A well-known 

exception is the PDHC core from Azotobacter vinelandii, which dissociates into functional 

11 



Chapter 1 

trimers upon binding of the peripheral components to the E2 component (Bosma et al., 

1984). 

The El component (2-oxo acid dehydrogenase) catalyses the rate-limiting step in 

the overall complex reaction, the reductive acylation of lipoyl groups (Cate et al, 1980). It 

is the least-characterised enzymatic component of the complex, and no structural 

information of any El component at atomic resolution is yet available. The El component 

exists in two forms, dependent on the type of complex and its symmetry (Perham, 1991). A 

homodimeric form (0C2) is found in PDHC and OGDHC with octahedral symmetry, and a 

heterodimeric ((X2P2) form is found in all BCDHCs, and in PDHCs with icosahedral cores. 

Despite a remarkable absence of sequence similarity among the different El subunits (e.g. 

Elp and Elo from E. coli (Stephens et al, 1983a; Darlison et al, 1984)), a common 

structural motif for a ThDP-binding site was proposed in all sequences of El components 

and other ThDP-dependent enzymes (Hawkins et al, 1989). From the recent determination 

of the three-dimensional structures of a number of different ThDP-dependent enzymes, i.e. 

transketolase (Lindqvist et al, 1992), pyruvate oxidase (Muller & Schulz, 1993) and 

pyruvate decarboxylase (Dyda et al, 1993), this motif was shown to being involved in 

binding the metal ion and the diphosphate group (Lindqvist & Schneider, 1993; Muller et 

al, 1993). The lack of structural information on El components seems partly due to the 

limited availability of a stable form of the enzyme. There are only a small number of 

reports on the recombinant expression of functional heterodimeric El (Wynn et al, 1992; 

Lessard & Perham, 1994; Hester et al, 1995), and only the first report this year on the 

expression of a functional homodimeric El (Berg et al, 1996a). However, the work 

mentioned above seems promising enough to expect new structural information shortly. 

In marked contrast with the El component, many structural and mechanistic details 

for the E3 component (lipoamide dehydrogenase) are available. The E3 component is 

usually common to all 2-oxo acid dehydrogenase complexes from the same source. 

Exceptions occur e.g. in Pseudomonas putida, where three different E3 enzymes have been 

demonstrated (Palmer et al, 1991), and in Enterococcus faecalis where two Ipd genes have 

been found, one related to the PDHC (Allen & Perham, 1991) and one of unknown 

function but probably related to BCDHC (Claibom et al, 1994). On the other hand, it has 

been shown that in pea leaf mitochondria the PDHC and the glycine decarboxylase 

complex share the same lipoamide dehydrogenase (Bourguignon et al, 1996). Lipoamide 

dehydrogenase belongs to the family of flavin-dependent disulphide oxidoreductases and is 

a homodimeric enzyme. Four three-dimensional structures of E3 components have been 

solved by means of X-ray crystallography: E3 from A. vinelandii (Schierbeek et al, 1989; 

Mattevi et al, 1991), Pseudomonas fluorescens (Mattevi et al, 1993a), Bacillus 

12 



General introduction: 2-oxo acid dehydrogenase complexes 

stearothermophilus in complex with the PDHC binding domain (Mande et al, 1996), and 

LPD-val from P. putida in complex with NAD+ (Mattevi et al., 1992b). The enzyme 

catalyses the regeneration (oxidation) of the dihydrolipoyl group of the E2 component, 

using a ping-pong mechanism (Massey, 1960). In the first step the electrons are transferred 

from the reduced lipoyl group to a reactive disulphide group of the enzyme. In the second 

step the electrons are transferred via the FAD group to the final electron acceptor NAD+. 

Further details regarding structural and mechanistic properties of this enzyme are beyond 

the scope of this introduction and can be obtained elsewhere (Massey, 1960; Williams, 

1992; De Kok & van Berkel, 1996). 

The acyltransferase component 

The acyltransferase (E2) components of all 2-oxo acid dehydrogenase complexes 

are multidomain proteins sharing a common but extraordinary design (Figure 2). Three 

different types of functional and separately folded domains have been disclosed from 

limited proteolysis studies (Bleile et ah, 1979; Bleile et al, 1981; Packman et al, 1984a; 

Packman et al, 1984b; Chuang, 1985; Hanemaaijer et al, 1987; Packman & Perham, 

1987), amino acid sequence comparisons (Russell & Guest, 1991) and functional 

expression of separate domains by means of genetic engineering (Miles & Guest, 1987b; 

Dardel et al, 1990; Schulze et al, 1991a; Hipps & Perham, 1992; Berg et al, 1994; Meng 

& Chuang, 1994). 

(mfcoc E 2 

Lipoyl Peripheral Catalytic domain 
domain(s) subunit-

binding 
domain 

| • h"f H ~l protein X 

Lipoyl E3-binding E2-binding domain 
domain domain 

Figure 2. Schematic representation of the structural domains of the E2 components and protein X. The 
domains are connected by flexible linker segments (thick line). The approximate position of the lipoylation 
site in the lipoyl domains is indicated by a dot. PDHCs contain one, two or three lipoyl domains depending 
on the source, OGDHCs and BCDHCs contain only one lipoyl domain per E2 chain. 
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Chapter I 

The E2 polypeptide chain contains at the N-terminus one to three lipoyl domains (~ 80 

amino acid residues), each containing a covalently bound lipoyl group, followed by a 

peripheral subunit-binding domain (~ 35 amino acid residues) involved in the binding of 

the E3 and/or El components to the E2 core. The C-terminal catalytic domain (~ 29 kDa) 

accommodates the acyltransferase active site and the intersubunit binding sites responsible 

for the formation of the multimeric (24 or 60 subunit) core of the complex. The domains 

are linked by long (15 to 40 amino acid residues) flexible linker segments rich in alanine, 

proline and usually charged residues. 

All OGDHCs and BCDHCs known so far contain a single lipoyl domain per E2 

chain. In PDHCs, E2 components with one, two or three lipoyl domains are found. For 

example, E. coli (Stephens et al, 1983b) and A. vinelandii E2p (Hanemaaijer et al, 1988a) 

have three lipoyl domains, Enterococcus faecalis (Allen & Perham, 1991), Haemophilus 

influenzae (Fleischmann et al, 1995), Alcaligenes eutrophus (Hein & Steinbiichel, 1994), 

Acholeplasma laidlawii (Wallbrandt et al., 1992), Neisseria meningitidis (Ala'Aldeen et 

al, 1995) and most mammalian E2ps (Thekkumkara et al, 1988) possess two lipoyl 

domains, and Bacillus subtilis (Hamila et al, 1990), B. stearothermophilus (Borges et al, 

1990) and yeast E2p (Niu et al, 1988) contain only one lipoyl domain. The lipoyl domains 

of the same E2p chain show a very high amino acid sequence identity. It appears that there 

is no obvious correlation between the number of lipoyl domains per E2 chain and the 

source or symmetry of the E2 core (Perham, 1991). The structure, function, expression and 

lipoylation of lipoyl domains are discussed in other paragraphs below. 

The isolated peripheral subunit-binding domain (-35 amino acid residues) is one of 

the smallest proteins having a stable globular fold without the help of disulphide bridges or 

prosthetic groups (Brocklehurst et al, 1994). The solution structures of the chemically 

synthesised binding domains of E. coli E2o (Robien et al, 1992) and B. 

stearothermophilus E2p (Kalia et al, 1993), and the crystal structure of the latter binding 

domain in complex with the E3 component (Mande et al., 1996), have been solved. The 

global fold of the domain comprises two almost parallel a-helices, a short helix and a short 

and a long more disordered loop (Figure 3). The binding domain of A. vinelandii and B. 

stearothermophilus E2p seems to be involved in binding of both the E3 and El 

components (Hanemaaijer et al, 1987; Packman et al, 1988), as is the case for all 

BCDHCs (Wynn et al, 1992). In other complexes with octahedral cores, like OGDHC 

from E. coli (Packman & Perham, 1986), the binding domain is responsible for binding 

only the E3 component. In eukaryotic PDHCs, the binding domain is involved in binding 

of the El component (Rahmatullah et al, 1989a; Lawson et al, 1991b), whereas the E3 

14 



General introduction: 2-oxo acid dehydrogenase complexes 

component is bound to the complex by protein X (Rahmatullah et al, 1989a; Neagle & 

Lindsay, 1991; Lawsonefa/., 1991a). 

Helix II 

Helix I 

Figure 3. Schematic drawing (Kraulis, 1991) of the peripheral subunit-binding domain of B. 
stearothermophilus E2p (Kalia et al., 1993), indicating its overall fold and the elements of secondary 
structure. 

The structural core of all 2-oxo acid dehydrogenase complexes is formed by 

aggregation of the C-terminal catalytic domain of the E2 polypeptide chain. From early 

electron microscopy studies (Reed, 1974) and crystallographic symmetries observed in X-

ray diffraction analysis (DeRosieref al., 1971; Fuller et al., 1979), a cubic or dodecahedral 

core formed by trimeric E2 units was already proposed (Reed & Hackert, 1990). Although 

for some time tetrameric E2 building blocks were suggested for the A. vinelandii E2p 

(Bosma et al., 1984; Hanemaaijer et al., 1989), the determination of the crystal structure of 

the catalytic domain of A. vinelandii E2p (Mattevi et al., 1992c, 1993b) clearly showed a 

hollow 24-meric truncated cube with an edge of 125 A, with trimers at its vertices (Figure 

4). Based on the sequence similarity among E2p amino acid sequences, the same trimeric 

building blocks are also assumed for complexes with 60-meric dodecahedral cores 

(Mattevi et al, 1992a, 1992c), for which no crystal structure is yet available. 

The determination of the crystal structure of the catalytic domain revealed a high 

structural similarity between the trimers and chloramphenicol acetyltransferase (CAT), as 

predicted earlier on the basis of sequence homology between CAT and E. coli E2p (Guest, 

1987). The active site is located at each interface of two E2 subunits in a trimer, forming a 

channel where lipoamide enters from the outside and CoA arrives from the inside of the 

cube. Guest (1987) also suggested for the E2p acetyltransferase reaction a similar reaction 

mechanism to CAT, with an active-site histidine residue acting as a general base. Since 

15 
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then, a number of site-directed mutagenesis experiments on different E2 components of 

various sources have confirmed and refined the proposed reaction mechanism (Griffin & 

Chuang, 1990; Russell & Guest, 1990; Russell et al, 1992; Meng & Chuang, 1994; Hendle 

et al, 1995), with the single exception of yeast E2p, where substitution of the proposed 

active-site histidine by alanine or asparagine did not have a significant effect on the 

activity (Niu et al, 1990). 

Figure 4. Ca-trace (Kraulis, 1991) of the cubic catalytic core domain of A. vinelandii E2p (Mattevi et al, 
1992c). 

The involvement of the histidine in the reaction mechanism has been confirmed by the 

crystal structures of binary and ternary complexes of the A. vinelandii catalytic domain 

with the substrates lipoamide and CoA (Mattevi et al, 1993c). 

The separate domains in the acyltransferase chain are connected to each other by 

flexible polypeptide segments of unusual composition with a large majority of alanine, 

proline, and usually charged amino acid residues. Their structure, mobility and role in 

active-site coupling will be discussed in the paragraph 'active-site coupling and role of 

linkers'. 

Related complexes 
In this intervening paragraph, a brief description of several multienzyme complexes 

and multicomponent enzymes that show some structural or functional relationship to the 2-

oxo acid dehydrogenase complexes is given, aimed at a better understanding of several 

comparisons that are made with these complexes elsewhere in this introduction. The 
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General introduction: 2-oxo acid dehydrogenase complexes 

glycine decarboxylase complex, the acetoin dehydrogenase enzyme system, the acetyl-

coenzyme A carboxylase and the fatty acid synthase are considered. 

The glycine decarboxylase complex, also known as the glycine cleavage system, 

catalyses the reversible oxidative decarboxylation and deamination of glycine yielding 

carbon dioxide, ammonia, NADH, and 5,10-methylene-5,6,7,8-tetrahydropteroyl-glutamic 

acid (CH2H4PteGlun) (Douce et al, 1994). The latter component is recycled by serine 

hydroxymethyltransferase, which is linked to the complex. The glycine decarboxylase 

complex consists of four protein components, named P-, H-, T- and L-protein. The P-

protein, a homodimer containing pyridoxal phosphate, catalyses the decarboxylation of 

glycine and transfer of the remaining methylamine to the lipoyl group of the H-protein. 

The T-protein catalyses the transfer of the methylene carbon from the H-protein to 

H4PteGlun forming CH2H4PteGlun with the release of ammonia. Finally, the reduced lipoyl 

group of the H-protein is reoxidised by the L-protein, a lipoamide dehydrogenase. The H-

protein couples the activities of the multienzyme complex enzymes with its covalently 

bound lipoyl group, analogous to the lipoyl domains of 2-oxo acid dehydrogenase 

complexes. The structure of the H-protein has shown to be similar to the lipoyl domain 

structures (see below). 

The acetoin dehydrogenase enzyme system catalyses the cleavage of acetoin to 

acetyl-CoA and acetaldehyde, comparable to the oxidative decarboxylation of 2-oxo acids 

by the 2-oxo acid dehydrogenase complexes (Opperman et al, 1989). This multienzyme 

complex also comprises multiple copies of three enzymes, a ThDP-dependent acetoin 

dehydrogenase (El), a dihydrolipoamide acetyltransferase (E2), and lipoamide 

dehydrogenase (E3). The nucleotide-derived amino acid sequences of the acetoin 

dehydrogenase complex components of the Gram-negative bacteria Pelobacter 

carbinolicus (Opperman & Steinbuchel, 1994) and Alcaligenes euthrophus (Pfiefert et al, 

1991), and the Gram-positive bacterium Clostridium magnum (Kriiger et al, 1994) show a 

high similarity with each other and with the components of the 2-oxo acid dehydrogenase 

complexes. The El components of acetoin dehydrogenase enzyme systems are 

heterodimers, the E2 components have one or two lipoyl domains, and the E3 component 

was found to have an N-terminal lipoyl domain in C. magnum. No structural information 

on any of these components is yet available. 

Acetyl-CoA carboxylase catalyses the first committed step in long-chain fatty acid 

biosynthesis, converting acetyl-CoA to malonyl-CoA. It belongs to the family of biotin-

dependent carboxylases, which include also propionyl-CoA carboxylase, oxaloacetate 

decarboxylase, pyruvate decarboxylase and transcarboxylase (Toh et al, 1993). They are 

composed of three subunits: a biotin carboxylase, a biotin carboxyl carrier protein, and a 
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carboxyltransferase. The biotin carboxylase catalyses the ATP-dependent carboxylation of 

biotin using bicarbonate. Biotin is linked to the N£ group of a specific lysine residue of the 

biotin carboxyl carrier protein. It acts as a swinging arm to transfer the carboxyl group to 

the carboxyltransferase, much like the lipoyl domains of the 2-oxo acid dehydrogenase 

complexes. In acetyl-CoA carboxylase, the carboxyl group is finally transferred to acetyl-

CoA to form malonyl-CoA, catalysed by the carboxyltransferase subunit. The three-

dimensional structures of the E. coli biotin carboxylase and the biotin carboxyl carrier 

protein of acetyl-CoA carboxylase have been determined by X-ray crystallography 

(Waldrop et al, 1994; Athappilly & Hendrickson, 1995). It shows that the structures of the 

biotin carboxyl carrier protein and lipoyl domains are strikingly similar (see below). 

The fatty acid synthase system is considered here, because a swinging arm is 

involved in the catalytic mechanism (Hammes, 1981). The enzymes of fatty acid synthesis 

constitute a multienzyme complex, in which all reaction intermediates are bound to an acyl 

carrier protein. The acyl carrier protein contains a phosphopantetheine moiety covalently 

linked to the hydroxyl group of a serine residue. During catalysis, the acyl groups are 

bound via a thioester linkage to the -SH group of this prosthetic group, which serves as a 

swinging arm to deliver the acyl group at the different active sites. With the presence of a 

swinging arm the similarity with 2-oxo acid dehydrogenase complexes ends. There is no 

structural or sequential homology between the acyl carrier protein and lipoyl domains. 

Subunit assembly and quaternary structure 
The quaternary structure and the modes of binding of the individual components of 

2-oxo acid dehydrogenase complexes would be easiest assessed by crystal structures of the 

complete multienzyme complexes, but the elucidation of these will probably be for a long 

time, if not forever, just a wish. Naturally, large amounts of labour have been put into 

obtaining well-ordered crystals of complete complexes or of isolated E2 components, but 

so far without any success. Likely, the high mobility of the linker segments and lipoyl 

domains prevented the growth of crystals diffracting at atomic resolution (Mattevi et al., 

1992c). However, the approach of structure determination of the individual components, 

domains and linkers of the complexes (Perham, 1991; Mattevi et al, 1992a) has resulted 

recently in three-dimensional structures of various E3 components (see above) and of the 

three different domains of the E2 component (see above and below). Despite the fact that 

these tertiary structures have provided a wealth of new information and insights in many 

aspects of 2-oxo acid dehydrogenase complexes, a quaternary structure of the complex is 

of course not obtained by simply adding up these tertiary structures. But combining these 
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data with other biochemical data and electron microscopy studies could lead at least to an 

increased insight, although limited, into subunit assembly of these complexes. 

The quaternary structure of the E2 component has already been discussed, and has 

shown to being assembled from 24 or 60 subunits in octahedral and icosahedral complexes, 

respectively. Multiple copies of the El and E3 components bind to the E2 cores, but not in 

stoichiometric amounts. In E. coli PDHC, 12 El dimers bind to the edges of the octahedral 

core, whilst 6 E3 dimers bind in the 6 faces of the cube (Koike et al, 1963). The optimal 

Elo:E2o:E3 chain-stoichiometry for E. coli and A. vinelandii OGDHC have been 

estimated at 12:24:12 (Pettit et al, 1973; Bosma, 1984). An unusual exception to the 

organisation of PDHCs from Gram-negative bacteria is the PDHC from A. vinelandii. As 

isolated, it consists of a trimeric E2 core to which two El dimers and a single E3 dimer are 

bound (Schulze et al, 1992). With that it is the smallest 2-oxo acid dehydrogenase 

complex known (Mr ~ 700 kDa). Upon removal of the peripheral components the E2 

component aggregates to the common 24-meric cubic core with 432 symmetry. However, 

in the presence of CoA or acetyl-CoA, the cubic core does not dissociate upon addition of 

the peripheral components, which suggests that in vivo this PDHC is also likely based on a 

24-meric E2p core (Schulze et al., 1993). 

The icosahedral cores of mammalian, Gram-positive bacterial and yeast PDHC 

bind about 30 El tetramers (OC2P2) at the edges and 6 E3 dimers in the faces of the 

pentagonal dodecahedral E2 core (Henderson et al, 1979; Wu & Reed, 1984). The Elp 

components are bound to the peripheral subunit-binding domain of the E2p component via 

their (3-subunits (Wynn et al, 1992; Lessard & Perham, 1995). In addition, mammalian 

and yeast PDHC contain 6 or 12 protein X subunits (Jilka et al, 1986; Maeng et al, 1994; 

Sanderson et al, 1996), and one to three copies of a specific kinase and phosphatase (Reed, 

1974; Reed & Hackert, 1990). Protein X has a similar domain structure as the E2 

components (Figure 2), with one N-terminal lipoyl domain, a small E3-binding domain, 

and a C-terminal domain that binds protein X to the E2 core (Behal et al, 1989; 

Rahmatullah et al, 1989b; Lawson et al, 1991a). The main function of protein X seems 

binding of the E3 dimers to the complex (Neagle & Lindsay, 1991; Lawson et al, 1991a; 

Maeng et al, 1994), although it has been suggested that the lipoyl domain of protein X can 

also play a role in the catalytic mechanism (Rahmatullah et al, 1990; Lawson et al, 

1991b; Sanderson et al, 1996). The El kinases were shown to associate to the mammalian 

PDHC via binding to, preferentially, the inner lipoyl domain of the E2 component (Radke 

et al, 1993; Liu et al, 1995a), which also appears to play a role in kinase stimulation (Ono 

et al, 1993; Ravindran et al, 1996). Finally, mammalian OGDHC lacks protein X, but the 

E2o component also lacks a sequence motif of the putative peripheral-subunit binding 
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domain (Nakano et al, 1991). However, in the N-terminal region of the Elo component a 

sequence similar to protein X is found to being involved in E3 binding (Rice et al, 1992). 

Many 2-oxo acid dehydrogenase complexes have shown to be self-assembling 

(Koike et al, 1963; Reed et al, 1975; Bates et al, 1977; Bosma et al, 1984), at least in 

vitro, which means that they can be functionally reconstituted from their individual 

components. Interestingly, reconstitution experiments have revealed that in cases where the 

binding domain is involved in binding of both peripheral components, there seems 

competition for binding sites during assembly, possibly caused by steric hindrance (Reed 

et al, 1975). For example, the prokaryotic E2p components from A. vinelandii and E. coli 

can bind one peripheral component in a chain ratio of 1:2 for E2p:El or E2p:E3 in the 

absence of the other peripheral component (Reed et al, 1975; Bosma et al, 1984). 

Addition of the other component causes displacement of the bound component. For the B. 

stearothermophilus E2p it has been shown that the Elp and E3 components cannot bind 

simultaneously to the same isolated binding domain (Lessard & Perham, 1995). This 

suggests that one peripheral subunit-binding domain is involved in the binding of a dimer 

of El((3) or E3. Other studies on the binding of E3 to the isolated di-domain (lipoyl domain 

plus binding domain) (Hipps et al, 1994) or the complete E2p or E2o (Westphal et al, 

1995) confirmed this suggestion. Furthermore, it has been shown that a dimeric E3 is 

essential for binding to the E2 component (Schulze et al, 1991b). 

An exciting observation by Westphal and co-workers was that binding to the A. 

vinelandii E2p stabilised the E3 by tightening the intersubunit interaction, making this 

component less sensitive against over-reduction (Westphal etal, 1995). From this study it 

was also concluded that the E3 component must bind with its subunit interface near the 

dyad axis to the E2 component, thereby preventing sterically the binding of a second E3 

dimer. This mode of interaction between E3 and the binding domain has recently been 

justified by the elucidation of the X-ray crystal structure of the B. stearothermophilus E3 

component with the binding domain of E2p (Mande et al, 1996). The E3 component was 

shown to bind mainly to the N-terminal part of the binding domain, via predominantly 

electrostatic interactions with both E3 subunits. 

The interaction between the El and the E2 component has not been studied in such 

large detail. Reconstitution experiments of PDHCs based on chimeric E2p components 

from A. vinelandii and E. coli have shown that Elp interacts with both the binding domain 

and the catalytic domain of E2p (Schulze et al, 1992). Site-directed mutagenesis 

experiments of A. vinelandii E2p already had indicated that the binding sites for Elp are 

located on the binding domain and catalytic domain (Schulze etal, 1991c). 
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The spatial distribution of the complex components has been probed mainly by 

different electron microscopy techniques. From electron microscopy studies on negatively 

stained E. coli complexes (Oliver & Reed, 1982), and confirmed by cryoelectron 

microscopy of the frozen-hydrated complexes (Wagenknecht et al, 1990), it has been 

shown that the El and E3 subunits are separated from the E2 core by a gap of 3-5 nm. 

These results have been interpreted by a flexible mode of attachment of El and E3 to the 

E2 core, conferred by the linker sequence connecting the peripheral subunit-binding 

domain with the core-forming catalytic domain. Similar results have been obtained for the 

mammalian PDHC, where the Elp and E3 components also appear not being bound 

directly to the E2p-X core (Wagenknecht et al., 1991). Whether the suggested mobility of 

the peripheral components plays a role in active-site coupling remains to be determined. It 

could well be that a function as a spacer rather than being flexible is more important for 

this linker segment. It should be noted that scanning transmission electron microscopy 

(STEM) studies of cross-linked E. coli PDHC suggest more distinct El and E3 binding 

sites on the E2 core (CaJacob et al., 1985; Yang et al, 1986). Finally, various electron 

microscopy studies of E. coli PDHC, e.g. of negatively stained E2p cores (Bleile et al., 

1979), using cryoelectron microscopy (Wagenknecht et al, 1990,1992), or using STEM of 

gold cluster labelled lipoyl groups (Yang et al, 1994), all indicate that the lipoyl domains 

extend from the surface of the E2p core. This has been confirmed by cross-linking studies 

of E. coli PDHC with avidin, which tightly binds lipoyl groups (Hale et al, 1992). 

Structure and role of lipoyl domains 

The lipoyl groups, which are covalently attached to lipoyl domains, are essential for 

the coupling of the activities of the separate multienzyme components, by acting as 

reaction intermediate carriers. As such, they are substrates for the three different active 

sites in the multienzyme complex, and are indispensable for the efficient functioning of the 

complex. Lipoyl domains are independently folded and functioning protein units, as has 

been shown by reductive acylation of lipoyl domains obtained by limited proteolysis 

(Bleile et al, 1981; Packman et al, 1984a, 1984b) or by expression of sub-genes encoding 

them (Ali & Guest, 1990; Dardel et al, 1990; Quinn et al, 1993; Berg et al, 1994, 1995; 

Liu et al., 1995b). In combination with amino acid sequence comparisons of many 

acyltransferases (Russell & Guest, 1991; Matuda etal, 1992; Dardel etal, 1993) (see also 

Figure 5), it was concluded that lipoyl domains comprise approximately 80 residues, 
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General introduction: 2-oxo acid dehydrogenase complexes 

each containing one fully conserved lysine residue as potential lipoylation site. 

The structure of the lipoyl domain is not only required for the specific attachment 

of the lipoic acid prosthetic group (Wallis & Perham, 1994), but also increases the 

efficiency of reductive acylation of its lipoyl group dramatically. While free lipoamide or 

lipoic acid are good substrates for the E2 and E3 components, lipoamide is an extremely 

poor substrate for the El component (Reed et ah, 1958a). Likewise, reductive acetylation 

by Elp of a lipoylated decapeptide, with an amino acid sequence matching that 

surrounding the lipoylation site of E. coli E2p, is only barely detectable (Graham et ah, 

1989). However, lipoyl groups, when bound to the lipoyl domains, are readily and 

efficiently reductively acylated by their appropriate El components (Bleile et ah, 1981; 

Packman et ah, 1984a, 1984b; Berg etah, 1994, 1995). It has been suggested, on the basis 

of the large difference between the Km (~ 33 |J.M) and the Ks (> 0.3 mM), that the enlarged 

efficiency of reductive acylation of the lipoyl group by a folded lipoyl domain is not 

directly a matter of enhanced binding to the El component (Graham & Perham, 1990). 

The lipoyl domain is also responsible, at least in part, for the specificity of the 

reductive acylation reaction. Lipoyl domains are only efficiently reductively acylated by 

the El component of their parent complex, as has been shown for the E. coli (Graham et 

ah, 1989) complexes, and subsequently for the A. vinelandii complexes (chapter 6, this 

thesis). Reduced overall activity of reconstituted E. coli PDHC containing A. vinelandii 

Elp (De Kok & Westphal, 1985), and of E. coli and A. vinelandii PDHCs containing each 

others engineered lipoyl domains (Schulze et ah, 1992), is also ascribed to reduced 

efficiency of reductive acylation. Together this indicates that molecular recognition occurs 

between lipoyl domains and El components. It is obvious, however, that a complete 

picture of the specific molecular interactions involved in recognition of lipoyl domains is 

impaired by the lack of structural information of the El component at atomic resolution. 

Another very intriguing question regarding lipoyl domains is why a number of 

PDHCs have more than one (two or three) lipoyl domain per E2 chain? It has been shown 

for the E. coli PDHC, containing three lipoyl domains per E2p chain, that nearly half of the 

lipoyl domains can be removed by limited proteolysis without significant loss in overall 

complex activity (Berman et ah, 1981; Stepp et ah, 1981). Likewise, the rate of chemical 

modification of enzymatic excision of lipoyl groups was shown to be faster than the rate at 

which complex activity decreased (Ambrose-Griffin et ah, 1980; Berman et ah, 1981; 

Danson et ah, 1981; Stepp et ah, 1981). Furthermore, by genetic engineering two of the 

three E. coli PDHC lipoyl domains can be removed with no apparent effect on overall 

complex activity or active-site coupling (Guest et ah, 1985; Graham et ah, 1986). This is 

explained by an active-site coupling mechanism in which the rate-limiting El component 
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can serve many lipoyl domains, and in which acyl groups can rapidly transfer among 

different lipoyl domains (Bates et al, 1977; Collins & Reed, 1977; Danson et al, 1978a, 

1978b). In this way the function of the removed or inactivated lipoyl domains can be taken 

over by the remainders. However, this mechanism does still not explain the apparent 

excess of lipoyl domains in a number of PDHCs. Only recently, an alternative approach of 

comparing isogenic strains of E. coli containing PDHCs with one, two or three lipoyl 

domains per E2p chain, showed that the maximum growth rates of these strains in minimal 

medium are directly correlated with the number of lipoyl domains (Dave et al, 1995). 

These results show at least the advantage for E. coli having PDHC with three lipoyl 

domains per E2p chain for efficient balanced growth on carbon sources that need this 

complex in their metabolic route. 

Lipoyl domains are not exclusively found at the N-terminal part of the E2 chains of 

2-oxo acid dehydrogenase complexes and acetoin dehydrogenase enzyme systems. As 

mentioned earlier, the protein X component of eukaryotic PDHCs also contains an N-

terminal lipoyl domain, and it has been shown that this lipoyl domain is able to function in 

the overall complex reaction (Rahmatullah et al, 1990; Lawson et al, 1991b). The lipoyl 

domain of protein X of S. cerevisiae shows about 50% amino acid sequence identity to the 

lipoyl domains of its E2p (Behal et al, 1989). Only recently, the PDHCs from Alcaligenes 

eutrophus (Hein & Steinbuchel, 1994) and Neisseria meningitidis (Ala'Aldeen et al, 

1996), and the acetoin dehydrogenase enzyme system from Clostridium magnum (Kriiger 

et al, 1994), were found to have an E3 component containing a lipoyl domain connected to 

its N-terminus by a linker segment. Although the role of these lipoyl domains in the 

multienzyme complex has not yet been established, their high amino acid sequence identity 

with the lipoyl domains of the E2 component suggests that they could take part in the 

overall reaction. 

An additional role for the lipoyl domains of mammalian PDHCs has found to be 

involvement in binding of the pyruvate dehydrogenase kinase. It was shown that the kinase 

selectively binds to the inner lipoyl domain of the two lipoyl domains of the mammalian 

E2 component (Liu et al, 1995a), and that this association involves the hydrophobic inner 

portion of the lipoyl group (Radke et al, 1993). The kinase activity is regulated through 

the redox state of the inner lipoyl domain, showing an increased activity upon reduction or 

acetylation of the lipoyl group (Ravindran et al, 1996). To explain the rapid 

phosphorylation of many El components by a limited number of kinase molecules, a 

mechanism has been proposed in which the bound kinase directly moves between the 

different inner lipoyl domains without dissociating from the complex (Ono et al, 1993; 

Liu etal, 1995a). 
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Recently, several three-dimensional structures of lipoyl domains have been solved, 

all by means of NMR spectroscopy. These are the single lipoyl domain of B. 

stearothermophilus PDHC (Dardel et al., 1993), a non-native hybrid lipoyl domain of E. 

coli PDHC (Green et al, 1995a) and the N-terminal lipoyl domains of A. vinelandii PDHC 

and OGDHC (Berg et al, 1996b), which are described in this thesis. All lipoyl domain 

structures show a very similar overall fold, which is now considered a new class of all-p 

folds called |3-barrel-sandwich hybrids (Chothia & Murzin, 1993), or flattened p-barrels 

(Green et al, 1995a). The structure of the lipoyl domain is formed by two very similar 

four-stranded antiparallel P-sheets, which are packed around a core of hydrophobic 

residues in a sandwich-like manner (Figure 6). 

Lys42 

Figure 6. Schematic drawing (Kraulis, 1991) of the lipoyl domain of B. stearothermophilus PDHC (Dardel et 
al., 1993). Lys42 is the lipoylation site. 

The lipoylation site is exposed in a P-turn at the far end of one of the sheets, while the N-

terminus and C-terminus meet at the opposite side of the domain, in two adjacent P-strands 

in the other p-sheet. The lipoyl domain displays a remarkable internal symmetry, relating 

the two halves of the molecule by a two-fold rotational axis. Regarding the lipoyl domain 

structures determined so far, in combination with the conservation of key-residues in all 

lipoyl domain amino acid sequences, it is concluded that all lipoyl domains will have 

highly similar folds (Dardel et al, 1993; Green et al, 1995a; Berg et al, 1996b). Further 

structural details and comparisons of lipoyl domains can be found in the chapters 4 and 5. 

A final noticeable feature of lipoyl domains is that their structure is not altered by 

lipoylation. In the NMR spectra only very small differences in chemical shifts of residues 

close to the lipoylation site are observed between the unlipoylated and lipoylated forms of 

the lipoyl domain (Dardel et al, 1991; Berg et al, 1994). 
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Lipoyl domains derived from 2-oxo acid dehydrogenase complexes show high 

structural homology to the H-protein of the glycine decarboxylase system and the biotinyl 

domain of acetyl-CoA carboxylase, as had been predicted on the basis of (low) sequence 

similarity to lipoyl domains (Brocklehurst & Perham, 1993; Toh et al, 1993). The 

structure of the H-protein has been solved by X-ray crystallography (Pares et al, 1994; 

Cohen-Addad et al, 1995), and consists of a P-barrel-sandwich structure similar to the 

lipoyl domain (Figure 7). The lipoyl-lysine is analogously presented in a p-hairpin turn and 

is rather flexible, as concluded from the relatively high B-factors. The N-terminal exposed 

loop of the lipoyl domain is replaced by a helix in the H-protein, which is also in proximity 

of the lipoylation site. The H-protein (~ 130 amino acid residues) is larger than a lipoyl 

domain (~ 80 amino acid residues) and contains two additional P-strands at the N-terminal 

end, and a short and a long C-terminal helix. Very interestingly, the X-ray crystal structure 

of the methylamine loaded form of the H-protein shows that the lipoyl-methylamine group 

interacts with several specific conserved residues, located in a cleft formed by the p-

sandwich and the N-terminal helix (Cohen-Addad et al, 1995). The strong interactions 

between the protein and the methylamine group explain why the methylamine-loaded form 

of the H-protein is stable (Neuberger et al, 1991), and show that in this form the lipoyl 

group is not free to rotate. 

lipoyl group 

Figure 7. Schematic drawing (Kraulis, 1991) of the H-protein of the glycine decarboxylase complex from 
pea leaves (Pares et al, 1994). The lipoyl group is represented in ball-and-stick. 
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The X-ray crystal structure of the biotinyl domain of acetyl-CoA carboxylase from 

E. coli is very similar to the structure of lipoyl domains (Athappilly & Hendrickson, 1995). 

The only difference in overall fold is the absence of the exposed N-terminal loop of the 

lipoyl domain in the biotinyl domain, which in turn possesses a large loop between the 

second and third P-strand (Figure 8). The biotinylated lysine residue resides in a fi-hairpin 

turn, a structural feature which seems conserved in all proteins containing lipoic acid or 

biotin. The biotinyl group is well defined in the electron-density map, and interacts with 

residues of the large loop that is absent in lipoyl domains. This indicates that the biotinyl 

group is not completely free to swing, at least in its noncarboxylated form, but is partially 

buried in the surface of the domain. 

biocytin 

Figure 8. Schematic drawing (Kraulis, 1991) of the biotinyl domain of acetyl-CoA carboxylase from E. coli 
(Athappilly & Hendrickson, 1995). The biocytin is shown in ball-and-stick representation. 

Lipoylation 
Lipoic acid (6,8-thioctic acid or l,2-dithiolane-3-pentanoic acid) is the prosthetic 

group of the lipoyl domains of 2-oxo acid dehydrogenase complexes and acetoin 

dehydrogenase enzyme systems, and of the H-protein of the glycine decarboxylase 

complex. The carboxyl group of lipoic acid is bound in an amide linkage to the Ne group of 

a specific lysine residue in a posttranslational modification process called lipoylation. Until 

recently, very little was known about the enzyme(s) and mechanism(s) involved in 

lipoylation of apo-lipoyl domains, and about the biosynthesis of lipoic acid, which will not 
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be discussed here. Early work by the group of Lester J. Reed on the lipoylating systems of 

E. coli and S. faecalis showed that incorporation of lipoic acid into apo-PDHC required 

lipoic acid, ATP, inorganic phosphate and a divalent metal ion, and that lipoic acid and 

ATP could be replaced by lipoyladenylate (Reed et al, 1958a, 1958b). Only after the 

observation of unlipoylated and mismodified (octanoylated) lipoyl domains after 

overexpression of their subgenes in E. coli under certain conditions, the attention to the 

lipoylation process seemed renewed. 

Unlipoylated and octanoylated lipoyl domains have been observed in a number of 

cases. Expression of an E. coli PDHC lipoyl domain in E. coli produced a mixture of the 

lipoylated and unlipoylated form of the domain (Miles & Guest, 1987b; Ali & Guest, 

1990). Likewise, lipoylated and unlipoylated forms were detected when the human PDHC 

inner lipoyl domain (Quinn et al., 1993), the lipoyl domains of A. vinelandii PDHC and 

OGDHC (Berg et al, 1994, 1995), and the H-protein from pea (Macherel et al, 1996) 

were overproduced in E. coli. Addition of exogenous lipoic acid to the growth medium 

commonly resulted in increased amounts of the lipoylated form, indicating that the 

overexpression exceeded the cell's capacity for lipoylation. In addition to the lipoylated 

and unlipoylated forms, small amounts of an octanoylated form were observed when the 

lipoyl domains of B. stearothermophilus and human PDHC, and the H-protein of bovine 

glycine decarboxylase complex were expressed in E. coli (Dardel et al, 1990; Fujiwara et 

al, 1992; Hipps & Perham, 1992; Liu et al, 1995b), and when E. coli PDHC lipoyl 

domains were expressed in a lipoate-deficient E. coli strain (Ali et al, 1990). The 

identification of the different forms of lipoyl domains and H-proteins was greatly 

facilitated by the application of new and advanced mass-spectrometry techniques, e.g. 

electrospray mass spectrometry. 

It is interesting that lipoyl domains and H-proteins from different sources are being 

lipoylated by the lipoylating system of E. coli, with the exception of the lipoyl domain of 

bovine BCDHC which is not lipoylated (Griffin et al, 1990). The lipoyl domain and its 

particular lipoyl-lysine residue are selected specifically for lipoylation, and the question 

arises how this site is recognised by the lipoylating enzyme(s)? This question was 

addressed by site-directed mutagenesis experiments of residues about the lipoyl-lysine 

residue of the B. stearothermophilus PDHC lipoyl domain (Wallis & Perham, 1994). They 

showed that the position of the lipoyl-lysine residue in the (3-turn where it is found, is 

essential for lipoylation, rather than the residues directly surrounding it. 

Lipoate protein ligases, responsible for the lipoylation reaction, have been isolated 

from E. coli (Brookfield et al, 1991; Green et al, 1995b) and from bovine liver 

mitochondria (Fujiwara et al, 1994). In E. coli two distinct genes have been cloned 
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(Morris et al, 1994, 1995), the products of which are involved in lipoylation. The IplA 

gene product is responsible for the incorporation of exogenous lipoic acid, via a 

mechanism using a lipoyl-AMP intermediate, which is consistent with the early 

observations by Reed (Reed et al, 1958a, 1958b), and analogous to the biotin protein 

ligase (Cronan, 1989). The other lipoate protein ligase, the lipB gene product, utilises 

lipoyl groups generated via endogenous lipoic acid biosynthesis. This indicates that two 

redundant pathways with two different lipoate protein ligases for lipoylation exist in E. 

coli. Two isoforms of lipoyltransferase were purified from bovine liver mitochondria that 

could use lipoyl-AMP but not lipoic acid plus MgATP for lipoylation (Fujiwara et al, 

1994), suggesting that two enzymes are involved in the complete lipoylation reaction. 

From the amino acid sequences of E2 components the number of potential 

lipoylation sites can be determined. The extent of lipoylation of the potential sites has been 

a subject of controversy for a long time. Various studies using different methods of 

determination, mainly on the E2p component of E. coli, resulted in numbers ranging from 

1.7 to 2.0 lipoyl groups per E2p chain (Packman et al, 1984a). However, re-assessment of 

the number of functional lipoyl groups per E2p and E2o chain by a combination of protein-

chemical and modern mass-spectrometric techniques clearly showed that all potential 

lipoylation sites contain functional lipoyl groups (Packman et al, 1991). 

Active-site coupling and role of linkers 

The coupling of the activities of the three enzymatic components of the 2-oxo acid 

dehydrogenase complexes is brought about by their lipoyl groups. A swinging arm 

mechanism, in which the long and flexible lipoyl groups rotate among the different active 

sites, had been proposed responsible for active-site coupling (Koike et al, 1963). However, 

by fluorescence energy transfer measurements it was shown that the distances between the 

active sites in PDHC were at least 40 A (Shepherd & Hammes, 1977), a gap that cannot be 

narrowed by a rotating lipoyl group (~ 28 A). Thus, more than just a swinging arm is 

required for active-site coupling, and the participation of two or more lipoyl groups in a 

catalytic cycle, or additional movement of protein parts, was suggested to being involved 

in the mechanism. 

The mechanism of active-site coupling is more complicated than the simple direct 

transfer of an intermediate from an active site via the lipoyl group to the subsequent active 

site. The observation that only a few El dimers can reductively acylate many lipoyl groups 

in E. coli PDHC and OGDHC (so-called servicing experiments) (Bates et al, 1977; Collins 

& Reed, 1977; Danson et al, 1978a), and at a rate comparable with the overall complex 
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activity (Danson et ai, 1978b), suggests that acyl-transfer reactions among lipoyl groups 

need to be accounted for in the active-site coupling mechanism. The involvement of 

intramolecular transacylation reactions can be used to explain the observations that the 

removal of lipoyl domains by limited proteolysis (Berman et ai, 1981; Stepp et ai, 1981) 

or genetic engineering (Guest et ai, 1985), or enzymatic release or chemical inactivation 

of the lipoyl groups (Ambrose-Griffin et ai, 1980; Berman et ai, 1981; Danson et ai, 

1981; Stepp et ai, 1981) proceed faster than the accompanying loss of overall complex 

activity. The kinetics of inactivation have been simulated by a computer model, using a 

multiple random coupling mechanism for active-site coupling (Hackert et ai, 1983a, 

1983b). This mechanism was supported by site-directed mutagenesis experiments of E. 

coli PDHC, in which was shown that various permutations of functional and non

functional (by lipoyl-lysine to glutamine mutations) lipoyl domains did not effect active-

site coupling (Allen et ai, 1989). These elegant experiments strongly suggest that the three 

lipoyl domains function completely independent and that the reductive acetylation of them 

is random order. 

The multiple random coupling mechanism suggests a rapid transfer of acyl groups 

among lipoyl groups. From the X-ray crystal structures of the E2 and E3 components, this 

acyl transfer is expected to be a chemical reaction and not an enzymatically catalysed 

reaction, which means that both the 6-5-acyldihydrolipoyl group and the 8-5-

acyldihydrolipoyl group will be formed. Since the 6-5-acyldihydrolipoyl group is likely not 

converted by the E2 component, a rapid decrease of the complex activity during servicing 

experiments could be expected, but is, however, not observed. Chemical intramolecular 

isomerisation of the inactive enzyme-bound 6-S-acyldihydrolipoyl groups to 8-5-

acyldihydrolipoyl groups is too slow during normal catalytic turnover (Yang & Frey, 1986) 

to compensate for this. The question why rapid inactivation of the complexes during 

servicing experiments, due to formation of the inactive 6-5-acyldihydrolipoyl groups, is 

not observed, has not been addressed until now and remains to be solved. 

The observation of unexpectedly sharp resonances in the 'H-NMR spectrum of the 

E. coli PDHC (Mr ~ 5 MDa) indicated the presence of conformational mobile regions in 

E2p (Perham et ai, 1981). Later on, similar signals have also been detected in other 

complexes, like E. coli OGDHC (Perham & Roberts, 1981), B. stearothermophilus PDHC 

(Duckworth et ai, 1982), and A. vinelandii PDHC, OGDHC and E2p (Hanemaaijer et ai, 

1988b). These signals were ascribed to the alanine and proline rich linker segments in the 

E2 chain, which could be important for facilitating movement of lipoyl domains for active-

site coupling. This was supported by the similarity of ' H-NMR spectra of a 32-residue 

synthetic peptide representing the amino acid sequence of a linker (Radford et ai, 1986), 
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and by the reduction of sharp signals in the spectrum of E. coli PDHC with two deleted 

lipoyl domains and linkers (Radford et al, 1987). Direct evidence for mobility of the linker 

segments came from the observation of sharp 'H-NMR signals assigned to a histidine 

residue that was introduced in the interdomain segment of a mutant E. coli PDHC with 

only one lipoyl domain (Texter et al, 1988). 

A more detailed analysis, by means of NMR spectroscopy and circular dichroism, 

of several synthetic peptides with amino acid sequences representing E. coli PDHC linkers, 

showed that these peptides are very flexible in solution (Radford et al., 1989; Green et al, 

1992). Moreover, it was shown that their structures were disordered but not random coil, 

and in particular that all Ala-Pro peptide bonds were in the trans conformation. This 

suggests a certain stiffening of the flexible linkers, which would facilitate protrusion from 

the core of the complex. 

The importance of the flexibility of the linkers for active-site coupling was shown 

by making deletions in the 32-residue linker segment of an E. coli PDHC mutant 

containing one lipoyl domain (Miles et al, 1988). Reduction of the linker to less than 13 

residues caused significant loss in active-site coupling. Studies in which different linkers, 

varying in length and composition, were engineered in this complex confirmed the 

importance of the linker size (Turner et al, 1993). They also showed that the amino acid 

composition of the linker is of less importance, although highly charged linkers were not 

allowed. Finally, the flexibility and importance of the short linker segment connecting the 

peripheral subunit-binding domain with the catalytic domain for active-site coupling needs 

to be established unequivocally (Schulze et al., 1993), and may vary between different 2-

oxo acid dehydrogenase complexes (Perham, 1991). 

Outline of this thesis 
In this thesis the determination of the three-dimensional structures of the N-

terminal lipoyl domains of A. vinelandii PDHC and OGDHC by means of NMR 

spectroscopy is described. The structure of the lipoyl domain is of particular interest and 

importance for several reasons. The attachment of the lipoyl group to a lipoyl domain 

dramatically enhances the efficiency of reductive acylation of the reactive dithiolane ring 

by the 2-oxo acid dehydrogenase (El) component. Moreover, the lipoyl domain causes its 

lipoyl group to be only an effective substrate for the El of its parent multienzyme complex, 

and thus effectuates the reductive acylation reaction to being specific. It is therefore clear 

that a process of molecular recognition occurs between El components and lipoyl 

domains. Besides, the selection of a specific lysine residue of the lipoyl domain by the 
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enzymes responsible for its lipoylation is also determined by the structure of the lipoyl 

domain. 

The present study aimed at gaining a more detailed insight in the structural basis for 

the specific interaction between lipoyl domains and El components, and in particular what 

residues or structural features of the lipoyl domain are involved in this process. The 

determination of the three-dimensional structure of lipoyl domains is naturally a 

prerequisite for such studies. Their size and apparent stability make the lipoyl domains 

suitable for a structure determination using NMR spectroscopy. 

To obtain sufficient amounts of the N-terminal lipoyl domains of A. vinelandii 

PDHC and OGDHC for structural investigations, sub-genes encoding these lipoyl domains 

(79 amino acid residues) were expressed in E. coli (chapters 2 and 3). The lipoyl domains 

were isotopically enriched with 15N to facilitate the NMR spectral assignments. The 

sequential 'H and 15N assignments of the N-terminal lipoyl domain of PDHC, as well as 

the derivation of its secondary structure in solution, are described in chapter 2. 

Furthermore, the 'H-NMR spectra of the separately isolated lipoylated and nonlipoylated 

forms of this lipoyl domain are compared, and several }H resonances of the lipoyl group 

were assigned. The sequential 'H and 15N assignments and secondary structure of the 

single lipoyl domain of OGDHC were also obtained (chapter 3). From a comparison of a 

variety of NMR-derived parameters of the PDHC and OGDHC lipoyl domains, it is 

suggested that their structures in solution are very similar. 

The determination of the three-dimensional solution structures of the PDHC and 

OGDHC lipoyl domains is described in the chapters 4 and 5, respectively. These structures 

are compared with each other, and with the structures of the lipoyl domains of B. 

stearothermophilus PDHC and E. coli PDHC, which became available during the course of 

the structure determination of the A. vinelandii lipoyl domains. On the basis of a 

comparison of these structures and many lipoyl domain amino acid sequences, several 

residues are proposed, including those of a solvent-exposed loop close in space to the 

lipoylation site, that could be responsible for the specific recognition of lipoyl domains by 

El. Cross-acylation experiments of A. vinelandii PDHC and OGDHC lipoyl domains 

catalysed by A. vinelandii and E. coli complexes, and site-directed mutagenesis 

experiments of the exposed loop of the OGDHC lipoyl domain were performed, to study 

the role of this loop in molecular recognition (chapter 6). 
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CHAPTER2 

Sequential *H and 15N nuclear magnetic resonance assignments and 
secondary structure of the N-terminal lipoyl domain of the dihydrolipoyl 
transacetylase component of the pyruvate dehydrogenase complex from 

Azotobacter vinelandii 

ABSTRACT 

The N-terminal lipoyl domain (79 residues) of the transacetylase component of the 

pyruvate dehydrogenase complex from Azotobacter vinelandii has been sub-cloned and 

produced in Escherichia coli. Over-expression exceeds the capacity of E. coli cells to 

lipoylate all expressed lipoyl domain, but addition of lipoic acid to the growth medium 

results in expression of fully lipoylated domain. A two-dimensional homo- and 

heteronuclear NMR study of the lipoyl domain has resulted in sequential 'H and 15N 

resonance assignments of the unlipoylated form of the protein. Small differences in 

chemical shift values for protons of residues in the vicinity of the lipoyl-lysine residue are 

observed for the lipoylated form of the domain, suggesting that the conformation of the 

lipoyl domain is not altered significantly by the coupled prosthetic group. From nuclear 

Overhauser effects, backbone coupling constants, and slowly exchanging amide protons, 

two antiparallel (i-sheets, each containing four strands, were identified. The lipoyl-lysine 

residue is exposed to the solvent and located in a type-I turn between two strands. The N-

and C-terminal residues of the folded chain are close together in the other sheet. 

Preliminary data on the relative three-dimensional orientation of the two (J-sheets are 

presented. Comparison with the solution structure of the lipoyl domain of the Bacillus 

stearothermophilus pyruvate dehydrogenase complex shows resemblance to a large extent, 

despite the sequence identity of 31%. 

Berg, A., de Kok, A. & Vervoort, J. (1994) Eur. J. Biochem. 221, 87-100. 
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INTRODUCTION 

The pyruvate dehydrogenase complex (PDHC) from Azotobacter vinelandii 

catalyses the oxidative decarboxylation of pyruvate to acetyl-CoA [for recent reviews on 

PDHC, see Perham (1991) and Mattevi et al (1992a)]. The complex is composed of 

multiple copies of three enzymes: pyruvate dehydrogenase (Elp), dihydrolipoyl 

transacetylase or acetyltransferase (E2p) and dihydrolipoyl dehydrogenase or Iipoamide 

dehydrogenase (E3). The central core of the complex is formed by a trimer of E2p (Mattevi 

et al, 1992b), to which two dimers of Elp and one dimer of E3 are tightly but non-

covalently bound (Schulze et al, 1992). The E2p monomer is a highly segmented protein 

in which five separate and independently folded domains can be recognised, connected by 

mobile linker sequences rich in alanine and proline residues (Hanemaaijer et al, 1988). 

The N-terminal part contains three highly homologous lipoyl domains, each bearing a 

lipoyl group covalently bound to a specific lysine residue. Between the lipoyl domains and 

the C-terminal catalytic domain, which contains the acetyltransferase catalytic site and 

aggregates to form the core structure of the complex (Hanemaaijer et al, 1987; Mattevi et 

al, 1992b), the peripheral subunit-binding domain is situated. This domain is responsible 

for binding of the E3 and the Elp component to the acetyltransferase core. The Elp 

component also interacts with the catalytic domain (Schulze et al, 1991a, 1992). 

The lipoyl-lysine residues of lipoyl domains are central to the activity of the 

complex, providing swinging arms that are highly mobile and responsible for substrate 

channelling among the three successive active sites (Reed, 1974). A folded structure of the 

lipoyl domain attached to the lipoic acid prosthetic group has proven to be essential for 

recognition by the El component of the parent 2-oxo acid dehydrogenase complex 

(Graham et al, 1989), in contrast to the E2 and E3 component which can use free 

Iipoamide as a substrate (Reed et al, 1958a). In addition, a specific lysine residue of each 

lipoyl domain is recognised and modified by the lipoylating enzymes responsible for 

covalent attachment of the lipoic acid to the domain (Reed et al, 1958b). 

The high mobility of the lipoyl domains caused by the linker sequences has been 

the most likely cause of failure of crystallising any 2-oxo acid dehydrogenase complex or 

any of its acyltransferase components (Mattevi et al, 1992b). Structure determination of 

the individual components and the domains and linkers of the acyltransferase component is 

the way to overcome the problems of crystallisation. This approach has resulted in the 

crystal structure of the catalytic domain of E2p from A. vinelandii (Schulze et al, 1991b; 

Mattevi et al, 1992b, 1993a) and the solution structures of the E2p lipoyl domain from B. 

stearothermophilus (Dardel et al, 1991, 1993), the E3-binding domain from E. coli 
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dihydrolipoyl succinyltransferase (E2o) (Robien et al, 1992) and the Elp/E3-binding 

domain from B. stearothermophilus E2p (Kalia et al, 1993). Crystal structures of the 

lipoamide dehydrogenase of A. vinelandii (Schierbeek et al., 1989; Mattevi et al., 1991), 

Pseudomonas putida (Mattevi et al., 1992c) and P. fluorescens (Mattevi et al., 1993b) have 

been resolved. So far no structural information on the El component or on the integration 

of the individual components in a functional complex is available. 

The objective of this study is the determination of the solution structure of the N-

terminal lipoyl domain of E2p of A. vinelandii PDHC. NMR spectroscopy has the 

advantage of obtaining structural as well as dynamic information of a protein. Besides 

structural information, it is important to know the dynamic properties of the lipoyl domain 

since they are essential for efficient multienzyme catalysis. Moreover, the interactions of 

the lipoyl domain with the three different complex components can be studied under 

various conditions by NMR. 

Sufficient amounts of lipoyl domain for structural NMR studies were obtained from 

a sub-clone of the acetyltransferase gene in E. coli expressing exclusively the N-terminal 

lipoyl domain of A. vinelandii E2p. Nearly complete *H and 15N resonance assignments for 

the unlipoylated lipoyl domain were obtained using two-dimensional homo- and 

heteronuclear NMR experiments. By two-dimensional 'H NMR the unlipoylated and the 

lipoylated form of the domain were compared. The secondary structure of the lipoyl 

domain, based on characteristic medium-range and long-range NOE connectivities, amide 

hydrogen exchange patterns and vicinal coupling constants, is presented. This structure is 

compared with the solution structure of the lipoyl domain of the B. stearothermophilus 

PDHC (Dardel etal, 1991, 1993). 

RESULTS 

Over-expression and lipoylation 
The vector pARl expressing the N-terminal lipoyl domain (residues 1 to 79) of the 

dihydrolipoyl transacetylase component of the PDHC from A. vinelandii was constructed 

as described under Experimental Procedures, for the following reasons. By sub-cloning the 

N-terminal lipoyl domain the translation start of the complete transacetylase is not 

modified, thereby retaining the good lacZ promotor activity for the lipoyl domain. The C-

terminal residue of the expressed lipoyl domain is determined by the position of the 

available Sstll restriction site in the DNA encoding the complete transacetylase component 

from which the sub-clone has been derived. Plasmid pARl encodes the complete N-
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terminal lipoyl domain and a few amino acids of the adjacent Ala+Pro-rich linker 

sequence. The exact structural C-terminal residue of the N-terminal lipoyl domain is not 

known but is expected to be situated around Pro74 from sequence comparison with other 

lipoyl domains. The advantage of expressing a few amino acid residues beyond the 

expected lipoyl domain is, apart from the fact that one is sure to express at least the 

complete structural domain, that it might be possible by NMR to observe the expected 

mobility and low degree of secondary structure of the linker residues. The C-terminal 

arginine residue is not present in the original sequence but results from the fusion of DNA 

fragments after DNA manipulation. 

Induction with IPTG of E. coli TG2 cells carrying plasmid pARl resulted in high 

expression of a soluble polypeptide of approximately 8 kDa (Figure 1A, lane 2), as 

expected for a single lipoyl domain. This peptide was not detected in cells containing the 

control plasmid pUC9 (Figure 1A, lane 1). 

2 3 
B 

Figure 1. Expression, purification, and characterisation of the lipoyl domain. (A) SDS/PAGE of the 
expression and purification of the N-terminal lipoyl domain of A. vinelandii PDHC in E. coli. Lane 1, cell-
free extract of E. coli TG2 transformed with plasmid pUC9; lane 2, cell-free extract of E. coli TG2 
transformed with plasmid pARl; lane 3, cell-free extract after 3 h at 140000 x g; lane 4, filtrate after Amicon 
YM 30; lane 5, purified lipoyl domain after Q-Sepharose chromatography; lane 6, molecular mass markers 
(values given in kDa). (B) Non-denaturing PAGE of the unlipoylated and lipoylated forms of the lipoyl 
domain. Lane 1, cell-free extract of E. coli TG2 transformed with plasmid pARl expressing the A. vinelandii 
PDHC lipoyl domain, and grown on TY medium without added lipoic acid; lane 2, identical to lane 1 but 
with lipoic acid added to the TY growth medium; lane 3, isolated unlipoylated lipoyl domain (U); lane 4, 
isolated lipoylated lipoyl domain (L). 

W h e n E. coli TG2 (pARl ) cel ls were g rown on T Y med ium wi thout addi t ional 

lipoic acid, only a minor part (less than 10%) of expressed lipoyl domain was modified, as 
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judged by native PAGE of these E. coli cell-free extracts (Figure IB, lane 1). Apparently 

over-expression exceeds the ability of the E. coli cells to correctly modify all the expressed 

A. vinelandii lipoyl domain. We were not able to lipoylate the lipoyl domain completely in 

vitro with E. coli cell-free extract following the procedure described by Brookfield et al. 

(1991). Only a minor portion (less than 5%) of the unmodified domain could be modified 

in this manner. However, addition of 10 u.g/mL lipoic acid to the TY growth medium 

resulted in complete modification of the expressed lipoyl domain (Figure IB, lane 2). Thus 

the E. coli cells are very well capable of lipoylating the A. vinelandii lipoyl domain, but the 

rate of synthesis of lipoic acid or one of its precursors is too slow compared to the 

production rate of the recombinant lipoyl domain. Presumably uptake of sufficient amounts 

of lipoic acid from the growth medium complements the lacking production of lipoic acid 

in the cell. 

Purification and characterisation 

The expressed N-terminal lipoyl domain of A. vinelandii PDHC was purified from 

E. coli as described under Experimental Procedures. The results of the purification are 

shown in Figure 1. The Amicon YM30 membrane extremely efficiently separated the 

lipoyl domain from most other proteins in the cell-free extract (Figure 1A, lane 4), 

although not all lipoyl domain could be recovered from the protein concentrate. The lipoyl 

domain was further purified to homogeneity by Q-Sepharose column chromatography, 

which also separated the unmodified from the modified form of the lipoyl domain. The 

unmodified form eluted with 0.35 M KC1, while the modified form eluted with 0.6 M KC1. 

The modified and unmodified form of the lipoyl domain were isolated from 6-L cultures 

with and without added lipoic acid to the growth medium with yields of approximately 40 

mg. No significant difference in expression level of the lipoyl domain between the two 

cultures could be observed. The small amount of modified lipoyl domain in the culture 

without additional lipoic acid was not routinely purified. 

Both forms of the lipoyl domain appeared homogeneous on SDS/PAGE. When 

samples of unmodified and modified lipoyl domain were subjected to IEF, two very small 

additional protein bands were observed for the two forms of the lipoyl domain, both with 

identical pi difference to the main protein band on the gel. The measured isoelectric points 

of the two primary forms were 4.5 and 4.4 respectively. The reductive acetylation assay of 

the modified lipoyl domain showed that approximately 0.8 mol 14C/mol lipoyl domain 

could be incorporated. This strongly indicates that the modification and folding of the 

modified lipoyl domain is correct, since commonly the reductive acetylation assay slightly 
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underestimates the amount of incorporated label (Packman et al, 1991). No reductive 

acetylation could be detected with the unmodified lipoyl domain. 

Electrospray mass spectrometry of the unmodified form of the domain gave a 

single component with an Mr of 8166±0.8, which corresponds to the Mr of the unlipoylated 

domain form (calculated Mr 8165). The modified form of the protein gave significantly a 

more noisy spectrum, but the determined Mr of 8352±1.7 was in excellent agreement with 

the Mr of a lipoylated domain (calculated Mr 8352). Partial mismodification with octanoic 

acid of expressed lipoyl domains in E. coli has been reported earlier for the B. 

stearothermophilus E2p lipoyl domain (Dardel et al, 1990), the human E2p inner lipoyl 

domain (Quinn et al, 1993), and the E.coli E2p lipoyl domain only when expressed in a 

lipoic-acid-deficient E. coli strain (Ali et al, 1990). However, no octanoyl-modified lipoyl 

domain could be detected in pools of A. vinelandii E2p lipoyl domain isolated from E. coli 

TG2(pARl) cultures grown in the presence or absence of additional lipoic acid in the 

growth medium. 

NMR spectroscopy of the lipoyl domain 
The two-dimensional 'H-NMR spectra of the lipoyl domain show greater overlap 

than expected for a protein of this size, due to several reasons. First, the lipoyl domain does 

not contain any aromatic residues, which are known to cause large conformation-

dependent shifts (Wuthrich, 1976) as a result of ring current field effects. Secondly, only 

14 types of amino acids occur in the lipoyl domain, and even these are unequally 

distributed. The lipoyl domain consists of 11 Val, 10 Glu, 9 Gly, 8 Leu, 7 Ala, 7 Lys, 7 He, 

6 Ser, 5 Asp, 4 Pro, 2 Arg, and 1 Thr, Gin and Met. Chemical shift differences of protons 

of identical residue type are caused by differences in local environment and conformation. 

The lipoyl domain consists of approximately 60% P-sheet and lacks any helical 

conformation; hence it is clear that the probability of overlap of resonance lines in the 

lipoyl domain is considerable. It therefore appeared to be an essential factor in the entire 

backbone assignment procedure that spectra were recorded at a relatively broad range of 

temperatures. 

Initially, assignments were obtained for the unlipoylated lipoyl domain, since the 

lipoylated protein has a higher tendency to aggregate, probably due to hydrophobic 

interactions. On the basis of these assignments the lipoylated protein was assigned and 

compared with the unlipoylated protein. 

During the final stage of the assignment procedure two-dimensional heteronuclear 

NMR experiments were performed with the 15N-labelled lipoyl domain to solve a few 
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ambiguities and to confirm the sequential assignments made on the basis of the 

homonuclear 'H-NMR experiments. 
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Figure 2. 2D 1 5N-'H HSQC spectrum of the N-terminal lipoyl domain of A. vinelandii PDHC, recorded at 
500 MHz, 37°C and pH 5.5. The side-chain amide resonances of Gln30 are indicated by an underlined label. 
The 'satellite' peak of Lys53 is indicated by an asterisk. 

Spin system identification 
Amino acid spin systems were identified based on their characteristic scalar 

connectivities, starting with inspection of 2D 'H DQF-COSY and TOCSY spectra. Since 

the lipoyl domain lacks any aromatic residues, identification of spin systems could also be 

based more reliably on the CPH proton chemical shifts. 
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Because of resonance overlap in the spectral region where a/(3 scalar connectivities 

can be observed, a TQF-COSY experiment was recorded to discriminate between spin 

systems with one or two CPH protons. A cross peak for two coupled spins can only be 

observed in the TQF-COSY if these spins are mutually coupled to at least one other spin 

(Braunschweiler et al, 1983). In this way especially isoleucine CPH protons can be 

distinguished from C^H protons of lysine, leucine, and arginine, all having their CPH 

protons resonating at approximately the same frequency (Wishart et al, 1991). The TQF-

COSY experiment was also useful to detect glycine residues as they exclusively give rise 

to cross peaks in the NH-CaH cross peak region. Seven of nine glycine residues could be 

identified in this manner. 

All seven lysine residues were identified by the weak connectivity of their amide 

proton to the CEH proton in the TOCSY experiment. One of two arginines was identified 

by the COSY connectivity between the C8H protons and the N£H proton. Both the NEH 

proton as well as the backbone amide proton of this arginine residue showed cross peaks 

toward the C8H protons in the TOCSY experiment. The single glutamine was found by the 

COSY cross peak between the two NEH protons. Through the NOESY connectivity 

between the NEH protons and the CYH protons, the resonances of the glutamine (Gln30) 

could be completely identified. One serine was unambiguously identified by the TOCSY 

cross peak between the amide proton and the hydroxyl proton, and the COSY 

connectivities between the hydroxyl proton and the two CPH protons. 

Together only 54 spin systems could be identified in the initial stage of the 

assignment procedure. The remaining spin systems, including three of the four proline 

residues, were identified in the course of the sequential assignments. In the final stage of 

the assignment procedure several spin systems were completed after inspection of the 

HMQC-TOCSY spectra. 

Sequential assignments 
Sequential resonance assignments for the lipoyl domain were obtained according to 

standard methods (Wiithrich, 1986; Gronenborn etal, 1989), and were based primarily on 

the 2D 'H-NOESY spectra in H2O. Most residues in the antiparallel P-sheet regions were 

readily identified and connected by their strong sequential da^ cross peaks in the NOESY 

spectra. Most sequential assignments in the (3-sheet regions were confirmed by long-range 

NOEs to the neighbouring strand. Outside these regions residues were connected by 

significant but weaker sequential da^ NOEs. When CaH protons kept overlapping with the 

water resonance even at different temperatures, as occurred for Leu 19 and Leu32, 

sequential connections were solved by dpN NOEs. 
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Table 1. *H and 15N chemical shifts (ppm) for the unlipoylated form of the N-terminal lipoyl domain of the 
pyruvate dehydrogenase complex from A. vinelandii at pH 5.5 and 37°C, in 50 mM potassium phosphate 
containing 150 mM potassium chloride. 

Residue 

Serl 
Glu2 
Ile3 
Ue4 
Arg5 

Val6 
Pro7 
Asp8 
Ile9 
GlylO 
Glyll 
Asp 12 
Glyl3 
Glul4 
Vail 5 
He 16 
Glul7 
Leu 18 
Leu 19 
Val20 
Lys21 
Thr22 
Gly23 
Asp24 
Leu25 
Ile26 
Glu27 
Val28 
Glu29 
Gln30 

Gly31 
Leu32 
Val33 

Amide 
15N 

118.5 
123.8 
128.9 
126.9 

121.5 

114.7 
120.9 
111.5 
108.0 
120.5 
106.4 
123.4 
125.2 
125.6 
119.2 
127.5 
120.8 
108.6 
118.6 
115.9 
115.7 
121.3 
123.1 
121.4 
122.7 
119.8 
119.5 
122.2 

113.4 
119.8 
108.0 

'H 

9.14 
8.87 
8.79 
8.76 

8.85 

8.27 
8.01 
8.64 
7.66 
8.23 
8.96 
8.73 
9.20 
8.95 
7.56 
9.17 
7.99 
7.17 
8.62 
8.41 
9.38 
8.05 
8.41 
9.28 
8.18 
8.47 
8.99 
8.05 

8.91 
8.93 
7.08 

C«H 
4.42 
4.89 
4.71 
4.50 
5.32 

3.98 
4.97 
4.53 
4.52 

4.14,3.91 
4.32, 3.99 

5.26 
3.34 
5.36 
4.14 
4.73 
4.50 
4.77 
4.76 
4.98 
4.76 
3.55 

4.51,3.58 
4.60 
4.93 
5.06 
4.78 
3.29 
3.81 
4.18 

3.90, 3.58 
4.76 
4.98 

CPH 
4.07, 3.95 
2.11,2.00 

1.93 
2.04 
1.63 

2.39 
2.35 

2.88, 2.72 
2.20 

2.69 

2.05 
2.52 
2.11 

1.98, 1.91 
1.87, 1.75 
1.86, 1.71 

2.33 
1.93, 1.87 

4.07 

2.86, 2.62 
1.85, 1.66 

1.80 
2.28, 1.95 

2.00 
2.44 
2.06 

2.06, 1.97 
2.29 

Other 

CYH 2.25 
1.64, 1.30,0.88 
1.33,0.99,0.83 
CYH 1.37, C5H 3.48, 3.21, N^H 
7.46, Ne 81.3 
CVH3 1.13 
CYH 2.26, C8H 3.98, 3.50 

1.45, 1.15,0.87,0.75 

CYH 2.16 
CYH3 1.09,0.85 
1.04 
CYH 2.33, 2.22 
CYH 1.70, C5H3 1.02,0.89 
CYH 1.59, C5H3 0.85,0.68 
CYH3 1.18,0.95 
1.67, 1.34, (CeH 2.86) 
CYH3 1.30 

C8H3 0.99 
1.31, 1.23,0.91,0.79 
CYH 2.54, 2.43 
CYH3 1.10 

CYH 2.34, 2.56, NEH 7.13, 
7.91, Ne 107.4 

CYH 1.30, C8H3 0.79, 0.66 
CYH3 1.03,0.94 
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Table 1. (Continued) 

Residue 

Val34 
Leu35 
Glu36 
Ser37 
Ala38 
Lys39 
Ala40 
Ser41 
Met42 
Glu43 
Val44 
Pro45 
Ser46 
Pro47 
Lys48 
Ala49 
Gly50 
Val51 
Val52 
Lys53 
Ser54 
Val55 
Ser56 
Val57 
Lys58 
Leu59 
Gly60 
Asp61 
Lys62 
Leu63 
Lys64 
Glu65 
Gly66 
Asp67 
Ala68 
Ile69 

Amide 
15N 

123.3 
126.3 
122.4 
124.3 
124.8 
112.5 
121.4 
115.1 
121.9 
124.6 
125.9 

112.4 

115.6 
124.9 
106.1 
120.1 
127.1 
133.4 
109.7 
123.1 
121.8 
109.3 
118.7 
119.3 
112.1 
121.4 
121.1 
124.6 
117.8 
119.7 
114.7 
123.0 
122.8 
115.9 

'H 
8.72 
9.27 
9.35 
8.99 
9.02 
8.33 
7.80 
8.35 
9.23 
8.85 
8.42 

8.60 

7.57 
8.47 
8.23 
8.58 
9.11 
9.30 
7.80 
8.63 
8.57 
6.95 
8.66 
8.34 
8.99 
7.98 
8.55 
9.16 
8.85 
8.57 
9.31 
8.33 
8.60 
8.94 

C«H 
4.91 
5.51 
5.14 
5.12 
4.23 
4.36 
4.68 
5.47 
4.88 
5.10 
4.42 
4.92 
4.76 
4.00 
4.70 
4.41 

4.60, 3.93 
5.04 
3.94 
4.49 
4.68 
4.59 
4.61 
4.90 
4.70 
3.82 

4.49, 3.91 
4.63 
5.03 
5.13 
4.80 
3.87 

4.60, 3.69 
4.77 
4.04 
4.41 

CPH 

1.97 
1.81, 1.11 
2.16,2.04 
4.20, 3.91 

1.58 
1.92 
1.51 
3.83 
2.09 
2.04 
2.06 
2.16 

4.20, 3.89 
2.37 

(1.75, 1.60) 
1.42 

1.95 
2.49 

1.78, 1.66 
3.92, 3.86 

2.24 
3.98, 3.47 

2.41 
1.88 

1.77, 1.74 

2.91,2.67 
1.89, 1.85 

1.72 
1.78 
1.94 

2.92,2.81 
1.39 
1.58 

Other 
CYH3 1.02,0.99 
CYH 1.67, C5H3 0.82 
cm 2.32 

1.51, CEH 3.12 

CYH 2.52 
CYH 2.18 
CYH3 0.96 
CYH 2.06, C5H 4.22 
OH 5.44 
CYH 2.37, 2.00, C8H 4.11, 4.00 
1.36, OH 3.04 

CYH3 1.03,0.90 
CYH3 1.06,0.88 
1.50, (CeH 3.05) 

CYH3 1.30,0.98 

CYH3 1.26,0.93 
1.77, 1.62, 1.38, C6H 3.15 
CYH 1.50, C8H3 1.05,0.89 

1.58, 1.46, CeH 3.10 
1.02,0.89 
1.42, CeH 3.14 
CYH 2.18 

0.95, 0.79, 0.74 
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Table 1. (Continued) 

Residue Amide 
15N 'H C«H CPH Other 

Ile70 106.2 7.10 5.18 2.28 1.16,0.97 
Glu71 120.3 8.42 5.11 2.01 CYH 2.24 
Leu72 128.4 9.63 5.15 1.76,1.30 C8H3 0.63 
Glu73 128.0 9.46 5.20 2.23,1.96 OH 2.36 
Pro74 
Ala75 122.2 7.99 4.42 1.54 
Ala76 123.7 8.43 4.44 1.51 
Gly77 108.0 8.36 4.05 
Ala78 124.0 8.18 4.47 1.50 
Arg79 125.2 7.96 4.28 1.97,1.83 OH 1.72, C8H 3.31 
'H chemical shifts (+0.02 ppm) are referenced to internal trimethylsilyl propionate; 15N chemical shifts 
(±0.2 ppm) are referenced to external liquid ammonia. Parentheses indicate that the resonance position of 
the proton is determined exclusively via TOCSY spectra, and should therefore be regarded as tentative. 
Resonances in the final column without a label belong to the spin system but their position in the side chain 
could not be determined. 

In regions connecting the different p-strands several residues were also connected through 

their strong sequential ^NN NOES. 

Sequential assignments past proline residues could not be obtained except for 

Pro47 to which sequential da$ NOEs were observed. No sequential contacts between Val6 

and Pro7 could be distinguished, since the CaH proton of Val6 overlaps with one of the 

CSH protons of Pro7. A sequential daa NOE, characteristic for a cw-proline could not be 

observed either. Sequential contacts between Val44 and Pro45 could not be observed, 

probably due to overlap. 

It appeared difficult to assign the residues of the presumably flexible C-terminus of 

the expressed lipoyl domain (from Pro74 to Arg79). The resonances from these residues 

were shown to be significantly more narrow than resonances from other residues, 

suggesting a higher mobility. These residues could only be assigned by combining the two-

dimensional homonuclear NMR experiments with the HMQC-NOESY and HMQC-

TOCSY experiments recorded at 14°C. The starting point for the assignment of these 

residues was Gly77, which was readily identified in the HMQC-TOCSY spectra by its high 

field amide 15N chemical shift. No assignments could be made for Pro74, probably due to 

flexibility combined with the possibility of cis-trans isomerisation. 

The 15N resonances were readily assigned according to the amide proton 

assignments using the HSQC and the HMQC-TOCSY experiments. All sequential 
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resonance assignments obtained from the 2D 'H-NOESY experiments were 

unambiguously confirmed by the HMQC-NOESY experiments. The remaining ambiguities 

caused by overlapping amide protons were solved by the chemical shift dispersion in the 
15N dimension, as is shown in the HSQC spectrum (Figure 2). After completion of the 

sequential connections, several incomplete spin systems were assigned through 

intraresidue NOEs. Most of the isoleucine and lysine residues could not be completely 

assigned due to overlap in the upfield regions of the spectra. Complete 15N and 'H 

resonance assignments were obtained for 57 residues, and partial assignments for 21 

residues. A survey of the assigned 15N and 'H chemical shifts in the lipoyl domain is given 

in Table 1. 

After assignment of all amide protons and observable side-chain protons of the 

lipoyl domain in the HSQC spectrum, several peaks with relative low intensity remained 

unassigned (Figure 2). Close examination of these peaks revealed that they might belong to 

peaks in their direct vicinity in the spectrum, therefore designated as 'satellite peaks' here. 

One of the most intense satellite peaks, in close vicinity of Lys53, showed identical NOE 

cross peaks as Lys53 itself in the HMQC-NOESY spectrum (Figure 3). Moreover, 

tentatively assigned satellite peaks of slowly exchanging amide protons showed similar 

exchange rates as their 'parent peaks'. From these observations the existence of multiple 

conformations is suggested. Although it is not possible to prove which satellite peak 

belongs to which residue, on the basis of vicinity and hydrogen exchange rate for Lys48, 

Val52, Lys53, Ile70, and Leu72 a satellite peak was tentatively assigned. The remaining 12 

peaks with low intensity in the HSQC spectrum cannot yet be assigned. Due to overlap, the 

satellite peaks were not recognised in the homonuclear NMR spectra, except for Leu72 

(Figure 4). The satellite peak for Leu72 is also present in homonuclear ID and 2D NMR 

spectra of the lipoylated form of the lipoyl domain. 

139.0 

. . . . . F 1<15N) 

Figure 3. Selected region of a 2D l 5 N- 'H HMQC-NOESY spectrum of the lipoyl domain. The sequential 
rfaN(52,53) and </NN(53,54) connectivities for Lys53 (solid line) and its 'satellite' partner Lys53* (broken 
line) are labelled. The labelled intraresidue rfaN connectivity and the long-range daN(72,53) connectivity are 
only observed for Lys53. 

K53 

K53-» 

S54/K53 

S54/K53 

L72/K53 ) K53 V52/K53 

, V52/KS3 

ppm 9.5 9.0 8.5 8.0 7.5 7.0 6.5 

F2(1H) 

6.0 5.5 5.0 4.5 4.0 
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F1(15N) 

F2(lH) 

F l 

F2 

Figure 4. Selected regions of a 2D 1 5N- ]H HMQC-NOESY spectrum (A) and a 2D ^-NOESY spectrum 
(B) of the lipoyl domain. The intraresidue rfa[sj connectivities for Leu72 and its satellite peak Leu72* are 
labelled in both spectra. 

Residues with satellite peaks appear to be situated around Lys53 in p-strand S6 or 

in the neighbouring strand S8, with the exception of Lys48. This suggests that a population 

of the lipoyl domain possesses a slightly different local conformation with altered 

resonance positions for residues around Lys53. Integration of all peaks in the HSQC 

spectrum revealed that the satellite peaks show about 2-10% of the intensity of the majority 

of the peaks. The intensity of the satellite peaks is not changed in a HSQC spectrum of the 

lipoyl domain recorded at an increased pH value of 7. Thus, only a small population of the 

lipoyl domain exists in a locally slightly different conformation. The structural change is 
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not situated in the P-sheet containing the lipoyl-lysine residue (Lys39), and no satellite 

peaks are observed in the vicinity of this residue. The exchange rate between the different 

forms of the lipoyl domain is slow compared to the NMR time scale, since separate narrow 

resonances for the protons in different local conformations can be observed at 500 MHz. 

The chemical shift difference between a peak and its satellite partner is at least 25 Hz, 

suggesting that the exchange rate constant for the different conformations is much smaller 

than about 5 s_1. 

Sequential resonance assignments for the lipoylated form of the domain were 

obtained using the assignments for the unlipoylated domain. No 15N assignments for the 

lipoylated domain were obtained. The 2D ^-NOESY and COSY spectra of the lipoylated 

and the unlipoylated forms of the lipoyl domain recorded in H2O are very similar. Only 

protons of Lys39, residues in the direct neighbourhood of the lipoyl-Lys39 residue, and 

residues around GlylO show differences in chemical shift values. Residues for which 

chemical shift values of protons of the lipoylated domain differed more than 0.05 ppm 

from protons of the unlipoylated domain are listed in Table 2 together with their chemical 

shift difference. Most amide protons are shifted upfield while most CaH protons show a 

downfield shift. 

Table 2. Differences in chemical shift value of protons of the lipoylated form of the lipoyl domain at pH 5.5 
and 30°C, relative to the chemical shift values of the unlipoylated domain. Only chemical shift differences 
larger than 0.05 ppm are reported. (+) downfield shift, (-) upfield shift. 

Residue 

Ile9 
GlylO 
Glyll 
Asp 12 
Glul4 
Glu36 
Ser37 
Ala38 
Lys39 

Ala40 

Ser41 

Proton(s) 

NH 
NH 
NH 
C«H 
NH 
CVH 
C P H , , C P H 2 

NH 
NH 
C«H 
NH 
C«H 
NH 
CaH 

Chemical shift 
difference (ppm) 

-0.07 
-0.06 
-0.09 
+0.07 
+0.08 
+0.08 

+0.20,+0.14 
-0.14 
-0.27 
+0.07 
-0.17 
-0.13 
-0.12 
+0.06 
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Figure 5. Comparison of a selected region of the 2D DQF-COSY spectrum of the unlipoylated form (A) and 
the lipoylated form (B) of the lipoyl domain, recorded at 30°C and pH 5.5 in 90% H2O/10% D2O. Both 
positive and negative levels are drawn without distinction. The cross peaks belonging to the lipoyl group are 
boxed and the assignments are indicated [proton(s) in F2 / proton(s) in Fj ]. 

Comparing the DQF-COSY spectra of the unlipoylated and lipoylated forms of the 

protein, several scalar connectivities belonging to the lipoic acid moiety can be recognised 

(Figure 5). On the basis of their COSY coupling network and chemical shift position these 

resonances are tentatively assigned. 
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SI S2 S3 S4 S5 

i i i i i i i r-^czz: 
1 10 20 30 40 50 60 70 79 
SEIIRVPDIGODGEVTELLVKTGDI.IEVEQGLWLESAKASKEVPSPKAaWKSVSVKL<3DKLKEGDAIIELEPAAGAR 

dNN(U+l) • • • • • • rf I I I I • 

dNN(i,i+2) • 

dNN(i,i+3) • 

NH exchange • • • • • • • • • • • • • • < • • • • • • ***** ** * 

^ H N a * * *»*0 • • O * • • O** * * #* * 9 * 0 * • * • • • • 

1 10 20 30 40 50 60 70 79 
SEIIRVPDXGGDGEVIELLVKTODLIEVEQQLWLESAKASHEV7SPK&QWKSVSVKU3DKLKEGOA1IELEFAAGAK 

Figure 6. Summary of sequential and medium-range NOE connectivities, slowly exchanging amide protons, 
and 3./HNa coupling constants observed for the lipoyl domain. In the lines showing the amino acid sequence, 
the lipoyl-lysine residue is underlined. NOE intensities were derived from NOESY spectra with a mixing 
time of 150 ms. The thickness of the bars reflects a qualitative measure of the strength of the NOEs, 
classified as strong, medium or weak. Amide protons that could still be observed 14 h after dissolving the 
protein in D2O, at pH 5.5 and 30°C, are marked with ( • ) . The 3^HNa coupling constants are classified as (O) 
< 6 Hz, and (•) > 8 Hz. An asterisk indicates that the determination of the coupling constant was impaired by 
overlap. In the upper line the secondary structure elements, as derived from NMR data, are denoted. 

Secondary structure 
Secondary structure elements of the lipoyl domain were identified from 

characteristic NOEs, NH-exchange rates, and 3./HNa values (Figure 6). On the basis of 

strong sequential daN NOEs, large 3/HN<X values (>8 Hz), and interstrand JNN. <̂aN< a nd ^aa 

connectivities, eight extended peptide segments could be deduced, interrupted by loop 

regions. These segments could then be assembled into two antiparallel p-sheets of four 

strands each (Figure 7). One consists of Sl(Serl-Val6), S3(Asp24-Glu29), S6(Gly50-

Ser56), and S8(Asp67-Glu73), and the other of S2(Aspl2-Leul9), S4(Gly31-Ser37), 

S5(Ser41-Pro45), and S7(Asp61-Glu65). The neighbouring P-strands S4 and S5 are 

connected by a well-defined type I turn (Richardson, 1981; Wuthrich et ai, 1984) from 

Ser37 to Ala40, characterised by the strong ^NN(39,40) and medium </NN(38,39), and the 

small 3/HNa value (< 6 Hz) of Ala38. This turn is located at the corner of one of the sheets, 

and contains Lys39 that is modified with lipoic acid forming the lipoyl-lysine residue. The 

majority of the residues bordering the p-strands show strong sequential ^NN contacts, 

indicating a strong bending of the backbone. 
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I I I I I I I I 
Figure 7. Schematic drawing of the secondary structure of the lipoyl domain in solution. Arrows denote 
observed medium- and long-range medium and strong NOE connectivities between backbone protons. 
Hydrogen bonds are indicated by hatched lines, and are drawn on the basis of the observation of slowly 
exchanging amide protons. 

A sharp hairpin-like turn in the protein backbone is located around GlylO, which 

shows strong ^NN contacts with its neighbouring residues Ile9 and Glyll. This turn is 

further characterised by NOEs between the amide proton of Gly 11 and the side-chain 

protons of Ile9. It can however not be classified as belonging to type I or type II tight turns. 

To detect slowly exchanging amide protons, HSQC spectra of a freshly prepared 

sample in D2O were recorded at different time intervals. Many of these protons are located 
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in the p-strands and, on the basis of the postulated interstrand hydrogen bonds, the NH-

exchange experiments confirm the arrangement of these strands into two antiparallel (5-

sheets. 2D 'H-NOESY spectra of an identically prepared sample of unlabelled lipoyl 

domain verified the identity of the hydrogen-bonded amide protons. In addition, these 

spectra revealed the presence of a slowly exchanging (several hours) hydroxyl proton of 

Ser46. This hydroxyl proton shows a very strong NOE connectivity to the amide proton of 

Lys48, suggesting that this proton is hydrogen-bonded to the backbone nitrogen atom of 

Lys48. 

The slow exchange rate of the amide protons of Val20, Lys21, Gly23, Val57, and 

Lys58, which are situated in the peptide segments connecting the two p-sheets, suggests 

that at least some of these segments possesses secondary structure that is not random coil. 

The amide protons of Ser37 and Ala40 show a relatively fast exchange rate. These residues 

are situated in the type I turn at the corner of one of the two sheets which contains the 

lipoyl-lysine residue. 

Several irregularities in the P-sheets are observed. A bulge is located in strand S8 

around Ala68, which shows rapid NH-exchange and no ^NN contacts with the opposite 

strand. Instead, a very strong daa contact between Arg5 and Ala68 is observed together 

with a da^ contact between Arg5 and Ile69. Other irregularities are situated around Ser54 

in strand S6 which shows strong unexpected ^NN contacts with Glu71 and Lys53, and 

around Glul7 in strand S2 showing strong unexpected dNN contacts with Val34 and Ilel6. 

The five C-terminal residues of the lipoyl domain show only short-range NOEs and 

high amide proton exchange rates. The sequential NOEs for these residues became visible 

only in the NOESY spectra recorded at lower temperatures. Together with the observation 

of significant narrower linewidths of resonances from these residues, it is concluded that 

the C-terminus has a disordered structure and is not likely to be involved in the global fold 

of the lipoyl domain. These flexible residues are thought to belong to the first mobile 

Ala+Pro-rich linker sequence separating the N-terminal lipoyl domain from the second 

lipoyl domain. 

The two-dimensional 'H-NOESY spectra of the unlipoylated and lipoylated forms 

of the lipoyl domain are almost identical, except for several additional resonances 

belonging to the lipoic acid moiety, and chemical shift differences of protons of residues in 

the neighbourhood of the lipoyl-lysine residue. No changes in NOE intensities connecting 

these residues nor addition or loss of short-, medium- or long-range NOEs could be 

observed however, suggesting that the structure of the lipoyl domain is not altered much if 

any by its covalently coupled lipoic acid prosthetic group. 
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Global fold 
The secondary structure of the lipoyl domain consists of two antiparallel (3-sheets 

of four strands each, connected by peptide segments that do not form regular secondary 

structure. Both fi-sheets show some kind of amphiphilic character, with an asymmetric 

distribution of polar and nonpolar side chains, resulting in a predominantly hydrophobic 

and hydrophilic side of each sheet. It is likely that the two hydrophobic sides of the sheets 

will face each other to form a hydrophobic interior, while the two hydrophilic sides will 

form the surface of the protein. This relative three-dimensional orientation of the two P-

sheets is supported by a number of long-range NOEs observed between residues in the two 

different sheets. For example, the C8H proton of Leu72 shows a NOE cross peak to the 

CaH proton of He 16, and the CaH proton of Glu65 shows a NOE cross peak to a CYH 

proton of Val6. 

DISCUSSION 

Toward the solution structure of the N-terminal lipoyl domain of dihydrolipoyl 

transacetylase of the A. vinelandii PDHC, nearly complete sequential 'H and 15N 

resonance assignments were obtained using two-dimensional homo- and heteronuclear 

NMR. The secondary structure of the lipoyl domain, as revealed from the reported NMR 

data, is well defined in solution. The domain contains two four-stranded antiparallel P-

sheets, and a short disordered C-terminus from Pro74 to Arg79. In one of the sheets, the 

lipoyl-lysine residue is situated in a well-defined type I turn which connects strand S4 with 

the peripheral strand S5. Consequently, the lipoyl group is exposed to the solvent where it 

can act as a substrate anchor connecting the cascade of three different enzyme activities in 

the multienzyme complex. In the other sheet, the N-terminus and C-terminus of the folded 

domain are close together in the neighbouring strands SI and S8. Together with the 

observation of several NOE connectivities between the hydrophobic sites of both P-sheets 

and the topology of the eight P-strands, it is suggested that the lipoyl domain folds like a 

jelly roll barrel around a predominantly hydrophobic core. By NMR it is observed that the 

folded lipoyl domain ends around Pro74. The five C-terminal residues prove to be flexible, 

as expected, and thus belong to the mobile linker sequence rich in Ala and Pro residues. 

The mobility of the linkers, separating the lipoyl domains from each other and from the 

peripheral subunit-binding domain, is essential for the lipoyl domains to reach the three 

different active sites in the multienzyme complex. 
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The NMR spectra of the lipoyl domain show a number of extra cross peaks in the 

fingerprint region with low intensity which remain unassigned. The excess number of cross 

peaks are most obviously detected in the HSQC spectra. These peaks seem to belong to 

peaks in their direct vicinity in the spectra and were therefore designated as satellite peaks. 

The satellite peaks are proposed to arise from conformational inhomogeneity of the lipoyl 

domain, and most residues with satellite peaks appear to be situated around Lys53. A 

tentative explanation for the small population of lipoyl domain with a local deviating 

structure could be found in the nature of the residues surrounding Lys53. In close vicinity 

Glu71 and Glu73 are situated, which in principle could both be candidates to form a salt 

bridge with Lys53. Instability of this salt bridge could then lead to a population of lipoyl 

domain with a slightly different structure. Biochemical support for this hypothesis comes 

from the observation of minor but identical inhomogeneity for both unlipoylated and 

lipoylated domain when subjected to IEF. This means that two extra protein bands are 

observed for the two forms of the lipoyl domain, both with identical pi difference to the 

main protein band on the gel. The presence or absence of an additional salt bridge could 

lead to a different pi of a protein, and therefore could be an explanation for the identical 

inhomogeneity found on the IEF gel. 

The two-dimensional proton NMR spectra of the unlipoylated and lipoylated forms 

of the lipoyl domain are almost identical. This suggests that the structure of the lipoyl 

domain is not altered significantly by the covalently coupled and solvent-exposed lipoic 

acid prosthetic group, as expected. However, chemical shift differences of protons of 

residues surrounding the lipoyl-lysine residue and the lipoyl-lysine residue itself are 

observed (Table 2). Most shifted amide protons in this region show an upfield shift 

indicating an increased shielding. This could possibly be attributed to a slight loosening of 

the already weak hydrogen bonds involved in this tight turn, but will not result in 

significant structural changes. 

The changes of chemical shifts, due to the coupled prosthetic group, of protons 

belonging to residues around GlylO however adds more to the understanding of the 

possible function of the loop comprising this residue. These changes strongly indicate that 

this loop is situated in close vicinity of the lipoyl group, which is possible on the basis of 

the topology of the P-strands (Figure 7). Based on the observation that this region shows 

the highest level of local similarity among all lipoyl domain sequences, Dardel et al 

(1993) proposed that this loop might be an important determinant of the lipoyl domain for 

the process of molecular recognition by the El component in the multienzyme complex. 

However, a close examination of the sequence alignment of lipoyl domains (Dardel et al, 

1993) reveals that in this region significant sequential differences can be observed between 
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different acyltransferases from the same source. For example, for the lipoyl domains of 

E2p from A. vinelandii and E. coli the sequence toward GlylO is -PDIG-, whereas the 

aligned sequences for the lipoyl domains of E2o (Westphal & de Kok, 1990) are -PTFP-

and -PDLP- respectively. When this sequence is to serve as a determinant of the lipoyl 

domain for the specific recognition by the El component, it needs to be different among 

different 2-oxo acid dehydrogenase multienzyme complexes from the same source. 

Furthermore, this determinant should be in close proximity of the lipoyl group, as is proven 

by our findings for the hairpin-like loop around GlylO. It is therefore proposed that this 

loop is the major determinant of the lipoyl domain for the specific protein-protein 

interactions within the enzyme complex. 

The tentative assignment of protons of the lipoic-acid moiety from the DQF-COSY 

spectra of the lipoylated form of the domain (Figure 5) contradicts the assignment of 

Dardel et al. (1991) for this protein-bound prosthetic group. Our observation suggests that 

the C H protons of the lipoic-acid moiety resonate at nearly but not identical frequencies, 

based on the exceptionally large cross-peak width, and cross-peak pattern. Both ClH 

protons show then connectivities to the separate C^H protons. On the basis of the cross-

peak connectivity pattern, it was not possible to discriminate between the resonance 

positions of the CPH protons and the C5H protons, since the CaH protons and the CeH 

protons resonate at approximately the same frequency. 

Comparison of the secondary structure of the N-terminal lipoyl domain of the A. 

vinelandii PDHC with the solution structure of the lipoyl domain of the B. 

stearothermophilus PDHC (Dardel et al, 1991, 1993) shows resemblance to a large extent. 

First, the arrangement of the eight P-strands into two antiparallel P-sheets is identical, as is 

the position of lipoyl-lysine residue in the type-I turn at the corner of one of the sheets. 

Secondly, the loop region around GlylO is present in both proteins, although this loop 

might be somewhat smaller in the A. vinelandii PDHC lipoyl domain. After Glyl 1 a gap of 

three residues occurs in the A. vinelandii lipoyl domain sequence when compared to the 

sequence of the B. stearothermophilus PDHC lipoyl domain. Furthermore, all strong 

sequential JNN contacts, indicating strong bends of the backbone of the folded protein, 

occur at identical positions in the aligned sequences. The exceptions are the strong 

sequential ^NN contacts in the flexible C-terminus that are not found for the A. vinelandii 

PDHC lipoyl domain. In addition, the strongly hydrogen-bonded hydroxyl proton of Ser46, 

surrounded by Pro45 and Pro47, was not observed for the B. stearothermophilus PDHC 

lipoyl domain. The sequence -PSP- is conserved in both lipoyl domains, but the proposed 

hydrogen-bond acceptor Lys48 is replaced by a valine residue in the B. stearothermophilus 

PDHC lipoyl domain sequence. This however cannot explain why this seryl hydroxyl 
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proton is not observed by Dardel et al. (1993) for the B. stearothermophilus PDHC lipoyl 

domain, as we propose hydrogen bonding from the hydroxyl group toward the amide 

backbone function. 

It is clear that the three-dimensional solution structures of the N-terminal lipoyl 

domain of A. vinelandii PDHC and the lipoyl domain of B. stearothermophilus PDHC are 

expected to be strikingly similar, although only a secondary structure of the A. vinelandii 

PDHC lipoyl domain is available as yet. Our results strongly confirm the suggestion of 

Dardel et al. (1993) that all lipoyl domains fold in a similar way. Hence it is evident that 

the second and third lipoyl domain of the A. vinelandii PDHC will have almost identical 

tertiary structures as its N-terminal lipoyl domain, since their sequences are highly similar 

and they should act as equal substrates for their parent complex. 

The tertiary structure of the lipoyl domain of A. vinelandii PDHC is now being 

determined by distance geometry calculations and is a further step to the completion of the 

three-dimensional structure of the entire multienzyme complex. Moreover it opens a 

unique way to study the interactions between the lipoyl domain and the other complex 

components, since the crystal structures of both the acetyltransferase core and the 

lipoamide dehydrogenase component of the A. vinelandii PDHC are available. The 

interactions of the lipoyl domain with other complex components will be studied by NMR 

and crystallography, and can be combined with docking experiments to gain a better 

understanding of the different processes of interaction and recognition in this multienzyme 

complex. 

EXPERIMENTAL PROCEDURES 

Gene cloning and expression 
For the construction of the plasmid, expressing the N-terminal lipoyl domain of 

E2p of A. vinelandii PDHC, the plasmid pRA282 (Hanemaaijer et al, 1988) containing the 

complete E2p gene in pUC9, was used as starting material. In plasmid pRA282 two Clal 

sites are present at positions 407 and 2828 in the original sequence, but the Clal site at 

position 407 is sensitive to E. coli dam methylation and could not be cleaved. Plasmid 

pRA282 was digested with Clal and Sstll, and a 3.4-kb fragment comprising the N-

terminal lipoyl domain and the pUC9 part of the vector was isolated. The Clal and Sstll 

sites were made blunt using T4 DNA polymerase. Plasmid pARl was obtained after 

ligation of the resulting fragment, thereby introducing a stop codon (UGA) at position 692. 
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Plasmid pARl was characterised by digestion analysis and by sequencing the coding 

region of its insert including the introduced stop codon. 

This plasmid encodes the complete N-terminal lipoyl domain and the first few 

adjacent amino acids of the Ala+Pro rich sequence. The codon encoding the C-terminal 

amino acid (Arg79) results from the fusion after ligation of the blunt ends of the DNA 

fragment. 

E. coli strain TG2 (Gibson, 1984), a recA' version of TGI [A(lac-pro), thi, supE, 

Res' Mod' (k), F' (traD36 proA+B+, lacN lacZ 4M15)] was used for the expression of the 

lipoyl domain. E. coli TG2 cells transformed with the plasmid pARl, were grown at 37°C 

in TY medium containing 75 u.g/mL ampicillin and 20 |i.g/mL IPTG. When expression of 

lipoylated protein was required, 10 |J.g/mL lipoic acid was added. After incubation for 24 h, 

1.5 mL cell culture was concentrated fourfold and cells were disrupted by sonication. After 

centrifugation for 10 min at 13000 x g , a fraction of the supernatant (cell-free extract) was 

subjected to polyacrylamide gel electrophoresis for analysis of expression. 

Isolation of the expressed lipoyl domain 

The N-terminal lipoyl domain of A. vinelandii E2p was isolated from E. coli 

TG2(pARl). 30 g cells from a 6-L culture in TY medium supplemented with 10 mg/L 

lipoic acid (optional) was suspended in 100 mL 20 raM potassium phosphate pH 6.0 

containing 0.5 mM EDTA and 0.02% NaN3 (buffer A). Throughout the isolation the 

presence of the lipoyl domain was monitored by SDS/PAGE. The cells were disrupted 

using a French press. After centrifugation for 3 h at 140000 x g, the supernatant was 

concentrated to 10 mL by ultrafiltration (Amicon YM 30). The ultrafiltration was repeated 

several times after a fourfold dilution of the concentrate. The filtrate, containing the lipoyl 

domain, was applied to a Pharmacia HiLoad Q-Sepharose column (55 mL bed volume, 5 

mL/min flow rate) equilibrated with buffer A and eluted with a gradient of 0-1.0 M KC1 in 

buffer A. Fractions containing the lipoyl domain were analysed by native polyacrylamide 

gel electrophoresis, pooled, concentrated by ultrafiltration (Amicon YM 2), and dialysed 

against the appropriate buffer. 

Isotopic labelling 
Uniformly l5N-labelled lipoyl domain was obtained by growing bacteria on 

medium with 15NH4C1 as the sole nitrogen source. The medium contained 0.5 g/L 

'SNHiCl, 4 g/L glucose, 6 g/L Na2HP04, 3 g/L KH2P04, 0.5 g/L NaCl, 2 mM MgS04, 0.1 

mM CaCh, 10 uM FeCl3, and 5 mg/L thiamin. The growth of bacteria, the isolation, and 

65 



Chapter 2 

the purification of the 15N-labelled lipoyl domain followed the protocol described above, 

except that the bacteria were grown for 40 h. 

Characterisation of the isolated lipoyl domain 

Polyacrylamide gel electrophoresis was performed according to Schagger & von 

Jagow (1987) in the presence or absence of SDS with resolving gel 16.5% T, 3% C, and 

stacking gel 4% T, 3% C. 

Samples of the isolated lipoylated and unlipoylated forms of the domains were run 

on Phastgel IEF 3-9 gels as recommended by Pharmacia-LKB. 

Reductive acetylation of active lipoyl domain by the A. vinelandii PDHC in the 

presence of [2-14C]pyruvate was assayed in a similar manner as described by Packman et 

al. (1984). Purified lipoyl domain (12 nmol) was incubated at 4°C for 5 min in the presence 

of A. vinelandii PDHC (0.014 nmol) in 100 uL 50 mM potassium phosphate pH 7.0, 

containing 0.2 mM thiamin diphosphate, 2 mM MgCl2 and 3 mM NAD+. After addition of 

5 nL 5 mM sodium [2-14C]pyruvate (31.7 Ci/mol), the mixture was left for 25 min at 4°C, 

followed by addition of 100 (xg of bovine serum albumin as carrier protein. The protein 

was precipitated by immediate addition of 2 mL 10% (mass/vol.) ice-cold trichloroacetic 

acid. This suspension was kept on ice for 5 min, and then the precipitate was collected on 

two stacked Whatman GF/C filters. The filters were washed with 10 mL ice-cold 10% 

(mass/vol.) trichloroacetic acid followed by 3 mL of ice-cold acetone, dried under vacuum 

and the radioactivity measured. 

Electrospray mass spectrometry of the lipoyl domain in 80% (by vol.) aqueous 

methanol containing 1 % (by vol.) acetic acid was performed with a Finnigan MAT 900 

double focused mass spectrometer equipped with a Finnigan MAT electrospray interface. 

Protein concentrations were estimated with the microbiuret method (Goa, 1953). 

Bovine serum albumin was used as standard. 

NMR spectroscopy 
The lipoyl domain was dialysed against 50 mM potassium phosphate pH 5.5 

containing 150 mM potassium chloride and 0.02% NaN3, and 10% (by vol.) D20 was 

added for the lock signal. The D20 sample was prepared by twice lyophilising the dialysed 

protein sample and dissolving it in D2O. The lipoylated form of the domain was treated 

likewise except that the potassium chloride was omitted from the dialysis buffer to prevent 

rapid aggregation. The final protein concentration was 7 mM. The concentration of the 
15N-labelled unlipoylated lipoyl domain was 5 mM. 
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NMR spectra were routinely recorded on a Bruker AMX500 spectrometer 

operating at a proton frequency of 500.13 MHz and a 15N frequency of 50.68 MHz, at 14, 

30 and 37°C. Several homonuclear 'H-NMR spectra were recorded at 41°C on a Bruker 

AM600 spectrometer. 

Two-dimensional 'H-NMR spectra were collected with the carrier frequency 

coinciding with the water resonance. The following homonuclear 2D experiments were 

performed: double-quantum filtered correlation spectroscopy (DQF-COSY) (Ranee et al, 

1983), triple-quantum filtered correlation spectroscopy (TQF-COSY) (Piantini et al, 1982; 

Shaka & Freeman, 1983), total correlation spectroscopy (TOCSY) using a clean-MLEV17 

sequence for spin-locking (Griesinger et al, 1988) with a mixing time of 70 ms, NOESY 

(Jeener et al, 1979; Kumar et al, 1980) with mixing times of 25, 50, 100 and 150 ms. 

Water protons were irradiated for 1.5 s during the relaxation delay. In most experiments 

the stimulated cross peaks under bleached alphas (SCUBA) sequence (Brown et al, 1988) 

was incorporated using a SCUBA delay of 70 ms to recover saturated resonances under the 

solvent peak. Time-proportional phase incrementation (TPPI) (Marion & Wiithrich, 1983) 

was used in all experiments. All homonuclear 2D spectra were recorded with 512 t\ 

experiments with 2048 data points, and a spectral width of 7042 Hz at 500 MHz. 

'H-15N heteronuclear single-quantum coherence (HSQC) (Bodenhausen & Ruben, 

1980) spectra were recorded using 256 increments of t\, 2048 real data points, and spectral 

widths of 10 kHz in (&i and 1723 Hz in (0\ at 500 MHz. ,5N decoupling during acquisition 

was achieved using the GARP (Shaka et al, 1985) decoupling sequence. The residual 

water peak was suppressed by low-power presaturation. The 15N carrier frequency was 

placed in the centre of the backbone amide 15N spectrum at 120.9 ppm. 
]H-15N heteronuclear multiple-quantum coherence (HMQC) (Muller, 1979; Bax et 

al, 1983) experiments combined with NOESY (mixing time 150 ms) and clean-TOCSY 

(mixing time 80 ms) with an inserted SCUBA delay, were recorded using identical spectral 

widths and decoupling as used in the HSQC experiments. 

NMR data were processed on a Bruker X32 data station using the UXNMR 

software. The free induction decays were zero-filled and multiplied by the appropriately 

matched sine-bell functions prior to Fourier transformation, followed by interactive phase 

correction and baseline correction. 

The chemical shifts are reported in ppm relative to internal trimethylsilyl 

propionate for 'H and to external liquid NH3 for 15N (Live et al, 1984). 

Backbone 37HNCX coupling constants were measured from a DQF-COSY spectrum 

in H2O zero-filled to Ik x 4k data points (digital resolution in CO2 1.7 Hz/point). 
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CHAPTER 3 

Sequential !H and 15N nuclear magnetic resonance assignments and 
secondary structure of the lipoyl domain of the 2-oxogIutarate 

dehydrogenase complex from Azotobacter vinelandii. Evidence for high 
structural similarity with the lipoyl domain of the pyruvate 

dehydrogenase complex 

ABSTRACT 

A 79-amino-acid polypeptide, corresponding to the lipoyl domain of the 

succinyltransferase component of the 2-oxoglutarate dehydrogenase multienzyme complex 

from Azotobacter vinelandii, has been subcloned and produced in Escherichia coli. 

Complete sequential 1H and 15N resonance assignments for the lipoyl domain have been 

obtained by using homo- and hetero-nuclear NMR spectroscopy. Two antiparallel (i-sheets 

of four strands each were identified from characteristic NOE connectivities and 3/HNO 

values. The lipoyl-lysine residue is found in a type-I turn connecting two P-strands. The 

secondary structure of the lipoyl domain very much resembles the secondary solution 

structure of the N-terminal lipoyl domain of the A. vinelandii pyruvate dehydrogenase 

complex, despite the sequence identity of 25%. A detailed comparison of the NMR-derived 

parameters of both lipoyl domains, i.e. chemical shifts, NH-exchange rates, NOEs, and 
3JHNO. values suggests a high structural similarity in solution between the two lipoyl 

domains. Preliminary tertiary-structure calculations confirm that these lipoyl domains have 

very similar overall folds. The observed specificity of the 2-oxo acid dehydrogenase 

components of both complexes for these lipoyl domains is discussed in this respect. 

Berg, A., Smits, O., de Kok, A. & Vervoort, J. (1995) Eur. J. Biochem. 234, 148-159. 
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INTRODUCTION 

The 2-oxo acid dehydrogenase multienzyme complexes catalyse the irreversible 

oxidative decarboxylation of 2-oxo acids to acyl-CoA [for recent reviews see Perham 

(1991) and Mattevi et al. (1992a)]. In Azotobacter vinelandii two members of this family 

of multienzyme complexes are present, the pyruvate dehydrogenase complex (PDHC) and 

the 2-oxoglutarate dehydrogenase complex (OGDHC). These complexes have a very 

similar design and share many structural and catalytic properties. The complexes are 

composed of multiple copies of three enzymes: a substrate-specific 2-oxo acid 

dehydrogenase [pyruvate dehydrogenase (Elp) or 2-oxoglutarate dehydrogenase (Elo)], an 

acyltransferase [acetyltransferase (E2p) or succiny transferase (E2o)], and a common 

lipoamide dehydrogenase (E3). The E2 component forms the oligomeric cubic core of the 

complex to which the peripheral subunits El and E3 are bound as dimers. In the OGDHC 

12 dimers of Elo and 6 dimers of E3 are bound to a core of E2o consisting of 24 subunits. 

The PDHC from A. vinelandii consists of a trimeric core of E2p (Mattevi et al, 1992b) to 

which two dimers of Elp and one dimer of E3 are bound (Schulze et al, 1992). Upon 

removal of the peripheral Elp and E3 components the trimer aggregates to the 24-subunit 

core structure. This feature is unique for the PDHC from A. vinelandii. 

The acyltransferase monomers are highly segmented and consist of three types of 

separate and independently folded domains (Hanemaaijer et al., 1988). They contain at the 

N-terminal part one (OGDHC) or three (PDHC) lipoyl domains of about 80 residues each, 

all carrying a lipoic acid prosthetic group bound to a specific lysine residue. This lipoyl 

group visits the three active sites in the multienzyme complex and is responsible for the 

transfer of substrate and reduction equivalents among them (Reed, 1974). The lipoyl 

domain is followed by a peripheral subunit-binding domain of about 35 residues, which is 

responsible for binding of the E3 and the El components to the structural core. The C-

terminal catalytic domain (29 kDa) catalyses the acyltransferase reaction and aggregates to 

form the core of the complex (Hanemaaijer et al, 1987; Mattevi et al, 1992b). For PDHC 

from A. vinelandii it was shown that the catalytic domain also interacts with the Elp 

component (Schulze et al., 1991a, 1992). The domains are linked by conformationally 

flexible sequences of 20 to 40 amino acid residues with an unusual high content of Ala and 

Pro residues. 

Recently our knowledge and understanding of the 2-oxo acid dehydrogenase 

complexes expanded largely since several structures of enzymes and domains of these 

multienzyme complexes became available. By X-ray diffraction the crystal structures of 

the catalytic core domain of E2p from A. vinelandii (Schulze et al, 1991b; Mattevi et al., 
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1992b, 1993a), and the lipoamide dehydrogenases from A. vinelandii (Schierbeek et al, 

1989; Mattevi et al., 1991), Pseudomonas putida (Mattevi et al., 1992c) and P. fluorescens 

(Mattevi et al, 1993b) have been determined. The solution structures of the lipoyl domain 

of Bacillus stearothermophilus PDHC (Dardel et al, 1993), a hybrid lipoyl domain of E. 

coli PDHC (Green et al, 1995), the E3-binding domain of E. coli E2o (Robien et al, 

1992), the Elp/E3-binding domain of B. stearothermophilus E2p (Kalia et al, 1993), and 

the secondary structure of the N-terminal lipoyl domain of A. vinelandii PDHC (Berg et 

al, 1994) have been resolved by NMR. No structural information on the El component is 

available as yet. 

The specificity of the 2-oxo acid dehydrogenase complexes is determined by the El 

and E2 components. El decarboxylates only its specific 2-oxo acid substrate and the E2 

component converts CoA exclusively to its specific acyl-CoA derivative. For efficient 

multienzyme catalysis the specificity at the level of the active sites of the El and E2 

components should be sufficient. However, free lipoamide is an extremely poor substrate 

for the El component, and a folded structure of the lipoyl domain attached to lipoamide 

has proven to be essential for reaction with El (Graham et al, 1989), in contrast to the E2 

and E3 components which can use free lipoamide as a substrate (Reed et al, 1958). 

Moreover, lipoyl domains can only be fully reductively acylated by the El component of 

their parent complex (Graham et al, 1989; chapter 6, this thesis), and are therefore 

involved in specificity as well. Thus, the El components are not only specific for their 2-

oxo acid substrate but also for their lipoyl domains. Specificity of Elp for lipoyl domains 

was also demonstrated by reconstitution experiments of pyruvate dehydrogenase 

complexes based on chimeric core structures from A. vinelandii and E. coli (Schulze et al, 

1992). It was shown that the reaction of lipoyl domains with Elp of different origin caused 

a decrease in overall complex activity. 

In this paper we present complete sequence-specific !H and 15N resonance 

assignments and secondary structure of the A. vinelandii OGDHC lipoyl domain, purified 

from a subclone of the succinyltransferase gene in E. coli. The secondary structure of this 

lipoyl domain, characterised via NOE connectivities, slowly exchanging amide protons, 

and vicinal coupling constants, provides the first structural information of a lipoyl domain 

of a 2-oxoglutarate dehydrogenase complex. The secondary structure obtained has been 

compared in detail with the solution secondary structure of the N-terminal lipoyl domain of 

A. vinelandii PDHC. Preliminary tertiary-structure models of the A. vinelandii PDHC and 

OGDHC lipoyl domains, based on a limited number of constraints, are presented. 

By determining the solution structure of the lipoyl domain of E2o of A. vinelandii 

OGDHC we expect to gain more insight in the process of molecular recognition of lipoyl 
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domains by El, and thereby unravel what is the determinant of the lipoyl domain in this 

process. In particular, comparison of structures of lipoyl domains from different 

acyltransferases from the same source, in our case A. vinelandii, is a unique way to tackle 

this interesting problem. In addition, the interactions of the different lipoyl domains with 

the different 2-oxo acid dehydrogenase complexes from A. vinelandii can be studied by 

NMR and other techniques. 

RESULTS AND DISCUSSION 

Expression and isolation 
Sequencing of the complete insert of plasmid pAB 1, encoding the lipoyl domain 

(residues 1-79) of the succinyltransferase component of A. vinelandii OGDHC, revealed an 

error in the previously published DNA sequence of the succinyltransferase encoding gene 

(Westphal & de Kok, 1990). This error was confirmed by another examination of the 

original sequence data of the succinyltransferase, and was not a result of DNA 

manipulation. The change in the DNA sequence has consequences for the protein 

sequence, and in the amended amino acid sequence of succinyltransferase of A. vinelandii 

OGDHC, Pro28 is replaced by Ala28. 

Induction of E. coli TG2(pABl) cells with IPTG results in a high expression of 

lipoyl domain. The expression level is comparable to that of the N-terminal lipoyl domain 

of the acetyltransferase component of A. vinelandii PDHC in E. coli (Berg et al., 1994). 

Addition of lipoic acid to the TY growth medium results in expression of lipoylated lipoyl 

domain, as judged by native PAGE of cell-free extracts of the induced E. coli cells. The 

unlipoylated and lipoylated forms of the lipoyl domain were purified with yields of about 7 

mg lipoyl domain/L bacterial culture. Approximately 20 mg 15N-labelled unlipoylated 

lipoyl domain was isolated from a 6-L culture grown on minimal medium. The lipoylated 

lipoyl domain could be reductively succinylated by catalytic amounts of A. vinelandii 

OGDHC in the presence of [U-14C]2-oxoglutarate. This proves that the expressed lipoyl 

domain is correctly modified with lipoamide and that its folding is correct. In most 

experiments this lipoyl domain showed very similar properties as the N-terminal lipoyl 

domain of A. vinelandii PDHC. 

NMR assignments 
Sequential resonance assignments were obtained using standard methods 

(Wuthrich, 1986; Gronenborn et al., 1989). Amino acid spin systems were identified based 
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on their characteristic through-bond connectivities using DQF-COSY and TOCSY 

experiments recorded in H2O and D2O, in combination with 'H-15N HMQC-TOCSY 

experiments. Together 65 spin systems could be distinguished at this stage of the 

assignment procedure. Many spin systems were then tentatively assigned to individual 

residue types on the basis of side-chain proton chemical shifts. The AMX spin system and 

the spin system of the aromatic ring protons belonging to a single aromatic residue were 

connected through intra-residue NOEs between one or two ring protons and the CaH and 

CPH protons. The remaining spin systems were identified in the course of the sequential 

assignments. 

Sequence-specific resonance assignments were readily obtained using 2D }H 

NOESY in combination with 2D !H-15N HMQC-NOESY. In this manner most residues 

with amide-proton chemical shift degeneracy could easily be resolved, as can be judged by 

the spreaded dispersion of peaks in the HSQC spectrum (Figure 1). Only residues Ala6 and 

Ile35 have nearly degenerate 'H and 15N chemical shifts. By using NMR spectra recorded 

at two different temperatures, nearly all overlapping CaH protons could be resolved. If 

CaH protons kept partially overlapping with the solvent resonance or other CaH protons, 

sequential connections were certained by d^ or ^NN contacts. Many sequential 

assignments in the (3-sheet regions were confirmed by interstrand long-range NOEs. 

Sequential assignments past the three proline residues were obtained using dag NOEs. 

Several methylene CPH protons and valine methyl protons were stereospecifically assigned 

on basis of 37ap values and relative intra-residue NOE intensities (Zuiderweg et ah, 1985; 

Wagner et al, 1987). NOE intensities were measured from the 70-ms NOESY spectra and 
37ap coupling constants from the E.COSY spectrum. Most of the 3Jap values obtained from 

the E.COSY spectrum were confirmed qualitatively from analysis of peak shapes in the 

clean-TOCSY spectra, as described by Driscoll et al. (1989). By making effective use of 

the combination of two-dimensional homo- and hetero-nuclear NMR experiments, and due 

to the relative low amount of chemical shift degeneracy of backbone protons, we did not 

need to turn to 3D NMR spectroscopy at this stage of the structure determination of the 

lipoyl domain. The l5N resonances were determined according to the amide proton 

assignments. 

In Table 1 the 15N and 'H chemical shifts of the unlipoylated lipoyl domain are 

summarised. Complete assignments were obtained for 67 residues, and 12 residues were 

partly assigned. For some Leu, He and Lys residues, side-chain protons past the CPH 

proton(s) were observed, but these could not be assigned to a specific position in the side 

chain. 
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Figure 1. 2D 'H-1 5N HSQC spectrum of the lipoyl domain of A. vinelandii OGDHC, recorded at 30"C and 
pH 5.5. The observable side-chain !H-15N cross peaks of Trp21, Arg31, and Asn61 are marked with an 
asterisk. 
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Table 1. 'Hand 15N chemical shifts (ppm) for the unlipoylated form of the lipoyl domain at pH 5.5 and 
30*C, in 50 mM potassium phosphate containing 100 mM potassium chloride. 

Residue 

Alal 
Ue2 

Asp3 
Ile4 
Lys5 
Ala6 
Pro7 
Thr8 
Phe9 
ProlO 
Glull 
Serl2 
lie 13 

Alal4 
Asp 15 
Glyl6 
Thrl7 
Vail 8 
Alal9 
Thr20 
Trp21 

His22 
Lys23 
Lys24 
Pro25 
Gly26 
Glu27 
Ala28 
Val29 
Lys30 

Amide 
15N 

120.4 

126.4 
124.0 
127.8 
122.6 

114.8 
128.9 

119.0 
111.4 
123.7 

128.3 
113.4 
104.7 
114.4 
125.6 
135.9 
110.1 
127.6 

122.8 
117.0 
119.1 

112.3 
120.4 
124.3 
116.2 
124.9 

1H 

9.16 

8.77 
8.58 
8.93 
8.81 

8.14 
8.32 

8.61 
7.93 
7.92 

8.69 
7.69 
8.66 
8.87 
8.85 
8.95 
7.17 
9.75 

9.16 
7.66 
8.69 

9.15 
8.29 
8.46 
9.15 
8.73 

C«H 

4.50 
4.44 

4.75 
4.15 
5.01 
4.17 
4.48 
4.07 
4.95 
4.57 
4.08 
4.24 
4.27 

4.39 
4.93 

4.71,3.25 
5.23 
3.65 
4.62 
4.50 
4.66 

4.37 
4.91 
4.64 
3.90 

4.36, 3.53 
4.47 
4.92 
4.71 
4.97 

CPH 

1.47 
1.82 

2.32. 2.58 
1.55 

1.65, 1.54 
1.36 
2.44 
3.95 

3.33, 3.00 
2.44 
2.08 

4.09, 3.91 
1.92 

1.46 
2.98, 2.76 

3.79 
2.42 
1.38 
3.63 

3.09. 3.52 

2.89. 3.43 
1.74 
1.50 

1.98,1.79 

2.09 
1.47 
1.82 

1.80, 1.58 

Other 

Cm2 1.14, CYH3 0.92, 
C8H3 0.73 

0.98,0.84,0.72 
CYH 1.26, CeH 2.90 

CYH 2.03, 1.86, C5H 3.57, 3.27 
CYH3 1.13 
C8H 7.04, CTH 6.70, C^H 6.70 
OH 2.11,1.98, C8H 3.95, 3.49 
CYH 2.36 

CYH2 1.13, CH 3 0.65, 
CSH3 0.78 

CYH3 1.07 
CVH3 084, QJQ 

CVH3 0.52 
C51H 7.14, Ce3H 7.92, OIH 
6.68, C?2H 7.63, C&H 6.69, 
Ne'H 10.70, N^1 129.5 
CS2H 6.46, Ce'H 8.51 
CVH 1.50, C£H 2.90 
1.87 
CYH 2.14, C8H 3.50, 3.42 

CYH 2.40, 2.25 

CYH3 0.84 
CYH 1.44, C£H 3.00 
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Table 1. (Continued) 

Residue 

Arg31 

Asp32 

Glu33 

Leu34 

Ile35 

Val36 

Asp37 

Ile38 

Glu39 

Thr40 

Asp41 

Lys42 

Val43 

Val44 

Met45 

Glu46 

Val47 

Leu48 

Ala49 

Glu50 

Ala51 

Asp52 

Gly53 

Val54 

Ile55 

Ala56 

Glu57 

Ile58 

Val59 

Lys60 

Asn61 

Glu62 

Gly63 

Amide 
15N 

120.3 

118.8 

120.2 

124.9 

122.6 

117.2 

123.2 

121.4 

127.3 

116.4 

121.3 

114.2 

116.6 

125.4 

126.8 

121.8 

123.1 

127.1 

123.5 

124.0 

117.9 

116.1 

108.5 

120.7 

124.4 

133.5 

113.2 

123.5 

124.1 

120.0 

122.2 

118.0 

113.8 

*H 

8.75 

9.04 

8.39 

8.30 

8.78 

7.48 

8.08 

9.04 

9.38 

8.20 

8.95 
8.02 

7.43 

8.40 

9.50 

8.60 

8.50 

8.63 

8.92 

9.27 

7.40 

8.09 

8.55 

8.58 

8.36 

9.17 

7.39 

8.68 

8.71 
7.58 

9.01 

9.08 

9.43 

C«H 

3.24 

4.22 

4.24 

4.06 

4.37 

5.04 

5.44 

4.63 

4.76 

4.80 

4.31 

4.32 

4.46 

4.64 

4.64 

4.49 

4.17 

4.99 

4.21 

4.23 

4.32 

4.88 

4.38,4.13 

4.89 

3.95 

4.51 

4.37 

3.91 

4.29 

4.94 

4.68 

3.79 

4.50, 3.61 

CPH 

1.64, 1.49 

2.91.3.23 

2.17,2.03 

1.54, 1.22 

1.66 

1.10 

2.63.2.51 

1.83 

2.03, 1.92 

4.14 

2.85, 2.62 

1.80, 1.93 

2.11 

1.94 

1.82.2.07 

1.92, 1.78 

2.10 

1.69, 1.07 

1.54 

2.13, 1.98 

1.28 

2.62. 2.80 

1.73 

2.28 

1.38 

1.82 

1.19 

1.86 

2.11, 1.68 

2.61.2.87 

2.04 

Other 

O H 1.49, 1.33, C8H 3.17, 

N^H 7.18; NE 84.6 

CYH 2.39, 2.29 

O H 0.76, C5H3 0.35 

Cm 1.07, 0.85 

CYH3-0.24, 0.12 

CVH 1.16,0.72 

CVH 2.15 

CYH3 0.72 

CYH 1.42, C8H 1.66, C=H 2.99 

Cm3 &90, 0 8 1 
CTH3 0.94, 0.80 

CYH 2.44 

CYH 2.28 

CYH3 0.74 

0.88, 0.68 

O H 2.42, 2.28 

CVH? 0.83. 0.72 

CYH2 1.56, 1.38, CYH3 0.58, 

C8H3 0.79 

O H 1.98 

CYH2 -0.82, -0.13, CYH3 0.13, 

C8H3 0.62 

CYH3 0 7 3 , 0.89 

N8H 6.91, 7.91, N8 114.1 

CYH 2.72, 2.40 
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Table 1. (Continued) 

Residue 

Asp64 
Thr65 
Val66 
Leu67 
Ser68 
Gly69 
Glu70 
Leu71 
Leu72 
Gly73 
Lys74 

Leu75 
Thr76 
Glu77 
Gly78 
Gly79 

Amide 
15N 

121.6 
117.4 
121.1 
123.4 
112.3 
113.7 
120.2 
123.4 
122.7 
105.3 
117.9 

125.4 
121.7 
128.5 
111.0 
114.9 

!H 
8.39 
8.64 
9.03 
8.83 
7.85 
7.27 
7.56 
8.27 
9.66 
8.24 
8.83 

9.57 
9.37 
9.64 
8.55 
7.90 

C«H 
4.81 
4.97 
4.79 
4.77 
2.87 
3.80 
4.01 
4.19 
4.71 

4.56, 4.07 
5.40 

5.02 
4.46 
4.38 
3.97 
3.77 

CPH 
2.73. 3.05 

4.07 
1.95 
1.61 

3.66, 3.57 

1.84.2.16 
1.88, 1.59 
1.69.1.86 

1.71 

1.73, 1.45 
4.15 

2.00.2.10 

Other 

CYH3 1.31 
CYH3 0.88, 0.86 
CYH1.79,C5H3 1.04,0.95 

Cm 2.42, 2.36 
OH 1.47, C8H3 0.91 
CYH 2.03, C8H3 0.83, 0.63 

OH 1.47, 1.35, C8H 1.73, 
CEH 2.86, 2.80 
C8H30.71 
CYH3 1-23 
OH 2.30, 2.27 

*H chemical shifts (±0.02 ppm) are referenced to internal trimethylsilyl propionate; 15N chemical shifts 
(+0.2 ppm) are referenced to external liquid ammonia. Underlined chemical shifts indicate stereospecific 
assignments for p-methylene protons (P2 and P 3 respectively) and methyl groups of valines (y1 and y2 

respectively). Resonances in the final column without a label belong to the spin system but their position in 
the side chain could not be determined, 

Secondary structure 
The NMR data that were used to identify elements of regular secondary structure 

are summarised in Figure 2. Two four-stranded antiparallel (3-sheets were identified from 

long-range interstrand JNN. daa> and d^a NOEs, together with data on slowly exchanging 

amide protons and 3/HNO values. The strands are defined as follows: Sl(Alal-Ala6), 

S2(Glyl6-Trp21), S3(Glu27-Lys30), S4(Ile35-Thr40), S5(Val44-Leu48), S6(Gly53-

Val59), S7(Asp64-Leu67), S8(Leu71-Thr76). The secondary structure of the lipoyl domain 

is depicted in Figure 3. The observed interstrand and some intrastrand NOEs are shown for 

residues in the (3-sheet regions. It should be noted that the absence of some contacts could 

be caused by overlap. We were unable to observe some interstrand daa NOEs because of 

CaH chemical shift degeneracy resulting in NOEs too close to the diagonal. The proposed 

main-chain hydrogen bonds based on slowly exchanging amide protons are also indicated 
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in Figure 3. The pairing of the hydrogen bond donors and acceptors is of course tentative. 

For the majority of the residues in the p-sheet regions the value of the coupling constant 
3^HNa is high. A type-I turn is suggested at the corner of the neighbouring strands S4 and 

S5, from Thr40 to Val43. The type-I turn is characterised by the strong dNN(42,43) 

connectivity, the medium C(NN(41,42) connectivity and the small 37HNO value of Asp41. In 

this turn the lipoyl-lysine residue Lys42 is situated. The N-terminus of the lipoyl domain is 

close to its C-terminus in the other sheet. A large loop region comprising nine residues 

connects P-strand SI with strand S2. A p-bulge is found in strand S8 around Leu71 and 

Leu72, which are opposed by only a single amino acid (Lys5) in the neighbouring strand 

SI. Other irregularities in p-strands are observed around Glu57 in strand S6, Thr20 in 

strand S2, and Ile35 in strand S4. These residues show all unexpected d^ contacts to the 

opposite strand. 

daN 

d0N 

dNN 

NH exchange 

3jHN<x 
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— - . 
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Figure 2. Summary of sequential and medium-range NOE connectivities, slowly exchanging amide protons, 
and 3/HN<X coupling constants observed for the lipoyl domain. In the lines showing the amino acid sequence, 
the lipoyl-lysine residue is underlined. NOE intensities were derived from NOESY spectra with a mixing 
time of 70 ms. The thickness of the bars reflects a qualitative measure of the strength of the NOEs, classified 
as strong, medium or weak. Sequential dag connections involving a proline residue at position i + 1 are 
indicated by 8. Amide protons that could still be observed 16 h after dissolving the protein in D2O, at pH 5.5 
and 30°C, are marked with ( • ) . The 3./HN<X coupling constants are classified as (O) < 6 Hz, and (•) > 8 Hz. 
In the upper line the regular secondary structure elements, as derived from NMR data, are denoted. 

The defined structure of the lipoyl domain is likely to end near Gly78. The 

backbone proton resonances from Gly79 are significantly more narrow than the signals 

from other residues, and Gly78 and Gly79 show no medium or long-range NOEs. It is 

therefore concluded that at least Gly79 is not involved in the global fold of the lipoyl 

80 



OGDHC lipoyl domain lH and ^N NMR assignments 

domain, and is a residue of the linker sequence connecting the lipoyl domain with the 

binding domain. 

The assignment of the lipoyl domain was facilitated by the presence of two 

aromatic residues in the sequence. In particular, Trp21 shows many long-range NOEs to 

various residues with hydrophobic side chains, including Vail8, Val36, Ile58, and Leu72. 

H ( W21 J » ) H —.H ( L-W 

Mil t i l l 
Figure 3. Schematic drawing of the secondary structure of the lipoyl domain in solution. Arrows denote 
observed medium- and long-range medium and strong NOE connectivities between backbone protons. 
Hydrogen bonds are indicated by hatched lines, and are drawn on the basis of the observation of slowly 
exchanging amide protons. 
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Two of these residues, i.e. Ue58 and Leu72, are situated in the opposite (i-sheet as where 

Trp21 is positioned. It is therefore suggested that the two p-sheets are formed around a 

hydrophobic core with a central position of Trp21. The suggested overall fold of the lipoyl 

domain is in agreement with a calculated preliminary tertiary-structure model, based on a 

limited number of NOE-distance and torsion-angle constraints (see below). 

Comparison of A. vinelandii OGDHC and PDHC lipoyl domain 

The NMR-derived parameters and secondary structure of the N-terminal lipoyl 

domain of A. vinelandii PDHC have been determined earlier in our laboratory (Berg et al, 

1994). The NMR experiments with both lipoyl domains have been performed under nearly 

identical conditions with respect to pH, salt concentration, and temperature. This allows a 

detailed comparison with the properties of the A. vinelandii OGDHC lipoyl domain 

described in this paper. Despite the sequence identity of only 25% (Figure 4), the 

secondary structure and overall fold of both lipoyl domains, as will be discussed below, 

prove to be very similar. Comparison of the observed NMR-derived parameters, i.e. NOEs, 

NH-exchange rates, vicinal coupling constants, and chemical shifts will provide 

information about local differences in the solution structures of the two lipoyl domains. 

Matching both lipoyl domains reveals that the elements of the regular secondary 

structure and their positions in the amino acid sequence are very similar. They consist of 

two four-stranded antiparallel P-sheets, with an identical pairing of the strands and 

approximately the same lengths of the extended strands. The lipoyl-lysine residue is 

located at an identical position in the single type-I turn connecting strands S4 and S5. This 

is an important feature since, although exposed to solvent, the exact position of the lipoyl-

lysine residue in this structure element is very likely required for lipoylation and reaction 

with El, as has been demonstrated for the B. stearothermophilus PDHC lipoyl domain 

(Wallis & Perham, 1994). Furthermore, all the observed irregularities in the P-sheets occur 

at identical positions, i.e. around Thr20, Ile35, Glu57, and Leu72 for the OGDHC lipoyl 

domain, and at the corresponding positions in the PDHC lipoyl domain. The major 

difference in secondary structure between both lipoyl domains is a gap of three residues in 

the PDHC lipoyl domain sequence at position 11 to 14 in the OGDHC lipoyl domain 

sequence, resulting in a shortened loop between strand S1 and S2. 

The pattern of long-range NOEs connecting the different P-strands for the OGDHC 

lipoyl domain, as shown in Figure 3, is very similar to that found previously for the PDHC 

lipoyl domain. Observed differences in this pattern may not reflect true differences in the 

NOE pattern because of chemical shift degeneracy. For example, the CaH protons of Alal 

and Thr76, and of Glu39 and Val44 of the OGDHC lipoyl domain would be expected to 

82 



OGDHClipoyldomain 'Hand'°NNMRassignments 

give an interstrand daa NOE as is the case for the PDHC lipoyl domain, but they do not as 

their chemical shifts are nearly identical. For the same reason several interstrand long-

range ^Na contacts are observed only for the OGDHC or for the PDHC lipoyl domain. 

There are, however, certain true differences in long-range NOEs between the two domains. 

The daa contact between Leu67 and Asp 15, and the ̂ Na between Ser68 and Asp 15 are not 

observed for the OGDHC lipoyl domain, whereas these contacts are present at the 

equivalent positions in the PDHC lipoyl domain structure. Likewise, d^a NOEs between 

Glu57 and Gly73, and between Thrl7 and Thr40 are not observed for the OGDHC lipoyl 

domain. The daa NOE between Lys64 and Asp 12, and also the d^a NOE between Glu65 

and Asp 12 in the PDHC lipoyl domain are however only weak. 

3JHN( 

dNN(i>i+l) 

NH exchange 

II I IIIIIII I I I!I SI IB 1 I I I 
III 8HII III 11 llll II I I I III II III I I II 

MUillllllllllllllllllllllllUlllllimH 
I I LLLU I 

1111 minimi i in 11 mini i n 1111111 mm 
i • 11 • • i • — 1 1 1 

PDHC 

OGDHC 

PDHC 

OGDHC 

PDHC 

OGDHC 

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 7 9 
SE1IKVFDIG GDGBVIBI^VKTGDLIBVEQGLVVLESAKASHEVPSFKAaVVKSVSVKLGDKLKEGDAlIELSPAAGAR PDHC 

AXDIKAFTFPESlAXX>TVATWHKKPGEAVKRI>ELIVDIETDian/MEVlJU!UUX?VlAEIV^ OGDHC 
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 7 9 

Figure 4. Comparison of NMR-derived parameters between the lipoyl domains of PDHC and OGDHC from 
A. vinelandii, including ^^HNa coupling constants, strong and medium ^NN('» •+') NOEs, and slowly 
exchanging amide protons. In the upper bar, large VHNCX values (> 8 Hz) are indicated by a black filled box, 
small 3./HNa values (< 6 Hz) by a grey filled box, and 3/HNa values between 6 and 8 Hz by a blank box. 
Residues for which the cross-peak intensity was too weak to measure the coupling are indicated by (-), as are 
Pro and Gly residues. In the second bar, strong sequential ^NN contacts are indicated by a black filled box 
and medium sequential ^NN contacts by a grey filled box. In the lower bar, slowly exchanging amide protons 
are indicated by a black filled box. The upper half of each bar indicates the parameters for the N-terminal 
lipoyl domain of PDHC, the lower half of each bar the parameters for the lipoyl domain of OGDHC. At the 
bottom the sequences of both lipoyl domains are compared. Identical residues are indicated by asterisks. 

Strong sequential ^NN NOEs, when not occurring successively as in a-helices, are 

indicative of strong bending of the backbone. A comparison of the occurrence of strong 

and medium sequential C(NN connectivities for the two lipoyl domains shows a very similar 

pattern (Figure 4). The majority of these contacts are observed at identical positions in the 

backbone of the two domains, and only in a few cases a relatively small difference in NOE 

intensity (from strong to medium) is observed. A distinct difference in sequential ^NN 

contacts is observed however in the loop region connecting strand SI with strand S2, 

suggesting a rather large difference in backbone conformation in this loop between the two 
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lipoyl domains. As will be discussed below, this observation supports the hypothesis that 

differences in this loop are responsible for the specificity of the 2-oxo acid dehydrogenase 

component for their lipoyl domains. The only other difference between the two domains 

with respect to the occurrence of sequential ^NN contacts is the connectivity observed for 

Glu50 of the OGDHC lipoyl domain. In the PDHC lipoyl domain a proline is present at 

this position, which explains the absence of this contact here. 

The hydrogen exchange rates of the lipoyl domains were measured from 'H-!5N 

HSQC spectra of the 15N-labelled domains in D2O. An amide hydrogen was designated to 

exchange slowly with the solvent if it could still be detected after 16 h at 30"C, pH 5.5. The 

slowly exchanging amide protons of the two domains are compared in Figure 4. The 

pattern of hydrogen exchange is also similar. In the PDHC lipoyl domain several amide 

protons exchange somewhat slower with the solvent than in the OGDHC lipoyl domain. 

These differences however are rather small. In most cases the differences in exchange rate 

imply a change from a slowly exchanging proton in the PDHC lipoyl domain to a medium 

exchanging (8.5 h) amide proton in the OGDHC lipoyl domain (data not shown). The 

exceptions are the fast exchanging amide protons of His22 to Lys24 of the OGDHC lipoyl 

domain compared to the slowly exchanging amide protons of Leu 19 to Lys21 of the PDHC 

lipoyl domain, and the reversed situation for Val59 and Ser56 of the OGDHC and PDHC 

lipoyl domain respectively. The amino acid residues that show the large differences in 

hydrogen exchange rate occur at the edges of regular P-sheet structure or in regions 

connecting different P-strands. A large difference in hydrogen exchange rate may reflect a 

significant difference in local backbone conformation, caused by a difference in backbone-

backbone hydrogen bonding. It can not be ruled out however, that hydrogen bonding 

between the backbone amide proton and a certain side chain cause these differences, and 

that the effect on the backbone conformation is less drastic. 

Vicinal coupling constants (3/HNa) can be translated into <j> torsion angles by means 

of the Karplus relationship (Karplus, 1963), and provide therefore very useful information 

about local backbone conformation. The 3./HN<X values of the two lipoyl domains were 

determined from fitting t\ vectors of the HMQC-7 spectra with respect to the coupling 

constant and line width. This yields reasonably accurate 37HNO values with a precision of 

about 0.5 Hz for large couplings, and about 1-1.5 Hz for small couplings. The determined 

values of the vicinal coupling constants are compared in Figure 4 in a qualitative manner, 

i.e. they are divided into three categories: larger than 8 Hz, between 6 and 8 Hz, and 

smaller than 6 Hz. Again, the pattern of small and large VHNIX values is very similar, 

indicating a similar backbone conformation of the two lipoyl domains. Only relative small 
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differences in vicinal coupling constants are observed, and no changes to an opposite 
category can be found (i.e. from large to small 3JHN<X values and visa versa). 

Figure 5. Comparison of the secondary shifts for the 15N atoms, the NH and C aH protons between the 
PDHC and OGDHC lipoyl domains. The secondary shifts were calculated by subtracting random coil 
contributions (values from Wishart etal. (1991)) from the experimental chemical shifts for each residue. The 
straight line in each plot represents the connected secondary shifts of the N-terminal lipoyl domain of PDHC 
and the dotted line the connected secondary shifts of the lipoyl domain of OGDHC. The secondary shifts are 
plotted versus the residue numbers of the OGDHC lipoyl domain, with the exception of NH proton and ^ N 
atom chemical shifts at positions of prolines in either lipoyl domain, and with the exception of C aH chemical 
shifts at positions of Gly residues in either lipoyl domain. The data points of the PDHC lipoyl domain were 
aligned as in (Figure 4.) The residue numbers given on the x-axis are therefore approximate for the PDHC 
lipoyl domain. To all experimental 15N chemical shifts of the PDHC lipoyl domain a correction of 4.1 ppm 
was added as compared to Berg et al. (1994) (see correction (1994) Eur. J. Biochem. 223, 1079). 

The chemical shift is the most accessible NMR-derived parameter since it can be 

measured very easily and with a relatively high accuracy. Furthermore, clear relationships 

have been found between chemical shifts of backbone protons and secondary structure 

elements of proteins (Wishart et al., 1991). We measured the chemical shifts of the lipoyl 

domains of PDHC and OGDHC at 37 °C and 30 °C, respectively. By comparing the NMR 

spectra of the PDHC lipoyl domain recorded at 30 °C with those recorded at 37 °C we 
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observe however, that the changes of the chemical shifts upon this change of temperature 

are relatively small (A8 < 0.02 ppm). This legitimises a comparison between the backbone 

chemical shifts obtained for the two lipoyl domains. A comparison of the backbone 15N, 

NH, and CaH chemical shifts between the PDHC and OGDHC lipoyl domains is shown in 

a plot versus the amino acid sequence (Figure 5). The chemical shifts are corrected for 

random coil contributions by subtraction of the random coil chemical shifts obtained by 

Wishart et al. (1991) from NMR-assigned proteins with known three-dimensional 

structures. The corrected chemical shifts are called secondary shifts or conformation-

dependent shifts. A positive value of the secondary shift means a downfield shift with 

respect to the random coil chemical shift, a negative value means an upfield shift. The gaps 

in the different chemical shift profiles of the 15N and NH atoms and the CaH protons are 

caused respectively by the various Pro and Gly residues, and the three-residue gap in the 

amino acid sequence of the PDHC lipoyl domain. 

The secondary shift profiles of the NH and CaH protons and the 15N backbone 

atoms in Figure 5 show a very high similarity between the two lipoyl domains, despite the 

primary sequence identity of only 25%. The mean difference in secondary shift between 

the PDHC and OGDHC lipoyl domain for the NH protons, the CaH protons and the 15N 

nuclei is -0.01 ppm (r.m.s.d. 0.51 ppm), 0.17 ppm (r.m.s.d. 0.37 ppm), and -0.8 ppm (rmsd 

4.56 ppm) respectively. Large differences (> 1.0 ppm) in secondary shifts between the two 

domains are only found for four amide protons and two CaH protons. These are the NH 

protons of residues Alal4, His22, Gly69, and Gly73, and the CaH protons of residues 

Ser68 and Thr76 of the OGDHC lipoyl domain. We will try to explain large differences in 

secondary shifts between the two lipoyl domains in terms of differences in other NMR-

derived parameters, although the chemical shift is determined by a number of different 

effects, and it is not yet possible to relate thoroughly chemical shift differences with 

structural differences in proteins. 

In all cases where large differences in secondary shift between the two lipoyl 

domains are observed, a difference in one or more other NMR-derived parameter is 

noticed. Since the detailed three-dimensional solution structures of the two lipoyl domains 

are not yet available, only a few of these cases are self-evident. For example, a large 

upfield secondary shift of 2.03 ppm of the NH proton of Gly69 of the OGDHC lipoyl 

domain with respect to the comparable Gly66 of the PDHC lipoyl domain is observed. 

This suggests that the hydrogen bonding of the NH proton of Gly69 is somewhat weaker 

than for Gly66 of the PDHC lipoyl domain, which is confirmed by the significant faster 

NH-exchange rate for Gly69 (Figure 4). In addition, a structural difference is also 

suggested near this proton since a stronger sequential ^NN contact is observed for Gly66 in 
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the PDHC lipoyl domain (Figure 4). As a second example, the large upfield secondary shift 

of 1.29 ppm of the CaH proton of Ser68 of the OGDHC lipoyl domain with respect to the 

comparable Glu65 of the PDHC lipoyl domain coincides with the absence of the long-

range c?Na (68,15) contact in the OGDHC lipoyl domain. In this case however, the large 

difference in secondary shift can not yet be explained in detail, but can only be related with 

a change in the local structure. 

It is clear from the high similarity in secondary shifts of backbone protons between 

the two lipoyl domains, that their structures in solution are very similar. The high structural 

similarity between the two lipoyl domains is confirmed by the high similarity of the other 

NMR-derived parameters, e.g. vicinal coupling constants, NOEs, and NH-exchange rates, 

and by preliminary tertiary-structure calculations. The overall folds of both the OGDHC 

lipoyl domain and the PDHC lipoyl domain were computed using distance geometry 

methods with only a limited number of input constraints. The minimised average low-

resolution structures of the two lipoyl domains are schematically drawn and compared in 

Figure 6, and prove to be very similar. The overall fold, two antiparallel p-sheets formed 

around a hydrophobic core, is the same for both lipoyl domains. The suggested global fold 

of the lipoyl domain is in agreement with the suggested global fold for the PDHC lipoyl 

domain from A. vinelandii (Berg et al, 1994) and the solution structures of the lipoyl 

domain of B. steawthermophilus PDHC (Dardel et al, 1993) and a hybrid lipoyl domain 

of E. coli PDHC (Green et al, 1995). 

PDC OGDC 

K42 

Figure 6. Comparison of the overall folds of the PDHC and OGDHC lipoyl domains from A. vinelandii. The 
tertiairy-structure models were obtained by distance geometry calculations using only a limited number of 
constraints. The figure was generated using the program MOLSCRIPT (Kraulis, 1991). 

Despite the proposed high structural similarity between the PDHC and OGDHC 

lipoyl domains from A. vinelandii, these lipoyl domains react only with the 2-oxo acid 

dehydrogenase (El) of their parent complex. A difference in overall fold between the 

lipoyl domains from different acyltransferases is thus not the cause of the specificity of the 
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El component for lipoyl domains. The sequence around the lipoylated lysine is highly 

conserved in lipoyl domains from different acyltransferases. Moreover, in the A. vinelandii 

PDHC and OGDHC lipoyl domains this lipoyl-lysine residue is found in a distinct type-I 

turn. This suggests that not only the sequence but also the structure around the lipoyl-

lysine residue is conserved in lipoyl domains from different acyltransferases from the same 

source. It is therefore evident that the sequence as well as the local structure around the 

lipoyl-lysine residue are not responsible for the specificity of El for its parent lipoyl 

domain(s). 

On the basis of sequence alignment of lipoyl domains, and with the supposition that 

the part of the lipoyl domain that determines specificity towards El is likely to be in 

proximity of the lipoyl group, Berg et al. (1994) proposed that the loop connecting strand 

SI with strand S2 could be a determinant of the lipoyl domain for specific interaction with 

El. The sequence alignment of lipoyl domains shows that in this loop significant 

sequential differences occur between different acyltransferases from the same source. Our 

results clearly indicate that the solution structures of the A. vinelandii PDHC and OGDHC 

lipoyl domains are very similar. Large structural differences between the two lipoyl 

domains are suggested only for residues in this loop, as can be judged by the large 

difference in sequential C?NN contacts in this loop. This supports our hypothesis that this 

loop is important for specificity of El for lipoyl domains. Mutagenesis experiments on the 

lipoyl domains to test this hypothesis are in progress. 

The assignment of the lipoyl domain of A. vinelandii OGDHC is an important step 

in the determination of its three-dimensional solution structure. By determining the 

detailed tertiary solution structures of the lipoyl domains of both A. vinelandii PDHC and 

A. vinelandii OGDHC, which is currently in progress in our laboratory, a comparison can 

be made between structures of lipoyl domains from different acyltransferases from the 

same source. These structures should provide more detailed information about the 

differences between the structures of these lipoyl domains. It is clear however, that distinct 

conclusions about the interactions, and the specificity of those interactions, between the 

lipoyl domains and the El components are impaired by the lack of structural information 

on the El component. Studies on the interactions of the two lipoyl domains with different 

El components of the A. vinelandii 2-oxo acid dehydrogenase complexes by NMR, which 

are now possible, can provide further information about the part of the lipoyl domain that 

is involved in the interaction with El. 
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EXPERIMENTAL PROCEDURES 

Construction of expression vector 

By using the plasmid pAE2 (Westphal & de Kok, 1990) encoding the complete E2o 

gene as a template, the region encoding the lipoyl domain was selectively amplified by 

PCR. The T7/T3oc reversed sequencing primer, and a mutagenic primer that introduces a 

stop codon after Gly79 and contains an engineered EcoRl site, were used as PCR primers. 

The generated 375-bp PCR product was digested with EcoRl and Hindlll, and the resulting 

319-bp fragment ligated into pUC9. The recombinant plasmid pABl encodes the first 79 

amino acids of the succinyltransferase component of A. vinelandii OGDHC. The C-

terminal amino acid of the lipoyl domain was determined by sequence alignment. 

Expression and isolation 
E. coli strain TG2 (Gibson, 1984), a recAr version of TGI [A(lac-pro), thi, supE, 

Res' Mod' (k), F' (traD36 proA+B+, lacll lacZ 4M15)] was used for the expression of the 

lipoyl domain. E. coli TG2 cells transformed with the plasmid pABl were grown at 37°C 

in TY medium containing 75 |J.g/mL ampicillin and 20 ng/mL isopropyl (J-D-

thiogalactopyranoside (IPTG). When expression of lipoylated protein was required, 10 

ug/mL lipoic acid was added. 

The lipoyl domain of A. vinelandii E2o was isolated from a 6-L culture of E. coli 

TG2(pABl) in TY medium essentially as described for the N-terminal lipoyl domain of A. 

vinelandii E2p (Berg et ai, 1994), with the following minor modifications. Throughout the 

isolation of the lipoyl domain 20 mM piperazine pH 6.0 containing 0.5 mM EDTA and 

0.02% NaN3 was used instead of potassium phosphate. The ultrafiltration (Amicon YM 

30) of the cell-free extract was performed at pH 7.0 instead of pH 6.0, to prevent 

aggregation of proteins and subsequent clogging of the ultrafiltration membrane. In later 

purifications of the lipoyl domain the ultrafiltration step (Amicon YM 30) was replaced by 

Sephadex G-75 gel-filtration chromatography. This modification resulted in a doubling of 

the yield of lipoyl domain. 

Uniformly 15N-labelled lipoyl domain was obtained by growing bacteria on 

medium with 15NH4C1 as the sole nitrogen source, following the protocol as described by 

Berg et al. (1994). The 15N-labelled lipoyl domain was isolated using the same purification 

method as for unlabelled lipoyl domain. 

Reductive succinylation of the lipoyl domain by the A. vinelandii OGDH complex 

in the presence of [U-14C]2-oxoglutarate was assayed in a similar manner as described by 

Berg etal. (1994). 
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NMR spectroscopy 

The lipoyl domain was dialysed against 50 mM potassium phosphate pH 5.5 

containing 100 mM potassium chloride and 0.02% NaN3, and 10% (by vol.) D2O was 

added for the lock signal. The D2O sample was prepared by twice lyophilising the dialysed 

protein sample and dissolving it in D2O. The final protein concentration was 6-8 mM. The 

concentration of the 15N-labelled unlipoylated lipoyl domain was 4 mM. 

NMR data were acquired with a Bruker AMX500 spectrometer at 14 °C and 30 °C. 

All two-dimensional spectra were recorded in the phase-sensitive mode using the time-

proportional phase incrementation method (TPPI) (Marion & Wiithrich, 1983). The 

following regular two-dimensional *H-NMR experiments were performed: double-

quantum filtered correlation spectroscopy (DQF-COSY) (Ranee et al., 1983), total 

correlation spectroscopy (TOCSY) using the clean-MLEV17 mixing sequence (Griesinger 

et al, 1988) and a mixing time of 80 ms, and nuclear Overhauser enhancement 

spectroscopy (NOESY) (Jeener et al, 1979; Kumar et al, 1980) using mixing times of 70, 

100 and 150 ms. Solvent suppression was achieved using selective low-power irradiation 

for 1.5 s during the relaxation delay. For spectra recorded in H2O, presaturation was 

employed together with the SCUBA (stimulated cross peaks under bleached alphas) 

sequence (Brown et al, 1988) using a SCUBA delay of 70 ms to recover saturated 

resonances under the solvent peak. All homonuclear 2D spectra were acquired with 512 t\ 

experiments (64 or 80 transients/? 1 increment) with 2048 data points, and a spectral width 

of 7042 Hz at 500 MHz in both dimensions. For measuring 37ap coupling constants an 

exclusive correlation spectroscopy (E.COSY) (Griesinger et al, 1985; Griesinger et al, 

1987) spectrum was acquired in D2O at 30 °C, with 920 t\ increments of 4k data points. 

'H-15N heteronuclear single-quantum coherence (HSQC) spectra (Bodenhausen & 

Ruben, 1980) were recorded using 256 increments of t\, 2048 data points, and spectral 

widths of 10 kHz in 0)2 and 1824 Hz in (0\. The (1/47NH) delay was set to 2.7 ms. 15N 

decoupling during acquisition was accomplished using the GARP decoupling sequence 

(Shaka et al., 1985). The residual water peak was suppressed by low-power presaturation. 

The 15N carrier frequency was placed in the centre of the backbone amide l5N spectrum at 

120.9 ppm. 
!H-15N heteronuclear multiple-quantum coherence (HMQC) spectra (Miiller, 1979; 

Bax et al, 1983) combined with NOESY (mixing time 150 ms) and clean-TOCSY (mixing 

time 80 ms) with an inserted SCUBA delay, were acquired using identical spectral widths 

and decoupling as used in the HSQC experiments. The (1/27NH) delay in the HMQC 

experiments was set to 5.3 ms. 
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To obtain reasonable accurate 3/HNCX values, !H-15N HMQC-7 spectra (Kay & Bax, 

1990) were recorded for the A. vinelandii OGDHC and the PDHC lipoyl domain at 30 °C 

according to Forman-Kay et al. (1990). The HMQC-/ experiments were recorded with 

1248 t\ increments of 2k data points per increment. Different sine and sine-squared 

apodization functions were applied in (0\ that was zero-filled to 4k data points (digital 

resolution 0.44 Hz/point). Coupling constants were derived by non-linear least-squares 

fitting of fi cross sections with respect to the coupling constant and line width (Redfield & 

Dobson, 1990). For peaks for which no satisfactory fit was obtained, due to a poor 

signal/noise ratio or partial overlap with another peak, the coupling constant was estimated 

from comparison with spectral simulations. 

NMR data were processed using the program FELIX version 2.3 from Biosym 

Technologies Inc.(San Diego), running on a Silicon Graphics Indigo2 workstation. For 

most spectra, a phase-shifted (35-90°) sine-squared apodization function was applied prior 

to Fourier transformation. Most homonuclear spectra were zero-filled to 2048 x 2048 data 

points. For the extraction of 37ap couplings, the E.COSY spectrum was zero-filled to 4096 

x 4096 data points to increase the digital resolution in (Oi to 1.72 Hz/point. Baseline 

corrections were applied using the FLATT routine (Guntert & Wiithrich, 1992) of the 

FELIX program. 

The chemical shifts are reported in ppm relative to internal trimethylsilyl 

propionate for lH and to external liquid NH3 for 15N. The 15N chemical shifts were 

calculated relative to the 'H standard according to Live et al. (1984). 

Slowly exchanging amide protons were identified in HSQC experiments started 30 

min after dissolving the lyophilised protein in D2O. Subsequently, every 90 min a HSQC 

spectrum was recorded over a period of 24 h. 

Structure calculations 

Preliminary tertiary structures of the lipoyl domains were computed using the 

program DG-II (Havel, 1991) in the NMR refine module of the Insightn package (Biosym 

Technologies Inc., San Diego), according to the standard procedure as described by Havel 

(1991). A limited number of experimental constraints was used in the distance geometry 

calculations: 451 NOE distance and 47 <|> torsion angle constraints for the OGDHC lipoyl 

domain, and 387 NOE distance and 53 0 torsion angle constraints for the PDHC lipoyl 

domain. A total of 20 structures was calculated for each lipoyl domain, and structures 

possessing no distance violations larger than 0.05 nm were averaged and minimised to 

obtain a tentative tertiary-structure model for each lipoyl domain. 
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CHAPTER 4 

Solution structure of the lipoyl domain of the 2-oxoglutarate 
dehydrogenase complex from Azotobacter vinelandii 

ABSTRACT 

The three-dimensional solution structure of the lipoyl domain of the 2-oxoglutarate 

dehydrogenase complex from Azotobacter vinelandii has been determined from nuclear 

magnetic resonance data by using distance geometry and dynamical simulated annealing 

refinement. The structure determination is based on a total of 580 experimentally derived 

distance constraints and 65 dihedral angle constraints. The solution structure is represented 

by an ensemble of 25 structures with an average root-mean-square deviation between the 

individual structures of the ensemble and the mean coordinates of 0.71 A for backbone 

atoms and 1.08 A for all heavy atoms. The overall fold of the lipoyl domain is that of a |3-

barrel-sandwich hybrid. It consists of two almost parallel four-stranded anti-parallel p-

sheets formed around a well-defined hydrophobic core, with a central position of the single 

tryptophan 21. The lipoylation site, lysine 42, is found in a (3-turn at the far end of one of 

the sheets, and is close in space to a solvent-exposed loop comprising residues 7 to 15. The 

lipoyl domain displays a remarkable internal symmetry that projects one (3-sheet onto the 

other P-sheet after rotation of approximately 180° about a 2-fold rotational symmetry axis. 

There is close structural similarity between the structure of this 2-oxoglutarate 

dehydrogenase complex lipoyl domain and the structures of the lipoyl domains of pyruvate 

dehydrogenase complexes from Bacillus stearothermophilus and Escherichia coli, and 

conformational differences occur primarily in a solvent-exposed loop close in space to the 

lipoylation site. The lipoyl domain structure is discussed in relation to the process of 

molecular recognition of lipoyl domains by their parent 2-oxo acid dehydrogenase. 

Berg, A„ Vervoort, J. & de Kok, A. (1996) J. Mol. Biol. 261, 432-442. 
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INTRODUCTION 

Lipoyl domains are the small (8 kDa) substrate-carrying domains of 2-oxo acid 

dehydrogenase multienzyme complexes. This family of multienzyme complexes consists 

of pyruvate, 2-oxoglutarate, and branched-chain 2-oxo acid dehydrogenase complexes, and 

catalyse the irreversible oxidative decarboxylation of their respective 2-oxo acids to the 

corresponding acyl-CoA derivatives [reviewed by Perham (1991) and Mattevi et al. 

(1992a)]. These complexes have a very similar design and share many structural and 

catalytic properties. The 2-oxoglutarate dehydrogenase complex (OGDHC) from 

Azotobacter vinelandii, which is part of the tricarboxylic acid cycle, consists of multiple 

copies of three protein components. The structural core of the complex is formed by 24 

subunits of dihydrolipoyl succinyltransferase (E2o) arranged with octahedral symmetry, to 

which 12 dimers of 2-oxoglutarate dehydrogenase (Elo) and six dimers of lipoamide 

dehydrogenase (E3) are bound in a non-covalent manner. The E2o monomer is composed 

of three separate and independently folded domains (Westphal & de Kok, 1990): (1) an N-

terminal lipoyl domain (about 80 residues) containing the covalently bound prosthetic 

group lipoic acid, (2) a peripheral subunit-binding domain (about 35 residues) involved in 

the binding of the El and E3 dimers to the structural core, and (3) a C-terminal catalytic 

domain (29 kDa) that accommodates the succinyltransferase activity and aggregates to 

form the core of the multienzyme complex. The domains are connected by long flexible 

linker segments unusually rich in alanine and proline residues. 

The structures of several individual domains of acyltransferase components of 

various 2-oxo acid dehydrogenase multienzyme complexes have recently been determined. 

By X-ray diffraction the crystal structure of the catalytic core domain of the E2 component 

of the pyruvate dehydrogenase complex (PDHC) from A. vinelandii has been determined 

(Mattevi et al., 1992b, 1993). The structures of the lipoyl domain of Bacillus 

stearothermophilus PDHC (Dardel et al, 1993) and a non-native hybrid lipoyl domain of 

Escherichia coli PDHC (Green et al, 1995) have been determined by means of NMR 

spectroscopy. The structures of the peripheral subunit-binding domains of E2o of E. coli 

OGDHC (Robien et al, 1992) and of dihydrolipoyl acetyltransferase (E2p) of B. 

stearothermophilus PDHC (Kalia et al, 1993) have also been solved by means of NMR 

spectroscopy. 

The lipoyl domains play a crucial role in coupling the activities of the three enzyme 

components in 2-oxo acid dehydrogenase complexes. A specific lysine residue side-chain 

of each lipoyl domain is modified with lipoic acid to form a so-called lipoyl group, which 

visits the three successive active sites (Reed, 1974). With that, it transports acyl groups 
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from El to E2, and reduction equivalents from E2 to E3. A folded structure of the lipoyl 

domain attached to the lipoyl group has been shown to be required for the reaction with the 

El enzyme (Graham et al, 1989), in contrast to the E2 and E3 enzymes which can use free 

lipoamide as a substrate (Reed et al, 1958). Moreover, lipoyl domains can only be 

efficiently reductively acylated by the El enzyme of their parent complex (Graham et al, 

1989; chapter 6, this thesis). The El enzymes are thus not only specific for their 2-oxo acid 

substrate but also for their lipoyl domains. 

One of the important objectives of our current research on lipoyl domains is to 

understand in more detail the structural basis for the molecular recognition of lipoyl 

domains by their parent El. By a comparison of structures of different lipoyl domains we 

expect to advance our insight in this process. It must be noted that no structural 

information on any El component is yet available. Comparison of the solution structures of 

the lipoyl domain of B. stearothermophilus PDHC and the hybrid lipoyl domain of E. coli 

PDHC showed that all lipoyl domains will likely have similar overall folds (Green et al., 

1995). A comparison of the solution structures of lipoyl domains from different 

acyltransferases from the same source (in our case E2p and E2o from A. vinelandii) with 

known specificities for each other's El components, should lead to a more detailed picture 

of the process of molecular recognition. We have recently reported on the subcloning, 

over-expression, and 'H and 15N nuclear magnetic resonance assignments of these lipoyl 

domains (Berg et al, 1994, 1995), which provide the necessary background data for their 

structure determination. Here we present the three-dimensional solution structure of one of 

them, the lipoyl domain of the 2-oxoglutarate dehydrogenase complex from A. vinelandii. 

RESULTS 

Structure calculations 
From the NOESY spectra 668 distance constraints were collected, but 137 were 

found to be redundant and were not included in the structure calculations. The number of 

NOE distance constraints that were non-trivial (531) increased slightly to 550 due to the 

DIANA treatment of stereospecifically unassigned diastereotopic hydrogen atoms (see 

Materials and Methods). An additional 30 distance constraints derived from the 

identification of 15 hydrogen bonds were only included in the final round of structure 

calculations. A total of 65 dihedral angle constraints was obtained, 47 for <|> angles (34 for 
37HNa values > 8 Hz), and 18 for %i angles. The distribution of the constraints (NOEs plus 

hydrogen bonds) as a function of the residue number is shown in Figure 1(a). 
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Figure 1. (a) Plot of the number of experimentally derived distance constraints (NOEs plus hydrogen bonds) 
as a function of the residue number. The bars representing the different distance constraint categories are as 
follows: intra-residue (filled), sequential (hatched), medium range (stippled), and long range (open). Each 
inter-residue distance constraint is counted twice, once for each residue involved, (b) Plot of the residue-
based r.m.s. deviation of the individual DG-SA structures from the mean-structure (DG-SA)r of backbone 
heavy atoms (continuous line) and all heavy atoms (broken line). 

With the final set of 645 experimental constraints 50 structures were calculated, and 

solely on the basis of constraint satisfaction, 25 structures were selected to represent the 

solution structure of the lipoyl domain. These structures show no distance constraint 

violations greater than 0.2 A (1 A = 0.1 nm) and no dihedral angle constraint violations 

greater than 1°, which reveals that good constraint satisfaction can be achieved. The 

structures also have small deviations from idealised geometry and reasonable non-bonded 

contacts (Table 1), as indicated by the low value of the repulsive van der Waals energy 

term. A good fit of the final structures to the experimental constraints could only be 

achieved using relatively long simulation times in the simulated annealing calculations. 

However, a comparable constraint satisfaction could be achieved with several successive 
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rounds of simulated annealing refinement (Briinger, 1992) following the initial distance 

geometry/simulated annealing (DG-SA) calculation which used shorter periods of 

dynamics. 

Table 1. Structural statistics3 

R.m.s. deviations from experimental 
distance constraints (A)b: 
All NOE constraints (550) 
Intra-residue (200) 
Sequential (li-jl) = 1 (178) 
Short range (li-jl) < 4 (39) 
Long range (li-jl) > 4 (133) 
Hydrogen bond (30) 

R.m.s. deviations from experimental 
dihedral constraints (°) (65) 

R.m.s. deviations from idealised covalent 
geometry: 
Bonds(A) 
Angles (°) 
Impropers (°) 

Energy (kcal/mol)c: 

FNOE 

Fcdih 

^repel 

< DG-SA > 

0.015(±0.001) 
0.013(±0.002) 
0.014(±0.003) 

0.0006(±0.0004) 
0.0013(±0.0009) 
0.0006(10.0004) 

0.12(±0.01) 

0.0019(±0.0001) 
0.479(±0.001) 
0.284(±0.002) 

8.468(±1.078) 
0.061(±0.011) 
3.832(±0.296) 

(DG-SA)r 

0.012 
0.011 
0.011 
0.0002 
0.0009 
0.0008 

0.16 

0.0017 
0.470 
0.273 

5.484 
0.107 
3.204 

a < DG-SA > refers to the 25 final structures obtained by the hybrid distance geometry/simulated 
annealing protocol, (DG-SA)r is the restrained minimised mean structure obtained by averaging the atomic 
coordinates of the final structures best fitted to each other over the backbone atoms. 

b The number of each type of constraint used in the structure calculations is given in parentheses. 
c The force constants used for these calculations were 50 kcal/mol per A^, and 200 kcal/mol per 

rad^, for F N O E and Fcljjh, respectively. Frepei was calculated using the final value of 4 kcal/mol per A* with 
the van der Waals hard sphere radii set to 0.75 times the standard values used in the CHARMM empirical 
energy function (Brooks et al., 1983). The parallhdg.pro parameter set supplied with X-PLOR version 3.1 
(Briinger, 1992) was used for the calculations. 

99 



Chapter 4 

Description of the structures 

The ensemble of 25 structures representing the solution structure of the lipoyl 

domain shows reasonably good convergence. A superposition of the 25 DG-SA structures 

is shown in Figure 2. These structures display a root-mean-square (r.m.s.) deviation from 

the mean structure of 0.71 A for backbone atoms and 1.08 A for all non-hydrogen atoms 

(Table 2). If the less well-defined N-terminal residue and two C-terminal residues are 

excluded, these values drop to 0.60 A and 1.01 A for backbone and heavy atoms, 

respectively. The r.m.s. deviation values indicate that the structure of the lipoyl domain is 

well defined in solution. In Figure 1(b) the r.m.s. deviation of the 25 structures from the 

mean structure for backbone atoms and all heavy atoms as a function of the residue number 

is depicted. 

(a) 

(b) 

Figure 2. (a) Stereoview of the 25 selected structures of the lipoyl domain, superposed over the backbone (N, 
C a , C) atoms for residues 2 to 77. Only the backbone heavy atoms are shown, (b) Side view of the 
superposition shown in (a), obtained by a 90° rotation about the vertical axis. 
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Table 2. Atomic r.m.s. differences for the 25 selected structures of the lipoyl domain a 

Residues 1 to 79 Residues 2 to 77 b P-Sheetc 

To mean 
Backboned (A) 0.71(±0.16) 0.59(±0.13) 0.48(±0.10) 
Heavy (A) 1.08(±0.15) 1.03(±0.15) 0.85(±0.08) 

Pairwise 
Backbone (A) 1.03(10.21) 0.84(10.18) 0.62(10.15) 
Heavy (A) 1.56(10.19) 1.47(10.19) 1.19(10.13) 

a The r.m.s. deviations from the mathematical mean structure, obtained by a least-squares fit of the 

25 selected structures over the backbone heavy atoms (N, C a , C) of residues 2 to 77 
b The r.m.s. deviation of residues 2 to 77, excluding the less well-defined N-terminal and C-terminal 

residues 
c The r.m.s. deviation of regions adopting regular P-sheet structure; residues 2 to 6, 16 to 21, 27 to 

29, 34 to 39, 44 to 48, 53 to 58, 64 to 66 and 71 to 76 

d These include the backbone heavy atoms N, C a , and C only 

Four regions in the protein show a backbone r.m.s. deviation to the mean structure 

greater than 1.0 A. These regions coincide approximately with regions containing residues 

for which no long-range NOEs were obtained. Two of these are the N-terminal residue and 

the two C-terminal residues, which are in proximity in the structure. In particular the C-

terminal Gly79 shows a significantly smaller linewidth of the backbone amide proton 

resonance (Berg et al, 1995), suggesting a higher mobility of this residue as compared to 

the rest of the molecule. The other two parts of the lipoyl domain that show greater 

backbone r.m.s. deviation values are a solvent-exposed loop region near Glull and the P-

turn region around Lys42, the active site lipoyl-lysine residue. These regions are also close 

together in three-dimensional space, at the opposite side of the N- and C-terminal ends of 

the molecule. 

Analysis of the angular order parameters (Hyberts et al, 1992) for both <)> and \|/ 

angles revealed that most residues have well-defined (S -̂v > 0.9) backbone dihedral angles 

(data not shown). All of the non-glycine residues show sterically allowed (|>,\(f angle 

combinations, with 66% of the residues lying in the most-favoured regions of the (|>,Y|/ 

conformational space (Morris et al, 1992). It should be noted however that, as pointed out 

by Morris et al. (1992), the <]),\|/ distribution cannot be used as an absolute measure of the 

accuracy of structures calculated by an energy-based method such as X-PLOR. The only 

non-glycine residue with a positive <j> angle is Asp32. This residue has well-defined 
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backbone torsion angles (S*^ = 0.99) of 70.8(±4)° (<j>) and 44.0(+9)° (\)/) and lies in the aL 

region of §,yif conformational space. For Asp32 a 37HNO coupling constant between 6 and 8 

Hz was measured, together with a very strong intra-residue NH-CaH contact. Both these 

observations are consistent with residues showing positive (|> angles (Ludvigsen & Poulsen, 

1992). 

A schematic ribbon drawing of the energy-minimised average structure of the 

lipoyl domain is illustrated in Figure 3. The P-strands are numbered sequentially. The 

overall fold is that of a P-barrel-sandwich hybrid (Chothia & Murzin, 1993) which is now 

recognised as being typical for lipoyl domains. The molecule is approximately 30 A long 

(backbone-to-backbone distance), and 15 A wide and deep, with the long side being 

parallel to the P-sheets from the lipoyl-lysine turn to the N and C termini. The overall 

topology of the P-strands (Berg et al, 1995) is somewhat different from a classic Greek 

key, and should be regarded as a separate class of P-sandwich protein structures as 

discussed by Green et al. (1995). The lipoyl domain consists of six major (five to six 

residues) and two minor (three residues) antiparallel P-strands that form two very similar 

P-sheets of four strands each, which run approximately parallel. Sheet A is formed by the 

strands SI, S3, S6 and S8, and sheet B is formed by the strands S2, S4, S5 and S7. The two 

sheets are connected by loops and turns adopting no regular repetitive secondary structure, 

and share an interface of hydrophobic residues forming the core of the domain. 

K42 

Figure 3. Schematic representation of the minimised average structure of the lipoyl domain, generated using 
the program MOLSCRIPT (Kraulis, 1991). The P-strands are labelled with their strand numbers. The N and 
C termini are close together in P-sheet A (dark grey), the lipoylation site Lys42 is situated in P-sheet B (light 
grey), at the opposite side of the domain. 
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The structure of the lipoyl domain is remarkably symmetrical and contains an 

internal 2-fold symmetry axis through the centre of the hydrophobic core and parallel to 

the plane formed by either one of the p-sheets. Rotation of approximately 180° about this 

axis aligns the two halves of the molecule (Glyl6 to Glu39 and Gly53 to Thr76) with an 

r.m.s. deviation of only 0.83 A for backbone atoms (Figure 4). The rotation projects one 13-

sheet onto the original position of the other sheet, and the P-turn containing the lipoyl-

lysine residue onto the N- and C-terminal residues, and vice versa. Other structural 

features, like four type II turns and four P-bulges (Figure 5), are all strikingly found, in 

pairs, at exact symmetrical positions. The internal symmetry is also logically reflected in a 

repeating pattern of observed NMR parameters, e.g. coupling constants, chemical shifts 

and NOEs. The 2-fold quasi-symmetry seems a highly conserved feature of lipoyl 

domains. 

Figure 4. Superposition of two halves of the lipoyl domain, illustrating the internal 2-fold symmetry. The 
backbone heavy atoms of residues 16 to 39 (grey line) were aligned with those of residues 53 to 76 (black 
line). 

The N-terminal and C-terminal ends of the lipoyl domain are close together and 

meet in the adjacent P-strands SI and S8 in sheet A. At the exact opposite side of the 

molecule, at the far end of sheet B, the active site lipoyl-lysine residue (Lys42) is presented 

to the solvent at position 3 of a P-turn that connects the successive strands S4 and S5. 

Strand SI is connected to strand S2 by an exposed loop comprising residues Pro7 to 

Aspl5. Residues in this loop all show fast amide-proton exchange rates (Berg etal., 1995). 

The minor strand S3 is connected to the major strands S2 and S4 by loop regions which 

both contain a type II P-turn. Similarly, as a rational consequence of the internal symmetry 

of the lipoyl domain, the minor strand S7 is linked to the strands S8 and S6 in the opposing 

sheet by loop regions each containing a type II turn as well. The p-strands S5 and S6 are 
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connected by a loop comprising residues Ala49 to Asp52. This loop is shorter and adopts a 

different conformation than its symmetry-related exposed loop (connecting strand S1 with 

S2), and with that it disturbs the symmetry created by the rest of the domain. 

1 5 10 15 20 25 30 35 

Av_0 A I D I K A P T F P E S I A D G T V A T W H K K P G E A V K R D E L I V D X 

Bs_P A F E F K L P D I G E G I H E G E I V K W F V K P G D E V N E D D V L C E V 

Ec_Pl,3 A I E I K V P D I G - - A D E V E I T E I L V K V G D K V E A E Q S I 1 X T V 

Av_Pl S E I I R V P D I G G D G E V I E L L V K T G D L I E V E Q G L V V L 

sheet a a a a a b b b b b b a a a b b b b b 

turn E E 22 22 E E 

4 0 * 4 5 50 55 60 65 70 75 

Av_0 E T D K V V M E V L A E A D G V I A E X V K N E G D T V L S G E L L G K i T E 

Bs_P Q N D K A V V E I P S P V K G K V L E X L V P E G T V A T V G Q T L X T i D A 

Ec_Pl ,3 E G D Q A S M E V P A P F A G V V K E i K V N V G D K V K T G S L X W I F E V 

Av_Pl E S A K A S M E V P S P K A G V V K S V S V K L G D K L K E G D A I I E L E P 

sheet h b b b b b a a a a a a b b b a a a a a a 

turn 11 E E 22 2 2 E E 

consvd * * * ** * * * * * * * 

Figure 5. Structure-based sequence alignment of the lipoyl domains of A. vinelandii OGDHC (Av_0), B. 
stearothermophilus PDHC (Bs_P) (Dardel et ai, 1993), a hybrid lipoyl domain of E. coli PDHC (Ec_Pl,3) 
(Green et ai, 1995), and the N-terminal lipoyl domain of A vinelandii PDHC (Av_Pl) (Berg et ai, 1994, 
1995). Residue numbers above the sequence refer to the Av_0 sequence. Residues belonging to the 
hydrophobic core of the lipoyl domain are indicated in the sequence by bold italic type, except for Av_Pl, for 
which only a low resolution three-dimensional structure is yet available. The lipoyl-lysine residue is 
underlined. The locations of the P-strands in the Av_0 structure are indicated in the line labelled "sheet", 
where a. represents P-sheet A, and b_ represents P-sheet B. In the line labelled "turn" the positions of type 1(1) 
turns, type II (2) turns and P-bulges (P) in the structure of Av_0 are indicated. The bottom-line, consvd, 
indicates amino acid residues conserved or semi-conserved in all lipoyl domains. 

The hydrophobic core of the lipoyl domain consists of a number of residues all 

having a well-defined side-chain conformation with an r.m.s. deviation smaller than 1.0 A, 

with the exception of Val29 (r.m.s. deviation 1.09 A). The side-chains of the following 

residues form the hydrophobic core; Ue4, Vall8, Trp21, Val29, Ile35, Val36, Ile38, Val47, 

Ala49, Ile55, Ile58, Val66, Leu72 and Leu75. The central position in the core is occupied 

by the single tryptophan residue 21. This residue shows many long-range NOEs to other 

members of the core, and consequently has a very well-defined side-chain conformation 

(r.m.s. deviation 0.29 A). The top of the core, as shown in Figure 2(a), is covered by this 
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Trp21 and by Ile58, while the bottom is closed by residues Ile4, Ile38 and Val47. The 

hydrophobic core is flanked by the residues Ile38 and Val66 on one side, and Ala49 and 

Val29 on the other side. The hydrophobic interactions between the side-chains of the 

residues forming the hydrophobic core undoubtedly keep the two P-sheets together and are 

essential for the stability of the lipoyl domain. 

DISCUSSION 

The structure of the lipoyl domain provides a specific attachment site for the lipoyl 

group. The lipoylation site, Lys42, is located at position 3 in a p-turn at the periphery of 

one of the P-sheets where it is solvent exposed. By using site-directed mutagenesis Wallis 

& Perham (1994) clearly showed that a structural rather than a sequence motif around the 

lipoylation site is responsible for the recognition of this site by the lipoylating enzymes, 

and that the lipoyl-lysine residue should be in position 3 of this P-hairpin turn in order to 

become lipoylated. It is worth noting here that lipoylation of the specific lysine residue 

only induces small changes in the chemical shift of residues close to the lipoylation site, 

suggesting that the conformation of the lipoyl domain is not altered by the covalently 

coupled lipoyl group (Dardel et al, 1991; Berg et al, 1994). This also indicates that the 

lipoyl group, although quite hydrophobic in nature, protrudes into the solvent and does not 

bind back to a hydrophobic surface on the lipoyl domain, as for example in the case of the 

methylamine-loaded H-protein of the glycine decarboxylase complex from pea leaf 

mitochondria (Cohen-Addad et al, 1995). 

A noticeable characteristic of the lipoyl domain is its highly negative charge, with a 

measured isoelectric point of approximately 4. The high number of charged residues, with 

the majority being negatively charged, are found exclusively on the surface of the domain. 

The distribution of charges on the surface of the lipoyl domain seems to be uniform and no 

obvious clustering of charges is observed. Despite the lack of experimental evidence, we 

believe that the highly charged surface of the lipoyl domain prevents interaction with the 

hydrophobic linker sequence, other lipoyl domains in the complex, and other aspecific 

protein-protein interactions. These interactions would be highly disadvantageous for the 

functioning of the lipoyl domain moving rapidly among the different active sites in the 

complex, and would undo the advantages of being part of an efficient multienzyme 

complex. 
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Comparison with other lipoyl domain structures 

We describe here the first three-dimensional structure of a lipoyl domain of a 2-

oxoglutarate dehydrogenase complex, from A. vinelandii. Two other three-dimensional 

solution structures of lipoyl domains have recently been described, both from PDH 

complexes. These are the lipoyl domain from B. stearothermophilus PDHC (Dardel et al., 

1993; Protein Data Bank accession code 1LAC) and a non-native lipoyl domain from E. 

coli PDHC (Green et al, 1995), which is a hybrid between the N- and C-terminal halves of 

the first and third lipoyl domain, respectively, and in which the lipoyl-lysine residue is 

replaced by a glutamine residue. In addition, the X-ray crystal structures of the structurally 

and functionally related lipoylated H-protein of the glycine decarboxylase system from pea 

leaves (Pares et al, 1994), and the biotinyl domain of acetyl-coenzyme A carboxylase 

from E. coli (Athappilly & Hendrickson, 1995) have been determined. We will concentrate 

here only on the comparison of structures of lipoyl domains derived from 2-oxo acid 

dehydrogenase complexes. 

The three lipoyl domain solution structures have all been determined to 

approximately the same precision, using a comparable number of constraints. The 

minimised average structures overlay with an r.m.s. deviation of 2.5 A for the backbone 

atoms of the A. vinelandii OGDHC lipoyl domain and the B. stearothermophilus PDHC 

lipoyl domain (Figure 6), and with an r.m.s. deviation of 2.5 A for the backbone atoms of 

the B. stearothermophilus PDHC lipoyl domain and the hybrid E. coli PDHC lipoyl 

domain (Brocklehurst & Perham, 1993). The lipoyl domains thus have essentially the same 

overall fold and are very similar. We have shown previously (Berg et al, 1995), based on a 

high similarity of NMR-derived parameters, e.g. chemical shifts, and by the calculation of 

a preliminary tertiary-structure model, that the structure of the N-terminal lipoyl domain of 

A. vinelandii PDHC is also likely to have a very similar global fold. This suggests again 

that all lipoyl domains will have similar structures in solution. The determination of the 

structure of an OGDHC lipoyl domain (this study) now implies that this will be 

irrespective of the type of complex. 

Alignment of the amino acid residue sequences of the lipoyl domains reveals that 

many conserved or partially conserved residues contribute to the hydrophobic core of the 

domain (Figure 5). Among the most conserved residues that are not part of the 

hydrophobic core are the lipoyl-lysine residue and its preceding residue (DK), which reside 

in the type I (3-hairpin turn, and a number of conserved glycine residues that occur at 

position 3 of a p-turn, which reflects their structural importance. The reason for the high 

conservation of the exposed Lys24 seems not directly apparent. 
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Figure 6. Stereoview of the superposition of the minimised average solution structure of the lipoyl domain of 
A. vinelandii OGDHC (black line) and the lipoyl domain of B. stearothermophilus PDHC (grey line). Only 
the backbone heavy atoms are drawn. 

Despite their high structural similarity, there are significant conformational 

differences among the lipoyl domains, which occur primarily in an exposed loop close in 

space to the lipoylation site. This loop connects P-strand S1 with S2 (Figure 3) and is one 

of the least-defined regions in all three lipoyl domain structures. The r.m.s. deviation 

values of backbone atoms between the different average lipoyl domain structures drop by 

at least 0.7 A if this loop is excluded from the alignment. It should be noted, however, that 

alignment of the isolated loops (residues 7 to 15) of the A. vinelandii OGDHC and B. 

stearothermophilus PDHC lipoyl domains reveals that their average structures are less 

different than expected from alignment of the complete structures, and their backbone 

atoms align with an r.m.s. deviation of 1.9 A. This suggests that the loops show some 

structural similarity but are connected to the rest of the domain in a different way, with the 

hinge points being residues 7 and 15. The corresponding loop region in the E. coli PDHC 

lipoyl domain comprises two residues less, and its structure seems more different 

compared to the structures of the other two lipoyl domains. 

The exposed loop of the A. vinelandii OGDHC lipoyl domain is formed around the 

side-chain of Phe9, which is almost completely buried, and which makes hydrophobic 

contacts with the other hydrophobic residues in the loop, i.e. Pro7, ProlO and Ilel3. This 
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small cluster of hydrophobic side-chains could provide some rigidity to this exposed loop, 

possibly necessary for its function. In the loops of the B. stearothermophilus PDHC and 

the E. coli PDHC lipoyl domains also a number of these hydrophobic contacts are found 

(Brocklehurst & Perham, 1993). 

Implications for molecular recognition 

The three-dimensional structure of the lipoyl domain is required for an efficient 

reaction of its lipoyl group with the El component (Graham et al, 1989). Free lipoamide is 

an extremely poor substrate for El. This is remarkable since the reactive dithiolane ring is 

at the end of the 14 A long lipoyl group and protrudes into the solvent. Furthermore, the 

structure of the lipoyl domain is also responsible, at least in part, for the specificity of the 

reductive acylation reaction with the El component. It has been shown that the 2-oxo acid 

dehydrogenases (Elp and Elo) from E. coli are specific for their lipoyl domains (Graham 

et al, 1989). We have confirmed this specificity for the 2-oxo acid dehydrogenase 

complexes from A. vinelandii (chapter 6, this thesis). This suggests that some kind of 

molecular recognition occurs between the El and the lipoyl domain. 

It is not yet understood why the specificity of reductive acylation of lipoyl domains 

by only the El component of the parent 2-oxo acid dehydrogenase complex is required. 

Since the lipoyl groups are able to reach to within at least 10 to 20 A of the outer surface of 

the multienzyme complex (Hale et al, 1992), there could be a chance of cross-reaction 

between two different multienzyme complexes if they can approach one another closely 

enough. However, this cross-reaction will only occur very rarely, if at all, since the rate of 

inter-core transacetylation is already very slow (Bosma, 1984). We believe that the only 

reasonable explanation for the necessity of the observed specificity is the possible 

occurrence in vivo of hybrid complexes with respect to their El component. The 2-

oxoglutarate dehydrogenase complex isolated from E. coli was found to be a hybrid 

complex containing a small amount (-10%) of pyruvate dehydrogenase (Steginsky et al, 

1985). The reaction of this Elp with pyruvate and the OGDHC lipoyl domains would 

rapidly acetylate these lipoyl domains, resulting in an inactive complex. The exclusive 

reaction of lipoyl domains with only their parent El component would prevent such rapid 

inactivation. 

This leaves us with the question of what is the determinant of the lipoyl domain in 

this process of molecular recognition? Since no structural information is available on any 

El component, at present only a comparison of sequences and structures of lipoyl domains 

could provide some clues to a possible answer. The comparison is impaired by the lack of 

information about the differences in specificity among the three lipoyl domain structures 
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determined so far. It is evident, however, that the local structure around the lipoyl-lysine 

residue as well as its preceding residue are not involved in the specific recognition process, 

since these both seem highly conserved in lipoyl domains. Furthermore, it is also clear that 

the molecular recognition is brought about by small differences in structure and/or charge 

of the lipoyl domains, since the lipoyl domain structures determined so far are all very 

similar. The largest structural differences observed among the lipoyl domains occur in the 

loop region connecting the p-strand SI with S2 (Figure 3). Alignment of many lipoyl 

domain amino acid residue sequences reveals that in the first four residues of this loop 

(residues 7 to 10) the sequence PDIG is frequently found, in particular in lipoyl domains of 

PDH complexes. However, significant differences in the amino acid residue sequence in 

this part of the loop are always observed among lipoyl domains of different 

acyltransferases from the same source. In addition, in this loop occasionally a deletion of 

one or two residues is found, resulting in loops of different lengths. Furthermore, this loop 

is at the same side of the lipoyl domain as its lipoyl-lysine residue, and is supposedly 

somewhat more flexible (low number of NOE distance constraints) than the body of the 

domain, not uncommon for interaction sites. Together this could suggest that this loop may 

play a role in the process of molecular recognition of lipoyl domains by only their parent 

El component. Other possible candidates that could be involved in the specific recognition 

process are the exposed residues at positions 43 and 44 (Val,Val in Av_0, Ala.Val in 

Bs_P, Ala.Ser in Ec_Pl,3 and Av_Pl) in the Av_0 sequence (Figure 5). As is true for the 

loop discussed above, these exposed residues are close to the lipoylation site and are nearly 

always different among lipoyl domains of different acyltransferases from the same source. 

Since the sequence similarity among lipoyl domains is not very high, and, as stated 

earlier, the specificity of El components for the three lipoyl domains with resolved 

structure is not known, it proves difficult as yet to be conclusive about residues or 

structural motifs of the lipoyl domain responsible for molecular recognition by their El. 

The determination of the three-dimensional structure of the A. vinelandii OGDHC lipoyl 

domain provides significant structural information necessary for further studies on the 

interaction between lipoyl domains and El, e.g. by NMR spectroscopy and by site-directed 

mutagenesis. Such studies, which are currently in progress, should aid elucidating which 

residues of the lipoyl domain are involved in the specific interaction with El. 
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MATERIALS AND METHODS 

Sample preparation 

Unlabelled and uniformly 15N-isotopically labelled lipoyl domain was expressed 

and purified as reported previously (Berg et ai, 1995). The unlipoylated form of the lipoyl 

domain was used in all experiments. NMR samples contained 8 mM of unlabelled lipoyl 

domain or 4 mM of 15N-labelled lipoyl domain in 50 mM potassium phosphate (pH 5.5) 

containing 100 mM potassium chloride in either 90% H2O/10% D20 or 99.95% D20. 

NMR spectroscopy 

Details of the NMR experiments, resonance assignments and analysis of the 

secondary structure of the lipoyl domain have been described elsewhere (Berg et ai, 

1995). All NMR experiments were performed on a Bruker AMX500 spectrometer, at 14°C 

and 30°C, and processed using the program FELIX version 2.3 from Biosym Technologies 

Inc., San Diego. 

Derivation of structural constraints 

NOE cross-peaks were assigned in an iterative manner, in several rounds of 

structure calculations. An initial ensemble of structures was calculated using a set of only 

unambiguously identified NOEs. In each round of calculations a number of ambiguous 

NOEs were resolved based on analysis of the family of calculated structures, and these 

were included in the next round of calculations. In the last stage of structure refinement, 

the repeating pattern of NOEs resulting from the 2-fold internal symmetry of the lipoyl 

domain also helped to resolve some ambiguous NOEs. The majority of the NOE distance 

constraints were derived from two-dimensional homonuclear NOESY spectra acquired 

with mixing times of 70, 100 and 150 ms. In addition, a small number of NOE distance 

constraints were derived from a 150 ms two-dimensional HMQC-NOESY spectrum. NOE 

volumes were measured using the FELIX program and calibrated for conversion to 

approximate interproton distances with the volumes of sequential dan cross-peaks in 

regular antiparallel p-sheet, using the standard distance of 2.2 A for this interaction 

(Wiithrich, 1986). NOEs were grouped into strong, medium and weak categories, 

corresponding to upper-bound interproton distance constraints of 2.7, 3.3 and 5.0 A, 

respectively. An additional 0.5 A was added to the upper limits for distances involving 

methyl groups (Clore et al, 1987; Wagner et ai, 1987). In all cases, the lower-bound 

distance constraint was set to 1.8 A, the approximate sum of the van der Waals radii. NOEs 

which partially overlapped in the spectra were conservatively assigned an upper-bound 
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constraint of 5.0 A if their intensity grouping was ambiguous. The standard pseudoatom 

corrections (Wuthrich et ah, 1983) were applied to methyl groups, degenerate 

diastereotopic hydrogen atoms, and diastereotopic hydrogen groups for which only one 

NOE was observed. For stereospecifically unassigned diastereotopic substituents for which 

NOEs to both hydrogen atoms were observed, the DIANA treatment of diastereotopic 

hydrogen atoms was used (Guntert et al, 1991). In cases where both NOEs had an equal 

upper distance limit, no pseudoatom correction was applied. In cases where both NOEs had 

different upper distance limits, the upper distance limit of both NOEs was set equal to the 

higher limit of the two, and an extra DIANA pseudoatom distance constraint was 

calculated and added to the constraint list. 

Backbone § dihedral angle constraints were derived from 3/HNO coupling constants 

measured in a 'H-15N HMQC-7 spectrum, as described by Berg et al. (1995). The § 

dihedral angles were constrained to -120(±30)° when VHNCX ^ 9 Hz, and to -120(+40)° 

when 37HN<X
 w a s between 8 and 9 Hz. For 3JHNOI values smaller than 6 Hz, ty angles were 

constrained to -55(±30)°. Stereospecific resonance assignments of methylene CPH protons 

and valine residue methyl groups were obtained from 37ap values (from DQF-COSY and 

E.COSY spectra) and relative intra-residue NOE intensities (Zuiderweg et al., 1985; 

Wagner et al., 1987). The derived %\ angles were constrained to one of the three rotamers 

-60, 180, or 60°, with an allowed range of ±30°. 

Hydrogen-bond constraints were included only in the final round of structure 

calculations, in a conservative way. A hydrogen-bond constraint was defined only if (1) the 

amide proton had been shown to exchange slowly in 'H-15N HSQC experiments of freshly 

prepared lipoyl domain in D2O, (2) the hydrogen bond was present in the majority (> 90%) 

of the calculated structures, and (3) the hydrogen bond was present in regular antiparallel 

p-sheet and between backbone atoms only. Two constraints were used for each hydrogen 

bond, 1.5 to 2.3 A for the NH-O distance, and 2.5 to 3.3 A for the N-O distance. 

Structure calculations 
The first family of three-dimensional structures of the lipoyl domain was calculated 

using the program DG-II (Havel, 1991) in the NMR refine module of the Insightll package 

(Biosym Technologies Inc., San Diego). All subsequent structure calculations were 

performed with the program X-PLOR version 3.1 (Briinger, 1992) using a protocol based 

on the hybrid distance geometry-dynamical simulated annealing calculation strategy 

developed by Nilges et al. (1988). An improved protocol as described in the X-PLOR 

version 3.1 manual was used to produce the structures. In the first stage of the protocol a 

family of embedded substructures was produced with distance geometry using X-PLOR/dg 
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(Kuszewski etal, 1992). These substructures only included C, Ca, CaH, N, NH, CP and CY 

atoms. After fitting the remaining atoms to the substructures, a simulated annealing 

protocol was used to regularise and refine the structures. The first stage of the simulated 

annealing protocol consisted of 45 ps of dynamics at high temperature (2000 K), thereby 

gradually introducing the covalent and NOE force constants and lowering the repulsive van 

der Waals energy term. In the second stage, the repulsive force constant was increased to 

its final value (see Table 1) during slow cooling of the system to 100 K in 75 ps. Finally, 

the structures were subjected to 1000 steps of restrained Powell minimisation. Structures 

were accepted in the final family if showing no distance constraint violations greater than 

0.2 A, no dihedral angle constraint violations greater than 1°, and no bond-length and angle 

violations greater than 0.05 A and 5°, respectively. To ensure the uniqueness of the final 

structures, two other methods, full-structure distance geometry (Kuszewski et ah, 1992) 

and ab initio simulated annealing (Nilges et ai, 1991) were also applied. All methods 

produced very similar sets of structures. 

A mean structure was obtained by fitting all backbone atoms (residues 2 to 77) of 

the final set of accepted structures to each other and averaging their atomic coordinates. 

The mathematical average structure was then minimised by 2000 steps of restrained Powell 

minimisation. 

Molecular graphics analysis of the structures was performed using the Insightll 

program (Biosym Technologies Inc., San Diego). Analysis of the quality of the structures 

was performed by tools provided with X-PLOR and with PROCHECK (Laskowski et ai, 

1993). 

The coordinates of both the energy-minimised average structure and the ensemble 

of 25 structures representing the solution structure of the lipoyl domain, together with the 

NMR constraints used for their determination, have been deposited with the Protein Data 

Bank, Brookhaven National Laboratory, Upton, NY, USA. The entry codes are 1GHJ and 

1GHK, respectively, for the energy-minimised average structure and the ensemble of 25 

structures. 

Acknowledgements 

We thank Frank Vergeldt for assistance with computing. This work was financially 

supported by the Netherlands Organisation for Scientific Research (NWO) under the 

auspices of the Netherlands Foundation for Chemical Research (SON). 

112 



2-Oxoglutarate dehydrogenase complex lipoyl domain structure 

REFERENCES 

Athappilly, F. K. & Hendrickson, W. A. (1995) Structure of the biotinyl domain of acetyl-coenzyme A 
carboxylase determined by MAD phasing. Structure 3, 1407-1419. 

Berg, A., de Kok, A. & Vervoort, J. (1994) Sequential 'H and '^N nuclear magnetic resonance assignments 
and secondary structure of the N-terminal lipoyl domain of the dihydrolipoyl transacetylase 
component of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Eur. J. Biochem. 
221, 87-100. 

Berg, A., Smits, O., de Kok, A. & Vervoort, J. (1995) Sequential 'H and 15N nuclear magnetic resonance 
assignments and secondary structure of the lipoyl domain of the 2-oxoglutarate dehydrogenase 
complex from Azotobacter vinelandii. Evidence for high structural similarity with the lipoyl domain 
of the pyruvate dehydrogenase complex. Eur. J. Biochem. 234, 148-159. 

Bosma, H. J. (1984) Studies on 2-oxoacid dehydrogenase multienzyme complexes of Azotobacter vinelandii. 
Ph.D. Thesis, Agricultural University Wageningen, The Netherlands. 

Brocklehurst, S. M. & Perham, R. N. (1993) Prediction of the three-dimensional structures of the biotinylated 
domain from yeast pyruvate carboxylase and of the lipoylated H-protein from the pea leaf glycine 
cleavage system: a new automated method for the prediction of protein tertiary structure. Protein 
Sci. 2, 626-639. 

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983) 
CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. / . 
Comput. Chem. 4, 187-217. 

Briinger, A. T. (1992) X-PLOR (Version 3.1): a system for x-ray crystallography and NMR. Yale University 
Press, New Haven. 

Chothia, C. & Murzin, A. G. (1993) New folds for all-p proteins. Structure 1, 217-222. 
Clore, G. M., Gronenborn, A. M., Nilges, M. & Ryan, C. A. (1987) Three-dimensional structure of potato 

carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance 
geometry, and restrained molecular dynamics. Biochemistry 26, 8012-8023. 

Cohen-Addad, C , Pares, S., Sieker, L., Neuburger, M. & Douce, R. (1995) The lipoamide arm in the glycine 
decarboxylase complex is not freely swinging. Nat. Struct. Biol. 2, 63-68. 

Dardel, F., Laue, E. D. & Perham, R. N. (1991) Sequence-specific 'H-NMR assignments and secondary 
structure of the lipoyl domain of the Bacillus stearothermophilus pyruvate dehydrogenase 
multienzyme complex. Eur. J. Biochem. 201, 203-209. 

Dardel, F., Davis, A. L., Laue, E. D. & Perham, R. N. (1993) Three-dimensional structure of the lipoyl 
domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J. Mol. 
Biol. 229, 1037-1048. 

Graham, L. D., Packman, L. C. & Perham, R. N. (1989) Kinetics and specificity of reductive acylation of 
lipoyl domains from 2-oxo acid dehydrogenase multienzyme complexes. Biochemistry 28, 1574-
1581. 

Green, J. D. F., Laue, E. D., Perham, R. N., Ali, S. T. & Guest, J. R. (1995) Three-dimensional structure of a 
lipoyl domain from dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase 
multienzyme complex of Escherichia coli. J. Mol. Biol. 248, 328-343. 

Giintert, P., Braun, W. & Wiithrich, K. (1991) Efficient computation of three-dimensional protein structures 
in solution from nuclear magnetic resonance data using the program DIANA and the supporting 
programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517-530. 

Hale, G., Wallis, N. G. & Perham, R. N. (1992) Interaction of avidin with the lipoyl domains in the pyruvate 
dehydrogenase multienzyme complex: three-dimensional location and similarity to biotinyl domains 
in carboxylases. Proc. R. Soc. Land. B 248, 247-253. 

Havel, T. F. (1991) An evaluation of computational strategies for use in the determination of protein structure 
from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Molec. Biol. 56, 
43-78. 

Hyberts, S. G., Goldberg, M. S., Havel, T. F. & Wagner, G. (1992) The solution structure of eglin c based on 
measurements of many NOEs and coupling constants and its comparison with X-ray structures. 
Protein Sci. 1,736-751. 

Kalia, Y. N., Brocklehurst, S. M., Hipps, D. S., Appella, E., Sakaguchi, K. & Perham, R. N. (1993) The high-
resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase 
from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. J. Mol. 
Biol. 230,323-341. 

113 



Chapter 4 

Kraulis, P. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein 
structures. J. Appl. Crystallog. 24, 946-950. 

Kuszewski, J., Nilges, M. & Briinger, A. T. (1992) Sampling and efficiency of metric matrix distance 
geometry: a novel partial metrization algorithm. J. Biomol. NMR 2, 33-56. 

Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993) PROCHECK: a program to 
check the stereochemical quality of protein structures. J. Appl. Crystallog. 26, 283-291. 

Ludvigsen, S. & Poulsen, F. M. (1992) Positive <|>-angles in proteins by nuclear magnetic resonance 
spectroscopy. J. Biomol. NMR 2, 227-233. 

Mattevi, A., de Kok, A. & Perham, R. N. (1992a) The pyruvate dehydrogenase multienzyme complex. Curr. 
Opin. Struct. Biol. 2, 877-887. 

Mattevi, A., Obmolova, G., Schulze, E., Kalk, K. H., Westphal, A. H., de Kok, A. & Hoi, W. G. J. (1992b) 
Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 
255, 1544-1550. 

Mattevi, A., Obmolova, G., Kalk, K. H., Westphal, A. H., de Kok, A. & Hoi, W. G. J. (1993) Refined crystal 
structure of the catalytic domain of dihydrolipoyl transacetylase (E2p) from Azotobacter vinelandii 
at 2.6 Angstrom resolution. / Mol. Biol. 230, 1183-1199. 

Morris, A. L., MacArthur, M. W., Hutchinson, E. G. & Thornton, J. M. (1992) Stereochemical quality of 
protein structure coordinates. Proteins: Struct. Fund. Genet. \2, 345-364. 

Nilges, M., Clore, G. M. & Gronenborn, A. M. (1988) Determination of three-dimensional structures of 
proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing 
calculations. FEBSLett. 229, 317-324. 

Nilges, M., Kuszewski, J. & Briinger, A. T. (1991) Sampling properties of simulated annealing and distance 
geometry. In: Computational aspects of the study of biological macromolecules by nuclear magnetic 
resonance spectroscopy (Hoch, J. C , et ai, eds.), pp. 451-455, Plenum Press, New York. 

Pares, S., Cohen-Addad, C , Sieker, L., Neuburger, M. & Douce, R. (1994) X-ray structure determination at 
2.6-A resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex 
from pea leaves. Proc. Natl. Acad. Sci. USA 91, 4850-4853. 

Perham, R. N. (1991) Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a 
paradigm in the design of a multifunctional protein. Biochemistry 30, 8501-8512. 

Reed, L. J., Koike, M., Levitch, M. E. & Leach, F. R. (1958) Studies on the nature and reactions of protein-
bound lipoic acid. J. Biol. Chem. 232, 143-158. 

Reed, L. J. (1974) Multienzyme complexes. Ace. Chem. Res. 7,40-46. 
Robien, M. A., Clore, G. M., Omichinski, J. G., Perham, R. N., Appella, E., Sakaguchi, K. & Gronenborn, A. 

M. (1992) Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide 
succinyltransferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of 
Escherichia coli. Biochemistry 31, 3463-3471. 

Steginsky, C. A., Gruys, K. J. & Frey, P. A. (1985) a-Ketoglutarate dehydrogenase complex of Escherichia 
coli. A hybrid complex containing pyruvate dehydrogenase subunits from pyruvate dehydrogenase 
complex. J. Biol. Chem. 260, 13690-13693. 

Wagner, G., Braun, W., Havel, T. H., Schaumann, T., Go, N. & Wuthrich, K. (1987) Protein structures in 
solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic 
pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J. 
Mol. Biol. 196,611-639. 

Wallis, N. G. & Perham, R. N. (1994) Structural dependence of post-translational modification and reductive 
acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex. J. Mol. Biol. 
236,209-216. 

Westphal, A. H. & de Kok, A. (1990) The 2-oxoglutarate dehydrogenase complex from Azotobacter 
vinelandii. 2. Molecular cloning and sequence analysis of the gene encoding the succinyltransferase 
component. Eur. J. Biochem. 187, 235-239. 

Wuthrich, K., Billeter, M. & Braun, W. (1983) Pseudostructures for the 20 common amino acids for use in 
studies of protein conformations by measurements of intramolecular proton-proton distance 
constraints with nuclear magnetic resonance. J. Mol. Biol. 169, 949-961. 

Wuthrich, K. (1986) NMR of proteins and nucleic acids. Wiley, New York. 
Zuiderweg, E. R. P., Boelens, R. & Kaptein, R. (1985) Stereospecific assignments of 'H-NMR methyl lines 

and conformation of valyl residues in the lac repressor headpiece. Biopolymers 24, 601-611. 

114 



CHAPTER 5 

Three-dimensional structure in solution of the N-terminal lipoyl domain 
of the pyruvate dehydrogenase complex from Azotobacter vinelandii 

ABSTRACT 

The three-dimensional structure of the N-terminal lipoyl domain of the 

acetyltransferase component of the pyruvate dehydrogenase complex from Azotobacter 

vinelandii has been determined using heteronuclear multidimensional NMR spectroscopy 

and dynamical simulated annealing. The structure is compared with the solution structure 

of the lipoyl domain of the A. vinelandii 2-oxoglutarate dehydrogenase complex. The 

overall fold of the two structures, described as a (i-barrel-sandwich hybrid, is very similar. 

This agrees well with the high similarity of NMR-derived parameters, e.g. chemical shifts, 

between the two lipoyl domains. The main structural differences between the two lipoyl 

domains occur in a solvent-exposed loop close in space to the lipoylation site. Despite their 

high structural similarity, these lipoyl domains show a high preference for being 

reductively acylated by their parent 2-oxo acid dehydrogenase. Potential residues of the 

lipoyl domain involved in this process of molecular recognition are discussed. 

Berg, A., Vervoort, J. & de Kok, A. (1997) Eur. J. Biochem., in the press. 
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INTRODUCTION 

The pyruvate dehydrogenase complex (PDHC) catalyses the irreversible overall 

conversion of pyruvate to acetyl-CoA [for a recent review see Mattevi et al, (1992a)]. 

This multienzyme complex plays an important regulating role in the aerobic catabolism of 

carbohydrates, where it links the glycolysis with the citric acid cycle. Pyruvate 

dehydrogenase complexes from Gram-negative bacteria are composed of multiple copies 

of three enzymatic components: pyruvate dehydrogenase (Elp), dihydrolipoyl 

acetyltransferase (E2p), and lipoamide dehydrogenase (E3). The structural core of these 

complexes consists of a cubic assemblage of 24 E2p chains arranged with octahedral 

symmetry. The Elp and E3 components are tightly but non-covalently bound to the E2p 

core as dimers. The 2-oxoglutarate dehydrogenase complex (OGDHC), which occurs in 

the citric acid cycle, belongs to the same family of 2-oxo acid dehydrogenase complexes as 

the PDHC, as do the branched-chain 2-oxo acid dehydrogenase complexes. These 

complexes all have similar structural and catalytic properties. 

The chain of the acetyltransferase component (E2p) of PDHC from A. vinelandii is, 

like other E2 components, highly segmented. It consists of five independently folded 

domains that are separated by long stretches (25 to 40 amino acids) of polypeptide chain 

which are flexible and unusually rich in alanine and proline residues (Hanemaaijer et al, 

1988). From the N-terminus the E2p chain consists of three highly homologous lipoyl 

domains (about 80 residues) that each contain one covalently bound lipoic acid prosthetic 

group, a peripheral subunit-binding domain (about 35 residues), and a catalytic domain (29 

kDa) which accommodates the acetyltransferase active site and is responsible for the 

formation of the core of the complex (Hanemaaijer et al, 1987). 

The lipoyl domains attached to the flexible linkers fulfil an indispensable role in 

coupling the three separate enzyme activities in the multienzyme complex (Reed, 1974). 

The single oxidised lipoyl group of each lipoyl domain, which consists of lipoic acid 

bound in an amide linkage to the side chain of a specific lysine residue, becomes 

reductively acetylated by pyruvate catalysed by Elp. The acetyl group is delivered at the 

active site of E2p to form acetyl-CoA, after which the lipoyl domain visits the active site 

of E3 where it becomes re-oxidised. The three-dimensional structure of the lipoyl domain 

is required for the efficient reductive acetylation of its lipoyl group by Elp (Graham et al, 

1989). Moreover, lipoyl domains can only be efficiently reductively acylated by an El of 

their parent complex (Graham et al, 1989), which indicates that molecular recognition 

occurs between El components and lipoyl domains. 

116 



Pyruvate dehydrogenase complex lipoyl domain structure 

So far any 2-oxo acid dehydrogenase complex or any of its acyltransferase 

components refused to crystallise to an appreciable resolution, most likely caused by the 

high flexibility of their lipoyl domains and/or linkers. Therefore we have undertaken, 

among others, the approach of structure determination of the individual components and 

the separate domains of the acyltransferase component of these large multienzyme 

complexes. For the A. vinelandii 2-oxo acid dehydrogenase complexes this has resulted in 

the unique crystal structure of the catalytic cubic core domain of E2p (Mattevi et al, 

1992b, 1993); the crystal structure of lipoamide dehydrogenase (Schierbeek et al, 1989; 

Mattevi et al, 1991), and the solution structure of the single lipoyl domain of OGDHC 

(Berg et al, 1996). The solution structures of the lipoyl domain of Bacillus 

stearothermophilus PDHC (Dardel et al, 1993), an inactive hybrid lipoyl domain from 

Escherichia coli (Green et al, 1995), and the peripheral subunit-binding domains of 

dihydrolipoyl succinyltransferase (E2o) of E. coli OGDHC (Robien et al, 1992) and of 

E2p of B. stearothermophilus PDHC (Kalia et al, 1993) have also been solved. No 

structural information on any El component is yet available. 

In this paper we describe the determination of the three-dimensional solution 

structure of the N-terminal lipoyl domain of A. vinelandii PDHC. We have recently 

reported on the subcloning, overexpression, 'H and 15N NMR assignments and secondary 

structure of this lipoyl domain (Berg et al, 1994), as well as a comparison of NMR-

derived parameters with those of the lipoyl domain of A. vinelandii OGDHC (Berg et al, 

1995). From this study it became clear that the overall fold of the PDHC and OGDHC 

lipoyl domains must be very similar. This implies that the observation that lipoyl domains 

are only efficiently reductively acylated by the El component of the parent complex is a 

result of subtle differences between the lipoyl domains. The aim of this work is to gain a 

better understanding at the atomic level of this process of molecular recognition by 

comparing the three-dimensional structures of both lipoyl domains. Furthermore, 

elucidation of the structure of the PDHC lipoyl domain provides the basic structural 

information for the design of significant mutants to investigate the specific interaction of 

this domain with El, and provides naturally a further step in the completion of the three-

dimensional structure of the entire pyruvate dehydrogenase multienzyme complex from A. 

vinelandii. 
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RESULTS 

Structure determination and analysis 

The calculation of the final set of structures was based on a total of 474 non-trivial 

NOE distance constraints, 26 hydrogen-bond distance constraints (derived from 13 

hydrogen bonds), and 66 dihedral angle constraints (53 § and 13 %i angles). The NOE 

distance constraints comprised 156 intra-residue, 161 sequential, 38 short-range (l<li-jl<5), 

and 119 long-range constraints (li-jl>5). The distribution of distance constraints (NOEs 

plus hydrogen bonds) along the amino acid sequence is shown in Figure 1(a). The absence 

of any aromatic residues in the lipoyl domain results in a relatively poor chemical shift 

dispersion in the NMR spectra, in particular in the aliphatic regions of the spectra. 

Therefore, a number of NOEs remained ambiguous, even after several rounds of structure 

calculations. For example, a number of resonances could be assigned belonging to a 

certain amino acid residue, but their exact position in the side chain could not be 

determined unambiguously (Berg et ai, 1994). Despite thorough inspection of the NMR 

spectra, including a 3D NOES Y-HMQC spectrum, the number of unambiguous long-range 

NOEs that could be identified was relatively low. 

A total of 50 structures was generated using ab initio simulated annealing in X-

PLOR, and of these, 29 structures were selected based on experimental constraint 

satisfaction criteria only. These structures show no distance constraint violations > 0.2 A 

(1 A = 0.1 nm) and no dihedral angle violations > 1°. A summary of structural statistics for 

the ensemble of 29 structures is given in Table 1. A stereoview of a best fit superposition 

(using backbone atoms of residues 1 to 73) of the 29 SA structures is shown in Figure 2. In 

combination with Figure 1(b), showing the r.m.s. deviation of the 29 structures from the 

mathematical average structure for backbone and all heavy atoms as a function of the 

residue number, it can be seen that the structures show reasonable convergence. The last 

six residues at the C-terminus are poorly defined, and exclusion of these residues results in 

r.m.s. deviation values of the ensemble from the mean structure of 0.87 A for backbone 

heavy atoms and 1.27 A for all heavy atoms (Table 1). For the disordered C-terminal 

residues no non-trivial NOEs could be observed. It is noteworthy that the linewidth of the 

NH resonances from the C-terminal residues is considerably narrower than those from 

residues of the rest of the lipoyl domain (Berg et ai, 1994), implying a higher mobility for 

these residues. 
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Figure 1. (a) Plot of the number of experimentally derived distance constraints (NOEs plus hydrogen bonds) 
as a function of the residue number. The bars representing the different distance constraint categories are as 
follows: intra-residue (filled), sequential (hatched), medium range (stippled), and long range (open). Each 
inter-residue distance constraint is counted twice, once for each residue involved, (b) Plot of the residue-
based r.m.s. deviation of the 29 individual simulated annealing structures from the mean-structure (SA)r of 
backbone heavy atoms (continuous line) and all heavy atoms (broken line), (c) Plot of the percentage of 
residue surface exposed to solvent (all atoms) of the minimised average structure. 
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Table 1. Structural statistics for the 29 converged structures of the lipoyl domain3 

R.m.s. deviations from experimental 
distance constraints (A)b: 
All NOE constraints (474) 
Intra-residue(156) 
Sequential (li-jl) = 1 (161) 
Short range (li-jl) < 5 (38) 
Long range (li-jl) > 5 (119) 
Hydrogen bond (26) 

R.m.s. deviations from experimental 
dihedral constraints (") (66) 

R.m.s. deviations from idealised covalent 
geometry: 
Bonds(A) 
Angles (°) 
Impropers (°) 

Energy (kcal/mol)c: 

FNOE 

Fcdih 

r repel 

Atomic r.m.s. differences (A) 
Residues 1 to 79, to mean (SA)r 

Residues 1 to 73, to mean (SA)r 

Residues 1 to 79, pairwise 
Residues 1 to 73, pairwise 

<SA> 

0.0068(10.002) 
0.0092(±0.003) 
0.0053(±0.002) 

0.00042(10.0010) 
0.0035(10.001) 
0.0007(10.0007) 

0.057(10.03) 

0.0019(10.0001) 
0.544(10.001) 
0.317(10.003) 

1.381(10.724) 
0.017(10.018) 
1.865(10.363) 

backbone"1 

1.45(10.36) 
0.87(10.18) 
2.07(10.57) 
0.97(10.19) 

(SA)r 

0.0045 
0.0067 
0.0038 
0.0049 
0.0012 
0.0001 

0.034 

0.0018 
0.538 
0.317 

0.565 
4.745 
1.384 

heavy 
1.91(10.37) 
1.27(10.15) 
2.74(10.59) 
1.62(10.17) 

a < SA > refers to the 29 final structures obtained by the simulated annealing protocol, (SA)r is the 
restrained minimised mean structure obtained by averaging the atomic coordinates of the final structures best 
fitted to each other over the backbone atoms (residues 1 to 73). 

b The number of each type of constraint used in the structure calculations is given in parentheses. 
c The force constants used for these calculations were 50 kcal/mol per A2, and 200 kcal/mol per 

rad2, for FjvjOE a nd Fcdih> respectively. F r epei was calculated using the final value of 4 kcal/mol per A4 

with the van der Waals hard sphere radii set to 0.75 times the standard values used in the CHARMM 
empirical energy function (Brooks et at, 1983). The parallhdg.pro parameter set supplied with X-PLOR 
version 3.1 (Briinger, 1992) was used for the calculations. 

d These include the backbone heavy atoms N, C a , and C only. 
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(a) 

Figure 2. (a) View of the 29 selected structures of the lipoyl domain, superposed over the backbone (N, C a , 
C) atoms for residues 1 to 73. Only the C a atoms are shown. The N-terminus and C-terminus, the lipoylation 
site (K39) and the solvent-exposed loop close in space to the lipoylation site (arrow), are indicated (b) Side 
view of the superposition shown in (a), obtained by a 90° rotation about the vertical axis, (c) Front view at 
the lipoylation site (K39) and the solvent-exposed loop. 
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Figure 3. Ramachandran plot for the non-terminal residues in the 29 final structures of the lipoyl domain. 
Residues with positive (|> angles are labelled. 
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A Ramachandran plot for all 29 structures in the ensemble is depicted in Figure 3. 

Most non-glycine residues lie within the sterically allowed regions (Morris et al, 1992). 

The six C-terminal residues show backbone dihedral angle (ty and \|/) combinations in all 

regions of the Ramachandran plot, and have consequently very poorly defined angles 

(average S^v < 0.5) (Hyberts et al., 1992). The only non-glycine residue showing a 

positive (|> angle is Glu29. This residue lies in the generously allowed region, and has 

reasonably high angular order parameters (S* = 0.86, SV = 0.96). For Glu29 no dihedral 

angle constraint was applied since a 3/HNa coupling constant between 6 and 8 Hz was 

measured. Furthermore a very strong intra-residue NH-CaH NOE was observed for this 

residue. Both these observations are consistent with residues showing positive <|> angles 

(Ludvigsen & Poulsen, 1992). 

Description of the structure 

The ensemble of 29 structures representing the solution structure of the N-terminal 

lipoyl domain of A. vinelandii PDHC is shown in Figure 2. A schematic representation of 

the minimised average structure is illustrated in Figure 4. The overall fold of the lipoyl 

domain can be described as a P-barrel-sandwich-hybrid (Chothia & Murzin, 1993). The 

domain is an all-P-sheet protein, and consists of two very similar four-stranded antiparallel 

P-sheets with three major and one minor strand each, that are formed around a core of 

hydrophobic residues. One P-sheet (sheet A) is formed by the P-strands SI, S3, S6 and S8, 

and the other p-sheet (sheet B) is formed by the strands S2, S4, S5 and S7, with P-strands 

S3 and S7 being the minor strands. The P-strands are alternated and connected by loop 

regions and turns adopting no regular repetitive secondary structure. In one of the sheets 

the successive strands S4 and S5 are connected by a type I P-turn comprising residues 

Ser37 to Ala40. The turn holds the lipoyl-lysine residue Lys39 at position 3, which has 

been proved to be the crucial position for this residue to become lipoylated (Wallis & 

Perham, 1994). The strands SI and S2 are connected by a short five-residue loop (Pro7 to 

Glyl 1) which is solvent exposed and lies in the vicinity of the lipoylation site. This loop 

contains a non-classical tight turn of type ay (Wilmot & Thornton, 1990). The two minor 

strands (S3 and S7) are both surrounded by small loop regions that each contain a type II 

P-turn, and that link them to the larger strands. The four turns all show a small (< 6 Hz) 
3^HNa coupling constant for residues at position 2 and slow amide-proton exchange for 

residues at position 4 (Berg et al, 1994, 1995). 

The lipoyl domain displays a remarkable internal symmetry with a 2-fold rotational 

axis. The two halves of the molecule (residues 13 to 36 and residues 50 to 73) align with 
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(a) (b) 

K39 

Figure 4. (a) MOLSCRIPT representation (Kraulis, 1991) of the minimised average structure of the lipoyl 
domain. The P-strands are labelled with their strand numbers. The N and C termini are close together in P-
sheet A (dark grey), the lipoylation site Lys39 is situated in the other p-sheet B (light grey), at the opposite 
side of the domain, (b) Stereoview of the C a trace of the lipoyl domain, with every tenth residue numbered. 

an r.m.s. deviation of only 0.72 A for backbone atoms after rotation of approximately 180° 

about this axis. This symmetry seems conserved in all lipoyl domains. 

The core of the lipoyl domain is formed mainly by hydrophobic side chains of 

residues of the two (i-sheets. Sheet A contributes eight residues (Ile4, Val6, Ile26, Val52, 

Val55, Ile69, Ile70 and Leu72), and the sheet B contributes seven residues (Vall5, Leul8, 

Leu32, Val33, Leu35, Val44 and Leu63) to the hydrophobic core. In addition, the side 

chains of three residues (Val20, Pro47, Val57), which reside in regions connecting the |3-

strands, protrude into the core, and these residues show hydrophobic contacts to core 

residues in both sheets. The absence of aromatic residues in the hydrophobic core is 

remarkable and unusual, but seems to have no effectual consequence for the stability of the 

domain. Most residues in the core have a well-defined side-chain conformation (Figure la) 

and a low side-chain solvent accessible surface (Figure lc). The six C-terminal residues of 

the subcloned fragment are disordered and are not involved in the global fold of the 

domain. These residues belong to the first mobile Ala+Pro-rich linker sequence separating 

the N-terminal lipoyl domain from the second lipoyl domain in the E2p chain. 
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DISCUSSION 

Lipoyl domains are essential for the optimal functioning of the 2-oxo acid 

dehydrogenase complexes. By acting as substrate carrying domains they couple the 

activities of the three enzyme components in the multienzyme complex. Being coupled to 

the flexible linkers, the lipoyl domains are capable of moving rapidly from active site to 

active site while keeping substrate diffusion limited and thus increasing the local substrate 

concentration significantly. The lipoyl domains with their covalently coupled lipoyl group 

are as such a substrate for all three enzyme components in the complex. With the lipoyl 

group in the oxidised form the lipoyl domain is a substrate for the El component, in the 

acylated form a substrate for the E2 component, and in the reduced form a substrate for the 

E3 component. 

The structure of the lipoyl domain not only provides a specific point of attachment 

for the lipoyl group, but interestingly enhances the reaction efficiency with the El 

component dramatically (10.000 times) (Graham et al., 1989). Free lipoamide, as well as a 

lipoylated decapeptide with an amino acid sequence identical to that found surrounding the 

lipoylation site of E. coli PDHC lipoyl domains, are extremely poor substrates for El . 

Although free lipoamide proves a good substrate for the E2 and E3 components, it cannot 

be ruled out that attachment of the protein domain to the lipoyl group also increases the 

reaction rate with these components. Recently, an indication of such an enhancement for 

the E3 reaction has been reported in a paper by Ravindran et al. (1996). Furthermore, the 

structure of the lipoyl domain is also responsible, at least in part, for the specificity of the 

reductive acylation reaction with the El component. Lipoyl domains are only being 

efficiently reductively acylated by the El component of their parent complex. This means, 

for the A. vinelandii and E. coli complexes, that PDHC lipoyl domains are a good substrate 

for Elp but not for Elo, and that OGDHC lipoyl domains are only a good substrate for 

Elo and not for Elp. Specificity of E2 components for their lipoyl domains has not been 

reported but seems not likely, since lipoyl domains can be selected by the E2 component 

on the basis of the acyl-group that is bound to the lipoyl group. Considering that PDHC 

and OGDHC share a common E3 component, specificity is not involved in the reaction of 

lipoyl domains catalysed by E3. Thus, the three-dimensional structure of the lipoyl domain 

is very important because it is responsible for both an efficient and a specific reaction of 

the bound lipoic acid prosthetic group with the El component. This is remarkable since the 

reactive dithiolane ring of this prosthetic group is at the far end of the long lipoyl group 

and protrudes into the solvent. 
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Several solution structures of lipoyl domains have recently been described. These 

are the PDHC lipoyl domains from B. stearothermophilus (Dardel et al, 1993) and E. coli 

(Green et al., 1995), and the OGDHC lipoyl domain from A. vinelandii (Berg et al., 1996). 

In addition, the X-ray crystal structures of the sequentially and functionally related 

lipoylated H-protein of the glycine decarboxylase system from pea leaves (Pares et al., 

1994), and the biotinyl domain of acetyl-coenzyme A carboxylase from E. coli (Athappilly 

& Hendrickson, 1995) have been determined. The general fold of all these 

domains/proteins is similar and has been described as a new class of all fj-sheet proteins 

called P-barrel-sandwich hybrids, and is thought to be typical for proteins containing a 

lipoyl or biotinyl group. The solution structure of the lipoyl domain of A. vinelandii 

PDHC, described in the present study, is no exception and adopts a similar overall fold. 

Many of the common structural features of lipoyl domains and related proteins, like the 

topology and arrangement of the p-strands, the hairpin turn containing the lipoylated or 

biotinylated lysine residue, and the internal 2-fold symmetry, have been reviewed earlier in 

different papers describing these structures. We will concentrate here mainly on the 

comparison of the structures of the A. vinelandii PDHC and OGDHC lipoyl domains, for 

reasons outlined below. 

A comparison of the secondary chemical shifts and other NMR-derived parameters 

(like 3/HNOI coupling constants and NH-exchange rates) between the PDHC and OGDHC 

lipoyl domain presented earlier (Berg et al, 1995), indicates that there are no major 

structural differences in solution between the two domains. A comparison of the PDHC 

and the OGDHC lipoyl domain structures, together with their superposition, is shown in 

Figure 5. It is immediately clear that the two structures are strikingly similar. All 

secondary structure elements, as well as the far majority of residues forming the 

hydrophobic core, are highly conserved (Figure 6). The positions of the P-strands in both 

structures are very similar, including the occurrence of four classic p-bulges within them. 

The positions of the four type II turns surrounding the two small P-strands, and the 

position of the type I turn that holds the lipoyl-lysine residue, are also equivalent. The 

minimised average PDHC and OGDHC lipoyl domain structures overlay with an r.m.s. 

deviation of only 1.5 A for Ca atoms (residues 1 to 6, 12 to 73 for PDHC, residues 1 to 6, 

15 to 76 for OGDHC), despite the relatively low sequence identity of 25%. 

It is clear from the structure-based sequence alignment in Figure 6 that the second 

and the third lipoyl domain of PDHC (Av_p2,3) will have highly similar structures to the 

N-terminal PDHC lipoyl domain, which is of course expected on the basis of their high 

sequence conservation and their identical function in the same multienzyme complex. In 

all lipoyl domains known so far, a strictly conserved aspartic acid residue precedes the 
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lipoyl-lysine residue, with the single exception of the N-terminal lipoyl domain of A. 

vinelandii PDHC (this study), where an alanine is found in this position. The second and 

third lipoyl domain of A. vinelandii PDHC thus also contain an aspartic acid at this 

position. 

(a) 
PDC OGDC 

K39 

K42 

Figure 5. (a) Comparison of the schematic drawings of the N-terminal lipoyl domain of PDHC and the 
lipoyl domain of OGDHC (Berg et al., 1996), from A. vinelandii. (b) Stereoview of the superposition of the 
minimised averaged solution structures of the A. vinelandii PDHC lipoyl domain (thick line) and the 
OGDHC lipoyl domain (thin line). 

A comparison of the structure of the N-terminal lipoyl domain of A. vinelandii PDHC with 

other lipoyl domain structures shows that this substitution does not alter the conformation 

of the turn (type I) which holds the lipoyl-lysine residue, and in which this residue takes 

position 2. This lipoyl domain, when separately isolated from the complex, can still be 
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efficiently reductively acetylated by Elp (Berg et al, 1994). It cannot be ruled out, 

however, that the aspartic acid to alanine residue substitution has an effect on the rate of 

this reaction. Site-directed mutagenesis experiments on the single lipoyl domain of B. 

stearothermophilus PDHC (Wallis & Perham, 1994) showed that this substitution resulted 

in a decrease of the initial rate of reductive acetylation to 37% of that of the wild-type 

domain. 
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Figure 6. Structure-based sequence alignment of the lipoyl domains of PDHC (Av_pl-3) (Hanemaaijer et 
al, 1988) and OGDHC (Av_o) (Westphai & de Kok, 1990) from A. vinelandii. Residues belonging to the 
hydrophobic core of the lipoyl domain are in bold italic in the sequence. Exposed residues (more than 50% of 
side-chain surface accessible to solvent) are underlined. The lipoyl-lysine residue is in bold. The locations of 
the p-strands are indicated in the line labelled "sheet", were a represents P-sheet A, and b_ represents P-sheet 
B. In the line labelled "turn" the conserved positions of type I (1) and type II (2) turns and p-bulges (P) in the 
sequence are indicated. The bottom-line "consvd" indicates conserved or semi-conserved amino acid residues 
in all lipoyl domains. 

It is interesting to compare lipoyl domain structures and amino acid sequences in 

search for possible residues or structural motifs involved in the process of molecular 

recognition of lipoyl domains by El components. This is however not as easy as it seems 

at first sight. First, the specificity of reductive acylation of lipoyl domains by the El 

components of their parent complex has been shown only for PDHC and OGDHC from E. 

coli (Graham et al., 1989) and A. vinelandii (chapter 6, this thesis). We assume that this 
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specificity extends to 2-oxo acid dehydrogenase complexes from other sources. Although 

several structures of lipoyl domains have recently been solved, we do not know the 

specificity of these lipoyl domains for the El components of the various complexes, except 

for the two lipoyl domains of the complexes from A. vinelandii. This limits the structural 

comparison of the B. stearothermophilus PDHC lipoyl domain and the E. coli PDHC 

lipoyl domain with each other and with the A. vinelandii lipoyl domains. In the search for 

the determinant(s) of the lipoyl domain involved in molecular recognition we will 

therefore focus mainly on the structural comparison of the two A. vinelandii lipoyl 

domains and on the comparison of a large number of amino acid sequences of lipoyl 

domains that are available. In particular, amino acid residues of lipoyl domains that are 

always different among different complexes from the same source, but are identical among 

the lipoyl domains (if more than one) within one complex of a certain source, will be 

considered. Furthermore, we assume that amino acid residues of the lipoyl domain that are 

involved in the specific reaction with El are exposed and likely reside on the same side 

(half) of the domain where the lipoyl-lysine residue is found. The high structural similarity 

between the A. vinelandii PDHC and OGDHC lipoyl domains, and among these and other 

lipoyl domains, implies that molecular recognition of lipoyl domains by their parent El's is 

due to relative small differences in structure and/or charge or hydrophobicity among the 

lipoyl domains. 

Keeping all the above mentioned considerations in mind, a number of candidate 

amino acid residues involved in molecular recognition can be proposed. As has been 

suggested earlier (Brocklehurst & Perham, 1993; Dardel et al, 1993; Berg et al, 1994, 

1995, 1996), one of regions that could be involved is a solvent-exposed loop that connects 

|}-strand SI with S2 (Figure 4), and which is close in space to the lipoylation site. The 

largest structural differences that are found among the different lipoyl domains occur in 

this loop. Although three amino acid residues in the first part of this loop (residues 8 to 10) 

seem conserved among lipoyl domains (very frequently the amino acid sequence DIG is 

found in PDHC lipoyl domains), this sequence is usually different in lipoyl domains of 

different acyltransferases from the same source. This is also true for the second part of this 

loop (residues 11 to 15, Figure 6). However, in the case of the N-terminal lipoyl domain of 

A. vinelandii PDHC (this study), the second part of the loop comprises two residues less 

than the two other lipoyl domains of the same E2p chain. This implies that the second part 

of the exposed loop would be less likely to participate in the specific interaction with El 

than would the first part. The question whether the structure and/or certain loop residues 

could be important determinants of the lipoyl domain in the molecular recognition process 

can however not be answered unequivocally at this stage. 
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There are several other exposed amino acid residues that could very well be 

suggested to being involved in the specific recognition process, based on the conditions 

stated earlier. These are the two amino acid residues succeeding to the lipoyl-lysine residue 

(Ala40,Ser41 in Av_pl and Val43,Val44 in Av_o, see Figure 6) (Berg et al, 1996), and 

the residue at position 3 of the type II turn between P-strands S3 and S4 (Glu29 in Av_pl 

and Asp32 in Av_o). Of these, the last amino acid residue may be less likely than the two 

residues in the immediate vicinity of the lipoylation site, since this residue is at a distance 

of at least 15 A from the lipoylation site. Site-directed mutagenesis of these amino acid 

residues including residues in the exposed loop (see above) should help elucidate if these 

residues are responsible for the specific interaction of lipoyl domains with the El 

component of their parent complex. 

The question of what determines the specificity of the reductive acylation reaction 

cannot be uncoupled from the question of what is important for the dramatic enhancement 

of efficiency of reductive acylation of lipoamide when coupled to the lipoyl domain. 

Although it has already been suggested that the lipoyl domain does not promote reductive 

acylation of lipoamide just by enhanced binding to the El component (Graham & Perham, 

1990), the lack of any structural information on El severely impedes detailed studies on 

this subject at the moment. Nonetheless, the determination of the three-dimensional 

structure of the lipoyl domain is undeniably a prerequisite for all studies concerning the 

(specific) interaction of lipoyl domains with El components. 

MATERIALS AND METHODS 

NMR experiments 
The unlipoylated form of the lipoyl domain was used in all NMR experiments. The 

preparation of the NMR samples and most of the NMR experiments have been described 

previously (Berg et al, 1994, 1995). NMR samples contained typically 7 mM unlabelled 

lipoyl domain or 5 mM uniformly 15N-labelled lipoyl domain. A three-dimensional 15N 

NOESY-HMQC spectrum (Marion et al, 1989) was recorded at 40°C on a Bruker AM600 

spectrometer, with 256(tt) x 96(t2,
15N) x 1024(t3) points and a NOESY mixing time of 

100 ms. NMR spectra were processed using the program FELIX version 2.3 from Biosym 

Technologies Inc., San diego. 
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Derivation of structural constraints 

The majority of the NOE distance constraints was derived from two-dimensional 

homonuclear NOESY spectra acquired with mixing times of 25, 50, 100 and 150 ms. 

Approximately 60 NOE distance constraints were derived from a 100 ms three-

dimensional NOESY-HMQC spectrum. NOE volumes were calibrated for conversion to 

approximate interproton distances with the volumes of sequential da^ cross-peaks in 

regular antiparallel P-sheet. NOEs were classified as strong, medium or weak, and 

converted into upper-bound interproton distance constraints of 2.7, 3.3 and 5.0 A, 

respectively. For distances involving methyl groups an additional 0.5 A was added to the 

upper limits (Clore etal, 1987; Wagner etal, 1987). The lower-bound distance constraint 

was set to 0.0 A in all cases (Hommel et al, 1992). Partially overlapping NOEs were 

conservatively given an upper-bound constraint of 5.0 A if their intensity grouping was 

ambiguous. The standard pseudoatom corrections (Wuthrich etal, 1983) were applied to 

methyl groups, degenerate diastereotopic hydrogen atoms, and diastereotopic hydrogen 

groups for which only one NOE was observed. For stereospecifically unassigned 

diastereotopic substituents for which NOEs to both hydrogen atoms were observed, the 

DIANA treatment of diastereotopic hydrogen atoms was used (Giintert et al, 1991). In 

cases where both NOEs had an equal upper distance limit, no pseudoatom correction was 

applied. In cases where both NOEs had different upper distance limits, the upper distance 

limit of both NOEs was set equal to the higher limit of the two, and an extra DIANA 

pseudoatom distance constraint was calculated and added to the constraint list. 

Backbone (J) dihedral angle constraints were derived from 37HNO coupling constants 

measured in a •H-^N HMQC-7 spectrum, as described in Berg et al. (1995). The <)> 

dihedral angles were constrained to -120(±30)° for 3/HN<x ~ 9 H z > t 0 -120(±40)° for 3/HNa 

between 8 and 9 Hz. and to -55(±30)° for 3/HN<X values smaller than 6 Hz. Stereospecific 

resonance assignments of methylene CPH protons and valine residue methyl groups were 

obtained from 3/ap values (from DQF-COSY and E.COSY spectra) and relative intra-

residue NOE intensities (Zuiderweg et al, 1985; Wagner et al, 1987). The derived %\ 

angles were constrained to one of the three rotamers -60, 180, or 60°, with a range of ± 30°. 

Hydrogen-bond constraints were included only in the later rounds of structure 

calculations, in a conservative way. A hydrogen-bond constraint was defined only if (1) 

the amide proton had been shown to exchange slowly in 'H-15N HSQC experiments of a 

freshly prepared lipoyl domain sample in D2O, (2) the hydrogen bond was present in the 

majority (> 90%) of the calculated structures, and (3) the hydrogen bond was present in 

regular antiparallel p-sheet and between backbone atoms only. Two constraints were used 
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for each hydrogen-bond, 1.5 to 2.3 A for the NH-0 distance, and 2.5 to 3.3 A for the N-O 

distance. 

Structure calculations 

Structures were calculated with the program X-PLOR version 3.1 (Briinger, 1992), 

using an ab initio simulated annealing protocol (Nilges et al, 1991). The starting structure 

had randomised <|) and \|/ angles, and Xi angles set to 180°. The protocol started with 90 ps 

of restrained dynamics at 1000 K during which the weighting of the quartic van der Waals 

term was kept very low to allow atoms to pass through each other. The structures were 

then gradually cooled (50 K steps) to 100 K in 75 ps while increasing the weight of the 

repulsive van der Waals energy term to its final value (see Table 1). Finally, 1000 steps of 

restrained Powell minimisation were applied. 

A mean structure (<SA>) was obtained by fitting all backbone atoms (residues 1 to 

73) of the final set of selected structures to each other and averaging their atomic 

coordinates. The mathematical average structure was then minimised by 2000 steps of 

restrained Powell minimisation. 

Structures were visualised using the Insightll program (Biosym Technologies Inc., 

San Diego), and analysed by tools provided with X-PLOR, PROCHECK (Laskowski et 

al, 1993) and NAOMI (Brocklehurst & Perham, 1993). 

The coordinates of both the energy-minimised average structure and the ensemble 

of 29 structures representing the solution structure of the lipoyl domain, together with the 

NMR constraints used for their determination, have been deposited with the Protein Data 

Bank, Brookhaven National Laboratory, Upton, NY, USA. The entry codes are 1IYU and 

1IYV, respectively, for the energy-minimised average structure and the ensemble of 29 

structures. 
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CHAPTER 6 

Reductive acylation of lipoyl domains of 2-oxo acid dehydrogenase 
complexes from Azotobacter vinelandii 

ABSTRACT 

The rate and specificity of reductive acylation of lipoyl domains derived from 

Azotobacter vinelandii 2-oxo acid dehydrogenase complexes, catalysed by A. vinelandii 

and Escherichia coli complexes, have been investigated. The turnover rate of reductive 

acetylation of complex-bound lipoyl domains by pyruvate dehydrogenase (Elp) is more 

than 50 times higher than of free lipoyl domains under comparable conditions. This gain in 

catalytic rate indicates a large limitation of diffusion of lipoyl domains when attached via 

the flexible linker segments to the complex, and illustrates the efficiency of substrate 

channeling in the multienzyme complex. The 2-oxo acid dehydrogenases exhibit 

specificity for lipoyl domains in the reductive acylation reaction. The A. vinelandii 

pyruvate dehydrogenase complex (PDHC) derived lipoyl domain is a good substrate for A. 

vinelandii pyruvate dehydrogenase, but not for A. vinelandii 2-oxoglutarate dehydrogenase 

(Elo), and vice versa. The A. vinelandii PDHC lipoyl domain is also, although at a lower 

rate, reductively acetylated by E. coli Elp and reductively succinylated by E. coli Elo. 

Likewise, the A. vinelandii 2-oxoglutarate dehydrogenase complex (OGDHC) derived 

lipoyl domain is recognised by E. coli Elo, but not by E. coli Elp. This suggests that 

common determinants of the lipoyl domains exist that are responsible for recognition by 

the El components. On the basis of the observed specificity and lipoyl domain sequences 

and structures, an exposed loop of the A. vinelandii OGDHC lipoyl domain was subjected 

to mutagenesis. Although the reductive acylation experiments of mutants of the lipoyl 

domain indicate the importance of this loop for recognition, it is probably not the single 

determinant for specificity. 

Berg, A., Westphal, A.H., van Montfort, B.A. & de Kok, A., to be submitted. 
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INTRODUCTION 

The 2-oxo acid dehydrogenase complexes catalyse the oxidative decarboxylation of 

2-oxo acids to the corresponding acyl-CoA derivatives, accompanied with the reduction of 

NAD+ [for a recent review see Mattevi et al. (1992a)]. In the Gram-negative bacteria 

Azotobacter vinelandii and Escherichia coli two of these multienzyme complexes, which 

are very similar, are present. The pyruvate dehydrogenase complex (PDHC) produces 

acetyl-CoA from pyruvate, and the 2-oxoglutarate dehydrogenase complex (OGDHC) 

converts 2-oxoglutarate into succinyl-CoA. The complexes effectuate these reactions by 

combining the activities of three enzymes: a substrate-specific 2-oxo acid dehydrogenase 

[pyruvate dehydrogenase (Elp) or 2-oxoglutarate dehydrogenase (Elo)], an acyltransferase 

[acetyltransferase (E2p) or succinyltransferase (E2o)], and a common lipoamide 

dehydrogenase (E3). The oligomeric cubic core of the complex is provided by the E2 

component (Mattevi et al, 1992b), to which the peripheral components El and E3 are non-

covalently bound as dimers. The E2 component consists of three types of domains 

(Stephens et al, 1983; Packman et al, 1984a; Hanemaaijer et al, 1987, 1988; Westphal & 

de Kok, 1990): one (E2o) or three (E2p) homologous N-terminal lipoyl domains, a 

peripheral subunit-binding domain, and a C-terminal catalytic domain. The domains are 

separated by long (20 to 40 amino acids) flexible linker segments rich in alanine, proline 

and frequently charged residues. 

The lipoyl domains play a vital role in coupling of the activities of the three 

enzyme components in the complex. They each contain the prosthetic group lipoic acid, 

which is covalently bound to a specific lysine residue forming the so-called lipoyl group 

(Reed, 1974). In the multienzyme reaction sequence, these lipoyl groups are subsequently 

reductively acylated by the El component, de-acylated by the E2 component, and re-

oxidised by the E3 component. The flexibility of the linker segments has proven to be 

essential for this active-site coupling (Miles et al, 1988; Radford et al, 1989). The 

importance for lipoyl domains to being covalently linked to the complex for efficient 

multienzyme catalysis is also apparent (this chapter; Graham et al, 1989). Furthermore, 

the three-dimensional structure of the lipoyl domain is required for promoting reductive 

acylation of its pendant lipoyl group by the El component (Graham et al, 1989), although 

this does not seem to happen just simply by enhancement of the binding to El (Graham & 

Perham, 1990). Free lipoamide has shown to be a very poor substrate for El. 

An interesting observation by Graham et al (1989) was that isolated lipoyl 

domains of the 2-oxo acid dehydrogenase complexes of E. coli were only efficiently 

reductively acylated by the El components of their parent complex. The specificity of El 
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components for their lipoyl domains has been generalised in the following years, but has 

however never been proven to extend to complexes from other sources. We will show now 

that this specificity is also present in the complexes from A. vinelandii. The requirement 

for specificity towards lipoyl domains is not directly evident but, as discussed by Berg et 

al. (1996), the possible occurrence of hybrid complexes with respect to their El 

components (Steginsky et al, 1985) could be a reasonable explanation for the observed 

specificity. 

During the last years a number of different lipoyl domain structures of various 

complexes have become available (Dardel et al, 1993; Green et al., 1995; Berg et al., 

1996; chapter 5, this thesis). No three-dimensional structure of an El component is yet 

available. In the light of the specific recognition of lipoyl domains by El, lipoyl domain 

structures and sequences were compared in search for part(s) of the lipoyl domain that 

could be important for molecular recognition between lipoyl domains and El components 

(Berg et al, 1996; chapter 5, this thesis). Potential residues of the lipoyl domain that could 

be involved in recognition include residues of a solvent-exposed loop close in space to the 

lipoylation site. Here we describe cross-acylation experiments of A. vinelandii PDHC and 

OGDHC lipoyl domains catalysed by E. coli complexes, and site-directed mutagenesis 

experiments of the exposed loop of the OGDHC lipoyl domain, to investigate the role of 

this loop in molecular recognition. 

RESULTS AND DISCUSSION 

Kinetics of reductive acylation 

The kinetics of reductive acetylation of the free PDHC-derived N-terminal lipoyl 

domain, catalysed by A. vinelandii PDHC as the source of Elp, were studied. The rate of 

radioactivity incorporation from [2-14C]pyruvate was measured as a function of the lipoyl 

domain concentration (Figure 1). The apparent kinetic constants from the double reciprocal 

plot are a Km value of -43 uM and a kcat of -0.8 s"1, with a kca/Km of - 1.9 x 104 M^S"1. 

The kinetic constants for the reductive succinylation of the free OGDHC-derived lipoyl 

domain catalysed by A. vinelandii OGDHC were of the same order of magnitude (data not 

shown). These data are highly comparable with kinetic data obtained for E. coli PDHC (Km 

= 26 (xM, kcal = 0.8 s_1) (Graham et al, 1989). A comparison of the kca/Km values for 

lipoyl domains with the kca/Km value for free lipoamide (Km > 4 mM, kca/Km - 1.5 M-'s-1) 

as a substrate for E. coli Elp shows that the lipoyl domain greatly promotes the reductive 

acetylation of its lipoyl group (Perham, 1991). 
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Figure 1. Kinetics of reductive acetylation of the N-terminal lipoyl domain of A. vlnelandii PDHC, catalysed 
by PDHC as source of Elp. All reactions were performed at 25 °C. Reaction mixtures contained 0.1 U 
PDHC, 0.4 mM thiamin diphosphate, 2 mM MgC^, 3 mM NAD+, 0.25 mM [2-14C]pyruvate and lipoyl 
domain (6-60 uM) in 50 ill of 50 mM potassium phosphate pH 7.0. A double reciprocal plot is shown 
relating the amount of radioactivity incorporation with the lipoyl domain concentration. 

It is also interesting to compare the kcat value for the reductive acetylation of free 

lipoyl domains (- 0.8 S"1) with that of complex-bound lipoyl domains. Since the reductive 

acetylation of lipoyl domains by Elp is known to be the rate limiting step in the overall 

complex reaction (Danson et al, 1978; Bosma, 1984), a kcatoi 46 s-' for Elp can be 

calculated from the specific activity of 16 umol NAD+ min.-1 mg"1 of the A. vinelandii 

PDHC. It appears that, under comparable conditions, acetylation of complex-bound lipoyl 

domains is nearly 60 times faster than acetylation of free lipoyl domains. This can be 

ascribed to diffusion limitation, and very nicely illustrates the efficiency of substrate 

channeling inside the multienzyme complex. It is not inconceivable that this rate 

enhancement occurs in each of the steps of the complex reaction cycle involving the lipoyl 

domain. This could explain why no PDHC activity was detected in cell-free extracts of a 

strain of E.coli deleted for the PDHC genes, in which two independent plasmids encoding, 

respectively, a PDHC lacking lipoyl domains and a discrete lipoyl domain, were expressed 

(Russell et al, 1989). 

Specificity of reductive acylation 

To determine the specificity of the reductive acylation reaction, the incorporation of 

acyl groups in the A. vinelandii PDHC and OGDHC lipoyl domains, catalysed by various 
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complexes as sources of the El component was assayed. The results of these cross-

acylation experiments are shown in Table 1. If we first consider the incubations of lipoyl 

domains with complexes from A. vinelandii, it is apparent that the A. vinelandii lipoyl 

domains are only efficiently reductively acylated by the El components of their parent 

complexes. Reductive acetylation of the OGDHC lipoyl domain by A. vinelandii Elp could 

hardly be detected, and the PDHC lipoyl domain is only a poor substrate for A. vinelandii 

Elo. These results are in agreement with the results obtained for the E. coli complexes 

(Graham et ah, 1989), including the observation that the PDHC lipoyl domain is a 

somewhat better substrate for Elo than is the OGDHC lipoyl domain for Elp. 

Table 1. Reductive acylation of lipoyl domains of A. vinelandii PDHC and OGDHC catalysed by PDHC and 
OGDHC from A. vinelandii and E. coli as the sources of the respective El components. The lipoyl domains 
are designated as follows: Av PDHC is the N-terminal lipoyl domain of the acetyltransferase component of 
A. vinelandii PDHC, Av OGDHC is the lipoyl domain of the succinyltransferase component of A. vinelandii 
OGDHC, and Av OGDHC_m2 and Av OGDHC_m3 are Av OGDHC lipoyl domain loop mutants as 
described in Figure 3. 

Lipoyl domain 

Av PDHC 

Av OGDHC 

Av OGDHC_m2 

Av OGDHC_m3 

Complex 

Av PDHC 

Av OGDHC 

Ec PDHC 

Ec OGDHC 

Av PDHC 

Av OGDHC 

Ec PDHC 

Ec OGDHC 

Av PDHC 

Av OGDHC 

Av PDHC 

Av OGDHC 

% acylation 
(1 min.) 

100 

0 

13 

28 

2 

100 

0 

93 

1 

13 

3 

27 

% acylation 
(30 min.) 

112 

22 

106 

82 

2 

51 

0 

17 

8 

48 

18 

106 

To obtain more information about the specificity of the reductive acylation 

reaction, we extended the experiments with incubations of the A. vinelandii lipoyl domains 

with PDHC and OGDHC from E. coli, which are very homologous to the A. vinelandii 
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complexes. The experiments show that the A. vinelandii PDHC lipoyl domain is 

recognised by both Elp and Elo from E. coli, but that the rate of acyl incorporation is 

much slower than with A. vinelandii Elp (Table 1). The A. vinelandii OGDHC lipoyl 

domain is acylated by E. coli OGDHC to an amount comparable with the incubation with 

A. vinelandii OGDHC for 1 min. Finally, the OGDHC lipoyl domain is not reductively 

acetylated by E. coli PDHC. 

The observation that the amount of incorporated radioactivity into the OGDHC 

lipoyl domain is decreased after prolonged incubation (30 min.) with both the A. vinelandii 

and the E. coli OGDHC could be due, at least in part, to the instability of the protein-bound 

succinyl groups under the applied conditions (Collins & Reed, 1977). This situation does, 

however, not seem to apply to the incubations of the PDHC lipoyl domain and the 

OGDHC lipoyl domain mutants (discussed below) with OGDHCs. Although we have at 

the moment no good explanation for the apparent greater stability of the protein-bound 

succinyl groups in those cases, we could speculate that here always a PDHC lipoyl domain 

exposed loop is present, that could play a role in stabilising the succinyl groups. 

Recognition of A. vinelandii PDHC lipoyl domains by E. coli Elp has been 

observed earlier in an experiment with a reconstituted E. coli PDHC based on a chimeric 

E2p core, in which the lipoyl domains were replaced by those of A. vinelandii E2p 

(Schulze et ah, 1992). This complex showed only 44% overall complex activity as 

compared with the same complex reconstituted with Elp from A. vinelandii instead of Elp 

from E. coli. The reaction rate in the complex can however not be compared directly with 

the rate of reductive acetylation of free lipoyl domains, since the local lipoyl domain 

concentration in the complex is much higher (estimated in the mM range) than in the 

reductive acetylation assay (60 U.M). An example of recognition of E. coli PDHC lipoyl 

domains by A. vinelandii Elp is given by a hybrid E. coli PDHC reconstituted with A. 

vinelandii Elp, which showed around 50% of the wild-type complex activity (De Kok & 

Westphal, 1985; Schulze etal, 1992). 

OGDHC lipoyl domain loop mutants 

The results obtained from the cross-acylation reactions suggest that there are 

common determinants of the lipoyl domains which are responsible for the specific 

interactions of lipoyl domains with the El components. A comparison of lipoyl domain 

structures and many lipoyl domain sequences revealed that an exposed loop of the lipoyl 

domain, which is close in space to the lipoylation site, could be involved in the process of 

molecular recognition (Berg et al, 1996). In order to test if this solvent-exposed loop is a 

determinant for recognition, we performed loop-directed mutagenesis experiments on the 
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K42 

Figure 2. Schematic representation (Kraulis, 1991) of the three-dimensional solution structure of the A. 
vinelandii OGDHC lipoyl domain (Berg et al, 1996), showing the lipoylation site (K42) and the exposed 
loop which has been mutated. 

1 5 1 0 1 5 

A v P D H C J S E I I R V P D I G G D G E V 

Av PDHC_2 S Q E V R V P D I G - S A G K A R V 

AvPDHC_3 P Q E V K V P D I G - S A G K A R V 

Av OGDHC A I D I K A P T F P E S I A D G T V 

EcPDHCM A I E I K V P D I G - - A D E V E I 

Ec PDHC_2 A K D V N V P D I G - - S D E V E V 

EcPDHC_3 V K E V N V P D I G - - G D E V E V 

Ec OGDHC S V D I L V P D L P E S V A D A T V 

AvOGDHC_ml A I D I K A P D I G A D G T V 

Av OGDHC_m2 A I D I K A P D I G - S I A D G T V 

Av OGDHC_m3 A I D I K A P D I G - S S A D G T V 

sec. struct. S S S S S S l l l l l l l l l S S S 

Figure 3. Sequence alignment of the N-terminal residues of the lipoyl domains of A. vinelandii PDHC (Av 
PDHC_l-3) (Hanemaaijer et al, 1988) and OGDHC (Av OGDHC) (Westphal & de Kok, 1990), E. coli 
PDHC (Ec PDHCJ-3) (Stephens etal, 1983) and OGDHC (Ec OGDHC) (Spencer et al, 1984), and three 
A. vinelandii OGDHC lipoyl domain mutants (Av OGDHC_ml-3). The locations of the exposed loop (1) and 
P-strands (p) are indicated in the bottom line. 
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OGDHC lipoyl domain (Figure 2), changing the sequence of the loop into different 

sequence variants of the loop of the lipoyl domain of PDHC. Three different OGDHC 

lipoyl domain loop mutants were created (Figure 3). One of the mutants (Av 

OGDHC_ml), in which the OGDHC lipoyl domain sequence TFPESI was replaced by the 

PDHC sequence DIG, did not express well in E. coli, showed a poor solubility and could 

not be purified and tested. The two other mutants designated Av OGDHC_m2 and Av 

OGDHC_m3, in which the sequence TFPESI has been replaced by DIGSI and DIGSS 

respectively, expressed well and could be purified. Both mutants were lipoylated in E. coli 

when exogenous lipoic acid was added to the growth medium (Berg etal, 1994), as judged 

by comparison with their unlipoylated form after electrophoresis on a native 

polyacrylamide gel. 

The purified lipoyl domain mutants were both tested in the reductive acylation 

assays with the two A. vinelandii complexes as the source of the El component (Table 1). 

These experiments show that both mutants are still being reductively succinylated by 

OGDHC, but at a lower rate as compared with the native OGDHC lipoyl domain. 

However, in particular the Av OGDHC_m3 mutant is now reductively acetylated by 

PDHC to a higher level than the native OGDHC lipoyl domain after 30 min. incubation. It 

is clear from these experiments that substitution of the sequence of the exposed loop of the 

OGDHC lipoyl domain by a sequence of the PDHC lipoyl domain does not alter the 

specificity of reductive acylation considerably. Only a small change in specificity towards 

PDHC is observed. It is therefore concluded that residues in this loop, and possibly the 

conformation of this loop, may very well be involved in the specific interaction between 

lipoyl domains and 2-oxo acid dehydrogenases, but that it is certainly not the only 

determinant for specificity. Other residues of the lipoyl domain, some of which have been 

suggested recently (Berg et al, 1996), must also play a role in this process of molecular 

recognition. This will be the subject of further research. 

MATERIALS AND METHODS 

Materials 
Sodium [2-14C]pyruvate (23.0 Ci/mol) and sodium [U-14C]2-oxoglutarate (293 

Ci/mol) were obtained from NEN Research Products. All other chemicals used were of 

analytical grade. 
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Construction of lipoyl domain mutants 

Standard methods were used for DNA manipulations (Ausubel et al, 1987). Site-

directed mutagenesis was performed by the mega-primer method (Landt et al, 1990) using 

as a template the plasmid pABl (Berg et al, 1995) encoding the first 79 amino acids of the 

succinyltransferase component of A. vinelandii OGDHC. The complete sub-gene encoding 

the lipoyl domain was sequenced after the mutagenesis reactions to ensure that besides the 

desired mutations no other mutations were present. 

Protein isolation 

The lipoylated lipoyl domain (residues 1-79) of OGDHC from A. vinelandii was 

isolated from a sub-gene overexpressed in E. coli, as described by Berg et al (1995). The 

same purification procedure was used for the purification of the lipoylated N-terminal 

lipoyl domain (residues 1-79) of PDHC from A. vinelandii (Berg et al, 1994) and the 

mutant OGDHC lipoyl domains. The lipoyl domains were dialysed against 50 mM 

potassium phosphate pH 7.0. The purity and lipoylation (see also Berg et al, 1994) of the 

lipoyl domains was analysed by denaturing and non-denaturing polyacrylamide gel 

electrophoresis (Schagger & von Jagow, 1987), with resolving gel 16.5% T, 3% C and 

stacking gel 4% T, 3% C. Lipoyl domain concentrations were estimated using the 

microbiuret method (Goa, 1953). 

The pyruvate dehydrogenase complex and the 2-oxoglutarate dehydrogenase 

complex from A. vinelandii were isolated as described by Bosma et al. (1984) and by 

Bosma (1984), respectively. The pyruvate dehydrogenase complex from E. coli was 

purified according to De Kok & Westphal (1985). The 2-oxoglutarate dehydrogenase 

complex from E. coli was isolated in a similar manner as described for the complex from 

A. vinelandii. PDHC overall activity was assayed as described by Schwartz & Reed (1970). 

In the assay for OGDHC the pyruvate was replaced by 2-oxoglutarate. 

Reductive acylation assay 

Reductive acylation of lipoyl domains by 2-oxo acid dehydrogenase in the presence 

of the corresponding 14C-labelled 2-oxo acid was assayed in a similar manner as described 

by Packman et al. (1984b). The general assay conditions were the following: lipoyl domain 

was incubated at 25 °C for 5 min. in the presence of a catalytic amount (1 U/ml, 1 U = 

lUmol NADH min.1) of 2-oxo acid dehydrogenase complex (PDHC or OGDHC) in 50-

300 \i\ 50 mM potassium phosphate pH 7.0, containing 0.4 mM thiamin diphosphate, 2 

mM MgCl2, and 3 mM NAD+. The reaction was started with the addition of sodium [2-
14C]pyruvate or sodium [U-,4C]2-oxoglutarate to a final concentration of 0.25 mM, and 
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was left at 25 °C during the reaction. After the addition of bovine serum albumine as a 

carrier protein (final concentration 1 mg/ml) the reaction was stopped by addition and 

immediate mixing of 1-2 ml of ice-cold 10% (mass/vol.) trichloroacetic acid. This 

suspension was kept on ice for 5 min. and then the protein precipitate was collected on two 

stacked Whatman GC/F filters. The filters were washed with 10 ml ice-cold 10% 

(mass/vol.) trichloroacetic acid, followed by 3 ml of ice-cold aceton. The dried filters were 

counted for radioactivity. In the control experiments the lipoyl domain was omitted from 

the incubation mixture. 

For the determination of the specificity of reductive acylation, typically 60 uM of 

isolated A. vinelandii N-terminal PDHC or OGDHC lipoyl domain was incubated in 100 ul 

reaction mixture for 1 min. and 30 min. with PDHC or OGDHC from A. vinelandii or E. 

coli and the corresponding 14C-labelled 2-oxo acid. For the determination of the kinetic 

constants of the A. vinelandii 2-oxo acid dehydrogenases (Elp and Elo) for their 

respective lipoyl domains as substrates, various concentrations (6-60 |iM) of lipoyl domain 

were incubated for 1 min. at 25 °C with the corresponding complex in a reaction volume of 

50 fil. The catalytic amount of complex used for these reactions was chosen such that the 

reductive acylation reactions were linear up to at least 1.5 min. for the highest 

concentration of lipoyl domain that was used. 
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Summary and concluding remarks 

The 2-oxo acid dehydrogenase complexes are large multienzyme complexes that 

catalyse the irreversible oxidative decarboxylation of a specific 2-oxo acid to the 

corresponding acyl-CoA derivative. The pyruvate dehydrogenase complex (PDHC) 

converts the product of the glycolysis, pyruvate, to acetyl-CoA, which enters the 

tricarboxylic acid cycle. The 2-oxoglutarate dehydrogenase complex (OGDHC) functions 

in the tricarboxylic acid cycle itself by converting 2-oxoglutarate to succinyl-CoA. The 

branched-chain 2-oxo acid dehydrogenase complex (BCDHC) is involved in the 

catabolism of branched-chain amino acids. Since these complexes play vital roles in 

metabolism, impairment in their functioning by genetic defects naturally causes severe 

diseases in humans, e.g. lactic acidosis (PDHC deficiency) and maple syrup urine disease 

(BCDHC deficiency) (Patel & Harris, 1995). 

The 2-oxo acid dehydrogenase complexes have a very similar design and share 

many structural and catalytic properties. They convert their substrate by the combined 

activity of multiple copies of three enzymes: a substrate-specific 2-oxo acid dehydrogenase 

(El), an acyltransferase (E2), and a lipoamide dehydrogenase (E3). The E2 component 

forms the central oligomeric core of the complex to which the peripheral subunits El and 

E3 are noncovalently bound. The acyltransferase (E2) component is a highly segmented 

and multifunctional protein in which three different independently folded domains can be 

recognised, connected by mobile linker sequences. The N-terminal part consists of one to 

three lipoyl domains (~ 80 amino acid residues each) containing the covalently bound 

prosthetic group lipoic acid. Between the lipoyl domain(s) and the C-terminal catalytic 

domain (~ 29 kDa), which bears the acyltransferase active site and which aggregates to 

form the oligomeric core of the complex, the peripheral subunit-binding domain (- 35 

amino acid residues) is found. 

The lipoyl domains play a crucial role in coupling the activities of the three 

multienzyme components by providing swinging arms that are mobile and responsible for 

substrate channelling among the three successive active sites. A specific lysine side chain 
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of each lipoyl domain is modified with lipoic acid to form a lipoyl group, which transports 

acyl groups from El to E2, and reduction equivalents from E2 to E3. The structure of the 

lipoyl domain is required for the efficient reaction of its lipoyl group with the El 

component. Furthermore, for E. coli PDHC and OGDHC it was shown that lipoyl domains 

can only be reductively acylated by the El enzyme of their parent complex, which 

indicates that molecular recognition occurs between El components and lipoyl domains 

(Graham et ai, 1989). 

The research presented in this thesis aimed at gaining insight in the interaction 

between lipoyl domains and El components, and in particular what part of the lipoyl 

domain determines the specificity of the reductive acylation reaction. By the determination 

and comparison of the three-dimensional structures of the lipoyl domains of PDHC and 

OGDHC from A. vinelandii, for which their specificities in the reductive acylation reaction 

were determined, we expected to shed already some light on this process of molecular 

recognition. It also provides the structural basis for further studies on the specific 

interaction between El and the lipoyl domain, some of which are described in this thesis. 

The results of this work are summarised hereafter. 

The N-terminal lipoyl domain (residues 1-79) of the E2p component of PDHC and 

the single lipoyl domain of the E2o component of OGDHC have both been sub-cloned and 

expressed in E. coli (chapters 2 and 3). The expression exceeded the capacity of the E. coli 

cells to lipoylate all the produced lipoyl domain, and only 5-10% of the lipoyl domain was 

found to be modified with lipoic acid. The unlipoylated and lipoylated forms of the lipoyl 

domain could be separated by anion-exchange chromatography. Addition of a 

supplementary amount of lipoic acid to the growth medium resulted in full lipoylation of 

the expressed lipoyl domain. The ability of the purified lipoylated lipoyl domains to 

become reductively acylated by the El components of their parent complex proved that 

their folding and modification were correct. The correct modification of the E2p lipoyl 

domain has been confirmed by electrospray mass spectrometry. 

Two-dimensional homo- and heteronuclear NMR studies of the A. vinelandii lipoyl 

domains have resulted in sequential !H and 15N resonance assignments and the secondary 

structure of both domains (chapters 2 and 3). The 2D 'H-NOESY spectra of the 

unlipoylated and lipoylated forms of the E2p lipoyl domain are almost superimposable, 

except for several additional resonances that could be assigned to the lipoic acid moiety, 

and small differences in chemical shift of protons of residues in the direct vicinity of the 

lipoyl-lysine residue (chapter 2). No changes in NOE intensities connecting these residues 

nor addition or loss of NOEs could be observed however, suggesting that the structure of 

the lipoyl domain is not altered much if any upon lipoylation. A detailed comparison of the 
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Summary and concluding remarks 

NMR-derived parameters of both lipoyl domains, i.e. chemical shifts, NH-exchange rates, 

NOEs, and 37HN<X coupling constants suggests a high structural similarity in solution 

between the two lipoyl domains, despite their amino acid sequence identity of only 25% 

(chapter 3). 

The three-dimensional solution structures of the two lipoyl domains have been 

determined using distance geometry and/or dynamical simulated annealing calculations 

(chapters 4 and 5). The overall fold of both lipoyl domains is very similar and can be 

described as a (3-barrel-sandwich hybrid, which is now known to be typical for lipoyl 

domains. The domain is formed by two very similar and almost parallel four-stranded 

antiparallel (3-sheets connected by loops and turns. The P-sheets each consist of three 

major and one minor strand, and are formed around a well-defined core of hydrophobic 

residues. At the far end of one of the sheets the lipoyl-lysine residue is presented to the 

solvent in a (3-turn connecting two successive strands. The N-terminal and C-terminal ends 

of the folded domain meet at the exact opposite of the domain in two adjacent P-strands of 

the other sheet. The lipoyl domains display a remarkable internal symmetry that projects 

one p-sheet onto the other p-sheet after rotation of approximately 180° about a 2-fold 

rotational symmetry axis. The last six and two C-terminal residues of the cloned fragments 

of the PDHC and OGDHC lipoyl domains, respectively, are poorly defined and belong to 

the flexible linker sequences connecting the lipoyl domains to the remainder of the 

acyltransferase chain. These residues also show a significant narrower linewidth of their 

amide protons in the NMR spectra, which is an indication of increased mobility. 

The number of long-range NOE-distance constraints that have been obtained for the 

two lipoyl domains is not very large, but is comparable to the number obtained for other 

lipoyl domains, i.e. from B. stearothermophilus PDHC and E. coli PDHC (Dardel et al, 

1993; Green et al., 1995). This seems inherited with the particular type of protein structure, 

in combination with the absence (A. vinelandii PDHC lipoyl domain) or low amount (only 

one Trp residue in the core of the A. vinelandii OGDHC lipoyl domain) of aromatic 

residues. Many long-range contacts between hydrophobic residues in the core of the 

domains are side-chain side-chain contacts. The unambiguous assignment of many of these 

contacts is impaired by overlap, and these contacts will only be accessible after Re

labelling of the lipoyl domains. Although the three-dimensional structures of the lipoyl 

domains that have been determined are not of high resolution, they provide good and 

suitable structural models for comparisons and the design of significant mutants to 

investigate the specific interactions between lipoyl domains and other complex 

components. 
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Chapter 7 

A comparison of the structures of the A. vinelandii PDHC and OGDHC lipoyl 

domains with those of the PDHC lipoyl domains of B. stearothermophilus and E. coli 

shows that their overall fold is strikingly similar. In particular, that fact that the two A. 

vinelandii lipoyl domains, for which their specificity in the reductive acylation reactions 

has been demonstrated now (chapter 6), have similar structures, indicates that molecular 

recognition of lipoyl domains by El is a result of only delicate differences among lipoyl 

domains. On the basis of a careful comparison of lipoyl domain structures and sequences, 

potential residues of the lipoyl domain that could be important for molecular recognition 

are proposed. These include residues of an exposed loop connecting the first two P-strands 

in the sequence, and which lies close in space to the lipoylation site. In this loop the largest 

structural differences among lipoyl domains are found. Other potential candidates are the 

two amino acid residues immediately succeeding the lipoyl-lysine residue. 

Site-directed mutagenesis experiments of the exposed loop of the A. vinelandii 

OGDHC lipoyl domain, and cross-acylation experiments of A. vinelandii PDHC and 

OGDHC lipoyl domains catalysed by E. coli complexes, were performed to investigate the 

role of this loop in molecular recognition (chapter 6). These experiments indicate that this 

loop is very likely involved in the interaction with the El component, but that it is 

probably not the single determinant conferring specificity to the reductive acylation 

reaction. Additional site-directed mutagenesis experiments on this loop and the residues 

following the lipoyl-lysine residue are required to further investigate their role in molecular 

recognition. 

All studies on the interaction between lipoyl domains and El components are 

impaired by the lack of a three-dimensional structure of any El component. Furthermore, 

although the interaction between the lipoyl domain and El is specific, it is supposedly 

weak (Graham & Perham, 1990). This has been substantiated by initial NMR experiments 

in which, upon addition of A. vinelandii Elp to the 15N-labelled lipoylated E2p lipoyl 

domain (1:2 ratio), no broadening or shift of the lipoyl domain resonances could be 

observed (Berg etal, 1996) (not described in this thesis). From addition of pyruvate to this 

NMR sample it was suggested that also the acetylated form of the lipoyl domain does not 

bind to Elp, at least not under the applied conditions. Together this implies that the lipoyl 

domain does not interact (strongly) with the El component, except when the hydroxyethyl-

ThDP moiety is present in El. Such a ping-pong type of mechanism may be advantageous 

for the lipoyl domain that needs to interdigitate rapidly among the different active sites in 

the complex, but is unfortunately less advantageous for the observer. 

A final remark is dedicated to the rotational flexibility of the lipoyl group of the 

lipoyl domain, that is thought to be required to act as a swinging arm in the complex 
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(Reed, 1974). Recently, the X-ray crystal structures of the H-protein of the glycine 

decarboxylase system with its lipoyl group loaded with methylamine (Cohen-Addad et al., 

1995), and of the biotinyl domain of acetyl-CoA carboxylase (Athappilly & Hendrickson, 

1995), showed that their lipoyl/biotinyl group binds back to the protein surface. This may 

even not be very surprising considering the hydrophobic nature of the lipoyl group, and the 

question if this also could happen with lipoyl groups of 2-oxo acid dehydrogenase 

complexes is therefore relevant. In the case of the H-protein, only the methylamine-loaded 

form of the lipoyl group binds to the protein, while the oxidised lipoyl group does not. 

Furthermore, the methylamine-loaded lipoyl group binds to residues that are conserved in 

H-proteins, several of which are located in a N-terminal helix that is absent in lipoyl 

domains. In the case of the biotinyl domain, the biotinyl group is partly buried in a thumb

like protruding loop that is not found in lipoyl domains. For the lipoyl domains of 2-oxo 

acid dehydrogenase complexes no X-ray crystal structures, or NMR structures of their 

lipoylated form, are available. As mentioned earlier, only small differences in chemical 

shifts of residues close in space to the lipoylation site (average difference ~ 0.15 ppm), 

including residues of the exposed loop (average difference ~ 0.07 ppm), are observed 

between the lipoylated and unlipoylated forms of the lipoyl domain (chapter 2). These 

differences are considered too small to suggest binding of the lipoyl group to e.g. the 

exposed loop. Together with the fact that in the H-protein and the biotinyl domain the 

lipoyl/biotinyl group binds to parts of the protein that are absent in lipoyl domains, this 

indicates that the lipoyl groups of 2-oxo acid dehydrogenase complexes are likely to swing 

freely. 
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De 2-oxozuurdehydrogenase complexen zijn zeer grote multi-enzymcomplexen die 

de oxidatieve decarboxylering van een specifiek 2-oxozuur tot het corresponderende acyl-

CoA derivaat katalyseren. Het pyruvaatdehydrogenase complex (PDHC) zet het 

eindprodukt van de glycolyse, pyruvaat, om in acetyl-CoA. Acetyl-CoA wordt vervolgens 

in de citroenzuurcyclus verder verbrand. Het oc-ketoglutaraatdehydrogenase complex 

(OGDHC) maakt deel uit van de citroenzuurcyclus en zet a-ketoglutaraat om in succinyl-

CoA. Verder is er nog een derde oxozuurdehydrogenase complex (BCDHC) dat is 

betrokken bij de omzetting van oxozuren afgeleid van aminozuren met vertakte ketens 

(valine, leucine, isoleucine). Al deze multi-enzymcomplexen spelen een essentiele rol in 

het energiemetabolisme. Het is dan ook niet verwonderlijk dat defecten aan deze 

belangrijke multi-enzymcomplexen door erfelijke afwijkingen ernstige ziekten 

veroorzaken. 

De drie 2-oxozuurdehydrogenase complexen hebben veel gemeenschappelijke 

structurele en katalytische eigenschappen. Ze zetten allemaal het betreffende substraat 

stapsgewijs om door middel van deelreacties, die worden gekatalyseerd door drie 

verschillende enzymen in het complex: een substraatspecifiek 2-oxozuurdehydrogenase 

(El), een acyltransferase (E2) en een lipoamide-dehydrogenase (E3). Deze enzymen 

komen allemaal in meerdere kopieen voor in het complex. De E2-component vormt de 

structurele kern van het complex door te aggregeren tot een 24-meer of een 60-meer. Aan 

de E2-kern zijn meerdere kopieen van de El- en de E3-component niet-covalent gebonden. 

De E2-component is een multifunctioneel eiwit bestaande uit drie verschillende soorten 

domeinen, die onafhankelijk van elkaar vouwen en functioneren. Het N-terminale gedeelte 

van de E2-eiwitketen bestaat uit een tot drie lipoyldomeinen (~ 80 aminozuren elk) 

waaraan covalent de prosthetische groep lipoaat is gebonden. Tussen de lipoyldomeinen en 

het C-terminale katalytische domein (~ 29 kDa), dat het acyltransferase actieve centrum 

bevat en de kern van het complex vormt, bevindt zich een bindingsdomein. Dit kleine 

domein (~ 35 aminozuren) is betrokken bij de binding van de El- en/of E3-componenten 

aan de kern van het complex. De domeinen zijn met elkaar verbonden door flexibele 

stukken eiwitketen (zgn. linkers), die essentieel zijn voor het goed functioneren van het 

complex. 

De lipoyldomeinen spelen een cruciale rol in het multi-enzymcomplex. Zij zorgen 

voor het transport van de reactie-intermediairen tussen de verschillende enzymen in het 
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complex, waardoor alle actieve centra in het complex als het ware worden gekoppeld 

(active-site coupling). Elk lipoyldomein bevat een lipoylgroep, die wordt gevormd door de 

modificatie van een specifiek lysine-residu met lipoaat. De lipoylgroep transporteert de 

acylgroepen van El naar E2, en vervolgens de reductie-equivalenten van E2 naar E3. De 

geoxideerde lipoylgroep is dan weer beschikbaar om te worden geacyleerd door de El-

component. De structuur van het lipoyldomein is belangrijk en essentieel voor een 

efficiente reactie van zijn lipoylgroep met El. Vrij lipoamide is een zeer slecht substraat 

voor El. Voor E. coli PDHC en OGDHC is aangetoond dat de lipoyldomeinen alleen 

efficient worden geacyleerd door de El-component van hun eigen complex. Dit duidt erop 

dat de lipoyldomeinen specifiek worden herkend door de El-component. 

Het doel van het onderzoek, dat in dit proefschrift wordt beschreven, is om meer 

inzicht te krijgen in de interacties tussen lipoyldomeinen en El-componenten, en in het 

bijzonder welk deel van het lipoyldomein nu zorgt voor de specifieke herkenning door de 

El-component. Door het bepalen en vergelijken van de drie-dimensionale structuren van 

de lipoyldomeinen van het PDHC en het OGDHC uit A. vinelandii, waarvoor de 

specificiteit in de reductieve acyleringsreactie is bepaald, wordt verwacht al wat meer te 

weten te komen over deze moleculaire herkenning. De bepaling van de structuur van de 

lipoyldomeinen vormt in ieder geval een goede structurele basis voor verdere studies op dit 

gebied, waarvan er een aantal ook in dit proefschrift wordt beschreven. De resultaten van 

het bovengenoemde werk zullen nu worden samengevat. 

Het N-terminale lipoyldomein (aminozuurresiduen 1-79) van de acetyltransferase-

component van het PDHC, en het lipoyldomein van de succinyltransferase-component van 

het OGDHC, zijn beiden gesubcloneerd en tot expressie gebracht in E. coli (hoofdstukken 

2 en 3). Het vermogen van de E. coli cellen tot het lipoyleren van het lipoyldomein is 

echter niet toereikend, en slechts 5-10% van het geproduceerde lipoyldomein wordt 

voorzien van een lipoylgroep. De gelipoyleerde en niet-gelipoyleerde vormen van het 

lipoyldomein kunnen eenvoudig worden gescheiden met behulp van een anionenwisselaar. 

Het toevoegen van extra lipoaat aan het groeimedium resulteert echter in het volledig 

lipoyleren van al het geproduceerde lipoyldomein. De vouwing en de modificatie van de 

recombinante lipoyldomeinen is goed, want ze kunnen allebei worden geacyleerd door de 

betreffende El-component. De correcte modificatie van het PDHC lipoyldomein is ook 

bevestigd door electrospray massaspectrometrie. 

Twee-dimensionale homonucleaire en heteronucleaire NMR (kernspinresonantie) 

metingen hebben geresulteerd in de toekenning van de sequentiele 'Hen 15N resonanties 

en de secundaire structuur van beide lipoyldomeinen (hoofdstukken 2 en 3). De !H-

NOESY spectra van de gelipoyleerde en niet-gelipoyleerde vormen van het PDHC 
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lipoyldomein kunnen vrijwel exact over elkaar worden gelegd, met uitzondering van 

enkele extra resonanties die kunnen worden toegekend aan de lipoylgroep (hoofdstuk 2). 

Ook zijn er kleine verschuivingen waar te nemen van resonanties afkomstig van residuen 

die zich in de directe omgeving van het lipoyl-lysine-residu bevinden. Er zijn echter geen 

veranderingen waarneembaar in de intensiteit van NOEs die deze residuen verbinden, noch 

is er een verlies of het verschijnen van extra NOEs geconstateerd. Dit duidt erop dat de 

structuur van het lipoyldomein niet, of niet noemenswaardig, verandert door de 

covalentgebonden lipoylgroep. Een uitgebreide vergelijking van de chemische 

verschuivingen (chemical shifts), NH-uitwisselingssnelheden, NOEs en 37HNO 

koppelingsconstanten wijst op een zeer groot structureel verwantschap tussen beide 

lipoyldomeinen, alhoewel hun aminozuurvolgorden slechts voor 25% identiek zijn 

(hoofdstuk 3). 

De drie-dimensionale structuren in oplossing van de PDHC en OGDHC 

lipoyldomeinen zijn bepaald met behulp van distance geometry en/of simulated annealing 

berekeningen (hoofdstukken 4 en 5). De algemene vouwing van beide lipoyldomeinen is 

hetzelfde, en kan worden beschreven als een P-barrel-sandwich hybrid (afgeplatte cylinder 

gevormd door p-platen), een vouwing die nu als kenmerkend wordt beschouwd voor 

lipoyldomeinen. Het domein bestaat uit twee vrijwel identieke antiparallelle p-sheets die 

nagenoeg parallel ten opzichte van elkaar staan, en die met elkaar worden verbonden door 

loops (lussen) en turns (bochten). Elke p-sheet wordt gevormd door drie grote en een 

kleine P-strand, die rond een goed gedefinieerde kern van hydrofobe aminozuurresiduen 

liggen. Aan het uiteinde van een van de P-sheets, in een P-turn die twee opeenvolgende P-

strands met elkaar verbindt, bevindt zich het lipoyl-lysine-residu, dat zo direct de 

oplossing insteekt. Precies daartegenover, aan de andere kant van het domein, komen de 

N- en C-termini samen in de andere P-sheet. Het lipoyldomein is opvallend symmetrisch, 

en een tweevoudige rotatiesymmetrie-as kan worden gedefinieerd dwars door het centrum 

van het domein heen. Daarmee kunnen de twee p-sheets op elkaar worden gedraaid. De 

laatste zes en twee C-terminale aminozuurresiduen van respectievelijk de recombinante 

PDHC en OGDHC lipoyldomeinen, zijn slecht gedefinieerd in de structuren. Ze behoren 

tot de flexibele linkers die de lipoyldomeinen met de rest van de acyltransferase 

polypeptideketen verbinden. De NH-protonen van deze residuen hebben een smallere 

lijnbreedte in het NMR-spectrum dan de NH-protonen van de rest van het lipoyldomein, 

hetgeen erop duidt dat deze residuen mobieler zijn. 

De algemene vouwing van de tot nu toe bekende lipoyldomeinen, nl. de A. 

vinelandii PDHC en OGDHC lipoyldomeinen en de PDHC lipoyldomeinen van B. 

stearothermophilus en E. coli, is nagenoeg hetzelfde. Vooral het feit dat de twee A. 
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vinelandii lipoyldomeinen, waarvan hun specificiteit in de reductieve acyleringsreactie is 

vastgesteld (hoofdstuk 6), zeer overeenkomstige structuren hebben, suggereert dat de 

moleculaire herkenning van lipoyldomeinen door de El-component berust op subtiele 

verschillen tussen de lipoyldomeinen. Op basis van het nauwkeurig vergelijken van 

lipoyldomeinstructuren en -aminozuurvolgorden, kunnen een aantal aminozuurresiduen 

worden voorgesteld, die mogelijk zijn betrokken bij de moleculaire herkenning. Daaronder 

bevinden zich onder andere aminozuurresiduen die deel uitmaken van een exposed (aan de 

oplossing blootgestelde) loop, die de eerste twee P-strands met elkaar verbindt, en die in de 

buurt ligt van het lipoyl-lysine-residu. De grootste structurele verschillen tussen de diverse 

lipoyldomeinen worden juist in deze loop waargenomen. Ook de twee aminozuurresiduen, 

die in de aminozuurvolgorde direct na het lipoyl-lysine-residu komen, zouden mogelijk 

betrokken kunnen zijn bij de specifieke herkenning door El. 

Om de mogelijke betrokkenheid van de exposed loop bij de moleculaire 

herkenning te onderzoeken, zijn plaatsgerichte mutagenese-experimenten aan de loop van 

het OGDHC lipoyldomein uitgevoerd (hoofdstuk 6). Ook zijn daartoe cross-

acyleringsreacties van de A. vinelandii PDHC en OGDHC lipoyldomeinen, gekatalyseerd 

door E. coli complexen, gedaan. Deze experimenten tonen aan dat de exposed loop 

waarschijnlijk is betrokken bij de specifieke herkenning van lipoyldomeinen door de El-

component, maar dat niet alleen deze loop de specificiteit van de reductieve 

acyleringsreactie bepaalt. Aanvullende plaatsgerichte mutagenese-experimenten aan deze 

loop, en aan de andere voorgestelde aminozuurresiduen, zullen nodig zijn om hun rol in de 

moleculaire herkenning definitief vast te stellen. 
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